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ABSTRACT OF THE DISSERTATION
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Studies and Computer Experiments
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Dissertation Director: Dr. Ying Hung

Adaptive sampling, which select samples sequentially, is known to be more efficient than

traditional non-adaptive sampling and fixed design procedures. However, most of the methods

are developed based on relatively small and well-defined regions. These assumptions are often

violated in environmental studies we faced today because they invariably involve populations

distributed over a large space with irregular sampling frame. A new sampling plan is proposed

which enhances the estimation efficiency by taking into account the shape of the sampling

region and incorporating a novel adaptive procedure. Unbiased estimators, an optimal sampling

criterion, and a heuristic search algorithm is introduced. Applications to real examples are

presented, which show remarkable improvement in estimation efficiency using the proposed

plan over existing methods.

Unlike environmental studies, design of computer experiments has been widely investigated,

however, most of the designs are chosen in advance without utilizing any information from

the response, which results in insufficient information. We introduce a new class of sequential

designs for computer experiments. It is model-free and constructed based on space-filling de-

signs. The construction procedure, design-unbiased estimators, and some improvements using

Rao-Blackwellization are proposed. More importantly, we introduce a refinement that provides

better control over sample size and avoids replicates in the final sample. We demonstrate this

new class of sequential designs are sampling-wise efficient by a simulation study and a IBM

data center thermal management example.
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Chapter 1

Adaptive Probability-based Sampling for Environmental

Studies

1.1 Introduction

The objective of this paper is to construct an efficient and flexible sampling plan that adaptively

conduct samples in environmental studies. It is well-known that, for a given sample size and

cost, more valuable information can be obtained by incorporating information from previous

observations (Chernoff 1959; Cochran 1977; Ghosh and Sen 1991; Dryver 2005; Gramacy 2009;

Salehi 1997; Sacks 1989; Santner 2003; Smith 1995; Fedorov 1972). Based on this idea, a

sampling approach called adaptive cluster sampling is widely used in survey sampling literature.

The idea is to first construct an initial design, if the selected samples satisfy some prespecified

condition, follow-up samples are collected adaptively from their neighborhood. Adaptive cluster

sampling is attractive not only because of its sequential property but also because it takes into

account the neighborhood information which is an important feature in environmental studies.

For example, in ecologial studies, it is common that the subjects of interest usually have spatially

clustered patterns. If we observe one winter waterfowl in a place, the probability of having more

winter waterfowls in the nearby sites becomes higher. Other examples include global warming,

habitat alteration, and water pollution, in which subjects in the neighborhood of each other

often share similar properties. As a result, the sampling efficiency can be enhanced by adaptively

incorporating such a neighborhood information.

Although adaptive sampling is desirable, most of them are constructed based on relatively

small and well-defined regions (Thompson 1991, 1992). These assumptions are often violated in

environmental studies because the problems usually involve population distributed over space

with irregular sampling frame in practice (Stehman and Overton 1994; Stevens and Olsen 2004;

Roesch 1993). For example in the study of upper illinois basin stream networks (Stevens and

Olsen 1995), not only the basin’s shape, but also layouts of stream networks, are highly irregular

(Figure 1.1). Given the irregularity of sampling regions, direct applications of the conventional

approaches often result in the loss of efficiency and desirable properties (Stevens and Olsen
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2004).

Figure 1.1: Upper Illinois Basin Stream Network, Indiana

A new adaptive sampling plan, called adaptive probability-based sampling (APS), is intro-

duced to take into account the irregularity of experimental regions in environmental sampling.

APS consists of two important components, an efficient initial design which spreads out sam-

pling points uniformly over irrgular regions and a novel adaptive sampling plan which collects

samples sequentially based on neighborhood information. APS is flexible and easy to imple-

ment. Unbiased estimators, optimal criteria, and a search algorithm is introduced. The merits

of the proposed approach are demonstrated in two ecologic sampling studies.

The remainder of this paper is organized as follows. The construction procedure of APS and

its unbiased estimators are introduced in Section 2. In Section 3, an optimal sampling criterion

is proposed and an efficient heuristic algorithm is introduced for the search of optimal sampling

plan. The proposed methods are illustrated by two real examples in environmental studies in

Section 4. Conclusions are given in Section 5.
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1.2 Adaptive Probability-based Sampling

1.2.1 Initial sample

Simple random sampling (SRS) is a widely used method to construct initial samples in adaptive

sampling. Such an initial sample is easy to obtain, but it is well known that the efficiency can

be improved by space-filling designs such as Latin hypercube sampling (LHS) (McKay et al.

1979). With the space-filling properties, such as the one-dimensional balance property in which

the sampling points are evenly spread out in each dimension, it can be shown that LHS provides

improvements over SRS (Iman 2008; Fang 2002; McKay 1979). However, when the sampling

frame is in an irregular shape, LHS can no longer maintain the space-filling property (Hung et

al. 2010). There are approaches developed to handle the irregularity of the sampling regions

(Draguljić et al. 2012); however, most of them are chosen in advance (i.e., non-adaptive) which

can be inefficient, especially when the spatially clustered patterns exist.

An important component of APS is a new initial sampling plan called probability-based Latin

hypercube sampling (PLHS). It is inspired by the idea of space-filling designs and extended from

the adaptive probability-based Latin hypercube designs (Hung 2011), which is developed for

a particular type of irregular regions in engineering applications. The idea is to maintain the

desirable space-filling properties in the irregular sampling regions so that the initial samples can

be spread out uniformly regardless of the shape. A n-run PLHS can be described as follows.

Step 1: Specify two coordinates such as its latitude and longitude and define them as x1 and x2.

Without loss of generality, assume that the length of x1 is larger than x2. Denote the n

samples by (x1i, x2i), where i = 1, ..., n.

Step 2: Define k levels for x2. For the jth level of x2, the sampling region of x1 is denoted by

Ej = (Aj , Bj) and therefore, the range of x1 are located irregularly on the interval [A,B],

where A = min{Aj} and B = max{Bj}.

Step 3: Divide the interval [A,B] into n equally spaced subintervals and assign the n levels of x1

at the middle of these subintervals. That is, x1i = i, for all i. For the ith level of x1, the

corresponding level of x2, denoted by x2i, is assigned with probability

pr(x2i = j) =

 [
∑k
j=1 I(j ∈ Ci)]−1, if j ∈ Ci,

0, otherwise,
(1.1)

where Ci is the range of x2 when x1i = i.



4

A simple example of a 10-run PLHS is illustrated in Figure 1.2. The grey areas, including

the dark grey and light grey areas, form the irrigular sampling frame. The experimental ranges

are C1 = {4}, C2 = {3, 4}, C3 = {1, 3, 4, 5}, etc. The level of x2 is assigned by (3.5). For

example, pr(x21 = 4) = 1, pr(x22 = 3) = pr(x22 = 4) = 1/2, and pr(x23 = 1) = pr(x23 =

3) = pr(x23 = 4) = pr(x23 = 5) = 1/4. The circles are the initial sample of PLHS. It is clear

that PLHS has one initial sample for each level of x1; therefore, the one-dimensional balance

property is maintained.

Figure 1.2: Blue-winged teal population example

1.2.2 Adaptive sampling procedure

Based on the n-run PLHS as an initial, APS introduces an adaptive sampling procedure with

the following idea. According to a pre-specified condition of interest, additional neighborhood

samples are collected whenever the response of a selected sample satisfies the condition. If any of

these subsequently added sample satisfies the condition, then the units of its neighborhood are

also added to the sample, so that finally the sample contains every unit in the neighborhood of

any sample unit satisfying the condition. The neighborhood of each unit consists of, in addition

to itself, the spatially adjacent units in the experimental region.

The population maybe partitioned into K sets of units, termed networks, such that selection

in the initial sample of any unit in a network will result in inclusion in the final sample of all

units in that network. A unit not satisfying the condition belongs to a network consisting just
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of itself. Any unit not satisfying the condition but in the neighborhood of one that does is

called edge unit.

A simple example of APS is illustrated in Figure 1.2. Different colors in the figure represent

the true response if they are selected. Dark grey indicates that the true response satisfies the

prespecified criterion and light grey indicates that the response does not satisfy the criterion.

Based on the 10-run PLHS as initial, the adaptively added points are denoted by triangles. The

final sample includes both circles and triangles.

1.2.3 Estimators

For APS, conventional unbiased estimators, such as the sample mean, are no longer unbiased. A

Horvitz-Thompson type of design-unbiased estimator (Cochran, 1977; Horvitz and Thompson,

1952; Thompson, 1990, 1991) is recommended here which is analogue to the one introduced

by Hung (2011). We focus on the unbiased estimators for the population mean defined by

µ = N−1
∑N
i=1 yi, where N is the number of units in the population and y1, · · · , yN are the

corresponding responses. Let Ψk be the set of units in the kth network. Because of the non-

regular shape of the experimental region, further partition the units in Ψk by their coordinates in

the x1-axis. Let Ψk ranges in ψk = (t1, . . . , tk) ∈ (1, . . . , n) in the x1-axis. For each observation

in ψk, the associated units in the network are Ψkl, where l ∈ ψk, and the number of units in

Ψkl is denoted by dkl. Using the foregoing notation, the estimator can be written as

µ̂ =
1

N

K∑
k

y∗kI(nk > 0)

P (nk > 0)
, (1.2)

where K denotes the number of networks in the population and y∗k =
∑
j∈Ψk

yj , the indicator

variable I(nk > 0) takes 1 if any unit of the kth network is in the initial sample s0, and

takes 0 otherwise. The number of units selected from the kth network in the initial sample is

nk =
∑
i∈Ψk

I(i ∈ s0), and the inclusion probability of network k is

P (nk > 0) = 1−
∏
l∈ψk(cl − dkl)∏

l∈ψk cl
. (1.3)

The variance of (2.1) can be calculated by

var(µ̂) = N−2
K∑
k=1

K∑
h=1

y∗ky
∗
h[P (nk > 0, nh > 0)− P (nk > 0)P (nh > 0)]

P (nk > 0)P (nh > 0)
,

where

P (nk > 0, nh > 0) = 1−
∏
l∈ψk(cl − dkl)∏

l∈ψk cl
−
∏
l∈ψh(cl − dhl)∏

l∈ψk cl
+

∏
l∈(ψk∪ψh)(cl − dk∪h,l)∏

l∈(ψk∪ψh) cl
.
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and dk∪h,l is the number of units in Ψkl ∪Ψhl. An unbiased estimator of the variance of µ̂ is

ˆvar(µ̂) = N−2
K∑
k=1

K∑
h=1

y∗ky
∗
h[P (nk > 0, nh > 0)− P (nk > 0)P (nh > 0)]

P (nk > 0)P (nh > 0)P (nk > 0, nh > 0)
I(nk > 0)I(nh > 0).

