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ABSTRACT OF THE THESIS

Analyzing the Mixing Dynamics of a Tumbling

Bin Blender using Discrete Element Modeling

by Subhodh Kumar Karkala

Thesis Director: Dr. Rohit Ramachandran

Powder mixing is a critical step in pharmaceutical processes as it determines the

final tablet composition. In this study a discrete element model (DEM) has been

developed for an industrial scale tumbling bin blender in which three different

materials are blended together. The dynamics of the mixing have been evaluated

with the analysis of critical quality attributes (CQAs) such as relative standard

deviation (RSD) and segregation intensity. This model has been developed and

calibrated using an experimental setup in which the blend composition is moni-

tored through a near-infrared range (NIR) probe mounted on the blender lid. The

final blend quality is judged on the basis of measurements only at the lid in the

experimental setup. However, the model has been used to study the quality of

mixing in different locations inside the blender. The model is able identify poorly

mixed zones and can be used to investigate other potential locations for the NIR

probe. The effect of key process parameters (i.e. blender RPM and loading order

of materials) on the quality of mixing has also been studied.
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Chapter 1

Introduction and Objectives

Powder mixing combines two or more materials into a blended mixture and is an

important unit operation in several industries (e.g., food, pharmaceutical, chem-

ical etc.). A key attribute of powder mixing is the blend uniformity. As the

blender output is processed further in downstream units, the blend uniformity

has a significant influence on the quality of the final product. Hence the per-

formance of the mixing operation is critical to the operational efficiency of these

industries [1].

A variety of blenders are available for processing powdered materials in the in-

dustry. The application of these blenders depends on the properties of materials

being mixed. The tumbling bin blender is a batch mixer used to blend granu-

lar materials together. They are commonly used in pharmaceutical industries as

they provide safety in operations and convenience in handling [2]. However, due

to the presence of multiple flow regimes in a tumbling blender, it is important

to understand the process dynamics in detail. Moreover, as the pharmaceutical

industries often have to deal with fine powders which have poor flowability and

tend to segregate, mixing them efficiently may become quite challenging [3].

In general, the powder flow processes are erratic and have an inherent variabil-

ity associated with it. Hence, various flow analyzing methods (experimental or

modeling) are required to obtain a good prediction of their behavior. Enabling

the use of process systems engineering (PSE) tools could prove very beneficial in

understanding unit operations that process powered materials in pharmaceutical
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industries. The various PSE tools which can be used for process development

are predictive models, flexibility and feasibility analysis, steady state and dy-

namic optimization, sensitivity analysis and controller design [4]. Process models

are mathematical representations of any system. They are developed based on

experimental observations and physical principles and aid in providing a better

understanding of the process. A calibrated model can also be used as a predictive

tool. Thus the various modeling techniques and simulation tools can prove to be

more resource and time saving alternatives when compared to other experimental

methods for process design and optimization analysis.

Pharmaceutical industries have to abide by stringent quality norms set by the reg-

ulatory authorities (e.g. United States Food and Drug Administration (FDA)).

Good product quality can be realized by designing robust manufacturing pro-

cesses, incorporating thorough process knowledge. Managing and retaining an

explicit process knowledge throughout the product life-cycle is an important as-

pect quality management system, as stated in ICH-Q10 [5]. Thus these industries

are implementing more robust and science based process design methodology to

ensure retention of a detailed process knowledge and re-assess the various product

quality risks and uncertainties associated with it.

A detailed mathematical model that is validated, well-tuned and calibrated can

be used as an efficient tool for pharmaceutical manufacturing process develop-

ment studies [6], which will help to outline the design space. Design space is

defined as “the multidimensional combination and interaction of input variables

(e.g., material attributes) and process parameters that have been demonstrated

to provide assurance of quality” (ICH: Q8 (R2)). A mixing operation involves a

large parametric space which consists of the processing parameters (i.e. blender

RPM, fill volume, loading pattern etc.), equipment design, material properties

etc. [2, 7]. A process may consist of several input parameters, but only some

are highly sensitive and critical towards the optimal operational efficiency of the
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process. Therefore, identifying the critical process parameters (CPPs) and under-

standing their effect on the process efficiency is an important step in establishing

the design space and evaluating how effectively the process can withstand any

parametric variability without a drop in product quality. The manufacturing

steps implemented by the pharmaceutical industries must meet the GMP (Good

manufacturing practices) guidelines to achieve high process efficiency and good

product quality as outlined by the FDA. This will also allow the product quality

to be built consistently in each and every step of the manufacturing process as

per the QbD and PAT guidelines.

