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In big data era, available information becomes massive and complex and is often ob-

served over time. Conventional time series models are limited in capability of dealing

with these type of data. This dissertation focuses on developing new statistical models,

along with their associated estimation procedures, to analyze time series data in func-

tional form, and in high dimension, with linear or nonlinear dynamics, which can be

broadly applicable to finance, environment, engineering, biological and medical sciences.

Functional data analysis has became an increasingly popular class of problems in

statistical research. However, functional data observed over time with serial depen-

dence remains a less studied area. Motivated by Bosq (2000), who first introduced the

functional autoregressive (FAR) models, we propose a convolutional functional autore-

gressive (CFAR) model, where the function at time t is a result of the sum of convo-

lutions of the past functions with a set of convolution functions, plus a noise process,

mimicking the autoregressive process. It provides an intuitive and direct interpretation

of the dynamics of a stochastic process. We adopt a sieve estimation procedure based

on the B-spline approximation of the convolution functions. We establish convergence

rate of the proposed estimator, and investigate its theoretical properties. The model

building, model validation, and prediction procedures are also developed.
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As for high-dimensional time series data, dimension reduction is an important issue

and can be effectively performed by factor analysis. Considering the factor impacts

may vary under different conditions, we propose a factor model with regime-switching

mechanism, allowing loadings to change across regimes, and combined eigendecompo-

sition and Viterbi algorithm for estimation. We discover that, with multiple states of

different ’strength’, the convergence rate of loading matrix estimator for strong states

is the same as the one-regime case, while the rate improves for weak states, gaining

extra information from strong states. The theoretical properties of the procedure are

investigated as well.

In addition, we propose a new class of nonparametric seasonal time series models

under the framework of the functional coefficient model. The coefficients in the pro-

posed model change over time and consist of the trend and seasonal components to

characterize seasonality. A local linear approach is developed to estimate the nonpara-

metric trend and seasonal effect functions. The proposed methodologies are illustrated

by two simulated examples and the model is applied to characterizing the seasonality

of the monthly number of tourists visiting Hawaii.
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Chapter 1

Introduction

1.1 Time Series Data

Time series refers to a sequence of data points observed over time, and is widely ob-

served in science, engineering, economics and other fields. Examples include counts of

sunspots, airline traffic volume and daily closing value of S &P 500 index. Different

from cross-sectional data, successive data points are expected to be dependent. Autore-

gressive (AR) models are the simplest and most natural class of models for scalar time

series data, where the process of interest is decomposed into linear combination of its

past values and noise. Whitle (1951) introduced a moving average (MA) part and came

up with ARMA(autoregressive-moving-average) models in his thesis. Box and Jenkins

(1971) expounded an iterative method for model selection and estimation. Quenouille

(1957) extended the models to multivariate cases, and the parameter estimation and

model specification have been investigated by Tiao and Box (1981), Tsay and Tiao

(1983), Lütkepohl (1985), Tiao and Tsay (1989) and others.

When the linear models have been well-developed and understood, researchers

turned their attention to nonlinear (Tong and Lim, 1980; Härdle and Vieu, 1992; Chan,

1993; Härdle, Chen and Lütkepohl, 1997), nonparametric (Chen and Tsay, 1993a; Chen

and Tsay, 1993b; Härdle et al., 1997; Xia and Li, 1999b; Cai et al., 2000; Fan and Yao,

2003), and spatial-temporal modelling (Handcock and Wallis, 1994; Cressie and Huang

1999; Gneiting, 2002).

However, modern data becomes complex and massive. This dissertation proposes

new models and methods to analyze the time series data in functional form, high

dimension, or nonlinear dynamics with seasonality.
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1.2 Functional Time Series

Functional data analysis has received much attention in the last few decades, and has

been widely applied in many fields, including medical science (Houghton et al., 1980;

Gasser et al., 1984; Ratcliffe et al., 2002a; Ratcliffe et al., 2002b), behavioral science

(Keselman and Keselman, 1993), and economics (Roberts, 1995; Diebold and Li, 2006).

Nonparametric methods, such as spline methods (Silverman, 1994; Brumback and Rice,

1998; Zhou et al., 1998; Cai et al., 2000) and kernel smoothing (Nadaraya, 1964; Watson,

1964; Gasser et al., 1984; Fan and Gijbels, 1996), were often implemented to analyze

functional data. Unsupervised learning methods, such as principal component analysis

(James et al., 2000) and clustering analysis (James and Sugar, 2003) were extended

for functional data. Books by Ramsay and Silverman (2005), Ferraty and Vieu (2006),

Horváth and Kokoszka (2012), provide a comprehensive introduction on functional data

analysis.

Often, a variety of functional data is observed over time and has serial dependence.

For example, in financial industry, the implied volatility of an option as a function of

moneyness changes over time. In insurance industry, age-specific mortality rate as a

function of age changes over time. In banking industry, term structure of interest rates

(yield as a function of time to maturity of a bond) changes over time. In meteorology,

daily records of temperature, precipitation and cloud cover for a region, viewed as three

related functional surfaces, change over time.

However, scalar or vector time series models cannot be applied directly to functional

data. Bosq (2000) first introduced functional autoregressive (FAR) models with order

p,

Xt = ∆1Xt−1 + . . .+ ∆pXt−p + εt,

where X = (Xt, t ∈ Z) and ε = (εt, t ∈ Z) are a sequence of random functions and

a functional white noise process respectively, and ∆i, is a linear operator in Hilbert

functional space H. The linear operators can be estimated by performing functional

principal component analysis on the sample autocovariance operators. The consistency
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of such estimators has been proved (Bosq, 2000; Hörmann et al., 2013). All the theo-

retical and empirical results in the literature have been developed based on the models

and methods in Bosq (2000), including Hörmann and Kokoszka (2010), Horváth et al.

(2010), Aue et al. (2012), Horváth et al. (2012), Berkes et al. (2013), and Hörmann et

al. (2013). So far functional time series data is still a less studied area.

Sieve methods are a popular set of tools to estimate parameters in an infinite-

dimensional space, including the functional space. It optimizes an objective function

over a sequence of finite-dimensional parameter subspaces, which are called sieve spaces.

Hence, the problem is reduced to a sequence of parametric ones. The consistency of

the sequence of the sieve estimators can be derived, under certain conditions of sieve

spaces. Sieve methods have been discussed in Chen and Shen (1998), Chen (2008),

Halberstam and Richert (2013).

In this dissertation, we develop a new class of functional time series models called

the convolutional functional autoregressive (CFAR) models, along with its associated

estimation procedure using splines and sieve methods. As a special case of Bosq (2000),

our model provides an intuitive and direct interpretation of the dynamics of a stochastic

process. It assumes that the function at time t is a result of the sum of convolutions

of the past functions with convolution functions plus a noise process, mimicking the

autoregressive process commonly used in scalar time series. It is also an extension of

vector autoregressive process. We makes contributions to the literature in three as-

pects. First, we establish the convergence rate of the convolution function estimator

in a general case, while Bosq (2000) only considered consistency. Second, in reality

functional data are often observed at discrete points, hence nonparametric methods

such as splines method are used to obtain a continuous curve. The possible estimation

error introduced by these methods was overlooked by Hörmann and Kokoszka (2010),

Horváth et al. (2010), Horváth et al. (2012), Hörmann et al. (2013). Under the CFAR

model settings, we consider the recovery procedure of functional data, when studying

asymptotic properties of the estimators. It can be shown that the estimation error due

to discrete observation points is of smaller order, hence as long as the number of ob-

servations at each time goes to infinity, the estimator is consistent and the convergence
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rate does not depend on the number of discrete samples available directly. Thirdly, we

develop model building, model validation and prediction procedures for CFAR mod-

els, while the picture of FAR models is less complete due to lack of specific model

assumptions.

1.3 Factor Models for High-Dimensional Time Series

Multivariate time series models are often confronted with computational challenges,

overparametrization and overfitting issues, especially when dealing with high-dimensional

data. Factor analysis is considered as an effective way to alleviate these problems by

dimension reduction, starting with Anderson (1963) and Priestley et al. (1974) who

applied it to multivariate time series. In the last decades, much attention has been

paid to the high-dimensional cases. Chamberlain and Rothschild (1983) and Forni et

al. (2000) studied the factor model consisting of common factors and idiosyncratic

component with weak cross-sectional and serial dependence. Bai and Ng (2002) and

Hallin and Lǐska (2007) proved that the number of factors can be estimated consis-

tently and established the convergence rate of factor estimators. Peña and Box (1987),

Pan and Yao (2008) decomposed the time series into two parts, a latent factor pro-

cess and a vector white noise process, in which strong cross-sectional dependence is

allowed. Lam et al. (2011) and Lam and Yao (2012) developed an approach that takes

advantage of information from autocovariance matrices at nonzero lags via eigendecom-

position to estimate the factor loading space, and established the asymptotic properties

as the dimension goes to infinity with sample size. This innovative method is applicable

to nonstationary processes and processes with uncorrelated or endogenous regressors

(Chang et al., 2013).

Regime switching (Hamilton, 1989) has been introduced in different models, includ-

ing threshold models (Tong and Lim, 1980; Tong, 1983) and ARCH models (Hamilton

and Susmel, 1994; Hamilton, 1996), and has various applications in economics, includ-

ing analyzing business circle (Kim and Nelson, 1998), GNP (Hansen, 1992), interest

rate (Gray, 1996) and monetary policy (Bernanke and Gertler, 2000; Sims and Zha,
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2006). Factor models with regime switching can be tracked back to Diebold and Rude-

busch (1994). In this chapter we generalize the factor models of Pan and Yao (2008)

and introduce a factor model with an unobserved state variable switching between sev-

eral regimes in which the mean, factor loadings and the covariance matrices of noise

process are all different. By allowing these parameters to switch across regimes, it en-

hances flexibility in modeling multivariate time series, and provides an effective tool to

distinguish and identify the dynamics over time.

For factor models, switching mechanism can be found in many cases. For example,

CAPM theory indicates that the expected market return is an important factor for

the expected return of an asset, and it is expected that its impact (loadings) on any

individual asset may be different depending on whether a stock market is volatile or

stable. In economics, risk-free rate, unemployment and economic growth are crucial

factors for all economic activities and their performance indicators. Again, the loadings

of these factors may vary under different fiscal policies (neutral, expansionary or con-

tractionary) or in different stages of the economic circle (expansion, peak, contraction,

or trough); see Kim and Nelson (1998).

In this dissertation, we develop an iterative algorithm for the estimation of mod-

el parameters and unobserved time-varying states based on eigendecomposition and

Viterbi algorithm. The theoretical properties of the estimators are investigated. As

in Lam et al. (2011) whose model is essentially a one-regime model in our case, the

convergence rate of estimated loading space depends on the ’strength’ of the state. We

discover that, with multiple states of different ’strength’, the convergence rate of load-

ing space estimator for strong states is the same as the one-regime case, while the rate

improves for weak states, gaining extra information from the strong states. Empirical

results confirm such observations.

1.4 Functional Coefficient Seasonal Models

Seasonal time series are commonly observed in various applications, including economic

and business data, meteorological data and environmental data as well as other fields.
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There is a vast literature on seasonal time series analysis, ranging from stochastic sea-

sonality models such as the seasonal ARIMA models (Box et al., 1994; Shumway and

Stoffer 2000; Peña et al., 2001), the deterministic seasonal models such as the linear

or polynomial additive or multiplicative seasonal component models (Shumway, 1988;

Brockwell and Davis, 1991; Franses, 1996, 1998). The books by Hylleberg (1992), Frans-

es (1996, 1998), and Ghysels and Osborn (2001) provide a comprehensive review on the

traditional seasonal time series analysis methods. Most of these methods are linear (or

polynomial) and parametric in nature. However, it has been documented that time

series are often nonlinear (Tong, 1990; Tjøstheim, 1994; Hylleberg, 1992; Franses, 1996,

1998) and often there is not enough information to determine a suitable parametric

form for the nonlinear structure. Härdle et al. (2004) discussed and reviewed many the

popular statistical nonparametric and semiparametric methods. There was no system-

atic research done on nonparametric approaches to seasonal time series models, until

Burman and Shumway (1998) proposed a nonparametric/semiparametric approach to

seasonal time series, which opened the door in this area.

To characterize the seasonality of the monthly number of tourists visiting Hawaii,

we propose a nonparametric seasonal time series model with a functional coefficient

structure. Different from a linear autoregressive seasonal model with possible regression

terms, the coefficients in the proposed model change over time and consist of the trend

and seasonal components to characterize the seasonality. This class of models includes,

as its special cases, the standard additive trend and seasonal component models as well

as other seasonal time series models. We use the local linear approach to estimate the

trend and seasonal effect functions nonparametrically and use it to model the Hawaiian

tourism data.
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Chapter 2

Convolutional Autoregressive Models for Functional Time

Series

Motivated by Bosq (2000), who first introduced the functional autoregressive (FAR)

models, we propose a convolutional functional autoregressive (CFAR) model, where

the function at time t is a result of the sum of convolutions of the past functions

with a set of convolution functions, plus a noise process, mimicking the autoregressive

process. It provides an intuitive and direct interpretation of the dynamics of a stochastic

process. Instead of spectral decomposition approach commonly used in functional data

analysis, we adopt a sieve estimation procedure based on B-spline approximation of

the convolution functions. We establish convergence rate of the proposed estimator,

and investigate its theoretical properties. The model building, model validation, and

prediction procedures are also developed. Both simulated and real data examples are

presented in this chapter.

2.1 Convolutional Functional Autoregressive Models

We introduce some notations first. For any vector µ, (µ)i denotes its i-th entry. For

any matrix H, (H)ij denotes its (i, j)-th entry. Let

Liph[−1, 1] = {f ∈ [−1, 1] : |f(x+ δ)− f(x)| ≤Mδh,M <∞},

Lipr+h2 [−1, 1] = {f ∈ Cr[−1, 1] : f (r) ∈ Liph[−1, 1], r ∈ N, h ∈ (0, 1]},

If f ∈ Lipζ2[−1, 1], then ζ is called moduli of smoothness of f(·), which measures the

smoothness of f(·).

Without loss of generality, in this chapter, we restrict ourselves only to consider
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functional time series in the space L2[0, 1].

If a function f : Ω → R[0,1] is defined on a probability space (Ω,F ,P), and f ∈

L2[0, 1], then f is called a random function on [0, 1]. The space containing all the

random functions on [0, 1] is denoted by H[0, 1], when L-2 norm is applied.

Definition 2.1. A sequence of random functions ε = (εt, t ∈ Z) in H[0, 1] is said to be

a white noise, if

1) 0 < E‖εt‖22 = σ2 < ∞, E(εt) = 0, and Cov(εt(s1), εt(s2)) does not depend on t for

any s1, s2 ∈ [0, 1].

2) Cov(εt(s1), εt+h(s2)) = 0, for h 6= 0 and s1, s2 ∈ [0, 1].

Definition 2.2. A sequence of random functions X = (Xt, t ∈ Z) in H[0, 1] is (weakly)

stationary, if the mean and covariance functions do not vary with time, i.e., for

∀h ∈ Z, s1, s2 ∈ [0, 1],

E(Xt(s1)) = µ(s1), and Cov(Xn+h(s1), Xm+h(s2)) = Cov(Xn(s1), Xm(s2)).

A sequence of random functions X = (Xt, t ∈ Z) in H[0, 1] is called a convolutional

functional autoregressive model with order p, CFAR(p), if

Xt(s) =

p∑
i=1

∫ 1

0
φi(s− u)Xt−i(u)du+ εt(s), s ∈ [0, 1], (2.1)

where φi ∈ L2[−1, 1] for i = 1, . . . , p, are called convolution functions, and ε = (εt, t ∈

Z) are i.i.d. Ornstein-Uhlenbeck processes defined on [0, 1], following the stochastic

differential equation, dεt(s) = −ρεt(s)ds + σdWs, ρ > 0 with Ws being a Wiener

process.

Remark 2.1. The skeleton of Xt(·), excluding the noise process, defined as ft(·), is the

sum of convolutions of φi and Xt−i. It can also be viewed as the sum of non-normalized

smoothed versions of the p past functions {Xt−1, . . . , Xt−p}. From a pointwise view,

ft(s) is a weighted sum of {Xt−1, . . . , Xt−p}, and the weights φi(s− u) depend on the

distance between s and u.

Remark 2.2. We assume the noise process in model (2.1) is an Ornstein-Uhlenbeck
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process, which is spatially stationary, Markovian and continuous but not differentiable

with the following properties:

εt(s1) ∼ N(0,
σ2

2ρ
), Corr(εt(s1), εt(s2)) = e−ρ|s1−s2|, ∀s1, s2 ∈ [0, 1].

The variance is constant, and the correlation of the process at s1 and s2 is determined

by the distance of s1 and s2. If all the convolution functions {φi(·), i = 1, . . . , p} are

continuous, Xt is also continuous, but not differentiable.

The convolution functions {φi(·), i = 1, . . . , p} determine the pattern of Xt(·) pro-

cess. Here we show three examples to illustrate the impact of the convolution functions.

Example 2.1. Convolutional functional autoregressive model of order 1, CFAR(1),

Xt(s) =

∫ 1

0
φ(s− u)Xt−1(u)du+ εt(s), s ∈ [0, 1], (2.2)

ρ = 5, σ2 = 10. We consider three convolution functions:

(i) φ(s) = 1, s ∈ [−1, 1], and X0(·) = 0;

(ii) φ(s) = 1− |s|, s ∈ [−1, 1], and X0(·) = 10;

(iii) φ(s) = I(s > 0), s ∈ [−1, 1], and X0(·) = 10.

Simulated processes of functions for each φ(·) are shown in the top, middle and

bottom panel of Figure 2.1, respectively, for t = 1, 2, 3, 100. The solid lines and dashed

lines are Xt(·) and ft(·) respectively. In case(i), since φ(·) is a constant function, ft(·) is

simply the average of Xt−1(·) hence a constant function. In case(ii), φ(·) is a unimodal

function around 0. We start the process with a constant function, X0(·) = 10, and

f1(s) is larger when s is around 0.5. In case (iii), φ(·) is an indicator function on (0, 1],

so the skeleton of ft(s) would be a partial integration of Xt−1(·) on the left of s in

[0, s]. At s = 0, Xt(0) contains no information of Xt−1, but only noise; as s increases,

the weight functions φ(s − ·) increases and information carried by Xt(s) on Xt−1(·)

increases as well; at s = 1, Xt(1) is the integration of the function Xt−1(·) in the entire

range of [0, 1] plus noise. It is worth noting that in case(i), we start at X0 = 0, but
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Xt(·) gets explosive as time goes by. On the other hand, although we start at a large

value, X0(s) = 10 for both cases of (ii) and (iii), the processes become close to 0 when

t = 100. This is because, the process in case(i) is nonstationary, while the processes in

case(ii) and case(iii) are stationary, and their stationary means are a constant function

at 0.
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Figure 2.1: Plots of Xt(·) and ft(·), t = 1, 2, 3, 100 for Example 2.1(i) (top panel),
Example 2.1(ii) (middle panel) and Example 2.1(iii) (bottom panel).

Theorem 2.1 presents a sufficient condition for the stationarity of CFAR(1) models.

Theorem 2.1. The CFAR(1) process X = (Xt, t ∈ Z), defined in (2.1) is (weakly)

stationary, if

κ = sup
0≤s≤1

(∫ 1

0
φ2(s− u)du

)1/2

< 1. (2.3)

Here weak stationarity is acturally equivalent to strong stationarity, since we assume

that the noise process is Gaussian. It is easy to see that ‖φ‖22 < 1 is also a sufficient

condition for stationarity. However, the condition in Theorem 1 is a weaker one, since
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for any s,
∫ 1
0 φ

2(s−u)du ≤
∫ 1
−1 φ

2(u)du. Note that
∫ 1
0 φ

2(s−u)du is the sum of squares

of the convolution weights of Xt−1(·) to obtain ft(s).

Theorem 2.2 presents a sufficient condition for stationarity of CFAR(p) models.

Theorem 2.2. The CFAR(p) process X = (Xt, t ∈ Z) defined in (2.1) is (weakly)

stationary, if all the roots of the characteristic function

1− κ1z − κ2z2 − . . .− κpzp = 0, (2.4)

are outside the unit circle, where κi = sup0≤s≤1

√∫ 1
0 φ

2
i (s− u)du for i = 1 . . . , p.

Condition in Theorem 2.2 is similar to the sufficient condition for scalar AR(p)

models to be stationary, replacing the AR coefficients by the maximum of the norm of

the weights function φi(s− ·), s ∈ [0, 1].

Corollary 2.1. The CFAR(1) process X = (Xt, t ∈ Z) satisfies (2.3). Define a se-

quence of functions on [0, 1]2:

Ψ1(s, u) = φ(s− u), Ψ`(s, u) =

∫ 1

0
Ψ`−1(s, v)φ(v − u) dv, for ` ≥ 2. (2.5)

Then Xt has the following representation

Xt(s) = εt(s) +
∞∑
`=1

∫ 1

0
Ψ`(s, u)εt−`(u) du. (2.6)

Corollary 2.2. The CFAR(p) process X = (Xt, t ∈ Z) satisfies (2.4). Define a se-

quence of functions on [0, 1]2:

Ψ1(s, u) = φ1(s− u),

Ψ`(s, u) =

`−1∑
i=1

∫ 1

0
φi(s− v)Ψ`−i(v, u) dv + φ`(s, u), 2 ≤ ` ≤ p,

Ψ`(s, u) =

p∑
i=1

∫ 1

0
Φi(s, v)Ψ`−i(v, u) dv, ` > p.
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Then Xt has the following representation

Xt(s) = εt(s) +
∞∑
`=1

∫ 1

0
Ψ`(s, u)εt−`(u) du. (2.7)

Corollary 2.1 and Corollary 2.2 are derived from Theorem 3.1 and Theorem 5.1 of

Bosq(2000) directly. This is similar to that of stationary scalar AR(p) case when no

constant is in the model. To include nonzero mean function µ(·), we use Xt(s)−µ(s) =∑p
i=1

∫ 1
0 φi(s− u)(Xt−i(u)− µ(u))du.

2.2 Estimation, Prediction and Order Determination

Assume that we observe Xt(·) at discrete points, s = n/N , n = 0, . . . , N , for time

t = 1, .., T .

2.2.1 Estimation

Since the convolution operator guarantees continuous path of Xt(·), we approximate it

with linear interpolation of the observations. For any s ∈ [−1, 1], if sn−1 ≤ s < sn, let

X̃t(s) =
(sn − s)Xt(sn−1) + (s− sn−1)Xt(sn)

1/N
. (2.8)

Because Xt(·) is continuous but not differentiable and observations are not subject to

noises, linear interpolation suffices to evaluate
∫
φi(s− u)Xt−i(u)du.

In a typical nonparametric fashion, we approximate the unknown convolution func-

tions φi(·) with a B-spline approximation. Specifically,

φi(·) ≈ φ̃k,i(·) =

k∑
j=1

β̃k,i,jBk,j(·), for i = 1, . . . , p, (2.9)

where {Bk,j(·), j = 1, . . . , k} are uniform cubic B-spline functions with degree of freedom

k.

Plugging in the linear interpolation of Xt−i(·) and B-spline approximation of φi(·)
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into (2.1), we get

εt(sn) ≈ Xt(sn)−
p∑
i=1

k∑
j=1

β̃k,i,j

∫ 1

0
Bk,j(sn − u)X̃t−i(u)du. (2.10)

Let ε̃′t = (ε̃t,0, . . . , ε̃t,N )′ be an (N + 1) × 1 vector. ε̃t,n is the approximated noise

at sn and time t defined as on the right hand side of (2.10). It can be expressed as

ε̃t = Xt(s) −Mtβ̃k, where Mt = (Mt,1, . . . ,Mt,p), Mt,i is an (N + 1) × k matrix,

(Mt,i)nj =
∫ 1
0 Bk,j(sn − u)X̃t−i(u)du, and β̃k is a pk × 1 vector, β̃k = (β̃

′
k,i, . . . β̃

′
k,p)
′,

and (βk,i)j = β̃k,i,j . Since Bk,j(·) are fixed and known functions, Mt is known, given

the observations. Under the Ornstein-Uhenleck process, for equally spaced sn, εt(·)

follows an AR(1) process with AR coefficient e−ρ/N , and covariance matrix Σ, where

(Σ)ij = e−ρ|i−j|/Nσ2/2ρ. Therefore, β = {βij , i = 1, . . . , p, j = 1, . . . , k}, σ2, and ρ can

be estimated by maximizing the approximated log-likelihood function,

Qk,T,N (β, σ2, ρ) =− (N + 1)(T − p)
2

ln

(
πσ2

ρ

)
(2.11)

− N(T − p)
2

ln(1− e−2ρ/N )− 1

2

T∑
t=p+1

ε̃′t Σ
−1 ε̃t, (2.12)

Let β̂k = (β̂
′
k,1, . . . , β̂

′
k,p)
′ be the estimator of β̃ by maximizing Qk,T,N (β, σ2, ρ), where

(β̂k,i)j = β̂k,i,j .

After reparameterization, the objective function can be written as

Qk,T,N (β, ϕ, ω) = −(N + 1)(T − p)
2

ln(2πω)− N(T − p)
2

ln(1− ϕ2)− e(β, ϕ)

2ω
, (2.13)

where ϕ = e−ρ/N , ω = σ2/2ρ, Σ0 = 2ρΣ/σ2, and e(β, ϕ) =
∑T

t=p+1 ε̂
′
tΣ
−1
0 ε̂t. Σ0 is

actually the correlation matrix of {εt(sn), n = 1, . . . , N}.

Given β and ϕ, the maximizer of w is

ω̂ =
e(β, ϕ)

(N + 1)(T − p)
. (2.14)
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Hence

max
β,ϕ,ω

Qk,T,N (β, ϕ, ω) = max
β,ϕ

(
− (N + 1)(T − p)

2
ln e(β, ϕ)− N(T − p)

2
ln(1− ϕ2) + c

)
= max

ϕ

(
− (N + 1)(T − p)

2
ln e(β(ϕ), ϕ)− N(T − p)

2
ln(1− ϕ2) + c

)
,

(2.15)

where c is a constant and

β̂(ϕ) = arg min
β
e(β, ϕ) =

 T∑
t=p+1

M′
tΣ
−1Mt

−1 T∑
t=p+1

M′
tΣ
−1Xt(s)

 . (2.16)

Then this problem becomes one parameter optimization, and the estimator of ϕ can

be easily obtained by maximizing (2.15). Together with (2.14) and (2.16), we have the

estimators for σ2, ρ, β. The convolution function φi(·) can be estimated by φ̂k,i(·) =∑k
j=1 β̂k,i,jBk,j(·).

