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ABSTRACT OF THE DISSERTATION

Attribution of snow melt onset and its linkages with variability in the Arctic

cryosphere
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Dissertaton Director:

Dr. David A. Robinson

In the region of Earth most sensitive to climate change, spring snowmelt serves as a
measurable indicator of climate change and plays a strong role in the feedbacks that
amplify Arctic warming. These feedbacks am@sgest over sea ice and the Greenland

ice sheet (GrlS) as these surfaces continue to melt through the summer and potentially
impact one another. The first component of this study characterizes the snow melt season
and attributes melt onset both at a hgrhexic scale and regionally in northern Canada.

Analysis is then expanded to the melt onset date (MOD) on sea ice and the GrlS where



covariability is addressed extending into the summer melt season. MOD and sea ice
concentration (SIC) data are obtainedrirpassive microwave satellite datasets, while
NASAOGs M@ ®&arospective Analysis for Research and Applications (MERRA)
provides energy balance and meteorological fields with primarily meltwater production
used as output from a regional climate mdt&ddéle Atmosphérique Régional, MAR)

for the period 1979 2013.

Across much of the Northern Hemisphenegmy advection plays a larger role in melt
onset in regions where snow begins melting in March and April, while shortwave fluxes
have a greater ihfence where the MOD occurs in May and June. As the MOD arrives
earlier, this implies that there is a potential shift in snow melt drivers toward those
involved in advective processes. Comparable results are found in the regional study,
where melt is contilled more by advective energy where melt onset begins sooner,
compared to higher levels of radiative energy further north. Analysis of the remainder of
the Arctic finds strong covariability among Greenland meltwater production, 500 hPa
geopotential heigkt and SIC, particularly in Baffin Bay, Fram Strait, and Beaufort Sea
early in the summer. Most of this covariance is likely due to simultaneous influence of
the atmospheric circulation anomalies, though there may be a local influence from Baffin
Bay to tke GrIS. Height anomalies from Greenland to Beaufort Sea favor the largest
anomalies in meltwater production, and positive height anomalies in this configuration

have shown the greatest increase in frequency of any pattern in the study period.
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Chapter 1: Introduction

1.1Background

The Arctic is undergoing a period of rapid change brought about by increasing
temperatures (ACIA 2005; Lemke et al. 2007; AMAP 2011). Accelerating warming since
the 19" century has occurred in an abrupt reversal of an Aveitie cooling trend
extending at least 2000 years before present (Kaufman et al. 2009). The enhanced
warming near the surface relative to above the Arctic boundary layer suggests that much
of this warming is related to cryospheric feedbacks due to summer sea ice loss and spring
snow disappearance, resulting in enhanced-sadace warming (Serreze et al. 2009;

Kumar et al. 2010; Chung and Raisanen 2011). Enhanced poleward heat advection likely
plays a lesser role based on weaker trends irtrogbspheric warming (Graversen et al
2008; Screen and Simmonds 2010). It is primarily due to the feedbacks involved-in near
surface warming that temperature increases in the Arctic have been amplified relative to

the rest of the earth. (Serreze and Francis 2006).

Accelerating warming hasaused substantial changes to the Arctic environment.
Changes in these ecosystems are primarily driven by sea ice loss and warmer
temperatures that are shifting species range and habitats northward and higher in
elevation (Moore and Huntington 2008). Wiké frequency has increased and is
predicted to continue to do so as a result of warmer and drier summer conditions, as well
as due to shifts in vegetation type (Flannigan et al. 2088ine of the associated

changes in @getation have strong impacts amface climate feedbacks. It is likely that



continued vegetation changes will generate net positive feedbacks in warming that will

continue to amplify Arctic warming (Pearson et al. 2013).

Accompanying Arctic warming is an increase in storminess andpjis¢on,
particularly over the Arctic Ocean. While precipitation trends are difficult to gauge due to
its high variability and limited observational network, the best estimates of trends from
in situ data indicate a 5% increase in the 102009 periodWalsh et al. 2012) and have
been linked to anthropogenic forcing (Min et al. 2008). In future simulations, global
climate models project an increase of Arctic precipitation under all scenarios (Overland et
al. 2011). Much of this occurs as a result afrdased sea level pressure (SLP), which
has exhibited a significant trend downward regionally and toward stronger cyclones in all
simulations of the Community Climate System Model (CCSM4; Vavrus et al. 2012). The
strong correlation among variables suchessperature, precipitation, SLP, cloud cover,
and sea ice concentration suggests that their close coupling represents a fingerprint of

Arctic climate change.