PAT has been defined as “a system for designing, analyzing, and controlling

manufacturing through timely measurements of critical quality and performance

attributes of raw and in-process materials and processes with the goal of ensuring

final product quality” (ICH: Q8 (R2)). It recommends implementation of mea-

surement and control tools for the CPPs and material properties in the process

so as to achieve product of desired quality. The process variables and parame-

ters must be maintained within the acceptable limits as any deviation may lead to

production of inferior quality product and also result in process failure which may

have hazardous impact on the environment, health, safety etc. A mathematical

model can also aid in the design and evaluation of an efficient control loop system

based on the process understanding. In short, a process model can be used for

virtual experimentation and can be a prerequisite for the design, analysis, control

and optimization studies of a process.

Another important step in the design stage of a manufacturing process is the

process risk analysis. Risk has been defined as “the combination of the probability

of occurrence of harm and the severity of that harm” (ICH: Q9). It is necessary

to formulate an effective risk management process which comprises of analyzing

and assessing the risks associated with a process (i.e., environmental, health,

safety etc.). A robust risk management process includes several steps which are
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risk assessment (risk identification, risk analysis, risk evaluation), risk control

(risk reduction, risk acceptance) followed by reviewing the outputs of the risk

management process [8]. A good understanding of the potential risks will lead to

reduction in prediction uncertainties and increase the sustainability of the process.

As PSE tools can be used effectively to obtain the process knowledge, identify the

CPPs, understand the inter-dependence of the CPPs, they can be an excellent

source of evaluating the process risks followed by their application in optimization

and sensitivity analysis and designing efficient control systems.

1.0.1 Motivation

Tumbling bin blenders are commonly used in pharmaceutical industries for the

mixing of dry granular materials. Since mixing is a critical unit operation in

these industries, modeling tools can prove useful to provide a detailed process

understanding that is required for process design and optimization. Models can

be used to for virtual experimentation and can help save resources by minimiz-

ing the experimental trials required. Hence, modeling tools will also help the

pharmaceutical industries to attain a more sustainable position.

1.0.2 Objectives

In this work a mathematical model for an industrial batch bin blender has been

presented and the mixing dynamics has been studied in terms of blend composi-

tion at different locations inside the blender, which has been further translated

into RSD and intensity of segregation information. The model has been developed

using discrete element methodology, which is a fundamental particle level mod-

eling and simulation tool. It provides an excellent demonstration as how DEM

(a model based technique) can be used as an effective tool to obtain a detailed

process knowledge which can be further used in process design or troubleshooting
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practical processing issues. In the actual experimental set-up, the NIR probe

is used to monitor the blend composition, which is mounted on the lid of the

blender. It performs a blend reading every time the bin is positioned with the lid

down. The NIR is able to capture the blend composition near the lid region only.

However, a model-based method can been used in order to evaluate the mixing in

the entire blender. Thus the mixing efficiency can be studied in other locations

as well (apart from the lid region). This will also help to identify other sampling

locations.

The objectives of this study are listed below:

• Formulate a DEM model of an industrial scale tumbling bin blender.

• Study the mixing dynamics of the blender using the model based approach

in terms of CQAs such as the RSD, segregation intensity and composition.

• Determine if the NIR measurements in the lid zone provide an accurate

representation of the overall quality of mixing using the model.

• Evaluate poor mixing zones inside the blender and identify potential sam-

pling sites with the help of the model

• Assess the sensitivity of the model to critical process parameters (i.e., RPM,

fill volume and loading order).
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Chapter 2

Discrete Element Model

A variety of modeling approaches are available in the literature that have been

used to develop and study models for powder mixing processes. These include

the Monte Carlo method, the DEM models, residence time distribution (RTD)

models, population balance models, statistical models and hybrid models to name

a few. Of these available approaches, DEM is one of the most fundamental

modeling techniques used to simulate the behavior of powder in mixing processes.

Powder systems consist of solid particles which are discrete entities and can inter-

act with each other or the equipment boundary in different manner. DEM is often

used to simulate powder flow as it treats the particles as discrete entities and is

able to track the flow-field of individual particles. The mathematical formulation

of DEM is derived from first-principles.

