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Lord’s Wald test for differential item functioning (DIF) has not been extensively 

studied particularly in the context of multidimensional IRT (MIRT) framework. Lord’s 

Wald test was implemented using two estimation approaches in the MIRT framework: 

Marginal maximum likelihood (MML) estimation based on expectation maximization 

(EM) algorithm and the Bayesian Markov chain Monte Carlo (MCMC) estimation based 

on Metropolis-Hastings algorithm. This study investigated the recovery of item 

parameters, the Type I error, and the power of Lord’s Wald tests obtained from the two 

estimation approaches under various simulation conditions, including DIF type 

differences, DIF magnitude differences, test length differences, and different 

combinations of sample sizes. Item responses were generated under multidimensional 

two-parameter logistic and three-parameter logistic models. Specific concerns for 

designing DIF detection conditions in MIRT framework were outlined based on the 

literature review on unidimensional and multidimensional DIF methods. The relative 
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performances of the two estimation methods compared and summarized under the 

simulation conditions considered in this study. Furthermore, English usage data were 

used to illustrate the use of Lord’s Wald test with the two estimation approaches. Finally, 

the summary and implications of the results, the limitations of the present study, and 

directions for further studies were discussed. 
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CHAPTER 1  

INTRODUCTION 

 In the educational and psychological measurement literature, the term differential 

item functioning (DIF) was created to define concerns about item bias within the context 

of test bias. DIF is present when persons from one group have different probabilities of 

answering an item correctly compared to persons from other groups after conditioning on 

the same ability level (Lord, 1977). Detecting DIF is an essential step in enhancing the 

validity of tests and can be a crucial step in establishing the fairness and validity of high-

stakes tests that determine achievement, certification, and licensure. Over the years, DIF 

detection has been widely used in the context of the item response theory (IRT) model 

approach (e.g., Clauser & Mazor, 1998; Finch & French, 2007; Kim & Cohen, 1995; 

Oshima & Morris, 2008; Woods, Cai, & Wang, 2013) and compared to observed-score 

approaches (e.g., Finch, 2005; Finch & French, 2007). Observed-score approaches 

require fewer assumptions and are relatively easier of implement than IRT approaches. 

However, the results of the observed-score approaches might be sample-specific and 

therefore insufficient for ensuring measurement invariance (Budgell, Raju, & Quartetti, 

1995; Hulin, Drasgow, & Parsons, 1983).  

IRT approaches have been typically used within the unidimensional IRT (UIRT) 

framework. However, most educational and psychological tests are usually designed to 

measure subskills. These tests, such as the uniform certified public accountant (CPA) 

examination with four subtest areas (American Institute of CPAs®, 2015), the Graduate 

Record Examinations® (GRE®) general test (Educational Testing Service®, 2015), and the 

Standardized test (SAT® ) Reasoning test (The College Board, 2015), consist of several 
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subsets of items that measure multiple domains. Consequently, the assumption of 

unidimensionality may not be true in practice (Ackerman, Gierl, & Walker, 2003; Snow 

& Oshima, 2009). In other words, when a test contains more than one target subscale or 

different groups of items measure distinctly different latent skills, unidimensional IRT 

models may not be applied correctly and can lead to erroneous results. Therefore, DIF in 

multidimensional tests must be examined with multidimensional DIF analyses (Snow & 

Oshima, 2009; Wang, Wilson, & Adams, 1997).  

1.1 Differential Item Functioning  

Since DIF analyses were first carried out in response to public concern that 

cognitive ability tests in 1960s discriminated against minority examinees (Angoff, 1993), 

over the past five decades, extensive psychometric research involving DIF has been 

conducted. The goal of DIF analyses is to detect irrelevant items on a test and then edit or 

eliminate them from the final test set (Angoff, 1993). In general, DIF is examined by 

comparing item responses for two groups of examinees, usually labeled the reference 

group and the focal group. In most applications, these groups represent types of 

examinees based on demographic characteristics such as gender or race (Finch & French, 

2007). There are two characteristically different forms of DIF: uniform DIF and 

nonuniform DIF (Mellenberg, 1982). Uniform DIF occurs when item characteristic 

curves (ICCs) for two groups differ only in terms of the difficulty parameter. The relative 

advantage for one group is uniform in relation to the other group across the score scale. 

Nonuniform DIF exists when the ICCs for the two groups differ in the discrimination 

parameters and/or pseudo-guessing parameter with or without a difference in the 



3 
 

 

difficulty parameter (Clauser & Mazor, 1998). Therefore, the two ICCs can cross each 

other. In this study, both types of DIF are considered.   

1.2 DIF Detection Methods  

Various methods for detecting DIF have been introduced in the literature. These 

methods include the Mantel-Haenszel procedure (MH; Holland & Thayer, 1988; Mantel, 

1963; Mantel & Haenszel, 1959; Penfield, 2001), logistic regression (Swaminathan & 

Rogers, 1990), proportion difference measures (Dorans & Kulick, 1983, 1986; Dorans & 

Schmitt, 1991), the simultaneous item bias test (SIBTEST; Bolt & Stout, 1996; Shealy & 

Stout, 1993), Lord’s Wald test (Lord, 1980), area methods (Raju, 1988, 1990; Raju, van 

der Linden, & Fleer, 1995), the IRT likelihood ratio test (IRT-LR; Thissen, Steinberg, & 

Wainer, 1993), differential functioning of items and tests (DFIT; Raju et al., 1992, 1995), 

and simple area indices (Hambleton & Rogers, 1989; Rudner, 1977; Rudner, Getson, & 

Knight, 1980).  

Among these DIF detection approaches, the IRT-LR test (also known as the 2

difference test), which always involves the comparison of two models, a compact model 

and an augmented model (Judd & McClelland, 1989), is more flexible than other DIF 

methods (Teresi, Kleinman, & Ocepek-Welikson, 2000; Thissen et al., 1993; Wainer, 

1995). However, the IRT-LR DIF detection approach has several disadvantages: the 

painstaking model refittings and intensive computational time. As addressed by Millsap 

and Everson (1993), a set of unbiased anchor items must be accessible before the IRT-LR 

test is implemented. If the test is conducted with biased anchor items without 

prescreening, the results can be misleading. Furthermore, a dearth of reliable software for 
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performing the required computation is a disadvantage of the IRT-LR test since 

computing the likelihood requires multiple-group concurrent estimates.  

Although Lord’s Wald test for detecting DIF is asymptotically comparable to the 

IRT-LR test and computationally less intensive, the Wald test has not been considered a 

viable methodological algorithm for detecting DIF in almost a decade (Woods et al., 

2013) because of two major shortcomings: severe Type I error inflation (Donoghue & 

Isham, 1998; Kim, Cohen, & Kim, 1994; Lim & Drasgow, 1990; McLaughlin & 

Drasgow, 1987) and inaccuracy in estimating the covariance matrix (Donoghue & Isham, 

1998; Kim et al., 1994; McLaughlin & Drasgow, 1987). However, Lord’s Wald test was 

recently improved (Cai, 2012; Cai, Thissen, & du Toit, 2011; Langer, 2008) to overcome 

these shortcomings.  

1.3 Motivation of the Study 

To date, several studies have been reported on DIF detection using Lord’s 
2  test 

(Lord, 1977, 1980), also referred as the Wald test or Lord’s Wald test in IRT approaches 

(Cohen & Kim, 1993; Kim & Cohen, 1995; Kim et al., 1994; Kim, Cohen, & Park, 1995; 

Langer, 2008; Lim & Drasgow, 1990; McLaughlin & Drasgow, 1987; Woods et al., 2013; 

Yao & Li, 2010). In the past decade, particularly in the context of the multidimensional 

IRT (MIRT) framework, the performance of Lord’s Wald (1943) test has not been 

extensively studied. Only a few studies have been published on the MIRT DIF detection 

method (Bolt & Johnson, 2009; Yao & Li, 2010). Bolt and Johnson (2009) used a 

multidimensional nominal response model (NRM; Bock, 1972). The aim of the study was 

not to explore dichotomously scored data for DIF detection but, utilizing ordered rating 

scale data from other factors that might be a potential cause of DIF, to investigate 
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response-style effects. Yao and Li (2010), however, used a Markov chain Monte Carlo 

(MCMC) algorithm to estimate item parameters for studying DIF in the MIRT context. 

Lord’s Wald test was compared to Raju’s volume test (a variant of Raju’s area measures 

[Raju, 1988]). Yao and Li (2010) found that Raju’s volume test had lower Type I error 

rates than Lord’s Wald test, whereas Lord’s Wald test had lower Type II error rates, and 

thus higher power than Raju’s volume test. Yao and Li did not discuss how to correct the 

uncontrolled Type I error in the Wald test.  

A newly developed (yet to be evaluated within the context of MIRT) Lord’s Wald 

test, the improved Lord’s Wald test (Cai, 2012; Cai et al., 2011), was evaluated for DIF 

detection in this study. Woods et al. (2013) evaluated the improved version of Lord’s 

Wald test not under the MIRT framework but under the unidimensional IRT framework. 

The primary purpose of the DIF analysis proposed by Woods et al. (2013) was to 

investigate the strengths and weaknesses of the Wald-1 test (one-stage; Cai et al., 2011), 

which requires anchor items be indicated by the researcher, in relation to the Wald-2 test 

(two-stage; Langer, 2008), which does not require anchor items in the unidimensional 

IRT framework. At the same time, the improved Lord’s Wald test (Wald-1 and Wald-2) 

was compared to the IRT-LR test, which requires concurrent calibration of the item 

parameters.  

If tests are multidimensional, the multidimensional extension of the improved 

Lord’s Wald test would be expected to be much better suited for studying DIF 

diagnostically than the improved Lord’s Wald test under the unidimensional IRT 

framework. In addition, this study will shed light on the direct comparison of the 

marginal maximum likelihood (MML) and MCMC estimation methods regarding the 
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performance of Lord’s Wald test in the MIRT framework. Notwithstanding the popularity 

of using MCMC to estimate parameters, the comparison of MCMC estimation using the 

Metropolis-Hastings algorithm (Bayesian approach) and MML estimation using an 

expectation maximization (EM or the supplementary EM [SEM; Cai, 2008; Meng & 

Rubin, 1991]) algorithm has never been implemented in terms of DIF detection 

especially in the MIRT framework. Previous results using MML estimation and marginal 

Bayes estimation (MBE; Mislevy, 1986) methods for two-parameter logistics (2PL) 

showed that both methods provided more accuracy and less inflation of Type I error rates 

than joint maximum likelihood (JML; as implemented in LOGIST [Wood, Wingersky, & 

Lord, 1976]) estimation for Lord’s Wald test (Cohen & Kim, 1993; Lim & Drasgow, 

1990). Kim et al. (1994) indicated that results for the applicability of Lord’s Wald test for 

the three-parameter logistic (3PL) model were lacking in MML estimation and MBE 

(Millsap & Everson, 1993). To address this concern and different from previous studies 

(e.g., Cohen & Kim, 1993; Kim & Cohen, 1995; Kim et al., 1994; Langer, 2008; Lim & 

Drasgow, 1990; Woods et al., 2013; Yao & Li, 2010) of DIF detection methods, the 

unique contribution of the present study is the evaluation of the improved Lord’s Wald 

test based on MML estimation for DIF detection and the comparison to Lord’s Wald test 

based on the MCMC algorithm of the Bayesian approach under the MIRT framework. 

The advantages and disadvantages of using each estimation method was investigated. 

Exploring a more effective estimation method for detecting DIF under the various DIF 

conditions of multidimensional IRT-based Lord’s Wald test is meaningful.  

 

 



7 
 

 

1.4 Objective of the Study 

The current procedures for detecting DIF using Lord’s Wald test fall short in 

several ways. The two most salient are that the latent trait or ability of interest is limited 

to the unidimensional context, and there is no direct comparison of item parameter 

estimation methods in the extant literature. This study delineates how comparable and 

reasonable the MML and MCMC approaches are under various DIF conditions in the 

context of the MIRT framework.  

The primary purpose of this study is to evaluate the improved Lord’s Wald test 

using a MML estimation approach for detecting DIF in an underlying multidimensional 

framework and to compare it to Lord’s Wald test using the Bayesian MCMC estimation 

approach. In contrast to other previous DIF detection studies (e.g., Langer, 2008; Woods 

et al., 2013; Yao & Li, 2010) that focus on a single estimation method, this study used 

two estimation approaches for detecting DIF in an MIRT model. 

For multidimensional estimation, a compensatory multidimensional two-

parameter logistic (M-2PL) model and a multidimensional three-parameter logistic (M-

3PL) model (both models are explained in the multidimensional IRT models section, 

Section 2.4) were used to estimate the item parameters for the Wald test. Four simulation 

factors for evaluating DIF were investigated, including (a) DIF types, (b) DIF magnitudes, 

(c) test lengths, and (d) sample sizes for the reference and focal groups. Despite the 

promising findings from previous MIRT DIF studies, research comparing two estimation 

methods for detecting DIF in a multidimensional framework remains somewhat limited 

in terms of various factors. That is also why the current study considered four specifically 

chosen factors to make direct comparisons with the previous studies. For instance, 
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numerous studies (e.g., Narayanan & Swaminathan, 1996; Oshima, Raju, & Flowers, 

1997) have shown that larger samples and bigger magnitudes of DIF are easier to identify; 

however, in this study, the results were checked with various simulation conditions, 

which are implemented under the MIRT framework. Finally, many studies have 

investigated the effects of sample size on DIF detection. Researchers have consistently 

shown higher power in detecting DIF in the IRT approach with large samples (e.g., 

Rogers & Swaminathan, 1993; Swaminathan & Gifford, 1986; Swaminathan, Hambleton, 

Sireci, Xing, & Rizavi, 2003). A Monte Carlo simulation was conducted to examine three 

evaluation criteria: the recovery of model parameters, Type I error, and the power of two 

DIF detection estimation methods with the manipulated factors.  

 Relevant research questions on the performance of two estimation approaches for 

DIF detection in terms of the three evaluation criteria are as follows:  

(a) How differently were the recoveries under the Bayesian MCMC and MML 

 estimation methods affected by the manipulated factors?  

(b) How differently did the Bayesian MCMC and MML estimation methods 

 perform in terms of Type I error rates for Lord’s Wald test under different 

 simulation conditions?  

(c) How differently did the Bayesian MCMC and MML estimation methods 

 perform in terms of the power rates of Lord’s Wald test under different simulation 

 conditions?  

(d) How differently did the M-2PL and M-3PL models perform in terms of the 

 recovery of item parameters, Type I error rates, and power rates?  
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The present study investigated how each factor influenced the DIF detection results of the 

two estimation approaches under M-2PL and M-3PL. 
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CHAPTER 2 

LITERATURE REVIEW 

 This chapter is organized as follows: The first section provides an overview of the 

theoretical background of unidimensional DIF models. The second section reviews the 

literature on Lord’s Wald test in the unidimensional DIF application. The third section 

presents a thorough review of multidimensional DIF methods, with a comparison of 

model specifications, strengths, weaknesses, and potential problems in their use. The 

fourth section presents different multidimensional IRT models. The fifth section reviews 

Lord’s Wald test in multidimensional IRT models. Finally, the last section explores three 

estimation methods, JML, MML, and MCMC, in terms of DIF studies. 

2.1 Unidimensional DIF Methods 

Methods for detecting DIF can be categorized within two major approaches: (1) 

observed-score approaches and (2) latent variable/item response theory (IRT) approaches 

(Millsap & Everson, 1993). The approaches share an assumption: The DIF items have 

been matched on the same dimension as the matching variable. That is, DIF implies that 

after controlling for the ability levels on the same dimension of interest, the effects of 

group difference on item responses still exist. The two approaches differ fundamentally 

in that the observed-score approaches use observed scores (i.e., total scores) as the 

matching variable, whereas the IRT approaches use ability parameter estimates as a 

function of observed data. This distinction determines how DIF is defined and measured.  

There are two types of procedures if one needs to categorize DIF detection 

methods in terms of whether they use a mathematical model: (a) parametric and (b) 
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nonparametric procedures. Parametric procedures use a functional form (i.e., a 

mathematical model) for the specified relationship between the item score and the 

matching variable, whereas nonparametric procedures do not use a functional form. The 

dichotomous classification scheme is similar to the distinction between observed-score 

and IRT approaches, but it is not always clear-cut (Potenza & Dorans, 1995; Scheuneman 

& Bleistein, 1989; Wainer, 1993). The main advantage of parametric procedures is that 

parameter estimates resulting from parametric procedures have practical information and 

can provide insight into how an item or test could be revised. One problem in parametric 

procedures is the introduction of colinearity in standard errors (SEs), as clearly discussed 

in previous literature (Lord, 1980; Potenza & Dorans, 1995; Ramsay, 1991; Thissen & 

Wainer, 1982). That is, very high SEs of the parameter estimates can arise when an item 

has large sampling covariance among item parameter estimates. For instance, Thissen 

and Wainer (1982) showed that the error of estimation of the guessing parameter in the 

3PL model was strongly related to the error of estimation of the difficulty parameter, and 

thus, the guessing parameter and the difficulty parameters were poorly estimated. 

The major advantage of nonparametric procedures is that the procedures do not 

require item parameter estimation. Therefore, detecting DIF by comparing item or test 

scores can be done directly from examinee responses, thus avoiding difficulties during 

the item parameter estimation process (Raju & Ellis, 2002). Nonparametric procedures 

avoid parametric procedure-related problems such as matching variable and colinearity 

(Lopez, 2012). However, in contrast to parametric procedures, nonparametric procedures 

provide little information that may result in the potential causes of DIF, whereas 

parametric procedures provide a wealth of information (Lopez, 2012). Consequently, 
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parametric DIF detection procedures are often preferred; however, the information 

handled by parametric and nonparametric DIF detection procedures differs and remains 

clear (Drasgow & Hulin, 1990; Hulin et al., 1983; Lopez, 2012; Stark, Chernyshenko, & 

Drasgow, 2006). Two distinctions of matching variable and two classifications of DIF 

procedures can be crossed and applied in the context of dichotomous DIF methods as 

shown in Table 2.1 (Potenza & Dorans, 1995).  

Table 2.1  

 

Classification of Dichotomous DIF Procedures according to Parametric or 

Nonparametric 

 

Type of procedure and matching 

variable 
Parametric Nonparametric 

Observed Score Logistic regression 
MH 

STD 

IRT 

IRT-LR 

SIBTEST 

Raju’s Area Measures 

Lord’s Wald 

Latent class logistic 

regression 

 

 2.1.1 Observed-score Approach. Observed-score approaches provide techniques 

as alternatives to IRT approaches. Several observed-score approaches for detecting DIF 

on dichotomously scored items have been introduced in the literature (Holland & Wainer, 

1993; Scheuneman & Bleistein, 1989; Zumbo, Liu, Wu, Shear, Astivia, & Ark, 2015). 

Three widely used observed-score approaches are the MH procedure (Holland & Thayer, 

1988; Mantel & Haenszel, 1959), standardization of difference measures (STD; Dorans 

& Kulick, 1983, 1986; Dorans & Schmitt, 1991), and logistic regression (Swaminathan & 
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Rogers, 1990). These three procedures are observed-score approaches because a common 

definition of null hypothesis DIF on the item level is shared and an observed score 

measure of the test construct of interest is used as a matching variable (Potenza & 

Dorans, 1995).  

 A major drawback of the observed-score approach is in the matching variable 

(Holland & Thayer, 1988; Swaminathan & Rogers, 1990; Zwick, 1990). In general, total 

scores are used as the matching variable to ensure comparability between the reference 

and focal groups. Millsap and Everson (1993) suggested that when many items are 

biased, the observed-score approaches tend to result in bias in the total score used for 

matching examinees. Van der Flier, Mellenbergh, Ader, and Wijn (1984) proposed an 

iterative approach that can improve DIF detection results. Removing biased items from 

the total score should alleviate the problem of bias in the matching variable. Another 

issue of the matching variable is that Type I error may be inflated when the observed 

score is not a sufficient/adequate measure of the underlying ability (Meredith & Millsap, 

1992; Zwick, 1990).  

 Mantel-Haenszel (MH). Among the nonparametric DIF detection methods that 

have been widely introduced and investigated, the MH method is probably the most 

commonly used observed-score approach. The MH method uses a series of 2 x 2 

contingency tables. Holland and Thayer (1988) used it for DIF detection and investigated 

group differences on a dichotomously scored test. The MH method is an extension of the 

2 test and compares the performance of individuals between two groups (the reference 

and focal groups) after conditioning on a matching test score, which serves as an 

alternative for the latent trait measured by the instrument. The null hypothesis of the DIF 



14 
 

 

definition for the MH method is based on the assumption of a common odds ratio; the 

odds are compared for responding to an item correctly in the focal and reference groups. 

The null hypothesis is that the odds are independent of group membership for different 

score levels on the observed score (i.e., total score).  

The MH method has two strong disadvantages in practice, including the matching 

variable problem (Holland & Thayer, 1988; Swaminathan & Rogers, 1993; Zwick, 1990) 

and sensitivity in detecting uniform or nonuniform bias (Holland & Thayer, 1988; 

Millsap & Everson, 1993). The first problem concerns the matching variable (i.e., total 

score) as a substitute for the latent trait. Several theoretical studies (Meredith & Millsap, 

1992; Millsap & Meredith, 1992; Zwick, 1990) have shown that when complex IRT 

models were used to generate the item responses, the MH method tends to indicate DIF 

when there is no DIF present. This becomes more serious on short tests (e.g., fewer than 

20 items) than on longer tests (Millsap & Everson, 1993). Additionally, IRT methods, 

particularly those that use MML estimation, have been shown to outperform the MH 

method for detecting DIF on short tests. IRT methods that use MML estimation can be 

applied to tests with as few as 10 to 20 items, whereas the MH method may not be 

appropriate for very short tests (Bock, 1993). Several studies have confirmed these results 

(Donoghue, Holland, & Thayer, 1993; Millsap & Everson, 1993); for example, when the 

total number of items is fewer than 20 on a test, the MH method has been shown to 

produce inflated Type I error rates.   

Potenza and Dorans (1995) commented that the MH method is occasionally 

viewed as a parametric procedure because it measures the amount of DIF under the 

constant odds-ratio model as a particular type of violation of null DIF across all score 
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levels. Thus, the MH method is frequently referred to as a uniform DIF model. Rogers 

and Swaminathan (1993) compared the performance of logistic regression and MH 

methods for detecting DIF. The authors described that the MH method was not as 

powerful as the logistic regression method in detecting nonuniform DIF. The problem is 

more significant in practical settings. At times, applying different DIF techniques 

identifies different items as displaying DIF. As a result, the MH method is not typically 

designed for detecting nonuniform DIF (Clauser & Mazor, 1998). 

The MH method has a major advantage in terms of the required sample size 

(Mazor, Clauser, & Hambleton, 1991; Spray, 1989). According to Clauser and Mazor 

(1998), this method has been shown to be effective when the sample was reasonably 

small (e.g., 200 for each group). The MH method is highly efficient in terms of statistical 

power and computational requirements (Clauser & Mazor, 1998). Thus, this method has 

been utilized extensively as an evaluation DIF detection method (Clauser & Mazor, 1998; 

Millsap & Everson, 1993; Thissen, 2001).  

 Standardization (STD). The STD for DIF detection method was introduced by 

Dorans and Kulick (1983, 1986). The MH and STD procedures are similar: The total 

score is used as the matching variable, and the 2 x 2 base data contingency table are 

utilized in MH and STD procedures to correctly interpret the proportions (Dorans, 1989; 

Dorans & Holland, 1992; Potenza & Dorans, 1995). According to Dorans (1989), 

however, the two procedures may differ meaningfully in terms of how they operate on 

the 2 x 2 contingency table to compare the performance of two groups of examinees. For 

example, the STD focuses on differences in proportion correct at each score level k, 
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whereas the MH uses the odds ratios to compare the base (reference) group to the focal 

group.  

 In contrast to the MH method, the STD method focuses on the difference 

percentage (proportion) correct at each score level s, sD , which is calculated with the 

following: 

                                                            ,s Fs RsD P P                                                       (1) 

                                                   ; ,Fs Fs Fs Rs Rs RsP R N P R N                                          (2) 

where FsP  is the proportions correct of the studied item for the focal group, and RsP  is the 

percent correct of the studied item for the reference group at score level s, respectively. 

Referred to as the standardized p differences, the STD p-DIF is the average overall index 

of DIF obtained by Dorans and Holland (1993) and expressed as follows:  

                                               STD p-DIF 
1 1

( ) / ,
S S

s Fs Rs s

s s

K P P K
 

                                 (3)                 

where /s sK K is the weighting factor at each score level s. The set of weights used for 

standardization depends on the purposes of the investigation. Some possible options are 

the following: 

 s TsK N , the number of people at s in the total group; 

 s RsK N , the number of people at s in the reference group; 

 s FsK N , the number of people at s in the focal group; or 

 sK  the relative number of people in some standard reference group.  

  Typically, s FsK N  has been used because it provides the greatest weight to 

differences in FsP and RsP  at the score levels most frequently obtained by the focal group 



17 
 

 

of the study. The following are interpretation guidelines for STD p-DIF to evaluate the 

DIF effect size:  

 Type A items. 0 ≤ | STD p-DIF| ≤ .05: Items with negligible or nonsignificant DIF. 

           Type B items. .05 ≤ | STD p-DIF| ≤ .10: Items with moderate DIF or significant  

  DIF. 

 Type C items. | STD p-DIF| > .10: Items with large DIF or significant DIF. 

Dorans and Kulick (1986) observed that absolute values above .10 are unusual and 

should be inspected carefully. 

 Logistic Regression. Swaminathan and Rogers (1990) introduced parametric 

method for DIF detection based on logistic regression in which a parametric procedure 

uses an observed-score matching variable, as shown in Table 2.1. The logistic regression 

method for detecting DIF has become widespread since Swaminathan and Rogers (1990) 

applied it to dichotomous scored items (Monahan, McHorney, Stump, & Perkins, 2007). 

Several advantages of the logistic regression method are that it can be adapted for use 

with a wide variety of models such as extension to multiple examinee groups and 

polytomous item scores (Millsap & Everson, 1993). According to Swaminathan and 

Rogers’s (1990) results, when logistic regression was compared to the MH method for 

detecting uniform and nonuniform DIF under various sample sizes and test lengths, 

logistic regression was equally powerful under most conditions of uniform DIF and was 

superior to the MH method under nonuniform DIF conditions. Additionally, the estimates 

of the regression coefficients produced by the logistic regression model may be very 

useful for locating DIF in the plot (Miller, Spray, & Wilson, 1992). A disadvantage is 

that the distributions of the test statistics are usually obscure and, thus, require 
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computationally intensive resampling methods to obtain critical values for hypothesis 

testing. In a simulation study, Swaminathan and Rogers (1990) found that the logistic 

regression test was three or four times more time-intensive than the MH statistic.   

