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ABSTRACT OF THE DISSERTATION

Scalar fields and spin-half fields on mildly singular

spacetimes

By MOULIK KALLUPALAM BALASUBRAMANIAN

Dissertation Director: Shadi Tahvildar-Zadeh

A charged particle-spacetime is a solution to Einstein’s equations coupled to a nonlinear

electromagnetic theory. It has a mild curvature singularity and a bounded electric

potential. Morawetz and Strichartz estimates are proved for spherically symmetric

scalar waves on such a spacetime. These spacetimes have conical singularities at their

centers. As a first step towards understanding the behavior of scalar waves on such

spacetimes, a way to reproduce the known fundamental solution to the scalar wave

equation on flat two-dimensional cones is found using Sommerfeld’s method. Dirac’s

equation for a spin-half field is set up on a charged particle-spacetime. The Dirac

Hamiltonian is shown to be essentially self-adjoint on smooth functions with compact

support away from the center. The essential spectrum and the continuous spectrum of

the Hamiltonian are obtained. Under a certain condition, a neighbourhood of zero is

shown to be in the resolvent. The existence of infinitely many eigenvalues is shown.
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Chapter 1

Introduction to charged particle-spacetimes

The main equations of general relativity are Einstein’s equations. The unknowns in

Einstein’s equations are a four-dimensional manifold M, a Lorentzian metric g on M,

and in case of non-vacuum spacetimes, a collection of matter fields giving rise to an

energy-momentum tensor T. In Gaussian CGS units, the equations read

Rµν −
1

2
Rgµν =

8πG

c4
Tµν . (1.1)

Here, G stands for Newton’s universal constant of gravitation, c the speed of light in

vacuum, and Rµν , R are respectively the Ricci and scalar curvatures of the metric.

In this work, we will consider electromagnetic spacetimes that can represent a point

charge. Our principal reference for this is a recent paper of Tahvildar-Zadeh [30]. The

study of electromagnetic phenomena involves two 2-forms: the Maxwell tensor M and

the Faraday tensor F. These are assumed to be source-free except for the point charge

itself. That is,

dF = 0, dM = 0 (1.2)

away from the location of the point charge. A key assumption is that the electromag-

netic theory comes from a Lagrangian. That is, there is an action

S[A, D] =

∫
D

Lem(A, dA), (1.3)

where Lem is a four-form, that we call the Lagrangian, D is an open domain inM, and

A is a 1-form that is usually called the electromagnetic four potential. Equations of

electromagnetism arise as the Euler-Lagrange equations of this action. Suppose A is a

critical point, then the Faraday tensor is obtained by F = dA, and the Maxwell tensor

is obtained by

M =
∂

∂f

∣∣∣∣
a=A,f=F

L(a, f). (1.4)
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Lagrangian density l(a, f) is defined by the relation L(a, f) = l(a, f)vg, where vg is the

volume form of the metric g. Under assumptions of source-freeness, Lorentz-invariance

and Gauge-invariance, it can be shown ([11]) that l depends only on f = da, and then

only through the invariants x = 1
4 fµνf

µν and y = 1
4 fµν(∗f)µν , where ∗ is the Hodge star

operator. Therefore l = l(x(f), y(f)). The energy(density)-momentum(density)-stress

tensor T is expressed in terms of the Lagrangian density l, as

Tµν = 2
∂l

∂gµν
− gµν l. (1.5)

The tensor T is assumed to satisfy the Dominant Energy Condition, that is,

1. for every future-directed timelike vector field Y,

TµνY
µY ν ≥ 0, (1.6)

2. whenever Z is a future-directed causal vector, the vector −Tµν Zν is future-directed

causal.

The four one-forms of electromagnetism, E,D,H and B are derived from Maxwell

and Faraday tensors by contracting with K, a time-like, hypersurface-orthogonal Killing

vector field. With iKF denoting the interior product (iKF)ν = KµFµν ,

E := iKF (1.7)

B := iK ∗ F (1.8)

D := iKM (1.9)

H := −iK ∗M. (1.10)

The one-forms E,D,H and B are called (flattened) electric field, electric displacement,

magnetic field, and magnetic induction, respectively.

In [30], the system of equations (1.1),(1.2) (which is called the Einstein-Maxwell

system) is considered, with T as in (1.5). The main assumptions made are

1. the spacetime is static, that is, there exists a twist-free time-like Killing vector

field for the metric;
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2. there is an electric field present, but no magnetic field;

3. the spacetime is spherically symmetric;

4. the spacetime is asymptotically Minkowski;

5. the energy corresponding to the ADM mass of the spacetime is equal to the

energy carried by the electric field. That is, the mass of the spacetime is entirely

of electromagnetic origin.

The resulting solution is a spacetime with an electric potential defined on it. It is

specified by three separate entities:

1. a C2 function called reduced Hamiltonian ζ : R+ → R+,

2. a parameter M > 0 with units of mass,

3. a parameter Q 6= 0 with units of charge.

The function ζ specifies the electromagnetic theory. The traditional Maxwell’s equa-

tions result from taking ζ(µ) = µ, and in this case, the resulting system is the called

Einstein-Maxwell-Maxwell system of equations. The function ζ is related to the La-

grangian density function l as follows. Let f(t) := −l(x = −t2/2, y = 0). Then,

ζ(µ) := f∗(
√
µ). (1.11)

where f∗ stands for the Legendre-Fenchel transform of f :

f∗(s) := sup
t

(st− f(t)). (1.12)

The function ζ has to satisfy the following conditions:

(a)

ζ(µ) = µ+O(µ5/4) as µ→ 0. (1.13)

This is assumed so that in the weak field limit ζ agrees with that of Maxwell-

Maxwell electromagnetics, that is, with ζ0(µ) := µ.
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(b)

∀µ > 0 : ζ ′(µ) ≥ 0, ζ − µζ ′ ≥ 0. (1.14)

This assumption is made so that the dominant energy condition is satisfied.

(c)

∀µ > 0 : ζ ′(µ) + 2µζ ′′(µ) ≥ 0. (1.15)

This convexity condition is to ensure that ζ can be derived from a Lagrangian.

(d)

Iζ := 2−
11
4

∫ ∞
0

µ−7/4ζ(µ)dµ <∞. (1.16)

This assumption ensures that the ADM mass of the spacetime is finite. (Note

that this rules out the Maxwell-Maxwell reduced Hamiltonian ζ0(µ) = µ).

(e) There exists positive constants µ0, Jζ ,Kζ , Lζ such that

∀µ > µ0 : Jζ
√
µ−Kζ ≤ ζ(µ) ≤ Jζ

√
µ, (1.17)

and

∀µ > µ0 :
Jζ

2µ1/2
−
Lζ
µ
≤ ζ ′(µ) ≤

Jζ

2µ1/2
. (1.18)

These conditions are imposed so as to get the mildest possible singularity at the

location of the point charge, namely a conical singularity.

An important example of a ζ that satisfies all of these conditions is the Born-Infeld

Hamiltonian,

ζBI(µ) :=
√

1 + 2µ− 1. (1.19)

We now introduce some notation. Using the ζ-dependent constants defined earlier,

we define,

A(ζ) :=

√
2Jζ
I2
ζ

, (1.20)

and the dimensionless quantity

ε :=

√
GM

|Q|
, (1.21)

Note (Units). We will work in Gaussian CGS units.
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Indeed, since the electrostatic force between two charged particles is computed by

Coulomb’s law in Gaussian CGS units as Fem = Q1Q2

r2
while the gravitational force

between two particles of masses M1,M2 is computed by Newton’s law of gravitation as

Fgr = GM1M2
r2

, both Q2

r2
and GM2

r2
have the same dimensions. So their ratio GM2

Q2 is

dimensionless.

Given, M,Q, ζ, it is necessary to scale ζ to ensure that the energy of the electric

field is equal to that of the ADM mass. We will use the scaled version

ζβ :=
1

β4
ζ(β4µ), (1.22)

where

β :=
(|Q|)3/2Iζ
Mc2

. (1.23)

The spacetime M is diffeomorphic to R× (R3 \ 0), and is equipped with the usual

coordinates (t, r, θ, φ) ∈ (−∞,∞)× (0,∞)× (0, π)× (0, 2π). Here, t is a time function,

chosen so that the hypersurface orthogonal Killing field is K = ∂
c∂t , r is the area radius

coordinate, that is, for p ∈M, r(p) =

√
Ar(p)

4π , where Ar(p) is equal to the area of the

orbit of the rotation group SO(3) that passes through p, and (θ, φ) are the standard

spherical coordinates on the orbit sphere. The line element of the metric g can be

expressed in these coordinates as

ds2
g = −eξ(r)c2dt2 + e−ξ(r)dr2 + r2dθ2 + r2 sin2 θ dφ2, (1.24)

where

eξ(r) := 1− 2
m(r)

r
, (1.25)

and the “mass function” is defined by

m(r) :=
G

c4

∫ r

0
ζβ

(
Q2

2s4

)
s2ds. (1.26)

The spacetime is also endowed with an electric potential

ϕ(r) = Q

∫ ∞
r

ζ ′β

(
Q2

2s4

)
ds

s2
. (1.27)

This gives the electric field as E = e−ξ(r)/2dϕ.
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Definition 1.0.1. For a given mass M , charge Q and a reduced Hamiltonian ζ satis-

fying the aforementioned properties, and the smallness condition

ε2 <
1

A(ζ)
, (1.28)

the manifold R × (R3 \ 0) equipped with the metric (1.24), and the electric potential

(1.27) is called a charged particle-spacetime. We denote such a spacetime by Mζ,M,Q

and in short by M.

The smallness condition is to ensure that the metric coefficient eξ(r) > 0 ∀r > 0.

The maximal analytical extension of this metric is indeed R4 minus the line r = 0,

because the metric defined by (1.24) is always singular at r = 0, for any choice of ζ.

The singularity is conical , meaning that limr→0 ξ(r) exists but is not equal to zero.

One should contrast the above charged particle-spacetime with the well-known so-

lution in case ζ(µ) = µ (Maxwell’s Hamiltonian), the Reissner-Nordström spacetime.

Definition 1.0.2. The Reissner-Nordström (RN) spacetime is the maximal analytic

extension of

ds2 = −f(r)c2 dt2 + f(r)dr2 + r2(dθ2 + sin2(θ)dφ2) (1.29)

where f(r) = (1− 2GM
c2

1
r + G

c4
Q2

r2
). There is also an electric potential, which is given by

ϕ(r) =
Q

r
. (1.30)

If ε =
√
GM
|Q| < 1, then f(r) > 0 ∀r ∈ (0,∞), and in this case, the spacetime is called a

super-extremal Reissner-Nordström.

The singularity at r = 0 in a super-extremal RN is a naked singularity.

We now list the asymptotics near r = 0 and r = ∞ of the mass function m(r),

metric coefficient eξ(r), and the potential function ϕ(r). Near r = 0,

m(r) =
Aε2

2
r − B2ε6c4

2G2M2
r3 + o2(r3), B2 :=

2Kζ

3I4
ζ

,

eξ(r) = (1−Aε2) +
B2c4

GM2
ε6r2 + o2(r2),

sgn(Q)ϕ(r) =
3ε

2

c2

√
G
− Aε3

2M

c4

G3/2
r +O(r3), (1.31)
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and near r =∞,

m(r) =
GM

c2
− GQ2

2c4r
+O

(
1

r2

)
,

eξ(r) = 1− 2GM

c2r
+
GQ2

c4r2
+O

(
1

r2

)
,

ϕ(r) =
Q

r
+O

(
1

r3

)
. (1.32)

We have

(1−Aε2) ≤ eξ(r) < 1, (1.33)

max

{
Aε2

2
r − B2ε6c4

2M2G2
r3,

GM

c2
− GQ2

c42r

}
≤ m(r) ≤ min

{
Aε2

2
r,
GM

c2

}
. (1.34)

The metric coefficient eξ(r) is monotone increasing and potential function ϕ(r) is mono-

tone decreasing in magnitude.

Now, describe some the properties of the spacetime itself. As mentioned earlier,

there is a curvature blow-up at r = 0, with Kretchman scalar ((RabcdRabcd)
1/2, where

Rabcd is the full Riemann tensor) blowing up like r−2. This should be compared with

Schwarzschild spacetime where it blows up like r−3 and Reissner-Nordström spacetime,

where it blows up like r−4. Thus, the singularity is comparatively mild in our case. In

fact, near r = 0, the spatial part of the metric takes the form

ds2 =

(
(1−Aε2)−1 +

B2c4ε6

G2M2
r2 + o2(r2)

)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
(1.35)

and so, for ε small, is close to a2dr2+r2dΩ2,with a := (1−Aε2)−1/2 and dΩ the standard

metric on the 2-sphere. Defining r̃ = ar, we may write this as dr̃2 + a−2r̃2dΩ2, which

brings out the cone-aspect: at a radial distance r = 1 from the tip r = 0, we have a 2

sphere of radius a−1 (instead of the standard sphere).

The singularity at r = 0 is naked: radial geodesics fall into r = 0 in finite affine

parameter. Thus the spacetime, and the constant t-hypersurfaces are geodesically in-

complete.

The main objective of this work is to understand physical phenomena on charged

particle-spacetimes, and to determine whether they exhibit properties that make charged

particle-spacetimes better, in some sense, than super-extremal Reissner-Nordström
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spacetimes, as a model for spacetimes around point charges. To begin with, in the

case of charged particle-spacetimes, the entirety of the ADM mass is “equal” to the en-

ergy carried by the electric field, while in the case of Reissner-Nordström spacetime the

latter is not even finite. Charged particle-spacetimes have bounded metric coefficients

and the electric potentials, which is an attractive property in itself, considering that it

is not true in the case of the super-extremal Reissner-Nordström spacetime.

The first physical phenomenon we investigate is a scalar wave propagating on such

a background spacetime. Apart from an intrinsic interest, the knowledge of decay and

dispersive properties of scalar waves on these spacetimes is important if one would later

choose to study the stability of these charged particle-spacetimes as solutions to the

Einstein-Maxwell system, formulated as an initial value problem. In this work, we prove

estimates for spherically symmetric scalar waves on charged particle-spacetimes whose

conical singularity is mild enough. Our theorem is analogous to a theorem by Stalker

and Tahvildar-Zadeh [28] in which similar estimates are shown on a super-extremal

Reissner-Nordström background. We use a general theorem stated in that paper, but

the computations are much simpler in our case, because we have good bounds on the

metric coefficients, like the one coming from the bounds on the mass function in equation

(1.34).

In order to remove the spherical symmetry assumption on the scalar wave, one has

to understand the effect of the conical singularity on scalar waves. We start with the

simplest conical singularity: the one at the vertex of a two-dimensional flat exact cone.

In particular, the effect of the conical singularity on the fundamental solution to the

scalar wave equation on this cone needs to be investigated. This fundamental solution

is known, and is given in a work of Cheeger and Taylor [10], where it is derived using a

functional calculus developed for exact cones. One may ask if the fundamental solution

could be obtained by simpler means, using a method introduced by Sommerfeld [33].

In our work, we answer this question in the affirmative. So, one could possibly use

Sommerfeld’s method to derive fundamental solutions on other flat two-dimensional

spaces. This is left for future investigation.

Since these spacetimes represent spacetimes around a charged particle, an interesting
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phenomenon is the interaction of this spacetime with other test particles, for instance,

a spin-half particle like an electron. The wave function of such particles obeys Dirac’s

equation. In this case, distinct advantages of charged particle-spacetimes over the

naked Reissner-Nordström spacetimes come to the fore. For one, on charged particle-

spacetimes, the Dirac Hamiltonian is essentially self-adjoint on the domain consisting

of smooth functions with compact support away from the center. This means that

there is no confusion about which self-adjoint extension we mean by the Dirac Hamil-

tonian, because there is only one. This is not true on a naked Reissner-Nordström

background, where there are multiple self-adjoint extensions to the Dirac Hamiltonian.

Secondly, apart from the smallness condition on ε in the definition of charged particle-

spacetimes, no restriction on the magnitude of the charge is necessary to ensure essential

self-adjointness. This contrasts with Dirac Hamiltonian with a Coulomb potential on

Minkowksi space, where one needs to assume (in appropriate units) that |eQ| <
√

3
2

where −e with e > 0 is the charge of an electron and Q is the charge at the center.

Similarly, the existence of discrete spectrum in our case is also independent of the size

of the charge. These advantages arises from the fact that the electric potential ϕ(r) on

a charged particle-spacetime is finite even near r = 0, the location of the charge. Nat-

urally, the spectral properties of the Dirac Hamiltonian on charged particle-spacetimes

are also investigated. The essential spectrum and the continuous spectrum is the same

as for the Dirac Hamiltonian on Minkowski spacetime with a Coulomb potential. We

also show that, under certain conditions, there is an infinity of eigenvalues. However,

we have not determined the location of these eigenvalues. We leave this problem for a

future investigation.