(1.4)

Based on the Rao-Blackwell theorem, the unbiased estimator can be further improved by

reducing its variance. The idea is to calculate conditional expectation of the original estima-

tor, given a sufficient statistics. The most efficient choice is the minimal sufficient statistics

but it is computationally intensive which is often experienced in the conventional adaptive

sampling (Dryver and Thompson, 2005). Therefore, with a similar argument in Hung (2011),

an improved unbiased estimator µ̂∗ can be constructed by conditioning on a carefully chosen

sufficient statistics but not the minimum so that the computation can be simplfied.

Let s denotes the final sample and define sc as the set of all the distinct units in the sample

for which the condition to sample adaptively is satisfied. The remaining part is denoted by

sc̄. Define V as a collection of x1 coordinates with which edge points occurs in the initial

sample. For unit i, let fi be the number of times that the network to which unit i belongs is

intersected by the initial sample. Using the above notation, a sufficient statistics can be defined

by m∗ = {(i, yi, fi), V, (j, yj) : i ∈ sc, j ∈ sc̄}, and the sample space for m∗ is defined by M∗.

Hence, the improved unbiased estimator is obtained by conditioning on m∗ as

µ̂∗ = E(µ|M∗ = m∗)

= 1
N

∑K
k=1

y∗kI(nk>0)
(

1−e∗k
)

P (nk>0) + 1
N

∑
l∈V

∑
i∈s eiyitl(i)

eslc
−1
l

,
(1.5)

where tl(i) is an indicator variable taking 1 if the unit i belongs to level l in factor x1 and 0

otherwise and esl =
∑
i∈s eitl(i).

The variance of the improved unbiased estimator is

var(µ̂∗) = var(µ̂)−
∑
m∗∈M∗

P (m∗)
L

∑
s′0∈S

{
I(g(s′0) = m∗)[∑n

l=1
cl
N

(∑
i∈s′0,ei=1 yitl(i)−

1
esl

∑
i∈s eiyitl(i)

)]2}
,

(1.6)

where L is the number of all initial samples that can lead to the same final sample.

An efficient unbiased estimator of the variance can be obtained by

ˆvar(µ̂∗) = E[ ˜var(µ̂∗) |M∗ = m∗]

= 1
L

∑
s′0∈S

I(g(s′0) = m∗) ˆvar(µ̂(s′0))− 1
L

∑
s′0∈S

{
I(g(s′0) = m∗)[∑n

l=1
cl
N

(∑
i∈s′0,ei=1 yitl(i)−

1
esl

∑
i∈s eiyitl(i)

)]2}
.

(1.7)
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1.3 Optimal initial design and search algorithm

Samples constructed by PLHS are not unique and they are not equally good. Although they

have the one-dimensional balance property on x1, they can often be highly structured. For

example, in Figure 1.3, PLHS can generate an initial sample with all the points located in the

same row, i.e., x2i = 4 for all i, which is not desirable because it is not spread out as uniform

as it should be on x2. Therefore, an optimal criterion is proposed and a search algorithm is

introduced in this section to obtain an initial PLHS that has better space filling properties.

Figure 1.3: An initial sample

In order to spread out design points over the experimental region, many design criteria are

proposed for space-filling designs (Iman and Conover, 1982; Johnson et al., 1990; Owen, 1994;

Tang, 1998; Ye et al., 2000; Joseph and Hung, 2008). Here we focus on a maximin distance

criterion proposed by Morris et al.(1995) and other criteria can be easily adopted to the proposed

framework. The idea is to maximize the minimum inter-site distances among samples. For any

two sample points (x1i, x2i) and (x1j , x2j), we define the distance by d((x1i, x2i), (x1j , x2j)) =

[(x1i− x1j)
p + (x2i− x2j)

p]1/p, where p > 0. Then a maximin PLHS is obtained by minimizing

the sum of all pairs of design points φp = {1/[
∑n
i=1

∑n
j=1,j 6=i d((x1i, x2i), (x1j , x2j))]}1/p.

Because of the combinatorial nature of the problem, finding the optimal PLHS can be a

difficult task. For example, there are (
∏n
i=1 ci) different PLHSs with sample size n. Complete

search cannot always be possible, especially when the number of runs or the values of ci are

large. Instead, we proposed an efficient heuristic algorithm that can quickly identify optimal

designs.

A design is called feasible if the points lie in the experimental region. In a widely used
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search algorithm for optimal Latin hypercube designs, Morris and Mitchell (1995) proposed

a columnwise-pairwise exchange approach in generating candidate designs. This approach,

however, cannot be directly applied here because arbitrary exchange of two elements within a

column does not always lead to a feasible design. A naive approach is to modify the algorithm by

adding an additional verification step for the first two factors, where the slid-rectangular region

is defined. Instead of exchanging any two randomly selected elements, we only allow random

exchanges that are capable of producing a feasible solution. Using this procedure, a sequence

of feasible designs are generated and examined by the optimality criterion. Because of the

combinatorial nature of the problem, finding optimal probability-based Latin hypercube designs

can be computationally difficult. For example, there are (
∏n
i=1 ci)× (n!)p−2 probability-based

Latin hypercube designs with n runs and p factors. Complete search can be computationally

prohibitive. Therefore an efficient heuristic algorithm is needed.

To improve the efficiency of the naive search, a new algorithm is introduced. The idea is

to broaden search by preventing visits of neighborhood designs that have been visited before.

Neighborhood designs are those that differ from each other by a small number of columnwise-

pairwise exchanges. Because the neighborhood designs are similar, avoiding them would allow

the search to move to other parts of the region with more promising values. To do so, the naive

search is modified by keeping track of the previous q feasible settings of x2 visited, which are

called forbidden settings, with q being a tuning parameter. The forbidden setting is also called

memory in the tabu search literature (Glover, 1986). Since a visit of the forbidden settings

would lead to a movement toward the neighborhood designs, identification of the forbidden

settings/memory can be effectively used to prevent the current design from moving toward

neighborhoods. This makes the search more efficient. In fact the forbidden settings can be

defined based on any factor. However, a more desirable choice is x2 because the verification

of feasible exchanges in x2 is more time-consuming. If the x2 candidates lie in the forbidden

set, they are removed from consideration immediately without verifying their feasibility. Thus,

some computation can be saved and the x2 settings are explored more efficiently. Typically the

tuning parameter q should be small in order to maintain a small neighborhood. This algorithm

is called a columnwise-pairwise exchange tabu algorithm.

After specifying a design criterion, the proposed algorithm begins with a randomly chosen

design X, and proceeds with the examination of a sequence of designs. Each design is generated

as follows. First, a column from x2 to xp is randomly selected. If the selected column is one of

the last p− 2 factors, a new design is obtained by exchanging two randomly selected elements

within the column. This is similar to the procedure in Morris and Mitchell (1995). If the column
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of x2 is selected, one has to check whether the exchange of two randomly selected x2 levels leads

to a setting that is in the forbidden set, i.e., if it is among the last q feasible settings visited. If

not, check the feasibility, i.e., if the resulting design lies in the irregular region. The exchange

is allowed to proceed only if the resulting new setting is non-forbidden and feasible. Otherwise,

random exchanges within the x2 column continue to be examined until a new feasible setting

is obtained. Following this procedure, new designs Xtry are generated. In each iteration, X

is replaced by Xtry if it leads to an improvement with respect to the design criterion. Once

values of the design criterion are stabilized, the algorithm is terminated and the resulting X is

the optimal design. This algorithm is easy to implement and the simulated annealing approach

in Morris and Mitchell (1995) can be applied to further improve the search efficiency. Optimal

probability-based Latin hypercube designs can be obtained by this procedure. It also works for

balanced probability-based Latin hypercube designs with carefully constructed initial designs

because the proposed procedure maintains the balance property throughout the search if the

initial design is balanced.

1.4 Application to Environmental Studies

1.4.1 Example 1

Example 1 focuses on the study of blue-winged teal population introduced by Smith et al.(1995).The

population region is gridded into fifty 100 km2 quadrates shown in Table 1.1.Note that, IA In

Table 1.1 indicates inaccessible sites which lead to an irregular accessible region.In order to

identify sites with teals, we define a quadrate that satisfies the condition if the observed num-

ber of teals y is nonzero, i.e. y ≥ 1.This condition results in more quadrates sampled in the

neighborhood of the existing sampled sites that have nonzero observations, which is desirable

because it is believed that blue-winged teals are gregacious animals.So once they show up, with

larger probability we can observe other teals in nearby sites.

IA IA 3 5 0 0 0 0 IA IA

0 0 0 24 14 0 0 10 103 0

IA 0 0 0 2 3 2 0 13639 1

IA IA IA 0 0 0 0 0 14 122

IA IA 0 0 0 0 2 0 0 177

Table 1.1: Numbers of blue-winged teal in fifty 100 km2 quadrats
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To demonstrate the performance of the proposed adaptive sampling method, 100000 simula-

tions are conducted for the adaptive probability-based LHS and simple random sampling with

the same sample size. In each simulation, a randomly generated 10-run PLHS was used for as

an initial design, and adaptive designs were proceeded accordingly. The estimated means and

variances are summarized in Table 1.2, where µ̂ is calculated based on the adaptive PLHS and

µ̂srs denotes the result based on simple random sampling. Efficiency is the ratio of variance of

APS divided by that of SRS. As shown in Table 1.2, the unbiased estimator µ̂ had much better

performances than simple random sampling estimator µ̂srs. The average final sample size was

28.96.