The logistic regression method can be estimated using the logit of endorsing the 

item and can be displayed as:  

                                              
0 1 2 3log

1

P
x g xg

P
   

 
    

 
,                                   (4) 

 

 where P is the conditional proportion of examinees who endorse an item. 0  is the 

intercept parameter of the model and 1  is a parameter for the total score, x. 2  is the 

group indicator as a dummy variable, g, for group (1 = reference, 0 = focal), and 3  is a 

parameter for the interaction term, xg, between the total score and group membership. 

When 2  is nonzero, the item has uniform DIF whereas, when 3 is zero, the item has 

nonuniform DIF. 

 2.1.2 Item Response Theory (IRT) Approach. Although applications of 

observed-score approaches require few assumptions and are relatively easy to implement, 

the results may be sample-specific and, thus, inadequate for ensuring measurement 

invariance (Budgell, Raju, & Quartetti, 1995; Hulin et al., 1983). IRT approaches propose 

a latent trait or ability, usually denoted , that underlies the item responses and shares the 

use of the estimate of the latent trait as a matching variable rather than the observed 

score. These approaches often provide an advantage over observed-score approaches due 

to the ability to differentiate group mean differences on the latent trait (i.e., impact) from 

actual DIF. The limitation of IRT approaches was highlighted by Clauser and Mazor 

(1998), who specified that the data must meet the strong assumption of unidimensionality 
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of the models. Furthermore, a well-known drawback of IRT approaches indicated by 

Swaminathan and Rogers (1990) is that IRT approaches are very sensitive to sample size 

and model fit. According to Clauser and Mazor (1998), IRT approaches require large 

samples for accurately estimating the model parameters, especially when 2PL or 3PL 

models are used.  

In practical applications that use the IRT approach, one of the most common 

models is the 3PL model, often used for responses to multiple-choice items in educational 

research, which assumes that the probability that an examinee with ability value   will 

respond correctly to item j is  

                                             
1.7 ( )

1
(U 1 , , , )

1 j i j

j

ij i j j j j a b

g
P a b g g

e



 


  


,                         (5) 

where (U 1 , , , )ij i j j jP a b g  is the probability of an examinee i with ability i  

responding correctly, 
ja  is the item discrimination of the item, 

jb is the difficulty of the 

item, and 
jg  is the lower asymptote, or pseudo-guessing parameter of the item. This 

discrimination and difficulty form of the 3PL model are used for computational ease; 

however, the literature often uses a intercept parameter, d rather than the difficulty 

parameter (b), and the relationship between b and d is b = d/a, if a negative intercept is 

modeled (i.e., *a d   ). When the pseudo-guessing value is set to zero, the 3PL model 

becomes the 2PL model. The item and ability parameters are estimated from the 

examinees’ responses to a set of items. Among the many DIF detection methods in the 

context of unidimensional IRT models, four methods have been extensively studied and 

widely applied in the literature for evaluating DIF: Raju’s (1988) area measures, the 

differential functioning of items and tests (DFIT; Raju et al., 1992, 1995), the likelihood 
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ratio test (IRT-LR, Thissen, Steinberg, & Gerrard, 1986; Thissen et al., 1988, 1993), and 

Lord’s Wald test (Lord, 1980). Last, a new method, latent class logistic regression from 

Zumbo’s third-generation DIF, will be discussed (Zumbo et al., 2015).  

 Raju’s Area Measures. A wide variety of parametric DIF detection methods are 

available; however, among them, two main methods have been introduced in the context 

of IRT approaches. One is Lord’s Wald test (which will be discussed later in this section), 

and the other is Raju’s area measures. The area measures focus on comparing IRFs from 

the focal and reference groups of examinees by measuring areas between them over a 

selected interval on the   scale (Raju, 1988, 1990; Raju et al., 1995). Several studies 

have indicated that two methods produce similar results, especially when sufficiently 

large samples are involved and the test length is appropriately long (Cohen & Kim, 1993; 

Kim & Cohen, 1995; Raju, Drasgow, & Slinde, 1993; Shepard et al., 1981; Shepard et al., 

1984, 1985). Let ( )RP  and ( )FP  define the IRFs on the DIF item for the reference and 

focal groups, and the area measure is calculated as 

                                                         ( ) ( )s R FA f P P   ,                                              (6) 

with   located in the interval  ,L US   where L and U indicate the lower and upper 

bounds, respectively. There are various choices for selecting the function f and the 

interval boundaries: (1) absolute, unsigned, or signed differences, (2) bounded or 

unbounded in the interval S, (3) continuous integration or discrete approximation is 

utilized in f, and (4) the differences in f are equally weighted or differentially weighted. 

According to Raju (1988) and Camilli and Shepard (1994), the signed and unsigned areas 

can be defined as closed-form formulas:  
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                                     Signed Area (SA) [ ( ) ( )]kl R FSA P P d  




   ,                         (7)          

                                   Unsigned Area (UA) ( ) ( )kl R FUA P P d  




   .                      (8) 

In the SA and UA cases, the smaller the area, the lower the DIF values (Camilli & 

Shepard, 1994).  

Several disadvantages of area measures exist. One problem is that their values 

depend on the endpoints of the selected interval: This choice is arbitrary to some extent. 

Choosing between the lower and upper of the selected interval (bounded and unbounded) 

area measures remains imprecise (Millsap & Everson, 1993). Thus, a disadvantage of the 

unbounded measures is that they are infinite when there are group differences in the 

guessing parameter in the 3PL model. Another disadvantage is that distributions of the 

test statistics in the area measure method are commonly unidentified, and thus, 

computationally intensive resampling is required to attain critical values for hypothesis 

testing (Lopez, 2012).   

 Differential Functioning of Items and Tests (DFIT). Raju et al. (1995) 

introduced a new method for detecting DFIT. This method is also an IRT-based approach 

and has the advantage of providing richer information, by using the differential test 

functioning (DTF) index in addition to the item DIF indices. Two types of DIF indices 

were developed in the DFIT framework: noncompensatory DIF (NCDIF) and 

compensatory DIF (CDIF) (Oshima & Morris, 2008). As a DIF index in the context of 

DFIT framework, NCDIF can be defined as the average squared distance between the 

item characteristic functions for the focal and reference groups. In the use of the 

dichotomous IRT model, the difference in item probabilities for item j (
jd ) is explained 
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as the difference in the probability of a correct response on item j for a given ability level 

( )  for examinee s between the focal and reference groups,  

                                                    ( ) ( ) ( )j s jF s jR sd P P    ,                                             (9) 

                                                    2( )j F j sNCDIF E d     ,                                             (10) 

where FE represents the expectation postulated on the   distribution from the focal 

group. In the notation for NCDIF, taking the square of the difference is critical, and thus, 

differences in opposite directions will not cancel DIF. NCDIF, therefore, detects uniform 

and nonuniform DIF. Raju et al. (1995) developed CDIF, which relates item- and test-

level differential functioning in a very simple relationship. DTF can be calculated as two 

scores for each examinee based on ability level ( ) : sFT for the F group and sRT  for the R 

group. DTF can be calculated as: 

                                           
2 2

1

(T T ) ( )
n

F sR sF F js

j

DTF E E d


 
    

 
                                 (11) 

CDIF can be expressed by considering the covariance, ( , )jCov d D , and the mean,  . 

( , )jCov d D is the covariance between 
jd  and the difference between the two true scores 

(D). CDIF is defined as  

                                        ( ) ( , )
jj F j j d DCDIF E d D Cov d D     ,                               (12) 

According to Oshima and Morris (2008), a major advantage of the DFIT analysis is that it 

tests at the DIF and DTF levels. NCDIF is similar to DTF, except that the two total 

characteristic function curves are matched.  

 IRT Likelihood Ratio Test (IRT-LR). Thissen et al. (1988) mentioned that the 

IRT-LR test is preferable for theoretical reasons to other DIF detection under IRT 
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approaches such as Lord’s Wald test and Raju’s area measures in terms of computational 

brevity. These other methods require computing the variance and covariance matrices of 

item parameter estimates precisely from the second derivatives on the likelihood, which 

often impedes progress. In comparison, the IRT-LR test is not as computationally 

demanding (Kim & Cohen, 1995). Three main advantages of using the IRT-LR test can 

be summarized as follows: First, it does not require a linking process to transform item 

parameter estimates on common matrices across focal and reference groups because of 

the simultaneous item parameter estimation in each group when concurrent calibration is 

available. Second, the IRT-LR test, in comparison with Lord’s Wald test, requires only 

the log likelihood values for two models being compared, which, in this case, is easier to 

compute (Thissen et al., 1988). Third, the IRT-LR test can be extended to polytomous 

data to evaluate DIF detection and is an effective method for detecting uniform and 

nonuniform DIF and DTF (Lopez, 2012). 

 The IRT-LR test can be obtained by comparing 2 values between two nested 

models: a compact model (C) and an augmented model (A). In this procedure, the null 

hypothesis, 0 : CH  can be rejected, in favor of the alternative, using the likelihood ratio 

test. The test statistic is 

                                                        2 ( )
( ) 2ln

( )

L A
G df

L C

 
   

 
.                                           (13) 

 Where, ( )L A is the maximum likelihood for model A and ( )L C is the maximum 

likelihood for model C. The IRT-LR test statistic follows a large-sample 2 distribution 

with df equal to the difference in the number of parameters between the two models 

(Thissen et al., 1993).  
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 Lord’s Wald test. Lord’s Wald test (1977, 1980) is generally used in the 

unidimensional IRT framework for detecting DIF by comparing vectors of IRT 

parameters between the focal group and the reference group. Initially, Lord proposed the 

evaluation of DIF for the location (difficulty) parameters only: 

                                                   

ˆ ˆ

ˆ ˆ( ) ( )

j j

j j

F R

j

F R

b b
Z

Var b Var b





,                                          (14) 

where ˆ
jFb and ˆ

jRb are the maximum likelihood estimates of the parameter 
jb for each 

focal group and reference group, and  ˆ
jFVar b and  ˆ

jRVar b are the corresponding 

estimates of the sampling variance of ˆ
jFb and ˆ

jRb , respectively. For example, to test a 

single parameter, b, the difference between the estimated bs across groups is compared to 

its SE; 

                                                  ( ) ( ) ( )F R F RSE b b Var b Var b   .                              (15) 

2Z  is a chi-square distributed with df  = 1 for large samples. Lord (1980) extended this 

test to a generalized test of the joint difference between the vectors of discrimination and 

difficulty parameters across focal and reference groups. The test statistics, 2 is  

                                                              
2 1

j j j  'v v ,                                              (16) 

for the 2PL model, where 
'

jv  is ˆ ˆˆ ˆ[ , ],
j j j jF R F Ra a b b  and let  

1 define the 

corresponding variance-covariance matrix. For large samples, the 2

i test statistic follows 

a chi-square distribution with df = 2. In general, the df are the number of parameters per 

item j, which is being tested for DIF. The null hypothesis of no DIF to be tested for the 

2PL is: 
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                                                           0 : ,
j j j jF R F RH a a b b   .                                       (17) 

A common finding of the comparison between Lord’s Wald test and other IRT 

approaches in many studies that use the 2PL or 3PL model (Langer, 2008; McCauley & 

Mendoza, 1985; Shepard, Camilli, & Averill, 1981; Shepard, Camilli, & Williams, 1984, 

1985; Thissen et al., 1988; Woods et al., 2013; Yao & Li, 2010) is that the performance 

of the Wald statistic is closely related to that of unsigned area indexes proposed by Raju 

(1988) and Camilli and Shepard (1994). Lord (1980) advised that using the 3PL model 

and MML estimation methods with prior distributions on the guessing parameter, g, may 

allow wider use of the chi-square test.  

Lord’s Wald test has been criticized because the null hypothesis may be rejected 

even when there is a small difference in the area between two IRFs (Millsap & Everson, 

1993). However, Lord’s Wald test and Raju’s area measures (unbounded area measures) 

offer the benefit of mathematical tractability, which use SEs and a formal hypothesis test 

(Millsap & Everson, 1993). Millsap and Everson (1993) explained that the best approach 

may be achieved by adding the calculation of a bounded area measure to the Wald 

statistic when the chi-square test is significant. 

 Using the improved version of the Wald test (Cai, 2012; Cai et al., 2011; Woods 

et al., 2013), the covariance matrix can be estimated accurately, and when the constant 

latent scale has been held, the concurrent calibration of item parameter estimation for the 

focal group is allowed. The improved version of Lord’s Wald test can calibrate all 

parameters concurrently, whereas Lord’s original test used separate calibration for item 

parameters (Woods et al., 2013). The improved version of the Wald test that requires 

anchor items by user is referred to as the Wald-1 test, and the improved version of the 
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Wald test that does not require anchor items is referred to as the Wald-2 test to avoid 

labeling confusion. In this study, only the Wald-1 test was used to detect DIF using the 

MML estimation method. 

 Latent Class Logistic Regression. Recently, a novel methodology of item 

response, latent class logistic regression, was introduced (Zumbo et al., 2015). Several 

essential differences should be emphasized in contrasting the MH and/or logistic 

regression, previous IRT-based models, and multidimensional models under DIF 

frameworks (Zumbo, 2007a). Zumbo et al. (2015) noted that compared to the first 

framework (MH and/or logistic regression) and the second framework (IRT-based 

models), the latent class logistic regression model, as highlighted in third-generation DIF 

methodology, focuses on latent variable mixture models, whereas the other two 

frameworks focused on manifest grouping variables (e.g., gender, ethnicity, or language 

of the test) are used for flagging potentially problematic items (Zumbo, 2007a). In the 

latent class logistic regression, the question of whether important grouping variables as 

potential causes of DIF were not easily directly observed is addressed (Zumbo et al., 

2015). As an extension of widely used logistic regression DIF methods, but unlike the 

traditional logistic regression model that has parameters that account only for 

relationships between observed variables, the latent class logistic regression model can 

include one or more discrete latent variables. As an extension of the IRT DIF methods, 

but unlike the conventional IRT methods that were indicated by the continuous latent 

variable, the latent class logistic regression model allows latent classes to be indicated by 

discrete latent variables (Zumbo et al., 2015). Thus, binary, ordinal, and nominal logistic 
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regression and therefore any of these item response types, or combination in testing can 

be carried out with the latent class logistic regression model (Zumbo et al., 2015).   

2.2 Previous Research on Lord’s Wald Test in Unidimensional IRT Models  

DIF can be an indicator of irrelevant variance that can affect test scores, and thus, 

gathering evidence of test score validity is an essential step (Finch & French, 2007). 

Various studies have evaluated and improved the accuracy of detecting DIF methods 

using several DIF methods in the context of the unidimensional framework. However, the 

present study is concerned only with Lord’s Wald test using the MML and MCMC 

estimation methods.  

McLaughlin and Drasgow (1987) evaluated the performance of the Wald test 

using two sample sizes (N = 250 and 1,000) under 3PL and 2PL. For both models with 

the two sample sizes, the Type I error rates when the person ability was known were 

below the expected nominal alpha levels of .0005, .001, .005, .01, .05, and .10. According 

to McLaughlin and Drasgow (1987), the Type I error rates tended to be inflated when 

both item and person parameters were estimated at the same time. 

Lim and Drasgow (1990) evaluated the effectiveness of two estimation methods 

(i.e., MML and Bayes modal estimation) compared to the JLM estimation method using 

the Wald test with unidimensional and multidimensional data under the 2PL. 

Unidimensional data were generated with 2PL, and the multidimensional data were 

generated using Schmid and Leiman’s (1957) hierarchical factor analysis model (Lim & 

Drasgow, 1990). Additional description and technical details of the Schmid-Leiman 

model for generating multidimensional data were given in the Drasgow and Parsons 

(1983) and Lim and Drasgow (1990) studies. The Lord’s Wald test statistic was used a 
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chi-square distribution with 2 df for unidimensional and multidimensional datasets. 

Results from the study indicated that the MML and Bayes modal estimation methods 

provided parameter estimates that were more accurate and less inflated Type I error rates 

than JLM. In a large sample (N = 750), the MML and Bayes modal estimation methods 

had very similar SEs, except for items with large discrimination and extreme difficulty, in 

which case the SEs of MML were larger than those of Bayes modal estimation method. 

One interesting finding was that these patterns were observed regardless of the 

dimensionality of the data. In general, the MML and Bayes modal estimation methods 

produced similar results: higher power rates of flagging DIF with larger samples. Again, 

however, the dimensionality of the data had only a negligible influence on the power 

rates.      

Cohen and Kim (1993) examined the effectiveness of two Raju’s area measures 

(the Z test for exact signed area and the Z test for exact unsigned area), the IRT-LR test, 

and Lord’s Wald test for different test length, sample size, proportion of DIF items, and 

item parameter estimation conditions using 2PL. Item and person ability parameters were 

estimated using MML estimation and MBE. They reported that the Type I error rates in 

DIF detection tended to be lower for Lord’s Wald test and Raju’s area measures than 

those for the IRT-LR test. 

Kim et al. (1994) proposed the use of Lord’s Wald test to evaluate 2PL, 3PL, and 

3PL with a fixed guessing parameter using MML and MBE methods via a simulation 

study and a real data analysis. As Kim et al. (1994) noted, the Type I error rates for 3PL 

consistently exceeded the expected nominal alpha values of 0.05 and 0.10. For the 3PL 

model with a fixed guessing parameter and for the 2PL model, the Type I error rates were 



29 
 

 

consistently below the expected nominal alpha value. Results supported that Type I error 

rates for the 3PL with a fixed guessing parameter and 2PL models were within the 

expected nominal alpha values with a larger sample (N = 1,000). Although these results 

were more apparent in MML than in MBE, the differences between MML estimation and 

MBE were negligible.  

Kim and Cohen (1995) analyzed three commonly used IRT procedures for 

detecting DIF using 2PL under unidimensional IRT: Lord’s Wald test, Raju’s two area 

measures (signed and unsigned), and the IRT-LR test in terms of practical considerations 

such as linking metrics and scale purification. An iterative procedure was described for 

the IRT-LR test 
2

jG  to purify the anchor items. The data were also examined using MH 

2

j  and Pearson’s
2

jK . Results of the comparisons suggested agreement among the 

iterative procedures and noniterative procedures. The agreement with iterative procedures 

such as Lord’s Wald test, Raju’s area measures, and the IRT-LR test on flagging DIF 

items was slightly higher for the final iteration results than for the first iteration. For 

noniterative procedures such as MH 
2

j  and Pearson’s
2

jK , the agreement was generally 

higher for the first iteration results. Using Lord’s Wald and Raju’s area measures, the 

Type I error rates for both DIF methods tended to be within the expected nominal alpha 

value 0.05.  

Kim et al. (1995) presented a DIF detection method for the multiple-group 

condition. The multiple pairwise comparisons statistic for DIF detection used in this 

study is closely related to Lord’s Wald test and can be used to estimate item parameter in 

two groups. The two important aspects of this study are as follows: (a) a method for DIF 

detection in multiple groups was presented; (b) the method from (a) is the generalized 
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Lord’s Wald test statistic introduced in this paper. Typically, a DIF study is conducted in 

two groups, but a practical situation may arise among several groups. The extension of 

the error variance-covariance matrix used in the generalized Lord’s Wald test to the M-

2PL and M-3PL models (which will be illustrated in Lord’s Wald test in the 

multidimensional IRT models section later) was introduced. Three groups consisting of 

the reference group and two focal groups were used.  Two hundred examinees for each 

group (for the reference and the two focal groups) were selected from real data and used 

with the 2PL, MML estimation. Kim et al. (1995) reported that differences between 

Lord’s Wald test and the pairwise statistic occurred because of differences in the linking 

coefficients. 

Recently, Lord’s Wald test (Wald-2) was enhanced and reexamined by Langer 

(2008). The Wald-2 test performed well in terms of power and Type I error rates using 

the 3PL model. Item parameters were estimated using MML estimation. All three 

parameters (a, b, and g) have been investigated. As a result, the simulation condition of a 

large sample (e.g., 1,000) per group for a long test length (e.g., 40 items) showed the 

Type I errors were significantly less than or close to the nominal value (i.e., 0.05). Langer 

(2008) found that these results support the hypothesis that the prior on the g parameter 

induces close to zero Type I error rates for the guessing parameter in DIF detection, 

leading the Wald test to be conservative. The results also showed that after the prior on 

the g is removed, the alpha rates appeared to improve and close to the nominal value as 

the sample size increased. Moreover, the results confirmed that shifting the b parameter 

in detecting DIF has a greater effect in terms of power rates than reducing or increasing 

the a parameter in DIF detection (Langer, 2008). 
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Woods et al. (2013) examined the performance of the Wald test in DIF detection 

for multiple groups (e.g., two or three groups) under the unidimensional IRT framework 

using the 2PL model and Samejima’s (1997) graded response model. Equal sample sizes 

(1,000 and 500) for all groups and unequal sample sizes (1,500/500 and 750/250) for two 

groups and (1,500/500/500 and 750/250/250) three groups were used with the 24 five-

category ordinal item test. Woods et al.’s (2013) results showed that the Type I error rates 

for Wald-1 were lower than those of Wald-2. Wald-1 is recommended because of the 

controlled Type I error rates and greater power rates regardless of the sample sizes. When 

the Wald-1 test was compared to the IRT-LR test, the Wald-1 was preferred because the 

Type I error rates of Wald-1 were within the expected nominal alpha values (0.05) for all 

groups. The power of the IRT-LR test was similar to that of Wald-1; however, Wald-1 

provided higher power in the unequal sample sizes. The Wald-1 test showed equal to or 

greater power in detecting DIF compared to the IRT-LR test.          

2.3 Multidimensional DIF Methods 

Although development in IRT has promoted predominantly unidimensional IRT 

DIF studies as a method for efficiently detecting DIF, the unidimensional IRT DIF 

studies provide insufficient information for utilizing DIF detection in the context of 

multidimensional IRT. Several MIRT DIF detection methods evolved from 

unidimensional IRT DIF detection methods. DIF detection methods in the context of the 

multidimensional framework can be either parametric or nonparametric approaches in the 

same manner as unidimensional DIF detection methods. Stout, Li, Nandakumar, and Bolt 

developed multidimensional SIBTEST (MULTISIB; 1997) as a nonparametric approach, 

which was an extension of the unidimensional SIBTEST methodology to two-
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dimensional data. Although MULTISIB has been suggested as a very effective 

methodology for identifying DIF items, it is limited because two primary dimensions 

seem to be the maximum that can be applied to the data.  

Only a handful of studies have detected DIF with the multidimensional IRT 

framework. Oshima et al. (1997) extended the DFIT method from Raju et al. (1995) to 

the multidimensional DIF analysis using dichotomous data. Their DIF analysis was 

designed for multidimensional data structures, and the multidimensional DFIT could 

identify DIF correctly only after a linking process (Snow & Oshima, 2009). That is, 

multidimensional linking was required to adjust the location differences as well as the 

variance and covariance differences in ability dimensions for the groups being compared 

(Oshima et al., 1997; Suh & Cho, 2014). During this linking process, errors related to the 

linking process were likely to emerge in detecting DIF (Shepard et al., 1984). Using M-

2PL, Oshima and her colleagues (1997) simulated two-dimensional data with known 

DTF and DIF. After the appropriate linking, the results showed DIF was identified 

correctly in various conditions, including when the distributions of  differed for the 

reference and focal groups.   

The IRT-LR test (also known as a chi-square difference test) benefited from 

avoiding a linking process because the item parameter estimation can be calibrated 

simultaneously. The IRT-LR test of DIF and global DIF (GDIF) detection at the test level 

in the context of MIRT, as an extension of unidimensional IRT, was investigated 

extensively by Suh and Cho (2014). The simulation study examined the performance of 

the LR tests obtained from limited information estimation methods (i.e., robust weighted 

least square estimators; RWLS) implemented in Mplus 6 (Muthén & Muthén, 2010). To 
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estimate the MIRT parameter, two RWLS estimators were used: (1) weighted least 

square with adjusted means and variance [WLSMV] and (2) weighted least square with 

adjusted means [WLSM]. Two sample sizes (N = 500 and 1,000) were used with the 40-

item test under three DIF conditions, (1) non-DIF, (2) uniform DIF, and (3) nonuniform 

DIF, and under three GDIF conditions, (1) non-GDIF, (2) unidirectional GDIF, and (3) 

balanced-directional GDIF conditions. These DIF and GDIF conditions were used to 

investigate the Type I error rates and rejection rates of the chi-square difference tests. The 

results from Suh and Cho’s (2014) study showed that for the chi-square tests for detecting 

GDIF, WLSM tended to produce inflated Type I error rates for small-sample conditions, 

while WLSMV appeared to yield lower error rates than the expected value on average. In 

addition, WLSM produced higher rejection rates than WLSMV. For the χ2 tests for 

detecting DIF, WLSMV tended to yield somewhat higher rejection rates than WLSM. 

The error rates for both estimators were close to the expected value on average. The 

reasonable conclusion was found in the results that the power rates increased as the 

sample size increased, consistent with previous research (e.g., Kim & Yoon, 2001; Suh & 

Bolt, 2011).  

Yao and Li (2010) proposed a DIF detection procedure to identify only items that 

have adverse DIF1 (Douglas, Roussos, & Stout, 1996) using real and simulated data in 

the MIRT framework. In that regard, Lord’s Wald test was compared with Raju’s volume 

test in the context of a two-dimensional IRT DIF study. Using their procedure, benign 

                                                           
1 Adverse DIF (Bolt & Stout, 1996; Douglas et al., 1996) occurs when the nuisance dimension (which is 

clearly extraneous to the construct intended to measure) diminishes test fairness and can be eliminated by 

removing or by revising the item. 



34 
 

 

DIF2 (Douglas et al., 1996) items are not supposed to be detected. Dichotomously scored 

items and polytomously scored items were analyzed with the M-3PL model and a 

multidimensional version of the partial credit model, respectively, with 3,000 examinees 

for each group. Six DIF items were included separately in 16-, 26-, and 36-item tests. Six 

DIF conditions were considered: (1) non-DIF, (2) benign DIF only, (3) adverse uniform 

DIF only (UNIF), (4) adverse nonuniform DIF only (NONUNIF), (5) benign DIF with 

adverse uniform DIF (UNIFBOTH), and (6) benign DIF with adverse nonuniform DIF 

(NONUNIFBOTH). The Type I error rates of Lord’s Wald test were zero for all 

conditions. For Lord’s Wald test and Raju’s volume test, UNIFBOTH and 

NONUNIFBOTH showed higher Type II error rates than UNIF and NONUNIF. For 

Lord’s Wald test, in general, the Type II error rates were not influenced by the test length 

and the correlation between the two dimensions for the UNIF and NONUNIF conditions. 

However, Type II error rates tended to decrease as the test length increased, and the 

correlation increased for UNIFBOTH and NONUNIFBOTH conditions. In summary, 

they found that Raju’s volume test was preferred although Lord’s Wald test and Raju’s 

volume test provided comparable results. However, the problem associated with the 

volume test is that the uncertainty of the cutoff values for Raju’s volume test, which 

makes the volume test less convenient. The cutoff values rely on the discrimination and 

intercept parameter values, ability distributions, and null condition, and thus vary.  