The mechanism used in DEM to track particle movements inside the system

boundary is outlined in figure /refFig13. The geometry of the equipment is first

created and the particles are simulated inside it. Next, DEM determines the

contact or collisions between the particles. DEM then calculates the total force

acting on the particles due to the particle-particle and particle-boundary contacts

(contact forces) and other body forces (due to an external source; example: force

of gravity). It then computes the acceleration or velocity using Newton’s second

law and updates the particle position based on the velocity information.

Two types of forces (which are normal pressure force and tangential frictional

force), act on the particles due to contact. The contact forces are calculated
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from the various contact models that are available (i.e., Hertzian normal contact

force model, Cundall and Stack normal force model, J-K-R normal and adhesive

force model for cohesive particles, Mindlin-Deresiewicz/Coulomb friction tangen-

tial force model etc.) [9]. In this work Hertzian normal contact force model and

Mindlin-Deresiewicz tangential force model have been used as the DEM simu-

lates free flowing non-cohesive powders. Hertzian normal contact force model

assumes a non-linear spring-dashpot model and is applicable within elastic limits

for spherical and smooth particles with continuous surface and undergoing non-

conforming contact. As detailed by Kruggel-Emden et al. [10], particle-particle

contact is detected between two spherical particles when the distance between

their centers is less than the sum of their radii; and a particle-boundary contact

is detected when the distance between the particle center and the boundary is less

than the particle radius. However, a very small overlap (or deformation) may be

allowed. As shown in equation (2.1), the total force (~F ) acting on the particles is

summation of the normal contact force( ~FN
C ), tangential/frictional contact force

( ~F T
C ) and body force ( ~FB). In a bin blender model, the only body force acting

may be due to gravity.

~F = ~FN
C + ~F T

C + ~FB (2.1)

The acceleration of the particles is calculated from Newton’s law m~a = ~F , where

m is the particle mass and ~a is the acceleration vector. The position of the par-

ticles is updated from Euler’s equations of rotational motion as shown in equa-

tion (2.2) [11]. Here x, y and z are the spatial coordinates of the particle position,

I is the moment of inertia, ~Ω is the angular velocity vector and ~τ is the torque.



8

Ixx~Ωx + (Izz − Iyy)~Ωz
~Ωy = ~τx

Iyy~Ωy + (Ixx − Izz)~Ωx
~Ωz = ~τy

Izz~Ωz + (Iyy − Ixx)~Ωy
~Ωx = ~τz (2.2)

The normal or tangential contact forces are calculated as ~FC = −kδ3/2 − γδ̇δ1/4.

Here ~FC is normal or tangential contact force, δ is the normal or tangential

overlap, k is the stiffness coefficient factor, δ̇ is the rate of normal or tangential

deformation and γ is the damping coefficient. The detailed expressions of these

parameters have been given by Dubey et al. [11]. The stiffness coefficient controls

the particle stiffness and is a function of the particle size and other material

properties (i.e., Poisson’s ratio and Young’s modulus). The stiffness of a body

can be defined as its ability to resist deformation when a force is applied on it.

Fine tuning of the values of Poisson’s ratio and Young’s modulus is important

because it decides the stiffness of the particles which on the other hand controls

the particle deformation or overlap upon contact. It is suggested that the particle

overlap be controlled so that the model stays within elastic limit [12].

Several modeling tools have been used in literature to study mixing. DEM has

been used to investigate mixing of granular materials [13]; mixing behavior in a

continuous mixer was investigated using compartment models [14]; markov chain

modeling has been used to study powder mixing kinetics [15]; segregation and

mixing were studied with the help of continuum modeling [16]; population balance

modeling methodology was utilized to study continuous powder mixing [17] etc.

DEM is an excellent tool to obtain fundamental particle level information which

is not possible based on other modeling techniques which have been used to model

powder systems. Several researchers have used DEM for studying powder mixing

in different types of blenders (both batch and continuous mode of processing). For
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example DEM has been used to study V-blender [18], conical blender [19], tote

blender [20], rotating drums [21] and other continuous processing blenders [22].

DEM has also been coupled with other modeling tools for to improved process

understanding. DEM has been combined with PBM (population balance models)

and compartment models in order to formulate multi-scale frameworks which are

able to store process dynamics information from macro, meso and micro scales.

For example, Sen et al. developed a PBM-DEM framework for a continuous

mixing process [24]; Portillo et al. developed hybrid DEM-compartment model

for granular mixing [25]; Kumar et al. developed a DEM-compartment-PBM

coupled model for a particle coating process [26].

In this work a case study on an industrial blender has been presented which

demonstrates how DEM can be applied in a practical scenario to study mixing.
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forces etc.  

