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ABSTRACT OF THE DISSERTATION   

 

Advanced Spatial Data Mining Methodology and Its Applications to 

Semiconductor Manufacturing Processes 

 

By BYUNGHOON KIM 

Dissertation Director: Dr. Myong K. Jeong 

 

In this dissertation, we present several methodologies for mining data obtained in 

semiconductor manufacturing processes. We first present a new step-down spatial 

randomness test aiming at automatically detecting abnormal dynamic random access 

memory (DRAM) wafers with multiple spatial maps. Testing the spatial randomness of a 

DRAM wafer is challenging. A DRAM wafer includes multiple spatial maps, resulting to 

a more complex and lengthy testing process compared with that of a single wafer map of 

a flash memory. To monitor the spatial randomness of the multiple spatial maps, we 

propose a new step-down spatial randomness test to detect abnormal DRAM wafers. In 

the proposed methodology, we adopt nonparametric Gaussian kernel-density estimation 

to transform the original fail bit test (FBT) values into binary FBT values. We also 

propose a spatial local de-noising method to eliminate noisy defect chips to distinguish 

the random defect patterns from systematic ones.  
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Secondly, we propose a novel matrix factorization method, called regularized singular 

value decomposition (RSVD), which aims at the automated classification of chip level 

failure patterns on fail bit map (FBM) of each DRAM chip. The RSVD based approach 

decomposes a FBM into several binary eigen-images to extract features that can provide 

the characteristics of the failure patterns on the FBM. By employing the extracted 

features as input vectors, k-nearest neighbor (k-NN) classifier is applied to classify 

feature patterns on a FBM into either single bit failed one or non-single bit failed one.  

Finally, we propose a new Bayesian classification model for uncertain data to classify 

abnormal DRAM wafers that include spatial features with uncertainty. Bayesian classifier 

has been extensively used for the classification of certain data. However, since every data 

object in the uncertain data is not represented by a point value, it is difficult to directly 

apply the Bayesian classifier for certain data. In the proposed approach, the multivariate 

kernel density estimate for uncertain data is proposed to estimate the class conditional 

probability density function (pdf). We then apply the Bayes theorem to calculate the 

posterior probability of a testing data object based on the estimated class conditional pdf. 
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CHAPTER 1  

 

Introduction 
 

1.1 Overview 
 

Several hundred integrated circuits (ICs) are simultaneously fabricated on a single 

wafer (Fenner et al. 2005). A semiconductor wafer includes rich dataset that are 

categorized wafer level and chip level data. At the wafer level analysis, it is critical to 

locate defective ICs chips on the wafer. Defective chips on wafer map commonly occur 

in clusters or display systematic patterns due to process problems (Hansen et al. 1997). 

To this end, the wafer maps are usually employed to investigate spatial dependence of 

defective chips across wafers. At the chip level analysis, a fail bit map is commonly used 

as an important diagnosis tool for testing memory devices (Nakamae et al, 2001; Wang, 

2009). The predominant failure modes of a memory device could quickly be discovered 

by the characteristics of the failure patterns on a fail bit map (FBM) (Hamada et al, 1997; 

Zanon et al, 2003; Jung, 2011).  

Typically, engineers classify and summarize the defect information from a number of 

wafer maps and FBMs manually, as well as many yield related professionals are charged 

with verifying defect types of every device. However, due to dense memory devices and 

massive production, it becomes challenging to analyze the maps and to predict the causes. 

In this dissertation, we focus on the development of algorithms that automatically detect 

and classify abnormal wafer and defective chips. 
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To automatically detect an abnormal wafer, a great deal of research has been 

conducted to develop methodologies that capture the spatial pattern shown on a wafer 

map (Chen and Liu, 2000; Liu et al., 2002; Hsieh and Chen, 2004; Tong et al., 2005; 

Jeong et al., 2008). However, most of the research on detection of defect pattern of a 

semiconductor wafer has been limited to flash memory or SRAM. There is only little 

literature on the analysis of dynamic random-access memory (DRAM) data with multiple 

wafer maps. We have developed a new step-down spatial randomness test for detecting 

abnormalities on multiple spatial maps of a DRAM wafer. Based on the proposed 

randomness test, we sequentially check the spatial randomness of each wafer map for a 

DRAM wafer. 

At the chip level, some researches on analyzing failure patterns on fail bit maps 

(FBMs) have been conducted in the literature (Hsieh et al., 2010; Zanon et al., 2003; Han 

et al., 2005). FBMs represent the failed cell count during wafer functional tests and have 

been popularly used as one of diagnosis tools in semiconductor manufacturing for 

process monitoring, root cause analysis, and yield improvements. However, the visual 

inspection process is costly and time-consuming. Therefore, we propose an automated 

classification procedure for failure patterns on FBMs in dynamic random access memory 

(DRAM) wafers. The novel matrix factorization approach, called regularized singular 

value decomposition (RSVD), is proposed to decompose binarized FBMs into several 

binary eigen-images to extract features that can provide the characteristics of the failure 

patterns on FBMs. By using the extracted features, k-nearest neighbor (k-NN) classifier is 

employed to classify feature patterns on FBMs into single bit failed maps and non-single 

bit failed ones.  
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Many spatial features that describe defect characteristics on a wafer map or FBM 

have been extracted for classifying the defect pattern on a semiconductor wafer. However, 

due to the complexity of the wafer map or FBM, spatial features are always incomplete 

for representing the characteristics of the images. The incomplete spatial features 

generate the uncertainty in representing the spatial pattern, which may deteriorate the 

performance of the defect classification. Therefore, it is unquestionable that handling the 

uncertainty of the spatial features should be adeptly conducted in order to improve the 

accuracy of the defect classification.  

To handle the uncertainty, we propose a new Bayesian classification model that 

considers the uncertainty of spatial features. In the proposed approach, the multivariate 

kernel density estimate for uncertainty is proposed to estimate the class conditional 

probability density function. Based on the class conditional density estimates and class 

prior probability, the posterior class probability of a test data with unknown class label is 

calculated by using Bayes theorem. After a classification model for uncertain data is 

constructed, the test data is assigned to the class with the maximum posterior class 

probability.  
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1.2 Thesis outline 

 

This thesis is organized as follows. Chapter 2 presents the detection methodology of 

spatial defect patterns on multiple spatial data with the specific application to a DRAM 

wafer map analysis in a semiconductor manufacturing process. A new step-down 

randomness test is developed to sequentially monitor the spatial defect patterns on the 

multiple spatial maps of a DRAM wafer. Chapter 3 proposes a regularized singular value 

decomposition algorithm for fault pattern classification on fail bit map of a failed DRAM 

chip. By using the RSVD algorithm, we can extract novel features of the fail bit map that 

provide the good classification accuracy of the failed DRAM chip. Chapter 4 presents a 

new Bayesian classifier for uncertain data to identify the fault type of an abnormal 

DRAM wafer. Finally, Chapter 5 summarizes the research results and describes several 

research problems for future investigations. 
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CHAPTER 2 
 

Step-Down Spatial Randomness Test for Detecting 

Abnormalities in DRAM Wafers with Multiple Spatial Maps 
 

2.1 Introduction 

Fabricating integrated circuits (ICs) on a single semiconductor wafer encompasses 

hundreds of steps (Fenner et al., 2005). After being fabricated, each IC is tested and 

classified either functional or defective, creating a wafer map that shows the locations of 

all defective chips on the wafer. Chips may be defective at a random pattern or in several 

patterns (Hansen et al. 1997). The spatial pattern of defective chips provides information 

useful for improving the quality of a wafer (Taam and Hamada, 1993; Chou et al., 1997; 

Tong and Yum, 2006). 

Figure 2.1 shows four wafer maps with different spatial defect patterns. Figure 2.1 (a) 

shows a random pattern from an in-control process. In contrast, Figure 2.1 (b), (c), and (d) 

show some spatial defect patterns from out-of-control processes. Such defect patterns 

contain much information useful for tracking the causes of the out-of control process 

(Wang, 2008; Li and Huang, 2009; Chang et al., 2012). For example, elliptical zones of 

failure are often caused by issues in thin-film deposition. Circular failure can be caused 

by etching issues. Repetitive patterns result mainly from stepper (or probe) malfunctions 

and sawing imperfections. Linear scratches are often caused by machine-handing 

problems (Hansen et al., 1997; Chen and Liu, 2000; Liu et al., 2002). 
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a) Random b) Circle 

  

c) Cluster d) Repetition 

 

Figure 2.1 Examples of spatial defect patterns on wafer maps. Black dots indicate 

defective chips; white dots indicate functional chips. 

 

Much work has gone towards identifying and classifying the spatial defect patterns 

of wafer maps. Some examples include the following research: Wang (2008) proposed a 

hybrid method, combining entropy fuzzy c-means and a decision tree. Chen and Liu 

(2000) presented a neural-network architecture named adaptive resonance theory network 

1 (ART1). Liu et al. (2002) developed a hybrid, self-organizing map-support vector 

machine approach by using binary wafer maps. Wang et al. (2006) proposed a hybrid 

method combining hierarchical clustering with K-means partitioning; they used an 

estimation module, such as a Gaussian EM algorithm, to predict each defect pattern. 

Jeong et al. (2008) proposed a methodology that integrated spatial correlograms and 
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dynamic time warping (DTW) distance; they used spatial correlograms to capture the 

spatial non-random patterns on a wafer map and adopted a DTW distance-based k-nearest 

neighbor (KNN) classifier to automatically classify the defect patterns based on the 

spatial correlogram. Chang et al. (2012) proposed a method that used a Hough 

transformation with the ratio approach to distinguish diverse defect patterns on 

semiconductor wafers. Liu and Chen (2013) proposed a clustering method that combined 

spatial statistics, a cellular neural network, an ART1 neural network, and a moment 

invariant to detect defect patterns. 

However, all these studies examined flash memory, which generates a single binary 

wafer map from functional testing results, as shown in Figure 2.1. Dynamic random-

access memory (DRAM), the most common computer memory is more complicated to 

test than flash memory because it produces non-negative integer values of multiple fail 

bit test (FBT) results (Liu et al., 2010). Table 2.1 shows a data structure of test results 

from a DRAM wafer; the second column (i, j) indicates the location of each chip on a 

DRAM wafer (ID: 188G1W02), and the other columns show the number of failed unit 

cells on each chip from different FBTs. 
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Table 2.1 Data structure of test result from a DRAM wafer 

Wafer Index (i, j) FBT 00 FBT 01  FBT N-2 FBT N-1 

188G1W02 14,54 6828717 454942 ……… 172 8073979 

188G1W02 14,55 3387648 448173 ……… 163 4650002 

……… ……… ……… ……… ……… ……… ……… 

188G1W02 15,46 2061199 273893 ……… 69 2910799 

188G1W02 15,47 7 124 ……… 0 192 

188G1W02 15,48 10 71 ……… 109 251 

188G1W02 15,49 378 84 ……… 0 527 

188G1W02 15,50 1490 210 ……… 51 2103 

188G1W02 15,51 1 84 ……… 0 141 

 

To check whether a DRAM wafer is normal or abnormal (i.e., has a spatially non-

random defect pattern), multiple FBT results should be considered simultaneously. 

Testing a DRAM wafer produces a map from each FBT, called an FBT map, producing N 

FBT maps for N FBTs. Figure 2 shows four FBT maps (FBT00–FBT03) for the DRAM 

wafer described in Table 2.1. FBT 0 and FBT 1 found a spatially non-random cluster of 

defective chips in the right-center area, whereas the remaining FBTs found spatially 

random patterns of defective chips. 
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Figure 2.2 Original FBT maps for the DRAM wafer described in Table 2.1. Darker 

colors denote more failed cells. 

 

As shown in Figure 2.2, considering multiple FBT maps is essential to detecting 

abnormal DRAM wafers. To our best knowledge, no procedures are available to detect 

the abnormal DRAM wafers using multiple FBT maps even though there are some 

studies on spatial defect analysis of DRAM wafers using a single wafer map (Chang et al., 

2012; Yuan et al., 2010). In this chapter, we propose a new step-down spatial randomness 

test, which monitors the spatial randomness of multiple FBT maps of a DRAM wafer 

(Kim et al., 2015a). To transform the original FBT values into binarized ones, we use 

kernel-density estimation to estimate the probability distribution of the original FBT 

values for the functional chips. Based on these binarized FBT maps, we develop a step-

down spatial randomness test with a local de-noising method to detect abnormal DRAM 

wafers. Figure 2.3 shows the framework of our proposed method for a DRAM wafer. 
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The chapter is organized as follows: Section 2.2 presents the brief background on 

join count statistics and spatial correlograms for multiple spatial maps. Section 2.3 

proposes the step-down spatial randomness test with multiple maps based on a local de-

noising method. Section 2.4 presents our experimental results. Section 2.5 summarizes 

the contributions of this section and suggests future research. 

 

 

Figure 2.3 Framework of our proposed procedure for detecting an abnormal DRAM 

wafer. 
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2.2 Join count statistics and spatial correlograms for multiple spatial 

maps 

Our proposed methodology can be implemented by extending the generalized join 

count (JC) statistics to represent the distribution of spatial autocorrelation for the multiple 

spatial maps. Suppose that, for a given DRAM wafer, we have N binarized FBT maps: 

𝑀𝑀𝑘𝑘, 𝑘𝑘 = 1,2, … ,𝑁𝑁. For each binarized FBT map, a join forms when two chips on the 

binary map are near each other. Let 𝐻𝐻(𝑘𝑘)(𝑔𝑔) denote a set of the gth order neighbors, 

defined as chips with a distance 𝑔𝑔 from each other on the kth FBT map, and let n denote 

the total chips on the wafer. The notation (𝑖𝑖, 𝑗𝑗) ∈ 𝐻𝐻(𝑘𝑘)(𝑔𝑔) implies that chips i and j on the 

kth FBT map are 𝑔𝑔th-order neighbors with each other. Then, based on a neighborhood 

construction rule, the number of possible joins is given by 𝑐𝑐(𝑘𝑘)(𝑔𝑔) = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑘𝑘)(𝑔𝑔)𝑖𝑖<𝑖𝑖  for i, 

j = 1, 2,…n, where 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑘𝑘)(𝑔𝑔) = �1, (𝑖𝑖, 𝑗𝑗) ∈ 𝐻𝐻(𝑘𝑘)(𝑔𝑔)

0,   elsewhere        
. 

In spatial statistics, there are three types of join: 0-to-0 join (between functional 

chips), 0-to-1 join (between functional and defective chips), and 1-to-1 join (between 

defective chips). Existing spatial non-randomness measures are defined based on the 

single lag to define the neighborhood of a chip. We extended this concept to define the 

neighborhood at lag (or distance) g as shown in Figure 2.4. Suppose that 𝑐𝑐00(𝑘𝑘)(𝑔𝑔), 

𝑐𝑐01(𝑘𝑘)(𝑔𝑔), and 𝑐𝑐11(𝑘𝑘)(𝑔𝑔) denote the numbers of 0-to-0, 0-to-1, and 1-to-1 joins with a 

spatial lag 𝑔𝑔 on the kth FBT map, respectively. Then,  

    𝑐𝑐00(𝑘𝑘)(𝑔𝑔) = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑘𝑘)(𝑔𝑔)(1− 𝑥𝑥𝑖𝑖(𝑘𝑘))(1− 𝑥𝑥𝑖𝑖(𝑘𝑘))𝑖𝑖<𝑖𝑖  

    𝑐𝑐01(𝑘𝑘)(𝑔𝑔) = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑘𝑘)(𝑔𝑔)(𝑥𝑥𝑖𝑖(𝑘𝑘) − 𝑥𝑥𝑖𝑖(𝑘𝑘))2𝑖𝑖<𝑖𝑖  
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    𝑐𝑐11(𝑘𝑘)(𝑔𝑔) = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑘𝑘)(𝑔𝑔)𝑥𝑥𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘)

𝑖𝑖<𝑖𝑖 , 

where 𝑥𝑥𝑖𝑖(𝑘𝑘)  is an indicator variable for the ith chip on 𝑀𝑀𝑘𝑘  such that 

𝑥𝑥𝑖𝑖
(𝑘𝑘) = � 1, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑  𝑐𝑐ℎ𝑖𝑖𝑖𝑖

 0, 𝑑𝑑𝑓𝑓𝑓𝑓𝑐𝑐𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐ℎ𝑖𝑖𝑖𝑖 and 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑘𝑘)(𝑔𝑔) = �1, (𝑖𝑖, 𝑗𝑗) ∈ 𝐻𝐻(𝑘𝑘)(𝑔𝑔)

0,   elsewhere       
.  

From the definitions of 𝑐𝑐00(𝑘𝑘)(𝑔𝑔), 𝑐𝑐01(𝑘𝑘)(𝑔𝑔) , and 𝑐𝑐11(𝑘𝑘)(𝑔𝑔) , then 𝑐𝑐(𝑘𝑘)(𝑔𝑔) =

𝑐𝑐00(𝑘𝑘)(𝑔𝑔) + 𝑐𝑐01(𝑘𝑘)(𝑔𝑔) + 𝑐𝑐11(𝑘𝑘)(𝑔𝑔). In practice, (𝑐𝑐00(𝑘𝑘), 𝑐𝑐01(𝑘𝑘), 𝑐𝑐11(𝑘𝑘)) depends on which 

neighborhood construction rule is applied. To represent the relationship among chips, we 

adopted a rook-move neighborhood (RMN) construction rule, which forms joins 

orthogonally, as shown in Figure 2.4. Because 𝐻𝐻(𝑘𝑘)(𝑔𝑔) is considered as a set of joins 

with length 𝑔𝑔 , the join length corresponds exactly to the Manhattan distance, 

𝑑𝑑 ��𝑥𝑥𝑖𝑖(𝑘𝑘),𝑦𝑦𝑖𝑖(𝑘𝑘)�, �𝑥𝑥𝑖𝑖(𝑘𝑘),𝑦𝑦𝑖𝑖(𝑘𝑘)�� = |𝑥𝑥𝑖𝑖(𝑘𝑘) − 𝑥𝑥𝑖𝑖(𝑘𝑘)| + |𝑦𝑦𝑖𝑖(𝑘𝑘) − 𝑦𝑦𝑖𝑖(𝑘𝑘)| between the two chips 

involved, consistent with the RMN construction rule. 

 

 

Figure 2.4 Neighbors in a rook-move neighborhood. 
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As a measure of spatial autocorrelation, a generalized JC-based statistic with the 𝑔𝑔th-

order neighbors can be written as follows: 

𝑇𝑇(𝑘𝑘)(𝑔𝑔) = 𝑖𝑖(𝑘𝑘)𝑐𝑐00(𝑘𝑘)(𝑔𝑔) + (1 − 𝑖𝑖(𝑘𝑘))𝑐𝑐11(𝑘𝑘)(𝑔𝑔), 

where 𝑖𝑖(𝑘𝑘)  is the defect rate of the kth FBT map, which is equal to the fraction of 

defective chips on the kth map. 𝑇𝑇(𝑘𝑘)(𝑔𝑔) is the convex combination of 0-to-0 and 1-to-1 

joins where 𝑖𝑖(𝑘𝑘) provides the minimum variance among all possible combinations (Jeong 

et al., 2008). Higher values of 𝑇𝑇(𝑘𝑘)(𝑔𝑔) imply that many 1-1 joins (or 0-0 joins) with 

distance 𝑔𝑔 are formed on the kth FBT map. Therefore, the higher 𝑇𝑇(𝑘𝑘)(𝑔𝑔) indicates any 

cluster patterns of defective chips on the kth wafer map because cluster patterns on the 

kth wafer maps produce large 𝑐𝑐00(𝑘𝑘)  and 𝑐𝑐11(𝑘𝑘) , whereas smaller 𝑇𝑇(𝑘𝑘)(𝑔𝑔)  can be 

interpreted as indicators of no evidence of spatial dependence on the kth wafer map. By 

extending the work in Jeong et al. (2008) for a single wafer map, we can derive the 

following results for multiple maps: 

𝐸𝐸�𝑇𝑇(𝑘𝑘)(𝑔𝑔)� =  𝑐𝑐(𝑘𝑘)(𝑔𝑔)𝑖𝑖(𝑘𝑘)(1 − 𝑖𝑖(𝑘𝑘)), 

𝑉𝑉𝑓𝑓𝑉𝑉�𝑇𝑇(𝑘𝑘)(𝑔𝑔)� =  𝑐𝑐(𝑘𝑘)(𝑔𝑔)(𝑖𝑖(𝑘𝑘))2�1 − 𝑖𝑖(𝑘𝑘)�
2

. 