At its winter maximum, snow covers nearly half of northern hemisphere's land
surface from 45 x@ km? in January to just 2 x £&m? in August (Lemke et al. 2007)
(Fig. 1). Its large seasonal variability and distinctive physical properties make snow cover
an i mportant component of the cryosphere
the sprig snow melt season is an important element of hydrologic and ecological
systems, and serves as a reservoir when it melts in the spring (Nijssen et al. 2001; Yang
et al. 2003; Barnett et al. 2005). In addition, variations in snow cover extent have been

shown to have a significant effect on surface energy and mass exchanges over Arctic land



(Serreze et al. 2000; Serreze et al. 2003; Yang et al. 2003). Finally, its variations serve as
a control of climate changes over its coverage area, influencing atmospiretigons

regionally (Groisman et al. 1994, Frei and Robinson 1999, Robinson and Frei 2000).

Snow

Cover

Snow
Free

Sea lce
(>15%)

Fig. 1) 1966 2010average snow extent in January and August. Figure modified from
Armstrong and Brodzik, NSIDC.

The largest and most consistent change in snow cover is its earlier spring
disappearancds the Arctic warms, terrestrial spring snow melt has occurred an average
of two to four weeks earlier than et did
al. 2009, Takala et al. 2009, Wang et al. 20N®ythern Hemisphere snow cover across
the entire spring season has shown similar earlier melt trends responding to warmer
temperatures and changes in atmospheric circulation (Dye 2002; Brown 2000; ®ery an
Brown 2007), with less pronounced trends over North America than Eurasia (Dyer and
Mote 2006; Brown and Robinson 2011; Brown et al. 2010, Derksen and Brown 2012)
which is also consistent with earlier snow melt onset (Wang et al. ZDH&)nost

importantvariables controlling snow melt are radiative fluxes, energy advection,



turbulent heat fluxes, and the temperature departures that synthesize these (Groisman et
al. 1994; Zhang et al. 1997; Aizen et al. 2000; Ohmura 2001). But it is unclear whether
warmertemperatures primarily drive increased melt, or whether warmer temperatures are
a consequence of the earlier melt. It is also uncertain what causes these temperature
departures, and temperature departures are not always responsible for earlier melt.
Therdore, understanding drivers of snow melt is critical for assessing current trends in

snow cover and predicting future responses to Arctic and global change.

Elsewhere in the Arctic, the Greenland Ice Sheet (GrlS) mass balance is
experiencing an annualtess with accelerating negative trends being driven by
increased surface melt (Mote 2007; Fettweis et al. 2011). This melt extent has also
increased in coverage recently, reaching further into the accumulation zone as major
warming events have become m@ommon (Mernild et al. 2011; Hall et al. 2013). Melt
from the GrlIS has contributed about 5 mm to sea level rise in the most recent decade (van
den Broeke et al. 2009) and is predicted to be the dominant contributor to sea level rise
along with Antarcticadby the end of the century (Rignot et al. 2011). Containing about
2.85 x 16 km® of ice, Greenland's importance is primarily its contribution to sea level
rise, though it has also served as a sensitive indicator of broader global climate change.
The ability to better attribute variability in surface melt would improve surface mass
balance models and ultimately lead to improved understanding of this component of the

Arctic climate system.

Concurrent with GrlS mass loss, Arctic sea ice is declining in cgeareall

seasons, and has also exhibited accelerating losses recently (Stroeve et al. 2012; Cavalieri



and Parkinson 2012). The summer-ficee season is now up to three months longer

where ice loss has been greatest (Stammerjohn et al. 2012), with dr¢apaup

occurring later primarily because the warmer ocean requires longer to cool (Laxon et al.
2003). Ice thickness has also been decreasing asymaitice melts and is replaced by
young ice vulnerable to summer melt. Sea ice ranges from its peakroi4 million

km? in March to under 5 million kfin September (Fig. 1.2), with the greatest variability
and change in the marginal ice zone. Simulations of future sea ice extent indicate greater
losses are expected in summer than winter, likely evglwvito an icefree Arctic in
September within the next few decades (Wang and Overland 2010; Overland and Wang
2013). Such ice losses will have even greater impacts on Arctic meteorology, hydrology,
and ecology, most notably through changes in atmosphemadity, cloud cover,

precipitation, and ocean temperature and salinity.

These important components of thectic cryosphere have therefore become a
leading indicator of climate change globally, and the future evolution of the climate
system depends onelin interaction with the atmosphere, ocean, and each other.
Developing a better understanding of these interactions requires a comprehensive,
processhased approach that incorporates a large part of this system. This research project
takes this approach tdentify these physical processes and develop linkages among the

components of the climate system to address these research questions.



Fig. 1.2) 19792010 average March and September Arctic sea ice concentration. Figure

modified from NSIDC website.