Figure 2.1: Flow diagram of the working principle of DEM
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Chapter 3

Mathematical Model Development

In this section an overview of the procedure followed for model development has

been presented. The experimental set-up has been described first. Next, the

steps taken for calibrating the DEM input parameters (particle size, number of

particles, shear modulus, Poisson’s ratio, particle-particle and particle-wall coeffi-

cients of static and rolling friction, coefficient of restitution) have been explained.

Lastly, the final simulation parameters have been presented.

3.1 Experimental Setup

The blender is a cylindrical vessel with a conical bottom. Three different types

of materials have been mixed together in the blender. Two of which are active

pharmaceutical ingredients (API 1 and API 2) and the third is the excipient and

has been termed extra granular phase. Table 3.1 gives the physical properties

(mean particle size, true density and angle of repose) of the different materials

and the feed composition.

In the experimental studies, the material loading procedure is as follows: half of

API 2 is loaded first into the bin followed by the entire mass of API 1, followed

Material type Mean Particle size True Density Angle of repose
(µm) (g/cc) (degree)

API 1 420 0.7159 45

API 2 401 0.6720 42

Extra granular phase 178.2 0.7316 61

Table 3.1: Experimental set-up
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by the entire mass of the extra granular phase after which the remaining half

of API 2 is loaded. The blender is operated at a speed of 6 RPM. The model

input parameters have been determined by tuning and calibrating with respect

to the experimental set-up.NIR data is collected every revolution after the first

30 revolutions are over. As mentioned previously, the NIR probe is located at

the blender lid and the data is collected when the blender is in inverted position.

The DEM study has been conducted on this simulation set-up and processing

conditions.

3.2 Geometry and Calibration of DEM Parameters

The geometry of the bin blender has been shown in figure 3.1. This geometry has

been developed using 3D-CAD (SolidWorksTM) and has been built to scale. The

DEM simulations have been performed in EDEMTM (DEM Solutions).

3.2.1 Particle Scale-up Procedure

The particle size in the DEM simulation has been scaled up from the actual

particle size. Realizing the actual particle size in DEM is not feasible. Billions

of particles (with the actual particle size) will have to be created in order to fill

the processing volume and this will make the model extremely computationally

intensive as DEM tracks each individual particle across the space of the system.

Scaling up the particle size will allow the same processing volume to be filled by

lesser number of particles thereby increasing the simulation speed.

The total number of particles to be simulated and the scaled-up particle radius

have been decided in a manner such that the fill volume/fill level and the mass of

the batch matches with the experimental set-up. The composition of the feed has

been also been kept the same as in the experimental setup. As there are three

material types being mixed, therefore three particle types have been created in
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Figure 3.1: Pictorial representation of the bin blender

DEM and the properties of each have been calibrated (let ‘i’ represent the three

different particle types).

The particles used for the DEM simulation have been scaled-up based on the

actual mean particle size. First, the total number of particles (including all the

three material types) that will be simulated in DEM has been fixed, NTotal. Total

volume occupied by all the particles of type ‘i’ in feed is given as Vi = mi

ρi
,

where ρi and mi are the bulk density and total mass of all the particles of ith

type (ρi and mi are obtained from the experimental data). The size ratios of

each particle type have been calculated with respect to the extra granular phase

Si = Ri

Rextra granular phase
, where Ri is the actual mean radius (from experiment) of

one particle of type ‘i’ (size ratio of the extra granular phase is 1). A porosity φi

has been assigned to each particle type (based on experimental data) in order to
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calculate the number of particles of individual components Ni = Vi(1−φi)
vi

, where vi

is the volume of one particle of type ‘i’. Let r1 be the radius of the smallest particle

type to be created in DEM. Replace vi as vi = 4
3
π(Sir1)

3 in the expression for

Ni (i.e.,Ni = Vi(1−φi)
4
3
π(Sir1)3

) . If M is the number of components/particle types (M=3

in this case), then the scaled-up radius (or DEM radius) of one particle to be

simulated is given as equation (3.1) (put the expression of Ni in the expression of

NTotal and through algebraic manipulation obtain ri).

