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A general problem in Extremal Combinatorics asks about the maximum size of a

collection of finite objects satisfying certain restrictions, and an ideal solution to it

presents to you the objects which attain the maximum size.

In several problems, it is the case that any large set satisfying the given property

must be similar to one of the few extremal examples.

Such stability results give us a complete understanding of the problem, and also

make the result more flexible to be applied as a tool in other mathematical problems.

Stability results in additive combinatorics and graph theory constitute the main

topic of this thesis, in which we solve a question of Erdös and Sárközy on sums of

integers, and reprove a conjecture of Posa and Seymour on powers of hamiltonian

cycles.

Along the way we prove stronger structural statements that have as a corollary

the optimal solution to these problems. We also introduce a counting technique and

two graph theory tools which we believe to be of great interest in their own right.

Namely the shifting method, the connecting lemma, and a robust version of the classic

Erdos-Stone Simonovits theorem.
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Chapter 1

Introduction

A typical type of problem in additive combinatorics is to determine the maximum size

of a set of integers satisfying some (additive) property.

For instance, Roth’s theorem can be formulated as determining the maximum size of

a set A ⊆ {1, · · · , N}, with no three-term arithmetic progressions (i.e. with no solutions

to x+ y = 2z). The best known upper and lower bounds to this problem are still very

far apart, and it seems hard to understand what large sets might look like.

In many other additive problems, however, we know exactly the extremal solutions.

An example is that of determining the maximum size of a sum-free setA ⊆ {1, · · · , N}

(i.e. with no solutions to x+ y = z). It is easy to see that such a set can have at most

N
2 elements, and that there are only two extremal examples. Namely, the set of odd

integers, and the set
{
N
2 + 1, . . . , N

}
.

The next interesting question to ask in such a problem is whether any large set

satisfying the given property has to be similar to one of the extremal examples.

Such theorems are called stability results and constitute the main topic of this thesis.

They are central to the solution of the two problems we study:

• Erdös and Sárközy’s question on the maximum size of a set A ⊆ {1, . . . , N} with

no two elements adding up to a perfect square (i.e. no solutions to x + y = t2,

with t ∈ N)

• The Posa-Seymour conjecture that any graph G of order n, and minimum degree

at least (k−1
k )n, contains the (k−1)th power of a Hamiltonian cycle (defined to be

a Hamiltonian cycle where each vertex is connected to the k − 1 following ones)
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Whereas the first question is very much in the spirit of the examples we mentioned,

the second problem is more of a classical graph theory one. This should come as no

surprise, as stability results arise naturally in any problem where one tries to find how

large a collection of finite objects (numbers, vectors, sets) can be, satisfying certain

restrictions. They have, therefore, a natural relevance in Extremal Combinatorics, and

in Extremal Graph Theory in particular.

Our goal is to show the utility of stability results through the solution of these two

very different combinatorial problems.1

On the Erdös and Sárközy problem, a good first guess to a large set with the given

property is that of all integers congruent to 1 (mod 3) (since 2 is not a square (mod 3)).

Massias, in [30], found another set with slightly higher density 11
32 . Namely, that of all

integers x ∈ {1, . . . , N}, with x ≡ 1 (mod 4), or with x ≡ 14, 26, 30 (mod 32).

Over a finite cyclic group Lagarias et al. [27] showed that one cannot find more than

a 11
32 fraction of the residue classes, with the sum of any two a quadratic nonresidue.

In chapter 2, we start by characterizing all the sets that achieve maximum density in

the modular setting. Considering the corresponding sets of integers we prove a stability

result, which states that if A ⊆ {1, · · · , N} has density slightly smaller than 11
32 and no

two elements that add up to a perfect square, then it has to be close to one of those

extremal sets.

For a set A close to the extremal examples, we then use their structure together with

a so-called shifting method and analytic techniques to count the number of solutions of

a1 + a2 = t2, with a1, a2 ∈ A, and t ∈ {1, · · · , N}. We prove that this is greater than 0,

so there exists two elements in A that add up to a perfect square, assuming |A| ≥ 11
32 .

In conclusion, we determine not only the solution to the Erdös and Sárközy ques-

tion
(
namely 11

32 , for sufficiently large N
)

but more interestingly, that any subset of the

first N integers, with size close to 11
32N and no solutions to the given equation, has to

1It is nevertheless interesting to recall the historical interplay between the fields, as in Szemeredi’s
theorem, Plunnecke-Ruzsa inequality, or Balog-Szemeredi-Gowers theorem, only to mention a few. In
Tao and Vu’s [34] words Additive combinatorics is a subfield of combinatorics so it is no surprise that
graph theory plays an important role in this theory.
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be close to the extremal example given by Massias, or to a similar one we shall present.

The Posa-Seymour Conjecture was first proved for large graphs, via the Regularity

Lemma, in [24]. In Chapter 3 we reprove this conjecture without using Regularity, thus

showing that it also holds for graphs with a much smaller number of vertices.

A key ingredient is a stability version of the classic Erdos-Stone-Simonovits theorem.

Say a graph G is α-extremal if it has a subset A ⊆ V (G) with ( 1
k−α)n ≤ |A| ≤ ( 1

k+α)n,

and edge density d(A) < α. We show that a graph with minimum degree at least(
k−1
k − ε

)
n, which is not α-extremal, contains a complete balanced (k + 1)-partite

subgraph with color classes of size log n.

Using this stability result and a new kind of connecting lemma, we prove not only

Posa-Seymour conjecture, but a characterization of graphs with large minimum degree

and no (k−1)-Hamiltonian cycle. That is the content of the main result in the chapter,

theorem 21, which says that any graph G with |V (G)| = n > n0(α), minimum degree

at least (k−1
k − ε(α))n, and not containing a (k − 1)th power of a Hamiltonian cycle,

has to be α-extremal.

It is our belief that both the robust version of the Erdos-Stone-Simonovits theorem

and the Connecting Lemma are very interesting in their own right, and will probably

have many applications in Graph Theory in the near future.

Hopefully the reader will be inspired by the power of stability results demonstrated

by the solution of these two problems, and will want to keep this work in the back of

his mind, or at hand, or at least out of the shelf!



4

Chapter 2

Solution to the Erdös-Sárközy prolem

2.1 Introduction of the problem

In their seminal paper in 1981, on the sum and difference of a set of integers, Erdös

and Sárközy [6] posed the following question:

What is the maximum cardinality of a subset of the first N integers, with the

property (NS) that no two elements add up to a perfect square?

The set of all integers congruent to 1 (mod 3) is easily seen to satisfy this (since

2 is not a square (mod 3)), and it has density 1
3 . Massias [30] found another set with

the slightly higher density 11
32 . Namely, the set of all integers x ∈ {1, . . . , N}, with

x ≡ 1 (mod 4), or with x ≡ 14, 26, 30 (mod 32).

Over a cyclic group Zm Lagarias et al. [27] showed that one cannot find more than

11
32m residue classes, with the sum of any two a square nonresidue. Using the result over

cyclic groups, their authors gave in a subsequent paper [28] the first non-trivial upper

bound of 0.475, for the density of an arbitrary set of integers with the property (NS)

An almost complete answer to the original problem was given by A.Khalfalah,

S.Lodha, and E.Szemeredi [19]. Building as well on the modular counterpart result

of Lagarias et al, they showed that for any given δ > 0, and sufficiently large N , every

subset of {1, . . . , N} with density at least 11
32 + δ contains two elements that add up to

a perfect square.

It is relevant to mention here that the upper bound of 11
32N does not always hold

though. Some abnormally behaving counter-examples can be found with a computer

for small values of N , as N = 79.

The goal of the work in this chapter is to establish the exact value of 11
32N for the
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maximum possible density, for every N bigger than a well defined constant N0 (and

conclude that those small counterexamples are indeed an exception).

2.2 Main Lemmas

We manage to achieve the optimal bound here, building upon the work of [19] and [27].

For the sake of completeness, and for an understandable exposition of the material,

we present the material in those two papers. This is done in Sections 2.3 and 2.5, in

which we claim no originality, and only include the proofs necessary for a self-contained

reading of the new material.

The solution for the problem over Zn is explained in Section 2.3. In Section 2.4,

we refine their study, characterizing the sets that achieve maximal density over Zn. It

turns out that the example presented by Massias, and an identical one, are the only

two possible extremal sets. We show a stability result: any set with property (NS), and

density close to the maximum possible, is similar to one of these two extremal examples.

In Section 2.5, we explain the proof of the bound (11
32 + δ) for subsets of the first N

integers, studying their distribution when reduced modulo qi, for distinct integers qi.

In Section 2.6, using the stability lemma of Section 2.4, we show that such argument

can be extended to any set of integers of size at least 11
32N , which is far from both the

Massias examples.

Lastly, we prove in Section 2.7 that any subset of the first N integers of size at least

11
32N which is sufficiently close to one of the massias examples, has to have two elements

that add to a perfect square. Therefore proving our main result

Theorem 1. There is a constant N0, such that for every N > N0, any subset of the

first N integers with property (NS) has density at most 11
32N .

A suggested road map to a first read of this chapter is to take theorem 2 for granted,

and directly start with Section 2.5. We invite the reader to then move on to Sections 2.6,

and 2.7, only borrowing the stable characterization of the extremal sets of theorem 13,

which will make him fully equipped to understand our main theorem 1.
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2.3 Exact solution over a finite cyclic group

The work of Lagarias, Odlyzko and Shearer

Let S be a subset of Zn, with the property

(NS) the sum of any two of its elements is not a square residue

In a remarkable work, Lagarias, Odlyzko and Shearer prove that, such a set must have

density at most 11
32 . In this Section we reproduce their exact same proof, for the sake

of completeness and to be able to build upon it. No originality is claimed in any of

the arguments till Section 2.4. Only the proofs necessary for a clear phrasing of the

exposition are included. For the remaining material we direct the reader to the original

work [27].

We will explain their following main result

Theorem 2. Let S be a subset of Zn, such that the sum of any two of its elements is

not a square residue. Then, denoting d(S) the density of S, we have that d(S) ≤ 11
32 .

To prove this theorem, the mentioned authors first transfer the problem to the

following graph and corresponding linear program.

Let Qn denote the graph with vertex set Zn, and (x, y) ∈ Zn × Zn an edge if and

only if x+ y ≡ t2 (mod n), for some t ∈ Zn.

Finding the maximum size of a subset of Zn with property (NS), is the same as

finding the maximum size of an independence set in the graph Qn. Let α(n) denote

the independence number of the graph Qn, and i(n) = α(n)
n its independence ratio. We

aim to show that i(n) ≤ 11
32 , for any integer n.

Since the independence number of a graph is by definition the size of its maximal in-

dependent set, we can determine it by solving the linear program L(Qn), with objective

function

z =
∑
i∈Zn

xi

and constraints
xi + xj ≤ 1, for any i, j ∈ Qn,

xi = 0, 1, for any i
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If we replace a subset of these constraints by a different one satisfied by all the

solutions of L(Qn), we get a different linear program whose solution is an upper bound

for the original one. This is called loosening the problem. For example one can replace

some of the conditions by ∑
i∈H

xi ≤ α(H)

for any subgraph H of Qn. In particular:

-if three vertices xi, xj , xk of Qn form a triangle, we can add the constraint

xi + xj + xk ≤ 1

-if Qn has a loop on a vertex i, all solutions to L(Qn) must have xi = 0. So we can

add the constraint

3xi ≤ 1

-if Qn has as a subgraph a collapsed triangle, {i, k}, with a loop on i, we can add

the constraint

2xi + xj ≤ 1

(the choice of these coefficients might seem mysterious and artificial at the moment,

but it will reveal its utility further on in the argument)

Also, if our objective function z =
∑

zj , for zj objective functions of linear pro-

grams Lj , whose constraints are a subset of L(Qn), then the sum of their optimal

solutions, is an upper bound for the optimal solution of L(Qn). This is called decom-

posing the problem.

We will use both the techniques in the following manner.

Definition 1. Define multiplicity of a vertex of a triangle, collapsed triangle or loop,

to be its coefficient in the correspondent equation above.

Definition 2. A graph G has a d-uniform covering by some of its subgraphs Hi, which

are triangles, collapsed triangles, or loops, if any vertex of G occurs d times in the

subgraphs Hi, when counted with multiplicity.
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The following number theoretical result is a cornerstone of the argument. We refer

the interested reader to the proof in the original paper [27].

Lemma 3. If m is an odd number, then Qm admits a d-uniform covering by triangles,

loops, and collapsed triangles; for some integer d.

By the definition of uniform covering one can also prove

Lemma 4. If a graph G has a d-uniform covering by subgraphs Hi, i = 1, . . . , k which

are triangles, collapsed triangles, or loops, then

α(G) ≤ 1

d

k∑
i=1

α(Hi)

From these two lemmas it is easy to conclude

Corollary 2.3.1. If m is an odd number, then i(Qm) ≤ 1
3 .

Therefore, we may restrict our attention to Q2nm, with n ≥ 1, m odd.

Define the product of two graphs G and H, to be the graph G×H, with vertex set

V (G)× V (H), and
(

(x, y), (w, z)
)

an edge of G×H, if and only if (x,w) is an edge of

G and (y, z) is an edge of H.

Lemma 5. If n = pa11 p
a2
2 . . . pakk , then

Qn ∼= Qpa11
×Qpa22 ×Qpakk

Proof. The proof follows from the chinese remainder theorem.

In particular, Q2nm
∼= Q2n×Qm, which reduces our problem to showing that i(Q2n×

Qm) ≤ 11
32 . The following lemma reveals that in fact, it is enough to show that i(Q2n ×

T ) ≤ 11
32 .

Lemma 6. If a graph H has a d-uniform covering by triangles, collapsed triangles, and

loops, for some integer d, then i(G×H) ≤ i(G× T ).
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Proof. Let Hi, i = 1, . . . , k be a d-uniform covering of H.

For each Hi, let Li be the 0-1 integer program with objective function

zi =
∑

j∈G×Hi

ajxj (?)

and constraints

xj1 + xj2 ≤ 1, for any j1, j2 which form an edge in G×Hi

where for j = (g, h) ∈ G×Hi, aj denotes the multiplicity of h in Hi.

Let β(G×Hi) denote the optimal solution of this linear program.

Letting z =
∑

j∈G×H xj be the objective function of the linear program for the

independence number of G×H, from the definition of d-uniform covering

dz = d
∑

j∈G×H
xj =

k∑
i=0

∑
j∈G×Hi

ajxj =

k∑
i=0

zi

By decomposition of a linear program, we get

d · α(G×H) ≤
k∑
i=0

β(G×Hi)

If Hi is a triangle T , then all coefficients aj = 1 in the objective function (3.1) of Li.

Thus Li is just the linear program that computes the independence number of G× T .

That is β(G× T ) = α(G× T ).

For Hi a collapsed triangle, the linear program Li can be obtained from the program

for the independence number of G× T , by adding extra constraints x(g,1) = x(g,3), for

every g ∈ G. Hence β(G×Hi) ≤ α(G× T ).

For Hi a loop, the linear program Li can be obtained from the program for the

independence number of G×T , by adding constraints x(g,1) = x(g,2), and x(g,2) = x(g,3),

for every g ∈ G. Hence β(G×Hi) ≤ α(G× T ).

Therefore

α(G×H) ≤ 1

d

k∑
i=0

α(G× T )

By d-uniformity, we have 3k = dm, and so this yelds

α(G×H)

m
≤ α(G× T )

3

that is i(G×H) ≤ i(G× T ).
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Let us show that i(Qn × T ) ≤ 11
32

.

Partition the set of vertices V (Qn × T ) into eight classes V0, V1, . . . , V7, according to

the residue class (mod 8) of their first coordinate. Namely

Vi = {(x, t)| x ≡ i (mod 8), t = a, b, c}

Let I be an independent set of Qn × T . Let αi denote the proportion of elements of Vi

that are in I. That is

αi =
|I ∩ Vi|
|Vi|

Our goal is to show that

8∑
i=1

αi ≤ 2 +
3

4

(
= 8 · 11

32

)
We’ll derive it from the following observations:

1. (a) α0 = 0, or α1 = 0, or (α0 =≤ 1/3 and α1 =≤ 1/3 )

(b) α2 = 0, or α7 = 0, or (α2 =≤ 1/3 and α7 =≤ 1/3 )

(c) α3 = 0, or α6 = 0, or (α3 =≤ 1/3 and α6 =≤ 1/3 )

(d) α4 = 0, or α5 = 0, or (α4 =≤ 1/3 and α5 =≤ 1/3 )

2. α0 + α4 ≤ 11
16

3. (a) α1 + α7 ≤ 1

(b) α3 + α5 ≤ 1

4. (a) α1 + α3 ≤ 1

(b) α5 + α7 ≤ 1

5. 2α6 ≤ 1

6. 2α2 + α6 ≤ 1

Proof.

We will prove the above inequality for independent sets of Q2nm, by induction on

n . The cases n = 1, 2 can be easily verified, so assume n ≥ 3. Recall that an element

x ∈ Z2n is a quadratic residue if and only if x = 4ky, with y ≡ 1 (mod 8) [15].
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1. In particular, any x ∈ Z2n with x ≡ 1 (mod 8) is a quadratic residue.