Using the central limit theorem, the test statistic corresponding to the spatial lag 𝑔𝑔 

approximates to the standard normal distribution. 

Z𝑇𝑇(𝑘𝑘)(𝑔𝑔) =  𝑇𝑇
(𝑘𝑘)(𝑔𝑔)−𝑐𝑐(𝑘𝑘)(𝑔𝑔)𝑝𝑝(𝑘𝑘)(1−𝑝𝑝(𝑘𝑘))

�𝑐𝑐(𝑘𝑘)(𝑔𝑔)(𝑝𝑝(𝑘𝑘))2(1−𝑝𝑝(𝑘𝑘))2
 ~ 𝑁𝑁(0,1)      as  𝑐𝑐(𝑘𝑘)(𝑔𝑔)  ⟶∞,  (2.1) 

where 𝑔𝑔 is the 𝑔𝑔th-order neighbor. 
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2.3 Step-down randomness test for detecting abnormal DRAM wafers 

In this section, we propose a step-down randomness test that considers multiple 

binary maps to detect abnormal DRAM wafers. The proposed procedure has three steps: 

1) binarization of original FBT values for each FBT map, 2) spatial local de-noising for 

each binarized FBT map, and 3) step-down spatial randomness testing, using N de-noised 

binarized FBT maps. 

 

2.3.1 Binarization of original FBT values for each FBT map based on Gaussian 

kernel-density estimation 

To apply the generalized join count statistics presented in Section 2.2 to the original 

FBT values, we need to first transform the non-negative integer values into binary ones. 

To perform this transformation, we investigated the probability distribution of FBT 

values of the functional chips in normal wafers. Because the distribution of FBT values is 

highly skewed, it is problematic to apply a parametric approach to estimate the 

probability density function of functional chips on normal wafers. Thus, we adopt a 

nonparametric kernel-density estimation approach. 

Let us suppose 𝑓𝑓1
(𝑘𝑘),𝑓𝑓2

(𝑘𝑘),𝑓𝑓3
(𝑘𝑘),𝑓𝑓4

(𝑘𝑘), … ,𝑓𝑓𝑛𝑛𝑓𝑓
(𝑘𝑘)~𝑑𝑑(𝑘𝑘)(𝑓𝑓), where 𝑓𝑓𝑖𝑖

(𝑘𝑘) is the original FBT 

value of the ith functional chip of the kth FBT map, and nf is the total number of 

functional chips on a normal wafer. Then, the estimated probability density function is 

given by 
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𝑑𝑑ℎ�
(𝑘𝑘)

(𝑓𝑓) =
1
𝑓𝑓𝑓𝑓
�𝐾𝐾ℎ(𝑘𝑘)�𝑓𝑓(𝑘𝑘) − 𝑓𝑓𝑖𝑖

(𝑘𝑘)� =

𝑛𝑛𝑓𝑓

𝑖𝑖=1

1
𝑓𝑓𝑓𝑓 ∗ ℎ(𝑘𝑘) �𝐾𝐾�

𝑓𝑓(𝑘𝑘) − 𝑓𝑓𝑖𝑖
(𝑘𝑘)

ℎ(𝑘𝑘) �

𝑛𝑛𝑓𝑓

𝑖𝑖=1

, 

where 𝐾𝐾 �𝑢𝑢
(𝑘𝑘)−𝑢𝑢𝑖𝑖

(𝑘𝑘)

ℎ(𝑘𝑘) � = 1
√2𝜋𝜋

𝑑𝑑
−

(𝑢𝑢(𝑘𝑘)−𝑢𝑢𝑖𝑖
(𝑘𝑘))2

2ℎ(𝑘𝑘)2  is a Gaussian kernel. The length of the bandwidth, 

ℎ(𝑘𝑘), can be chosen by the following equation (Higgins, 2003): 

ℎ(𝑘𝑘) = �
4𝜎𝜎�(𝑘𝑘)5

3𝑓𝑓𝑓𝑓
�

1
5

≈ 1.06𝜎𝜎�(𝑘𝑘)�𝑓𝑓𝑓𝑓�
−15, 

where 𝜎𝜎�(𝑘𝑘) is the standard deviation of the original FBT values of functional chips on the 

kth FBT map on a normal wafer. 

      Based on the estimated kernel probability density function, a threshold value for the 

binarization of the kth FBT map, 𝛿𝛿𝛾𝛾,𝑘𝑘, can be chosen as its 100(1–𝛾𝛾) percentile. For a 

given threshold, the original FBT values can be binarized as follows: 

𝑥𝑥(𝑘𝑘)   = �
1,   𝑓𝑓(𝑘𝑘) > 𝛿𝛿𝛾𝛾,𝑘𝑘

0,   𝑓𝑓(𝑘𝑘) ≤ 𝛿𝛿𝛾𝛾,𝑘𝑘
. 

In an abnormal DRAM wafer, some of the binarized FBT maps will show a spatially non-

random pattern. 

  

2.3.2 New spatial local de-noising method for each binarized FBT map 

After transforming the original FBT values into binary ones, we de-noise the 

binarized FBT maps to clarify the spatial patterns and improve the accuracy of the spatial 

randomness test. To remove random noise and identify the systematic defects on a wafer 
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map, Wang et al. (2006) and Yuan et al. (2010) used a spatial filter. To apply the spatial 

filter to the binarized FBT map, we must first obtain the weighted sum of the values of 

the binarized chips that surround each chip. If this weighted sum is greater than a 

threshold, the chip is regarded as a systematic defect. However, the spatial filter uses the 

same weighted sum for de-noising the chips on the edge of the wafer map, which have 

fewer neighboring chips than those on the interior of the wafer map, so this approach may 

remove non-random patterns near the edges of the binarized FBT map. Thus, we propose 

a new spatial filter that uses different weights for de-noising the edges of the binarized 

FBT maps. This de-noising procedure has two cases: i) de-noising the interior of the 

binarized FBT map and ii) de-noising the edge of the binarized FBT map.  

 

Case 1: De-noising the interior of the binarized FBT map  

To de-noise the interior of the kth binarized FBT map, we consider the filter mask 

with an l×l grid structure, centered on a chip with a value of 1. If the fraction of chips 

that have a value of 1 in the filter mask is small, the binarized FBT value of the centering 

chip is updated with 0. The weight of each individual die in the 𝑓𝑓 × 𝑓𝑓 filter mask (e.g. 

3 × 3) is to be 1/𝑓𝑓2. Then, the weighted sum for the central die at the spatial coordinate (i, 

j) can be obtained as follows: 

𝑅𝑅(𝑘𝑘)(𝑖𝑖, 𝑗𝑗) =
1
𝑓𝑓2

� � 𝑥𝑥𝑖𝑖,𝑖𝑖
(𝑘𝑘)𝑥𝑥𝑖𝑖+𝑚𝑚,𝑖𝑖+𝑛𝑛

(𝑘𝑘)
𝑡𝑡

𝑛𝑛=−𝑡𝑡

𝑡𝑡

𝑚𝑚=−𝑡𝑡

, 

where 𝑑𝑑 = 𝑙𝑙−1
2

, and 𝑥𝑥𝑖𝑖,𝑖𝑖
(𝑘𝑘) is the binarized FBT value obtained from the previous section.  
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If 𝑅𝑅(𝑘𝑘)(𝑖𝑖, 𝑗𝑗) is less than a pre-determined de-noising threshold, then the (𝑖𝑖, 𝑗𝑗)th chip is 

considered a random defect, so we update its binarized FBT value to 0 (i.e., 𝑥𝑥𝑖𝑖,𝑖𝑖
(𝑘𝑘) = 0). If 

the weighted sum is greater than the de-noising threshold, this chip remains on the 

binarized FBT map (i.e., 𝑥𝑥𝑖𝑖,𝑖𝑖
(𝑘𝑘) = 1). Empirically, setting the de-noising threshold to the 

defect rate of the binarized FBT map may improve the spatial randomness test. 

 

Case 2: De-noising the edges of the binarized FBT map  

While de-noising the edges of the kth binarized FBT map, there are fewer than 𝑓𝑓2 

chips in the 𝑓𝑓 × 𝑓𝑓 filter mask in which the weight of each individual die is greater than 1
𝑙𝑙2

.; 

thus, we propose a different weighting system for the edge than for the interior. If the 

fraction of binarized chips with a binarized FBT value of 1 among all the chips in the 

𝑓𝑓 × 𝑓𝑓  filter mask is smaller than the pre-defined threshold, then the defective chip is 

removed from the edge. The weighted sum for the central dies on the edges can be 

defined as: 

𝑅𝑅(𝑘𝑘)(𝑖𝑖, 𝑗𝑗) =
1

𝑁𝑁(𝑖𝑖, 𝑗𝑗)
� � 𝑥𝑥𝑖𝑖,𝑖𝑖

(𝑘𝑘)𝑥𝑥𝑖𝑖+𝑚𝑚,𝑖𝑖+𝑛𝑛
(𝑘𝑘) 𝐴𝐴(𝑖𝑖 + 𝑚𝑚, 𝑗𝑗 + 𝑓𝑓)

𝑡𝑡

𝑛𝑛=−𝑡𝑡

𝑡𝑡

𝑚𝑚=−𝑡𝑡

 

where 𝑑𝑑 = 𝑙𝑙−1
2

 and 𝑁𝑁(𝑖𝑖, 𝑗𝑗) is the total number of chips included in the filter mask whose 

centering chip is the (𝑖𝑖, 𝑗𝑗)th one, and  

𝐴𝐴(𝑖𝑖, 𝑗𝑗) = �1 , there is the (𝑖𝑖, 𝑗𝑗)th chip on the FBT map
0 , there is no (𝑖𝑖, 𝑗𝑗)th chip on the FBT map . 
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For example, in Figure 2.5, the 3 × 3 filter mask of the (7, 4)th chip includes only six 

chips; thus, the weight of each individual die is set to 1/6 (i.e. 𝑁𝑁(7,4) = 1/6).  The 

remaining de-noising procedures are the same as those in Case 1. 

 

Figure 2.5 3×3 spatial filter mask for the bottom edge of a defective chip. 

 

Figure 2.6 shows the de-noised maps of the original FBT ones shown in Figure 2.2 by 

applying the proposed approach where darker colors denote bad chips. 
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Figure 2.6 Denoised FBT maps for the FBT maps described in the Figure 2.2. 

 

After de-noising all the binarized FBT maps of a DRAM wafer, we obtain the de-

noised FBT maps for the DRAM wafer. By applying the procedure introduced in Section 

2.3, we generate a spatial correlogram of the kth de-noised binarized FBT map as follows: 

Z𝑇𝑇(𝑘𝑘)(𝑔𝑔) = �
𝑇𝑇(𝑘𝑘)(𝑔𝑔) − 𝑐𝑐(𝑘𝑘)(𝑔𝑔)𝑖𝑖(𝑘𝑘)�1 − 𝑖𝑖(𝑘𝑘)�

�𝑐𝑐(𝑘𝑘)(𝑔𝑔)(𝑖𝑖(𝑘𝑘))2(1− 𝑖𝑖(𝑘𝑘))2
,𝑖𝑖(𝑘𝑘) > 0

              0                                        , 𝑖𝑖(𝑘𝑘) = 0,
 

where 𝑇𝑇(𝑘𝑘)(𝑔𝑔) = 𝑖𝑖(𝑘𝑘)𝑐𝑐00(𝑘𝑘)(𝑔𝑔) + (1 − 𝑖𝑖(𝑘𝑘))𝑐𝑐11(𝑘𝑘)(𝑔𝑔),  

𝑐𝑐(𝑘𝑘)(𝑔𝑔) = 𝑐𝑐00(𝑘𝑘)(𝑔𝑔) + 𝑐𝑐01(𝑘𝑘)(𝑔𝑔) + 𝑐𝑐11(𝑘𝑘)(𝑔𝑔), and 𝑖𝑖(𝑘𝑘)  is the defect rate of the kth de-

noised binarized FBT map.  
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2.3.3 New step-down spatial randomness test using N de-noised binarized FBT maps 

The goal is to test whether the given wafer is spatially random based on N spatial 

maps. When all of these N spatial maps show the spatially random patterns, the given 

wafer can be concluded to have a spatially random pattern. The challenging problems are 

that how to capture the spatial characteristics of data and consider the spatial correlation 

among these multiple maps for a given wafer. Because existing spatial randomness tests 

were developed for a single wafer map, such as those produced by flash memory wafers, 

we develop a new step-down spatial randomness test, which sequentially test the 

randomness of multiple binarized FBT maps of a DRAM wafer.  

The main idea of the step-down randomness test is to consider the correlation among 

different FBT maps by using spatial correlograms, whereas the existing approaches do 

not consider these correlations. Suppose 𝒚𝒚𝒓𝒓(𝑘𝑘) = �Z𝑇𝑇
(𝑘𝑘)(1), Z𝑇𝑇

(𝑘𝑘)(2), . . , Z𝑇𝑇
(𝑘𝑘)(𝑉𝑉)�

𝑇𝑇
 is the 

the first r lags of the correlogram of the kth de-noised binarized FBT map. Then, 𝒚𝒚𝒓𝒓(𝑘𝑘) is 

approximately normally distributed with a mean vector of length r, 𝜽𝜽𝒓𝒓(𝑘𝑘), and covariance 

matrix 𝜮𝜮𝒓𝒓(𝑘𝑘), where k=1,2,..,N. Here, N is the number of de-noised binarized FBT maps 

used in the step-down test. The spatial randomness test with N de-noised FBT maps can 

be formulated as the following sequential test hypothesis problem: 

 𝐻𝐻0
(𝑘𝑘):𝜽𝜽𝑟𝑟(𝑘𝑘) = 𝟎𝟎 vs.  𝐻𝐻1

(𝑘𝑘):𝜽𝜽𝑟𝑟(𝑘𝑘) ≠ 𝟎𝟎,𝜽𝜽𝑟𝑟
(𝑖𝑖) = 𝟎𝟎 , 2 ≤ 𝑗𝑗 ≤ 𝑘𝑘 − 1. 

 
 



21 
 

Let 𝑇𝑇𝑘𝑘2 = �
𝒚𝒚𝒓𝒓(1)

. .
𝒚𝒚𝒓𝒓(𝑘𝑘)

�

𝑇𝑇

𝑺𝑺𝒓𝒓(𝑘𝑘)−𝟏𝟏 �
𝒚𝒚𝒓𝒓(1)

. .
𝒚𝒚𝒓𝒓(𝑘𝑘)

�, where 𝑺𝑺𝒓𝒓(𝑘𝑘) is the sample covariance matrix 

of �
𝒚𝒚𝒓𝒓(1)

. .
𝒚𝒚𝒓𝒓(𝑘𝑘)

� using n samples. In the first step, we test whether the de-noised wafer map of 

the first FBT has a non-random spatial pattern by checking whether 𝜽𝜽𝒓𝒓(1) is equal to a 

zero vector. We can use the following test statistic: 

𝑍𝑍1 = 𝒚𝒚𝒓𝒓(1)𝑻𝑻𝑺𝑺𝒓𝒓
(1)−1𝒚𝒚𝒓𝒓(1). 

The control limit of 𝑍𝑍1 is given by 

𝐶𝐶𝐶𝐶1 =
(𝑓𝑓 − 1)𝑉𝑉
(𝑓𝑓 − 𝑉𝑉) 𝐹𝐹α1(𝑉𝑉, 𝑓𝑓 − 𝑉𝑉), 

where 𝛼𝛼1  is the false-alarm rate of the first test and 𝐹𝐹(𝑉𝑉,𝑓𝑓 − 𝑉𝑉)  represents the F 

distribution with r and (n–r) degrees of freedom. If 𝑍𝑍1 is greater than 𝐶𝐶𝐶𝐶1 in the first step, 

the DRAM wafer is spatially non-random (i.e., abnormal). Otherwise, we test the spatial 

randomness of the second FBT map. Given the first (k–1) FBT maps are spatially random, 

the test statistic for the spatial randomness test of the kth FBT map and its corresponding 

control limit are described as follows (see the Appendix for a detailed derivation): 

𝑍𝑍𝑘𝑘 =
𝑇𝑇𝑘𝑘2 − 𝑇𝑇𝑘𝑘−12

1 + 𝑇𝑇𝑘𝑘−12 /(𝑓𝑓 − 1)
 

and 

𝐶𝐶𝐶𝐶𝑘𝑘 = (𝑛𝑛−1)𝑟𝑟
(𝑛𝑛−𝑘𝑘𝑟𝑟)𝐹𝐹𝛼𝛼𝑘𝑘(𝑉𝑉,𝑓𝑓 − 𝑘𝑘𝑉𝑉), k=2, 3, …, N, 
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where 𝛼𝛼𝑘𝑘 is the false-alarm rate of the kth test. 𝑍𝑍𝑘𝑘 is large when 𝒚𝒚𝒓𝒓(𝑘𝑘) does not have zero 

mean vector and the covariance structure of �𝒚𝒚𝒓𝒓(1) …𝒚𝒚𝒓𝒓(𝑘𝑘)�
𝑻𝑻
 is different from 𝑺𝑺𝒓𝒓(𝑘𝑘). In 

this way, we consider not only the mean vector of the spatial correlogram but also the 

correlation between the spatial correlograms of FBT maps. 

If at least one test statistic is greater than a given control limit, the DRAM wafer is 

considered spatially non-random (i.e., abnormal). The overall false-alarm rate of the step-

down randomness test can be set to 𝛼𝛼 = 1 −∏ (1 − 𝛼𝛼𝑘𝑘)𝑁𝑁
𝑘𝑘=1 . In this study, we have 

selected some FBTs for spatial randomness test based on the prior knowledge of experts, 

which prevent N from being large. Thus, each step has a quite reasonable false alarm rate 

under the overall false alarm rate 𝛼𝛼. 

 

2.4 Experimental results 

In this section, we implement the proposed step-down randomness test to detect an 

abnormal DRAM wafer with multiple maps by using experimental data. Then, we 

compare our approach with existing methods. 

 

2.4.1 Description of real DRAM wafers 

Real DRAM wafer maps provided by a semiconductor manufacturing company were 

analyzed. We analyzed 45 normal wafers and 41 abnormal wafers, with 1804 chips per 

wafer. Table 2.1 shows the group information, wafer index, results of 28 FBT tests, bin 

numbers, and (i, j) spatial coordinates for each chip.  
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2.4.2 Step-down randomness test for DRAM wafer 

2.4.2.1 Binarization of original FBT values 

To transform the original FBT values into binary ones, we applied the Gaussian 

kernel-density estimation procedure described in Section 2.3.1. We set 𝛾𝛾 to 0.05 for each 

FBT, so the threshold value for binarizing each FBT is its 95th percentile. Table 2.2 

summarizes the thresholds of 28 FBTs whereas transforming the original FBT values into 

binary ones. However, if we apply all FBTs, the false alarm rate of each step gets 

extremely small. As for the DRAM data, among 28 FBT maps, a few of them (which are 

called as the major FBTs) are important for the purpose of fault diagnosis. We selected 

four FBTs (00, 04, 05, and 16) based on the recommendation of an engineer because they 

capture spatial patterns well and prevent N from being large. Thus, each step has a quite 

reasonable false alarm rate under the overall false alarm rate 𝛼𝛼 of 0.05.  
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Table 2.2 Threshold of each FBT for binarization 

FBT No. 
Thresholds 

(𝛿𝛿0.05,𝑘𝑘) 
FBT No. 