Remark 2.3. The above method can also deal with non-equally spaced {sn, n =

0, . . . , N}, different observation points at each time (i.e. {sn, n = 0, . . . , N} vary with

time), or different number of observations at each time. For simplicity, we assume

equally spaced {s = n/N}.

2.2.2 Fitted Values

Given estimated φi(·), the continuous process Xt(·) can be interpolated more precisely

than simple linear interpolation. By taking advantage of information from the observed

{Xt(sn), n = 0, . . . , N} and the Markovian property of Ornstein-Uhlenbeck process, we

obtain a better approximation of Xt(·). Specifically, for a fixed s ∈ (sn, sn+1), let

f̃t(s) =

p∑
i=1

∫ 1

0
φ̂k,i(s− u)X̃t−i(u)ds, (2.17)

and let

X̃∗t (s) = f̃t(s) +
(
e−ρ̂(s−sn) e−ρ̂(sn+1−s)

)
Σ̂
−1

 Xt(sn)− f̃t(sn)

Xt(sn+1)− f̃t(sn+1)

 , (2.18)
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where Σ̂0 is the estimated correlation matrix of εt(sn) and εt(sn+1), with diagonal

entry 1 and off-diagonal entry e−ρ̂/N . When s = sn, X̃∗t (s) = Xt(s). Here f̃t(·) is the

estimated skeleton of Xt(·) process, and Xt(sn) − f̃t(sn) is the approximated residual

process.

Remark 2.4. Plugging (2.18) into (2.17), we can fit f̃t+1(·), and X̃∗t+1(s) iteratively.

However, empirical results show that its impact is minor with large N .

2.2.3 Prediction

Given X1, . . . , Xt, the least squares prediction of Xt+1(s) is

X̂t+1(s) =

p∑
i=1

∫ 1

0
φ̂k,i(s− u)X̃∗t+1−i(u)du, (2.19)

where X̃∗t+1−i(·) is the fitted processes of Xt+1−i(·) in (2.18). The residual is defined as

ε̂t+1(s) = Xt+1(s)− X̂t+1(s). (2.20)

In addition, ifXt+1(·) is partially observed at s = 0, 1
N , . . . , s

∗, the prediction ofXt+1(s),

for s ∈ (s∗, 1] can be obtained with,

X̂∗t+1(s) = X̂t+1(s) + e−ρ̂(s−s
∗)(Xt+1(s

∗)− X̂t+1(s
∗)), (2.21)

where X̂t+1(s) is from (2.19).

2.2.4 Determination of the B-spline Approximation Order

As in all nonparametric estimation, bandwidth is the key control parameter that bal-

ances the estimation bias and variance (Ruppert et al., 1995; Fan and Gijbels, 1996).

For spline methods, the control parameter is the degree of freedom k (Zhou et al., 1998;

Huang, 2003). We propose to choose k to minimize the out-sample rolling forecasting

error instead of the typically used cross validation criterion due to the time series na-

ture of our problem. Specifically, for a given k, and each t = T0, . . . , T , we use data
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{Xh(sn), h = 0, ..., t − 1, n = 0, . . . , N}, observed before time t to estimate the con-

volution functions using B-spline with degree of freedom k, and predict Xk,t(sn) as in

(2.19). Define overall squared rolling forecasting error

S(k) =
T∑

t=T0

N∑
n=0

(Xt(sn)− X̂k,t(sn))2. (2.22)

The optimal k is chosen to be the one that minimizes S(k).

2.2.5 AR Order Determination

F-test can be constructed for hypothesis testing of the significance of the convolution

functions as well as for AR order determination. For testing H0 : φr+1(·) = . . . =

φp(·) = 0 vs H1 : not H0, we reject H0 if

F =
(SSE(r) − SSE(f))/[k(p− r)]
SSE(f)/[(N + 1)(T − p)− pk]

> Fα,k(p−r),(N+1)(T−p)−pk, (2.23)

where SSE(f) and SSE(r) are sum of squared estimated residuals of the approximated

model in (2.10) for full CFAR(p) and reduced CFAR(r) model respectively, for an

optimally chosen k. Specifically,

SSE(f) =
T∑

t=p+1

ε̂′t,1Σ̂
−1
0,1ε̂t,1, SSE(r) =

T∑
t=p+1

ε̂′t,2Σ̂
−1
0,2ε̂t,2,

where Σ̂0,1 and Σ̂0,2 are the estimates of Σ0, the correlation matrix of εt(s), whose

(i, j)-th entry is e−ρ|i−j|/N , from full and reduced models, respectively; {ε̂t,i(sn), t =

p + 1, . . . , T, n = 0, . . . N}, i = 1, 2 are the residuals of the full and reduced models,

respectively. This test can be used for model specification. We begin with CFAR(1)

model, and sequentially add more lags of Xt, until the newly introduced lag is not

significant.

In addition, define the cross-sectional residuals of εt,

et(sn) = εt(sn)− e−ρ̂/Nεt(sn−1). (2.24)
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Under our model, {et(sn), n = 1, . . . , N} is a white noise process, for t = p + 1, . . . , T .

Let êt(sn) = ε̂t(sn)− e−ρ̂/N ε̂t(sn−1). Hence, the features of {êt(sn), n = 1, . . . , N}, can

be studied with standard residual time series analysis for model validation.

2.3 Theoretical Properties

We study the asymptotic properties of our estimator as both N and T go to infinity.

The degree of freedom of B-spline approximation k also goes to infinity with N and T .

2.3.1 Sieve Framework

In this section we reformulate our method under the sieve estimation framework.

The sieve method is designed for estimation of a parameter in an infinite-dimensional

space Θ. Often optimization the objective function over the parameter space cannot be

directly solved. Instead, we optimize the function over a sequence of subspaces {Θk, k ∈

Z+}, which are called sieve spaces. If the sieve spaces satisfy certain conditions, the

sequence of estimators, called sieve estimators, is expected to be consistent, as the

complexity of sieve spaces goes to infinity with sample size, see Chen (2008), Halberstam

and Richert (2013).

The parameter space Θ for CFAR(p) models contains all the functions from L2[−1, 1]

that satisfy stationary condition specified in Theorem 2.2. The sieve space, Θk, used

to approximate the parameter space Θ, is defined as Θk = Spk∩Θ, where Spk is product

of p copies of Sk,

Sk = {
k∑
j=1

βjBk,j(·),β = (β1, . . . , βk)
′ ∈ Rk},

and {Bk,j(·), j = 1, . . . , k} are the uniform cubic B-spline functions defined on [−1, 1]

with degree of freedom k. In other words, Sk is the cubic spline space with k−4 interior

knots at {−1,−1 + 1/m, . . . , 1− 1/m, 1}, where m = (k − 3)/2.
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The population objective function to maximize we use here is,

Q(φ, σ2, ρ) = E

[
− 1

2σ2

(
ρ2
∫ 1

0
ε2t (s)ds+ ρε2t (0) + ρε2t (1)− ρ

)]
, (2.25)

where εt(s) = Xt(s) −
∑p

i=1

∫ 1
0 φi(s − u)Xt−i(u)du. In fact, (2.25) is the expectation

of log-likelihood of the Ornstein-Uhlenbeck process εt(·); see Rao (1999). Define the

population objective function Qk(β, σ
2, ρ) in sieve space Θk,

Qk(β, σ
2, ρ) = E

[
− 1

2σ2

(
ρ2
∫ 1

0
ε2t (s) ds+ ρε2t (0) + ρε2t (1)− ρ

)]
,

where εt(s) = Xt(s)−
∑p

i=1

∑k
j=1 βi,j

∫ 1
0 Bk,j(s−u)Xt−i(u) du, and φi(·) =

∑k
j=1 βi,jBk,j(·),

i = 1, . . . , p.

When Xt(·) is only observed at discrete points, with (2.8) we have the sample

objective function Qk,T,N (β, σ2, ρ)

Qk,T,N (β, σ2, ρ) = −(N + 1)(T − p)
2

ln

(
πσ2

ρ

)
−N(T − p)

2
ln(1−ϕ2)− 1

2

T∑
t=p+1

ε̃′tΣ
−1ε̃t,

where ε̃t(s) = Xt(s)−
∑p

i=1

∑k
j=1 βi,j

∫ 1
0 Bk,j(s−u)X̃t−i(u)du, and φi(·) =

∑k
j=1 βi,jBk,j(·),

i = 1, . . . , p. Then the sieve estimator in space Θk is

(β̂k, σ̂
2
k, ρ̂k) = arg maxQk,T,N (β, σ2, ρ).

2.3.2 Asymptotic Properties for CFAR(1) Models

Let Qk be the linear operator defined in Section 6.4 of Schumaker (1981), which maps

C[−1, 1] into the space Θk. Let φ̃k = Qkφ = β̃k,1Bk,1 + . . . + β̃k,kBk,k, and rk(s) =

φ(s)− φ̃k(s).

Theorem 2.3. Xt is a stationary CFAR(1) process defined in (2.1). β̂k and β̃k are

the B-spline coefficients of φ̂k and φ̃k. Assume φ ∈ Lipζ2[−1, 1], and ζ > 1. Then with

given σ2 and ρ, as N,T →∞,

√
T (β̂k − β̃k − bk)

d→ N(0,Σk),
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where Σk = Γ−1k ΥkΓ
−1
k , Υk is the long-run variance of the process ut + zt + Atbk,

where bk = Γ−1k µk, and the entries in ut, zt, At, µk and Γk are listed as follows

(ut)i =
1

σ2

∫ 1

0

∫ 1

0
A(Bk,i, rk)(u, v)Xt−1(u)Xt−1(v)(u, v) dudv,

(zt)i =

∫ 1

0

[
2ρ

σ2
Bk,i(−u)εt(0) +

1

σ

∫ 1

0
(ρBk,i(v − u) +B′k,i(v − u)) dWt(v)

]
Xt−1(u) du,

(At)ij =
1

σ2

∫ 1

0

∫ 1

0
A(Bk,i, Bk,j)(u, v)Xt−1(u)Xt−1(v) dudv,

(µk)i =
1

σ2

∫ 1

0

∫ 1

0
A(Bk,i, rk)(u, v)γ(u, v) dudv,

(Γk)ij =
1

σ2

∫ 1

0

∫ 1

0
A(Bk,i, Bk,j)(u, v)γ(u, v) dudv,

where γ(u, v) = Cov(Xt(u), Xt(v)), and A is a binary functional operator, A : H1 ⊗

H1 → H2, H1 = {f : [−1, 1]→ R},H2 = {f : [−1, 1]2 → R}.

A(f, g)(u, v) = ρf(−u)g(−v) + ρf(1− u)g(1− v) +

∫ 1

0
f ′(s− u)g′(s− v) ds

+ ρ2
∫ 1

0
f(s− u)g(s− v) ds. (2.26)

Theorem 2.3 provides the asymptotic distribution of the estimated B-spline coeffi-

cients when the dimension of the sieve space is fixed. It is interesting to note that the

distribution does not depend on N . As long as N goes to infinity and T = o(N2), the

estimated B-spline coefficients converges, and the rate depends on T , but is indepen-

dent of N . It is due to that errors introduced by the linear interpolation has smaller

order than others.

With Theorem 2.3, we can easily obtain the asymptotic pointwise estimation error

of the convolution function when k is fixed.

Corollary 2.3. Assume φ ∈ Lipζ [−1, 1] with ζ > 1, and T = o(N2). For each fixed k,

define Bk(s) = (Bk,1(s), . . . , Bk,k(s))
′, and

bk(s) = Bk(s)
′bk − rk(s), σ2k(s) = Bk(s)

′ΣkBk(s).
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Then

√
T
(
φ̂k(s)− φ(s)− bk(s)

)
d→ N(0, σ2k(s)).

Theorem 2.4. Assume φ ∈ Cζ [−1, 1], where ζ ≥ 2 is an integer. Then as k →∞,

‖bk(·)‖∞ = O(k−ζ0+3/2), ‖σ2k(·)‖∞ = O(k),

where ζ0 = min{ζ, 4}.

Theorem 2.4 shows the consistency of our proposed estimators as well as the con-

vergence rates of the asymptotic bias and variance. The asymptotic bias depends on

the smoothness of the convolution function and complexity of the sieve space used for

approximation, while the asymptotic variance only depends on the complexity of the

sieve space. It reflects the fact that the complexity of sieve space controls the trade-off

between bias and variance. When k is a small number, the bias dominates the error,

since there are not enough knots to approximate the convolution function. When k

is large enough, the variance dominates, and estimation of extra B-spline coefficients

introduces too much error. Theorem 2.4 also reveals the selection principle for the

number of knots. When the convolution function is smooth, a small k is favorable;

when the sample size is large, we prefer to have more knots.

Remark 2.5. By balancing the bias and variance, the optimal convergence rate of

the estimation error is attained at k � O(T 1/(2ζ0−2)), then both the squared bias and

variance will be O(T
− 2ζ0−3

4ζ0−4 ). If the moduli of smoothness of φ is greater than 4 and

k = O(T−1/4), the optimal convergence rate is O(T−5/12). If B-splines with higher

order are adopted, the estimator is expected to converge faster.

2.3.3 Asymptotic Properties for CFAR(p)

The asymptotic properties of the estimators of CFAR(p) models are very similar to

these of CFAR(1) models. Let φ̃k,i = Qkφi = β̃k,i,1Bk,1 + . . .+ β̃k,i,kBk,k, and rk,i(s) =

φ(s)− φ̃k,i(s).
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Theorem 2.5 provides the bound of the B-spline coefficients estimation error, and is

a higher dimension version of Theorem 2.3.

Theorem 2.5. Xt is a stationary CFAR(p) process defined in (2.1). β̂k and β̃k be

the B-spline coefficients of {φ̂k,1, . . . , φ̂k,p} and {φ̃k,1, . . . , φ̃k,p} respectively. Assume

φi ∈ Lipζi2 [−1, 1], and ζi > 1, for i = 1, . . . , p. Then with given σ2 and ρ, as N,T →∞,

√
T (β̂k − β̃k − bk)

d→ N (0,Σk) .

where Σk = Γ−1k ΥkΓ
−1
k , Υk is the long-run variance of the process ut+zt+Atbk, where

bk = Γ−1k µk. Here ut = (u′t,1, . . . ,u
′
t,p)
′, zt = (z′t,1, . . . , z

′
t,p)
′, µk = (µ′k,1, . . . ,µ

′
k,p)
′,

Γk and At can be partitioned into p× p blocks.

Γk =



Γk,0 Γk,−1 . . . Γk,−p+1

Γk,1 Γk,0 . . . Γk,−p+2

...
...

. . .
...

Γk,p−1 Γk,p−2 . . . Γk,0


, At =



At,1,1 At,1,2 . . . At,1,p

At,2,1 At,2,2 . . . At,2,p

...
...

. . .
...

At,p,1 At,p,2 . . . At,p,p


.

The entries in ut, zt, At, bk and Γk are listed as follows

(ut,h)i =
1

σ2

p∑
q=1

∫ 1

0

∫ 1

0
A(Bk,i, rk,q)(u, v)Xt−h(u)Xt−q(v)(u, v) dudv,

(zt,h)i =

∫ 1

0

[
2ρ

σ2
Bk,i(−u)εt(0) +

1

σ

∫ 1

0
(ρBk,i(v − u) +B′k,i(v − u)) dWt(v)

]
Xt−h(u) du,

(At,l,h)ij =
1

σ2

∫ 1

0

∫ 1

0
A(Bk,i, Bk,j)(u, v)Xt−l(u)Xt−h(v) dudv,

(µk,h)i =
1

σ2

p∑
q=1

∫ 1

0

∫ 1

0
A(Bk,i, rk,q)(u, v)γq−h(u, v) dudv,

(Γk,h)ij =
1

σ2

∫ 1

0

∫ 1

0
A(Bk,i, Bk,j)(u, v)γh(u, v) dudv,

for i, j = 1, . . . , k and l, h = 1, . . . , p, where γq(u, v) = Cov(Xt(u), Xt+q(v)), q ∈ Z.

With Theorem 2.5, we have the asymptotic pointwise estimation error for each

convolution function when k is fixed.

Corollary 2.4. Assume φi ∈ Lipζi [−1, 1], with ζi > 1, i = 1, . . . , p, and T = o(N2).
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For each fixed k, define Bk,i(s) = (B′k,i,1, . . . ,B
′
k,i,k)

′, Bk,i,i = (Bk,1(s), . . . , Bk,k(s))
′,

and Bk,i,j is a p-dimensional vector whose entries are all 0, for j 6= i. Then

bk,i(s) = Bk,i(s)
′bk − rk,i(s), σ2k,i(s) = Bk,i(s)

′ΣkBk,i(s)), for i = 1, . . . , p,

and

√
T
(
φ̂k,i(s)− φi(s)− bk,i(s)

)
d→ N(0, σ2k,i(s)), for i = 1, . . . , p.

Theorem 2.6. Assume φi ∈ Cζi [−1, 1] with ζi ≥ 2, and T = o(N2). It holds that as

k →∞,

‖bk,i(·)‖∞ = O(k−ζ0+3/2), ‖σ2k,i(·)‖∞ = O(k), for i = 1, . . . , p,

where ζ0 = min{ζ1, . . . , ζp, 4}.

2.4 Simulations

In this section, we illustrate the performance of the proposed estimators, and demon-

strate the impacts of k, T and N through two simulated examples.

For each model and combination of (k, T,N), we generate the corresponding func-

tional time series 100 times and estimate the convolution functions. The performance

of estimation is evaluated by the integrated squared error, Ei = ‖φ̂k,i − φi‖22, for

i = 1, . . . , p.

Example 2.2. Consider a simple CFAR(1) model with convolution function φ(·) being

the normal density function with mean 0 and standard deviation 0.1, truncated at

[−1, 1]. For noise process, we use ρ = 5 and σ2 = 10. We demonstrate various features

of the model with a typical data set whose estimation error is the median value of the

100 simulated sets for k = 11, N = 100, and T = 100.

Table 2.1 shows the average of E for different k, with fixed T = 100 and N = 100.

The second column shows the distance between two adjacent knots. As k increases,



23

Table 2.1: The average (sd) of errors when k = 7, 11, 19 for Example 2.2

k distance N T E

7 1/2 100 100 0.4257 (0.0955)

11 1/4 100 100 0.1685 (0.0954)

19 1/8 100 100 0.3318 (0.1370)

average of E decreases first, due to improvement of the sieve approximation, and then

increases, because of the introduction of extra B-spline coefficients. It reaches the

minimum when k = 11.

Table 2.2: The average (sd) of errors when T = 10, 100, 1000 for Example 2.2

k N T E

11 100 10 4.3748 (3.3497 )

11 100 100 0.1685 (0.0954)

11 100 1000 0.0312 (0.0187)

Table 2.2 shows the estimation performance as the sample size T changes from 10,

100 to 1000, with fixed k and N . As T increases, the means and standard deviations

of E all decrease, and the estimates become more accurate and stable. It can be seen

that E decreases approximately at the rate of 1/T .

Table 2.3: The average (sd) of errors when N = 10, 100, 1000 for Example 2.2

k N T E

11 10 100 0.2015 (0.1001)

11 100 100 0.1685 (0.0954)

11 1000 100 0.1687 (0.0968)

Table 2.3 summarizes the estimation performance for k = 11 and T = 100 with

different N . It is seen that when N is small, increasing N improves the performance

of the estimators as they benefit from the increase of information. However, when N

is large enough, E stays at the same level, because there are sufficient observations

to get an accurate approximation of Xt(·) by linear interpolation. Due to the strong

spatial correlation in the error process, dense observations do not provide much extra

information.

Figure 2.2 displays the predicted Xt(·) using (2.19) from time 2 to 9, using k = 15,

T = 100 and N = 100 for the typical data set. Because the estimated φ(·) is very close
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Figure 2.2: Plots of predicted Xt(·) when k = 15, N = 100, and T = 100, t =
2, 3, 4, 5, 6, 7, 8, 9, for the typical data set from Example 2.2. The black lines are Xt(·);
the blue lines are ft(·); the red lines are the predictions; the black circles are the
observations.

to the true convolution function, the predictions (red lines) are also close to the skeleton

(blue lines). Also note that the noisy process is large in magnitude with strong spatial

correlation, hence simple smoothing of Xt(·) will be far away from the true skeleton

ft(·).
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Figure 2.3: Left panel: plot of the mean squared out-sample forecasting error against
k for the typical data set when T = 100 and N = 100 from Example 2.2; right panel:
histogram of chosen k for 100 data sets when T = 100 and N = 100 from Example 2.2.

Figure 2.3 shows the performance of using out-sample forecasting to choose k, for

T = 100, T0 = T/2 and N = 100 . The left panel in Figure 2.3 displays the sum of
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squared forecasting error across k for the typical data set. The minimum is achieved at

k = 15. It is seen that the sum of squared forecasting error experiences two different

phases as k increases. At the beginning, it is very large, due to the lack of knots

to approximate φ(·) well. As the complexity of sieve space k increases, the squared

forecasting error reduces very quickly, and the performance of estimator improves, until

its minimum is reached. In this phase, the bias dominates the estimation error. After

that, the error increases gradually with k because the fixed sample size T is not sufficient

for the extra knots estimation. In this phase the variance dominates the error.

The right panel in Figure 2.3 shows the histogram of chosen k for the 100 data sets.

It is truncated at k = 5, and most data sets require the dimension of the sieve space to

be greater than 8. Note that when k is odd, the prediction error is smaller than that

when k is even. This is because φ(·) reaches its maximum value and maximum second

derivatives at 0. The estimate benefits from a knot at 0.
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Figure 2.4: Plots of φ(·) (solid line) and φ̂(·) (dashed line) with T = 100, N = 100, and
k = 5, 7, 11, 15, 19, 101 for the typical data set from Example 2.2.

Figure 2.4 shows the estimated φ(·) for the typical data set when k = 5, 7, 11, 15, 19, 101.

As expected, the accuracy of the estimate improves first and then becomes worse as

k increases. The top panel shows the first phase where the bias dominates, and the

bottom panel shows the second phase where the variance dominates. When k = 11,



26

φ̂(·) is very close to the true convolution function, shown in the top right plot of Figure

2.4.

Table 2.4 reports the performance of the F-test, where the first row is for testing

H0 : φ = 0 under CFAR(1) model, and the second row is for testing H0 : φ2 = 0

under CFAR(2) model, comparing with CFAR(1) model. The second column shows

the p-values for the typical data set. The last 5 columns show the minimum, mean,

maximum and standard deviation of the p-values, and frequency of rejection at 5%

level, respectively. φ1(·) is significant for all the data set, and φ2(·) is not significant

for most of them.

Table 2.4: The p-values for φi = 0, when k = 11, T = 100, N = 100 for Example 2.2

H0 Example
Overall Significance

Min Mean Max Sd frequency

φ1 = 0 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 100%

φ2 = 0 0.8442 0.0286 0.5698 0.9832 0.2679 2%

Example 2.3. A CFAR(2) model is considered in this example. Here we use φ1(s) =
√
50

2
√
π
e−50s

2
, and φ2(s) = 1

2 cos(2πs), for s ∈ [−1, 1]. We fix ρ = 5, and σ2 = 10. Again,

a typical data is selected whose estimation error is the median of these of 100 data sets

when k = 11, T = 500 and N = 100.

Table 2.5: The average (sd) of errors when k = 5, 7, 11, 19 for Example 2.3

k distance N T E1 E2

5 1 100 500 0.2711 (0.0406) 0.0464 (0.0216)

7 1/2 100 500 0.1227 (0.0317) 0.0446 (0.0226)

11 1/4 100 500 0.0623 (0.0335) 0.0596 (0.0286)

19 1/8 100 500 0.1029 (0.0434) 0.0972 (0.0410)

Table 2.6: The average (sd) of errors when T = 100, 200, 500 for Example 2.3

k N T E1 E2

11 100 100 0.3000 (0.1626) 0.3128 (0.1822)

11 100 200 0.1493 (0.0693) 0.1406 (0.0838)

11 100 500 0.0623 (0.0335) 0.0596 (0.0286)

Tables 2.5-2.7 show the average and standard deviation of E1 and E2 with different

combination of (k, T,N). The pattern is similar to that in Example 2.2. As k increases,
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Table 2.7: The average (sd) of errors when N = 100, 200, 500 for Example 2.3

k N T E1 E2

11 100 500 0.0623 (0.0335) 0.0596 (0.0286)

11 200 500 0.0623 (0.0334) 0.0595 (0.0285)

11 500 500 0.0622 (0.0330) 0.0593 (0.0284)

the errors decrease first, reach the minimum, then increase. E1 and E2 are roughly

linear in T , but does not change too much with N .
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Figure 2.5: Left panel: plot of the mean squared out-sample forecasting error against
k for the typical data set when T = 500 and N = 100 from Example 2.3; right panel:
histogram of chosen k for 100 data sets when T = 500 and N = 100 from Example 2.3.

Figure 2.5 reads similarly to Figure 2.3. For most of the data sets, k = 9, or k = 11

are selected based on the out-sample prediction criterion, when T = 500, T0 = T/2,

and N = 100. The estimated φ1(·) and estimated φ2(·) for the typical data set are

shown in Figure 2.6, when k = 11, T = 500 and N = 100. The estimated function is

more accurate around s = 0 than that around the boundary. This is because φi(u)’s

are used as weights for obtaining Xt(s), when u ∈ [−1 + s, s]. Specifically φi(0)’s are

the convolution weights for Xt(s) with u ∈ [−1+s, s]. Every Xt(s), s ∈ [−1, 1] contains

information of φi(0) but only Xt(−1) contains information about φi(−1). Hence, the

estimate of φi(·) in the center exploits data more efficiently than that close to the

boundary.

Table 2.8 summarizes the p-values of a sequence of tests. The first row is for testing

H0 : φ = 0 under CFAR(1) model. The second row is for testing H0 : φ2 = 0 under
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Figure 2.6: Plots of estimated φ1(·) and φ2(·) when k = 11, T = 500 and N = 100 for
the typical data set from Example 2.3.

CFAR(2) model, comparing with CFAR(1) model in the F-test. The third row is

defined similarly. Based on the p-values shown in the second column, CFAR(2) would

be correctly specified for the typical data set. The last 5 columns show that F-tests

perform well in determining the AR order.