2.4 Multidimensional IRT Models 

The primary assumption of the IRT model is that the underlying latent ability 

measured is unidimensional. However, when this assumption is not met, the estimation of 

                                                           
2 Benign DIF (Bolt & Stout, 1996; Douglas et al., 1996) is the DIF caused by the auxiliary (secondary) 

dimension. Benign DIF occurs when the secondary dimension does not contribute to the test unfairness.  
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item parameters and examinee abilities may be detrimentally affected (Ansley & Forsyth, 

1985; Camilli, Wang, & Fesq, 1995; Finch, 2010, 2011; Reckase, 1985; Reckase, 

Carlson, Ackerman, & Spray, 1986). Moreover, most educational and psychological tests 

in practical settings are somewhat multidimensional (Bolt & Lall, 2003; Zhang & Stone, 

2008). MIRT models reflect the interaction between examinees and test items more 

thoroughly than UIRT models (Zhang & Stone, 2008); MIRT models provide subscale 

scores and diagnostic value for the examinees (Wainer, Vera, Camacho, Reeve, Nelson, 

et al., 2001). When a more informative test is required, the test is more likely to be 

multidimensional (Yao & Li, 2010).  

When a multidimensional model was chosen to analyze multidimensional data in 

which items measure multiple latent abilities, a clear distinction was frequently drawn 

between two types of multidimensional models: compensatory and noncompensatory 

MIRT models (Ackerman, 1989; Embretson & Reise, 2000; Way, Ansley, & Forsyth, 

1988). In compensatory MIRT models, the latent abilities interact, and thus, a deficiency 

in one ability can be compensated for by other abilities. In the noncompensatory MIRT 

model, in contrast, sufficient levels of each measured latent ability are necessary, and a 

deficiency in one ability cannot be offset through an increase in others (Bolt & Lall, 

2003). Compensatory MIRT models often assume that the probability of responding to an 

item correctly is influenced by a weighted linear combination of latent abilities 

(McDonald, 1997; Reckase, 1997b). In addition, estimation software is available for 

compensatory MIRT models in exploratory and confirmatory applications. In contrast, 

estimating noncompensatory MIRT models is challenging in exploratory situations. The 

practitioner may select a MIRT model for a multidimensional test based on prior 
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knowledge about the item response, so that the description of the ability interaction best 

suits the data.  

When a multidimensional test is evaluated, two multidimensional tests are 

categorized by measuring unintended-to-be-defined or intended-to-be-defined latent 

traits: the multidimensional between-item test and the multidimensional within-item test 

(Oshima et al., 1997; Wang et al., 1995, 1997). According to Wang et al. (1995,1997), 

the multidimensional between-item test is a test such as high-stakes licensure tests that 

measure multiple subsets of skills (latent traits), whereas the multidimensional within-

item test contains items that require compound multiple skills (latent traits), such as test 

items for two-dimensional data to measure two intended-to-be-defined skills (latent traits), 

1  and 2  throughout the test (e.g., Oshima et al., 1997; Snow & Oshima, 2009).  

Although several compensatory and noncompensatory models exist, this study 

utilizes two popular IRT models: the compensatory multidimensional extensions of the 

two-parameter logistic (M-2PL; Embretson & Reise, 2000) model and the compensatory 

M-3PL (Reckase, 1997) model with the multidimensional within-item test. The M-2PL 

model is given by 

                         ( 1 , , ) ,
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where ( 1 , , )ij j ji
P U d θ a is the probability of an examinee i answering item j correctly 

with ability iθ .  In Equation 18, 
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can be the expansion of the exponent, e. The expression of the exponent denotes a linear 
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function of θwith the intercept parameter, the d parameter, and the elements of slope 

parameters, the a vector.   

 In the real test situation, it is natural for examinees to guess the response item 

correctly especially on objective tests such as multiple-choice items. When guessing is 

present and following the notation of the M-2PL model in Equation 18, the M-3PL model 

can be expressed as: 

                                    ( 1 , , ) (1 ) ,
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where 
jg  is the pseudo-guessing parameter for item j. 

2.5 Lord’s Wald Test in Multidimensional IRT Models 

 Lord’s Wald test (Lord, 1977, 1980) has been widely used for unidimensional 

IRT-based methods for detecting DIF in practice. The unidimensional IRT-based 

methods compare item parameter estimates from different groups. A generalized Lord’s 

Wald test statistic was introduced by Kim et al. (1995), and using discrimination and 

intercept parameters for the M-2PL model, the statistic is adjusted as follows:  

                                                                             
2 1ˆ ˆ  'v v ,                                                            (20) 

where 
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ˆ ˆˆ ˆ ˆ ˆ ˆ[ , , ]f r f r f ra a a a d d   v   represents the vector differences for all item 

parameters between the reference and focal groups, and 
1 is the error variance-

covariance matrix. 
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where 
F is the focal group’s error variance-covariance matrix and 

R is the 

reference group’s error variance-covariance matrix. For example, the error variance-

covariance matrix for the focal group under M-2PL is written below:  
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The 
2  statistic follows a 

2  distribution with M +1 degrees of freedom (i.e., df = 3) for 

the null hypothesis of no DIF for M-2PL: 
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 The generalized Lord’s Wald test using discrimination, intercept, and guessing 

parameters for the M-3PL model can be expressed as: 
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where 
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ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , , , ]f r f r f r f ra a a a d d g g    v is the vector of differences for all item 

parameters between the focal and reference groups. The notation for the error variance-

covariance matrix in Equation 21 are the same as for M-2PL. However, the error 

variance-covariance matrix is different from M-2PL, for example, for the focal group,   
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The 
2  statistic follows a 

2  distribution with M +2 degrees of freedom (i.e., df = 4) 

under the null hypothesis of no DIF for M-3PL: 
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2.6 Estimation Methods 

In the current study, the Wald-1 test by Cai et al. (2011) was investigated using 

flexMIRT (Cai, 2012) for detecting DIF in the MIRT framework and compared with 

Lord’s Wald test using BMIRT (Yao, 2003, 2010) via a Monte Carlo study. The Wald-1 

test from flexMIRT is carried out with the SEM algorithm under the MML estimation 

approach. In contrast, Lord’s Wald test from BMIRT is obtained from the MCMC 

(Gamerman, 1997) algorithm under the Bayesian approach. McLaughlin and Drasgow 

(1987) found that JML estimation resulted in inflated Type I error rates for item and 

ability parameters. Yao and Boughton (2005b, 2007) reported the MCMC estimation 

method was empirically comparable to and better than the ML estimation method in 

estimating multidimensional item and ability parameters, and found that the performance 

of the MCMC parameter estimation was better than that of the ML parameter estimation. 

Following are brief summaries of three estimation methods, JML, MML, and MCMC, in 

terms of DIF studies.  

 2.6.1 Joint Maximum Likelihood Estimation. In Lord’s (1977, 1980) work on 

the Wald test for evaluating DIF, SE estimates obtained with the joint maximum 

likelihood implemented in LOGIST (Wood et al., 1976) were calculated with   as a 

fixed latent variable. According to McLaughlin and Drasgow (1987), SE estimates from 

JML are not precise in the modern sense of the  concept as a latent random variable. In a 

simulation study, McLaughlin and Drasgow (1987) found that inaccurate SE could lead 

to seriously inflated Type I error rates at least 10 times higher than the nominal  level. 

When the performance of the MML item parameter estimation was compared to that of 

JML, Drasgow (1989) observed the MML estimation was superior. Lim and Drasgow 
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(1990) noted that although many IRT approaches in DIF studies have used JML, it can 

lead to incorrect and misleading results. For example, the average biases in item 

parameters for JML estimation were much larger than when the MML estimation method 

was used. Thus, utilizing the MML estimation method has become the accepted method 

for implementing Lord’s Wald test for detecting DIF (Drasgow, 1989; Langer, 2008).    

 2.6.2 Marginal Maximum Likelihood Estimation. According to McLaughlin 

and Drasgow (1987), the MML estimation method is distinguished from JML estimation 

method because the item parameters are not estimated simultaneously with ability 

parameters. The Wald-1 test is expected to improve on Lord’s (1980) original test 

because the covariance matrix is estimated using the SEM algorithm (Langer, 2008). This 

is mainly because the SEM algorithm is designed as a strategy for calculating the 

information matrix used for estimating the SEs of the item parameter estimates, whereas 

an EM algorithm is used for estimating parameters (Woods et al., 2013). Consequently, 

undesirable SE estimates, which are the fundamental problem with Lord’s original test 

for detecting DIF, can be circumvented by utilizing the SEM algorithm. Calculating SEs 

is not straightforward with EM algorithms because the full parameter information matrix 

is not a by-product of the estimation as it is with non-EM maximum likelihood estimation 

(Cai, 2008). Based on the SEM algorithm, Wald-1 and Wald-2 link the metric across 

groups simultaneously with item parameter estimation and DIF testing and should 

therefore improve on ad hoc linking. Wald-1 and Wald-2 can be implemented in 

flexMIRT and use SEM estimation for the covariance matrix.  
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 2.6.3 Bayesian Markov Chain Monte Carlo Estimation. In the MIRT context, 

parameter estimation can be challenging due to the number of additional parameters, 

compared to the unidimensional case. The item and person parameters are estimated 

using the Metropolis-Hasting algorithm that samples from the joint posterior probability. 

The Metropolis-Hastings algorithm is a general term for Markov chain simulation 

methods and has been useful for selecting samples from appropriate distributions. When 

the Markov chain is applied in IRT, point estimates of the model parameters are often 

selected as the means of the marginal posterior distributions (Bolt & Lall, 2003).  

MCMC methods provide much potential for estimating complex statistical models 

(Gilks, Richardson, & Spiegelhalter, 1996) and have received increasing attention in IRT 

(Albert, 1992; Baker, 1998; Béguin & Glas, 2001; Bolt & Lall, 2003; Kim, 2001; Pats & 

Junker, 1999a, 1999b; Wollack, Bolt, Cohen, & Lee, 2002). Glas and Meijer (2003) 

remarked that Bayesian estimates are not better than those produced by the MML 

estimation, but the Bayesian MCMC approach can be used when the complexity of the 

model renders finding the derivatives difficult if not impossible. Using Bayesian 

estimation methods, the tendency of ML estimates to shift beyond a reasonable range of 

values is avoidable (Mislevy, 1986). Moreover, Mislevy (1986) found that when small 

samples (e.g., usually fewer than 500) or short tests (e.g., the number of test items is 

fewer than 20) are used, an estimation method such as MBE is recommended. Thus, 

under such conditions, the selection of estimation method may play a part in detecting 

DIF using Lord’s Wald test (Kim et al., 1994). A Bayesian formulation of MIRT is 

implemented in BMIRT (Yao, 2003) and uses the MCMC method to estimate the M-2PL 

and M-3PL models.   
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CHAPTER 3 

METHODOLOGY 

A simulation study was conducted to investigate the performance of Lord’s Wald 

test for detecting DIF in terms of the comparison of two estimation methods, MML and 

MCMC, in the multidimensional IRT framework. This was necessary since comparisons 

of estimation methods with Lord’s Wald test for DIF detection using a multidimensional 

framework are rare. In this chapter, the simulation design, DIF conditions, evaluation 

criteria, and empirical distributions of the 
2 statistics are explained. 

3.1 Simulation Design 

The simplest two-dimensional MIRT model in terms of the number of dimensions 

was considered in the simulation study. Using the compensatory multidimensional M-

2PL model in Equation 18, the 24-item test and the 46-item test data were generated. The 

performance of the DIF detection methods is influenced by major factors such as test 

length, sample size, DIF magnitude, and the number of DIF items in the test (Mazor, 

Clauser, & Hambleton, 1991; Rogers & Swaminathan, 1993; Swaminathan & Rogers, 

1990). Four factors that were of primary interest in the study and were important in 

practice were manipulated: (a) DIF type, (b) DIF magnitude, (c) test length, and (d) 

sample size differences for the reference group and the focal group.  

For the first factor, DIF type, three conditions were considered: non-DIF, uniform 

DIF, and nonuniform DIF. The non-DIF condition occurs when the data are generated 

without DIF items. The uniform DIF condition occurs when data are generated with 

uniform DIF items. When one group is advantaged consistently over the other group 

across all levels of ability, DIF is in the uniform type. The nonuniform DIF condition 
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occurs when data are generated with nonuniform DIF items. When one group is 

advantaged over the other group to a different degree at different locations on the ability 

scales, nonuniform DIF occurs. In other words, the nonuniform DIF condition is defined 

as a difference in the a parameters ( 1a  and/or 2a ) between the focal and reference groups 

along with or without a difference in the intercept, the d parameter. Various combinations 

of uniform DIF and nonuniform DIF can be found in the previous literature (e.g., Oshima 

et al., 1997; Suh & Cho, 2014; Swaminathan & Rogers, 1990).  

For the second factor, DIF magnitude, two different combinations of DIF were 

considered under a uniform DIF condition (low and medium) and a nonuniform DIF 

condition (low and medium). In this study, two levels of DIF magnitude similar to 

Oshima et al.’s study (1997) were chosen: (1) low (
1

0.25
jFa  ,

2
0.25

jFa   or

2
0.3

jFa  , 0.25
jFd  ) and (2) medium (

1
0.5

jFa  ,
2

0.5
jFa   or

2
0.6

jFa  ,

0.5
jFd  ). There were two DIF conditions in the uniform DIF and eight DIF conditions 

in the nonuniform DIF for each DIF magnitude. Table 3.1 summarizes the simulation 

factors in the study. 

The third factor was test length. Test length has been manipulated in many DIF 

simulation studies (e.g., French & Maller, 2007; Jodoin & Gierl, 2001; Narayanan & 

Swaminathan, 1996; Paek & Wilson, 2011; Rogers & Swaminathan, 1993; Woods, 2009; 

Yao & Li, 2010). Previous study results have shown that statistical power increased as 

test length increased (Narayanan & Swaminathan, 1996). Lim and Drasgow (1990) used 

a 20-item test, and Snow and Oshima (2009) selected a 40-item test. Swaminathan and 

Rogers (1990) used three test lengths (40, 60, and 80) to detect DIF in logistic regression 

and MH procedures. Kim et al. (1994) investigated Lord’s Wald test for DIF with a 50-
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item test. Kim and Cohen (1995) used data based on a 28-item test. Wang and Ye (2003) 

used a 25-item test, Zhang (2012) used 30 and 46 items, and Woods (2009) selected 24 

and 48 items in the simulation study. In this study, 24 and 46 items were chosen. 

The fourth factor considered four combinations of sample sizes. Considerable 

attention to sample size and its effect on item parameter estimates has been devoted to 

develop IRT models in numerous previous studies (e.g., Allen & Donoghue, 1996; 

Goodman, Willse, Allen, & Klaric, 2011; Swaminathan & Gifford, 1986; Swaminathan et 

al., 2003) and thus to applying MIRT models for investigating DIF detection (e.g., 

Oshima et al., 1997). Three balanced sample designs and one unbalanced sample design 

were simulated: (a) reference and focal groups of 1,000 examinees (R1,000/F1,000), (b) 

reference and focal groups of 3,000 examinees (R3,000/F3,000), (c) reference and focal 

groups of 5,000 examinees (R5,000/F5,000), and (d) a reference group of 4,000 

examinees and a focal group of 2,000 examinees (R4,000/F2,000). The total number of 

examinees in the focal and reference groups was 2,000 for the small, 6,000 for the 

medium, and 10,000 for the large sample. A medium sample of 6,000 was used to make a 

comparison between the M-2PL and M-3PL models using MML and MCMC. Two 

dimensions (abilities) were generated from a bivariate normal distributions with means of 

0, variances of 1 for both dimensions, and the correlation between the two dimensions of 

0 for both groups across all simulation conditions. The number of replications was 100 

for each condition. In addition to all four factors, the performance of the M-3PL model 

was examined with influential conditions (e.g., bias and RMSE of item parameters) using 

MML and MCMC for comparison with the M-2PL analysis.   
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Table 3.1  

 

Summary of the Simulation Study Factors 

 

Factors 

in the Study 
Details 

1. 

DIF 

Type 

 Non-DIF n/a 

 Uniform 

DIF 

Low 

 Medium 

 Nonuniform 

DIF 

Low 

 Medium 

2. 

DIF 

Size 

  Number of items with DIF    d 

Uniform 

DIF 

Low 
4 DIF 

n/a n/a 0.25
jFd   

8 DIF 

Med 
4 DIF  

n/a n/a 0.5
j

Fd   
8 DIF  

Nonuniform 

DIF 

Low 

4 DIF  
1

0.25
jFa   n/a 0.25

jFd   
8 DIF  

4 DIF  
1

0.25
jFa   

2
0.25

jFa   0.25
jFd   

8 DIF  

4 DIF  
n/a 

2
0.3

jFa   0.25
jFd   

8 DIF  

4 DIF  
n/a 

2
0.3

jFa   n/a 
8 DIF  

Med 

4 DIF  
1

0.5
jFa   n/a 0.5

jFd   
8 DIF  

4 DIF  
1

0.5
jFa   

2
0.5

jFa   0.5
jFd   

8 DIF  

4 DIF  
n/a 

2
0.6

jFa   0.5
jFd   

8 DIF  

4 DIF  
n/a 

2
0.6

jFa   n/a 
8 DIF  

1a 2a
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3. 

Test 

Length 

 Total Item Number of DIF Items (Proportion of DIF Items) 

 24 4 (.167) 8 (.333) 

 46 4 (.086) 8 (.174) 

4. 

Sample          

Size 

 

Balanced 

 

  

  

 Unbalanced  

1,000, 1,000R FN N 

3,000, 3,000R FN N 

5,000, 5,000R FN N 

4,000, 2,000R FN N 
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3.2 DIF Test Conditions  

To assess the performance of Lord’s Wald test for detecting DIF, 24-item and 46-

item test data sets were generated under four conditions: (a) 20 anchor items with four 

DIF items, (b) 16 anchor items with eight DIF items, (c) 42 anchor items with four DIF 

items, and (d) 38 anchor items with eight DIF items. The first two conditions were 

simulated for the 24-item test, and the latter two conditions were simulated for the 46-

item test. Tables 3.2 through 3.5 show the item parameters used to generate anchor items 

that are the items for the DIF test in a Type I error study (or in other words, the anchor 

item set) with a two-dimensional framework.  

The item parameters of the 24- and 46-item tests were selected to resemble values 

used in two previous studies (see Reckase, 2009, p. 204; Suh & Cho, 2014), and were 

used as true item parameters. Motivated by and resembling the design in Suh and Cho’s 

(2014) work, three item clusters were considered, as shown in Tables 3.2 through 3.5. For 

example, Table 3.2 shows three loading patterns: (a) The first 11 items (i.e., items 1 

through 11) were selected to measure predominant loadings along the first dimension 

(i.e., larger 1a  than 2a ), (b) the next 11 items (i.e., items 12 through 22) were selected to 

measure predominant loadings along the second dimension (i.e., larger 2a  than 1a ), and 

(c) the last 20 items were selected to measure approximately equal balanced loading for 

both dimensions. The means for the three anchor item clusters under each test set are 

provided in Tables 3.2 through 3.5. Total means and standard deviations (SDs) across the 

four test conditions present a very similar pattern; the overall range of the 1a  and 2a  

parameters is from 0.59 to 0.62 and the range for the d parameter is from –0.12 to –0.03.   
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Table 3.2  

 

Item Parameters Used in the Two-Dimensional M-2PL Model with 42 Non-DIF (Anchor) 

Items for 46-Item Test 

 

Item  1a  2a  d 

1 1.04 0.00 -0.09 

2 0.88 0.13 0.27 

3 1.05 0.04 1.23 

4 1.17 0.02 -0.23 

5 1.02 0.23 0.84 

6 0.98 0.08 -0.77 

7 1.01 0.20 -0.86 

8 0.87 0.21 0.02 

9 0.97 0.19 -0.22 

10 0.98 0.02 -0.12 

11 0.92 0.08 -0.77 

12 0.09 1.03 0.09 

13 0.00 0.96 0.90 

14 0.24 0.92 -0.47 

15 0.21 0.94 -1.09 

16 0.19 0.83 0.41 

17 0.04 0.97 -0.58 

18 0.06 1.00 -0.88 

19 0.16 1.01 1.14 

20 0.15 1.13 1.15 

21 0.14 0.95 -0.38 

22 0.15 0.81 -1.26 

23 0.74 0.75 0.29 

24 0.66 0.84 -0.52 

25 0.81 0.73 -0.62 

26 0.67 0.59 -0.44 

27 0.70 0.73 -0.91 

28 0.71 0.72 -0.47 

29 0.55 0.70 -0.75 

30 0.68 0.62 0.77 

31 0.80 0.76 0.01 

32 0.69 0.69 0.10 

33 0.60 0.84 1.16 

34 0.73 0.68 -0.18 

35 0.56 0.74 0.69 

36 0.72 0.59 -0.93 
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37 0.77 0.69 0.58 

38 0.67 0.63 -0.33 

39 0.82 0.68 -0.16 

40 0.72 0.76 0.67 

41 0.63 0.66 1.39 

42 0.64 0.72 0.04 

M(1-11) 0.99 0.11 -0.06 

M(12-22) 0.13 0.96 -0.09 

M(23-42) 0.69 0.71 0.02 

M (Total) 0.62 0.62 -0.03 

SD (Total) 0.33 0.33 0.71 
Note. M indicates the mean; SD indicates the standard deviation.  

 

 

Table 3.3  

 

Item Parameters Used in the Two-Dimensional M-2PL Model with 38 Non-DIF (Anchor) 

Items for 46-Item Test 

 

Item  1a  2a  d 

1 1.04 0.00 -0.09 

2 0.88 0.13 0.27 

3 1.05 0.04 1.23 

4 1.17 0.02 -0.23 

5 1.02 0.23 0.84 

6 0.98 0.08 -0.77 

7 1.01 0.20 -0.86 

8 0.87 0.21 0.02 

9 0.97 0.19 -0.22 

10 0.98 0.02 -0.12 

11 0.92 0.08 -0.77 

12 0.09 1.03 0.09 

13 0.00 0.96 0.90 

14 0.24 0.92 -0.47 

15 0.21 0.94 -1.09 

16 0.19 0.83 0.41 

17 0.04 0.97 -0.58 

18 0.06 1.00 -0.88 

19 0.16 1.01 1.14 

20 0.15 1.13 1.15 

21 0.14 0.95 -0.38 

22 0.15 0.81 -1.26 
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23 0.74 0.75 0.29 

24 0.66 0.84 -0.52 

25 0.81 0.73 -0.62 

26 0.67 0.59 -0.44 

27 0.70 0.73 -0.91 

28 0.71 0.72 -0.47 

29 0.55 0.70 -0.75 

30 0.68 0.62 0.77 

31 0.80 0.76 0.01 

32 0.69 0.69 0.10 

33 0.60 0.84 1.16 

34 0.73 0.68 -0.18 

35 0.56 0.74 0.69 

36 0.72 0.59 -0.93 

37 0.77 0.69 0.58 

38 0.67 0.63 -0.33 

M(1-11) 0.99 0.11 -0.06 

M(12-22) 0.13 0.96 -0.09 

M(23-38) 0.69 0.71 -0.10 

M (Total) 0.62 0.61 -0.08 

SD (Total) 0.35 0.35 0.70 
Note. M indicates the mean; SD indicates the standard deviation.  

 

 

Table 3.4  

 

Item Parameters Used in the Two-Dimensional M-2PL Model with 20 Non-DIF (Anchor) 

Items for 24-Item Test 

 

Item  1a  2a  d 

1 1.04 0.00 -0.09 

2 0.88 0.13 0.27 

3 1.17 0.02 -0.23 

4 0.97 0.19 -0.22 

5 0.98 0.02 -0.12 

6 0.92 0.08 -0.77 

7 0.09 1.03 0.09 

8 0.00 0.96 0.90 

9 0.04 0.97 -0.58 

10 0.06 1.00 -0.88 

11 0.15 1.13 1.15 

12 0.14 0.95 -0.38 
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13 0.74 0.75 0.29 

14 0.70 0.73 -0.91 

15 0.71 0.72 -0.47 

16 0.80 0.76 0.01 

17 0.69 0.69 0.10 

18 0.73 0.68 -0.18 

19 0.67 0.63 -0.33 

20 0.64 0.72 0.04 

M(1-6) 0.99 0.07 -0.19 

M(7-12) 0.08 1.00 0.05 

M(13-20) 0.71 0.71 -0.18 

M (Total) 0.61 0.61 -0.12 

SD (Total) 0.37 0.37 0.51 
Note. M indicates the mean; SD indicates the standard deviation.  

 

 

Table 3.5  

 

Item Parameters Used in the Two-Dimensional M-2PL Model with 16 Non-DIF (Anchor) 

Items for 24- Item Test 

 

Item  1a  2a  d 

1 1.04 0.00 -0.09 

2 0.88 0.13 0.27 

3 1.17 0.02 -0.23 

4 0.97 0.19 -0.22 

5 0.98 0.02 -0.12 

6 0.92 0.08 -0.77 

7 0.09 1.03 0.09 

8 0.00 0.96 0.90 

9 0.04 0.97 -0.58 

10 0.06 1.00 -0.88 

11 0.15 1.13 1.15 

12 0.14 0.95 -0.38 

13 0.74 0.75 0.29 

14 0.70 0.73 -0.91 

15 0.71 0.72 -0.47 

16 0.80 0.76 0.01 

M(1-6) 0.99 0.07 -0.19 

M(7-12) 0.08 1.00 0.05 

M(13-16) 0.74 0.74 -0.27 

M (Total) 0.59 0.59 -0.12 
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SD (Total) 0.42 0.43 0.58 
Note. M indicates the mean; SD indicates the standard deviation. 

 

The anchor items parameters for the M-3PL were identical to those for the M-2PL 

in terms of the two discrimination parameters and intercept parameter. The guessing 

parameter was fixed to 0.2 across all anchor items and studied items. Four and eight DIF 

items were generated under each of the four DIF conditions modified from Suh and 

Cho’s (2014) and Oshima et al.’s (1997, p. 264) DIF study designs: low and medium 

uniform DIF conditions and low and medium nonuniform DIF conditions. For example, 

in the case of the 46-item test, items 1–42 in Table 3.2 were used as anchor items, and the 

item parameters for the last four items (items 43–46) in Table 3.6. When items 1–38 in 

Table 3.3 were used as anchor items, the item parameters for the last eight items (items 

39–46) in Table 3.7 were simulated to represent different DIF types for each DIF 

condition. 

 When the magnitude and types of DIF items simulated were manipulated, four 

DIF item patterns were considered in the item discrimination parameters ( 1 2,a a ) and the 

intercept parameter (d) for the focal group as shown in Tables 3.6 and 3.7. The intercept 

parameters for all items were increased by either 0.25 or 0.5 for the focal group therefore 

creating items that were more difficult in the uniform and the nonuniform DIF conditions. 