The remainder of this work is organized as follows. In chapter 2, we obtain estimates

for scalar waves. In chapter 3, we use Sommerfeld’s method to reproduce the known

fundamental solution of the scalar wave equation on flat two-dimensional cone. In

chapter 4, Dirac’s equation is set up on charged particle-spacetimes, and the spectral

properties of the Dirac Hamiltonian are investigated.
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Chapter 2

Massless, spinless, real scalar field

An important long-term goal is to show that charged particle-spacetimes are stable

solutions to the Einstein-Maxwell system, when it is formulated as an initial value

problem. There have been several works that studied the stability of particular solutions

to Einstein’s equations with or without matter fields. For instance, the linear stability of

the Schwarzschild solution was studied by Regge and Wheeler in [26], and by Moncrief

in [22]; the linear stability of the Reissner-Nordström solution was studied by Moncrief

in [23]. It has become evident that the study of linear stability of Einstein’s equations

involves a close look at the decay and dispersive properties of the scalar wave equation

on the given stationary background. One way to measure dispersion is to show that the

scalar wave is in a Lebesgue space on the spacetime (with possibly different powers for

space and time). Such estimates, now called Strichartz estimates, began with work of

Strichartz [29] on the wave equation on R1+3 and were generalized later by others, for

instance in [18]. In recent years, research has been directed at obtaining these estimates

on various curved spacetimes, like Schwarzschild and Kerr, for example in [32], [21].

Stalker and Tahvildar-Zadeh in [28] show that on a naked Reissner-Nordström back-

ground, spherically symmetric solutions to the wave equation have their norms bounded

in two function spaces by an appropriately defined energy of the initial data, provided

the mass-to-charge ratio of the spacetime, in geometrized units, is less than one-half.

Both function spaces are Lebesgue spaces over the whole spacetime: the first, is a

weighted L2 space and the second, the L4 space. The corresponding estimate for the

former is called a Morawetz estimate and the latter a Strichartz estimate. Our main

theorem in this chapter is Theorem 2.1.1, and it is an application of Theorem (3) in

[28]. We will not reproduce the proof of that theorem. In a nutshell, the idea behind
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the proof is to transform the wave equation on the curved spacetime to wave equation

on Minkowski space with a potential and use estimates from an earlier work [7], which

holds under certain conditions on the potential. One of those conditions (condition (c)

in section 2.1.1) turns out to be hard to verify. In our case, that difficultly is absent

because the metric coefficient is comparatively well-behaved. In the remainder of this

section we will introduce the main definitions and the set-up.

Note. In this chapter, we will set c = 1.

Definition 2.0.3. A scalar wave on M is a real-valued function u :M→ R that is a

critical point of the the following action functional.

A[u] =

∫
M

g(du, du)dvg (2.1)

For the purposes of this chapter, we change variables from r to r̃, designed to

get the line element in a certain form. Notice that we may write the metric as

eξ(r)
(
−dt2 + e−2ξ(r)dr2

)
+r2dΩ2, where dΩ2 is the volume form on the standard sphere.

We introduce r̃ related to r by

dr̃ = e−ξ(r)dr, r̃(r = 0) = 0. (2.2)

Properties of this variable change are analyzed in Lemma 2.1.2. Now, if we define

α(r̃) := e
ξ(r(r̃))

2 , (2.3)

then the metric can be rewritten as

ds2 = α(r̃)2(−dt2 + dr̃2) + r(r̃)2(dθ2 + sin2(θ)dφ2). (2.4)

With the metric in this form, the scalar wave equation can be shown to satisfy ([28])

the equation,

(∂2
t +A)u = 0 (2.5)

where the operator A is

A := − 1

r2
∂r̃(r

2∂r̃)−
α2

r2
/∆. (2.6)

This operator is initially defined on C∞c (R3 \ {0}) due to the singularity at r̃ = 0. On

L2(R3, r2dr̃dΩ), this operator is symmetric and positive definite. To get a well-defined
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evolution, we consider Friederichs self-adjoint extension AF of A, ([25] Theorem X.23)

which is the unique self-adjoint extention whose domain is contained in the domain of

the closure of the quadratic form associated to A. So, the Cauchy problem considered

is

(∂2
t +AF )u = 0, u(0) = u0, ∂tu(0) = u1. (2.7)

We recall relevant spaces and norms from [28]. By Σt we denote the spatial slices

of M, with metric in the form (2.4). Let dσ′′ = r sin(θ)dθdφdr̃. We define Sobolev

spaces H1(Σt) as completion C∞c (Σt \ {0}) with respect to the norm given by ||f ||2H1 =∫
Σt
|fr̃|2 + α2

r2
| /∇f |2dσ′′ and H0(Σt) as completion of C∞c (Σt \ {0}) with respect to the

norm given by ||f ||2H0 =
∫

Σt
|f |2dσ′′. For s ∈ (0, 1), Hs(Σt) is defined by interpolation

and further by duality to s ∈ (−1, 0). The energy

E1/2[u] =
1

2

(
(||u||H1/2)2 + (||ut||H−1/2)2

)
(2.8)

is conserved along the flow of the evolution equation (2.7).

2.1 Estimates for spherically symmetric waves

We now state the main theorem of this chapter. Recall that ε is the dimensionless

mass-to-charge ratio of the spacetime, defined by (1.21). Also, E1/2[u] is the energy

defined by equation (2.8).

Theorem 2.1.1. Assume that the reduced Hamiltonian ζ is fixed. Then, there exists

positive constants C(ζ) and ε0(ζ) such that for all the charged particle-spacetimes M =

Mζ,M,Q for which ε < ε0, any spherically symmetric, scalar wave u propagating on M

(that is a solution to equation (2.7)) satisfies the estimate:

||r−1u||L2(M,vg) + ||u||L4(M,vg) ≤ CE1/2[u]. (2.9)

The constant ε0 is prescribed as follows. Let A(ζ), I(ζ) be the constants in (1.20) and

(1.16), respectively. Let K(ζ) = supµ>0 |
ζ(µ)√
µ |, T (ζ) = supµ>0 |ζ ′(µ)

√
µ|, both of which

are finite. Let T1 = K√
2I2

+ A, T2 = 2
√

2
I2

(
K
2 + T

)
. We pick an arbitrary 0 < a < 1

(optimized later so that the right hand side of the equation below is maximized) and
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define T3 = 6T1 + 4T 2
1

(1−a)
A + 2T2. Then, one choice of ε0 is by

ε20 = min

{
1− a
A

, 1,
1

4
a3T−1

3 ,
1

8
aT−1

1

}
. (2.10)

2.1.1 Proof of Theorem 2.1.1

We use Theorem 3, reproduced below, from [28], with notation changed to match ours

(their ρ is our r, their r is our r̃). Thus, the framework and conclusion of their theorem

is the same as ours.

Theorem (Theorem 3, [28]). LetM be a Lorentzian manifold that is homeomorphic to

R4, admitting a timelike R action and a spacelike SO(3,R) action commuting with it,

in such a way that exactly one R orbit, called Γ, is SO(3,R)-fixed. Let (t, r̃,Ω) be the

coordinate system on M as in section 2 ([28]) with Γ = {r̃ = 0}. Let g be a Lorentzian

metric on M that is of the form (2.4), is C3 outside Γ and is such that the functions

r and α satisfy the following conditions

(a) supr̃>0 r̃
2V (r̃) <∞,

(b) inf r̃>0 r̃
2V (r̃) > −1

4 ,

(c) supr̃>0 r̃
2 d
dr̃ (r̃V (r̃)) < 1

4 ,

(d) inf r̃>0( r
αr̃ ) > 0,

where

V (r̃) :=
1

r

d2r

dr̃2
. (2.11)

Then there exists a constant C > 0, depending only on the quantities on the left in the

conditions above, such that any spherically symmetric solution of

∂2
t ψ +AFψ = 0 (2.12)

satisfies

||r−1ψ||L2(M) + ||ψ||L4(M) ≤ CE1/2[ψ]. (2.13)
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Our metric (2.4) is precisely in the form that is needed in the theorem. From the

form of the metric, that we see there is a timelike R action which commutes with the

spacelike action of the rotation group. The metric has to be C3 outside the fixedpoints

of the rotation action, which we do have in (2.4). Indeed, the function ζ(µ) is C2

by definition and thus eξ(r) is C3. From definition of α(r̃), r(r̃) it is then clear they

are also C3. The remaining conditions are on the potential V (r̃) = 1
r
d2r
dr̃2

. These

conditions are verified below in section 2.1.2, and so the Theorem 2.1.1 is proved. We

simplify the potential as V (r̃) = 1
r(r̃)

d
dr̃ (eξ(r)) , which is the same as 1

r(r̃)
d
dre

ξ(r) dr
dr̃ =

1
r(r̃)(−2m

′(r)
r + 2m(r)

r2
)eξ(r). So we obtain,

V (r̃) =
2

r2

(
−m′(r) +

m(r)

r

)(
1− 2

m(r)

r

)
. (2.14)

Here r on the right hand side depends on r̃ via the coordinate change relation (2.2).

2.1.2 Checking conditions on the potential

We first analyze the relation between r̃ and r defined by the equation (2.2).

Lemma 2.1.2 (Analysing variable change). Under the differential relation in equation

(2.2) between r and r̃, the following are true:

(a) the function r̃ : (0,∞)→ (0,∞) is a diffeomorphism,

(b) limr→0
r̃
r = (1−Aε2)−1,

(c) limr→∞
r̃
r = 1,

(d) ∀r > 0 : 1 < r̃
r ≤ (1−Aε2)−1,

where A(ζ), ε are defined in equations (1.20), (1.21) respectively.

Proof. Notice that r̃(r) =
∫ r

0 e
−ξ(s)ds. So r̃ is C1, with derivative e−ξ(r) > 0, that tends

to 1 at ∞, by (1.32). Given any ε > 0, there exist a > 0 such that

1− ε < e−ξ(r), ∀r > a.

This implies that r̃(r) > r̃(a)+(1− ε)(r−a), so that limr→∞ r̃(r) =∞. Along with the

condition r̃(0) = 0, this implies part (a) of the lemma, since the function is monotone.
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From the integral expression for r̃, we see that limr→0
r̃
r = limr→0 e

−ξ(r). This limit

as seen in equations (1.31) has the value (1−Aε2)−1. This proves part (b).

Now, | r̃r − 1| = |
∫ r
0 (e−ξ(s)−1)ds

r | ≤
∫ r
0 |e
−ξ(s)−1|ds
r . For any ε̃ > 0, there is an a > 0,

such that |e−ξ(s)− 1| < ε̃ ∀s > a. So, ∀r > a, | r̃r − 1| ≤
∫ a
0 |e
−ξ(s)−1|
r + ε̃(r−a)

r , from which

part (c) follows because for large r both the terms can be made to be less than ε̃.

By the mean value theorem, r̃
r = e−ξ(s), for some s ∈ (0, r). From bounds on m(r)

in equation (1.34), we see m(r) ≤ Aε2/2. So, eξ = 1 − 2m(r)/r ≥ (1 − Aε2), and one

side of the required inequality follows. The other inequality is easily seen from eξ < 1,

as stated in equation (1.33).

First, we list a few facts we will use. Recall that the factor used to scale the reduced

Hamiltonian is given by ( as c = 1)

β =
|Q|3/2I
M

. (2.15)

Now, m′(r) = Gζβ( Q
2

2r4
)r2. Substituting µ = Q2

2r4
, and using the expression of β, m′(r) =

ε2√
2I2

ζ(µ)√
µ . Let K = supµ |

ζ(µ)√
µ |. Because of the asymptotics of ζ we know that 0 < K <

∞. Therefore we see,

|m′(r)| ≤ ε2√
2I2

K. (2.16)

Recall that the metric coefficient eξ = 1− 2m(r)
r . From chapter 1 we quote,

1−Aε2 ≤ eξ < 1 (2.17)

which is same as

0 <
m(r)

r
≤ Aε2

2
. (2.18)

In this paragraph we show, with T2 as in the theorem statement,

|m′′(r)r| ≤ T2ε
2 (2.19)

Note that m′′(r) = G
(
ζβ( Q

2

2r4
)2r − ζ ′β( Q

2

2r4
)2Q2

r3

)
. So,

rm′′(r) = G

(
ζβ(

Q2

2r4
)2r2 − ζ ′β(

Q2

2r4
)
2Q2

r2
.

)
(2.20)
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We know from equation (2.16) that G|ζβ( Q
2

2r4
)2r2| ≤ 2 ε2K√

2I2
. Notice,

ζ ′β

(
Q2

2r4

)
1

r2
=
M2
√

2

I2|Q|4
ζ ′(µ)

√
µ, where µ =

Q2

2r4
. (2.21)

Since 0 < ζ ′(µ) ≤ ζ(µ)
µ and ζ(µ) ∼ µ, µ→ 0 we can see that ζ ′(s)

√
s→ 0, s→ 0. Also,

ζ ′(s) ∼ Jζ
2s1/2

, and this implies that ζ ′(s)
√
s is bounded near ∞ as well. So the constant

T defined in the statement of the theorem is finite.

This proves inequality (2.19).

Condition (a)

Rewrite (a) as supr̃>0( r̃r )2r2V (r). Since, ( r̃r ) is bounded by Lemma 2.1.2, we just

need to show supr>0 r
2V (r) < ∞. But, r2V (r) = 2

(
−m′(r) + 2m(r)

r

)
eξ, and so using

equations (2.16), (2.18), we see

|r2V (r)| ≤ 2T1ε
2. (2.22)

Thus condition (a) is verified.

Condition (d)

We need to show that inf
r̃>0

r(r̃)

r̃e
ξ(r(r̃))

2

> 0. This is equivalent to showing inf
r>0

r

r̃e
ξ(r)
2

> 0.

Using part (d) of Lemma 2.1.2 and inequality 2.17, we see

r

r̃e
ξ(r)
2

> (1−Aε2). (2.23)

Since, ε < ε0, the right side is positive and so part (d) of the potential condition is

verified.

Condition (b)

As before, r̃2V (r̃) = ( r̃r )22
(
−m′(r) + m(r)

r

)
eξ(r̃).

Using equation (2.22) and part (d) of Lemma 2.1.2, |r̃2V (r̃)| ≤ (1−Aε2)−1(2)(1)T1ε
2.

Therefore since ε2 < ε20 < a1
8T1 , then condition (b) is true.

Condition (c)

Observe that

r̃3 d

dr̃
V (r̃) =

(
r̃

r

)3(dr
dr̃

)
r3 d

dr
V (r̃). (2.24)
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Taking into account the expression for V (r̃)

r3 d

dr
V (r̃) = 2r3

[
−2

r3

(
−m′(r) +

m(r)

r

)
eξ(r)

+
1

r2

(
−m′′(r) +

m′(r)

r
− m(r)

r2

)
eξ(r)

+
1

r2

(
−m′(r) +

m(r)

r

)
2

(
−m′(r)

r
+
m(r)

r2

)]
(2.25)

The first term is −4
(
−m′(r) + m(r)

r

)
eξ(r). So, | first term | ≤ 4T1ε

2(1), as shown

while verifying previous conditions. The third term simplifies to 4
(
−m′(r) + m(r)

r

)2
.

So, |third term | ≤ 4T 2
1 ε

4.

The second term simplifies to 2
(
−m′′(r)r +m′(r)− m(r)

r

)
eξ(r). The absolute value

of this is bounded by 2T1ε
2 + 2T2ε

2.

Finally, using dr
dr̃ = eξ which is less than 1 by equation (2.17), and r̃

r ≤ (1−Aε2)−1

by part (d) of Lemma 2.1.2, from equation (2.24), we get∣∣∣∣r̃3dV (r̃)

dr̃

∣∣∣∣ ≤ (1−Aε2)−3T3ε
2 ≤ a−3T3ε

2 (2.26)

Using this, and assumptions the that (1 − Aε2) ≤ a−1 and ε2 ≤ 1
4a

3T−1
3 in the

theorem, condition (c) is verified.
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Chapter 3

Conical singularities and Sommerfeld’s method

The charged particle-spacetime introduced in chapter 1 has a conical singularity at

the location of the charge. Deriving good estimates for solutions of the wave equation

often involves obtaining the fundamental solution. In this chapter, we will obtain the

known fundamental solution (Schwartz kernel) of the wave equation on a two-space

dimensional exact circular cone, starting from the standard fundamental solution to

the wave equation on R2 and performing a method used by Sommerfeld to construct

branched solutions to Laplace’s and Helmholtz equations in R3. The main theorem of

this chapter is Theorem 3.1.1. In the remainder of this section, we will explain the

origin of our interest in Sommerfeld’s method.