Table 2.8: The p-values for φi = 0, when k = 11, T = 500 N = 100 from Example 2.3

p-value Example
Overall Significance

Min Mean Max Sd frequency

φ1 = 0 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 100%

φ2 = 0 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 100%

φ3 = 0 0.0797 0.0119 0.4906 0.9966 0.2678 2%

2.5 Real Data Analysis

We apply our method to the S&P 500 index European call option data in this section.

It is well-known that the implied volatility of an option is a function of its strike prices,

and this phenomenon is called volatility smiles. In this dissertation, we treat the implied

volatility as a function of moneyness, which is the relative strike price with respective

to the price of underlying asset. The option data is collected from July 9, 2004 to

September 20, 2004, and the expiration date of the options is December 18, 2004.

Hence, the time series is T = 51 long. We select the options with strikes between 950

and 1550, which were actively traded within this period, and have a solution for implied

volatility derived from Black-Scholes model most of the time. Number of observations
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at each time varies from 43 to 48. Our aim is to construct the volatility curve against

moneyness, study its evolution mechanism, and predict implied volatility in the future.

Figure 2.7: Plots of implied volatilities against moneyness (top left panel) across time
(bottom left panel) and plots of differenced implied volatility against moneyness (top
right panel) across time (bottom right panel). The colorbars on the right show the
time (top panel) and implied volatility (bottom panel) corresponding to different color
scales.

The left panel of Figure 2.7 shows the implied volatility curves as functions of

moneyness over time, where the volatility smiles are clearly demonstrated, since deep

in-the-money or out-the-money options have larger volatility than others. As expira-

tion approaches, the implied volatilities of at-the-money options decreases, the implied

volatilities of out-the-money options increase, and the location where minimum reaches

approaches to 1 seen from the top left panel of Figure 2.7. Hence, we take a differ-

ence of the implied volatilities, and model them under CFAR settings. Specifically, let

Yt(sn) = Xt(sn)−X̃t−1(sn), for n = 1, . . . , Nt, t = 2, . . . , T , where Xt(sn) is the implied

volatility at time t with moneyness sn, X̃t(·) is the linear interpolation of Xt(·) defined

in (2.8), and Nt is number of observations at time t. Data after taking a difference is
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plotted in the right panel of Figure 2.7. The implied volatilities of deep in-the-money

and out-the-money options are much more volatile than these of at-the-money options.

Table 2.9: The p-values for H0 : φi = 0, when k = 11

H0 φ1 = 0 φ2 = 0

p-value < 0.0001 0.1027

The sequential F-tests of testing H0 : φi = 0 vs H1 : φi 6= 0 for i = 1, 2 in Table

2.9 indicate that CFAR(1) model should be chosen to fit the data. The estimates of

φ(·) for k = 12 (top left panel), k = 16 (top right panel) and k = 18 (bottom left

panel) are shown in Figure 2.8. It can be seen that φ̂(·) is not very sensitive to the

number of knots. The bottom right panel of Figure 2.8 displays the sum of squared

out-sample forecasting errors against k when T0 = 4/5T . When k = 18, the errors

reaches the minimum value, hence we select k = 18. φ̂(s) is negative when s ≤ 0.1 or

0.65 ≤ s ≤ 0.9; otherwise, it is positive, for k = 18 from bottom right panel of Figure

2.8. Hence, the implied volatility with moneyness s at time t is likely to increase, when

these with moneyness u, u ≥ s−0.1, s−0.65 ≤ u ≤ s−0.9 decrease, and others increase

at time t− 1.

Define

êt(n) = ε̂t(sn)− e−ρ̂|sn−sn−1|ε̂t(sn−1), n = 2, . . . , Nt.

The sample autocorrelation functions of êt(n) are shown in Figure 2.9 for t = 2, . . . , 37.

Most of the time, the sample autocorrelations of cross-sectional errors lie within confi-

dence intervals, except t = 8, 14, 15, 30, 37. Overall, most of the sample autocorrelations

of êt(sn) are not significant, which implies that the CFAR(1) model fits data well.

One-step-ahead out-sample forecasting error of Xt(·) is used to compare the pre-

diction performance of the estimated CFAR(1) model with a functional random walk

model , where X̂t+1(sn) = 0, ∀sn[0, 1] . Table 2.10 shows the estimated ρ and σ2 using

CFAR(1) model, and the mean squared out-sample forecasting errors for both models.

CFAR(1) outperforms the functional random walk model, reducing the MSE by about

9%.
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Figure 2.8: Plots of φ̂(·) for different k, k = 12 (top left panel), k = 16 (top right panel)
and k = 18 (bottom left panel), and plot of the sum of squared out-sample forecasting
error against k (bottom right panel).

Table 2.10: Parameter estimates for CFAR model and out-sample forecasting MSEs for
both models

ρ̂ σ̂2 MSE1(CFAR model) MSE2(random walk)

0.0001 1.5176e− 04 1.167e− 04 1.2755e− 04

2.6 Proofs

Proof of Theorem 2.1: By Cauchy-Schwarz inequality, for any function x ∈ L2[0, 1],

∥∥∥∫ 1

0
φ(s− u)x(u)du

∥∥∥2
2

=

∫ 1

0

(∫ 1

0
φ(s− u)x(u)du

)2

ds

≤
∫ 1

0

(∫ 1

0
φ2(s− u)du

)(∫ 1

0
x2(u)du

)
ds ≤ κ2‖x‖.
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Figure 2.9: Sample autocorrelations of êt with lag 0 autocorrelation removed when
t = 2, . . . , 37.

It follows that

sup
‖x‖≤1

‖
∫ 1

0
φ(s− u)x(u)du‖22 ≤ κ2 < 1.

By Lemma 3.1 in Bosq (2000), Xt is stationary.

Proof of Theorem 2.2: Let Hp[0, 1] be the Cartesian product of p copies of the

random function space H[0, 1]. The norm in Hp[0, 1] is defined as

‖(X1, . . . , Xp)‖p =

√√√√ p∑
i=1

‖X1‖22, where X1, . . . , Xp ∈ H[0, 1].

Consider

∆ =



∆1 ∆2 . . . ∆p

I 0 . . . 0

0 I . . . 0

0 . . . I 0


, K =



κ1 κ2 . . . κp

1 0 . . . 0

0 1 . . . 0

0 . . . 1 0


, (2.27)
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where I denotes the identity operator, ∆i is a convolution operator associating with

φi, i.e. ∆iX =
∫ 1
0 φi(· − u)X(u)du. Note that ‖∆X‖p ≤ ‖KX‖p. And all the roots of

the characteristic function are eigenvalues of the matrix K. Let λmax be the maximum

eigenvalue in modulus of K, and |λmax| < 1. Hence, there exists an integer j, such that

‖∆j‖ ≤ ‖Kj‖ < 1. By Theorem 5.1 in Bosq (2000), CFAR(p) model is stationary if

(2.4) is satisfied.

Lemma 2.1. Let f, g ∈ Lipζ2[−1, 1], and ζ > 1, {s0 = 0, s1, . . . , sN = 1} is an equally

spaced partition of [0, 1]. For any u, v ∈ [0, 1], let fu and gv be (N + 1) × 1 vectors,

fu = (f(s0 − u), f(s1 − u), . . . , f(sN − u))′, gv = (g(s0 − v), g(s1 − v), . . . , g(sN − v))′.

Σ is defined in Section 3.1, where (Σ)ij = e−ρ|i−j|/Nσ2/2ρ. Define AN (f, g)(u, v) =

f ′uΣ
−1gv, then

AN (f, g)(u, v) =
1

σ2
A(f, g)(u, v) +O(N−ζ0+1), (2.28)

where ζ0 = min{ζ, 2}.

Proof: Let ϕ = e−ρ/N , and it is easy to show that Σ−1 = 2ρ
σ2 U′U, where

U =
1√

1− ϕ2


√

1− ϕ2 0 · · · 0

−ϕ 1 · · · 0

0 · · · −ϕ 1

 . (2.29)

And we have

Ufu =
1√

1− ϕ2( √
1− ϕ2f(s0 − u) f(s1 − u)− ϕf(s0 − u) . . . f(sN − u)− ϕf(sN−1 − u)

)′
,
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Ugv has a similar expression, hence

f ′uΣ
−1gv =

2ρ

σ2
f(−u)g(−v) +

2ρ

(1− ϕ2)σ2

N∑
n=1

(f(sn − u)− ϕf(sn−1 − u)) (g(sn − v)− ϕg(sn−1 − v))

=
2ρ

σ2
f(−u)g(−v) +

2ρ

(1− ϕ2)σ2

+

N∑
n=1

[f(sn − u)− f(sn−1 − u)] [g(sn − v)− g(sn−1 − v)]

+
2ρ

(1− ϕ2)σ2

N∑
n=1

(1− ϕ) [f(sn − u)− f(sn−1 − u)] g(sn−1 − v)

+
2ρ

(1− ϕ2)σ2

N∑
n=1

(1− ϕ)f(sn−1 − v) [g(sn − v)− g(sn−1 − v)]

+
2ρ

(1− ϕ2)σ2

N∑
n=1

(1− ϕ)2f(sn−1 − v)g(sn−1 − v)

= L1 + L2 + L3 + L4 + L5.

Since f, g ∈ Lipζ2[−1, 1], |f ′(u) − f ′(v)| ≤ M |u − v|, if ζ ≥ 2; |f ′(u) − f ′(v)| ≤ M |u −

v|−ζ+1, if ζ < 2, for some positive constant M . It follows that

L2 =
2ρ

N(1− ϕ2)σ2

N∑
n=1

1

N

(
f(sn − u)− f(sn−1 − u)

1/N

)(
g(sn − v)− g(sn−1 − v)

1/N

)

=
2ρ

N(1− ϕ2)σ2

N∑
n=1

1

N
(f ′(sn−1 − u) +O(N−ζ0+1))(g′(sn−1 − u) +O(N−ζ0+1))

=
1

σ2

∫ 1

0
f ′(s− u)g′(s− v) ds+O(N−ζ0+1).

Similarly, we obtain L3 = ρ
σ2

∫ 1
0 f
′(s − u)g(s − v)ds + O(N−ζ0+1), L4 = ρ

σ2

∫ 1
0 f(s −

u)g′(s− v)ds+O(N−ζ0+1), and L5 = ρ2

σ2

∫ 1
0 f(s− u)g(s− v)ds+O(N−ζ0+1).

Using integration by parts, we have

f ′uΣ
−1gv =

1

σ2

(
ρf(−u)g(−v) + ρf(1− u)g(1− v)

+

∫ 1

0
f ′(s− u)g′(s− v) ds+ ρ2

∫ 1

0
f(s− u)g(s− v) ds

)
+O(N−ζ0+1).



35

Lemma 2.2. If the CFAR(1) process X = (Xt, t ∈ Z) satisfies (2.3) and φ ∈ C2[−1, 1],

then there exists a positive constant ι which only depends on φ and ρ such that:

(i) ‖Ψh‖∞ ≤ κh for h ≥ 2.

(ii) ‖γh‖∞ ≤ σ2ικ|h| for h ∈ Z.

(iii) For h ≥ 1,

max
u,v

{∣∣∣∣∂γh(u, v)

∂u

∣∣∣∣ , ∣∣∣∣∂γh(u, v)

∂v

∣∣∣∣} ≤ σ2ικh,
and when h = 0, for any u1, u2, v ∈ [0, 1],

|γ(u1, v)− γ(u2, v)| ≤ σ2ι|u1 − u2|.

(iv) For h ≥ 1,

max
u,v

{∣∣∣∣∂2γh(u, v)

∂u2

∣∣∣∣ , ∣∣∣∣∂2γh(u, v)

∂u∂v

∣∣∣∣ , ∣∣∣∣∂2γh(u, v)

∂v2

∣∣∣∣} ≤ σ2ικh,
and when h = 0,

max
u6=v

{∣∣∣∣∂2γ(u, v)

∂u2

∣∣∣∣ , ∣∣∣∣∂2γ(u, v)

∂u∂v

∣∣∣∣ , ∣∣∣∣∂2γ(u, v)

∂v2

∣∣∣∣} ≤ σ2ι.
Proof: By Cauchy-Schwarz inequality, for any u, v ∈ [0, 1],

|Ψ2(u, v)| =
∣∣∣ ∫ 1

0
φ(u− s)φ(s− v) ds

∣∣∣ ≤ (∫ 1

0
φ2(u− s)ds

)1/2

·
(∫ 1

0
φ2(s− v)ds

)1/2

≤ κ,

|Ψh(u, v)| ≤
(∫ 1

0
Ψ2
h−1(u, s)ds

)1/2(
·
∫ 1

0
φ2(s− v)ds

)1/2

≤ κ‖Ψh−1‖∞, for h ≥ 3.

Hence, Lemma 2.2(i) can be proved inductively.

By the definition of Ψ, for h ≥ 2,

Ψh(u, v) =

∫
[0,1]h

φ(u− s1)φ(s1 − s2) . . . φ(sh−1 − v) ds1 . . . dsh−1,
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then we have

∂Ψh(u, v)

∂u
=

∫
[0,1]h

φ′(u− s)Ψh−1(s, v) ds,
∂Ψh(u, v)

∂v
=

∫
[0,1]h

Ψh−1(u, s)φ
′(s− v) ds,

∂2Ψh(u, v)

∂u2
=

∫
[0,1]h

φ′′(u−s)Ψh−1(s, v) ds,
∂2Ψh(u, v)

∂v2
=

∫
[0,1]h

Ψh−1(u, s)φ
′′(s−v) ds,

Let d1 = max−1≤s≤1 |φ′(s)| and d2 = max−1≤s≤1 |φ′′(s)|, and it holds that

max
u,v

{∣∣∣∂Ψh(u, v)

∂u

∣∣∣, ∣∣∣∂Ψh(u, v)

∂v

∣∣∣} ≤ d1κh−1, for h ≥ 1,

max
u6=v

{∣∣∣∂2Ψh(u, v)

∂u2

∣∣∣, ∣∣∣∂2Ψh(u, v)

∂v2

∣∣∣} ≤ d2κ
h−1, for h ≥ 1.

By Corollary 2.1, the covariances γ(u, v) have the expression:

γ(u, v) =
σ2

2ρ
e−ρ|u−v| +

σ2

2ρ

∞∑
`=1

∫ 1

0

∫ 1

0
Ψ`(u,w)Ψ`(v, z)e

−ρ|w−z| dwdz.

It follows that, for any u, v ∈ [0, 1],

‖γ‖∞ ≤ σ2/[2ρ(1− κ2)],

|γ(u1, v)− γ(u2, v)| ≤ σ2

2ρ
(ρ+

d1κ

1− κ2
)|u1 − u2|,

max
u6=v

{∣∣∣∣∂2γ(u, v)

∂u2

∣∣∣∣ , ∣∣∣∣∂2γ(u, v)

∂u∂v

∣∣∣∣ , ∣∣∣∣∂2γ(u, v)

∂v2

∣∣∣∣} ≤ σ2

2ρ
(ρ2 +

d

1− κ2
),

where d = max{d21, d2κ}.

For h ≥ 1, the autocovariances γh(u, v) = Cov(Xt(u), Xt+h(v)) is given by

γh(u, v) =
σ2

2ρ

∫ 1

0
e−ρ|u−s|Ψh(v, s) ds+

σ2

2ρ

∞∑
`=1

∫ 1

0

∫ 1

0
Ψ`(u,w)Ψ`+h(v, z)e−ρ|w−z| dwdz.

Hence, for h ≥ 1, we have

‖γh‖∞ ≤ σ2κ|h|/[2ρ(1− κ2)],
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∥∥∂γh(u, v)

∂u

∥∥
∞ ≤

σ2

2ρ

(
ρ+

d1κ

1− κ2

)
κh,

∥∥∂γh(u, v)

∂v

∥∥
∞ ≤

σ2

2ρ
· d1κ

h−1

1− κ2
,

max
u6=v

{∣∣∣∣∂2γh(u, v)

∂u2

∣∣∣∣ , ∣∣∣∣∂2γh(u, v)

∂u∂v

∣∣∣∣ , ∣∣∣∣∂2γh(u, v)

∂v2

∣∣∣∣} ≤ σ2

2ρ
(ρ2 +

d

1− κ2
)κh,

Since γh(u, v) = γ−h(v, u), the proof of Lemma 2.2(ii), 2.2(iii) and 2.2(iv) is com-

plete.

Lemma 2.3. The CFAR(1) process X = (Xt, t ∈ Z) satisfies (2.3). Let ε∗0 be an

i.i.d. copy of ε0, and X∗t be obtained by replacing ε0 with ε∗0 in the definition of Xt. If

f : [0, 1]2 → R be a continuous function, and set ‖f‖∞ := maxu,v |f(u, v)|. Define

Yt =

∫ 1

0

∫ 1

0
f(u, v)Xt(u)Xt(v) dudv, and Y ∗t =

∫ 1

0

∫ 1

0
f(u, v)X∗t (u)X∗t (v) dudv.

Then, for each q ∈ N and q ≥ 1, and t ≥ 0,

‖Yt − Y ∗t ‖q ≤
√

2σ2

ρ
√

1− κ2
[(2q − 1)!!]1/q ‖f‖∞ · κt.

Proof: By Cauchy-Schwarz inequality,

‖Yt − Y ∗t ‖q ≤ 2
∥∥∥∫ 1

0

∫ 1

0
f(u, v)[Xt(u)−X∗t (u)]Xt(v) dudv

∥∥∥
q

≤ 2‖f‖∞
∫ 1

0

∫ 1

0

∥∥[Xt(u)−X∗t (u)]Xt(v)
∥∥
q
dudv

≤ 2‖f‖∞
∫ 1

0

∫ 1

0

∥∥[

∫ 1

0
Ψt(u,w)(εt(w)− ε∗t (w)dw

∥∥
2q
·
∥∥Xt(v)‖2q dudv

≤
√

2σ2

ρ
√

(1− κ2)
[(2q − 1)!!]1/q‖f‖∞ · κt.

Proof of Theorem 2.3: Define δt(·) = Xt(·)− X̃t(·). For any function f ∈ C[−1, 1],

denote (f ∗ g)(u) =
∫ 1
0 f(u− v)g(v)dv. We first observe that Xt can be decomposed as

Xt(s) =
k∑
j=1

βk,j(Bk,j ∗ X̃t−1)(s) + (rk ∗ X̃t−1)(s) + εt(s) + (φ ∗ δt)(s).
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Let ṽt and w̃t be two (N+1)-dimensional vectors whose i-th entries are (rk ∗X̃t−1)((i−

1)/N) and (φ ∗ δt)((i − 1)/N) respectively. Let εt be the (N + 1)-dimensional vector

whose i-th entry is εt((i− 1)/N). The estimator β̂k can be decomposed as

β̂k = β̃k +

(
T∑
t=2

M′
tΣ
−1Mt

)−1( T∑
t=2

M′
tΣ
−1(ṽt + εt + w̃t)

)
.

We claim that under the condition T = o(N2)

1√
T

T∑
t=2

M′
tΣ
−1w̃t = op(1). (2.30)

Let µk,N = E(M′
tΣ
−1ṽt), Γk,N = E(M′

tΣ
−1Mt), and bk,N = Γ−1k,Nµk,N , then

β̂k =β̃k + bk,N + Γ−1k,N
1

T

T∑
t=2

(M′
tΣ
−1ṽt − µk,N ) + Γ−1k,N

1

T

T∑
t=2

M′
tΣ
−1εt

− Γ−1k,N
1

T

T∑
t=2

(M′
tΣ
−1Mt − Γk,N )bk,N + op(T

−1/2).

(2.31)

We claim that

β̂k =β̃k + bk + Γ−1k
1

T

T∑
t=2

(ut − µk) + Γ−1k
1

T

T∑
t=2

zt

− Γ−1k
1

T

T∑
t=2

(At − Γk)bk + op(T
−1/2).

(2.32)

If we represent εt(u) as

εt(u) = εt(0)e−ρu + σ

∫ u

0
e−ρ(u−v) dWt(v),

then similar to proof of Lemma 2.1, we get

(zt)j =

∫ 1

0

[
2ρ

σ2
Bk,j(−u)εt(0) +

1

σ

∫ 1

0
(ρBk,j(v − u) +B′k,j(v − u)) dWt(v)

]
Xt−1(u) du.

(2.33)

The vector-valued process ut+ zt+ Atbk is a stationary process. For any fixed unit
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vector θ ∈ Rk, by Lemma 2.3, the physical dependence measures defined in Wu (2005)

of the process θ′(ut+zt+Atbk) decay geometrically fast, and therefore the martingale

approximation used in Wu (2005) can be applied to obtain the central limit theorem

for
∑T

t=2 θ
′(ut + zt + Atbk). By the Cramer-Wold device, we have

√
T (β̂k − β̃k − bk)

d→ N(0,Γ−1k ΥkΓ
−1
k ),

where Υk is the long-run variance of the process ut + zt + Atbk.

Now we prove the claim (2.30). We proceed by showing that each entry of the vector

converges to zero in probability. The j-th entry of MtΣ
−1w̃t can be written as

∫ 1

0

∫ 1

0
AN (Bk,j , φ)(u, v)X̃t−1(u)δt(v) dudv.

By Lemma 2.1 , there exists a constant c1 > 0 such that

|AN (Bj , φ)(u, v)| ≤ c1, for all u, v,N. (2.34)

Let

γ̃h(u, v) = Cov(Xt(u), δt+h(v)), γ̄h(u, v) = Cov(δt(u), δt+h(v)),

By Lemma 2.2, there exists a constant c2 > 0 such that

‖γ̃h‖∞ ≤ c2κh/N, ‖γ̄h‖∞ ≤ c2κh/N.

It follows that

E

∫ 1

0

∫ 1

0
|AN (Bk,j , φ)(u, v)δt(u)δt(v)| dudv = O(N−1),

so it suffices to prove
∑T

t=2 yjt = op(T
1/2), where

yjt =

∫ 1

0

∫ 1

0
AN (Bk,j , φ)(u, v)Xt−1(u)δt(v) dudv.
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By (2.34),

Eyjt =

∫ 1

0

∫ 1

0
AN (Bk,j , φ)(u, v)[γ1(u, v)− γ̃1(u, v)] dudv = O(1/N). (2.35)

The autocovariance is

Cov(yjt, yj,t+h) =

∫
[0,1]4

AN (Bk,j , φ)(u1, v1)AN (Bk,j , φ)(u2, v2)

× [γh(u1, u2)γ̄h(v1, v2) + γ̃h+1(u1, v2)γ̃−h+1(u2, v1)] du1du2du3du4.

By (2.34) and Lemma 2.2, we know there exist a constant c3 > 0 such that

|Cov(wjt, wj,t+h)| ≤ c3κ2h/N.

It follows that

Var

(
T∑
t=2

yjt

)
= O(T/N). (2.36)

Combining (2.35) and (2.36), and using the condition T = o(N2), we have
∑T

t=2 yjt =

op(T
1/2), and the proof of claim (2.30) is complete.

The difference between the two expressions in (2.31) and (2.32) is due to the ap-

proximation of Xt by X̃t, so the proof of claim (2.32) is in the same fashion of that of

claim (2.30). We omit the details.

Lemma 2.4. The distance of two adjacent knots for uniform cubic B-spline functions

defined on [−1, 1] with degree of freedom k is 1/m, and m = (k − 3)/2. Define two

(m+ 4)× (m+ 4) matrices Ps and Vs:

(Ps)qj =

∫ 1+s/m

s/m

∫ 1+s/m

s/m
e−ρ|u−v|B′k,q+m−1(u)B′k,j+m−1(v) dudv,

(Vs)qj = ρ2
∫ 1+s/m

s/m

∫ 1+s/m

s/m
e−ρ|u−v|Bk,q+m−1(u)Bk,j+m−1(v) dudv,

for q, j = 1, . . . ,m+ 4. Let b = (b0, . . . , bm+3)
′ be a unit vector. There exists constants
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c1 and c2 such that if s ∈ Iα,
∑3

j=0 b
2
j ≥ 1

3m , and m ≥ c1, then

b′(Ps + Vs)b ≥ c2
3∑
j=0

b2j .

Proof: Rescale the uniform B-spline functions,

Bq(s) = Bk,m+q(s/m) = [q, q + 1, . . . , q + 4](· − s)3+, for q = 0, . . . ,m+ 3.

The support of Bq(·) is [q, q + 4] and we denote B(u) ≡ B−2(u). Ps and Vs can be

written as

(Ps)qj =

∫ m+s

s

∫ m+s

s
e−ρ|u−v|/mB′q−1(u)B′j−1(v) dudv,

(Vs)qj =
ρ2

m2

∫ m+s

s

∫ m+s

s
e−ρ|u−v|/mBq−1(u)Bj−1(v) dudv,

for q, j = 1, . . . ,m + 4. For a fixed 3 < s < 4, there are m + 4 spline functions which

are not identically zero on the interval [s,m + s]: B0(u), B1(u), . . . , Bm+3(u). For any

numbers b0, b1, b2, b3, there exists a constant c3 > 0 such that
∫ 4
3

[∑3
j=0 bjBj(s)

]2
ds ≥

c3
∑3

j=0 b
2
j . Thus there exists an s ∈ [3, 4] such that

∣∣∣∣∣∣
3∑
j=0

bjBj(s)

∣∣∣∣∣∣ ≥ √c3 ·
 3∑
j=0

b2j

1/2

.

On the other hand, there exists a constant c4 such that for all s ∈ [3, 4],
∣∣∣∑3

j=0 bjB
′
j(s)

∣∣∣ ≤
c4 ·

(∑3
j=0 b

2
j

)1/2
. As a result, there exists an interval Iα of length c5 > 0, which is

contained in [3, 4], such that for each s in this interval

∣∣∣∣∣∣
3∑
j=0

bjBj(s)

∣∣∣∣∣∣ ≥ c6 ·
 3∑
j=0

b2j

1/2

,

where 0 < c6 < 1 is an absolute constant.
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Define the functions:

f1(u) =
3∑
j=0

bjBj(u), f2(u) =
m−1∑
j=4

bjBj(u), f3(u) =
m+3∑
j=m

bjBj(u),

and let f(u) = f1(u) + f2(u) + f3(u). Using the identity

e−ρ|u|/m =
1

π

∫ ∞
−∞

eiuλ · m/ρ

1 + (mλ/ρ)2
dλ,

we have

b′Psb =
1

π

∫ m+s

s

∫ m+s

s
f ′(u)f ′(v)

∫ ∞
−∞

ei(u−v)λ · m/ρ

1 + (mλ/ρ)2
dλdudv

=
1

π

∫ ∞
−∞

∣∣∣∣∫ m+s

s
f ′(u)eiuλ du

∣∣∣∣2 m/ρ

1 + (mλ/ρ)2
dλ

=
1

π

∫ ∞
−∞

∣∣∣∣−f1(s)eisλ + f3(m+ s)ei(m+s)λ − (iλ)

∫ m+s

s
f(u)eiuλ du

∣∣∣∣2 m/ρ

1 + (mλ/ρ)2
dλ.