The 0.25 difference in the d parameters represented a low uniform DIF magnitude. A 

medium DIF magnitude was simulated with a 0.5 difference in the d parameters. For the 

nonuniform DIF conditions, each of the four items had a different nonuniform DIF 

pattern. A low nonuniform DIF was introduced at a shift size of 0.25 or 0.3 in the 1a

and/or 2a  parameter, such that the a parameters were set 0.25 or 0.3 higher for the focal 



53 
 

 

group than for the reference group. For example, in the low nonuniform DIF of the 46-

item test with eight DIF items condition in Table 3.7, a shift size 0.25 of the 1a  parameter 

and the d parameter was introduced for items 39–40. For items 41–42, a 0.25 shift size 

for the 1a  parameter, 2a  parameter, and d parameter were introduced. For items 43–44, a 

0.3 shift size for the 2a  parameter and a 0.25 shift size for the d parameter were 

introduced. For last two items, 45–46, a 0.3 shift size for only the 2a  parameter was 

introduced. The medium nonuniform DIF was simulated by 0.5 (for items 39–42) for the 

1a  parameter, and .6 (for items 43–46) for the 2a  parameter in the same manner as the 

low nonuniform DIF along with the 0.5 difference in the d parameter.  

 

Table 3.6  

 

Item Parameters Used in the Generating DIF Conditions for the Last Four Items 

 

Uniform DIF 

Reference Group Focal Group 

 Low DIF Medium DIF 

Item* 1a  2a  d 1a  2a  d 1a  2a  d 

43 (21) 1.0 0.1 0.0 1.0 0.1 0.25 1.0 0.1 0.5 

44 (22) 0.1 1.0 0.0 0.1 1.0 0.25 0.1 1.0 0.5 

45 (23) 0.7 0.7 0.0 0.7 0.7 0.25 0.7 0.7 0.5 

46 (24) 1.0 0.6 0.0 1.0 0.6 0.25 1.0 0.6 0.5 

Nonuniform DIF 

Reference Group Focal Group 

 Low DIF Medium DIF 

Item* 1a  2a  d 1a  2a  d 1a  2a  d 

43 (21) 1.0 0.1 0.0 1.25 0.1 0.25 1.5 0.1 0.5 

44 (22) 1.0 0.1 0.0 1.25 0.35 0.25 1.5 0.6 0.5 

45 (23) 0.7 0.7 0.0 0.7 1.0 0.25 0.7 1.3 0.5 

46 (24) 0.7 0.7 0.0 0.7 1.0 0.0 0.7 1.3 0.0 



54 
 

 

*The number outside of the parentheses indicates the item number for the 46-item test, and the 

number inside the parentheses represents the item number for the 24-item test, etc. 

 

 

Table 3.7  

 

Item Parameters Used in the Generating DIF Conditions for the Last Eight Items 

 

Uniform DIF 

Reference Group Focal Group 

 Low DIF Medium DIF 

Item*   d   d   d 

39 (17) 1.0 0.1 0.0 1.0 0.1 0.25 1.0 0.1 0.5 

40 (18) 1.0 0.1 0.0 1.0 0.1 0.25 1.0 0.1 0.5 

41 (19) 0.1 1.0 0.0 0.1 1.0 0.25 0.1 1.0 0.5 

42 (20) 0.1 1.0 0.0 0.1 1.0 0.25 0.1 1.0 0.5 

43 (21) 0.7 0.7 0.0 0.7 0.7 0.25 0.7 0.7 0.5 

44 (22) 0.7 0.7 0.0 0.7 0.7 0.25 0.7 0.7 0.5 

45 (23) 1.0 0.6 0.0 1.0 0.6 0.25 1.0 0.6 0.5 

46 (24) 1.0 0.6 0.0 1.0 0.6 0.25 1.0 0.6 0.5 

Nonuniform DIF 

Reference Group Focal Group 

 Low DIF Medium DIF 

Item*   d   d   d 

39 (17) 1.0 0.1 0.0 1.25 0.1 0.25 1.5 0.1 0.5 

40 (18) 1.0 0.1 0.0 1.25 0.1 0.25 1.5 0.1 0.5 

41 (19) 1.0 0.1 0.0 1.25 0.35 0.25 1.5 0.6 0.5 

42 (20) 1.0 0.1 0.0 1.25 0.35 0.25 1.5 0.6 0.5 

43 (21) 0.7 0.7 0.0 0.7 1.0 0.25 0.7 1.3 0.5 

44 (22) 0.7 0.7 0.0 0.7 1.0 0.25 0.7 1.3 0.5 

45 (23) 0.7 0.7 0.0 0.7 1.0 0.0 0.7 1.3 0.0 

46 (24) 0.7 0.7 0.0 0.7 1.0 0.0 0.7 1.3 0.0 

*The number outside of the parentheses indicates the item number for the 46-item test, and the 

number inside the parentheses represents the item number for the 24 item test, etc. 

 

 

1a 2a 1a 2a 1a 2a

1a 2a 1a 2a 1a 2a
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3.3 Item Parameter Estimation from flexMIRT and BMIRT 

As with the other estimation methods, model identification constraints were 

necessary for specific parameters in the M-2PL and M-3PL applications that used MML 

and MCMC algorithms. For M-2PL and M-3PL, the   axes were constrained to be 

orthogonal to address the rotational indeterminacy problem. And the first item of the 

second dimension was fixed to zero (i.e., 12a = 0) for both the focal and reference groups. 

To resolve the metric indeterminacy, 1  and 2  were fixed to means of 0 and variances of 

1 from a bivariate normal distribution for all generating conditions for the reference 

group. The correlation between the two dimensions was also fixed at 0 for both groups to 

deal with the model identification problem for the within-item test structure in which all 

items were loaded on both dimensions. The correlation between the two dimensions 

cannot be estimated in flexMIRT due to the model identification problem. These 

identification constraints were also used in Bolt and Lall’s (2003) MIRT study. The same 

constraints used in flexMIRT were imposed in BMIRT to make fair comparisons between 

the two estimation approaches. The means of the focal group were free to be estimated, 

whereas the variances of both ability parameters were fixed at 13.  

FlexMIRT allows the user to specify constraints and prior distributions for item 

parameters. Beta distribution priors were applied in flexMIRT to add the item 

                                                           
3 The variances in the focal group were fixed to 1 following other IRT software such as MULTILOG 

(Thissen, 1991) and it may be unnecessary for identification purposes. Other software, such as NOHARM 

(Fraser, 1987), also theoretically assumes a multivariate standard normal distribution for latent traits. 

Oshima et al. (1997) used the multivariate standard normal distribution instead of using estimated theta 

values when they calculated DIF and DTF indices. 
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uniquenesses (Bock, Gibbons, & Muraki, 1988) in the form of a beta distribution ( ,  ) 

for the slope parameters; flexMIRT has a user-specific   parameter and the   

parameter fixed at 1. In this study,   = 1.6 and thus a prior distribution of the form beta 

(1.6, 1.0) was imposed in the item uniquenesses of items 1 through 24 for the 24-item test 

and 46 for the 46-item test, respectively. The prior chosen was a normal distribution (–

1.4, 0.1) (i.e., 1.4    and 2 0.1  ) on the guessing parameters for all items in M-3PL, 

for the focal and reference groups. For the guessing parameter, the normal prior applied a 

normal distribution prior on the logit of the guessing parameter. A normal prior (–1.4, 

0.1) was an appropriate prior for the guessing parameter, with a mode around 0.2 in the 

typical g metric using flexMIRT 2 (Houts & Cai, 2013). 

It was not possible to check each outcome for convergence in this simulation 

study for MCMC. Although many statistic tools help select sufficient burn-in and chain 

length, there is no agreed-upon selection method (Wollack et al., 2002). Geyer (1992) 

and Patz and Junker (1999b) suggested that the appropriate burn-in length is the number 

of lags needed to obtain negligible autocorrelations. Wollack et al. (2002) found the 

autocorrelations were nearly zero for all parameters when the lag between draws was set 

at 50. A combination of these previous suggestions, a length of 500 iterations, was 

sufficient for burn-in for all but extremely difficult items (Wollack et al., 2002). In this 

study, 10,000 iterations, with 5,000 burn-ins as the number of MCMCs to be thrown 

away were used across all conditions and replications. For M-3PL, the priors for the item 

parameters in BMIRT were as follows: 

                                                 
1 1

2

1 ( , ),
j jj d dd N                                               (27) 

                                                    
1 1

2

1log(a ) (log( ), )
jl jljl a aN                                          (28) 
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for l = 1 and 2. 

                                                            ( , )jg beta                                                     (29) 

1
0

jd  ,
1

1
ja  , 

1

2 1
jd  , and 

1

2 1.5
jla  . Normal priors were assigned to the d 

parameters, with a mean of 0 and a variance of 1. Lognormal priors were assigned to the 

slope parameters, with a mean of 1 and a variance of 1.5. Beta priors were assigned to the 

guessing parameters, with 100   and 400  . All values were default values with 

BMIRT.  

3.4 Evaluation Criteria  

 For each condition, the Type I error rates and the power of Lord’s Wald tests from 

MML and MCMC were evaluated. To examine the effect of the M-2PL and M-3PL 

model differences on the item parameter estimation for the focal and reference groups, 

the bias and root mean square errors (RMSEs) were calculated and compared for non-

DIF conditions in this study. The bias and the RMSE were obtained with 

                                                        Bias ˆ( ) = 

ˆ( )
R

r

r

R

 
                                           (30)                              

                                                    RMSE ˆ( )  = 

2ˆ( )
R

r

r

R

 
                                      (31) 

where R is the number of replications (i.e., 100), ˆ
r  is the estimated item parameter    at 

the rth replication, and   is the true item parameter. Smaller RMSEs and bias indicate 

better estimates of the item parameters. The Type I error of Lord’s Wald test is defined as 

the proportion of times a non-DIF item is erroneously detected as a DIF item across 

replications, whereas the power is described as the proportion of times a DIF item known 
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to exhibit DIF is correctly identified across replications. Thus, the Type I error rate was 

calculated as the proportion of the number of significant 
2  test statistics (at  = .05) out 

of total replications (i.e., 100) for each non-DIF item. The power rate was calculated as 

the proportion of the number of significant 
2  test statistics out of the total replications 

for each uniform and nonuniform DIF item.  In addition, when the observed power rates 

of DIF detection were interpreted, Type I error rates must be prudently considered 

because an uncontrolled Type I error can lead to inadequate power rates. For example, 

high Type I error rates (higher than the expected value) can inflate the power of the test.                                                                                                                          

3.5 Empirical Distributions of the 
2  Statistics 

Researchers often observe greater power due to an inflated Type I error rate for 

the DIF detection method in application. Because the power is affected by the Type I 

error rate, without corrections, the power can be overestimated or underestimated (de la 

Torre & Lee, 2013). Thus, in addition to theoretical distributions of the 
2  statistics, we 

considered the empirical distributions of the 
2  statistics obtained from the non-DIF 

conditions (i.e., by selecting the 95th empirical 
2  statistics as critical values) to 

determine the empirical power rates if the Type I error rates were not controlled. Thus, 

when such corrections were made using the empirical distributions, adjusted power rates 

were reported.   
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CHAPTER 4 

SIMULATION RESULTS  

4.1 Analysis and Comparison of the Estimation Methods 

Each DIF condition was analyzed with the MML and MCMC estimation methods. 

Several evaluative measures are considered for the comparison of the Lord’s Wald test 

estimation methods: the bias and RMSE of item parameter estimates and the overall 

contribution of the factors to outcomes in terms of the Type I error rate and power rate of 

the Wald test using two estimation methods. The estimation accuracy was compared and 

discussed across different DIF conditions; specifically, the impact of the inclusion of the 

guessing parameter on the estimation accuracy will be discussed at the end of section 4.2 

in the M-3PL model simulation results. The estimated accuracy of the parameters for the 

M-2PL and M-3PL models is also compared. For the recovery study, all three balanced 

sample sizes for M-2PL and the medium R3,000/F3,000 sample for M-3PL in the 24- and 

46-item test with four and eight DIF item conditions were used. 

The criterion of interest in the current study is given in three parts: (a) The first 

part summarizes the parameter recovery results based on the bias and RMSE for the M-

2PL and M-3PL models using MML and MCMC estimation methods. (b) The second 

part summarizes the Type I error rates for Lord’s Wald test in the MML and the MCMC 

estimation methods under various DIF test conditions. (c) The third part summarizes the 

results of the power study for Lord’s Wald test using the MML and MCMC estimation 

methods to detect uniform and nonuniform DIF items under various DIF detection 

conditions for the M-2PL and M-3PL models.   
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4.2 Bias and RMSE of the M-2PL and M-3PL Results  

 Tables 4.1 to 4.4 report the biases and RMSEs for all M-2PL parameters with the 

R1,000/F1,000, R3,000/F3,000, and the R5,000/F5,000 samples and M-3PL parameters 

with the R3,000/F3,000 medium sample in the non-DIF conditions. For the M-3PL, only 

the medium sample condition was considered, for the comparison purpose with the M-

2PL. Tables 4.1 to 4.3 report the M-2PL estimation results in terms of the bias and the 

RMSE for each parameter type of the focal group. Biases and RMSEs of the focal group 

were calculated as the average across the items and replications for each parameter type 

in the non-DIF conditions. For example, in the case of the 24-item test for each item 

parameter type, 1 2, ,a a   or d, bias is calculated as  
24 100

1 1
ˆ / 2400jr jj r
 

 
   and the 

RMSE was calculated as  
224 100

1 1
ˆ / 2400jr jj r
 

 
   , where j = 1, … , 24 denotes the 

item, r = 1, … , 100 denotes the replication, and ˆ
jr  is the item parameter estimate. For 

the 46-item test conditions, the RMSEs are reported the same way as for the 24-item test 

conditions, except for  j = 1, …, 46.  

When the bias and RMSE of the item discriminations or intercept parameter 

estimates were examined across the test length and the number of DIF items for the three 

balanced sample size conditions with M-2PL (Tables 4.1 to 4.3), the biases for the 1a , 2a , 

and d parameter estimates that used MML resulted in consistently higher biases than 

those used MCMC across all DIF conditions. This result does not agree with the results 

of Wollack et al.’s (2002) and Kieftenbeld and Natesan’s (2012) studies in which the 

recovery of discrimination parameters for MML were better than those for MCMC using 

the nominal response model and the graded response model, respectively.   
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 In terms of the test length results, the 24-item test conditions tended to be less 

biased than the 46-item test conditions for the 1a  and 2a  parameters using the MML and 

MCMC estimations. However, the bias of the d parameter estimates decreased as the test 

length increased using MML and MCMC. The biases of the 1a  and 2a  parameters from 

the 24-item test with four DIF items (.17 DIF) appeared to be lower than those of other 

conditions, whereas the bias of the d parameter from the 46-item test with four DIF items 

(.10 DIF) appeared to be lower than that from other conditions. In other words, the 

RMSEs of the short test (24) with four DIF items was more accurate for 1a  and 2a  

parameters with all sample sizes, whereas the RMSEs of long test (46) for estimating the 

d parameter were more accurate than the short test.  

Regarding the number of DIF item results, the biases of the item parameter 

estimates from the four-DIF item conditions were slightly lower than those for the eight-

DIF item conditions for the 1a  and 2a  parameters using MML and MCMC. For the d 

parameter estimates, the bias increased as the number of DIF items increased when 

MCMC was used for all test length conditions, whereas the bias decreased for the 24-

item test and increased for the 46-item test as the number of DIF item increased when 

MML was used. These patterns of bias and RMSE of the 1a , 2a , and d  parameters using 

MML and MCMC were found regardless of the sample size.  

 For the sample size effect on the recovery based on Tables 4.1 to 4.3, the biases 

and RMSEs tended to decrease as the sample size increased for MML and MCMC on 

average. This pattern was more apparent with the slope parameters that used MML. For 

easier interpretation of the sample size effect, the patterns of the RMSEs in Tables 4.1 to 

4.3 are plotted as Figures 4.1 through 4.3.    
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Table 4.1    

 

Parameter Recovery (Bias and Root Mean Square Errors) for the Multidimensional Two-

Parameter Logistic Model (M-2PL) Focal group of Sample Size 1000 ( 0.05)   

 

M-2PL 

  24_4_1000 24_8_1000 46_4_1000 46_8_1000 

Parameter  MML MCMC MML MCMC MML MCMC MML MCMC 

1a  
Bias 0.317 0.085 0.359 0.118 0.397 0.105 0.411 0.109 

RMSE 0.318 0.089 0.359 0.120 0.397 0.107 0.411 0.111 

2a  
Bias 0.269 0.093 0.316 0.124 0.371 0.119 0.387 0.109 

RMSE 0.269 0.097 0.316 0.126 0.372 0.121 0.387 0.111 

d 
Bias 0.214 0.058 0.201 0.078 0.056 0.013 0.149 0.024 

RMSE 0.215 0.062 0.202 0.082 0.057 0.029 0.150 0.033 

Average (Bias) 0.267 0.079 0.292 0.107 0.275 0.079 0.316 0.081 

Average (RMSE) 0.267 0.083 0.292 0.109 0.275 0.086 0.316 0.085 

Note. Bold-face numbers represent the smallest values for MML and MCMC in the rows.  

 

Table 4.2    

 

Parameter Recovery (Bias and Root Mean Square Errors) for the Multidimensional Two-

Parameter Logistic Model (M-2PL) Focal group of Sample Size 3000 ( 0.05)   

 

M-2PL 

  24_4_3000 24_8_3000 46_4_3000 46_8_3000 

Parameter  MML MCMC MML MCMC MML MCMC MML MCMC 

1a  
Bias 0.162 0.069 0.192 0.094 0.208 0.093 0.226 0.097 

RMSE 0.163 0.070 0.192 0.095 0.209 0.094 0.226 0.099 

2a  
Bias 0.127 0.081 0.160 0.104 0.191 0.102 0.199 0.103 

RMSE 0.127 0.082 0.160 0.105 0.192 0.104 0.199 0.104 

d 
Bias 0.215 0.035 0.201 0.039 0.055 0.005 0.148 0.030 

RMSE 0.216 0.037 0.201 0.043 0.055 0.019 0.148 0.032 

Average (Bias) 0.168 0.062 0.184 0.079 0.151 0.067 0.191 0.077 
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Average (RMSE) 0.168 0.063 0.184 0.081 0.151 0.072 0.191 0.078 

Note. Bold-face numbers represent the smallest values for MML and MCMC in the rows.  

 

Table 4.3    

 

Parameter Recovery (Bias and Root Mean Square Errors) for the Multidimensional Two-

Parameter Logistic Model (M-2PL) Focal group of Sample Size 5000 ( 0.05)   

 

M-2PL 

  24_4_5000 24_8_5000 46_4_5000 46_8_5000 

Parameter  MML MCMC MML MCMC MML MCMC MML MCMC 

1a  
Bias 0.116 0.065 0.140 0.089 0.147 0.096 0.161 0.102 

RMSE 0.116 0.067 0.140 0.090 0.147 0.097 0.161 0.103 

2a  
Bias 0.088 0.082 0.113 0.103 0.134 0.109 0.137 0.104 

RMSE 0.089 0.084 0.113 0.103 0.134 0.110 0.137 0.105 

d 
Bias 0.215 0.054 0.199 0.072 0.055 0.002 0.148 0.027 

RMSE 0.215 0.055 0.199 0.073 0.056 0.016 0.148 0.033 

Average (Bias) 0.140 0.067 0.151 0.088 0.112 0.069 0.149 0.078 

Average (RMSE) 0.140 0.069 0.151 0.089 0.112 0.074 0.149 0.080 

Note. Bold-face numbers represent the smallest values for MML and MCMC in the rows.  
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Figure 4.1. RMSE of 1a  parameter for Sample Sizes in the M-2PL 

 

 

   
 

Figure 4.2. RMSE of 2a  parameter for Sample Sizes in the M-2PL   
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Figure 4.3. RMSE of d parameter for Sample Sizes in the M-2PL  
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test length increased (i.e., a long test, 40 items or more), the RMSE of  the slope 

parameter estimates decreased. Similar to M-2PL, the bias and RMSE of the d parameter 

decreased as the test length increased when MML was used. The estimation of the d 

parameter differed from the results for the 1a  and 2a  parameters. The bias and RMSE of 

the 1a  parameter from the 24-item test with four DIF items was smaller than other test 

length conditions for MML and MCMC. The bias and RMSE of the 2a  parameter for 

MML was the smallest in the 24-item test with four DIF items, whereas those for MCMC 

were the smallest on the 46-item test with eight DIF items. Similar to M-2PL, the bias 

and RMSE of the d parameter from the 46-item test with four DIF items (.10 DIF) 

appeared to be the lowest among all conditions when MML was used. Unlike M-2PL, the 

bias and RMSE from the 46-item test with eight DIF items (.17 DIF) appeared to be the 

lowest of that from other conditions when MCMC was used.  

Biases and RMSEs are also reported for the guessing parameters of M-3PL in 

Table 4.5. Consistent with Table 4.4, the estimation of the guessing, g, parameters for 

MML tended to be slightly worse than those for MCMC. However, regardless of the 

estimation methods, the parameter recovery for guessing tended to be reasonably well 

approximated across all simulation conditions. The RMSE values of MML were close to 

each other across all DIF conditions, whereas the RMSE values of MCMC were close to 

each other with the exception of the 46-item test with four DIF items, on which the 

highest value was observed. 

The results in Table 4.4 are somewhat similar to those from a previous parameter 

estimation recovery study that used MML for M-3PL (Zhang, 2012). From Zhang’s 

(2012) simulation study, the conditions of 30- and 46-item tests with a 3,000 sample and 
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a correlation between the subscales of zero were selected to compare the results to the 

similar simulation conditions in the present study, such the 24-item and 46-item tests with 

a 3,000 sample that used the MML estimation method. Zhang (2012) reported that the 

average RMSE of the 1a  and 2a  parameters was 0.093 and 0.089 for the 30-item test and 

0.098 and 0.092 for the 46-item test, respectively. These values are smaller than those in 

Table 4.4. For the intercept (or difficulty) and guessing parameters, more similar results 

were observed. The average RMSE of the d (intercept) parameter was 0.091 for the 30-

item test and 0.105 for the 46-item test.  The average RMSE of the guessing parameter 

was 0.049 for the 30-item test and 0.050 for the 46-item test.  

 For the results for the number of DIF items, a pattern similar to that for M-2PL 

was found in M-3PL for the 1a , 2a , and d parameters when MML was used on the 24-

item test. For the MCMC estimation method, a clear pattern in M-3PL was observed. For 

the 24-item tests, the small number of DIF items (i.e., four DIF items) conditions resulted 

in less bias and RMSE than the large number of DIF items (i.e., eight DIF items) 

conditions for the 1a , 2a , and d parameters. For the 46-item tests, the opposite results 

were found: The large number of DIF items (i.e., eight DIF items) conditions resulted in 

less bias and RMSE than the small number of DIF items (i.e., four DIF items) conditions 

for the 1a , 2a , and d parameters.  
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Table 4.4    

 

Parameter Recovery (Bias and Root Mean Square Errors) for the Multidimensional 

Three-Parameter Logistic Model (M-3PL) Focal group of Sample Size 3000 ( 0.05)   

 

M-3PL 

  24_4_3000 24_8_3000 46_4_3000 46_8_3000 

Parameter  MML MCMC MML MCMC MML MCMC MML MCMC 

1a  
Bias 0.191 0.065 0.220 0.095 0.234 0.205 0.251 0.071 

RMSE 0.192 0.067 0.220 0.097 0.234 0.235 0.251 0.073 

2a  
Bias 0.168 0.083 0.197 0.111 0.221 0.212 0.229 0.081 

RMSE 0.168 0.084 0.197 0.112 0.221 0.243 0.229 0.083 

d 
Bias 0.157 0.029 0.139 0.035 -0.003 0.137 0.090 0.005 

RMSE 0.158 0.032 0.140 0.038 0.009 0.181 0.093 0.019 

Average (Bias) 0.172 0.059 0.185 0.080 0.151 0.185 0.190 0.052 

Average (RMSE) 0.172 0.061 0.186 0.082 0.155 0.220 0.191 0.058 

Note. Bold-face numbers represent the smallest values for MML and MCMC in the rows.  

 

Table 4.5    

 

Guessing Parameter Recovery (Bias and Root Mean Square Errors) for the 

Multidimensional Three-Parameter Logistic Model (M-3PL) Focal group of Sample Size 

3000 ( 0.05)   

 

M-3PL 

  24_4_3000 24_8_3000 46_4_3000 46_8_3000 

Parameter  MML MCMC MML MCMC MML MCMC MML MCMC 

g 
Bias 0.012 -0.004 0.012 -0.003 0.011 -0.022 0.010 -0.004 

RMSE 0.012 0.004 0.012 0.004 0.011 0.026 0.010 0.004 
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 Figures 4.4 through 4.6 are graphical representations of the summary in Tables 

4.2 and 4.4 that show the RMSE values of the three parameters, 1a , 2a , and  d, 

respectively, under M-2PL and M-3PL for MCMC and MML across the test length and 

number of DIF items. The RMSEs increased from M-2PL to M-3PL with MML for the 

1a and 2a  parameter estimation. Unlike other parameters, the RMSEs of the d parameter 

when MML was used decreased from M-2PL to M-3PL regardless of the test length. 

However, for the RMSE results for MCMC, a different pattern for MML was found in 

the parameter estimation. The RMSEs of the 1a , 2a , and d parameters either decreased or 

were invariant from M-2PL to M-3PL except for the 46-item test with four DIF item 

condition, which increased from M-2PL to M-3PL.  

 

 

 
 

Figure 4.4. RMSE of 1a  parameter in the M-2PL and the M-3PL 
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Figure 4.5. RMSE of 2a  parameter in the M-2PL and the M-3PL   

 

 

 
 

Figure 4.6. RMSE of d parameter in the M-2PL and the M-3PL 
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4.3 The Type I Error Study  

 4.3.1 The M-2PL Results. The Type I error rate for this study was calculated and 

defined as follows. For each item, the percentage of times the item was detected as DIF 

out of the 100 replications under each non-DIF condition was calculated. A Type I error 

rate close to 5% was ideally expected given the significance level of 0.05. If the Type I 

error rate was less than 0.05, it was conservative in control; if the Type I error rate was 

greater than 0.05, it was inflated. The average Type I error rates across all items are 

reported separately for the MML and the MCMC estimation methods for each non-DIF 

condition.  

 Table 4.6 shows the M-2PL Type I error rates of the four items under the 24-item 

and the 46-item test conditions as a function of sample size for separately identifying DIF 

at 0.05   of the MML and MCMC estimation approaches. In Table 4.6, the average 

Type I error rates for MCMC are substantially higher than those of the MML method 

irrespective of the sample size factor. The average error rates from MML ranged from 0.0 

to 0.08, whereas those from MCMC ranged from 0.23 to 0.43 at the nominal alpha level 

of 0.05. The unbalanced sample condition yielded the highest Type I error rates with both 

estimation methods. That is, the unbalanced sample design in Table 4.6 has larger Type I 

error rates than the balanced sample design; the Type I error rates for MML vs. MCMC 

were 0.07 vs. 0.43 for the 24-item test and 0.08 vs. 0.43 for the 46-item test, respectively. 