µ µsrs

Mean 353.0499 353.6494

Variance 6509.15 4652191

Efficiency 0.001399 1

Table 1.2: Blue-Winged Waterfowl APS results

This example is used to further assess the efficiency of the proposed columnwise-pairwise

exchange tabu algorithm in the search of optimal adaptive sampling procedure with maximin

criteria. From Morris and Mitchell (1995), we know for large enough value of the distance

parameter p, the maximin criterion function can rank designs in the same way that the more

complex maximin criterion searching for an optimal maximin design; and when p is set to a

relatively small value, it tends to facilitate the reliability of optimization process. Here we tried

different distance parameter p to see whether p has an impact on the performance of search,

while under p ranges from 1 to 25, columnwise-pairwise exchange tabu search does a better job

than without tabu. As an example, we use p = 13 to show the efficiency of the design optimiza-

tion method as in Figure 1.4. It is shown significant improvement on space-filling property by

optimizting top initial design to bottom design. Figure 1.5 demonstrates the advantage of the

tabu search idea in this optimizaiton algorithm. In a random 10-run PLHD design example,

the convergence rate of optimization with tabu(red dashed line) is much faster than without

tabu(blue solid line).
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iteration 1 2 3 4 5 6

1.1226806 1.1226806 1.1011936 1.0548158 1.0317525 1.0317364

iteration 7 8 9 10 11

1.0317299 1.0000802 0.9482473 0.9482473 0.9482473

Figure 1.4: Design optimization
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Figure 1.5: Comparison of design optimization with Tabu and without Tabu

1.4.2 Example 2

Reach File is a network-oriented, spatially referenced geographic data system developed by the

U.S. environmental protection agency (EPA). Reach File describes surface-water features of the

United States. It stores stream network information and facilitates water quality modeling. In

this example, data are from the latest version of Reach File, RF3. Two indices of water quality

standards, qualitative habitat evaluation index (QHEI) and Index of Biological Integrity (IBI)

were observed in 85 stream sites in Upper Illinois Basin,Indiana (1.6). These two indices are

the major water quality standard summary considered by EPA. The IBI score, which is a fish

community index of biological integrity (Karr 1981) that assesses water quality using resident

fish communities as a tool for monitoring the biological integrity of streams. The Qualitative

Habitat Evaluation Index(QHEI) score (Rankin 1989) gives an estimate of the suitability of a

stream segment to meet warm-water habitat for aquatic organisms. More details can be found

in EPA aquatic resources monitoring website. During the survey of this example, there are

several pre-targeted sites could not be sampled. This occur may due to (1) sites not being a

member of the target population, (2) landowners deny access to a site, (3) a site is physically

inaccessible, or (4) site not sampled for other reasons.Thus, the sampling frame is an irregular

region.

In Upper illinois Basin stream sample area, the geographical coverage is gridded into 10×10
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cells as plotted in Figure 1.6, where the x-axis and y-axis are derived from the latitude and

longitude using Albers projection. Albers projection is a standard projection used by major

environmental institutions, which puts a degree of longitude and a degree of latitude into a

coordinate system where x and y mean same thing in terms of distance. As shown in the figure,

there are 41 accessible sites for QHEI and 40 for IBI.

Figure 1.6: Upper Illinois Basin water quality standard observation

If QHEI score is no larger than 45, then streams are indicated as not suitable for warm-

water habitat witout using impairment. Streams with IBI score lower or equal than 40 will be

considered as poor water quality. Both situations imply alarming water habitat environment.

Therefore, we correspondingly specify the adaptie sampling criteria as QHEI score ≤ 45 and

IBI score ≤ 40. Similar to Example 1, 100000 simulations were conducted in this example

to compare the performance of the adaptive PLHS with simple random sampling under same

sample size. In each simulation, a randomly generated 10-run PLHD was used as initial design.

Results for QHEI and IBI are summarized in table 1.3 and table 1.4 respectively. According

to the adaptive sampling procedure, the average final sample size for QHEI and IBI are 14.49 and

16.14. For QHEI observations, the improved unbiased estimator based on adaptive designs has

0.3523177 efficiency compared to simple random sampling. Moreover,it provides an approximate
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µ µ∗ µsrs

Mean 65.72352 65.89497 65.73458

Variance 431.7279 376.1401 911.0651

Efficiency 0.4738606 0.3523177 1

Table 1.3: Accessible water quality standard QHEI in Upper Illinois Basin

µ µ∗ µsrs

Mean 47.167 46.82065 47.15551

Variance 243.9689 212.5425 508.4736

Efficiency 0.4798064 0.4180011 1

Table 1.4: Accessible water quality standard IBI in Upper Illinois Basin

55.5878 variance reduction compared with the original unbiased estimator. In IBI results,

adaptive sampling based on PLHD has similar performance.

1.5 Concluding Remarks

Environmental Sampling usually occurs in irregular geographical coverage and often have clus-

tered sampling pattern.Our proposed adaptive probability-based sampling efficiently sample on

non-regular region. Through optimization with columnwise-pairwise tabu optimization, the ini-

tial one-dimensional balanced design maintains good space-filling property. And by adaptive

sampling with pre-defined criteria, we observe more desired samplers. We proposed unbiased

estimators for this particular methodology, and proved this method is more efficient than simple

random sampling through real examples. Besides, for sampling issues other than environmental

sampling, which having similar irregular coverage and clustered pattern, our APS approach

could be easily extended. Hence, this approach can be implemented in multiple applications.

Sample size control is one disadvantage of this APS method. This sampling method is also

highly depending on sampling framework, such as gridding size, gridding scheme, or general

framework information. All of these need further exploration.
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Chapter 2

Application of Adaptive Sampling in Computer

Experiment

2.1 Introduction

Many complex phenomena are too costly or difficult to investigate directly using physical ex-

periments. Instead, computer experiment becomes a widely used alternative to provide insight

into such phenomena. However, computational expense of computer experiments often pro-

hibit the naive approach of running the experiment over a dense grid of input configurations.

Therefore, an efficient design is important in the study of complex phenomena using computer

experiments. A popular approach is called space-filling designs (Santner et al. 2003, Fang et

al. 2006), such as Latin hypercube designs (LHDs).

Despite the prevalence of space-filling designs, they are chosen in advance which results in

insufficient information in parts of the space, particularly where the responses appear to be

promising. It has been shown in conventional experimental designs that, for a given sample size

and cost, more valuable information can be obtained by performing the experiments sequentially.

However, the existing sequential designs cannot be directly extended to computer experiments

because of their special features such as deterministic outputs and nonlinearity of the response

surface. Studies of sequential design remain scant in computer experiments. The existing

methods along this line rely heavily on model fitting (Williams et al. 2000, Gramacy and Lee

2009). The efficiency of these methods deteriorates as the fitted model deviates from the global

response surface, which commonly occurs when a limited amount of data are collected with

high dimensionality in complex experiments.

A new class of sequential designs is introduced for computer experiments. It is called adap-

tive Latin hypercube designs (ALHDs). ALHDs appear to be more efficient than nonadaptive

design. Moreover, they are model-free and constructed based on space-filling designs. Thus,

ALHD is attractive for complex computer experiments particularly in their early stage where

model fitting tends to be unreliable.

The remainder of the paper is organized as follows. In Section 2, the design procedure of
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ALHDs is introduced and three design-unbiased estimators are proposed. A further refinement

of ALHD is proposed in Section 3, which provides better control over sample size and avoids

replicates in the final sample. The two types of ALHDs are illustrated using a simple example

in Section 4. In Section 5, the performance of the proposed designs are demonstrated based on

two studies using computer experiments.

2.2 Adaptive Latin hypercube designs

2.2.1 Design procedure

To provide sequential designs which is robust to model assumptions, we incorporate the concept

of adaptive sampling. Adaptive sampling is a sequential model-free procedure developed mainly

for two-dimensional survey sampling. It is generally used in animal population sampling and

shown to be efficient in sampling sparse but clustered populations such as rare species. For

the design of computer experiments, the direct extension of conventional adaptive sampling is

not desirable because it is based on a simple random sampling as an initial which is not ideal

for spreading out design points (Thompson 1990,1991,1992; Salehi 1997; Seber and Thompson

1994; Smith 1995), particually for high dimensional space. It is shown that Latin hypercube

designs can improve estimation efficiency over simple random sample, therefore, an intuitive

idea is to conduct the adaptive design based on Latin hypercube designs. Such a design is

called an adaptive Latin hypercube design.

The procedure to construct adaptive Latin hypercube designs can be described as follows.

Assuming that there are p factors and each factor has n levels. An initial sample is collected

based on Latin hypercube sampling over the experimental region. In general, a LHD can be

easily obtained by a random permutation of (1, . . . , n) for each factor and optimal design criteria

(Morris 1995; Johnson 1990; Hung 2008; Tsay 1976; Constantine 1981; Murty 1971; Ouwens,

Tan and Berger 2002) can be applied. Given a fixed Latin hypercube design as an initial,

whenever the response of a selected initial unit satisfies a given criterion, additional units in

the neighborhood of that unit are added to the sample. If any of the additional added units

satisfies the condition, then more units may be added to the sample. This procedure continues

until no more units that meet the condition are found. Thus the final design contains every

unit in the neighborhood of any sample unit satisfying the condition. In this paper, we define a

neighborhood which consists of, in addition to itself, the spatially adjacent points. Discussions

on various neighborhood definitions can be found in Thompson (1990) and they can be extended

to adaptive Latin hypercube designs.
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Figure 2.1: A data center thermal management example

An example of a two-factor adaptive Latin hypercube design is illustrated in Figure 2.1.

Assume that two factors, the flow rate of an air condition and the percentage of tile open area,

control the thermal distribution in a data center and the interest is to maintain the data center

at an acceptable temperature for reliable operation of the equipment. Different colors represent

the underlying maximum data center room temperature with respect to different settings of the

two factors. The initial design is a 24-run Latin hypercube design represented by the circles.

The bullet points, not necessarily selected by the initial design, indicate that the associated

variable of interest satisfy the prespecified condition, i.e., the corresponding maximum room

temparture is below 15◦C. The triangles represent the design points selected adaptively to the

final sample. So, the final adaptive Latin hypercube design includes the circles and the triangles.

For the adaptive Latin hypercube designs, several definitions are analogue to that in the

adaptive sampling literature (Thompson and Seber 1996). The set of all units satisfying the

condition in the neighborhood of one another is called a network. According to the definition,

selection in the initial design of any point in a network will result in the final sample of all

units in that network. For example, the five adjacent bullet points in the middle of Figure 2.1

belong to the same network. For any unit that does not meet the condition, it forms a network

with size one, i.e., consisting just of itself. The units that do not meet the condition but in

the neighborhood of some design points that satisfy the condition are called edge units. The
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neighborhood of a sample unit is assumed to be independent to the response.

Apart from the space-filling property and the efficiency gained by the sequential proce-

dure, the proposed designs are particularly attractive for computer experiments because they

provide information that fulfills the needs in computer experiment modeling at a later stage,

including the estimation of the mean function and the covariance structure (Sacks et al. 1989).

