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ABSTRACT OF THE DISSERTATION

Some results on the representation theory of vertex

operator algebras and integer partition identities

by Shashank Kanade

Dissertation Director: James Lepowsky

Integer partition identities such as the Rogers-Ramanujan identities have deep relations

with the representation theory of vertex operator algebras, among many other fields of

mathematics and physics. Such identities, when written in generating function form

typically take the shape “product side” = “sum side.” In some vertex-operator-algebraic

settings, the product sides arise naturally, and the problem is to explain, interpret and

prove the sum sides, while some other settings pose an opposite problem. In this

thesis, we provide some results on both types of problems. In Part I of this thesis, we

interpret the sum sides of the Göllnitz-Gordon identities using Lepowsky-Wilson’s Z-

algebraic constructions applied to certain principally twisted level 2 standard modules

for A
(2)
5 . In Part II, we give, following Dong-Lepowsky, explicit constructions for certain

higher level twisted intertwining operators for ŝl2; these constructions are inspired by a

desire to interpret Andrews-Baxter’s q-series theoretic “motivated proof” of the Rogers-

Ramanujan identities and more generally, motivated proofs of the Gordon-Andrews

and the Andrews-Bressoud identities given by Lepowsky-Zhu and Kanade-Lepowsky-

Russell-Sills, respectively. These motived proofs are about explaining the “sum sides”

starting with the “product sides.” In Part III, following an idea of J. Lepowsky, we

introduce and analyze a Koszul complex related to the principal subspace of the level 1
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vacuum module of ŝl2; this construction is expected to yield a “character formula” for

the principal subspaces, thereby explaining the emergence of “product sides.”

iii



Acknowledgements

I would like to express my deepest gratitude toward my thesis advisor, Prof. James

Lepowsky, for introducing me to the beautiful and rich world of partition identities and

vertex operator algebras and related fields. Many of the ideas in this thesis could be

traced either to him or to one of his (and/or Prof. Y.-Z. Huang’s) numerous papers. I

wish to thank him not just for his invaluable guidance regarding mathematical details,

but also for his endless support, encouragement and patience that made me like math-

ematics more than I already did. My special thanks to Prof. Y.-Z. Huang, for teaching

me so many deep ideas in the field and for his generous help.

I consider myself very lucky that Matthew Russell decided to move into Hill 628:

his fantastic ideas and enthusiasm led to many fruitful and exciting joint projects.

I am grateful to Christopher Sadowski for many a stimulating discussion — Section

3.6.1 is based on one of his suggestions. I also appreciate his help during initial stages

of the explorations contained in Chapter 4.

I thank Thomas Robinson for sharing his ideas with me and for inviting me to work

with him on some ongoing projects.

I am grateful to Prof. Andrew V. Sills for his generous guidance throughout various

projects. I wish to thank Prof. Eugene Gorsky for discussions regarding his papers

[GOR] and [GorL].

Many thanks are due to Prof. Antun Milas and Prof. Doron Zeilberger for agreeing

to serve on my thesis committee. I am truly grateful to Prof. Zeilberger for being so

incredibly supportive of the joint projects with Matthew Russell.

I would like to thank my teachers at Rutgers, especially Prof. Lisa Carbone, Prof.

Roe Goodman, Prof. Vladimir Retakh and Prof. Siddhartha Sahi for I have learnt a lot

from some of the courses they offered. Prof. Michael Weingart helped me tremendously

iv



with regards to teaching. I appreciate Prof. Stephen Miller’s generous help for arranging

travel money to attend the Joint Mathematics Meetings.

I am indebted to Prof. Katrina Barron and Jinwei Yang for inviting me to give a

talk at Notre Dame University in Fall 2014, and to Jinwei Yang and Robert McRae for

sharing with me a pre-print of their recent work.

I have also benefited greatly from all of the “Lie theory group” members at Rutgers,

especially Bud Coulson, Francesco Fiordalisi, Debajyoti Nandi, Yusra Naqvi and Fei Qi.

I’ll always cherish the laughs I shared with fellow math graduate students at Rutgers,

especially Zahra Aminzare, Sjuvon Chung, Ed Chien, Ved Datar, Michael de Freitas,

Brian Garnett, Justin Gilmer, Simão Herdade, John Miller, Xiao Ming and Li Zhan.

Thanks to Cole Franks, Frank Seuffert and Tim Naumovitz — the music we played

definitely made the process of writing this thesis a lot more fun.

I would not have made it thus far without a huge support from my family: Aai,

Baba, (Late) Aaji, (Late) Aaba and Aditya. Aditya played a phenomenal role in making

me a better teacher and more generally a better human being. Thanks to Aishwarya,

Arunika and Ved for all the fun. I’m indebted to Abhijit, Anagha and Moulik for being

my family away from family. I especially can’t thank Anagha enough for sharing my

joy, for it is due to her that I never felt any pain.

v



Dedication

To Aai, Baba, Aajee, Aabaa, Aditya and Anagha.

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Products to sums: Lepowsky-Wilson’s Z-algebras . . . . . . . . . . . . . 2

1.2. Products to sums: Motivated proofs and intertwining operators . . . . . 5

1.3. Sums to products: Principal subspaces . . . . . . . . . . . . . . . . . . . 8
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Chapter 1

Introduction

Given a positive integer n, by a partition π of n we mean a non-increasing sequence

of positive integers π = (λ1, λ2, . . . , λr) such that n = λ1 + · · · + λr. Each λi is called

a part of π. Identities involving integer partitions have a long-standing history and

arise in various branches of mathematics and physics; see for example [A3]. The pair

of Rogers-Ramanujan identities is a remarkable example. These identities state that:

1. The partitions of a positive integer n into parts congruent to 1, 4 (mod 5) are

equinumerous with the partitions in which adjacent parts differ by at least 2.

2. The partitions of a positive integer n into parts congruent to 2, 3 (mod 5) are

equinumerous with the partitions in which adjacent parts differ by at least 2 and

such that smallest part is at least 2.

With q being a purely formal variable, in generating function form, the identities read

as: ∏
j≥0

1

(1− q5j+1)(1− q5j+4)
=
∑
n≥0

d1(n)qn (1.0.1)

∏
j≥0

1

(1− q5j+2)(1− q5j+3)
=
∑
n≥0

d2(n)qn, (1.0.2)

where di(n) for i = 1, 2, is the number of partitions of n such that the adjacent parts

differ by at least 2 and such that the smallest part is at least i. As a convention, n = 0

has exactly one partition — the null partition. The left-hand sides of these identities

are called the “product sides,” while right-hand sides are referred to as the “sum sides.”

These identities and their analogues and generalizations arise in various fields of

mathematics and physics, such as representation theory, theory of vertex operator alge-

bras, number theory, knot theory, algebraic geometry, statistical mechanics, conformal



2

field theory, etc. This ubiquity is one of the prime reasons for their importance. The

depth of such identities could be gauged by the fact that the bijective proof of the

Rogers-Ramanujan identities given by A. Garsia and S. Milne in [GM] runs for about

50 pages!

In the vertex algebraic settings, such identities appear in many contexts. Sometimes,

the product sides arise very naturally and the task is to explain, interpret and/or prove

the sum sides using vertex operator theoretic mechanisms, and sometimes, the sum

sides or the natural recursions governing the sums arise very naturally, and the task is

to explain, interpret and/or prove the product sides.

In this thesis, we will present ideas and results based on both of these directions,

with the “product to sum” direction explored in Chapters 2 and 3 and the “sum to

product” direction explored in Chapter 4. With the introduction that follows, the

chapters could be read independently of one another.

1.1 Products to sums: Lepowsky-Wilson’s Z-algebras

J. Lepowsky and S. Milne observed in [LM] that the product sides of a certain class of

integer partition identities (including the Rogers-Ramanujan identities) arise naturally,

up to factors, known as “fudge factors,” as the principally specialized characters of stan-

dard modules for the affine Lie algebras A
(1)
1 and A

(2)
2 . Now, the philosophical problem

was to “explain” the sum sides using the representation theory of affine Lie algebras.

Lepowsky and R. L. Wilson, in a series of papers [LW1]–[LW4] achieved this by in-

venting “principal Heisenberg subalgebras” (generalized in [KKLW]) and “Z-algebras”.

They proved that the vacuum spaces, with respect to the principal Heisenberg subalge-

bra, of the level 3 standard modules for the affine Lie algebra A
(1)
1 have bases formed by

certain monomials in the Z-operators applied to a highest weight vector. They showed

that these monomials are enumerated precisely by the partitions satisfying the differ-

ence 2 conditions, thereby giving a completely representation theoretic proof of the

Rogers-Ramanujan identities. They went on to interpret (by providing “small enough”

spanning sets for the vacuum spaces) the Andrews-Gordon and the Andrews-Bressoud
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identities using the higher level standard modules for A
(1)
1 . Building on these ideas, A.

Meurman and M. Primc in [MP1] proved all of these identities using the higher level

standard modules for A
(1)
1 . The structure of certain standard modules for several affine

Lie algebras was analyzed by K. C. Misra in [Mi1]–[Mi4] and by M. Mandia in [Ma].

For a review of these and related developments see for example [L2].

Using this program, S. Capparelli in [C1]–[C2] found remarkable partition identities

by investigating the level 3 standard modules for A
(2)
2 . Recently, spectacular new iden-

tities have been conjectured by D. Nandi in [N] corresponding to the level 4 standard

modules for A
(2)
2 . In [KR], using “experimental mathematics,” we have conjectured

six new partition identities, three of which are related to the level 3 standard modules

for D
(3)
4 , but we mention here that our identities are yet to be interpreted by vertex

algebraic methods.

Lepowsky-Wilson’s Z-algebras are universal, in the sense that they “work” for any

affine Lie algebra at any level; however, their implementation for interpreting (and

proving) the sum sides depends on the algebra and the level and can be quite subtle,

even in those cases where explicit sum sides have been constructed.

It is worth noting that the invention of Z-algebras was a very important milestone

in representation theory. This was the first time vertex operators were invented on

the mathematical side. Ideas stemming from Lepowsky-Wilson’s work led, along with

many other developments, to other fascinating discoveries, for instance, the Frenkel-

Lepowsky-Meurman’s construction [FLM] of the famous V \ — the natural infinite di-

mensional space on which the Monster (the largest sporadic group) acts, etc. There is a

vast literature on the theory of vertex operator algebras; see for instance, [Bor], [FLM],

[FHL], [DL], [LL], [HL1]–[HL3], [H4] — works that we will be using in the present work.

In Chapter 2, we carry forward the program of vertex algebraic interpretation of the

combinatorial identities and explicit constructions of modules for affine Lie algebras.

We use the Z-algebra approach to give, for the first time, a vertex-operator-theoretic

interpretation of the pair of Göllnitz-Gordon identities; cf. Chapter 7 of [A3]. We

achieve this by analyzing the structure of certain principally twisted level 2 standard

modules for the affine Lie algebra A
(2)
5 . We focus on those modules that are contained
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in the tensor product of the two inequivalent level 1 modules for A
(2)
5 .

We recall here that the pair of Göllnitz-Gordon identities states:

1. The partitions of a positive integer n into parts congruent to 1, 4, 7 (mod 8) are

equinumerous with the partitions in which adjacent parts differ by at least 2, with

adjacent even parts differing by at least 4.

2. The partitions of a positive integer n into parts congruent to 3, 4, 5 (mod 8) are

equinumerous with the partitions in which adjacent parts differ by at least 2 with

adjacent even parts differing by at least 4 such that all of the parts are greater

than 2.

Our main contribution in this direction is the following theorem, which interprets the

Göllnitz-Gordon identities Z-algebraically:

Theorem 1.1.1. Enumerate the nodes of affine Dynkin diagram of A
(2)
5 in the usual

way (cf. [K]). With L(Λ0 + Λ1) and L(Λ3) being the indicated level 2 standard modules

for A
(2)
5 and with Ω(·) denoting the vacuum space with respect to the principal Heisenberg

subalgebra, we have the following spanning sets constructed from Z-operators applied to

highest weight vector:

Ω(L(Λ0 + Λ1)) = Span{Zi1 · · ·Zir · vL(Λ0+Λ1) | r ∈ N, i1 < i2 < · · · < ir ≤ −1,

|ij − ij+1| ≥ 2 with |ij − ij+1| ≥ 4 if ij , ij+1 are even},

Ω(L(Λ3)) = Span{Zi1 · · ·Zir · vL(Λ3) | r ∈ N, i1 < i2 < · · · < ir ≤ −3,

|ij − ij+1| ≥ 2 with |ij − ij+1| ≥ 4 if ij , ij+1 are even}.

Here, for odd i, Zi is the coefficient of ζi in Z(α1, ζ) and for even i, Zi is the coefficient

of ζi in Z(α1 + α2 + α3 + α4 + α5, ζ) where αj for 1 ≤ j ≤ 5 are simple roots of A5.

For further q-series theoretic and number theoretic discussions of the Göllnitz-

Gordon-Andrews identities, and in particular the Göllnitz-Gordon identities, see [A3],

[Göl], [G1]–[G2], [CKLMQRS]. For a short history of these identities, see for instance

[SW].
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1.2 Products to sums: Motivated proofs and intertwining operators

On the purely combinatorial and/or q-series-theoretic sides, there are many known

proofs of the Rogers-Ramanujan identities. However, from the viewpoint of vertex

operator algebras, there is one that stands out, namely, the “motivated proof” given

by G. Andrews and R. Baxter in [AB], even though Andrews and Baxter were working

entirely q-series-theoretically.

Using the right-hand sides of (1.0.1) and (1.0.2), i.e., the sum sides, it is easy to see

that the number of partitions of n enumerated by the first Rogers-Ramanujan identity

is at least as great as the number of partitions enumerated by the second identity.

An explanation of this phenomenon using only the product sides was asked for by L.

Ehrenpreis. Motivated by this question, Andrews and Baxter were in fact led to a

proof of the Rogers-Ramanujan identities in [AB], and they remarked that this proof

was essentially the same as an earlier proof of Rogers-Ramanujan and of Baxter.

Let us write the products, i.e., the generating functions of the left-hand sides in the

Rogers-Ramanujan identities, as G1(q) and G2(q), respectively. Andrews and Baxter

consider the following recursively defined sequence of power series:

Gi = (Gi−1 −Gi−2)/qi−2 for i = 3, 4, . . . . (1.2.1)

They observe empirically that

Gi = 1 + qi + · · · .

Proving this observation (what they called the “Empirical Hypothesis”) not only led to

an answer of Ehrenpreis’s question, but also led to a proof of the Rogers-Ramanujan

identities themselves.

Gordon’s identities generalize the Rogers-Ramanujan identities to all odd moduli (cf.

Chapter 7, [A3]). Recently, Lepowsky and M. Zhu gave a motivated proof of Gordon’s

identities in [LZ]. This proof is a generalization of the Andrews-Baxter proof, with

some new structure; in particular, a certain “shelf picture,” which is now known to be

fundamental for such motivated proofs in our works in general, and which was implicit

in [AB], was made transparent in [LZ]. For a fixed modulus 2k+1, the given products in
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Gordon’s identities constitute the zeroth shelf, and then successively higher shelves are

created recursively from each previous shelf by the use of appropriate subtractions and

divisions by pure powers of q (as in equation (1.2.1) for the case k = 2). This division by

pure powers of q is what will be important to us from vertex-algebraic considerations.

We remark here that an analogue of this motivated proof for the Göllnitz-Gordon-

Andrews identities is given in [CKLMQRS] and for the Andrews-Bressoud identities

in [KLRS]. Note that for a fixed odd modulus 2k + 1, the Gordon-Andrews identities

correspond to the level 2k − 1 standard modules for A
(1)
1 and that for a fixed even

modulus 2k, the Andrews-Bressoud identities correspond to the level 2k − 2 standard

modules for A
(1)
1 .

There are important philosophical similarities and differences between Lepowsky-

Wilson’s Z-algebraic approach and the Andrews-Baxter’s motivated proof. For both of

these, the starting point is the pair of product sides, and the idea is to both motivate

and prove the corresponding sum sides. However, these approaches differ, in that, in

some sense, Lepowsky-Wilson’s approach treats one module at a time, in other words,

proves one identity at a time, while the motivated proof approach moves back and

forth between the identities (as is evident from (1.2.1)) and thus alternates between the

modules.

It was an idea of Lepowsky and A. Milas that the recursive definition of the Gi’s

in the motivated proof could be “explained” by means of exact sequences among the

vacuum spaces, with respect to the principal Heisenberg subalgebra, of level 3 standard

modules for A
(1)
1 , where the maps in these exact sequences should arise from what

are known as the relativized and twisted intertwining operators naturally arising in

the theory of vertex operator algebras, as developed in [DL] and other works. This

program of “categorification” of the motivated proof is ongoing. It is expected that this

program, once completed, will provide crucial insight into the representation theory of

vertex algebras and will also aid in the discovery and proof of new partition identities.

As a first step, in Chapter 3, we explicitly construct twisted intertwining operators

among certain mixed triples of untwisted and twisted modules for the vertex operator

algebra V = L
ŝl2

(`, 0) based on the “vacuum” standard ŝl2-module of level `, a positive
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integer. We refer the reader to [LL] for notation. Note that twisted intertwining

operators among twisted modules for colored vertex superalgebras have been previously

considered by X. Xu in [Xu]. We focus our attention to the twisted modules obtained

by a certain involution θ of L
ŝl2

(`, 0). For ` = 1, θ is obtained from the −1 isometry

of the root lattice of sl2. We start with the twisted intertwining operators for basic

modules as in [Ab1] and[ADL], and we give exact analogues of constructions in [DL]

for our setting. Specifically, we prove that:

Theorem 1.2.1. There exist explicitly constructed twisted intertwining operators among

certain mixed triples of untwisted and θ-twisted modules for the vertex operator algebra

V = L
ŝl2

(`, 0), for a positive integer `.

We are currently investigating the properties of these intertwining operators.

In Chapter 3 we also give an abelian intertwining algebra structure that incorpo-

rates the untwisted and twisted intertwining operators mentioned above. We give two

methods — a direct approach, following a suggestion of C. Sadowski and an approach

as carried out in [H1] using Huang-Lepowsky’s tensor category theory [HL1]–[HL3],

[H4]. We prove that:

Theorem 1.2.2. Let V = VZα be the rank 1 lattice vertex algebra such that 〈α, α〉 = 2.

Let θ be a lift to V of the −1 automorphism of the lattice L = Zα, Let V T1 , V T2 be

the inequivalent irreducible θ-twisted modules for V . There exists a natural abelian

intertwining algebra structure on the space V ⊕ V(Z+1/2)α ⊕ V T1 ⊕ V T2 , such that the

grading group is G ∼= Z/8 and such that the Y map for the abelian intertwining algebra

(see [DL]) is comprised of twisted intertwining operators.

An abelian intertwining algebra is one of the simplest structures that naturally

generalizes the notion of a vertex operator algebra and is essentially comprised of the

intertwining operators. Roughly speaking, an abelian intertwining algebra is formed

when the fusion is relatively simple, i.e., when the fusion algebra is the group algebra of

a finite abelian group. Each of the constituent intertwining operators could be scaled

independently of each other and thus normalized 3-cocycles for the fusion group G

enter the picture. An even more general structure is that of an intertwining algebra, as
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defined by Y.-Z. Huang in [H2], which heavily rests on the tensor category structure of

the modules for the vertex operator algebra in question.

Whenever one wants to move between the modules, as is the case for the motivated

proofs, such intertwining algebras provide the natural setting to look for the maps

involved. In a similar setup, untwisted rather than twisted (recalled below), for the

principal subspaces, abelian intertwining algebras based on level 1 modules for the

affine Lie algebras A
(1)
N , D

(1)
N and E

(1)
N have been successfully employed by C. Calinescu,

S. Capparelli, J. Lepowsky, A. Milas and C. Sadowski; see [CLM1]– [CLM2], [CalLM1]–

[CalLM4], [Sa1]–[Sa3]. See also [MilP], which generalizes the previous untwisted level

1 constructions.

1.3 Sums to products: Principal subspaces

Motivated by an earlier work of Lepowsky and Primc, [LP], B. Feigin and A. Stoy-

anovsky in [FS1]–[FS2] introduced and studied “principal subspaces” of standard mod-

ules for affine Lie algebras. Assuming a certain generators-and-relations result for the

principal subspaces, they demonstrated how principal subspaces of standard modules for

A
(1)
1 at appropriate levels exhibit the difference-2 conditions in the Rogers-Ramanujan

identities and more generally, the Andrews-Gordon identities. Employing the geometry

of infinite dimensional flag manifolds, they showed how the product sides of these iden-

tities arise. In [FFJMM], Feigin et al. found a different way to calculate the “bosonic

formulas” (which in our case are infinite products) for the principal subspaces of stan-

dard modules for A
(1)
2 . For other relevant works, we refer the reader to [FL] and

[FJLMM].

There are natural recursions that govern the sum sides in the Andrews-Gordon

identities, called the Rogers-Selberg recursions. For example, in the special case of

the Rogers-Ramanujan identities, these recursions specialize to the Rogers-Ramanujan

recursion:

F (x, q) = F (xq, q) + xqF (xq2, q), (1.3.1)
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where

F (x, q) =
∑
m,n≥0

dm,nx
mqn,

with dm,n being the number of partitions of n into exactly m parts, such that the

parts satisfy the difference-2 condition. Note here that F (1, q) is equal to the right-

hand side of (1.0.1) and F (q, q) is equal to the right-hand side of (1.0.2). Capparelli,

Lepowsky and Milas in [CLM1] gave an elegant way to interpret the recursion (1.3.1)

using exact sequences among the principal subspaces for the basic A
(1)
1 modules, where

the maps came from the intertwining operators among triples of these basic modules.

They generalized this interpretation to the Rogers-Selberg recursions using higher level

modules for A
(1)
1 in [CLM2]. However, these works also assumed the presentation result

that was assumed by [FS1]–[FS2].

Later, Calinescu, Lepowsky and Milas in [CalLM1]–[CalLM4] developed a system-

atic vertex-operator-theoretic mechanism to provide “a priori” proofs of these presen-

tation results. “A priori” means that the proofs did not rely on knowledge of bases of

the principal subspaces themselves.

Various authors have made remarkable progress in analyzing the structure of prin-

cipal subspaces, providing recursions for their characters and calculating corresponding

“sum side” representations. For a detailed history of the recent progress, we refer the

reader to the Introductions of [Sa1]–[Sa2].

One is now naturally led to the question of exhibiting the “product sides” for the

characters of principal subspaces using purely vertex-operator-theoretic methods and

without invoking the underlying geometric structure. As yet, there is no known general

character formula for principal subspaces analogous to the Weyl-Kac character formula

for the standard modules; see however [FS1]–[FS2].

It was an idea of Lepowsky that such an “abstract” character formula could be

obtained by using a Koszul resolution for the principal subspaces. We note that a

precise description for the defining ideal of the principal subspaces is a crucial ingredient

for such a construction. Thereafter, one could perhaps use the Garland-Lepowsky

resolution of the ambient standard module in terms of the generalized Verma modules
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to gain information about the homology of this Koszul complex.

Let us work with the algebra A
(1)
1 , i.e., ŝl2, and let

n = Cxα,

where xα is a root vector corresponding to the root α, and let n̂ be its affinization. In

general, n will be the sum of the positive root spaces. Then, the principal subspace

associated to a standard ŝl2-module L(Λ) is defined as:

WΛ = U(n̂) · vΛ,

where vΛ is a highest weight vector and U(·) denotes the universal enveloping algebra.

One of the main theorems of [CalLM1] states that the kernel (called IΛ0) of the natural

map

fΛ0 : U(n̂−) −→WΛ0 , a 7−→ a · vΛ0 (1.3.2)

is generated (in a natural vertex-algebraic sense) by the singular vector xα(−1)2 · 1.

This theorem has since been generalized, by various authors, to higher levels and ranks.

The case of ŝl2 is peculiar, in that U(n̂) is a commutative algebra. Let

A = U(n̂−) ∼= C[x−1, x−2, x−3, . . . ].

For n ≥ 2, let

r−n =

n−1∑
i=1

x−ix−n+i = x−1x−n+1 + x−2x−n+2 + · · ·+ x−n+1x−1.

From [CalLM1], we have the presentation

WΛ0
∼= A/A〈r−n |n ≥ 2〉.

Now consider the following complex consisting of free A-modules:

· · · ∂4−→ C3 =
⊕
i1,i2≥2

Aξ−i1,−i2
∂3−→ C2 =

⊕
i1≥2

Aξ−i1
∂2−→ C1 = A ∂1−→ C0 = WΛ0 � 0

where ξ··· are formal symbols with

ξ...,i,...,j,... = −ξ...,j,...,i,...
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and such that for k ≥ 1,

∂k+1(ξ−i1,−i2,··· ,−ik) =
k∑

n=1

(−1)n−1 · r−in · ξ−i1,−i2,··· ,−̂in,··· ,−ik .

The problem now is to find a presentation and the graded dimension of the homology

(viewed as a differential-graded algebra) of this complex so that the graded dimension of

the bottom level — which is the principal subspace in question — could be obtained by

the use of the Euler-Poincaré principle. It should be noted that the sequence of elements

r−n for n = 2, 3, . . . is a non-regular sequence and hence the problem of determining

the homology is quite non-trivial.