NTotal = ΣM
i=1Ni

r31 =
3

4πNTotal

ΣM
i=1

Vi(1 − φi)

S3
i

(3.1)

3.2.2 Calibration of interaction parameters

It should be noted that the particle size ratio and the weight ratio between the

three raw material types have been maintained similar to the experimental set-

up. Once the particle size has been decided for all the raw material types, the

values of the other input parameters need to be determined. The other param-

eters which must be provided as inputs to the model are material density, shear

modulus, Poisson’s ratio and the interaction parameters (i.e., coefficient of static

friction, coefficient of rolling friction and coefficient of restitution). The value of

shear modulus and Poisson’s ratio has been fine tuned so that at every time step,

the maximum allowed value for particle-particle and particle-wall overlaps is 15%

of the particle radius. The values of the interaction parameters have been fixed by

calibrating them with respect to the experimentally obtained angle of repose. The

angle of repose of any material is highly sensitive to the coefficients of static and

rolling friction. A detailed analysis on calibration of DEM interaction parameters

based on angle of repose has been given by Zhou et al. [27]. Several trial simula-

tions have been run for each material type by varying the value of the interaction
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parameters, such that the angle of repose obtained from the simulation can be

matched with the experimental observation. In these simulations, particles have

been created randomly inside a closed box followed by a gravitational settling

process of about 5-10 s so that a stable packing is obtained. At the next instance

the side and the top walls of the box are opened. The particles slide down until a

stable pile is formed. The angle of repose has been determined from the surface

profile of the pile.

3.3 Final DEM Input Parameters

The final set of simulation parameters (particle mean size, shear modulus, Pois-

son’s ratio, coefficients of static and rolling friction and coefficient of restitution)

have been presented in this section.

Table 3.2 gives the DEM particle diameter, number of particles and the inter-

action parameters used in the simulation. Here, µspp, µspw, µrpp and µrpw are

the coefficient of static friction (particle-particle), coefficient of static friction

(particle-wall), coefficient of rolling friction (particle-particle) and coefficient of

rolling friction (particle-wall) respectively.

The coefficient of restitution has been kept at a low value of 0.01 as powder

particles undergo inelastic collision [11]. The shear modulus and Poisson’s ratio

are 2 MPa and 0.33 respectively. The blender speed has been maintained at 6

RPM. A total of 200,000 particles have been simulated. This number has been

chosen so that simulation completed in a reasonable amount of time using the

computational resources available. The material loading order in the simulation

has been maintained same as that mentioned in the experimental set-up section.

The simulation has been run for a period of 502 seconds which is a total of 50

revolutions. The output data has been collected every five revolutions till first 30
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revolutions. From 30 revolutions onwards, data has been collected for each rev-

olution until 50 revolutions. This simulation has been termed as the base case.

The base case has taken 22 days to simulate (for 502 seconds) on a 30 cores in an

Intel Xeon (R) CPU @ 3.10 GHz with 128 GB RAM desktop computer.

Material type Particle diameter µspp µspw µrpp µrpw
(mm)

API 1 21.21 0.50 0.40 0.10 0.08
API 2 20.26 0.50 0.40 0.05 0.08

Extra granular phase 9.02 0.95 0.90 0.10 0.05

Table 3.2: DEM simulation parameters
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Chapter 4

Results and Discussion

Several flow regimes may exist in a batch mixing process. These flow regimes could

create zones that have different mixing efficiencies (i.e., differ in the composition

and variability of the blend attributes). Therefore, it is important to investigate

the mixing performance in different zones inside the blender. Such a study will

also help to identify the poor mixing zones that may be present in the blender.

Any unit operation is sensitive to certain process parameters and it has been

shown in the previous studies that the mixing efficiency changes significantly

with the change in the conditions of these process parameters [28]. In this study,

mixing efficiency has been quantified by measuring the RSD and the intensity of

segregation. The results shown in this section are from the model based study

only and the same observations have to be experimentally verified.

4.1 Discretization of blender geometry

A Cartesian co-ordinate system has been used to discretize the blender into several

zones. The geometry has been divided into four layers as shown in figure 4.1. Each

layer has been further divided into 16 grid bins. As a result, the geometry has been

divided into a total of 64 grid bins (4x4x4 in x, y and z direction respectively).

Note that a grid bin represents a zone or location inside the blender.

The grid bin size has been decided such that there are adequate number of par-

ticles present in them to provide a good estimate of the composition and the

variability. The bin size and hence the total number of bins has been varied and
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RSD has been calculated by post processing the simulation across different time

points. The final bin size has been chosen in the range where least change is

observed in RSD in between the two bin sizes.

From the figure 4.1, it can be seen that certain grid bins contain no particles

or very few particles. This is because the particles order themselves to form a

slope inside the bin when it is inverted and also due to the fact that a Cartesian

co-ordinate system has been considered in order to discretize a cylindrical vessel.