Specifically, spreading out initial design points uniformly is useful in efficiently estimating the

regression parameters in the mean function. On the other hand, adaptively taking into account

the local information in the follow-up experiment is desirable for capturing the smoothness of

the underlying system, which leads to better estimation of parameters in the covariance struc-

ture, such as the smoothness parameters in Matern class (Matern 1986; Handcock and Stein

1993; Handcock 1994; Palacios and Steel 2006; Zhang 2004). It is important typically for com-

plex experiments with large number of inputs because the initial design points are very sparse

in the high dimensional cases (Handcock 2004).

2.2.2 Design properties

Despite some commonly shared concepts, the adaptive Latin hypercube designs differ from the

conventional adaptive sampling in which initial samples, such as simple random sampling, are

drawn independently. The independence of the inclusion probabilities is violated in adaptive

Latin hypercube designs. Therefore, standard estimation methods for adaptive sampling cannot

be applied and new estimators and the related inference need to be rigorously established.

In this section, unbiased estimators for the population mean are the main focus. Conven-

tional unbiased estimators, such as the sample mean, are no longer unbiased with the adaptive

Latin hypercube designs. Hence, new unbiased estimators are introduced and their variances

and unbiased estimators for variances are discussed. Derivations of the unbiased estimators and

the unbiased estimators of variance are given in the Appendix.

Assume that there are N = np units in the population with the corresponding responses

y1, · · · , yN and the population mean is defined by µ = N−1
∑N
i=1 yi. For the adaptive Latin

hypercube designs, a Horvitz-Thompson type of design-unbiased estimator (Cochran, 1977;

Horvitz and Thompson, 1952; Thompson 1990,1991) is introduced. To do so, the following

notation is needed. Let Ψk be the set of units in the kth network and K be the number of

networks in the population. So the number of units selected from the kth network in the initial

sample can be written as nk =
∑
j∈Ψk

I(j ∈ s0). The unbiased estimator is developed based on

Theorem 1 as follows.
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Theorem 1: Define the size of network k by ψk. The number of designs having at least j

elements from the kth netwrok in their initial Latin hypercube design is defined by qk,j, where

j = 1, · · · , ψk and qk,1 = ψk. A Horvitz-Thompson type of design-unbiased estimator can be

written as

µ̂ =
1

N

K∑
k=1

y∗kI(nk > 0)

P (nk > 0)
, (2.1)

where y∗k =
∑
i∈Ψk

yi, the inclusion probability of network k in the inital sample can be written

as

P (nk > 0) =

min(ψk,n)∑
j=1

(−1)j+1qk,j

[ j−1∏
l=0

(n− l)
]1−p

,

and I(nk > 0) takes 1 if any unit of the kth network is in the initial sample s0, and 0 otherwise.

The variance of the unbiased estimator can be calculated by

var(µ̂) = N−2
K∑
k=1

K∑
h=1

y∗ky
∗
h[P (nk > 0, nh > 0)− P (nk > 0)P (nh > 0)]

P (nk > 0)P (nh > 0)
, (2.2)

where

P (nk > 0, nh > 0) =

min(ψk∪ψh,n)∑
j=2

(−1)j
{ j−1∑
i=1

[q(k,i),(h,j−i)]

}[ j−1∏
l=0

(n− l)
]1−p

,

and q(k,i),(h,t) is the number of designs having at least i elements from the kth network and at

least t elements from the hth network in their initial Latin hypercube design, for i = 1, · · · , ψk

and t = 1, · · · , ψh. An unbiased estimator of (2.2) is

v̂ar(µ̂) = N−2
K∑
k=1

K∑
h=1

y∗ky
∗
h[P (nk > 0, nh > 0)− P (nk > 0)P (nh > 0)]

P (nk > 0)P (nh > 0)P (nk > 0, nh > 0)
I(nk > 0)I(nh > 0).

(2.3)

A special case when the experimental region consists of only networks with size one, we have

the following Lemma.

Lemma 1: Define wij = 1 if yi and yj have no coordinates in common and 0 otherwise. If

all the networks have size one, i.e., ψk = 1 for all k = 1, · · · ,K, the variance in (2.2) can be

written as

var(µ̂) =
1

n2

{ np∑
i=1

n1−p(1− n1−p)y2
i +

np∑
i=1

np∑
j=1

yiyjwijn
1−p[(n− 1)1−p − n1−p]},

which equals to the variance of a Latin hypercube design.

The efficiency of the foregoing unbiased estimator can be improved by incorporating more

information of the edge points because the observations of edges points are used in the estimator

only if they appear in the initial sample based on (2.1). The improvement is achieved by

Rao-Blackwellization in which an improved unbiased estimator is obtained by the conditional
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expectation of the original estimator, given a sufficient statistics. The most efficient choice is

the minimal sufficient statistics. For adaptive Latin hypercube designs, the minimum sufficient

statistics is the unordered set of distinct, labeled observations, denoted by m = {(i, yi) : i ∈ s},

where s denotes the final sample. Define M as the sample space for m, g(s′0) as the function

that maps an initial design s′0 into a value of m, and S as the sample space containing all

possible samples. An improved unbiased estimator for adaptive LHD is

µ̂RB = E(µ|M = m)

= 1
N

∑K
k=1

y∗kJk(1−e∗k)
P (nk>0) + 1

nL

∑
s′0∈S

{
I(g(s′0) = m)

[∑
i∈s′0,ei=1 yi

]}
,

(2.4)

where e∗ =
∑
i∈Ψk

ei and ei = 1 if unit i is an edge point and ei = 0 otherwise. The variance

of this improved unbiased estimator can be written as

var(µ̂RB) = var(µ̂)−
∑
m∈M

P (m)

L

∑
s̃0∈S

I(g(s̃0) = m)
[
(µ̂− µ̂RB)2

]
, (2.5)

where L is the number of initial designs that are compatible with m and P (m) is the probability

thatM = m. An unbiased estimator of the variance is ṽar(µ̂RB) = v̂ar(µ̂)−L−1
∑
s̃0∈S I(g(s̃0) =

m)
[
(µ̂− µ̂RB)2

]
and a more efficient estimator can be further obtained by conditioning on the

minimum sufficient statistics as follows

v̂ar(µ̂RB) = E(ṽar(µ̂RB) |M = m)

= 1
L

∑
s̃0=S I(g(s̃0) = m)v̂ar(µ̂)− 1

L

∑
s̃0∈S I(g(s̃0) = m)

[
(µ̂− µ̂RB)2

]
.

(2.6)

New estimator

Define a sufficient statistic but not the minimum. Decompose the final sample s into two

parts. The first part, denoted by sc, is the set of all distinct units in the sample for which

the condition to sample adaptively is satisfied. The remaining units are denoted by sc̄. Let fi

be the number of times that the network to which point i belongs is intersected by the initial

sample. Using these notation, a sufficient statistic can be defined by m∗ = {(i, yi, fi), (j, yj) :

i ∈ sc, j ∈ sc̄}.

µ̂∗ = 1
N

∑K
k=1

y∗kI(nk>0)(1−e∗k)
P (nk>0) +

es0
nes

(
∑
i∈s eitiyi) (2.7)

The variance is

var(µ̂∗) = var(µ̂)−
∑
m∗∈M∗

P (m∗)
L

∑
s′0∈S

{
I(g(s′0) = m∗)[

1
n

∑
i∈s0,ei=1(yi − ȳe)

]2}
.

(2.8)

An unbiased estimator of the variance is

ṽar(µ̂∗) = v̂ar(µ̂)− L−1
∑
s′0∈S

{
I(g(s′0) = m∗)

[
1
n

∑
i∈s0,ei=1(yi − ȳe)

]2}
. (2.9)
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A more efficient estimator can be further obtained by conditioning on the sufficient statistics

as follows:

v̂ar(µ̂∗) = E(ṽar(µ̂∗)|M∗ = m∗)

= 1
L

∑
s′0∈S

I(g(s′0) = m∗)v̂ar(µ̂)− 1
L

∑
s′0∈S

{
I(g(s′0) = m∗)[

1
n

∑
i∈s0,ei=1(yi − ȳe)

]2}
.

(2.10)

2.3 Refined Adaptive Latin Hypercube Designs

2.3.1 Sequential ALHDs without replacement

Ideally, it is desirable to have design points sampled without replacement because computer

experiments often generate deterministic outputs and replicates should be avoided. According

the adaptive Latin hypercubde procedure, if more than one point from a network is selected in

the Latin hypercube design, then the network will be selected more than once. Inspired by this

observation, a modification is introduced to conduct the adaptive design without replacement

of networks. The idea is to perform the adaptive design sequentially and in each iteration, the

design space is updated by removing the selected network so that the networks are selected

without replacement. Moreover, such a refinement provides better control over the size of the

experiment. An inherent problem with the original adaptive Latin hypercube design is that

the size of the experiment may exceed a predetermined cost limit because the neighborhood

size increases linearly with the dimension of the experiments. The design procedure can be

described as follows.

Define T as a predetermined number of initial points, where T ≤ n. Let the initial sample

space for (x1, · · · , xp) be Ω1, which includes np points. For l = 1, · · · , T, perform steps 1 and 2

iteratively to obtain a sequential ALHD.

Step 1: Based on the sample space Ωl, randomly select an initial design point, denoted by ul =

(t1l, · · · , tpl),. Sample all points in the cluster of ul and denote the network of ul by W .

Step 2: To maintain the Latin hypercube structure of the initial points, the sample space Ωl+1

is updated by removing the design points sharing at least one of the coordinates with ul

(i.e., remove the points with xi = til for at least one i, where i = 1, · · · , p). Furthermore,

remove the units belonging to network W from Ωl+1 so that the networks are selected

without replacement.

We use the same example in Figure 2.1 to illustrate the procedure of sequential ALHDs.

Let T = 9. The initial sample space Ω1 includes 576 (= 242) points. Assuming that the first
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Figure 2.2: An example of sequential ALHD

point u1 = (9, 19) is randomly selected point from Ω1, then the sample space Ω2 is defined by

removing the network of u1 (i.e., a network with size one) and also the 9th column and 19th

row from Ω1. The second initial point is selected randomly from Ω2. Assume u2 = (15, 14) is

selected. Then all the units (marked by triangles) belonging to the network of u2 are sampled.

The sample space Ω3 is updated by removing the network of u2 and the 15th column and 14th

row from Ω2. Following the procedure, a set of nine initial design points are numbered in Figure

2.2 and the adaptively added points are represented by triangles. Clearly, the nine points is a

subset of a 24-run LHD.