Interestingly, a certain “finite version” of this very complex is also conjectured to

arise in connection with the stable Khovanov homology of the torus knots T (m,n) in

the work [GOR] of Gorsky, Oblomkov and Rasmussen. Gorsky et al. also conjecture

a generators-and-relations type description of the homology (viewed as a differential-

graded algebra) of this “finite version” of the Koszul complex. Our results give evidence

for their description and provide hope that vertex-operator-algebraic techniques could

provide crucial insights for studying this homology.

The first kernel, Ker(∂1), is precisely the kernel IΛ0 (see above) from [CalLM1]. In

Chapter 4, using analogous techniques, we prove that the second homology is gener-

ated by the “next” singular vector in the Garland-Lepowsky resolution of the ambient

standard module. The precise statement of our theorem is:

Theorem 1.3.1. The Virasoro operator L−1 acting on A and WΛ0 can be extended

naturally to each of the Cj’s in such a way that

L−1(r · c) = L−1(r) · c+ r · L−1(c),

for all r ∈ A and c ∈ Cj. Moreover, L−1 commutes with ∂•. With this,

Ker(∂2) = 〈Ls−1 · (2ξ−2x−2 − ξ−3x−1) | s ∈ N〉+ Im(∂3).

The vector 2ξ−2x−2− ξ−3x−1 is precisely the “next” singular vector in the Garland-

Lepowsky resolution of the standard module L(Λ0).
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Among other things, this result and its “finite” analogue were conjectured in [GOR].

A similar complex and its homology have been analysed by Feigin in [Fe] in the con-

text of Bernstein-Gelfand-Gelfand-type resolutions of certain minimal models for the

Virasoro algebra.

The structure of higher kernels is under investigation. It is interesting to note

that in the works [MP2]–[MP3] and [P2], vertex operators parametrized by the natural

analogues, to higher ranks and levels, of the singular vector 2ξ−2x−2 − ξ−3x−1 play an

important role in the determination of generators of relations for the annihilating fields

of standard modules. We are currently investigating how these works could help us

generalize our result to higher kernels and to higher ranks and levels.
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Chapter 2

From products to sums: The Göllnitz-Gordon identities

As recalled in the Introduction, the pair of Göllnitz-Gordon identities says that:

1. The partitions of a positive integer n into parts congruent to 1, 4, 7 (mod 8) are

equinumerous with the partitions in which adjacent parts differ by at least 2, with

adjacent even parts differing by at least 4.

2. The partitions of a positive integer n into parts congruent to 3, 4, 5 (mod 8) are

equinumerous with the partitions in which adjacent parts differ by at least 2 with

adjacent even parts differing by at least 4 such that all of the parts are greater

than 2.

In this chapter, we give a vertex-operator-algebraic interpretation, using the tech-

niques of Z-algebras, of these identities using those level 2 modules for A
(2)
5 that are

contained in the tensor products of two inequivalent level 1 modules for A
(2)
5 . See [K]

for affine Lie algebras, but we shall need the vertex-operator-calculus constructions in

[L1].

Our vertex-algebraic interpretation clearly exhibits the “asymmetry” between the

even parts and the odd parts. For the vacuum spaces of the two level 2 modules in

question, we exhibit spanning sets enumerated by partitions counted in the sum sides

of the corresponding Göllnitz-Gordon identity. In our spanning sets, the even and the

odd parts arise from two distinct families of Z operators, corresponding to two distinct

nodes of the Dynkin diagram of A
(2)
5 . In other words, each of the Göllnitz-Gordon

identities is interpreted as a two-color identity that in fact “degenerates” to an honest

(single-color) partition identity since one of the colors exclusively appears as odd parts

and the other as even. Our methods are very similar to the ones used in [T1], [T2] for
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analyzing the structure of level 2 standard modules for D
(2)
l+1 and D

(3)
4 , respectively.

There exists a natural generalization of the Göllnitz-Gordon identities to higher

moduli, namely, the Göllnitz-Gordon-Andrews identities. However, our interpretation

of the Göllnitz-Gordon identities points toward a yet another natural and genuinely

multi-color generalization of the Göllnitz-Gordon identities arising from the higher level

modules for A
(2)
5 .

We remark that a number of times we will need to find power series expansions of

certain rational functions. These computations can be done quickly using a computer

algebra system. Nonetheless, we shall provide all the details of these calculations for

the sake of completeness. For convenience of such calculations, we will need to fix a

primitive 10th root of unity, which we take to be the one that has π/5 as its argument.

2.1 The affine Lie algebra A
(2)
5 in the principal picture

Closely following [LW3], [L1] and [F], we first construct the affine Lie algebra A
(2)
5 in

the principal picture.

Let Φ be the root system of type A5, with the system of positive simple roots

∆ = {α1, . . . , α5}. Let L be the root lattice. Let 〈·, ·〉 be the natural symmetric

positive-definite bilinear form on L such that 〈αi, αi〉 = 2, 〈αi, αj〉 = −1 if |i − j| = 1

and 〈αi, αj〉 = 0 if |i− j| > 1. Let σ be the automorphism of (L, 〈·, ·〉) induced by the

diagram automorphism of Φ:

σ : α1 ←→ α5 (2.1.1)

α2 ←→ α4 (2.1.2)

α3 ←→ α3. (2.1.3)

and let σi be the reflection about the positive simple root αi, i.e.,

σi(α) = α− 2
〈α, αi〉
〈αi, αi〉

αi (2.1.4)

As in [F], the twisted Coxeter automorphism of Φ is ν = σ1σ2σ3σ.

Let m = 10 be the order of ν and let ω be a primitive root mth of unity. For

convenience, we may and do choose ω = e2πi/10.
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Under ν, the elements of Φ fall into the following orbits:

[1] [2] [3]

1 α3 α1 + α2 + α3 + α4 + α5 α1

ν1 −α1 − α2 − α3 α2 + α3 + α4 + α5 α5

ν2 −α4 − α5 α2 + α3 + α4 α2

ν3 −α2 − α3 α3 + α4 α1 + α2 + α3 + α4

ν4 −α4 −α1 − α2 α3 + α4 + α5

ν5 −α3 −α1 − α2 − α3 − α4 − α5 −α1

ν6 α1 + α2 + α3 −α2 − α3 − α4 − α5 −α5

ν7 α4 + α5 −α2 − α3 − α4 −α2

ν8 α2 + α3 −α3 − α4 −α1 − α2 − α3 − α4

ν9 α4 α1 + α2 −α3 − α4 − α5

ν10 α3 α1 + α2 + α3 + α4 + α5 α1

Following [F], for α, β ∈ L define

ε(α, β) =
m−1∏
p=1

(1− ω−p)〈νpα,β〉. (2.1.5)

Then, we have that for any α, β, γ ∈ L,

ε(α+ β, γ) = ε(α, γ)ε(β, γ), (2.1.6)

ε(α, β + γ) = ε(α, β)ε(α, γ), (2.1.7)

ε(α, β)

ε(β, α)
= (−1)〈α,β〉, (2.1.8)

ε(να, νβ) = ε(α, β). (2.1.9)

As in [F], [FLM], using L, 〈·, ·〉, ν, ε(·, ·), one can construct a finite-dimensional sim-

ple Lie algebra g of type A5, with an invariant symmetric bilinear form 〈·, ·〉, and an

automorphism ν that preserves this form as follows:

Let g be the vector space over C spanned by the symbols ∆ ∪ {xα |α ∈ Φ}. Let a

be the span of ∆. Define the bracket [·, ·] on g by

[αi, xα] = 〈αi, α〉xα = −[xα, αi] (2.1.10)
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[xα, xβ] =


ε(−α, α)α if 〈α, β〉 = −2

ε(α, β)xα+β if 〈α, β〉 = −1

0 otherwise.

(2.1.11)

The symmetric invariant bilinear form on a can be extended to g as:

〈α, xβ〉 = 0 (2.1.12)

〈xα, xβ〉 = ε(α, β)δα+β,0. (2.1.13)

Extend the ν acting on a to ν : g −→ g by

νxα = xνα. (2.1.14)

Proceeding as in Capter 6 of [F], we now construct the twisted affine Lie algebras

ĝ(ν), g̃(ν) of type A
(2)
5 . For p ∈ Zm, let

g(p) = {x ∈ g | νx = ωpx},

similarly define a(p). Let πp be the projection map g −→ g(p). We denote the map

¯: Z −→ Zm. For any x ∈ g, let x(j) denote πj̄(x).

Let

g̃(ν) =

(⊕
i∈Z

g(̄i) ⊗ ti
)
⊕ Cc⊕ Cd, ĝ(ν) =

(⊕
i∈Z

g(̄i) ⊗ ti
)
⊕ Cc. (2.1.15)

such that

[x⊗ ti, y ⊗ tj ] = [x, y]⊗ ti+j +
1

m
iδi+j,0〈x, y〉c, (2.1.16)

[c, g̃(ν)] = 0, (2.1.17)

[d, x⊗ ti] = ix⊗ ti, (2.1.18)

for all x ∈ g(̄i), y ∈ g(j̄) with i, j ∈ Z. We define ã(ν) and â(ν) similarly. The Lie

algebra â(ν) is a Heisenberg subalgebra of ĝ(ν).

From [F] we know that ĝ(ν) is isomorphic to the principal realization of the affine

Lie algebra A
(2)
5 . Let {hi, ei, fi | i = 0, . . . 3} be the canonical generators of A

(2)
5 . We

know that

c = h0 + h1 + 2h2 + 2h3. (2.1.19)
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Let

t = span{h0, h1, h2, h3}. (2.1.20)

For a dominant integral λ ∈ t∗, i.e., λ(hi) ∈ N for i = 0, . . . , 3, let L(λ) be the corre-

sponding standard module of g̃(ν). For such a L(λ), λ(c) is called the level. Let Λi

(i = 0, . . . , 3) be the fundamental weight such that Λi(hj) = δi,j for all j = 0, . . . , 3.

Invoking Theorem 4.6 of [BM2], we get that:

Theorem 2.1.1 ([BM2]). Up to a shift by the imaginary root, the level 2 standard

modules L(Λ0 + Λ1) and L(Λ3) for A
(2)
5 appear as direct summands of L(Λ0)⊗ L(Λ1).

Let the highest weight vector of L be vL. It is clear that g̃(ν) acts on L by specifying

an arbitrary scalar action of d on vL. We let d · vL = 0. With this,

L =
⊕
n≥0

L−n,

where L−n is the (finite dimensional) eigenspace for d with eigenvalue −n. We call

χ(L) =
∑
n≥0

(dimL−n) qn (2.1.21)

the principally specialized character of L.

Given a standard module L for ĝ(ν), let Ω(L), called the vacuum space, be the

space of highest-weight vectors for the Heisenberg algebra â(ν). It is clear that Ω(L)

also breaks up as a direct sum of finite dimensional eigen-spaces for d, with non-positive

integral eigenvalues, and hence, we define χ(Ω(L)) analogously to (2.1.21).

Using the Weyl-Kac character formula and the Lepowsky-Milne numerator formula,

it can be easily deduced that:

Theorem 2.1.2. The principally specialized characters of Ω(L(Λ0 +Λ1)) and Ω(L(Λ3))

are:

χ(Ω(L(Λ0 + Λ1))) =
∏
j≥0

1

(1− q8j+1)(1− q8j+4)(1− q8j+7)
(2.1.22)

χ(Ω(L(Λ3))) =
∏
j≥0

1

(1− q8j+3)(1− q8j+4)(1− q8j+5)
. (2.1.23)
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For a level k highest weight module V for ĝ(ν) and for each β ∈ Φ and a formal vari-

able ζ define the following generating functions with coefficients in the endomorphism

ring of V .

X(β, ζ) =
∑
n∈Z

((xβ)(n) ⊗ tn)ζn, (2.1.24)

E±(β, ζ, r) = exp

±m∑
n≥1

(α(±n) ⊗ t±n)ζ±n/2nr

 , (2.1.25)

Z(β, ζ, r) = E−(β, ζ, r)X(β, ζ)E+(β, ζ, r) =
∑
n∈Z

Z(β, r)nζ
n, (2.1.26)

Z(β, ζ) = Z(β, ζ, k) =
∑
n∈Z

Z(β)nζ
n. (2.1.27)

Note that in this notation, we suppress the underlying representation corresponding to

V since it will be easy to deduce from the context. Using Proposition 7.2 of [F] (cf.

Proposition 3.3 of [LW3]), we see that

Z(β, ωpζ) = Z(νpβ, ζ), (2.1.28)

for all β ∈ Φ and p ∈ Z.

Remark 2.1.3. The parametrization of the generating functions above follows the

notation in [LW1]–[LW4]. This parametrization is no longer in use, for the “correct”

parametrization, please see [FLM]. We still use the “old” notation in this paper as we

want to directly invoke the generating function identities from [LW1]–[LW4], and since

entire structure of the ambient vertex operator algebra will not be needed.

2.2 Generating functions: Z and X operators

In view of Theorem 2.1.1, consider the A
(2)
5 -module L(Λ0)⊗ L(Λ1). We let

Z([1], ζ) =
∑
n∈Z

Z[1]nζ
n = Z(α3, ζ) (2.2.1)

Z([2], ζ) =
∑
n∈Z

Z[2]nζ
n = Z(α1 + α2 + α3 + α4 + α5, ζ) (2.2.2)

Z([3], ζ) =
∑
n∈Z

Z[3]nζ
n = Z(α1, ζ), (2.2.3)
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with the obvious meanings attached to the expressions Z(νr[j], ζ), X([j], ζ), E±([j], ζ, r),

E±([j], ζ), etc.

For v ∈ L(Λi), i = 0, 1, and for j = 1, 2, 3, we have (cf. [F]):

X([j], ζ)v = c[j],iE
−(−[j], ζ)E+(−[j], ζ)v, (2.2.4)

where

c[j],i =



1

10
if (j, i) 6= (1, 1),

− 1

10
if (j, i) = (1, 1).

(2.2.5)

Therefore, on L(Λ0)⊗ L(Λ1),

Z([1], ζ) =
1

10

{
E−(−[1], ζ, 2)E+(−[1], ζ, 2)⊗ E−([1], ζ, 2)E+([1], ζ, 2)

−E−([1], ζ, 2)E+([1], ζ, 2)⊗ E−(−[1], ζ, 2)E+(−[1], ζ, 2)
}

= Z(1)([1], ζ)− Z(2)([1], ζ)

Z([2], ζ) =
1

10

{
E−(−[2], ζ, 2)E+(−[2], ζ, 2)⊗ E−([2], ζ, 2)E+([2], ζ, 2)

+E−([2], ζ, 2)E+([2], ζ, 2)⊗ E−(−[2], ζ, 2)E+(−[2], ζ, 2)
}

= Z(1)([2], ζ) + Z(2)([2], ζ)

Z([3], ζ) =
1

10

{
E−(−[3], ζ, 2)E+(−[3], ζ, 2)⊗ E−([3], ζ, 2)E+([3], ζ, 2)

+E−([3], ζ, 2)E+([3], ζ, 2)⊗ E−(−[3], ζ, 2)E+(−[3], ζ, 2)
}

= Z(1)([3], ζ) + Z(2)([3], ζ).

In each case,

Z(2)([j], ζ) = Z(1)([j],−ζ), (2.2.6)

and therefore,

Z[1]i =


2Z[1]

(1)
i if i is odd

0 if i is even

(2.2.7)



20

Z[2]i =


0 if i is odd

2Z[2]
(1)
i if i is even

(2.2.8)

Z[3]i =


0 if i is odd

2Z[3]
(1)
i if i is even.

(2.2.9)

For a level k standard module L, it is well known (cf. [LW3]) that

Ω(L) = Span {Z(β1)j1 · · ·Z(βr)jr · vL | r ∈ N; j1, . . . , jr ∈ Z; β1, . . . , βr ∈ Φ} ,

and hence, in view of (2.1.28), we get that

Ω(L) = Span {Z[i1]j1 · · ·Z[ir]jr · vL | r ∈ N; j1, . . . , jr ∈ Z; i1, . . . , ir ∈ {1, 2, 3}} .

(2.2.10)

2.3 Monomial Ordering

Let n be any positive integer. Let ≤p denote the product ordering on Zn. That is,

(i1, . . . , in) ≤p (j1, . . . , jn) ⇐⇒ i1 ≤ j1, . . . , in ≤ jn.

Define a map

τ :Zn −→ Zn

(i1, . . . , in) 7−→ (i1 + · · ·+ in, i2 + · · ·+ in, . . . , in)

Using τ and ≤p, define a partial order ≤T on Zn by:

(i1, . . . , in) ≤T (j1, . . . , jn)⇐⇒ τ(i1, . . . , in) ≤p τ(j1, . . . , jn).

It is clear that the intervals under ≤T are finite, i.e., given (i1, . . . , in) ≤T (j1, . . . , jn),

the set

{(k1, . . . , kn) | (i1, . . . , in) ≤T (k1, . . . , kn) ≤T (j1, . . . , jn)}

is finite.

On
⋃
j∈N Zj , there exists a monoidal product, ◦:

(i1, . . . , ir) ◦ (j1, . . . , is) = (i1, . . . , ir, j1, . . . , js).
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It is clear that for (i1, . . . , in) ≤T (j1, . . . , jn),

(i1, . . . , in) ◦ (k1, . . . , km) ≤T (j1, . . . , jn) ◦ (k1, . . . , km)

(k1, . . . , km) ◦ (i1, . . . , in) ≤T (k1, . . . , km) ◦ (j1, . . . , jn).

For an integer i, let i = 1 if i is odd and i = 2 if i is even. Given a tuple (i1, . . . , in) ∈

Zn, define the Z-monomial

Zi1 · · ·Zin = Z[ i1 ]i1 · · ·Z[ in ]in . (2.3.1)

If n = 0, the corresponding null monomial is understood as the identity operator. Define

T (i1, . . . , in) = Span {Zj1 . . . Zjm | either m < n or

m = n and τ(i1, . . . , in) ≤T τ(j1, . . . , jn)} .

We say that a monomial Zi1 . . . Zin is reducible iff

Zi1 . . . Zin ∈ T (i1, . . . , in).

It is clear from the properties of ◦ mentioned above that Zi1 · · ·Zin is reducible if any

of its contiguous sub-monomials is reducible.

2.4 Generating function identities and their consequences

Our plan is to eliminate the modes of Z[3] from the spanning set and to use enough

relations between the Z[1] and Z[2] modes in order to reduce the spanning set to exhibit

the sum-side conditions in the Göllnitz-Gordon identities. Hence, we first concentrate

on the generating function identities involving the modes of Z[1] and Z[2]. Using

equation (8.21) of [LW3] (cf. Theorem 7.3 of [F]) we immediately deduce the required

generating function identities. We will always rely on (2.2.7) and (2.2.8) which state

that the even modes of Z[1] are zero and that the odd modes of Z[2] are zero. We

organize the generating function identities accordingly. We will let

δ(ζ) =
∑
n∈Z

ζn.
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2.4.1 Odd-Even

Let

F1(x) =
(1− ω−6x)1/2(1− ω−7x)1/2

(1− ω−1x)1/2(1− ω−2x)1/2
(2.4.1)

F1′(x) =
(1− ω6x)1/2(1− ω7x)1/2

(1− ωx)1/2(1− ω2x)1/2
. (2.4.2)

Using Theorem 7.3 of [F] (cf. Theorem 3.10 of [LW3]), we get:

F1

(
ζ1

ζ2

)
· Z([1], ζ1)Z([2], ζ2)− F1′

(
ζ2

ζ1

)
· Z([2], ζ2)Z([1], ζ1)

=
1

10

{
ε(ν[1], [2])Z(ν7[1], ζ2)δ

(
ω−1 ζ1

ζ2

)
+ ε(ν2[1], [2])Z(ν6[1], ζ2)δ

(
ω−2 ζ1

ζ2

)}
.

(2.4.3)

Define the numbers b1(n) and b′1(n) via

F1(x) =
∑
n∈Z

b1(n)

(
ζ1

ζ2

)n
,

F1′(x) =
∑
n∈Z

b′1(n)

(
ζ2

ζ1

)n
.

Then,

b1(0) = b′1(0) = 1 (2.4.4)

b1(1) =
ω−1

2
+
ω−2

2
− ω−6

2
− ω−7

2
6= 0 (2.4.5)

b′1(1) =
ω1

2
+
ω2

2
− ω6

2
− ω7

2
6= 0 (2.4.6)

Hence, the coefficient of ζa1 ζ
b
2 from (2.4.3) gives:

∑
p≥0

b1(p)Z[1]a−pZ[2]b+p−b′1(p)Z[2]b−pZ[1]a+p = c0(a, b)Z[1]a+b, (2.4.7)

where c0(a, b) is some constant depending on a, b.

For i odd, letting a 7→ i+1 and b 7→ i in (2.4.7) and noting (2.2.7), (2.2.8), the term

corresponding to p = 0 drops out and we get that:

∑
p≥1

b1(p)Z[1]i+1−pZ[2]i+p − b′1(p)Z[2]i−pZ[1]i+1+p = b1(p)Z[1]iZ[2]i+1 + · · ·

= c0(i+ 1, i)Z[1]2a+1. (2.4.8)
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Notation 2.4.1. Here, and below, such ellipses will refer to terms either higher in the

monomial ordering or shorter than the term immediately preceding the ellipses.

Similarly, for i even, letting a 7→ i and b 7→ i+1 in (2.4.7) and noting (2.2.7), (2.2.8),

the term corresponding to p = 0 drops out and we get that:∑
p≥1

b1(p)Z[1]i−pZ[2]i+1+p−b′1(p)Z[2]i+1−pZ[1]i+p = −b′1(p)Z[2]iZ[1]i+1 + · · ·

= c0(i, i+ 1)Z[1]2i+1. (2.4.9)

Proposition 2.4.2. If i > j with i odd and j even, then, with a 7→ i, b 7→ j, (2.4.7)

implies that

ZiZj ∈ T (i, j). (2.4.10)

If j > i with j even and i odd, then, (2.4.7) implies that

ZiZj ∈ T (i, j). (2.4.11)

If i is odd then (2.4.8) and (2.4.5) imply that

ZiZi+1 ∈ T (i, i+ 1). (2.4.12)

If a is even then (2.4.9) and (2.4.6) imply that

ZiZi+1 ∈ T (i, i+ 1). (2.4.13)

2.4.2 Odd-Odd

Let

F2(x) =
(1− x)(1− ω−2x)1/2(1− ω−4x)1/2(1− ω−6x)1/2(1− ω−8x)1/2

(1− ω−1x)1/2(1− ω−3x)1/2(1 + x)(1− ω−7x)1/2(1− ω−9x)1/2
. (2.4.14)

Define the numbers b2(n) as the power series coefficients of F2(x):

F2(x) =
∑
n≥0

b2(n)xn. (2.4.15)

Lemma 2.4.3. The power series expansion of F2(x) is:

F2(x) = 1− x+
1

2
x2 − 1

2
x3 + · · · . (2.4.16)
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Proof. Let

F2(x) =
(1− x)1/2

(1 + x)1/2
f2(x). (2.4.17)

Observe that

f2(x) = f2(ω2x), (2.4.18)

and hence,

f2(x) =
1

5
(f(x) + f(ω2x) + +f(ω4x) + f(ω6x) + f(ω8x)). (2.4.19)

Since each of ωj for j = 2, 4, 6, 8 is a primitive 5th root of unity, we see that the

coefficient of xi where i 6≡ 0 (mod 5) in the power series expansion of f2(x) is 0. Hence,

F2(x) agrees with (1−x)1/2

(1+x)1/2 upto the coefficient of x4. It is now easy to see that

(1− x)1/2

(1 + x)1/2
= 1− x+

1

2
x2 − 1

2
x3 + · · · . (2.4.20)

From Theorem 7.3 of [F] (cf. Theorem 3.10 of [LW3]), we have:

F2

(
ζ1

ζ2

)
· Z([1], ζ1)Z([1], ζ2)− F2

(
ζ2

ζ1

)
· Z([1], ζ2)Z([1], ζ1)

=
1

10

{
ε(ν[1], [1])Z(ν4[2], ζ2)δ

(
ω−1 ζ1

ζ2

)
+ ε(ν9[1], [1])Z(ν3[2], ζ2)δ

(
ω−9 ζ1

ζ2

)
+ε(ν3[1], [1])Z(ν7[3], ζ2)δ

(
ω−3 ζ1

ζ2

)
+ ε(ν7[1], [1])Z(ν4[3], ζ2)δ

(
ω−7 ζ1

ζ2

)}
− 1

50
(Dδ)

(
−ζ1

ζ2

)
. (2.4.21)

Terms containing Z[3] in the coefficient of ζi1ζ
j
2 on the right-hand side are:

1

10

(
ε(ν3[1], [1])ω−3i+7(i+j) + ε(ν7[1], [1])ω−7i+4(i+j)

)
Z[3]i+j (2.4.22)

=
1

10
ε(ν3[1], [1])(ω4i+7j − ω7i+4j)Z[3]i+j , (2.4.23)

where we have used

ε(ν3[1], [1]) = ε([1], ν7[1]) = ε(ν7[1], [1])(−1)〈ν
7[1],[1]〉 = −ε(ν7[1], [1]). (2.4.24)
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Coefficient of ζa1 ζ
b
2 in (2.4.21) gives the following identity:

∑
p≥0

b2(p) (Z[1]a−pZ[1]b+p − Z[1]b−pZ[1]a+p)

=
1

10
ε(ν3[1], [1])(ω4a+7b − ω7a+4b)Z[3]a+b + c1(a, b)Z[2]a+b + c2(a, b), (2.4.25)

where c1(a, b) and c2(a, b) are some constants depending on a and b.