Within the balanced sample design, the largest Type I error rates for MML were observed 

in the large sample (R5,000/F5,000) condition. In contrast, the largest Type I error rates 

with MCMC were observed in the small-sample (R1,000/F,1000) condition.     
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 Inflated Type I error rates for MCMC were found in all sample sizes. As the 

sample size increased under the balanced sample size designs, the Type I error rates with 

MCMC tended to be less inflated. In addition, the Type I error rates for MCMC 

decreased as the test length increased (from the 24-item test to the 46-item test) with one 

exception in the small-sample (R1,000/F,1000) condition. The patterns regarding sample 

size and test length in MML were the opposite for those in MCMC. The Type I error 

rates increased slightly as the sample size increased in the balanced sample design. As the 

test length increased, MML slightly increased from the 24-item test with four DIF items 

to the 46-item test with four DIF items. However, all Type I error rates fell below the 

nominal level of 0.05 (e.g., between 0.00 and 0.03) except for the unbalanced design 

condition. There was no clear pattern regarding different DIF items.  

 

Table 4.6  

 

Type I Error Results for the M-2PL in the 24-item Test and 46-item Test with 4 Studied 

Items 

 

 Balanced Unbalanced  

Sample 

Size 
R1000/F1000 R3000/F3000 R5000/F5000 R4000/F2000 Average 

DIF 

Item 
MML MCMC MML MCMC MML MCMC MML MCMC MML MCMC 

21 0.00 0.41 0.01 0.42 0.00 0.36 0.07 0.43 0.02 0.41 

22 0.01 0.36 0.00 0.31 0.03 0.34 0.08 0.37 0.03 0.35 

23 0.01 0.39 0.03 0.37 0.03 0.37 0.05 0.46 0.03 0.40 

24 0.00 0.49 0.01 0.39 0.02 0.44 0.08 0.44 0.03 0.44 

Average 0.00 0.41 0.01 0.37 0.02 0.38 0.07 0.43 0.03 0.40 

43 0.00 0.40 0.01 0.26 0.04 0.21 0.07 0.39 0.03 0.32 

44 0.01 0.46 0.00 0.30 0.02 0.18 0.08 0.40 0.03 0.34 

45 0.00 0.44 0.02 0.40 0.03 0.31 0.06 0.45 0.02 0.40 

46 0.00 0.39 0.03 0.41 0.04 0.22 0.09 0.46 0.04 0.37 

Average 0.00 0.42 0.02 0.34 0.03 0.23 0.08 0.43 0.03 0.36 

Note. Bold-face numbers represent the largest values for MML and MCMC in the rows.  
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Table 4.7 shows the M-2PL Type I error rates of eight items under the 24-item 

and the 46-item test conditions as a function of sample size for separately identifying DIF 

at 0.05  of the MML and the MCMC estimation approaches. The patterns were similar 

to the Type I error rates shown in Table 4.4. The average Type I error rates for MML 

ranged from 0.01 to 0.13, and those for MCMC ranged from 0.39 to 0.49, which are 

slightly higher than the values in Table 4.6 on average. This implies that the Type I error 

from the two estimation methods increased slightly as the number of DIF items increased. 

The unbalanced design again provided the largest error rates for both test length 

conditions regardless of the estimation method. Similar to the four DIF item conditions in 

Table 4.6, the largest difference between the two estimation methods was 0.01 for MML 

and 0.42 for MCMC in the small-sample condition (R1,000/F,1000). Although the 

general patterns regarding the sample size and test length were similar to those in Table 

4.6, such patterns were less apparent in Table 4.7. One interesting finding with the 

unbalanced sample design in eight DIF item conditions was that the Type I error rates for 

MML on the short test (24) were higher than those for MML on the long test (46). 

In summary, regardless of all test factors (length of 24-item vs. 46-item, the 

number of DIF items, four DIF vs. eight DIF, and sample sizes of R1,000/F1,000 vs. 

R3,000/F3,000 vs. R5,000/F5,000), the Type I error rates for the unbalanced sample 

design (R4,000/F2,000) were notably the highest among all simulation conditions that 

used MML and MCMC, and the MML provided more accurate Type I error rates than 

MCMC. 
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Table 4.7  

 

Type I Error Results for the M-2PL in the 24-item Test and 46-item Test with 8 Studied 

Items 

 

 Balanced Unbalanced  

Sample 

Size 
R1000/F1000 R3000/F3000 R5000/F5000 R4000/F2000 Average 

DIF Item MML MCMC MML MCMC MML MCMC MML MCMC MML MCMC 

17 0.00 0.37 0.01 0.34 0.00 0.26 0.13 0.48 0.03 0.36 

18 0.00 0.42 0.00 0.35 0.02 0.37 0.24 0.47 0.07 0.40 

19 0.00 0.39 0.01 0.34 0.02 0.35 0.17 0.44 0.05 0.38 

20 0.02 0.37 0.03 0.37 0.00 0.45 0.10 0.45 0.04 0.41 

21 0.01 0.45 0.01 0.41 0.01 0.36 0.10 0.48 0.03 0.46 

22 0.01 0.36 0.00 0.46 0.00 0.50 0.11 0.52 0.03 0.46 

23 0.01 0.52 0.01 0.46 0.02 0.35 0.09 0.52 0.03 0.46 

24 0.03 0.41 0.01 0.41 0.02 0.49 0.07 0.54 0.03 0.46 

Average 0.01 0.41 0.01 0.39 0.01 0.39 0.13 0.49 0.04 0.42 

39 0.01 0.38 0.00 0.32 0.04 0.21 0.15 0.42 0.05 0.33 

40 0.00 0.45 0.00 0.32 0.03 0.32 0.09 0.41 0.03 0.38 

41 0.01 0.33 0.01 0.35 0.09 0.29 0.09 0.43 0.05 0.35 

42 0.00 0.46 0.01 0.36 0.02 0.23 0.09 0.47 0.03 0.38 

43 0.01 0.49 0.01 0.45 0.08 0.28 0.08 0.53 0.03 0.44 

44 0.01 0.39 0.00 0.46 0.03 0.31 0.09 0.57 0.03 0.43 

45 0.01 0.42 0.00 0.35 0.05 0.41 0.07 0.53 0.03 0.43 

46 0.01 0.44 0.02 0.41 0.02 0.30 0.08 0.50 0.03 0.41 

Average 0.01 0.42 0.01 0.38 0.05 0.29 0.09 0.48 0.04 0.39 

Note. Bold-face numbers represent the largest values for MML and MCMC in the rows.  

 

 

 4.3.2 The M-3PL Results. Table 4.8 reports the M-3PL results in terms of Type I 

error rates for all test lengths and the number of DIF items in the medium sample 

(R3,000/F3,000) conditions. The average Type I error rates for MML ranged from 0.02 to 

0.07, and the average Type I error rates for MCMC increased, ranging from 0.34 to 0.45 

at the significance level of 0.05. As the test length increased, the Type I error rates for 

MCMC were less inflated, whereas the Type I error rates for MML increased to higher 
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than the nominal level. As the number of DIF items increased, the Type I error rates for 

MCMC and MML tended to increase.  

Table 4.8 

  

Type-I Error Results for the M-3PL in the 24-item Test and 46-Item Test 
 

Sample 

Size 
R3000/F3000 

Test 

Length 
24-item test 

 
 46-item test 

 

DIF 

Item 
MML MCMC Average 

DIF 

Item 
MML MCMC Average 

21 0.03 0.39 0.21 43 0.05 0.31 0.18 

22 0.00 0.41 0.20 44 0.07 0.31 0.19 

23 0.02 0.43 0.23 45 0.06 0.37 0.22 

24 0.03 0.52 0.28 46 0.06 0.38 0.22 

Average 0.02 0.44 0.23  0.06 0.34 0.20 

17 0.04 0.35 0.20 39 0.04 0.40 0.22 

18 0.05 0.50 0.28 40 0.04 0.34 0.19 

19 0.10 0.38 0.24 41 0.04 0.27 0.16 

20 0.04 0.48 0.26 42 0.08 0.46 0.27 

21 0.08 0.49 0.29 43 0.07 0.39 0.23 

22 0.04 0.50 0.27 44 0.07 0.41 0.24 

23 0.06 0.51 0.29 45 0.10 0.39 0.25 

24 0.09 0.40 0.25 46 0.08 0.41 0.25 

Average 0.06 0.45 0.25  0.07 0.38 0.23 

 

 4.3.3 A Comparison of the M-2PL and M-3PL Results. Figures 4.7 and 4.8 

illustrate the comparison results for M-2PL and M-3PL. The average Type I error rates 

for MML increased slightly from M-2PL to M-3PL on the 24-item test and the 46-item 

test regardless of the number of DIF items (four DIF vs. eight DIF items). The Type I 

error rates for M-2PL tended to be invariant regardless of the test length. However, the 
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degree of increase in the Type I error rates for MML with M-3PL tended to increase 

when the test length increased from the 24-item test to the 46-item test. Unlike MML, the 

Type I error rates for MCMC from the M-3PL decreased slightly when the test length 

increased from the 24-item test to the 46-item test. The Type I error rates for both MML 

and MCMC increased from M-2PL to M-3PL with 24-item test. The Type I error rates 

for MML increased, whereas MCMC decreased slightly from M-2PL to M-3PL when the 

test length was 46 items. 

 

  

Figure 4.7. Type-I Error Rates of 4-Studied Items Conditions in the M-2PL and the M-

3PL (R3000/F3000) 
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Figure 4.8. Type-I Error Rates of 8-Studied Items Conditions in the M-2PL and the M-

3PL (R3000/F3000) 
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test would be misleading. Thus, comparable power rates across the simulation conditions 

by controlling for Type I error rates were computed using the 95th percentiles from the 

empirical 
2  distributions of the Lord’s Wald test. The empirical distributions of the 

Lord’s Wald test under the null hypothesis of no DIF were obtained for each item in the 

non-DIF conditions.  

 Uniform DIF Results. Theoretical vs. empirical power rates. Tables 4.9 through 

4.12 list the power results for uniform DIF conditions based on the theoretical and the 

empirical power rates of MML and MCMC calculated using the 
2  (df  = 3) distribution 

for the DIF magnitude, test length, number of DIF items, and sample size. Due to the 

Type I error control issue, comparing Lord’s Wald test statistic to the theoretical 

distribution can lead to underestimated or overestimated power. Thus, empirical power 

rates were computed selecting the 95th percentiles of the empirical 
2 statistics as critical 

values and were compared with the theoretical power rates on Tables 4.9 through 4.12. 

Values in parentheses refer to the empirical power rates. 

 The theoretical and empirical power rates of the 24-item test with four DIF items 

in low and medium uniform DIF conditions in Table 4.9 were substantially different for 

the two estimation methods, MML and MCMC. The theoretical power rates for MCMC 

in uniform DIF conditions were higher than the empirical power rates especially with the 

small sample (R1,000/F1,000). For example, in the case of the low DIF condition with 

the 24-item test in R1,000/F1,000, the average theoretical power rates vs. the average 

empirical power rates were 0.90 vs. 0.50 for MCMC in the uniform DIF condition. 

Tables 4.10 through 4.12 report the power rates for the 24-item test with eight DIF items 

(.30 DIF), the 46-item test with four DIF items (.10 DIF), and the 46-item test with eight 
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DIF items (.17 DIF) in terms of the DIF magnitude for the uniform DIF conditions. The 

average theoretical power rates vs. the average empirical power rates for MCMC in the 

low uniform DIF condition with the small sample (R1,000/F,1000) were 0.90 vs. 0.54, 

0.91 vs. 0.51, and 0.91 vs. 0.59, respectively. A similar pattern was found for the medium 

DIF conditions shown in Tables 4.9 through 4.12. For example, the average theoretical 

power rates vs. the average empirical power rates for R1,000/F1,000 from MCMC for the 

24-item test with four DIF items, the 24-item test with eight DIF items, the 46-item test 

with four DIF items, and the 46-item test with eight DIF items were 1.0 vs. 0.96, 1.0 vs. 

0.97, 1.0 vs. 0.99, and 1.0 vs. 0.97, respectively. However, the degree of increase was 

much smaller than that for the low DIF conditions from MCMC. 

 However, the power rates for MML increased from the theoretical to the 

empirical power rates, because the Type I error rates for MML were often smaller than 

the expected value. For example, for the 24-item test with four DIF items (.17 DIF), the 

24-item test with eight DIF items (.30 DIF), the 46-item test with four DIF items (.10 

DIF), and the 46-item test with eight DIF items (.17 DIF) for the low uniform DIF 

conditions, the average theoretical power rates vs. the average empirical power rates for 

MML with the small sample (R1,000.F1,000) were 0.17 vs. 0.51, 0.20 vs. 0.51, 0.14 vs. 

0.38, and 0.12 vs. 0.42, respectively. For the medium DIF conditions, the pattern was 

similar to the low DIF conditions shown in Tables 4.9 through 4.12. For example, the 

average theoretical power rates vs. the average empirical power rates in the small sample 

(R1,000/F1,000) for the 24-item test with four DIF items, the 24-item test with eight DIF 

items, the 46-item test with four DIF items, and the 46-item test with eight DIF items 

were 0.89 vs. 0.98, 0.90 vs. 0.99, 0.88 vs. 0.96, and 0.84 vs. 0.90, respectively. Similar to 
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the MCMC, the degree of increase from MML was also much smaller than that of the 

low DIF conditions. Overall, the difference between the theoretical power rates and the 

empirical power rates for MML and MCMC decreased as the sample size and DIF 

magnitude increased.  

Empirical power results. The graphical analyses of effects by test length, number 

of DIF items, sample size, and DIF magnitude on the average empirical power rates of 

MML and MCMC are shown in Figures 4.9 through 4.12. Figures 4.9 and 4.10 show that 

sample size affected the empirical power rates especially with the low DIF conditions. 

The figures show that the small sample (R1,000/F1,000) had lower empirical power rates 

than other sample sizes did in the low DIF magnitude condition. However, the large 

sample (R5,000/F5,000) had higher empirical power rates than other sample size 

conditions in the low DIF magnitude; all test conditions for MML and MCMC produced 

excellent power rates (1.0).  

For the medium DIF magnitude, the empirical power rates of all test conditions 

for MML and MCMC resulted in close to perfect power rates (above 0.90–1.0) regardless 

of sample size. Under the medium uniform with four DIF conditions (shown in Figure 

4.9), the empirical power rates of small sample design (R1,000/F1,000) with both test 

lengths conditions for MML and MCMC were close to perfect (1.0). For all other 

medium uniform with eight DIF conditions (shown in Figure 4.10), the empirical power 

rates for all DIF conditions were 1.0 except for the 24-item test in medium 

(R3,000/F3,000 and R4,000/F2,000) and large (R5,000/F5,000) sample size conditions.



81 
 

 

Table 4.9  

 

Power Results for the M-2PL in the 24- item Test Conditions with 4 Uniform DIF Items (.17 DIF) 
 

 Balanced Unbalanced 

Sample Size 
R1000/F1000 R3000/F3000 R5000/F5000  R4000/F2000 

.05   .05   .05    .05    

DIF Type 
DIF 

Item 
MMLa MCMCa MMLa MCMCa MMLa MCMCa Average MMLa MCMCa Average 

Low 

Uniform 

21 .24 (.52) .94 (.45) .84 (.95) .99 (.94) 1.0 (1.0) 1.0 (1.0) .84 (.81) .95 (.92) 1.0 (.95) .98 (.94) 

22 .13 (.53) .93 (.51) .87 (.99) 1.0 (.96) 1.0 (1.0) 1.0 (1.0) .82 (.83) .95 (.89) 1.0 (.97) .98 (.93) 

23 .18 (.56) .89 (.58) .91 (.97) .99 (.97) 1.0 (1.0) 1.0 (1.0) .83 (.85) .98 (.98) .99 (.88)  .99 (.93) 

24 .12 (.43) .83 (.45) .85 (.96) 1.0 (.87) 1.0 (1.0) 1.0 (.99) .80 (.78) .94 (.91) 1.0 (.85) .97 (.88) 

Average  .17 (.51) .90 (.50) .87 (.97) 1.0 (.94) 1.0 (1.0) 1.0 (1.0)  .96 (.93) 1.0 (.91)  

Medium 

Uniform 

21 .90 (.99) 1.0 (.93) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .98 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

22 .84 (.96) 1.0 (.97) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .97 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

23 .96 (.98) 1.0 (.97) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .99 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

24 .87 (.97) 1.0 (.96) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .98 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

Average  .89 (.98) 1.0 (.96) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)  1.0 (1.0) 1.0 (1.0)  

Note. MML = marginal maximum likelihood; MCMC = Markov chain Monte Carlo; DIF = differential item functioning. 
aThe first value in each column represents the proportion of significant Wald test statistics from the theoretical distribution, whereas the second 

value in the parenthesis indicates the proportion of significant Wald test statistics from the empirical distribution. 
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Table 4.10  

 

Power Results for the M-2PL in the 24- item Test Conditions with 8 Uniform DIF Items (.30 DIF) 
 

 Balanced Unbalanced 

Sample Size 
R1000/F1000 R3000/F3000 R5000/F5000  R4000/F2000 

.05   .05   .05    .05    

DIF Type 
DIF 

Item 
MMLa MCMCa MMLa MCMCa MMLa MCMCa Average MMLa MCMCa Average 

Low 

Uniform 

17 .22 (.57) .93 (.77) .88 (.97) 1.0 (.92) 1.0 (1.0) 1.0 (1.0) .84 (.87) .96 (.95) .99 (.76) .99 (.90) 

18 .15 (.43) .91 (.33) .93 (1.0) 1.0 (.95) 1.0 (1.0) 1.0 (1.0) .83 (.79) .99 (.95) 1.0 (.85) .99 (.94) 

19 25 (.50) .88 (.57) .82 (.99) 1.0 (.95) 1.0 (1.0) 1.0 (1.0) .83 (.84) 1.0 (1.0) 1.0 (.82) 1.0 (.96) 

20 .19 (.57) .85 (.47) .83 (.96) 1.0 (.88) 1.0 (1.0) 1.0 (1.0) .81 (.81) 1.0 (1.0) .99 (.86) .99 (.91) 

21 .23 (.48) .90 (.55) .84 (.91) .99 (.95) 1.0 (1.0) 1.0 (1.0) .83 (.82) 1.0 (.99) .99 (.88) 1.0 (.89) 

22 .21 (.61) .98 (.79) .90 (.99) .99 (.97) 1.0 (1.0) 1.0 (.99) .85 (.89) 1.0 (.99) 1.0 (.90) .99 (.89) 

23 .16 (.42) .84 (.43) .91 (.98) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) .82 (.80) .90 (.84) .98 (.56) .97 (.84) 

24 .21 (.53) .92 (.41) .90 (.96) .99 (.89) 1.0 (1.0) 1.0 (.99) .84 (.80) .85 (.83) .98 (.45) .94 (.84) 

Average  .20 (.51) .90 (.54) .88 (.97) 1.0 (.94) 1.0 (1.0) 1.0 (1.0)  .96 (.94) .99 (.76)  

Medium 

Uniform 

17 .90 (1.0) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .98 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)) 

18 .91 (.98) 1.0 (.94) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .99 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

19 .96 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .99 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

20 .95 (.99) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .99 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

21 .91 (1.0) 1.0 (.97) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .99 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

22 .90 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .98 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

23 .85 (.95) 1.0 (.91) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .98 (.98) 1.0 (1.0) 1.0 (.99) 1.0 (1.0) 

24 .84 (.98) 1.0 (.93) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .97 (.99) 1.0 (1.0) 1.0 (.99) 1.0 (1.0) 

Average  .90 (.99) 1.0 (.97) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)  1.0 (1.0) 1.0 (1.0)  

Note. MML = marginal maximum likelihood; MCMC = Markov chain Monte Carlo; DIF = differential item functioning. 
aThe first value in each column represents the proportion of significant Wald test statistics from the theoretical distribution, whereas the second value in the 

parenthesis indicates the proportion of significant Wald test statistics from the empirical distribution. 
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Table 4.11  

 

Power Results for the M-2PL in the 46- item Test Conditions with 4 Uniform DIF Items (.10 DIF) 
 

 Balanced Unbalanced 

Sample Size 
R1000/F1000 R3000/F3000 R5000/F5000  R4000/F2000 

.05   .05   .05    .05    

DIF Type 
DIF 

Item 
MMLa MCMCa MMLa MCMCa MMLa MCMCa Average MMLa MCMCa Average 

Low 

Uniform 

43 .13 (.38) .98 (.45) .92 (.97) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) .84 (.80) .99 (.99) 1.0 (.88) 1.0 (.94) 

44 .16 (.45) .89 (.62) .88 (1.0) 1.0 (.98) 1.0 (1.0) 1.0 (1.0) .82 (.84) 1.0 (1.0) 1.0 (.92) 1.0 (.96) 

45 .17 (.40) .91 (.52) .92 (.94) 1.0 (.94) 1.0 (1.0) 1.0 (1.0) .83 (.80) .99 (.99) .98 (.85)  .99 (.92) 

46 .11 (.30) .85 (.46) .85 (.86) .99 (.89) 1.0 (1.0) 1.0 (1.0) .80 (.75) .90 (.89) 1.0 (.80) .95 (.85) 

Average  .14 (.38) .91 (.51) .89 (.94) 1.0 (.95) 1.0 (1.0) 1.0 (1.0)  .97 (.97) 1.0 (.86)  

Medium 

Uniform 

43 .94 (.97) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .99 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

44 .89 (.97) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .98 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

45 .88 (.96) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .98 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

46 .80 (.92) 1.0 (.97) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .97 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

Average  .88 (.96) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)  1.0 (1.0) 1.0 (1.0)  

Note. MML = marginal maximum likelihood; MCMC = Markov chain Monte Carlo; DIF = differential item functioning. 
aThe first value in each column represents the proportion of significant Wald test statistics from the theoretical distribution, whereas the second 

value in the parenthesis indicates the proportion of significant Wald test statistics from the empirical distribution. 
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Table 4.12  

 

Power Results for the M-2PL in the 46- item Test Conditions with 8 Uniform DIF Items (.17 DIF) 
 

 Balanced Unbalanced 

Sample Size 
R1000/F1000 R3000/F3000 R5000/F5000  R4000/F2000 

.05   .05   .05    .05    

DIF Type 
DIF 

Item 
MMLa MCMCa MMLa MCMCa MMLa MCMCa Average MMLa MCMCa Average 

Low 

Uniform 

39 .11 (.47) .89 (.57) .86 (.96) 1.0 (.94) 1.0 (1.0) 1.0 (1.0) .81 (.82) .99 (.96) .98 (.84) .99 (.90) 

40 .13 (.42) .88 (.52) .94 (.97) 1.0 (.97) 1.0 (1.0) 1.0 (1.0) .83 (.81) .99 (.98) .99 (.89) .99 (.94) 

41 .13 (.43) .89 (.82) .90 (.99) 1.0 (.96) .99 (.98) 1.0 (1.0) .82 (.86) 1.0 (1.0) .99 (.92) 1.0 (.96) 

42 .12 (.53) .93 (.47) .86 (.93) 1.0 (.85) 1.0 (1.0) 1.0 (.99) .82 (.80) 1.0 ( .99) .97 (.82) .99 (.91) 

43 .11 (.24) .90 (.60) .88 (.99) 1.0 (.95) 1.0 (1.0) 1.0 (1.0) .82 (.80) 1.0 (.98) .99 (.79) 1.0 (.89) 

44 .15 (.52) .95 (.66) .89 (.98) 1.0 (.96) 1.0 (1.0) 1.0 (1.0) .83 (.85) .99 (.98) .99 (.79) .99 (.89) 

45 .08 (.38) .92 (.62) .82 (.95) 1.0 (.91) 1.0 (1.0) 1.0 (1.0) .80 (.81) .94 (.91) .99 (.76) .97 (.84) 

46 .13 (.34) .90 (.43) .85 (.99) 1.0 (.95) 1.0 (1.0) 1.0 (1.0) .81 (.79) .88 (.80) .99 (.87) .94 (.84) 

Average  .12 (.42) .91 (.59) .88 (.97) 1.0 (.94) 1.0 (1.0) 1.0 (1.0)  .97 (.95) .99 (.84)  

Medium 

Uniform 

39 .84 (.98) 1.0 (.97) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .97 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)) 

40 .89 (.99) 1.0 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .98 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

41 .84 (.94) 1.0 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .97 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

42 .84 (.97) .99 (.92) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .97 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

43 .86 (.94) 1.0 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .98 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

44 .90 (.97) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .98 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

45 .82 (.99) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .97 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

46 .76 (.92) 1.0 (.95) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .96 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

Average  .84 (.90) 1.0 (.97) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)  1.0 (1.0) 1.0 (1.0)  

Note. MML = marginal maximum likelihood; MCMC = Markov chain Monte Carlo; DIF = differential item functioning. 
aThe first value in each column represents the proportion of significant Wald test statistics from the theoretical distribution, whereas the second value in the 

parenthesis indicates the proportion of significant Wald test statistics from the empirical distribution. 
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 Figures 4.9 and 4.10 also show that test length affected the empirical power rates 

for certain sample size conditions such as R1,000/F,1000 and R4,000/F2,000. In the 

R1,000/F1,000 sample conditions, lower empirical power rates from MML are shown as 

the test length increased, whereas higher empirical power rates from MCMC are shown 

as the test length increased. In the R4,000/F2,000 unbalanced sample conditions, there is 

an inconsistency across the number of DIF item conditions. For the four DIF item 

conditions, the empirical power rates of the 46-item test were higher than that of the 24-

item test for MML, whereas the empirical power rates of the 24-item test were higher 

than those of the 46-item test for MCMC in Figure 4.9. In contrast, for the eight DIF item 

conditions, the empirical power rates of the 46-item test were higher than those of the 24-

item test for MML and MCMC, as shown in Figure 4.10.  

 In summary, sample size and DIF magnitude had a distinctive impact on the 

empirical power rates as expected. Regardless of all other factors, the average empirical 

power rates of medium DIF magnitude were higher than the average empirical power 

rates of low DIF magnitude across all uniform DIF conditions. Furthermore, the graphs in 

Figures 4.9 through 4.10 illustrate that the test length noticeably affects the results of two 

sample size conditions, R1,000/F1,000 and R4,000/F2,000 in low uniform conditions.  

 Regarding the total sample size comparison of 6,000, the balanced sample design 

(R3,000/F3,000) with the (1:1) ratio condition and the unbalanced sample design 

(R4,000/F2,000) with the (2:1) ratio condition are compared in Figures 4.11 and 4.12. 