It is worth noting that ALHDs provide a better control over the size of the experiment

because the final number of distinct networks selected, T , can be determined based on the

objective of the experiment. If the focus is to explore the experimental region uniformly, it is

desirable to have T = n because the resulting initial design is a Latin hypercube design and the

one-dimensional balance property holds in this case. On the other hand, if the experiment is

expensive or time-consuming, T can be a smaller number to reduce costs. It is possible that T

cannot be equal to n. This happens only when there is a large network containing at least two

adjacent levels of x1 and at least one of them have all the units included in the network. In this

situation, there is a possibility that w 6= ∅ at least once, and thus we have N < n. It, however,

rarely occurs in practice because we are mainly focus on the experiments in which responses of
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interest are clustered in a relatively small area, i.e., the network sizes are small.

2.3.2 Design properties

To study the sampling property, we again focus on the unbiased estimators for the population

mean. Denote ỹ∗k, k = 1, . . . ,K, be the set of ordered sample values with ỹ∗k =
∑
j∈Ψ̃k

yj ,

where Ψ̃k is the set of units in the kth network. Raj (1956) introduced a general approach to

construct unbiased estimator for unequal probability sampling without replacement. Following

Raj’s idea, we first consider

ω1 =
∑K
k=1

ỹ∗kI1(nk>0)
P1(nk>0) ,

ω2 = ỹ∗1 +
∑K
k=2

ỹ∗kI2(nk>0)
P2(nk>0) ,

ωi = ỹ∗1 + . . .+ ỹ∗i−1 +
∑K
k=i

ỹ∗kIi(nk>0)
Pi(nk>0) ,

(2.11)

where i = 3, . . . , T , Ii(nk > 0) is an indicator variable taking value 1 when the kth network of

the population is the ith network selected in the sample, and 0 otherwise. Pi(nk > 0) represents

the probability that the kth network is selected as the ith sample. This probability is calculated

based on the updated feasible region in the iteration corresponding to the ith sample. Let µ

be the population mean. It is clear that n−pE(ωi) = µ. Therefore, according to Raj (1956), an

unbiased estimator of µ can be written as

µ̂R = N−1
T∑
i=1

uiωi, (2.12)

where the ui are constants and
∑T
i=1 ui = 1.

Murthy (1957) proposed a modification of Raj’s estimator, which is derived by constructing

an unordered version of Raj’s ordered unbiased estimator. Let s∗0 be an ordered final sample

of the ν distinct networks selected according to the procedure discussed in Section 2, Γ be the

set of all samples obtained by permuting the coordinates of the elements of s∗0 and s0 be the

unordered sample set of the T network. Murthy introduced an unbiased estimator

µ̂M = N−1

∑
s∗0∈Γ P (s∗0)µ̂R(s∗0)

P (s0)
(2.13)

for the population mean with its variance less than that of µ̂R. By choosing u1 = 1 and ui = 0

for i > 1, Murthy’s estimator can be written as

µ̂M = N−1
T∑
i=1

P (s0 | i)
P (s0)

y∗i , (2.14)

where P (s0 | i) is the conditional probability of choosing sample s0 given network i has been
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chosen as the first network. The variance of (2.14) is given by (Murthy 1957; Cochran 1977)

var(µ̂M ) = N−2

[∑K
i=1

∑K
j<i

(
1−

∑
a,b∈s0

P (s0|a)P (s0|b)
P (s0)

)
(

y∗i
P1(ni>0) −

y∗j
P1(nj>0)

)2

P1(ni > 0)P1(nj > 0)

] (2.15)

and its unbiased estimator is

v̂ar(µ̂M ) = N−2

[∑T
i=1

∑T
j<i

(
P (s0|i,j)
P (s0) −

P (s0|i)P (s0|j)
P (s0)2

)
(

y∗i
P1(ni>0) −

y∗j
P1(nj>0)

)2

P1(ni > 0)P1(nj > 0)

]
,

(2.16)

where P (s0 | i, j) denotes the probability of the sample s0 given that the points i and j are

selected in either order in the first two draws.

Similar to the discussion in Section 2, the estimator µ̂M can be improved by Rao-Blackwellization

and an improved unbiased estimator is obtained by the conditional expectation of µ̂M given

the minimum sufficient statistics. According to the sequential ALHD procedure, the minimum

sufficient statistics, d, is the final unordered sample of the ν distinct networks with their labels

denoted by d = {(i1, yi1), . . . , (iν , yiν )}. Define D as the sample space for d, g(s′0) as the func-

tion that maps an initial design s′0 into a value of d, and S as the sample space containing all

possible initial samples. An improved unbiased estimator is given by µ̂RB
M = E(µ̂M | D = d). It

can be written as

µ̂RB
M = N−1

{ T∑
i=1

P (s0 | i)
P (s0)

y∗i (1− e∗i ) +

∑
s′0∈S

[
I(g(s′0) = d)P (s′0)

∑
i∈s′0, ei=1

P (s′0|i)
P (s′0) y

∗
i

]
∑
s′0∈S

I(g(s′0 = d))P (s′0)

}
,

(2.17)

Applying the same derivation, an efficient estimator for the variance is obtained as follows:

v̂ar(µ̂RBM ) =

∑
s̃0=S I(g(s̃0) = d)P (s′0)v̂ar(µ̂M )−

∑
s̃0∈S I(g(s̃0) = d)P (s′0)[µ̂M − µ̂RBM ]2∑

s′0∈S
I(g(s′0 = d))P (s′0)

.

(2.18)

New estimator Based on a sufficient statistics that contains the unordered final sample,

the number of also share the same P (g(s0) = m)

Define a sufficient statistic but not the minimum. Decompose the final unordered sample

of the ν distinct networks into two parts. The first part, denoted by sc, is the set of all

distinct units in the sample for which the condition to sample adaptively is satisfied. The

remaining units are denoted by sc̄. Using these notation, a sufficient statistic can be defined by

d∗ = {(i, yi), (j, yj), P (s0) : i ∈ sc, j ∈ sc̄}.

The new unbiased estimator can be written as

µ∗M = N−1

{∑T
i=1

P (s0|i)
P (s0) y

∗
i (1− e∗i ) +

P (s0|e)es0
P (s0)e∗s

∑
i∈s eiyiδi

}
. (2.19)
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The variance is given by

var(µ̂∗M ) = var(µ̂M )−
∑
d∗∈D∗

P (d∗)
L∗N2

∑
s′0∈S

{
I(g(s′0) = d∗)[(∑

i∈s′0, ei=1
P (s′0|i)
P (s′0) yi

)
−
(
P (s′0|e)es′0
P (s′0)e∗s

∑
i∈s eiyiδi

)]}2

.

(2.20)

An unbiased estimator of the variance is

ṽar(µ̂∗M ) = v̂ar(µ̂M )− 1
L∗N2

∑
s′0∈S

{
I(g(s′0) = d∗)[(∑

i∈s′0, ei=1
P (s′0|i)
P (s′0) yi

)
−
(
P (s′0|e)es′0
P (s′0)e∗s

∑
i∈s eiyiδi

)]}2

,

(2.21)

and a more efficient estimator for the variance can be written as

v̂ar(µ̂∗M ) = E[ṽar(µ̂∗) | D∗ = d∗]

= 1
L∗

∑
s′0∈S

I(g(s′0) = d∗)v̂ar(µ̂M )− 1
L∗N2

∑
s′0∈S

{
I(g(s′0) = d∗)[(∑

i∈s′0, ei=1
P (s′0|i)
P (s′0) yi

)
−
(
P (s′0|e)es′0
P (s′0)e∗s

∑
i∈s eiyiδi

)]}2

,

(2.22)

2.4 A toy example

In this section, the proposed design procedures are implemented using a small example that

allows us to demonstrate all the possible design combinations. The example is shown in Figure

2.3, which involves two factors at three levels. The numbers shown in the cells are the responses.

We first illustrate ALHDs. There are six possible ALHDs with n = 3 and the final designs are

listed in Table 2.1. For each row in the table, the first three design points are the initial LHDs

and the rest of them are adaptively added when the responses are larger than or equal to 8.

Three unbiased estimators, µ̂, µ̂∗, and µ̂RB , and their estimated variances are calculated for

each design. The last row summarizes the average performance of these estimators over all

possible designs. The three estimators are unbiased and the average variance of µ̂RB and µ̂∗

are 8.4% and 1.5% smaller than that from the original estimator, µ̂. The average final sample

size is 7.67.

Using the sequential ALHDs procedure with T = 2, there are 34 possible designs listed

in Table 2.2 along with their probabilities reported in the column “P”. For each row, the

first two points are the ordered initial design points and the rests are the adaptively added

points according to the same criterion in Table 2.1. Similar to the previous table, the last row

summarized the average performances of the unbiased estimators over all designs. Note that

as shown in this toy example, the unbiased estimators of the variance are not guaranteed to be

non-negative. To obtain a reasonable average of variance, negative variances are replaced by

zeros in the calculation. Conditions for non-negativity of the estimators and new estimators of
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Figure 2.3: A toy example with two factors

Table 2.1: Toy Example: Adaptive Latin hypercube designs

Design points µ̂ µ̂RB µ̂∗ v̂ar(µ̂) v̂ar(µ̂RB) v̂ar(µ̂∗)

(1,2)(2,2)(3,3);all 8.17 7.92 8.28 0.68 5.24 4.47

(1,1)(2,3)(3,2);all 8.83 7.92 8.28 10.68 5.24 4.47

(1,2)(2,1)(3,3);all 6.83 7.92 6.83 9.12 5.24 9.12

(1,3)(2,1)(3,2);all 7.83 7.92 8.28 2.56 5.24 4.47

(1,2)(2,3)(3,1);(1,1)(1,3)(2,1)(2,2) 7.33 7.33 7.33 3.85 3.85 3.85

(1,3)(2,2)(3,1); 3.67 3.67 3.67 6 6 6

mean 7.11 7.11 7.11 5.48 5.13 5.40
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the variance that can maintain the non-negativity deserve further investigation. According to

results in Table 2.2, the average variance is reduced by 39% (= (5.48−3.36)/5.48) compare with

the original ALHDs and the average final sample size is 6.04, which is 21.3% ((7.67−6.04)/7.67)

smaller than that in Table 2.1.