Eliminating Z[1]iZ[1]j for j < i

Let i, j be odd integers such that i > j. Due to (2.2.7), we don’t need to consider the

even modes of Z[1].

Note that the term containing Z[2] on the right-hand side and the constant term

c2(a, b) of (2.4.25) are shorter than any monomial appearing on the left-hand side and

are acceptable monomials our intended spanning set.

Therefore, with a 7→ i, b 7→ j in (2.4.25) yields:

Z[1]iZ[1]j + · · · = ε(ν3[1], [1])

10
(ω4i+7j − ω7i+4j)Z[3]i+j . (2.4.26)

Letting a 7→ i+ 1, b 7→ j− 1 and utilizing (2.2.7), the coefficient corresponding to p = 0

in (2.4.25) drops out, giving

∑
p≥0

b2(p) (Z[1]i+1−p Z[1]j−1+p − Z[1]j−1−pZ[1]i+1+p)

=
∑
p≥0

b2(p+ 1) (Z[1]i−pZ[1]j+p − Z[1]j−2−pZ[1]i+2+p)

= b2(1)Z[1]iZ[1]j + · · ·

=
1

10
ε(ν3[1], [1])(ω4i+7j−3 − ω7i+4j+3)Z[3]i+j + αi+1,j−1Z[2]i+j (2.4.27)

This finally gives

−Z[1]iZ[2]j + · · · = ε(ν3[1], [1])

10
(ω4i+7j−3 − ω7i+4j+3)Z[3]i+j . (2.4.28)

Now,

Det

 1 ω4i+7j − ω7i+4j

−1 ω4i+7j−3 − ω7i+4j+3
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= ω4i+7j−3 − ω7i+4j+3 + ω4i+7j − ω7i+4j

= ω4i+7j(ω−3 − ω3(i−j)+3 + 1− ω3(i−j))

= ω4i+7j(1 + ω3)(ω−3 − ω3(i−j)),

but since i− j is even, 3(i− j) 6≡ −3 (mod 10), and therefore,

(ω4i+7j − ω7i+4j) + (ω4i+7j−3 − ω7i+4j+3) 6= 0. (2.4.29)

Combining (2.4.26), (2.4.28) and (2.4.29) we immediately arrive at the following

proposition.

Proposition 2.4.4. For i, j odd integers with i > j,

ZiZj ∈ T (i, j). (2.4.30)

From (2.2.10), (2.4.26), (2.4.28) and (2.4.29) we deduce the following.

Proposition 2.4.5. Modes of Z[1] and Z[2] suffice to span Ω(L(Λ0+Λ1)) and Ω(L(Λ3)),

i.e.,

Ω(L) = Span {Z[i1]j1 · · ·Z[ir]jr · vL | r ∈ N; j1, . . . , jr ∈ Z; i1, . . . , ir ∈ {1, 2}}

= Span {Zj1 · · ·Zjr · vL | r ∈ N; j1, . . . , jr ∈ Z} (2.4.31)

for L = L(Λ0 + Λ1) or L = L(Λ3).

In fact, from (2.4.26) and (2.4.28) we can gather more information about the modes

of Z[3] that we shall use in order to get the “difference at least 4” condition on the even

parts.

Proposition 2.4.6. For an integer a

Z[3]4a ∈ T (2a, 2a). (2.4.32)

Proof. Using (2.2.7) we note that the smallest term higher than Z[1]iZ[1]j in the left-

hand side of (2.4.26) and (2.4.28) is (strictly) higher than Zi−1Zj+1. Therefore, adding

(2.4.26) and (2.4.28) and noting (2.4.29), we obtain that for any odd integers i, j with

i > j,

Z[3]i+j ∈ T (i− 1, j + 1). (2.4.33)

Now let i 7→ 2a+ 1 and j 7→ 2a− 1.
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Eliminating Z[1]iZ[1]i for i < 0

Let i be an odd integer. Note that (2.4.28) holds even if i = j. Hence, letting a 7→ i+ 1

and b 7→ i− 1 in (2.4.25) and proceeding as in (2.4.28), we arrive at:

−Z[1]iZ[1]i + · · · = ε(ν3[1], [1])

10
(ωi−3 − ωi+3)Z[3]2i. (2.4.34)

Letting a 7→ i+ 2 and b 7→ i− 2 in (2.4.25), noting (2.2.7) and (2.4.15), we arrive at:

Z[1]i+2Z[1]i−2 +
1

2
Z[1]iZ[1]i + · · · = ε(ν3[1], [1])

10
(ωi−6 − ωi+6)Z[3]2i. (2.4.35)

Similarly, with a 7→ i+ 3, b 7→ i− 3 in (2.4.25) we get

−Z[1]i+2Z[1]i−2
1

2
Z[1]iZ[1]i + · · · = −ε(ν

3[1], [1])

10
(ωi−9 −−ωi+9)Z[3]2i. (2.4.36)

Adding (2.4.35) and (2.4.36) and noting that for any integer i

ωi−6 − ωi+6 + ωi−9 − ωi+9 = ωi(ω4 − ω6 + ω − ω9)

= 2ωi(ω4 + ω)

6= 0, (2.4.37)

since the minimal polynomial for ω over rationals is x4 − x3 + x2 − x+ 1, we conclude

that

Z[3]2i ∈ T (i, i), (2.4.38)

for any odd negative integer i. Now, (2.4.34) yields the following proposition.

Proposition 2.4.7. For any odd integer i,

ZiZi ∈ T (i, i). (2.4.39)

In fact, we can deduce more.

Proposition 2.4.8. For any odd integer i,

Z[3]2i ∈ T (i− 1, i+ 1) (2.4.40)

Proof. Noting (2.2.7), each term appearing in the ellipses in the left-hand sides of

(2.4.35) and (2.4.36) is strictly higher than Zi−1Zi+1. Now, add (2.4.35) and (2.4.36)

and invoke (2.4.37).
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2.4.3 Even-Even

Let

F3(x) =
(1− x)(1− ω−1x)1/2(1− ω−9x)1/2

(1 + x)(1 + ω−1x)1/2(1 + ω−9x)1/2
. (2.4.41)

Lemma 2.4.9. We have the following power series series expansion for F3:

F3(x) = 1 +
1

2

(
−5−

√
5
)
x+

5

4

(
3 +
√

5
)
x2 +

(
−5− 3

√
5

2

)
x3 + · · · . (2.4.42)

Proof. Recall that we have fixed the primitive 10th root of unity, ω = exp
(
πi
5

)
. It is

easy to deduce that

log(F3(x)) = (−2− ω − ω9)x+
1

3
(−2− ω3 − ω7)x3 + · · ·

Now, note that

Re(ω) =
1

4

(
1 +
√

5
)

(2.4.43)

Re(ω3) =
1

4

(
1−
√

5
)

(2.4.44)

and therefore

log(F3(x)) =
1

2

(
−5−

√
5
)
x+

1

6

(√
5− 5

)
x3 + · · · . (2.4.45)

Hence,

F3(x) = exp(log(F3(x)))

= 1 +
1

2

(
−5−

√
5
)
x+

1

2

(
1

2

(
−5−

√
5
))2

x2

+

(
1

6

(
1

2

(
−5−

√
5
))3

+
1

6

(√
5− 5

))
x3 + · · ·

= 1 +
1

2

(
−5−

√
5
)
x+

5

4

(
3 +
√

5
)
x2 +

(
−5− 3

√
5

2

)
x3 + · · · . (2.4.46)

Define the numbers b3(n) by

F3(x) =
∑
n≥0

b3(n)xn. (2.4.47)
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Employing Theorem 7.3 of [F] (cf. Theorem 3.10 of [LW3]), the generalized commu-

tation relation for Z([2], ζ1), Z([2], ζ2) is:

F3

(
ζ1

ζ2

)
· Z([2], ζ1)Z([2], ζ2)− F3

(
ζ2

ζ1

)
· Z([2], ζ2)Z([2], ζ1) (2.4.48)

=
1

10

{
ε(ν4[2], [2])Z(ν4[3], ζ2)δ

(
ω−4 ζ1

ζ2

)
+ ε(ν6[2], [2])Z(ν[3], ζ2)δ

(
ω−6 ζ1

ζ2

)}
− 1

50
(Dδ)

(
−ζ1

ζ2

)
. (2.4.49)

Noting that ε(ν4[2], [2]) = −ε(ν6[2], [2]), the coefficient of ζi1ζ
j
2 on the right-hand

side is:

ε(ν4[2], [2])

10
(ω−4i+4(i+j) − ω−6i)Z[3]i+j =

ε(ν4[2], [2])

10
(ω4j − ω4i)Z[3]i+j , (2.4.50)

for any non-positive integers i, j.

Eliminating Z[2]iZ[2]j for j < i

Let j < i be even integers. Due to (2.2.8) it is not necessary to consider the odd modes

of Z[2]. Then, coefficient of ζi1ζ
j
2 in (2.4.49) gives

Z[2]iZ[2]j + · · · = ε(ν4[2], [2])

10
(ω4j − ω4i)Z[3]i+j . (2.4.51)

Let ` = (i + j)/2. If i + j ≡ 0 (mod 4) then ` is even. Since j < i, (i, j) <T (`, `).

Invoking Proposition 2.4.6, we get that Z[3]i+j ∈ T (`, `), and therefore, ZiZj ∈ T (`, `) ⊂

T (i, j). If i + j ≡ 2 (mod 4) then ` is odd. It is clear that (i, j) <T (` − 1, ` + 1).

Invoking Proposition 2.4.8, we get that Z[3]i+j ∈ T (`− 1, `+ 1), and therefore, ZiZj ∈

T (`− 1, `+ 1) ⊂ T (i, j).

Proposition 2.4.10. For even integers i, j with i > j,

ZiZj ∈ T (i, j). (2.4.52)

Eliminating Z[2]iZ[2]i

Let i be an even integer. Coefficient of ζi+1
1 ζi−1

2 in (2.4.49) and noting (2.2.8), we get:

b3(1)Z[2]iZ[2]i + · · · = ε(ν4[2], [2])

10
(ω4i−4 − ω4i+4)Z[3]2i. (2.4.53)
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Note that b3(1) 6= 0 (Lemma 2.4.9) and that Proposition 2.4.6 implies that Z[3]2i ∈

T (i, i) since i is even. Therefore we arrive at the following proposition.

Proposition 2.4.11. For an even integer i,

ZiZi ∈ T (i, i). (2.4.54)

Eliminating Z[2]i−2Z[2]i

Again, let i be an even integer. Coefficient of ζi1ζ
i−2
2 in (2.4.49) yields:

b3(0)Z[2]iZ[2]i−2 + (b3(2)− b3(0))Z[2]i−2Z[2]i + · · ·

=
ε(ν4[2], [2])

10
(ω4i−8 − ω4i)Z[3]2i−2. (2.4.55)

Coefficient of ζi+1
1 ζi−3

2 gives

b3(1)Z[2]iZ[2]i−2 + b3(3)Z[2]i−2Z[2]i + · · ·

=
ε(ν4[2], [2])

10
(ω4i−12 − ω4i+4)Z[3]2i−2. (2.4.56)

A quick computation shows that

Det

b3(0) b3(2)− b3(0)

b3(1) b3(3)

 = 5 + 3
√

5 6= 0.

Also, Proposition 2.4.8 shows that Z[3]2i−2 ∈ T (i− 2, i). We conclude the following.

Proposition 2.4.12. For a non-positive even integer i,

Zi−2Zi ∈ T (i− 2, i). (2.4.57)

Remark 2.4.13. The “asymmetry” between the odd and the even parts is also visible in

the fact that the strategy for proving that Z[1]iZ[1]i ∈ T (i, i) for i odd (cf. Proposition

2.4.7) does not work for proving that Z[2]iZ[2]i ∈ T (i, i) for i even (cf. Proposition

2.4.11). The corresponding matrices turn out to be singular!
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2.5 Small spanning sets for the vacuum spaces of L(Λ0 + Λ1) and L(Λ3)

We have obtained enough relations in the previous section to now obtain small spanning

sets for the vaccum spaces of L(Λ0 + Λ1) and L(Λ3). The truth of the Göllnitz-Gordon

identities is now equivalent to the independence of these spanning sets.

Theorem 2.5.1. We have that:

Ω(L(Λ0 + Λ1)) = Span{Zi1 · · ·Zir · vL(Λ0+Λ1) | r ∈ N, i1 < i2 < · · · < ir ≤ −1,

|ij − ij+1| ≥ 2 with |ij − ij+1| ≥ 4 if ij , ij+1 are even},

Ω(L(Λ3)) = Span{Zi1 · · ·Zir · vL(Λ3) | r ∈ N, i1 < i2 < · · · < ir ≤ −3,

|ij − ij+1| ≥ 2 with |ij − ij+1| ≥ 4 if ij , ij+1 are even}.

Proof. From Propositions 2.4.5, and the highest weight property of vL(Λ0+Λ1) and

vL(Λ3) it is clear that for L = L(Λ0 + Λ1) or L = L(Λ3),

Ω(L) = Span{Zi1 · · ·Zir · vL | r ∈ N, (i1, . . . , ir) ≤T (0, . . . , 0)}.

Now, Propositions 2.4.2, 2.4.4 and 2.4.10 along with the highest weight property of vL

show that:

Ω(L) = Span{Zi1 · · ·Zir · vL | r ∈ N, i1 ≤ · · · ≤ ir ≤ −1}.

Combined with the product formulas for the characters, given in (2.1.23), we gather

that the weight 1 and 2 subspaces of Ω(L(Λ3)) are 0, and hence,

Z−1 · vL(Λ3) = 0, Z−2 · vL(Λ3) = 0.

The required difference 2 and difference 4 conditions could easily be deduced from

Propositions 2.4.2, 2.4.7, 2.4.11 and 2.4.12.

Corollary 2.5.2. For each of the Göllnitz-Gordon identities, each coefficient on the

product side is at most as large as the corresponding coefficient on the sum side.

Corollary 2.5.3. The truth of the Göllnitz-Gordon identities is equivalent to the in-

dependence of the spanning sets given in Theorem 2.5.1.
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Chapter 3

From products, hopefully to sums: Motivated proofs and

twisted intertwining operators

As recalled in the Introduction, vertex-operator-algebraic interpretation of the steps in

the Andrews-Baxter’s “Motivated Proof” of the Rogers-Ramanujan identities ([AB])

is an important open problem. We shall recall this proof below. Our aim in this

chapter is to give an explicit construction of twisted intertwining operators among

certain triples of twisted and untwisted modules for ŝl2 at higher levels. We start with

level 1 intertwining operators as given in [Ab1] and [ADL] and explicitly build higher

level intertwining operators by adapting the methods of [DL]. In this chapter, it will be

enough to restrict ourselves to irreducible modules and involutions of vertex operator

algebras, and hence we work under these restrictions throughout this chapter.

3.1 Andrews-Baxter’s “motivated proof” of the Rogers-Ramanujan

identities

Let q be a purely formal variable. Recall the Rogers-Ramanujan identities written in

the generating function form:

∏
j≥0

1

(1− q5j+1)(1− q5j+4)
=
∑
n≥0

d1(n)qn (3.1.1)

∏
j≥0

1

(1− q5j+2)(1− q5j+3)
=
∑
n≥0

d2(n)qn, (3.1.2)

where di(n) for i = 1, 2, is the number of partitions of n such that the adjacent parts

differ by at least 2 and such that the smallest part is at least i. Let’s let

G1(q) =
∏
j≥0

1

(1− q5j+1)(1− q5j+4)
, (3.1.3)
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G2(q) =
∏
j≥0

1

(1− q5j+2)(1− q5j+3)
. (3.1.4)

Looking at the sum sides, it is easy to see that G1(q) − G2(q) has non-negative co-

efficients. An explanation for this fact, using only the product sides, in other words,

without assuming the truth of the Rogers-Ramanujan identities, was asked for by L.

Ehrenpreis. Andrews and Baxter, while answering this question, were naturally led to

a proof of these identities themselves.

A rough outline of Andrews-Baxter’s “Motivated Proof” follows. First, expand the

infinite products.

G1(q) = 1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 4q8 + 5q9 + 6q10 + · · · (3.1.5)

G2(q) = 1 + q2 + q3 + q4 + q5 + 2q6 + 2q7 + 3q8 + 4q9 + 4q10 + · · · . (3.1.6)

Observe (of course) that G1 −G2 has non-negative coefficients:

G1 −G2 = q + q4 + q5 + q6 + q7 + 2q8 + 2q9 + · · · . (3.1.7)

Observe that q divides G1 −G2. Let’s let

G3 = (G1 −G2)/q = 1 + q3 + q4 + q5 + q6 + 2q7 + 2q8 + · · · . (3.1.8)

Observe that G2−G3 has non-negative coefficients as well and that G2−G3 is divisible

by q2:

G4 = (G2 −G3)/q2 = 1 + q4 + q5 + q6 + 2q7 + 2q8 + · · · . (3.1.9)

Continuing, we let

Gi =
Gi−2 −Gi−1

qi−2
(3.1.10)

and observe that

Gi = 1 + qi + · · · . (3.1.11)

The observation (3.1.11) is called the Empirical Hypothesis and it can be proved starting

with the products and using the Jacobi triple product identity. The point is, proving the
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Empirical Hypothesis starting from the product sides leads to a proof of the Rogers-

Ramanujan identities themselves! Note that the Empirical Hypothesis is trivial to

derive from the sum sides.

We mention that this proof has been generalized to the case of the Andrews-Gordon

identities in [LZ], to the Andrews-Bressoud identities in [KLRS] and to the Göllnitz-

Gordon-Andrews identities in [CKLMQRS].

We know, using the Weyl-Kac character formula and the Lepowsky-Milne numerator

formula that the vacuum spaces of principally twisted level 3 standard modules have

characters equalling the product sides:

χ(Ω(L(3Λ0))) = χ(Ω(L(3Λ1)))= G1(q), (3.1.12)

χ(Ω(L(2Λ0 + Λ1))) =χ(Ω(L(Λ0 + 2Λ1)))= G2(q). (3.1.13)

It was an idea of J. Lepowsky and A. Milas that the recursion (3.1.10) could be

explained by exact sequences among these vacuum spaces, where the maps would come

from the relativized and twisted intertwining operators.

The principally twisted modules for ŝl2 are obtained via an involution of sl2, and

hence we restrict our attention to involutions. Moreover, we restrict our attention to

intertwining operators where the “source” and the “target” module are twisted. That is,

we focus on intertwining operators of type
(

W3

W1 W2

)
, where W2 and W3 are (principally)

twisted. This naturally forces us impose that W1 is an untwisted module. We will also

assume a certain grading restriction on the modules. For precise formulations of these

restrictions, see Assumption 3.2.8.

3.2 Preliminary definitions

Notation 3.2.1. Fix a vertex operator algebra (V, Y,1, ω) in the sense of [FLM]. We

denote this by simply V .

Definition 3.2.2. (Cf. [LL]) An untwisted V−module is the data (W,YW ) where W

is a C−graded vector space, W =
∐
n∈C

W(n) and YW (·, x) is a linear map

YW (·, x) : V −→ (EndW )[[x, x−1]]
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v 7−→ YW (v, x) =
∑
n∈Z

vnx
−n−1

such that the following conditions hold:

1. Grading restriction condition: For all n ∈ C, dimW(n) < ∞ and W(n−k) = 0 for

all sufficiently large integers k.

2. Lower truncation condition: For all v ∈ V and w ∈W , YW (v, x)w ∈W ((x)).

3. Vacuum property: YW (1, x) = IdW .

4. Jacobi identity: For all u, v ∈ V ,

x0
−1δ

(
x1 − x2

x0

)
YW (u, x1)YW (v, x2)−x0

−1δ

(
x2 − x1

−x0

)
YW (v, x2)YW (u, x1)

= x2
−1δ

(
x1 − x0

x2

)
YW (Y (u, x0)v, x2).

5. L(0)−grading condition: For n ∈ Z, let L(n) = ωn+1. Then, for all w ∈ W(n),

L(0)w = nw.

6. L(−1)−derivative property: For all v ∈ V ,
d

dx
YW (v, x) = YW (L(−1)v, x).

Definition 3.2.3. An automorphism of a vertex operator algebra V is a linear ismor-

phism g : V −→ V such that g(ω) = ω and gY (v, x)g−1 = Y (g · v, x) for all v ∈ V . As

an immediate consequence of this definition, g(1) = 1 holds.

Remark 3.2.4. Since g fixes ω, g fixes the eigenspaces for the action of L(0), in other

words, g
∣∣
V(n)

acts as a linear isomophism of each of the finite dimensional spaces V(n),

n ∈ Z. Hence, if g has a finite order, say m, then V =
∐

j∈Z/mZ

V j where V j = {v ∈

V |g · v = ξjv}, with j ∈ Z/mZ and ξ = e
2π
√
−1

m .

Definition 3.2.5. Let g be a finite order automorphism of V . Let the order of g be

m. A g−twisted V−module is the data (W,YW ) where W is a C−graded vector space,

W =
∐
n∈C

W(n) and YW (·, x) is a linear map

YW (·, x) : V −→ (EndW )[[x1/m, x−1/m]]
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v 7−→ YW (v, x) =
∑
n∈ 1

m
Z

vnx
−n−1

such that the following conditions hold:

1. Grading restriction condition: For all n ∈ C, dimW(n) < ∞ and W(n−k) = 0 for

all sufficiently large k ∈ 1
mZ.

2. Formal monodromy condition: For j ∈ Z/mZ and v ∈ V j,

YW (v, x) =
∑

n∈ j
m

+Z

vnx
−n−1. (3.2.1)

3. Lower truncation condition: For all v ∈ V and w ∈W , YW (v, x)w ∈W ((x1/m)).

4. Vacuum property: YW (1, x) = IdW .

5. Twisted Jacobi identity: Let ξ = e
2π
√
−1

m . For all u, v ∈ V ,

x0
−1δ

(
x1 − x2

x0

)
YW (u, x1)YW (v, x2)−x0

−1δ

(
x2 − x1

−x0

)
YW (v, x2)YW (u, x1)

=
1

m

∑
j∈Z/mZ

x−1
2 δ

(
ξj

(x1 − x0)1/m

x
1/m
2

)
YW (Y (gj · u, x0)v, x2).

6. L(0)−grading condition: For n ∈ Z, let L(n) = ωn+1. Then, for all w ∈ W(n),

L(0)w = nw. Note that because ω ∈ V 0, YW (ω, x) has only integral powers of x,

due to the formal monodromy condition.

7. L(−1)−derivative property: For all v ∈ V ,
d

dx
YW (v, x) = YW (L(−1)v, x).

Remark 3.2.6. By a V−module we will mean either an untwisted V−module or a

g−twisted V−module.

Definition 3.2.7. (Cf. [FHL]) Let (W1, Y1), (W2, Y2), (W3, Y3) be untwisted V−modules.

An intertwining operator of type
(

W3

W1 W2

)
is a linear map

Y(·, x) : W1 −→ Hom(W2,W3){x}

w 7−→ Y(w, x) =
∑
n∈C

wnx
−n−1 (where wn ∈ Hom(W2,W3)) .

such that for all v ∈ V,w(1) ∈W1, w(2) ∈W2,
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1. Lower truncation condition: For all n ∈ C, (w(1))n+kw(2) = 0 for all sufficiently

large integers k.

2. Jacobi identity:

x0
−1δ

(
x1 − x2

x0

)
Y3(v, x1)Y(w(1), x2)−x0

−1δ

(
x2 − x1

−x0

)
Y(w(1), x2)Y2(v, x1)

= x2
−1δ

(
x1 − x0

x2

)
Y(Y1(v, x0)w(1), x2).

3. L(−1)−derivative property: Y(L(−1)w(1), x) =
d

dx
Y(w(1), x).

We now make a very important assumption. Throughout this chapter, we will

always work under this assumption.

Assumption 3.2.8. We will assume that the automorphism g has order m = 2. We

will assume that all the modules considered henceforth are graded by a coset of 1
mZ in

C. In particular, for each i = 1, 2, 3, there exists a complex number ci such that the

module Wi is 1
mZ+ ci graded. Concrete examples of intertwining operators that we will

encounter in later sections will all deal with modules which satisfy this assumption. It

is not hard to see that any irreducible V -module satisfies this assumption.

Definition 3.2.9. Let g be an involution of V . Let (W1, Y1), (W2, Y2), (W3, Y3) be

V−modules, such that W1 is untwisted and W2, W3 are g-twisted. A twisted intertwining

operator of type
(

W3

W1 W2

)
is a linear map

Yt(·, x) :W1 −→ Hom(W2,W3){x}

w 7−→ Yt(w, x) =
∑
n∈C

wnx
−n−1 where wn ∈ Hom(W2,W3).

such that for all v ∈ V,w(1) ∈W1, w(2) ∈W2,

1. Lower truncation condition: For all n ∈ C, (w(1))n+kw(2) = 0 for all sufficiently

large k ∈ 1
2Z.

