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In the region of Earth most sensitive to climate change, spring snowmelt serves as a 

measurable indicator of climate change and plays a strong role in the feedbacks that 

amplify Arctic warming. These feedbacks are strongest over sea ice and the Greenland 

ice sheet (GrIS) as these surfaces continue to melt through the summer and potentially 

impact one another. The first component of this study characterizes the snow melt season 

and attributes melt onset both at a hemispheric scale and regionally in northern Canada. 

Analysis is then expanded to the melt onset date (MOD) on sea ice and the GrIS where 
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covariability is addressed extending into the summer melt season. MOD and sea ice 

concentration (SIC) data are obtained from passive microwave satellite datasets, while 

NASAôs Modern-Era Retrospective Analysis for Research and Applications (MERRA) 

provides energy balance and meteorological fields with primarily meltwater production 

used as output from a regional climate model (Modèle Atmosphérique Régional, MAR) 

for the period 1979 - 2013.   

Across much of the Northern Hemisphere, energy advection plays a larger role in melt 

onset in regions where snow begins melting in March and April, while shortwave fluxes 

have a greater influence where the MOD occurs in May and June. As the MOD arrives 

earlier, this implies that there is a potential shift in snow melt drivers toward those 

involved in advective processes. Comparable results are found in the regional study, 

where melt is controlled more by advective energy where melt onset begins sooner, 

compared to higher levels of radiative energy further north. Analysis of the remainder of 

the Arctic finds strong covariability among Greenland meltwater production, 500 hPa 

geopotential heights, and SIC, particularly in Baffin Bay, Fram Strait, and Beaufort Sea 

early in the summer. Most of this covariance is likely due to simultaneous influence of 

the atmospheric circulation anomalies, though there may be a local influence from Baffin 

Bay to the GrIS. Height anomalies from Greenland to Beaufort Sea favor the largest 

anomalies in meltwater production, and positive height anomalies in this configuration 

have shown the greatest increase in frequency of any pattern in the study period. 
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Chapter 1: Introduction  

1.1 Background 

 The Arctic is undergoing a period of rapid change brought about by increasing 

temperatures (ACIA 2005; Lemke et al. 2007; AMAP 2011). Accelerating warming since 

the 19
th
 century has occurred in an abrupt reversal of an Arctic-wide cooling trend 

extending at least 2000 years before present (Kaufman et al. 2009). The enhanced 

warming near the surface relative to above the Arctic boundary layer suggests that much 

of this warming is related to cryospheric feedbacks due to summer sea ice loss and spring 

snow disappearance, resulting in enhanced near-surface warming (Serreze et al. 2009; 

Kumar et al. 2010; Chung and Raisanen 2011). Enhanced poleward heat advection likely 

plays a lesser role based on weaker trends in mid-tropospheric warming (Graversen et al. 

2008; Screen and Simmonds 2010). It is primarily due to the feedbacks involved in near-

surface warming that temperature increases in the Arctic have been amplified relative to 

the rest of the earth. (Serreze and Francis 2006).  

 Accelerating warming has caused substantial changes to the Arctic environment. 

Changes in these ecosystems are primarily driven by sea ice loss and warmer 

temperatures that are shifting species range and habitats northward and higher in 

elevation (Moore and Huntington 2008). Wildfire frequency has increased and is 

predicted to continue to do so as a result of warmer and drier summer conditions, as well 

as due to shifts in vegetation type (Flannigan et al. 2009).  Some of the associated 

changes in vegetation have strong impacts on surface climate feedbacks. It is likely that 
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continued vegetation changes will generate net positive feedbacks in warming that will 

continue to amplify Arctic warming (Pearson et al. 2013).  

 Accompanying Arctic warming is an increase in storminess and precipitation, 

particularly over the Arctic Ocean. While precipitation trends are difficult to gauge due to 

its high variability and limited observational network,  the best estimates of trends from 

in situ data indicate a 5% increase in the 1951 ï 2009 period (Walsh et al. 2012) and have 

been linked to anthropogenic forcing (Min et al. 2008). In future simulations, global 

climate models project an increase of Arctic precipitation under all scenarios (Overland et 

al. 2011). Much of this occurs as a result of decreased sea level pressure (SLP), which 

has exhibited a significant trend downward regionally and toward stronger cyclones in all 

simulations of the Community Climate System Model (CCSM4; Vavrus et al. 2012). The 

strong correlation among variables such as temperature, precipitation, SLP, cloud cover, 

and sea ice concentration suggests that their close coupling represents a fingerprint of 

Arctic climate change.  