2.5 Applications

2.5.1 Borehole model

To study the advantage of the proposed designs, we conducted simulations based on a computer

model to compare the performance of the adaptive designs and the nonadaptive simple random

sampling (without replacement) with sample size equal to the adaptive design. The model

considered is a widely used borehole model (Morris 1993), which describes the cause of the flow

rate through a borehole as follows:

y =
2πTu(Hu −Hl)

ln(r/rw)[1 + 2LTu
ln(r/rw)r2wKw

+ Tu
Tl

]

The simulation is conduced based on four factors at four levels. The detailed setting are given

below:

Hu −Hl = (170, 270, 400), rw = (0.05, 0.1, 0.15),

L = (1120, 1440, 1680), r = (100, 5000, 50000),

and the rest of the variables are specified as Tu = 115600, Tl = 116,Kw = 12045.

For the original ALHDs, 4 by 4-run LHDs are used as initial designs and for the sequential

ALHDs, T = 3 is specified. For both designs, simulations are performed using different quantiles

of the response as the criterion for adaptive selection and they all lead to similar conclusions;

therefore, we only demonstrate one particular criterion here to save space. The criterion is

specified as y ≥ 160, where 160 is approximately the upper 0.2 quantile. Based on 10000

iterations, the simulation results are summarized in Table 2.12 and Table 2.13. In both tables,

the last row indicates the efficiency of the proposed estimator with respect to the simple random

sample estimator based on the sample size. If µ̂· denotes one of the proposed estimators, then

the efficiency of such an estimator is calculated by var(µ̂SRS)/var(µ̂·). The results show that

both types of ALHDs have significant improvement on the estimation efficiency over simple

random sampling. The average sample size is 76.26 for the original ALHDs, and 58.81 for the

sequential ALHDs. Comparing the results in Tables 2.12 and 2.13, it shows that with a 23%

(= (76.26 − 58.81)/76.26) smaller sample size, the average variance can be reduced by 15%

(= (2464.47− 2097.21)/2464.47) using the sequential ALHDs and they can be further reduced
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Table 2.2: Toy example: Sequential Adaptive Latin Hypercube Designs

Design points P µ̂M µ̂RBM µ̂∗M v̂ar(µ̂M ) v̂ar(µ̂RBM ) v̂ar(µ̂∗M )

1 (1,3)(2,2); 1
36 3.5 3.5 3.5 -0.03 -0.03 -0.03

2 (2,2)(1,3); 1
36 3.5 3.5 3.5 -0.03 -0.03 -0.03

3 (1,3)(3,1); 1
36 3.5 3.5 3.5 -0.03 -0.03 -0.03

4 (3,1)(1,3); 1
36 3.5 3.5 3.5 -0.03 -0.03 -0.03

5 (2,3)(3,1); 1
36 5 5 5 -0.11 -0.11 -0.11

6 (3,1)(2,3)); 1
36 5 5 5 -0.11 -0.11 -0.11

7 (2,2)(3,1); 1
36 4 4 4 0 0 0

8 (3,1)(2,2); 1
36 4 4 4 0 0 0

9 (2,3)(3,2);(3,1)(2,2)(3,3) 1
36 7.25 6.75 6.75 1.22 2.33 2.33

10 (3,2)(2,3);(3,1)(2,2)(3,3) 1
36 7.25 6.75 6.75 1.22 2.33 2.33

11 (2,2)(3,3);(2,3)(3,1)(3,2) 1
36 6.25 6.75 6.75 3.94 2.33 2.33

12 (3,3)(2,2);(2,3)(3,1)(3,2) 1
36 6.25 6.75 6.75 3.94 2.33 2.33

13 (1,3)(3,2);(2,2)(2,3)(3,1)(3,3) 1
36 5.75 5.75 5.75 5.88 5.88 5.88

14 (3,2)(1,3);(2,2)(2,3)(3,1)(3,3) 1
36 5.75 5.75 5.75 5.88 5.88 5.88

15 (1,3)(2,1);(1,1)(1,2)(2,2)(3,1) 1
36 7 7.15 7.21 16 14.17 13.83

16 (2,1)(1,3);(1,1)(1,2)(2,2)(3,1) 1
27 7 7.15 7.21 16 14.17 13.83

17 (1,2)(3,1);(1,1)(1,3)(2,1)(2,2) 1
27 7.43 7.15 7.21 11.76 14.17 13.83

18 (3,1)(1,2);(1,1)(1,3)(2,1)(2,2) 1
36 7.43 7.15 7.21 11.76 14.17 13.83

19 (1,1)(2,2);(1,2)(1,3)(2,1)(3,1) 1
36 7 7.15 7 15 14.17 15

20 (2,2)(1,1);(1,2)(1,3)(2,1)(3,1) 1
36 7 7.15 7 15 14.17 15

21 (1,2)(2,3);(1,1)(1,3)(2,1)(2,2)(3,1) 1
27 8.15 8.15 8.15 0.95 0.95 0.95

22 (2,3)(1,2);(1,1)(1,3)(2,1)(2,2)(3,1) 1
36 8.15 8.15 8.15 0.95 0.95 0.95

23 (1,1)(2,3);(1,1)(1,3)(2,1)(2,2)(3,1) 1
36 8.15 8.15 8.15 0.95 0.95 0.95

24 (2,3)(1,1);(1,1)(1,3)(2,1)(2,2)(3,1) 1
36 8.15 8.15 8.15 0.95 0.95 0.95

25 (1,2)(3,3);all 1
27 9.32 9.32 9.32 -0.012 -0.012 -0.012

26 (3,3)(1,2);all 1
36 9.32 9.32 9.32 -0.012 -0.012 -0.012

27 (1,1)(3,3);all 1
36 9.32 9.32 9.32 -0.012 -0.012 -0.012

28 (3,3)(1,1);all 1
36 9.32 9.32 9.32 -0.012 -0.012 -0.012

29 (1,1)(3,2);all 1
36 9.32 9.32 9.32 -0.012 -0.012 -0.012

30 (3,2)(1,1);all 1
36 9.32 9.32 9.32 -0.012 -0.012 -0.012

31 (2,1)(3,3);all 1
27 9.32 9.32 9.32 -0.012 -0.012 -0.012

32 (3,3)(2,1);all 1
36 9.32 9.32 9.32 -0.012 -0.012 -0.012

33 (2,1)(3,2);all 1
27 9.32 9.32 9.32 -0.012 -0.012 -0.012

34 (3,2)(2,1);all 1
36 9.32 9.32 9.32 -0.012 -0.012 -0.012

mean 7.11 7.11 7.11 3.36 3.33 3.33
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Table 2.3: Borehole 4 ∗ 3 example: ALHDs

µ̂ µ̂RB µ̂∗ µ̂SRS

mean 91.99 92.22 92.04 91.71

variance 2464.47 2425.61 2444.54 5048.80

efficiency 2.05 2.08 2.07 1

Table 2.4: Borehole 4 ∗ 3 example: Sequential ALHDs

µ̂M µ̂RBM µ̂∗M µ̂SRS

mean 126.58 125.96 124.67 92.37

variance 2097.21 1808.83 1965.59 5133.68

efficiency 2.45 2.84 2.61 1

by more than 25% (= (2425.61− 1808.83)/2425.61) with the Rao-Blackwell estimators.

Another example is 3 by 3 experiment. We use levels (170, 270, 400) to present Hu − Hl,

(0.05, 0.1, 0.15) to present rw, and (1120, 1440, 1680) for L. For other five variables, the settings

are r = 100, Tu = 115600, Tl = 116,Kw = 12045. We run this 27-run experimental design with

criteria defined as y ≥ y′s upper 0.25 quantile. 10000 iterations are tried and the results are

summarized in Table 2.5 and Table 2.6. Mean sample size is 13.24 in adaptive sampling and

9.32 in sequential sampling.

Table 2.5: Borehole 3 ∗ 3 example: ALHDs

µ̂ µ̂RB µ̂∗ µ̂SRS

mean 89.23 89.31 89.22 90.08

variance 1986.16 1783.55 1831.24 6005.65

efficiency 0.33 0.30 0.30 1

2.5.2 Data center thermal management study

The proposed design is demonstrated using computational fluid dynamic (CFD) simulations

conducted at IBM for a data center thermal management study. A data center is an integrated

facility housing multipe-unit servers, providing application services or management for data
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Table 2.6: Borehole 3 ∗ 3 example: Sequential ALHDs

µ̂ µ̂RB µ̂∗ µ̂SRS

mean 89.39 89.22 89.41 89.44

variance 1165.57 1117.94 1162.46 6009.82

efficiency 0.19 0.19 0.19 1

Table 2.7: Factors in a data center thermal management study

Factor levels

Computer room air conditioning (CRAC) unit 1 flow rate (cfm) 0, 7750, 10750, 13000

Computer room air conditioning (CRAC) unit 2 flow rate (cfm) 0, 2500, 4000, 5500

Percentage of tile open area 20%, 40%, 60%, 75%

processing. Data center Facilities constantly generate large amounts of heat to the room, which

must be maintained at an acceptable temperature for reliable operation of the equipment. A

significant fraction of the total power consumption is for heat removal. Therefore, the goal of

the study is to design a data center with an efficient heat-removal mechanism (Schmidt, Cruz,

and Iyengar 2005; Hamann 2008).

To achieve the foregoing goal, three factors at four levels are considered in this study. Details

regarding these factors and their levels are given in Table 2.7. Using CFD simulations, we are

able to obtain the maximum room temperature (MRT) under each data center setting and the

objective is to find the optimal setting so that MRT can be minimized. A sequential ALHD was

conducted with T = 3 and it proceed by adding design points adaptively if the observed MRT

is lower than or equal to 80◦F . By doing this, more design points are sequentially conducted in

the neighborhood of the existing design that have smaller MRT, because they are more likely

to be the optimal heat-removal mechanism. The final sample size of the sequential ALHD is

28. The unbiased estimators and their estimated variances are given by

µ̂M = 88.50, µ̂RB
M = 87.35, µ̂∗M = 87.05, v̂ar(µ̂M ) = 35.73, v̂ar(µ̂RBM ) = 7.01, v̂ar(µ̂∗M ) = 14.54.

For adaptive sampling, the unbiased estimator µ̂ based on adaptive designs has efficiency

0.33 compared to simple random sampling with the same sample size. With smaller sample size

than adaptive sampling, sequential sampling has smaller variances 1165.57 compared to 1986.16,

and smaller efficiencies 0.19. Consistent with previous proof, var(µ̂RB) ≤ var(µ̂∗) ≤ var(µ̂) for
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both adaptive sampling and sequential sampling.