2. Jacobi identity:

x0
−1δ

(
x1 − x2

x0

)
Y3(v, x1)Yt(w(1), x2)−x0

−1δ

(
x2 − x1

−x0

)
Yt(w(1), x2)Y2(v, x1)
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=
1

2

∑
j∈Z/2Z

x−1
2 δ

(
(−1)j

(x1 − x0)1/2

x
1/2
2

)
Yt(Y1(gj · v, x0)w(1), x2).

3. L(−1)−derivative property: Yt(L(−1)w(1), x) =
d

dx
Yt(w(1), x).

Remark 3.2.10. Note that our definition is a special case of the definition of twisted

intertwining operators given in [Xu]. In [Xu], twisted intertwining operators based on

twisted modules for colored vertex superalgebras have been considered.

Definition 3.2.11. The space of twisted intertwining operators of a given type
(

W3

W1 W2

)
forms a vector space. The twisted fusion rule, denoted by N t

(
W3

W1 W2

)
, is defined to be

the dimension of this vector space.

3.3 Duality properties

In this section, following the methods of [FLM] and [DL], we record some duality

properties for twisted intertwining operators. For the rest of this section, we fix a vertex

operator algebra (V, Y,1, ω) (which we denote by V for brevity) with an automorphism

g of finite order m.

3.3.1 Properties of the module map

Let (W,YW ) be a g-twisted V -module. Here we record some properties of the module

map YW that will be used later. These properties could be found in, for instance, [Li].

Lemma 3.3.1. Let ξ = exp (2πi/m), where m is the order of g. Let u ∈ V k = {a ∈

V |g · a = ξka} and v ∈ V . Then,

x0
−1δ

(
x1 − x2

x0

)
YW (u, x1)YW (v, x2)−x0

−1δ

(
x2 − x1

−x0

)
YW (v, x2)YW (u, x1)

= x2
−1δ

(
x1 − x0

x2

)(
x1 − x0

x2

)−k/m
YW (Y (u, x0)v, x2). (3.3.1)

By definition of automorphism of a vertex operator algebra, ω ∈ V 0, hence, taking

a = ω in lemma 3.3.1, we get the usual Jacobi Identity:
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Corollary 3.3.2. For v ∈ V ,

x0
−1δ

(
x1 − x2

x0

)
YW (ω, x1)YW (v, x2)−x0

−1δ

(
x2 − x1

−x0

)
YW (v, x2)YW (ω, x1)

= x2
−1δ

(
x1 − x0

x2

)
YW (Y (ω, x0)v, x2).

Multiplying equation (3.3.1) by x
k/m
1 , manipulating the delta function on the right

hand side and then extracting Resx1 gives

Resx1

(
x0
−1δ

(
x1 − x2

x0

)
YW (u, x1)YW (v, x2)x

k/m
1

−x0
−1δ

(
x2 − x1

−x0

)
YW (v, x2)YW (u, x1)x

k/m
1

)
= Resx1x2

−1δ

(
x1 − x0

x2

)(
x1 − x0

x2

)−k/m
YW (Y (u, x0)v, x2)x

k/m
1

= Resx1x1
−1δ

(
x2 + x0

x1

)(
x2 + x0

x1

)k/m
YW (Y (u, x0)v, x2)x

k/m
1

= Resx1x1
−1δ

(
x2 + x0

x1

)
(x2 + x0)k/mYW (Y (u, x0)v, x2)

= (x2 + x0)k/mYW (Y (u, x0)v, x2). (3.3.2)

Since the powers of x0 appearing on the right hand side are truncated from below, the

same holds for the left hand side, and thus we can multiply throughout by (x2+x0)−k/m

to obtain

Lemma 3.3.3. For u ∈ V k = {a ∈ V |g · a = ξka} and v ∈ V ,

YW (Y (u, x0)v, x2)

= (x2 + x0)−k/mResx1

(
x0
−1δ

(
x1 − x2

x0

)
YW (u, x1)YW (v, x2)x

k/m
1

−x0
−1δ

(
x2 − x1

−x0

)
YW (v, x2)YW (u, x1)x

k/m
1

)
. (3.3.3)

3.3.2 Properties of twisted intertwining operators

Let g be an involution of V and let (W1, Y1), (W2, Y2), (W3, Y3) be V−modules such

that W1 is untwisted and W2, W3 are g-twisted. Let Yt be a twisted intertwining

operator of type
(

W1

W2 W3

)
.
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Lemma 3.3.4. Let v ∈ V k = {a ∈ V |g · a = (−1)ka} and w(1) ∈W1. Then,

x0
−1δ

(
x1 − x2

x0

)
Y3(v, x1)Yt(w(1), x2)−x0

−1δ

(
x2 − x1

−x0

)
Yt(w(1), x2)Y2(v, x1)

= x2
−1δ

(
x1 − x0

x2

)(
x1 − x0

x2

)−k/2
Yt(Y1(v, x0)w(1), x2).(3.3.4)

By definition of automorphism of a vertex operator algebra, ω ∈ V 0, hence, taking

v = ω in lemma 3.3.4, we get the usual form of Jacobi identity:

Corollary 3.3.5. For w(1) ∈W1,

x0
−1δ

(
x1 − x2

x0

)
Y3(ω, x1)Yt(w(1), x2)−x0

−1δ

(
x2 − x1

−x0

)
Yt(w(1), x2)Y2(ω, x1)

= x2
−1δ

(
x1 − x0

x2

)
Yt(Y1(ω, x0)w(1), x2).

Hence, following the usual procedure, we can conclude that:

Corollary 3.3.6. For a L(0)−homogeneous vector w(1) ∈W1 and n ∈ C,

wtw(1),n = wtw(1) − n− 1,

Remark 3.3.7. If w(1) ∈W1, w(2) ∈W2 are L(0)−homogeneous vectors, then,

wt (w(1),nw(2)) = wtw(1) + wtw(2) − n− 1. (3.3.5)

Hence, under assumption 3.2.8, we conclude that

w(1),n = 0 if n 6∈ 1

2
Z + c1 + c2 − c3.

With

∆ = c1 + c2 − c3, (3.3.6)

x2∆Yt(w(1), x
2)w(2) ∈W3((x)), (3.3.7)

moreover,

Yt(w(1), x
2)w(2) = 0 iff Yt(w(1), x)w(2) = 0. (3.3.8)

Under the restriction of assumption 3.2.8, we work out the commutativity, asso-

ciativity and the rationality properties for Yt. For this, let us assume v ∈ V k and

w(1) ∈ W1, w(2) ∈ W2 in (3.3.4). We assume v, w(1), w(2) to be L(0)−homogeneous.
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Keeping in mind the formal monodromy condition (3.2.1), remark 3.3.7, specifically,

equations (3.3.6) and (3.3.7), we multiply both sides of (3.3.4) by x
k/2
1 x∆

2 and make

the substitution x2 7→ x2
2, in order to obtain operators whose expansions in powers of

x0, x1, x2 involve only integral powers of these variables.

x0
−1δ

(
x1 − x2

2

x0

)
Y3(v, x1)Yt(w(1), x

2
2)x

k/2
1 x2∆

2

−x0
−1δ

(
x2

2 − x1

−x0

)
Yt(w(1), x

2
2)Y2(v, x1)x

k/2
1 x2∆

2

= (x2
2)
−1
δ

(
x1 − x0

x2
2

)(
x1 − x0

x2
2

)−k/m
Yt(Y1(v, x0)w(1), x

2
2)x

k/2
1 x2∆

2 .

Taking Resx0 ,

[Y (v, x1),Yt(w(1), x
2
2)]x

k/2
1 x2∆

2

= Resx0(x2
2)
−1
δ

(
x1 − x0

x2
2

)(
x1 − x0

x2
2

)−k/2
Yt(Y1(v, x0)w(1), x

2
2)x

k/2
1 x2∆

2 .

Using the properties of delta function obtained in [FLM], we manipulate the right hand

side, thus:

Resx0(x2
2)
−1
δ

(
x1 − x0

x2
2

)(
x1 − x0

x2
2

)−k/2
Yt(Y1(v, x0)w(1), x

2
2)x

k/2
1 x2∆

2

= Resx0Yt
((

x0
−1δ

(
x1 − x2

2

x0

)
−x0

−1δ

(
x2

2 − x1

−x0

))
Y1(v, x0)w(1), x

2
2

)
·

·
(
x1 − x0

x2
2

)−k/2
x
k/2
1 x2∆

2

= Resx0Yt
((

x0
−1δ

(
x1 − x2

2

x0

)
Y1(v, x1 − x2

2)−x0
−1δ

(
x2

2 − x1

−x0

)
Y1(v,−x2

2 + x1)

)
w(1), x

2
2

)
·

·
(
x1 − x0

x2
2

)−k/2
x
k/2
1 x2∆

2

But, if n ∈ N (depending on v, w(1)) is sufficiently large, say, n ≥ N(≥ 0),(
Y1(v, x1 − x2

2)(x1 − x2
2)n − Y1(u,−x2

2 + x1)(−x2
2 + x1)n

)
w(1) = 0, (3.3.9)

so that we have the commutator formula:

Proposition 3.3.8. (commutator formula) Under assumption 3.2.8, for any v ∈

V k, w(1) ∈ W1 that are L(0)-homogeneous, there exists an N ∈ N depending only on v

and w(1) such that

[Y (v, x1),Yt(w(1), x
2
2)]x

k/2
1 x2∆

2 (x1 − x2
2)n = 0, (3.3.10)
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where the left hand side has only integral powers of the variables x1 and x2.

To derive the associator formula, we again multiply equation (3.3.4) by x
k/2
1 x∆

2 and

then make the substitution x2 7→ x2
2. Then we use the properties of the delta function.

x0
−1δ

(
x1 − x2

2

x0

)
Y3(v, x1)Yt(w(1), x

2
2)x

k/2
1 x2∆

2

−x0
−1δ

(
x2

2 − x1

−x0

)
Yt(w(1), x

2
2)Y2(v, x1)x2

1x
2∆
2

= (x2
2)
−1
δ

(
x1 − x0

x2
2

)(
x1 − x0

x2
2

)−k/2
Yt(Y1(v, x0)w(1), x

2
2)x

k/2
1 x2∆

2

= x1
−1δ

(
x2

2 + x0

x1

)(
x2

2 + x0

x1

)k/2
Yt(Y1(v, x0)w(1), x

2
2)x

k/2
1 x2∆

2

= x1
−1δ

(
x2

2 + x0

x1

)
(x2

2 + x0)k/2Yt(Y1(v, x0)w(1), x
2
2)x2∆

2 (3.3.11)

The first term on the left can be written as:

x0
−1δ

(
x1 − x2

2

x0

)
Y3(v, x1)Yt(w(1), x

2
2)x

k/2
1 x2∆

2

= x1
−1δ

(
x0 + x2

2

x1

)
Y3(v, x1)Yt(w(1), x

2
2)x

k/2
1 x2∆

2

= x1
−1δ

(
x0 + x2

2

x1

)
Y3(v, x0 + x2

2)Yt(w(1), x
2
2)(x0 + x2

2)k/2x2∆
2 (3.3.12)

Using (3.3.11) and (3.3.12), taking Resx1 , and using properties of delta function, we

get:

(x2
2 + x0)k/2Yt(Y1(v, x0)w(1), x

2
2)x2∆

2

− Y3(v, x0 + x2
2)Yt(w(1), x

2
2)(x0 + x2

2)k/2x2∆
2

= Resx1

(
−x0

−1δ

(
x2

2 − x1

−x0

)
Yt(w(1), x

2
2)Y2(v, x1)x

k/2
1 x2∆

2

)
= Resx1Yt(w(1), x

2
2)

{
(x2

2)
−1
δ

(
x1 − x0

x2
2

)
x
k/2
1 Y2(v, x1)

− x0
−1δ

(
x1 − x2

2

x0

)
x
k/2
1 Y2(v, x1)

}
x2∆

2

= Resx1Yt(w(1), x
2
2)

{
x1
−1δ

(
x2

2 + x0

x1

)
x
k/2
1 Y2(v, x1)

− x1
−1δ

(
x0 + x2

2

x1

)
x
k/2
1 Y2(v, x1)

}
x2∆

2

= Resx1Yt(w(1), x
2
2)

{
x1
−1δ

(
x2

2 + x0

x1

)
(x2

2 + x0)k/2Y2(v, x2
2 + x0)
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− x1
−1δ

(
x0 + x2

2

x1

)
(x0 + x2

2)k/2Y2(v, x0 + x2
2)

}
x2∆

2 (3.3.13)

But, for v ∈ V and w(2) ∈W2, if n ∈ N is large enough, say n ≥ N(≥ 0), we have(
Y2(v, x2

2 + x0)(x2
2 + x0)(k/2)+n − Y2(v, x0 + x2

2)(x0 + x2
2)(k/2)+n

)
w(2) = 0 (3.3.14)

Hence, from (3.3.13) and (3.3.14), we get the associator formula:

Proposition 3.3.9. (associator formula) Under assumption 3.2.8, for any L(0)-

homogeneous elements v ∈ V k, w(1) ∈W1, w(2) ∈W2, there exists an N ∈ N depending

only on v and w(1) such that

x2∆
2 (x2

2 + x0)(k/2)+nYt(Y1(v, x0)w(1), x
2
2)w(2)

= x2∆
2 (x0 + x2

2)(k/2)+nY3(v, x0 + x2
2)Yt(w(1), x

2
2)w(2). (3.3.15)

Now we derive and record the rationality properties. First, we discuss expansions

of certain rational functions (cf. [FLM], [FHL]).

Consider the ring C[x1, x
−1
1 , x2, x

−1
2 ] of Laurent polynomials in two variables x1 and

x2, and its field of fractions C(x1, x2).

Let Sij (where (i, j) is either (1, 2) or (2, 1)) denote the following set:

Sij = {αxi + βx2
j | α, β ∈ C, (α, β) 6= (0, 0)} ∪ {x1, x2},

and let C[x1, x2]Sij be the subring of C(x1, x2) obtained by inverting the products of

(zero or more) elements of Sij . Let (i1, i2) be either (1, 2) or (2, 1). Define the linear

and multiplicative map

ιiji1i2 : C[x1, x2]Sij −→ C[[x1, x
−1
1 , x2, x

−1
2 ]] (3.3.16)

so that ιiji1i2 is the identity on C[x1, x
−1
1 , x2, x

−1
2 ] and so that ιiji1i2((αxi + βx2

j )
−1) is the

expansion of (αxi + βx2
j )
−1 in non-negative integral powers of xi2 .

Next, we define the restricted dual of a module. For an untwisted or a g−twisted

V−module W , set

W ′ =
∐
n∈C

W ∗n . (3.3.17)

W ′ is called the restricted dual of W .
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Proposition 3.3.10. (a) (rationality of products) Under assumption 3.2.8, for

L(0)-homogeneous elements v ∈ V k, w(1) ∈ W1, w(2) ∈ W2, w′(3) ∈ W ′3, the formal

series

〈w′(3), Y3(v, x1)Yt(w(1), x
2
2)w(2)〉x

k/2
1 x2∆

2 , (3.3.18)

which is well defined and which involves only integral powers of x1, x2 lies in the image

of the map ι12
12 :

〈w′(3), Y3(v, x1)Yt(w(1), x
2
2)w(2)〉x

k/2
1 x2∆

2 = ι12
12f(x1, x2), (3.3.19)

where the (unique) element f ∈ C[x1, x2]S12 is of the form

f(x1, x2) =
g(x1, x2)

xρ1x
σ
2 (x1 − x2

2)τ
, (3.3.20)

for some g ∈ C[x1, x2] and ρ, σ, τ ∈ Z. The integer τ depends only on v and w(1).

(b) (commutativity) We also have

〈w′(3),Y
t(w(1), x

2
2)Y2(v, x1)w(2)〉x

k/2
1 x2∆

2 = ι12
21f(x1, x2), (3.3.21)

in particular, the left-hand side is well defined.

Proof. By (3.3.10), if n is large enough, we have,

Y3(v, x1)Yt(w(1), x
2
2)x

k/2
1 x2∆

2 (x1 − x2
2)n

= Yt(w(1), x
2
2)Y2(v, x1)x

k/2
1 x2∆

2 (x1 − x2
2)n

and

〈w′(3), Y3(v, x1)Yt(w(1), x
2
2)w(2)〉x

k/2
1 x2∆

2 (x1 − x2
2)n

= 〈w′(3),Y
t(w(1), x

2
2)Y2(v, x1)w(2)〉x

k/2
1 x2∆

2 (x1 − x2
2)n (3.3.22)

involves only integral powers of x1 and x2. But the left-hand side of (3.3.22) involves

only finitely many negative powers of x2 due to the lower truncation condition for Yt,

and the right-hand side involves only finitely many positive powers of x2 because of

corollary 3.3.6. Thus, each side of (3.3.22) involves only finitely many powers of x2.
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Similarly, each side of (3.3.22) involves only finitely many powers of x1. Hence, each

side of of (3.3.22) is equal to some h(x1, x2) ∈ C[x1, x
−1
1 , x2, x

−1
2 ]. Then,

f(x1, x2) =
h(x1, x2)

(x1 − xm2 )n

satisfies the desired conditions. In fact, the left-hand side of (3.3.19) involves only

finitely many negative powers of x2 and so can be multiplied by (x1 − xm2 )−n and

similarly, the left-hand side of (3.3.21) involves only finitely many negative powers of

x1 and hence can be multiplied by (−x2
2 + x1)−n.

An analogous argument using the associator formula, (3.3.15) gives:

Proposition 3.3.11. (a) (rationality of iterates) Under assumption 3.2.8, for L(0)-

homogeneous elements v ∈ V k, w(1) ∈W1, w(2) ∈W2, w′(3) ∈W
′
3, the formal series

〈w′(3),Y
t(Y1(v, x0)w(1), x

2
2)w(2)〉x2∆

2 (x2
2 + x0)k/2 (3.3.23)

which is well defined and which involves only integral powers of x0, x2, lies in the image

of the map ι02
20 :

〈w′(3),Y
t(Y1(v, x0)w(1), x

2
2)w(2)〉x2∆

2 (x2
2 + x0)k/m = ι02

20h(x0, x2) (3.3.24)

where the (unique) element h ∈ C[x0, x2]S02 is of the form

h(x0, x2) =
k(x0, x2)

xλ0x
µ
2 (x0 + xm2 )ν

(3.3.25)

for some k(x0, x2) ∈ C[x0, x2] and r, s, t ∈ Z. The integer ν depends only on v and

w(2).

(b) We also have

〈w′(3), Y3(v, x0 + x2
2)Yt(w(1), x

2
2)w(2)〉x2∆

2 (x0 + x2
2)k/2 = ι02

02h(x0, x2). (3.3.26)

For the rational function f(x1, x2) of (3.3.19),

ι02
02f(x0 + x2

2, x2) =
(
ι12
12f(x1, x2)

)∣∣
x1=x0+x2

2
, (3.3.27)

so that from (3.3.19) and (3.3.26),

h(x0, x2) = f(x0 + x2
2, x2). (3.3.28)

Thus we conclude:
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Proposition 3.3.12. (associativity) We have:

(ι12
12)−1

(
〈w′(3), Y3(v, x1)Yt(w(1), x

2
2)w(2)〉x

k/2
1 x2∆

2

)
=
(

(ι02
20)−1

(
〈w′(3),Y

t(Y1(v, x0)w(1), x
2
2)w(2)〉(x2

2 + x0)k/2x2∆
2

)) ∣∣
x0=x1−x2

2
. (3.3.29)

As an application of the above results, we prove a proposition which will be used

later to assert uniqueness of twisted intertwining operators (upto multiplication by a

scalar). (cf. [DL], Proposition 11.9.)

Proposition 3.3.13. Let W1,W2,W3 be irreducible V−modules such that W1 is un-

twisted while W1 and W2 are g-twisted. Further assume that each of them satisfies

the conditions in assumption 3.2.8. Fix nonzero L(0)−homogeneous vectors w(1) ∈W1,

w(2) ∈W2. Let Yt be a twisted intertwining operator of type
(

W3

W1 W2

)
. If Yt(w(1), x)w(2) =

0, then Yt(·, x)· = 0. More generally, a twisted intertwining operator X t of the same

type as Yt is uniquely determined by the knowledge of X t(w(1), x)w(2) or in particular,

by the knowledge of X t(w(1), x)· or X t(·, x)w(2).

Proof. We proceed exactly as in the proof of [DL], Proposition 11.9. It is sufficient to

prove the first assertion. We first show that

Yt(w(1), x)· = 0. (3.3.30)

Observe that for any (ordinary or g−twisted) irreducible V−module W ,

W = span {v1
n1
· · · vjnjw | v

q ∈ Vhq where hq ∈ Z, nq ∈
1

2
Z}, (3.3.31)

where w is an arbitrary nonzero element of W . Here, we assume that vn is defined to

be 0 for those values of n ∈ 1
2Z for which it was previously undefined, for example, if

W is an ordinary module, then vn is defined to be 0 for all n ∈ 1
2Z \Z.

By Proposition 3.3.10, we have, for w′(3) ∈W3 and L(0)−homogeneous v ∈ V k,

〈w′(3), Y3(v, x1)Yt(w(1), x
2
2)w(2)〉x

k/2
1 x2∆

2 = ι12
12f(x1, x2)

〈w′(3),Y
t(w(1), x

2
2)Y2(v, x1)w(2)〉x

k/2
1 x2∆

2 = ι12
21f(x1, x2).
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By (3.3.8) and the assumption that Yt(w(1), x2)w(2) = 0, we conclude that ι12
12f(x1, x2) =

0, and since ι12
12 is injective, f(x1, x2) = 0. Thus, ι12

21f(x1, x2) = 0, which implies that

〈w′(3),Y
t(w(1), x

2
2)Y2(v, x1)w(2)〉 = 0.

Since w′(3) ∈W3 is arbitrary, we get that

Yt(w(1), x
2
2)Y2(v, x1)w(2) = 0.

By (3.3.8) we conclude that

Yt(w(1), x2)Y2(v, x1)w(2) = 0.

By (3.3.31) and induction on j, we get (3.3.30).

Analogously, using Proposition 3.3.11, we have:

〈w′(3),Y
t(Y1(v, x0)w(1), x

2
2)w(2)〉x2∆

2 (x2
2 + x0)k/2 = ι02

20h(x0, x2)

〈w′(3), Y3(v, x0 + x2
2)Yt(w(1), x

2
2)w(2)〉x2∆

2 (x0 + x2
2)k/2 = ι02

02h(x0, x2).

By (3.3.8) and the assumption that Yt(w(1), x2)w(2) = 0, we conclude that ι02
02h(x0, x2) =

0, and since ι02
02 is injective, h(x0, x2) = 0. Thus ι02

20h(x0, x2) = 0, which implies that:

〈w′(3),Y
t(Y1(v, x0)w(1), x

2
2)w(2)〉x2∆

2 (x2
2 + x0)k/2 = 0. (3.3.32)

Now, the equation above has only finitely many negative powers of x0, and moreover,

all the powers of x0 appearing are integral. So, we can multiply by (x2
2 + x0)−k/2 and

we get:

〈w′(3),Y
t(Y1(v, x0)w(1), x

2
2)w(2)〉 = 0.

Since w′(3) ∈W3 is arbitrary, we get that

Yt(Y1(v, x0)w(1), x
2
2)w(2) = 0.

(3.3.31) induction on j and (3.3.8) gives:

Yt(·, x)w(2) = 0. (3.3.33)

It is now clear that Yt(·, x)· = 0.
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3.4 Examples

3.4.1 The vertex operator algebra VQk and the untwisted module VPk

In this section, we recall from [FLM] some constructions of vertex operator algebras

based on lattices.

Let P = 1
2Zα and Q = Zα be respectively the (one dimensional) weight and root

lattices of sl(2,C). Let 〈·, ·〉 be the unique symmetric, Z−bilinear, nondegenerate,

positive definite form on P (and on Q) such that 〈α, α〉 = 2.

For a positive integer k, let

P k = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
k times

Qk = Q⊕Q⊕ · · · ⊕Q︸ ︷︷ ︸
k times

.

For β ∈ P , we denote (0, · · · , 0, β, 0, · · · , 0) (an element of P k), where the non-trivial

component is in ith place, by βi. Extend the form 〈·, ·〉 to P k and Qk such that various

summands are orthogonal to each other. With this, Qk becomes an even lattice and

〈P k, Qk〉 ⊂ Z. Let C[P k] and C[Qk] be the group algebras of P k and Qk respectively,

with corresponding bases {eλ|λ ∈ P k} and {eµ|µ ∈ Qk}.