The estimates of chapter 2 (Theorem 2.1.1) are only for spherically symmetric so-

lutions. To weaken that hypothesis, we believe that it is important to understand how

a conical singularity affects the fundamental solution of the wave equation. Naturally,

one should first study the simplest conical singularity: one that exists at the tip of a

two dimensional cone. Things are simpler in that case since this space is flat except at

the tip.

In a recent work of Blair, Ford and Marzuola [5], Strichartz estimates are obtained

for waves on a flat, exact two dimensional cone. The starting point of their proof is a

formula for the Schwartz kernel of the wave propagator sin(t|ξ|)
|ξ| made from the Friedrichs

extension of the Laplacian. (The usage “fundamental solution” and “Schwartz kernel”

are be taken to be synonymous in the present work. Intuitively, it is a solution with

initial data being a pulse “delta distribution” at a specified point “source” on the cone.)

We found the formula for the kernel to be interesting in itself because one could pin-

point the contribution coming from the cone tip: the integral that appears in equation
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(3.12). It seems to be integrating over the fundamental solution in standard R2 in some

way.

The formula for the Schwartz kernel in [5] is quoted from a work of Cheeger and

Taylor [10],[9] where they use functional calculus on cones over compact manifolds to

study diffraction by conical singularities. Since our objective is to study waves on the

charged particle-spacetime (Definition 1.0.1), the spatial part of which is not globally

an exact cone over a compact manifold like S2 (because of the nature of the metric

coefficients ), we look for alternative ways to derive the same formula.

The formula for the cone over a circle of circumference 4π (which is then a two

sheeted cover of the punctured plane) is often attributed to Sommerfeld who did, for

the first time, a rigorous analysis of diffraction problems in [27], and later in his study

of branched potentials [33]. For example, he obtained diffractive solutions of the wave

equation in a region that is R3 from which a vertical half-plane over the positive x

axis is removed. His method was to take a solution from R3, which is 2π periodic in

the azimuthal angle in cylindrical coordinates, and obtain a new one that is, say, 4π

periodic in the angle: so that it may be thought to be defined on a Riemann space

consisting of two copies of R3 joined along the aforementioned plane.

Sommerfeld’s method has since been used many times, for instance by Carslaw [8]

and others, [24], [1], [13], [1], [15]. All of them consider the equations (−∆ + k2)u = 0

, −∆u = 0 in three space dimensions. None of these works treat the wave equation

in two dimensional space directly using Sommerfelds’s method. The formula for the

fundamental solution to the wave equation on an exact 2-D cone is derived in chapter 5

of Friedlander’s book [17], but it is obtained by Fourier expansion of the delta function

in the angle.

We perform Sommerfeld’s method, starting with the standard fundamental solution

u1(t, x, x0) = 1
2π

H(t−|x−x0|)√
t2−|x−x0|2

, where H is the Heaviside function. We consider u1 as the

real part of a complex valued function ũ1. Then, we perform Sommerfeld’s method on

ũ1, obtaining complex valued functions ũn which are 2πn periodic in the angle (i.e.,

defined on a cone over a circle of circumference 2πn). We show that when one takes the

real part of ũn we get the known formula. One may then use an image method to find
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solutions that are periodic with period that is a rational multiple of 2π. Afterwards,

we may observe that taking formal limits of the formula, one can get the formula of the

Schwartz kernel of a cone over a circle of circumference that is an irrational multiple of

π.

In this work, we do not address the question of why the procedure does produce a

fundamental solution on the cone (apart from the fact that we do obtain the known

formula). This is left for a future study. Another avenue for future exploration is to

find out why the procedure gives the Schwartz kernel of the wave propagator coming

from the Friedrichs Laplacian. Thus, here we confine ourselves to the study of the

effectiveness of Sommerfeld’s method to treat the wave equation on two-dimensional

manifolds with conical singularities.

3.1 Fundamental solution

Let S1
ρ denote a circle of radius ρ, with local coordinate function θ, which for a fixed

point p ∈ S1
ρ , maps S1

ρ \ {p} isometrically into (0, 2πρ).

Definition 3.1.1. The cone on S1
ρ is defined as C(S1

ρ) := R+ × S1
ρ , with the metric

line element given by ds2 = dr2 + r2dθ2.

For example, C(S1
1) ∼= R2 \{0} with the Euclidean metric in polar coordinates. The

Laplace-Beltrami operator on C(S1
ρ) is

∆ := ∂2
r + r−1∂r + r−2∂2

θ . (3.1)

Information about ρ is hidden in the coordinate θ. We say u : R× C(S1
ρ)→ R is a

solution to the wave equation if

2u := ∂2
t u−∆u = 0. (3.2)

Definition 3.1.2. For every point (r1, θ1) which we call a source in C(S1
ρ) we are

interested in a distribution uρ on [0,∞)× C(S1
ρ) such that

2uρ =
1

r1
δ(t)δr1(r2)δθ1(θ2), (3.3)
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where the right-hand side is the delta distribution on [0,∞) × C(S1
ρ) with support at

(0, r1, θ1) and the left side is 2 taken in the variables (t, r2, θ2). Such a distribution uρ

is called a (forward) fundamental solution to the wave equation on C(S1
ρ). (Ref. [17],

chapter 5, equation 5.2.7).

For instance, on R2 with Euclidean metric, the fundamental solution in rectangular

coordinates with source (x0, y0), for t ≥ 0 is given by

urect
1 (t, (x, y)) = Re

[
1

2π
√
t2 − |(x, y)− (x0, y0)|2

]
(3.4)

and written in polar coordinates, takes the form in u1 = Re(ũ1), defined in equation

(3.9).

The expression for the fundamental solution uρ is what we derive. As mentioned

earlier, Cheeger and Taylor studied this problem in the 1980s in [9], [10], where they

used the functional calculus (spectral theory) developed for a cone on any compact

manifold. We do not use spectral theory. We note that we are really trying to find a

solution to the equation (3.3) that is 2πρ periodic in the angular variables , because

S1
ρ is just the Riemannian quotient manifold R

2πρZ . This is the perspective we will

take- that we just want to change the periodicity in the angular variable of the known

fundamental solution from 2π to 2πρ.

The distance function on C(S1
ρ) is given by the following [5] expression:

d((r2, θ2), (r1, θ1)) =

 (r2
1 + r2

2 − 2r1r2 cos(θ1 − θ2))1/2 |θ1 − θ2| < π

r1 + r2 |θ1 − θ2| ≥ π.
(3.5)

We point out that by |θ1 − θ2| we mean the distance on S1
ρ . So in other-words,

|θ1 − θ2| := min {|θ1 − θ2 + 2πρk|k ∈ Z}. (3.6)

We define three regions in R+ × C(S1
ρ)× C(S1

ρ):

1. Region-1 = {(t, (r1, θ1), (r2, θ2))|0 < t < d((r1, θ1), (r2, θ2))}

2. Region-2 = {(t, (r1, θ1), (r2, θ2))|d((r1, θ1), (r2, θ2)) < t < r1 + r2}

3. Region-3 = {(t, (r1, θ1), (r2, θ2))|t > r1 + r2}
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We use the following expression µ throughout this chapter:

µ :=
r2

1 + r2
2 − t2

2r1r2
. (3.7)

Let us denote the standard 2π-periodic-in-angles fundamental solution in R2+1 with

polar spatial coordinates as u1((r1, θ1), t, (r2, θ2)). Then

u1((r1, θ1), t, (r2, θ2) := Re(ũ1) (3.8)

with

ũ1((r1, θ1), t, (r2, θ2)) =
1

2π
(2r1r2)−1/2 1√

(−µ+ cos(θ1 − θ2))
. (3.9)

This is just a rewriting of equation (3.4), in polar coordinates using cosine rule. The

fundamental solution on C(S1
ρ) with source (r1, θ1), given in Cheeger and Taylor [10],

can now be expressed as follows.

In region 1,

K(1)((r1, θ1), t, (r2, θ2)) ≡ 0. (3.10)

In region 2,

K(2)((r1, θ1), t, (r2, θ2)) =
∑

j:0<|θ1−θ2+2πρj|<cos−1(µ)

u1((r1, θ1 + 2πρj), t, (r2, θ2)) (3.11)

In region 3,

K(3)((r1, θ1), t, (r2, θ2)) = K
(3)
1 +K

(3)
2 , (3.12)

where,

K
(3)
1 =

∑
j:0<|θ1−θ2+2πρj|<π

u1((r1, θ1 + 2πρj), t, (r2, θ2)) (3.13)

K
(3)
2 = − 1

4iπ2ρ

∫ cosh−1(−µ)

0
(µ+ cosh(s))−1/2C(s, θ1, θ2, ρ)ds. (3.14)

C(s, θ1, θ2, ρ) = C1(s, θ1, θ2, ρ) + C2(s, θ1, θ2, ρ) (3.15)

C1(s, θ1, θ2, ρ) =
sin((θ1 − θ2 + π)ρ−1)

cosh(sρ−1)− cos((θ1 − θ2 + π)ρ−1)
(3.16)

C2(s, θ1, θ2, ρ) =
sin((θ1 − θ2 − π)ρ−1)

cosh(sρ−1)− cos((θ1 − θ2 − π)ρ−1)
. (3.17)
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Now, we are in a position to state the main theorem of this chapter.

Theorem 3.1.1. Suppose that ρ ∈ N. Fix a source point (r1, θ1) ∈ C(S1
ρ). Let (r2, θ2) ∈

C(S1
ρ) be a test point and t > 0. Let µ be computed as in equation (3.7). Assume that

|µ| 6= 1, cos(θ2 − θ1) 6= µ, and |θ1 − θ2| 6= π mod 2πρ. Then, Sommerfeld’s method

starting from the seed solution u1, results in a fundamental solution uρ on C(S1
ρ) that

agrees with the formulae given by equations (3.10), (3.11), (3.12).

The next section is the proof of this theorem.

3.2 Solution on a cone over a circle of circumference 2πn, n ∈ N

We observe that, ũ1((r1, α), t, (r2, θ2)), α ∈ C is well defined and is complex-analytic in

C away from branch cuts, which are necessary because of the square-root.

Notation. Throughout, we will use ũ1(α) with the implicit assumption that the other

variables are fixed. That is,

ũ1(α) := ũ1((r1, α), t, (r2, θ2)). (3.18)

Later we will fix the branch cuts to be vertical lines. We will use that branch for

which ũ1(α = θ2) is either positive real or purely imaginary with positive imaginary

part.

Lemma 3.2.1 (Determining the square-root in ũ1(α)). Suppose a, b ∈ R, θ2 and let w =

−µ+cos(a+ib−θ2). If b is non-zero and fixed, then as a increases, w moves clockwise if

b > 0 and counter clockwise if b < 0, with period 2π on the ellipse (x+µ)2

cosh(b)2
+ y2

sinh(b)2
= 1

and if a is fixed such that a−θ2 6= k π2 ∀k ∈ Z and b is varied, w moves on the hyperbola

(x+µ)2

cos(a−θ2)2
− y2

sin(a−θ2)2
= 1.

Proof. This is inferred from writing −µ+ cos(a− θ2 + ib) = −µ+ cosh(a− θ2) cosh(b) +

i sin(a− θ2) sinh(b).

The ellipse has center (−µ, 0) with semi-major axis of length cosh(b) along the x-

axis and semi-minor axis of length sinh(b) along the y-axis. So w = 0 lies inside the
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ellipse iff cosh(b) > |µ|. Hence, if branch cuts are chosen on vertical lines going off to

±i∞, the resulting branches will be 2π periodic.

We now introduce an auxiliary function with a parameter n ∈ R, used by Sommer-

feld:

fn(α, θ1) :=
i

n
(

1− ei(
θ1−α
n

)
) . (3.19)

Notation. We will often use fn(α) := fn(α, θ1), taking θ1 to be understood from the

context.

This function is 2πn periodic in both θ1 and α. For a fixed θ1, it is complex analytic

in α ∈ C with simple poles at α = θ1 + 2πnk, ∀k ∈ Z, with residue equal to 1. Let C0

denote a path going once around θ1 and not containing any other poles of fn and not

intersecting any branch cuts of ũ1. By the residue theorem,

ũ1(α = θ1) =
1

2πi

∫
C0

ũ1(α)fn(α, θ1)dα. (3.20)

The periodicity of the integrand plays a decisive role in the development of the ideas in

this chapter. The following proposition shows that it can only be an integer multiple

of 2π. Also, the values n ∈ Z are enough to attain all possible periodicities of the

integrand. We state this without proof.

Proposition 3.2.2. Let p be the period of ũ1(α)fn(α, θ1) in the variable α.

1. Let k, l 6= 0 ∈ Z, gcd(k, l) = 1 and n = k/l. Then, p = 2πk.

2. For n irrational, there is no periodicity in α.

Now, fix n to be a positive integer. Let us pick an arbitrary θ ∈ R. We focus

our attention on the closed vertical strip of width 2πn, given by S = {z|θ ≤ Re(z) ≤

θ+ 2πn} and assume θ1 ∈ interior(S)∩R. Because the poles are precisely those of fn,

there is only one pole in S, and it is a simple pole, at θ1, with residue ũ1(θ1). The

branch points, however, are 2π periodic since they arise from ũ1. In fact, we know they

appear in pairs, located at α = ± cos−1(µ) + θ2 + 2πk, k ∈ Z. Therefore, generally, in

S there will be 2n branch points. This number could go up by one or two, depending
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on whether there are branch points on the boundary of G. We may choose the branch

cuts to not intersect the vertical boundaries of S.

We make observations about the integrand in equation (3.20) in the following lemma.

Lemma 3.2.3 ( Limits at x± i∞). Suppose x, y ∈ R,α = x+ iy. Then

(a)

lim
y→±∞

ũ1(α) = 0 (3.21)

(b)

lim
y→∞

fn(α, θ1) = 0 (3.22)

(c)

lim
y→−∞

fn(α, θ1) =
i

n
(3.23)

Proof. We deduce (a) from the following identity,

ũ1(x+ iy) =
(2r1r2)

1
2

2π

1√
−µ+ 1

2

{
ei(x−θ2)e−y + e−i(x−θ2)ey

} . (3.24)

The parts (b), (c) become evident from

fn (α, θ1) =

(
i

n

)
1(

1− e
y
n ei(

θ1−x
n

)
) . (3.25)

The counter-clockwise integral over C0 is therefore equal to the sum of integrals

taken clockwise on contours around the branch cuts and the vertical boundaries of

S, as shown in Figure 3.1 below. The integrals on the two vertical portions cancel

each other because of the 2πn periodicity of the integrand. We make another crucial

observation: The standard 2π periodic solution u1 is the real part of an integral on a

contour going clockwise around the branch cuts involving the 2n branch points. Consider

the vertical strip Sθ2 := {α|θ2 − π ≤ Re(α) ≤ θ2 + π}. As noted at the beginning,

branch cuts will always taken to be vertical, going from the branch points to ±∞, so

that the function ũ1(α) is 2π periodic.
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Definition 3.2.1 (Contour Cn). Given θ2, θ1 (and t, r1, r2), consider all branch cuts in

in the strip Sθ2 . Let Cn be contour that stays in the interior of Sθ2 , and such that for

each branch cut in Sθ2 , Cn either goes around the branch cut (if it lies in the interior

of S2π) or along the branch cut (if it is on the boundary of S2π). The direction of the

path is downwards when it lies to the right of a branch cut, and upwards if it is lies to

the left.

We now give the expression for the 2πn periodic solution. See figure 3.2.

h

3

2

Initial Contour C0

Transformed to

Branch cuts

2: θ2
3: θ1h

1 4 1: θ2 − π

4: θ2 + π

5

5: θ2 + 2π

Figure 3.1: Rationale behind Sommerfeld’s method illustrated in the case n = 1, µ >
1, and integrand ũ1(α)f2(α). Poles are at θ1 + 4πk, k ∈ Z. Branch points at θ2 ±
cosh−1(µ) + 2πk, kZ. Integral at extreme left and right vertical edges cancel. Integral
along horizontal parts go to zero as h → ∞. So, ũ1(α = θ1) is equal to a sum of
integrals over 1 pair of branch cuts, over θ2.

Definition 3.2.2 (Sommerfeld’s solution). Let

ũn((r1, θ1), t, (r2, θ2)) =
1

2πi

∫
Cn

ũ1(α)fn(α, θ1)dα.

Then the 2πn periodic solution produced by Sommerfeld’s method is given by

un = Re(ũn). (3.26)

We shall now make a few remarks about this solution.