Similarly,

b′Vsb =
ρ2

πm2

∫ ∞
−∞

∣∣∣∣∫ m+s

s
f(u)eiuλ du

∣∣∣∣2 m/ρ

1 + (mλ/ρ)2
dλ.

Neuman (1981) showed the Fourier transform of the central spline B−2(u) is

∫ 2

−2
B−2(u)eiuλ du =

[
2 sin(λ/2)

λ

]4
.

Let g(λ) =
∑m−1

j=4 bje
i(j+2)λ, we have

∫ m+s

s
f(u)eiuλ du =

∫ m+s

s
f1(u)eiuλ du+

∫ m+s

s
f3(u)eiuλ du+ g(λ)

∫ 4

0
B−2(u)eiuλ du

=

∫ m+s

s
f1(u)eiuλ du+

∫ m+s

s
f3(u)eiuλ du+ g(λ)

[
2 sin(λ/2)

λ

]4
.

(2.37)
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Note that

∣∣∣∣∫ m+s

s
f1(u)eiuλ du

∣∣∣∣ ≤ ∫ 7

3

3∑
j=0

|bj |Bj(u) du ≤ 2, (2.38)

and a similar inequality holds for the Fourier transform of f3(u).

We will consider two cases.

Case 1: maxλ∈[0,2/m] |g(λ)| ≤ m |f1(s)|/3. on the interval λ ∈ [π/(6m), 11π/(6m)],

by law of cosines, it holds that

∣∣∣−f1(s)eisλ + f3(m+ s)ei(m+s)λ
∣∣∣ ≥ |f1(s) sin(mλ)| ≥ |f1(s)|/2,

and with (2.37) and (2.38), we have

∣∣∣∣−f1(s)eisλ + f3(m+ s)ei(m+s)λ − (iλ)

∫ m+s

s
f(u)eiuλ du

∣∣∣∣ ≥ |f1(s)|2
− 22π

3m
− |f1(s)|

3

=
|f1(s)|

6
− 22π

3m
.

It follows that

b′Psb ≥
1

π

∫ 11π/(6m)

π/(6m)

(
|f1(s)|

6
− 22π

3m

)2 m/ρ

1 + (mλ/ρ)2
dλ

=
1

π

∫ 11π/6

π/6

(
|f1(s)|

6
− 22π

3m

)2 ρ

ρ2 + λ2
dλ ≥ 60ρ

36ρ2 + 121π2

(
|f1(s)|

6
− 22π

3m

)2

.

Recall that
∑3

j=0 b
2
j ≥ 1

3m , so

|f1(s)| ≥ c4

 3∑
j=0

b2j

1/2

≥ c6/
√

3m.

Therefore, for Case 1, there exists a constant c7 > 0, such that when m ≥ c7, it holds

that

b′Psb ≥
5ρ

109ρ2 + 364π2
|f1(s)|2 ≥

5ρc26
109ρ2 + 364π2

3∑
j=0

b2j .
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Case 2: maxλ∈[0,2/m] |g(λ)| > m |f1(s)|/3. This implies that there exists a λ0 ∈

[0, 2/m] such that |g(λ0)| ≥ m |f1(s)|/3 ≥ c6
√
m/6. Since b is a unit vector, |g(λ)| ≤

√
m, and it follows that f1(s) ≤ 3/

√
m. By Zygmund (2002), the derivative of g(λ)

satisfies |g′(λ)| ≤ m3/2. Therefore, on an interval I1 ⊂ [0, 3/m] of length c6/(12m),

|g(λ)| ≥ c6
√
m/12. On this interval, it holds that

∣∣∣∣∫ m+s

s
f(u)eiuλ du

∣∣∣∣ ≥ c6
√
m

12

[
2 sin(λ/2)

λ

]4
− 4.

There exists a c8 > 0 such that when m ≥ c8,

∣∣∣∣∫ m+s

s
f(u)eiuλ du

∣∣∣∣ ≥ c6
√
m

13
.

It follows that

b′Vsb ≥
ρ2

πm2

∫
I1

∣∣∣∣∫ m+s

s
f(u)eiuλ du

∣∣∣∣2 m/ρ

1 + (mλ/ρ)2
dλ ≥ ρ2

πm2

∫
mI1

c24m

169

ρ

ρ2 + λ2
dλ

≥ c36ρ
3

2028π(ρ2 + 9)
· 1

m
≥ c36ρ

3

18252π(ρ2 + 9)
· |f1(s)|2 ≥

c56ρ
3

18252π(ρ2 + 9)
·

3∑
j=0

b2j .

Note that

b′Psb =

m+3∑
q=0

m+3∑
j=0

∫ 1+s/m

s/m

∫ 1+s/m

s/m
bibje

−ρ|u−v|/mB′q+m(u)B′j+m(v) dudv

= E

m+3∑
q=0

∫ 1+s/m

s
bqεt(u)B′q+m(u) du

2

≥ 0.

Similarly, we have b′Vsb ≥ 0, so both Ps and Vs are non-negative definite. Hence, the

proof is completed by setting c1 = max{c7, c8}, and

c2 =
c56ρmin{ρ2, 1}
18252π(ρ2 + 9)

.

Lemma 2.5. The minimum eigenvalue of Γk, defined in Theorem 3.3 is O(k−1).
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Proof: Γk could be written as sum of the following four matrices. Γk =
∑4

i=1 Gk,i.

(Gk,1)ij =

∫ 1

0

∫ 1

0

∫ 1

0
γ0(u, v)B′k,i(s− u)B′k,j(s− v) dudvds,

(Gk,2)ij = ρ2
∫ 1

0

∫ 1

0

∫ 1

0
γ0(u, v)Bk,i(s− u)Bk,j(s− v) dudvds,

(Gk,3)ij = ρ

∫ 1

0

∫ 1

0
γ0(u, v)Bk,i(−u)Bk,j(−v) dudv,

(Gk,4)ij = ρ

∫ 1

0

∫ 1

0
γ0(u, v)Bk,i(1− u)Bk,j(1− v) dudv,

for i, j = 1, . . . , k. Define Wk,1 and Wk,2.

(Wk,1)ij =
σ2

2ρ

∫ 1

0

∫ 1

0

∫ 1

0
e−ρ|u−v|B′k,i(s− u)B′k,j(s− v) dudvds,

(Wk,2)ij =
ρσ2

2

∫ 1

0

∫ 1

0

∫ 1

0
e−ρ|u−v|Bk,i(s− u)Bk,j(s− v) dudvds,

for i, j = 1, . . . , k. For any b = {b1, . . . , bk} ∈ Rk,

b′Gk,1b =

∫ 1

0
E

(
k∑
i=1

∫ 1

0
biXt(u)B′k,i(s− u)du

)2

ds

=

∫ 1

0
E

[
k∑
i=1

∫ 1

0
bi

(∫ 1

0
φ(u− v)Xt−1(v) dv + εt−1(u)

)
B′k,i(−u) du

]2
ds

≥
∫ 1

0
E

[
k∑
i=1

∫ 1

0
biεt−1(u)B′k,i(−u) du

]2
ds ≥ b′Wk,1b ≥ 0.

So Gk,1 � Wk,1 � 0. In a similar way, we can show that Gk,2 � Wk,2 � 0. Thus

Γk �Wk,1 + Wk,2. Let b = (b0, . . . , b2m+2) be a unit vector, and

D1 = {0 ≤ j ≤ 2m− 1 :

j+3∑
l=j

b2l ≥ 1/(3m)},

and D2 = {0, 1, . . . , 2m− 1} \ D1. Since
∑

j∈D2

∑j+3
l=j b

2
l ≤ 2m · 1/(3m) = 2/3, it holds

that
∑

j∈D1

∑j+3
l=j b

2
l ≥ 1/3. For each j ∈ D1 and j ≤ m − 1, by Lemma 2.4 , There

exists an interval Ij ⊂ [−1 + j/m,−1 + (j + 1)/m] of length c5/m, such that for each
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s ∈ Ij

∫ 1

0

∫ 1

0

2m+2∑
h,l=0

bhbl
[
B′k,h(s− u)B′k,l(s− v) + ρ2Bk,h(s− u)Bk,l(s− v)

]
e−ρ|u−v| dudv ≥ c6

j+3∑
l=j

b2l .

It follows that

∫ 1

0

∫ 1

0

∫ 1

0

2m+2∑
h,l=0

bhbl
[
B′k,h(s− u)B′k,l(s− v) + ρ2Bk,h(s− u)Bk,l(s− v)

]
e−ρ|u−v| dudvds

≥ c3c6
m

∑
j∈D1,j≤m−1

j+3∑
l=j

b2l .

By applying reverting the order of the rows and the columns, we can show that for each

j ∈ D1 and j ≥ m, there exists an interval Ij ⊂ [−1 + j/m,−1 + (j + 1)/m] of length

c5/m, such that for each s ∈ Ij

∫ 1

0

∫ 1

0

2m+2∑
h,l=0

bhbl
[
B′k,h(s− u)B′k,l(s− v) + ρ2Bk,h(s− u)Bk,l(s− v)

]
e−ρ|u−v| dudv ≥ c6

j+3∑
l=j

b2l .

So similarly,

∫ 1

0

∫ 1

0

∫ 1

0

2m+2∑
h,l=0

bhbl
[
B′k,h(s− u)B′k,l(s− v) + ρ2Bk,h(s− u)Bk,l(s− v)

]
e−ρ|u−v| dudvds

≥ c3c6
m

∑
j∈D1,j≥m

j+3∑
l=j

b2l .

Therefore,

b′(Wk,1 + Wk,2)b ≥
c3c6
6m

,

and the proof is complete.



47

Lemma 2.6. Assume Ξ : [0, 1]2 → [0, 1] is a function, and satisfies

‖Ξ(1)‖∞ = sup
0≤u1,u2,v≤1,u1 6=u2

{∣∣∣∣Ξ(u1, v)− Ξ(u2, v)

u1 − u2

∣∣∣∣ , ∣∣∣∣Ξ(v, u1)− Ξ(v, u2)

u1 − u2

∣∣∣∣} <∞;

‖Ξ(2)‖∞ = sup
0≤u,v≤1,u 6=v

{∣∣∣∣∂2Ξ(u, v)

∂u2

∣∣∣∣ , ∣∣∣∣∂2Ξ(u, v)

∂u∂v

∣∣∣∣ , ∣∣∣∣∂2Ξ(u, v)

∂v2

∣∣∣∣} <∞.

(2.39)

Define the k × k matrix Λ with the (j, l)-th entry

∫ 1

0

∫ 1

0

∫ 1

0
B′k,j(s− u)B′k,l(s− v)Ξ(u, v) dudvds. (2.40)

Then ‖Λ‖ = O(k−1).

Proof: Let Sj be the support of Bk,j , and let Sjl be the set of s which makes the integral

∫ 1

0

∫ 1

0
B′k,j(s− u)B′k,l(s− v)Ξ(u, v) dudv (2.41)

nonzero. Define two subsets of Sjl,

Sjl1 := {s : s ∈ Sjl, (Sj ∪ Sl) 6⊂ [s− 1, s]},

and Sjl2 := Sjl \ Sjl1. Use λ to denote the Lebesgue measure. Let k = 2m + 3, and

note that 1/m is the mesh size. For each 1 ≤ j ≤ k, we consider the entries in the j-th

row of the matrix Λ. There are three cases.

Case 1. If ||l − j| −m| ≤ 3, then λ(Sjl) ≤ 7/m, and it follows that |(Λ)jl| ≤ C1/k,

where C1 is a constant depending only on Ξ. Observe that for each j, the inequality

||l − j| −m| ≤ 3 only holds for at most 14 different values of l.

Case 2. If |j− l| ≤ 3, then λ(Sjl1) ≤ 7/m, and integrating (2.41) over s ∈ Sjl1 leads

to a value bounded by C1/(2k). For s ∈ Sjl2, the integral (2.41) can be written as

∫ 1

0

∫ 1

0
B′k,j(s− u)B′k,l(s− v)Ξ(u, v) dudv =

∫
Sj

∫
Sl
B′k,j(u)B′k,l(v)Ξ(s− u, s− v) dudv.
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Let u∗j be the left boundary of Sj , then

∣∣∣∣∣
∫
Sj

∫
Sl
B′k,j(u)B′k,l(v)Ξ(s− u, s− v) dudv

∣∣∣∣∣
=

∣∣∣∣∣
∫
Sj

∫
Sl
B′k,j(u)B′k,l(v)[Ξ(s− u, s− v)− Ξ(s− u∗j , s− v) dudv]

∣∣∣∣∣
≤
∫
Sj

∫
Sl
|B′k,j(u)B′k,l(v)| · ‖Ξ(1)‖∞(u− u∗j ) dudv ≤ C1/(2k).

(2.42)

Since λ(Sjl2) ≤ 1, we have |(Λ)jl| ≤ C1/k.

Case 3. If 3 < |j − l| < m − 3, then for each s ∈ Sjl1, it must holds that either

Sj ⊂ [s − 1, s] or Sl ⊂ [s − 1, s]. Similar as (2.42), it holds that for each s ∈ Sjl1, the

integral (2.41) has an absolute value less than C1/k. For s ∈ Sjl2, since Sj and Sl has

no intersection, we have

Ξ(s− u, s− v) =Ξ(s− u∗j , s− v)−
∂Ξ(s− u∗j , s− v∗l )

∂u
(u− u∗j )

−
∂Ξ(s− u∗j , s− v∗l )

∂v
(v − v∗l ) +R(u, v)

where

|R(u, v)| ≤ ‖Ξ(2)‖∞(u− u∗j + v − v∗l )2, u ∈ Sj , v ∈ Sl.

Therefore∣∣∣∣∣
∫
Sj

∫
Sl
B′k,j(u)B′k,l(v)Ξ(s− u, s− v) dudv

∣∣∣∣∣ =

∣∣∣∣∣
∫
Sj

∫
Sl
B′k,j(u)B′k,l(v)R(u, v) dudv

∣∣∣∣∣
≤
∫
Sj

∫
Sl
|B′k,j(u)B′k,l(v)| · ‖Ξ(2)‖∞(u− u∗j + v − v∗l )2 dudv ≤ C1/k

2.

(2.43)

Since λ(Sjl1) ≤ 8/m and λ(Sjl2) ≤ 1, it holds that

|(Λ)jl| ≤
C1

k
· 8

m
+
C1

k2
≤ C2

k2
,

where C2 is a constant which only depends on Ξ.
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Combining these three cases, we see that there exists a constant C3 which only

depends on Ξ, such that ‖Λ‖∞ ≤ C3/k, and ‖Λ‖1 ≤ C3/k. Therefore,

‖Λ‖ ≤ ‖Λ‖1/2∞ ‖Λ‖
1/2
1 ≤ C3/k.

Lemma 2.7. The CFAR(p) process X = (Xt, t ∈ Z) satisfies (2.4). Let ε∗0 be an

i.i.d. copy of ε0, and X∗t be obtained by replacing ε0 with ε∗0 in the definition of Xt.

If f : [0, 1]2 → R be a continuous function, and set ‖f‖∞ := maxu,v |f(u, v)|, then for

−p ≤ h ≤ p,

Yt,h =

∫ 1

0

∫ 1

0
f(u, v)Xt(u)Xt−h(v) dudv, and Y ∗t,h =

∫ 1

0

∫ 1

0
f(u, v)X∗t (u)X∗t−h(v) dudv.

Then, for each q ∈ N, there exists a constant ι which depends on {φi, i = 1, . . . , p}, ρ,

σ2, p and f(u, v), such that

‖Yt,h − Y ∗t,h‖q ≤ ιλt.

Proof: By Cauchy-Schwartz inequality and Lemma 2.7, for t ≥ t0 + p,

‖Yt,h − Y ∗t,h‖q ≤
∥∥∥∫ 1

0

∫ 1

0
f(u, v)[Xt(u)−X∗t (u)]X∗t−h(v) dudv

∥∥∥
q

+
∥∥∥∫ 1

0

∫ 1

0
f(u, v)[Xt−h(v)−X∗t−h(v)]Xt(u) dudv

∥∥∥
q

≤ ‖f‖∞
∫ 1

0

∫ 1

0

∥∥∆tεt(u)−∆tε∗t (u)
∥∥
2q
· ‖X∗t−h(v)‖2q dudv

+‖f‖∞
∫ 1

0

∫ 1

0

∥∥∆t−hεt−h(u)−∆t−hε∗t−h(u)
∥∥
2q
· ‖Xt(v)‖2q dudv

≤ 2‖f‖∞ · λt−p
((

σ2

ρ

)q
[(2q − 1)!!]

)1/(2q)

(γqmax[(2q − 1)!!])1/(2q)

≤ 2σγ
1/2
max

ρ1/2
[(2q − 1)!!]1/q‖f‖∞ · λt−p.

where γmax = maxs∈[0,1] Var(Xt(s)).

Proof of Theorem 3.5: The proof is similar to that of Theorem 3.3. Xt can be
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decomposed as

Xt(s) =

p∑
i=1

k∑
j=1

β̃k,i,j(Bk,j ∗ X̃t−i)(s) +

p∑
i=1

(rk,i ∗ X̃t−i)(s) + εt(s) +

p∑
i=1

(φi ∗ δt)(s).

Let ṽt and w̃t be two (N + 1)-dimensional vectors whose j-th entries are
∑p

i=1(rk,i ∗

X̃t−i)((j − 1)/N) and
∑p

i=1(φi ∗ δt)((j − 1)/N) respectively. Let εt be the (N + 1)-

dimensional vector whose j-th entry is εt((j − 1)/N). The estimate β̂k can be decom-

posed as

β̂k = β̃k +

 T∑
t=p+1

M′
tΣ
−1Mt

−1 T∑
t=p+1

M′
tΣ
−1(ṽt + εt + w̃t)

 .

We claim that under the condition T = o(N2)

1√
T

T∑
t=p+1

M′
tΣ
−1w̃t = op(1). (2.44)

Let µk,N = E(M′
tΣ
−1ṽt), Γk,N = E(M′

tΣ
−1Mt), and bk,N = Γ−1k,Nµk,N , then

β̂k =β̃k + bk,N + Γ−1k,N
1

T

T∑
t=p+1

(M′
tΣ
−1ṽt − µk,N ) + Γ−1k,N

1

T

T∑
t=p+1

M′
tΣ
−1εt

− Γ−1k,N
1

T

T∑
t=p+1

(M′
tΣ
−1Mt − Γk,N )bk,N + op(T

−1/2).

(2.45)

We claim that

β̂k =β̃k + bk + Γ−1k
1

T

T∑
t=p+1

(ut − µk) + Γ−1k
1

T

T∑
t=p+1

zt

− Γ−1k
1

T

T∑
t=p+1

(At − Γk)bk + op(T
−1/2).

(2.46)

By Lemma 2.7, we can finish this proof similar to that of Theorem 3.3.

Lemma 2.8. Let q ≥ 2 be an integer. Consider two (qk) × (qk) symmetric positive
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semi-definite matrices:

Ω1 =

Ω 0

0 0

 , Ω2 =

Ω11 Ω12

Ω21 Ω22

 ,

where Ω and Ω11 are (q−1)k-dimensional square matrices. Assume there exist positive

constants c1 ≤ c2 such that

‖Ω11‖ ≤ c2, Ω � c1I(q−1)k, Ω22 � c1Ik.

Then

Ω1 + Ω2 �
c21

c1 + 2c2
Iqk.

Proof: Let 0 < c < 1, and define

Ω3 =

c−1/2I(q−1)k 0

0 c1/2Ik

Ω11 Ω12

Ω21 Ω22

c−1/2I(q−1)k 0

0 c1/2Ik

 =

c−1Ω11 Ω12

Ω21 cΩ22

 .

We see that Ω3 is positive semi-definite, and

Ω1 + Ω2 = Ω3 +

Ω− (c−1 − 1)Ω11 0

0 (1− c)Ω22


Since Ω � c1I(q−1)k and ‖Ω11‖ ≤ c2, it holds that

Ω− (c−1 − 1)Ω11 � (c1 − (c−1 − 1)c2)I(q−1)k.

By taking c = 2c2/(c1 + 2c2), we have

Ω1 + Ω2 � Ω3 +
c21

c1 + 2c2
Iqk,

and the proof is complete.

Lemma 2.9. Assume that φ1, . . . , φp ∈ C2[−1, 1], The minimum eigenvalue of Γk,
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defined in Theorem 3.5 is O(k−1).

Proof: For any function Ψi, denote by (Ψiεt)(u) the random variable
∫ 1
0 Ψi(u, v)εt(v) dv.

Define γ11(u, v) := σ2e−ρ|u−v|. For each 2 ≤ i ≤ p, let γ1i(u, v) := Cov[εt(u), (Ψi−1εt)(v)]

and γi1(u, v) := γ1i(v, u). For every pair 2 ≤ i, j ≤ p, define

γij(u, v) = Cov[(Ψi−1εt)(u), (Ψj−1εt)(v)].

Now for each pair 1 ≤ i, j ≤ p, define a k × k matrix Ξij , with (h, l)-th entry

(Ξij)hl =

∫ 1

0

∫ 1

0

∫ 1

0
B′k,h(s− u)B′k,l(s− v) + ρ2Bk,h(s− u)Bk,l(s− v) ds γij(u, v)dudv.

For each 1 ≤ i ≤ p, define the p× p block matrix

Γp,i =



Ξii Ξi,i−1 . . . Ξi,1 0

Ξi−1,i Ξi−1,i−1 . . . Ξi−1,1 0

...
...

. . .
...

...

Ξ1,i Ξ1,i−1 . . . Ξ11 0

0 0 . . . 0 0


.

Using the representation (2.7), we know

Γk �
p∑
i=1

Γp,i.

By Lemma 2.5, there exists a constant c1 > 0 such that

Ξ11 � c1/k · Ik.

The condition that φ1, . . . , φp ∈ C2[−1, 1] implies that all functions γij(u, v) satisfies

the assumption (2.39), and then by Lemma 2.6, the operator norms of all matrices

Ξij have the order O(k−1) uniformly. Then we can apply Lemma 2.8 inductively to

complete the proof.
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Proof of Theorem 2.4: By Corollary 6.26 of Schumaker (1981),

‖φ− φ̃k‖∞ ≤ c1k−ζ , ‖φ′(·)− φ̃′k(·)‖∞ ≤ c1k−ζ+1, (2.47)

where c1 is an absolute constant. There are four terms in the definition of A(Bk,j , rk).

We first consider

∫ 1

0

∫ 1

0

∫ 1

0
B′k,j(s− u)r′k(s− v)γ(u, v) dudvds.

Let

Sj = {s : λ(Sj ∩ [s− 1, s]) > 0},

and Sj1 = {s ∈ Sj : Sj 6⊂ [s− 1, s]}, Sj2 = Sj \ Sj1. When s ∈ Sj1, it holds that

∣∣∣∣∫ 1

0

∫ 1

0
B′k,j(s− u)r′k(s− v)γ(u, v) dudv

∣∣∣∣ ≤ Cρk−ζ+1.

where C is constant which only depends on ρ, σ2 and φ. When s ∈ Sj2 and 3 < j < k−2,

using the fact that
∫
Sj B

′
k,j(u) du = 0 and Lemma 2.2, we have

∣∣∣∣∫ 1

0

∫ 1

0
B′k,j(s− u)r′k(s− v)γ(u, v) dudv

∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

∫
Sj
B′k,j(u)r′k(s− v)

[
γ(s− u, v)− γ(s− u∗j , v)

]
dudv

∣∣∣∣∣
≤ Ck−ζ .

Noticing that λ(Sj1) ≤ 4/m, and combining the previous two cases, we see that

∣∣∣∣∫ 1

0

∫ 1

0

∫ 1

0
B′k,j(s− u)r′k(s− v)γ(u, v) dudvds

∣∣∣∣ ≤ Ck−ζ .
It can be shown that the other three terms in the definition of A(Bk,j , rk) have the

same order O(k−ζ), and hence

|(µk)j | ≤ Ck−ζ .
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By Lemma 2.5,

‖bk‖ = ‖Γ−1k µk‖ = O(k−ζ+3/2).

It follows that

‖bk(·)‖∞ ≤ ‖Bk(·)′bk‖∞ + ‖rk(·)‖∞ = O(k−ζ+3/2).

For the statement regarding ‖σ2k(·)‖∞, it suffices to show that

‖Σk‖ = O(k).

We proceed by calculating the long-run variances of the three processes ut, zt and Atbk.

First we observe that zt is a martingale, and

Var(zt) = Γk.

The covariance between utj and ut+h,l is

Cov(utj , ut+h,l) =

∫
[0,1]4
A(Bk,j , rk)(u1, v1)A(Bk,l, rk)(u2, v2)

× [γh(u1, u2)γh(v1, v2) + γh(u1, v2)γh(v1, u2)] du1du2du3du4.

By (2.47), we have

A(Bk,j , rk)(u, v) ≤ Cρk−ζ+1,

where Cρ is constant which only depends on ρ. The preceding bound, together with

Lemma 2.2 implies that,

|Cov(utj , ut+h,l)| ≤ 2C2
ρ/(1− κ22)2σ4 · k−2ζ+2κ2|h|.

Therefore, the operator norm of the long-run variance of ut is of the order O(k−2ζ+3).
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The (j1, j2)-th entry of the matrix E(Atbkb
′
kA
′
t+h) is

k∑
l1,l2=1

∫
[0,1]4

A(Bk,l1 , Bk,j1)(u1, v1)(bk)l1(bk)l2A(Bk,l2 , Bk,j2)(u2, v2)

× [γh(u1, u2)γh(v1, v2) + γh(u1, v2)γh(v1, u2)] du1du2du3du4.

(2.48)

By the definition of A(·, ·), the product A(Bk,j1 , Bk,h1)A(Bk,j2 , Bk,h2) can be expanded

to 16 terms. We first consider the term∫
[0,1]6

B′k,l1(s1 − u1)B′k,j1(s1 − v1)B′k,l2(s2 − u2)B′k,j2(s2 − v2)

× [γh(u1, u2)γh(v1, v2) + γh(u1, v2)γh(v1, u2)] ds1ds2du1dv1du2dv2.

(2.49)

Let Bk be the set of the pairs (j, l) such that either |j − l| ≤ 3, or ||j − l| −m| ≤ 3.