1.2 Data and Methodological Considerations

The melt onset date (MOD) is the focus of this research for multiple reasons.
First, it is important in the climate system due to its ability to initiate feedbacks primarily
by immediately reducing the surface albe8econd, it is easier to detect than some other
comparable measures of Arctic change. The change from ice to liquid in the surface and
nearsurface of the snowpack can be detected relatively easily by passive microwave
sensors, with a record extendingl®79. Snow cover disappearance, a comparable
measure of snowcover changes over land, is more difficult to measure and somewhat

arbitrary to define due to uneven melting patterns and difficulty of observation beneath



the forest and shrub canopy in many paftthe world. The ability to accurately detect
the MOD facilitates easier analysis of its changes over more than three decades, and
allows for an analysis of its effects on subsequent climate processes. Finally, a
comprehensive energy balance approactdetself well to attributing snow melt onset
due to the abrupt changes in the energy balance terms after this date.

This work focuses on snow melt onset, its trends and attribution, and its
relationship with other components of the climate systemstbpe and nature of these
guestions necessitates a comprehensive analysis that allows for easy comparison of
multiple scales of data over a long time period, with the understandinigp¢hat
components and processes of the Arctic climate system are oftexf paighly related
system of cause and effe€nsequently, data used here are primarily atmospheric
reanalysis, regional climate model output, and remote sensing observations at a spatial
and temporal resolution high enough to resolve important soalé variability, but
small enough to remain manageable in analygisiressing these questions that involve
multiple fields of large and higimensional datasets is best suited for data mining and
statistical analyses. These methods include singulae ¥®composition (SVD),
principal component analysis (PCA), self organizing maps (SOM), simple and partial
correlations, trend analysis, composites of the atmospheric geopotential height field, and
inter-seasonal and extreme year analysis. Inputs insetaralyses are comprised of a
comprehensive list of atmospheric and hydrologic variables chosen based on their ability

to provide multiple lines of evidence to support each of the conclusions.



1.3 Dissertation Organization

A nearhemispheric overviewof terrestrial snow melt onset is first done to
attribute earlier trends and variability in the MOD across much of northern hemisphere
land using a comprehensive set of energy balance terms ranging from surface
temperature, atmospheric energy advectiod, @daud fraction. This largecale analysis
of terrestrial snow melt uses data from the satellite era,-2019, which also allows
trend analysis in this date and its energy balance to be undertaken. Much of the analysis
is broken down in scale into regi® to facilitate analysis and compare easily among
locations with different physical characteristics. An attribution analysis is further
performed using principal component regression, correlations between component
loadings and mean surface atmospheriesgpure, and a more detailed analysis of the
influence of cloud cover and energy advection on the MOD.

Next, analysis focuses on part of northern Canada west of Hudson Bay. This
study region was chosen for its relatively flat and homogeneous land calés date
average MODA range of neasurface energy and atmospheric variables in northern
Canada are analyzed at the beginning of the melt season. Emphasis is placed on the date
of melt onset in three distinct sub regions to isolate the primary regldfeakences. This
is followed by a comparison of energy balance terms to evaluate the importance of each
term relative to each other, and how they differ regionally. Attribution of melt is
examined primarily with analysis of extreme early and late meltsyesynoptic pattern
composites, and separation of the contribution between radiative and synoptic influences

on the MOD using variable thresholds.

Finally, Chapter 4 shifts analysis of melt onset beyond terrestrial sndw to t



remainder of the Arctiancluding the onset of snow melt on sea ice and on the Greenland
ice sheet. This focuses less on attribution than potential linkages among these two fields
as well as the atmospheric circulation during the spring and summer months. This is
because the MODver sea ice and the GrlS is found to be less important to these systems
than the subsequent summer melt season and their interactions. Dtifpesndf

statistical methods that facilitate analysis of multiple covarying spatigporal datasets

are emplged for this purpose, identifying how and where these relationships appear most
strongly. The analysis also explores the important question of to what extent sea ice
variability and loss near Greenland can influence surface melt on the ice sheet and

therebre the ice sheet surface mass balance.
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Chapter 2: Controls on Spatial and Temporal Variability in
Northern Hemisphere Terrestrial Snow Melt Timing, 1979
2012

2.1 Introduction

The Arctic climate system has undergone rapid changes in the fatm@@f*
centuries l(emkeet al.2007). Increased global temperatures are associated with
accelerating losses in sea ice, glacial mass balance, permafrost, and snow cover extent
and duration$erreze et ak009;Liston and Hiemstr2011;Camill 2005;Comiso et al.
2008;Johannesseet al. 2004, Post et al. 200Amplified warming in the Arctic
relative to lower latitudes has occurred primarily as a result of feedbacks in the
cryosphere, particularly the reduction in albedo associated with spring snow loss (Serreze
and Francis 208 Dery and Brown 2007). This amplified warming also potentially
influences midlatitude weather patterns (Francis and Vavrus 2012; Tang et al. 2014).
Snow cover is a major component of the cry
playing a central rolen some of these feedbacks. Howewdaspite the importance of
terrestrialsnow cover, spatiotemporal variability springsnow melt drivers is poorly