Definition 3.2.3. For a given fixed n ∈ N and source angle θ1, let 1 ≤ k ≤ n. Then

the k-th sheet is defined as Sk = {α|θ1 + (k − 2)π < Re(α) < θ1 + kπ}.
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h

3

2

1

4

5

Initial Contour C0

Transformed to

Branch cuts

1: θ2 − π
2: θ2
3: θ1
4: θ2 + 2π

5: θ2 + 3π

h

Figure 3.2: Rationale behind Sommerfeld’s method illustrated in the case n = 2, µ >
1 and integrand ũ1(α)f2(α). Poles are at θ1 + 4πk, k ∈ Z. Branch points at θ2 ±
cosh−1(µ) + 2πk, kZ. Integral at extreme left and right vertical edges cancel. Integral
along horizontal parts go to zero as h → ∞. So, ũ1(α = θ1) is equal to a sum of
integrals over 2 pairs of branch cuts, one over θ2 and another over θ2 + 2π.

Clearly, C = ∪k∈Z(Sk + 2πn) ∪ {α ∈ C|Re(α) − θ1 = π(2k + 1), k ∈ Z}. Also, we

note that mk(z) = z + 2π(k − 1) is a bijection from S1 to Sk. The next proposition

shows the relation between the ũn and ũ1.

Proposition 3.2.4 (Sum over sheets). Fix n ∈ N, θ1 ∈ R, θ2 ∈ R. Let us denote the

restriction to the k-th sheet by ũ
(k)
n = ũn

∣∣
Sk

. Then, for θ1 − π < θ2 < θ1 + π,

ũ1(θ2) =
∑

1≤k≤n
ũ(k)
n (mk(θ2)). (3.27)

Proof. Evident from the Figure 3.2, and the way we defined the un.

We now calculate the branch points of ũ1 in terms of µ.

Lemma 3.2.5 ( Branch points). The relation between µ and the branch points is:

1. µ < −1 : Branch points are at α = θ2 + π + 2πk ± i cosh−1(−µ), ∀k ∈ Z, where

we take cosh−1(−µ) ≥ 0.

2. −1 ≤ µ ≤ 1 : Branch points are at α = θ2 + cos−1(µ) + 2πk, α = θ2 − cos−1(µ) +

2πk, ∀k ∈ Z where we take cos−1(µ) to be in [0, π].
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3. 1 < µ: Branch points are at α = θ2 + 2πk ± i cosh−1(µ), ∀k ∈ Z, where we take

cosh−1(µ) ≥ 0.

Proof. Let us assume α = a+ ib with a, b ∈ R. Then,

cos(α− θ2) = cos(a− θ2) cosh(b) + i sin(a− θ2) sinh(b).

Now, if this is equal to µ, which is real, we obtain either sin(a− θ2) = 0 or sinh(b) = 0.

In the former case we have a = θ2+πk, k ∈ Z, which results in µ = ± cosh(b), depending

on whether k even, odd. If k is even, then, we need µ > 1 giving b = cosh−1(µ). If k is

odd, we need µ < −1 in which case b = cosh−1(−µ). Let us now consider sinh(b) = 0,

which immediately results in b = 0, leading to µ = cos(a− θ2) which has a solution iff

|µ| ≤ 1, in which case we get case 2.

Locations of the branch points as calculated from Lemma 3.2.5 makes it natural to

consider the three cases µ < −1,−1 < µ < 1, µ > 1 separately. We note that µ does

not depend on the angular variables. So, dividing up the spacetime based on µ alone

is unlikely to give the three regions in section 3.1, which are defined using the distance

function on the cone given in equation (3.5)- which in turn depends on the angles. The

following lemma reconciles the two ways of dividing up spacetime.

Lemma 3.2.6 (The parameter µ and the three regions). Let the regions 1, 2, 3 of the

spacetime ([0,∞)×C(S1
ρ)) be as defined in section 3.1. Then, it is also true that region

1 is

{((r1, θ1), t, (r2, θ2))|µ > 1} ∪ {((r1, θ1), t, (r2, θ2))| − 1 < µ < 1, |θ1 − θ2| > cos−1(µ)},

region 2 is

{((r1, θ1), t, (r2, θ2))| − 1 < µ < 1, |θ1 − θ2| < cos−1(µ)},

and region 3 is

{((r1, θ1), t, (r2, θ2))|µ < −1}.
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Proof. Let us take pi = (ri, θi), i = 1, 2. First of all, since the definition of region 3

does not involve angles, we can immediately write down the condition in terms of µ.

The definition is t > r1 + r2, which, upon squaring and simplifiying, is equivalent to

µ < −1. We now move on to analyze the definition of regions 1 and 2 in terms of µ,

and we need only bother about µ > −1.

Suppose that |θ1 − θ2| > π. Then, from the definition, d(p1, p2) = r1 + r2. Let us

now see what the definitions of the regions become in this case , 0 < t < d(p1, p2) is

equivalent to 0 < t < r1 + r2, which is the same as t > 0, t2 < r2
1 + r2

2 + 2r1r2, which

is the same as t > 0, µ > −1, since we assume r1, r2 > 0 . Secondly, region 2, which is

same as d((p1, p2)) < t < r1 + r2, is an empty set.

Now, suppose that θ1− θ2| < π. In that case, 0 < t < d(p1, p2) becomes, t > 0, t2 <

r2
1 + r2

2 − 2r1r2 cos(θ1− θ2), which is the same as t > 0, cos(θ1− θ2) < µ . On the other

hand, the region 2, d(p1, p2) < t < r1 + r2, becomes t > 0, cos(θ1− θ2) > µ and µ > −1

.

3.2.1 The case µ > 1

The branch points are located at θ2 ± i cosh−1(µ) + 2πk, ∀k ∈ Z. We join these to

±i∞ respectively, along vertical lines and designate these lines as branch cuts. In our

general Definition 3.2.2, we see the contour Cn consist of two disconnected pieces, going

clockwise around the branch cuts at θ2 ± cosh−1(µ), as shown in figure 3.3 below.

Lemma 3.2.7 (Too far from the source). Assume that t, r1, r2 are such that µ > 1.

Then ∀ θ1, θ2, we have

un((r1, θ1), t, (r2, θ2)) = 0.

Proof. The square-root term in the integral has opposite signs on both sides of the

branch cut, and it is traversed in opposite directions on either side. So the integral

on both sides of the cut is just double the integral on one side. Consider w(α) =

−µ+ cos(α− θ2). Then, w(θ2 − π + iβ) = −µ− cosh(β) < 0. By our choice of branch,√
w(θ2) (which is purely imaginary) is chosen to have positive imaginary part. So,
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P1

P2

P3

P1 : θ2 + i cosh−1(µ)

P2 : θ2

P3 : θ2 − i cosh−1(µ)

contour Cn :

branch cut :

axes :

Figure 3.3: The case µ > 1

√
w(θ), θ ∈ R is also purely imaginary with positive imaginary part. Along the vertical

line Re(α) = θ2−π+iβ, therefore, the same is true. Now, consider a β0 > cosh−1(µ) > 0.

Then by Lemma 3.2.1, as x varies in [0, π], w(x+ θ2−π+ iβ0), moves clockwise around

0 and reaches positive x axis, and encounters a branch cut. So, to the left of the

upwards branch cut at θ2 + cosh−1(µ),
√
w(θ2 + iβ)is positive real, and hence to its

right, negative real. By similar reasoning, we see to the left of downwards branch cut

at θ2 − cosh−1(µ),
√
w(θ2 + iβ) is negative real, and to its right positive real.

These observations enable us to write:

ũn =
2(2r1r2)−1/2

2πi

∫ +∞

cosh−1(µ)

1

2π
√
−µ+ cos(iβ)

{fn(θ2 + iβ, θ1)− fn(θ2 − iβ, θ1)}idβ.

(3.28)

Since β ≥ cosh−1(µ), we have cosh(β) ≥ µ, and so the quantity under the square-

root is non-negative. The quantity between the braces is purely imaginary, from part

(e) of Lemma 3.2.8. We conclude that ũn is purely imaginary. Since un = Re(ũn), the

lemma is proved.

Lemma 3.2.8 ( Operations on the auxiliary function). Suppose that θ, φ, x, a, b ∈ R,.

Then, the following identities hold true.
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(a)

1

1− ei(θ+φ)
− 1

1− ei(θ−φ)
=

−i sin(φ)

cos(θ)− cos(φ)
, (3.29)

(b)

1

1− eiθex
=

e−x − e−iθ

2(cosh(x)− cos(θ))
, (3.30)

(c)

fn(a+ ib, θ1) =

(
i

n

)
e−

b
n − e−i(

θ1−a
n

)

2
(

cosh( bn)− cos( θ1−an )
) , (3.31)

(d)

Im [fn(a+ ib, θ1) + fn(a− ib, θ1)] =
1

n
, (3.32)

(e)

fn(a+ ib, θ1)− fn(a− ib, θ1) = −
(
i

n

)
sinh( bn)(

cosh( bn)− cos( θ1−an )
) , (3.33)

(f)

Re [fn(a+ ib, θ1) + fn(a− ib, θ1)] =

(
1

n

) − sin( θ1−an )(
cosh( bn)− cos( θ1−an )

) . (3.34)

Proof. The left side of (a) simplifies to −ei(θ−φ)+ei(θ+φ)

1−(ei(θ+φ)+e
i(θ−φ)

)+e2iθ
, which is same as

eiφ−e−iφ
eiθ+e−iθ−(eiφ+e−iφ)

, the right side of (a). Now, in (b), the left side is equal to

(1−e−iθex)
(1−eiθex)(1−e−iθex)

, which is same as (1−e−iθex)
(1−ex(eiθ+e−iθ)+e2x)

and this simplifies to the right

side of (b) on dividing numerator and denominator by e−x.

To prove (c), we observe from fn in equation (3.19) that fn(a+ib, θ1)ni is of the form

of the left side of (b) with x = b
n , θ = θ1−a

n . To prove (d), notice that Im(fn(a+ib, θ1)) =(
1
n

) e−
b
n−cos(

θ1−a
n

)

2
(

cosh( b
n

)−cos(
θ1−a
n

)
) . From this (d) is easily deduced. Part (f) follows easily from

(c) like in (d).

3.2.2 The case −1 < µ < 1

The branch points are real and located at θ2 ± cos−1(µ) + 2πk, ∀k ∈ Z. We take

branch cuts to be vertical lines to ±∞ respectively. So, Cn will be the contour that
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P3

P1

P2

P4

P1 : θ2 − π

P3 : θ2

P5 : θ2 + π

contour Cn :

contour C1 :

contour R :

branch cut :

axes :

P2 : θ2 − cos−1(µ)

P4 : θ2 + cos−1(µ)

Figure 3.4: The case −1 < µ < 1, sub-case 1 : |θ1 − θ2| mod 2πn > π. We let h→∞.

consists of two pieces, going clockwise around the branch cuts at θ2±cos−1(µ), as shown

in the figure.

Lemma 3.2.9 (Signals directly from the source). Let θ1, θ2 ∈ R, and 0 < cos−1(µ) < π.

If ∀k ∈ Z, |θ1 + 2πnk − θ2| > cos−1(µ), then un((r1, θ1), t, (r2, θ2)) = 0. If ∃k ∈

Z, |θ1 + 2πnk − θ2| < cos−1(µ), then un((r1, θ1), t, (r2, θ2)) = u1((r1, θ1), t, (r2, θ2)), the

standard 2π periodic solution.

Proof. We start by computing the integral along a vertical path α = x + iβ from

β = −∞ to β = +∞. Assume that this path does not hit any branch points or poles.

Let

I(x) :=
1

2πi

∫ β=+∞

β=−∞
ũ1(x+ iβ)fn(x+ iβ, θ1)idβ (3.35)

Now, ũ(θ2 ± π + iβ) = 1
2π

(2r1r2)
1
2√

−µ−cosh(β)
. The precise sign of the square root can be

determined. On the line α = θ2 + iy, y ∈ R, ũ1(α) is positive real. Pick any y0 > 0.

Then, by Lemma 3.2.1 the horizontal path α = x + iy0, x ∈ [θ2, θ2 + π] when mapped

onto w = −µ + cos(α − θ2) starts on the positive real axis and moves clockwise on an

ellipse and ends on the negative real axis, and so, since the square-root is positive at the

starting point and the path α did not encounter a branch cut, we can deduce that on

this branch of ũ1(α),
√
w(θ2 + π + iy0) is purely imaginary with a negative imaginary
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part. So, we see ũ(θ2+π+iβ) = 1
2πi

i(2r1r2)
1
2√

+µ+cosh(β)
. By 2π periodicity of ũ1, ũ1(θ2−π+iβ)

has the same value.

We can rewrite

I(x) =
1

2πi

∫ +∞

β=0
{ũ1(x+ iβ)fn(x+ iβ, θ1) + ũ1(x− iβ)fn(x− iβ, θ1)idβ} . (3.36)

Since ũ1(θ2 + π − iβ) = ũ1(θ2 + π + iβ), we see

I(θ2 + π) =
1

2πi

∫ ∞
0

1

2π

i(2r1r2)
1
2√

+µ+ cosh(β)
{fn(θ2 + π + iβ) + fn(θ2 + π − iβ)} idβ.

(3.37)

The equations (3.37) is unchanged if θ2 + π is replaced by θ2 − π. So by equation

(3.2.8), we see

Re(I(θ2 ± π)) =
−(2r1r2)

1
2

4π2n

∫ ∞
0

1√
µ+ cosh(β)

dβ. (3.38)

Sub-case 1:

Assume that θ2 doesn’t lie in the same sheet as the source angle θ1. That is

∀k ∈ Z, |θ2 − θ1 + 2πnk| > π. (3.39)

This case is illustrated in figure 3.4.

Consider a “rectangular” loop of height h above and below the x-axis, such that

the vertical sides are along Re(α) = θ2 ± π, horizontal sides are along y = ±h, but

going around the two branch cuts. Let h → ∞. From Lemma 3.2.3, we see that the

contribution from the horizontal portions of the contour goes to zero. Also, by the

hypothesis for this case, there are no poles or branch points of the integrand within this

loop. So we get

ũn − I(θ2 − π) + I(θ2 + π) = 0. (3.40)

Taking real part of this equation and using equation (3.39), we see that

un(θ2) = Re(ũn(θ2)) = 0 (3.41)

Sub-case 2:

Let us assume that θ2 is in the same sheet as the source angle θ1. That is,

∃k, |θ1 + 2πnk − θ2| < π. (3.42)
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This case is illustrated in figure 3.5. Since the integrand is 2πn periodic, without loss

of generality, we can assume k = 0. In particular, this means that there is a pole on

the real interval between the two branch points on whose branch cuts we integrate to

get the solution un. So, the equation (3.38) in case 1 won’t hold true in this case.

h

h

P1

P2

P4

P5

P3 P6

P1 : θ2 − π

P3 : θ2

P5 : θ2 + π

P6 : θ1

contour Cn :

contour C1 :

contour R :

branch cut :

axes :

P2 : θ2 − cos−1(µ)

P4 : θ2 + cos−1(µ)

Figure 3.5: The case −1 < µ < 1, sub-case 2 : |θ1 − θ2| mod 2πn < π. We let h→∞.

However, we may use the sum-over-sheets Proposition 3.2.4. We note that for

1 < k ≤ n, |θ2 + (k − 1)2π − θ1| > |(k − 1)2π − |(θ1 − θ2)|| > 2π − π = π. To

rephrase, the points over θ2 in other sheets satisfy the hypothesis for case 1. That is,

for 1 < k ≤ n,

∀l ∈ Z : |mk(θ2)− θ1 + 2πnl| > π. (3.43)

So, by case 1,

∀1 < k ≤ n : un(θ2 + 2(k − 1)π) = 0. (3.44)

The sum-over-sheets proposition 3.27 enables us to deduce the conclusion of the lemma.

3.2.3 The case µ < −1

The branch points are at θ2± π± cosh−1(−µ)i+ 2πk, ∀k ∈ Z. We take branch cuts

to be vertical lines to i∞ or −i∞ depending on whether the imaginary part is positive
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or negative respectively. By definition, the contour path Cn in this case consists of four

disconnected pieces.

The four parts are denoted Culn , C
ur
n , C

dl
n , C

dr
n with the superscript used to indicate

the position of the path relative to θ2, by using u, d, r, l to stand for up, down, right, left

respectively. Now, Cul goes along Re(α) = θ2−π, to its right, starting at θ2−π+i∞ and

coming down to θ2− π+ cosh−1(−µ)i. Similarly, Cdl starts goes along Re(α) = θ2− π,

to its right, starting at θ2 − π − cosh−1(−µ)i going down to θ2 − π − i∞. In the

same way, Cdr starts at θ2 + π − i∞ goes up along Re(α) = θ2 + π to its left, until

θ2 + π − i cosh−2(−µ). Finally, Cur starts at θ2 + π + i cosh−1(−µ) and goes up along

Re(α) = θ2 + π to its left, up to θ2 + π + i∞.

Sub-case 1: Test point not in the same sheet as the source

We know that the test point is not in the same sheet as the source. That is,

∀k ∈ Z, |θ2 − θ1 − 2πnk| > π. (3.45)

This case is illustrated in figure 3.6.