Thresholds 

(𝛿𝛿0.05,𝑘𝑘) 

FBT00 

FBT01 

FBT02 

FBT03 

FBT04 

FBT05 

FBT06 

FBT07 

FBT08 

FBT09 

FBT10 

FBT11 

FBT12 

FBT13 

163.11 

79.61 

7.25 

9.59 

20.06 

4.99 

6.23 

2.00 

0.41 

0.06 

1.86 

0.95 

9.08 

83.46 

FBT14 

FBT15 

FBT16 

FBT17 

FBT18 

FBT19 

FBT20 

FBT21 

FBT22 

FBT23 

FBT24 

FBT25 

FBT26 

FBT27 

185.61 

27.74 

26.81 

884.21 

176.07 

1834.66 

248.14 

86.82 

4.42 

7.02 

63.95 

0.11 

1031.70 

5.27 
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2.4.2.2 Spatial local de-noising of the binarized FBT map  

After binarizing the original FBT values based on the estimated thresholds shown in 

Table 2.2, we de-noised the binarized FBT maps. Figure 2.7 shows the four de-noised 

FBT maps and their corresponding spatial correlograms for the abnormal and normal 

DRAM wafers. The abnormal DRAM wafer exhibited spatially non-random patterns on 

the at least one of the denoised maps (FBT04 and FBT05), and the corresponding spatial 

correlogram smoothly changes along the spatial lags. In contrast, the normal wafers 

exhibited spatially random patterns on the de-noised maps of all FBTs, and their 

corresponding spatial correlograms fluctuated around zero. In addition, the FBT maps of 

an abnormal DRAM wafer might be much more correlated than those of a normal wafer. 
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Figure 2.7. Selected de-noised FBT maps and their corresponding correlograms. 

 

2.4.2.3. Spatial step-down randomness test using the spatial correlograms of de-

noised FBT maps 

Before implementing the step-down randomness test to automatically detect abnormal 

wafers, we must determine the optimal lag of the spatial correlograms and the testing 

order of the FBTs. In our empirical study, the randomness test performed well with four 

lags for each FBT, and the testing order of the FBTs did not significantly affect its 

performance. Thus, we implemented the randomness test in FBT order (i.e., 00, 04, 05, 

and 16).  

To show the effect of the processing, we have implemented the sensitivity analysis by 
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using 5-fold cross validation. Table 2.3 (a) presents the effect of γ  for binarization, 

showing that the value of 0.05 produces the best performance. The selection of the de-

nosing threshold (𝜏𝜏) can be made based on the defective rate.  Table 2.3 (b) shows that 

the threshold value based on the defective rate produces the best performance.  Thus, 

based on the result of sensitivity analysis, the parameters are selected, respectively.  

 

Table 2.3 Sensitivity of the parameter of each process in the proposed step-down 

spatial randomness test 

𝛾𝛾 Normal Abnormal  𝜏𝜏 Normal Abnormal 

0.01 0.82 0.76  0.00 0.85 0.77 

0.05 0.91 0.90  p* 0.91 0.90 

0.10 0.87 0.76  0.50 0.60 0.69 

       p*: defective rate 

 

To study the effect of the overall false alarm rates (𝛼𝛼), Table 2.4 shows the accuracy 

of the spatial randomness test for normal wafers, abnormal wafers, and all wafers. As the 

false alarm rate gets larger, the accuracy of the randomness test for normal (abnormal) 

wafers becomes smaller (larger). 
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Table 2.4 Sensitivity of each class for the different overall false alarm rates of the 

proposed step-down randomness test 

𝛼𝛼 Normal Abnormal All 

0.01 0.96 0.76 0.86 

0.05 0.91 0.90 0.91 

0.10 0.79 0.96 0.87 

 

 

2.4.3 Performance comparison of step-down randomness test 

To validate each procedure of the proposed spatial randomness test, we used 5-fold 

cross validation method to assess the test accuracy of our proposed spatial randomness 

test, and compared the performance of the proposed procedure with those of other 

approaches: Method A used a wafer bin map (i.e., single wafer map) to test the spatial 

randomness of the DRAM wafer. Method B binarized the original FBT values based on a 

normal distribution instead of using kernel-density estimation; after extracting the 

correlograms of the de-noised FBT map, we implemented the step-down randomness test. 

Method C applied Otsu’s method for the binarization (Otsu, 1979) instead of the kernel 

based binarization. Method D did not de-noise the binarized FBT maps for the step-down 

randomness test. Method E used one of the traditional noise reduction method, median 

filter (Lim, 1990), rather than using the proposed de-noising method. Method F used the 

Bonferroni method for multiple testing, which independently tests the spatial randomness 

of each binarized FBT map with an overall false alarm rate of 0.05.  

Table 2.5 summarizes the experimental results for the comparisons in terms of 
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accuracies. All the parameters (thresholds) are determined at the training set and apply 

the pre-defined parameters to the test set. As we can see the results in Table 2.5, the test 

accuracy reveals our proposed step-down randomness test has the best performance 

overall. In particular, the proposed method of each procedure outperforms the existing 

ones for the following reasons. At first step, for the binarization, the traditional Otsu’s 

method in method C has a bad performance. This is because Otsu’s method has the 

different goal with the kernel based binarization. Otsu’s method obtains the optimum 

threshold of binarization separating the chips into two groups so that their intra-group 

variance is minimal whereas the proposed method aims at selecting the outlier chips with 

extremely large FBT values among all the chips (Otsu, 1979). At second step, median 

filter in method E considers all the chips for de-noising, not removing only bad chips 

(Lim, 1990). Then, the median filter makes a good chip with many neighboring bad chips 

has the value of one (i.e. the value of a bad chip), which can make the spatially random 

FBT maps into non-random maps. At the last step, Bonferroni multiple testing in method 

F does not consider the correlation between the different FBT maps whereas Step-down 

test does. In this way, each of the proposed procedure is verified. 
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Table 2.5 Comparison of the accuracy of various randomness tests 

Test 

Method 

Procedure of the randomness test Accuracy 

Binarization De-noising Test Normal Abnormal All 

A No No Single test 0.50 0.56 0.52 

B Normal 
Proposed 

denoising 
Step-down 0.84 0.79 0.81 

C Otsu 
Proposed 

denoising 
Step-down 0.17 0.88 0.51 

D KDE No Step-down 0.78 0.79 0.78 

E KDE 
Median 

Filter 
Step-down 0.83 0.75 0.79 

F KDE 
Proposed 

denoising 
Bonferroni 0.92 0.71 0.81 

G KDE 
Proposed 

denoising 
Step-down 0.91 0.90 0.91 
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2.5 Conclusions and future research 
We proposed a new step-down spatial randomness test for detecting abnormal DRAM 

wafers based on multivariate sequence tests. The proposed approach can identify 

abnormal DRAM wafers with binarized FBT maps using step-down spatial randomness 

testing. Furthermore, we used a spatial local de-noising method to eliminate noise of 

defect chips, letting us better distinguish systematic defect patterns on DRAM wafers 

from random ones. Applying this test to experimental data, we found that it more 

accurately detected abnormal DRAM wafers than other methods. 

The proposed approach can be extended to classify abnormal DRAM wafers with 

multiple binary maps based on the spatial defect patterns, which is critical for rapidly 

detecting the cause of defects. Further studies are needed to develop automated tools to 

effectively classify spatial defect patterns on DRAM wafers. Also, in order to remove the 

effect of the processing parameters and simplify the abnormality detection process of 

DRAM wafers, we may develop the spatial randomness test based on the continuous 

spatial data.  
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CHAPTER 3 

 

A Regularized Singular Value Decomposition-based Approach 

for Failure Pattern Classification on Fail Bit Map in a DRAM 

Wafer 
 

3.1 Introduction 

In semiconductor manufacturing industry, wafer probe tests are conducted on each 

chip to identify good and defective ones, recognize defective patterns on a wafer, and 

also identify the corresponding process problems (Fenner et al., 2005; Jeong et al., 2008; 

Tong et al., 2008). A bit map analysis is necessary to improve the quality of 

manufacturing processes based on the failure patterns shown on bit maps (Hamada and 

Sugimoto, 1997; Vollrath et al., 2001). However, an inspection of failure patterns on 

massive fail bit maps data have practically depended on manual review by experts, which 

could lead to time-consuming and expensive cost. In addition, inspectors are not able to 

keep consistent inspections and concentrate for long time periods due to subjective 

judgments and fatigues. Thus, it is important to develop an automated procedure for 

failure pattern analysis on bit maps to quickly detect failure conditions.  

The fail bit maps (FBMs), which represent the failed cell count during wafer 

functional tests, have been popularly used as one of diagnosis tools in semiconductor 

manufacturing for process monitoring, root cause analysis, and yield improvements 

(Muthumalai et al., 2014; Nakamae et al., 2001). Depending on the number of failed cells, 
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unit blocks of FBMs are categorized as functional or defective elements. Failing blocks 

are usually localized and formed specific failure patterns (Hsieh et al., 2010; Li et al., 

2012; Yin et al., 2013). The failure patterns on FBMs can be classified into a single bit 

failure pattern and non-single bit failure pattern depending on the distribution type of 

failed blocks. The classification between single- and non-single bit failure patterns is a 

fundamental, but significant task to quickly detect failure occurrences and identify failure 

causes on a dynamic random access memory (DRAM) manufacturing process. For 

instance, a single bit failure pattern leads to a failure over cell areas while a non-single bit 

failure pattern can cause a failure over core or periphery areas, which play a role as a 

bridge to deliver signals to cell areas. The single bit failure patterns tend to have the 

spatially random pattern with lower grade levels while the non-single bit failure typed 

chips tend to have the spatially non-random patterns based on the higher grade levels, 

which are needed for analyzing the cause of failure.  

Some researches on analyzing failure patterns on FBMs have been conducted in the 

literature. Hsieh et al. (2010) presented the method of the principal component analysis 

(PCA)-based approach to cluster failure events and explore IC failure mechanisms. 

Zanon et al. (2003) analyzed FBM data of static random access memory (SRAM) and 

presented a neural networks based approach to cluster failure patterns. In addition, Han et 

al. (2005) proposed a tree-based classifier for an automatic method of failure patterns on 

FBMs, but they did not present the details of experimental analysis and data set they used.  

As shown in previous literatures (Collica et al., 1995; Jung, 2011; Vollrath et al., 

2001), even though analysis of failure patterns on FBMs has been performed, there are 

only a few automatic procedures available in the literatures to distinguish between single-
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bit failure patterns and non-single bit failure ones. Because failure patterns on non-single 

failed maps can be connected to specific process failures, accurate automatic 

classification between single- and non-single failure patterns can help engineers to aid the 

understanding of the cause of failures,  

In this chapter, we propose an automated classification procedure for failure patterns 

(single bit failure vs. non-single bit failure) on FBMs from DRAM wafers (Kim et al., 

2015b). For this, the regularized singular value decomposition (RSVD) method is 

developed for extracting features (e.g. eigen-images) from binarzied FBMs to distinguish 

between single-bit failure patterns and non-single bit failure ones. The benefit of the 

proposed RSVD is to obtain binary eigen-images from a binary matrix so that the eigen-

images from single bit failed maps and non-single bit failed maps can be clearly 

discriminated. By using the extracted features, k-nearest neighbor (k-NN) classifier 

distinguishes between single bit failures pattern and non-single bit failures pattern on 

FBMs. Figure 3.1 illustrates the flowchart of the proposed procedure for failure pattern 

classification. More details on each step of the proposed classification procedure are 

presented in Section 3.4.  

This chapter is organized as follows; a brief review of FBMs is given in Section 3.2. 

The proposed RSVD is presented in Section 3.3, which is followed by the details of the 

proposed procedure for failure pattern classification on FBMs in Section 3.4. In Section 

3.5, experimental studies using real-life DRAM wafers are presented. Finally, Section 3.6 

concludes with a brief summary as well as suggestions of future research directions. 
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Figure 3.1 Flowchart of the proposed approach for FBM pattern classifications. 

 

3.2 Fail bit map 

Fail bit data represent the location of failing bits in chips, and form specific failure 

patterns, which can be analyzed to find certain process failures. Figure 3.2 shows an 

example of a FBM, and the corresponding grade level. As a grade level is smaller, the 

number of failed cell is smaller. See Section 3.4 for the detailed description of each grade 

level in FBMs. 
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Figure 3.2 An example of a fail bit map. 

In FBMs, failure patterns can be categorized as 1) Single bit failure pattern and 2) 

Non-single bit failure pattern. A single bit failure map does not have a specific failure 

pattern while the non-single bit failure map represents specific patterns such as a vertical 

or horizontal line pattern caused by high grades (greater than or equal to Grade 3) as 

shown in Figure 3. In Figure 3(a), long vertical failure line and short horizontal failure 

line are shown on right side and upper- middle side, respectively. On the other hand, 

there is no specific pattern on single bit failure map as shown in Figure 3(b). As the 

memory size gets larger, manual inspection of massive FBMs is not practical. In addition, 

because quick detection of failure patterns on FBMs can be connected to yield 

improvement, it is significant to develop the automatic classification method of failure 

patterns on FBMs. Therefore, regularized singular value decomposition (RSVD) 

approach is developed to extract important features that characterize spatial patterns of 

each defect type. 
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(a)     (b) 

Figure 3.3 Example of failure patterns on FBMs; (a) Non-single bit failure map. (b) 

Single bit failure map. 

 

3.3 Regularized singular value decomposition 

The singular value decomposition (SVD) is an attractive transform approach for 

image processing applications. There have been many researches that apply SVD 

transformation to digital image processing (Amirshahi and Torkamaniazar, 2012; 

Andrews and Patterson, 1976; Sadek, 2012).  

Let X be the m-by-n matrix (𝑚𝑚 ≥ 𝑓𝑓) in which 𝑋𝑋𝑖𝑖,𝑖𝑖 represents the grade of the (i, j)-th 

unit block. The SVD of X is defined as (Sadek, 2012; Hastie et al., 2009) 

𝑿𝑿 = 𝑼𝑼𝜮𝜮𝑽𝑽𝑻𝑻 = [𝒖𝒖𝟏𝟏𝒖𝒖𝟐𝟐. .𝒖𝒖𝒎𝒎] �
𝑠𝑠11 … 0
⋮ ⋱ ⋮
0 … 𝑠𝑠𝑚𝑚𝑚𝑚

|
0 … 0
⋮ ⋱ ⋮
0 … 0

� [𝒗𝒗𝟏𝟏𝒗𝒗𝟐𝟐. .𝒗𝒗𝒏𝒏]𝑇𝑇 (3.1) 

where U is the m-by-m matrix of the eigenvectors of 𝑿𝑿𝑿𝑿𝑻𝑻, V is the n-by-n matrix of the 

eigenvectors of 𝑿𝑿𝑻𝑻𝑿𝑿, and 𝚺𝚺 is m-by-n matrix in which 𝑠𝑠𝑖𝑖𝑖𝑖 is the i-th singular value of X 

for i=1,2,..m. If the matrix 𝚺𝚺 is written in the following form 
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𝜮𝜮 = �
𝑠𝑠1 … 0
⋮ ⋱ ⋮
0 … 𝑠𝑠𝑚𝑚𝑛𝑛

� = �
𝑠𝑠11 … 0
⋮ ⋱ ⋮
0 … 0

� + ⋯+ �
0 … 0
⋮ ⋱ ⋮
0 … 𝑠𝑠𝑚𝑚𝑚𝑚

�, 

then the Eq. (3.1) can be re-written by 

𝑿𝑿 = ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝒖𝒖𝒊𝒊𝒗𝒗𝒊𝒊𝑻𝑻𝑚𝑚
𝑖𝑖=1      (3.2) 

where 𝑠𝑠11 ≥ 𝑠𝑠22 ≥ ⋯ ≥ 𝑠𝑠𝑚𝑚𝑚𝑚. The singular value 𝑠𝑠𝑖𝑖𝑖𝑖 is equivalent to the matrix norm of 

the corresponding eigen-image (Andrews and Patterson, 1976). 

However, when the original matrix X is binary, the eigen-images could contain 

negative values. In this case, the interpretation of the images is difficult, and important 

characteristics of data may not be captured well (Liu et al., 2008; Miettinen et al., 2008; 

Zhang et. al, 2007).   

In order to overcome the drawback of conventional SVD, regularized SVD (RSVD) 

adds the constraints on binary eigen-images. The proposed RSVD restricts 𝑠𝑠𝑘𝑘𝑘𝑘𝒖𝒖𝒌𝒌𝒗𝒗𝒌𝒌𝑻𝑻 to be 

binary by adding the constraint �𝑠𝑠𝑘𝑘𝑘𝑘𝒖𝒖𝒌𝒌𝒗𝒗𝒌𝒌𝑻𝑻�𝑖𝑖𝑖𝑖
2
− �𝑠𝑠𝑘𝑘𝑘𝑘𝒖𝒖𝒌𝒌𝒗𝒗𝒌𝒌𝑻𝑻�𝑖𝑖𝑖𝑖 = �𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�

2
−

�𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘� = 0, which generates binary eigen-images. In this way, RSVD has some 

advantages over conventional SVD when the data are binary. Given a binary matrix X, 

RSVD is to find binary matrix 𝑠𝑠𝑖𝑖𝑖𝑖𝒖𝒖𝒊𝒊𝒗𝒗𝒊𝒊𝑻𝑻 for which 𝒖𝒖𝒊𝒊, 𝒗𝒗𝒊𝒊, and 𝑠𝑠𝑖𝑖𝑖𝑖 are nonnegative. Then, 

RSVD solves the following mathematical programming.   

𝑚𝑚𝑖𝑖𝑓𝑓
1
2
‖𝑿𝑿 − 𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻‖2 

s.t. ∑ ∑ ∑ ��𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�
2
− �𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘��

2
𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑘𝑘=1 = 0. 
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Alternatively, the above problem can be represented as follows; 

𝑚𝑚𝑖𝑖𝑓𝑓 1
2
‖𝑿𝑿 − 𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻‖2 + 𝜆𝜆

2
∑ ∑ ∑ ��𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�

2
− �𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘��

2
𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑘𝑘=1 ,  

where 𝑓𝑓𝑖𝑖𝑘𝑘 is the (𝑖𝑖,𝑘𝑘)-th element of 𝑼𝑼 and 𝑑𝑑𝑖𝑖𝑘𝑘 is the (𝑗𝑗,𝑘𝑘)-th element of 𝑽𝑽, and 𝑠𝑠𝑘𝑘𝑘𝑘 is the 

k-th diagonal element of S. In addition, 𝜆𝜆 is the penalty coefficient, which is increased at 

each iteration to converge the solution (here, increased by a factor of √10  at each 

iteration). We chose the value of penalty coefficient 𝜆𝜆  based on the preliminary 

experiments and literatures (Zhang et al., 2007). The following multiplicative updating 

procedure is developed to solve the above optimization problem (see Appendix B for the 

detailed derivation). 