For example, Williams et al. (2000) proposed a sequential procedure according to the

expected improvement calculated based on fitted Gaussian process models. Gramacy and Lee

(2009) introduced a class of sequential designs based on treed Gaussian process models.

2.5.3 Piezoelectric Energy Harvester Example

Energy harvesting (EH) is the mechanism which converts energy from ambient waste energy

sources, like waste heat, solar energy, wind, vibration, human energy on the iphone, or key

typing motion energy. Among varied energy harvesting processes, piezoelectric devices attracts

attentions because they directly convert mechanical energy into electrical power. This gives

a possible solution to making the portable electronic devices like PDAs, cellular phones, and

laptops more sustainable. One interesting idea is to insert the piezoelectric device into the

keyboard mechanism so that the typing motion energy may be used or stored for sustainable

use. Therefore, how to increase the energy conversion efficiency, or maximize output energy

under static or dynamic loading receives great attention.

The example here aims to explore the induced voltage performance in an unimorph piezo-

electric cantilever device under static force load, and how geometric parameters affect the output

power. This unimorph cantilever device (Figure 2.4) consists of two layers, with upper layer is

piezoelectric material and lower layer is non-piezoelectric material. A concentrated force is im-

posed on the free end. The surface of the cantilever is a rectangular shape with length L, width

b1 for the upper layer and b2 for the lower layer. The two layers are bonded by a conductive

adhesive. Force F is continuously pushed along z direction. Nickel electrodes are applied on

both sides of piezoelectric layer for voltage measurement. The thicknesses of non-piezoelectric

layer and piezoelectric layer are ts and tp respectively. Here Lead Zirconate Titanate (PZT) is

the piezoelectric material, which is commonly used in energy harvesting, and stainless steel(SS)

is the material in non-piezoelectric layer.

The following function describes the relationship between the induced voltage and other

parameters:

Vin,ave =
1

4

d31

ε0εr

FEp
D

(z2
2 − z2

1)L (2.23)

where εr and ε0 are the dielectric constant of the piezoelectric layer and the permittivity

of free space respectively.d31 is the piezoelectric coefficient of PZT .Es and Ep are the Yang’s

modulus of stainless steel and PZT. And the distance from the interface between the stainless

steel and PZT layers to neutral line is:
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Figure 2.4: Piezoelectric Energy Harvester Example

a =
1

3

−3Est
2
sb2tp − Est3sb1 − 2Est

3
sb2 + Ept

3
pb2 + 3Ept

2
pb1ts + 2Ept

3
pb1

2Estsb2tp + Est2sb1 + Est2sb2 + Ept2pb2 + 2Eptpb1ts + Ept2pb1
(2.24)

Then z1 = −(tp + a), z2 = −a, z3 = ts − a are corresponding to the distances from the

neutral axis to the top of the SS layer, neutral line, and bottom of the PZT layer, and bending

modulus

D = Es[
A

3
(z3

3 − z3
2) +

B

4
(z4

3 − z4
2)] + Ep[

A

3
(z3

2 − z3
1) +

B

4
(z4

2 − z4
1)] (2.25)

with A = b2 + b1−b2
h (ts + a);B = b1−b2

h , and h = z1 + z3 is the distance from upper layer

top to lower layer bottom.

The simulation is conduced based on three factors at four levels with following settings:

ts = (10−6, 10−4, 10−3, 10−2), tp = (10−6, 10−4, 10−3, 10−2), b2 = (0.01, 0.02, 0.03, 0.04)

(2.26)

Es = 20∗1010, Ep = 6.2∗1010, d31 = −274∗10−12, εr = 3130, ε0 = 8.854∗10−12, F = 1, L =

12 ∗ 10−3, b1 = 2 ∗ 10−3. Induced voltage are calculated using classic equation (Wang 2003).

50000 iterations of adaptive and sequential sampling are proceeded, and results are as follows.

2.6 Discusion

The computation of P (s0) can be intensive when T is large because it requires the consideration

of T ! permutations. This is not surprising given the same disadvantage with Murthy’s estimator.

However, this approach is mainly recommended for the experiments in which observations of

interest are usually clustered in a few locations. Therefore, the number of network with size

greater than one in the sample is few and this reduces the computation. We are currently
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Table 2.8: EH simulation results based on ALHDs:V ≥ quantile(V, 0.75), average final sample

size=25.32

µ̂ µ̂RB µ̂∗ µ̂SRS µ̂LHD

mean 6.89 6.83 6.86 7.18 1.92

variance 318.28 290.39 311.83 383.33 352.20

efficiency 1.2 1.32 1.23 1 1.09

Table 2.9: EH simulation results based on sequential ALHDs:V ≥ quantile(V, 0.75),average

final sample size=15.48

µ̂ µ̂RB µ̂∗ µ̂SRS

mean 6.86 7.10 6.86 6.93 19.50

variance 478.62 359.63 478.12 1492.63 1713.37

efficiency 3.12 4.15 3.12 1 0.87

Table 2.10: EH simulation results based on ALHDs:V ≥ quantile(V, 0.8), average final sample

size = 21.88

µ̂ µ̂RB µ̂∗ µ̂SRS µ̂LHD

mean 6.99 6.93 6.97 6.64 2.60

variance 373.88 355.4 371.63 468.46 485.86

efficiency 1.25 1.32 1.26 1 0.96

Table 2.11: EH simulation results based on sequential ALHDs:V ≥ quantile(V, 0.8), average

final sample size = 12.40

µ̂ µ̂RB µ̂∗ µ̂SRS µ̂LHD

mean 6.65 6.90 6.65 6.96 22.46724

variance 570.39 338.92 522.38 1660.39 1904.717

efficiency 2.91 4.90 3.18 1 0.87
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Table 2.12: EH simulation results based on ALHDs:V ≥ quantile(V, 0.9), average final sample

size = 11.54

µ̂ µ̂RB µ̂∗ µ̂SRS µ̂LHD

mean 7.37 7.50 7.50 7.36 3.83

variance 568.60 557.36 560.48 828.34 771.38

efficiency 1.46 1.49 1.48 1 1.07

Table 2.13: EH simulation results based on Sequential ALHDs:V ≥ quantile(V, 0.9), average

final sample size = 6.02

µ̂M µ̂RBM µ̂∗M µ̂SRSLHD

mean 6.98 7.07 6.98 6.76 27.76

variance 772.89 643.44 771.48 2061.18 2191.18

efficiency 2.67 3.2 2.67 0.94

developing algorithms to efficiently evaluate P (s0) under a general setting and the result will

be reported elsewhere.

Another interesting extension is the study of adaptive designs with optimized initial designs.

This is because the initial designs in both types of ALHDs are not unique. Careful construction

of the initial designs with some desirable properties, such as maximizing the minimum inter-

site distances, is expected to be useful in improving the estimation efficiency. Design criteria,

search algorithms, and theoretical properties are the issues that warrants further investigation.

Moreover, further research on generalization of the proposed sequential idea to other classes of

space-filling designs as the initial designs would be interesting.
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Chapter 3

Appendix

P (nk > 0) =
∑min(ψk,n)
j=1 (−1)j+1P ( at least j points from network k appear in LHD)

=
∑min(ψk,n)
j=1 (−1)j+1qk,jP (j points appear in LHD)

=
∑min(ψk,n)
j=1 (−1)j+1qk,j [(n− j)!]p−1(n!)1−p

=
∑min(ψk,n)
j=1 (−1)j+1qk,j

[
n(n− 1) · · · (n− j + 1)

]1−p

(3.1)

To proof the unbiasedness of µ̂, we rewrite µ̂ as follows

µ̂ =
1

N

K∑
k

(
∑
j∈Ψk

yj)I(nk > 0)

P (nk > 0)
=

1

N

N∑
i=1

yiI(nk > 0)

P (nk > 0)
(3.2)

and thus, the result follows.

APPENDIX A: PROOF OF LEMMA 1

Because all the networks have size one, we have ψk = 1 and qk,1 = 1 for all k = 1, · · · ,K.

K = np, q(k,1),(h,1) = 1 only if yk and yh have no coordinates in common.

APPENDIX B: DERIVATION OF (2.4) AND (2.5)

Let S0 be the sample space for the initial design, thus

µ̂RB = E(µ|M = m) =
∑
s′0∈S

µ̂P (S0 = s′0|M = m) (3.3)

and the conditional probability can be written as

P (S0 = s′0|M = m) =
I(g(s′0) = m)∑
s′0∈S

I(g(s′0) = m)
. (3.4)

We first decompose µ̂ into two parts. The first part excludes the sample edge units and the

second part includes the sample edge units. Recall that ek = 1 if the initial sample k is an edge

point and e∗k =
∑
i∈Ψk

ei. Thus, we have

µ̂ = 1
N

∑K
k=1

y∗kJk(1−e∗k)
P (nk>0) + 1

N

∑K
k=1

y∗kJkek
P (nk>0)

= 1
N

∑K
k=1

y∗kJk(1−e∗k)
P (nk>0) + 1

N

∑
i∈s0,ei=1 yin

p−1.
(3.5)
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The first term on the right hand side of (3.5) is fixed given M = m. For the second term,

Jkek = 1 implies that the network size is 1 (i.e. nk = 1) and thus P (nk > 0) = P (nk = 1) =

n1−p. Therefore, we have

µ̂RB =
∑
s′0∈S

µ̂
I(g(s′0)=m)∑

s′0∈S
I(g(s′0)=m)

= 1
N

∑K
k=1

y∗kJk(1−e∗k)
P (nk>0) + 1

NL

∑
s′0∈S

{
I(g(s′0) = m)

[∑
i∈s′0,ei=1 yin

p−1
]}
,

= 1
N

∑K
k=1

y∗kJk(1−e∗k)
P (nk>0) + 1

nL

∑
s′0∈S

{
I(g(s′0) = m)

[∑
i∈s′0,ei=1 yi

]}
,

(3.6)

where L =
∑
s′0∈S

I(g(s′0) = m). The variance of µ̂RB can be calculated by var(µ̂RB) =

var(µ̂)− E[(µ̂− µ̂RB)2] and the detail derivation is omitted.

APPENDIX C: DERIVATION OF (1.5) AND (1.2.3)

Define S0 as the set of initial design.

µ̂∗ = E(µ|M∗ = m∗) =
∑
s′0∈S

µ̂P (S0 = s′0|M∗ = m∗) (3.7)

Because the conditional probability can be calculated by

P (S0 = s′0|M∗ = m∗) =
I(g(s′0) = m∗)(n!)