P1 : θ2 − π

axes :
branch cut :

contour R :
contour Cn :
P7 : θ2 + π − i cosh−1(−µ)
P6 : θ2 + π + i cosh−1(−µ)
P5 : θ2 − π − i cosh−1(−µ)
P4 : θ2 − π + i cosh−1(−µ)
P3 : θ2 + π

P2 : θ2

h

h

P1 P2 P3

P4

P5

P6

P7

Figure 3.6: The case µ < −1, sub-case 1 : |θ1 − θ2| mod 2πn > π. We let h→∞.

By this assumption the open vertical strip {α|θ2−π < Re(α) < θ2 +π} contains no

poles ( because poles are at θ1 + 2πnk, k ∈ Z ) and no branch points. On its boundary

there are four branch points θ2 ± π ± cosh−1(−µ), and the branch cuts go along the

boundary to infinity.
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Consider the counter-clockwise rectangular loop R inside the strip, such that the

horizonal sides go along Im(α) = ±h, and vertical sides along Re(α) = θ2 ± π. Since

the integrand is analytic inside the loop, we have

1

2πi

∫
R
ũ1(α)fn(α, θ1)dα = 0. (3.46)

The loop skips the branch points by going around it, but goes to zero as their radius

goes to zero. As the height h is taken to infinity, the contribution from the horizontal

portions goes to zero, by Lemma 3.2.3.

Let Rb consist of two disconnected vertical segments Rlb, R
r
b of the loop R joining the

branch points, such that Rlb goes down from θ2−π+i cosh−1(−µ) to θ2−π−i cosh−1(−µ)

and Rrb goes up from θ2 + π − i cosh−1(−µ) to θ2 + π + i cosh−1(−µ).

Rewriting equation (3.46) in the limit as h goes to infinity, we get

ũn(θ1) +
1

2πi

∫
Rb

ũ1(α)fn(α, θ1)dα = 0. (3.47)

Taking the real part, we see that

un(θ1) = − 1

2π
Im

{∫
Rb

ũ1(α)fn(α, θ1)dα

}
. (3.48)

Now, we split the integral on the right side as∫
Rb

ũ1(α)fn(α, θ1)dα =

(∫
Rlb

+

∫
Rrb

)
ũ1(α)fn(α, θ1)dα. (3.49)

We have∫
Rlb

ũ1(α)fn(α, θ1)dα = −
∫ cosh−1(−µ)

− cosh−1(−µ)
ũ1(θ2 − π + iβ)fn(θ2 − π + iβ)idβ. (3.50)

Since ũ1(θ2 − π ± iβ) = (2r1r2)1/2

2π
1√

−µ+cos(θ2−π±iβ−θ2)
and we want ũ1(θ2) to be

positive real, we have for |β| < cosh−1(−µ),

ũ1(θ2 − π ± iβ) =
(2r1r2)1/2

2π

1√
−µ− cosh(β)

, (3.51)

and so,∫
Rlb

ũ1(α)fn(α, θ1)dα = −
∫ cosh−1(−µ)

0

(2r1r2)1/2

2π

1√
−µ− cosh(β)

S(β)idβ, (3.52)
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where we use the temporary variable

S(β) = {fn(θ2 − π + iβ) + fn(θ2 − π − iβ)} . (3.53)

Since the square-root term is real and there being an i =
√
−1 already in the

integrand, the imaginary part of the integral involves the real part of S(β). We compute

that, using equation (3.34),

Re(S(β)) =

(
1

n

) − sin( θ1−θ2+π
n )(

cosh(βn)− cos( θ1−θ2+π
n )

) . (3.54)

Finally, we see that

Im

(∫
Rlb

ũ1(α)fn(α)dα

)
=

−(2r1r2)1/2

2πn

∫ cosh−1(−µ)

0

1√
−µ− cosh(β)

− sin( θ1−θ2+π
n )(

cosh(βn)− cos( θ1−θ2+π
n )

)dβ. (3.55)

Moving on the right integral along Rrb , we note that equations (3.50),(3.51),(3.53),

(3.54) hold true, when Rlb, π are replaced by Rrb ,−π, respectively, and the minus sign

in the front is dropped (which accounts for the change in direction of integration). So,

Im

(∫
Rrb

ũ1(α)fn(α)dα

)
=

(2r1r2)1/2

2πn

∫ cosh−1(−µ)

0

1√
−µ− cosh(β)

− sin( θ1−θ2−πn )(
cosh(βn)− cos( θ1−θ2−πn )

)dβ. (3.56)

In order that coefficient of π inside the sine is positive, may take the negative sign

inside. In equation (3.55), on the other hand, the two minus signs, one outside the

integral and one inside next to sine, cancel.

So using the previous two equations (3.55), (3.56), via equation (3.49) in equation

(3.48), we get

un ((r1, θ1), t, (r2, θ2)) = −(2r1r2)1/2

4π2n

∫ cosh−1(−µ)

0

1√
−µ− cosh(β)

S(s, θ1, θ2, n)dβ

(3.57)

where,

S(s, θ1, θ2, n) =
sin( θ1−θ2+π

n )(
cosh(βn)− cos( θ1−θ2+π

n )
) +

sin(−θ1+θ2+π
n )(

cosh(βn)− cos(−θ1+θ2+π
n )

) . (3.58)
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This completes the proof in the case where the test point doesn’t lie in the same sheet

as the source point. We remark that this matches equation (3.12), because K
(3)
1 = 0

by the hypothesis of this case, ρ = n, as the radius of a circle at a distance 1 from the

cone tip is 2πn, and the i in the denominator in (3.12) comes from taking −1 out of

the square-root in (3.57).

Sub-case 2: The test point is in the same sheet as the source point

In this case, we assume that there the test point is in the same sheet as the source

point. That is,

∃k ∈ Z : |θ2 − θ1 − 2πk| < π. (3.59)

This case is illustrated in figure 3.7.

h

h

P1 P2 P3

P4

P5

P6

P7

P8

P3 : θ2 + π
P4 : θ2 − π + i cosh−1(−µ)
P5 : θ2 − π − i cosh−1(−µ)
P6 : θ2 + π + i cosh−1(−µ)
P7 : θ2 + π − i cosh−1(−µ)
P8 : θ1
contour Cn :

axes :
branch cut :
contour R :
contour C1 :

P2 : θ2

P1 : θ2 − π

Figure 3.7: The case µ < −1, sub-case 2 : |θ1 − θ2| mod 2πn < π. We let h→∞.

Without loss of generality we may assume that k = 0 above. As in case 1 we consider

the rectangular loop R. Now, there is a pole in the open vertical strip {θ2−π < Re(α) <

θ2+π} at θ1. Since that is the only pole in the interior of the region specified by the loop

R and since the auxiliary function fn(α, θ1) has residue 1 at the pole, by the residue

theorem, we see that the analogue of equation (3.46) in the current case is

1

2πi

∫
R
ũ1(α)fn(α, θ1)dα = ũ1(θ1). (3.60)

From here on, the steps are exactly the same as in case 1. Letting h→∞, taking the

real part and noting that Re(ũ1(θ1) = u1(θ1), the standard 2π periodic solution, we get
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the analogue of equation (3.48)

un((r1, θ1), t, (r2, θ2)) = u1((r1, θ1), t, (r2, θ2))− Re

{
1

2πi

∫
R
ũ1(α)fn(α, θ1)dα.

}
(3.61)

The second term (including the minus sign) on the right side is precisely the integral

we evaluated in case 2, and therefore it simplifies to the right side of equation (3.57)

Noting that K
(3)
1 = u1((r1, θ1), t, (r2, θ2)), because only j = 0 is active in equation

(3.12), and that ρ = n, we note that equation (3.61) matches that given by (3.12). This

completes the proof in case 2.

3.3 Solution on a cone over a circle of circumference 2πρ, ρ 6∈ N

In Theorem 3.1.1, we showed that the fundamental solution to the wave equation on

a cone over circle of circumference 2πn could be obtained using Sommerfeld’s method.

Here, we will address the case when the circumference is 2πρ, ρ ∈ Q. The main mes-

sage is that using the fundamental solutions with period 2πk, on application of the

image method one obtains the fundamental solution with period 2π kl . This is stated

in Proposition 3.3.1. As for ρ 6∈ Q, the only inference we make is simply that once we

obtain solution for ρ ∈ Q, that same formula works in the case of ρ 6∈ Q.

In order to convey what we mean by image method we will use the following exam-

ple. Suppose we have u1((r1, θ1), t, (r2, θ2)), a fundamental solution that is periodic in

the angles with period 2π and has a source at (r1, θ1), and that we want to find a fun-

damental solution that is 2π
3 periodic in the angles. Then the image method dictates,

given a source point (r1, θ1), that such a solution is given by summing three 2π-periodic

solutions with sources at the images of the actual source point (r1, θ1). That is,

u2/3((r1, θ1), t, (r2, θ2)) =

j=2∑
j=0

u1

(
(r1, θ1 +

2π

3
j), t, (r2, θ2)

)
. (3.62)

Proposition 3.3.1. Suppose uρ indicate the fundamental solution on C(S1
ρ) given by

formulae (3.10), (3.11), (3.12). Suppose also that k, l are two natural numbers with

gcd (k, l) = 1. Then, the following equality holds true:

uk/l((r1, θ1), t, (r2, θ2)) =

l−1∑
j=0

uk

(
(r1, θ1 + 2π

k

l
j), t, (r2, θ2)

)
. (3.63)
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Proof. We consider three cases, one by one. Let us indicate by pi, i = 1, 2 the points

(ri, θi) on C(S1
k/l) respectively. Also, let us denote (r1, θ1 +2π kl j) by pj1. First, (p1, t, p2)

is in region 1 of [0,∞) × C(S1
k/l), so that t < d(p1, p2). It can be seen by using the

definition of the distance function that d(p1, p2) ≤ d(pj1, p2), where the first one is the

distance on C(S1
k/l) and the second is the distance on C(S1

k). So, all (pj1, t, p2) lie in

region 1 on [0,∞)×C(S1
k). Therefore, both sides of equation (3.63) evaluate to zero in

this case.

Now, suppose that (p1, t, p2) is in region 2 on [0,∞) × C(S1
k/l), so that d(p1, p2) <

t < r1 + r2. In this case, by definition of the distance function |θ1 − θ2| mod 2π kl < π.

Now, if d(pj1, p2) = r1 + r2, then (pj1, t, p2) is in region 1 of [0,∞) × C(S1
k) and the

solution is zero there. If not, d(pj1, p2) = r2
1 + r2

2 − 2r1r2 cos(θ1 + 2π kl j − θ2), and using

that (pj1, t, p2) belongs to region 1 of [0,∞) × C(S1
k) if cos(θ1 + 2π kl j − θ2) < µ, we

see that uk evaluates to zero, and otherwise to region 2. So, the right hand side of

equation (3.63) evaluates to
∑

j:0<|θ1+2π k
l
j−θ2|<cos−1(µ)

uk(p
j
1, t, p2). Since the evaluation

on the right is on points that are in region 2, we can be seen from formula for region

(3.11) that uk(p
j
1, t, p2) is equal to u1(pj1, t, p2). Thus, even in this case equation (3.63)

holds true.

Finally, assume that (p1, t, p2) belongs to region 3 on [0,∞) × C(S1
k/l). Then, t >

r1+r2. So, all the points (pj1, t, p2) belong to region 3 on [0,∞)×C(S1
k). Then, it is easily

seen that the term K3
1 (p1, t, p2) in (3.12) for ρ = k/l is just the sum

∑l−1
j=0K

3
1 (pj1, t, p2)

with ρ = k. Now, to deal with the other term, we start with the following identity,

where we assume z ∈ C is such that both sides of the equation are defined, and l ∈ N:

l−1∑
j=0

1

1− ei2π
j
l z

=
l

1− zl
. (3.64)

Let us introduce the notation

Cj1(ρ) =
sin((θ1 + 2π kl j − θ2 + π)ρ−1)

cosh(sρ−1)− cos((θ1 − θ2 + π)ρ−1))
. (3.65)

As we have seen earlier, while dealing with the case µ < −1, in equation (3.54),

Cj1(ρ) = −ρRe{fρ
(
θ2 − π + is, θ1 + 2π

k

l
j

)
+ fρ

(
θ2 − π − is, θ1 + 2π

k

l
j

)
}. (3.66)
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Here, we have used fρ to mean the same expression for fn with n replaced by ρ. Now,

l−1∑
j=0

fk

(
θ2 ± π + is, θ1 + 2π

k

l
j

)
=

i

k

l−1∑
j=0

1

1− e2π j
l e

1
k

(θ2±π+is−θ1)
(3.67)

=
i

k

l

1− e
l
k

(θ2±π+is−θ1)
(3.68)

= fk/l (θ2 ± π + is, θ1) (3.69)

From this we see that
l−1∑
j=0

1

k
Cj1(k) =

l

k
C0

1 (k/l). (3.70)

The previous steps can be repeated with π in Cj1(ρ) replaced by −π. Therefore, we see

that in equation (3.12),

K3
2

(
p1, t, p2, ρ =

k

l

)
=

l−1∑
j=0

K3
2 (pj1, t, p2, ρ = k) (3.71)

This completes the proof.
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Chapter 4

Spin-1
2 fields on charged particle-spacetimes

In classical non-relativistic quantum mechanics, the wave function ψ of an electron in the

presence of an externally generated potential energy field V (t, x), obeys Schrödinger’s

equation,

i~∂tψ(t, x) = (− 1

2m
~2∆ + V (t, x))ψ(t, x), (4.1)

where ψ(t, x) : R×R3 → C, ~ is Planck’s constant divided by 2π, and m is the mass of

the electron. In special relativistic quantum mechanics, the wave function of an electron

obeys Dirac’s equation on Minkowski space:

i~∂tψ = i~c(α.∇)ψ +mc2βψ + V (t, x)ψ, (4.2)

where, ψ(t, x) : R × R3 → C4, c is the speed of light in vacuum, m is the mass of the

electron, V (t, x) is a 4× 4 matrix that represents the effects of the external potential if

it is present, α = (α1, α2, α3) and β are four 4× 4 matrices which satisfy

αiαj + αjαi = 2δij ,∀i, j ∈ {1, 2, 3} (4.3)

αiβ + βαi = 0 ∀i ∈ {1, 2, 3} (4.4)

β2 = 1 (4.5)

An example of such matrices are the Dirac matrices given in (4.76). The right side of

equation (4.2) is called the Dirac Hamiltonian, indicated with the letter H0. It is studied

as an unbounded operator on L2(R3,C4). The spectral properties of H0 can be obtained

using the Fourier transform. The spectrum is just (−∞,−mc2] ∪ [mc2,∞). One can

also write down the unitary map that converts H0 into a multiplication operator.

An important situation is when an external field is present, for instance, a Coulomb

potential. In this case, one is interested in the spectral properties of H0 − γ
|x| , γ ∈ R.
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Since the potential is spherically symmetric, it is natural to separate the operator into

radial and angular parts. The radial Dirac Hamiltonian (or reduced Dirac Hamiltonian)

has the form

Hred
κ :=

mc2 + γ
r − d

dr + κ
r

d
dr + κ

r −mc2 + γ
r

 , (4.6)

where κ is the eigenvalue of an angular momentum (“spin-orbit”) operator, and Hred
κ

is an operator on L2(0,∞)2. It is initially defined only on C∞c (0,∞)2. This symmetric

operator has a self-adjoint extension uniquely if and only if |γ| ≤
√

3
2 , when ~, c,m are

taken to be 1 (Theorem 2.1.6 of [2]). The essential spectrum is still that of the free

Dirac Hamiltonian, namely, (−∞,−mc2]∪ [mc,∞). For such values of γ, in the gap of

the essential spectrum there are eigenvalues. These are explicitly computable.

In general-relativistic quantum mechanics, Dirac’s equation is posed on a curved

spacetime and there are several formulations on how to define the spinor-connection.

Once properly formulated, we can ask questions about essential self-adjointness and the

spectrum. For instance Finster, Smoller, and Yau in [16] consider the Dirac equation

on a Reissner-Nordström (RN) black hole background and prove that there are no

normalizable time periodic solutions. In particular, there are no bound states. In [12],

Cohen and Powers show that on the RN black hole background, the Dirac Hamiltonian

is essentially self adjoint, the essential spectrum is the whole real line, and there are

no eigenvalues. They also find that in the naked case, there are multiple self-adjoint

extensions, all of which have the same essential spectrum. They conjecture that there

are also eigenvalues in the gap. Belgiorno in [3] produces similar results.

In this chapter, we prove some results about the Dirac Hamiltonian on charged

particle-spacetimes. First in section, 4.1, we set up Dirac’s equation using the frame

formalism of Cartan. Then in section 4.2, we perform the separation of variables and de-

compose the Hilbert space into partial wave subspaces on which the Dirac Hamiltonian

reduces to a first order differential operator on a wave function with two components.