There is no clear pattern between the balanced and unbalanced sample designs in terms of 

the empirical power rates of the MML and MCMC estimation methods under uniform 

DIF conditions. High (i.e., above 0.85) empirical power rates for all sample design 
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conditions were found across all DIF conditions for MML and MCMC except for the 24-

item test with the eight DIF item condition for the unbalanced sample design 

(R4,000/F2,000) using MCMC in Figure 4.12, which shows the lowest empirical power 

rates (around 0.75) of all other low uniform DIF conditions. Overall, when the sample 

size ratio was balanced (1:1), excellent power rates (above 0.90) were acquired from 

MML and MCMC for detecting DIF across uniform DIF conditions. However, when the 

sample size ratio was unbalanced (2:1), sufficient power rates (above 0.80) were obtained 

from MML and MCMC for detecting DIF with the exception with the 24-item test with 

eight DIF condition from MCMC. MML performed better than MCMC on average. 

Considering these results of uniform DIF conditions in terms of the sample design effect, 

MML seems to be a better choice for detecting DIF for balanced and unbalanced sample 

size DIF situations. 
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Figure 4.9. Average Power Rates of M-2PL by Test Length, the Number of DIF Items  

(4 DIF), and Sample Size with Low and Medium Uniform DIF Conditions  

 

 

 

Figure 4.10. Average Power Rates of M-2PL by Test Length, the Number of DIF Items  

(8 DIF), and Sample Size with Low and Medium Uniform DIF Conditions  
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Figure 4.11. Average Power Rates of Low and Medium Uniform DIF with 4 DIF Items 

Conditions of the M-2PL between (R3000/F3000) and (R4000/F2000) 

 

 

  

 

Figure 4.12. Average Power Rates of Low and Medium Uniform DIF with 8 DIF Items 

form the M-2PL between (R3000/F3000) and (R4000/F2000) 
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 Nonuniform DIF Results. Theoretical vs. empirical power rates. Tables 4.13 

through 4.16 list the power results for nonuniform DIF conditions determined with the 

theoretical and empirical power rates calculated using 
2  (df = 3) for the DIF magnitude, 

test length, number of DIF items, and sample size conditions, respectively. Similar to the 

performance of the uniform DIF detection, the average empirical power rates for Lord’s 

Wald test from MCMC were lower than the theoretical power rates for detecting 

nonuniform DIF. However, the average empirical power rates from MML were higher 

than the theoretical power rates. 

The theoretical and empirical power rates of the 24-item test with four DIF items 

in low and medium nonuniform DIF conditions shown in Table 4.13 were substantially 

different for two estimation methods, MML and MCMC. Similar to the uniform DIF 

conditions, the theoretical power rates of MCMC in the nonuniform DIF conditions were 

higher than the empirical rates especially with the small sample (R1,000/F1,000). For 

example, in the case of the low nonuniform DIF condition with the 24-item test in 

R1,000/F1,000, as shown in Table 4.13, the average theoretical power rates vs. the 

average empirical power rates were 0.83 vs. 0.37 for MCMC. Tables 4.14 through 4.16 

report power rates for the 24-item test with eight DIF items (.30 DIF), the 46-item test 

with four DIF items (.10 DIF), and the 46-item test with eight DIF items (.17 DIF) in 

terms of DIF magnitude for nonuniform DIF conditions. The average theoretical power 

rates vs. the average empirical power rates from MCMC in the low nonuniform DIF 

condition with a small sample (R1,000/F,1000) were 0.81 vs. 0.39, 0.89 vs. 0.38, and 

0.87 vs. 0.45, respectively. A similar pattern was found in the medium DIF conditions 

shown in Tables 4.13 through 4.16. For example, the average theoretical power rates vs. 
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the average empirical power rates from MCMC for the 24-item test with four DIF items, 

the 28-item test with eight DIF items, the 46-item test with four DIF items, and the 46-

item test with eight DIF items were 0.98 vs. 0.81, 0.96 vs. 0.78, 0.99 vs. 0.82, and 0.98 vs. 

0.86, respectively. The average empirical power rates of the medium DIF magnitude 

conditions were higher than those of the low DIF magnitude conditions irrespective of all 

other factors. Similar to the uniform DIF conditions, the degree of increase was much 

smaller than that of the low DIF conditions from MCMC. 

In contrast, the theoretical power rates of MML tended to be underestimated 

under nonuniform DIF conditions, compared to the empirical power rates. For example, 

for the 24-item test with four DIF items (.17 DIF), the 24-item test with eight DIF items 

(.30 DIF), the 46-item test with four DIF items (.10 DIF), and the 46-item test with eight 

DIF items (.17 DIF) for low nonuniform DIF conditions, the average theoretical power 

rates vs. the average empirical power rates of R1,000/F1,000 from MML were 0.33 vs. 

0.63, 0.35 vs. 0.67, 0.39 vs. 0.64, and 0.39 vs. 0.70, respectively. For the medium 

nonuniform DIF conditions, the pattern was similar to the low nonuniform DIF 

conditions shown in Tables 4.13 through 4.16. For example, the average theoretical 

power rates vs. the average empirical power rates of R1,000/F1,000 from MML for the 

24-item test with four DIF items, the 24-item test with eight DIF items, the 46-item test 

with four DIF items, and the 46-item test with eight DIF items were 0.93 vs. 0.97, 0.92 vs. 

0.98, 0.93 vs. 0.98, and 0.96 vs.0.99, respectively. Similar to MCMC, the degree of 

increase from MML was also much smaller than that of the low nonuniform DIF 

conditions. Overall, the difference between the theoretical power rates and the empirical 
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power rates of MML and MCMC decreased as the sample size and DIF magnitude 

increased.  

Empirical power results. For easier interpretation of Tables 4.13 to 4.16, Figures 

4.13 through 4.16 illustrate the average empirical power results for nonuniform DIF of 

M-2PL that used MML and MCMC. As shown in Figures 4.13 and 4.14, the sample sizes 

affected the empirical power rates. The small sample (R1,000/F1,000) had lower 

empirical power rates than the other sample size in the low DIF magnitude condition. The 

large sample (R5,000/F5,000) had higher empirical power rates than the other sample 

size conditions in low DIF magnitude. However, unlike the low uniform DIF in the large 

sample conditions, not all test conditions for MML and MCMC produced excellent 

power rates (1.0). For example, the empirical power rate in the large sample 

(R5,000/F5,000) of the 24-item test with four DIF items in the low nonuniform condition 

shown in Figure 4.13 was slightly insufficient (below 0.80). Compared to the 

performance of the empirical power rates for uniform DIF conditions, the empirical 

power rates for nonuniform DIF conditions for medium and large samples (e.g., 

R3,000/F3,000, R4,000/F2,000, and R5,000/F5,000) were relatively low, especially from 

the MCMC estimation method in low DIF magnitude. For example, in the case of the 

empirical power rates of the 24-item and 46-item test with four DIF items with medium 

samples of R3,000/F3,000 and R4,000/F2,000 conditions for MCMC, the empirical 

power rates were all below 0.80 for low nonuniform DIF condition (Figure 4.13), 

whereas the empirical power rate was around 0.95 for low uniform DIF condition (Figure 

4.11). 
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Table 4.13  

 

Power Results for the M-2PL in the 24- item Test Conditions with 4 Nonuniform DIF Items (.17 DIF) 
 

 Balanced Unbalanced 

Sample Size 
R1000/F1000 R3000/F3000 R5000/F5000  R4000/F2000 

.05   .05   .05    .05    

DIF Type 
DIF 

Item 
MMLa MCMCa MMLa MCMCa MMLa MCMCa Average MMLa MCMCa Average 

Low 

Non- 

uniform 

21 .25 (.61) .87 (.36) 1.0 (1.0) 1.0 (.95) 1.0 (1.0) 1.0 (1.0) .85 (.82) .97 (.95) 1.0 (.80) .99 (.88) 

22 .52 (.76) .86 (.36) 1.0 (1.0) 1.0 (.89) 1.0 (1.0) 1.0 (1.0) .90 (.84) 1.0 (1.0) 1.0 (.90) 1.0 (.95) 

23 .37 (.78) .93 (.62) 1.0 (1.0) 1.0 (.97) 1.0 (1.0) 1.0 (1.0) .88 (.90) 1.0 (1.0) 1.0 (.82) 1.0 (.91) 

24 .16 (.36) .67 (.13) .83 (.93) .78 (.15) 1.0 (1.0) .92 (.15) .73 (.45) .78 (.71) .77 (.24) .78 (.48) 

Average  .33 (.63) .83 (.37) .96 (.98) .95 (.74) 1.0 (1.0) .98 (.79)  .94 (.92) .94 (.69)  

Medium 

Non-

uniform 

21 .96 (.99) 1.0 (.90) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .99 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

22 .99 (.99) 1.0 (.89) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .99 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

23 .99 (1.0) 1.0 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

24 .78 (.88) .91 (.45) 1.0 (1.0) 1.0 (.87) 1.0 (1.0) 1.0 (.85) .95 (.84) 1.0 (1.0) 1.0 (.83) .99 (.81) 

Average  .93 (.97) .98 (.81) 1.0 (1.0) 1.0 (.97) 1.0 (1.0) 1.0 (.96)  1.0 (1.0) 1.0 (.96)  

Note. MML = marginal maximum likelihood; MCMC = Markov chain Monte Carlo; DIF = differential item functioning. 
aThe first value in each column represents the proportion of significant Wald test statistics from the theoretical distribution, whereas the second 

value in the parenthesis indicates the proportion of significant Wald test statistics from the empirical distribution. 
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Table 4.14  

 

Power Results for the M-2PL in the 24- item Test Conditions with 8 Nonuniform DIF item (.30 DIF) 
 

 Balanced Unbalanced 

Sample Size 
R1000/F1000 R3000/F3000 R5000/F5000  R4000/F2000 

.05   .05   .05    .05    

DIF Type 
DIF 

Item 
MMLa MCMCa MMLa MCMCa MMLa MCMCa Average MMLa MCMCa Average 

Low 

Non- 

uniform 

17 .35 (.72) .91 (.63) .94 (1.0) 1.0 (.85) 1.0 (1.0) 1.0 (1.0) .87 (.87) .96 (.95) .99 (.81) 1.0 (.96) 

18 .32 (.58) .83 (.22) .93 (.98)  1.0 (.86) 1.0 (1.0) 1.0 (1.0) .85 (.77) .99 (.95) .99 (.82) 1.0 (.91) 

19 .48 (.81) .85 (.52) .99 (1.0) .99 (.90) 1.0 (1.0) 1.0 (1.0) .89 (.87) 1.0 (1.0) 1.0 (.76) 1.0 (.94) 

20 .48 (.87) .91 (.42) 1.0 (1.0) 1.0 (.78) 1.0 (1.0) 1.0 (1.0) .90 (.85) 1.0 (1.0) .98 (.91) 1.0 (.91) 

21 .46 (.82) .95 (.50) .97 (.99) 1.0 (.91) 1.0 (1.0) 1.0 (1.0) .90 (.87) 1.0 (.99) .99 (.84) 1.0 (.92) 

22 .41 (.75) .91 (.72) 1.0 (1.0) 1.0 (.96) 1.0 (1.0) 1.0 (1.0) .89 (.91) 1.0 (.99) .99 (.83) 1.0 (.94) 

23 .14 (.35) .48 (.04) .74 (.90) .76 (.32) 1.0 (1.0) .96 (.56) .68 (.53) .90 (.84) .83 (.11) .94 (.61) 

24 .12 (.43) .61 (.06) .75 (.92) .80 (.29) 1.0 (1.0) .88 (.10) .69 (.47) .85 (.83) .73 (.08) .90 (.64) 

Average  .35 (.67) .81 (.39) .92 (.97) .94 (.73) 1.0 (1.0) .98 (.83)  .96 (.94) .94 (.65)  

Medium 

Non-

uniform 

17 .94 (.99) .99 (.97) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .99 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

18 .97 (1.0) 1.0 (.83) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (.97) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

19 1.0 (1.0) 1.0 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

20 1.0 (1.0) 1.0 (.96) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

21 .99 (1.0) 1.0 (.96) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

22 .98 (1.0) .99 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

23 .72 (.94) .88 (.27) 1.0 (1.0) .99 (.79) 1.0 (1.0) 1.0 (.98) .93 (.83) 1.0 (1.0) .99 (.58) 1.0 (.91) 

24 .75 (.89) .84 (.31) 1.0 (1.0) .99 (.78) 1.0 (1.0) 1.0 (.83) .93 (.80) 1.0 (1.0) 1.0 (.50) 1.0 (.93) 

Average  .92 (.98) .96 (.78) 1.0 (1.0) 1.0 (.95) 1.0 (1.0) 1.0 (.98)  1.0 (1.0) 1.0 (.89)  

Note. MML = marginal maximum likelihood; MCMC = Markov chain Monte Carlo; DIF = differential item functioning. 
aThe first value in each column represents the proportion of significant Wald test statistics from the theoretical distribution, whereas the second value in the 

parenthesis indicates the proportion of significant Wald test statistics from the empirical distribution. 
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Table 4.15  

 

Power Results for the M-2PL in the 46- item Test Conditions with 4 Nonuniform DIF Items (.10 DIF) 
 

 Balanced Unbalanced 

Sample Size 
R1000/F1000 R3000/F3000 R5000/F5000  R4000/F2000  

.05   .05   .05    .05    

DIF Type 
DIF 

Item 
MMLa MCMCa MMLa MCMCa MMLa MCMCa Average MMLa MCMCa Average 

Low 

Non- 

uniform 

43 .28 (.56) .94 (.39) .96 (1.0) 1.0 (.95) 1.0 (1.0) 1.0 (1.0) .86 (.82) .99 (.99) .99 (.92) .99 (.96) 

44 .52 (.73) .95 (.48) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .91 (.87) 1.0 (1.0) .99 (.93) 1.0 (.97) 

45 .45 (.72) .95 (.45) .99 (.99) 1.0 (.96) 1.0 (1.0) 1.0 (1.0) .90 (.85) .99 (.99) .99 (.88) .99 (.94) 

46 .31 (.53) .70 (.18) .82 (.88) .80 (.24) 1.0 (1.0) .86 (.51) .75 (.56) .90 (.89) .86 (.19) .88 (.54) 

Average  .39 (.64) .89 (.38) .94 (.97) .95 (.79) 1.0 (1.0) .97 (.88)  .97 (.97) .96 (.73)  

Medium 

Non-

uniform 

43 .89 (.96) 1.0 (.90) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .98 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

44 1.0 (1.0) 1.0 (.98) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

45 .98 (1.0) 1.0 (.93) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

46 .86 (.96) .95 (.47) 1.0 (1.0) .99 (.73) 1.0 (1.0) .99 (.91) .97 (.85) 1.0 (1.0) .98 (.61) .99 (.81) 

Average  .93 (.98) .99 (.82) 1.0 (1.0) 1.0 (.93) 1.0 (1.0) 1.0 (.98)  1.0 (1.0) 1.0 (.90)  

Note. MML = marginal maximum likelihood; MCMC = Markov chain Monte Carlo; DIF = differential item functioning. 
aThe first value in each column represents the proportion of significant Wald test statistics from the theoretical distribution, whereas the second 

value in the parenthesis indicates the proportion of significant Wald test statistics from the empirical distribution. 
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Table 4.16  

 

Power Results for the M-2PL in the 46-item Test Conditions with 8 Nonuniform DIF item (.17 DIF) 

 

 Balanced Unbalanced 

Sample Size 
R1000/F1000 R3000/F3000 R5000/F5000  R4000/F2000  

.05   .05   .05    .05    

DIF Type 
DIF 

Item 
MMLa MCMCa MMLa MCMCa MMLa MCMCa Average MMLa MCMCa Average 

Low 

Non- 

uniform 

39 .35 (.68) .88 (.52) .99 (1.0) .99 (.96) 1.0 (1.0) 1.0 (1.0) .87 (.86) 1.0 (1.0) 1.0 (.91) 1.0 (.96) 

40 .29 (.62) .89 (.46) .99 (.99) .99 (.95) 1.0 (1.0) 1.0 (.99) .86 (.67) 1.0 (1.0) .99 (.82) 1.0 (.91) 

41 .49 (.78) .91 (.57) 1.0 (1.0) 1.0 (.97) 1.0 (1.0) 1.0 (.99) .90 (.89) 1.0 (1.0) 1.0 (.88) 1.0 (.94) 

42 .43 (.86) .94 (.36) 1.0 (1.0) 1.0 (.88) 1.0 (1.0) 1.0 (1.0) .90 (.85) 1.0 (1.0) .99 (.81) 1.0 (.91) 

43 .53 (.72) .99 (.79) 1.0 (1.0) 1.0 (.95) 1.0 (1.0) 1.0 (1.0) .92 (.91) 1.0 (1.0) 1.0 (.83) 1.0 (.92) 

44 .46 (.85) .95 (.57) 1.0 (1.0) 1.0 (.98) 1.0 (1.0) 1.0 (1.0) .90 (.90) 1.0 (1.0) 1.0 (.87) 1.0 (.94) 

45 .27 (.52) .67 (.29) .85 (.97) .83 (.38) 1.0 (1.0) .88 (.47) .75 (.61) 1.0 (1.0) .88 (.22) .94 (.61) 

46 .26 (.59) .69 (.07) .89 (.93) .91 (.34) 1.0 (1.0) .86 (.42) .77 (.56) 1.0 (1.0) .80 (.28) .90 (.64) 

Average  .39 (.70) .87 (.45) .97 (.97) .95 (.80) 1.0 (1.0) .97 (.86)  1.0 (1.0) .96 (.70)  

Medium 

Non-

uniform 

39 .96 (1.0) 1.0 (.95) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .99 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

40 .95 (1.0) 1.0 (.95) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) .99 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

41 1.0 (1.0) 1.0 (.95) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (.99) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

42 1.0 (1.0) 1.0 (.90) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (.98) 1.0 (1.0) 1.0 (.99) 1.0 (1.0) 

43 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

44 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 

45 .91 (.95) .96 (.66) 1.0 (1.0) 1.0 (.77) 1.0 (1.0) 1.0 (.93) .98 (.89) 1.0 (1.0) .99 (.81) 1.0 (.91) 

46 .86 (.97) .90 (.49) 1.0 (1.0) .99 (.78) 1.0 (1.0) 1.0 (.91) .96 (.86) 1.0 (1.0) 1.0 (.86) 1.0 (.93) 

Average  .96 (.99) .98 (.86) 1.0 (1.0) 1.0 (.94) 1.0 (1.0) 1.0 (.98)  1.0 (1.0) .96 (.96)  

Note. MML = marginal maximum likelihood; MCMC = Markov chain Monte Carlo; DIF = differential item functioning. 
aThe first value in each column represents the proportion of significant Wald test statistics from the theoretical distribution, whereas the second value in the 

parenthesis indicates the proportion of significant Wald test statistics from the empirical distribution. 
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For the medium DIF magnitude, the empirical power rates of all test conditions 

for MML and MCMC resulted in sufficient power rates (above 0. 80) regardless of 

sample size. However, one exception was shown in the empirical power rate of the 24-

item test with eight DIF items condition of R1,000/F1,000 from MCMC and was below 

0.80, as shown in Figure 4.14.  

 In general, the empirical power rates of the eight DIF item conditions were 

slightly lower than the four DIF item conditions in nonuniform low and medium DIF 

conditions. Most apparent from Figures 4.13 and 4.14 is that MML provided substantially 

higher power rates than MCMC. Similar to the uniform DIF conditions, the effect of test 

length was also associated with the higher power rates on two sample size conditions, 

R1,000/F,1000 and R4,000/F2,000 in low and medium nonuniform DIF conditions for 

MML and MCMC. However, the overall effect of the number of DIF items on the 

nonuniform conditions was inconsistent. As also shown in Tables 4.13 through 4.16, the 

power rates for detecting nonuniform DIF using MML slightly increased as the number 

of DIF items increased from four to eight. However, the power rates for MCMC slightly 

decreased from four DIF items to eight DIF items in the 46-item test condition of 

R5,000/F5,000,whereas the power rates increased in the 24-item test condition of 

R5,000/F5,000. As expected, the results showed that power increased as the DIF 

magnitude increased from low to medium for MML and MCMC in nonuniform 

conditions. 
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Figure 4.13. Average Power Rates of M-2PL by Test Length, the Number of DIF Items  

(4 DIF), and Sample Size with Low and Medium Nonuniform DIF Condition 

 

 

 

Figure 4.14. Average Power Rates of M-2PL by Test Length, the Number of DIF Items  

(8 DIF), and Sample Size with Low and Medium Nonuniform DIF Conditions  
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 Regarding the total sample comparison of 6,000, the balanced sample design 

(R3,000/F3,000) with a (1:1) ratio and the unbalanced sample design (R4,000/F2,000) 

with (2:1) ratio conditions were compared and are shown in Figures 4.15 and 4.16. In 

general, higher power rates were observed in the balanced design than in the unbalanced 

design especially with low nonuniform DIF with MCMC. Among all nonuniform DIF 

conditions, the 24-item test with eight DIF item condition in the unbalanced sample 

design (R4,000/F2,000) using MCMC had the lowest  power rates (around 0.65). Similar 

to the low uniform condition, the 46-item test with four DIF item condition in the 

unbalanced sample design (R4,000/F2,000) using MCMC had the lowest empirical power 

rates in low nonuniform DIF, but was very powerful (over 0.85). Unlike the medium 

uniform DIF condition, the lowest empirical power rates of medium nonuniform DIF 

were found in the R4,000/F2,000 sample. The larger DIF magnitude (medium DIF) 

resulted in higher power rates across all uniform and nonuniform DIF conditions 

regardless of the sample size ratio.  

 Overall, when the sample size ratio was balanced (1:1) or unbalanced (2:1), 

excellent power rates (above 0.95) were acquired from MML across nonuniform DIF 

conditions. However, when the sample size was balanced (1:1), slightly insufficient 

power rates (below 0.80) were obtained from MCMC, and when the sample size was 

unbalanced (2:1), insufficient power rates (below 0.70) were obtained from MCMC in 

nonuniform DIF conditions. Considering these results of nonuniform DIF conditions in 

terms of the total sample size effect, similar to the uniform DIF conditions, MML seems 

to be a better choice for detecting DIF for balanced and unbalanced sample size DIF 

situations. 
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Figure 4.15. Average Power Rates of Low and Medium Nonuniform DIF Conditions 

with 4 DIF Items in M-2PL 

 

 

  

Figure 4.16. Average Power Rates of Low and Medium Nonuniform DIF Conditions 

with 8 DIF Items in M-2PL 
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 4.4.2 The M-3PL Results.  

 Uniform DIF Results. Theoretical vs. empirical power rates. Tables 4.17 through 

4.18 list the power results for uniform DIF conditions for M-3PL determined with 

theoretical and the empirical power rates calculated using 
2  (df = 4) for the DIF 

magnitude, test length, and number of DIF items, respectively. Similar to the 

performance of uniform DIF detection for M-2PL, the average empirical power rates of 

Lord’s Wald test for MCMC were lower than that for MML. The theoretical and 

empirical power rates of the 24-item test with four DIF items in low and medium uniform 

DIF conditions shown in Table 4.17 were substantially different for two estimation 

methods, MML and MCMC. Unlike the M-2PL, the theoretical power rates for MML 

were higher than the empirical power rates except for the 24-item test with four DIF 

items in low uniform DIF conditions. The theoretical power rates for MCMC in the 

uniform DIF conditions were higher than the empirical power rates, especially with the 

low DIF magnitude. For example, in the case of the 24-item test with four DIF items in 

the R3,000/F3,000 condition, as shown in Table 4.17, the average theoretical power rates 

vs. the average empirical power rates of low DIF from MCMC were 0.94 vs. 0.62, 

whereas the average power rates of medium DIF were 0.94 vs. 0.92. Unlike the low DIF 

conditions, the difference between the theoretical and empirical power rates was almost 

zero under the medium DIF conditions from MML and MCMC. For both methods, the 

average empirical power rates of the medium DIF magnitude conditions were higher than 

those of the low DIF magnitude conditions irrespective of all other factors.  
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Table 4.17  

 

Power Results for the M-3PL in the 24 & 46-item Test Conditions with 4 Uniform DIF 

Items 

  

Sample Size 
R3000/F3000 

.05   

DIF Type 
DIF 

Item 
MMLa MCMCa DIF 

Item 
MMLa MCMCa 

Low 

Uniform 

21 .80 (.95) .88 (.29) 43 .96 (.96) .93 (.78) 

22 .79 (.98) .94 (.82) 44 .96 (.80) .93 (.91) 

23 .89 (.97) .96 (.44) 45 .98 (.97) .91 (.58) 

24 1.0 (1.0) .97 (.92) 46 .86 (.85) .93 (.73) 

Average  .87 (.98) .94 (.62)  .94 (.90) .93 (.75) 

Medium 

Uniform 

21 1.0 (1.0) .93 (.93) 43 1.0 (1.0) .87 (.86) 

22 1.0 (1.0) .97 (.97) 44 1.0 (1.0) .92 (.92) 

23 1.0 (1.0) .91 (.87) 45 1.0 (1.0) .96 (.96) 

24 1.0 (1.0) .93 (.92) 46 1.0 (1.0) .96 (.96) 

Average  1.0 (1.0) .94 (.92)  1.0 (1.0) .93 (.93) 
a The first value in each column represents the proportion of significant Wald test statistics from 

the theoretical distribution, whereas the second value in the parentheses indicates the proportion 

of significant Wald test statistics from the empirical distribution. 

 

Table 4.18  

 

Power Results for the M-3PL in the 24 & 46-item Test Conditions with 8 Uniform DIF 

Items  

 

Sample Size 
R3000/F3000 

.05   

DIF Type 
DIF 

Item 
MMLa MCMCa DIF 

Item 
MMLa MCMCa 

Low 

Uniform 

17 .91 (.95) .93 (.87) 39 .92 (.98) .93 (.81) 

18 .92 (.92) .93 (.54) 40 .92 (1.0) .96 (.90) 

19 .93 (.90) .93 (.51) 41 .95 (.99) .93 (.86) 

20 .95 (.97) .98 (.77) 42 .96 (.36) .94 (.77) 

21 .94 (.87)  .93 (.44) 43 .97 (.90)  .90 (.76) 

22 .92 (.94)  .92 (.86) 44 .99 (.81)  .93 (.62) 
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23 .88 (.74)  .95 (.53) 45 .84 (.25)  .97 (.77) 

24 .89 (.42) .98 (.50) 46 .93 (.78)  .94 (.69) 

Average  .92 (.84) .94 (.63)  .94 (.76) .94 (.77) 

Medium 

Uniform 

17 1.0 (1.0) .93 (.93) 39 1.0 (1.0) .97 (.97) 

18 1.0 (1.0) .92 (.92)  40 1.0 (1.0) .90 (.89) 

19 1.0 (1.0) .94 (.94) 41 1.0 (1.0) .93 (.93) 

20 1.0 (1.0) .96 (.96) 42 1.0 (1.0) .93 (.93) 

21 1.0 (1.0) .95 (.95) 43 1.0 (1.0) .94 (.94) 

22 1.0 (1.0) .96 (.96) 44 1.0 (1.0) .95 (.95) 

23 1.0 (1.0) .94 (.94) 45 1.0 (1.0) .97 (.97) 

24 1.0 (1.0) .97 (.96) 46 1.0 (1.0) .95 (.95) 

Average  1.0 (1.0) .95 (.95)  1.0 (1.0) .94 (.94) 
a The first value in each column represents the proportion of significant Wald test statistics from 

the theoretical distribution, whereas the second value in the parentheses indicates the proportion 

of significant Wald test statistics from the empirical distribution. 