understood

As the Arctic warms, terrestrial spring snow melt (particularly snow
disappearance) has oced an average of two to four weeks earlier than it did in the late
19706s (Foster et al. 2008; Tedesco et al.
although attributing these changes has been a challenge (Rupp et al. 2013). June snow

cover extenhas declined the most rapidly during this period, faster than the trend in
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September sea ice loss (Derksen and Brown 2012) and by nearly 50% since 1967 (Brown
et al. 2010). Northern Hemisphere snow cover across the entire spring season has shown
similar ealier melt trends responding to warmer temperatures and changes in

atmospheric circulation (Dye 2002; Brown 2000; Dery and Brown 2007; Wang et al.
2013), with less pronounced trends over North America than Eurasia (Dyer and Mote
2006; Brown and Robinson 20; Wang et al. 203%e et al. 201} The regional and

monthly differences in these trends suggest that melt drivers may exhibit considerable

variability, requiring attribution that adequately resolves these differences.

It is well understood that thmost important variables controlling snow melt are
radiative fluxes, energy advection, turbulent heat fluxes, and the temperature departures
that synthesize these (Groisman et al. 1994; Zhang et al. 1997; Aizen et al. 2000; Ohmura
2001;Kapsch et al. 2013lioduszewski et al. 2014). Furthermore, the time period in
which snow can begin melting is generally controlled by insolation, whereasimigal
variation in this date can mostly be attributed to variability in downwelling longwave
(LW) radiation, whit is largely a function of cloud cover variations and heat and
moisture transport changing the mean atmospheric thickness (Zhang et acediai
and Devasthale 201Kapsch et al. 2013; Kapsch et al. 2DIRegionally, radiative
fluxes have been fourtd play a larger role in melt energy at high latitudes, with
advective energy and resultant sensible heat fluxes contributing more to melt at lower
latitudes and earlier in the season (Ohmura 2001; Leathers and Robinson 1997; Zhang et
al. 1996, 1997Semmas et al. 2018 Turbulent fluxes can be important in the lower
latitudes by enhancing or counteracting radiative fluxes (Male and Granger 1981), but

have not been found to be significant drivers of snow melt on a large scale (Liston and
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Heimstra 2011; Stet al. 2013).

Synoptic conditions that generate the patterns that control energy advection have
been studied on a regional and hemispheric scale (Aizen et al. 2000; Bamzai 2003;
Vicente-Serrano et al. 2006; Ueda et al. 2003; Tedesco et al. 2009; $Ht@tH Shi et
al. 2013 Ye et al. 201p There has been some success correlating winter snow conditions
and subsequent melt season timing with teleconnections such as the Arctic Oscillation
and Pacific North American pattern, with up to 50% of the vagan these conditions
explained in some regions (Tedesco et al. 2009; Bamzai 2003; Brown and Goodison
1996). Spring snow conditions also correlate with geopotential heights and modes of
atmospheric circulation (Vicent8errano et al. 2006; Stone et &02; Bao et al. 2011),
but correlation strengths again depend on the region as well as methodological
considerations such as time lags and spatial and temporal averaging. For example, using
monthly averages not only removes some of the signal, but ineeduoixed
environmental conditionBy incorporating both snowwovered (melting and frozen) and

snowfree surfaces into the analysis, particularly one that covers many melt seasons.

A detailed analysis of energy balance terms is another method in undergtandi
the snow melt process. While synoptic conditions generally control these terms,
atmospheric teleconnections are only a metric for certain modes of regional circulation,
which are then manifested through the surface energy balance- &mdafiointscale
studies of snow melt attribution often have the advantage of utilizing energy balance data
at a high temporal resolution in detailed analysis (e.g. Sicart et al. 2006; Stone et al. 2002;

Pomeroy et al. 2003; Marsh et al. 2010; Gleason et al. 2013), bbeddifficult to
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generalize beyond the unique geography of the study location and are often limited to one
melt season. Larger scale energy balance studies have had some success attributing spring
snow melt while operating within a different set of coasits. lijima et al. (2007)

concluded that the advection of heat and moisture played the greatest role in eastern
Siberian snow ablation, while Ueda et al. (2003) found that early snow melt years on the

East European Plain are associated with anomaloueletwarm air advection.