Let hk = C ⊗Z Q
k. Extend the form 〈·, ·〉 to hk. We consider hk as an abelian Lie

algebra. Consider the following Lie algebras:

ĥk = hk ⊗ C[t, t−1]⊕ Cc

h̃k = hk ⊗ C[t, t−1]⊕ Cc⊕ Cd

such that

[ĥk, c] = [h̃k, c] = {0}

[x⊗ tm, y ⊗ tn] = 〈x, y〉mδm+n,0c where x, y ∈ hk,m, n ∈ Z,

[d, x⊗ tn ⊕ Cc⊕ Cd] = nx⊗ tn where x ∈ hk, n ∈ Z,

and

ĥk[−1] = hk ⊗ t
1
2C[t, t−1]⊕ Cc
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h̃k[−1] = hk ⊗ t
1
2C[t, t−1]⊕ Cc⊕ Cd

such that

[ĥk[−1], c] = [h̃k[−1], c] = {0}

[x⊗ tm, y ⊗ tn] = 〈x, y〉mδm+n,0c where x, y ∈ hk,m, n ∈ Z + 1/2,

[d, x⊗ tn ⊕ Cc⊕ Cd] = nx⊗ tn where x ∈ hk, n ∈ Z + 1/2.

The algebras h̃k, h̃k[−1] are respectively Z- and Z+ 1/2- graded by eigenvalues of ad d.

This grading is referred to as the grading by degree.

Let

ĥkZ =
∐

m∈Z\{0}

hk ⊗ tm ⊕ Cc

(ĥkZ)+ = hk ⊗ C[t]⊕ Cc

(ĥkZ)− = hk ⊗ t−1C[t−1]

ĥkZ+1/2 =
∐

m∈Z+1/2

hk ⊗ tm ⊕ Cc

(ĥkZ+1/2)+ = hk ⊗ t
1
2C[t]⊕ Cc

(ĥkZ+1/2)− = hk ⊗ t
1
2C[t−1].

For a Lie algebra g let U(g) denote its universal enveloping algebra and for a vector

space V let S(V ) denote the symmetric algebra on V .

Consider the following induced ĥkZ−module:

MZ(1) = U(ĥkZ)⊗(ĥkZ)+ C ∼= S((ĥkZ)−) (linearly),

where hk⊗C[t] acts trivially on the one-dimensional module C and c acts as 1, and the

induced ĥkZ+1/2−module:

MZ+1/2(1) = U(ĥkZ+1/2)⊗(ĥkZ+1/2
)+ C ∼= S((ĥkZ+1/2)−) (linearly),

where hk ⊗ t
1
2C[t] acts trivially on the one-dimensional module C and c acts as 1.

The spaces S((ĥkZ)−) and S((ĥkZ+1/2)−) inherit tensor product gradings, which we

shift according to equations (1.9.51) – (1.9.53) of [FLM] as follows

deg 1 =
1

24
dim hk =

k

24
, 1 ∈ S((ĥkZ)−) (3.4.1)
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deg 1 = − 1

48
dim hk = − k

48
, 1 ∈ S((ĥkZ+1/2)−). (3.4.2)

Define the following vector spaces:

VPk = MZ(1)⊗ C[P k] (3.4.3)

VQk = MZ(1)⊗ C[Qk] (3.4.4)

V T
Qk = MZ+1/2(1)⊗ T, (3.4.5)

where T is any vector space, in particular, a C[Qk]−module. We denote an element

1⊗ eλ ∈ P k by simply eλ. The degree grading is extended uniquely to the above spaces

by defining

deg eλ = −1

2
〈λ, λ〉, λ ∈ C[P k] (3.4.6)

deg T = 0. (3.4.7)

The degree operator on the above spaces is still denoted by d.

We define an ĥk−module structure on VPk (we denote the action of h⊗ tn by h(n))

by making ĥkZ act as ĥkZ⊗ 1 and by making hk = hk ⊗ t0 act as 1⊗ hk with h(0) defined

by:

h(0)eλ = 〈h, λ〉eλ

for h ∈ hk and λ ∈ P k.

Following [FLM], we define a vertex operator algebra structure on VQk and an

untwisted VQk−module structure on VPk . We consider VQk as a subset of VPk . For

h ∈ hk, define:

h(x) =
∑
n∈Z

h(n)x−n−1 ∈ (EndVPk)[[x, x−1]].

For λ ∈ P k, let eλ also denote the left multiplication operator acting on C[P k] cor-

responding to eλ ∈ C[P k] and let xλ be the unique operator on C[P k] defined by

xλ · eµ = x〈λ,µ〉 · eµ.

Let

1 = 1⊗ e0, ω =
1

2

d∑
i=1

hi(−1)2e0,

where {h1, · · · , hd} is an orthonormal basis of hk.
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For λ ∈ P k, define Y (eλ, x) ∈ (EndVPk)[[x
1
2 , x−

1
2 ]] by:

YZ(eλ, x) = exp

( ∞∑
n=1

λ(−n)

n
xn

)
exp

(
−
∞∑
n=1

λ(n)

n
xn

)
eλxλ.

For a more general v = h1(−n1) · · ·hj(−nj) ⊗ eλ, where h1, · · · , hj ∈ hk, n1, · · · , nj ∈

Z+, λ ∈ P k, we define

YZ(v, x) = ◦
◦

(
1

(n1 − 1)!

(
d

dx

)n1−1

h1(x)

)
· · ·

(
1

(nj − 1)!

(
d

dx

)nj−1

hj(x)

)
YZ(eλ, x)◦◦

We uniquely extend this definition of YZ to whole of VPk by linearity, and we get a

linear map:

YZ(·, x)· : VPk ⊗ VPk −→ VPk [[x
1
2 , x−

1
2 ]].

Then,

YZ(·, x) ·
∣∣
V
Qk
⊗V

Qk
: VQk ⊗ VQk −→ VQk [[x, x−1]]

and

YZ(·, x) ·
∣∣
V
Qk
⊗V

Pk
: VQk ⊗ VPk −→ VPk [[x, x−1]].

We denote the above restrictions of YZ by YZ again.

The space VPk is spanned by eigenvectors of the operator L(0)(= ω1), and hence

can be graded by L(0) eigenvalues. This is the grading by weight. With this grading,

(VQk , YZ,1, ω) becomes a vertex operator algebra, and (VPk , YZ) becomes an ordinary

VQk−module.

3.4.2 Some twisted modules for VQk

Define a map

θ :VQk = S((ĥkZ)−)⊗ C[Qk] −→ VQk

h1(−n1) · · ·hj(−nj)⊗ eλ 7−→ (−1)jh1(−n1) · · ·hj(−nj)⊗ e−λ (3.4.8)

where h1, · · · , hj ∈ hk, n1, · · · , nj ∈ Z+, λ ∈ Qk. It is easy to see that θ defines an

automorphism of the vertex operator algebra VQk of order 2.

Let T be a one-dimensional Qk−module, on which each element of Qk acts as a

scalar with values in {1,−1}. We consider T as a C[Qk]−module. From (3.4.5), recall

the space V T
Qk

= S((ĥkZ+1/2)−)⊗ T .
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Following Chapter 9 of [FLM], we define a θ−twisted VQk−module structure on

V T
Qk

. For eµ = 1⊗ eµ ∈ VQk , define Y0(eµ, x) ∈ (EndV T
Qk

)[[x1/2, x−1/2]] by:

Y0(eµ, x) = 2−〈µ,µ〉 exp

 ∑
n∈N+1/2

µ(−n)

n
xn

 exp

− ∑
n∈N+1/2

µ(n)

n
x−n

x−〈µ,µ〉/2eµ

(3.4.9)

where the factor eµ acts on the tensorand T . More generally, for v = h1(−n1) · · ·hj(−nj)⊗

eµ, where h1, · · · , hj ∈ hk, n1, · · · , nj ∈ Z+, µ ∈ Qk, we define

Y0(v, x) = ◦
◦

(
1

(n1 − 1)!

(
d

dx

)n1−1

h1(x)

)
· · ·

(
1

(nj − 1)!

(
d

dx

)nj−1

hj(x)

)
Y0(eµ, x)◦◦

(3.4.10)

We extend the map Y0 to VQk linearly.

Now let cmn be a family of constants defined by:

∑
m,n∈N

cmnx
myn = − log

(
(1 + x)1/2 + (1 + y)1/2

2

)
,

c00 = 0. (3.4.11)

Let {h1, · · · , hd} be an orthonormal basis of hk, and let

∆x =
∑
m,n∈N

d∑
i=1

cmnhi(m)hi(n)x−m−n ∈ (EndVQk)[x−1] (3.4.12)

Finally, for v ∈ VQk , we define

YZ+1/2(v, x) = Y0(exp(∆x)v, x) ∈ (EndV T
Qk)[[x1/2, x−1/2]]. (3.4.13)

The space V T
Qk

can be graded by eigenvalues of the operator L(0), and from chapter

9 of [FLM], we see that (V T
Qk
, YZ+1/2) becomes a θ−twisted VQk−module with this

grading. This grading is referred to as the grading by weight.

3.4.3 Intertwining operators

Following the method of [Ab1] and [ADL], we give some twisted intertwining operators

among untwisted and θ−twisted VQk−modules. We use special notation for the modules

involved as we are dealing with explicit examples. First we recall the following notation:

βi := (0, · · · , 0, β, 0, · · · , 0) ∈ Qk, where β ∈ Q,
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and where the non-trivial component is in the ith position.

Turn C into a one-dimensional Qk−module such that each αi acts as either 1 or −1

on C. To record the action of each αi, we denote this module by Cε1,··· ,εk where each

αi acts on C by the scalar εi ∈ {1,−1}. We similarly denote 1 ∈ Cε1,··· ,εk by 1ε1,··· ,εk .

Fix a sequence ε1, · · · εk such that each εi ∈ {1,−1}. For the sake of brevity, we denote

the module Cε1,··· ,εk by T , and the module C(−1)〈λ,αk〉ε1,··· ,(−1)〈λ,αk〉εk by T λ for λ ∈ P k.

Fix a system Λ of representatives for the cosets P k/Qk. We assume that the coset

Qk is represented by 0. Fix a λ ∈ Λ. Consider the following linear map:

fλ : T −→ T λ (3.4.14)

1 = 1ε1,··· ,εk 7−→ 1(−1)〈λ,α1〉ε1,··· ,(−1)〈λ,αk〉εk = 1.

Then we have

(−1)〈λ,µ〉f ◦ eµ = eµ ◦ f where µ ∈ Qk. (3.4.15)

For γ ∈ P k, γ = λ+ µ where λ ∈ Λ, µ ∈ Qk define a linear map:

ηγ = eµ ◦ fλ,

that is,

ηγ :T −→ T λ

1ε1,··· ,εk 7−→ eµ · 1(−1)〈λ,α1〉ε1,··· ,(−1)〈λ,αk〉εk .

Lemma 3.4.1. [ADL] For any γ ∈ λ+Qk and µ̃ ∈ Qk,

eµ̃ ◦ ηγ = (−1)〈µ̃,γ〉ηγ ◦ eµ̃

eµ̃ ◦ ηγ = ηγ+µ̃ = ηγ−µ̃.

Proof. First part is clear from the basic property (3.4.15) of fλ, and the second eqality

in the second part is clear from the fact that square of each element of Qk acts trivially

on each of the modules Cε1,··· ,εk that we are considering.

Now we present the construction of a twisted intertwining operator Yt of type(
Tλ

V
λ+Qk

T

)
, given in [ADL], which is based on the twisted vertex operator construction

of Chapter 9 of [FLM].
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For eγ = 1⊗ eγ ∈ VPk (later, we will restrict ourselves to γ ∈ λ+Qk), define

X t0(eγ , x) : VPk −→ (EndMZ+1/2(1)){x} (3.4.16)

by:

X t0(eγ , x) = 2−〈γ,γ〉 exp

 ∑
n∈N+1/2

γ(−n)

n
xn

 exp

− ∑
n∈N+1/2

γ(n)

n
x−n

x−〈γ,γ〉/2.

(3.4.17)

Note how X t0 differs from Y0 of (3.4.9). More generally, for v = h1(−n1) · · ·hj(−nj)⊗eγ ,

where h1, · · · , hj ∈ hk, n1, · · · , nj ∈ Z+, γ ∈ P k, we define

X t0(v, x) = ◦
◦

(
1

(n1 − 1)!

(
d

dx

)n1−1

h1(x)

)
· · ·

(
1

(nj − 1)!

(
d

dx

)nj−1

hj(x)

)
X t0(eγ , x)◦◦

(3.4.18)

We extend the map X t0 to VPk linearly. Recall the constants cmn(m,n ∈ N) from

(3.4.11) and the operator ∆x of (3.4.12). Finally, for v ∈ VPk , we define

X t(v, x) = X t0 (exp(∆x)v, x) ∈ (EndMZ+1/2(1)){x}. (3.4.19)

Modifying the arguments from Chapter 9 of [FLM], we get that,

x0
−1δ

(
x1 − x2

x0

)
X t(a, x1)X t(u, x2)

−(−1)〈µ,γ〉x0
−1δ

(
−x2 + x1

x0

)
X t(u, x1)X t(a, x2)

=
1

2

∑
j=0,1

x−1
0 δ

(
(−1)j

(x1 − x0)1/2

x
1/2
2

)
X t(YZ(θj · a, x0)u, x2), (3.4.20)

and that

X t(L(−1)u, x) =
d

dx
X t(u, x), (3.4.21)

for a ∈ S((ĥkZ)−) ⊗ eµ ⊂ VQk and u ∈ S((ĥkZ)−) ⊗ eγ ⊂ VPk . These are essentially

equations 5.10 and 5.11 of [ADL].

Finally, in order to correct for the factor (−1)〈µ,γ〉 and to introduce the one-dimensional

Qk−module T in the picture, we make the following definitions:

Yt : Vλ+Qk −→ Hom (V T
Qk , V

Tλ

Qk ){x}, (3.4.22)
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such that for u ∈ S((ĥkZ)−)⊗ eλ+µ ⊂ Vλ+Qk , ν ∈ Qk,

Yt(u, x) = X t(u, x)⊗ ηλ+µ. (3.4.23)

Note that as of now, the above definition depends on the choice of coset representatives

of P k/Qk.

Now, as in [ADL], we remark that for a ∈ S((ĥkZ)−)⊗eµ ⊂ V0+Qk , since 0 represents

Qk in Λ,

f0 : T −→ T 0 = T (3.4.24)

f0 = IdT (3.4.25)

ηµ : T −→ T 0 = T (3.4.26)

ηµ = eµ (3.4.27)

and so Yt(a, x) is exactly the YZ+1/2 operator which defines the twisted module structure

of V T
Qk

.

Using (3.4.22), Lemma 3.4.1, (3.4.20), (3.4.24)−(3.4.27) we see that (cf. Proposition

5.10 of [ADL]):

Proposition 3.4.2. For λ ∈ Λ, Yt is a (non-zero) twisted intertwining operator of type( V T
λ

Qk

V
λ+Qk

V T
Qk

)
. That is, the following identities hold for any v ∈ VQk and w(1) ∈ Vλ+Qk :

x0
−1δ

(
x1 − x2

x0

)
YZ+1/2(v, x1)Yt(w(1), x2)

−x0
−1δ

(
−x2 + x1

x0

)
Yt(w(1), x1)YZ+1/2(v, x2)

=
1

2

∑
j=0,1

x−1
0 δ

(
(−1)j

(x1 − x0)1/2

x
1/2
2

)
Yt(YZ(θj · v, x0)w(1), x2) (3.4.28)

and

Yt(L(−1)v, x) =
d

dx
Yt(v, x). (3.4.29)

Now we see what happens if we change the set of coset representatives from Λ to

some new set Λ̃. We continue to assume that 0 ∈ Λ̃, that is, the coset Qk is still

represented by 0. We denote the changes at each step by a tilde. So, λ − λ̃ ∈ Qk
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for λ ∈ Λ and λ̃ ∈ Λ̃. Due to the very specific inner product that we are dealing

with, fλ̃ = fλ (cf. (3.4.14)). For γ ∈ P k if γ = λ + µ where λ ∈ Λ, µ ∈ Qk and

γ = λ̃+ µ̃ where λ̃ ∈ Λ̃, µ̃ ∈ Qk, then,

η̃γ = eµ̃ ◦ fλ̃ = eµ̃ ◦ fλ = eλ−λ̃+µ ◦ fλ = eλ−λ̃ηγ . (3.4.30)

Hence, we formulate:

Proposition 3.4.3. If the choice of Λ is changed to Λ̃, where 0 ∈ Λ̃, then the new

twisted intertwining operator Ỹt is of the type
( V T

λ

Qk

V
λ+Qk

V T
Qk

)
, which is the same as the type

of the previous twisted intertwining operator Yt. Moreover, Ỹt(·, x)· = eλ−λ̃Yt(·, x)·,

that is, Yt and Ỹt are (non-zero) scalar multiples of each other.

3.4.4 Some level 1 twisted fusion rules

We work in the setting of the previoius subsection. Our methods are the same as the

ones used in [DL].

Proposition 3.4.4. We have the following twisted fusion rules:

tN

(
V S
Qk

Vλ+Qk V
T
Qk

)
=

 1 if S = T λ

0 otherwise.

We break the proof in several steps. First, without loss of generality, let us assume

that λ is chosen so that for each i = 1, · · · , k,

〈λ, αi〉 ∈ {0, 1}, (3.4.31)

that is, choose λ in the “fundamental domain” of the lattice P k. We observe that

1⊗T is the lowest L(0)-weight space of the module V T
Qk

, with weight 1
16dim hk = k

16 , a

number which is independent of T . We see that Vλ+Qk is (1
2〈λ, λ〉+Z)-graded and V T

Qk

and V S
Qk

are both ( k16 + 1
2Z)-graded. For the sake of brevity, we let

It
(
S

λ T

)
= space of twisted intertwining operators of type

(
V S
Qk

Vλ+Qk V
T
Qk

)

N t

(
S

λ T

)
= dim It

(
S

λ T

)
= N t

(
V S
Qk

Vλ+Qk V
T
Qk

)
.



57

For any Yt ∈ It
(
S
λ T

)
, it is clear from remark 3.3.7 that the powers of x appearing

in Yt(eλ, x) belong to −1
2〈λ, λ〉+ 1

2Z = −wt eλ + 1
2Z. For the sake of conceptual ease,

we define

Yt(eλ, x) =
∑
n∈ 1

2
Z

(eλ)Y
t

[n]x
n−wt λ, (3.4.32)

so that

wt (eλ)Y
t

[n] = n. (3.4.33)

Conforming to the notation in the previous section, we also let

T = Cτ1,··· ,τk (3.4.34)

1T = 1τ1,··· ,τk ∈ T (3.4.35)

S = Cσ1,··· ,σk (3.4.36)

1S = 1σ1,··· ,σk ∈ S (3.4.37)

where τ1, · · · , τk, σ1, · · · , σk ∈ {−1, 1}. For i = 1, · · · , k, let

Ei = eαi + e−αi ∈ V 0
Qk
. (3.4.38)

For Yt ∈ It
(
S
λ T

)
and i = 1, · · · , k, extracting Resx0Resx1 of (3.3.1), we obtain - if

〈λ, αi〉 = 0, then

[Ei0,Yt(eλ, x)] = Yt(Ei0eλ, x) = 0, (3.4.39)

and if 〈λ, αi〉 = 1 then

[Ei0,Yt(eλ, x)] = Yt(Ei0eλ, x) = Yt(eλ−αi , x). (3.4.40)

Bracketing once more, we get that if 〈λ, αi〉 = 1 then

[Ei0, [E
i
0,Yt(eλ, x)]] = Yt(Ei0Ei0eλ, x) = Yt(eλ, x). (3.4.41)

Extracting relevant coefficients, if 〈λ, αi〉 = 0, then

[Ei0, (e
λ)Y

t

[0] ] = 0, (3.4.42)

and if 〈λ, αi〉 = 1 then

[Ei0, [E
i
0, (e

λ)Y
t

[0] ]] = (eλ)Y
t

[0] . (3.4.43)
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Since wt Ei = 1, Ei0(1⊗T ) ⊂ (1⊗T ) and similarly for S. In fact, Ei0 acts by the scalar

1
2τi on (1⊗T ) and by the scalar 1

2σi on (1⊗S). By definition, (eλ)Y
t

[0](1⊗T ) ⊂ (1⊗S).

Clearly, (eλ)Y
t

[0](1⊗ 1T ) is a scalar multiple of 1⊗ 1S . Assume that (eλ)Y
t

[0](1⊗ 1T ) 6= 0.

Now we apply (3.4.42) and (3.4.43) to 1 ⊗ 1T . For i = 1, · · · , k, 〈λ, αi〉 = 0, (3.4.42)

implies that

1

2
σi −

1

2
τi = 0,

or

σi = τi (3.4.44)

and for 〈λ, αi〉 = 1, (3.4.43) implies that

1

4
σ2
i −

1

4
σiτi −

1

4
σiτi −

1

4
τ2
i = 1,

or

σi 6= τi. (3.4.45)

We record this as a lemma.

Lemma 3.4.5. With λ chosen as in (3.4.31), S and T as in (3.4.34), (3.4.36) respec-

tively, let Yt ∈ It
(
S
λ T

)
, satisfying (eλ)Y

t

[0](1⊗ 1T ) 6= 0. Then, σi = τi if 〈λ, αi〉 = 0 and

σi 6= τi if 〈λ, αi〉 = 1. In other words, S = T λ.

Lemma 3.4.6. In the setting of previous lemma, (eλ)Y
t

[0](1⊗1T ) = 0 implies Yt(·, x)· =

0.

Proof. Since V T
Qk

and V S
Qk

are both graded by the same coset of 1
2Z, namely, ( k16 + 1

2Z),

(eλ)Y
t

[n](1 ⊗ 1T ) = 0 for all n 6∈ 1
2Z. Clearly, for any n < 0 also, (eλ)Y

t

[n](1 ⊗ 1T ) = 0.

Now let n > 0, n ∈ 1
2Z. We prove (eλ)Y

t

[n](1⊗ 1T ) = 0 by induction on n. Assume that

(eλ)Y
t

[q] (1 ⊗ 1T ) = 0 for all 0 ≤ q < n, q ∈ 1
2Z. By the Jacobi identity (3.3.1) we have

the commutation relation

[YZ+1/2(α(−1)1, x1),Yt(eλ, x2)] =

= Resx0x2
−1δ

(
x1 − x0

x2

)(
x1 − x0

x2

)−1/2

Yt(YZ(α(−1)1, x0)eλ, x2)

= x2
−1δ

(
x1

x2

)(
x1

x2

)−1/2

〈α, λ〉Yt(eλ, x2).
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for all α ∈ hk. Extracting coefficients, we get

[α(m), (eλ)Y
t

[n]] = 〈λ, α〉(eλ)Y
t

[n−m]

for all m ∈ Z + 1/2. Therefore,

α(m)(eλ)Y
t

[n](1⊗ 1T )

= (eλ)Y
t

[n]α(m)(1⊗ 1T ) + 〈λ, α〉(eλ)Y
t

[n−m](1⊗ 1T ) = 0,

for all α ∈ hk and m ∈ Z + 1/2 such that m > 0, by induction assumption. Hence,

(eλ)Y
t

[n](1⊗ 1T ) ∈ C(1⊗ 1S),

which can not happen unless

(eλ)Y
t

[n](1⊗ 1T ) = 0,

because

wt (eλ)Y
t

[n](1⊗ 1T ) > wt 1⊗ 1S .

This proves that Yt(eλ, x)(1⊗1T ) = 0. Now the lemma follows by invoking proposition

3.3.13.

Lemma 3.4.7. (Cf. Proposition 12.8, [DL]) N t
(
S
λ T

)
≤ 1.

Proof. The proof is exactly as in [DL]. Assume that N t
(
S
λ T

)
> 1. We reproduce it

here for the sake of completeness. Let Yt,X t ∈ It
(
S
λ T

)
with Yt 6= 0. By lemma 3.4.6,

(eλ)
Yt
[0](1⊗ 1T ) is a non-zero scalar multiple of 1⊗ 1S , and there exists a scalar c such

that

(eλ)
X t
[0] (1⊗ 1T ) = c (eλ)

Yt
[0](1⊗ 1T ).

That is,

(eλ)
X t−cYt
[0] (1⊗ 1T ) = 0.

Since X t − cYt ∈ It
(
S
λ T

)
, lemma 3.4.6 implies that

X t − cYt = 0.
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Proof of lemma 3.4.4: From lemmas 3.4.5 and 3.4.6 we conclude that N t
(
S
λ T

)
= 0 if

S 6= T λ. From lemma 3.4.2 we obtain N t
(
Tλ

λ T

)
≥ 1 and then lemma 3.4.7 implies that

N t
(
Tλ

λ T

)
= 1.

3.5 Example - the vertex operator algebra Lŝl2
(k, 0)

3.5.1 The setting

Let g = sl(2,C) be the 3-dimensional complex simple Lie algebra with a standard basis

{α, xα, x−α} and a symmetric invariant bilinear form 〈·, ·〉 such that

[α, xα] = 2xα, [α, x−α] = −2x−α, [xα, x−α] = α

〈α, α〉 = 2, 〈xα, x−α〉 = 1, 〈α, xα〉 = 〈α, x−α〉 = 〈x±α, x±α〉 = 0. (3.5.1)

Take the Cartan subalgebra h = Cα. We identify h with its dual h∗ via the form 〈·, ·〉.