(a) Suppose that α0 6= 0.

Consider an element (x, t) ∈ I, with x ≡ 0 (mod 8), t = a, b, c. Without loss

of generality, (x, a) ∈ I.

Then (x, a) is adjacent to (y, b), and (y, c), for any y ≡ 1 (mod 8).

Therefore α1 ≤ 1
3 .

(b) (c), and (d) have analogous proofs.

2. Notice that Q2nm × T �V0∪V4∼= Q2n−3m × T , as witnessed by the isomorphism

φ : Q2n−3m × T → Q2nm × T �V0∪V4

(x, t) 7→ (4x, t )

By the induction hypothesis we get that α0 + α4 ≤ 11
16 .

3. We’ll exhibit matchings between V1 and V7, and between V3 and V5.

Consider the set of edges {(x, a), (−x, b)}, {(x, b), (−x, c)}, {(x, b), (−x, c)}

(a) Letting x ≡ 1 (mod 8), we get a matching between V1, and V7.

Hence α1 + α7 ≤ 1

(b) Letting x ≡ 3 (mod 8), we get a matching between V3, and V5. Hence

α3 + α5 ≤ 1 .

4. Consider edges {(x, a), (4− x, b)}, {(x, b), (4− x, c)}, {(x, c), (4− x, a)}

(a) Letting x ≡ 1 (mod 8), we get a matching between V1, and V3.

Hence α1 + α3 ≤ 1

(b) Letting x ≡ 5 (mod 8), we get a matching between V5, and V7.

Hence α5 + α7 ≤ 1

5. The same set of edges of (4), gives us a matching between the vertices of V6 with

x ≡ 6 (mod 16), and those with y ≡ 4− x ≡ 14 (mod 16).

Hence 2α6 ≤ 1.
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6. For any x ≡ 1 (mod 8), the following are triangles in Q2nm × T :

{(−2x, a), (2x, b), (2x, c))}, {(−2x, b), (2x, c), (2x, a))}, {(−2x, c), (2x, a), (2x, b))}.

Therefore 2α2 + α6 ≤ 1.

From these inequalities we can deduce the following ones

7. (a) α0 + α1 ≤ 1

(b) α2 + α7 ≤ 1

(c) α3 + α6 ≤ 1

(d) α4 + α5 ≤ 1

8. α2 + α6 ≤ 3
4

9. (a) α2 + α6 + α1 + α3 + α7 ≤ 2

(b) α2 + α6 + α3 + α5 + α7 ≤ 2

10. (a) α0 + α4 + α1 + α3 + α5 ≤ 2

(b) α0 + α4 + α1 + α5 + α7 ≤ 2

Proof.

7. (a)-(d) follow easily from 1(a)-(d).

8. Adding inequality (5) with twice inequality (6), we get α2 + α6 ≤ 3
4 .

9. Follows by a case by case analysis. We refer interested reader to [27].

10. Follows by a case by case analysis. We refer interested reader to [27].

With observations (1)-(10) in hand, we may now prove that

S =
8∑
i=1

αi ≤ 2 +
3

4
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Proof. If all the α′is are non-zero, by (1) they are all at most 1
3 . So S ≤ 2 + 2

3 .

We may assume that at least one of αi equals 0.

Case α1 = 0 Then S = (α0 + α4) + α2 + α6 + α3 + α5 + α7. By (2) and (9)(b), we

get that S ≤ 2 + 11
16 < 2 + 3

4 .

Case α5 = 0 Then S = (α0 + α4) + α2 + α6 + α1 + α3 + α7. By (2) and (9)(a), we

get that S ≤ 2 + 11
16 < 2 + 3

4 .

Case α3 = 0 Then S = (α2 + α6) + α0 + α4 + α1 + α5 + α7. By (8) and (10)(b), we

get that S ≤ 2 + (α2 + α6) ≤ 2 + 3
4

Case α7 = 0 Then S = (α2 + α6) + α0 + α4 + α1 + α3 + α5. By (8) and (10)(a), we

get that S ≤ 2 + (α2 + α6) ≤ 2 + 3
4

Assume α1, α3, α5, α7 all non-zero. So their sum is at most 2, by (3). And also

α0, α2, α4, α6 ≤ 1
3 according to (1).

So if two of α0, α2, α4, α6 are zero, then S ≤ 2 + 2/3

Hence exactly one of these equals 0.

If for example, α0 = 0 and α2, α4, α6 6= 0, then α7, α5, α3 ≤ 1
3 (by (1)). Therefore,

S = α2 + α4 + α6 + (α1 + α3) + α5 + α7 ≤ 1 + 5
3 < 2 + 3

4 (according to (4)(a)).

An analogous argument shows that in the remaining cases where only one of α0, α2, α4, α6

is zero, we also get S ≤ 2 + 2
3 .

We conclude that S ≤ 2 + 3
4 , and so theorem 2 holds.

2.4 Stability over a finite cyclic group

Characterization of the extremal examples

Let M10 = {x ∈ Z2n | x ≡ 1 (mod 4), or x ≡ 10, 14, 30 (mod 32)}

M26 = {x ∈ Z2n | x ≡ 1 (mod 4), or x ≡ 14, 26, 30 (mod 32)}

We will show that there are only two extremal independent sets of Q2n × T .

Theorem 7. Let I be an independent set of Q2n × T , with |I| = 11
32 · 2

n3. Then either

I = M10 × T or I = M26 × T
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Proof. Going through the cases of the proof of theorem 2, notice that for an independent

set to demonstrate exact equality
8∑
i=1

αi = 2 +
3

4
, one must have:

• α1 6= 0 (otherwise S ≤ 2 + 11
16)

• α5 6= 0 (otherwise S ≤ 2 + 11
16)

• α2 + α6 = 3/4. This implies (by (5) and (6)):

– α2 = 1
4

– α6 = 1
2

• α3 = 0
(
since α6 = 1

2 , and because of (1)
)
.

• Hence S = α0 + α1 + α4 + α5 + α7 + 3
4 . By the previous points and (1) we know

that α0 ≤ 1
3 , α1 6= 0, α4 ≤ 1

3 , α5 6= 0, α7 ≤ 1
3 .

If all of these are at most 1
3 , then S ≤ 5

3 + 3
4 < 2 + 3

4 .

Thus either α1 >
1
3 , or α5 >

1
3 .

If α1 >
1
3 , then α0 = 0 by (1), and S = α1 + α4 + α5 + α7 + 3

4 , This is ≤ 2 + 3
4 ,

because of (3)(a) and (7)(d), and equality holds if and only if α5 = 1, and α4 = 0,

according to (1)(d).

If α5 > 1
3 , then α4 = 0, and again equality can hold iff α0 = 0 (analogous

argument). We conclude that:

– α0 = 0

– α4 = 0

So S = α1 + α5 + α7 + 3
4 .

According to (3)(a), 5(a), and the fact that all of the αi’s are at most 1, we see

that equality can hold iff

• α1 = 1, and α5 = 1.

Finally the inequality S ≤ 2 + 3/4 guarantees that

• α7 = 0.
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In conclusion, we have proved that equality S = 2 + 3
4 occurs only if:

• α0 = 0

• α1 = 1

• α2 = 1/4

• α3 = 0

• α4 = 0

• α5 = 1

• α6 = 1/2

• α7 = 0

Before completing the exact characterization of the extremal sets, let us look at what

we have just obtained, and observe how much smaller than 2 + 3
4 does the sum S get,

if any of the αi’s differ from the value in the list above.

Proposition 2.4.1. If S ≥ 2 + 3
4 − δ, for some 0 ≤ δ < 1

16
, then

• α0 = 0

• α1 ≥ 1− δ

• α2 ≤ 1
4 + δ

(
and α2 ≥ 1

4 − δ, by (5) and (8)
)

• α3 = 0

• α4 = 0

• α5 ≥ 1− δ

• α6 ≥ 1
2 − 2δ

(
and α6 ≤ 1

2 , by (6)
)

• α7 ≤ 2δ

Proof. Following the previous proof we see that if α1 = 0, or α5 = 0, then S = 2+ 11
16 <

2 + 3
4 − δ. Thus α1 6= 0, and α5 6= 0.

Secondly, if S ≥ 2 + 3
4 − δ, then necessarily α2 + α6 ≥ 3

4 − δ. This implies by (5)

and (6) that
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• α6 ≥ 1
2 − 2δ

• α2 ≤ 1
4 + δ

The remaining analysis follows each of the cases in the previous proof in an entirely

analogous way. Details are left to the reader as a good exercise.

We have seen so far that a maximal independent set of Q2n × T , restricted to a

class Vi, other than V2 or V6 is either full, or it is the empty set. The remaining

question is how the elements of the classes V2, and V6 are distributed. To finish the

characterization, we refine our partition of the vertex set of Q2n × T into 32 classes,

U0, U1, U2, . . . , U31, according to the residue class (mod 32) of their first coordinate.

Namely

Ui = {(x, t)| x ≡ i (mod 32), t = a, b, c}

Let α∗i denote the proportion of elements of Ui that are in the independent set I.

That is

α∗i =
|I ∩ Ui|
|Ui|

Partitioning each of the classes V2, and V6, into the respective four classes (mod 32),

we get V2 = U2 ∪ U10 ∪ U18 ∪ U26, and V6 = U6 ∪ U14 ∪ U22 ∪ U30.

We showed that if S = 2 + 3
4 , then α2 = 1

4 , and α6 = 1
2 . That is

α∗2 + α∗10 + α∗18 + α∗26 = 1, and α∗6 + α∗14 + α∗22 + α∗30 = 2

Again we have some constraints among the α∗i ’s.

Recall that an element x ∈ Z2n is a quadratic residue if and only if x = 4ky, with

y ≡ 1 (mod 8) [15]. In particular, any x ≡ 4 (mod 32) is a quadratic residue, and so,

(i) (a) α∗6 = 0, or α∗30 = 0, or (α∗6 ≤ 1
3 and α∗30 ≤ 1

3 )

(b) α∗10 = 0, or α∗26 = 0, or (α∗10 ≤ 1
3 and α∗26 ≤ 1

3 )

(c) α∗14 = 0, or α∗22 = 0, or (α∗14 ≤ 1
3 and α∗22 ≤ 1

3 )

(d) α∗18 ≤ 1
3

(e) α∗2 ≤ 1
3
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Proof. (1)(a):

Assume that α∗6 6= 0.

Consider an element (x, t) ∈ I, with x ≡ 6 (mod 32), t = a, b, c. Without

loss of generality, (x, a) ∈ I.

By the above mentioned fact, (x, a) is adjacent to (y, b), and (y, c), for any

y ≡ 30 (mod 8).

Therefore α∗30 ≤ 1
3 .

(b), (c), (d), and (e) have analogous proofs.

(ii) (a) α∗6 + α∗26 ≤ 1,

(b) α∗14 + α∗18 ≤ 1

(c) α∗22 + α∗10 ≤ 1

(d) α∗30 + α∗2 ≤ 1

Proof. The proof is entirely analogous to that of (3)(a), (b) (noticing that 0 is the

square of a residue class )

(iii) (a) α∗2 + α∗14 ≤ 1,

(b) α∗10 + α∗6 ≤ 1

(c) α∗18 + α∗30 ≤ 1

(d) α∗26 + α∗22 ≤ 1

Proof. The proof is entirely analogous to that of (4)(a), (b) (replacing 4 by 16,

and noticing that 16 is a quadratic residue in Z2n)

Consider α∗6, α
∗
14, α

∗
22, and α∗30. We assumed that their sum is 2. So according to

(1)(a)-(d), they cannot al be different from zero.

If three of them are zero, since each is at most 1, their sum is at most 1, a contra-

diction.



18

If only one is zero, we also get a contradiction. For example if only α∗6 = 0, then

α∗14 ≤ 1
3 and α∗22 ≤ 1

3 (i(c)). And so α∗6 + α∗14 + α∗22 + α∗30 ≤ α∗30 + 2
3 ≤ 1 + 2

3 a

contradiction (Analogous proof when only another one of the four α′is is zero).

So exactly two of α∗6, α
∗
14, α

∗
22, α

∗
30 equal 0, and since their sum equals 2, the remain-

ing two equal 1. By (1)(a), (d), this can only happen in the following four cases:

Case 1: α∗6 = 1, α∗30 = 0, α∗14 = 1, α∗22 = 0:

Then by (2), and (3), α∗2, α
∗
10, α

∗
18, α

∗
26 = 0, whereas their sum should be 1. Contra-

diction.

Case 2: α∗6 = 1, α∗30 = 0, α∗14 = 0, α∗22 = 1:

By (2)(a), (3)(b), and (1)(d)(e), we get α∗2 ≤ 1
3 , α

∗
10 = 0, α∗18 ≤ 1

3 , α
∗
26 = 0, whereas

their sum should be 1. Contradiction.

Case 3: α∗6 = 0, α∗30 = 1, α∗14 = 0, α∗22 = 1:

By (2) and (3), we get α∗2, α
∗
10, α

∗
18, α

∗
26 = 0, whereas their sum should be 1. Con-

tradiction.

Case 4: α∗6 = 0, α∗30 = 1, α∗14 = 1, α∗22 = 0:

By (2) and (3), we get α∗2 = 0, α∗18 = 0. By (1)(b) α∗10, and α∗26 cannot be both

nonzero, since the sum of these four equals 1. One concludes that either (α∗10 = 1,

α∗26 = 0), or (α∗10 = 0, α∗26 = 1)

That is, our set is either M10 × T , or M26 × T , proving theorem 7

As noticed in proposition 2.4.1, if S ≥ 2 + 3
4 − δ, for some 0 ≤ δ < 1

16
, then

• α∗2 + α∗10 + α∗18 + α∗26 = 4α2 ≤ 1 + 4δ
(

and ≥ 1− 4δ)

• α∗6 + α∗14 + α∗22 + α∗30 = 4α6 ≥ 2− 8δ
(
and ≤ 2)

Following the argument and cases above, this can only happen if

α∗6 = 0, α∗30 ≥ 1− 8δ, α∗14 ≥ 1− 8δ, α∗22 = 0

and either

α∗2 = 0, α∗10 = 0, α∗18 = 0, (1− 4δ) ≤ α∗26 ≤ 1,

or

α∗2 = 0, (1− 4δ) ≤ α∗10 ≤ 1, α∗18 = 0, α∗26 = 0
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In particular we conclude the following

Theorem 8. Let A ⊆ V (Q2n × T ) be an independent set, with symmetric difference

|A4 (M10 × T )| ≥ δ2n3, and |A4 (M26 × T )| ≥ δ2n3,
(

0 ≤ δ <
1

2

)
. Then |A| ≤(

11
32 −

δ
64

)
2n3.

Proof. Let A ⊆ Q2n × T be an independent set.

Suppose the symmetric difference |A4M10| ≥ δ2n, and |A4M26| ≥ δ2n .

Then, there is a subclass Ui, i = 0, . . . , 31 for which the proportion of elements of

A in it differs from the listed value of α∗i in an optimal set by at least δ. From the

conclusion above, this implies that the sum of the proportion of elements of A in the

classes Vi, is at most 2 + 3
4 −

δ
8 or equivalently, that the total density of A is at most

11
32 −

δ
64 .

An analogous result holds for Q2n ×H, if H is a collapsed triangle or a loop.

Given A ⊆ Q2n ×H, we may see it as a multiset with the multiplicity of an element

j = (g, h) ∈ Q2n ×Hi, that of h in the equation for the graph H (as in definition 1).

Denote by ||A|| the size of A as a multiset.

Theorem 9. Let H be a collapsed triangle or a loop. Let A ⊆ V (Q2n × H) be an

independent set, with symmetric difference ||A4 (M10×H)|| ≥ δ2n3, and ||A4 (M26×

H)|| ≥ δ2n3,
(

0 ≤ δ < 1

2

)
. Then ||A|| ≤

(
11
32 −

δ
64

)
2n3.

Proof. For a collapsed triangle or loop subgraph Hi, let Li be the 0-1 integer program

with objective function

zi =
∑

j∈G×Hi

ajxj (?)

and constraints

xj1 + xj2 ≤ 1, for any j1, j2 which form an edge in G×Hi

where given j = (g, h) ∈ Q2n ×Hi, aj denotes the multiplicity of h in Hi.

Assume Hi is a collapsed triangle. The maximum size of an independent multiset

of Q2n × T whose symmetric difference to M10 × Hi, and M26 × Hi is at least δ2n3,
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can be obtained from solving the linear program Li with extra linear constraints (each

imposing that the set is not one of those for which this difference is small). On the other

hand the linear program Li with these extra constraints can be obtained from that for

the maximum size of an independent subset of Q2n × T whose symmetric difference to

M10 × T , and M26 × T is at least δ2n3, by adding extra constraints x(g,1) = x(g,3), for

every g ∈ Q2n .

Thus the theorem holds (an analogous argument works when Hi is a loop).