In section 4.3, we use a version of Weyl’s limit-point/limit-circle theory to show that the

Dirac Hamiltonian is essentially self-adjoint on functions that are compactly supported

away from the origin. We are helped by the fact that unlike in the Reissner-Nordstöm
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case, the metric coefficients do not blow up. In section 4.4, we implement a standard

perturbation argument and determine that the essential spectrum is the same as in

the free case. In section 4.5, we show that the resolvent set contains a neighbourhood

of the origin. Finally, in section 4.6, we use oscillation properties of certain ordinary

differential equations to show that the gap in the essential spectrum contains infinitely

many eigenvalues.

4.1 Dirac’s equation using Cartan’s formalism

4.1.1 Definition of Dirac’s equation

In this section we derive Dirac’s equation on a spherically symmetric spacetime. We

use the so called frame formalism of Cartan. Our principal reference is a paper by Brill

and Cohen [6]. We have seen this method implemented in other references such as,

Cohen and Powers [12], and more recently by Kiessling and Tahvildar-Zadeh [20] while

studying Dirac’s equation on zero gravity (G→ 0) Kerr-Newman spacetimes .

We first choose an orthonormal co-frame consisting of four one forms ω(µ), µ =

0, 1, 2, 3.

Applying the exterior differential operator to these one-forms and writing the re-

sulting two-forms as wedge combinations of the frame forms, we arrive at the sixteen

connection one-forms, denoted Ω
(µ)
κ , 0 ≤ µ, κ ≤ 3. That is,

dω(µ) = −Ω(µ)
κ ∧ ω(κ), (4.7)

where we have used the Einstein summation convention (that indices that appear on

the subscripts and superscripts are to be summed over). In [6], it is explained that if

one demands skew-symmetry

Ωµκ = −Ωκµ (4.8)

then, by the orthonormality of the frame, equation (4.7) results in a unique set of

Ωµ
κ. Lowering and raising of indices is performed using the Minkowski metric η :=

diag(−1, 1, 1, 1). That is,

Ωµκ := ηµγΩ
γ
κ. (4.9)
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Ricci rotation coefficients, ωµκλ, 0 ≤ µ, κ, λ,≤ 3, are then obtained from the connec-

tion one-forms by expressing them as a combination of the co-frame forms, as follows.

Ωµκ = Ωµκλω
λ. (4.10)

Let eµ, 0 ≤ µ ≤ 3 be the orthonormal frame of vector fields dual to the frame ωµ.

That is,

ωκ(eµ) = δκµ, (4.11)

where the right side is the Kronecker delta.

Let γµ, µ = 0, 1, 2, 4 be a particular representation of gamma matrices of Minkowski

spacetime. That is, a set of four matrices that satisfy the relation

γµγν + γµγν = 2ηµν14×4. (4.12)

The covariant derivative of a spinor field ψ :M→ C4 (where M is the spacetime)

takes the following form

∇µψ := eµψ − Γµψ, (4.13)

where the four connection matrices Γµ are defined by

Γµ := −1

4
Ωα
νµγαγ

ν +
ie

~c
Aµ14×4 (4.14)

Here Aµ are components of an electromagnetic one form A when expressed in the

frame, and −e, with e > 0 is the charge of the electron.

Definition 4.1.1. With the above notations, Dirac’s equation, for a spinor field ψ :

M→ C4 in the orthonormal frame is

iγµ∇µψ +
mc

~
ψ = 0, (4.15)

where m is the mass of the electron, c is speed of light in vaccuum, and ~ is 1
2π times

Planck’s constant h.

4.1.2 Dirac’s equation on a spherically symmetric spacetime

Let us consider a spherically symmetric, static, Lorentzian manifold M, that is

diffeormorphic to R× (R3 \ {0}), with coordinates t, r, θ, φ taking the usual meaning as
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in Chapter 1. Also, let

f : (0,∞)→ (0,∞). (4.16)

Suppose that the metric takes the following form,

ds2 = −f(r)2c2dt2 + f(r)−2dr2 + r2dθ2 + r2 sin2 θdφ2. (4.17)

Remark. In case of charged particle-spacetimes, f(r) = e
ξ(r)
2 , where eξ(r) is given by

equation (1.25).

We will now derive the covariant Dirac equation for such a metric, using the steps

in section 4.1.1. This computation follows closely the same computation done in the

work of Cohen and Powers [12]. Since the metric has the form (4.17), the following one

forms make an orthonormal frame:

ω̃0 = f(r)c dt, ω̃1 = f−1dr, ω̃2 = rdθ, ω̃3 = r sin(θ)dφ (4.18)

We will not, however, use this frame for our computations. Instead we will use a frame

that matches the Cartesian frame if f ≡ 1. Henceforth, let

x = r sin(θ) cos(φ), y = r sin(θ) sin(φ), z = r cos(θ). (4.19)

We will work with the following frame

ω0 = ω̃0 (4.20)

ω1 = sin(θ) cos(φ)ω̃1 + cos(θ) cos(φ)ω̃2 − sin(φ)ω̃3 (4.21)

ω2 = sin(θ) sin(φ)ω̃1 + cos(θ) sin(φ)ω̃2 + cos(φ)ω̃3 (4.22)

ω3 = cos(θ)ω̃1 − sin(θ)ω̃2 (4.23)

(4.24)

Orthonormality of this frame can be seen from the fact that ω̃µ is an orthonormal frame.

Also, we note that if f ≡ 1 then, ω0 = dt,ω1 = dx,ω2 = dy,ω3 = dz. We now write

the above in another way, to make computations easier. Let

g(r) := r−1f(r)−1 − r−1 (4.25)
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Then, the frame in (4.24), can be re-written as

ω0 = cf(r) dt (4.26)

ω1 = dx+ g(r)x dr (4.27)

ω2 = dy + g(r)y dr (4.28)

ω3 = dz + g(r)z dr. (4.29)

Since r2 = x2 + y2 + z2, we have r dr = x dx+ y dy + z dz, and

xω1 + yω2 + zω3 = r dr + g(r)r2 dr = r dr + (f−1 − 1)r dr = f−1r dr (4.30)

Let us denote

s := xω1 + yω2 + zω3 (4.31)

then,

dr = sf(r)r−1 (4.32)

and so dx, dy, dz are respectively

dx = ω1 − g(r)f(r)xr−1s (4.33)

dy = ω2 − g(r)f(r)yr−1s (4.34)

dz = ω3 − g(r)f(r)zr−1s (4.35)

From the above we compute

dω0 = f ′drdt = f ′r−1s ∧ ω0 (4.36)

= −(f ′r−1xω0) ∧ ω1 − (f ′r−1yω0) ∧ ω2 − (f ′r−1zω0) ∧ ω3 (4.37)

dω1 = gdxdr = gfr−1ω1 ∧ s (4.38)

= gfr−1yω1 ∧ ω2 + gfr−1zω1 ∧ ω3 (4.39)

dω2 = gdydr = gfr−1ω2 ∧ s (4.40)

= gfr−1zω2 ∧ ω3 + gfr−1xω2 ∧ ω1 (4.41)

dω3 = gdzdr = gfr−1ω3 ∧ s (4.42)

= gfr−1xω3 ∧ ω1 + gfr−1yω3 ∧ ω2 (4.43)
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Now, to satisfy the skew symmetry assumption (equation (4.8)), we rewrite the above

as

dω0 = −(f ′r−1xω0) ∧ ω1 − (f ′r−1yω0) ∧ ω2 − (f ′r−1zω0) ∧ ω3 (4.44)

dω1 = −(f ′r−1xω0) ∧ ω0 + (gfr−1yω1 − (gfr−1xω2)) ∧ ω2

+(gfr−1zω1 − gfr−1xω3) ∧ ω3 (4.45)

dω2 = −(f ′r−1yω0) ∧ ω0 + (−(gfr−1yω3) + gfr−1zω2) ∧ ω3

+(gfr−1xω2 − (gfr−1yω1)) ∧ ω1 (4.46)

dω3 = −(f ′r−1zω0) ∧ ω0 + (gfr−1xω3 − (gfr−1zω1)) ∧ ω1

+(gfr−1yω3 − (gfr−1zω2)) ∧ ω2 (4.47)

From the above table we determine the Ricci connection coefficients, using equation

(4.10). The non-zero ones are

Ω010 = −f ′r−1x = −Ω100 ; Ω020 = −f ′r−1y = −Ω200 (4.48)

Ω030 = −f ′r−1z = −Ω300 ; Ω121 = −gfr−1y = −Ω211 (4.49)

Ω131 = −gfr−1z = −Ω311 ; Ω232 = −gfr−1z = −Ω322 (4.50)

Ω323 = −gfr−1y = −Ω233 ; Ω212 = −gfr−1x = −Ω122 (4.51)

Ω313 = −gfr−1x = −Ω133 (4.52)

Though inconsequential, we point out the pattern - (a) there are two distinct indices

in each subscript, (b) exactly one of x, y, z appear depending on whether the non-

repeating index is 1, 2, 3, respectively, (c) also if 0 appears in the subscript, f ′r−1

appears on the right and if not, gfr−1 appears, and (d) if the repeated index occurs

together on the second and third positions only, and in this case the sign is positive

and otherwise negative.

The spin connection matrices can be computed from the Ricci rotation coefficients.

Γ0 = −1
1

4
Ωabγ

aγb + ie~−1c−1A0

= −1
1

4
f ′r−1

[
−xγ0γ1 − yγ0γ2 − zγ0γ3

+xγ1γ0 + yγ2γ0 + zγ3γ0+
]

+ ie~−1c−1A0

=
1

2
f ′r−1γ0

[
xγ1 + yγ2 + zγ3

]
+ ie~−1c−1A0 (4.53)
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Here we have used the fact that if µ 6= ν, then γµγν = −γνγµ. Now,

Γ1 = −1

4
Ωab1γ

aγb + ie~−1c−1A1

=
1

2
gfr−1γ1

(
yγ2 + zγ3

)
+ ie~−1c−1A1. (4.54)

Similarly we see

Γ2 =
1

2
gfr−1γ2

(
zγ3 + xγ1

)
+ ie~−1c−1A2

Γ3 =
1

2
gfr−1γ3

(
xγ1 + yγ2

)
+ ie~−1c−1A3. (4.55)

We now make use of the assumption that in the spacetime that we are studying there

is only an electric potential present, so that A0 = ϕ(r)f(r)−1, where ϕ is a function of

r alone, and A1 = A2 = A3 = 0.

Remark. The electric potential ϕ(r) is specified on charged particle-spacetimes by the

expression given in the first chapter in equation (1.27).

Suppose g̃(r) is a function that satisfies g̃(r) + g(r) + g̃(r)g(r)r = 0. That is,

g̃(r) := r−1(f − 1). (4.56)

Also, note that ∂r = 1
r (x∂x + y∂y + z∂z). Then, the dual frame of orthonormal vector

fields consists of

e0 = f(r)−1c−1∂t (4.57)

e1 = ∂x + g̃(r)x∂r (4.58)

e2 = ∂y + g̃(r)y∂r (4.59)

e3 = ∂z + g̃(r)z∂r (4.60)

Therefore the covariant Dirac equation (4.15) simplifies to

0 = γ0

(
f(r)−1c−1∂t −

1

2
f ′r−1γ0

[
xγ1 + yγ2 + zγ3

]
− ie~−1c−1ϕ(r)f(r)−1

)
ψ

+ γ1

(
∂x + g̃(r)x∂r −

1

2
gfr−1γ1

(
yγ2 + zγ3

))
ψ

+ γ2

(
∂y + g̃(r)y∂r −

1

2
gfr−1γ2

(
zγ3 + xγ1

))
ψ

+ γ3

(
∂z + g̃(r)z∂r −

1

2
gfr−1γ3

(
xγ1 + yγ2

))
ψ +

mc

~
ψ

(4.61)
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We introduce the notations

Tψ := γ1∂xψ + γ2∂yψ + γ3∂zψ (4.62)

γr :=
1

r

(
xγ1 + yγ2 + zγ3

)
(4.63)

Using these we may rewrite Dirac’s equation as

0 = γ0f(r)−1c−1∂tψ +
1

2
f ′γrψ − γ0ie~−1c−1ϕ(r)f(r)−1ψ

+ Tψ + g̃(r)rγr∂rψ − gfγrψ +mc~−1ψ.

(4.64)

From this, observing that g(r)f(r) = (1 − f(r))r−1, the definition of g̃ = r−1(f − 1)

from equation (4.56), and (γ0)2 = −1, we get

i~∂tψ = i~c
{ [

2−1ff ′ − r−1f(1− f)
]
γ0γrψ + fγ0Tψ + fγ0mc~−1ψ

+f(f − 1)γ0γr∂rψ
}
− eϕ(r)ψ.

(4.65)

In the next section, we will separate the angular and the radial parts of the above

equation. In order to set the stage for it, we present the matrices αk, k = 1, 2, 3, and β

defined as

αk = −γ0γk;β = iγ0. (4.66)

The choice of γµ is made in equation (4.75). Furthermore,

p1 := −i∂x; p2 := −i∂y; p3 := −i∂z (4.67)

pr := −i∂r; αr :=
1

r

(
xα1 + yα2 + zα3

)
. (4.68)

Then, the right side of equation (4.65) can we written as

Hψ := ~c
[
2−1ff ′ + r−1f(f − 1)

]
(−iαrψ) + ~c f (αkpk + β~−1mc) ψ

+ ~cf(f − 1)αrprψ − eϕ(r)ψ. (4.69)

This is equation (3.1) in [12].

4.1.3 Hilbert space of spinors

In general, the inner product on spinors defined on a hyper-surface Σ is written in

terms of the conjugate spinor which is defined as

ψ̄ := ψ†γ0, (4.70)
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where ψ† denote the conjugate transpose, namely, as

(ψ1, ψ2)gen := −
∫

Σ
ψ̄γ̃νψηνdµΣ; (4.71)

here, the measure is the induced measure on the hypersurface and η is a unit normal

vector field, and γ̃ are the gamma matrices expressed in the coordinate frame computed

as γ̃ν = eνµγ
µ. On constant-t hypersurfaces η = (1, 0, 0, 0), and because of the γ0

appearing in the definition of the conjugate spinor, the integrand reduces to ψ†γ0γ̃0

which in turn simplifies to −f(r)−1ψ† because the only nonzero e0
µ is when µ = 0.

Thus, on constant t hyper-surfaces the inner product reduces to

(ψ1, ψ2) :=

∫ ∞
0

∫ π

0

∫ 2π

0
ψ1(r, θ, φ)†ψ2(r, θ, φ)f(r)−1r2 sin(θ) dθdφdr. (4.72)

So, we define the following Hilbert space of four-component spinors.

H :=
{
ψ : R3 → C4|(ψ,ψ) <∞

}
(4.73)

Finally, we define

Definition 4.1.2. The operator H of equation (4.69) on the Hilbert space H is called

the Dirac Hamiltonian.

4.2 Separation of the Dirac Hamiltonian

In this section we separate the angular and radial parts of the Dirac Hamiltonian. The

Hilbert space is expressed as direct sum of invariant subspaces, on which the action of

the Hamiltonian reduces to that of a first order differential system with two components

depending just on the radial coordinate r.

Separation of Dirac’s equation on Minkowski space with a radially symmetric elec-

trostatic potential is well known. It is presented, for instance, in Thaller’s book [31].

The particular form of the Dirac Hamiltonian in equation (4.69) makes it easy to work

out the details of the separation. This is because the Minkowskian Dirac operator ap-

pears verbatim in it. Therefore the angular dependence occurs the same way as in the

Minkowskian Dirac operator. We remark that this is an advantage arising from the

fact that we used an orthonormal Cartan frame that reduces to the Cartesian frame if

f ≡ 1.
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Representation of gamma matrices

The metric of charged particle-spacetime has signature (−1, 1, 1, 1). We take the

following representation for the gamma matrices. First, let σk, k = 1, 2, 3 denote the

Pauli matrices, given by

σ1 :=

0 1

1 0

 ; σ2 :=

0 −i

i 0

 ; σ3 :=

1 0

0 −1

 . (4.74)

Then, with 1 denoting I2×2, the 4× 4 gamma matrices are given by

γ0 = −i

1 0

0 −1

 , γj = −i

 0 σj

−σj 0

 , j = 1, 2, 3 (4.75)

Remark. These are (−i) times the matrices in the Dirac representation used when the

metric has signature (+,−,−,−) .