 

Multiplicative update algorithm for RSVD 

𝑓𝑓𝑖𝑖𝑘𝑘
(𝑡𝑡+1) ← 𝑓𝑓𝑖𝑖𝑘𝑘

(𝑡𝑡) �𝑿𝑿𝑽𝑽(𝑡𝑡)�𝑺𝑺(𝑡𝑡)�
𝑇𝑇
�
𝑖𝑖𝑘𝑘
+𝜆𝜆∑ 3�𝑠𝑠𝑘𝑘𝑘𝑘

(𝑡𝑡)�
3
�𝑢𝑢𝑖𝑖𝑘𝑘

(𝑡𝑡)�
2
�𝑣𝑣𝑗𝑗𝑘𝑘

(𝑡𝑡)�
3𝑛𝑛

𝑗𝑗=1

�𝑼𝑼(𝑡𝑡)𝑺𝑺(𝑡𝑡)�𝑽𝑽(𝑡𝑡)�
𝑇𝑇
𝑽𝑽(𝑡𝑡)�𝑺𝑺(𝑡𝑡)�

𝑇𝑇
�
𝑖𝑖𝑘𝑘
+𝜆𝜆∑ �2�𝑠𝑠𝑘𝑘𝑘𝑘

(𝑡𝑡)�
4
�𝑢𝑢𝑖𝑖𝑘𝑘

(𝑡𝑡)�
3
�𝑣𝑣𝑗𝑗𝑘𝑘

(𝑡𝑡)�
4
+�𝑠𝑠𝑘𝑘𝑘𝑘

(𝑡𝑡)�
2
�𝑢𝑢𝑖𝑖𝑘𝑘

(𝑡𝑡)��𝑣𝑣𝑗𝑗𝑘𝑘
(𝑡𝑡)�

2
�𝑛𝑛

𝑗𝑗=1

                     

(3.3) 

𝑠𝑠𝑘𝑘𝑙𝑙
(𝑡𝑡+1) ←

𝑠𝑠𝑘𝑘𝑙𝑙
(𝑡𝑡) ��𝑼𝑼(𝑡𝑡+1)�

𝑇𝑇
𝑿𝑿𝑽𝑽(𝑡𝑡) �

𝑘𝑘𝑘𝑘
+1(𝑘𝑘=𝑙𝑙)𝜆𝜆∑ ∑ 3�𝑠𝑠𝑘𝑘𝑘𝑘

(𝑡𝑡)�
2
�𝑢𝑢𝑖𝑖𝑘𝑘

(𝑡𝑡+1)�
3
�𝑣𝑣𝑗𝑗𝑘𝑘

(𝑡𝑡)�
3𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1

��𝑼𝑼(𝑡𝑡+1)�
𝑇𝑇
𝑼𝑼(𝑡𝑡+1)𝑺𝑺(𝑡𝑡)�𝑽𝑽(𝑡𝑡)�

𝑇𝑇
𝑽𝑽(𝑡𝑡) �

𝑘𝑘𝑘𝑘
+1(𝑘𝑘=𝑙𝑙)𝜆𝜆∑ ∑ �2�𝑠𝑠𝑘𝑘𝑘𝑘

(𝑡𝑡)�
3
�𝑢𝑢𝑖𝑖𝑘𝑘

(𝑡𝑡+1)�
4
�𝑣𝑣𝑗𝑗𝑘𝑘

(𝑡𝑡)�
4
+𝑠𝑠𝑘𝑘𝑘𝑘

(𝑡𝑡)�𝑢𝑢𝑖𝑖𝑘𝑘
(𝑡𝑡+1)�

2
�𝑣𝑣𝑗𝑗𝑘𝑘

(𝑡𝑡)�
2
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    (3.4) 

𝑑𝑑𝑖𝑖𝑙𝑙
(𝑡𝑡+1) ←

𝑑𝑑𝑖𝑖𝑙𝑙
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   (3.5) 

 
 



40 
 

After solving the optimization problem, we obtain the k-th column vector of new U and V 

(i.e. 𝒖𝒖𝑘𝑘 and 𝒗𝒗𝑘𝑘) and the k-th diagonal element of new S (i.e. 𝑠𝑠𝑘𝑘𝑘𝑘). We then have the new 

k-th eigen-image 𝑠𝑠𝑘𝑘𝑘𝑘𝒖𝒖𝒌𝒌𝒗𝒗𝒌𝒌𝑻𝑻. The sum of the eigen-images approximates the original binary 

matrix X. 

𝑿𝑿 ≈ ∑ 𝑠𝑠𝑘𝑘𝑘𝑘𝒖𝒖𝒌𝒌𝒗𝒗𝒌𝒌𝑻𝑻𝑚𝑚
𝑘𝑘=1       (3.6) 

 

The proposed RSVD algorithm is summarized as follows. 

RSVD Algorithm: 

Input: X: Binary matrix with m-by-n size  

Step 1: Initialize non-negative matrices U, S, and V by taking absolute values of 

the resulting SVD matrices. 

Step 2: For U, S, and V, use the multiplicative updating procedure to solve the 

following optimization problem: 

𝑚𝑚𝑖𝑖𝑓𝑓
1
2
‖𝑿𝑿 − 𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻‖2 +

𝜆𝜆
2
�����𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�

2
− �𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘��

2𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑘𝑘=1

 

Step 3: If ∑ ∑ ∑ ��𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�
2
− �𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘��

2
𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑘𝑘=1 < 𝜖𝜖, break 

else set λ = √10λ, and return to Step 2. 
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In Step 1, the non-negative matrices U, S, and V are initialized by taking absolute 

values of the resulting matrices from SVD of the binary matrix X. In Step 2, we compute 

the quadratic programming problem using Lagrangian multipliers. Next, we repeatedly 

update U, S, and V until the convergence criterion is satisfied. Note that RSVD algorithm 

is converged because the non-negative optimization problems are non-increasing under 

the multiplicative update algorithms (Lee and Seung, 2001; Yang and Laaksonen, 2007). 

By reversing the roles of U, S, and V, the algorithm can obtain the updated matrices using 

Eqs. (3) - (5). 

 

Remarks: In RSVD algorithm, the matrix U and V are not necessarily orthogonal. 

This can restrict to use RSVD for getting a pseudo-inverse matrix or solving a system of 

linear equations in which an orthogonal property is used. To impose an orthogonal 

property to RSVD, the formulation can be modified as follows; 

𝑚𝑚𝑖𝑖𝑓𝑓
1
2
‖𝑿𝑿 − 𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻‖2 

s.t. ∑ ∑ ∑ ��𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�
2
− �𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘��

2
𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1

𝑚𝑚
𝑘𝑘=1 = 0 

𝑼𝑼𝑻𝑻𝑼𝑼 = 𝑰𝑰 , 𝑽𝑽𝑻𝑻𝑽𝑽 = 𝑰𝑰. 

Exploring the orthogonal property by dealing with the modified formulation is out of 

scope of this study and is one of good future research directions. 
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3.4 Classification of failure patterns on FBMs using RSVD 

This section will present the classification procedure of failure patterns on FBMs by 

using our proposed RSVD method. The failure pattern classification procedure is 

composed of 1) binarization of FBMs; 2) feature extraction from FBMs using the RSVD; 

3) classification of failure patterns on FBMs using the k-NN classifier.  

The FBMs characterize the defect type of the DRAM chips. As shown in Figure 3.2, 

each chip on FBMs are categorized based on grade levels, which represent the number of 

failed cells on each chip. Grade 0 indicates that there is no failed cell on chips whereas 

Grade 7 implies a large number of failed cells on chips. A detailed description of each 

grade is not presented due to the confidentiality issue of company data. A single bit failed 

FBM does not have specific failure patterns of the unit blocks whereas FBM with non-

single bit failed chips has any specific failure patterns. Because non-single bit failure 

patterns on FBMs could be connected to specific process faults, semiconductor industry 

has focused on automated classification procedure of failure patterns on FBMs.  

 

3.4.1 Binarization of FBMs 

Suppose that there is the FBM of a failed chip, M, that is represented by 𝑚𝑚 × 𝑓𝑓 

matrix whose element is the grade of unit block on the FBM. We can binarize the real 

value matrix M based on the grade level of each chip. That is, 

𝑩𝑩(𝑖𝑖, 𝑗𝑗)  =  �1, if 𝑴𝑴(𝑖𝑖, 𝑗𝑗) ≥ 3
0, if 𝑴𝑴(𝑖𝑖, 𝑗𝑗) < 3  for i = 1,2,..,m, and  j=1,2,..,n.   (3.7) 
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Here, based on engineering knowledge, if the grade level is less than 3, the corresponding 

chips are set to 0, otherwise assigned to 1.  

Figure 3.4 shows an example of the binarized FBMs of the single-bit and non-single 

bit failed maps. In Figure 3.4 (b), the black unit box represents the cell with greater than 

or equal to grade level 3 whereas the white one represents the cell with less than grade 

level 3. The FBMs with non-single bit failed chips tend to have the block or spatial 

failure patterns based on the black unit box, whereas single-bit failed chips tend to have 

spatial random patterns on the FBMs (Jung, 2011). 

 

FBM Single-bit Non-single Bit 

(a) Original 

  

(b) Binarized 

  

 

Grade 

(Original FBM) 
    0     1      2       3       4      5      6      7  

Color 
 

Figure 3.4 Binarized FBMs of the single-bit and non-single bit failed chips. 
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3.4.2 Feature extraction from binarized FBMs using RSVD 

To classify failure patterns on FBMs, this subsection describes the procedure of 

feature extraction from FBMs that can provide the characteristics of the failure types at 

the chip level. With discrete representation of FBMs, the proposed RSVD decomposes 

the binarized matrix B into m eigen-images such that 𝐸𝐸𝑘𝑘 = 𝑠𝑠𝑘𝑘𝑘𝑘𝒖𝒖𝑘𝑘𝒗𝒗𝑘𝑘𝑻𝑻, for 𝑘𝑘 = 1,2, . . ,𝑚𝑚 

Since each eigen-image displays separate spatial patterns of the failed chip on the 

FBM, the matrix norm of the eigen-image is equivalent to the contribution that the failure 

patterns of each eigen-image make to the binarized FBM. For calculating matrix norm, 

we employ the Frobenius norm. The Frobenius norm of an eigen-image 𝐸𝐸𝑘𝑘 is defined as 

follows. 

‖𝐸𝐸𝑘𝑘‖ = �∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖(𝑘𝑘)
2

𝑖𝑖𝑖𝑖 �
1
2 = 𝑠𝑠𝑘𝑘𝑘𝑘�𝑑𝑑𝑉𝑉(𝒖𝒖𝒌𝒌𝒗𝒗𝒌𝒌𝑻𝑻𝒗𝒗𝒌𝒌𝒖𝒖𝒌𝒌𝑻𝑻)   (3.8) 

where 𝑑𝑑𝑖𝑖𝑖𝑖(𝑘𝑘)is the (i, j)-th element of the eigen-image 𝐸𝐸𝑘𝑘  (i.e. 𝑠𝑠𝑘𝑘𝑘𝑘𝒖𝒖𝒌𝒌𝒗𝒗𝒌𝒌𝑻𝑻). ‖𝐸𝐸𝑘𝑘‖ captures 

the contribution of spatial failure patterns that are shown on the eigen-image 𝐸𝐸𝑘𝑘 for FBM 

of the failed chips. Note that ‖𝐸𝐸𝑘𝑘‖ ≥ ‖𝐸𝐸𝑘𝑘+1‖ for all 𝑘𝑘 (≤ 𝑚𝑚). 

Figure 3.5 shows the eigen-images (𝐸𝐸𝑘𝑘) of the binarized FBMs generated by RSVD 

with the matrix norm ‖𝐸𝐸𝑘𝑘‖ for the different defect types of the failed chips. In Figure 3.5 

(a), none of the binarized FBM has the first eigen-image with the zero norm. In Figure 

3.5 (b), for the non-single-bit failed chip of type II, the binarized FBM has the fifth eigen-

image with zero norm. In Figure 3.5 (c), for the non-single-bit failed chip of type I, the 

binarized FBM has the tenth eigen-image with zero norm. For the single failed chips, the 

binarized FBMs do not have the eigen-images with zero norm. In other words, the 
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different types of the failed chips have the zero norm for the different eigen-images of the 

binarized FBM. 

 

Figure 3.5 Eigen-images of the binarized FBMs for the defect types of failed chips. 

 

3.4.3 Classification of the failure patterns on FBMs using k-NN classifier 

As shown in Eq. (3.8),  is equivalent to the matrix norm of the k-th eigen image. 

In other words,  of the binarized FBM represents the contribution of spatial failure 

patterns shown on the eigen-image k. Thus, those matrix norms of FBMs can be used as 

key features to discriminate the failure patterns between single bit and non-single bit 

maps. 

kE

kE
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In this study, we use k-nearest neighbor (k-NN) classifier because the k-NN classifier 

has been widely used for classification problem (Theodoridis and Koutroumbas, 2009). 

Suppose there are N training FBMs including single bit and non-single bit maps. The 

matrix norms kE ’s of each training FBM are extracted by using the proposed RSVD. 

For the testing FBM, x, k training FBMs nearest to x in Euclidean distance are selected, 

with k being an odd number. Out of the selected k FBMs, the testing FBM is assigned to 

one of the failure types (i.e. single bit failure pattern or non-single bit failure pattern) that 

is most represented in the k selected FBMs.  

 

3.5 Experimental results 

Real-life fail bit maps, provided by a partner semiconductor manufacturing industry, 

are analyzed to evaluate the performance of the proposed approach. The total number of 

the FBMs used in this experiment is 200 including 100 single-bit failed patterns and 100 

non-single bit failed ones.  

Because our main points of interests are features extracted from the data set for the 

classification, we compare the proposed approach with the SVD-based approach in terms 

of the classification accuracy. By using 5-fold cross validation, we randomly partitioned 

the 200 FBMs into 5 sub-datasets and apply k-NN classifier to evaluate the classification 

accuracy of each method. For each method, we use the different number of the features 

(i.e. matrix norm of an eigen-image) to classify the failed DRAM chips. Table 3.1 

summarizes the classification accuracy depending on the number of features extracted 

from the SVD and RSVD, respectively, for each testing dataset. As shown in Table 3.1, 
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our proposed procedure shows a better performance than SVD-based approaches 

regardless of how many features we use for classifying failed DRAM chips. In addition, 

it is recommended to use more than 10 features of the RSVD based approach for 

classifying the DRAM chips. Regarding to the number of k in a NN classifier, in addition, 

Table 3.1 shows that the classification accuracy of 1-NN classifier is overall slightly 

better than that of 3-NN and 5-NN classifier, but the accuracy of 1-NN classifier is not 

always the best one. 

 

Table 3.1 Classification accuracy of failed chips using different methods of features 

extraction. Classification accuracy of (a) 1-NN, (b) 3-NN, and (c) 5-NN 

(a)  

Testing set 
 (3)* (7) (12) (16) 

SVD RSVD SVD RSVD SVD RSVD SVD RSVD 

{1} 0.78  0.88  0.88  0.95  0.90  0.98  0.90  0.98  

{2} 0.85  0.85  0.90  0.98  0.93  1.00  0.93  1.00  

{3} 0.85  0.85  0.93  1.00  0.93  0.98  0.93  0.98  

{4} 0.90  0.93  0.90  0.93  0.95  0.95  0.95  0.95  

{5} 0.75  0.95  0.88  0.95  0.90  0.95  0.90  0.93  

Average 0.83  0.89  0.90  0.96  0.92  0.97  0.92  0.97  

( ) *: Number of the eigen-images used for classification 
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(b)  

Testing set 
 (3)* (7) (12) (16) 

SVD RSVD SVD RSVD SVD RSVD SVD RSVD 

{1} 0.83  0.85  0.90  0.98  0.90  0.98  0.90  0.98  

{2} 0.83  0.85  0.95  0.93  1.00  0.98  1.00  0.95  

{3} 0.88  0.88  0.98  1.00  0.95  0.98  0.95  0.98  

{4} 0.85  0.88  0.98  0.95  1.00  0.95  1.00  0.95  

{5} 0.80  0.88  0.90  0.88  0.90  0.93  0.90  0.93  

Average 0.84  0.87  0.94  0.95  0.95  0.96  0.95  0.96  

( ) *: Number of the eigen-images used for classification 

(c)  

Testing set 
 (3)* (7) (12) (16) 

SVD RSVD SVD RSVD SVD RSVD SVD RSVD 

{1} 0.83  0.80  0.93  0.98  0.93  0.98  0.93  0.98  

{2} 0.90  0.88  0.90  0.93  0.95  0.95  0.95  0.95  

{3} 0.83  0.88  0.95  0.95  0.95  0.95  0.95  0.95  

{4} 0.83  0.85  0.98  0.95  0.98  0.95  0.98  0.95  

{5} 0.80  0.88  0.90  0.88  0.93  0.93  0.93  0.93  

Average 0.84  0.86  0.93  0.94  0.95  0.95  0.95  0.95  

( ) *: Number of the eigen-images used for classification 
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To explore the comparison between the proposed method and a popular existing 

classification technique in term of the classification accuracy, in this experiment, binary 

and RSVD-based supervised multilayer perceptron neural network are compared with the 

proposed method. TABLE 3.2 presents the classification performance of the1-NN 

classifier with the RSVD (16 eigen-images), binary neural networks (Binary NNets), and 

RSVD-based neural networks (RSVD NNets). Binary NNets has an input vector of 4096 

(=32*128) binary elements while RSVD-based NNets has that of the matrix norms of the 

first 16th eigen-images. The NNets include one hidden layer with ten neurons and one 

output layer neuron. Log sigmoid function and linear transfer function are used for 

activation functions of the hidden and output layer. TABLE 3.2 shows the classification 

accuracy of each approach, and indicates that the accuracy of 1-NN classifier with RSVD 

is much better than that of binary NNets and competitive with the NNets with eigen-

images.  

  

 
 



50 
 

Table 3.2 Classification accuracy between neural networks and 1-NN classifier with 

RSVD 

Testing set Binary NNets RSVD NNets RSVD 1-NN 

{1} 0.58 0.93 0.98 

{2} 0.73 0.88 1.00 

{3} 0.68 0.93 0.98 

{4} 0.58 0.90 0.95 

{5} 0.55 0.90 0.93 

Average 0.62 0.91 0.97 

 

Figure 3.6 presents the rationale why the features extracted from the RSVD provide 

the better discrimination between the single bit failed maps and non-single failed ones 

compared to the features extracted from the SVD.  Since the matrix norms are sorted in 

descending order, the first matrix norm implies the contribution of the first eigen-image 

to the Figure 3.6 (b) binarized FBM. As shown in Figure 3.6 (c), the RSVD based matrix 

norms of the eigen-images tend to have the smaller decreasing rate for the binarized FBM 

of single-bit failed map. On the other hand, by using the conventional SVD, as shown in 

Figure 3.6 (d), it is unclear to discriminate failure patterns between a single-bit and non-

single bit failure pattern based matrix norms of the eigen-images. 
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Figure 3.6 Matrix norms of the eigen-images based on SVD and RSVD. 

 

In addition, Figure 3.7 presents the first eigen-images based on SVD and RSVD for a 

non-single FBMs. This figure shows that the first eigen-image of RSVD can clearly 

capture an unique pattern on non-single FBMs, while the first eigen-image of SVD has 

some unit blocks with the value between zero and one because SVD may not produce 

binary eigen-images. This can make the interpretation of an original image be difficult. 
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Figure 3.7 First eigen-images of the binarized FBMs based on SVD and RSVD. 
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3.6 Conclusion 

In this chapter, the automated classification procedure for failure patterns on fail bit 

maps in DRAM wafers is proposed. Key features for the classification are extracted 

based on the novel regularized singular value decomposition (RSVD), which decomposes 

a binary matrix X into binary eigen-images satisfying 𝑿𝑿 ≈ 𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻 . In addition, 

multiplicative updating procedure of RSVD has been derived to solve the formulation of 

RSVD. Experimental results with real-life DRAM wafers show the competitiveness of 

the proposed procedure for the automatic classification of single bit failed maps and non-

single bit failed ones. The automated classification analysis not only helps an engineer to 

monitor manufacturing processes automatically, but also provides a valuable tool for 

yield improvement. 

Future work is needed to explore other advanced classifiers such as recent variants of 

support vector machine (SVM) and Bayesian relevance vector machine to improve 

classification accuracy, and to extend the proposed approach to other applications such as 

bioinformatics. 
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CHAPTER 4 

 

A New Multivariate Kernel Density Estimation of Uncertain 

Data for Defect Classification of Wafer Maps 
 

4.1 Introduction 

In the semiconductor manufacturing process, each integrated circuit (IC) chip is 

fabricated by a complex and costly process that involves hundreds of steps (Fenner et al., 

2005). The fabricated ICs are then classified as either a functional or defective one. 

Defective chips commonly occur in clusters or display some systematic patterns on the 

wafer, which holds important information that can assist process engineers in their 

understanding of the ongoing manufacturing processes (Jeong et al., 2008).  

A wafer map is a useful image data that displays the spatial pattern of the defective 

chips on a wafer. The human operators have reviewed a wafer map to detect the abnormal 

defect patterns from out-of-control process and to identify the root causes (Segal et al., 

2001). Engineers then adjust the manufacturing process to remove the defects based on 

the results of the inspection and their knowledge. However, this manual process is 

extensively time-consuming to the point where the need for an automated defect 

classification system inevitably arises. Subsequently, there have been many studies on the 

automatic retrieval of spatial features of the defects displayed on a wafer map (Chou et 

al., 1997; Kameyama and Kosugi, 1999; Wang, 2008).  
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In semiconductor wafer inspections, a complex spatial pattern of a wafer map is 

characterized by several spatial features such as shape, location, and size of defects 

(Fukushima et al, 1999). For example, the shapes of the spatial defect patterns are 

typically represented by categorical features such as random, cluster, and circle (Jeong et 

al, 2008). Jung (2011) proposed categorical features, such as edge, middle, and center, to 

indicate the defect location of a wafer map. However, in practice, it is very rare that a 

limited number of categorical features perfectly capture the spatial defect patterns on a 

wafer.  