 

 

 Nonuniform DIF Results. Theoretical vs. empirical power rates. Tables 4.19 

through 4.20 list the power results for nonuniform DIF conditions from M-3PL 

determined with theoretical and the empirical power rates calculated using 2  (df = 4) 

for the DIF magnitude, test length, and number of DIF items, respectively. Similar to the 

performance of uniform DIF detection from M-3PL, the average empirical power rates of 

Lord’s Wald test from MCMC were lower than that from MML. The theoretical and 

empirical power rates of the 24-item test with four DIF items in low and medium 

nonuniform DIF conditions shown in Table 4.19 was substantially different for the two 

estimation methods, MML and MCMC. The theoretical power rates of MCMC in the 

nonuniform DIF conditions were notably higher than the empirical power rates, 

especially with the low DIF magnitude, as shown in Tables 4.19 and 4.20. Unlike the M-

2PL results, the theoretical power rates of MML tended to be higher than the empirical 

power rates under the nonuniform DIF conditions except for the 24-item test with four 
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DIF items low condition, as shown in Table 4.19. For the medium nonuniform DIF 

conditions, the difference between the theoretical power rates and the empirical power 

rates were apparent from MCMC, whereas the difference from MML was almost zero, 

the same as the medium uniform conditions. For example, in the medium nonuniform 

DIF conditions, the average theoretical power rates vs. the average empirical power rates 

of R3,000/F3,000 from MML for the 24-item test with four DIF items, the 24-item test 

with eight DIF items, the 46-item test with four DIF items, and the 46-item test with eight 

DIF items were 1.0 vs. 1.0, 1.0 vs. 0.99, 1.0 vs. 1.0, and 1.0 vs. 1.0, respectively. The 

corresponding average theoretical power rates vs. the average empirical power rates of 

from MCMC were 0.93 vs. 0.67, 0.92 vs. 0.69, 0.93 vs. 0.80, and 0.92 vs. 0.65, 

respectively.   

Overall, the average empirical power rates from M-3PL when MML was used 

were higher than the average empirical power rates using MCMC for detecting 

nonuniform DIF. The difference between the theoretical power rates and the empirical 

power rates of MML and MCMC became smaller as DIF magnitude increased from low 

to medium. Similar to the uniform DIF condition, the degrees of increase and decrease 

between the theoretical power rates and the empirical power rates of MML and MCMC 

in the medium DIF conditions were much smaller than that of the low DIF conditions.  
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Table 4.19  

 

Power Results for the M-3PL in the 24 & 46-item Test Conditions with 4 Nonuniform 

DIF Items  

 

Sample Size 
R3000/F3000 

.05   

DIF Type 
DIF 

Item 
MMLa MCMCa DIF 

Item 
MMLa MCMCa 

Low 

Non-uniform 

21 .56 (.68) .85 (.23) 43 .84 (.84) .87 (.47) 

22 .80 (.97) .94 (.43) 44 .97 (.91) .86 (.61) 

23 .72 (.82) .91 (.26) 45 .95 (.95) .86 (.52) 

24 .25 (.33) .61 (.12) 46 .71 (.71) .65 (.17) 

Average  .58 (.70) .83 (.26)  .87 (.85) .81 (.44) 

Medium 

Non-uniform 

21 1.0 (1.0) .95 (.74) 43 1.0 (1.0) .96 (.94) 

22 1.0 (1.0) .97 (.94) 44 1.0 (1.0) .94 (.93) 

23 1.0 (1.0) .98 (.83) 45 1.0 (1.0) .92 (.89) 

24 1.0 (1.0) .83 (.18) 46 1.0 (1.0) .91 (.43) 

Average  1.0 (1.0) .93 (.67)  1.0 (1.0) .93 (.80) 
a The first value in each column represents the proportion of significant Wald test statistics from 

the theoretical distribution, whereas the second value in the parenthesis indicates the proportion 

of significant Wald test statistics from the empirical distribution. 

 

 

Table 4.20  

 

Power Results for the M-3PL in the 24 & 46-item Test Conditions with 8 Nonuniform 

DIF Items  

 

Sample Size 
R3000/F3000 

.05   

DIF Type 
DIF 

Item 
MMLa MCMCa DIF 

Item 
MMLa MCMCa 

Low 

Non- 

uniform 

17 .63 (.68) .93 (.70) 39 .83 (.87) .87 (.52) 

18 .69 (.70) .93 (.35) 40 .81 (.84) .83 (.58) 

19 .83 (.78) .83 (.25) 41 .92 (.96) .87 (.49) 

20 .79 (.85) .91 (.38) 42 .81 (.78)  .91 (.48) 

21 .82 (.77) .94 (.39) 43 .90 (.88)  .95 (.66) 
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22 .77 (.79) .90 (.63) 44 .93 (.90)  .91 (.43) 

23 .37 (.27) .61 (.06) 45 .71 (.51)  .52 (.09) 

24 .38 (.22) .62 (.04) 46 .70 (.65)  .58 (.09) 

Average  .66 (.63) .83 (.35)  .83 (.80) .81 (.42) 

Medium 

Non-uniform 

17 1.0 (1.0) .96 (.96) 39 1.0 (1.0) .90 (.90) 

18 1.0 (1.0) .95 (.83)  40 1.0 (1.0) .92 (.91) 

19 1.0 (1.0) .97 (.79) 41 1.0 (1.0) .92 (.91) 

20 1.0 (1.0) .92 (.87) 42 1.0 (1.0) .95 (.93) 

21 1.0 (1.0) .96 (.90) 43 1.0 (1.0)  .93 (.93) 

22 1.0 (1.0) .95 (.95) 44 1.0 (1.0)  .90 (.85) 

23 .99 (.97) .78 (.12) 45 1.0 (1.0) .92 (.32) 

24 1.0 (.96) .86 (.08) 46 1.0 (1.0) .92 (.41) 

Average  1.0 (.99) .92 (.69)  1.0 (1.0) .92 (.65) 
a The first value in each column represents the proportion of significant Wald test statistics from 

the theoretical distribution, whereas the second value in the parentheses indicates the proportion 

of significant Wald test statistics from the empirical distribution. 

 

 

4.4.3 A Comparison of the M-2PL and M-3PL Results. Figures 4.17 through 4.20 

illustrate the comparison results for M-2PL and M-3PL. Figures 4.17 and 4.18 show the 

comparison results for uniform DIF conditions, and Figures 4.19 and 4.20 show the 

comparison results for nonuniform DIF conditions separately for the medium sample 

(R3,000/F3,000). The power rates of MML were higher than those of MCMC from M-

2PL in uniform DIF conditions. The performance of the average power rates using 

MCMC worsened from the M-2PL (over 0.90) to M-3PL (below 0.80) models, as shown 

in Figures 4.17 and 4.18. In the case of medium DIF magnitude, this pattern was less 

noticeable. The average power rates of MCMC slightly decreased from M-2PL (over 

0.90) to M-3PL (over 0.90), especially for the 24-item test with four DIF items condition 

in the medium uniform DIF condition. The higher power rates were found for the short 

(24 items) test than for the long (46 items) test using MML, whereas the power rates of 
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the longer test (46 items) were higher than those of the short (24 items) test using MCMC 

in low uniform DIF conditions from M-3PL. 

 This decreasing tendency was even more apparent from MCMC in nonuniform 

DIF conditions than in uniform conditions. For example, the average power rates of the 

24-item test with four DIF items in the uniform condition from MCMC decreased 

substantially from the M-2PL (over 0.70) to M-3PL (below 0.30) model. The test length 

factor influenced the M-3PL power rates; the power rates of short test (24-item test) with 

four DIF items using MCMC tended to be the lowest in all nonuniform DIF conditions 

from M-3PL. Unlike the uniform results, the power rates of the longer test (46 items) 

were higher than those of the short (24 items) test using MML and MCMC from M-3PL 

in the low and medium nonuniform DIF conditions. In general, across all simulation 

conditions, the power rates for M-2PL were much higher than those for the M-3PL model 

with the exception of the 24-item test with four DIF items using MML low DIF 

condition. The power rate of MML was much higher than those of MCMC across all DIF 

conditions with the exception of the 46-item test with eight DIF items using MCMC in 

the low uniform condition. No pattern was associated with the number of DIF items.  
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Figure 4.17. Comparison of Power Results of Uniform DIF with 4 Items Conditions  

between M-2PL and M-3PL (R3000/F3000) 

 
 

  
 

Figure 4.18. Comparison of Power Results of Uniform DIF with 8 Items Conditions  

between M-2PL and M-3PL (R3000/F3000) 
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Figure 4.19. Comparison of Power Results of Nonuniform DIF with 4 Items Conditions  

between M-2PL and M-3PL (R3000/F3000) 

 

 

  
 

Figure 4.20. Comparison of Power Results of Nonuniform DIF with 8 Items Conditions  

between M-2PL and M-3PL (R3000/F3000) 
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4.5 Estimation Time 

 The sample size and the test length directly affected the running time of each 

computer program. The MCMC results were possibly affected by the number of 

iterations and burn-in for all items in all conditions (Wollack et al., 2012). For example, 

MML required approximately 3 hours to complete in the R1,000/F1,000 sample 

condition with the 24-item test, whereas MCMC required approximately 12 hours to 

complete 10,000 iterations with 5,000 burn-ins on a computer with 1.80 GHz processor 

speed. The MML required approximately 6 hours to complete the R3,000/F3,000 sample 

with the 24-item test, whereas the MCMC required approximately 38 hours to complete. 

The M-3PL required much longer time. The MML required approximately 13 hours to 

complete the R3,000/F3,000 sample with the 24-item test, whereas the MCMC required 

approximately 80 hours to complete. For both estimation methods, the computational 

times increased linearly as the sample size and test length increased. 
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CHAPTER 5 

REAL DATA ANALYSIS 

 The real data used for this study consisted of a college-level English placement 

test in the University of Wisconsin (UW) system. The placement test helps enrolling 

students select courses and informs English college instructors about student ability 

levels. Only a part of the test (i.e., the 31-item English usage section) was analyzed in this 

study. The item specifications are shown in Table 5.1 (see the second column, “Type,” in 

the table). Each item contains a sentence where a characteristic English usage error has 

been introduced. Each student must select one of the underlined options from the part of 

the sentence that should be corrected or the “No error” category if there is no error.  

 A previous dimensionality analysis of this test by Bolt, Cohen, and Wollack (2001) 

used a mixture nominal response model, and Bolt et al. (2001) found that two dimensions 

(abilities) were present in solving the English usage questions. Later, two dimensions of 

the test were validated again by Bolt and Lall (2003) through a multidimensional latent 

trait model and a M-2PL model. Based on these two studies, one dimension is related to 

detecting punctuation-related errors, and another dimension is associated with word 

usage-related errors. The misplacement of a comma or the failure to use necessary 

punctuation to add clarity to a sentence are examples of punctuation-related errors. The 

use of an incorrect verb tense or pronoun are examples of word usage–related errors. 

Although the item type is specifically defined in terms of the type of error introduced in 

the sentence (see Table 5.1), the ability to detect both types of errors is likely applied 

when the test taker solves any one item in the test. Students will decide one part of the 
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sentence containing the error while also evaluating the other underlined parts as correctly 

specified.  

  In this study, DIF analyses using Lord’s Wald test were conducted for gender 

groups with MML and MCMC. The dataset used in this analysis included a sample of 

2,800 examinees; 1,400 male and 1,400 female examinees were randomly selected based 

on the students’ self-reported gender information. Using the total sample, the M-2PL 

model fitted the data with the total sample of 2,800 examinees using flexMIRT for 

validating dimensional structure found by Bolt et al. (2001) and Bolt and Lall (2003). The 

item parameter estimates under the M-2PL are shown in Table 5.1. To resolve metric 

indeterminacy, the discrimination parameter for the first item on the second dimension 

was fixed to zero (i.e., 12a = 0). The same constraints used in the simulation study were 

applied. 

  A clear association between dimensions and item type is shown in Table 5.1. For 

example, items 1, 3, 4, 9, 13, 18, 19, 21, 22, 23, 25, 26, 30, and 31 were predominantly 

loaded on the first dimension. These items mostly demonstrate punctuation clarity, run-

on, comma splice, and comparison and are more likely to be selected as the correct option 

when the error is punctuation related. At the same time, items 5, 7, 10, 11, 20, 24, 29, 6, 

and 16 were predominantly loaded on the second dimension. These items mostly 

demonstrate verb form, subject-verb agreement, and subordination and are more likely to 

be selected as the correct option when the error is usage related. 
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Table 5.1  

 

Item Specification and M-2PL Item Parameter Estimates for English Usage Data 

 

The original data 

Item Type 1a  2a  da 

1 pn clarity 0.98 0.00 1.08 

2 comparison 0.74 0.79 2.93 

3 tense 0.83 0.56 1.44 

4 run-on 1.56 -0.08 0.50 

5 verb form 0.57 0.82 1.88 

6 diction/idiom 0.46 0.45 -0.50 

7 s-v agree 0.46 0.87 -1.65 

8 subordination 0.85 1.03 1.46 

9 pn clarity 1.29 -0.18 -0.38 

10 diction 0.54 0.91 -0.25 

11 parallelism 0.73 1.00 -1.04 

12 s-v agree 0.97 1.54 -3.17 

13 comma splice 1.14 0.10 -0.04 

14 pronoun agr 0.70 0.17 0.03 

15 verb tense 1.11 0.83 2.24 

16 adv/adj 0.68 0.69 1.05 

17 pn clarity 1.38 -0.27 1.11 

18 comparison 0.86 0.67 -2.46 

19 diction 0.51 0.39 1.06 

20 s-v agree 0.77 1.01 -1.05 

21 parallelism 0.99 0.82 2.27 

22 pn clarity 1.81 -0.21 0.62 

23 adv/adj 0.92 0.77 -2.56 

24 verb form 0.55 0.62 -0.32 

25 frag 0.74 -0.32 0.28 

26 tense 0.63 0.48 0.10 

27 pronoun agr 0.74 0.92 -2.03 

28 pn clarity 1.14 0.00 0.29 

29 s-v agree 0.39 0.72 -1.98 

30 run-on 1.82 -0.27 0.91 

31 verb form 0.75 0.51 -0.54 
a flexMIRT uses the M-2PL model formula with the positive sign for the intercept, whereas 

BMIRT uses the negative sign. Therefore, the negative sign is added to the intercept parameter 

estimates from flexMIRT. 
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 To establish the anchor set of items that did not contain DIF, a “DIF sweep” 

analysis was conducted in flexMIRT for the MML estimation method. A previous study 

by Woods et al. (2013) suggested that the DIF sweep procedure may be the best method 

for establishing anchors for conducting a DIF analysis. The DIF sweep represents a 

“TestAll” procedure in which all items are tested in turn. Each item is treated as a 

candidate item while the other items are treated as anchor items. In the DIF sweep, all 

items are primarily constrained to be equal across groups to obtain conditional population 

distribution estimates. Then each item is freed one by one and finally tested for DIF using 

Lord’s Wald test (Langer, 2008). From the results of the DIF sweep analysis, the anchor 

items are obtained. All items contained in the anchor set should have a p value that is 

larger than the nominal alpha level of 0.05. Eight items (items 2, 8, 12, 14, 15, 17, 27, 

and 28) were excluded from the anchor set because their p value was smaller than the 

critical value of 0.05. These eight items were tested for DIF with the MML and MCMC 

estimation methods.
 

 
The items were rearranged (reordered) to form three clusters as shown in Table 

5.2 for the convenience of analysis, so that first two clusters were placed before the last 

eight studied items. Items in the first two clusters (items 1 through 23) were used as 

anchor items. The three clusters were as follows: (a) The first 14 items (i.e., items 1 

through 14) were selected for the predominant first dimension (i.e., punctuation-related 

errors), (b) the next eight items (i.e., items 15 through 23) were selected for the 

predominant second dimension (i.e., word-usage related errors) and (c) the last eight 

items (i.e., items 24 through 31) were selected as the studied items. These last eight items 
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were identified using the DIF sweep procedure. For the next step, DIF analysis, men were 

designated as the reference group (R) and women as the focal group (F). 

 

Table 5.2  

Item Rearrangement and Item Specification of the English Usage Items 

The rearranged  

Item Number 

The original 

Item Number 
Type 

1 1 pn clarity 

2 3 tense 

3 4 run-on 

4 9 pn clarity 

5 13 comma splice 

6 18 comparison 

7 19 diction 

8 21 parallelism 

9 22 pn clarity 

10 23 frag adv/adj 

11 25 frag 

12 26 tense 

13 30 run-on 

14 31 verb form 

15 5 verb form 

16 7 s-v agree 

17 10 diction 

18 11 parallelism 

19 20 s-v agree 

20 24 verb form 

21 29 s-v agree 

22 6 diction/idiom 

23 16 adv/adj 

24 2 comparison 

25 8 subordination 

26 12 s-v agree 

27 14 pronoun agr 

28 15 verb tense 

29 17 pn clarity 

30 27 pronoun agr 

31 28 pn clarity 
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 The DIF detection results were affected by the accuracy of the parameter recovery; 

thus, parameter estimates and standard errors (SEs) are examined first. The item 

parameters of the M-2PL model were estimated using MML and MCMC for the male and 

female groups. Table 5.3 reports the parameter estimates and corresponding standard 

errors for the anchor items using MML and MCMC separately. For MML, the SEs of the 

discrimination parameter estimates ranged from 0.05 to 0.12 and from 0.03 to 0.10 for 1a  

and 2a , respectively. The SEs of the intercept parameter estimates ranged from 0.04 to 

0.09. For MCMC, the SEs of the discrimination parameter estimates ranged from 0.00 to 

0.29 and from 0.08 to 0.25 for 1a  and 2a , respectively. The SEs of the intercept 

parameter estimates ranged from 0.06 to 0.16.  

 Overall, the SEs of the discrimination and intercept parameter estimates for MML 

were smaller than those for MCMC, which is not consistent with the simulation recovery 

results. The range of the discrimination and intercept parameter estimates for the real 

dataset was narrower than the range of the item parameters used in the simulation study. 

Tables 5.4 through 5.5 show the parameter estimates and corresponding standard errors 

(SEs) of the eight DIF items for the female and male groups using MML and MCMC 

separately. Table 5.4 reports that the SEs of the discrimination parameter estimates for 

the female group in MML ranged from 0.07 to 0.14 and from 0.06 to 0.15 for 1a  and 2a , 

respectively. The SEs of the intercept parameter (d) estimates ranged from 0.06 to 0.18. 

The male group showed similar ranges but with slightly higher values than the female 

group. The SEs of the 1a  parameter for the female group had slightly lower SEs than the 

male group did with the exception of Item 30. This pattern is consistent with the SEs of 

the 2a parameter for the female group across all items with exception of items 28 and 30. 
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The SEs of the c parameter for the female group had slightly lower SEs than the male 

group with exceptions of items 26, 28, and 30.  

 Table 5.5 lists the SEs of the discrimination and intercept parameter estimates for 

the female and male groups in MCMC. The SEs of the parameter estimates for the female 

group ranged from 0.08 to 0.30 and from 0.11 to 0.22 for 1a  and 2a , respectively. The 

parameter estimates for d ranged from 0.08 to 0.25 using MCMC. For the male group for 

the MCMC estimation method, the SEs of the discrimination parameter estimates ranged 

from 0.12 to 0.25 and from 0.13 to 0.44 for 1a  and 2a , respectively. The SEs of the 

intercept parameter estimates (d) ranged from 0.07 to 0.50 for the male group in MCMC. 

Similar to MML, the SEs comparison of MCMC between gender groups showed that the 

SEs of the female group were lower than those of the male group across all item 

parameters. Using MCMC, the SEs of the item parameter estimates for 1a , 2a , and d of 

the male group were larger than those of the female group across all items with the 

exception of items 24, 25, and 28 for 1a  parameter and items 27 and 28 for the d 

parameter. 

 In Tables 5.4 and 5.5,  items with large 1â s (e.g., items 29 and 31) are associated 

with word punctuation-related errors, and the differences in 1â s between the female and 

male groups tend to be more apparent than those in 2â s. Whereas items with large 2â s 

(e.g., items 25 and 30) are associated with usage-related errors, and the differences in 2â s 

between the two groups appear to be larger than those in 1â s . For the items with similar 

1â  and 2â  (e.g., items 27 and 28), no such clear pattern of differences in 1â s or 2â s is 

present. Instead, large differences are observed in the intercept parameters ( d̂ ). Similar 
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to the anchor items, the standard errors for the
1a ,

2a , and d estimates from MML are 

slightly smaller than those from MCMC. Again, these results are inconsistent with the 

results of the simulation study, which may be attributed in part to the ranges of the item 

parameter estimates.
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Table 5.3  

 

Parameter Estimates for Anchor Items in the M-2PL for DIF Detection: English Usage 

Data 

 

Item Type 
MML MCMC 

1â  SE 2â  SE d̂ a SE 1â  SE 2â  SE d̂  SE 

              

1 pn clarity 1.06 0.07 0.00 - 1.25 0.06 1.14 0.21 0.00 - -1.34 0.06 

2 tense 0.88 0.07 0.98 0.08 1.53 0.06 0.63 0.13 0.89 0.17 -1.67 0.09 

3 run-on 1.74 0.10 0.67 0.06 0.74 0.06 1.69 0.24 0.55 0.19 -0.94 0.12 

4 pn clarity 1.46 0.09 0.49 0.05 -0.18 0.05 1.40 0.14 0.35 0.18 0.01 0.09 

5 comma splice 1.26 0.07 0.66 0.06 0.12 0.05 1.18 0.16 0.59 0.15 -0.30 0.09 

6 comparison 0.90 0.08 1.03 0.08 -2.43 0.08 0.71 0.18 0.91 0.10 2.16 0.11 

7 diction 0.62 0.05 0.72 0.06 1.12 0.05 0.40 0.10 0.60 0.14 -1.22 0.07 

8 parallelism 0.99 0.09 1.28 0.10 2.37 0.08 0.74 0.16 1.19 0.16 -2.54 0.16 

9 pn clarity 2.00 0.11 0.66 0.06 0.91 0.07 2.00 0.26 0.50 0.25 -1.13 0.12 

10 adv/adj 0.90 0.08 1.15 0.09 -2.53 0.09 0.64 0.10 1.11 0.17 2.28 0.13 

11 frag 0.91 0.06 0.32 0.03 0.40 0.05 0.84 0.10 0.12 0.10 -0.48 0.06 

12 tense 0.68 0.05 0.81 0.06 0.13 0.04 0.49 0.09 0.75 0.14 -0.27 0.07 

13 run-on 2.03 0.12 0.63 0.06 1.21 0.07 1.95 0.29 0.50 0.24 -1.40 0.14 

14 verb form 0.78 0.06 0.88 0.06 -0.48 0.05 0.62 0.13 0.82 0.14 0.32 0.09 

15 verb form 0.64 0.06 1.16 0.09 1.93 0.07 0.00 0.00 1.13 0.25 -2.06 0.10 

16 s-v agree 0.52 0.05 1.10 0.08 -1.71 0.06 0.23 0.15 1.02 0.09 1.50 0.07 

17 diction 0.54 0.05 1.18 0.08 -0.27 0.05 0.27 0.14 1.09 0.15 0.07 0.09 

18 parallelism 0.69 0.06 1.36 0.09 -1.06 0.06 0.46 0.17 1.27 0.16 0.81 0.12 

19 s-v agree 0.73 0.06 1.32 0.08 -1.04 0.06 0.45 0.14 1.30 0.13 0.80 0.09 

20 verb form 0.60 0.05 0.92 0.06 -0.30 0.05 0.42 0.11 0.81 0.10 0.14 0.08 

21 s-v agree 0.52 0.05 0.93 0.08 -2.06 0.07 0.21 0.10 0.82 0.08 1.82 0.10 

22 diction/idiom 0.54 0.05 0.72 0.06 -0.49 0.04 0.35 0.10 0.60 0.08 0.35 0.06 

23 adv/adj 0.72 0.06 1.02 0.07 1.10 0.05 0.48 0.13 0.92 0.12 -1.23 0.09 

Note. Dashes indicate that there are no standard errors for these estimates. MML = marginal 

maximum likelihood; MCMC = Markov chain Monte Carlo; DIF = differential item functioning; 

SE = Standard Errors. 
a flexMIRT uses the M-2PL model formula with the positive sign for the intercept, whereas 

BMIRT uses the negative sign. Therefore, the negative sign is added to the intercept parameter 

estimates from flexMIRT.
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Table 5.4  

Item Parameter Estimates of the M-2PL model, MML for Focal (female) and Reference 

(male) group (Nmale = Nfemale = 1,400): English Usage Data 

 

  Parameter Estimate 

DIF item Type 
MML (Focal group) 

1â  SE 2â  SE d̂  a SE 

24 comparison 0.90 0.11 1.10 0.13 2.81 0.13 

25 subordination 0.84 0.09 1.34 0.12 1.30 0.08 

26 s-v agree 0.92 0.10 1.79 0.17 -3.33 0.18 

27 pronoun agr 0.81 0.07 0.63 0.06 0.26 0.06 

28 verb tense 1.21 0.14 1.35 0.15 2.64 0.13 

29 pn clarity 1.43 0.12 0.62 0.07 1.16 0.08 

30 pronoun agr 0.89 0.09 1.45 0.13 -2.22 0.12 

31 pn clarity 1.24 0.10 0.72 0.07 0.32 0.07 

Average  0.10  0.11  0.11 

 

  Parameter Estimate 

DIF item Type 
MML (Reference group) 

1â  SE 2â  SE d̂  a SE 

24 comparison 1.01 0.13 1.47 0.17 3.46 0.18 

25 subordination 0.94 0.10 1.55 0.14 1.74 0.10 

26 s-v agree 0.95 0.10 1.85 0.18 -2.88 0.16 

27 pronoun agr 0.89 0.08 0.66 0.07 -0.04 0.06 

28 verb tense 1.06 0.11 1.29 0.13 2.11 0.11 

29 pn clarity 1.79 0.14 0.62 0.07 1.56 0.10 

30 pronoun agr 0.72 0.08 1.06 0.11 -1.96 0.09 

31 pn clarity 1.39 0.11 0.62 0.07 0.61 0.07 

Average  0.11  0.12  0.11 

Note. MML = marginal maximum likelihood; MCMC = Markov chain Monte Carlo; DIF = 

differential item functioning; SE = Standard Errors. 
a flexMIRT uses the M-2PL model formula with the positive sign for the intercept, whereas 

BMIRT uses the negative sign. Therefore, the negative sign is added to the intercept parameter 

estimates from flexMIRT. 
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Table 5.5 

 

 Item Parameter Estimates of the M-2PL model, MCMC for Focal (female) and 

Reference (male) group (Nmale = Nfemale = 1,400): English Usage Data 

 

  Parameter Estimate 

DIF item Type 
MCMC (focal group) 

1â  SE 2â  SE d̂  SE 

24 comparison 0.50 0.17 0.81 0.15 -2.80 0.22 

25 subordination 0.47 0.30 1.20 0.20 -1.48 0.09 

26 s-v agree 0.50 0.12 1.73 0.22 2.97 0.25 

27 pronoun agr 0.59 0.08 0.39 0.11 -0.40 0.08 

28 verb tense 0.87 0.18 1.13 0.21 -2.77 0.20 

29 pn clarity 1.24 0.12 0.34 0.18 -1.30 0.11 

30 pronoun agr 0.57 0.15 1.31 0.13 1.90 0.12 

31 pn clarity 1.05 0.15 0.50 0.20 -0.50 0.10 

Average  0.16  0.18  0.15 

 

  Parameter Estimate 

DIF item Type 
MCMC (reference group) 

1â  SE 2â  SE d̂  SE 

24 comparison 0.45 0.12 1.28 0.25 -3.38 0.50 

25 subordination 0.63 0.25 1.45 0.23 -1.95 0.19 

26 s-v agree 0.32 0.21 1.96 0.44 2.52 0.37 

27 pronoun agr 0.78 0.21 0.46 0.13 -0.09 0.07 

28 verb tense 0.73 0.13 1.21 0.24 -2.23 0.18 

29 pn clarity 1.88 0.23 0.34 0.29 -1.71 0.17 

30 pronoun agr 0.44 0.25 0.96 0.15 1.72 0.10 

31 pn clarity 1.42 0.23 0.48 0.23 -0.78 0.11 

Average  0.20  0.25  0.21 

Note. MML = marginal maximum likelihood; MCMC = Markov chain Monte Carlo; DIF = 

differential item functioning; SE = Standard Errors. 
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 Table 5.6 presents the results of Lord’s Wald test for detecting DIF items in the 

English usage data. The critical value of the 2  distributions of Lord’s Wald statistic 

with 3 degrees of freedom (i.e., df = 3) was used to determine if an item was identified as 

DIF. As can be seen in Table 5.6, seven items for each estimation method, items 24 

through 29 and 31 for MML and items 25 through 31 for MCMC, were identified as DIF 

items at the nominal alpha level of 0.05. If an alpha level of 0.01 had been used, the 

results would be different. Only three items, items 25, 27, and 28, would be detected as 

DIF for MML, whereas six items, items 25 through 27 and 29 through 31, would be 

detected as DIF items. Thus, MCMC is likely to detect more DIF items than MML, 

which may be attributed to the inflation of Type I error rate of MCMC and/or due to the 

following reason. Based on the inspection of the item parameter estimates for the DIF 

items from the male and female groups, there were larger differences4 in the d parameters 

than in the two a parameters between the two groups, implying DIF items were likely to 

be uniform DIF. Based on the simulation study results, MCMC performed better than 

MML when the low uniform DIF occurred with the 46-item test and small sample size 

condition (R1,000/F1,000). 