Under this identification, α gets identified with the root corresponding to a root vector

xα. The affine Lie algebra ĝ = ŝl(2,C) is an infinite dimensional Lie algebra whose

underlying vector space is

ĝ = g⊗ C[t, t−1]⊕ Cc,

with

[ĝ, c] = 0 (3.5.2)

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n + 〈x, y〉mδm+n,0c, (3.5.3)

where x, y ∈ g and m,n ∈ Z. Also define

g̃ = g⊗ C[t, t−1]⊕ Cc⊕ Cd,

with an extra relation

[d, x⊗ tm ⊕ Cc⊕ Cd] = mx⊗ tm (3.5.4)

where x ∈ g and m ∈ Z. For a ∈ g, let

a(x) =
∑
n∈Z

(a⊗ tn)x−n−1.
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Let θ be the unique involution of g defined by

θ : xα 7−→ x−α, θ : x−α 7−→ xα, θ : α 7−→ −α. (3.5.5)

Then θ preserves the inner product 〈·, ·〉 on g. As of now, this notation conflicts with

the previously defined θ, but remark 3.5.7 clears this confusion. For i ∈ Z/2Z, set

g(i) = {x ∈ g | θx = (−1)ix}. (3.5.6)

Define

ĝ[θ] = g(0) ⊗ C[t, t−1] ⊕ g(1) ⊗ t1/2C[t, t−1] ⊕ Cc, (3.5.7)

a Lie subalgebra of the Lie algebra g ⊗ C[t1/2, t−1/2] ⊕ Cc, in which the brackets are

given by (3.5.2) and (3.5.3) with m,n taken in 1
2Z. Also define

g̃[θ] = g(0) ⊗ C[t, t−1] ⊕ g(1) ⊗ t1/2C[t, t−1] ⊕ Cc⊕ Cd, (3.5.8)

in which the brackets for d are given by the formula (3.5.4) with m ∈ Z if x ∈ g(0) and

m ∈ Z + 1/2 if x ∈ g(1).

The Lie algebras g̃ and g̃[θ] are isomorphic (but not graded-isomorphic) via the

following map

τ : g̃ −→ g̃[θ]

τ : c 7−→ c

τ : d 7−→ d− 1

4
(xα + x−α)⊗ t0

τ : α⊗ tn 7−→ (xα + x−α)⊗ tn +
1

2
δn,0c (n ∈ Z)

τ : xα ⊗ tn 7−→
1

2
(α− (xα − x−α))⊗ tn+1/2 (n ∈ Z)

τ : x−α ⊗ tn 7−→
1

2
(α+ (xα − x−α))⊗ tn−1/2 (n ∈ Z). (3.5.9)

Keeping this in mind, we make the following definition.

Definition 3.5.1. A weight vector in a g̃[θ]-module is defined to be any vector which is

a simultaneous eigenvector for the operators c, d and (xα+x−α)⊗ t0. A highest weight

vector in a g̃[θ]-module is a weight vector that is annihilated by 1
2(α− (xα−x−α))⊗ t1/2

and 1
2(α+ (xα − x−α))⊗ t1/2. A g̃[θ]-module is called a weight module if it is spanned
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by its weight vectors. A g̃[θ]-module is a highest weight module if it is a weight module

generated by a highest weight vector.

Remark 3.5.2. It follows that a highest weight vector in a g̃[θ]-module is annihilated

by (xα + x−α)⊗ tn, α⊗ tn−1/2 and (xα − x−α)⊗ tn−1/2, whenever n ∈ Z and n > 0.

Remark 3.5.3. The Lie algebras g̃ and g̃[θ] are respectively the “homogeneous real-

ization” and the “principal realization” of the affine Lie algebra A
(1)
1 .

Fix a positive integer k. Recall the space VPk from previous section. Consider a

linear injection i from g to VQk defined uniquely by

i(α) = α1(−1) + · · ·αk(−1) (3.5.10)

i(x±α) = e±α1 + · · ·+ e±αk . (3.5.11)

Proposition 3.5.4. ([DL], Proposition 13.1) The linear map π : ĝ −→ End VPk given

by

π(c) = k (3.5.12)

π(a(x)) = YZ(i(a), x) where a ∈ g (3.5.13)

defines a ĝ−module structure of level k on the space VPk .

Set

L
ŝl2

(k, 0) = U(ĝ) · 1 (⊂ VQk ⊂ VPk) (3.5.14)

and let

ωgk =
1

2(k + 2)

(
xα(−1)x−α(−1) · 1 + x−α(−1)xα(−1) · 1 +

1

2
α(−1)α(−1) · 1

)
,

ωgk ∈ Lŝl2
(k, 0). (3.5.15)

Proposition 3.5.5. ([DL], Proposition 13.8, Theorem 13.12) The structure

L
ŝl2

(k, 0) = (L
ŝl2

(k, 0), YZ,1, ωgk)

(contained inside VPk) with its grading inherited from that of VPk , is a vertex operator

algebra of rank
3k

k + 2
.
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Recall the automorphism θ of the vertex operator algebra (VQk , YZ,1, ω) defined in

(3.4.8).

Proposition 3.5.6. θ induces an automorphism (also denoted by θ) of order 2 of the

vertex operator algebra L
ŝl2

(k, 0).

Proof. Using the properties of the maps i and θ, it is easy to see that

θi(x±α) = θ(e±α1 + · · ·+ e±αk) = e∓α1 + · · ·+ e∓αk = i(x∓α) (3.5.16)

θi(α) = θ(α1(−1) + · · ·+ αk(−1)) = −(α1(−1) + · · ·+ αk(−1)) = −i(α),(3.5.17)

which implies that

θL
ŝl2

(k, 0) = L
ŝl2

(k, 0). (3.5.18)

We already know that

θ1 = 1 (3.5.19)

θYZ(v, x)θ−1 = YZ(θv, x) for v ∈ VQk (3.5.20)

θ2 = Id. (3.5.21)

It remains to prove that θ fixes ωgk . ωgk can be written as

ωgk = Resx1Resx2

1

2(k + 2)
(x1x2)−1

(
YZ(i(xα), x1)YZ(i(x−α), x2) · 1

+YZ(i(x−α), x1)YZ(i(xα), x2) · 1 + YZ(i(α), x1)YZ(i(α), x2) · 1

)
. (3.5.22)

So we get that

θωgk = Resx1Resx2

1

2(k + 2)
(x1x2)−1

(
θYZ(i(xα), x1)YZ(i(x−α), x2) · 1

+θYZ(i(x−α), x1)YZ(i(xα), x2) · 1 + θYZ(i(α), x1)YZ(i(α), x2) · 1

)

= Resx1Resx2

1

2(k + 2)
(x1x2)−1

(
YZ(θi(xα), x1)YZ(θi(x−α), x2) · θ1

+YZ(θi(x−α), x1)YZ(θi(xα), x2) · θ1 + YZ(θi(α), x1)YZ(θi(α), x2) · θ1

)
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= Resx1Resx2

1

2(k + 2)
(x1x2)−1

(
YZ(i(x−α), x1)YZ(i(xα), x2) · 1

+YZ(θi(xα), x1)YZ(i(x−α), x2) · 1 + YZ(−i(α), x1)YZ(−i(α), x2) · 1

)
,(3.5.23)

where the last equality follows from the definition of the maps i and θ. Hence we

conclude that θωgk = ωgk .

Remark 3.5.7. A look at (3.5.16) and (3.5.17) shows that

i(θa) = θi(a) (3.5.24)

for all a ∈ g, where the θ on the left hand side is the involution of g and the one on the

right acts on the space VPk .

Notation 3.5.8. Recall that L(n) = ωn+1. Let us denote the component operators

corresponding to ωgk as Lgk(n) = (ωgk)n+1.

Lemma 3.5.9. (cf. [DL], Proposition 13.5) Let (W,YW ) be a θ−twisted VQk-module.

For a ∈ g, let

aW (x) = YW (i(a), x) =
∑
n∈ 1

2
Z

aW (n)x−n−1. (3.5.25)

Then

[Lgk(m), aW (n)] = −naW (m+ n), (3.5.26)

[L(m), aW (n)] = −naW (m+ n), (3.5.27)

for m ∈ Z and n ∈ 1
2Z. In other words,

[YW (ωgk − ω, x1), YW (i(a), x2)] = 0 (3.5.28)

(cf. [DL], (13.40)).

Proof. First, let a ∈ g(0). The proof in this case is essentially the proof of Proposition

13.5 in [DL]. From (3.5.17) and (3.5.16), θi(a) = i(a) and so i(a) ∈ L
ŝl2

(k, 0)0 in the

notation of lemma 3.3.1. Taking u = i(a), v = ωgk in (3.3.1) and taking Resx0 , we get:

[YW (i(a), x1), YW (ωgk , x2)] = Resx0x2
−1δ

(
x1 − x0

x2

)
YW (YZ(i(a), x0)ωgk , x2).(3.5.29)
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Equation (13.37) of [DL] gives

YZ(i(a), x0)ωgk = i(a)x−2
0 + a nonsingular series in x0. (3.5.30)

Hence, (3.5.29) gives (cf. [DL] (13.38))

[YW (i(a), x1), YW (ωgk , x2)] = −z−1
2 YW (x2)

∂

∂x1
δ

(
x1

x2

)
, (3.5.31)

or equivalently,

[Lgk(m), aW (n)] = −naW (m+ n) (3.5.32)

for m,n ∈ Z. Keeping in mind the formal monodromy condition, we see that aW (n) = 0

if n ∈ Z + 1
2 , we get

[Lgk(m), aW (n)] = −naW (m+ n) (3.5.33)

for m ∈ Z, n ∈ 1
2Z.

Now let a ∈ g(1). From (3.5.17) and (3.5.16), θi(a) = −i(a) and so i(a) ∈ L
ŝl2

(k, 0)1

in the notation of lemma 3.3.1. Taking u = i(a), v = ωgk in (3.3.1), taking Resx0 and

then using formal Taylor theorem, we get:

[YW (i(a), x1), YW (ωgk , x2)]

= Resx0x2
−1δ

(
x1 − x0

x2

)(
x1 − x0

x2

)−1/2

YW (YZ(i(a), x0)ωgk , x2)

= Resx0x
−1
2

(
e
−x0

∂
∂x1 δ

(
x1

x2

))(
e
−x0

∂
∂x1

(
x1

x2

)−1/2
)
YW (YZ(i(a), x0)ωgk , x2)

Again, using (3.5.30) we get

[YW (i(a), x1), YW (ωgk , x2)]

= −x2
−1δ

(
x1

x2

)(
∂

∂x1

(
x1

x2

)−1/2
)
YW (i(a), x2)

−
(

∂

∂x1
x2
−1δ

(
x1

x2

))(
x1

x2

)−1/2

YW (i(a), x2)

= −x−1
2

∂

∂x1

((
x1

x2

)−1/2

δ

(
x1

x2

))
YW (i(a), x2)
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Extracting appropriate coefficients, we get that

[Lgk(m), aW (n)] = −naW (m+ n) (3.5.34)

for m ∈ Z, n ∈ Z + 1
2 . Keeping in mind the formal monodromy condition, we see that

aW (n) = 0 if n ∈ Z, we get

[Lgk(m), aW (n)] = −naW (m+ n) (3.5.35)

for m ∈ Z, n ∈ 1
2Z.

Taking u = ω ∈ L
ŝl2

(k, 0)0, v = i(a) in (3.3.1) and taking Resx0 , we get

[YW (ω, x1), YW (i(a), x2)] = Resx0x2
−1δ

(
x1 − x0

x2

)
YW (YZ(ω, x0)i(a), x2). (3.5.36)

It is well known that i(a) ∈ VPk is a “lowest weight vector” of weight 1. So, the above

equation simplifies as

[YW (ω, x1), YW (i(a), x2)]

= x−1
2 YW (L(−1)i(a), x2)δ

(
x1

x2

)
− x−1

2 YW (i(a), x2)
∂

∂x1
δ

(
x1

x2

)
. (3.5.37)

However, L(m) = Lgk(m) on L
ŝl2

(k, 0) for any integer m with m ≥ −1, as given in

Proposition 13.8, [DL]. So,

[YW (ω, x1), YW (i(a), x2)]

= x−1
2 YW (Lgk(−1)i(a), x2)δ

(
x1

x2

)
− x−1

2 YW (i(a), x2)
∂

∂x1
δ

(
x1

x2

)
. (3.5.38)

Since YW satisfies the Lgk(−1)−derivative property,

[YW (ω, x1), YW (i(a), x2)]

= x−1
2

(
d

dx2
YW (i(a), x2)

)
δ

(
x1

x2

)
− x−1

2 YW (i(a), x2)
∂

∂x1
δ

(
x1

x2

)
. (3.5.39)

Extracting appropriate coefficients and again taking a note of formal monodromy con-

dition,

[L(m), aW (n)] = −naW (m+ n) (3.5.40)

for m ∈ Z, n ∈ 1
2Z. Now

[YW (ωgk − ω, x1), YW (i(a), x2)] = 0

follows.
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3.5.2 Intertwining operators

Now, exactly as in Chapter 13, [DL], we modify the twisted intertwining operators

in the previous section to get twisted intertwining operators for the vertex operator

algebra L
ŝl2

(k, 0). We work in the setting and notation of Proposition 3.4.2. We begin

by investigating the action of g̃[θ] on the spaces V T
Qk

.

Lemma 3.5.10. The spaces V T
Qk

for various one-dimensional Qk−modules T on which

each element of Qk acts a scalar belonging to {−1, 1} are modules for the algebra g̃[θ]

via the action πT : g̃[θ] −→ EndV T
Qk

as follows:

πT : c 7−→ k Id

πT : d 7−→ d (the degree operator)

πT :
∑
n∈Z

(a⊗ tn)x−n−1 7−→ Y0(i(a), x) = YZ+1/2(i(a), x) a ∈ g(0)

πT :
∑

n∈Z+1/2

(a⊗ tn)x−n−1 7−→ Y0(i(a), x) = YZ+1/2(i(a), x) a ∈ g(1). (3.5.41)

In fact, these spaces are k−fold tensor products of basic modules for g̃[θ]. In other

words, we can decompose V T
Qk

as

V T
Qk = V T1

Q1
⊗ · · · ⊗ V Tk

Qk
, (3.5.42)

where each Qi is a copy of the lattice Q and each Ti is a one-dimensional module for

Qi on which each element of Qi acts by a scalar belonging to {−1, 1}. Also, V T
Qk

breaks

up as a direct sum of standard modules for the algebra g̃[θ].

Proof. That Y0(i(a), x) = YZ+1/2(i(a), x) for a ∈ g follows from the definition of ∆x.

(cf. (9.2.20), (9.2.43), (9.2.44), [FLM]). For k = 1 the lemma follows from theorem

7.4.10 and remark 7.4.14 of [FLM]. For k > 1, it is clear that the space V T
Qk

breaks

up as a tensor product of aforementioned spaces, and then it is easy to see that we get

the required representation of g̃[θ] by using the definition of the map i. The complete

reducibility as a of V T
Qk

as a g̃[θ] module follows by observing that g̃[θ] is isomorphic to

the Kac-Moody algebra A
(1)
1 (cf. remark 3.5.3) and then applying theorem 10.7 and its

corollary from [K].
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Lemma 3.5.11. If w ∈ V T
Qk

is a highest weight vector for the action of g̃[θ] then w is

L(0)-homogeneous.

Proof. From the definition of a highest weight vector (definition 3.5.1), we see that w is

an eigenvector for d ∈ g̃[θ]. Using (3.5.41), w is homogeneous with respect to the degree

operator d acting on V T
Qk

. The lemma follows by observing that L(0) and the degree

operator d differ only by a global constant, as could be seen from equation (9.4.5) of

[FLM]:

L(0) = −d+
1

24
dim hk = −d+

k

24
. (3.5.43)

Lemma 3.5.12. If w ∈ V T
Qk

is a highest weight vector for the action of g̃[θ] then w is

Lgk(0)-homogeneous.

Proof. We can write ωgk as

ωgk =
1

2(k + 2)

(
1

2
(xα + x−α)(−1)(xα + x−α)(−1) · 1

−1

2
(xα − x−α)(−1)(xα − x−α)(−1) · 1 +

1

2
α(−1)α(−1) · 1

)
. (3.5.44)

Let u = i(xα +x−α). Then, using θu = u in (3.3.1) and taking Resx1Resx0x
−1
0 gives

YZ+1/2(u−1u, x2) = Resx1(x1 − x2)−1YZ+1/2(u, x1)YZ+1/2(u, x2)

+Resx1(x2 − x1)−1YZ+1/2(u, x2)YZ+1/2(u, x1)

=
∑

m∈Z,m<0

umx
−m−1
2 YZ+1/2(u, x2) + YZ+1/2(u, x2)

∑
m∈Z,m≥0

umx
−m−1
2 .(3.5.45)

Applying to the highest weight vector w, which is an eigenvector for u0, and which is

annihilated by um for m ∈ Z,m > 0, we get

YZ+1/2(u−1u, x2)w = (3.5.46)

=
∑

m∈Z,m<0

umx
−m−1
2 YZ+1/2(u, x2)w + YZ+1/2(u, x2)

∑
m∈Z,m≥0

umwx
−m−1
2

=
∑

m∈Z,m<0

umx
−m−1
2

∑
m∈Z,m≤0

umwx
−m−1
2 +

∑
m∈Z,m≤0

umx
−m−1
2 u0wx

−1
2 .(3.5.47)
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Extracting the coefficient of x−2
2 we get

(u−1u)1w = u0u0w = a scalar multiple of w. (3.5.48)

Now let u = i(xα − x−α) or u = i(α). In both cases, θu = −u. Multiplying (3.3.1)

by x
1/2
1 in order to get integral powers of x1, we get

x0
−1δ

(
x1 − x2

x0

)
YZ+1/2(u, x1)YZ+1/2(u, x2)x

1/2
1

−x0
−1δ

(
x2 − x1

−x0

)
YZ+1/2(u, x2)YZ+1/2(u, x1)x

1/2
1

= x2
−1δ

(
x1 − x0

x2

)(
x1 − x0

x2

)−1/2

YZ+1/2(YZ(u, x0)u, x2)x
1/2
1

= x1
−1δ

(
x2 + x0

x1

)(
x2 + x0

x1

)1/2

YZ+1/2(YZ(u, x0)u, x2)x
1/2
1

= x1
−1δ

(
x2 + x0

x1

)
(x2 + x0)1/2 YZ+1/2(YZ(u, x0)u, x2) (3.5.49)

Equations (13.29) and (13.30) and the proof of Proposition 13.4 of [DL] say that

u0u = 0 (3.5.50)

u1u = k〈i−1u, i−1u〉1 (3.5.51)

unu = 0 if n > 1. (3.5.52)

Also,

(x2 + x0)1/2 = x
1/2
2

(
1 +

x0

2x2
− x2

0

8x2
2

+ · · ·
)

= x
1/2
2 +

1

2
x0x

−1/2
2 − 1

8
x2

0x
−3/2
2 + · · · .

(3.5.53)

Using this information in (3.5.49) and then taking Resx1Resx0x
−1
0 gives

YZ+1/2(u−1u, x2)x
1/2
2 − k〈i−1u, i−1u〉

8
x
−3/2
2

= Resx1(x1 − x2)−1YZ+1/2(u, x1)YZ+1/2(u, x2)x
1/2
1

+Resx1(x2 − x1)−1YZ+1/2(u, x2)YZ+1/2(u, x1)x
1/2
1 (3.5.54)

or equivalently,

YZ+1/2(u−1u, x2)− k〈i−1u, i−1u〉
8

x−2
2

= Resx1(x1 − x2)−1YZ+1/2(u, x1)YZ+1/2(u, x2)x
1/2
1 x

−1/2
2
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+Resx1(x2 − x1)−1YZ+1/2(u, x2)YZ+1/2(u, x1)x
1/2
1 x

−1/2
2

=

 ∑
m∈Z,m<0

um+1/2x
−m−3/2
2

 YZ+1/2(u, x2)

+YZ+1/2(u, x2)

 ∑
m∈Z,m≥0

um+1/2x
−m−3/2
2

 (3.5.55)

Applying to the highest weight vector w which is annihilated by um for m > 0, m ∈

Z + 1
2 , yields

YZ+1/2(u−1u, x2)w

=
k〈i−1u, i−1u〉

8
wx−2

2 +

 ∑
m∈Z,m<0

um+1/2x
−m−3/2
2

 YZ+1/2(u, x2)w

+ YZ+1/2(u, x2)

 ∑
m∈Z,m≥0

um+1/2x
−m−3/2
2

w

=
k〈i−1u, i−1u〉

8
wx−2

2

+

 ∑
m∈Z,m<0

um+1/2x
−m−3/2
2

 ∑
m∈Z,m<0

um+1/2x
−m−3/2
2

w. (3.5.56)

Extracting the coefficient of x−2
2 ,

(u−1u)1w = (u−1u−11)1 =
k〈i−1u, i−1u〉

8
w = a scalar multiple of w. (3.5.57)

Using (3.5.48), (3.5.57) and (3.5.1) in (3.5.44) and applying to the highest weight

vector w, we finally conclude

Lgk(0)w =
1

2(k + 2)

(
1

2
(i(xα + x−α)0)2 +

k

4

)
w. (3.5.58)

Lemma 3.5.13. Every g̃[θ]-irreducible subspace M of V T
Qk

is spanned by eigenvectors of

Lgk(0), and is thus graded by Lgk(0)-eigenvalues. With this grading, (M,YZ+1/2|L
ŝl2

(k,0))

becomes a θ-twisted L
ŝl2

(k, 0)-module. Equipped with the grading defined by Lgk(0)-

eigenvalues, (V T
Qk
, YZ+1/2|L

ŝl2
(k,0)) is a direct sum of θ-twisted L

ŝl2
(k, 0)-modules.

Proof. Lemma 3.5.41 implies that the space V T
Qk

is a direct sum of highest weight

modules for g̃[θ]. From lemma 3.5.12 we conclude that any highest weight vector is
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Lgk(0)-homogenous. (3.5.41) and (3.5.26) imply that M is spanned by eigenvectors of

Lgk(0). Formal monodromy condition, lower truncation condition, the vacuum property

and the Jacobi identity for YZ+1/2|L
ŝl2

(k,0) (acting on the whole space V T
Qk

) are inherited

from YZ+1/2. The Lgk(−1)-derivative property follows from proposition 13.8 of [DL] and

the L(−1)-derivative property of YZ+1/2. Specifically, if v ∈ L
ŝl2

(k, 0) then

Lgk(−1)v = L(−1)v (3.5.59)

and hence

YZ+1/2|L
ŝl2

(k,0)(Lgk(−1)v, x) = YZ+1/2(Lgk(−1)v, x) = YZ+1/2(L(−1)v, x) =
d

dx
Y (v, x).

(3.5.60)

It remains to prove that components of YZ+1/2(v, x) for v ∈ L
ŝl2

(k, 0) preserve

M . For this we observe that any v could be written as a finite linear combination of

terms of the form i(a1)n1 · · · i(aj)nj1 where ai ∈ g and ni ∈ Z for i = 1, 2, · · · , j. We

proceed by induction on j. Vacuum property implies that components of YZ+1/2(1, x)

preserve M . From (3.5.41) it is clear that components of YZ+1/2(i(a), x) preserve M

for a ∈ g(0) or a ∈ g(1). Assume that components of Y (b, x) preserve M , for some b in

L
ŝl2

(k, 0). Let a ∈ g(s) for s ∈ {0, 1}. Then i(a) ∈ L
ŝl2

(k, 0)s. Equation (3.3.3) with

u = i(a) ∈ L
ŝl2

(k, 0)s gives

YZ+1/2(Y (i(a), x0)b, x2)

= (x2 + x0)−s/2Resx1

(
x0
−1δ

(
x1 − x2

x0

)
YZ+1/2(i(a), x1)YZ+1/2(b, x2)x

s/2
1

−x0
−1δ

(
x2 − x1

−x0

)
YZ+1/2(b, x2)YZ+1/2(i(a), x1)x

s/2
1

)
. (3.5.61)

By assumption on b, coefficient of any monomial in x0 and x2 on the right-hand side

preserves M , and so the same holds for the left-hand side.

Lemma 3.5.14. V T
Qk

is spanned by eigenvectors of Lgk(0)− L(0).

Proof. Lemma 3.5.41 implies that the space V T
Qk

is a direct sum of highest weight

modules for g̃[θ]. From lemmas 3.5.11 and 3.5.12 we conclude that any highest weight

vector is (Lgk(0)−L(0))-homogenous. Now the lemma follows from (3.5.41) and (3.5.28).
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With the help of the lemma above, the operator xLgk
(0)−L(0) defined so that

xLgk
(0)−L(0)v = xhv (3.5.62)

if

(Lgk(0)− L(0))v = hv (3.5.63)

where h ∈ C, v ∈ V T
Qk

could be extended uniquely and in a well-defined manner to the

whole space v ∈ V T
Qk

. The operator x(Lgk
(0)−L(0)) could similarly be defined on VPk , see

(13.78) of [DL].