Then, the alpha matrices determined by equation (4.66) are

β =

 0 1

−1 0

 ; αk =

 0 σk

σk 0

 , k = 1, 2, 3. (4.76)

These are the Dirac matrices in the standard representation introduced by Dirac. With

the notation introduced in equation (4.68), the (free) Dirac Hamiltonian in Minkowski

space is

H0 := ~cαkpk + βmc2, (4.77)

where we have once again used Einstein’s summation convention in k, which varies

over 1, 2, 3. The radial and angular parts of H0 become when it is written in polar

coordinates (from Thaller [31] section 4.6.3),

H0 = −i~c(αr)
(
d

dr
+

1

r
− 1

r
βK

)
+ βmc2, (4.78)

where K, called “spin-orbit operator”, is given by

K := β(2S.L + 1), (4.79)

where

S :=
1

2

σ 0

0 σ

 , (4.80)

L := x×−i∇, (4.81)
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are the spin and the orbital angular momentum operators, respectively. The compo-

nents of the former are obtained from σ := (σ1, σ2, σ3).

We will now describe the decomposition of H into partial wave subspaces. The

treatment follows Thaller [31], sections (4.6.4) and (4.6.5). Firstly, the spin-orbit oper-

ator K acts on L2(S2)4 (with the standard measure on the sphere), and it has a purely

discrete spectrum and a complete system of orthonormal eigenvectors. Suppose j is an

index that varies in positive half-integers,

j = 1/2, 3/2, 5/2, . . . , (4.82)

while for each such j, mj is allowed to take values

mj = −j,−j + 1, . . . ,+j, (4.83)

and κj is allowed to take the two values

κ = −(j + 1/2),+(j + 1/2). (4.84)

Specifying a triplet (j,mj , κj) gives two orthonormal eigenvector of Φ±mj ,κj . The explicit

expression for these are available in terms of spherical harmonics, but we will not need

those here. These form a complete orthonormal family of eigenvectors of K in L2(S2)4.

The indices are actually eigenvalues of operators J2, J3,K (where J := L + S is the

total angular momentum operator), given by

J2 Φ±mj ,κj = j(j + 1)Φ±mj ,κj , (4.85)

J3 Φ±mj ,κj = mjΦ
±
mj ,κj , (4.86)

K Φ±mj ,κj = −κjΦ±mj ,κj . (4.87)

These eigenfunctions satisfy

iαrΦ±mj ,κj = −± Φ±mj ,κj . (4.88)

Another property of these that we use is that the lower two components of Φ+
mj ,κj are

zero while the top two components of Φ−mj ,κj are zero. Thus, to summarize,

L2(S2)4 =
⊕

j=1/2,3/2,...

⊕
mj=−j,−j+1,...,j

⊕
κj=±(j+1/2)

Kmj ,κj , (4.89)
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where

Kmj ,κj = {c+Φ+
mj ,κj + c−Φ−mj ,κj |c

± ∈ C}. (4.90)

Let us define the subspace

H∼mj ,κj = L2((0,∞); f(r)−1dr)⊗ Kmj ,κj , (4.91)

which we note is isomorphic to L2((0,∞); f(r)−1dr)2 , and the map U∼mj ,κj : H∼mj ,κj → H

by

U∼mj ,κj : (g+(r), g−(r))→ 1

r

(
g+(r)Φ+

mj ,κj + g−1(r)Φ−mj ,κj

)
. (4.92)

This map preserves the inner product. We present the action of H on H∼mj ,κj , that

is, compute (U∼mjκj )
−1HU∼mjκj . In terms of the basis Φ+

mj ,κj ,Φ
−
mj ,κj , this is just an

operator on L2((0, r); f(r)−1dr)2.

Let us express the Dirac Hamiltonian from equation (4.69), using the free Dirac

Hamiltonian on Minkowski, as

Hψ = ~c[
1

2
ff ′ +

1

r
f(f − 1)](−iαrψ) + fH0ψ + ~f(f − 1)cαrprψ − eϕψ. (4.93)

Now, from Theorem (4.14) in Thaller [31], the (U∼mjκj )
−1HU∼mjκj on (g+(r), g−(r)) is

given by the operator  mc2 −cdr + ~cκjr
~cdr + ~cκjr −mc2

 . (4.94)

Using this we compute, with temporary notation g± = g±(r),Φ± = Φ±mj ,κj (θ, φ),

H

(
g+ Φ+

r

)
=

[
mc2fg+(r)− eϕ(r)

] Φ+

r
+ ~

[
cg+ 1

2
ff ′ + cf2 drg

+

]
Φ−

r
,

H

(
g−

Φ−

r

)
=

[
−fmc2 − eϕ(r)

] Φ+

r
+

[
−~cf2 drg

− + κj~
f

r
g− − 1

2
ff ′g−

]
Φ+

r
.

(4.95)

Therefore the operator H on H∼mj ,κj = L2((0,∞), f(r)−1dr)2 is given by

H∼1
mj ,κj =

 c2fm− eϕ ~c
(
−f2 dr + f

κj
r − r

1
2ff

′)
~c
(
f2 dr + f

κj
r + 1

2ff
′) −c2mf − eϕ

 . (4.96)

We can remove the f(r)f ′(r) term by a variable change. Define

Uv :
(
g+(r), g−(r)

)
7→
(
f(r)+1/2g+(r), f(r)+1/2g−(r)

)
, (4.97)
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and it is clear that this is a unitary isomorphism

Uv : L2((0,∞), f(r)−1dr)2 → L2((0,∞); f(r)−2dr)2.

Further,

H∼2
mj ,κj := UvH∼1

mj ,κj (U
v)−1 =

 c2f(r)m− eϕ(r) −c~f(r)2 dr + ~f(r)c
κj
r

c~f(r)2 dr + ~cf(r)
κj
r −c2mf(r)− eϕ(r)

 .

(4.98)

In the last step, we change r to x according to

dx

dr
= f(r)−2, x(r = 0) = 0. (4.99)

Remark. The function x(r) is same as the function r̃(r) defined in equation (2.2).

Then the map Uw : L2((0,∞), f−2(r)dr)2 → L2((0,∞); dx)2 given by

Uw(g1(r), g2(r)) = (g1(r(x)), g2(r(x)) (4.100)

is a unitary isomorphism, as the integration measure f−2dr is equal to dx. Also, f(r)2 d
dx

turns into f(r)−2f(r)2 d
dx which is equal to d

dx .

Thus we have proved the following theorem.

Theorem 4.2.1. The Hilbert space H is a direct sum of the subspaces H∼mj ,κj , each

of which is isomorphic to Hredmj ,κj := L2((0,∞); dx)2, and each of these subspaces are

mapped into itself by the the Dirac Hamiltonian. Thus, the Dirac Hamiltonian H on H

is a direct sum of Hmj ,κj := UwH∼2
mj ,κj (U

w)−1, on Hredmj ,κj , and,

Hmj ,κj =

c2f(r)m− eϕ(r) −c~ d
dx + ~f(r)c

κj
r

~c ddx + ~cf(r)
κj
r −c2mf(r)− eϕ(r)

 , (4.101)

where r(x) is obtained from the solution of the differential equation (4.99).

4.3 Essential self-adjointness of the Dirac Hamiltonian

Here we prove that Hmj ,κj defines a unique self-adjoint operator on Hredmj ,κj . To do this

we first recall the following definition.
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Definition 4.3.1. A symmetric operator T with domain D in a Hilbert space is said

to be essentially self-adjoint if its closure T̄ is self-adjoint.

The usefulness of this definition is that if T is essentially self-adjoint then it has one

and only one self-adjoint extension. The main theorem of this section is the following.

Theorem 4.3.1. Every reduced Dirac Hamiltonian Hmj ,κj is essentially self-adjoint

on the domain D0 = C∞c (0,∞)2 ⊂ L2((0,∞), dx)2 = Hredmj ,κj .

Notation. Henceforth by we will denote the unique self-adjoint extension also by Hmj ,κj .

Proof. The proof proceeds by a version of Weyl’s limit-point/ limit-circle criterion

adapted for Dirac type systems. The original argument of Weyl was for Sturm Li-

ouville systems, introduced in his seminal work in 1910. In his book, [34], Weidmann

considers general formal differential expressions τ of the form

τu := r(x)−1


bn/2c∑
j=0

(−1)j
(
pj(x)u(j)(x)

)(j)

+

bn−1
2 c∑
j=0

(−1)j
[(
qj(x)u(j)(x)

)j+1
−
(
q∗j (x)u(j+1)(x)

)(j)
] , (4.102)

where the u are Cm valued functions defined on (a, b),−∞ ≤ a ≤ b ≤ ∞, n is the order

of the differential expression, and the coefficients r, pj , qj are m × m matrix-valued

functions on (a, b), r(x) is positive definite, and the pj(x) are all Hermitian.

In our case, m = 2, n = 1, so that j = 0 is the only index (which we will leave out

from now) , r(x) = 12×2, and q(x) = q =

 0 −1/2

1/2 0

, so that τ takes the following

form:

Definition 4.3.2. Suppose P (x) is a real symmetric matrix, for each x ∈ (a, b). Then,

by a Dirac type differential expression τ , associated to P (x), we mean, for u : (a, b)→

C2,

τu :=

 0 1

−1 0

u′ + Pu (4.103)
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The version of Weyl’s alternative stated for Dirac type systems is

Theorem 4.3.2 ([34], Theorem 5.6 (Weyl’s alternative)). Suppose τ is a Dirac type

differential expression. Then, either:

(a) for every λ ∈ C all solutions of (τ − λ)u = 0 lie in L2 near b (that is, for every

solution u there is a c ∈ (a, b) such that u ∈ L2((c, b), dx), or :

(b) for every λ ∈ C\R there exists a unique (up to a multiplicative constant) solution

u of (τ − λ)u = 0 which is in L2 near b.

In the first case, τ is said to be in the limit circle case (l.c.c.) at b, and in the second

case, τ is said to be in the limit point case (l.p.c.) The same result holds with L2 near

b replaced with L2 near a in both cases.

The importance of this theorem is that it helps us to compute the deficiency indices

of τ .

Theorem 4.3.3 ([34], Theorem 5.7). Suppose τ is a Dirac-type differential expression.

Then, the deficiency indices are

(a) (2, 2) if τ is l.c.c. at both a, b,

(b) (1, 1) if τ is l.c.c. at one end point and l.p.c. at the other, and

(c) (0, 0) if τ is l.p.c. at both end points a, b.

In the last case, if the deficiency indices are (0, 0), then the minimal operator (defined

by τ by taking the closure of the operator τ defined on C∞c (0,∞)2) is the only self-

adjoint extension of the minimal operator.

The following theorem, paraphrased from Weidmann for our specific type of τ , says

that we need only worry about the endpoint 0.

Theorem 4.3.4 ([34], Theorem 6.8, Corollary). Suppose τ is a Dirac type differential

expression in (a,∞). Then, τ is in the limit point case at ∞.
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Now, let us determine the type at the other end point 0. We take λ = 0. Write

Hmj ,κj = ~c

 0 − dx + f
κj
r

dx + f
κj
r 0

+

c2fm− eϕ 0

0 −c2mf − eϕ

 . (4.104)

From chapter 1, since |ϕ(r)| is decreasing and |ϕ(0)| is finite, and f(r) = eξ(r)/2 is

increasing with limr→∞ f(r) = 1, the second matrix here is bounded. Therefore in

order to determine the type at 0 we may only look at the first matrix. So consider 0 − dx + f(r)
κj
r

dx + f(r)
κj
r 0

 (u1(x), u2(x))T = 0. (4.105)

This simplifies to two decoupled equations,

−u′2(x) + f(r)
κj
r
u2(x) = 0, (4.106)

u′1(x) + f(r)
κj
r
u1(x) = 0, (4.107)

whence

u2(x) = c2e
∫ x
x0
f(r(s))

κj
r(s)

ds
, (4.108)

u1(x) = c1e
∫ x
x0
f(r(s))

−κj
r(s)

ds
, (4.109)

where x0 ∈ (0,∞) is fixed below.

From the asymptotics near 0 from equation (1.31) in chapter 1, f(0) =
√

1−Aε2,

where ε is defined by equation (1.21). Further, using the fact that f(r) is increasing,

and by continuity, given an η > 0, there exists an r neighbourhood (0, δ) such that

b1 :=
√

1−Aε2 < f(r) <
√

1−Aε2 + η =: b2, ∀r ∈ (0, δ), (4.110)

and so, with x0 = x(r = δ), for all 0 < x < x0,

b−2
2 < f(r)−2 < b−2

1 (4.111)

⇒ b−2
2 r < x < b−2

1 r (4.112)

⇒ b−2
2

1

x
<

1

r
< b−2

1

1

x
(4.113)

⇒ b1b
−2
2

1

x
< f(r)

1

r
< b2b

−2
1

1

x
(4.114)

⇒ b1b
−2
2 (ln(x0)− ln(x)) <

∫ x0

x
f(r(s))

1

r(s)
ds < b2b

−2
1 (ln(x0)− ln(x)) (4.115)

⇒ −b2b−2
1 (ln(x0)− ln(x)) <

∫ x

x0

f(r(s))
1

r(s)
ds < −b1b−2

2 (ln(x0)− ln(x)) (4.116)
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Now, suppose κj is positive. Then, κj ≥ 1, from the fact about eigenvalues of the

spin-orbit operator K. Then,

u1(x) > c1e
−b1b−2

2 κj ln(x) > x−b1b
−2
2 κj > x−b1b

−2
2 . (4.117)

Therefore, if b1b
−2
2 > 1/2, u1 won’t be in L2((0, x0), dx). Similarly, if κj were negative,

the same can be said about u1 provided b2b
−2
1 > 1/2. Now,

√
1−Aε2(

√
1−Aε2)−2 >

1 > 1/2 so one may choose an η so that both b1b
2
2 and b2b

2
1 are greater than 1/2.

Thus, we have verified that Hmj ,κj is the limit point case at the boundary point

0. So Hmj ,κj is l.p.c at both boundary points 0,∞, and therefore Hmj ,κj is essentially

self-adjoint on C∞c (0,∞)2.

This ends the proof of Theorem 4.3.1.

4.4 Essential spectrum

In this subsection, we prove the theorem stated below.

Theorem 4.4.1. For every mj , κj, the essential spectrum of Hmj ,κj is given by

σess
(
Hmj ,κj

)
= (−∞,−mc2] ∪ [mc2,∞). (4.118)

Remark. Because the essential spectrum of the Dirac Hamiltonian is the closure of the

union of the essential spectrums of the reduced Dirac Hamiltonians, the theorem implies

that the essential spectrum of the Dirac Hamiltonian is also (−∞,−mc2] ∪ [mc2,∞).

To begin with, spectrum of the free Dirac operator H0 on Minkowski space is pre-

cisely the same set. This is easily shown using Fourier transform (Lemma 4.4.2 below).

Then, we set up the perturbation argument, which follows from the local compactness

property of the free Dirac H0, from which we show the same for the reduced maps

H0,mj ,κj (defined by taking f ≡ 1, e = 0). The proof of the theorem begins after

the lemmas 4.4.2, 4.4.3, 4.4.4 and 4.4.5. We follow the arguments in section 4.3.4 of

Thaller’s book [31]. We remark that this proof won’t work in the case of Reissner-

Nordström (RN) spacetime as we use the boundedness of the metric coefficient f(r)

and the potential ϕ. We also use the fact that the metric at infinity is like RN, that is

f tends to 1 and the potential asymptotically is Coulombic.
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Lemma 4.4.2. The essential spectrum of the free Dirac operator H0 = −iα.∇+βmc2

on L2(R3) is given by (−∞,−mc2] ∪ [mc2,∞).

Proof. In Fourier (momentum) space the operator H0 becomes the multiplication op-

erator

h(p) := (FH0F−1)(p) = αp + βmc2, (4.119)

where F denotes the Fourier transform. The four eigenvalues of the matrix on the right

are easily computed as λ(p) := ±
√
p2c2 +m2c4 with each eigenvalue repeated twice.

The unitary transformation u(p) := a+(p)1+a−(p)β αpp with a±(p) = 1√
2

√
1± mc2

p2c2+m2c4

diagonalizes h(p). Therefore the spectrum consists of all possible values of λ(p), which

is R \ (−mc2,mc2). By definition of the essential spectrum, the lemma follows.

We reproduced the following perturbation result, from Thaller [31] section 4.3.4.

Lemma 4.4.3. Suppose that H0, H0 + V are two self-adjoint operators such that V is

H0-bounded, and

lim
R→∞

||V (H0 − z)−1χ(|x| > R)|| = 0. (4.120)

Suppose also that 0 is not in the spectrum of H0, and H0 possess local compactness with

|H0|−1χ(|x| < R) compact for all R, then σess(H) = σess(H0).