Figure 4.1 considers the example of the defect classification of a dynamic random-

access memory (DRAM) wafer. For a given DRAM wafer, there are multiple spatial 

maps, called fail bit test (FBT) maps (Liu et al., 2010). As shown in Figure 4.1, the FBT 

maps include the distinct defect patterns; therefore, it is uncertain which pattern is the 

most critical among the multiple patterns. In addition, the defect pattern of the 5th FBT 

map in Figure 4.1 may not be exactly described by some categorical features due to its 

complexity. The incomplete spatial features generate the uncertainty in representing the 

spatial pattern, which may deteriorate the performance of the defect classification. 

Therefore, it is unquestionable that handling the uncertainty of the spatial features should 

be adeptly conducted in order to improve the accuracy of the defect classification. 
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Figure 4.1 Multiple FBT maps Figure of a given DRAM wafer. 

 

In uncertain data, it is assumed that a single feature is ideally captured not by a point 

value (i.e. a certain value) but by a range of values with a probability distribution (Tsang 

et al., 2011). Table 4.1 shows an example of uncertain categorical data extracted from a 

DRAM wafer. Following engineers’ troubleshooting knowledge, a single FBT map that 

includes the most significant defect pattern among all the FBT ones is firstly indicated by 

a categorical feature. Several uncertain features that describe the spatial defect pattern on 

the selected FBT map are extracted. As shown in Table 4.1, the spatial feature vector of 

the i-th DRAM wafer is represented by the joint probability mass function 𝑃𝑃(𝐹𝐹𝐹𝐹𝑇𝑇𝑖𝑖 =

𝑚𝑚, 𝑆𝑆ℎ𝑓𝑓𝑖𝑖𝑑𝑑𝑖𝑖 = 𝑠𝑠, 𝐶𝐶𝑓𝑓𝑐𝑐𝑓𝑓𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖 = 𝑓𝑓). In practice, the uncertain categorical data is common in 

the defect classification of DRAM wafers. Under this data structure, the traditional 

classifier gradually loses its momentum when the uncertainty of features increases. To 

tackle this problem, several traditional classifiers have been extended for uncertain data 

(Bi and Zhang, 2005; Qin et al., 2009; Angiulli and Fassetti, 2013). 
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Table 4.1 Uncertain categorical data extracted from DRAM wafers 

Wafer Joint probability mass function  

1 𝑃𝑃(𝐹𝐹𝐹𝐹𝑇𝑇1 = 𝑚𝑚, 𝑆𝑆ℎ𝑓𝑓𝑖𝑖𝑑𝑑1 = 𝑠𝑠, 𝐶𝐶𝑓𝑓𝑐𝑐𝑓𝑓𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓1 = 𝑓𝑓) 

… … 

i 𝑃𝑃(𝐹𝐹𝐹𝐹𝑇𝑇𝑖𝑖 = 𝑚𝑚, 𝑆𝑆ℎ𝑓𝑓𝑖𝑖𝑑𝑑𝑖𝑖 = 𝑠𝑠, 𝐶𝐶𝑓𝑓𝑐𝑐𝑓𝑓𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖 = 𝑓𝑓) 

… … 

N 𝑃𝑃(𝐹𝐹𝐹𝐹𝑇𝑇𝑁𝑁 = 𝑚𝑚, 𝑆𝑆ℎ𝑓𝑓𝑖𝑖𝑑𝑑𝑁𝑁 = 𝑠𝑠, 𝐶𝐶𝑓𝑓𝑐𝑐𝑓𝑓𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓𝑁𝑁 = 𝑓𝑓) 

 

As shown in Table 4.1, it is required to deal with the uncertain categorical or mixed 

data for the defect classification of DRAM wafers. Among all the existing approaches, 

some of them are able to classify uncertain categorical or mixed data. Tsang et al. (2011) 

proposed a classification algorithm that construct decision tree out of uncertain data. Qin 

et al., (2010) developed a naïve Bayes classifier for uncertain continuous and mixed data. 

However, those methods have a drawback in that they assume the uncertain features are 

mutually independent, which is rare in real-life applications. As shown in Table 4.1, the 

critical FBT map index (i.e. 𝐹𝐹𝐹𝐹𝑇𝑇𝑖𝑖 ) and the shape and location related features (i.e. 

𝑆𝑆ℎ𝑓𝑓𝑖𝑖𝑑𝑑𝑖𝑖, 𝐶𝐶𝑓𝑓𝑐𝑐𝑓𝑓𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓𝑖𝑖) are not mutually independent. The violation of this condition may 

affect the performance of the defect classification. 

This study aims at classifying uncertain data that are extracted from DRAM wafers. 

We propose a new Bayesian classifier for uncertain multivariate data. For this, we 
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develop a new multivariate kernel function to estimate a class conditional probability 

density (or mass) function (pdf) of uncertain multivariate continuous, categorical, and 

mixed data, respectively. Based on the class conditional density estimates and class prior 

probability, the posterior class probability of a test data with unknown class label is 

calculated by using Bayes theorem. After a classification model for uncertain data is 

constructed, the test data is assigned to the class with the maximum posterior class 

probability. We also discuss rationale why the proposed classifier outperforms existing 

ones by illustrating how the features used each classifier capture the spatial defect 

patterns of real-life DRAM wafer data provided by a semiconductor industry. 

The remainder of this chapter is organized as follows. We briefly review the 

traditional Bayesian classifier in Section 4.2. In Section 4.3, we propose the novel 

Bayesian classifier for uncertain data and describe the details. Section 4.4 is devoted to 

the application of the proposed classifier for the defect classification of DRAM wafers. 

The conclusion and future researches are discussed in Section 4.5. 

 

4.2 Bayesian classification model for uncertain data 

In this section, we propose a new Bayesian classifier that aims at classifying uncertain 

data. At first, we formally define the problem of the Bayesian classifier on uncertain data. 

Then, we propose a new multivariate kernel density estimation to handle the uncertainty 

of the data. Finally, we discuss the parameter optimization of the proposed kernel density 

estimate. 
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4.2.1 Problem definition 

Suppose that a data set consists of N data objects with an s-dimensional feature vector 

and D denotes the domain of the feature vector. A feature vector of a certain data object 

is an element of D whereas that of an uncertain data object is a random variable with a 

pdf defined over the domain D. The classification problem is to train a model that maps 

an uncertain feature vector 𝒀𝒀 , distributed with pdf 𝑔𝑔(𝒙𝒙) , to a posterior probability 

distribution 𝑃𝑃�𝑐𝑐𝑔𝑔|𝑿𝑿 = 𝒀𝒀�  where 𝑐𝑐𝑔𝑔  denotes the class g that belongs to a set of class 

𝑪𝑪 = {𝑐𝑐1, 𝑐𝑐2, . . , 𝑐𝑐𝐺𝐺}. The class label of 𝒀𝒀 is assigned as an element of C that maximizes the 

posterior probability as follows. 

𝑌𝑌(𝑼𝑼∗) = 𝑓𝑓𝑉𝑉𝑔𝑔𝑚𝑚𝑓𝑓𝑥𝑥𝑐𝑐𝑔𝑔∈𝑪𝑪𝑃𝑃�𝑐𝑐𝑔𝑔|𝑿𝑿 = 𝒀𝒀�. 

The posterior probability is estimated by using the class conditional probability of 𝒀𝒀, 

𝑃𝑃�𝑿𝑿 = 𝒀𝒀�𝑐𝑐𝑔𝑔�, and the class prior probability, 𝜋𝜋𝑔𝑔, as follows:  

𝑃𝑃�𝑐𝑐𝑔𝑔|𝑿𝑿 = 𝒀𝒀� = 𝑃𝑃�𝑿𝑿=𝒀𝒀�𝑐𝑐𝑔𝑔�𝜋𝜋𝑔𝑔
∑ 𝑃𝑃(𝑿𝑿=𝒀𝒀|𝑐𝑐𝑖𝑖)𝜋𝜋𝑖𝑖𝐺𝐺
𝑖𝑖=1

     

where class prior probability 𝜋𝜋𝑔𝑔 can be estimated by the fraction of the data objects with 

the class label 𝑐𝑐𝑔𝑔 in the set C. 

In the estimation of the class conditional probability 𝑃𝑃�𝑿𝑿 = 𝒀𝒀�𝑐𝑐𝑔𝑔�, we note that the 

feature vector 𝒀𝒀 is a random one distributed with the joint pdf 𝑔𝑔(𝒚𝒚). By using the law of 

unconscious statistician (Casella and Berger, 2002), 𝑃𝑃�𝑿𝑿 = 𝒀𝒀�𝑐𝑐𝑔𝑔�  is equal to the 

expected value of the class conditional pdf of 𝑃𝑃�𝑿𝑿 = 𝒚𝒚�𝑐𝑐𝑔𝑔� = 𝑑𝑑𝑿𝑿�𝒚𝒚�𝑐𝑐𝑔𝑔� with respect to 

the uncertain feature vector 𝒀𝒀 as follows: 
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𝑃𝑃�𝑿𝑿 = 𝒀𝒀�𝑐𝑐𝑔𝑔� = ∫ 𝑑𝑑𝑿𝑿�𝒚𝒚�𝑐𝑐𝑔𝑔�𝑔𝑔(𝒚𝒚)𝒚𝒚 𝑑𝑑𝒚𝒚.   (4.1) 

𝑃𝑃�𝑿𝑿 = 𝒀𝒀�𝑐𝑐𝑔𝑔� is the probability that the feature vector X of a data object in class 𝑐𝑐𝑔𝑔 and 

that of a data with an unknown class has exactly same values. Therefore, as 𝑔𝑔(𝒚𝒚) is 

similar to 𝑑𝑑�𝒙𝒙�𝑐𝑐𝑔𝑔�, 𝑃𝑃�𝑿𝑿 = 𝒀𝒀�𝑐𝑐𝑔𝑔� gets larger. Accordingly, the feature vector 𝒀𝒀 has the 

larger posterior probability of 𝑃𝑃�𝑐𝑐𝑔𝑔|𝑿𝑿 = 𝒀𝒀�.  

In Eq. (4.1), the most challenging task is the estimation of the unknown class 

conditional pdf 𝑑𝑑�𝒙𝒙�𝑐𝑐𝑔𝑔� based on the uncertain data objects. Ren et al. (2009) extended a 

univariate kernel density estimation to estimates 𝑑𝑑�𝑥𝑥𝑖𝑖�𝑐𝑐𝑔𝑔� for the each component of the 

feature vector x and obtained 𝑑𝑑�𝒙𝒙�𝑐𝑐𝑔𝑔� by the product of the estimated class conditional 

pdfs for all the components (i.e. 𝑑𝑑�𝒙𝒙�𝑐𝑐𝑔𝑔� = Π𝑖𝑖=1𝑠𝑠 𝑑𝑑�𝑥𝑥𝑖𝑖�𝑐𝑐𝑔𝑔� ). However, this approach 

assumes that all the components of x are mutually independent. Thus, it is inappropriate 

for the direct application of the existing approach to the density estimation of an 

uncertain feature vector when the components of the feature vector are not mutually 

independent. To this end, we develop a new multivariate KDE method on uncertain data 

to estimate 𝑑𝑑�𝒙𝒙�𝑐𝑐𝑔𝑔�, which is introduced in the following subsection. 

 

4.2.2 Estimation of class conditional joint pdf based on multivariate KDE 

We propose a new multivariate KDE (MKDE) to estimate the class conditional pdf based 

on the probability distributions of the uncertain data objects. In the first sub-section, we 

introduce the multivariate kernel density estimation for certain data. We then describe 

new MKDE methods for uncertain continuous, categorical, and mixed data, respectively. 
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4.2.2.1 Review of the traditional kernel density estimate for certain data 

The traditional kernel density estimation is a non-parametric approach aiming at 

estimating an unknown probability distribution function for certain data. It is assumed 

that 𝑥𝑥1, 𝑥𝑥2, . . , 𝑥𝑥𝑛𝑛  are independent and identically distributed with the univariate pdf of 

𝑑𝑑(𝑥𝑥). The kernel density estimate of the pdf is given by 

𝑑𝑑(𝑥𝑥) = 1
𝑛𝑛ℎ
∑ 𝐾𝐾 �𝑥𝑥−𝑥𝑥𝑖𝑖

ℎ
�𝑛𝑛

𝑖𝑖=1       

where h>0 is a smoothing parameter called bandwidth and K(.) is usually chosen to be a 

univariate probability density function. A typical kernel function is Gaussian kernel with 

mean zero and unit variance as follows. 

𝐾𝐾(𝑥𝑥) =
1

√2𝜋𝜋
𝑑𝑑−

1
2𝑥𝑥

2
. 

Now we turn our attention to the multivariate kernel density estimate for certain. 

Extension to the multivariate kernel density estimation generally relies on the 

multivariate kernel function, KH(x) = |H|−1/2K(H−1/2x). Suppose that there are multivariate 

random samples of {𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, . . ,𝒙𝒙𝒏𝒏} that are independent and identically distributed with a 

multivariate pdf of𝑑𝑑(𝒙𝒙). Based on the kernel function, the multivariate kernel density 

estimate is defined by (Scott, 2009) 

𝑑𝑑(𝒙𝒙;𝑯𝑯) = 1
𝑛𝑛
∑ 𝐾𝐾𝑯𝑯(𝒙𝒙 − 𝒙𝒙𝒊𝒊)𝑛𝑛
𝑖𝑖=1     (4.2) 
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where 𝑯𝑯 is the smoothing parameter. When we use the standard multivariate normal 

kernel (i.e. K(x) = (2π)−s/2 exp(−1⁄2xTx)), the multivariate kernel density estimate in Eq. 

(4.2) leads to 

𝑑𝑑(𝒙𝒙;𝑯𝑯) = 1
𝑛𝑛
∑ 1

(2𝜋𝜋)
𝑠𝑠
2|𝑯𝑯|

1
2

exp �− 1
2

(𝒙𝒙 − 𝒙𝒙𝒊𝒊)𝑇𝑇|𝑯𝑯|−1(𝒙𝒙 − 𝒙𝒙𝒊𝒊)�𝑛𝑛
𝑖𝑖=1 .   (4.3) 

 

4.2.2.2 New multivariate kernel density (MKDE) estimation for uncertain data 

4.2.2.2.1 Uncertain continuous data 

The extension of the multivariate kernel function, described in Eq. (4.2), for uncertain 

data, is not straightforward due to some challenging issues. At first, the feature vectors 

are uncertain ones distributed with multivariate probabilities distributions. Suppose that 

there is an uncertain data object whose feature vector 𝑼𝑼𝒊𝒊 is distributed with 𝑑𝑑𝑖𝑖(𝒖𝒖). The 

function of uncertain feature vector, 𝐾𝐾𝑯𝑯(𝒙𝒙 − 𝑼𝑼𝒊𝒊), is also uncertain. In order to handle the 

uncertainty of 𝑼𝑼𝒊𝒊, the expected value of the kernel function was utilized as follows (Ren 

et al., 2009); 

𝐸𝐸[𝐾𝐾𝑯𝑯(𝒙𝒙 − 𝑼𝑼𝒊𝒊)] = ∫ 𝐾𝐾𝑯𝑯(𝒙𝒙 − 𝒖𝒖)𝑑𝑑𝑖𝑖(𝒖𝒖)𝑑𝑑𝒖𝒖𝒖𝒖 .   (4.3) 

Under the assumption that 𝐾𝐾(. ) is the multivariate Gaussian kernel function and 𝑼𝑼𝑖𝑖  is 

distributed with multivariate normal with mean vector 𝝁𝝁𝒊𝒊 and covariance matrix 𝜮𝜮𝒊𝒊, the 

Eq. (4.3) leads to  

∫ (2𝜋𝜋)−
𝑠𝑠
2|𝑯𝑯|−

1
2𝑑𝑑− (𝒙𝒙−𝒖𝒖)𝑇𝑇𝑯𝑯−1(𝒙𝒙−𝒖𝒖)

2 (2𝜋𝜋)−
𝑠𝑠
2|Σ𝑖𝑖|

−12𝑑𝑑− 
�𝒖𝒖−𝝁𝝁𝒊𝒊�

𝑇𝑇
𝜮𝜮𝑖𝑖
−1�𝒖𝒖−𝝁𝝁𝒊𝒊�
2

𝒖𝒖 𝑑𝑑𝒖𝒖.  (4.4) 
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By the convolution of two multivariate Gaussian distributions 𝑁𝑁(𝒖𝒖 ,𝑯𝑯 ) and 𝑁𝑁(𝝁𝝁𝒊𝒊,𝜮𝜮𝑖𝑖), 

the Eq. (4.4) leads to 

(2𝜋𝜋)−
𝑠𝑠
2|𝑯𝑯 + Σ𝑖𝑖|

−12𝑑𝑑− 
�𝒙𝒙−𝝁𝝁𝒊𝒊�

𝑇𝑇
�𝑯𝑯+Σ𝑖𝑖�

−1
�𝒙𝒙−𝝁𝝁𝒊𝒊�

2 .   (4.5) 

Note that 𝐸𝐸[𝐾𝐾𝑯𝑯(𝒙𝒙 − 𝑼𝑼𝒊𝒊)]  converges to 𝑑𝑑𝑖𝑖(𝒙𝒙) = (2𝜋𝜋)−
𝑠𝑠
2|Σ𝑖𝑖|

−12𝑑𝑑− 
�𝒙𝒙−𝝁𝝁𝒊𝒊�

𝑇𝑇
Σ𝑖𝑖
−1�𝒙𝒙−𝝁𝝁𝒊𝒊�
2  as the 

matrix norm of 𝑯𝑯 is close to zero. Therefore, the performance of the kernel function 

depends crucially on the matrix norm of H. 

However, the matrix H has too many parameters (i.e. s(s+1)/2) to optimize the matrix 

norm. Due to the large number of parameters, it is difficult to control the matrix norm of 

H. In order to overcome this issue, we propose to use the product kernel whose 

bandwidth matrix H is diagonal. The product kernel function of the Eq. (4.3) is given by 

𝐸𝐸[𝐾𝐾𝑯𝑯(𝒙𝒙 − 𝑼𝑼𝒊𝒊)] = 𝐸𝐸 �Π𝑖𝑖=1𝑠𝑠 ℎ𝑖𝑖
−1𝐾𝐾 �𝑥𝑥𝑗𝑗−𝑈𝑈𝑖𝑖,𝑗𝑗

ℎ𝑗𝑗
��. 

where 𝑥𝑥𝑖𝑖 (or 𝑈𝑈𝑖𝑖,𝑖𝑖) is the jth component of 𝒙𝒙 (or 𝑼𝑼𝒊𝒊). Thus, it is much easier to optimize 

since there are only s parameters. Another advantage of the product kernel is that this 

method has a good estimation of a density as well as a general kernel function. In Figure 

4.2, we compare the product kernel function with the general kernel function by using the 

contour plots of density estimates based on the Eq. (4.5). We can see that the two 

contours look similar, which verifies the good approximation of the product kernel based 

density estimation for uncertain data.  
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(a)  

 

(b)  

Figure 4.2 Contour plot of density estimates based on the bivariate kernel functions; 

(a) General kernel (𝑯𝑯 = � 3 −1
−1 3 �) and (b) Product kernel (𝑯𝑯 = �3 0

0 3�). 

 

Now we estimate 𝑑𝑑�𝒖𝒖�𝑐𝑐𝑔𝑔� based on the proposed kernel function. Suppose that there 

are independent uncertain continuous feature vectors {𝑼𝑼𝑖𝑖}𝑖𝑖=1
𝑁𝑁𝑔𝑔  with the class label 𝑐𝑐𝑔𝑔 

where 𝑼𝑼𝑖𝑖 is distributed with the joint pdf of 𝑑𝑑𝑖𝑖(𝒖𝒖). In order to handle the uncertainty, we 

take the expected value of the KDE as follows. 