Here, we use atmospheric reanalysis data to assess trends in the melt onset date
(MOD) and its drivers, and to attribute MOD variability in distinctive regions. Regions of
homogeneous snow melt are identified using principaipmnent analysis (PCA) and
much of the analysis proceeds using these regions. Thirty four year trends in MOD and
melt forcing variables are obtained using the Mann Kendall trend test and Sen's slope to
assess regional MOD and its drivers. An attributioalysis is further performed using
principal component regression, correlations between component loadings and mean
surface atmospheric pressure, and a more detailed analysis of the influence of cloud cover
and energy advection on MOMaintaining the focusn the surface energy balance
allows for a unique and improved understanding of what type of forcing is necessary to
initiate the snow melt season, while combining these raadtled approaches over a
relatively long time perioghlaces results in the cantt of the observed hemispheric

changes in snow melt onset

2.2 Study Area

The study area includes all land between 55° N and 75° N, hereafter Northern

Hemisphere. The study area is divided into two regions for display purplosddorth
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Eurasian regiorsidenoted E and is bounded by &) 180 E, while the North

American region is denoted N and bounded by’Wa 60° W. Snow cover

characteristics across this large area tend to be almost exclusively tundra and taiga as
defined by Sturm et al. (1995).lAdf the Arctic coast, particularly Canada north and west
of Hudson Bay, is characterized by bare or shrubby tundra, which transitions into
generally taiga of varying canopy height and density in the remainder of this area (e.g.
Bicheron et al. 2008). Tharea is further divided into subregions of homogeneous snow

melt onset for analysis, the methodology of which is described in section 2.3 (Fig. 2.1).

2.3 MERRA Data

Nearsurface energy balance and atmospheric variables, hereafter forcing
variables, wer@btained from the National Aeronautics and Space Administration
Modern Era Retrospectiv&nalysis for Research and Applications (MERRA) products
(Bosilovich et al. 2011; Cullather and Bosilovich 2011, 2012; Rienecker et al. 2011).
MERRA is run on a 1/2° t#ude by 2/3° longitude global grid with 72 hybrsigma
vertical levels to produce analyses dt thtervals covering the modern satellite era from
1979 to present. Data were obtained for ad&y period from March 1 June 30
capturing the melt seasmom 19797 2012. The earliest mean MOD is in rlate
March, so there are a few grid cells during the earliest melt years when the MOD is

earlier, but the effect of this on the analysis is insignificant.

Different MERRA variables were used for differemtalyses depending on what
was most appropriate, and include: Net and incoming shortwave (SW) and longwave

(LW) radiation, LW and SW cloud radiative effect (CREensible heat fluxes (positive
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fluxes moving from the snow surface to the atmosphere), 2lynrdaan and maximum
temperature, diurnal temperature range, 850 hPa temperature and specific humidity, and
1000500 hPa thicknesselsnergy convergence is also included, and is defined in terms

of the remaining energy balance terms as

- DAL Rtop+ Fsfc- %

where Ry, is the downward radiative flux at the top of the atmosphergs fhe net
surface energy flux (positive upwards), angdig\the total energy in the atmospheric
column. Energy convergence is obtained using a combinatiore&RA moist static
energy fields following Cullather and Bosilovich (2012, Appendix3hould be noted
that there is redundancy in EC, which is primarily the convergence of moist static energy
into the atmospheric column, and as such includes water gagas a strong mechanism
for influencing downwelling LW radiation. EC was chosen over other alternatives such
as sensible heat advection eramd vcomponent transport based on ease of computation
and to apply a comprehensive analysis of all the compsméthis term, even with
redundancy. This type of integrative approach is more aligned with this type of large
scale analysis, whereas it would be important for a case study to resolve EC into its
components moreso than done here.

All of thesevariablesvere aggregated from hourly to dailyptigh daily
temperatures were derived from hourly 2 m temperature data. Statistical significance of
trends at U = 0.05 in forcing variabl es

using a ManfKendall trend test (Mann 1945, Kendall 1975), withdksociated Sen's

Slope applied to the data to obtain a change over tye&4period (Helsel and Hirsch

a



20

2002)

MERRA has been evaluated extensively since its release (Cullather and
Bosilovich 2012; Reichle et al. 2011; Robertson et al. 2011; Kennedy2€X14l, Zib et
al. 2012), but is subject to many of the limitations of other reanalysis syBecause
most of the data assimilated into MERRA are from remote sensing products, calibration
issues across different platforms in the last 35 years potemtilhgluce some bias into
the outputs. These tend to be strongest over lower latitudes and over the ocean
(Bosilovich et al. 2011; Robertson et al. 20Mijh the greatest influence in the Arctic
likely being negative biases in water vapor and downwardadfiation(Bosilovich et al.
2011; Kennedy et al. 2011). However, many of MERRA's energy balance and advective
terms used in this study have demonstrated some of the lowest biases among reanalysis
products in comparison and validation studies (CullathdrBosilovich 2011; Zib et al.

2012; Lindsay et al. 2014).