Such bins have been excluded from the calculations so that unreliable results are

not obtained.

Layer-wise Analysis

LAYER1

LAYER2

LAYER3

LAYER4

LAYER1

LAYER2

LAYER3

LAYER4

6

FRONT VIEW

TOP VIEW

Figure 4.1: Discretization of the blender into different zones (grid bins)

Figure 4.2 presents the Cartesian grid bin representation of the four layers from

the top view. Grid bins that have been excluded for calculation purposes have

been marked green. In the experimental set-up, the NIR probe is present in the

layer 4. Therefore, the probe is only able to capture the blend composition of

grid bin 6, grid bin 7, grid bin 10 and grid bin 11 in layer 4. In the calculations

involving these grid bins, the results of the first few revolutions have not been

presented because at start up these values maybe unreliable in predicting the

state of the system.
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Figure 4.2: Layer-wise representation of the grid bins in cartesian system

4.2 Comparison of Overall RSD composition with Layer-4

RSD

Figure 4.3 shows the comparison between the overall RSD of each material type

to their respective RSDs in the layer 4 as a function of number of revolutions.

RSD has been determined based on equation (4.1) as shown below. RSD is a

measure of the variation.

RSD =

√∑i=M
i=1 (xavg−xi)2

M−1

xavg
(4.1)

As mentioned earlier, the blender has been divided into several bins and samples

for measurements have been collected from each of these bins apart from those

excluded (as shown in figure 4.2). Here xavg is the overall average fractional

composition, xi is the fractional composition at the ith bin and M is the total

number of bins. Figure 4.3 a, b and c represent the comparison of RSD of API

1, API 2 and the extra granular phase respectively. The fluctuations present

are inherent property of a DEM simulation because it is difficult to realize a

perfect steady state in a powder system. As the powder particles can interact
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with each other and the geometry wall in several different ways, based on the

interaction parameters and contact angle etc., fluctuations in the output variables

are often observed [24]. It can be seen from the plots that the current NIR probe

which is located in the layer 4, is under estimating the overall variability in the

mixture. There is a scope for identifying other sampling locations such that a

better estimate of the overall mixture variability can be obtained.

30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No of Revolutions (−)

R
S

D
 (

−
)

 

 

Overall RSD
Layer 4 RSD

(a)

30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No of Revolutions (−)

R
S

D
 (

−
)

 

 

Overall RSD
Layer 4 RSD

(b)

30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

No of Revolutions (−)

R
S

D
 (

−
)

 

 

Overall RSD
Layer 4 RSD

(c)

Figure 4.3: Comparison of RSD between layer 4 and the overall RSD for (a) API 1 (b)
API 2 (c) Extra granular phase
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4.3 Segregation Intensity Comparison

Segregation effect is often seen in powder handling operations as particles with

different size and density often tend to form segregated layers thus deteriorating

mixing performance. In the simulation of the blending process, three different

materials with different particle sizes and densities are being mixed together. As

a result, the likelihood of observing the segregation effect is high. In order to

quantify the extent of segregation of the three material types, the intensity of

segregation has been determined based on the formula [29] below:

I =

∑i=M
i=1 (xavg − xi)

2

Mxavg(1 − xavg)
(4.2)

As mentioned earlier, the blender has been divided into several bins and samples

for measurements have been collected from each of these bins. Here I is the

intensity of segregation, xavg is the overall average fractional composition, xi is

the fractional composition at the ith bin and M is the total number of bins.

Figure 4.4 shows the intensity of segregation as a function of the number of

revolutions for all the three particle types. Evidently, the segregation intensity of

the extra granular phase is the highest. Particle sizes of API 1 and API 2 in the

simulation are similar. The size ratio between these two particle types is 1:1.05.

On the other hand, the particles of the extra granular phase are approximately

2.5 times smaller than the other two particles. This significant difference in size

causes the extra granular phase to form a segregated layer which is mixing slower

compared to the other two material types.
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Figure 4.4: Intensity of segregation vs number of revolutions

4.4 Identification of Poor Mixing Zones

Another study has been conducted wherein the locations of poorly mixed regions

inside the blender model have been ascertained. The grid bins with maximum

and minimum fractional composition (with respect to the whole blender) have

been identified at every revolution from 30 revolution onwards (i.e., from 30th

revolution to the 50th - a total of 21 revolution points). If the occurrence of an

extrema in a particular grid bin was more than three counts then that bin has

been marked. The bins have been color coded with red representing superpotent

regions and green representing subpotent regions.