From Q2n × T to Q2nm

So far we only proved that an independent set of Q2n × T of maximum cardinality has

to be either M10 × T or M26 × T . We want to show the following

Theorem 10. Let S be a set of Q2n × Qm with no two elements adding to a square,

and |S| = 11
322nm. Then either S = M10 ×Qm or S = M26 ×Qm.

Proof. By theorem 6 we know that an independent set S ⊆ Q2n × Qm can attain

maximum density only if its restriction to each of the subgraphs of the uniform covering

Q2n ×Hi, is a maximum independent set.

Hence, by theorem 7, we know that if Hi = T is a triangle, the restriction of S to

Q2n × T has to be equal to M10 × T , or M26 × T .

Analogously, if Hi is a collapsed triangle, or a loop, the restriction of S to Q2n ×Hi

has to be equal to M10×Hi, or M26×Hi (analogous argument to the proof of theorem

9 from theorem 8).

Therefore, S is a union of sets of the form M10 × Hi, or M26 × Hj , for subgraphs

Hi, Hj . Let us show it is the union of only one such type of set.

Partition the vertex set of Qm into two sets

A = {x ∈ Qm|M10 × {x},⊆ S}

Ā = {y ∈ Qm|M26 × {y} ⊆ S}

Observe that no two elements a ∈ A, and b ∈ Ā, can be adjacent in Qm.
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(Otherwise {(i, a), (j, b)} would be an edge in Q2n × Qm, between two elements of

S, for every i ≡ 10 (mod 32), j ≡ 26 (mod 32)
)

But this is a contradiction, as one cannot partition the vertices of Qm into two sets,

with no edges between them. In fact, let us count the number ν of solutions of

a+ b ≡ t2 (mod m), with a ∈ A, b ∈ Ā, t ∈ Zm

There is at least one edge between A and Ā, provided that ν > 0.

Denote e(x) := e2πix, and let

fA(α) =
∑
a∈A

e(αa), fĀ(α) =
∑
b∈Ā

e(α b), fSQ(α) =
m−1∑
z=0

e(α z2)

We have that

ν =
1

m

m∑
t=0

fA

( t
m

)
fĀ

( t
m

)
fSQ

(
− t

m

)
.

That is

ν =
1

m
fA(0) fĀ(0)fSQ(0) +

1

m

∑
t6=0

fA

( t
m

)
fĀ

( t
m

)
fSQ

(
− t

m

)
.

The main term is

1

m
fA(0) fĀ(0)fSQ(0) =

1

m

∑
a∈A

e0
∑
b∈Ā

e0
∑
t∈Zm

e0 = |A| |Ā|.

Let us bound the absolute value of the error term∣∣∣∣ 1

m

∑
t6=0

fA

( t
m

)
fĀ

( t
m

)
fSQ

(−t
m

)∣∣∣∣.
Let t

m = a
q , with a and q coprime integers, fSQ

(
−t
m

)
=

m∑
x=0

e
(
− a
q
x2
)

. Write x in base

q: x = kq + l, with k = 0, . . . ,
⌊
m
q

⌋
, l = 0, . . . , q − 1.

Then x2 = k2q2 + 2lkq + l2, and so

fSQ

(
−t
m

)
=

⌊
m
q

⌋∑
k=0

q−1∑
l=0

e
(
k2aq + 2lka+ l2

a

q

)

=

⌊
m
q

⌋∑
k=0

q−1∑
l=0

e
(
l2
a

q

)
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Thus ∣∣∣fSQ(−t
m

)∣∣∣ ≤ ⌊m
q

⌋ ∣∣∣∣ q−1∑
l=0

e
(
l2
a

q

)∣∣∣∣ ≤ m
√
q
≤ m√

2

(
by the formula for the gauss sum, Lemma 4.3 of [35],

∣∣∣∣ q−1∑
l=0

e
(
l2
a

q

)∣∣∣∣ =
√
q
)
.

We also have that

fA

( t
m

)
=
∑
a∈A

e
(
a
t

m

)
=

( ∑
x∈Zm

e
(
x
t

m

)
−
∑
b∈Ā

e
(
b
t

m

))
= −fĀ

( t
m

)
so that ∣∣∣∣ 1

m

∑
t6=0

fA

( t
m

)
fĀ

( t
m

)
fSQ

( t
m

)∣∣∣∣ ≤ 1√
2

∑
t6=0

∣∣∣∣fA( tm)
∣∣∣∣2.

By Parseval’s identity the right hand side equals
1√
2

(
|A|m− |A|2

)
.

We conclude that there is at least one solution to the given equation, if

|A| |Ā| > 1√
2

(
|A|m− |A|2

)
=

1√
2

(
|A| · (m− |A|)

)
=

1√
2

(
|A| |Ā|

)
which trivially holds for any nonempty set A.

We finish the Section with a stability version of theorem 10

Theorem 11. For every δ > 0, there is a ε > 0 such that, if S ⊆ Q2n × Qm is

an independent set, |S4 (M10 × Qm)| ≥ ε2nm, and |S4 (M26 × Qm)| ≥ ε2nm, then

|S| < (11
32 − δ)2

nm (denoting by 4 the symmetric difference between sets). In particular

we can take ε ≤ 200
√
δ.

Proof. Suppose that |S| > (11
32 − δ

2)2nm.

Let Hi, . . . Hk be a d-uniform covering of Qm, as in lemma 4, for some constant d.

By the hypothesis and the definition of d−uniform covering, we have that∑
Hi

||S �Q2n×Hi || = d
∑
x∈Qm

|S �Q2n×{x} | > d
(11

32
− δ2

)
2nm.

Noticing that 3k = dm we get that, in average, ||S �Q2n×Hi || >
(

11
32 − δ

2
)

2n3.

Hence, for at least (1− δ)k of the subgraphs Hi, ||S �Q2n×Hi || >
(

11
32 − δ

)
2n3.

Hence at least (1 − δ)m of the vertices of Qm are in a subgraph Hi for which

||S �Q2n×Hi || >
(

11
32 − δ

)
2n3 (recalling that 3k = dm).
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By theorem 9 all these vertices are in a subgraph Hi such that either∣∣∣∣S �Q2n×Hi 4 (M10 ×Hi)
∣∣∣∣ < (64δ) 2n3, or

∣∣∣∣S �Q2n×Hi 4 (M26 ×Hi)
∣∣∣∣ < (64δ) 2n3.

Let

A := {a ∈ Qm : a is in some Hi, for which
∣∣∣∣S �Q2n×Hi 4 (M10 ×Hi)

∣∣∣∣ < (64δ) 2n3}

B := {b ∈ Qm : b is in some Hi, for which
∣∣∣∣S �Q2n×Hi 4 (M26 ×Hi)

∣∣∣∣ < (64δ) 2n3}

Then |A|+ |B| > (1− δ)m.

For any a ∈ A, there exists an x ≡ 10 (mod 32), such that (x, a) ∈ S (by definition

of A).

For any b ∈ B, there exists an y ≡ 26 (mod 32) such that (y, b) ∈ S (by definition

of B).

So, if there is an edge in Qm, between any two vertices a of A, and b of B, we can

consider elements x, y ∈ Q2n such that (x, a), and (y, b) ∈ S are adjacent in Q2n ×Qm,

a contradiction with S being an independent set.

Without loss of generality, assume |B| ≥ |A|

Let us show that if |A| ≥ 6δm, there is one such edge. Fourier analysis shows that

there are at least (
(

1 − 1√
2

)
|A| |Ā| ≥ 1

4 |A| |Ā| >) δm2 edges from A to Ā, and by

counting we see that these cannot all go to the small set of δm elements that are not

in B.

This leads us to a contradiction. Hence |A| ≤ 6δm, so for at least (1−7δ)m elements

x ∈ Qm, we have ∣∣S �Q2n×{x} 4 (M26 × {x})
∣∣ < (64δ) 2n3.

Hence ∣∣S4 (M10 ×Qm
)
| < (64δ) 2n3 ∗ (1− 7δ)m+ 7δ 2nm

and so ∣∣S4 (M10 ×Qm
)
| < 200δ 2nm

(Analogously we also get
∣∣S4 (M26 ×Qm

)
| < 200δ 2nm in the case |A| > |B|)

We conclude that the theorem holds with ε = 200
√
δ.



24

Remark 12. By using lemma 5 isomorphism from Q2nm to Q2n ×Qm

φ : Z2nm → Z2n × Zm

x 7→
(
x (mod 2n), x (mod m)

)
we can rewrite our last theorem for Q2nm.

Letting

M∗10 = {x ∈ Z2nm| x ≡ 1 (mod 4), or x ≡ 10, 14, 30 (mod 32)}

M∗26 = {x ∈ Z2nm| x ≡ 1 (mod 4), or x ≡ 14, 26, 30 (mod 32)}

we see that φ(M∗10) = M10 × Zm and φ(M∗26) = M26 × Zm.

From theorem 11 we conclude

Theorem 13. For every δ > 0, there is an ε > 0 such that the following holds. Let S

be a set of Z2nm with no two elements adding to a square.

If |S| > (
11

32
− δ)2nm, then either |S4 (M∗10)| ≤ ε2nm or |S4 (M∗26)| ≤ ε2nm

(Furthermore, ε can be taken smaller than 200
√
δ).

By abuse of notation, we’ll also refer to the sets M∗10,M
∗
26 , just as M10,M26.
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2.5 From finite cyclic groups to integers

We will now present the work of Khalfalah, Lodha, and Szemeredi [19], which achieves

the bound of (11
32 + δ)N .

As in Section 2.3, no originality is claimed in the arguments of this Section, and we

will only include the details and proofs necessary for a right understanding of our work

(For more details consult the original paper [19]).

The following is their main theorem

Theorem 14. For any δ > 0, there is a positive integer N0 such that the following

holds. Given N ≥ N0, for every S ⊆ [N ] with size at least (11
32 + δ)N , there are two

elements in S that add up to a perfect square.

Let us start by giving an outline of their proof.

Assume, to get a contradiction, that for some sufficiently large N , we may consider

a subset S of [N ], with density d(S) ≥ 11
32 + δ, such that x + y = z2 has no solutions,

with x, y ∈ S, and z ∈ Z .

Successively reducing the set (mod qi), for integers qi (each one a multiple of the

former), by theorem 2 for cyclic groups we see that at some point there must be two

classes on which the set S has positive density, that add up to a square residue class.

It can still be the case that no pair of integers of S lying in these two classes adds up

to the square of an integer.

However, the number of solutions to x + y = t2, with x ∈ S, and y ∈ (S + jM)

for consecutive shifts of the set S by a constant M , has to be large. Precisely letting

j = 1, . . . , N (1−2ε) we will find 10 N
√
N√
P
N (1−2ε) many solutions, for P the largest prime

divisor of M .

On the other hand, shifting the set S to S + jM , for some j = 1, . . . , N (1−2ε), the

number of solutions of x+ y = z2, with x ∈ S, y ∈ (S+ jM), and z ∈ Z, cannot change

too much from the original number of pairs of S adding to a perfect square. Since

by hypothesis there is no such pair, we will see that the former number of solutions

can be at most 10 N
√
N√
P

, for every such j. This follows via standard harmonic analysis

techniques. In particular we will need our constant M to be a highly composite integer.

The two inequalities give us a contradiction, and therefore the theorem holds.
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Many squares in the sumsets of S with translates of it

Consider a sequence of positive integers q1, q2, q3, . . . , ql, such that :

• qi+1 is divisible by all integers smaller than or equal to
(

5120
δ2

q2
i

)2
In particular qi divides qi+1.

Let’s study the distribution of S, among residue classes, modulo each qi.

Definition 3 (density of a set in a residue class).

Let εi,j denote the density of the set S in the residue class j, modulo qi.

εi,j =
|{s ∈ S : s ≡ j (mod qi)}|

N/qi

Definition 4 (index of unevenness of distribution modulo qi).

Let αi := 1
qi

qi−1∑
j=0

ε2i,j

By the Cauchy-Schwartz inequality, and the hypothesis |S| ≥ (11
32 + δ)N , one can

show ([19]) that the unevenness of distribution modulo qi is increasing and bounded.

Lemma 15. αi ≤ αi+1, ∀i.

Lemma 16. (11
32 + δ)2 ≤ αi ≤ (11

32 + δ), ∀i.

For each residue class x modulo qi, we shall now look at the distribution of the

densities of S, on the subclasses x+ kqi modulo qi+1.

Definition 5 (good residue class).

Say the residue class j modulo qi is bad if

| {0 ≤ k ≤ qi+1/qi : |εi,j − εi+1,j+k qi | ≥ δ/4} |
qi+1/qi

≥ 1

8

Otherwise, call the residue class j modulo qi good.

Fixing σ :=
δ3

480
, and the length of our initial sequence l =

((
11
32

+δ
)
−
(

11
32

+δ
)2

σ

)
by

lemmas 15 and 16, for some i ≤ l we must have that αi+1 − αi ≤ σ.

Recalling the defect form of Cauchy-Schwartz Inequality([2], IV- Lemma 27), one

can prove that
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Lemma 17.

If αi+1 − αi < σ, the number of bad residue classes modulo qi is at most δ qi
2 .

With the control on the number of bad classes, we can now apply theorem 2. The

extra δ factor in the density of our set give us enough room to find two residue classes

(mod qs) that add up to a square residue (mod qs), on which S has positive density,

that hardly changes for most of the subclasses, a+ kqs, and b+ kqs (mod qs+1).

This is the key lemma, which we will be able to improve in Section 2.6 (making use

of theorem 13’s characterization of large sets of residue classes with no two adding to a

square residue).

Lemma 18. If αi+1 − αi < σ, then there exists two good residue classes, modulo qi,

say a and b, such that,

• εi,a ≥ δ
2

• εi,b ≥ δ
2

• a+ b is a quadratic residue modulo qi

Proof. Let T =
|{j : j is a good class and εi,j ≥ δ

2}|
qi

Let’s show that |T | > 11
32 . The proposition then follows from lemma 1.

By the previous lemma, since αi+1 − αi < σ, the number of bad residue classes

modulo qi is at most δ
2 qi . Hence, and since εi,j ≤ 1, ∀j ,

1

qi

∑
j good

εi,j =
1

qi

qi−1∑
j=0

εi,j −
1

qi

∑
j bad

εi,j

= d(S)− 1

qi

∑
j bad

εi,j

≥ 11
32 + δ − δ/2

= 11
32 + δ

2 .

On the other hand, if T ≤ 11
32 we get

1

qi

∑
j good

εi,j < T 1 + (1− T )
δ

2
≤ 11

32
+

21

64
δ

a contradiction.

Thus T > 11
32 , and the conclusion follows from the Lemma 2.



28

To find elements in a quadratic residue classes which are perfect squares, we will

notice that if a long arithmetic progression is contained in a small interval, and if it

has base point in a quadratic residue class, then it must contain many perfect squares.

Whence the idea of shifting the set S (and counting the number of solutions of x+y = z2,

over S × (S + jqi+1) as j = 0, . . . , h) to capture all these squares.

Lemma 19.

Let c be a square residue modulo qi.

That is c = r2 + sqi, for some integer 0 ≤ r ≤ qi − 1, s ∈ Z.

Then any arithmetic progression {c + tqi|t = 0, . . . , h} of lenght h ≥ 10
√
N , which

is entirely contained in [2N ] = {1, 2, 3, . . . , 2N}, contains at least h
8
√
N

perfect squares.

Proof. Let Q = {c+ tqi| t = 0, . . . , h}

= {r2 + t′qi| t′ = s, . . . , s+ h}
Let’s look for perfect squares w2 in Q, with w integer of the form w = r + uqi.

We want w2 = r2 + (2ru+ u2qi)qi to be in Q.

Equivalently, we want integers u such that s ≤ (2ru+ u2qi) ≤ s+ h.

Since r ≤ qi, it is enough that both s ≤ u2qi, (u+ 1)2qi ≤ s+ h.

Thus, for each pair of consecutive squares in the interval [ sqi ,
s+h
qi

], we will have a

perfect square in Q. Since this is an interval of length h
qi

, of integers smaller than

or equal to s+h
qi
≤ 2N

q2i
, the number of perfect squares in it is at least

⌊
h/qi

2
√

2N/q2i

⌋
=⌊

h
2
√

2
√
N

⌋
≥ h

4
√
N

.

Whence the total number of such consecutive pairs, is at least h
8
√
N

.

Let h := N1−2ε.

We are now ready to conclude

Proposition 2.5.1 (Lower bound for the number of solutions). There is an i ∈

{1, . . . , l}, such that the number of solutions (j, x, y) of the equation x + y = z2, with

j ∈ {0, 1, . . . , h}, x ∈ S, y ∈ (S + jqi+1), and z ∈ Z, is at least

δ2N
√
N h

512q2
i
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Proof. By lemma 5, there exist a pair of good residue classes modulo some qi, denote

them by a, b, such that εi,a ≥ δ
2 , εi,b ≥ δ

2 , and c := a+b is a quadratic residue modulo qi.