    

 

 

 

 

                                                           
4 The average differences in the 1a , 2a , and d  parameter estimates of the 7 DIF items from MML 

between the reference group and the focal group were, 0.14, 0.12, and 0.44, respectively. The average 

differences in the 1a , 2a , and d  parameter estimates of the 7 DIF items from MCMC were 0.26, 0.14, 

and 0.38, respectively.  



122 
 

 
 

Table 5.6  

 

DIF Detection Results by Lord’s Wald Statistic in Multidimensional Two-Parameter 

Logistic Model (M-2PL): English Usage Data 

 

  Lord Wald Statistics for 2  

  MML  MCMC  

DIF Item Type 2  p-value DIF 2  p-value DIF 

24 comparison 9.10 0.0280 Yes 5.50 0.1390 No 

25 subordination 12.0 0.0073 Yes 15.60 0.0010 Yes 

26 s-v agree 10.3 0.0159 Yes 38.05 0.0000 Yes 

27 pronoun agr 12.8 0.0052 Yes 45.21 0.0000 Yes 

28 verb tense 13.0 0.0046 Yes 9.02 0.0290 Yes 

29 pn clarity 10.0 0.0184 Yes 70.80 0.0000 Yes 

30 pronoun agr 7.30 0.0629 No 11.82 0.0080 Yes 

31 pn clarity 10.8 0.0128 Yes 55.63 0.0000 Yes 

Note. MML = marginal maximum likelihood; MCMC = Markov chain Monte Carlo; DIF = 

differential item functioning. The critical value of the alpha level of 0.05 for Lord’s Wald 

Statistics is 
2

3df  =7.81. 
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CHAPTER 6 

DISCUSSION AND CONCLUSION 

 In this chapter, the present study is summarized, and the strengths and limitations 

of the proposed Lord’s Wald test for detecting DIF in the context of multidimensional 

IRT using the MML and MCMC estimation methods are presented. Similar to Woods et 

al. (2013), we investigated the performance of the MML estimation method using Wald-1 

in Lord’s Wald test. Compared to the unidimensional approach used in Woods et al.’s 

(2013) study in which unidimensional IRT models were assumed to study DIF, the IRT 

models used in this study were multidimensional IRT models, under which simulation 

studies and real data illustration were implemented. In addition, similar to Yao and Li 

(2010), we used an MCMC estimation method for obtaining Wald test statistics in M-3PL 

of the MIRT framework. Different from Yao and Li’s multidimensional DIF test, this 

study included the comparison of the two estimation methods, MML and MCMC, for 

conducting Lord’s Wald test in the context of M-2PL (Reckase, 1985) and M-3PL 

(Reckase, 1997). The present study provides the first comparison of the MML and 

MCMC estimation methods for DIF study in the multidimensional IRT DIF framework. 

MML and MCMC were implemented in flexMIRT and BMIRT software, respectively. 

The results from the simulation study and real data study are convincing in their 

demonstration of the potential for accurately estimating item parameters and show that 

MML and MCMC can be used in practice for calibrating multidimensional test items. In 

addition to a summary of the results of the simulation study and real data analysis, 

implications, limitations of the work, and future research directions are discussed in the 

following sections.  
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6.1 Summary and Implications of Results 

   The results of this study provide an important contribution for the comparison of 

two estimation methods of Lord’s Wald test for DIF detection: Bayesian MCMC using a 

Metropolis-Hastings algorithm and MML using an SEM algorithm. DIF analysis is 

critical for ensuring test validity for all subgroups. Therefore, investigating, identifying, 

and treating DIF is necessary before the DIF effect is contaminated in making inferences 

for test results. To utilize Lord’s Wald test in the context of multidimensional IRT, 

choosing a more efficient estimation method for DIF detection is imperative. The 

following summary of the results and relevant implications should provide test 

practitioners with useful information concerning the relative values of choosing one 

estimation method over the others for studying DIF in multidimensional tests.   

 In the simulation studies, the recovery of item parameters under M-2PL and M-

3PL were examined using MML and MCMC, and Type I error rates, and power rates of 

the Wald test were evaluated under different simulation conditions: sample size, DIF type, 

DIF magnitude, and test length. Bias and RMSE showed very similar results. The item 

parameter recovery was reasonably good for the MCMC estimation method. MML was 

consistently inferior to MCMC with the exception of the 46-item test with the four DIF 

item condition for the intercept parameter under M-3PL.  

 Sample size was an effective factor in the accuracy of the item parameter 

estimates in M-2PL. The large sample (R5,000/F5,000) provided more accurate estimates 

for all item parameters compared to the small sample (R1,000/F1,000). The accuracy of 

the item parameter estimates increased as the sample size increased for discrimination 

parameters using MML and MCMC. However, the accuracy of the intercept parameter 
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estimates tended to be invariant regardless of sample sizes using MML, whereas the 

R3,000/F3,000 sample was the most accurate among the sample sizes for MCMC.     

Test length affected the accuracy of the item parameter estimates when MML and 

MCMC were used under M-2PL and M-3PL. However, the pattern associated with the 

test length factor differed for the discrimination and intercept parameters; the bias and 

RMSEs for discrimination parameters under M-2PL became larger when MML and 

MCMC were used as the test length increased, whereas those for the intercept parameter 

became smaller. For M-3PL, the general patterns regarding test length were similar to the 

M-2PL results with some exceptions in the MCMC estimates.   

Regarding the number of DIF items results in M-2PL, the biases and RMSEs of 

the item parameter estimates from the four-DIF item conditions were slightly lower than 

those from the eight-DIF item conditions for the 1a   and 2a   parameters using MML and 

MCMC.  For the d parameter estimates, the bias and RMSE decreased as the number of 

DIF items increased when MCMC was used for all test length conditions, whereas the 

bias and RMSE decreased for the 24-item test and increased for the 46-item test as the 

number of DIF items increased when MML was used. A similar pattern regarding the 

number of DIF items from M-2PL was found in M-3PL for the 1a  and 2a  parameters 

MML was used. For the MCMC estimation, the small number of DIF items (i.e., four 

DIF items) conditions resulted in less bias and RMSE than the large number of DIF items 

(i.e., eight DIF items) conditions for the 1a  and 2a  parameters of the 24-item test, but not 

the 46-item test.  

For the guessing parameter in the M-3PL, the guessing parameter was slightly 

better estimated using MCMC than MML. However, regardless of the estimation 



126 
 

 
 

methods, parameter recovery tended to be reasonable across all simulation conditions. In 

summary, the two estimation methods shared various patterns in discrimination 

parameter recovery between the M-2PL and M-3PL models. However, one interesting 

finding in the accuracy of the d parameter estimation was that M-3PL was always more 

accurate than M-2PL regardless of the estimation method.   

 For the Type I error and power study, 0.05 was used as the nominal alpha level. 

Thus, the Type I error rates of Lord’s Wald test close to 0.05 of the nominal alpha level 

were reasonable in control. Although two types of power rates (theoretical and empirical) 

were presented in the simulation results, the empirical power rates were mainly discussed 

across the simulation conditions, because they took into account uncontrolled Type I 

error rates. For the power rates, the value of 0.80 was used as the criterion. Therefore, 

power above 0.80 was sufficient or high, and power below 0.80 was insufficient.  

 As the results of the simulation study, in general, the Type I error rates of Lord’s 

Wald test when MML was used were close to or below the expected value of 0.05 across 

all simulation conditions of M-2PL with the exception of the unbalanced sample design 

(R4,000/F2,000) condition. The Type I error rates of MCMC under M-2PL were highly 

inflated across all conditions. Regardless of the MIRT models, the unbalanced sample 

design (R4,000/F2,000) condition reported higher Type I error rates than all the balanced 

sample design conditions for both estimation methods. This may imply that using 

balanced sample designs provides better Type I error control for both estimation methods 

than using unbalanced designs.  

 Under M-2PL, sample size adversely affected the Type I error rates of both 

estimation methods. The Type I error rates of the MCMC estimation method decreased as 
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the sample size increased, whereas the Type I error rates of the MML estimation method 

increased as the sample size increased. These findings pertain only to the balanced 

sample design conditions. The Type I error rates for MML under M-3PL were above 0.05 

across all conditions in the medium sample condition (R3,000/F3,000) except for the 24-

item test with four DIF items condition. Similar to M-2PL, the Type I error rates of 

MCMC was much higher than 0.05 across all conditions under M-3PL.   

 The results of the empirical power rates under M-2PL were affected by three 

primary factors, sample size, test length, and DIF magnitude, for all uniform and 

nonuniform DIF conditions. In general, larger samples with a balanced sample design 

(R5,000/F5,000) provided higher power rates. Sample size was the most influential factor 

on the power rates. The power rates of the two estimation methods increased as the 

sample size increased. The great improvement in power rates was made when the sample 

increased from 1,000 to 3,000, with relatively less improvement when the sample 

increased from 3,000 to 5,000. Thus, the sample size of 3,000 appears to be suitable for 

obtaining sufficient power rates (0.80) for both estimation methods. When low uniform 

and nonuniform DIF magnitude conditions were considered, the power rates of MML 

was above 0.90 for all medium and large samples (e.g., R3,000/F3,000, R4,000/F2,000, 

and R5,000/F5,000) conditions. The power rates of MCMC with all medium and large 

samples were above 0.70 in the low nonuniform DIF conditions and above 0.90 in the 

low uniform DIF conditions, respectively. Regardless of the estimation methods, power 

increased, as the DIF magnitude increased from low to medium, as expected. When the 

DIF magnitude was medium, the power rates with both estimation methods were above 
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0.80 with the small sample condition for all conditions with the exception of the 24-item 

test condition with eight DIF items using MCMC.  

Lower power rates from MML were found as the test length increased, whereas 

higher power rates from MCMC were shown as the test length increased with small 

sample of R1,000/F1,000 in the low uniform DIF conditions. Similar to the uniform 

conditions, lower power rates from MML were found as the test length increased with the 

four DIF item nonuniform condition but not in the eight DIF item nonuniform condition. 

For MCMC, higher power rates appeared as the test length increased with small sample 

of R1,000/F1,000 in the low nonuniform DIF. Thus, test length should be considered 

carefully for a DIF analysis conducted under either MML or MCMC and with uniform or 

nonuniform conditions. In general, power was substantially higher in the larger sample 

conditions, the larger DIF magnitude conditions, and the test length conditions for both 

estimation methods of Lord’s Wald tests. 

 For M-2PL, the power rates for MML were higher than those for MCMC in the 

uniform and nonuniform DIF conditions. Similar to M-2PL, higher power rates for M-

3PL were found for MML than for MCMC with the exception of the 46-item test with 

eight DIF item low uniform condition. In general, across all simulation conditions, the 

power rates for M-2PL were much higher than those for the M-3PL model for MML and 

MCMC with the exception of the 24-item test with four DIF items when MML was used 

in the low DIF condition. For medium DIF magnitude, this pattern was less noticeable. 

This decreasing tendency from M-2PL to M-3PL became apparent from MCMC in 

nonuniform DIF conditions. The power rates of the longer test (46 items) were higher 
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than those of the short (24 items) test when MML and MCMC were used for M-3PL in 

the low and medium nonuniform DIF conditions.  

The power results indicate that when uniform DIF is assumed, either of the two 

estimation approaches is a viable option. When the uniform DIF was small, MCMC 

tended to show slightly higher power than MML in the small sample, whereas MML had 

slightly higher power than MCMC for all other sample size conditions. In addition, when 

the two estimations were applied to the uniform medium DIF model, the power yield was 

very similar. 

In the nonuniform DIF conditions, particularly the low DIF conditions of MML 

appeared to produce much higher power than those of MCMC on average. This pattern 

still appeared in the medium nonuniform DIF conditions; however, the difference 

between the two estimation methods diminished. Unlike the findings for uniform DIF, the 

power rates for MCMC in the nonuniform DIF condition were not higher than those for 

MML especially in the balanced small sample condition (R1,000/F1,000) and the 

unbalanced condition (R4,000/F2,000). The average power for MML was higher than 

that for MCMC in the uniform DIF condition across all conditions. Therefore, MML is 

preferred over MCMC when nonuniform DIF patterns are suspected.  

Table 6.1 provides a summary of the results from the parameter recovery, the 

Type I error rates, and the power rates in the comparison of the MML and MCMC 

estimation methods from the M-2PL and M-3PL models. Based on the simulation study 

results, MML and MCMC provide comparable results on average for Type I error rates 

and power rates in detecting DIF. However, when the power values are considered, 

MCMC is superior to the MML estimation method for a DIF detection test that is 
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uniform DIF in a long (46 items) test with eight DIF items with the small sample of 

R1,000/F1,000 condition from M-2PL. For other conditions including nonuniform DIF 

conditions from M-2PL, MML is always recommended. These conclusions are limited to 

the conditions used in this study. 

Table 6.1  

 

Summary of Simulation Study Results 

 

Test Type MML MCMC 

Item Parameter 

Estimation (M-

2PL) 

Significant effect of test length 

and number of DIF items on 

discrimination parameters. 

 

Better precision with fewer DIF 

items for the short test condition 

on discrimination parameters. 

 

Better precision with fewer DIF 

items for the long test condition 

on the intercept parameter. 

 

 

 

Significant effect of test length 

and number of DIF items on 

discrimination parameters. 

 

Better precision with fewer 

DIF items with short test 

condition on discrimination 

parameters.  

 

Better precision with fewer 

DIF items with long test 

condition on intercept 

parameter. 

 

Item Parameter 

Estimation (M-

3PL) 

Significant effect of test length 

and number of DIF items on 

discrimination parameters. 

 

Better precision with fewer DIF 

items with short test conditions 

on discrimination parameters. 

 

Better precision with fewer DIF 

items with the long test 

condition on the intercept 

parameter. 

 

Better guessing item parameter 

estimates under most conditions. 

 

 

 

 

Significant effect of test length 

and number of DIF items on 

discrimination parameters. 

 

Better precision with fewer 

DIF items with short test 

condition on discrimination 

parameter of the primary 

dimension. 

 

Better precision with more 

DIF items with short test 

condition on discrimination 

parameter of the secondary 

dimension. 

  

Better precision with more 

DIF items with short test 

condition on intercept 
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parameter. 

 

Better guessing item parameter 

estimates at most conditions 

with the exception of fewer 

DIF items with long test 

condition. 

 

Type I Error 

Rates 

(M-2PL) 

Type I error rates close to or 

below the expected nominal 

value of 0.05 across all 

simulation conditions.  

 

Higher Type I error rates (range 

from 0.09 to 0.13) for 

unbalanced sample design. 

 

No systematic influence on test 

length or the number of DIF 

items factors. 

 

 

 

 

 

Highly increased Type I error 

rates (over 0.20) at most 

simulation conditions. 

 

Unacceptably high increased 

Type I error rates (over 0.40) 

for small samples with all test 

lengths.  

 

Unacceptably high Type I 

error rates (over 0.40) for 

unbalanced sample design 

under all DIF conditions. 

 

Less increased Type I error 

rates as the sample size 

increased. 

Type I Error 

Rates 

(M-3PL) 

Slightly higher Type I error rates 

(0.06 or 0.07) under all DIF 

conditions. 

 

Higher Type I error rates with 

longer test length. 

 

Highly increased Type I error 

rates (over 0.30) under all DIF 

conditions. 

 

Less increased Type I error 

rates as test length increased. 

 

Power Rates 

(M-2PL) 

Higher power values with 

balanced sample design, larger 

samples, or medium DIF 

magnitude.  

 

 

 

 

 

 

 

Higher power values with 

balanced sample design, larger 

samples, medium DIF 

magnitude, or longer test. 

 

Higher power than MML with 

small sample with uniform  

DIF conditions. 
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UNIFORM: 

Unacceptably low power rates 

(below 0.40) for small sample, 

long test with more DIF number 

in uniform conditions.  

 

 

 

 

 

 

UNIFORM: 

Low power rates (below 0.60) 

for small sample, short test 

with fewer DIF number in 

uniform conditions.  

 

Higher power values than 

MML with small sample, long 

test with uniform DIF 

conditions. 

 

NONUNIFORM:  

Low power rates (below or at 

0.70) for small sample with low 

DIF magnitude in nonuniform 

conditions.  

 

Higher power values with 

medium DIF magnitude and 

longer test in nonuniform 

conditions. 

 

Higher power values than those 

from M-3PL (more apparent in 

nonuniform conditions). 

 

 

NONUNIFORM: 

Unacceptably low power rates 

(below 0.40) for small sample 

with low DIF magnitude in 

nonuniform conditions. 

 

Higher power values with 

medium DIF magnitude and 

longer test in nonuniform 

conditions. 

 

Higher power values than 

those from M-3PL (more 

apparent in nonuniform 

conditions). 

 

Power Rates 

(M-3PL) 

Higher power values with 

medium DIF magnitude.  

 

Lower power values with more 

DIF items in uniform and 

nonuniform conditions. 

 

Higher power values with 

medium DIF magnitude.  

 

Higher power values with 

longer test. 

 

 

UNIFORM: 

Higher power values with short 

test, fewer DIF items in low 

uniform conditions. 

 

UNIFORM: 

Higher power values with long 

test, more DIF items in low 

uniform conditions. 

 

NONUNIFORM: 

Higher power values with long 

test, fewer DIF items in low 

nonuniform conditions. 

 

Lower power values than those 

from M-2PL (more apparent in 

NONUNIFORM: 

Higher power values with long 

test in low nonuniform 

conditions.   

 

Lower power values than those 

from M-2PL (more apparent in 
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nonuniform conditions). 

 

 

nonuniform conditions). 

Unacceptably low power rates 

(below 0.40) for the short test 

with small or large DIF 

number in nonuniform 

conditions.  

 

6.2 Discussion and Possible Applications 

There are three important findings in this present study. First, the item parameters 

for the multidimensional IRT models investigated were well estimated under certain 

conditions with the MML and MCMC estimation methods, even in the context of DIF 

study. In particular, we found that sample size and test length affected the accuracy of the 

parameter estimation. Zhang’s (2012) results showed that MML yields satisfactory 

estimates of item parameters for the compensatory M-2PL model when the number of 

items and the sample size are large enough (30 items and 1,000 for his study). Yao and 

Boughton (2007) suggested that discrimination and intercept parameters from MCMC 

well recovered compared to an unweighted least squares method for the M-3PL model. 

Our results showed that the parameter recovery of MCMC is virtually better than that of 

MML under the M-2PL and M-3PL models. Previous researchers (Kieftenbeld & 

Natesan, 2012; Mislevy, 1986; Wollack et al., 2002) commented that MCMC parameter 

estimation method may improve the accuracy with smaller samples, test lengths, and 

more complex models such as multidimensional models (Béguin & Glas, 2001; 

Kieftenbel & Natesan, 2012).  

Second, the results of this study suggest that MCMC can be a very useful 

alternative to MML for conditions such as a uniform condition with a small sample when 

the MML estimation method has not been introduced. As an example, MCMC was a 
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good estimation method for experimenting with a small sample with a long test in 

uniform DIF conditions, the 46-item test with the eight DIF item condition of 

R1,000/F1,000. The results showed that there were larger differences in the small sample 

than in the medium or large samples. It has been often found in the literature that MCMC 

worked well (better) in the small sample size compared to MML. A previous study 

(Mislevy, 1986) confirmed that MCMC outperformed than MML in the small sample 

conditions. The different results may be resulted from priors used in MCMC, different 

Wald tests (improved vs. traditional), and/or different estimation procedures. 

Finally, MML may be a reasonable estimation method for Lord’s Wald test. 

Based on the simulation study results, MML provided better Type I error rates than 

MCMC in detecting DIF for conditions that were composed of either the M-2PL model 

or the M-3PL model. In addition, for the power rate results, MML provided higher power 

rates than MCMC especially under nonuniform DIF conditions and unbalanced sample 

designs.      

The study has several few important limitations. First, the findings in this study 

were obtained only from the Wald tests. It would be important to obtain effect size 

measures in DIF detection along with statistical DIF tests. This could be necessary 

because in the small sample case, interesting effects can be omitted in the analysis, 

whereas large samples can overestimate statistically significant findings where the true 

effect is minimal (Kirk, 1996; Zumbo, 1999). In light of comparison, further research is 

needed to see how the effect size measure in DIF such as the p metric can be applied and 

compared with Lord’s Wald test DIF detection in the multidimensional framework.     
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Second, in this study, only two groups were considered in DIF detection. 

However, considering multiple groups is essential in practical educational settings and 

has been implemented in DIF detection in numerous studies (e.g., Cohen & Kim, 1993; 

Ellis & Kimmel, 1992; Jeon, Rabe-Hesketh, & Rijmen, 2013; Kim et al., 1995; Magis & 

de Boeck, 2011; Penfield, 2001). The generalized Lord’s Wald test was demonstrated by 

Kim et al. (1995) in the unidimensional IRT model, and they showed how Lord’s Wald 

test statistic can be extended to multiple group situations. Therefore, applying the 

generalized Wald test to multidimensional IRT models would be an interesting future 

study. DIF detection would benefit from other DIF testing methods such as multiple 

indicator multiple cause models (MIMIC; e.g., Muthen, 1985, 1989) and the generalized 

Mantel-Haenszel method (GMH; Somes, 1986; Zwick, Donoghue, & Grima, 1993), 

which can compare three or more groups concurrently. A comparison of these three DIF 

testing methods using multiple groups would be worthwhile in the multidimensional IRT 

context. In particular, applying MIMIC interaction models (Woods & Grimm, 2011) in 

the context of multidimensional IRT would be very valuable to identify DIF, because 

MIMIC models have been widely applied in unidimensional DIF studies (e.g., Finch, 

2005, 2012; Jin, Myers, Ahn, & Penfield, 2013; Woods, 2009). Developing these three 

approaches should lead practitioners to identify DIF accurately in many realistic 

situations where multiple groups are most likely involved in and multidimensional tests 

are assumed.  

Third, distributional and correlational differences of two ability parameters were 

not considered in the present study. Oshima et al. (1997) described that a distributional 

difference can arise from the correlation of two abilities and/or the location of two 
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abilities difference. Although the results from different conditions in Oshima et al.’s 

(1997) work were not severely different from each other, further research on detecting 

DIF with the mean   difference and/or the correlational difference between the two 

groups is needed. However, as of now, the correlation difference between the two 

dimensions cannot be estimated in flexMIRT due to the model identification problem in 

the within-item design used in this study.  

Fourth, the guessing parameter was set to the true value, 0.2 in this study. It 

would be worthwhile to compare the effect of randomly generated guessing parameters 

with that of the fixed guessing parameter in terms of bias and RMSE. Finch and French 

(2014) recently demonstrated how group differences in the pseudo-guessing parameter 

influence on detecting uniform and nonuniform DIF using IRT LR test and the logistic 

regression method for dichotomous items. When guessing differs between groups, it 

results in poor estimation of the discrimination and difficulty parameters and Type I error 

inflation for uniform and nonuniform DIF conditions under the unidimensional 3PL 

model (Finch & French, 2014). Little attention has been given to the group differences in 

the guessing parameter under the multidimensional IRT framework. Future work 

regarding the impact of the guessing parameter on DIF study in the multidimensional 

framework would be crucial.  

This study evaluated the accuracy, stability, and viability of Lord’s Wald test for 

DIF detection in the multidimensional IRT framework. MML performed robustly 

compared to the MCMC estimation method in detecting DIF, although MCMC estimated 

item parameters slightly more accurately. Since this was the first comparison of two 

estimation methods, further study of Lord’s Wald test for DIF detection in the 



137 
 

 
 

multidimensional framework and its applications in various testing situations remain. 

Future directions include considering other parametric and nonparametric DIF methods 

and more factor manipulations of DIF conditions.  
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