Figures 4.5a and b show the superpotent and subpotent bin locations for API 1

in the cartesian grid system and as 3D representation respectively. It can be seen

that the superpotent spots occur towards the wall and the subpotent spots occur

mainly near the central regions of the mixer. Also note that no superpotent or

subpotent spots occur in the layer 4. This observation confirms hypothesis that
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the NIR probe in its current location is unable to capture the variations that

occur in the API 1 composition with respect to the other layers.

Similarly, Figures 4.6a and b present poorly mixed zones for API 2 in the Carte-

sian system and 3D representation respectively. The segregation pattern of API

2 is similar to that of API 1 (i.e., the superpotent and subpotent locations occur

mainly towards the wall and the center respectively). Figures 4.7a and b give the

bin locations for the extra granular phase in the Cartesian system and 3D rep-

resentation respectively. For extra granular phase, the superpotent spots occur

towards the center and the subpotent spots occur towards the wall. This implies

that the extra granular phase is forming a slow mixing segregated layer near the

center of the blender.

The zones identified in this study represent poorly mixed regions in the model.

Thus they can be potential sampling sites to enable better estimation of variation

in the blend.
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Figure 4.6: Superpotent and Subpotent regions in the mixing of API 2 represented as
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4.5 Proposed sampling sites for determining RSD

As previously mentioned, the RSDs of API 1 and API 2 are being underestimated

by calculations involving compositions captured in Layer-4 (NIR region). Under-

estimation of RSD is not beneficial as it deceives the quality of mixing of the

batch. A poorly mixed batch could be judged as being well mixed and passed

on to downstream operations and as a result the final product quality might be

poor. Such an event could be very detrimental in pharmaceutical industries as

the composition of API in tablets made from the same batch could be drastically

different.

In order to get a better estimate of the RSD, additional sampling points have

been proposed in this study. A new RSD has been calculated using grid bins in

layer-4 close to NIR as well as the superpotent regions found from the previous

study. The superpotent regions have been chosen as additional sampling points

because they are close to the blender walls. It would be more practical to monitor

these regions compared to central regions of the blender. This new RSD has been

termed ’Wall hot-spot RSD’ and has been compared in Figure 4.8 with the Overall

RSD (which has been calculated with compositions from all but the excluded grid

bins) and the layer-4 RSD (calculated using the grid bins close to NIR region).

Figures 4.8 (a) and (b) show the variation of these RSD values with the number

of revolutions for API 1 and API 2 respectively. It can be seen that inclusion of

the superpotent sampling points in RSD calculations results in better estimation

of the overall RSD of the mixture for both the compounds. However, these are

results from a model based study and require further experimental verification

before implementation. Note that this study was not conducted on the extra

granular phase since the layer-4 RSD already provides a good estimate of the

overall RSD as seen in figure 4.3 c.
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4.6 Reducing Segregation Intensity of Extra Granular Phase

Segregation of the extra granular phase is an undesired effect in this mixing

process. Therefore, certain process parameters critical to mixing (e.g., fill volume

and RPM) have been varied and their effect on the mixing dynamics of the extra

granular phase has been studied. This could lead to an understanding of how

these CPPs have to be tuned in order to reduce the segregation intensity and

thus eliminate the slow mixing center formed by the extra granular phase.

For this study two additional simulations have been conducted. In the first sim-

ulation the fill volume has been reduced to 40% (125,000 particles simulated).

In the other one the blender RPM has been increased to 12 RPM. All other

simulation parameters have been kept the same as in the base case.

Figure 4.9 shows the change in intensity of segregation of the extra granular

phase with variation in RPM and fill level. It can be seen that the segregation

intensity reduces with increase in RPM and decrease in fill level. As the RPM

increases,the convective transport of the particles is increased. This results in

faster and more efficient mixing. With decrease in fill level, segregation intensity

decreases because the particles have more space to move and this aids particle

transport. This observation also agrees with the previous studies available in

literature [2, 30].

4.7 Effect of Critical process parameters

As identified in previous studies [31], the main design and process variables which

affect the mixing dynamics are the design of the blender, the blender size, the

mixing mechanism, the fill volume, rotation speed of the blender, material loading

order and the material properties of the substances being blended. For this study,

the design parameters, the equipment geometry and the material properties have

been fixed while the process variables (i.e., the loading order and blender RPM)
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have been varied in order to determine their effect on the mixing performance of

this particular system. This study demonstrates how this model can be used for

process design and optimization. The model can be used to determine the sen-

sitivity of the parameters and the range in which the parameter values must be

maintained in order to obtain the desired mixing performance. The mixing effi-

ciency has been calculated based on the RSD of API 1 which has been determined

based on equation (4.1).