𝑑𝑑�𝒙𝒙�𝑐𝑐𝑔𝑔;ℎ1, . . ,ℎ𝑠𝑠� = 1
𝑁𝑁𝑔𝑔
∑ 𝐸𝐸 �𝛱𝛱𝑖𝑖=1𝑠𝑠 ℎ𝑖𝑖

−1𝐾𝐾 �𝑥𝑥𝑗𝑗−𝑈𝑈𝑖𝑖,𝑗𝑗
ℎ𝑗𝑗

��𝑁𝑁𝑔𝑔
𝑖𝑖=1   (4.6) 

where 𝑥𝑥𝑖𝑖  and 𝑈𝑈𝑖𝑖,𝑖𝑖  denote the j-th components of 𝒙𝒙  and 𝑼𝑼𝑖𝑖 . If 𝐾𝐾(. )  is the univariate 

Gaussian kernel function and ℎ𝑖𝑖 = ℎ for all j, the expected value of Π𝑖𝑖=1𝑠𝑠 ℎ𝑖𝑖
−1𝐾𝐾 �𝑥𝑥𝑗𝑗−𝑈𝑈𝑖𝑖,𝑗𝑗

ℎ𝑗𝑗
� 

can be obtained as follows. 
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𝐸𝐸 �𝛱𝛱𝑖𝑖=1𝑠𝑠 ℎ𝑖𝑖
−1𝐾𝐾 �𝑥𝑥𝑗𝑗−𝑈𝑈𝑖𝑖,𝑗𝑗

ℎ𝑗𝑗
�� = ∫ (2𝜋𝜋ℎ2)−

𝑠𝑠
2𝑑𝑑− 

∑ �𝑥𝑥𝑗𝑗−𝑢𝑢𝑗𝑗�
2𝑠𝑠

𝑗𝑗=1
2ℎ2 𝑑𝑑𝑖𝑖(𝒖𝒖)𝒖𝒖 𝑑𝑑𝒖𝒖  (4.7) 

where 𝑓𝑓𝑖𝑖  denote the j-th components of 𝒖𝒖. When 𝑼𝑼𝑖𝑖 is distributed with 𝑴𝑴𝑽𝑽𝑴𝑴(𝝁𝝁𝒊𝒊,𝚺𝚺𝒊𝒊), we 

use the Eq. (4.5) to obtain 

(2𝜋𝜋|ℎ2𝑰𝑰 + Σ𝑖𝑖|)
−𝑠𝑠2𝑑𝑑− 

(𝒙𝒙−𝝁𝝁𝒊𝒊)𝑇𝑇�ℎ2𝑰𝑰+Σ𝑖𝑖�
−1(𝒙𝒙−𝝁𝝁𝒊𝒊)

2  

where I is the identity matrix. Therefore, 𝑑𝑑�𝒙𝒙�𝑐𝑐𝑔𝑔;ℎ� is obtained by 

𝑑𝑑�𝒙𝒙�𝑐𝑐𝑔𝑔;ℎ� = 1
𝑁𝑁𝑔𝑔
∑ (2𝜋𝜋|ℎ2𝑰𝑰 + Σ𝑖𝑖|)

−𝑠𝑠2𝑑𝑑− 
�𝒙𝒙−𝝁𝝁𝒊𝒊�

𝑇𝑇
�ℎ2𝑰𝑰+Σ𝑖𝑖�

−1
�𝒙𝒙−𝝁𝝁𝒊𝒊�

2
𝑁𝑁𝑔𝑔
𝑖𝑖=1 . 

 

4.2.2.2.2 Uncertain categorical data 

We consider the estimation of class conditional probability mass function (pmf) for 

uncertain categorical data. Similar with the continuous one, we use the multivariate 

kernel density estimation method in order to estimate the class conditional pmf. However, 

the general kernel function shown in the Eq. (4.2) may not be available for categorical 

data since it computes the distance between categorical features, which is not meaningful 

for categorical data. A suitable counter part of the kernel function for certain categorical 

data has been proposed as follows (Li and Racine, 2003). 

Suppose that there are two independent certain categorical feature vectors x and u. 

Now we define a univariate kernel function 𝑓𝑓�𝑥𝑥𝑖𝑖 ,𝑓𝑓𝑖𝑖 , 𝜆𝜆� for the certain categorical data. 

𝑓𝑓�𝑥𝑥𝑖𝑖 ,𝑓𝑓𝑖𝑖 , 𝜆𝜆�  is equal to 1 − 𝜆𝜆𝑖𝑖  if 𝑥𝑥𝑖𝑖 = 𝑓𝑓𝑖𝑖 , and it is 𝜆𝜆  otherwise where the smoothing 
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parameter 𝜆𝜆 is between 0 and 0.5. For the multivariate data, the univariate kernel function 

is extended by 

𝐶𝐶(𝒙𝒙,𝒖𝒖; 𝜆𝜆) = 𝛱𝛱𝑖𝑖=1𝑠𝑠 𝑓𝑓�𝑥𝑥𝑖𝑖 ,𝑓𝑓𝑖𝑖 , 𝜆𝜆� = (1 − 𝜆𝜆)𝑠𝑠−𝑑𝑑(𝒙𝒙,𝒖𝒖)𝜆𝜆𝑑𝑑(𝒙𝒙,𝒖𝒖). 

where the dissimilarity 𝑑𝑑(𝒙𝒙,𝒖𝒖) is ‘the number of disagreement’ in the corresponding 

components of two categorical feature vectors x and u, which can be defined by 

𝑑𝑑(𝒙𝒙,𝒖𝒖) = �1�𝑥𝑥𝑖𝑖 ≠ 𝑓𝑓𝑖𝑖�
𝑠𝑠

𝑖𝑖=1

 

where 𝑥𝑥𝑖𝑖 and 𝑓𝑓𝑖𝑖  are the j-th components of x and u.  

Now we consider the kernel function of uncertain categorical data. Suppose that 𝑼𝑼𝑖𝑖 is 

an uncertain categorical feature vector with the pmf of 𝑃𝑃(𝑼𝑼𝑖𝑖 = 𝒖𝒖). In order to handle the 

uncertainty of 𝑼𝑼𝑖𝑖, we take the expected value of the kernel function as follows. 

𝐸𝐸[𝐶𝐶(𝒙𝒙,𝑼𝑼𝒊𝒊; 𝜆𝜆)] = ∑ (1 − 𝜆𝜆)𝑠𝑠−𝑑𝑑(𝒙𝒙,𝒖𝒖)𝜆𝜆𝑑𝑑(𝒙𝒙,𝒖𝒖)𝑃𝑃(𝑼𝑼𝑖𝑖 = 𝒖𝒖)𝒖𝒖 .  (4.8) 

Note that the Eq. (4.8) is more generalized average of pdfs. To be specific, the kernel 

function (1 − 𝜆𝜆)𝑠𝑠−𝑑𝑑(𝒙𝒙,𝒖𝒖)𝜆𝜆𝑑𝑑(𝒙𝒙,𝒖𝒖) gets larger when x and u have large number of ‘agreement 

components’. For example, 𝐸𝐸[𝐶𝐶(𝒙𝒙,𝑼𝑼𝒊𝒊; 𝜆𝜆)] is equal to 𝑃𝑃(𝑼𝑼𝑖𝑖 = 𝒙𝒙) when 𝜆𝜆=0. Based on the 

Eq. (4.8), 𝑑𝑑(𝒙𝒙|𝑐𝑐𝑔𝑔) for uncertain categorical data is driven by 

𝑑𝑑�𝒙𝒙�𝑐𝑐𝑔𝑔; 𝜆𝜆1, . . , 𝜆𝜆𝑠𝑠� =  
1
𝑁𝑁𝑔𝑔

��(1 − 𝜆𝜆)𝑠𝑠−𝑑𝑑(𝒙𝒙,𝒖𝒖)𝜆𝜆𝑑𝑑(𝒙𝒙,𝒖𝒖)𝑃𝑃(𝑼𝑼𝑖𝑖 = 𝒖𝒖)
𝒖𝒖

𝑁𝑁𝑔𝑔

𝑖𝑖=1

. 
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4.2.2.2.3 Uncertain mixed data 

Now, we consider s-dimensional uncertain mixed continuous and categorical data. 

Recall that the continuous and categorical data requires the different types of kernel 

function. In order to estimate the mixed data, we can use both types of the kernel function 

by using product kernel (Li and Racine, 2003). Without loss of generality, we assume 

that the first 𝑞𝑞(< 𝑠𝑠)  components are continuous and the remaining components are 

categorical. Given 𝑁𝑁𝑔𝑔  independent objects with an uncertain feature vector 𝑼𝑼𝑖𝑖 =

�𝑼𝑼𝑖𝑖
𝑐𝑐,𝑼𝑼𝑖𝑖

𝑑𝑑� ∈ 𝑐𝑐𝑔𝑔, we estimate the class conditional pdf. Since 𝑼𝑼𝑖𝑖’s have the uncertainty, we 

take the expected value of the product kernel of 𝐾𝐾(. ) and 𝐶𝐶(. ) as follows: 

𝑑𝑑�𝒙𝒙�𝑐𝑐𝑔𝑔;ℎ1, . . , ℎ𝑞𝑞 , 𝜆𝜆𝑞𝑞+1, . . , 𝜆𝜆𝑠𝑠� =
1
𝑁𝑁𝑔𝑔

�𝐸𝐸 �𝛱𝛱𝑖𝑖=1
𝑞𝑞 ℎ𝑖𝑖

−1𝐾𝐾 �
𝑥𝑥𝑖𝑖 − 𝑈𝑈𝑖𝑖,𝑖𝑖𝑐𝑐

ℎ𝑖𝑖
�𝛱𝛱𝑖𝑖=𝑞𝑞+1𝑠𝑠 𝐶𝐶�𝑥𝑥𝑖𝑖 ,𝑈𝑈𝑖𝑖,𝑖𝑖𝑑𝑑 , 𝜆𝜆𝑖𝑖��

𝑁𝑁𝑔𝑔

𝑖𝑖=1

 

where 𝑼𝑼𝑖𝑖  is distributed with the pdfs of 𝑑𝑑𝑖𝑖(𝒖𝒖). Therefore, the expected value of the 

product kernel can be calculated by integrating out the pdf of 𝑼𝑼𝑖𝑖 as follows. 

� 𝛱𝛱𝑖𝑖=1
𝑞𝑞 ℎ𝑖𝑖

−1𝐾𝐾 �
𝑥𝑥𝑖𝑖 − 𝑓𝑓𝑖𝑖𝑐𝑐

ℎ𝑖𝑖
�𝛱𝛱𝑖𝑖=𝑞𝑞+1𝑠𝑠 𝐶𝐶�𝑥𝑥𝑖𝑖 , 𝑓𝑓𝑖𝑖𝑑𝑑, 𝜆𝜆𝑖𝑖�𝑑𝑑𝑖𝑖(𝒖𝒖)𝑑𝑑𝒖𝒖

𝒖𝒖
 

where K(.) and 𝐶𝐶(. ) are the kernel functions used in Eqs. (4.3) and (4.6) and ∫ 𝑑𝑑𝒖𝒖𝒖𝒖  is 

equivalent to ∑ ∫ 𝑑𝑑𝒖𝒖𝑐𝑐𝒖𝒖𝑐𝑐𝒖𝒖𝑑𝑑 .  

Remark: The expected value of the product kernel function is equivalent to the weighted 

integral (or sum) of the joint pdf 𝑑𝑑𝑖𝑖(𝒖𝒖). The product kernel puts the different weights on 

the pdfs based on the similarity between vectors x and u. For example, the product kernel 

of continuous features described in Eq. (4.4), (2𝜋𝜋ℎ2)−
𝑠𝑠
2𝑑𝑑− (𝒙𝒙−𝒖𝒖)𝑇𝑇(𝒙𝒙−𝒖𝒖)

2ℎ2 , becomes large as the 
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Euclidean distance between x and u gets close to zero given the smoothing parameter h.  

 

4.2.2.3 Bandwidth selection of the proposed kernel density estimate 

In KDE, the selection of the smoothing parameters primarily determines the quality 

of the density estimation (Scott, 2009). There have been many existing researches 

conducted on the selection of the smoothing parameter for KDE of certain data. 

Generally, the optimal bandwidth of KDE is the one that minimizes the integrated square 

error (ISE) or the mean integrated square error (MISE) for density estimation (Silverman, 

1986). However, Ghosh and Hall (2004) observed that the bandwidth that minimizes ISE 

or MISE may lead to the poor performance of the traditional Bayesian classifier for 

certain data. Despite the extensive literatures, there has been few work focused on the 

optimal bandwidth selection of KDE for uncertain data. Thus, we evaluate the 

performance of the proposed classifier by estimating the misclassification rate and choose 

the optimal bandwidth that minimizes the misclassification rate.  

The misclassification rate of the proposed classifier is calculated by using the 

following equation. 

𝑀𝑀𝑅𝑅� (𝒉𝒉) = 1
𝑛𝑛
∑ 1{𝑐𝑐𝑖𝑖 ≠ 𝑈𝑈𝐹𝐹(𝑼𝑼𝑖𝑖;𝒉𝒉)}𝑛𝑛
𝑖𝑖=1   

where 𝑈𝑈𝐹𝐹(𝑼𝑼𝑖𝑖;𝒉𝒉) denotes the proposed classifier with the parameter h. We estimate the 

misclassification rate by using the training data set. Based on the misclassification rate 

from the training data, we select an optimal one of 𝒉𝒉∗  that minimizes the 

misclassification rate as follows. 
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4.3 Case study: defect classification of DRAM wafers 

The procedure is composed of three steps: 1) the binarization of original FBT values, 

2) the extraction of uncertain features that characterize the defects of a DRAM wafer, and 

3) the defect classification of DRAM wafers based on the extracted features (see Figure 

4.3). 

 

 

Figure 4.3 Framework of the defect classification of a DRAM wafer. 

 

4.3.1 Transformation of original FBT values into binary ones 

For a DRAM wafer, there are multiple FBT maps to be analyzed for the defect 

classification. Each of FBT maps consists of chips including a non-negative integer value. 
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Much work has gone towards identifying and classifying the spatial defect pattern of a 

wafer map (Chen and Liu, 2000; Liu et al., 2002; Wang et al., 2006; Jeong et al,. 2008; 

Chang et al. 2012; Liu and Chen, 2013). However, all these existing studies analyzed a 

single binary wafer map from functional testing results. For the remedy, we need to first 

transform the non-negative integer values into binary ones.  

Before extracting features of DRAM wafers, we need to transform the original FBT 

values into binary ones. For binarizing the original FBT values, we investigate the 

probability distribution of original FBT values of functional chips in normal wafers by 

using the KDE for certain data. Suppose that 𝑦𝑦1
(𝑘𝑘),𝑦𝑦2

(𝑘𝑘), … ,𝑦𝑦𝑛𝑛𝑓𝑓
(𝑘𝑘)~𝑑𝑑(𝑘𝑘)(𝑦𝑦), where 𝑦𝑦𝑖𝑖

(𝑘𝑘) is 

the original FBT value of the i-th functional chip of the k-th FBT map and nf is the total 

number of functional chips on a normal wafer, respectively. Then, we choose the 100(1-𝛾𝛾) 

percentile (𝛿𝛿𝛾𝛾,𝑘𝑘) as the threshold value of the binarization of the k-th FBT map. Based on 

the threshold value for the binarization of the k-th FBT map, the original FBT values can 

be binarized as follows: 

𝑥𝑥𝑖𝑖(𝑘𝑘)   = �
1,   𝑦𝑦𝑖𝑖

(𝑘𝑘) > 𝛿𝛿𝛾𝛾,𝑘𝑘

0,   𝑦𝑦𝑖𝑖
(𝑘𝑘) ≤ 𝛿𝛿𝛾𝛾,𝑘𝑘

 for i=1,..,K 

where K is the total number of FBT maps for a given DRAM wafer. In order to obtain 

𝛿𝛿𝛾𝛾,𝑘𝑘, we estimate the 95 percentile of 𝑦𝑦𝑖𝑖
(𝑘𝑘) based on Gaussian kernel-density estimation of 

𝑑𝑑(𝑘𝑘)(𝑦𝑦). 
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4.3.2 Extraction of uncertain spatial feature 

In this subsection, we propose several uncertain features that characterize the spatial 

defect patterns of binarized FBT maps for the given DRAM wafer. Based on the 

engineer’s troubleshooting knowledge, we select i) an FBT map with the most significant 

defect pattern (hereafter critical map) among K maps, and identify ii) the defect shape 

and iii) the defect location on the selected critical map. Based on this information, we 

extract the three features: the critical map index, the defect shape, and location of the 

critical map. The uncertainty of each feature is quantified by estimating the probability 

distribution of the feature. 

 

4.3.2.1 Uncertain feature of the critical map index 

We extract the feature indicating the critical map index and quantify its uncertainty. 

At first, we detect FBT maps with a spatial defect pattern among the K binarized FBT 

maps. We then estimate the probability of each FBT map being the critical map.  

A popular way of detecting the binarized FBT maps with spatial defect patterns is by 

measuring the spatial autocorrelation of defective chips. Many researches have been 

conducted for detecting a binary map with spatial autocorrelation (Cliff and Ord, 1981; 

Hansen and Thregod, 1998; Taam and Hamada, 1993). We assess the spatial 

autocorrelation of each binarized FBT map via spatial correlogram (Jeong et al., 2008), 

which examines how many neighboring defective chips (or functional chips) are to be 

found around defective ones (or functional ones).  
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Suppose that we have K binarized FBT maps: 𝑀𝑀𝑘𝑘 ,𝑘𝑘 = 1,2, … ,𝐾𝐾. For computing the 

spatial correlogram of the k-th FBT map 𝑀𝑀𝑘𝑘, 𝑇𝑇(𝑘𝑘)(𝑔𝑔) is obtained as follows. 

 𝑇𝑇(𝑘𝑘)(𝑉𝑉) = 𝑖𝑖(𝑘𝑘)𝑐𝑐00
(𝑘𝑘)(𝑉𝑉) + �1 − 𝑖𝑖(𝑘𝑘)�𝑐𝑐11

(𝑘𝑘)(𝑉𝑉) for 𝑘𝑘=1,2,3,..,K   

where 𝑐𝑐00
(𝑘𝑘)(𝑔𝑔) and 𝑐𝑐11

(𝑘𝑘)(𝑔𝑔) denote the number of 0-to-0 and 1-to-1 joins (or neighbors) at 

a spatial lag 𝑉𝑉 on the k-th binarized FBT map, and 𝑖𝑖(𝑘𝑘) is the defective rates on 𝑀𝑀𝑘𝑘. Here, 

“0” indicates a functional chip while “1” presents a defective one. The higher value of 

𝑇𝑇(𝑘𝑘)(𝑉𝑉), the more zeroes or ones are joined at the lag r. As proven by Jeong et al. (2008), 

𝐸𝐸�𝑇𝑇(𝑘𝑘)(𝑉𝑉)� =  𝑐𝑐(𝑘𝑘)(𝑉𝑉)𝑖𝑖(𝑘𝑘)�1 − 𝑖𝑖(𝑘𝑘)� 

𝑉𝑉𝑓𝑓𝑉𝑉�𝑇𝑇(𝑘𝑘)(𝑉𝑉)� =  𝑐𝑐(𝑘𝑘)(𝑉𝑉)(𝑖𝑖(𝑘𝑘))2(1 − 𝑖𝑖(𝑘𝑘))2 

where 𝑐𝑐(𝑉𝑉) = 𝑐𝑐00(𝑉𝑉) + 𝑐𝑐01(𝑉𝑉) + 𝑐𝑐11(𝑉𝑉), and 𝑐𝑐01(𝑉𝑉) denote the numbers of 0-to-1 joins at 

a spatial lag 𝑉𝑉 on 𝑀𝑀𝑘𝑘. Then, the spatial correlogram of 𝑀𝑀𝑘𝑘 is obtained by standardizing 

𝑇𝑇(𝑘𝑘)(𝑉𝑉) for each lag r. 

𝑍𝑍𝑇𝑇
(𝑘𝑘)(𝑉𝑉) =  𝑇𝑇

(𝑘𝑘)(𝑟𝑟)−𝑐𝑐(𝑘𝑘)(𝑟𝑟)𝑝𝑝(𝑘𝑘)�1−𝑝𝑝(𝑘𝑘)�

�𝑐𝑐(𝑘𝑘)(𝑟𝑟)(𝑝𝑝(𝑘𝑘))2(1−𝑝𝑝(𝑘𝑘))2
 .   (4.9) 

Now we use the spatial correlogram obtained in Eq. (4.9) to extract the feature M that 

indicates which FBT map is the most critical one among K ones. Let 𝒁𝒁𝑟𝑟
(𝑘𝑘) =

[𝑍𝑍𝑇𝑇
(𝑘𝑘)(1), . . ,𝑍𝑍𝑇𝑇

(𝑘𝑘)(𝑉𝑉)] be the first r lags of spatial correlogram for the k-th FBT map. 