Let

• Da = {0 ≤ wa ≤ qi+1

qi
| εi+1,a+wa qi ≥ δ

4}

• Db = {0 ≤ wb ≤ qi+1

qi
| εi+1,b+wb qi ≥

δ
4}

• Qc = {0 ≤ wc ≤ qi+1

qi
| c+ wc qi is a quadratic residue (mod qi+1)}

By definition of good class, we have that

|Da| ≥
7

8

qi+1

qi
, and |Db| ≥

7

8

qi+1

qi
.

Given any wc ∈ Qc, let

• Swc = {(wa, wb)| wa ∈ Da, wb ∈ Db, c+ wcqi = (a+ waqi) + (b+ wbqi)}

By the pigeonhole principle,

|Swc | ≥
6

8

qi+1

qi
≥ 1

2

qi+1

qi
.

Let L = |Qc|.

By lemma 5, if we shift an element x of a square residue class (mod qi) along a

homogeneous arithmetic progression of step qi, and length h qi+1

qi
� 10

√
N , the number

of perfect squares in it is at least hqi+1

8qi
√
N

. Notice that this is the same as if each element of

the form x+k qi with k = 0, . . . , qi+1

qi
−1, was shifted along an arithmetic progression of

step qi+1, and length h. Moreover, all perfect squares must lie on shifts of the elements

x+ kqi, where k ∈ Qc.

If we repeat the proof of lemma 5 for each of the x+kqi, with k ∈ Qc, we see that all

perfect squares of the form (r + uqi)
2, that were counted as shifts of x, modulo qi, will

also be counted as perfect squares of form (r′+ u′qi+1)2 for shifts of some x+ kqi, with

k ∈ Qc, modulo qi+1. Therefore, and since the number of perfect squares of that form

is essentially the same for every x+ kqi (given by the number of pairs {u2, (u+ 1)2} on

an interval which is essentially the same for all k, by their expression, and because qi+1

is constant, h�
√
N), this is at least 1

2
1
L
hqi+1

8qi
√
N

.
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Therefore, for a fixed wc in Qc, and for a given pair (wa, wb) ∈ Swc , the number of

solutions (x, y, j), of x+ y = z2, with

j = 0, . . . , h− 1

x ∈ S, and x ≡ a+ waqi mod qi+1

y ∈ S + jqi, y ≡ b+ wbqi mod qi+1

is at least

δN

4qi+1

δN

4qi+1

h qi+1

16qiL
√
N
.

If we count the solutions for all possible wc in Qc, and for every pair (wa, wb) ∈ Swc ,

we conclude that the total number of solutions is at least∑
wc∈Qc

1

2

qi+1

qi

δN

4qi+1

δN

4qi+1

h qi+1

16qiL
√
N

=
δ2N
√
N h

512q2
i

.

That is the number of solutions of x+y = z2, over S× (S+ jqi+1), as j = 0, . . . , N1−2ε,

is at least

δ2N
√
N h

512q2
i

.

Analytic upper bound for the number of solutions

Proposition 2.5.2. Let S ⊆ [N ], such that x+ y = z2 has no solution, with x, y ∈ S,

z ∈ Z. Let P be a prime, and M some positive integer, divisible by all positive integers

smaller than or equal to P .

Then the number of solutions to x + y = z2, with x ∈ S, and y ∈ S + j M , z ∈ Z,

is at most 10

(
N
√
N√
P

)
, for any j = 1, 2, · · · , N1−2ε.

Proof. (Sketch. For full detailed computations, consult [19])

Let S ⊆ [n]. Denote e(x) := e2πix, and let

fS(α) =
∑
x∈S

e(αx), fS+jM (α) =
∑

y∈S+jM

e(α y), fSQ(α) =

√
3N∑
z=0

e(α z2)

The following expression counts the number of solutions of x+y = z2, with x, y ∈ S

1

3N

3N−1∑
t=0

fS

( t

3N

)
fS

( t

3N

)
fSQ

( t

3N

)
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Analogously, the number of solutions of x + y = z2, with x ∈ S, and y ∈ S + j M ,

is given by

1

3N

3N−1∑
t=0

fS

( t

3N

)
fS+j M

( t

3N

)
fSQ

( t

3N

)
.

One can estimate this expression, taking advantage of the fact that by assumption,

the value of the previous (quite similar) one is 0 (since by hypothesis x+ y = z2 has no

solutions over S × S). So

1

3N

∣∣∣ 3N−1∑
t=0

fS

( t

3N

)
fS+j M

( t

3N

)
fSQ

( t

3N

)∣∣∣ ≤ 10
N
√
N√
P

.

for any j = 1, 2, · · · , N1−2ε. (the interested reader is invited to consult [19] for further

details, or to check the analogous estimates in our Section 2.7). Hence the total number

of solutions is less than 10
N
√
N√
P

.

Conclusion

Taking M = qi+1, P the largest prime dividing M (which is bigger than
(
δ2

5120 q
2
i

)2
),

and h = N1−2ε , we get from propositions 2.5.1 and 2.5.2 that the number of solutions

of the equation x+ y = z2, with j = 1, 2, . . . , h, x ∈ S, y ∈ S + j M , and z ∈ Z, is

at least
δ2N
√
N h

512q2
i

, and smaller than
δ2N
√
N h

512q2
i

.

This is a contradiction. Thus the theorem holds.
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2.6 Sets of integers far from the extremal examples

Let S be a subset of [N ] with property (NS), and density bigger than 11
32N .

Let us show that the argument of Section 2.5 still follows for a set S, with |S| ≥ 11
32N

(without the extra room of δ), if the set is not close to one of the two Massias examples.

In fact, recall Lemma 18, and the proof therein, key for proving the existence of

many solutions to x+ y = z2, with j = 1, 2, . . . , h, x ∈ S, y ∈ S + j M , and z ∈ Z (in

contradiction with the maximum possible number, determined by analytic techniques).

Lemma. If αi+1 − αi < σ, then there exists two good residue classes, modulo qi, say a

and b, such that,

• εi,a ≥ δ
2

• εi,b ≥ δ
2

• a+ b is a quadratic residue modulo qi

Proof. Let T = {j : j is a good class and εi,j ≥ δ
2}.

By Lemma 13, there is an ε > 0 with ε < 200
√
δ, such that the following holds. If

|T4 (M∗10)| ≥ εqi, |T4 (M∗26)| ≥ εqi, and |T | > (11
32 − δ)qi, then there are two residue

classes in T that add up to a square residue. Thus the conclusion of the lemma follows.

In fact since we do have that |T | > (11
32 − δ)qi (analogous proof as that of Lemma

18), we can then assume that |T4 (M∗10)| ≤ εqi, or |T4 (M∗26)| ≤ εqi.

Without loss of generality, suppose

|T4 (M∗10)| ≤ εqi.

Any element of S \ T is either in a bad class, or in a class j for which εi,j <
δ
2 .

Since by Lemma 17 the total number of bad classes is at most δ
2N we conclude from

the definition of T that then

|S \M10| ≤ (ε+
δ

2
+

21

32
· δ

2
)N ≤ 2εN.
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In the next Section we finish this argument, by showing that any set with at least

11
32N elements, which is very close to, but different than one of the Massias examples

(in this case M10), must have two elements that add to a perfect square, assuming N

is large enough.

2.7 Sets of integers close to one of the extremal examples

Let S be a subset of the first N integers, with |S| = 11
32N . Denote by

M∗10 = {x ∈ Z32| x ≡ 1 (mod 4), or x = 10, 14, 30}

M10 = {x ∈ [N ] | x ≡ 1 (mod 4), or x ≡ 10, 14, 30 (mod 32)}

and assume that |S \M10| ≤ 2εN .

Let a be the residue class in Z32 \M∗10, where S has maximum density, and

A1 := {x ∈ S : x ≡ a (mod 32)}

Let b be a residue class in M∗10, such that a + b ≡ z2 (mod 32), for some z ∈ Z32

(we may consider this since M10 is a maximal set of residue classes in Z32 with no two

adding to a square residue), and let

B = {x ∈ S : x ≡ b (mod 32)}

B̄ = {x ∈ [N ] \ S : x ≡ b (mod 32)}

A := A1 ∩
[ ⌊N

2

⌋ ]
.

Assume, without loss of generality, that |A| ≥ |A1|
2 (otherwise consider A the set A1 ∩{

N
2 + 1, · · · , N

}
, and the argument follows mutatis mutandis).

Let

SQz = {w2 ∈
{⌊N

2

⌋
+ 1, · · · , N

}
| with w ∈ N, and w2 ≡ z2 (mod 32)}.

According to Lemma 19, |SQz| ≥
√
N

512 .

Observe as well that |A| and |B̄| are comparable. In fact, since |S| = 11
32N , the

definition of A1 implies that |B̄| ≤ 32|A1| ≤ 64|A|. In the other direction, since no two
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elements of S add to a perfect square, given a fixed w2 ∈ SQ, (w2 − a) has to be an

element of B̄, for every a ∈ A. Thus |B̄| ≥ |A|.

Let ν0 be the number of solutions of

a+ b̄ = w2, with a ∈ A, b̄ ∈ B̄, w2 ∈ SQz.

Since S has no two elements that add to a perfect square, for every a ∈ A, and w2 ∈ SQz,

(w2 − a) has to be an element of B̄. Hence

ν0 = |A||SQz|.

On the other hand,

ν0 =
1

2N

2N−1∑
t=0

fA

(
− t

2N

)
fB̄

(
− t

2N

)
fSQ

( t

2N

)
where fS(α) =

∑
a∈A

e(αa), fB̄(α) =
∑
b̄∈B̄

e(α b̄), fSQ(α) =
∑

w2∈SQ

e(αw2),

and SQ =
{
w2 ∈ {

⌊
N
2

⌋
+ 1, · · · , N} |w ∈ N

}
.

(We can consider in the expression the full set of squares SQ instead of SQz, because

for any a ∈ A, and b̄ ∈ B̄, a+ b̄ ≡ z2 (mod 32). So the two expressions count the same,

whereas the chosen one is easier to work with).

By Dirichlet’s approximation principle, for every t ∈ [2N ] there exist coprime inte-

gers a(t) and b(t), with b(t) ≤ N1−ε, such that∣∣∣ t
2N
− a(t)

b(t)

∣∣∣ ≤ 1

b(t)N1−ε .

Let P be a large prime, and denote

∑1
=

1

2N

∑
t:b(t)≤P

fA

(
− t

2N

)
fB̄

(
− t

2N

)
fSQ

( t

2N

)
∑2

=
1

2N

∑
t:b(t)>P

fA

(
− t

2N

)
fB̄

(
− t

2N

)
fSQ

( t

2N

)
Let us show that the main contribution to ν0 comes from

∑1.
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Letting r :=
t

2N
− a(t)

b(t)
,

fSQ

(
t

2N

)
= fSQ

(a(t)

b(t)
+ r
)

=

√
N∑

x=
√
N
2

e
(a(t)

b(t)
x2 + r x2

)

=

√
N∑

x=0

e
(a(t)

b(t)
x2 + r x2

)
−

√
N
2∑

x=0

e
(a(t)

b(t)
x2 + r x2

)
.

Denote by

fSQ√N

( t

2N

)
=

√
N∑

x=0

e
(a(t)

b(t)
x2 + r x2

)
, fSQ√

N/2

( t

2N

)
=

√
N/2∑
x=0

e
(a(t)

b(t)
x2 + r x2

)
.

Case b(t) ≤
√

N
2 :

Write x in base b(t): x = kb(t) + l, with k = 0, . . . ,
⌊√

N
b(t)

⌋
, l = 0, . . . , b(t)− 1.

Then x2 = k2b(t)2 + 2lkb(t) + l2, and

fSQ√N

(
t

2N

)
=

⌊√
N

b(t)

⌋∑
k=0

b(t)−1∑
l=0

e
(
k2a(t)b(t) + 2lka(t) + l2

a(t)

b(t)

)
e
(
rk2b(t)2 + 2rlkb(t) + rl2

)

=

⌊√
N

b(t)

⌋∑
k=0

e
(
rk2b(t)2

) b(t)−1∑
l=0

e
(
l2
a(t)

b(t)

)
e
(

2rlkb(t) + rl2
)
.

Thus ∣∣∣fSQ√N( t

2N

)∣∣∣ ≤ ⌊√N
b(t)

⌋ ∣∣∣∣ b(t)−1∑
l=0

e
(
l2
a(t)

b(t)

)
e
(

2rlkb(t) + rl2
)∣∣∣∣

We want to estimate the absolute value of the sum in this expression.

By the well known formula for the gauss sum (Lemma 4.3 of [35]),∣∣∣∣ b(t)−1∑
l=0

e
(
l2
a(t)

b(t)

)∣∣∣∣ ≤√b(t).
By the power series expansion of the exponential function, we have that

e
(

2rlkb(t) + rl2
)

= 1 +
∞∑
n=1

(
2rlkb(t) + rl2)n

n!
.

Hence ∣∣∣∣ b(t)−1∑
j=0

e
(
l2
a(t)

b(t)

)
e
(

2rlkb(t) + rl2
)∣∣∣∣ ≤

≤
∣∣∣∣ b(t)−1∑
j=0

e
(
l2
a(t)

b(t)

)∣∣∣∣+

∣∣∣∣ b(t)−1∑
l=0

e
(
j2a(t)

b(t)

) ∞∑
n=1

(
2rlkb(t) + rl2)n

n!

∣∣∣∣.
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When b(t) ≤
√

N
2 , we have that 2rlkb(t) + rl2 ≤ 2

N1/2−ε and so the sum above is

bounded by √
b(t) + 2 b(t)

2

N1/2−ε .

Therefore, ∣∣∣fSQ√N( t

2N

)∣∣∣ ≤ √N
b(t)

(√
b(t) + 2 b(t)

2

N1/2−ε

)
≤ 2

√
N√
b(t)

for sufficiently large N .

Case b(t) ≥
√
N/2 Recall Weyl’s inequality, [35]-Lemma 2.4:

Lemma 20. Suppose that (a, q) = 1. Let α ∈ R, with
∣∣α− a

q

∣∣ ≤ 1
q2

. Then

|
Q∑
x=1

e(αx2)| ≤ Q1+ε(q−1 +Q−1 + qQ−2)
1
2 .

In our case Q =
√
N , and

√
N
2 ≤ q ≤ N

1−ε, and so∣∣∣fSQ√N( t

2N

)∣∣∣ = o
(√
N
)
.

Hence, for any t with b(t) ≥ P , and N sufficiently large∣∣∣fSQ√N( t

2N

)∣∣∣ ≤ 2

√
N√
P
.

An entirely analogous argument (replacing N by N
2 whenever appropriate) shows

us that, for any t with b(t) ≥ P , and N sufficiently large∣∣∣fSQ√
N/2

( t

2N

)∣∣∣ ≤ 2√
2

√
N√
P
.

Thus ∣∣∣fSQ( t

2N

)∣∣∣ ≤ ∣∣∣fSQ√N( t

2N

)∣∣∣+ |fSQ√
N/2

( t

2N

)∣∣∣ ≤ 4

√
N√
P

for any t with b(t) ≥ P , and N sufficiently large.
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We conclude that∣∣∣∑2
∣∣∣ =

1

2N

∣∣∣∣ ∑
t:b(t)>P

fA

( t

2N

)
fB̄

( t

2N

)
fSQ

( t

2N

)∣∣∣∣
≤ 1

2N

∑
t:b(t)>P

∣∣∣fA( t

2N

)∣∣∣ ∣∣∣fB̄( t

2N

)∣∣∣ ∣∣∣fSQ( t

2N

)∣∣∣
≤ 1

2N

(4
√
N√
P

) ∑
t:b(t)>P

∣∣∣fA( t

2N

)∣∣∣ ∣∣∣fB̄( t

2N

)∣∣∣
≤ 2√

P
√
N

√√√√ 2N∑
t=0

∣∣∣fA( t

2N

)∣∣∣
√√√√ 2N∑

t=0

∣∣∣fB̄( t

2N

)∣∣∣
≤ 2√

P
√
N

√
|A|2N

√
|B|2N

≤ 32√
P
|A|
√
N (recall that |B̄| ≤ 64|A|).

Letting M , and P large, we see that the main contribution to the value of ν0 =

|A||SQz| comes from the terms for which b(t) ≤ P , that is from
∑1. In particular∣∣∣∑1

∣∣∣ ≥ |A||SQz| − 32√
P
|A|
√
N ≥

( 1

512
− 32√

P

)
|A|
√
N.

We will now use the so called shifting technique, which also played a crucial role in

Section 2.5, in the construction of many solutions to x+ y = z2.

Namely, let P be a large prime number (any prime bigger than 5122×104 will work

in subsequent computations) and M some positive integer, divisible by all positive

integers smaller than or equal to P . Let us count the total number ν of solutions of

a+ b̄ = w2 + jM

with a ∈ A, b̄ ∈ B̄, w2 ∈ SQ, j ∈ 1, · · · , N1−ε.