1−p∑
s′0∈S

I(g(s′0) = m∗)(n!)
1−p =

I(g(s′0) = m∗)∑
s′0∈S

I(g(s′0) = m∗)
. (3.8)

Similarly, we decompose µ̂ into two parts. We have

µ̂ = 1
N

∑K
k=1

y∗kI(nk>0)(1−e∗k)
P (nk>0) + 1

N

∑K
k=1

y∗kI(nk>0)ek
P (nk>0)

= 1
N

∑K
k=1

y∗kI(nk>0)(1−ek)
P (nk>0) + 1

N

∑
i∈s0,ei=1 yin

p−1.
(3.9)

Based on (3.7) and (3.9) and the fact that the first term on the right hand side of (3.9) is fixed

given M∗ = m∗, it follows that

µ̂∗ =
∑
s′0∈S

µ̂
I(g(s′0)=m∗)∑

s′0∈S
I(g(s′0)=m∗)

= 1
N

∑K
k=1

y∗kI(nk>0)(1−e∗k)
P (nk>0) + (nL)−1

∑
s′0∈S

I(g(s′0) = m∗)
[∑

i∈s′0,ei=1 yi
] (3.10)

Because only a subset of the edge points can lead to the same sufficient statistics, we further

define the subset of the edge points by Ωsc = {w ∈ sc̄ : g(s0) = m∗, s0 = (sc, w)}, where sc is a

subset of s containing the networks with size larger than one. Each edge point in Ωsc has an

equal probability of being selected in the initial Latin hypercube design, therefore we have

∑
s′0∈S

I(g(s′0) = m∗)

(∑
i∈s′0,ei=1 yi

)
= L

G

 es − 1

es0 − 1

 (
∑
i∈s eiyiti)

(3.11)
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where ti = 1 if i ∈ Ωsc and ti = 0 otherwise, es0 =
∑
i∈s0 ei is the total number of edge points

in the initial sample, es =
∑
i∈s eiti is the total number of edge points in the final sample that

can lead to the same m∗, and

G =

 es

es0


Thus,

µ̂∗ = 1
N

∑K
k=1

y∗kI(nk>0)(1−e∗k)
P (nk>0) +

es0
nes

(
∑
i∈s eitiyi)

= 1
N

∑K
k=1

y∗kI(nk>0)(1−e∗k)
P (nk>0) + 1

nes0 ȳe

= 1
N

∑K
k=1

y∗kI(nk>0)(1−e∗k)
P (nk>0) + 1

n

∑
i∈s0,ei=1 ȳe

(3.12)

where ȳe = 1
es

∑
i∈s eitiyi So (1.5) holds.

For the variance, we have

var(µ̂∗) = var(µ̂)−
∑
m∗∈M∗

P (m∗)
L

∑
s′0∈S

I(g(s′0) = m∗)(µ̂− µ̂∗)2

= var(µ̂)−
∑
m∗∈M∗

P (m∗)
L

∑
s′0∈S

{
I(g(s′0) = m∗)[

1
n

∑
i∈s0,ei=1(yi − ȳe)

]2}
.

(3.13)

APPENDIX D: DERIVATION OF (2.19) AND (2.22)

The easy-to-compute unbiased estimator is given by

µ̂∗M = E(µ̂M | D∗ = d∗) =
∑
s′0∈S

µ̂MP (S0 = s′0 | D∗ = d∗). (3.14)

We decompose µ̂M into two parts

N−1
T∑
i=1

P (s0|i)
P (s0)

y∗i = N−1

[ T∑
i=1

P (s0|i)
P (s0)

y∗i (1− e∗i ) +

T∑
i=1

P (s0|i)
P (s0)

y∗i ei

]
(3.15)

The first term on the right side of (3.15) remains the same given D∗ = d∗, therefore we have

∑
s′0∈S

(∑T
i=1

P (s0|i)
P (s0) y

∗
i

)
I(g(s′0)=d∗)P (s′0)∑

s′0∈S
I(g(s′0)=d∗)P (s′0)

=
∑
s′0∈S

(∑T
i=1

P (s0|i)
P (s0) y

∗
i

)
I(g(s′0)=d∗)∑

s′0∈S
I(g(s′0)=d∗)

=
∑T
i=1

P (s0|i)
P (s0) y

∗
i (1− e∗i ) + (1/L∗)

∑
s′0∈S

{
I(g(s′0) = d∗)

[∑
i∈s′0, ei=1

P (s′0|i)
P (s′0) yi

]} (3.16)

Because
P (s′0|i)
P (s′0) is the same given i being an edge point and D∗ = d∗,we can further denote this

value by P (s0|e)
P (s0) . Hence, the second term on the right of (3.16) can be written as

P (s0|e)
L∗P (s0)

[ ∑
s′0∈S

I(g(s′0) = d∗)

( ∑
i∈s′0, ei=1

yi

)]
. (3.17)
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Similar to ...., we define the subset of edge points that can lead to the same d∗ by ∆sc =

{w ∈ sc̄ : g(s0) = d∗, s0 = (sc, w)}. Based a similar argument in 3.16, we have

∑
s′0∈S

I(g(s′0) = d∗)

[∑
i∈s′0, ei=1 yi

]
=

L∗es0
e∗s

∑
i∈s, ei=1 yiδi

=
L∗es0
e∗s

∑
i∈s eiyiδi,

(3.18)

where δi = 1 if i ∈ ∆sc and δi = 0 otherwise and e∗s =
∑
i∈s eiδi is the total number of edge

points in the final sample that can lead to the same d∗. Therefore, we have

µ∗M = N−1

{ T∑
i=1

P (s0|i)
P (s0)

y∗i (1− e∗i ) +
P (s0|e)es0
P (s0)e∗s

∑
i∈s

eiyiδi

}
. (3.19)

Therefore, (2.19) holds.

For the variance, we have

var(µ̂∗M ) = var(µ̂M )− E[(µ̂M − µ̂∗M )2]

= var(µ̂M )−
∑
d∗∈D∗

P (d∗)
L∗

∑
s′0∈S

I(g(s′0) = d∗)(µ̂M − µ̂∗M )2

= var(µ̂M )−
∑
d∗∈D∗

P (d∗)
L∗N2

∑
s′0∈S

{
I(g(s′0) = d∗)[(∑

i∈s′0, ei=1
P (s′0|i)
P (s′0) yi

)
−
(
P (s′0|e)es′0
P (s′0)e∗s

∑
i∈s eiyiδi

)]}2

.

(3.20)
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Mentré, F., Mallet, A., and Baccar, D. (1997). Optimal design in random-effects regression

models. Biometrika, 84(2):429–442.

Morris, M. D. and Mitchell, T. J. (1995). Exploratory designs for computational experiments.

Journal of statistical planning and inference, 43(3):381–402.

Murty, V. N. (1971). Minimax designs. Journal of the American Statistical Association,

66(334):319–320.

Ouwens, M. J. N. M., Tan, F. E. S., and Berger, M. P. F. (2002). Maximin d-optimal designs

for longitudinal mixed effects models. Biometrics, 58(4):735–741.

Palacios, M. B. and Steel, M. F. J. (2006). Non-gaussian bayesian geostatistical modeling.

Journal of the American Statistical Association, 101(474):604–618.

Raj, D. (1956). Some estimators in sampling with varying probabilities without replacement.

Journal of the American Statistical Association, 51(274):269–284.

Rankin, E. T. and Ohio, E. (1989). The qualitative habitat evaluation index [QHEI]: Rationale,

methods, and application. State of Ohio Environmental Protection Agecny.

Roesch, F. A. (1993). Adaptive cluster sampling for forest inventories. Forest Science, 39(4):655–

669.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis of

computer experiments. Statistical Science, 4(4):409–423.

Salehi, M. and Seber, G. A. (1997). Two-stage adaptive cluster sampling. Biometrics, pages

959–970.

Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The design and analysis of computer

experiments. Springer.

Schmidt, R. R., Cruz, E., and Iyengar, M. (2005). Challenges of data center thermal manage-

ment. IBM Journal of Research and Development, 49(4.5):709–723.

Seber, G. and Thompson, S. (1994). 6 environmental adaptive sampling. Handbook of statistics,

12:201–220.

Smith, D. R., Conroy, M. J., and Brakhage, D. H. (1995). Efficiency of adaptive cluster sampling

for estimating density of wintering waterfowl. Biometrics, pages 777–788.



42

Stehman, S. V. and Overton, W. S. (1994). 9 environmental sampling and monitoring. Handbook

of statistics, 12:263–306.

Thompson, S. K. (1990). Adaptive cluster sampling. Journal of the American Statistical Asso-

ciation, 85(412):1050–1059.

Thompson, S. K. (1991). Stratified adaptive cluster sampling. Biometrika, 78(2):389–397.

Thompson, S. K., Ramsey, F. L., and Seber, G. A. (1992). An adaptive procedure for sampling

animal populations. Biometrics, pages 1195–1199.

Thompson, S. K. and Seber, G. A. F. (1996). Adaptive sampling. Wiley, New York.

Tsay, J.-Y. (1976). On the sequential construction of d-optimal designs. Journal of the American

Statistical Association, 71(355):671–674.

Wang, L.-P., Jr, R. A. W., Wang, Y., Deng, K. K., Zou, L., Davis, R. J., and Trolier-

McKinstry, S. (2003). Design, fabrication, and measurement of high-sensitivity piezoelectric

microelectromechanical systems accelerometers. Microelectromechanical Systems, Journal of,

12(4):433–439.

Williams, B. J., Santner, T. J., and Notz, W. I. (2000). Sequential design of computer experi-

ments to minimize integrated response functions. Statistica Sinica, 10(4):1133–1152.

Zhang, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-

based geostatistics. Journal of the American Statistical Association, 99(465):250–261.


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Adaptive Probability-based Sampling for Environmental Studies
	Introduction
	Adaptive Probability-based Sampling
	Initial sample
	Adaptive sampling procedure
	Estimators

	Optimal initial design and search algorithm
	Application to Environmental Studies
	Example 1
	Example 2

	Concluding Remarks

	Application of Adaptive Sampling in Computer Experiment
	Introduction
	Adaptive Latin hypercube designs
	Design procedure
	Design properties

	Refined Adaptive Latin Hypercube Designs
	Sequential ALHDs without replacement
	Design properties

	A toy example
	Applications
	Borehole model
	Data center thermal management study
	Piezoelectric Energy Harvester Example

	Discusion

	Appendix