2.4 Melt Onset Data

The annual melt onset date (MOD) data was obtained from Wang et al (2013;
updated to 2012). Here, we briefly introduce the satellite data and the melt detection
algorithm. Sallite-borne microwave sensors are effective tools for examining changes in
snow melt dynamics over the Arctic due to their high sensitivity to liquid water in snow
and the general absence of cloud cover issues faced in visible imagery analy§ie(e.g.
and Paren 1975, Zwally and Gloersen 19R®elt onset was determined using an
algorithm based on temporal variations in the differences of the brightness temperature

(Tb) between 19 GHz and 37 Gizrtical polarization) from passive microwave
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satellite déa (Wang et al. 2013). A continuous time series of daily Tb was obtained from
the Scanning Multichannel Microwave Radiometer (SMMR, 19887), SSM/I (1987

to 2008), and th&pecial Sensor Microwave Imager/Sounder (SSMIS, ZTIP)

mapped to the 25 km EASGrid available at the National Snow and Ice Data Center in
Boulder, Colorado (Armstrong et al. 1994; Knowles et al. 2002). Sensor cross calibration
was performed by applying adjustment coefficients derived in previous studies (Abdalati
et al. 1995; Jezedt al. 1993; Stroeve et al. 1998). Since our melt detection algorithm
only uses the relative change in the temporal variations in Tb, slight offsets in Tbs
between sensors should not affect algorithm performance. Nevertheless, the differences
in the SMMRand SSM/I(S) sensors may still introduce some uncertainties in the long
term trends of MOD, andhanges in sensor calibration could potentially have caused an
apparent but not real change in MOA% explained in Tedesco et al. (2009), this
uncertainty canot be quantifiedbut these data were calibrated as well as possible by
Wang et al. (2013)'he gaps in the SMMR data (due to its narrower swath and
availability of every other day) and SSM/I(S) data are filled by linear interpolation from

adjacent days.

The melt detection algorithm is capable of distinguishing early periodic snow melt
onset from the main seasonal melt onset (Wang et al. 2008; 2018ple melt events
were determinettased on temporal variations in the differences of the brightness
temperature between 19 GHz and 37 GHIbD =19 v- 37 v) from the passive
microwave satellite measurements. The MOD was detected if the difference in daily TbD
and the previous-8ay average (M) was greater than a threshold (TH1=0.35 x M) for

four or more corecutive days. An iterative approach was used for melt end date (MED)



22

detection: melt end was detected as the first day when daily TbD was less than a
threshold (TH2=mean ThD in July + 7K) for at least 28 continuous days. If these
conditions were not met atgiven grid cell, the number of days was reduced from 28 to

21, and then to 14 if necessary. Melt duration was the number of days between MOD and
MED for each melt event, with the main melt event identified as the event with the
longest melt duration. Me details on the determination of the melt detection thresholds

can be found in Wang et al. (2013).

The melt detection algorithm was evaluated using observations at weather stations
across the paArctic (Wang et al., 2008; 2013). The results showedtti@primary
MOD was associated with the early stage of the final ablation of the snowpack when the
snowpack was wet but still fully covering the ground. The detected MODs corresponded
to a clear shift in the statistical distribution of mean daily air emafres from largely
below freezing to above freezingince melt characteristics and melt season timing over
permanent snow and ice are different from seasonal snow cover over land, a land ice
mask was used to mask out those areas in our analysis (Bt@krl1998)Due to the
uncertainty of microwave measurements in complex alpine terrains (e.g. Tong et al.
2010), the performance of the melt detection algorithm in mountainous areas may have a

larger uncertainty and needs to be tested further.

For meltattribution analysis, this MOD dataset is regridded to the MERRA model
grid using a patch recovery interpolation method (Zienkiewicz and Zhu 1992). This
interpolation method is a type of finite element method that operates by determining

(recovering) thalerivatives of the finite elements at each node of the generated data
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mesh.Though computationally more expensive than more common piecewise
polynomial interpolation methods, the fAsup
allows for less resulting integation error because the solution error converges faster

than expected based on the maximum error in the domain of the boundary value problem.

2.5 Principal Component Analysis of Variability in the Date of Melt

Onset

Spatial clusters with similar MOD we identified withPrincipal Component
Analysis (PCA) using analysis in what is referred to -asdfle(Richman 1986)which is
used tadentify spatial clusters in time series. Here, PCA-im&le was used on the
standardized and meaentered melt onseietd to isolate regions of homogeneous
variance in MODThe principal components of PCA are eigenvectors, which are the
linear combinations of the original variables but weighted by their contribution to
explaining the variance in each dimension. Thesepom@nts were then linearly
transformed, or rotated, using the varimax method (Kaiser 1958), implemented using
MATLABGs oOrotatefactorsd function. This 1is
PCA because rotated components are then less dalepenént and more localized in

space, which helps to draw out physically meaningful clusters (Richman 1986).