ν =
∑
j

1

2N

2N−1∑
t=0

fA

(
− t

2N

)
fB̄

(
− t

2N

)
fSQ+jM

( t

2N

)
(once again it is equivalent to consider the sets SQZ or SQ in this expression) Taking

advantage of the previous estimates, we are now able to upper bound the respective

sums for the set of squares shifted by a multiple of M .
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Define ∑1

j
=

1

2N

∑
t:b(t)≤P

fA

(
− t

2N

)
fB̄

(
− t

2N

)
fSQ+jM

( t

2N

)
∑2

j
=

1

2N

∑
t:b(t)>P

fA

(
− t

2N

)
fB̄

(
− t

2N

)
fSQ+jM

( t

2N

)
.

Again, we can estimate
∑2

j easily.

In fact, notice that

fSQ+jM

(
t

2N

)
=

∑
x2∈SQ

e
(

(x2 + jM)
t

2N

)
= e

(
jM

t

2N

) ∑
x2∈SQ

e
(
x2 t

2N

)
= e

(
jM
(
a(t)
b(t) + r

))
fSQ

( t

2N

)
= e

(
jM a(t)

b(t)

)
e(jMr) fSQ

( t

2N

)
.

And so ∣∣∣∑2
j

∣∣∣ =
1

2N

∣∣∣∣ ∑
t:b(t)>P

fA

( t

2N

)
fB̄

( t

2N

)
fSQ+jM

( t

2N

)∣∣∣∣∣∣∣∑2
j

∣∣∣ =
1

2N

∑
t:b(t)>P

∣∣∣∣ fA( t

2N

)
fB̄

( t

2N

)∣∣∣∣∣∣∣∣fSQ( t

2N

)∣∣∣∣
≤ 4

√
N

2N
√
P

∑
t:b(t)>P

∣∣∣fA( t

2N

)∣∣∣ ∣∣∣fB̄( t

2N

)∣∣∣
≤ 2√

P
|A|
√
N.

For b(t) ≤ P , by definition of M as a highly composite number, we have that b(t)

divides M . We use this to bound
∑1

j by comparing its expression with that of
∑1.

When b(t) ≤ P , we get that

fSQ+jM

(
t

2N

)
= e

(
jM a(t)

b(t)

)
e(jMr) fSQ

( t

2N

)
= e(jMr) fSQ

( t

2N

)
.

By the power series definition of the exponential function,

e(rjM) = 1 + (rjM) +

∞∑
n=2

(
rjM)n

n!
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Therefore,∣∣∣∑1
j

∣∣∣ =
1

2N

∣∣∣∣ ∑
t:b(t)≤P

fA

( t

2N

)
fB̄

( t

2N

)
fSQ+jM

( t

2N

)∣∣∣∣
=

1

2N

(∣∣∣∣ ∑
t:b(t)≤P

fA

( t

2N

)
fB̄

( t

2N

)
fSQ

( t

2N

)
+

+
∑

t:b(t)≤P

fA

( t

2N

)
fB̄

( t

2N

)
fSQ

( t

2N

) ∞∑
n=1

(
rjM)n

n!

∣∣∣∣)
≥

∣∣∣∑1
∣∣∣− 1

2N

∑
t:b(t)≤P

∣∣∣∣ fA( t

2N

)
fB̄

( t

2N

)
fSQ

( t

2N

)∣∣∣∣∣∣∣∣ ∞∑
n=1

(
rjM)n

n!

∣∣∣∣
≥

∣∣∣∑1
∣∣∣− 1

2N

∑
t:b(t)≤P

∣∣∣ fA( t

2N

)
fB̄

( t

2N

)
fSQ

( t

2N

)∣∣∣ 2N−ε
≥ ( 1

512 −
32√
P

)
|A|
√
N − 2|A|N1/2−ε

≥ ( 1
512 −

40√
P

)
|A|
√
N (for sufficiently large N).

Therefore∣∣∣∑
j

∣∣∣ =
∣∣∣∑1

j
+
∑2

j

∣∣∣ ≥ ∣∣∣∑1

j

∣∣∣− ∣∣∣∑2

j

∣∣∣ ≥ ( 1

512
− 42√

P

)
|A|
√
N ≥ (

1

1000
)|A|
√
N

for sufficiently large N (recall that P > 5122 × 104).

And so the total number of solutions is at least

ν ≥ N1−2ε(
1

1000
)|A|
√
N.

On the other hand, given a ∈ A, b̄ ∈ B̄,

a+ b̄ = w2 + jM

has a solution w2 ∈ SQ, for at most MN1−2ε
√
N

of the integers j ∈ 1, · · · , N1−2ε (since the

number of squares in an interval of lenght MN1−2ε contained in
{⌊

N
2

⌋
+ 1, · · · , N

}
is

at most MN1−2ε
√
N

).

Hence we also have the upper bound for the total number of solutions

ν ≤ |A||B̄|N
1
2
−2ε.

The two inequalities show that |B̄| ≥ ( 1
1000)N , which is a contradiction for suffi-

ciently small δ (since |B̄| ≤ 64|A|, and |A| < 2εN ≤ 2 · 200
√
δN , by the assumption

that S is close to M10).
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Chapter 3

Proof of the Pósa-Seymour Conjecture

3.1 Introduction of the problem

3.1.1 Notation and Definitions

V (G) and E(G) denote the vertex-set and the edge-set of the graph G. (A,B,E)

denotes a bipartite graph G = (V,E), where V = A ∪ B, A and B are disjoint and

E ⊂ A × B. For a graph G and a subset U of its vertices, G|U is the restriction of G

to U . N(v) is the set of neighbors of v in V , and NS(v) is the set of neighbors of v in

S. |NS(v)| is the degree of v into S, denoted by degS(v). δ(G) stands for the minimum

and ∆(G) for the maximum degree of a vertex in G. Kr(t) is the balanced complete

r-partite graph with color classes of size t. We write N(p1, p2, . . . , p`) =
⋂`
i=1N(pi) for

the set of common neighbors of p1, p2, . . . , p`, and, more generally, N(X) =
⋂
x∈X N(x).

When A and B are subsets of V (G), we denote by e(A,B) the number of edges of G

with one endpoint in A and the other in B. For non-empty A and B,

d(A,B) =
e(A,B)

|A||B|

is the density of the graph between A and B. In particular, we write d(A) = d(A,A).

A graph G on n vertices is γ-dense if it has at least γ
(
n
2

)
edges. A bipartite graph

G(A,B) is γ-dense if it contains at least γ|A||B| edges. Throughout the chapter log

denotes the base 2 logarithm.

A graph G is α-extremal, if there exists an A ⊆ V (G) for which

1. ( 1
k − α)n ≤ |A| ≤ ( 1

k + α)n

2. d(A) < α

(We say that G is α-non extremal if no set A ⊆ V (G) satisfies (a) and (b))



41

Kk+1(t) is a complete k + 1-partite graph where each color class has size t

We call a graph a small multipartite graph if it is either Kk+1(t), or Kk(t).

A path Pm means a path of m vertices. Let C be a cycle. Then the kth power of

C, denoted by Ck, is defined as follows: V (Ck) = V (C) and uv is an edge in Ck if

the distance between u and v in C is at most k. The kth power of a path P is defined

in an analogous manner. For notational convenience we call the kth power of a path a

k-path.

3.1.2 History

A classical result of Dirac [5] asserts that if δ(G) ≥ n/2, then G contains a Hamiltonian

cycle. A natural question analog to Dirac’s theorem was asked by Pósa (see Erdős [7])

in 1962:

Conjecture 1 (Pósa). Let G be a graph on n vertices. If δ(G) ≥ 2
3n, then G contains

the square of a Hamiltonian cycle.

This conjecture was generalized by Seymour in 1974 [32]:

Conjecture 2 (Seymour). Let G be a graph on n vertices. If δ(G) ≥ (k−1
k )n, then G

contains the (k − 1)th power of a Hamiltonian cycle.

Substantial amount of work has been done on these problems. Jacobson (unpub-

lished) first established that the square of a Hamiltonian cycle can be found in any

graph G given that δ(G) ≥ 5n/6. Later Faudree, Gould, Jacobson and Schelp [14]

improved the result, showing that the square of a Hamiltonian cycle can be found

if δ(G) ≥ (3/4 + ε)n. The same authors further relaxed the degree condition to

δ(G) ≥ 3n/4. Fan and Häggkvist lowered the bound first in [8] to δ(G) ≥ 5n/7 and

then in [9] to δ(G) ≥ (17n+ 9)/24. Faudree, Gould and Jacobson [13] further lowered

the minimum degree condition to δ(G) ≥ 7n/10. Then Fan and Kierstead [10] achieved

the almost optimal bound: they proved that if δ(G) ≥
(

2
3 + ε

)
n, then G contains the

square of a Hamiltonian cycle. They also proved in [11] that already δ(G) ≥ (2n− 1)/3

is sufficient for the existence of the square of a Hamiltonian path. Finally, they proved
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in [12] that if δ(G) ≥ 2n/3 and G contains the square of a cycle with length greater

than 2n/3, then G contains square of a Hamiltonian cycle.

For Conjecture 2, in the above mentioned paper of Faudree, Gould, Jacobson, and

Schelp, they proved that for any ε > 0 and positive integer k, if the graph G, on n

vertices, satisfies δ(G) ≥
(

2k−1
2k + ε

)
n, then G contains the kth power of a Hamiltonian

cycle.

Using the Regularity Lemma – Blow-up Lemma method first Komlós, Sárközy and

Szemerédi [23] proved Conjecture 2 in asymptotic form, then in [21] and [24] they proved

both conjectures for n ≥ n0. The proofs used the Regularity Lemma [33], the Blow-up

Lemma [22, 25] and the Hajnal-Szemerédi Theorem [17]. Since the proofs used the

Regularity Lemma, the resulting n0 is very large (it involves a tower function). The

use of the Regularity Lemma was removed by Levitt, Sárközy and Szemerédi in a new

proof of Pósa’s conjecture in [29].

The purpose of our work is to present a new proof of the Pósa-Seymour conjecture

that avoids the use of the Regularity Lemma, thus resulting in a simpler proof and a

much smaller n0 ; and to prove a stability result, namely that if our graph does not

contain an almost independent set of size n
k , then Seymour conjecture is true even if

the minimum degree of our graph G is at least (k−1
k − ε)n.

We would like to mention the main ingredient in our proof, a new kind of connecting

lemma, which we believe will have a lot of applications.

While proving the Pósa-Seymour Conjecture, we do not try to determine the optimal

constants.

3.1.3 Main Results

Theorem 21. There exists an integer n0(α), and ε(α) such that any α-non extremal

graph G, with |V (G)| = n > n0(α), and δ(G) ≥ (k−1
k − ε(α))n, contains a (k − 1)th

power of a hamiltonian cycle.

Theorem 22. There exists an integer no such that any graph G, with |V (G)| = n > n0

and δ(G) ≥
(
k−1
k

)
n, contains a (k − 1)th power of a hamiltonian cycle.
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3.2 Sketch of the proof of theorem 21

In Section 3.4.1, using the tools developed in Section 3.3, we first cover a constant

fraction of the vertices in G by Kk+1(t)’s, and then we cover as many vertices as we can

with Kk(t)’s, where t = c log n, for a constant 0 < c < 1. We refer to the sets Kk+1(t)’s

and Kk(t)’s by C and K respectively.

We would inevitably be left with a set I that cannot be covered in such a manner.

However we show that the number of such vertices is small.

Denote the complete graphs Kk+1(t) in our collection C by C1, C2, . . . , and by

K1,K2, . . . , the graphs Kk(t) in our collection K.

For a graph Cj ∈ C, denote its color classes by V 1
j , V

2
j , . . . V

k+1
j . In any color class

V i
j , consider an ordering of its vertices v0,i, v1,i, v2,i, . . . , vt−1,i. Finally let us call the lth

column of Cj to the sequence vl,1, vl,2, vl,3, . . . , vl,k+1.

For a graph Kj ∈ K, denote color classes by W i
j , and vertices by wl,i.

To build a (k−1)-path in each of the small multipartite graphs Cj , Kj , sequentially

connect the vertices within a column, and then connect its last vertex, to the first vertex

of the following column (see figure 3.1).

Figure 3.1: (k − 1)-path inside each small multipartite graph

In Section 3.3.2, we prove that given two cliques {a1, a2, . . . , ak−1} and {bk−1, bk−2, . . . , b1},

we can connect ak−1 to bk−1 with a (k− 1)-path of length at most 9(k + 1)! , even if we

cannot use o(n) vertices of the graph, given in advance. We use this lemma to connect

with (k− 1)-paths (of length at most 9(k + 1)!) the last vertex of the last collumn of a

small multipartite graph with the first vertex of the first column of the succeeding one.
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We will also require that such paths do not use vertices from the first or last columns

of any of the small multipartite graphs (which can be done, since t = Ω(log n), and

therefore the number of vertices in those columns is at most O
(

n
logn

)
= o(n))

After connecting the graphs in C and K we get a (k− 1)th power of a cycle covering

the vertices in V (C) ∪ V (K)(see figure 3.2)

Figure 3.2: Dashed lines represent the (k − 1)-paths constructed via the Connecting Lemma

Unfortunately, since the (k − 1)-path connecting the small complete multipartite

graphs might use a small number of vertices from some columns
(
at most 9(k+ 1)!(k+

1)η
− 1
η n

logn , for some constant 0 ≤ η ≤ 1
)
, we have to remove the vertices of those

columns, and put them in I. This will not increase significantly the size of I.

Each time we remove a column from a small multipartite graph, we have to recon-

struct the path inside the graph. We do this by connecting the column preceeding the

deleted one, directly to the one following it.

Let C∗,K∗ denote the collection of multipartite graphs obtained from C and K

respectively, after the removal of the columns. It will be important that |C∗| ≥

|C| − 9(k + 1)!(k + 1)η
− 1
η n

logn , which is still much bigger than |I|.

To obtain a (k−1)-hamiltonian cycle, we have to insert the vertices of I in the cycle

we constructed in such a way that it remains a (k − 1)-cycle. Given a vertex a ∈ I, by

the minimum degree condition, it sends at least (k−1
k − ε)n edges to C∗ ∪ K∗. We will

first try to insert the vertex a in C∗.
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If for some graph Cj ∈ C∗ the degree of a in Cj is at least (k−1
k+1 + δ)|Cj | we can

insert it easily in the path inside Cj . Indeed, without loss of generality, there is a vertex

vx,y in the path in Cj such that a is connected to all vertices in the path at distance at

most k from vx,y (Otherwise, we just reorder the color classes of Cj other than the first

and last one, and reconstruct the path inside |Cj | as in the initial procedure. Notice

that this does not change the connecting paths, nor the vertices from the multipartite

graphs they intersect, nor I, C∗,K∗).

We proceed by replacing vertex vx,y by a in the path inside Cj . Notice that

vx,y, vx+1,y−1, vx+2,y−2, . . . , vx+k,y−k (where indices are taken (mod k+1)) form a clique

because they belong to different color classes in Cj . We can remove each one of them,

and reconnect the one preceding it directly to the one succeeding it in the original path,

still obtaining a (k − 1)-path.

Finally we insert the path formed by the removed vertices between any two columns

of the graph other than the one from which a was removed.

When inserting other vertices in Cj we will be careful not to place them in any of

the k columns neighboring each of the affected ones (x+ 1, . . . , x+k) to guarantee that

the resulting path remains a (k − 1)-path.

Figure 3.3: Inserting a into the (k−1)-path being constructed in the complete balanced (k+1)-partite
graph C∗j , where k = 5, and vx,y = v1,4.

If a vertex a ∈ I cannot be inserted in any (k+1)-partite graph, the minimum degree

condition implies that the vertex has at least
(
k−1
k + δ

)
|K| neighbors for a big fraction

of the graphs K ∈ K∗. In this case we can assume that a is connected to all vertices in
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three consecutive columns of K, and just insert it between any two consecutive vertices

of the middle column. The resulting path remains a remains a (k−1)-path. Registering

the three columns used as not available to place new vertices in K, we can insert in the

path inside this graph a new element from I.

Repeating this until all elements are used (which is feasible because |K∗| � |I|), we

obtain a (k − 1)-hamiltonian cycle.

3.3 Main Tools

We shall assume that n is sufficiently large and use the following main parameters:

0 < η � α� 1,

where a � b means that a is sufficiently small compared to b. In order to present the

results transparently we do not compute the actual dependencies, although it could be

done.

3.3.1 Complete k-Partite Subgraphs

In [24] the Regularity Lemma [33] was used to prove the Pósa-Seymour conjecture,

however, here we use more elementary methods using only the Bollobás-Erdős-Stone-

Simonovits bound [26].

Lemma 23 (Theorem 3.1 on page 328 in [1]). There is an absolute constant β1 > 0

such that if 0 < ε < 1/s and we have an n-graph G with

|E(G)| ≥
(

1− 1

s
+ ε

)
n2

2

then G contains a Ks+1(t1), where

t1 =

⌊
β1 log n

s log 1/ε

⌋
.

The following two observations will be useful later on.

Lemma 24. If G(A,B) is an η-dense bipartite graph, then there must be at least η|B|/2

vertices in B for which the degree in A is at least η|A|/2.
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Indeed, otherwise the total number of edges would be less than

η

2
|A||B|+ η

2
|A||B| = η|A||B|,

a contradiction to the fact that G(A,B) is η-dense.