Lemma 2.2 gives bounds on derivatives of γh(u, v). Using these bounds, and a similar

argument as the proof of Lemma 2.6, we can show that there exists a constant c2 > 0

such that the absolute value of (2.49) can be controlled as


c2κ

2h/k2 if (j1, l1) ∈ Bk and (j2, l2) ∈ Bk;

c2κ
2h/k3 if one and only one of (j1, l1) and (j2, l2) belongs to Bk;

c2κ
2h/k4 if (j1, l1) 6∈ Bk and (j2, l2) 6∈ Bk.

It can be shown that the other 15 terms have the same bounds, and we omit the details.

Let C be a k × k matrix whose (j, l)-th entry is 1/k when (j, l) ∈ Bk, and 1/k2 when

(j, l) 6∈ Bk, then

‖E(Atbkb
′
kA
′
t+h)‖ ≤ c3κ2h2 · ‖C · |bk| · |b′k| ·C‖ ≤ c4κ2hk−2ζ+3,

where c3 and c4 are absolute constants, and |bk| consists of entry-wise absolute values

of bk. Therefore, the long-run variance of Atbk is of the order O(k−2ζ+3), and the

proof is complete.

Lemma 2.10. If the CFAR(p) process X = (Xt, t ∈ Z) satisfies (2.4) and φi ∈

C2[−1, 1] for i = 1, . . . , p, then Xt =
∑∞

j=0 ∆jεt−j is a stationary process, where
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Xt = (Xt, Xt−1, . . . , Xt−p+1)
′, εt = (εt, 0, . . . , 0)′, and ∆ is defined in (2.27). There

exist three constants ι, t0 and λ which only depend on {φi, i = 1, . . . , p} and ρ such

that:

(i) ‖∆h‖ ≤ ιλh for h ≥ 2.

(ii) ‖γh‖∞ ≤ σ2ιλ|h| for h ∈ Z.

(iii) For h ≥ 1,

max
u,v

{∣∣∣∣∂γh(u, v)

∂u

∣∣∣∣ , ∣∣∣∣∂γh(u, v)

∂v

∣∣∣∣} ≤ σ2ικh.
(iv) For h ≥ 1,

max
u,v

{∣∣∣∣∂2γh(u, v)

∂u2

∣∣∣∣ , ∣∣∣∣∂2γh(u, v)

∂u∂v

∣∣∣∣ , ∣∣∣∣∂2γh(u, v)

∂v2

∣∣∣∣} ≤ σ2ικh.
Proof: By Lemma 5.1 and Theorem 5.1 in Bosq (2000), it is straightforward to see that

Xt has the following expression: Xt =
∑∞

j=0 ∆jεt−j . Since we show that ‖∆j‖1/j →

λmax < 1 in the proof of Theorem 2, there exists an integer t0 such that ‖∆h‖ ≤ λh,

for h ≥ t0, where λ = (1 + λmax)/2.

For h ≥ t0, any u, v ∈ [0, 1],

γh(u, v) =
1

p
E(Xt(u)′Xt+h(v)) =

1

p

∞∑
j=0

E
[
(∆jεt−j)(u)′(∆j+hεt−j)(v)

]
≤ 1

p

∞∑
j=0

‖(∆jεt−j)(u)‖2 · ‖(∆j+hεt−j)(v)‖2 ≤
δσ2λh

2ρp(1− λ)
,

where δ = maxj≥0 ‖∆j‖. By the definition of ∆i, we have

∆q1∆q2 . . .∆qnf(s) =

∫
[0,1]n

φq1(s−u1)φq2(u1−u2) . . . φqn(uqn−1−uqn)f(un) du1 . . . duqn .

The entries in i-th row of ∆p can be regarded a polynomial in {∆1, . . . ,∆p} of degree

p − i + 1, without intercept (the identity operator). Hence, we can define two linear

operators ∆(1) and ∆(2) in Hp[0, 1] such that ∆(1)f(s) = [∆pf(s)]′, and ∆(2)f(s) =
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[∆pf(s)]′′. Specifically, assume that the (i, j)-th entry in ∆ is ∆q1∆q2 . . .∆qn , and we

define (i, j)-th entries in ∆(1) and ∆(2) as follows

(∆(1)f(s))ij =

∫
[0,1]n

φ′q1(s− u1)φq2(u1 − u2) . . . φqn)(uqn−1 − uqn)f(un) du1 . . . duqn ,

(∆(2)f(s))ij =

∫
[0,1]n

φ′′q1(s− u1)φq2(u1 − u2) . . . φqn)(uqn−1 − uqn)f(un) du1 . . . duqn .

Then, the operator norms of ∆(1) and ∆(2) are bounded by pdp,1κ
p−1
max and pdp,2κ

p−1
max

respectively, where κmax = max{κ1, . . . , κp, 1}, dp,1 = max1≤j≤p,0≤s≤1 |φ′j(s)|, and

dp,2 = max1≤j≤p,0≤s≤1 |φ′′j (s)|.

On the other hand, by the definition of ∆, it suffices to show that the opera-

tor norms of ∂(∆jf(s))/∂s and ∂(∆jf(s))/∂s2 are bounded by pdp,1κ
p−1
max‖f‖∞ and

pdp,2κ
p−1
max‖f‖∞ respectively, for 1 ≤ j < p.

It follows that,

∂γh(u, v)

∂u
≤ σ2δ1λ

h

2ρp(1− λ)
,

∂γh(u, v)

∂v
≤ σ2δdp,1κ

p−1
maxλh−p

2ρ(1− λ)
,

∂2γh(u, v)

∂u2
≤ σ2dδ2λ

h

2ρp(1− λ)
,

∂2γh(u, v)

∂v2
≤ σ2δdp,2κ

p−1
maxλh−p

2ρ(1− λ)
,

∂2γh(u, v)

∂u∂v
≤ σ2δ2δdp,2κ

p−1
maxλh−p

2ρ(1− λ)
,

for h ≥ t0 + p, where δ1 = max{ρ, pdp,1κp−1maxδ}, and δ2 = max{ρ2, pdp,2κp−1maxδ}.

The proof is complete.

Proof of Theorem 2.6: By Lemma 2.9 and Lemma 2.10, we can complete the

proof of Theorem 2.6, following the proof of Theorem 2.4.
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Chapter 3

Regime-Switching Factor Models for High-Dimensional

Time Series

In this chapter, we consider a factor model for high-dimensional time series with regime-

switching dynamics. The switching is assumed to be driven by an unobserved Markov

chain; the mean, factor loading matrix and covariance matrix of the noise process

are different among the regimes. The model is an extension of the traditional factor

models for time series and provides flexibility in dealing with real applications in which

underlying states may be changing over time. We propose an iterative approach to

estimate the loading space of each regime and cluster the data points, by combining

eigenanalysis and Viterbi algorithm. The theoretical properties of the procedure are

investigated. Simulation results and the analysis of a real example are presented.

3.1 Switching Factor Models

We introduce some notation first. For any matrix H, ‖H‖F , and ‖H‖2 denote the

Frobenius norm and L-2 norm of H; tr(H) and λmax(H) are trace, and the largest

nonzero eigenvalue values of a square matrix H respectively, and ‖H‖min is the square

root of minimum nonzero eigenvalue of H′H. We use a � b, if a = O(b) and b = O(a).

Let yt be a p×1 observed time series and zt be a homogenous and stationary hidden

Markov chain taking values in {1, 2, . . . ,m} with transition probabilities

πk,j = P (zt+1 = j | zt = k) k, j = 1, · · · ,m, (3.1)
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and number of states m is known. We assume that, for t = 1, . . . , n, when zt = k,

yt = µk + Akxt + ε
(k)
t and ε

(k)
t ∼ N(0,Σk), (3.2)

where xt is a d × 1 latent factor process with d fixed and (much) smaller than p,

independent of z = {z1, . . . , zn}, E(xt) = 0. µk is the mean of the process, Ak is the

unknown loading matrix, and Σk is the covariance matrix of the noise process for state

k. We also assume that {ε(1)t }, · · · , {ε
(m)
t } are m uncorrelated white noise processes,

and are independent of {(xt, zt), t ∈ Z}. Our model is a generalization of factor models

of Lam et al. (2011). The dynamics of yt are driven by the factor process xt according

to m states controlled by the switch variable zt.

As noted in Lam and Yao (2012), Ak is not uniquely defined, since (Ak, xt) in (3.2)

can be replaced by (AkUk, U−1k xt) for any d× d non-singular matrix Uk. Denote the

linear space spanned by the columns of a matrix A as M(A). It is easily seen that

M(Ak), the factor loading space for state k, is uniquely defined by (3.2). Hence, we

can find a p× d matrix Qk and a d× d non-singular matrix Γk satisfying

Q′kQk = Id, and Ak = QkΓk, k = 1, · · · ,m. (3.3)

It follows that M(Qk) =M(Ak). The columns of Qk are d orthonormal vectors, and

the column space spanned by Qk is the same as the column space spanned by Ak. In

addition, let Bk = (bk,1, . . . ,bk,p−d) be an orthnormal basis such that M(Bk) is the

orthogonal complement space of M(Qk). Hence (Qk,Bk) forms a p × p matrix with

orthogonal columns, Q′kBk = 0, and B′kBk = Ip−d. In practice,

A′kBk = 0. (3.4)

Assume that the loading spaces are different across regimes, our goal is to cluster the

data by regimes, and estimate d and M(Qk), for k = 1, . . . ,m.

Remark 3.1. As mentioned above, (Ak, xt) in (3.2) can be replaced by (AkUk, U−1k xt)
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for any d × d non-singular matrix Uk. Hence, the factor process may not be station-

ary after such nonsingular transformations across regimes, if {Uk, k = 1, . . . ,m} are

different. However, it does not directly affect the underlying process or the estimation

procedure, since we do not impose the stationarity on the latent process xt.

For factor models in high-dimensional cases, it is common to assume that the squared

L-2 norm of the p × d loading matrix grows with the dimension p (Bai and Ng, 2002;

Doz et al., 2011), and the growth rate is defined as the strength of the factors in Lam

et al. (2011). In our multi-regime factor model in (3.2), the strength of the factors may

be different across regimes. Assume that

‖Ak‖22 � ‖Ak‖2min � p1−δk ,

where ‖Ak‖2min is the minimum nonzero eigenvalue of A′kAk. If δk = 0, the factors are

’strong’ for state k and we call state k a strong state and Ak is a dense loading matrix.

If δk > 0, the factors are ’weak’ for state k and we call state k a weak state and Ak is a

sparse loading matrix. The strength of the state is an indicator of signal-to-noise ratio.

It measures the relative growth rate of the amount of information which the observed

process yt carries about the common factors xt as p increases, with respective to the

growth rate of the amount of noise process. When the state is weak, the information

contained in yt about the factors grows slower than the noises introduced as p increases,

hence the proportion of information is diluted by the noise. When the state is strong,

the signal-to-noise ratio remains constant.

Define

Rt =
m∑
k=1

ΓkxtI(zt = k), (3.5)

and the switching factor model can be written as

yt =
m∑
k=1

I(zt = k)
(
µk + Akxt + ε

(k)
t

)
=

m∑
k=1

I(zt = k)
(
µk + QkΓkxt + ε

(k)
t

)
(3.6)

=

m∑
k=1

I(zt = k)
(
µk + QkRt + ε

(k)
t

)
. (3.7)
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The above equation reveals different ways to decompose the dynamic part of the process.

In (3.6), Qk is the standardized loadings, xt is the factor latent process, and Γk reflects

the strength of the state, controlling the amount of information yt carries on the latent

factors. When the dynamic part is divided into two parts in (3.7), Rt can be regarded

as another latent factor process but with standardized loadings, and the L-2 norm of

its variance matrix increases with p at different rates across regimes.

3.2 Estimation Procedure

In Section 3.2.1 we introduce a method taking advantage of the autocovariance matrices

to estimate of the loading spaces when the state variable z is known; in Section 3.2.2 we

propose a method using Viterbi algorithm to estimate the hidden state variable when

the loading spaces are known. Combining the two methods, we propose an iterative

algorithm to estimate all the model parameters in Section 3.2.3.

3.2.1 Estimation of Bk, µk, d and the Transition Probabilities Given

State Indicator z

If the states z1, . . . , zn are given, the transition probability can be estimated by

π̂k,j =

∑n−1
t=1 I(zt = k, zt+1 = j)∑n−1

t=1 I(zt = k)
, for k, j = 1, ...,m, and

π̂k =

∑n
t=1 I(zt = k)

n
, for k = 1, ...,m.

For the estimation of factor loading spaces, we adopt the procedure proposed by Lam

et al. (2011), Lam and Yao (2012), Chang et al. (2013). It is based on the observation

that, since the idiosyncratic noise ε
(k)
t is white, the dynamic of yt (autocovariance) only

comes from the dynamics of the factor xt. Hence we can retrieve the factor loading

space through an analysis of the autocovariance structure of yt. Let

Σx(l) =
1

n− l

n−l∑
t=1

Cov(xt, xt+l),
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Σy,k(l) =
1

n− l

n−l∑
t=1

Cov(yt, yt+l | zt = k).

Here Σx(l) and Σy,k(l) are the averages of autocovariance matrices of xt, and yt at lead

l from time 1 to n− l respectively, given that the current state is k. It follows that

Σy,k(l) =
1

n− l

n−l∑
t=1

m∑
j=1

π
(l)
k,jCov(yt, yt+lI(zt+l = j) | zt = k)

= AkΣx(l)
m∑
j=1

π
(l)
k,jA

′
j , (3.8)

where π
(l)
k,j = P (zt+l = j | zt = k), the transition probability from state k to state j in

l steps. Note that if xt is stationary, then Σx(l) is the autocovariance matrix of xt at

lead l.

For a fixed prescribed integer l0, define

Mk =

l0∑
l=1

Mk,l, (3.9)

where Mk,l = Σy,k(l)Σy,k(l)
′ is a quadratic version of the autocovariance matrix Σy,k(l).

Because of (3.4) and (3.8), we have Mk,lBk = 0 for all k. If
∑m

j=1 π
(l)
k,jA

′
j is of full rank,

then Mk is a non-negative definite matrix sandwiched by Ak and A′k with rank d.

Then the d unit eigenvectors of Mk corresponding to its d non-zero eigenvalues form

the space M(Ak), the space spanned by the columns of Ak.

We define the sample version of the above statistics, given z = {z1, . . . , zn}, for

k = 1, . . . ,m,

Σ̂y,k(l) =

∑n−l
t=1

∑m
j=1(yt − µ̂k)(yt+l − µ̂j)′I(zt = k, zt+l = j)∑n−l

t=1 I(zt = k)
, µ̂k =

∑n
t=1 ytI(zt = k)∑n
t=1 I(zt = k)

.(3.10)

M̂k,l = Σ̂y,k(l)Σ̂y,k(l)
′, M̂k =

l0∑
l=1

M̂k,l.

Let λ̂k,1 ≥ λ̂k,2 ≥ . . . ≥ λ̂k,p be the p eigenvalues of M̂k and q̂k,1, . . . , q̂k,p be the set of
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corresponding orthonormal eigenvectors. Define Q̂k and B̂k as

Q̂k = (q̂k,1, . . . , q̂k,d), and B̂k = (q̂k,d+1, . . . , q̂k,p), (3.11)

then M(Qk) and M(Bk) can be estimated by M(Q̂k) and M(B̂k), respectively. To

estimate the number of factors with data in each regime, we use the eigenvalue-ratio

method of Lam and Yao (2012). Specifically, let

d̂k = arg min
1≤j≤c

λ̂k,j+1/λ̂k,j . (3.12)

We set c to p/2, since the minimum eigenvalues of Mk may be practically 0, especially

when n is small and p is large; see Lam and Yao (2012).

Corollary 3.1 in Section 3.3 shows that under some mild conditions, d̂1, . . . , d̂m are

all reasonable estimates of the number of factors d. Since d is common to all regimes,

we choose the one from the strongest state, as the theoretical results show that the

estimated nonzero eigenvalues from a stronger state have a faster convergence rate.

Hence, we use d̂ = d̂k̃ to estimate d, where k̃ = arg max ‖M̂k‖2.

Let ft be the dynamic part of yt, i.e. ft =
∑m

k=1 AkxtI(zt = k). Since the column

space of Ak is identifiable only up to a nonsingular transformation across regimes, we

cannot recover xt directly, but we have natural estimators of Rt and ft,

R̂t =
m∑
k=1

Q̂′k(yt − µ̂k)I(zt = k), f̂t =
m∑
k=1

Q̂kQ̂
′
k(yt − µ̂k)I(zt = k), (3.13)

and the residuals are

ε̂t =
m∑
k=1

(Ip − Q̂kQ̂
′
k)(yt − µ̂k)I(zt = k). (3.14)

Remark 3.2. Our method works under weaker assumptions in which the dependence

between xt and εs when t > s is allowed. If E(ε
(k)
s x′t) = 0 only for t ≤ s, we can still

follow the same procedure to estimate M(Qk), but construct Mk slightly differently.
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Specifically, we can use

Σy,k(l) =
1

n− l

n−l∑
t=1

Cov(yt+l, yt | zt+l = k),

and Mk =
∑l0

l=1 Σy,k(l)Σy,k(l)
′. In this dissertation we assume that {ε(k)t , t ∈ Z} and

{xt, t ∈ Z} for all k = 1, . . . ,m, are independent for simplicity.

Remark 3.3. This estimation procedure has been used for one-regime factor model

with stationary processes in Tao et al. (2011) and Lam et al. (2011), and with non-

stationary processes in Chang et al. (2013). Many numerical results show that the

estimation of the loading space is not sensitive to the choice of l0; see Neil et al. (2010),

Lam et al. (2011), Lam and Yao (2012) and Chang et al. (2013). Although the estima-

tor works with any l0 ≥ 1 both theoretically and numerically, the extra terms in Mk of

(3.9) are very useful when the sample size is small and the variability in the estimation

of the autocovariance matrices is large. Nevertheless, as the autocorrelation is often at

its strongest at small time lags, a relatively small l0 is usually adopted.

3.2.2 Estimation of the Hidden State z Given Loading Spaces and

Other Model Parameters

Although {Bk, k = 1, . . . ,m} are only uniquely identifiable up to orthogonal trans-

formations, the density function of B′ztyt is invariant to such transformations. Based

on this observation, given πk,j , πk, µk, and Bk, k, j = 1, . . . ,m, the state variables

z1, . . . , zn can be estimated by maximizing Gn(z), the logarithm of the probability den-

sity function of {B′ztyt, t = 1, . . . , n}. Specifically, under the assumption that the noise

process is normally distributed,

Gn(z) = log
(
πz1f(B′z1y1)

)
+

n∑
t=2

log
(
πzt−1,ztf(B′ztyt)

)
, (3.15)

where

f(B′ztyt) = − 1√
(2π)p−d|ΣB,zt |

− exp

[
−

(B′zt(yt − µzt))
′Σ−1B,ztB

′
zt(yt − µzt)

2

]
. (3.16)
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Note thatGn(z) is a sum of n functions in the form ofGn(z) = g1(z1)+
∑n

t=2 gt(zt−1, zt),

due to the Markovian structure of z, where

g1(z1) = log
(
πz1f(B′z1y1)

)
, and gt(zt−1, zt) = log

(
πzt−1,ztf(B′ztyt)

)
, t = 2, . . . , n.

Hence Gn(z) can be maximized by the Viterbi algorithm (Viterbi, 1967 and Forney,

1973). The maximizer of the state sequence z1, . . . , zn is given by the following recur-

rence relations:

S1,k = k,

xt,k = arg max
1≤j≤m

[gt(zt−1 = j, zt = k) +Gt−1(St−1,j)] ,

St,k = (St−1,xt,k , k),

where St,k is a t × 1 vector and the maximizer of Gt(z1, . . . , zt−1, zt = k) for the first

t observations that has k as its final state. In each iteration there are m evaluations

gt(·, k) to update Gt(St,k) for k = 1, . . . ,m, and m possible paths {St,1, . . . ,St,m} to be

compared. So the complexity of Viterbi algorithm is O(m2n). The state variable can

be estimated by

ẑ = arg max
1≤k≤m

Gn(Sn,k).

The covariance matrix of B′kyt given zt = k, ΣB,k = B′kΣkBk can be estimated by

Σ̂B,k =
n∑
t=1

B′k(yt − µk)(yt − µk)′BkI(ẑt = k)/[
n∑
t=1

I(ẑt = k)− 1]. (3.17)

Remark 3.4. One would prefer to construct the density of yt given zt with (3.14).

However, since Ip −QkQ
′
k = BkB

′
k, it follows that

(Ip −QkQ
′
k)(yt − µk) ∼ N(0,BkB

′
kΣkBkB

′
k).

This is a p-variate normal distribution degenerated into a (p − d)-dimensional space,
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while

B′k(yt − µk) ∼ N(0,ΣB,k), where ΣB,k = B′kΣkBk,

is a non-degenerated representation of the above distribution restricted on the (p− d)-

dimensional space.

Remark 3.5. There are several advantages to use the density function of {B′ztyt, t =

1, . . . , n}, instead of {yt, t = 1, . . . , n}. First, we do not need to estimate Ak, since we

can only estimate the space it spans. Second, in order to compute the density of yt, we

would need to to assume a specific model for the latent process xt. Although there are

a vast literature in dynamic factor models (Forni et al. 2000; Bai and Ng, 2002; Hallin

and Lǐska, 2007), here we choose to avoid the difficulty.

3.2.3 An Iterative Algorithm

We adopt the distance measure used in Chang et al. (2013). For any p×d1 orthonromal

matrix H1 and p× d2 orthonormal H2,

D(H1,H2) = {1− 1

max {d1, d2}
tr(H1H

′
1H2H

′
2)}1/2. (3.18)

Note that D(H1,H2) ∈ [0, 1], D(H1,H2) = 0 if and only if d1 = d2,M(H1) =M(H2),

and D(H1,H2) = 1 if and only if M(H1) ⊥ M(H2). Now we are ready to state the

algorithm.

Step 1. Begin with some initial values ẑ.

Step 2. Given ẑ, obtain d̂, π̂k, π̂j,k, µ̂k, Q̂k and B̂k based on the methods in

Section 3.1, for j, k = 1, . . . ,m.

Step 3. Given the estimates obtained in Step 2, estimate z by maximizing

Gn(z), using Viterbi algorithm in Section 3.2.

Step 4. Repeat Step 2 and Step 3 until either a maximum number of iterations

is reached, or both of the following two conditions are satisfied.

1

m

m∑
k=1

D(Q̂
(1)
k , Q̂

(2)
k ) < c1, and

∣∣∣Gn(ẑ(1))−Gn(ẑ(2))

Gn(ẑ(1))

∣∣∣ < c2,
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where c1, c2 ∈ (0, 1) are prescribed small constants, and Q̂
(1)
k , Q̂

(2)
k ,

ẑ(1), and ẑ(2) are successive estimates for Qk and z, respectively.

Remark 3.6. Since the two iterative steps do not minimize the same objective function,

the algorithm does not guarantee to reach a fixed point solution given a finite sample.

However, we note that the objectives of the two steps are consistent. In step 2, we try

to extract common factors when estimating the loading spaces, hence try to reduce the

remainder error terms in the factor models. In step 3, maximizing of the density function

is equivalent to minimizing the errors in the factor models for normally distributed

errors. We also note that such issues are common in the estimation procedures of

dynamic factor models, and an iterative algorithm is widely used (Watson and Engle,

1983; Stock and Watson, 2005; Doz et al., 2011).

Remark 3.7. We estimate the state variables instead of the transition probabilities in

Step 3, because finding the maximizer of {πk,j} of density function of {B′ztyt} is much

more computationally expensive than the estimation of z by Viterbi algorithm, due to

the dependence of the state variables. Although the misclassification occurs because of

the nature of hard clustering (Kearns et al. 1998; Hastie et al. 2009), it does not have

too much bad influence on the estimation of the loading spaces, since it often occurs

when the data points lie near the intersection of the loading spaces. The numerical

results show that our algorithm is able to cluster the data by regimes efficiently and

estimate the loading spaces effectively. To obtain consistent estimators of transition

probabilities and avoid misclassification, discarding algorithm can be applied (Chen

1995), in which only the data points that can be ’clearly separated’ by the objective

function, e.g. f(B′ky)/f(B′jy) > c0, are used for estimation. Since a small number

of observations are used, the consistency of the estimators can be achieved with lower

efficiency, as c0 goes to infinity together with the sample size.

3.2.4 Initial Values of z

Our experience shows that the initial values of the state variable z are crucial for the

estimation procedure. Here we provide a method for finding reasonable initial values
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of z. Define

Σy(l) =
1

n− l

n−l∑
t=1

Cov(yt,yt+l) =
1

n− l

n−l∑
t=1

m∑
k=1

πkCov(yt,yt+l | zt = k) =
m∑
k=1

πkΣy,k(l).

As a sum of k rank-d matrices, the matrix Σy(l) should have a rank between 1 and

dm. If the transition probabilities between any two states are all equal, πj,k = 1/m for

j, k = 1, . . . ,m, we have

Σy(l) =
1

m2

m∑
k=1

AkΣx(l)
m∑
j=1

A′j .

Hence M =
∑l0

l=1 Σy(l)Σy(l)
′ is a matrix sandwiched by

∑m
k=1 Ak and

∑m
k=1 A′k with

rank smaller or equal to d. We find the eigenvalues of M and use the ratio estimator

in (3.12) for the initial estimate of d. Specifically, let

Σ̂y(l) =
1

n− l

n−l∑
t=1

(yt − µ̂)(yt+l − µ̂′), µ̂ =
1

n

n∑
t=1

yt, M̂ =

l0∑
l=1

Σ̂y(l)Σ̂y(l)
′.

Let λ̂1, . . . , λ̂p be the eigenvalues of M̂ in descending order. We use d0 = arg min1≤j≤p/2 λ̂j+1/λ̂j

as the initial value of d.

The dynamic part of the observed process at time t lies in the column space of Ak if

zt = k. Therefore, {y1, . . . ,yn} should be located nearby them d-dimensional subspaces

M(A1), . . . ,M(Am). With d0, we perform a principal component analysis on yt to find

the d0m directions, q̂1, . . . , q̂d0m in descending order that account for the most variation

of {y1, . . . ,yn}. We can then construct the m subspaces, S1, . . . ,Sm by dividing the set

{q̂1, . . . , q̂d0m} into m groups that minimizes the squared distance between yt and its

closest subspace, i.e. maximizes the squared projection of yt onto its closest subspace.