To identify regions with similar MOD, each of the resulting 34 components was
correlated with the melt onset anomaly field. In 16 of the 18 first coets, one region
of uniform correlation coefficients with% 0.2 could be identified (Fig. 2.1). For this
function of PCA, the strength of the correlation is not nearly as important as the spatial

orientation of correlation coefficients. Componentd4d 84 explain less than 20% of the
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variance in the melt anomaly field as the components begin to degenerate into primarily
statistical noise (i.e. are not physically meaningful; Hwang and Nettleton 2003). Not all
northern hemisphere land is incorporatdd e subregion due to the nature of PCA, but

we sacrifice some areal coverage for accuracy in the development of targeted regions. For
example, regions with a strong gradient in MOD due to topography particularly near the
coast will not be identified bghe PCA algorithm, such as across much of the Rockies

and in Greenland and Scandinavia. This limitation was part of the justification for not

incorporating the longitudes of the latter in the broader analysis.

Fig. 2.1) 16 study regions obtained from finst 18 components obtained fromn$de
PCA. Eurasian regions are denoted with the
denoted with the ANO prefix.

In the 16 regions identified, melt onset timing covaries among the region's grid
cells reasonablwell through the 34 year period. The MOD does necessarily occur on
the same date within each region every yearithsifikely that these regions respond to
the same atmospheric forcing much of the time around the Mi®Dany of these
regions, the is considerable similarity in topography and landcover. For example,
Region 5N aligns well with the Yukon River Valley, 6N covers the tundra of Northeastern

Canada and part of the Canadian Archipelago, and 6E represents a significant subset of
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the Russia Plain. However, the Urals nearly cut Region 4E in half, and Region 8E
overlays part of the Russian Far East with topography dominated by a complex system of
mountain ranges, so topography is not always unif@im. extent to which landcover

types are hamogeneous throughout regions is more likely a function of climate rather

than any influence landcover has on MOD, which would manifest in the PCA output.
Additionally, dominant snowpack (Sturm et al. 1995) and landcover types are not nearly
as important fosnow melt onset as they are for the melt dynamics of the ensuing melt

season.

2.6 R-mode Principal Component Analysis and Multiple Linear

Regression

Multiple linear regression analysis was performed with eight forcing variables
encompassing a range oftpotial melt drivers: downwelling LW, incoming SW,
sensible heat fluxes, LW CRE, 2 m temperature, 850 hPa specific humidity5Q000
hPa thicknesses, and EC. Anomalies were calculated relative to a fixed day of the year
(DOY), i.e. relative to the 3gearmean of the variable for a given DOY. Then, the
variable anomalies were averaged overdadhy period prior to MOD such that the
averaging period maximized the correlation between thged# time series of time
averaged anomalies and melt onset anosafieomalies of Net LW and SW could not
be used due to their strong dependency on surface conditions (i.e. whether snow
covered), which strongly influences the relationship between anomalies and MOD
timing, so incoming LW and SW were used instead. Thisgsoblem when defining

anomalies relative to the day of the year because in some years, the melt season will be
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well underway with snow disappearance even possible.

Before regression was conductedni@de PCA was done on the eight variables.
This type ofPCA is the extraction of features from a set of variables such that the dataset
is represented by a smaller number of new, orthogonal components (Richman 1986),
rather than the-8hode which finds clusters in a spatial field of time series. Each
components often comprised of only one or a few highly correlated variables in the
dataset, allowing physical interpretation while reducing dataset dimensionality and
multicollinearity. They can then be used to replace the original variables in an analysis
such asnultiple linear regression, which is done here using MOD anomalies as the
dependent variable. We seek to use these
to explain MOD anomalies through regression. For example, increased water vapor in the
atmosphez does not alone drive melt onset in a particular year, but it can do so in
coincidence with increased atmospheric thicknesses, surface temperature, LW radiation,

and potentially low cloud cover.

Identifying the variables that comprise each PC is done@bglating each

component 6s |l oading pattern with the fiel

correlation matrix, obtained by correlating the original data with each principal
component, such that each component has a loading pattern. Thid seo@fation
results in a vector of correlation coefficients for each component, but determining the
correlation cutoff value for which a variable should be considered to comprise that
component is not trivial. This variable selection has been studiedsaxtly (e.g.

Cadima and Joliffe 1995; Aandari and Joliffe 2001), and a universal cutoff value is

d

d
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not recommended (Joliffe 2002). Therefore, we apply an empirical method to determine
this cutoff loading by using biserial correlation analysis followRighman and Gong
(21999), which locates the point at which the PC loading pattern agrees best with the
corresponding signal in the original data. In this analysis, the biserial correlation peaks
near a component loading value of 0.45, meaning that vasiahilein each component

with a correlation coefficient higher than 0.45 are considered to comprise that

component.