Lemma 25. Let G(A,B) be a bipartite graph such that |A| = c1 log n, |B| = c2n
c3 where

0 < c1, c2, c3 < 1 are constants and c1 � c3. If for all b ∈ B we have degA(b) ≥ η|A|/2,

then we can find a complete bipartite subgraph K(A′, B′) of G such that A′ ⊂ A,B′ ⊂

B, |A′| ≥ η|A|/2 and |B′| ≥ c2n
(c3−c1).

To see this consider the neighborhoods in A of the vertices in B. Since there can

be at most 2|A| = nc1 such neighborhoods, by averaging there must be a neighborhood

that appears for at least
c2n

c3

nc1
= c2n

(c3−c1) vertices of B. This means that we can find

the desired complete bipartite graph.

Lemma 26. Let G be a graph with V (G) partitioned into A1, A2, . . . , Ak and B such

that the subsets A1, A2, . . . , Ak form a complete k-partite graph, and for 1 ≤ i ≤ k,

|Ai| = c1 log n, |B| = c2n for constants 0 < c1, c2 < 1. If for every b ∈ B, degAi(b) ≥

η|Ai|/2, then we can find a complete (k + 1)-partite graph G(A′1, A
′
2, . . . , A

′
k, B

′) such

that A′i ⊂ Ai, B′ ⊂ B, |A′i| ≥ η|Ai|/2 and |B′| ≥ c2n
(1−kc1).

Proof. First consider the bipartite graph G1(A1, B). By Lemma 25 we have A′1 ⊂

A1, B1 ⊂ B, |A′1| ≥ η|A1|/2 and |B1| ≥ c2n
(1−c1), such that G1(A′1, B1) is a complete

bipartite subgraph. Now consider the bipartite graph G2(A2, B1). Applying again

Lemma 25, we find A′2 ⊂ A2, B2 ⊂ B1, |A′2| ≥ η|A2|/2 and |B2| ≥ c2n
(1−2c1), such

that G2(A′2, B2) is a complete bipartite subgraph. Note that this gives us a complete

tripartite graph with color classes A′1, A
′
2 and B2. Proceeding similarly, we can find a

complete (k + 1)-partite graph Gk(A
′
1, A

′
2, . . . , A

′
k, B) such that for 1 ≤ j ≤ k, A′j ⊂

Aj , Bi ⊂ B, |A′j | ≥ η|Aj |/2 and |Bk| ≥ c2n
(1−kc1).

Lemma 27. There exist two constants n0 and β2 > 0 such that if G is a α-non extremal

graph on n ≥ n0 vertices with δ(G) ≥ (k−1
k −

√
η)n, then G contains a Kk+1(t), where

t = bβ2 log nc. Here β2 and n0 depend on α and η.
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Proof. We apply Lemma 23 to G to get k disjoint sets A1, A2, . . . , Ak, each of size

t1 =
⌊
β1 logn
k log 1/α

⌋
such that they form a complete balanced k-partite graph. Define A :=⋃k

i=1Ai and let B ⊂ V (G)\A be the set of vertices that have more than η|Ai| neighbors

in each Ai. Our first observation is that we can assume that |B| ≤ η2n. If not, by

Lemma 26 we get our desired Kk+1(t).

Let C = V (G) \ (A ∪B) and for 1 ≤ i ≤ k let Ci = {c ∈ C : degAi(c) < η|Ai|}. By

definition of B it follows that C =
⋃k
i=1Ci. From the minimum degree condition and

the definition of Ci we have that for every i:((
k − 1

k
−√η

)
n− |B| − |A|

)
|Ai| ≤ e(Ai, C) ≤ η|Ai||Ci|+ |Ai|(|C| − |Ci|)

which shows us that |Ci| ≤ (1 + 3
√
η)n/k.

We will now show that from |Cj | ≤ (1 + 3
√
η)nk , (1 ≤ j ≤ k), it follows that for

every j (1 ≤ j ≤ k)

|Cj | ≥ (1− 4k
√
η)
n

k
(3.1)

Assume 3.1 does not hold.

Then n − |B| − kt1 =
k∑
i=1

|Ci| ≤ (k − 1)(1 + 3
√
η)n/k + (1 − 4k

√
η)
n

k
which is a

contradiction because |B| ≤ η2n, and t1 = O(log n).

From the minimum degree condition and from

|B| ≤ η2n , e(Aj , Cj) ≤ η|Aj ||Cj | (1 ≤ j ≤ k) (3.2)

it follows after a little calculation that

e(Aj , C1) ≥ (1− 100k
√
η)|Aj ||C1|, (3.3)

for 2 ≤ j ≤ k.

Let us denote by Cj1 the following set:

Cj1 =

{
x ∈ C1, degAj (x) ≤ 2

3
|Aj |

}
.

Then, by double counting, from (3.3), we get

|Cj1 | ≤ 300k
√
η|C1|.
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Define C∗1 =
⋃k
j=2C

j
1 . Then |C∗1 | ≤ 300k2√η|C1|. We omit C∗1 from C1. Denote the

remaining set by C∗∗1 . Obviously, |C∗∗1 | ≥ (1− 300k2√η)|C1|. We group the vertices in

C∗∗1 according to their neighborhoods in A \A1. The number of groups is at most 2kt1 .

We again omit the groups containing at most
√
ηn/k2kt1 elements. The union of

the remaining groups has size greater than (1− 400
√
ηk2) · nk .

Let’s denote these groups by D1, D2, . . . , Dm, and D =
⋃m
i=1Di. We know that

|D| > (1− 400
√
ηk2) · nk > (1− α)nk , and that |D| ≤

(
1 + 3

√
n
)
n
k .

Since G is not α-extremal, and (1− α)nk < |D| < (1 + α)nk , we get that

e(G|D) ≥ α
(n
k

)2
.

There are two cases.

Case 1.1. There is a group, say D1 such that e(G|D1) ≥ η2|D1|2. Then, by Lemma

23, with s = 1 in G|D1 we have a complete bipartite graph, spanned by two sets, say

Q and R, of size greater than β2 log n. Since NAi(D1) > 2
3 |Ai| (for i 6= 1) we can find

Kk−1(t) ⊂ NA\A1
(D1) which together with Q and R gives us the required Kk+1(t).

Case 1.2. There are two sets, say, D1 and D2, such that e(D1, D2) ≥ η2|D1||D2|.

Then by Lemma 2, we have a set Q ⊂ D1 and R ⊂ D2 of size greater than β2 log n and

Q and R form a complete bipartite graph. Since NAi(D1) ∩NAi(D2) > 1
3 |Ai| for i 6= 1

we can find Kk−1(t) ⊂ NA\A1
(D1) ∩NA\A1

(D2) which together with Q and R gives us

the required Kk+1(t).

We will use in Section 3.5 the following simple fact on the size of a maximum set of

vertex disjoint paths in G (see [1]).

Lemma 28. In a graph G on n vertices, we have

ν1(G) ≥ max

{
δ(G), δ(G)

n

4∆(G)

}
and ν2(G) ≥ (δ(G)− 1)

n

6∆(G)

where νi(G) denotes the size of maximum set of vertex disjoint paths of length i in G.
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3.3.2 The Connecting Lemma

Definition 6 (Eligible vertices). We call a vertex v ∈ V (G), eligible, if for each ` ∈

[1, 9(k+ 1)!], the number of paths of length `+ 1 (edges) between any v1, v2 ∈ N(v), and

which lie completely in N(v), is at least η4` · n`.

(The paths contain ` + 2 vertices, v1, v2 included. The endpoint are fixed, so we

may have n` connecting paths and we require a “positive” percentage, ckn
` of them.

Here ck = η−k
k
).

It is easy to see that in G there are at least n/k2 eligible vertices.

Definition 7. A path of length ` is good if it is in N(v) for at least ηk
kk

n vertices v.

Otherwise it is bad. We call a vertex v good if N(v) contains at most 100k2ηk
kk

n`+1

bad paths P`, for each ` ∈ [1, 9k!].

An easy calculation shows that the number of good vertices is at least

n

(
1− 1

100k2

)
and the number of vertices which are both eligible and good is at least

n

4k

(
1− 1

100k2

)
After these definitions we formulate the Connecting Lemma.

Lemma 29 (Connecting Lemma).

Given a clique {a1, a2, . . . , ak−1} and {bk−1, bk−2, . . . , b1}, there is an ` ≤ 9(k + 1)! such

that we can connect these two cliques with at least ηk
kkk

k

n` (k−1)-paths of lenght l+1,

even if we forbid using o(n) vertices, given in advance.

Lemma 30. If G is not an α-extremal graph, then there are
√
ηn vertices v ∈ V (G) such

that v is good and eligible and (for each v) there is a Tv ⊆ N(v) for which |Tv| =
√
ηn,

Tv = {t1,v, t2,v, . . . , t√ηn,v} and |N(ti,v)∩N(v)| ≤ n
k −
√
ηn for ti,v ∈ Tv (1 ≤ i ≤ √ηn).

Proof. Notice that the lemma trivially holds for each vertex v ∈ V (G) for which

|N(v)| ≤ n
k −
√
ηn.
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Assume that there is a v0 ∈ V (G) so that for at least |N(v0)| − √ηn vertices

wi ∈ N(v0),

|N(wi) ∩N(v0)| > n

k
−√ηn.

Denote the set of these vertices by W = {w1, w2, . . . }.

Obviously the vertices in W are eligible, because (W,N(v0)) is an almost complete

bipartite graph. Omit from N(v0) the vertices z ∈ N(v0) for which |N(z) ∩ N(v0)| ≤
n
k −
√
ηn. We omitted at most

√
ηn vertices. Denote the set of the omitted vertices

by T1. Now we choose a vertex v1 ∈ N(v) \ T1. If there are at least
√
ηn vertices in

N(v1) \ T1, such that their neighbors intersect N(v1) in at most n
k −
√
ηn points, then

we are done. (We can assume that v1 is good, too. The number of vertices that are not

good in N(v1) is at most
√
ηn.) If not, then we omit the vertices z ∈ N(v1) \ T1 for

which |N(z)∩N(v1)| ≤ n
k −
√
ηn. We again omitted at most

√
ηn vertices. Denote this

set by T2. Notice that |N(v1) ∩N(v) \ T1)| ≥ n
k − 2

√
ηn and |N(v) ∩N(v1)| ≤ 2

√
ηn.

Now choose a vertex v2 ∈ N(v1) \ (T1 ∪ T2). We argue as previously and continue this

argument until we find a vi such that there are at least
√
ηn vertices z ∈ N(vi) for which

|N(z)∩N(vi)| ≤ n
k −
√
ηn. Then we stop and vi is our vertex which we mentioned in the

Lemma. If we can not find such a vi (i < k), renaming N(vi−1) to Ai, then our graph

is the union of A1, A2, . . . , Ak, X where X is a small vertex set (|X| ≤ 10k
√
ηn); and

|Ai| ≥ n
k −
√
ηn and the bipartite graphs (Ai, Aj), (i 6= j) are almost complete (namely

every vertex has degree at least n
k − 5k

√
ηn). Adding vertices from X, we balance the

sets Ai so that all of them will have size n
k . Denoting the new classes by A∗1, A

∗
2, . . . , A

∗
k,

then (A∗i , A
∗
j ), (i 6= j), is still an almost complete bipartite graph.

In particular, every vertex in A∗1 \X, has at least (k−1
k − 10k

√
η)n neighbors in the

union of A∗2, A
∗
3, . . . , A

∗
k. Since we assumed that the graph G is not α-extremal, and

X is small, there is a vertex v ∈ A∗1 which has at least α
2
n
k neighbors in A∗1. Hence

|N(v)| ≥ (k−1
k + α

4 )n, and the lemma follows from the first observation in this proof.

Iterating the above procedure, we get our set M of size
√
ηn, such that for every

v ∈ M , v is good and eligible and there is a Tv ⊆ N(v) for which |Tv| =
√
ηn,

Tv = {t1,v, t2,v, . . . , t√ηn,v} and |N(ti,v) ∩N(v)| ≤ n
k −
√
ηn.
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The Extending Lemma

We fix a vertex v1 ∈M . For simplicity, we denote N(v1) by F .

Lemma 31 (Extending Lemma).

Given a clique A = {a1, . . . , ak−1} one can extend it with vertices w1w2 . . . wsx1x2 . . . xk−1

(0 ≤ s ≤ k − 1) so that a1a2 . . . ak−1w1w2 . . . wsx1x2 . . . xk−1 is a (k − 1)-path and

x1, x2, . . . , xk−1 ∈ F . Moreover, the number of choices of w1, . . . , ws, x1, x2 . . . , xk−1 is

at least
(ηn

10

)k−1+s
.

Proof. Let W0 = {a1, a2, . . . , ak−1}. The size of N(W0) is at least n
k . We may as-

sume that it is n
k , after possibly dropping some vertices from N(W0). If |N(W0)∩F | ≥

η
10n, then we choose w1 from N(W0)∩F and we get a set W1 = {a2, . . . , ak−1, w1}. Note

that we have at least ηn
10 choices for w1. If |N(W1) ∩ F | ≥ η

10n then we choose w2 from

N(W1)∩F . We get a setW2 = {a3, a4, . . . , w1, w2}. DefineWi = {ai+1, . . . , ak−1, w1, . . . , wi}.

We proceed the same way as long as

|N(Wi) ∩ F | >
η

10
n (3.4)

holds. If (3.4) holds for all i ≤ k − 1, then we have at least
( η

10

)k−1
nk−1 (k − 1)-paths

a1, a2, . . . , ak−1, w1, w2, . . . , wk−1. We rename w1, w2, . . . , wk−1 to x1, x2, . . . , xk−1. So,

in this case we are done with the proof. If i < k − 1 is the smallest integer for which

(3.4) does not hold, then we are going to work with Wi (meaning that instead of

{a1, a2, . . . , ak−1} we start with Wi). For the sake of simplicity, we rename Wi to W .

We define Wlow as follows.

Wlow =
{
w ∈W : degN(W )(w) ≤ |N(W )| − ηn

}
.

Since |N(W ) ∩ F | ≤ η
10n, we have that |N(W )| ≤ n

k + η
10n, and so degN(W )(w) ≤

n
k + η

10n− ηn, for any w ∈Wlow.

That implies that for any w ∈Wlow,

|NF (w)| ≥ k − 2

k
n+

8

10
ηn

Therefore, if S ⊂ F , |S| = n
k , then |NS(w)| ≥ 8

10ηn. There are two cases.

Case 2.1. |Wlow| ≥ η
10n. Choose a vertex l ∈Wlow. Since |NF (l)| ≥ k−2

k n+ 8
10ηn,

we get that |NF (l, z1, . . . , zk−2)| ≥ 8
10ηn, for any k − 2 vertices z1, . . . , zk−2.



53

From this remark, it is easy to see that we can construct (k − 1)-paths of the form

a1, . . . , ak−1, w1, . . . , wi, l, x1, x2, . . . , xk−2, such that each xj can be chosen in at least

8
10ηn ways. So we are done with Case 1.

Case 2.2. |Wlow| ≤ η
10n. Choose a clique C1 ⊆ N({a1, a2, . . . , ak−1}) with C1 =

{c1, . . . , c2k}. It is obvious that there are two distinct vertices, ci and cj for which

|NF (ci) ∩NF (cj)| > k−3
k n+ n

k2
.

We can assume that i = 1 and j = 2. We will consider only the first k− 1 elements

and denote the set C2 = {c1, c2, . . . , ck−1}. Then using an argument similar to the

previous one, we can find x1, x2, . . . , xk−2, such that

a1, a2, . . . , ak−1, ck−1, ck−2, . . . , c2, c1x1, x2, . . . , xk−2

is a (k − 1)-path and for each xi, as before, we have at least n
k2

choices (notice that

c1, c2, . . . , ck, can also be chosen in at least η
10n ways).

If |NF (x1, x2, . . . , xk−3, xk−2, c1)| ≥ ηn, we can choose xk−1 fromNF (x1, . . . , xk−2, c1)

in η
10n different ways, such that a1, a2, . . . , ak−1, ck−1, ck−2 . . . c2, c1, x1, . . . , xk−2, xk−1

is a (k − 1)-path.

If |NF (x1, x2, . . . , xk−2, c2)| ≥ ηn, then we can choose xk−1 in at least η
10n different

ways, so that a1, a2, . . . ak−1, ck−1ck−2, . . . , c1, c2, x1, . . . , xk−2, xk−1 is a (k − 1)-path.