Lemma 3.5.15. If v ∈ L
ŝl2

(k, 0) then as operators on V T
Qk

,

x
Lgk

(0)−L(0)

2 YZ+1/2(v, x1) = YZ+1/2(v, x1)x
Lgk

(0)−L(0)

2 , (3.5.64)

or equivalently,

[Lgk(0)− L(0), YZ+1/2(v, x)] = 0. (3.5.65)

Proof. Again, any such v could be written as a finite linear combination of terms of the

form i(a1)n1 · · · i(aj)nj1 where ai ∈ g(0) or ai ∈ g(1) and ni ∈ Z for i = 1, 2, · · · , j. We

proceed by induction on j. (3.5.65) clearly holds for v = 1. From (3.5.28) it is clear

that (3.5.65) holds for v = i(a) for all a ∈ g.

Assume that (3.5.65) holds for Y (b, x), for some b in L
ŝl2

(k, 0). Let a ∈ g(s) for

s ∈ {0, 1}. Then, (3.5.61) gives

[Lgk(0)− L(0), YZ+1/2(YZ(i(a), x0)b, x2)]

=

[
Lgk(0)− L(0), (x2 + x0)−s/2Resx1

(
x0
−1δ

(
x1 − x2

x0

)
YZ+1/2(i(a), x1)YZ+1/2(b, x2)x

s/2
1

− x0
−1δ

(
−x2 + x1

x0

)
YZ+1/2(b, x2)YZ+1/2(i(a), x1)x

s/2
1

)]
= (x2 + x0)−s/2Resx1

(
x0
−1δ

(
x1 − x2

x0

)
[Lgk(0)− L(0), YZ+1/2(i(a), x1)YZ+1/2(b, x2)]

− x0
−1δ

(
−x2 + x1

x0

)
[Lgk(0)− L(0), YZ+1/2(b, x2)YZ+1/2(i(a), x1)]

)
= (x2 + x0)−s/2Resx1

(
x0
−1δ

(
x1 − x2

x0

)
[Lgk(0)− L(0), YZ+1/2(i(a), x1)]YZ+1/2(b, x2)x

s/2
1

+ x0
−1δ

(
x1 − x2

x0

)
YZ+1/2(i(a), x1)[Lgk(0)− L(0), YZ+1/2(b, x2)x

s/2
1 ]
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− x0
−1δ

(
−x2 + x1

x0

)
[Lgk(0)− L(0), YZ+1/2(b, x2)]YZ+1/2(i(a), x1)x

s/2
1

)
− x0

−1δ

(
−x2 + x1

x0

)
YZ+1/2(b, x2)[Lgk(0)− L(0), YZ+1/2(i(a), x1)]x

s/2
1

)
= 0, (3.5.66)

by (3.5.28) and the assumption on Y (b, x). The lemma follows.

Proposition 3.5.16. (Cf. Proposition 13.18, [DL]) In the setting and notation of

proposition 3.4.2, for a λ ∈ Λ, let Yt be a twisted intertwining operator for the vertex

operator algebra VQk of type
( V T

λ

Qk

V
λ+Qk

V T
Qk

)
. Then Yt(·, x)·, defined as

Yt(·, x)· = xLgk
(0)−L(0)Yt(x−Lgk

(0)+L(0) ·, x)x−Lgk
(0)+L(0) · (3.5.67)

gives an intertwining operator for vertex operator algebra L
ŝl2

(k, 0) of type
( V T

λ

Qk

V
λ+Qk

V T
Qk

)
,

where V Tλ

Qk
, V T

Qk
,Vλ+Qk , are considered as L

ŝl2
(k, 0)-modules with possibly infinite di-

mensional homogeneous components. In particular, for any g̃-irreducible component

(which is also an untwisted irreducible L
ŝl2

(k, 0)-module, due to lemma 13.14, [DL])

Wλ+Qk ⊂ Vλ+Qk and for any g̃[θ]-irreducible components (which are θ-twisted L
ŝl2

(k, 0)-

modules due to lemma 3.5.13) W T
Qk
⊂ V T

Qk
, W Tλ

Qk
⊂ V Tλ

Qk
, the projection of Yt(wλ, x)wT

to W Tλ for wλ ∈Wλ and wT ∈W T is an intertwining operator of type
(
WTλ

Wλ WT

)
.

Proof. The proof is the same as the proof of proposition 13.18 in [DL] which we rework

here for the sake of completeness.

The lower truncation condition for Yt is easily deduced from that of the operator Yt.

Let wλ+Qk be a highest weight vector for the action of g̃ on Wλ+Qk . Then just as in the

discussion surrounding equation (13.84) of [DL], if (Lgk(0) − L(0))wλ+Qk = h1wλ+Qk

for some h1 ∈ C then the g̃-irreducibility of Wλ+Qk and equation (13.40) of [DL] imply

that

(Lgk(0)− L(0))
∣∣
W
λ+Qk

= h1. (3.5.68)

Similarly, if wT
Qk

and wT
λ

Qk
are highest weight vectors for the action of g̃[θ] on W T

Qk

and W Tλ

Qk
respectively, then lemmas 3.5.11 and 3.5.12 imply that wT

Qk
and wT

λ

Qk
are

eigenvectors for Lgk(0) and L(0). Letting (Lgk(0)− L(0))wT
Qk

= h2w
T
Qk

and (Lgk(0)−
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L(0))wT
λ

Qk
= h3w

Tλ

Qk
, using g̃[θ]-irreducibility of W T

Qk
and W Tλ

Qk
, and then using (3.5.28)

we can conclude that

(Lgk(0)− L(0))
∣∣
WT
Qk

= h2 (3.5.69)

(Lgk(0)− L(0))
∣∣
WTλ

Qk

= h3. (3.5.70)

We prove the Jacobi identity for v ∈ L
ŝl2

(k, 0) such that θv = ±v. Let v ∈ L
ŝl2

(k, 0)j

where j ∈ {0, 1}. Letting w(1) ∈ Wλ+Qk and multiplying (3.3.4) on the left by

x
(Lgk

(0)−L(0))−h1

1 and on the right by x
−Lgk

(0)+L(0)

1 and keeping (3.5.64) in mind, we

conclude that

x0
−1δ

(
x1 − x2

x0

)
YZ+1/2(v, x1)Yt(w(1), x2)−x0

−1δ

(
x2 − x1

−x0

)
Yt(w(1), x2)YZ+1/2(v, x1)

=x2
−1δ

(
x1 − x0

x2

)(
x1 − x0

x2

)−j/2
Yt(YZ(v, x0)w(1), x2). (3.5.71)

This proves the Jacobi identity.

Since ωgk − ω ∈ V
0

Qk
, we get

[
Lgk(0)− L(0),Yt(w(1), x2)

]
= Yt((Lgk(0)− L(0))w(1), x2)

+x2Yt((Lgk(−1)− L(−1))w(1), x2) (3.5.72)

or equivalently, using L(−1)-derivative property of Yt,

Yt(Lgk(−1)w(1), x2) = −Yt((Lgk(0)− L(0))w(1), x2)x−1
2

+
d

dx2
Yt(w(1), x2) + [Lgk(0)− L(0),Yt(w(1), x2)]x−1

2 . (3.5.73)

Again, multiplying on the left by x
(Lgk

(0)−L(0))−h1

2 and on the right by x
−Lgk

(0)+L(0)

2 ,

we get

Yt(Lgk(−1)w(1), x2) = [Lgk(0)− L(0),Yt(w(1), x2)]x−1
2

+x
(Lgk

(0)−L(0))

2

(
d

dx2
Yt(x(−Lgk

(0)+L(0))

2 w(1), x2)

)
x
−Lgk

(0)+L(0)

2

=
d

dx2
Yt(w(1), x2). (3.5.74)
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3.6 An abelian intertwining algebra structure

In this section, we provide an abelian intertwining algebra structure that incorporates

twisted and untwisted modules for the vertex operator algebra VZα, such that the “Y ”

map is comprised of the various untwisted and twisted intertwining operators.

3.6.1 A direct approach

Following a suggestion of C. Sadowski, we give an abelian intertwining algebra that

incorporates untwisted and the θ1-twisted modules (see the definition below). This is

sufficient, since θ and θ1 are conjugate as automorphisms of VQ, see Chapter 3 of [FLM]

for details. For the purposes of partition identities, one can work with either of these

automorphisms.

Consider the lattice L = Zα/4, where as usual 〈α, α〉 = 2. Exactly as in Section

3.4, construct the structure VL. Clearly, VL = VQ ⊕ VQ+α/2 ⊕ VQ+α/4 ⊕ VQ−α/4.

Let θ1 be the unique linear map with:

θ1 :VQ −→ VQ

h1(−n1) · · ·hj(−nj)⊗ eλ 7−→ (−1)
√
〈λ,λ〉/2h1(−n1) · · ·hj(−nj)⊗ eλ (3.6.1)

It is easy to see that θ1 is an involution of the vertex operator algebra VQ.

Let u = u∗ ⊗ eα, v = v∗ ⊗ eβ, w = w∗ ⊗ eγ be in VL. Then, from Theorem 5.1 of

[DL], we know that

x0
−1δ

(
x1 − x2

x0

)(
x1 − x2

x0

)−〈α,β〉
Y (u, x1)Y (v, x2)w

−x0
−1δ

(
x2 − x1

−x0

)(
x2 − x1

eiπx0

)−〈α,β〉
e−iπ〈α,β〉Y (v, x2)Y (u, x1)w

= x2
−1δ

(
x1 − x0

x2

)(
x1 − x0

x2

)〈α,γ〉
Y (Y (u, x0)v, x2)w. (3.6.2)

From this identity, or otherwise, it is easy to see that the spaces VQ±α4 are θ1-twisted

modules for VQ. Now, our aim is to modify the Y operator on VL, so that we get an

abelian intertwining algebra that comprises of twisted intertwining operators amongst

untwisted and twisted modules for VQ.
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Let G = (Zα/4)/(2Zα) ∼= Z8. We denote the images of integers in Z8 by an over-

line. G is identified with Z8 via α/4 + 2Zα ←→ 1̄. Grade VL by G accordingly. For

g ∈ G, we let V g
L be the corresponding piece. For all 0 ≤ g1, g2, g3 ≤ 7, g1, g2, g3,∈ Z,

define:

F : G×G×G −→ C×,

(ḡ1, ḡ2, ḡ3) 7−→ 1,

B : G×G×G −→ C×,

(ḡ1, ḡ2, ḡ3) 7−→ e−iπḡ1ḡ2/8,

Ω : G×G −→ C×

(ḡ1, ḡ2) 7−→ e−iπḡ1ḡ2/8,

b : G×G −→ C/Z

(ḡ1, ḡ2) 7−→ −ḡ1ḡ2/8.

With u ∈ V g1

L , v ∈ V g2

L , w ∈ V g3

L (3.6.2) could be re-written as:

x0
−1δ

(
x1 − x2

x0

)(
x1 − x2

x0

)b(g1,g2)

Y (u, x1)Y (v, x2)w

−x0
−1δ

(
x2 − x1

−x0

)(
x2 − x1

eiπx0

)b(g1,g2)

B(g1, g2, g3)Y (v, x2)Y (u, x1)w

= x2
−1δ

(
x1 − x0

x2

)(
x1 − x0

x2

)−b(g1,g3)

F (g1, g2, g3)Y (Y (u, x0)v, x2)w. (3.6.3)

Along with the other minor axioms that could be easily verified, the structure

(V, Y,1, ω, T = 8, G = (Zα/4)/(2Zα), F,Ω)

becomes an abelian intertwining algebra in the sense of [DL]. For the precise definition

and some examples of abelian intertwining algebras, we refer the reader to Chapter 12

of [DL].

For g1 such that u ∈ VQ = V 0̄
L⊕V 4̄

L and g2 with v ∈ VP = V 0̄
L⊕V 2̄

L⊕V 4̄
L⊕V 6̄

L , we wish

to remove the factors B(g1, g2, g3) and F (g1, g2, g3) from (3.6.2), so that we can get a

structure that incorporates the twisted intertwining operators. In order to achieve this,

we will suitably scale the “Y ” map thereby changing the normalized abelian 3-cocycle

(F,Ω) to a cohomologous one.
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With a, b, c, d ∈ Z such that 0 ≤ a, c ≤ 1 and 0 ≤ b, d ≤ 3, let

f(v, w) : G×G −→ G,

f(aα+ bα/4 + 2Zα, cα+ dα/4 + 2Zα) = ibc (3.6.4)

Clearly, for all g1, g2 ∈ G,

f(g1, 0) = f(0, g2) = 1. (3.6.5)

For v ∈ V g
L , w ∈ V h

L , define

Y(v, x)w = f(g, h)Y (v, x)w. (3.6.6)

We know from Remark 12.23 of [DL] that this new structure is also an abelian

intertwining algebra. With this modification, what we have is the following:

F ′(g1, g2, g3) = f(g2, g3)f(g1 + g2, g3)−1f(g1, g2 + g3)f(g1, g2)−1

Ω′(g1, g2) = f(g1, g2)f(g2, g1)−1Ω(g1, g2)

B′(g1, g2, g3) = F ′(g2, g1, g3)−1Ω′(g1, g2)F ′(g1, g2, g3). (3.6.7)

This new normalized 3-cocycle of course satisfies:

F ′(0, g2, g3) = F ′(g1, 0, g3) = F ′(g1, g2, 0) = 1,

Ω′(0, g2) = Ω(0, g2) = 1.

But moreover, letting g1 = α + 2Zα, g2 = aα + bα/4 + 2Zα, g3 = cα + dα/4 + 2Zα,

where a, b, c, d ∈ Z, with 0 ≤ a, c ≤ 1 and 0 ≤ b, d ≤ 3,

F ′(g1, g2, g3) = f(g2, g3)f(g1 + g2, g3)−1f(g1, g2 + g3)f(g1, g2)−1

= ibc · i−bc · 1 · 1

= 1, (3.6.8)

B′(g1, g2, g3) = f(g1, g3)−1f(g1, g2 + g3)f(g2, g1 + g3)−1f(g2, g3)B(g1, g2, g3)

= f(g2, g1 + g3)−1f(g2, g3) · e−iπb/2

= f(g2, g1 + g3)−1ibc · i−b (3.6.9)
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Now, if c = 1, then f(g2, g1 + g3) = 1 and if c = 0 then f(g2, g1 + g3) = ib. Hence,

B′(g1, g2, g3) =


1 · ib · i−b if c = 1,

i−b · 1 · i−b if c = 0.

(3.6.10)

Therefore,

B′(g1, g2, g3) = 1 for b ∈ 2Z. (3.6.11)

In effect, if u ∈ VQ and if v ∈ VP , we get that g1 = α+2Zα and that g2 = aα+bα/4+2Zα

with b ∈ 2Z. In this scenario, for Y, we precisely get the Jacobi identity for the

untwisted intertwining operators if w ∈ VP , and the Jacobi identity for the twisted

intertwining operators if w ∈ VP+α/4.

3.6.2 An approach using the tensor category theory

Now we provide an alternate route, this time directly using the automorphism θ. This

is exactly the approach of Theorem 3.8 of [H1].

Let us gather relevant facts about the vertex operator algebra V θ
Q formed by the

fixed points of θ. See the Introduction of [DJL] for more details and for corresponding

results for higher rank even lattices in place of Q.

1. Clearly, V θ
Q is N-gradable and its zeroth weight space is spanned by the vacuum

vector.

2. From [DN] we know the complete list of irreducible modules of V θ
Q. Each irre-

ducible untwisted or θ-twisted module W for VQ breaks as W = W+⊕W−, where

W± are irreducible (untwisted) modules for V θ
Q. The complete set of irreducible

modules for V θ
Q is S = {V ±Q , V

±
Q+α/2, (V T1

Q )±, (V T2
Q )±}.

3. The fusion rules for V θ
Q are computed in [Ab1] and [ADL]. It can be verified that

the fusion algebra is isomorphic to the group algebra of the abelian group Z8, i.e.,

there exists a bijection ϕ : S → Z8 such that for irreducible modules W1,W2,W3,

the fusion rule
(

W3

W1 W2

)
is 1 if ϕ(W1) + ϕ(W2) = ϕ(W3) and 0 otherwise.

4. From [Y] and [ABD], the vertex operator algebra V θ
Q is C2-cofinite.
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5. From [Ab2], we know that V θ
Q is rational, i.e., every N-graded weak module of V θ

Q

is completely reducible.

Now, using properties 1, 4 and 5 above and Remark 3.8 of [H3], we deduce that the

category of V θ
Q-modules has a natural structure of vertex tensor category, in the sense

of [HL1]–[HL3], [H4]. Therefore, the direct sum of irreducible modules has a natural

intertwining algebra structure, in the sense of [H2]. Now, using the fact that the fusion

algebra is isomorphic to the group algebra of the abelian group Z8 and arguing exactly

as in the proof of Theorem 3.8 of [H1], we know that we have obtained an abelian

intertwining algebra structure on the direct sum of irreducible modules for V θ
Q.

Each of the untwisted or θ-twisted intertwining operator for VQ when restricted to

irreducible modules for V θ
Q gives an (untwisted) intertwining operator for V θ

Q. Now,

exactly as in the previous subsection, one can scale the relevant “finer” intertwining

operators individually to get “coarser” untwisted or θ-twisted intertwining operators

for VQ. We obtain an abelian intertwining algebra structure incorporating untwisted

and θ-twisted intertwining operators for VQ.
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Chapter 4

From sums, hopefully to products: Principal subspaces

In this chapter, following an idea of J. Lepowsky, we analyse a natural Koszul complex

associated to the principal subspace of the basic module L(Λ0) of ŝl2. We determine

the second homology of this complex and explain its relations to the Garland-Lepowsky

resolution of the ambient standard module. It is expected that this Koszul complex

would ultimately yield a “character formula” for the principal subspaces.

Our main theorem could be stated and proved in a completely commutative-algebraic

setting without needing any material from the representation theory of affine Lie al-

gebras or vertex operator algebras. Therefore, we organize this chapter in a slightly

unusual way: we dive straight into the heart of the matter and once our main result is

established, we put our results in perspective by referring to the theory of principal sub-

spaces — especially the presentation results of Calinescu-Lepowsky-Milas ([CalLM1]),

some results of Primc ([P2]) regarding relations among the annihilating fields for stan-

dard modules — and also some recent conjectures of Gorsky-Oblomkov-Rasmussen

([GOR]) on the Khovanov homology of torus knots.

The computer algebra system Singular [DGPS] was used for explorations regarding

this project.

4.1 The setup

Consider the commutative associative algebra

A = C[x−1, x−2, . . . ]. (4.1.1)

Through the next few sections, we will consider modules over the algebra A.



81

Consider a sequence of (non-regular) elements

r−n =
n−1∑
i=1

x−ix−n+i = x−1x−n+1 + x−2x−n+2 + · · ·+ x−n+1x−1 (4.1.2)

for n = 2, 3, . . . . Let IΛ0 be the ideal generated by the elements r−n for n = 2, 3, . . . .

The reason for the notation “Λ0” will become clear in Section 4.4. Let

WΛ0 = A/IΛ0 . (4.1.3)

Remark 4.1.1. As we shall see below in Section 4.4, the algebra A is actually the

universal enveloping algebra of a certain abelian Lie algebra, and that the space WΛ0

is a certain subspace, called “principal subspace” of the standard module L(Λ0) of the

affine Lie algebra A
(1)
1 .

Remark 4.1.2. We caution the reader that as a principal subspace, WΛ0 is not a priori

defined as the quotient space as in (4.1.3). That WΛ0 can be presented as in (4.1.3) is a

non-trivial fact stated in [FS1, FS2], invoked in [CLM1] and finally proved in [CalLM1].

We wish to analyze the Koszul complex determined by the sequence of elements

r−n, n = 2, 3, . . . . To this end, consider the following complex of A-modules:

· · · ∂4−→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0 � 0, (4.1.4)

with

C0 = WΛ0 , (4.1.5)

C1 = A, (4.1.6)

C2 =
⊕
i≥2

Aξ−i, (4.1.7)

Cj =
⊕

i1,i2,...,ij≥2

Aξ−i1,−i2,...,−ik for j ≥ 3, (4.1.8)

where the symbols ξ··· satisfy the relation:

ξ...,i,...,j,... = −ξ...,j,...,i,..., (4.1.9)

and where the differential ∂• is given by:

∂j+1(ξ−i1,...,−ij ) =

j∑
t=1

(−1)t+1r−itξ−i1,...,−̂it,...,−ij , (4.1.10)
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for j+1, i1, . . . , ij ≥ 2 with the hat denoting an omitted subscript. It is straight-forward

to varify that ∂ respects (4.1.9) and that ∂2 = 0.

Define

Hn = Ker ∂n/Im ∂n+1. (4.1.11)

Remark 4.1.3. Ideally, the Koszul complex should be defined using the language of

exterior products, which is equivalent to (4.1.9). However, since our aim is to analyse

H2, we choose to keep our notation simple.

Remark 4.1.4. Typically, the Koszul complex determined by the sequence of elements

r−n for n = 2, . . . would be

· · · ∂4−→ C3
∂3−→ C2

∂2−→ C1 −→ 0, (4.1.12)

with C0 omitted. However, we have chosen to write it as in (4.1.4) with an eye to-

ward the Garland-Lepowsky resolution of standard modules, which is recalled below in

Section 4.4.

The algebra A and each of the modules is bi-graded. Consider unique derivations

L0,
α

2
of A satisfying:

L0(x−i) = ix−i, (4.1.13)

α

2
(x−i) = x−i (4.1.14)

for i ≥ 1, that can be extended uniquely to each of the Cjs such that

L0(ξ−i1,··· ,−ik) = (i1 + · · ·+ ik)ξ−i1,··· ,−ik (4.1.15)

L0(a · c) = L0(a) · c+ a · L0(c), (4.1.16)

and

α

2
(ξ−i1,··· ,−ik) = 2kξ−i1,··· ,−ik (4.1.17)

α

2
(a · c) = α0(a) · c+ a · α0(c), (4.1.18)

for all a ∈ A and c ∈ C•.
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Definition 4.1.5. It is clear that the ring A and each of the modules C• is bi-graded

by weight and charge; L0-eigenvalue is called weight and
α

2
-eigenvalue is called charge.

The weights for each of the Cjs are positive integers, and each of the weight spaces

is finite dimensional. Typically, while considering the graded dimensions of various

spaces, the formal variable q denotes the weight and x denotes the charge grading.

Definition 4.1.6. For any vector space M homogeneous with respect to the double

grading with finite dimensional graded components, define the character to be:

χ(M ;x, q) =
∑
h,l

dim(Mh,l)x
hql (4.1.19)

where Mh,l is the homogeneous component of charge h and weight l.

The following theorem was noted by [FS1]–[FS2] and proved by [CLM1] using the

theory of intertwining operators.

Theorem 4.1.7. The character of WΛ0 is given by:

χ(WΛ0 ;x, q) =
∑
n≥0

xnqn
2

(1− q)(1− q2) · · · (1− qn)
. (4.1.20)

One immediately concludes (cf. [A3]) that

Corollary 4.1.8. For h, l ∈ N,

dim((WΛ0)h,l) = Number of partitions of l with exactly h parts

such that any two adjacent parts have difference at least 2. (4.1.21)

A space defined by a similar, yet different, ideal arose in [BMS] in the context of

the geometry of arc spaces. In [BMS], authors use the theory of Gröbner bases in order

to find the required graded dimension.

Since the differential ∂• preserves both weight and charge, we have that:

Proposition 4.1.9 (Euler-Poincaré principle). The character of WΛ0 is given by:

χ(WΛ0 ;x, q) =
∑
n≥1

(−1)n+1 (χ(Cn;x, q)− χ(Hn;x, q)) . (4.1.22)

Now, the problem is to find a description of the homology of the complex (4.1.4).

In the following two sections, we will determine the kernal of the map ∂2.
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4.2 The second kernel

In this section, we gather preliminary lemmas required in Section 4.3, in the proof of

our main theorem.

Consider the unique homomorphism

σ : A → A

such that

σ(x−1) = 0,

σ(x−i) = x−i+1 for i ≥ 2,

extended uniquely to each of the Cjs such that

σ(ξ−i1,··· ,−ik) = ξ−i1+2,··· ,−ik+2 for i1, i2, · · · , ik ≥ 2,

σ(a · c) = σ(a)σ(c).

Also consider the unique derivation L−1 of A satisfying:

L−1(x−i) = ix−i−1, (4.2.1)

for i ≥ 1, extended uniquely to each of the Cjs such that

L−1(ξ−i1,··· ,−ik) =

(i1 − 1)ξ−i1−1,−i2,··· ,−ik + (i2 − 1)ξ−i1,−i2−1,··· ,−ik + · · ·+ (ik − 1)ξ−i1,−i2··· ,−ik−1

(4.2.2)

L−1(a · c) = L−1(a)c+ aL−1(c). (4.2.3)

Remark 4.2.1. In the course of the main proof, we won’t need the derivation L−1.

However, this derivation has a natural vertex operator theoretic interpretation as a

certain mode of the Virasoro algebra as we shall see in Section 4.4 and moreover,

Ker(∂2) can be naturally described by employing L−1.