A primary advantage offode PCA is the reduction of variables made possible
by constructing much of the variance in the data into thieféive components. Several
methods for component selection criteria in PCA exist (e.g. an overview in Joliffe
(2002)); here, we selected the first components that explain more than 90% of the dataset
variance. This resulted in retention of the first foumponents, and rejection of trailing
components. In addition to containing redundancy and degenerating into noise, the
trailing components have very small variances that generate significant instability (i.e.
large confidence intervals) in linear regressioefficients, if they were to be used.
Regression analysis proceeded on the retained components bsickwaard selection
|l i near model, discarding resultant regress
Because both dependent and independentblasiavere standardized to run the PCA, the
regression coefficients are in standardized units, and can be interpreted as the MOD
response (standard deviation of days) to a one standard deviation change in the given

component with the remaining componentkllmnstant.
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2.7 Surface Atmospheric Pressure Analysis

Synoptic conditions at MOD were identified by correlating the@le PCA
loading pattern corresponding to each region with mean sea level pressure (SLP)
averaged between the dates of earliest anstlatelt in the given region. This reveals the
spatial configuration of SLP during the range of time when snow begins to melt in each
region. A positive correlation indicates the tendency for positive SLP anomalies during
late melts and/or negative SLP araim®s during early melts, with the opposite true for
negative correlations. Wind direction can then be inferred based on the orientation of SLP
centers relative to each othés such, this analysis algwovides a physical mechanism
for regional variatioa in EC that are explored further as welbwever, this type of
analysis does not account for climatologically favored, g@mminanent systems such as

the Siberian High and Aleutian Low and their existing effect on wind direction.

2.8 MOD and Forcing Vaiable Trends and Variability

The mean MOD varies from March across the boreal forest region to early June in
the Arctic tundra, with a strong inverse relationship with longitude (in addition to the
first-order relationship with latitude) evident on batimtinents (Fig. 2.2a). MOD
variability is largest across southern North America, northwestern Eurasia, and coastal
locations. In those regions, the standard deviation exceeds two weeks (Fig. 2.2b), which
is roughly consistent with the regions of earlie&dD (Fig. 2.2a). This pattern exhibits
larger variation over locations that average earlier MODs, and about half as much

variation over northern North America and eastern Eurasia. There are marked differences
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Fig. 2.2) a) 34year mean and b) standard @ion of MOD. Units are (a) DOY and (b)
days.

in spatial patterns of the mean of forcing variables in tdaystime period prior to and

including MOD (Fig. 2.3). The spatial patterns in these means are similar to the pattern in
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MOD for several of theseariables, including net SW and LW radiation, diurnal and 2 m
temperature, and sensible heat fluxes. More surface energy, primarily from radiative
fluxes (Fig 2.3a and 2.3b), and warmer temperatures (Fig 2.3h) is available in the
northernmost locations whesnow begins to melt in May and June. This is primarily due
to greater insolation closer to the solstice, with an average of over 150 Mbre net

SW radiation compared to the southern part of the Eurasian and North American regions
where melt startsaglier. Additionally, more moisture in the atmosphere on average in
these northern regions, shown in 850 hPa specific humidity (Fig. 2.3e), combines with
higher atmospheric thicknesses to generate levels of net LW radiation comparable to
other regions, wiech would otherwise be lower due to less energy converging into the
atmospheric column. This results in higher 2 m temperatures, but a lower diurnal

temperature range due to similar daily maximum temperatures near freezing.

A larger percentage of energydsrived from outside the region than from local
radiative fluxes in southern and western regions of North America and Eurasia where
snow begins melting earlier in March and April. This is shown in higher levels of EC
farther south and west in these regighRig. 2.3g) but with lower atmospheric thicknesses
(Fig. 2.3d) and specific humidity (Fig 2.3e) leading to lower mean 2 m temperatures (Fig
2.3h). While spatial differences in EC exceed 300 W omly a fraction is available as
part of the surface enegrdpalance to melt snow. Some of this energy is radiated out to
space or is temporarily stored in the air column, while the remainder heats the column
and is thermally radiated to the surface. Finally, regional differences in LW radiation
generated by clowdare under 40 W m(Fig. 2.3f), although inteannual differences can

exceed 100 W thgiven that years with relatively clear and overcast conditions are
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averaged together.

Fig. 2.3) 34year mean for the-8ay period prior to MOD for a) Net LW radiatid) Net
SW radiation c) Sensible heat flux d) 16800 hPa thickness e) 850 hPa specific
humidity f) LW CRE g) Energy convergence h) Meam2emperature i) Diurnal
temperature range.

Most of the strongest trends toward earlier MOD are located acrasgim
regions and are limited to regions-4BE, where melt begins 415 days sooner (Table
2-1). Across much of the remainder of Eurasia and northern North America, statistically
significant (U=0.05) t fl@das sarlier.uTpegutherihalt hat M
of the North American region has no significant MOD trend, and no significant trend
toward later MOD was found in any regidignificant trends in forcing variables exist
mostly in regions where there are strong trends in MOD (Tatftle Recause of the
strong seasonal cycle of forcing variables, earlier MOD occurs when most forcings
(particularly net LW and SW, specific humidity, 16600 hPa thickness, and 2 m
temperature) have smaller values than at the date of mean melt onset (Ftheabhly

exception is EC, which is higher earlier in the year when the atmosphere acts as more of