If both |NF (x1, . . . , xk−2, c2)| < η
10n, and |NF (x1, . . . , xk−2, c1)| < η

10n, then since

|NF (x1, x2, . . . , xk−3, xk−2)| ≥ n
k , we have

NF (c1, c2) ≥ k − 2

k
n− 2η

10
n,

and therefore |NF (c1, c2, x1, x2. . . . xk−3)| > n
k −

2η
10n. Since our graph G is α-non-

extremal, we have at least α
(
n
k

)2
edges in NF (c1, c2, x1, x2. . . . xk−3). For xk−2 we

consider the vertices which have degrees into NF (c1, c2, x1, x2. . . . xk−3) that are larger

than η
10n. We have at least η

10n such large degree vertices. We choose for xk−2 the

large degree vertices and for xk−1 the endpoint of the edges incident to xk−2. It is then

obvious that a1, . . . , ak−1, ck−1, . . . , c2, c1, x1, x2, . . . , xk−3, xk−2, xk−1 is a (k − 1)-path,

and for both xk−2 and xk−1 we have ( η10n)2 choices. So we have proved the extending

Lemma. We apply this to the bi’s as well, to get a (k − 1)-path

b1, b2, . . . , bk−1w
′
1w
′
2w3 . . . w

′
ty1y2yk−1.
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Figure 3.4: The (k − 1)-path may be extended if W ∩ F is large.

Figure 3.5: The (k − 1)-path may be extended if Wlow is large.

Connecting a1, a2, . . . , ak−1 and bk−1, . . . , b2, b1 inside N(v), where v is a good

vertex

First we choose z1, z2, . . . , zk ∈M . For every zi we choose a (k − 1)-path

u
(i)
k−1, u

(i)
k−2, . . . , u

(i)
1 , zi, u

(i)
k+1, . . . , u

(i)
2k−1.

Because of the properties of zi, this can be done easily. These paths are vertex-disjoint.

The Extending Lemma will be applied to a1, . . . , ak−1 and also to b1, b2, . . . , bk−1: We
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consider the (k − 1)-paths

a1a2 . . . ak−1w1w2 . . . wsx1x2 . . . xk−1 b1b2 . . . bk−1w
′
1w
′
2w3 . . . w

′
ty1y2y . . . yk−1

Now, we connect x2x3 . . . xk−1 to u
(1)
k−1u

(1)
k−2 . . . u

(1)
2 , using the induction hypothesis.

The number of connecting paths is at least η(k−1)(k−1)4

nl1 , where `1 is the length of

the (k − 2)-connecting paths (We can assume that all the paths have the same length

`1 ≤ 10(k − 1)(k − 1)!). Now we connect u
(1)
k+2, . . . , u

(1)
2k−1 to u

(2)
k−1, u

(2)
k−2, . . . , u

(2)
2 .

We continue connecting the ith ending segment to the (i+ 1)th initial segment. Fi-

nally we connect u
(k)
k+1 . . . u

(k)
2k−1 to yk−1yk−2 . . . y2. They are (k − 2)-paths and they

remain (k−2)-paths even after removing any number of z’s. Let the number of vertices

on the path from xk−1 to yk−1 be (k − 1)t + r, where r ≤ k − 1. We omit r vertices

z1, . . . , zr from our path, to get the divisibility with k − 1 and get γ = (k − 1)t ver-

tices. If the corresponding lengths are `1, . . . , `k+1, then we have altogether at least

η(k+1)(k−1)(k−1)4

η2k(k−1)nγ paths.

If we consider all the paths for all possible x1, x2, . . . , xk−1 and yk−1, yk−2, . . . , y1,

then obviously, many of them will be good paths, because the number of paths we

constructed is at least Q, where

Q = η(k+1)(k−1)(k−1)·(k−1)(k−1)(k−1) ( η
10

)2(k+1)(k−1)
nγ+2(k−1) ≥ 100k2ηk

kk

nγ+2(k−1).

Fix a good path P joining x1 to y1. For this P we have a set TP of size ηk
kk

n. We

shall change this P into a (k− 1)-path by inserting t vertices from TP . We insert them

in the following way. We move along P , starting with yk−1 inserting the next vertex

from TP and then moving along P for k−1 vertices and then again insert a vertex from

TP , again move on along the paths P , . . . . and continue this until we have inserted a

vertex of TP next to xk−1. This way our path will be a (k − 1)-path, and we created

from a given P at least |TP |t (k− 1)-paths. If we consider all the possible paths and do

the same thing, we get at least Qηtk
kk

nt (k− 1)-paths, which is more than the required

number of connecting paths in the Lemma.
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3.4 The α-non Extremal Case

3.4.1 The Covering Lemma

Lemma 32 (Covering). We can partition V (G) into C,K, I such that C is the union

of complete (k+ 1)-partite graphs with color classes of size η(1/η) log n, and |C| = √ηn;

K is the union of complete k-partite graphs with color classes of size η(1/η) log n; and

|I| < ηn.

Proof. Using Lemma 27, we get C. Notice that if a graph G∗ on m vertices has density

> k−2
k−1 + 1

k3
, then by Lemma 26 we know that G∗ contains a complete Kk(η logm).

So using Lemma 26, we can construct a set K(1) of complete k-partite graphs of size

η log n, whose union has at least ηn vertices. We are left with a set of vertices we denote

by I(1).

We will successively remove vertices from I(1), and use them to construct more

complete k-partite graphs (even if with slightly smaller color classes), until the set of

remaining vertices has less than ηn elements.

We proceed by rounds, as explained below. At the ith round we get a set K(i) of

complete k-partite graphs with color classes of size t(i) := ηi log n, and whose union has

iηn vertices. Let I(i) = V (G)\(C∪K(i)). If |I(i)| ≥ ηn we carry out the (i+1)th round;

otherwise we stop and I(i) is the set I as in the lemma. Notice that such a procedure

terminates after at most 1
η rounds.

When the set of remaining vertices I(i) has many more elements than C, say |I(i)| ≥

η
1
4n, we can easily complete a round in the following way.

Case d(I(i)) ≥ k−2
k−1 + 1

k3
: then, since |I(i)| ≥ η

1
4n , by lemma 23 we can get

complete k-partite graphs of size ηi+1 log n.

Case d(I(i)) < k−2
k−1 + 1

k3
: then, because of the minimum degree condition, we get

degK(i)(x) ≥ k−1
k n+ η

1
4

2k2
n, for at least η

1
4

2k2
of the vertices x ∈ I(i). Therefore, by lemma

26 we can find a complete k-partite graph K ∈ K(i) with color classes V1, V2, . . . , Vk,

and a set B ⊆ I(i) with |B| = kηi+1 log n, such that NV1∪V2∪···∪Vk(v) is the same for

every v ∈ B, and it has size at least kηi+1 log n. But then some subsets Aj ⊆ N(B)∩Vj ,

(1 ≤ j ≤ k), and B will give us a complete (k + 1)-partite graph with color classes of
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size kηi+1 log n.

We break this complete k + 1-partite graph into complete k-partite graphs of size

ηi+1 log n. And we also break the unbalanced complete k-partite graph obtained from

K by removing the sets A1, A2, . . . , Ak, into k-partite graphs all with color classes of

size ηi+1 log n.

We can repeat the above procedure while |I(i)| ≥ η
1
4n, since |I(i)| � |C| in this

situation, and so almost all edges coming out of I(i) go into K(i).

Assume now that ηn ≤ |I(i)| ≤ η
1
4n.

Let us show that for most of the complete k-partite graphs in K(i), a big

fraction of the vertices in I(i) have a large neighborhood in it.

We can assume that for every K ∈ K(i), {x ∈ I(i) : NK(x) ≥
(
k−1
k + η

)
|K|} has size

at most n
1
2 (Otherwise we find kηi+1 log n elements which we can remove from I(i) and

use to construct new complete k-partite graphs, just as in the previous case).

It follows by an elementary averaging that for at least a (1 − η
1
8 ) fraction of the

graphs K in K(i), |E(K, I(i))| ≥
(
k−1
k −4η

1
8

)
|K||I(i)|. Let K∗ be the set of such k-partite

graphs in K(i) (for which a large fraction of the vertices in I(i) have large neighborhood

in it).

Given K ∈ K∗, by definition of K∗, and after averaging it follows that at least

(1 − η
1
16 )|I(i)| vertices in I(i) have more than

(
k−1
k − 5η

1
16

)
|K| neighbors in K. Call

I∗(i) the set formed by those vertices.For simplicity, we denote it by I∗.

By the definition of I∗ (and the assumption that few elements of I(i) have degree

larger than (k−1
k +η)|K1| in K) we see that every vertex in I∗ has almost full degree to

k − 1 of the color classes of K, and very few neighbors in the remaining one. Partition

I∗ into sets I1, I2, . . . , Ik, where Ij = {x ∈ I∗ : degV j (x) ≤ 6η
1
16 }.

If |I1| ≥ n
1
2 , by lemma 26 we can find a set I ′1 ⊆ I1 of ηt elements, and A2 ⊆

V 2, . . . , Ak ⊆ V k, which form a complete k-partite graph. Therefore if we remove a set

X1 of η1 elements from the first color class V 1, and replace it by I ′1, we can break the

graph into smaller k-partite graphs, with color classes of size ηt. The reader might feel

discouraged to notice that we got as many new vertices excluded from K∗ as the ones

we were able to remove from I∗. However, if we repeat this procedure for I2, I3, . . . , Ik,
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we obtain excluded sets X1, X2, . . . , Xk from the different color classes in K. And these

form a Kk(ηt
(i)), which we can add to K(i).

Therefore, without loss of generality, we can assume that |Ik| ≤ n
1
2 . This means that

at least (1− 2η
1
16 )|I(i)| of the vertices in I(i) have more than

(
1− 7η

1
16

)
|V k| neighbors

in V k.

Proceeding the same way with the remaining k-partite graphs in K∗, we can find

for each one of them, a big subset of vertices in I(i) which are connected to almost all

elements of their last color class.

Figure 3.6: The bold circle represents elements in I(i), which neighbor almost all the vertices of the
last class of the first graph.

Given a graph in K∗ , we can repeat the above analysis, studying the neighborhood

in its first k − 1 color classes, of those vertices in I(i) that are connected to almost all

in the last class.

Iterating the previous argument, we can assume that for each of the k-partite graphs

in K∗, there is a big subset of (at least (1 − 2η
1
16 )k−1|I(i)|) vertices in I(i) which are

connected to almost all elements of the last k − 1 color classes (precisely, with at least(
1− 7η

1
16

)
t(i) neighbors in each class).

Figure 3.7: The bold circle represents elements in I(i), which neighbor almost all the vertices of the
last k − 1 classes of the first graph.
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At this point of our procedure, given a graph K in K∗, we can replace any ηt(i) of the

elements of its first color class, by a subset of elements from I(i) which are connected

to almost all vertices in the last k − 1 classes of K. We use lemma 26 as usual.

The reader might feel discouraged to notice that we exclude as many elements from

K(i) as the ones we insert from I∗. The interest in such a step is that we may choose

any ηt(i) elements we like to remove from the first color class of the graph K. Proceed-

ing analogously with the remaining graphs in K∗, we remove a random looking set of

their first color classes and replace I(i) by it. Since G is α-non extremal, we can chose

Y1, Y2, . . . such that the set obtained from I(i) after replacing most of its elements by

Y1 ∪ Y2 ∪ . . . still has the same size as I(i), but density at least α
2 .

Restarting the whole procedure with this new set of remaining vertices, and assum-

ing that the algorithm does not the terminate, we reach the last step (as in figure 3.4.1)

with a set of vertices with density at least α
4 . By abuse of notation, we still denote it

by I(i) (though many rounds might be completed).

At this point we can reduce the size of I(i) in the following way. Given a graph K in

K∗, with color classes V 1, V 2, . . . , V k, partition I(i) into sets of vertices D1, D2, . . . , Dl

that have the same neighborhood in K. We distinguish two cases.

Case 1.1. There is a group, say D1 such that e(G|D1) ≥ η2|D1|2. Then, by Lemma

23, with s = 1 in G|D1 we have a complete bipartite graph, spanned by two sets Q

and R, of size greater than β2 log n. Since NVj (D1) > 2
3 |Vj | (for j 6= 1) we can find

Kk−1(t) ⊂ NV (K)\V1(D1) which together with Q and R gives us a (k+ 1)-partite graph

with color classes of size kηt(i).

Case 1.2. There are two sets, say, D1 and D2, such that e(D1, D2) ≥ η2|D1||D2|.

Then by Lemma 2, we have a set Q ⊂ D1 and R ⊂ D2 of size greater than β2 log n

and Q and R form a complete bipartite graph. Since NVj (D1) ∩ NVj (D2) > 1
3 |Vj | for

j 6= 1 we can find Kk−1(t) ⊂ NV (K)\V1(D1)∩NV (K)\V1(D2) which together with Q and

R gives us a Kk+1(kηti).
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In either case, we can consider sets A2 ⊆ V2, . . . , Ak ⊆ Vk such that Q,R,A2, . . . , AK

form a complete (k+1)-partite graph. Breaking this complete (k+1)-partite graph, and

also the graph obtained from K by removing A1, . . . , Ak , into complete k-partite graphs

of size ηi+1 log n, we get k-partite graphs with color classes of size ηt(i).

The key remark is that we inserted in K(i) new 2ηtk elements from I(i) (namely the

whole sets Q,R), and only removed |A1| = ηtk of its vertices. Therefore the size of I(i)

decreases by ηtk.

We continue this procedure until the size of I(i) is smaller than ηn, in which case

we are done. This completes the proof of the Covering Lemma.

3.4.2 Constructing the cycle in the non extremal case

Let t = η(1/η) log n. First we shall find a (k − 1)-cycle covering C ∪ K, and then insert

all vertices from I, thus getting a (k − 1)th power of a Hamiltonian cycle.

Connecting the vertices in C ∪ K

We have covered the vertices of C by vertex-disjoint copies of Kk+1(t), and the vertices

of K by copies of Kk(t). We call these blocks small multipartite graphs: some of them

have k+ 1 classes; the others have k classes. Denote the graphs in C by C1, C2, . . . , and

by K1,K2, . . . , the graphs in K.

For a graph Cj ∈ C, denote its color classes by V 1
j , V

2
j , . . . V

k+1
j . In every color class

V i
j , consider an ordering of the vertices v0,i, v1,i, v2,i, . . . , vt−1,i. Finally let us denote by

the lth column of Cj the sequence vl,1, vl,2, vl,3, . . . , vl,k+1.

For a graph Kj ∈ K, denote color classes by W i
j , and vertices by wl,i.

To build a (k−1)-path in each of the small multipartite graphs Cj , Kj , sequentially

connect the vertices within a column, and then connect its last vertex, to the first vertex

of the following column (see figure 3.1).

Using lemma 29 we connect with (k−1)-paths (of length at most 9(k + 1)!) the last

vertex of the last collumn of a small multipartite graph with the first vertex of the first

column of the succeeding one (see figure 3.2). We impose futher that such paths do
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not use vertices from the first or last columns of any of the small multipartite graphs

(which can be done since t = Ω(log n), and therefore the number of vertices in those

columns is at most O
(

n
logn

)
= o(n)).

Since the connecting paths might use a small number of vertices of the columns of

the small multipartite graphs
(
at most 9(k+1)!(k+1)η

− 1
η n

logn

)
, we remove the vertices

of those columns, and put them in I. This will not increase significantly the size of I.

Each time we remove a column from a small multipartite graph, we have to recon-

struct the path inside the graph. We do this by connecting the column preceeding the

deleted one, directly to the one following it.

Let C∗,K∗ denote the collection of multipartite graphs obtained from C and K re-

spectively, after the removal of columns. Notice that |C∗| ≥ |C|−9(k+1)!(k+1)η
− 1
η n

logn ,

which is still much bigger than I. Let us now insert the vertices of I in the cycle in

such a way that it remains a (k − 1)-path.

Adding the vertices of I to the cycle on C ∪ K

Definition 8 (Rich points). A vertex x 6∈ Kk(t) is rich for this Kk(t), if it is joined to

each class of Kk(t) by at least kηt edges. A vertex y is rich for Kk+1(t) if it is joined

to at least k of the classes by at least kηt edges.

We will first prove an easy consequence of the degree condition in G:

Lemma 33. Every vertex a ∈ I is “rich” for at least η fraction of the cliques in C ∪K.

Proof. For contradiction, assume that we are given a vertex a ∈ I that is not rich to

at least an η fraction of the graphs in C ∪ K. Then

degG(a) < |I|+ ηn+ (|V (C)| − ηn)

(
k − 1

k + 1
+ 2η

)
+ |K|

(
k − 1

k
+ η

)
<
k − 1

k
n (since|C| � ηn).

A contradiction to the minimum degree condition.

We will have two cases.
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Case 1: When a is rich to a (k+1)-partite graph Cj = (V 1
j , . . . , V

k+1
j ) ∈ C∗, assume

that a has at least kηt neighbors in all the color classes of Cj except V y
j . Without loss

of generality, there is a vertex vx,y in the path in Cj , such that a is connected to all

vertices in the path at distance at most (k − 1) from vx,y (Otherwise, we can reorder

the vertices inside each color class of Cj other than those in the first or last column,

and reconstruct the path inside |Cj | as in the first step. This does not change the

connecting paths, nor the vertices of the small multipartite graphs they use, nor the

sets I, C∗,K∗).

Let us now replace the vertex vx,y by a in the path inside Cj . Notice that the vertices

vx,y, vx+1,y−1, vx+2,y−2, . . . , vx+k,y−k (where indices are taken (mod k+1)) form a clique,

because they belong to different color classes in Cj . We can remove each one of them

from the path, connecting the vertex preceding it directly to the one succeeding it in

the original path. Finally, we insert the path formed by these k + 1 vertices between

any two the columns of the graph, other than the one from which a was removed.