Specifically, let st = {s1,t, . . . , sd0m,t, . . . , sp,t} be the principal component scores of yt,

and {K1, . . . ,Km} be a partition of the index set of {1, . . . , d0m}, each Ki contains d0

elements. Define

W (K1, . . . ,Km) =

n∑
t=1

max
1≤i≤m

∑
j∈Ki

s2j,t, (3.19)
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and select the partition {K∗1, . . . ,K∗m} that maximizes W . Note that
∑

j∈Ki(sj,t)
2 is the

squared norm of the projection of yt onto the space Si, where Si =M(qj , j ∈ Ki), and

it is maximized by the index corresponding to the subspace to which yt is the closest,

from {S1, . . . ,Sm}. Hence, the initial values of state variables can be set as

ẑt = arg max
1≤i≤m

∑
j∈K∗i

s2j,t.

Finding the optimal partition is computationally extensive, unless d0m is small.

With large d0m, one can use a procedure similar to K-mean clustering to find a tentative

solution, as the procedure is only for searching a good set of initial values.

Since the directions obtained by principal component analysis are orthogonal to

each other, the constructed subspaces S1, . . . ,Sm are also orthogonal. However, we do

not assume that for M(A1), . . . ,M(Am), so the constructed subspaces S1, . . . ,Sm are

not necessarily good estimates for loading spaces. It follows that the d0m orthogo-

nal directions are often more than needed and there may be states which only a few

observations are assigned to. If it happens, a smaller d0 can be used.

3.3 Theoretical Properties

In this section, we first investigate the convergence rates of the proposed estimator

M(Q̂k) and d̂ as n and p go to infinity, given true state classification z, under the

setting in Section 3.2.1. Second, we introduce a theorem regarding misclassification

under the setting in Section 3.2.2.

Some regularity conditions are needed.

Condition 1. The process xt is α-mixing with mixing coefficients satisfying
∑∞

t=1 α(t)1−2/γ <

∞, for some γ > 2, where

α(t) = sup
i

sup
A∈Fi−∞,B∈F∞i+t

|P (A ∩B)− P (A)P (B)|,

and F ji is the σ-field generated by {xt : i ≤ t ≤ j}.

Condition 2. For any j = 1, ..., d, and t = 1, ..., n, E(|xj,t|2γ) ≤ C, where xj,t is the
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j-th element of xt, C > 0 is a constant and γ is given in Condition 1. For l = 1, . . . , l0,

Σx(l) is of full rank, and ‖Σx(l)‖2 � O(1) � ‖Σx(l)‖min.

Condition 3. Each element of Σk, for k = 1, ...,m, remains bounded as p increases to

infinity.

Condition 4. For each k, k = 1, . . . ,m, there exists a constant δk ∈ [0, 1] such that

‖Ak‖22 � p1−δk � ‖Ak‖2min, as p goes to infinity.

Condition 5. The Markov chain z is irreducible, positive recurrent and aperiodic.

Condition 6. For each k = 1, . . . ,m, define C = {j | δj = min1≤k≤m δk} containing

all the indices of the strongest states, and for each state k there exists an integer lk,

satisfying that lk ≤ l0,
∑

j∈C π
(lk)
k,j Aj is of rank d, and

∥∥∥∑
j∈D

π
(lk)
k,j Aj

∥∥∥2
min
� p1−δmin . (3.20)

Condition 7. For k = 1, . . . ,m, Mk in (3.9) has d distinct positive eigenvalues. For

j 6= k, D(Qj ,Qk) 6= 0, where D(·, ·) is defined in (3.18).

Remark 3.8. The stationarity of the latent process is not required, though we do

require the mixing conditions stated in Condition 1.

Remark 3.9. Mk, the quadratic form of autocovariance matrices of yt depends on

observations from other regimes, including the strongest regime. Hence the most dense

loading matrices influence the estimation of the loading space for each state. Condition

(3.20) requires that at one of the nonzero lags, the impact of the dense loading matrices

do not be cancelled out each other. It is also used to bound ‖Mk‖min.

Remark 3.10. Condition 7 makes Qk uniquely defined and identifiable, where Qk =

(qk,1, . . . ,qk,d), where qk,1, . . . ,qk,d are the d orthonormal eigenvectors of Mk corre-

sponding to the d nonzero eigenvalues λk,1 > . . . , > λk,d.

Theorem 3.1. If Conditions 1-7 hold, with given observed state z and true d, for

k = 1, . . . ,m, pδk/2+δmin/2n−1/2 → 0 as n, p→∞, we have

‖Q̂k −Qk‖2 = Op(p
δk/2+δmin/2n−1/2),
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where δmin = min1≤k≤m δk.

When there is only one state m = 1, a special case of our setting, Lam et al. (2011)

proved that the convergence rate of the estimator of the loading space is Op(p
δn−1/2).

For the regime switching model with m > 1, our results above show that, except for the

strongest states (with δmin), the estimators of loading spaces for all the weaker states

converge faster than pδkn−1/2. In other words, the estimators of the loading spaces

for the strongest states retain the same convergence rate, while these for other states

gain some efficiency from regime switching mechanism. The main reason is that our

approach depends on the autocovariance matrices of yt given zt = k at leads 1, . . . , l0.

It is a linear combination of autocovariance matrices given current state k switching to

all the states. The autocovariance matrices switching to the strongest states have the

leading order and all other terms are of smaller order.

Theorem 3.2. If Conditions 1-7 hold, with observed state z and true d, for k =

1, . . . ,m, pδk/2+δmin/2n−1/2 → 0, and ‖Σk‖2 is bounded, as n, p→∞, we have

p−1/2‖f̂t − ft‖2 = Op(p
δmin/2n−1/2 + p−1/2).

Theorem 3.2 provides the convergence of the extracted factor term, and the rate

does not vary across regimes, free of δk. It shows that by introducing stronger states,

the estimated dynamic part of the observed process shows an overall improvement.

If the distance measure in (3.18) is adopted for the loading space M(Qk), then we

have the following theorem for its estimation error.

Theorem 3.3. If Conditions 1-7 hold, with observed state z and true d, for k =

1, . . . ,m, pδk/2+δmin/2n−1/2 → 0 as n, p→∞, we have

D(Q̂k,Qk) = Op(p
δk/2+δmin/2n−1/2).

Theorem 3.3 shows that the error for estimated loading space is on the same order

as that for the estimated Qk when Qk is uniquely defined as in Remark 3.10.
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Theorem 3.4. If Conditions 1-7 hold, with observed states z, for k = 1, . . . ,m, hn,k =

pδk/2+δmin/2n−1/2 → 0 as n, p→∞ , the eigenvalues {λ̂k,1, . . . , λ̂k,p} of M̂k satisfy

(1) |λ̂k,i − λk,i| = Op(p
2−δk/2−δmin/2n−1/2) for i = 1, ...., d, and

(2) λ̂k,j = Op(p
2n−1) for j = d+ 1, . . . , p.

Corollary 3.1. Under the conditions of Theorem 3.4, we have

λ̂k,j+1/λ̂k,j � 1 for j = 1, . . . , d, and λ̂k,d+1/λ̂k,d = Op(p
δk+δminn−1), for k = 1, . . . ,m.

Theorem 3.4 shows that the estimators for the d nonzero eigenvalues of Mk converge

slower than those for the p− d zero eigenvalues. Corollary 3.1 gives the order of ratio

of the estimated eigenvalues. Hence, it provides partial theoretical support for the

ratio estimator proposed in Section 3.2.1. Because of differences in δk, the stronger

the state k is, the faster convergence rate λ̂k,d+1/λ̂k,d has. Therefore, we choose d̂k̃ as

the estimator of the number of factors using the state k̃ that the maximizing ‖M̂k‖2,

since it is related through ‖M̂k‖2 = Op(p
2−δk−δmin), which is proved by Lemma 3.3 and

Lemma 3.4 in Appendix.

Remark 3.11. The asymptotics of λ̂k,i+1/λ̂k,i with i > d are difficult to obtain, even

when m = 1; see Remark 2 in Lam and Yao (2012). Chang et al. (2013) adjusted the

ratio estimator as follows

d̂ = arg min
1≤j≤p/2

{ λ̂j+1 + CT

λ̂j + CT
}, (3.21)

where Ct = p2−δn−1/2 log n for one-regime model, and proved it is a consistent estimator

for d. However, the adjusted ratio estimator in (3.21) can not be used for data analysis

as δ is unknown. In practice, the ratio estimator in (3.12) is used; see Lam et al. (2011),

Lam and Yao (2012) and Chang et al. (2013).

Next we investigate the performance of the estimator of the state z. To simplify the

investigation, in the following we assume πk,j for k, j = 1, . . . ,m are all equal, hence

estimating zt can be done separately for each t, instead of relying on the Veterbi algo-

rithm. It is also equivalent to pure classification without the Markov chain mechanism.

The setting is not exactly what we assumed in Section 3.2.2, but the results reveal how
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misclassification occurs and its impact on the estimation of the rest of the parameters.

Let

wt,k,j = log[f(B′kyt)]− log[f(B′jyt)] = l(k|yt)− l(j|yt), (3.22)

where

l(k|yt) = log(f(B′kyt))

= −p− d
2

log(2π)− 1

2
log |ΣB,k| −

(B′k(yt − µk))′Σ
−1
B,kB

′
k(yt − µk)

2
. (3.23)

The estimator of zt under equal transition probability assumption can be rewritten as

ẑt = k if wt,k,j > 0 for all j 6= k. Hence misclassification occurs when there exists a j

such that wt,zt,j < 0. Specifically, the probability of misclassification, when zt = k, is

P (ẑt 6= zt = k) = P (min
j 6=k

wt,k,j < 0).

Note that, when zt = k,

l(k|yt) = −p− d
2

log(2π)− 1

2
log |ΣB,k| −

1

2
(B′k(yt − µk))′ΣB,k

−1B′k(yt − µk)

= −p− d
2

log(2π)− 1

2
log |ΣB,k| −

1

2
(ε

(k)
t

′
BkΣB,k

−1B′kε
(k)
t ),

and

l(j|yt) = −p− d
2

log(2π)− 1

2
log |ΣB,j |

−1

2

(
B′j(Akxt + µk − µj + ε

(k)
t )
)′

ΣB,j
−1
(
B′j(Akxt + µk − µj + ε

(k)
t )
)
.
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Hence,

wt,k,j =
1

2
(log |ΣB,j | − log |ΣB,k|) +

1

2
ε
(k)
t

′
(BjΣB,j

−1B′j −BkΣB,k
−1B′k)ε

(k)
t

+
1

2

(
B′jAkxt + B′j(µk − µj)

)′
ΣB,j

−1 (B′jAkxt + B′j(µk − µj)
)

+(B′j(Akxt + µk − µj))′Σ−1B,jB
′
jε

(k)
t

= I1 + I2 + I3 + I4. (3.24)

Here I1 is a given constant, measuring the differences in variation of the two states.

I2 reflects the impact of the noise, after being projected into the space Bk and Bj .

The third term I3 shows the size of the noises needed for misclassification. In addition,

B′jAkxt is the projection of xt to the intersection of M(Bj) and M(Ak). If M(Ak)

and M(Aj) are less common, then B′jAkxt is larger (in magnitude), and the chance

for misclassification is less. Of course, if the difference in the mean µk − µj is larger,

then misclassification probability will be smaller. I4 is the cross term of I2 and I3.

Misclassification of zt may not have large impact on the estimation of the loading

spaces. Small B′jAkxt will lead to misclassifying the observation from state k to state j.

It happens in two situations. For some observations, Akxt are close to the column space

of Aj , which makes B′jAkxt small values. Such observations hence lie close to the space

M(Aj) and do not have large impact in the estimation of M(Aj). Other possibility

is that these misclassified observations have a small signal-to-noise ratio which makes

B′jAkxt small, hence they are less influential for estimation of M(Aj).

From a different angle, we can calculate the expectation and variance of wt,k,j .

Theorem 3.5. If xt is a normally distributed random process, given true Bk, µk, and

ΣB,k, k = 1, . . . ,m, we have

E(wt,k,j) =
1

2
(log |ΣB,j | − log |ΣB,k|) +

1

2
tr ((Σk + Σf,k,t + Uk,j)Wj)−

(p− d)

2
,

(3.25)
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Var(wt,k,j)

=
1

2
‖Σ1/2

k (Wj −Wk)Σ
1/2
k ‖

2
F +

1

2
‖Σ1/2

k A′kWjAkΣ
1/2
k ‖

2
F +

1

2
tr (Σf,k,tWjUk,jWj)

+ tr ((Σf,k,t + Uk,j)WjΣkWj) . (3.26)

where Σf,k,t = Var(Akxt), and Uk,j = (µk − µj)′(µk − µj), Wj = BjΣ
−1
B,jB

′
j.

The mean and variance of ωt,k,j increase with p. As expected, misclassification is

unavoidable. For weak states, as p increases, the accumulated noises tend to overwhelm

the difference in Akxt + µk − µj . Hence classification error may increase with p. On

the other hand, for strong states, signal remains strong and misclassification rate will

be much better than these for weak states.

The theoretical investigation above only helps to reveal the important features of

each step and provides general guidance in implementations.

3.4 Simulations

In this section, we illustrate the performance of the proposed estimators with some nu-

merical experiments, compare their convergence rates for states with different strength,

and explore the interactions among states. The performance of the estimators ofM(Qk)

and d, and the performance of clustering are presented separately.

With two switching regimes m = 2, we consider three models. In Model 1, both

states are strong, with δ1 = δ2 = 0. In Model 2, one of the states is strong and one is

weak, with δ1 = 0, and δ2 = 1. In Model 3, both states are weak, with δ1 = δ2 = 1.

The transition probabilities between the two states are set to 0.5. In the simulation,

all p × d entries in Ak are generated independently from the uniform distribution on

[−p−δk/2, p−δk/2] with strength δk. The mean of observed process µk is a p × 1 vector

with all entries zero, for k = 1, 2. Different values of d, and different structures of the

latent process and noises are used. In all the examples, we use l0 = 1. Estimation error

of M(Q̂k) is defined as D(Q̂k,Qk).
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3.4.1 The Performance of M(Q̂k)

In this experiment d is set to 1 and we estimate the loading spaces using true d. The

factor process xt is from an AR(1) process with AR coefficient 0.9 and N(0, 4) noises.

The noise process {ε(1)t , . . . , ε
(m)
t } are m independent vector white noise processes whose

covariance matrix has 1 on the diagonal and 0.95 as the off-diagonal entries. Set the

pre-specified controls t0, c1, and c2 in the iterative algorithm in Section 3.3 to 50, 0.001

and 0.001 respectively.

We repeat the simulation 100 times with sample size n = 1000. Let p = 20, 40, 80.

Table 3.1 and Figure 3.1 show the results for when z is observed and when z is unob-

served.

Table 3.1: Means of the estimation errors D(Q̂k,Qk)

z observed z unobserved

p = 20 p = 40 p = 80 p = 20 p = 40 p = 80

Model 1 State 1 (δ1 = 0) 0.0159 0.0164 0.0161 0.0438 0.0606 0.1055
State 2 (δ2 = 0) 0.0143 0.0155 0.0169 0.0445 0.0711 0.0958

Model 2 State 1 (δ1 = 0) 0.0203 0.0216 0.0207 0.0225 0.0274 0.0304
State 2 (δ2 = 1) 0.0856 0.1274 0.2131 0.0977 0.1495 0.2689

Model 3 State 1 (δ1 = 1) 0.0796 0.1489 0.4149 0.2424 0.5563 0.6067
State 2 (δ2 = 1) 0.0803 0.1453 0.4226 0.2626 0.5091 0.6614

When the state variable z is observed, by comparing the results of Model 2 to these

of Model 1, we can see that the estimation for the strong state is slightly worse after

a weak state is introduced to the model. However, by comparing the results of Model

2 to these of Model 3, the estimation for the weaker state is much better due to the

existence of a strong state, especially when p is large. It shows that the estimation for

weak states benefits from the stronger states as our theory indicates.

The top panels in Figure 3.1 display the boxplots of estimation errors for different

p when z is observed in each model on the same scale. In addition to what we can see

from Table 3.1, it shows that the estimation variation increases with p and is larger for

the weak states.

When z is unobserved, the estimation errors of the loading spaces for each model

with different p have similar pattern to these in the case when z is known shown in
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Figure 3.1: Boxplots of estimation errors ofM(Q̂k) for p = 20, 40, 80 when z is observed
(top panels), and when z is unobserved (bottom panels), under true d with model
described in Section 3.4.1.

Table 3.1 and the bottom panels in Figure 3.1. The estimation of strong states still

has a good performance in absence of weak states; for weak states, it benefits from the

existence of strong states as well. The estimators are less accurate if the state variable is

unobserved. As p increases, even the strong states suffer from unobserved z. Because of

lack of information on z, it happens that our algorithm is trapped in a local maximum.
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3.4.2 The Clustering Performance

In this experiment we use the settings in Section 3.4.1 for a comparison of the clustering

performance among models with different strength. Results of misclassification rates

and transition probabilities are summarized in Tables 3.2 and 3.3, respectively.

Table 3.2: Means(sd) of misclassification rates of the hidden states

p = 20 p = 40 p = 80

Model 1 0.0334(0.0909) 0.0485(0.1169) 0.1153(0.1418)
Model 2 0.0452(0.0128) 0.0635(0.0609) 0.1525(0.0723)
Model 3 0.2155(0.1905) 0.4439(0.0482) 0.4686(0.0434)

Table 3.2 shows the misclassification rates for each model with different p. It is

seen that misclassification occurs very often when all the states are weak, but occur

sometime in the presence of at least one strong state.

Table 3.3: Means(sd) of estimated transition matrices. The true values are all 0.5.

p = 20 p = 40 p = 80

Model 1 0.5110 0.4890 (0.1008) 0.6435 0.3565 (0.0689) 0.5273 0.4727 (0.1134)
0.5000 0.5000 (0.0877) 0.6133 0.3867 (0.0582) 0.4918 0.5082 (0.1021)

Model 2 0.5322 0.4678 (0.0296) 0.5423 0.4577 (0.0431) 0.4996 0.5004 (0.0558)
0.5219 0.4781 (0.0260) 0.5373 0.4627 (0.0422) 0.4739 0.5261 (0.0601)

Model 3 0.5153 0.4847 (0.2145) 0.5861 0.4139 (0.3114) 0.4240 0.5760(0.3339)
0.4799 0.5201 (0.2201) 0.5200 0.4800 (0.3129) 0.3686 0.6314(0.3388)

Table 3.3 shows the means and standard deviations of the estimated transition

probabilities, where the true transition probabilities are all 0.5. For Model 3, because

of random noises and lack of information, some observations are misclassified to each

state with larger probability comparing to Model 1 and Model 2, since the standard

deviations of estimates of transition probabilities for Model 3 are much larger than

these for Model 1 and Model 2.

3.4.3 The Performance of d̂

In this experiment we set the number of factors to 3 (d = 3) and investigate the

performance of the proposed estimator for d, under true z. Here the latent process xt is

set to be three independent AR(1) processes with N(0, 4) noises and AR coefficients 0.6,
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−0.5 and 0.8, respectively. {ε(1)t , . . . , ε
(m)
t } are m white noise process whose covariance

matrix has 1 on the diagonal and 0.2 as the off-diagonal entries. Let n = 50, 100, 200,

500, 1000, and p = 0.1n, 0.5n, 0.8n. We repeat the simulation 200 times for each (n, p)

setting and the relative frequencies of correct estimates of d are reported in Table 3.4.

Table 3.4: The relative frequency estimates of d̂ = d

n 50 100 200 500 1000

Model 1 p = 0.1n 0.180 0.385 0.725 0.995 1
p = 0.5n 0.380 0.610 0.850 0.995 1
p = 0.8n 0.390 0.585 0.855 0.995 1

Model 2 p = 0.1n 0.200 0.405 0.820 1 1
p = 0.5n 0.365 0.605 0.915 1 1
p = 0.8n 0.380 0.620 0.905 1 1

Model 3 p = 0.1n 0.115 0.125 0.075 0.075 0.275
p = 0.5n 0.055 0.100 0.200 0.065 0
p = 0.8n 0.080 0.080 0.060 0 0

From Table 3.4 we can see that the existence of a strong state, no matter whether

or not there is a weaker state, produces much more accurate estimates for the number

of factors d. As n increases, the estimations all improve in the presence of a strong

state. Regarding the impact of p, it is seen that the estimation of d benefits from

’blessing of dimensionality’ when one or more strong states exist, and performs better

as p increases. However, when all states are extremely weak (δ1 = δ2 = 1), the number

of correct estimation goes to 0 as n increases. The features do not change much with p,

partially because the increase of information in n offsets the increase of noise introduced

as p increases.

3.5 Real Data Analysis

We apply our approach to the daily returns of 123 stocks from January 2, 2002 to July

11, 2008. These stocks were selected among those included in the S&P 500 and traded

every day during the period. The returns were calculated in percentages based on

daily closing prices. This data was analyzed by Lam and Yao (2012) and Chang et al.

(2013). We have the sample size n = 1642 and the dimension of observations p = 123.

We assume that there are two regimes m = 2, and set l0 = 1, t0 = 200, c0 = c1 = 0.001.
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Varying the value of l0 does not change the estimation results significantly.

The proposed iterative procedure yields d̂ = 1. Different from the number of factors

estimated in Lam and Yao (2012), allowing the loading matrix to change across two

regimes reduces the number of factors needed. This only factor accounts for 25.92% of

the total variation of stock returns. The residuals ε̂t are computed with (3.14). The

sample cross-autocorrelations of ε̂t for the first 7 stocks are plotted in Figure 3.2. There

are almost no significant nonzero autocorrelations for ε̂t, showing that after extracting

the latent factor, little serial dependence is left in the data. Our results indicate that

only one factor drives the 123 stocks, but the factor loadings switch between two states.

Ignoring the switching structure as in Lam and Yao (2012), it would appear that there

are two different factors.

Note that even with d = 1, Qk is still not unique due to a trivial replacement of

(Qk,RtI(zt = k)) by (−Qk,−RtI(zt = k)) for either k = 1 or k = 2 or both in (3.7).

According to (3.3) and (3.5), let

Ak = γkQk and RtI(zt = k) = γkxt,

where we could set γk to 1 or −1 when the dimension is fixed. Here we choose γk

which makes the majority of the entries in Qk positive, hence yt is mostly positively

correlated with the corresponding latent factor xt and Rt, since

yt = µk + Akxt + ε
(k)
t = µk + QkRt + ε

(k)
t , when zt = k.

Specifically, let Q̂k and R̂t be the estimate of Qk and Rt without the above sign

consideration. We adjust the sign of Q̂k as follows,

Q̂adj,k =

 −Q̂k, if
∑p

i=1 I(q̂k,i > 0) >
∑p

i=1 I(−q̂k,i > 0),

Q̂k, otherwise,
(3.27)

where q̂k,i is the i-th entry in Q̂k for k = 1, 2. The adjusted Q̂k makes most of its

entries positive. R̂adj,t is obtained according to Q̂adj,1 and Q̂adj,2.
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Figure 3.2: Plots of the sample cross-autocorrelations of ε̂t of the first 7 stocks with lag
0 autocorrelation removed.

Figure 3.3 displays the time series plots of R̂adj,t in the top panel and returns of

the S&P 500 index in the bottom panel. R̂adj,t changes along with the S&P 500 index

in this period, except for a few days around July 22, 2002, and it explains 76.27%

of the total variation in the S&P 500 index. Hence, this factor can be regarded as

a representation of market performance. Because index funds, which aim to replicate

the movements of an index of a financial market, build their investment portfolio with

all the stocks in the index and trade them together, it causes synchronous oscillations
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between the market and the stocks. The popularity of index funds provides a reason

that the market factor accounts for a large percentage of the total variation of stock

returns.

0 500 1000 1500

−
15

0
−

50
0

50

Estimate of  Radj

0 500 1000 1500

−
4

−
2

0
2

4

S&P 500 index

Figure 3.3: Time series plots of R̂adj,t (top panel) and the return series of the S&P
500 index (bottom panel) in the same period. Indicators of the estimated states of the
observations I(ẑt = k) for k = 1, 2, are shown in the rug plots, on the top for State 1
and at the bottom for State 2.

The indicators of the estimated state variable I(ẑt = k), for k = 1, 2, are shown

in the rug plots of both panels in Figure 3.4, State 1 on the top and State 2 at the

bottom. It is obvious that the state variable is strongly correlated to the volatility of

the market. The standard deviation of the S&P 500 index is 1.4642 given ẑt = 1, while

the standard deviation of the S&P 500 index is 0.6649 given ẑt = 2. When the S&P

500 index was volatile in 2002, 2003 and 2007 due to internet bubble, invasion of Iraq,

and subprime crisis respectively, the observations are more likely to belong to State 1;

when the S&P 500 index was stable in 2004-2006, the observations tend to be assigned

to State 2.

For State 1, the factor accounts for 34.89% of the total variation in yt, while for
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State 2, it only accounts for 15.75%. A possible explanation is that investors may prefer

passive management, such as index-tracking funds, to avoid nonsystematic risk when

the market is volatile.

Table 3.5: Estimated transition matrix and stationary probabilities

State 1 State 2 πk
State 1 0.6758 0.3242 0.3782
State 2 0.1969 0.8031 0.6281

The estimated transition probabilities are shown in Table 3.5. During this period,

about two third of the time the system stays in State 2. The transition between the

states are quite often, especially from State 1 to State 2.

3.6 Proofs

Here we use Cs to denote the generic uniformly positive constants. Define

Σx,k,j(l) =
1

n− l

n−l∑
t=1

Cov(xt, xt+lI(zt+l = j) | zt = k) = π
(l)
k,jΣx(l),

Σf,k,j(l) =
1

n− l

n−l∑
t=1

Cov{ft, ft+lI(zt+l = j) | zt = k)},

Σ̂x,k,j(l) =

∑n−l
t=1(xt − x̄k)(xt+l − x̄j)

′I(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

,

Σ̂ε,k,j =

∑n−l
t=1(ε

(k)
t − ε̄k)(ε

(j)
t+l − ε̄j)

′I(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

,

Σ̂f,k,j(l) =

∑n−l
t=1(ft − f̄k)(ft+l − f̄j)

′I(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

,

Σ̂f,ε,k,j(l) =

∑n−l
t=1(ft − f̄k)(ε

(j)
t+l − ε̄j)

′I(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

,

Σ̂ε,f,k,j(l) =

∑n−l
t=1(ε

(k)
t − ε̄k)(ft+l − f̄j)

′I(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

,

where x̄k =
∑n

t=1 xtI(zt = k)/
∑n

t=1 I(zt = k), f̄k =
∑n

t=1 ftI(zt = k)/
∑n

t=1 I(zt = k),

and ε̄k =
∑n

t=1 ε
(k)
t I(zt = k)/

∑n
t=1 I(zt = k), for k = 1, . . . ,m.
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We introduce some lemmas first.