Under the assumption of spatial independence, 𝒁𝒁𝑟𝑟
(𝑘𝑘) follows the approximate multivariate 

Normal distribution with mean zero vector of length r and covariance 𝚺𝚺𝑟𝑟
(𝑘𝑘) (Jeong et al., 

2008). By using the following statistic, we can measure the spatial independence of 𝑀𝑀𝑘𝑘  
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𝑇𝑇(𝑘𝑘)2 =  𝒁𝒁𝑟𝑟
(𝑘𝑘)𝑇𝑇𝜮𝜮�𝑟𝑟

(𝑘𝑘)−1𝒁𝒁𝑟𝑟
(𝑘𝑘)     

where 𝚺𝚺�𝑟𝑟
(𝑘𝑘) is the estimated covariance matrix using n spatially independent maps. The 

stronger spatial dependence 𝑀𝑀𝑘𝑘 has, the larger 𝑇𝑇(𝑘𝑘)2 gets.  

For identifying the critical map M, we test whether there is a large spatial 

autocorrelation on each FBT map by using the statistical hypothesis testing. For the 

testing the spatial independence of 𝑀𝑀𝑘𝑘 , we use the probability distribution of 𝑇𝑇(𝑘𝑘)2 

(Jeong et al., 2008). Under the assumption of spatial independence, the k-th FBT map 𝑀𝑀𝑘𝑘 

is critical if 

𝑇𝑇(𝑘𝑘)2 > 𝑟𝑟(𝑛𝑛−1)
𝑛𝑛−𝑟𝑟

𝐹𝐹𝑟𝑟,𝑛𝑛−𝑟𝑟.     (4.10) 

 Based on an empirical study, r = 4 and 𝛼𝛼 = 0.05 is set.  

We quantify the uncertainty in the critical FBT index M by estimating the probability 

that the k-th map 𝑀𝑀𝑘𝑘 becomes the critical FBT map M; thus, 𝑃𝑃(𝑀𝑀 = 𝑘𝑘). The detail of the 

procedure is described as follows. First, we test that the k-th binarized FBT is critical by 

checking the condition shown in the Eq. (4.10). Then, the probability that the k-th FBT 

map being most critical is the reciprocal of the number of FBT maps satisfying Eq. (4.10) 

among K FBT maps if 𝑇𝑇(𝑘𝑘)2 > 𝑟𝑟(𝑛𝑛−1)
𝑛𝑛−𝑟𝑟

𝐹𝐹𝑟𝑟,𝑛𝑛−𝑟𝑟 and zero otherwise. Thus, 

𝑃𝑃(𝑀𝑀 = 𝑘𝑘) = �
1
𝑁𝑁𝑐𝑐

, 𝑇𝑇(𝑘𝑘)2  >  𝑟𝑟(𝑛𝑛−1)
𝑛𝑛−𝑟𝑟

𝐹𝐹𝑟𝑟,𝑛𝑛−𝑟𝑟

0, 𝑇𝑇(𝑘𝑘)2 ≤  𝑟𝑟(𝑛𝑛−1)
𝑛𝑛−𝑟𝑟

𝐹𝐹𝑟𝑟,𝑛𝑛−𝑟𝑟

   (4.11) 

where 𝑁𝑁𝑐𝑐 is the number of FBT maps satisfying Eq. (4.10) among K binarized FBT maps. 
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4.3.2.2 Uncertain feature related to the defect shape of the critical FBT map 

To extract an uncertain feature (𝑆𝑆𝑀𝑀) that indicates the defect shape of a critical FBT 

map M, we classify the defect shape of the critical map using the corresponding spatial 

correlogram. Then, the uncertainty of 𝑆𝑆𝑀𝑀 is quantified by estimating the probability that 

the correlogram of the map M is classified to a defect shape. 

The spatial correlogram produces the unique shape for each spatial pattern of the 

binarized FBT map (Jeong et al., 2008). Figure 4.4 presents several examples of binary 

maps with typical spatial defect patterns and the corresponding spatial correlograms. On 

the binary maps displayed in Figure 4.4, black and white colors indicate defective chips 

and functional ones, respectively. In Figure 4.4 a), the correlogram of the cluster pattern 

map smoothly changes along spatial lag 𝑉𝑉, and its absolute 𝑍𝑍𝑇𝑇(𝑉𝑉) values are relatively 

larger than that of other spatial patterns. In Figure 4.4 b), the spatial correlogram of the 

circle pattern map also shows large 𝑍𝑍𝑇𝑇(𝑉𝑉)  absolute values, but with a soft cosine 

waveform. In Figure 4.4 c), the 𝑍𝑍𝑇𝑇(𝑉𝑉) values of the repetitive pattern correlogram are 

consistently small, and no special pattern appears except for a frequent crossing around 

zero. Therefore, we can employ the spatial correlogram to select the defect shape of the 

critical FBT map among the typical defect patterns: cluster, circle, and repetition. 
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Pattern Binary map Correlogram 

a) Cluster 

  

b) Circle 

  

c) Repetition 

  

Figure 4.4 A spatial correlogram of an abnormal wafer map for each typical defect 

shape.  

 

However, in the real life data, defect shapes of some critical maps do not belong to 

the four defect shape shown in Figure 4.4 (e.g. mixed one). In order to quantify such an 

uncertainty, we estimate the probability that 𝑆𝑆𝑀𝑀 belongs to a defect shape among the four 

ones shown in Figure 4.4. For this, we adopt the linear discriminant analysis to compute 

the probability that the correlogram of the map M ( 𝒁𝒁(𝑀𝑀) ) belongs to 

𝑠𝑠 ∈ {cluster, circle, repetition}. In this study, the linear discriminant model is trained 
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based on 100 reference maps including cluster, circle, repetitive, and random patterns. 

Assuming the M = k, the probability that the map k has a defect shape can be obtained by 

estimating the posterior probability that the correlogram of the map i (i.e. 𝒁𝒁(𝑘𝑘)) belongs to 

a defect shape s, which is given by (Hastie et al. 2009) 

𝑃𝑃(𝑆𝑆𝑀𝑀 = 𝑠𝑠|𝑀𝑀 = 𝑘𝑘) = 𝑓𝑓(𝑠𝑠|𝑀𝑀=𝑘𝑘)𝜋𝜋�𝑠𝑠
∑ 𝑓𝑓(𝑠𝑠′|𝑀𝑀=𝑘𝑘)𝜋𝜋�𝑠𝑠𝑠𝑠′

    (4.12) 

where 𝑑𝑑(𝑠𝑠|𝑀𝑀 = 𝑘𝑘) = 1
(2𝜋𝜋)𝑟𝑟/2|Σ�|1/2 𝑑𝑑

−12(𝒙𝒙−𝜇𝜇�𝑠𝑠)𝑇𝑇Σ�−1(𝒙𝒙−𝜇𝜇�𝑠𝑠) and (define 𝑠𝑠′) 

 𝜋𝜋�𝑠𝑠 = the fraction of the defect shape s among all the reference maps 

 �̂�𝜇𝑠𝑠 = the mean of reference correlograms belonging defect shape s 

𝛴𝛴� = the estimated covariance matrix of all the reference correlograms. 

 

4.3.2.3 Uncertain feature related to the defect location of the critical FBT map 

To extract the location related feature, we here define several subareas on the critical 

map M. In this study, we use the three different subareas: Edge, Middle, and Center (see 

Figure 4.5). We then calculate the defective rate of each subarea of the binarized critical 

FBT map. In order to quantify the uncertainty of the defect location related feature, we 

estimate the probability that the defect location of the critical map M, 𝐴𝐴𝑀𝑀, is a subarea a 

(i.e. 𝑃𝑃(𝐴𝐴𝑀𝑀 = 𝑓𝑓|𝑀𝑀)) by normalizing the defect rate of each sub-area as follows.  

𝑃𝑃(𝐴𝐴𝑀𝑀 = 𝑓𝑓|𝑀𝑀) = 𝑃𝑃𝑎𝑎
(𝑀𝑀)

𝑝𝑝(𝑀𝑀) for 𝑓𝑓 ∈ {𝑑𝑑𝑑𝑑𝑔𝑔𝑑𝑑,𝑚𝑚𝑖𝑖𝑑𝑑𝑑𝑑𝑓𝑓𝑑𝑑, 𝑐𝑐𝑑𝑑𝑓𝑓𝑑𝑑𝑑𝑑𝑉𝑉}  (4.13) 
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where 𝑖𝑖(𝑀𝑀)  is the defective rate of the map 𝑀𝑀  and 𝑃𝑃𝑎𝑎
(𝑀𝑀)  is the defective rate of the 

subarea a of the map 𝑀𝑀. 

 

Figure 4.5 Three subareas of a binarized FBT map. 

 

4.3.3 An illustrative example  

Based on the extracted uncertain features from the Sections 4.3.1-4.3.2, we classify 

DRAM wafers by applying the proposed Bayesian classifier for uncertain data. In order 

to construct the uncertain data represented by joint probability distributions, we estimate 

the joint probability distribution of each DRAM wafer based on pdfs of Eqs. (4.11)- 

(4.13). Since the shape and location features 𝑆𝑆𝑀𝑀  and 𝐴𝐴𝑀𝑀  depend on the map M, we 

calculate the probability that the defect shape 𝑆𝑆𝑀𝑀  is s and the defect location 𝐴𝐴𝑀𝑀  is a 

conditioned on 𝑀𝑀 = 𝑘𝑘.  

Figure 4.6 shows a typical example that present how to estimate the joint pdf of an 

uncertain object. Among K binarized FBT maps, binarized FBT 03 maps have the 

probability being critical FBT maps of 0.33. Under the condition that 𝑀𝑀 = 3, the FBT 3 

map has the cluster pattern with the probability one and the defect location of ‘Edge’ with 
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the probability 0.47. Then, the joint probability of (𝑀𝑀 = 3, 𝑆𝑆𝑀𝑀 = 𝐶𝐶𝑓𝑓𝑓𝑓. ,𝐴𝐴𝑀𝑀 = 𝐸𝐸𝑑𝑑𝑔𝑔𝑑𝑑) is 

given by 𝑃𝑃(𝑀𝑀 = 3, 𝑆𝑆𝑀𝑀 = 𝐶𝐶𝑓𝑓𝑓𝑓. ,𝐴𝐴𝑀𝑀 = 𝐸𝐸𝑑𝑑𝑔𝑔𝑑𝑑) = 0.34 × 0.98 × 0.47 = 0.16. 

 

 

Figure 4.6 Estimation of joint probability based on extracted uncertain features. 
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4.4 Performance comparison 

Real-life dynamic random access memory (DRAM) wafer maps provided by a 

semiconductor manufacturing company were analyzed to extract uncertain features and 

evaluate the performance of the proposed classifier. The data set used in this experiment 

includes 45 DRAM wafer maps that have three different classes. For each of the DRAM 

wafers, there are multiple fail bit tests (FBTs) maps. Based on engineering knowledge, 

we selected five FBTs (01, 02, 03, 04, and 05) because they capture spatial defects well.  

We have compared the proposed method with three existing approaches, which 

include the traditional Bayesian classifier for certain data, uncertain naïve Bayes model, 

and decision tree for uncertain data, in terms of the misclassification probability. 

However, since the existing classifiers cannot be directly applied, we transformed the 

extracted uncertain feature vectors. At first, in order to apply the traditional naïve Bayes 

model, we extract a categorical feature vector without uncertainty for a DRAM wafer 

map. We estimate the feature vector by taking mode of the joint pdf 𝑃𝑃(𝑀𝑀 = 𝑘𝑘,𝐴𝐴𝑀𝑀 =

𝑓𝑓, 𝑆𝑆𝑀𝑀 = 𝑠𝑠)  because the vector includes only the categorical feature components. 

Secondly, to apply the uncertain naïve Bayes classifier, we obtained a new feature vector 

with uncertainty whose components are mutually independent. For this, we estimated the 

marginal pdfs of the shape and location related uncertain features by marginalizing out 

the critical map index related feature M from the Eqs. (4.11)-(4.13), which removes the 

dependence between the critical map index related feature (M) and the defect location 

(𝐴𝐴𝑀𝑀) and shape (𝑆𝑆𝑀𝑀) related features. Table 4.2 compares the three different models in 

terms of the estimated misclassification rates using 5-fold cross validation. The proposed 
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model outperforms the traditional Bayesian classifier, the uncertain naïve Bayes, and 

decision tree for uncertain data.  

 

Table 4.2 Performance comparison of the different classification models 

Testing set 
Traditional  

Bayes 

Uncertain  

naïve Bayes 

Uncertain  

decision tree 

Proposed  

method 

{1} 0.78 0.78 0.78  0.89 

{2} 0.67 1.00 0.78  1.00 

{3} 0.44 0.89 0.89  1.00 

{4} 0.67 0.67 0.67  1.00 

{5} 1.00 1.00 0.89  1.00 

Average 0.71 0.87 0.80  0.98 

 

Now, we discuss the rationale why the proposed classifier outperforms others by 

illustrating how the features used each classifier capture the spatial defect patterns on the 

binarized FBT maps. We have compared the uncertain features of the proposed Bayesian 

classifier with the certain features of the traditional Bayesian classifier, which was 

obtained by taking mode of the joint probability distribution of the uncertain features. 

Table 4.3 shows the joint probability distribution of uncertain features that are presented 

on the binarized FBT maps of two DRAM wafers. Since the wafers belong to the 

different classes and include the different defect patterns on the binarized FBT maps, 
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their uncertain features have the different probability distributions, which enables us to 

discriminate the wafers by applying the proposed classification model. On the other hand, 

both of the DRAM wafers (i.e. 𝑀𝑀 = 3, 𝑆𝑆𝑀𝑀 = Cluster,𝐴𝐴𝑀𝑀 = Edge) have the same modes 

of the joint pdfs in spite of the different probability distributions. Based on the modes of 

pdfs, the traditional Bayesian classifier cannot discriminate the DRAM wafers that 

belong to the different classes. 

 

Table 4.3 Joint probability distributions of uncertain features of two DRAM wafers 

that belong to the different classes 

 Features  Probability distributions 

𝑀𝑀 𝑆𝑆𝑀𝑀 𝐴𝐴𝑀𝑀 Wafer I Wafer II 

  Edge 0.17 0.37 

3 Cluster Middle 0.13 0.13 

  Center 0.03 0.00 

  Edge 0.16 0.00 

4 Cluster Middle 0.11 0.00 

  Center 0.06 0.00 

  Edge 0.05 0.00 

 Cluster Middle 0.10 0.00 

5  Center 0.15 0.00 

  Edge 0.00 0.27 

 Circle Middle 0.00 0.20 

  Center 0.00 0.03 
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In addition, we illustrate why we need to consider the dependence between features 

by comparing the joint pdf of uncertain features of a DRAM wafer for the proposed 

Bayesian classifier with the product of marginal pdf of the features for uncertain naïve 

Bayes classifier. Figure 4.7 shows binarized FBT maps of a single DRAM wafer whose 

spatial features are represented by the pdfs presented in Table 4.4. Table 4.4 a) shows the 

original joint probability distribution that considers the dependence between features, 

which is estimated by using the pdfs of Eq. (4.11)-(4.13). In Table 4.4 b), the probability 

distribution was estimated by the product of the marginal pdfs of the uncertain features. 

As shown in Table 4.4, the joint probability in a) distribution captures the spatial defect 

patterns of the binarized FBT maps shown in Figure 4.7 better than the product of the 

marginal distributions in b). For example, the FBT 08 shows circle pattern on the 

corresponding binarized FBT map. Based on the probability distribution in Table 4.4 a), 

the DRAM wafer has high probabilities that (𝑀𝑀, 𝑆𝑆𝑀𝑀,𝐴𝐴𝑀𝑀) = (3, Cluster, Edge) and (5, 

Circle, Edge/Middle), which corresponds the defect patterns shown in Figure 4.7. On the 

other hand, based on the probabilities in Table 4.4 b), all binarized FBT maps are most 

likely to have cluster pattern on the edge, which contradicts the spatial pattern of the 

binarized FBT (08) map. This is because we have removed the effect of the selection of 

critical map from the defect and location features by estimating the marginal distributions 

of the two features.  
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  FBT maps   
01 02 03 04 05 

     

Figure 4.7 Binarized FBT maps of a DRAM wafer. 

 

Table 4.4 Joint probability distribution of uncertain features representing the spatial 

characteristics of the binarized FBT maps in Figure 4.7 
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 Features  a) Joint 
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distribution 

b) Product of 
marginal 

distributions 𝑀𝑀 𝑆𝑆𝑀𝑀 𝐴𝐴𝑀𝑀 

  Edge 0.21 0.10 

 Cluster Middle 0.11 0.06 

  Center 0.01 0.03 

3  Edge 0.00 0.06 

 Circle Middle 0.00 0.03 

  Center 0.00 0.02 

 Repetition Edge 0.00 0.01 

  Edge 0.13 0.10 

 Cluster Middle 0.04 0.06 

  Center 0.10 0.03 

  Edge 0.00 0.06 

 Circle Middle 0.00 0.03 

4  Center 0.00 0.02 
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  Edge 0.02 0.01 

 Repetition Middle 0.01 0.00 

  Center 0.02 0.00 

 Random Edge 0.01 0.00 

  Center 0.01 0.00 

  Edge 0.00 0.10 

 Cluster Middle 0.00 0.06 

  Center 0.00 0.03 

5  Edge 0.15 0.06 

 Circle Middle 0.15 0.03 

  Center 0.03 0.02 

 Repetition Edge 0.00 0.01 
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4.5 Conclusion 

We have developed a new Bayesian classifier that considers the dependence between 

uncertain features based on extended multivariate kernel density estimation (KDE) 

approach for uncertain data. We have proposed the multivariate-KDE based Bayesian 

classifier by taking the expected values of multivariate kernel functions. We then applied 

the proposed classifier to the defect classification of a dynamic random access memory 

(DRAM) wafer. For this, we have constructed the uncertain categorical dataset by 

transforming the original fail bit test (FBT) maps into the binary ones, extracting the 

features characterizing defect patterns of the binary maps, and quantifying the uncertainty 

of the spatial features. Real-life DRAM wafer maps were analyzed to extract uncertain 

features and evaluate the performance of the proposed classifier. The experimental results 

have showed that the proposed approach outperforms the existing ones.  

Future research directions include exploring other advanced classifiers such as 

Bayesian relevance vector machine and random forest to improve classification accuracy, 

and to extend the proposed approach to other applications such as bioinformatics. In 

addition, an interesting line of models for uncertain data can be developed by extending 

lots of traditional data mining techniques, such as feature selection (or ranking), 

regression analysis, and anomaly detection method for uncertain data.  
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CHAPTER 5 

 

Concluding Remarks and Future Researches 
 

5.1 Concluding remarks 

 

In this disseration, we have proposed and subsequently implemented several 

methodolgies for spatial data mining with applications to semiconductor manufacturing 

process. In Chapter 2, we proposed a methodology for detecting abnormal DRAM wafers 

based on multivariate sequence tests. The proposed approach can detect abnormal DRAM 

wafers with multiple spatial maps using step-down spatial randomness testing. In addition, 

we used a spatial local de-noising method to eliminate noise of defect chips, letting us 

better distinguish systematic defect patterns on DRAM wafers from random ones. The 

experimental results show that the proposed method is more accurately detected 

abnormal DRAM wafers than other methods.  

In Chapter 3, the automated classification procedure for failure patterns on fail bit 

maps in DRAM wafers was proposed. For this, we propose the novel regularized singular 

value decomposition (RSVD), which decomposes a binary matrix X into binary eigen-

images. To decompose the matrix X, we have solved the formulation of RSVD by 

multiplicative updating procedure of RSVD. The experimental results show the proposed 

procedure has a great potential for the automatic classification of single bit failed maps 
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and non-single bit failed ones.  

In Chapter 4, we proposed a uncertain data mining methodology for classifying 

abnormal DRAM wafers. For this, we extracted the categorical features characterizing 

defect patterns of the DRAM wafers, and quantified the uncertainty of the features by 

estimating the probability distribution. We then applied Bayesian classification model to 

classify the DRAM wafers based on the extracted uncertain categorical features. To 

estimate the conditional pdf of each class by handling the uncertainty of the features, we 

proposed the new multivariate KDE. Real-life DRAM wafer maps were analyzed to 

extract uncertain features and evaluate the performance of the proposed classifier. The 

experimental results have showed that the proposed approach outperforms the existing 

classification models for uncertain data.  
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5.2 Future researches 

 

Future studies are needed that focus on improving and simplifying the proposed 

abnormality detection process of DRAM wafers. There are several parameters to be 

optimized in the detection process such as those for binarization and de-noising that may 

affect the performance of the proposed detection process. For this, we may develop the 

spatial randomness test based on the continuous spatial data. A meaningful line of 

research would be to extend spatial correlogram-based approach with the aim of 

identifying defect patterns on wafer maps. 