A simulation has been run by increasing the RPM to 12 while keeping the other

simulation parameters constant. In another simulation, the loading order has been

varied. Figure 4.10 shows the two different loading orders (i.e., base case loading

order and alternate loading order). In the alternate loading order simulation,

the materials have been loaded in the following sequence: entire mass of API 2

followed by all of API 1 and lastly all of the extra granular phase.

Figure 4.11 presents the plot of RSD with respect to API 1 for alternate loading

order, higher blender RPM. It can be seen that the effect of loading order is the

least as the change in RSD with the alternate loading order is 0.5%. There is a

23.5% decrease in RSD when the blender RPM is doubled. The blender RPM has

a considerable effect on the RSD, which implies that it is a sensitive CPP in the

model. It can be seen from figure 4.11 that the RSD decreases with increase in

RPM. As highlighted previously, this occurs due to increase in convective particle

transport. The RSD increases with higher fill volume. This observation can

be explained based on the fact that with increase in fill level, less free space is

available for particle movement which hinders the particle transport. The other

parameter of interest in batch mixing is the mixing time, which is also another

important factor in deciding the blend quality [32]. Mixing time will change if

the CPPs are varied. It can be adjusted to obtain the desired product quality.

However in this work, a study on the mixing time has not been conducted, as the

present DEM model is computationally intensive.
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Figure 4.8: Comparison of Overall RSD with Layer-4 and Wall hotspots for (a) API 1
(b) API 2



31

15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

No of Revolutions (−)

S
eg

re
ga

tio
n 

In
te

ns
ity

 (
−

)

 

 

Base Case
40% Fill Volume
High RPM (12 RPM)

Figure 4.9: Variation of segregation intensity of Extra Granular Phase with change in
processing conditions

Base Case Loading Order

Half of API 2

API 1

Extra Granular Phase

Half of API 2

API 1

Extra Granular Phase

Alternate Loading Order

All of API 2

Figure 4.10: Loading order of the materials



32

15 20 25 30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

No of Revolutions (−)

R
S

D
 (

−
)

 

 

Base Case
Alternate Loading Order
High RPM (12 RPM)

Figure 4.11: Variation of RSD of API 1 with change in processing condition



33

Chapter 5

Conclusions and Future work

A mathematical model for an industrial batch bin blender has been presented

based on the DEM methodology. The model has been developed based on an

experimental set-up and has been shown to capture the process dynamics well.

The simulation parameters have been calibrated and tuned using experimental

data. In the experimental set-up, a NIR probe located on the lid of the bin is

used to obtain information about the composition of the mixture near the lid zone.

However, the model has been used to evaluate the overall mixing performance.

Since three types of raw materials with different physical properties and particle

sizes are being mixed, a segregation study has also been conducted to highlight

the segregation pattern of the different materials being mixed. The model has

been used to determine other potential sampling sites by identifying the superpo-

tent (i.e., where the material concentration is considerably higher than the overall

average composition) and subpotent zones (i.e., where the material concentration

is considerably lower than the overall average composition). The model has been

used to identify additional sampling points that are able to improve the prediction

of the overall RSD calculations but these points need to be experimentally veri-

fied. With the help of the model, alternate processing conditions have also been

suggested for counteracting the segregation effect on the external granular phase.

The intensity of segregation was found to decrease considerably with increase in

blender RPM and decrease in fill volume. Hence this work provides an excellent

demonstration of how model based methods can be used to study the process dy-

namics and aid the pharmaceutical industries in process design and optimization
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as outlined in PAT. A separate study on the impact of different CPPs (blender

RPM, fill volume and loading order) has been conducted as well. It is seen that

the loading order is the least sensitive in this particular case whereas fill volume

and blender RPM have high sensitivity towards the blend product quality.

The results obtained from this model have been shown to agree with previous

studies reported in literature [2, 30, 31]. Similar framework/approach can be

implemented to study the effect of blender geometry or equipment design param-

eters and different mixing mechanisms as well. Future work could involve the

validation of the results using the experimental setup and improving the simula-

tion speed of the present framework with the help of parallel computing tools as

DEM models are computationally intensive in nature.
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