Lemma 3.1. Under Conditions 1-2 and Condition 5, if π
(l)
k,j > 0, we have

‖Σ̂x,k,j(l)−Σx,k,j(l)‖2 = Op(n
−1/2), for k, j = 1, . . . ,m. (3.28)

Proof: Since z is irreducible, positive current and aperiodic under Condition 5, by

Theorem 3.5 in Bradley (2005) and Theorem 17.0.1 in Meyne and Tweedie (2009), it

follows

n∑n−l
t=1 I(zt = k)

− 1

πk
= Op(n

−1/2), (3.29)

∑n−l
t=1 I(zt = k, zt+l = j)∑n−l

t=1 I(zt = k)
− π(l)k,j = Op(n

−1/2). (3.30)

Σ̂x,k,j(l)−Σx,k,j(l)

=

∑n−l
t=1(xt − x̄k)(xt+l − x̄j)

′I(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

−
∑n−l

t=1 π
(l)
k,jE(xtx

′
t+l)

n− l

=

∑n−l
t=1

[
(xt − x̄k)(xt+l − x̄j)

′ − E(xtx
′
t+l)I(zt = k, zt+l = j)

]∑n−l
t=1 I(zt = k)

+
n−l∑
t=1

I(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

−
π
(l)
k,j

n− l

E(xtx
′
t+l)


= I1 + I2,

where

I1 =

∑n−l
t=1(xtx

′
t+l − Extx

′
t+l)I(zt = k, zt+l = j)∑n−l

t=1 I(zt = k)
−
∑n−l

t=1 xtx̄
′
jI(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

−
∑n−l

t=1 x̄kx
′
t+lI(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

+

∑n−l
t=1 x̄kx̄

′
jI(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

= L1 + L2 + L3 + L4.
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For L1, since x and z are independent, for i, q = 1, . . . , d, by (3.29) and Davydov

inequality, under Condition 1, it follows that,

E


[∑n−l

t=1 (xi,txq,t+l − E(xi,txq,t+l)) I(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

]2
≤ C

n2
E


[
n−l∑
t=1

(xi,txq,t+l − E(xi,txq,t+l)) I(zt = k, zt+l = j)

]2
≤ C

n2

∑
|t1−t2|>l

∣∣∣E {[xi,t1xq,t1+l − E(xi,t1xq,t1+l)] · [xi,t2xq,t2+l − E(xi,t2xq,t2+l)]}
∣∣∣

+
C

n2

∑
|t1−t2|≤l

∣∣∣E {[xi,t1,xq,t1+l − E(xi,t1xq,t1+l)] · [xi,t2xq,t2+l − E(xi,t2xq,t2+l)]}
∣∣∣

≤ C

n2

∑
t1 6=t2

α(|t1 − t2|)1−2/γ +
C

n
= O(1/n).

Then E
(
‖L1‖2F

)
= O(1/n). Since ‖L1‖2 ≤ ‖L1‖F ≤

√
d‖L1‖2, it follows that ‖L1‖2 =

Op(n
−1/2).

For L2, under Conditions 1 and 2, by (3.29) and Davydov inequality, we have

E‖x̄j‖22 =

d∑
q=1

E

(∑n
t=1 xq,tI(zt = j)∑n
t=1 I(zt = j)

)2

≤ C

n2

d∑
q=1

 n∑
t=1

E(x2q,t) +

n∑
t1 6=t2

∣∣Cov(xq,t1 , xq,t2)
∣∣ = O(1/n), (3.31)

and

E

∥∥∥∥∥
∑n−l

t=1 xtI(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

∥∥∥∥∥
2

2

=

d∑
q=1

E

(∑n−l
t=1 xq,tI(zt = k, zt+l = j)∑n−l

t=1 I(zt = k)

)2

≤ C

n2

d∑
q=1

n−l∑
t=1

E(x2q,t) +

n−l∑
t1 6=t2

∣∣Cov(xq,t1 , xq,t2)
∣∣ = O(1/n). (3.32)

Hence,

‖L2‖2 ≤ ‖x̄j‖2 ·
∥∥∥∑n−l

t=1 xtI(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

∥∥∥
2

= Op(1/n).

Similarly ‖L3‖2 = Op(1/n) and ‖L4‖2 = Op(1/n
2).
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For i, q = 1, . . . , d, since the second moment of xt is bounded under Condition 2,

together with (3.30),

E


n−l∑
t=1

I(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

−
π
(l)
k,j

n− l

E(xi,txq,t+l)


2

≤ C

n
.

(3.28) follows by combining the above results.

Lemma 3.2. Under Conditions 1-5, if π
(l)
k,j > 0, we have, for k, j = 1, . . . ,m.

‖Σ̂f,k,j(l)−Σf,k,j(l)‖2 = Op(p
1−δk/2−δj/2n−1/2), (3.33)

‖Σ̂f,ε,k,j(l)‖2 = Op(p
1−δk/2n−1/2), (3.34)

‖Σ̂ε,f,k,j(l)‖2 = Op(p
1−δj/2n−1/2). (3.35)

Proof:

Σ̂f,k,j(l)−Σf,k,j(l)

=

∑n−l
t=1 Ak(xt − x̄k)(xt+l − x̄j)

′A′jI(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

− π(l)k,jAkΣx,k,j(l)A
′
j

=
Ak
∑n−l

t=1

(
Σ̂x,k,j(l)−Σx,k,j(l)

)
A′j∑n−l

t=1 I(zt = k)

+AkΣx,k,j(l)A
′
j

(∑n
t=1 I(zt = k, zt+l = j)∑n−l

t=1 I(zt = k)
− π(l)k,j

)
.

Hence, under Conditions 2 and 4, by Lemma 3.1 and (3.30), for k = 1, . . . ,m,

‖Σ̂f,k,j(l)−Σf,k,j(l)‖2 ≤ ‖Ak‖2 · ‖Σ̂x,k,j(l)−Σx,j,k(l)‖2 · ‖Aj‖2

+‖Ak‖2 · ‖Σx,k,j(l)‖2 · ‖Aj‖2 ·O(n−1/2)

= Op(p
1−δk/2−δj/2n−1/2).
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For (3.34), we expand Σ̂f,ε,k,j(l),

Σ̂f,ε,k,j(l) =
Ak
∑m

j=1

∑n−l
t=1(xt − x̄k)(ε

(j)
t+l − ε̄j)

′I(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

=
Ak
∑m

j=1

∑n−l
t=1 xtε

(j)
t+l

′
I(zt = k, zt+l = j)∑n−l

t=1 I(zt = k)

−
Ak
∑m

j=1

∑n−l
t=1 xtε̄

′
jI(zt = k, zt+l = j)∑n−l

t=1 I(zt = k)

−
Ak
∑m

j=1

∑n−l
t=1 x̄kε

(j)
t+l

′
I(zt = k, zt+l = j)∑n−l

t=1 I(zt = k)

+
Ak
∑m

j=1

∑n−l
t=1 x̄kε̄

′
jI(zt = k, zt+l = j)∑n−l

t=1 I(zt = k)

= L1 + L2 + L3 + L4.

For L1, since x, ε(j) and z are independent, j = 1, . . . ,m, under Conditions 1-3, for

i = 1, . . . , d, q = 1, . . . , p,

E

∑n−l
t=1 xi,tε

(j)
q,t+lI(zt = k, zt+l = j)∑n−l
t=1 I(zt = k)

2
≤ C

n2
E

(n−l∑
t=1

xi,tε
(j)
q,t+lI(zt = k, zt+l = j)

)2


≤ C

n2

n−l∑
t=1

E

[
x2i,t

(
ε
(j)
q,t+l

)2]
+

n−l∑
t1 6=t2

∣∣∣Cov
(
xi,t1ε

(j)
q,t1+l

, xi,t2ε
(j)
q,t2+l

) ∣∣∣ = O(1/n).

So E
∥∥∥∑m

j=1

∑n−l
t=1 xtε

(j)
t+l

′
I(zt = k, zt+l = j)/

∑n−l
t=1 I(zt = k)

∥∥∥2
F

= O(pn−1). Under Con-

dition 4, we have

‖L1‖2 ≤ ‖Ak‖2 ·
∥∥∥∑m

j=1

∑n
t=1 xtε

(j)
t+l

′
I(zt = k, zt+l = j)∑n

t=1 I(zt = k)

∥∥∥
F

= O(p1/2−δk/2)Op(p
1/2n−1/2) = Op(p

1−δk/2n−1/2).
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For L2, with (3.29) and independence of z and ε
(j)
t , under Condition 3,

E‖ε̄j‖22 =

p∑
q=1

E

(∑n
t=1 ε

(j)
q,t I(zt = j)∑n

t=1 I(zt = j)

)2

≤
p∑
q=1

C

n2
E

( n∑
t=1

ε
(j)
q,t I(zt = j)

)2


≤
p∑
q=1

C

n2

 n∑
t=1

E
(
ε
(j)
q,t

)2
+
∑
t1 6=t2

∣∣∣E(εq,t1εq,t2)
∣∣∣
 ≤ Cp

n
= O(pn−1),

and with (3.31) and (3.32), under Condition 4, we have ‖L2‖2 = Op(p
1−δk/2n−1),

‖L3‖2 = Op(p
1−δk/2n−1), and ‖L4‖2 = Op(p

1−δk/2n−2). Hence (3.34) follows. Similar

to the proof of (3.34), we can prove (3.35).

Lemma 3.3. Under Conditions 4-7,

λmin(Mk) = O(p2−δk−δmin), for k = 1, . . . ,m. (3.36)

where Mk is defined in (3.9) and λmin(M)k is the minimum eigenvalue of Mk.

Proof: Let σmax(H) and σmin(H) denote the maximum and minimum singular value of

H. Under Condition 6, using the inequality about the singular values in Merikoski and

Kumar (2004) we can prove that σmin(AkΣx(lk)
∑

j∈C π
(lk)
k,j A′j) = O(p1−δk/2−δmin/2).

Using the fact that σmax(AkΣx(lk)
∑

j /∈C π
(lk)
k,j A′j) = o(p1−δk/2−δmin/2) under Conditions

4 and 6, we have

σmin

AkΣx(lk)
m∑
j=1

π
(lk)
k,j A′j


≥ σmin

AkΣx(lk)
∑
j∈C

π
(lk)
k,j A′j

− σmax

AkΣx(lk)
∑
j /∈C

π
(lk)
k,j A′j


= O(p1−δk/2−δmin/2). (3.37)

It follows that

λmin(Mk) ≥ max
1≤l≤l0

σ2min

AkΣx(l)

m∑
j=1

π
(l)
k,jA

′
j

 = O(p2−δk−δmin).
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Lemma 3.4. Under Conditions 1-7,

‖M̂k −Mk‖2 = Op(p
2−δk/2−δmin/2 n−1/2), for k = 1, . . . ,m.

Proof:

‖M̂k −Mk‖2 ≤
l0∑
l=1

(
‖Σ̂y,k(l)−Σy,k(l)‖22 + 2‖Σy,k(l)‖2 · ‖Σ̂y,k(l)−Σy,k(l)‖2

)
.(3.38)

Conditions 5, 6 and 7 indicate that

‖Σy,k(lk)‖2 = Op(p
1−δk/2−δmin/2). (3.39)

When π
(l)
k,j > 0, for any l,

Σ̂y,k(l)

=

∑m
j=1

∑n−l
t=1(yt − µ̂k)(yt+l − µ̂j)′I(zt = k, zt+l = j)∑n−l

t=1 I(zt = k)

=

∑m
j=1

∑n−l
t=1(yt − µk −Akx̄k − ε̄k)(yt+l − µj −Ajx̄j − ε̄j)′I(zt = k, zt+l = j)∑n−l

t=1 I(zt = k)

=

m∑
j=1

(
Σ̂f,k,j(l) + Σ̂ε,k,j(l) + Σ̂f,ε,k,j(l) + Σ̂ε,f,k,j(l)

)
.

By Lemma 3.2 we have

‖Σ̂y,k(lk)−Σy,k(lk)‖2

=

m∑
j=1

(
‖Σ̂f,k,j(lk)−Σf,k,j(lk)‖2 + ‖Σ̂f,ε,k,j(lk)‖2 + ‖Σ̂ε,f,k,j(lk)‖2 + ‖Σ̂ε,k,j(lk)‖2

)
= Op(p

1−δk/2−δmin/2n−1/2 + p1−δk/2n−1/2 + p1−δmin/2n−1/2 +

m∑
k=1

‖Σε,k,j(lk)‖2).(3.40)

Since ε
(k)
t are independent noises, we have ‖Σ̂ε,k,j(lk)‖2 ≤ ‖Σ̂ε,k,j(lk)‖F = Op(pn

−1/2),

which implies from (3.40) that

‖Σ̂y,k(lk)−Σy,k(lk)‖2 = Op(pn
−1/2). (3.41)
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Together with (3.38), (3.39) and (3.41), the lemma follows.

Proof of Theorem 3.1: By Lemmas 3.1-3.4, and Lemma 3 in Lam et al. (2011),

we can easily reach the conclusion of Theorem 1.

Proof of Theorem 3.2: From (3.13), when zt = k,

f̂t − ft = Q̂kR̂t −QkRt = Q̂kQ̂
′
k(yt − µ̂k)−QkRt

= Q̂kQ̂
′
k(QkRt + ε

(k)
t + µk − µ̂k)−QkRt

= (Q̂kQ̂
′
k −QkQ

′
k)QkRt + Q̂k(Q̂k −Qk)

′(ε
(k)
t + µk − µ̂k)

+Q̂kQ
′
k(ε

(k)
t + µk − µ̂k)

= I1 + I2 + I3.

Note that when zt = k, ‖Rt‖2 = ‖Ak‖2 = O(p1/2−δk/2) defined in (3.3), so ‖I1‖2 ≤

2‖Q̂k−Qk‖2‖Rt‖2 = Op(p
1/2−δk/2‖Q̂k−Qk‖2) = Op(p

1/2+δmin/2n−1/2). I2 is dominated

by I3 in probability.

E(‖Q̂kQ
′
kε

(k)
t ‖22) =

d∑
i=1

E[(q′iε
(k)
t )2] ≤ dλmax(Σk) <∞. (3.42)

µ̂k − µk =

∑n
t=1 ytI(zt = k)∑n
t=1 I(zt = k)

− µk =

∑n
t=1(Akxt + ε

(k)
t )I(zt = k)∑n

t=1 I(zt = k)
.

By (3.42), we can easily have

∥∥∑n
t=1(Q̂kQ

′
kε

(k)
t I(zt = k)∑n

t=1 I(zt = k)

∥∥
2

= Op(n
−1/2).

Under Condition 4, ‖Q̂kQ
′
k(µ̂k−µk)‖2 = Op(p

1/2−δk/2n−1/2)+Op(n
−1/2). Hence, with

(3.42), ‖I3‖2 = Op(p
1/2−δk/2n−1/2) +Op(1).

We have p−1/2‖f̂t − ft‖2 = Op(p
δmin/2n−1/2 + p−1/2).

Proof of Theorem 3.3: We assume that Qk is uniquely defined as in Remark 3.10
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under Condition 7. Then

tr
[
Q′k(Ip − Q̂kQ̂

′
k)Qk

]
= tr(Id −Q′kQ̂kQ̂

′
kQk) = d

[
D(M(Q̂k),M(Qk))

]2
. (3.43)

On the other hand,

tr
[
Q′k(Ip − Q̂kQ̂

′
k)Qk

]
− tr

[
Q′k(Ip −QkQ

′
k)Qk

]
= tr

[
Q′k(QkQ

′
k − Q̂kQ̂

′
k)Qk

]
≤ d‖Q′k(QkQ

′
k − Q̂kQ̂

′
k)Qk‖2.

And since the diagonal entries in Q′kQ̂kQ̂
′
kQk are between 0 and 1,

tr
[
Q′k(Ip − Q̂kQ̂

′
k)Qk

]
− tr

[
Q′k(Ip −QkQ

′
k)Qk

]
= tr

[
Q′k(QkQ

′
k − Q̂kQ̂

′
k)Qk

]
≥ ‖Q′k(QkQ

′
k − Q̂kQ̂

′
k)Qk‖2.

Note that tr [Q′k(Ip −QkQ
′
k)Qk] = 0. Hence,

[
D(M(Q̂k),M(Qk))

]2
� ‖Q′k(QkQ

′
k − Q̂kQ̂

′
k)Qk‖2.

Since

Q′k(QkQ
′
k − Q̂kQ̂

′
k)Qk = −Q′k(Qk − Q̂k)(Qk − Q̂k)

′Qk + (Qk − Q̂k)
′(Qk − Q̂k),

which is bounded by 2‖Q̂k −Q‖22, with (3.43) we have

D(Q̂k,Qk) = Op(‖Q̂k −Qk‖2).

By Theorem 3.1, we have proved Theorem 3.3.

Proof of Theorem 3.4: The proof is quite similar to that of Theorem 1 of Lam

and Yao (2012). We denote λk,j and q̂k,j for the j-th largest eigenvalues of M̂k and

its corresponding orthonormal eigenvectors, respectively, for k = 1, . . . ,m. The cor-

responding population values are denoted by λk,j and qk,j for the matrix Mk. Let
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Q̂k = (q̂k,1, . . . , q̂k,d) and Qk = (qk,1, . . . ,qk,d). We have

λk,j = q′k,jMkqk,j , and λ̂k,j = q̂′k,jM̂kq̂k,j , j = 1, . . . , p.

We can decompose λ̂k,j − λk,j by

λ̂k,j − λk,j = q̂′k,jM̂kq̂k,j − q′k,jMkqk,j = I1 + I2 + I3 + I4 + I5,

where

I1 = (q̂k,j − qk,j)
′(M̂k −Mk)q̂k,j , I2 = (q̂k,j − qk,j)

′M(q̂k,j − qk,j),

I3 = (q̂k,j − qk,j)
′Mkqk,j , I4 = q′k,j(M̂k −Mk)q̂k,j , I5 = q′k,jMk(q̂k,j − qk,j).

For j = 1, . . . , d, ‖q̂k,j−qk,j‖2 ≤ ‖Q̂k−Qk‖2 = Op(hn,k), where hn,k = pδk/2+δmin/2n−1/2

by Theorem 3.1, and ‖Mk‖2 ≤
∑l0

l=1 ‖Σy(l)‖2 = Op(p
2−δk−δmin). By Lemma 3.2 and

Lemma 3.4, we have ‖I1‖2 and ‖I2‖2 are of order Op(p
2−δk−δminh2n,k) and ‖I3‖2, ‖I4‖2

and ‖I5‖2 are of order Op(p
2−δk−δminhn,k). So |λ̂k,j − λk,j | = Op(p

2−δk−δminhn,k) =

Op(p
2−δk/2−δmin/2n−1/2).

For j = d+ 1, . . . , p, define,

M̃k =

l0∑
l=1

Σ̂y,k(l)Σy,k(l)
′, B̂k = (q̂k,d+1, . . . , q̂k,p), and Bk = (qk,d+1, . . . ,qk,p).

It can be shown that ‖B̂k − Bk‖2 = Op(hn,k), similar to proof of Theorem 3.1 with

Lemma 3 in Lam et al. (2011). Hence, ‖q̂k,j − qk,j‖2 ≤ ‖B̂k −Bk‖2 = Op(hn,k).

Since λj = 0, for j = d+ 1, . . . , p, consider the decomposition

λ̂j = q̂′k,jM̂kq̂k,j = K1 +K2 +K3,

where

K1 = q̂′k,j(M̂k − M̃k − M̃′
k + Mk)

′q̂k,j , K2 = 2q̂′k,j(M̃k −Mk)(q̂k,j − qk,j),
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K3 = (q̂k,j − qk,j)
′Mk(q̂

′
kj − qk,j).

By Lemma 3.2 and Lemma 3.4,

K1 =

l0∑
l=1

‖(Σ̂y,k(l)−Σy,k(l))q̂k,j‖22 ≤
l0∑
l=1

‖Σ̂y,k(l)−Σy,k(l)‖22 = Op(p
2n−1),

|K2| = Op(‖M̃k −Mk‖2 · ‖q̂k,j − qk,j‖2) = Op(‖M̃k −Mk‖2 · ‖B̂k −Bk‖2)

= Op(p
2n−1),

|K3| = Op(‖B̂k −Bk‖22 · ‖Mk‖2) = Op(p
2−δk−δminh2n) = Op(p

2n−1).

Hence λk,j = Op(p
2n−1).

Proof of Corollary 3.1: The proof is similar to the proof of Corollary 1 of Lam and

Yao (2012).

By Lemma 3.3 and Lemma 3.4, we have

λk,1 = ‖Mk‖2 = O(p2−δk−δmin) and λk,d = O(p2−δk−δmin).

So we have λk,i � p2−δk−δmin , for i = 1, . . . , d. From Theorem 3.4(i), we have |λ̂k,i −

λk,i| = Op(p
2−δk−δminn−1/2), then λ̂k,i = Op(p

2−δk−δmin) for i = 1, . . . , d. It implies that

λ̂k,i+1/λ̂k,i � 1 for i = 1, . . . , d− 1. By Theorem 3.4(ii),

λ̂k,d+1/λ̂k,d = Op(p
2n−1/p2−δk−δmin) = Op(p

δk+δminn−1).

Proof of Theorem 3.5:

wt,k,j =
1

2
(log |ΣB,j | − log |ΣB,k|) +

1

2
ε
(k)
t

′
(BjΣB,j

−1B′j −BkΣB,k
−1B′k)ε

(k)
t

+
1

2

(
B′jAkxt + B′j(µk − µj)

)′
ΣB,j

−1 (B′jAkxt + B′j(µk − µj)
)

+(B′j(Akxt + µk − µj))′Σ−1B,jB
′
jε

(k)
t

= L1 + L2 + L3 + L4. (3.44)
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We have

E(L2) =
1

2
tr
[
Σ

1/2
k

(
BjΣ

−1
B,jB

′
j −BkΣ

−1
B,kB

′
k

)
Σ

1/2
k

]
=

1

2
tr
(
B′jΣkBjΣ

−1
B,j − Ip−d

)
=

1

2
tr(B′jΣkBjΣ

−1
B,j)−

(p− d)

2
,

E (L3) = 1
2tr
(
B′j(Σf,k,t + Uk,j)BjΣ

−1
B,j

)
, and E(L4) = 0, so we obtain (3.25).

To prove (3.26) , we refer to a fact about multivariate normal random vector.

Let v ∼ N(0, Ip), then for a symmetric matrix Σ, Var(v′Σv) = 2‖Σ‖2F . Note that

Cov(L2, L3) = Cov(L2, L4) = Cov(L3, L4) = 0 in (3.24), define Wj = BjΣ
−1
B,jBj , and

we have

Var(wt,k,j) = Var(L2) + Var(L3) + Var(L4)

=
1

2
‖Σ1/2

k (Wj −Wk)Σ
1/2
k ‖

2
F +

1

4
Var

(
x′tA

′
kWjAkxt

)
+

1

2
Var

(
x′tA

′
kWj(µk − µj)

)
+ Var

(
x′tA

′
kWjε

(k)
t

)
+ Var

(
(µk − µj)′Wjε

(k)
t

)
=

1

2
‖Σ1/2

k (Wj −Wk)Σ
1/2
k ‖

2
F +

1

2
‖Σ1/2

k A′kWjAkΣ
1/2
k ‖

2
F

+
1

2
tr (Σf,k,tWjUk,jWj) + tr ((Σf,k,t + Uk,j)WjΣkWj) .
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Chapter 4

Functional Coefficient Seasonal Time Series Models

In this chapter, motivated by an analysis of the monthly number of tourists visiting

Hawaii, we propose a new class of nonparametric seasonal time series models under

the framework of the functional coefficient model. The coefficients change over time

and consist of the trend and seasonal components to characterize seasonality. A local

linear approach is developed to estimate the nonparametric trend and seasonal effect

functions. The proposed methodologies are illustrated by two simulated examples and

the model is applied to characterizing the seasonality of the monthly number of tourists

visiting Hawaii.

4.1 The Model

Denote a seasonal time series as

yt1, . . . , ytd, t = 1, 2, . . . n, (4.1)

where d is the number of seasons within a period and n is the number of periods. We

assume that there exist p other time series {xktj}, k = 1, . . . , p, and j = 1, . . . , d that

are related to the time series ytj , and indexed according to ytj . Those time series can

be the lagged series of ytj (in an AR fashion), or some exogenous variables.

The proposed functional-coefficient seasonal time series model assumes the form as

ytj =

p∑
k=1

[αk(t) + βkj(t)]xktj + etj , (4.2)

where {αk(·)} are the trend functions for the coefficients, and {βjk(·)} are the seasonal
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effect functions in the coefficient functions, satisfying constraints for the identification,

d∑
j=1

βkj(t) = 0, for each 1 ≤ k ≤ p and all t,

and the error term {etj} is stationary and satisfies E(etj |Xtj) = 0, and with Xtj =

(X1tj , . . . , Xptj)
′.

Remark 4.1. There is another way to denote seasonal time series with only one sub-

script as

y1, . . . ym, . . . , yT , m = 1, 2, . . . , T = dn. (4.3)

Both (4.1) and (4.3) are used in this paper exchangeably, identified by the number

of subscripts. Time series denoted by the two different indexed methods satisfies the

formula as ym = ytj , where m = d(t− 1) + j for 1 ≤ t ≤ n and 1 ≤ j ≤ d.

Model (4.2), where coefficients combine of nonlinear trend and seasonal effect chang-

ing over time, is a generalization of the functional-coefficient time series model, a pop-

ular nonlinear time series model in the time series literature (Chen and Tsay 1993a;

Xia and Li 1999a; Cai, Fan, and Yao 2000; Cai and Tiwari 2000), and the varying-

coefficient model (Hastie and Tibshirani 1993, Yang, Park, Xue, and Härdle 2006) for

i.i.d. samples.

This model is also motivated by the standard additive time trend and seasonal

component model as

ytj = Tt + Stj + etj ; (4.4)

see Cleveland, Cleveland, McRae, and Terpenning (1990) and Cai and Chen (2006)

where Tt is the common trend same to different seasons within a period, and Stj is

the seasonal effect, satisfying
∑d

j=1 Stj = 0. A standard parametric model assumes a

parametric function for the common trend Tt, such as linear or polynomial functions.