Proof. We have the famous theorem of H.Weyl that states that if H,H0 are self-adjoint

operators such that for one (and hence all) z ∈ C\R, the operator (H−z)−1−(H0−z)−1

is compact, then the essential spectrums match, that is σess(H) = σess(H0). If H =

H0 + V , and V is H0-bounded, this resolvent difference can be rewritten using the

resolvent formula as −(H − z)−1V (H0 − z)−1. To ensure compactness, it is enough to

have B := V (H0−z)−1 is compact. This can further be split as Bχ(|x| ≤ R)+Bχ(|x| >

R), where χ is the indicator function. By assumption, the potential we take satisfies

limR→∞ ||V (H0 − z)−1χ(|x| > R)|| = 0. Because the norm limit of compact operators

is compact, to establish the required compactness it is enough to show Bχ(|x| ≤ R)

is compact. We write Bχ(|x| ≤ R) = V (H0 − z)−1|H0|1|H0|−1χ(|x| ≤ R). This is

compact, by assumption on the last two terms.
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Next, we state a lemma about reduced the free Dirac Hamiltonian H0,mj ,κj obtained

by taking f(r) ≡ 0, e = 0.

Lemma 4.4.4. If H0 = H0,mj ,κj , a reduced free Dirac operator, then requirement

(4.120) is fulfilled provided V (x) vanishes at infinity.

Proof. Suppose fR : [0,∞)→ [0, 1] is a smooth function such that fR(x) = 0, x < R/2

and fR(x) = 1, x ≥ R, and also that |f ′R(x)| ≤ R/4∀x. Then, χ(|x| ≥ R) = fRχ(|x| ≥

R). With Rz := (H0,mj ,κj − z)−1, χR := χ(|x| > R),

RzχR = RzfRχR

= fRRzχR + [Rz, fR]χR

= fRRzχR +Rz[fR, H0,mj ,κj − z]RzχR. (4.121)

Since

H0,mj ,κju(x) = −i~cσ2u′(x) + ~cσ1 κ

r(x)
u(x) +mc2σ3u(x), (4.122)

we have

[fRχR, H0,mj ,κj ] = −i~cσ2f ′R ⇒ ||[fRχR, H0,mj ,κj ]|| ≤
1

4
R. (4.123)

So because Rz is bounded (by the definition of resolvent) and V Rz which is equal to

V H0,mj ,κjH
−1
0,mj ,κj

(H0,mj ,κj − z)−1, is bounded as V is H0,mj ,κj -bounded, we have

||V RzχR|| ≤ ||V fR||||RzχR||+ ||V Rz||||[fRχR, H0,mj ,κj ]||||RzχR|| (4.124)

≤ ( sup
x>R/2

|V (x)|)||Rz||+
1

4R
||V Rz||||Rz||. (4.125)

Therefore, if V is vanishing at infinity, the requirement (4.120) holds true for the reduced

free Dirac operators.

If H0 is the free Dirac operator, then the local compactness in Lemma 4.4.3 holds.

The operator |H0|−1χ(|x| ≤ R) is compact by the general result that if we have two

functions g1, g2 : [0,∞)→ C that vanish at infinity, limr→∞ g1(r) = limr→∞ g2(r) = 0,

then g1(p2)g2(x2) is compact, and by taking |H0|−1(p) = (c2p2+m2c4)−1/2 = g1(p2) and

χ(|x| ≤ R) = g2(x2). From this, since H0 is unitarily equivalent to
⊕

j,mj ,κj
H0,mj ,κj ,

we have that |H0,mj ,κj |−1χ(|x| ≤ R) is also compact for every j,mj , κj .

Now, the essential spectrum of every H0,mj ,κj is the same.
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Lemma 4.4.5. Suppose H1 = H0,m1
j1

1,κ1
j1
, H2 = H0,m2

j2
,κ2
j2

, are obtained by reduction

of the free Dirac operator (obtained by taking f ≡ 1, e = 0 in the Dirac Hamiltonian

H). Then, σess(H1) = σess(H2).

Proof. Firstly, we see that by adapting the proof of Theorem 4.3.1, we see H1 and

H2 are essentially self-adjoint on D = C∞0 (0,∞)2 ⊂ L2((0,∞), dx)2. Now, V :=

H1 − H2 = ~c(κ1
j1 − κ

2
j2) 1

r(x)σ
1, where σ1 is the first Pauli matrix defined in (4.74).

We note that V is vanishing at ∞, so by Lemma 4.4.4, we see that the requirements

in equation (4.120) are met. Notice that, with κ = κ1
j1 , for u = (u1(x), u2(x))T ,

H1 = −i~cσ2u′(x) + ~cσ1 κ
r(x)u(x) +mc2σ3u(x). From this, with

s = max

{
1,
|(κ1

j1 − κ
2
j2)|

κ

}
,

we see that

s2||H1u||2 = s2~2c2||u′(x)||2 + s2~2c2κ2||u(x)

r(x)
||2 +m2c4||u||2

≥ ||V u||2 = ~2c2
(
κ1
j1 − κ

2
j2

)2
||u(x)

r(x)
||2. (4.126)

The last inequality follows from |κ| ≥ 1 and that s can be chosen. Thus V is H1

bounded. So, by Lemma 4.4.3, the proof is finished. Since H0 is unitarily equivalent to⊕
j,mj ,κj

H0,mj ,κj , we have that σess(H0) = ∪σess(H0,mj ,κj ), and therefore using Lemma

4.4.5 and Lemma 4.4.5 we arrive at

σess(H0,mj ,κj ) = (−∞,−mc2] ∪ [mc2,∞) ∀j,mj , κ
j . (4.127)

Finally we are in a position to present the proof of the main theorem.

Proof. (Theorem 4.4.1) We note that the reduced Dirac Hamiltonian on the charged

particle-spacetime is Hmj ,κ = H0,mj ,κj + V , where

V := ~cσ1(f(r)
κ

r(x)
− κ

x
) + (−1 + f(r))mc2σ3 − eϕ(r). (4.128)

So, since σ1, σ2 have eigenvalues ±1, we have

||V u|| ≤ ~cκ||g1(x)u(x)||+mc2||g2(x)u(x)||+ e||g3(x)u(x)||, (4.129)
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where g1(x) = f(r)
r(x) −

1
x , g2(x) = (1 − f(r)), g3(x) = ϕ(r(x)). The x(r) used here

satisfies equation (4.99), which is the same as the one satisfied by r̃ in equation (2.2) as

f(r)2 = eξ(r). So, by Lemma 2.1.2, part (d), 1/r ≤ (1 − Aε2)−1 1
x . Also, 0 < f(r) < 1.

So, |g1(x)| ≤ ((1 − Aε2)−1 + 1)( 1
x). Since f(r), ϕ(r) are bounded, g2(x), g3(x) are in

L∞(0,∞) with |g2(x)| ≤ 2, |g3(x)| ≤ ϕ(0) (because we know ϕ is decreasing). So, we

have

||V u|| ≤ ~cκ((1−Aε2)−1 + 1)||u(.)

x
||+ 2mc2||u||+ ~2eϕ(0)||u|| (4.130)

The norm of the reduced free Dirac operator acting on u on the other hand evaluates

to

||H0,mj ,κju||2 = ~2c2||u′(x)||2 + ~2c2κ2||u(x)

x
||2 +m2c4||u||2. (4.131)

Therefore, if a := max
{

(1 +Aε2)−1 + 1, 2m2c2+~ e |ϕ(0)|
mc2

}
, then ||V u|| ≤ a||H0,mj ,κju||;

that is, V is H0,mj ,κj bounded. By Lemma 4.4.3 and Lemma 4.4.4, we have that

essential spectrum of the reduced Dirac Hamiltonian on our charged particle-spacetime

matches that of the reduced free Dirac operator. Since the Dirac Hamiltonian itself

unitarily equivalent to a direct sum of reduced Hamiltonians, the theorem is proven.

4.5 Spectral gap around 0

Recall ε =
√
GM
|Q| . Let us define

ε′ :=
√
G
m

e
. (4.132)

Using a result of Hinton, Mingarelli, Read and Shaw from [19], we prove the following

theorem.

Theorem 4.5.1. Suppose that

ε′(1−Aε2)1/2 − 3

2
ε > 0 (4.133)

and define η by

η := m(1−Aε2)1/2 − e3

2

c2

√
G
. (4.134)

Then, the spectral subset σ(Hmj ,κj ) ∩ (−η, η) is empty.
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Proof. From [19], we use Theorem 3.3, which states (with notations changed to match

ours) :

Theorem 4.5.2 ([19]Thm3.3). Let −iσ2 =

0 −1

1 0

 and P (r) be a real symmetric

2× 2 matrix for r ∈ (0,∞). Let L be the maximal operator obtained from operator

y → −iσ2y′ − P (r)y.

Suppose U is an orthogonal matrix such that Re
∫∞

0 y∗U(−iσ2)y′dx = 0 and UP +

P ∗U∗ ≥ 2η, or UP + P ∗U∗ ≤ −2η. Then, for any y ∈ Cc(0,∞), ||Ly|| ≥ η||y||.

We will apply this with L = ~−1c−1Hmj ,κj . We take U = −σ3 =

−1 0

0 1

, which is

unitary. Then, −iUσ2 = −σ1 =

 0 −1

−1 0

, and −y∗U(−iσ2)y′ = ȳ1y
′
2 + ȳ2y

′
1, whose

real part is the derivative of Re(ȳ1y2), and so the requirement on U is met. Finally,

keeping in mind that the matrix P has real entries, we compute

UP + P ∗U∗ = 2

−P11 0

0 P22.

 (4.135)

We may write the operator ~−1c−1Hmj ,κj , as

~−1c−1Hmj ,κjy =

0 −1

1 0

 y′−~−1c−1

eϕ(r)−mf(r) −f(r)
κj
r

−f(r)
κj
r eϕ(r) +mf(r)

 y. (4.136)

For us, P11 = ~−1c−1(eϕ−mf), P22 = ~−1c−1(eϕ+mf), and so the matrix UP+P ∗U∗ is

diagonal with diagonal entries 2~−1c−1(mf(r)− eϕ(r)), 2~−1c−1(mf(r) + eϕ(r)). Since

|ϕ| is decreasing and f is increasing, we see that both −2P11 and 2P22 are the least

when η1 = ~−1c−1(mf(0)−|eϕ(0)|). We now express this in terms of the dimensionless

mass-to-charge ratio ε. Notice f(0) = (1 − Aε2)1/2, sgn(Q)φ(0) = 3ε
2

c2√
G

, so the gap

η1 = ~−1c−1{m(1 − Aε2)1/2 − 3
2 |e|ε

c2√
G
}. Now, by the theorem above, the quadratic

form associated to the square of operator L , satisfies (L2y, y) = (Ly,Ly) ≥ η2||y||2.

But in the charged particle spacetime case, the operator defining L is essentially self-

adjoint. So, the minimal and the maximal operators are the same. Therefore, the
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spectrum of the self-adjoint L2 = ~−2c−2H2
mj ,κj skips the interval (−η1, η1), and the

same is true about ~−1c−1Hmj ,κj . This proves the theorem.

4.6 Eigenvalues and continous spectrum

We show that there are infinitely many eigenvalues in the gap of the essential spectrum.

We came across the method of proof adopted here in a paper by Belgiorno [4].

Theorem 4.6.1. Suppose that −eQ 6= 0. Then, the following statement holds: the

spectral subset σ(Hmj ,κj ) ∩ (−mc2,mc2) is non-empty and infinite.

Remark. Since (−mc2,mc2) does not belong to the essential spectrum, the theorem

show existence of infinite number of eigenvalues. Also, since the full Hamiltonian H is

a direct sum of the reduced Hamiltonians, it also has infinitely many eigenvalues in the

gap.

Proof. We use a theorem from [19]. A positive linear functional on real n×n matrices is

one that evaluates to a non-negative value on symmetric, positive semi-definite matrices.

Theorem 4.6.2 ([19], 2.3). Let J =

0 −1

1 0

 and P (x) =

V2(x)− c2 p(x)

p(x) V1(x) + c1

,

where c1, c2 are positive numbers, and V1(x), V2(x), p(x) are real-valued, locally inte-

grable functions defined on (0,∞). Let L1 be any self-adjoint operator defined by

L1y = Jy′ − P (x)y, (4.137)

Suppose that d > 0 and g is a positive linear functional on the real n × n matrices.

Then following statements about the operator L1 are equivalent:

(a) |σ(L1) ∩ (−d, d)| =∞,

(b) the differential equation below is oscillatory at zero or infinity:

−g[I]z′′ + g

[
P 2 − d2I2 +

P ′J − JP ′

2

]
z = 0. (4.138)
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We will apply the theorem to L1 = (~c)−1Hmj ,κj . Let us take g[B] = (Bu, u) with

the vector u = (1, 0)T . So, g[I] = 1, g[B] = B11. Secondly, in our case,

Γ(x) := g

[
P 2 − d2I +

P ′J − JP ′

2

]
= (−mc2 + eϕ)2(~c)−2 +

(
kf

r

)2

− d2 + k

(
f

r

)′
.

(4.139)

Note that as before a prime indicates differentiation in the variable x. From Corollary

37 in [14], every solution of −z′′ + Γ(x)z = 0 has an infinite number of zeros on a

neighbourhood [a,∞) of ∞ if limx→∞ x
2Γ(x) < −1

4 . That is, the differential equation

is oscillatory. As x→∞, we have, ϕ ∼ Q
r , f ∼ 1, r ∼ x, and d = mc2(~c)−1, so we see

that limx→∞ x
2Γ(x) = limx→∞ x

2(−2meϕ(r)) = −∞, if −eQ < 0.

Now, if −eQ > 0, we may take g[B] = (Bu, u), u = (0, 1)T . Then, the only

changes in the expression for Γ(x) is that −mc2 becomes +mc2 and +κ(f/r)′ turns

into −κ(f/r)′. So, the same argument above helps us conclude that the resulting dif-

ferential equation is oscillatory.

Therefore, there are infinitely many eigenvalues of ~−1c−1Hmj ,κj in

(−mc2(~c)−1,mc2(~c)−1), which proves our theorem.

In the next theorem, we determine the continuous spectrum.

Theorem 4.6.3. For each j,mj , κj, the reduced Dirac Hamiltonian Hmj ,κj has purely

absolutely continuous spectrum in (−∞,−mc2) ∪ (mc2,∞).

Proof. We prove this theorem using a result from Weidmann’s book, which we have

paraphrased below.

Theorem 4.6.4 (Theorem 16.7, [34]). Consider a Dirac type expression τ (definition

4.3.2) on (a,∞), for which the matrix P (r) can be written as P1(r) + P2(r), where for

some c ∈ (a,∞) the components of P1(r) are in L1((c,∞)), and the components of

P2(r) are of bounded variation in [c,∞). Suppose also that

lim
r→∞

P2(r) =

a 0

0 b

 , a ≥ b. (4.140)

Then, every self-adjoint realization of τ has purely absolutely continuous spectrum in

(−∞, b) ∪ (a,∞).
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In our case, we have

Hmj ,κj = ~c

 0 −dx

dx 0

+

mc2f(r)− eϕ(r) f(r)
κj
r

f(r)
κj
r −mc2f(r)− eϕ(r)

 . (4.141)

Now, the functions f(r), ϕ(r), f(r)/r, considered as functions of x, are of bounded

variation in [1,∞). This is because they are all differentiable functions whose derivative

is in L1(1,∞), for, from the asymptotics near ∞ given in equations (1.32), f(r)2 ∼

1 − 2GM
c2r

+ GQ2

c4r2
and ϕ(r) ∼ Q

r and dr
dx = f(r)2. Therefore, we may take P1(x) to be

zero and P2(x) to be the second matrix on the right in equation (4.141). Immediately

we see that,

lim
x→∞

P2(x) =

mc2 0

0 −mc2

 , (4.142)

and so our theorem is proved by applying Theorem 4.6.4 with a = mc2, b = −mc2.
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Chapter 5

Summary and outlook

We have shown a Strichartz estimate and Morawetz estimate for spherically symmetric

waves on a charged particle-spacetimeM. Moving forward in this direction one has to

be able to relax the requirement of spherical symmetry on the scalar waves; perhaps,

replace it with a milder symmetry assumption, for instance axial symmetry. In that

case, we conjecture that the study of solutions of the wave equation on a flat two

dimensional cone becomes relevant.

We showed Sommerfeld’s method computes the known fundamental solution for the

wave equation on a flat two dimensional cone. We still have to investigate the question

of why the method works, and in particular, why it results it in the fundamental

solution to the wave equation with the Friedrichs Laplacian. After that, applications to

Riemann surfaces would be the next step. For example, two copies of R2, joined along

the two edges of the line segment joining (1, 0) and (−1, 0), thus creating a two-sheeted

branched surface. Another interesting question is whether Sommerfeld’s method can

be generalized to dimensions higher than two.

As for Dirac’s equation on a charged particle-spacetime, we have determined the

essential spectrum and the continuous spectrum, and settled the question of well-

posedness (unique self-adjoint extension). We also showed the existence of a gap around

zero in the full spectrum of the Dirac Hamiltonian. While we have shown that there

are infinitely many eigenvalues, it would be good to compute the eigenvalues exactly or

numerically.
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