Notice that the path obtained is still a k− 1 path, since each vertex was connected

to the closest k-neighbors in the original one.

Figure 3.8: Inserting a into the (k−1)-path being constructed in the complete balanced (k+1)-partite
graph Cj , where k = 5 and b = 4.

We will however call the columns x + 1, . . . , x + k contaminated, as well as the 2k

ones closer to each one of these after repeating the process and possibly reordering the

vertices in Cj , because one no longer can use them to insert a new element, and still

guarantee a (k − 1)-path. The process of inserting a into our (k − 1)-path is depicted

in Figure 3.8, for k = 5 and b = 4.
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When inserting a new vertex rich to the graph Cj , at most (k + 1) columns of the

block got contaminated by the previous vertex inserted. So we shall have enough space

to insert all the vertices from I that are “rich” to graphs in C∗.

Case 2: When a ∈ I is not “rich” for any Kk+1(t) ∈ C∗
(
and so degK∗(a) ≥(

k−1
k + η

1
2

4k

)
|K∗| since |C∗| ≥ n

1
2

)
it follows from an easy computation that a is rich for

at least a η
1
2

8k fraction of the graphs K ∈ K∗.

As a remark to the reader, this case is the very reason for considering (k+1)-partite

graphs in the original covering, and for requiring their union to have size much bigger

than |I|.

Considering now a k-partite graph K = (W 1, . . . ,W k+1) ∈ K∗ for which a is rich,

we can can assume without loss of generality that a is connected to all vertices in three

consecutive columns of K (otherwise we just reorder the vertices inside each color class

of K other than those in the first or last column, and reconstruct the path inside |K|

as we did initially).

We insert the vertex a in the middle column of those three, between any two consec-

utive vertices. Again we refer to the three columns as being contaminated, for the fact

that we do not use them again when inserting in K a new vertex rich to the graph. It

is clear that the paths thus obtained in the k-partite graphs after insertion of vertices

in non contaminated columns, remain (k − 1)-paths.

We can repeat this until all the vertices from I are used up (since |K∗| � |I|). This

completes the case of the α-non-extremal graph.
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3.5 The α-Extremal Case

Take the maximum number of disjoint α-extremal sets A1, A2, . . . , A`, with |Ai| = n
k

(1 ≤ i ≤ `).

We let B = V (G) \ (A1 ∪ · · · ∪A`) for ` ≤ k.

Furthermore, we say that v ∈ Ai is bad if we have

degAi(v) ≥ α1/3|Ai|. (3.5)

By the fact that d(Ai) < α, there are at most α2/3|Ai| bad vertices in any Ai. A vertex

v ∈ Ai (or B) is exceptional for Aj (for j 6= i) if degAj (v) < α1/3|Aj |. For each v ∈ Ai

(or B), there can be at most one j 6= i, such that v is exceptional for Aj . We denote

the set of vertices in Ai (or B) that are exceptional for Aj by Ei(j) (or EB(j)). The

following remarks are easy to deduce.

Remark 34. A vertex can be in Ei(j) for at most one j 6= i.

Remark 35. If a vertex v is in Ei(j) for some j then it is bad - indeed degAi(v) >

(1− α1/3

2 )|Ai|.

Remark 36. Switching a bad vertex in Ai with a vertex in Ej(i) reduces the number

of exceptional vertices. Hence we may assume that either there are no bad vertices in

Ai or Ej(i) is empty for every j 6= i.

3.5.1 Finding the cycle in the extremal case

To convey the basic idea of the proof we deal separately with the cases when ` = k and

when ` < k.

G has k extremal sets

In this case the vertex set V can be partitioned into A1, A2, . . . , Ak such that |Ai| = bnk c

and d(Ai) < α for 1 ≤ i ≤ k, that is, ` = k (and hence B = φ). We will further subdivide

this case into two subcases.

The Clean Case: There are no bad or exceptional vertices in any Ai, (hence Ei(j)

is empty for all i, j by Remark 35). We will cover A1∪· · ·∪Ak with k-cliques such that
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every clique uses a vertex from each Ai. Since in this case there are no bad vertices, by

the minimum degree condition for each v ∈ Ai, we have degAj (v) ≥ (1−α1/3)|Aj | for all

j 6= i. Furthermore, it is relatively straightforward to find k-cliques by a simple greedy

procedure that uses the König-Hall theorem as follows. We first find a perfect matching

M1 between A1 and A2. Then we find a perfect matching between M1 and A3, such

that e = {x, y} ∈ M1 is matched with a vertex z ∈ N(x, y) ∩ A3. We can continue

this process to find the desired k-cliques. Indeed, let Mk−2 be the (k− 1)-cliques made

so far, from A1, A2, . . . , Ak−1. For any clique (x1, x2, . . . , xk−1), xi ∈ Ai we have that

|N(x1, x2, . . . xk−1)∩Ak| ≥ (1−α1/4)|Ak|, and also for y ∈ Ak, y is connected to at least

(1− α1/10)nk (k − 1)-cliques of Mk−2. Therefore, by König-Hall theorem there exists a

perfect matching between the (k−1)-cliques and vertices in Ak, so we can extend these

(k − 1)-cliques to k-cliques. Call this clique cover Ck = {c1, c2, . . . , cbn
k
c}.

Figure 3.9: Unfolding the cliques in the order defined by H∗ gives us the required power of a
Hamiltonian cycle.

Let c1 = (x1, x2, . . . , xk) and c2 = (y1, y2, . . . , yk) be any two such k-cliques in Ck

(note that xi, yi ∈ Ai). We say that c1 precedes c2 if xi is connected to y1, . . . , yi−1, yi+1, . . . , yk,

for 1 ≤ i ≤ k. c1 precedes c2 basically means that x1, x2, . . . , xk, y1, y2, . . . , yk is a (k−1)-

path. We say that {c1, c2} is a good pair, if c1 precedes c2 and c2 precedes c1. By the

degree conditions above, any ci ∈ Ck makes a good pair with at least (1 − α1/5)|Ck|

other cliques in Ck.

We define an auxiliary graph G∗ in the following way: the vertex set of the graph

G∗ is Ck = {c1, c2, . . . , cbn
k
c} and {ci, cj} is an edge in G∗ if and only if {ci, cj} is a good
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pair. By the above observation δ(G∗) > |Ck|/2, so there exists a Hamiltonian cycle H∗

in G∗. If we take the cliques in the order of H∗ and unfold individual cliques in the

natural order defined by A1, A2, . . . , Ak, it is easy to see that this gives us the (k− 1)th

power of a Hamiltonian cycle in G.

Handling the Exceptional Vertices: In this case we have some Ej(i)’s that are

non-empty. The main idea is to reduce this case to the clean case where there are no

exceptional vertices. Handling of the bad vertices can be reduced to the handling of the

exceptional vertices. So we shall discuss only the handling of the exceptional vertices.

Define Xi to be the set of all the vertices that are exceptional for Ai, that is,

Xi =
⋃k
j=1
j 6=i

Ej(i).

Case 1: If |Xi| > 1, we would want to find paths of length 2 with endpoints in Ai

and centers at exceptional vertices in Ej(i) for some j. For this purpose we note that

δ(G|Ai∪Xi) ≥ |Xi| by the minimum degree condition. Furthermore, since we assume

there are no bad vertices, it follows that ∆(G|Ai∪Xi) ≤ α1/3|Ai|+ |Xi|. Thus by Lemma

28 we can find more than |Xi| vertex disjoint paths of length two. However, not all

such paths may have their endpoints in Ai or their centers in Xi. This can easily be

handled by noting that any vertex in Xi may be switched with any of the vertices in Ai

and the exchanged vertices become exceptional or not bad in their respective new sets.

Therefore we may assume that there is a set, Pi, of |Xi| disjoint paths of length 2, such

that the two endpoints of each path are vertices in Ai and the center is an exceptional

vertex in some Ej(i).

We embed each of these paths in a distinct unit of three k-cliques as follows: let

(ui, cj , ūi) ∈ Pi be one of the paths such that ui, ūi ∈ Ai, and cj ∈ Aj . Select a clique

in the natural order S = (s1, s2, . . . , sk) such that si = ui and sj = cj , (so we use the

{ui, cj} edge). Now we select another clique T = (t1, t2, . . . , tk) such that ti = ūi and S

precedes T . Then we select a clique R = (r1, r2, . . . , rk) which precedes S.

It is easy to see that there are many cliques with the given restrictions such that

only si is the bad vertex among all the three cliques. The cliques, unfolded in the order

R,S, T , make a (k− 1)-path. We think of this set of three k-cliques as a single k-clique

(which we call an exceptional clique) with one vertex each from A1, . . . , Ak. The new



67

Figure 3.10: Finding the exceptional clique when |Xi| > 1.

vertex of the exceptional clique in Am is connected to all the common neighbors of

rm and tm. Since rm and tm are not bad vertices for 1 ≤ m ≤ k, these new vertices

have high degree in all the sets Ai where i 6= m. We deal with all the exceptional

vertices in this manner and get exceptional cliques for each of them. In the remaining

graph, we use the procedure described in the previous Section to find a cover consisting

of k-cliques and add the exceptional cliques to the cover. Then, as before, we find a

Hamiltonian cycle of the cliques in the cover and unfold the vertices in the cliques in

the order defined by the cycle to get (k− 1)th power of a Hamiltonian cycle. In Figure

3.10 the relevant portion in the final (k − 1)th power of a Hamiltonian cycle looks as

follows: (. . . , v5, v6, r1, r2, r3, r4, r5, r6, s1, s2, s3, s4, s5, s6, t1, t2, t3, t4, t5, t6, v7, v8, . . . )

Case 2:

When |Xi| = 1, we may not be able to find the length 2 path as above. The only

ways this can happen is when the exceptional vertex cj ∈ Ej(i) for some j has exactly

one neighbor y ∈ Ai (it has to have at least one neighbor), and all the vertices in Ai

(except y) have exactly one neighbor inside Ai. Therefore we find a path pi = (ui, cj , uj)

of length 2, where ui ∈ Ai and cj , uj ∈ Aj such that cj is an exceptional vertex for Ai.
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Figure 3.11: Finding the exceptional clique when |Xi| = 1.

In addition, we select an edge {wi, w̄i} inside Ai disjoint from all the paths of length 2

that we may have already chosen.

Select a clique in the natural order S = (s1, s2, . . . , sk) such that si = ui and sj = cj

so that we use the {ui, cj} edge. Now select another clique T = (t1, t2, . . . , tk) such that

ti = wi and tj = uj . However, we are going to consider T in the following order:

T ′ = (t1, t2, . . . , ti−1, tj = uj , ti+1, . . . , tj−1, ti = wi, tj+1, . . . tk)

(i.e. this order switches the positions of ti and tj). Note that S precedes T ′, since

{cj , uj} is an edge in our graph.

Next we find a clique U such that T ′ precedes U . Such a clique exists, because

{wi, w̄i} is an edge in our graph. There are many cliques U = (u′1, . . . , u
′
k), and u′i = w̄i,

such that T ′ precedes U . Then we find another clique R which precedes S. We think

of this set of four k-cliques as a single k-clique (the exceptional clique) with one ver-

tex for each of A1, . . . , Ak. As previously, the new vertex of the exceptional clique in

Am is connected to all the common neighbors of rm and u′m. Since rm and u′m are

not bad vertices for 1 ≤ m ≤ k, these new vertices have high degree in all the sets

Ai where i 6= m. We deal with all the exceptional vertices in this manner and get
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exceptional cliques for each of them. We get a (k − 1)th power of a Hamiltonian cycle

using the same method as that was used in the previous cases. In Figure 3.11 the

relevant portion in the final (k − 1)th power of a Hamiltonian cycle looks as follows:

(. . ., v6, r1, r2, r3, r4, r5, r6, s1, s2, s3, s4, s5, s6, t1, t5, t3, t4, t2, t6, u
′
1, u
′
2, u
′
3, u
′
4, u
′
5, u
′
6, v7, . . .)

G has less than k extremal sets

We first assume that A1, A2, . . . , A` are the extremal sets, where ` < k and we let

A =
⋃`
i=1Ai and B = V (G) \ A. (We remark that ` ≤ k − 2, otherwise if we omit

connecting in the non extremal set, two vertices of degree bigger than n
k+1, the resulting

graph is an extremal graph and satisfies the minimum degree condition).

We say that v ∈ B is exceptional if degA(v) ≤ (`− 1 +α1/3)|A|. The bad vertices in

Ai’s are defined exactly as before.

Then

δ(G|B) ≥
(
k − 1

k

)
n−

(
`

k

)
n ≥

(
k − `− 1

k

)
n ≥

(
k − `− 1

k − `

)
|B|

Also, since there is no extremal set A′ ⊂ B with |A′| = bnk c = b( 1
k−`)|B|c, we have

that G|B does not satisfy the α-extremal condition.

By the non-extremality of G|B and its minimum degree δ(G|B), using the procedure

given in previous Section on the non-extremal case, we can find (k − `− 1)th power of

a Hamiltonian cycle H = (p1, p2, . . . , p|B|) in B. We will insert ` vertices after every

k − ` vertices in H such that we get (k − 1)th power of a Hamiltonian cycle.

For this purpose we divide H into bnk c consecutive intervals of k−` vertices each. We

define B′ = {b1, b2, . . . , bbn
k
c} in the following way: b1 corresponds to {p1, p2, . . . , p(k−`)};

b2 corresponds to {p(k−`)+1, p(k−`)+2, . . . , p2(k−`)}, etc., and bbn
k
c corresponds to the path

{p(bn
k
c−1)(k−`)+1, . . . , p|B|}. We also have that |A1| = |A2| = · · · = |A`| = |B′| = bnk c.

The Clean Case: Assume there are no bad or exceptional vertices

As before, we construct cliques of size `. Let the set of these cliques be C =

{c1, c2, . . . , cn/k}, where ci = {y1, y2, . . . , y` : yi ∈ Ai, for 1 ≤ i ≤ `}.
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Remarks.

(R1) NA(p(i−1)(k−`)+1, . . . , pi(k−`)) ≥ (1− kη1/4)|A|, where |A| = `nk

(R2) For every y ∈ A, NB(y) ≥ (1− kη1/4)|B|), where |B| = (k − `)nk .

(R3) For every cs ∈ C, the number of good pairs is at least (1−kη1/4)|C|, where |C| = n
k .

After these remarks, we start to build our (k − 1)th-Hamiltonian cycle. Consider

b1, b2, b3, . . . , bn/k, which forms in this order a (k − 1)th-Hamiltonian path. By (R3),

we can easily find 1
2
n
k cs so that all the points of cs are connected to all the points of

b2s−1 ∪ b2s. So we must have the following subpath:

p(2s−1)(k−`)+1 . . . , p2s(k−`), y
(s)
1 . . . , y

(s)
` p2s(k−`)+1 . . . , p(2s+1)(k−`).

Because of Remarks (R1-R3), using the Kőnig-Hall Theorem, we can order the remain-

ing cs so that in this ordering say c(n/2k)+1, c(n/2k)+2, . . . , c(n/k) have the property that

c(n/2k)+s is good to cs and cs+1, and every point of c(n/2k)+s is connected to every point

of b2s and b2s+1.

The subpath looks like this.

p(2s−1)(k−`)+1, . . . , p2s(k−`)y
(s)
1 . . . y

(s)
` , p2s(k−`)+1, . . . , p(2s+1)(k−`) . . . ,

y
( n
2k

+s)

1 . . . y
( n
2k

+s)

` p(2s+1)(k−`)+1 . . . , p(2s+2)(k−`).

We got our desired (k − 1)th-Hamiltonian cycle.

Handling the Exceptional Vertices: Let us denote by B+ the exceptional ver-

tices in B. Notice that B+ is connected to at least (k − `− α
1
3k)nk vertices of B \B+.

Therefore we can insert them in the (k− `− 1)th-Hamiltonian cycle 1 covering B \B+,

which we have already constructed.

We will insert each vertex v ∈ B+ into a carefully chosen cycle bs, so that v is

also connected to every point of bs−10, . . . , bs, bs+1, . . . , bs+10. Since the degree dB(v) of

every v ∈ B+ is extremely large, we can do this easily. Notice that our new cycle is

still a (k − `− 1)th Hamiltonian cycle.

1When we say Hamiltonian path in a smaller set, we mean it completely covers the set.
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Again, we break our Hamiltonian cycle into paths of length (k − `). As in the

clean case, we denote these paths by b1, b2, . . . , bn/k. Since NB(v) is extremely large for

v ∈ B+, we can insert these vertices so that they are always the initial points of some

bi’s.

Now we build above v ∈ B+ an exceptional clique as we did for the case where

` = k, and we had exceptional vertices. Of course, the points of bi are also included in

these exceptional cliques. So the length of this clique is k. From here the procedure is

the same as when B+ was empty.
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[29] I. Levitt, G. Sárközy, E. Szemerédi, How to avoid using the Regularity Lemma:
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