The seasonal effects are usually assumed to be the same for different periods; that is,

Stj = Sj for j = 1, . . . , d and all t. Note that if p = 1 and x1tj = 1 for all t and j, then

model (4.2) becomes

ytj = α(t) + βj(t) + etj , (4.5)
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where {βj(t)} satisfy the condition
∑d

j=1 βj(t) = 0; see Cai and Chen (2006) for details.

This is the exact same as (4.4). Here, we assume nonparametric forms for both trend

and seasonal component. If we further assume that βj(t) = γjβ(t), then we obtained

the model proposed by Burman and Shumway (1998), where {γj} are seasonal factors.

Hence, the overall seasonal effect changes over periods in accordance with the modu-

lating function β(t). Implicitly, this model assumes that the seasonal effect curves have

the same shape (up to a multiplicative constant) for all seasons.

The AR model with trend and seasonal component is also commonly used in model-

ing seasonal time series (e.g., Hylleberg 1992; Franses 1996, 1998; Ghysels and Osborn

2001),

ytj = Tt + Stj + φytj−1 + etj . (4.6)

Our model allows both AR terms and exogenous variables entering the model in a

linear fashion. The AR coefficients and the coefficients of the exogenous variables are

commonly assumed to be constant over different periods. However, for seasonal time

series models, it is difficult to justify that the relationships between yt and its lag

variables and exogenous variables are the same for different periods. Allowing different

functions for different periods (hence seasonality) has an ability to enhance the model

to adopt the nature of the underlying time series and to capture the seasonality better.

In addition, if p = 1 and xt is the lag d variable of yt, say xt = yt−d, or xtj = y(t−1)j ,

then this model assumes a pure seasonal AR model with d different series, each with

seasonality of 1 as

ytj = (α(t) + βj(t))y(t−1)j + etj , j = 1, . . . , d, (4.7)

where the coefficients change over time, with α(t) being the common trend and βj(t)

being the seasonal effect, special to each season j in the period. Both trend and seasonal

effect functions are nonparametric. An extreme case is that βj(t) = 0 and α(t) = α, a

constant. In this case, equation (4.7) becomes

ym − αym−d = et,
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which is a pure seasonal AR model. Therefore, with certain combinations of the vari-

ables xm and the coefficient functions, the proposed model in (4.2) is flexible enough

to cover many existing seasonal models.

4.2 Estimation Procedure

For technical reasons, we change the time unit in the coefficient functions to st = t/n.

Then, we can express (4.2) in a matrix notation,

Yt = Xt θ(st) + et,

where

Yt =


yt1
...

ytd

 , Xt =



X′t1 X′t1 0 0

... 0
. . . 0

X′t,d−1 0 0 X′t,d−1

X′td −X′td . . . −X′td


,

et =


et1
...

etd

 ,θ(st) =



α(st)

β1(st)

...

βd−1(st)


,

with α(st) = (α1(st) . . . αp(st))
′ and βj(st) = (β1j(st) . . . βpj(st))

′. Again, the error

term {et} is assumed to be stationary with E(et) = 0 and Var(et) = Σe.

For estimating α(·) and {βj(·)}, a local linear method is employed, although a

general local polynomial method is also applicable. Local linear (polynomial) methods

have been widely used in nonparametric regression due to their attractive mathematical

efficiency, bias reduction and adaptation of edge effects (see Fan and Gijbels 1996). We

assume throughout that the trend functions {αk(·)} and the seasonal effect functions

{βkj(·)} have a continuous second derivative. Then, based on the local linear fitting
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scheme of Fan and Gijbels (1996), the locally weighted least squares is given by

n∑
t=1

[Yt −Xt θ0 − (st − s)Xt θ1]′ [Yt −Xt θ0 − (st − s)Xt θ1] Kh(st − s), (4.8)

where Kh(u) = K(u/h)/h, K(·) is a kernel function and h is the bandwidth satisfying

h→ 0 and nh→∞ as n→∞. Let θ̂0 and θ̂1 be the minimizer of (4.8). Then,

 θ̂0

θ̂1

 =

 G0 G1

G1 G2

−1  M0

M1

 , (4.9)

where

Gk =
1

n

n∑
t=1

X ′t Xt (st− s)k Kh(st− s) and Mk =
1

n

n∑
t=1

X ′t Yt (st− s)k Kh(st− s).

Therefore, the local linear estimates of θ(s) and θ′(s) (the first order derivative of θ(s))

are θ̂(s) = θ̂0 and θ̂
′
(s) = θ̂1, respectively.

Remark 4.2. Note that many other nonparametric smoothing methods can be used

here. The locally weighted least square method is just one of the choices. There is a

vast amount of literature in theory and empirical study on the comparison of different

methods (see Fan and Gijbels 1996).

Remark 4.3. The restriction to the locally weighted least square method suggests

that the normality is at least being considered as a baseline. However, when the non-

normality is clearly present, a robust approach would be considered. Cai and Ould-Said

(2003) considered this aspect in nonparametric regression estimation for time series.

Remark 4.4. The bandwidth selection is always one of the most important parts of any

nonparametric procedure. There are several bandwidth selectors in the literature, in-

cluding the leave-one-out cross validation of Härdle and Marron (1985), the generalized

cross-validation of Wahba (1977), the plug-in method of Jones, Marron, and Sheather

(1996), and the empirical bias method of Ruppert (1997), among others. They all can

be used here. A comparison of different procedures can be found in Jones, Marron,
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and Sheather (1996). In this article we use a procedure proposed in Fan, Yao, and Cai

(2003), which combines the generalized cross-validation and the empirical bias method.

Remark 4.5. In the above estimation procedure, one bandwidth is used for all func-

tions. It is possible to use different bandwidths to different seasons by using a more

computational intensive two-step method (see Cai 2002). We can also incorporate the

covariance structure of et in the estimation.

Remark 4.6. Since data are observed in time order as in Burman and Shumway (1998),

we assume that st = t/n for simplicity although the theoretical results developed later

still hold for non-equally spaced design points.

4.3 Simulated Examples

In this section, a Monte Carlo simulation study is conducted to examine the finite

sample performance of the proposed procedures. Throughout this section, we use the

Epanechnikov kernel, K(u) = 0.75 (1− u2) I(|u| ≤ 1) and the bandwidth selector men-

tioned in Remark 4.4. For simulated examples, the performance of the estimators is

evaluated by the mean absolute deviation error (MADE):

Ek = n−10

n0∑
j=1

|α̂k(vj)− αk(vj)| and Ekj = n−10

n0∑
j=1

∣∣∣β̂kj(vj)− βkj(vj)∣∣∣
for αk(·) and βkj(·) , respectively, where k = 1, . . . , p, j = 1, . . . , d, and {vj , j =

1, . . . , n0} are the grid points from (0, 1]. When p = 1, the subscript k can be

omitted. Simulation is repeated 500 times for each model with different sample sizes.

For demonstration purposes, when showing results of a particular simulated series, we

use the series with median total MADE value (sum of all MADE values) equals among

the 500 MADE values. Such a sample is referred to as a typical sample.

Example 4.1. We begin with a simple additive trend and seasonal component model

ytj = α(st) + βj(st) + etj , t = 1, . . . , n, j = 1, . . . , 4,

where st = t/n, α(x) = exp(−0.7 + 3.5x), β1(x) = −3.1x2 + 17.1x4− 28.1x5 + 15.7x6,
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β2(x) = −0.5x2 + 15.7x6 − 15.2x7, β3(x) = −0.2 + 4.8x2 − 7.7x3, and β4(x) =

−β1(x) − β2(x) − β3(x), for 0 < x ≤ 1. Here, the error {em} are generated from the

following AR(1) model:

em = 0.9 em−1 + εm,

and εt is generated from N(0, 0.12).
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Figure 4.1: Time series plot of a typical sample from Example 4.1 with n = 100.
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Figure 4.2: Estimation results for a typical sample from Example 4.1 with n = 100.
The local linear estimator (dashed line) of the trend function {α(·)} and seasonal effect
functions {βj(·)} (solid line).

The sample sizes are n = 50, 100, and 300, respectively. Figure 4.1 gives the

time plot of a typical sample with the sample size n = 100. Figure 4.2 shows the

estimated α(·) and {βj(·)} (dashed lines) from the typical sample, together with their

true values (solid lines), and it can be seen that estimated values are very close to the

true values. The median and standard deviation (in parentheses) of the 500 MADE
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values are summarized in Table 4.1, which confirms that all the MADE values decrease

as n increases, as dictated by the asymptotic theory. Clearly, the proposed modeling

procedure performs fairly well.

Table 4.1: The median and standard deviation of 500 MADE values for Example 4.1

n E E1 E2 E3 E4
50 0.151(0.031) 0.041(0.006) 0.030(0.005) 0.041(0.007) 0.030(0.005)

100 0.132(0.024) 0.026(0.004) 0.021(0.003) 0.026(0.004) 0.021(0.003)

300 0.093(0.014) 0.013(0.002) 0.013(0.002) 0.013(0.002) 0.012(0.002)

Example 4.2. In this example, a seasonal AR model with functional coefficients is

considered.

ytj = (α1(st)+β1j(st))yt,j−1+(α2(st))+β2j(st))yt−1,j+etj , t = 1, . . . , n, j = 1, . . . , 4,

where st = t/n, yt,0 = yt−1,4, α1(x) = 0.5x2 + 0.5x + 0.13, β11(x) = −0.8x2 + 0.5,

β12(x) = 0.2x3+0.8x2−0.4x, β13(x) = 0.7x4−0.1x3−0.15x, α2(x) = 0.17 sin(2π x)−

0.2, β21(x) = −0.5 cos(π x)+0.1, β22(x) = −0.5 sin(0.5π x)+0.3, β23(x) = −0.5 cos(0.5π x),

and βk4(x) = −βk1(x) − βk2(x) − βk3(x), k = 1, 2, for 0 < x ≤ 1. The errors, {etj},

are i.i.d. distributed as N(0, 1). The seasonal AR coefficients at lag 1 are polynomial

functions, and the seasonal AR coefficients at lag 4 are a combination of trigonometric

functions plus some constants.

The sample sizes used are n = 300, 500, and 1000, respectively. For a typical

sample with the sample size n = 300, Figure 4.3 and Figure 4.4 give the time plot of

{yt} and the subseries {ytj} for each season. The seasonal pattern of the time series

is not revealed here. However, the ACF and PACF of the time series (Figure 4.5)

demonstrate a clear indication of seasonality. Figure 4.6 plots the estimated αk(·) and

{βkj(·)} (dashed lines) from a typical sample with n = 300, together with their true

values (solid lines). It is seen that the estimation is reasonable, considering the small

sample size. Note that the main function αk(·) has a much smaller scale than the rest of

the functions. The median and standard deviation (in parentheses) of the 500 MADE

values are summarized in Table 4.2.
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Figure 4.3: Time plot of a typical sample from Example 4.2, with n = 300.
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Figure 4.4: Time plots of subseries ytj for each season of a typical sample from Example
4.2 shown in Figure 4.3.

4.4 An Analysis of the Hawaiian Tourism Data

As a major international tourist site, Hawaii’s economy relies heavily on tourism. For

planning, marketing and pricing purposes, a deep understanding of the dynamics and
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Figure 4.5: ACF and PACF for a typical sample from Example 4.2 shown in Figure
4.3.
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Figure 4.6: Estimation results for a typical sample from Example 2 with n = 300. The
local linear estimator (dashed line) of the trend function {αk(·)} and seasonal effect
functions {βkj(·)} (solid line).

a capability of accurate prediction of the number of tourists visiting Hawaii are very

important to the tourist business and local economy in Hawaii. Due to weather, school

Table 4.2: The median and standard deviation of 500 MADE values for Example 4.2

n E1 E11 E12 E13 E14
300 0.035(0.015) 0.058(0.025) 0.061(0.027) 0.061(0.027) 0.064(0.026)

500 0.028(0.011) 0.045(0.018) 0.049(0.021) 0.052(0.019) 0.051(0.021)

1000 0.021(0.007) 0.034(0.013) 0.038(0.014) 0.039(0.013) 0.038(0.013)

n E2 E21 E22 E23 E24
300 0.053(0.013) 0.058(0.026) 0.059(0.025) 0.054(0.025) 0.059(0.023)

500 0.046(0.012) 0.047(0.019) 0.047(0.020) 0.041(0.017) 0.048(0.018)

1000 0.031(0.010) 0.037(0.013) 0.036(0.014) 0.034(0.013) 0.036(0.013)
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schedule and other factors, numbers of tourists often shows seasonality. Chen and

Fomby (1999) used the stable seasonal pattern model to fit the monthly time series of

number of tourists visiting Hawaii. Here we apply the proposed functional-coefficient

seasonal time series model to analyze an updated version of Hawaiian tourism data

(1970-2012), obtained from the Hawaii Visitors Bureau. Hence n = 43, d = 12 and

T = 516.

For expositional convenience, we re-scale the data by dividing 105. Figure 4.7(a)

presents the monthly observations from January 1970 through December 2012 with the

yearly averages (thick line). It demonstrates that the number of tourists visiting Hawaii

experienced two growing stages. In the first stage, it increased rapidly from 1970 to

1990. In the second stage, the number of tourists still rose steadily from 1991 to 2012

although there were three down turns, which happened in the early 1990s (the economy

recession), September 2001 (the 9/11 tragedy), and 2007-2010 (after the financial crisis),

respectively. Figure 4.7(b) plots the monthly subseries {ytj} for each month over the

years. To see more clearly the seasonality, Figure 4.8 gives the boxplot of deviations

from the yearly average for each month. It shows that the heaviest travelled months in

Hawaii are March, December and the summer.

We first use the nonparametric seasonal model

ytj = α(st) + βj(st) + etj , t = 1, . . . , 43, j = 1, . . . , 12, (4.10)

to fit the series, with the constraint
∑12

j=1 βj(s) = 0 for all s ∈ (0, 1]. Figure 4.9(a)

plots the estimated trend function (solid line) plus/minus twice estimated pointwise

standard errors (dashed lines) with the bias ignored. The yearly average (thick line) is

also included. We can see that the 95% confidence interval covers most of the observed

yearly averages except these in 1990-1992, in 2001 and around 2008 due to the economy

recessions and the terrorist attack. Such sudden changes may cause additional bias in

the estimation.

Figure 4.10 shows the estimated seasonal effect functions, and it can be seen that the

seasonal effect functions of March, December and the summer months are all positive,
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Figure 4.7: Hawaiian tourism data from 1970 to 2012. (a): Time series plot of number
of visitors (solid line) with yearly average (thick line); (b): time series plot of number
of visitors for each month with yearly average (thick line).

and for the rest of them are negative. Also, the range of the seasonal effect functions

increases over time, as the yearly average. Such dynamics are expected. In addition,

economy downturn in 1990 has the largest negative impact on February and March;

the 9/11 tragedy decreases the tourists severely on September, October, November and

December in 2001; and financial crisis after 2007 does not make some very sharp turning

points for seasonal functions, because its influence lasts for a few years (yearly average

reduces greatly in 2008-2010). It is also interesting to see that December is becoming

more and more popular to visit Hawaii in the recent years.
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Figure 4.8: Hawaiian tourism data from 1970 to 2012. Boxplot of deviations from the
yearly average for each month.
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Figure 4.9: Hawaiian tourism data from 1970 to 2012. (a) Estimated trend function
(solid line) plus/minus twice estimated standard errors (dashed lines) with bias ig-
nored and the yearly average (thick line) for model (4.10); (b) estimated trend function
(dashed line) with the yearly average for model (4.11).

To model more accurately the negative impacts of tourism around 1991-1992 and

2008-2010, partially due to the economy recessions in the U.S. around these two periods,

we incorporate some economic indices as exogenous variables. Since U.S. and Japan

are the major regions that contribute about 85% of the tourists to visit Hawaii, we add

the growth rate of annual personal disposable income (PDI) of both countries to the
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Figure 4.10: Hawaiian tourism data from 1970 to 2012. Estimated seasonal functions
(solid line) with the zero line (dashed line) for model (4.10).

model, as in Chen and Fomby (1999). They are denoted by x1 and x2 for U.S. and

Japan, respectively.

Specifically, we consider the following seasonal functional-coefficient model

ytj = [α0(st) + β0j(st)] + [α1(st) + β1j(st)]x1t + [α2(st) + β2j(st)]x2t + etj , (4.11)

t = 1, . . . , 43, j = 1, . . . , 12, subject to the constraints

12∑
j=1

βkj(s) = 0 for each k = 0, 1, 2 and all s ∈ (0, 1].

Comparing to model (4.10), the two extra terms in model (4.11) try to make adjust-

ments using the economic variables. In Figure 4.9(b), the dash line shows the estimated

overall trend function α̂0(st) + α̂1(st)x1t + α̂2(st)x2t against t, calculated with the ob-

served values of x1t and x2t. The solid line shows observed yearly average. It is roughly

the same as that using the simpler model (4.10) before 2005, but the adjustment to the



109

1970 1990 2010

−
10

−
5

0
5

10

Jan

1970 1990 2010

−
10

−
5

0
5

10

Feb

1970 1990 2010

−
10

−
5

0
5

10

Mar

1970 1990 2010

−
10

−
5

0
5

10

Apr

1970 1990 2010

−
10

−
5

0
5

10

May

1970 1990 2010

−
10

−
5

0
5

10

June

1970 1990 2010

−
10

−
5

0
5

10

July

1970 1990 2010

−
10

−
5

0
5

10

Aug

1970 1990 2010

−
10

−
5

0
5

10

Sep

1970 1990 2010

−
10

−
5

0
5

10

Oct

1970 1990 2010

−
10

−
5

0
5

10

Nov

1970 1990 2010

−
10

−
5

0
5

10

Dec

Figure 4.11: Hawaiian tourism data from 1970 to 2012. Estimated seasonal functions
(solid line) with the zero line (dashed line) for model (4.11).

overall annual trend improves significantly the estimation for years after 2005. The es-

timated seasonal functions β̂0j(st)+ β̂1j(st)x1t+ β̂2j(st)x2t, plotted against time, again

calculated with the observed values of x1t and x2t, are depicted in Figure 4.11. The

basic shapes of the seasonal functions remain similar as those shown in Figure 4.10, but

the extra terms using economic indices make the seasonal functions less smooth and

reflect the significant influence of the financial crisis.

In Figure 4.9(b), the dash line shows the estimated overall trend function α̂0(st) +

α̂1(st)x1t+ α̂2(st)x2t against t, calculated with the observed values of x1t and x2t. The

solid line shows observed yearly average. It is roughly the same as that using the simpler

model (4.10) before 2005, but the adjustment to the overall annual trend improves

significantly the estimation for years after 2005. The estimated seasonal functions

β̂0j(st)+β̂1j(st)x1t+β̂2j(st)x2t, plotted against time, again calculated with the observed

values of x1t and x2t, are depicted in Figure 4.11. The basic shapes of the seasonal
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functions remain similar as those shown in Figure 4.10, but the extra terms using

economic indices make the seasonal functions less smooth and reflect the significant

influence of the financial crisis.
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Figure 4.12: Hawaiian tourism data from 1970 to 2012 for model (4.11). Estimated
seasonal trend β0i for i = 1, . . . , 12.

Figure 4.12 shows the estimated seasonal trend, β0i for i = 1, . . . , 12. Comparing

with Figure 4.10, we can see that for most months, the pattern of the trend remains

similar. However, β01 and β08 estimated for model (4.11) have different trend from

these estimated for model (4.10). They increased in 1970s, and decreased after 2000

for model (4.11), while they basically remained at the same level for model (4.10). It

partially indicates that the increase of tourism in January and August are due to the

growth of PDI from 2000 to 2012 based on model (4.11).

Figure 4.13 and Figure 4.14 display the estimated seasonal income effects of U.S.

and Japan, respectively. For most months, the income effect of U.S. was weakened from

1970 to 1985, and then was strengthen until subprime mortgage crisis. For Japan, the
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Figure 4.13: Hawaiian tourism data from 1970 to 2012 for model (4.11). Estimated
seasonal income effect of U.S. for each month, estimated α1 + β1i for i = 1, . . . , 12.

income effect for the first half of the year was rather weak. However, PDI had a very

strong impact on the number of tourists for the second half of the year, especially after

1995, and it had been increasing over the whole period.

We select two sets of estimated functions which have the larger variations among

12 months, and whose estimated seasonal trend functions are different from these for

model (4.10), plotted in Figure 4.15. The estimation results give us some detailed

explanations of the Hawaiian tourism data. Figure 4.15(a) presents α1, the overall

income effect of U.S. over time. It is seen that the income effect decreased in the

period of 1970-1988, then gradually increased until the financial crisis. However, the

additional income effect of U.S. in the month of January β11 decreased in the period

of 1970-1988, and then increased, shown in Figure 4.15(b). The overall income effect

on U.S. in January over time is plotted in Figure 4.15(c). The overall income effect for

Japan α2 increases consistently over time, shown in Figure 4.15(d). The income effect



112

1970 1990 2010

0
20

0
40

0
60

0

α2 + β21

1970 1990 2010

0
20

0
40

0
60

0

α2 + β22

1970 1990 2010

0
20

0
40

0
60

0

α2 + β23

1970 1990 2010

0
20

0
40

0
60

0

α2 + β24

1970 1990 2010

0
20

0
40

0
60

0

α2 + β25

1970 1990 2010

0
20

0
40

0
60

0

α2 + β26

1970 1990 2010

0
20

0
40

0
60

0

α2 + β27

1970 1990 2010

0
20

0
40

0
60

0

α2 + β28

1970 1990 2010

0
20

0
40

0
60

0

α2 + β29

1970 1990 2010

0
20

0
40

0
60

0

α2 + β2,10

1970 1990 2010

0
20

0
40

0
60

0

α2 + β2,11

1970 1990 2010

0
20

0
40

0
60

0

α2 + β2,12

Figure 4.14: Hawaiian tourism data from 1970 to 2012 for model (4.11). Estimated
seasonal income effect of Japan for each month, estimated α2 + β2i for i = 1, . . . , 12.

of the month of August β28 decreased after 1995, and then rose very sharply after 2007

(Figure 4.15(e)). Overall, the income growth becomes a more and more deciding factor

on the number of Japanese tourists visiting Hawaii in August.

We compare model (4.11) with the seasonal ARIMA model by out-sample rolling

forecasting. Specifically, for m0 = T0, . . . , T − `, we use data observed at time m0,

{yj , j = 1, . . . ,m0} to predict number of tourists visiting Hawaii at time m0 + `,

{ym0+`}, where the forecast horizon is ` months. Here we set T0 = 408, and let `

take values from 1 to 48. For computational convenience, when the forecast origin is

m0, where m0 = 12(t0 − 1) + j0, 1 ≤ j0 ≤ 12, data is separated into (t0 − 1) peri-

ods, not by the calendar year, but by the following rule: the months j0 + 1, . . . , 12

in the year h, and the months 1, . . . , j0 in the year h + 1 are defined as the h-th pe-

riod, for each h = 1, . . . , t0 − 1. In other words, data is separated into periods as

{yj0+1, . . . , yj0+12}, . . . , {ym0−11, . . . , ym0}, when the forecast origin is m0.
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Figure 4.15: Hawaiian tourism data from 1970 to 2012 for model (4.11). Top panel
shows the seasonal income effect of U.S. in January: (a) estimated α1; (b) estimated
β11; (c) estimated α1 + β11. Bottom panel shows the seasonal income effect of Japan
in August: (d) estimated α2; (e) estimated β28; (f) estimated α2 + β28.

Figure 4.16 shows the time series plot and sample autocorrelations of residuals {êm}

by model (4.11). There is no significant seasonality but serial dependence in the data

after extracting seasonal trend and income effects. Hence, we specify an AR(1) model

for the residuals

êm = φêm−1 + ηm,

where {ηm} is a white noise process.

When the forecast origin is m0, φ can be estimated by least squares, i.e., φ̂ =

arg min
∑m0

m=2(êm − φêm−1)2, and ym0+` can be predicted as

ŷm0+` = [α̂0(st) + β̂0j(st)] + [α̂1(st) + β̂1j(st)]x1t + [α̂2(st) + β̂2j(st)]x2t + φ̂` êm0 ,(4.12)

where the (m0 + `)-th month is the j-th month in the t-th period, i.e. m0 + ` − j0 =

12(t − 1) + j, 1 ≤ j ≤ 12, {α̂k(st), β̂kj(st), k = 0, 1, 2} are estimates of trend and

seasonal components in j-th month and t-th period based on data observed at time m0

with equation (9), and êm0 is the residual at time m0.
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Figure 4.16: Hawaiian tourism data from 1970 to 2012. (a) Time series plot of residuals
for model (4.11); (b) sample auto-correlations of residuals for model (4.11).

For the seasonal ARIMA model, we select the following model based on AIC to fit

the data

(1− φ1B)(1− φ12B12)(1−B12)ym = am, (4.13)

where B is the back-shift operator, φ1 and φ12 are the AR coefficient and the seasonal

AR coefficient respectively, and {am} is a white noise process.

Figure 4.17 plots the mean squared out-sample prediction error against different

forecast horizon for two models. Although the seasonal ARIMA model predicts the

number of tourists less than 1-year ahead better than our model, it suffers severely

from the increases of forecast horizon. Predictions by our model are more stable, and

outperform when forecast horizon is longer. The functional-coefficient seasonal model

characterizes the long-term trend of the series, and describes the dynamic relationship

between growth of PDI and the number of tourists visiting Hawaii.

4.5 Concluding Remarks

We propose a nonparametric seasonal time series model with functional coefficients.

By allowing the coefficients to change over time, it describes the time-varying impact



115

●
●

●

●
●

●
● ● ● ● ● ●

●
●

●
●

●
● ● ● ● ● ● ●

●
●

●
● ●

● ● ●
● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

20
40

60
80

Forecast horizon

M
S

E

● Seasonal ARIMA model
Functional coefficient model

Figure 4.17: Hawaiian tourism data from 1970 to 2012. The mean squared forecasting
error for model (4.11) and the seasonal ARIMA model against different forecast horizon.

the trend and possible exogenous variables exert on the process. The seasonal compo-

nents in the model help to characterize the periodic behaviors of the time series data.

This chapter focuses on the nonparametric approach, with its flexibility and minimum

subjective assumptions. It should be pointed out that the results from the nonpara-

metric approach can be used as a first step for building a more parsimonious models

which may lead to more accurate and stable estimation and better performance. The

proposed method is implemented to analyze the Hawaii tourism data, and results show

that our model provides easier interpretation and better long term prediction than a

linear seasonal ARIMA models.
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