Remark 4.2.2. The derivations L−1 and L0 can be extended so that the entire Virasoro

algebra acts on A and each of the modules C•. We will not need this action in the proof

of the main theorem.
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It will be convenient to use generating functions, so we introduce the following

notation:

Notation 4.2.3. Let x be a formal variable, let •′ denote the formal derivative with

respect to x and let

X(x) =
∑
t≥1

x−tx
t−1 (4.2.4)

R(x) = X(x)2 =
∑
t≥2

r−tx
t−2 (4.2.5)

Ξ(x) =
∑
t≥2

ξ−tx
t−2 (4.2.6)

M(x) = 2X ′(x)Ξ(x)−X(x)Ξ′(x) =
∑
t≥4

µ−tx
t−4. (4.2.7)

Notation 4.2.4. Let

I = A〈µ−i | i ≥ 4〉+ Im(∂3), (4.2.8)

where A〈·〉 denotes the sub-module generated by the list of elements enclosed in 〈·〉.

In our main theorem, we will show that

Ker(∂2) = I.

With this set-up, now we give a sequence of lemmas, each of which is easy to verify.

Lemma 4.2.5. The differential ∂ is homogeneous with respect to both weight and

charge. Hence, so are Ker(∂•) and Im(∂•).

Lemma 4.2.6. With σ and L−1 defined as above, we have:

1. σ(r−i) = 0 if i = 1, 2.

2. σ(r−i) = r−i+2 if i > 2.

3. L−1(r−i) = (i− 1)r−i−1.

Lemma 4.2.7. Let f(x) be a formal power series with coefficients in a module C•. If

σf(x) = xjf(x) for some j ∈ N then σf ′(x) = (xjf)′(x) = jxj−1f(x) + xjf ′(x).
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Proof. If j = 0, the statement is easy to prove. In fact, it is easy to see that there does

not exist any f with coefficients in C• or A such that σf(x) = f(x). Now let j ≥ 1. Let

f(x) =
∑

i≥0 fix
i. Then, σf(x) = xjf(x) implies that σfk = 0 for all k = 0, . . . , j − 1

and that σfi = fi−j for i ≥ j. Therefore,

σf ′(x) =
∑
i≥1

iσfix
i−1 =

∑
i≥j

ifi−jx
i−1 =

∑
i≥0

(i+ j)fix
i+j−1

= jxj−1
∑
i≥0

fix
i + xj

∑
i≥0

ifix
i−1

= jxj−1f(x) + xjf ′(x) = (xjf)′(x).

Lemma 4.2.8. We have that

σX(x) = xX(x), (4.2.9)

σΞ(x) = x2Ξ(x), (4.2.10)

σM(x) = x3M(x). (4.2.11)

Proof. The first two are obvious from the definitions. For the last one, use Lemma

4.2.7:

σM(x) = σ(2X ′(x)Ξ(x)−X(x)Ξ′(x))

= 2σX ′(x)σΞ(x)− σX(x)σΞ′(x)

= 2(X(x) + xX ′(x))(x2Ξ(x))− xX(x)(2xΞ(x) + x2Ξ′(x))

= 2x3X ′(x)Ξ(x)− x3X(x)Ξ′(x)

= x3M(x).

Corollary 4.2.9. For each t ≥ 4, µ−t = σµ−t−3.

Lemma 4.2.10. We have that

L−1X(x) = X ′(x), (4.2.12)

L−1Ξ(x) = Ξ′(x), (4.2.13)
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L−1M(x) = M ′(x). (4.2.14)

Lemma 4.2.11. The homomorphism σ and the map L−1 commute with the differential:

σ∂• = ∂•σ (4.2.15)

L−1∂• = ∂•L−1. (4.2.16)

Lemma 4.2.12.

σKer(∂•) ⊂ Ker(∂•)

L−1Ker(∂•) ⊂ Ker(∂•)

σIm(∂•) ⊂ Im(∂•)

L−1Im(∂•) ⊂ Im(∂•), (4.2.17)

Hence, σ and L−1 act naturally on the homology groups Hn.

Lemma 4.2.13. For each t ≥ 4, µ−t ∈ Ker(∂2).

Proof. We have that

∂M(x) = ∂(2X ′(x)Ξ(x)−X(x)Ξ′(x))

= 2X ′(x)X(x)2 −X(x)(∂Ξ)′(x)

= 2X ′(x)X(x)2 −X(x)(2X(x)X ′(x))

= 0.

Therefore, for all t ≥ 4,

∂(µ−t) = 0. (4.2.18)

Lemma 4.2.14. Im(∂3) = A〈r−iξ−j − r−jξ−i | i, j ≥ 2〉.

Lemma 4.2.15. We have that I = σI.

Proof. Recall that I = A〈µ−t | t ≥ 4〉 + Im(∂3). First, Lemmas 4.2.11 and 4.2.8

guarantee that σI ⊂ I. For the reverse inclusion, note that σA = A and that
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r−iξ−j − r−jξ−i = σ(r−i−2ξ−j−2 − r−j−2ξ−i−2). (Actually, a similar proof works for

all Im(∂•).) Morever, due to Corollary 4.2.9 and the fact that σA = A, we have that

A〈µ−t | t ≥ 4〉 = σA〈µ−t | t ≥ 7〉.

Lemma 4.2.16. We have that

Ker(σ|A) = x−1A. (4.2.19)

Moreover,

Ker(σ|C2) = Aξ−2 ⊕Aξ−3 ⊕A〈x−1ξ−i | i ≥ 4〉.which (4.2.20)

and that

Ker(σ2|C2) = x−1C2 + x−2C2 + (Aξ−2 ⊕Aξ−3 ⊕Aξ−4 ⊕Aξ−5). (4.2.21)

Lemma 4.2.17. Let v ∈ C2 be a weight homogeneous element. If σjv ∈ I\{0} for

some positive integer j, then there exists an i ∈ I such that weight of i is the same as

that of v and σjv = σji.

Proof. Let the weight of v be w. We prove the proposition for j = 1, for higher j,

similar strategy works. Since I = σI (Lemma 4.2.15) and since σv ∈ I, there exists an

ĩ ∈ I such that σv = σĩ. We can write C2 = S ⊕Ker(σ), where S is the space spanned

by monomials that are neither divisible by x−1 nor are contained in Aξ−2 ⊕ Aξ−3.

Accordingly, let ĩ = s + t̃, where s ∈ S and t ∈ Ker(σ). Now, it is clear that σs = σv

and hence, s must be weight homogeneous with weight w. Now let t be the weight w

component of t̃. Hence, s+ t is the weight w component of ĩ and belongs to I since I

is homogeneous. Moreover, σv = σs = σ(s+ t). We can now let i = s+ t.

4.3 Proof of the main theorem

Now we restrict our attention to C2.

Theorem 4.3.1. We have Ker(∂2) = I = A〈µ−t | t ≥ 4〉+ Im(∂3).

Proof. From the definition of I and Lemma 4.2.13 it is clear that I ⊂ Ker(∂2). We just

have to prove the reverse inclusion. Assume, towards a contradiction that Ker(∂2)\I is
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non-empty. Since both I and Ker(∂2) are doubly homogeneous, so is Ker(∂2)\I. Select

a vector v0 of smallest possible weight from Ker(∂2)\I. We will construct a sequence

of non-zero vectors each belonging to Ker(∂2)\I and having the same weight as that

of v0. However, the last member of the sequence will end up being in I, providing us

with the required contradiction.

Clearly, v0 is non-zero.

From Lemma 4.2.12, σv0 ∈ Ker(∂2) and has lower weight than v0. Therefore,

σv0 ∈ I. If σv0 = 0, let i0 = 0. If σv0 6= 0, Lemma 4.2.15 implies that σv0 ∈ σI.

Hence,

σv0 = σi0

for some i0 ∈ I. Note that by Lemma 4.2.17, i0 can be chosen to be weight-homogeneous

with the same weight as that of v0, so that v0 − i0 has the same weight as that of v0.

Now, v0− i0 ∈ Ker(σ)∩Ker(∂2). Since v0 6∈ I but i0 ∈ I, v0− i0 6∈ I as well. Therefore,

instead of our original v0, let us shift attention to v0 − i0 and we call it v1. Since

v1 ∈ Ker(σ), by Lemma 4.2.16, we have that

v1 = v0 − i0 = p−2ξ−2 + p−3ξ−3 + x−1(p−4ξ−4 + · · ·+ p−jξ−j), (4.3.1)

for some doubly homogeneous polynomials p−2, . . . , p−j ∈ A. Now,

∂2(v1) = p−2x
2
−1 + 2p−3x−1x−2 + x−1(p−4r−4 + · · · p−jr−j) = 0.

Therefore, cancelling a factor of x−1,

p−2x−1 + 2p−3x−2 + p−4r−4 + · · · p−jr−j = 0,

and hence,

σ2(p−4r−4 + · · · p−jr−j) = 0.

Therefore,

σ2(p−4ξ−4 + · · · p−jξ−j) ∈ Ker(∂2).

But now, σ2(p−4ξ−4 + · · · p−jξ−j) has lower weight than that of v0, and hence,

σ2(p−4ξ−4 + · · · p−jξ−j) ∈ I.
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Again, noting that I = σI = σ2I,

σ2(p−4ξ−4 + · · · p−jξ−j) ∈ σ2I.

Using Lemma 4.2.16, we deduce that there must exist i1 ∈ I, c1, c2 ∈ C2 and polyno-

mials q−2, . . . , q−5 ∈ A such that

p−4ξ−4 + · · · p−jξ−j = i1 + x−1c1 + x−2c2 + q−2ξ−2 + q−3ξ−3 + q−4ξ−4 + q−5ξ−5.

Note again that i1 can be chosen to have the same weight as that of p−4ξ−4+· · ·+p−jξ−j ,

which in turn has the same weight as that of v0.

Substituting in the definition of v1 (4.3.1),

v1 = p−2ξ−2 + p−3ξ−3 + x−1(i1 + x−1c1 + x−2c2 + q−2ξ−2 + q−3ξ−3 + q−4ξ−4 + q−5ξ−5)

= p−2ξ−2 + p−3ξ−3 + x−1(i1 + q−2ξ−2 + q−3ξ−3 + q−4ξ−4 + q−5ξ−5)

+ r−2c1 +
1

2
r−3c2.

Now, adding to v1 appropriate multiples of r−2ξ−j− r−jξ−2 and r−3ξ−j− r−jξ−3 where

j > 3, which are all in Im(∂3) ⊂ I, and then collecting terms, we arrive at a vector

v2 = p̃−2ξ−2 + p̃−3ξ−3 + x−1(q̃−4ξ−4 + q̃−5ξ−5),

which has the same weight as v0 and is in Ker(∂2)\I. Now, note that

µ−5 = 4x−3ξ−2 + x−2ξ−3 − 2x−1ξ−4

µ−6 = 6x−4ξ−2 + 3x−3ξ−3 − 3x−1ξ−5.

Observe that there is no ξ−4 term in µ−6. Therefore, we can add appropriate multiples

of µ−5 and µ−6 to v2 to get that

v3 = ˜̃p−2ξ−2 + ˜̃p−3ξ−3

has the same weight as v0 and is in Ker(∂2)\I. Now, since ∂2(v3) = 0, we get that

x−1
˜̃p−2 + 2x−2

˜̃p−3 = 0. Hence, there must exist a polynomial f such that ˜̃p−2 = 2x−2f

and ˜̃p−3 = x−1f , implying that v3 = fµ−3 ∈ I. This is a contradiction, and we are

done.
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4.4 Affine Lie algebras, Garland-Lepowsky resolution and principal

subspaces

In this section, we recall the theory of principal subspaces as developed in the works

of [FS1]–[FS2], [CLM1]–[CLM2], [CalLM1]–[CalLM4], [MilP] and [Sa1]–[Sa3]. We also

recall the fundamental vertex-algebraic constructions of the relevant spaces.

4.4.1 Preliminaries

Consider the complex simple Lie algebra

g = sl2

along with its root space decomposition g = Cxα⊕Ch⊕Cx−α with the usual brackets

given by:

[h, xα] = 2xα, [h, x−α] = −2x−α, [xα, x−α] = h.

We work with the standard invariant bilinear form 〈·, ·〉 on g given by:

〈h, xα〉 = 0, 〈h, x−α〉 = 0, 〈h, h〉 = 1.

The form 〈·, ·〉 is non-degenerate on the Cartan subalgebra h = Ch of g and hence

allows us to identify h with its dual h∗. Under this identification, h is identified with

α, the positive root corresponding to a root vector xα. Consider the untwisted (in the

vertex-operator-algebraic sense) realization of the affine Lie algebra A
(1)
1 given by:

ĝ = g⊗ C[t, t−1]⊕ Cc,

with brackets given by:

[a⊗ tm + rc, b⊗ tn + sc] = [a, b]⊗ tm+n +m〈a, b〉δm+n,0c,

where a, b ∈ g, m,n ∈ Z and r, s ∈ C. We will need the algebras:

ĝ≤0 = g⊗ C[t−1]⊕ Cc (4.4.1)

ĝ<0 = g⊗ t−1C[t−1] (4.4.2)

ĝ≥0 = g⊗ C[t]⊕ Cc (4.4.3)
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ĝ>0 = g⊗ tC[t]⊕ Cc. (4.4.4)

We let U(·) denote the universal enveloping algebra.

Given any finite dimensional g-module U and a scalar k, one can construct an

induced ĝ-module, say N(U, k), called generalized Verma module, as:

N(U, k) = U(ĝ)⊗U(ĝ≥0) U,

where ĝ>0 acts on U trivially and c acts by the scalar k. If Λ ∈ (h ⊕ Cc)∗ such that

Λ(h) ∈ N and Λ(c) = k and if U is the unique finite dimensional irreducible g-module

with highest weight Λ|h, we denote N(U,Λ(c)) by simply N(Λ).

Let h0 = c−h⊗t0 and h1 = h⊗t0. Given a dominant integral weight Λ ∈ (h⊕Cc)∗,

i.e., Λ(hi) ∈ N for i = 0, 1, we let L(Λ) denote the unique (irreducible) standard ĝ-

module with highest weight Λ. The level of L(Λ) is defined to be Λ(c). Let Λ0,Λ1 be

the fundamental weights, which are defined by Λi(hj) = δi,j .

We will let W (ĝ) denote the Weyl group of ĝ generated by the reflections r0, r1 that

act as:

r0(Λ0) = −Λ0 + 2Λ1, r0(Λ1)= Λ1,

r1(Λ1) = −Λ1 + 2Λ0, r1(Λ0)= Λ0.

Let ρ ∈ (h ⊕ Cc)∗ such that ρ(hi) = 1 for i = 0, 1. For w ∈ W (ĝ) and a weight

λ ∈ (h⊕ Cc)∗ we denote

w · λ = w(λ+ ρ)− ρ.

4.4.2 The Garland-Lepowsky resolution

Just as before, we restrict our attention exclusively to the affine Lie algebra ĝ = A
(1)
1 =

ŝl2.

Henceforth, for a ∈ g and m ∈ Z, we denote the action of a ⊗ tm on any ĝ-module

by a(m).

Let Λ be a dominant integral weight and let L(Λ) be the corresponding standard

module. Following Garland-Lepowsky, there exists a natural resolution of L(Λ) in terms
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of generalized Verma modules as follows:

· · · → E2 → E1 → E0 → L(Λ)→ 0.

We denote the highest weight vector of L(Λ) and Ej by vL(Λ) and vEj respectively.

Let Λ = kΛ0 for some positive integer k. Garland-Lepowsky’s theorem asserts that

E0 = E(kΛ0), E1 = E(r0 · kΛ0), E2 = E(r0r1 · kΛ0), . . . .

It is easily checked that vE1 maps to xα(−1)k+1vE0 . We wish to determine where vE2

maps inside E1. We adopt the method of Malikov-Feigin-Fuchs [MFF] to first calculate

the required singular vectors inside the Verma module M(r0 · kΛ0) and then take their

projection to E1. This explicit calculation was carried out for level 1 in [P2] and for

higher levels an alternate route using Sugawara vectors was used.

Using [MFF], the required singular vector inside M(r0 ·kΛ0) is given by the formula:

fk+3
0 f1f

−k−1
0 vE1 ,

where f0 = xα⊗t−1 and f1 = x−α⊗t0 are the standard Kac-Moody generators. For any

non-negative integer j, the following facts, which can be checked easily by induction,

hold:

f1f
−j
0 = f−j0 f1 +

j∑
a=1

fa−j−1
0 [f0, f1]f−a0 (4.4.5)

[f0, f1]f−j0 = f−j0 [f0, f1] + jf−j−1
0 [f0, [f0, f1]] (4.4.6)

For the second relation, note that f0 and hence f−1
0 , commute with [f0, [f0, f1]], due to

the Chevalley relation (ad f0)3(f1) = 0. Hence, we conclude that:

fk+3
0 f1f

−k−1
0 vE1 =

(
f2

0 f1 + (k + 1)f0[f0, f1] +
(k + 1)(k + 2)

2
[f0, [f0, f1]]

)
vE1

=
(
xα(−1)2x−α(0) + (k + 1)xα(−1)h(−1)− (k + 1)(k + 2)xα(−2)

)
vE1

= xα(−1)

(
xα(−1)x−α(0) +

1

2
h(−1)h(0) + x−α(−1)xα(0)

)
vE1

− (k + 1)(k + 2)xα(−2)vE1 (4.4.7)

Referring to [MP2] and [LL], we know that for each k, E(kΛ0) has a natural structure

of a vertex operator algebra, and that each generalized Verma module of level k is a
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module for this vertex operator algebra. There exists a natural action of the Virasoro

algebra on each generalized Verma module of level k, with L(n) acting as:

L(n)v

=

(
1

2(k + 2)

∑
m∈Z

(
◦
◦xα(m)x−α(n−m)◦◦ + ◦◦x−α(m)xα(n−m)◦◦ + ◦◦

1

2
h(m)h(n−m)◦◦

))
v,

where

◦
◦a(m)b(n)◦◦ =


a(m)b(n) if m < 0

b(n)a(m) if m ≥ 0.

(see [LL] (3.8.4)). This is the well-known Segal-Sugawara construction of the Virasoro

algebra action.

We deduce immediately that

fk+3
0 f1f

−k−1
0 vE1 = xα(−1)

(
xα(−1)x−α(0) +

1

2
h(−1)h(0) + x−α(−1)xα(0)

)
vE1

− (k + 1)(k + 2)xα(−2)vE1

= (k + 2) (xα(−1)L(−1)− (k + 1)xα(−2)) vE1 . (4.4.8)

4.4.3 Principal subspaces

In this subsection we recall the definition of principal subspaces of standard ĝ-modules,

and we review the main theorems of [CalLM1] and [CalLM2].

In order to define the principal subspaces, we will need the nilpotent subalgebra

generated by the positive root spaces, i.e., n = Cxα of g. Note that n is an abelian Lie

algebra, and that this is special to A
(1)
1 . Consider also its affinization:

n̄ = n⊗ C[t, t−1]

contained inside ĝ. Note that n̄ is closed under brackets since 〈xα, xα〉 = 0. We will

consider the following subalgebra of n̄:

n̄− = n⊗ t−1C[t, t−1].

The universal enveloping algebra of n̄−,

A = U(n̄−)
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is a commutative associative algebra. For a standard module L(Λ) of ĝ generated by

vΛ, define the principal subspace WΛ as:

WΛ = U(n̄)vΛ = U(n̄−)vΛ,

where the second equality follows by using the Poincaré-Birkhoff-Witt theorem and by

noting that vΛ is a highest weight vector. As in [CalLM1], we define the surjective

maps:

FΛ : U(ĝ) −→ L(Λ) (4.4.9)

a 7−→ a · vΛ (4.4.10)

and

fΛ = FΛ|U(n̄−) : U(n̄−) −→WΛ (4.4.11)

a 7−→ a · vΛ. (4.4.12)

Now we take Λ = Λ0.

Recall the generalized Verma modules E0, E1, . . . from the Garland-Lepowsky res-

olution of L(Λ0). For the generalized Verma module E0, define the principal subspace

similarly, i.e.,

WE0
Λ0

= U(n̄)vE0 = U(n̄−)vE0 .

Note that WE0
Λ0

is a free module over U(n̄−) generated by vE0 . Consider the natural

surjective maps

ΠΛ0 : E0 −→ L(Λ0) (4.4.13)

a · vE0 7−→ a · vΛ0 (4.4.14)

πΛ0 = ΠΛ|WE0
Λ0

. (4.4.15)

Determining the kernel of fΛ0 is equivalent to determining the kernel of πΛ0 (see

Theorem 2.2 of [CalLM1]). It is well known that E0 has a natural vertex operator

algebra structure and that WE0
Λ0

has a vertex sub-algebra structure. Note that WE0
Λ0

does not contain the conformal vector, but admits the natural action of the Virasoro

algebra.

The main theorem of [CalLM1] could be reformulated as follows:
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Theorem 4.4.1. The kernel of πΛ0 is generated over U(n̄−) by the L(−1)-descendants

of the singular vector xα(−1)2vE0. That is,

Ker π0 =
∑
t≥0

U(n̄−)L(−1)t
(
xα(−1)2vE0

)
.

This theorem could be further reformulated as:

Theorem 4.4.2. The kernel of πΛ0 is the ideal of the vertex algebra WE0
Λ0

generated by

the singular vector xα(−1)2vE0.

In the proofs of the theorems above, analogue of the map σ enters. This map occurs

as the inverse of a certain constant factor (eα) of a vertex operator.

The singular vector xα(−1)2vE0 is precisely the generator of the kernel of the map

ΠΛ0 . So, essentially, the theorems above assert that the kernel of πΛ0 is generated by

the “obvious” elements.

In exactly the same spirit, our main theorem asserts that the second homology (as

opposed to the second kernel) is generated by the L(−1)-descendants of the “next”

singular vector in the Garland-Lepowsky resolution, namely,

3 (xα(−1)L(−1)− 2xα(−2)) vE1 . (4.4.16)

The symbol ξ−2 corresponds to vE1 and L(−1)vE1 corresponds to 2ξ−3. Hence, the

singular vector (xα(−1)L(−1)− 2xα(−2)) vE1 corresponds precisely to µ−3. It is seen

easily that L−1 introduced before mimics the action of L(−1). For t > 4, µ−ts could

be obtained upto a non-zero scalar multiple from µ−3 by repeatedly applying L−1.

It should be noted that in the works [MP1], [MP2], [P1], [P2], [Si] this “next”

singular vector, and its analogues for higher ranks and levels, play a crucial role in

determination of generators of relations for the annihilating fields of standard modules.

Question 4.4.3. It is now natural to ask how far the vertex-operator-algebraic methods

can be pushed to give insights about the higher homology groups and analogues of the

Koszul complex related to higher levels and ranks.
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4.5 Relations to the stable Khovanov homology of the torus knots

For the purposes of this section, consider the (equivalent) Koszul model written in

the language of exterior products of modules. That is, the xis are the commutating

variables, but ξ−is anti-commute, and

ξi1,...,ir = ξi1 ∧ · · · ∧ ξir .

In [GOR], the authors consider a conjectural description of a certain well-defined

limit (cf. [St]) of the homology groups Kh(T (n,m)) as m tends to infinity; this limit is

denoted as Kh(T (n,∞)).

In our notation, Conjecture 1.1 of [GOR] reads as follows:

Conjecture 4.5.1 ([GOR]). Consider the polynomial ring in variables x−1, . . . , x−n.

The unreduced stable Khovanov homology Kh(T (n,∞)) is dual to the homology of the

Koszul complex determined by the (non-regular) sequence of elements r−j for j =

2, . . . , n+1 where the r−j are defined as in (4.1.2) The homology of this Koszul complex

is denoted by Khalg(n,∞).

Remark 4.5.2. Note that we have left the base field unspecified. It is natural to

consider F2 and Q from the viewpoint of Khovanov homology. For vertex-operator-

algebraic contexts, it is best to work with C.

It was noted in [GOR] that this Koszul complex is related to the principal subspaces

and using the ideas of [FS1]-[FS2] and [LP], a conjectural description of the Poincaré

series of the homology (over rationals) of the Koszul complex above was also derived.

We remark that the double-grading used in [GOR] is different than the one used in this

paper and that the gradings are not compatible.

The homology Khalg(n,∞) has a natural structure of a graded algebra. Conjec-

ture 1.6 of [GOR] describes a presentation of this algebra. In particular it states the

following:

Conjecture 4.5.3 ([GOR]). As an algebra over Q, Khalg(n,∞) is generated by the

elements x−1, . . . , x−n and µ−4, . . . , µ−n−2, where µ−j are defined as in (4.2.7).
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The homomorphism σ that we have used also finds an analogue in [GOR]: namely,

it lets one pass from the unreduced to the reduced stable Khovanov homology; see

Section 5 of [GOR].

For principal subspaces associated to the higher level vacuum modules of ŝl2, it is

conjectured in [GorL] that the corresponding Koszul models capture the slN -Khovanov-

Rozansky homology of T (∞,∞).

We are currently working towards adapting our methods to the “finite” and the

higher level settings.

Remark 4.5.4. Rogers-Ramanujan-type identities have several connections to knot

theory. As another example, we mention [AD], where it is explained how the second

Rogers-Ramanujan identity and more generally, some Andrews-Gordon identities arise

by considering the “tail” of the colored Jones polynomial of the (negative) (2, 2k + 1)-

torus knot.
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