In addition, we have focused on extracting features that capture the failure patterns 

shown on the fail bit maps for classifying DRAM chips. Future work is needed to explore 

more advanced classifiers such as recent variants of support vector machine (SVM) and 

Bayesian relevance vector machine to improve classification accuracy, and to extend the 

proposed approach to other applications such as bioinformatics. Also, we may extend the 

kernel singular value decomposition method to capture non-linearity in FBM. 

Finally, the development of anomaly detection approach on uncertain data is also 

open for the future research aiming at detecting an abnormal DRAM wafer with an 

anomalous (i.e. unknown) defect pattern. We believe that more methodologies will bring 

improvements in this research area. 
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Appendix A. Derivation of Control Limits of Step-Down Spatial 

Randomness Test 
 

Here we derive the control limits of step-down spatial randomness test. The 

combined correlogram 𝒚𝒚𝒓𝒓(𝑘𝑘) = �𝒚𝒚𝑟𝑟
(0),𝒚𝒚𝑟𝑟

(1), … ,𝒚𝒚𝑟𝑟
(𝑘𝑘)�  is approximately normally 

distributed 𝑁𝑁(𝜽𝜽𝒓𝒓(𝑘𝑘),𝚺𝚺𝐫𝐫(𝑘𝑘))  where 𝜽𝜽𝒓𝒓(𝑖𝑖) = �𝜽𝜽𝑟𝑟
(0),𝜽𝜽𝑟𝑟

(1), … ,𝜽𝜽𝑟𝑟
(𝑘𝑘)� , and the covariance 

matrix 𝜮𝜮𝒓𝒓(𝑘𝑘) can be partitioned as 

𝜮𝜮𝒓𝒓(𝑘𝑘) = �
𝜮𝜮𝒓𝒓(1,1) . . 𝜮𝜮𝒓𝒓(1,𝑘𝑘)

. . . . . .
𝜮𝜮𝒓𝒓(𝑘𝑘,1) . . 𝜮𝜮𝒓𝒓(𝑘𝑘,𝑘𝑘)

�. 

Similarly, we can partition the sample covariance matrix 𝑺𝑺𝑟𝑟(𝑘𝑘)  of a combined 

correlogram 𝒚𝒚𝒓𝒓(𝑘𝑘) from a given DRAM wafer into 

𝑺𝑺𝒓𝒓(𝑘𝑘) = �
𝑺𝑺𝒓𝒓(1,1) . . 𝑺𝑺𝒓𝒓(1,𝑘𝑘)

. . . . . .
𝑺𝑺𝒓𝒓(𝑘𝑘,1) . . 𝑺𝑺𝒓𝒓(𝑘𝑘,𝑘𝑘)

�. 

Note that (n–1) times the sample covariance matrix 𝑺𝑺𝑟𝑟(𝑘𝑘) has a Wishart distribution 

with (𝑓𝑓 − 1) degrees of freedom, and the parameter 𝜮𝜮𝑟𝑟(𝑘𝑘), where n (≥ 𝑘𝑘 ∗ 𝑉𝑉 + 1), is the 

number of wafer samples. Then, the step-down randomness test statistic 𝑍𝑍𝑘𝑘 for  𝐻𝐻0
(𝑘𝑘) is 

defined as (Marden and Perlman, 1990) 

𝑍𝑍𝑘𝑘 =
𝑇𝑇𝑘𝑘2 –𝑇𝑇𝑘𝑘−12

1 + 𝑇𝑇𝑘𝑘−12/(𝑓𝑓 − 1)
, 
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where 𝑇𝑇𝑘𝑘2 = �
𝒚𝒚𝒓𝒓(1)

. .
𝒚𝒚𝒓𝒓(𝑘𝑘)

�

𝑻𝑻

𝑺𝑺𝒓𝒓(𝑘𝑘)−𝟏𝟏 �
𝒚𝒚𝒓𝒓(1)

. .
𝒚𝒚𝒓𝒓(𝑘𝑘)

�. 

Then, based on the result from Marden and Perlman (1980), we show that the conditional 

distribution of 𝑍𝑍𝑘𝑘  has a non-central F distribution with the noncentral parameter  

∆𝑘𝑘
1+𝑇𝑇𝑘𝑘−12/(𝑛𝑛−1)

: 

𝑍𝑍𝑘𝑘|𝑇𝑇𝑘𝑘−12~ (𝑛𝑛−1)𝑟𝑟
𝑛𝑛−𝑘𝑘𝑟𝑟

𝐹𝐹(𝑉𝑉,𝑓𝑓 − 𝑘𝑘𝑉𝑉; ∆𝑘𝑘
1+𝑇𝑇𝑘𝑘−12/(𝑛𝑛−1)

), 

where ∆𝑘𝑘 = 𝜏𝜏𝑘𝑘2 − 𝜏𝜏𝑘𝑘−12, 𝜏𝜏𝑘𝑘2 =  𝜽𝜽𝑟𝑟(𝑘𝑘)𝑇𝑇𝜮𝜮𝑟𝑟(𝑘𝑘)−1𝜽𝜽𝑟𝑟(𝑘𝑘). If ∆𝑘𝑘 = 0 (i.e., 𝜽𝜽𝑟𝑟
(𝑘𝑘) = 𝟎𝟎), then 𝑍𝑍𝑘𝑘 

and 𝑇𝑇𝑘𝑘−12 are independent. Therefore, the control limit of 𝑍𝑍𝑘𝑘 with a false-alarm rate 𝛼𝛼𝑘𝑘 

can be established as  

𝐶𝐶𝐶𝐶𝑘𝑘 =
(𝑓𝑓 − 1)𝑉𝑉
(𝑓𝑓 − 𝑘𝑘𝑉𝑉)𝐹𝐹𝛼𝛼𝑘𝑘

(𝑉𝑉,𝑓𝑓 − 𝑘𝑘𝑉𝑉). 
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Appendix B. Learning Algorithm for RSVD 
 

Here we present derivations on the multiplicative updating procedure for RSVD 

based on the gradient decent algorithm. As mentioned in Section 3.3, we need to 

minimize the following objective function; 

𝒇𝒇(𝑼𝑼,𝑺𝑺,𝑽𝑽) =
1
2
‖𝑿𝑿 − 𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻‖2 +

𝜆𝜆
2
�����𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�

2
− �𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘��

2𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

.
𝑚𝑚

𝑘𝑘=1

 

The first term in the objective function can be expressed as follows. 

 ‖𝑿𝑿 − 𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻‖2 = 𝑑𝑑𝑉𝑉[(𝑿𝑿 − 𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻)𝑻𝑻(𝑿𝑿 − 𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻)] 

= 𝑑𝑑𝑉𝑉[(𝑿𝑿𝑻𝑻𝑿𝑿 − 𝑽𝑽𝑺𝑺𝑻𝑻𝑼𝑼𝑻𝑻𝑿𝑿 − 𝑿𝑿𝑻𝑻𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻 + 𝑽𝑽𝑺𝑺𝑻𝑻𝑼𝑼𝑻𝑻𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻)]. 

 

Firstly taking derivative of the objective function w.r.t  𝑓𝑓𝑖𝑖𝑘𝑘, we have 

𝜕𝜕
𝜕𝜕𝑓𝑓𝑖𝑖𝑘𝑘

𝒇𝒇(𝑼𝑼,𝑺𝑺,𝑽𝑽) 

= (−𝑿𝑿𝑽𝑽𝑺𝑺𝑻𝑻 + 𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻𝑽𝑽𝑺𝑺𝑻𝑻)𝑖𝑖𝑘𝑘

+ 𝜆𝜆���𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�
2
− �𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�� �2�𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘� − 1��𝑠𝑠𝑘𝑘𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�

𝑛𝑛

𝑖𝑖=1

 

= −(𝑿𝑿𝑽𝑽𝑺𝑺𝑻𝑻 − 𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻𝑽𝑽𝑺𝑺𝑻𝑻)𝑖𝑖𝑘𝑘

+ 𝜆𝜆��2�𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�
3
− 3�𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�

2
+ �𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�� �𝑠𝑠𝑘𝑘𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�

𝑛𝑛

𝑖𝑖=1

. 
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For 𝑓𝑓𝑖𝑖𝑘𝑘, using gradient decent method with the step size 𝜂𝜂𝑖𝑖𝑘𝑘, we have 

𝑓𝑓𝑖𝑖𝑘𝑘 ← 𝑓𝑓𝑖𝑖𝑘𝑘 − 𝜂𝜂𝑖𝑖𝑘𝑘
𝜕𝜕𝑑𝑑
𝜕𝜕𝑓𝑓𝑖𝑖𝑘𝑘

 

= 𝑓𝑓𝑖𝑖𝑘𝑘 + 𝜂𝜂𝑖𝑖𝑘𝑘[(𝑿𝑿𝑽𝑽𝑺𝑺𝑻𝑻 − 𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻𝑽𝑽𝑺𝑺𝑻𝑻)𝑖𝑖𝑘𝑘

− 𝜆𝜆��2�𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�
3
− 3�𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�

2
+ �𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�� �𝑠𝑠𝑘𝑘𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�

𝑛𝑛

𝑖𝑖=1

]. 

By setting 𝜂𝜂𝑖𝑖𝑘𝑘 = 𝑢𝑢𝑖𝑖𝑘𝑘
(𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻𝑽𝑽𝑺𝑺)𝑖𝑖𝑘𝑘+𝜆𝜆∑ �2𝑠𝑠𝑘𝑘𝑘𝑘

4 𝑢𝑢𝑖𝑖𝑘𝑘
3 𝑣𝑣𝑗𝑗𝑘𝑘4+𝑠𝑠𝑘𝑘𝑘𝑘

2 𝑢𝑢𝑖𝑖𝑘𝑘𝑣𝑣𝑗𝑗𝑘𝑘2�𝑛𝑛
𝑗𝑗=1

, we get the following equation: 

𝑓𝑓𝑖𝑖𝑘𝑘 ← 𝑓𝑓𝑖𝑖𝑘𝑘
(𝑿𝑿𝑽𝑽𝑺𝑺𝑇𝑇)𝑖𝑖𝑘𝑘 + 3𝜆𝜆 ∑ 𝑠𝑠𝑘𝑘𝑘𝑘3 𝑓𝑓𝑖𝑖𝑘𝑘2 𝑑𝑑𝑖𝑖𝑘𝑘3𝑛𝑛

𝑖𝑖=1

(𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻𝑽𝑽𝑺𝑺𝑇𝑇)𝑖𝑖𝑘𝑘 + 𝜆𝜆∑ (2𝑠𝑠𝑘𝑘𝑘𝑘4 𝑓𝑓𝑖𝑖𝑘𝑘3 𝑑𝑑𝑖𝑖𝑘𝑘4 + 𝑠𝑠𝑘𝑘𝑘𝑘2 𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘2𝑛𝑛
𝑖𝑖=1 )

.  

 

Secondly, taking derivative of the objective function w.r.t  𝑠𝑠𝑘𝑘𝑙𝑙, we have 

𝜕𝜕
𝜕𝜕𝑠𝑠𝑘𝑘𝑙𝑙

𝒇𝒇(𝑼𝑼,𝑺𝑺,𝑽𝑽) 

= (−𝑼𝑼𝑇𝑇𝑿𝑿𝑽𝑽 + 𝑼𝑼𝑇𝑇𝑼𝑼𝑺𝑺𝑽𝑽𝑇𝑇𝑽𝑽)𝑘𝑘𝑙𝑙

+ 1(𝑘𝑘

= 𝑓𝑓)𝜆𝜆���2�𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�
3
− 3�𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�

2
+ �𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�� �𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�

𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

 

where 1(𝑘𝑘 = 𝑓𝑓) is one if k = l, and zero otherwise. 

For 𝑠𝑠𝑘𝑘𝑙𝑙, using gradient decent method with the step size 𝜌𝜌𝑘𝑘𝑙𝑙, we have 
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𝑠𝑠𝑘𝑘𝑙𝑙 ← 𝑠𝑠𝑘𝑘𝑙𝑙 − 𝜌𝜌𝑘𝑘𝑙𝑙
𝜕𝜕𝒇𝒇
𝜕𝜕𝑠𝑠𝑘𝑘𝑙𝑙

 

=  𝑠𝑠𝑘𝑘𝑙𝑙 + 𝜌𝜌𝑘𝑘𝑙𝑙[(𝑼𝑼𝑇𝑇𝑿𝑿𝑽𝑽 − 𝑼𝑼𝑇𝑇𝑼𝑼𝑺𝑺𝑽𝑽𝑇𝑇𝑽𝑽)𝑘𝑘𝑙𝑙 

−1(𝑘𝑘 = 𝑓𝑓)𝜆𝜆���2𝑠𝑠𝑘𝑘𝑘𝑘3 𝑓𝑓𝑖𝑖𝑘𝑘4 𝑑𝑑𝑖𝑖𝑘𝑘4 − 3𝑠𝑠𝑘𝑘𝑘𝑘2 𝑓𝑓𝑖𝑖𝑘𝑘3 𝑑𝑑𝑖𝑖𝑘𝑘3 + 𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘2 𝑑𝑑𝑖𝑖𝑘𝑘2 �
𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

]. 

By setting 𝜌𝜌𝑘𝑘𝑙𝑙 = 𝑠𝑠𝑘𝑘𝑘𝑘
(𝑼𝑼𝑻𝑻𝑼𝑼𝑺𝑺𝑽𝑽𝑻𝑻𝑽𝑽)𝑘𝑘𝑘𝑘+1(𝑘𝑘=𝑙𝑙)𝜆𝜆∑ ∑ �2𝑠𝑠𝑘𝑘𝑘𝑘

3 𝑢𝑢𝑖𝑖𝑘𝑘
4 𝑣𝑣𝑗𝑗𝑘𝑘

4 +𝑠𝑠𝑘𝑘𝑘𝑘𝑢𝑢𝑖𝑖𝑘𝑘
2 𝑣𝑣𝑗𝑗𝑘𝑘

2 �𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1

, we have 

𝑠𝑠𝑘𝑘𝑙𝑙 ← 𝑠𝑠𝑘𝑘𝑙𝑙
(𝑼𝑼𝑇𝑇𝑿𝑿𝑽𝑽 )𝑘𝑘𝑙𝑙 + 1(𝑘𝑘 = 𝑓𝑓)𝜆𝜆∑ ∑ 3𝑠𝑠𝑘𝑘𝑘𝑘2 𝑓𝑓𝑖𝑖𝑘𝑘3 𝑑𝑑𝑖𝑖𝑘𝑘3𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑖𝑖=1

(𝑼𝑼𝑇𝑇𝑼𝑼𝑺𝑺𝑽𝑽𝑇𝑇𝑽𝑽 )𝑘𝑘𝑙𝑙 + 1(𝑘𝑘 = 𝑓𝑓)𝜆𝜆∑ ∑ �2𝑠𝑠𝑘𝑘𝑘𝑘3 𝑓𝑓𝑖𝑖𝑘𝑘4 𝑑𝑑𝑖𝑖𝑘𝑘4 + 𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘2 𝑑𝑑𝑖𝑖𝑘𝑘2 �𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1

 

 

Finally, taking the derivative of the objective function w.r.t 𝑑𝑑𝑖𝑖𝑙𝑙 , we have 

𝜕𝜕
𝜕𝜕𝑑𝑑𝑖𝑖𝑙𝑙

𝒇𝒇(𝑼𝑼,𝑺𝑺,𝑽𝑽) 

= (−𝑿𝑿𝑇𝑇𝑼𝑼𝑺𝑺 + 𝑽𝑽𝑺𝑺𝑼𝑼𝑇𝑇𝑼𝑼𝑺𝑺)𝑖𝑖𝑙𝑙

+ 1(𝑘𝑘

= 𝑓𝑓)𝜆𝜆��2�𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�
3
− 3�𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�

2
+ �𝑠𝑠𝑘𝑘𝑘𝑘𝑓𝑓𝑖𝑖𝑘𝑘𝑑𝑑𝑖𝑖𝑘𝑘�� (𝑓𝑓𝑖𝑖𝑘𝑘𝑠𝑠𝑘𝑘𝑘𝑘)

𝑚𝑚

𝑖𝑖=1

. 

For 𝑑𝑑𝑖𝑖𝑙𝑙 , using gradient decent method with the step size 𝜉𝜉𝑖𝑖𝑙𝑙, we have 

𝑑𝑑𝑖𝑖𝑙𝑙  ←  𝑑𝑑𝑖𝑖𝑙𝑙 − 𝜉𝜉𝑖𝑖𝑙𝑙
𝜕𝜕𝒇𝒇
𝜕𝜕𝑑𝑑𝑖𝑖𝑙𝑙

 

= 𝑑𝑑𝑖𝑖𝑙𝑙 + 𝜉𝜉𝑖𝑖𝑙𝑙[(𝑿𝑿𝑇𝑇𝑼𝑼𝑺𝑺 − 𝑽𝑽𝑺𝑺𝑼𝑼𝑇𝑇𝑼𝑼𝑺𝑺)𝑖𝑖𝑙𝑙 
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−1(𝑘𝑘 = 𝑓𝑓)𝜆𝜆��2𝑠𝑠𝑘𝑘𝑘𝑘4 𝑓𝑓𝑖𝑖𝑘𝑘4 𝑑𝑑𝑖𝑖𝑘𝑘3 − 3𝑠𝑠𝑘𝑘𝑘𝑘3 𝑓𝑓𝑖𝑖𝑘𝑘3 𝑑𝑑𝑖𝑖𝑘𝑘2 + 𝑠𝑠𝑘𝑘𝑘𝑘2 𝑓𝑓𝑖𝑖𝑘𝑘2 𝑑𝑑𝑖𝑖𝑘𝑘�
𝑚𝑚

𝑖𝑖=1

]. 

Setting 𝜉𝜉𝑖𝑖𝑙𝑙 = 𝑣𝑣𝑗𝑗𝑘𝑘
(𝑽𝑽𝑺𝑺𝑼𝑼𝑇𝑇𝑼𝑼𝑺𝑺)𝑗𝑗𝑘𝑘+1(𝑘𝑘=𝑙𝑙)𝜆𝜆∑ �2𝑠𝑠𝑘𝑘𝑘𝑘

4 𝑢𝑢𝑖𝑖𝑘𝑘
4 𝑣𝑣𝑗𝑗𝑘𝑘

3 +𝑠𝑠𝑘𝑘𝑘𝑘
2 𝑢𝑢𝑖𝑖𝑘𝑘

2 𝑣𝑣𝑗𝑗𝑘𝑘�𝑚𝑚
𝑖𝑖=1

, we have 

𝑑𝑑𝑖𝑖𝑙𝑙 ← 𝑑𝑑𝑖𝑖𝑙𝑙
(𝑿𝑿𝑇𝑇𝑼𝑼𝑺𝑺)𝑖𝑖𝑙𝑙 + 1(𝑘𝑘 = 𝑓𝑓)𝜆𝜆∑ 3𝑠𝑠𝑘𝑘𝑘𝑘3 𝑓𝑓𝑖𝑖𝑘𝑘3 𝑑𝑑𝑖𝑖𝑘𝑘2𝑚𝑚

𝑖𝑖=1

(𝑽𝑽𝑺𝑺𝑼𝑼𝑇𝑇𝑼𝑼𝑺𝑺)𝑖𝑖𝑙𝑙 + 1(𝑘𝑘 = 𝑓𝑓)𝜆𝜆∑ �2𝑠𝑠𝑘𝑘𝑘𝑘4 𝑓𝑓𝑖𝑖𝑘𝑘4 𝑑𝑑𝑖𝑖𝑘𝑘3 + 𝑠𝑠𝑘𝑘𝑘𝑘2 𝑓𝑓𝑖𝑖𝑘𝑘2 𝑑𝑑𝑖𝑖𝑘𝑘�𝑚𝑚
𝑖𝑖=1

. 
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