 At its winter maximum, snow covers nearly half of northern hemisphere's land 

surface from 45 x 10
6
 km

2
 in January to just 2 x 10

6
 km

2
 in August (Lemke et al. 2007) 

(Fig. 1). Its large seasonal variability and distinctive physical properties make snow cover 

an important component of the cryosphere and the Earthôs climate system. For example, 

the spring snow melt season is an important element of hydrologic and ecological 

systems, and serves as a reservoir when it melts in the spring (Nijssen et al. 2001; Yang 

et al. 2003; Barnett et al. 2005). In addition, variations in snow cover extent have been 

shown to have a significant effect on surface energy and mass exchanges over Arctic land 
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(Serreze et al. 2000; Serreze et al. 2003; Yang et al. 2003). Finally, its variations serve as 

a control of climate changes over its coverage area, influencing atmospheric conditions 

regionally (Groisman et al. 1994, Frei and Robinson 1999, Robinson and Frei 2000). 

               
 

Fig. 1) 1966 ï 2010 average snow extent in January and August. Figure modified from 

Armstrong and Brodzik, NSIDC.  

 

 

 

The largest and most consistent change in snow cover is its earlier spring 

disappearance. As the Arctic warms, terrestrial spring snow melt has occurred an average 

of two to four weeks earlier than it did in the late 1970ôs (Foster et al. 2008; Tedesco et 

al. 2009, Takala et al. 2009, Wang et al. 2013). Northern Hemisphere snow cover across 

the entire spring season has shown similar earlier melt trends responding to warmer 

temperatures and changes in atmospheric circulation (Dye 2002; Brown 2000; Dery and 

Brown 2007), with less pronounced trends over North America than Eurasia (Dyer and 

Mote 2006; Brown and Robinson 2011; Brown et al. 2010, Derksen and Brown 2012) 

which is also consistent with earlier snow melt onset (Wang et al. 2013). The most 

important variables controlling snow melt are radiative fluxes, energy advection, 
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turbulent heat fluxes, and the temperature departures that synthesize these (Groisman et 

al. 1994; Zhang et al. 1997; Aizen et al. 2000; Ohmura 2001). But it is unclear whether 

warmer temperatures primarily drive increased melt, or whether warmer temperatures are 

a consequence of the earlier melt. It is also uncertain what causes these temperature 

departures, and temperature departures are not always responsible for earlier melt. 

Therefore, understanding drivers of snow melt is critical for assessing current trends in 

snow cover and predicting future responses to Arctic and global change.  

 Elsewhere in the Arctic, the Greenland Ice Sheet (GrIS) mass balance is 

experiencing an annual net loss with accelerating negative trends being driven by 

increased surface melt (Mote 2007; Fettweis et al. 2011). This melt extent has also 

increased in coverage recently, reaching further into the accumulation zone as major 

warming events have become more common (Mernild et al. 2011; Hall et al. 2013). Melt 

from the GrIS has contributed about 5 mm to sea level rise in the most recent decade (van 

den Broeke et al. 2009) and is predicted to be the dominant contributor to sea level rise 

along with Antarctica by the end of the century (Rignot et al. 2011). Containing about 

2.85 x 10
6
 km

3
 of ice, Greenland's importance is primarily its contribution to sea level 

rise, though it has also served as a sensitive indicator of broader global climate change. 

The ability to better attribute variability in surface melt would improve surface mass 

balance models and ultimately lead to improved understanding of this component of the 

Arctic climate system. 

 Concurrent with GrIS mass loss, Arctic sea ice is declining in coverage in all 

seasons, and has also exhibited accelerating losses recently (Stroeve et al. 2012; Cavalieri 
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and Parkinson 2012). The summer ice-free season is now up to three months longer 

where ice loss has been greatest (Stammerjohn et al. 2012), with autumn freeze-up 

occurring later primarily because the warmer ocean requires longer to cool (Laxon et al. 

2003). Ice thickness has also been decreasing as multi-year ice melts and is replaced by 

young ice vulnerable to summer melt. Sea ice ranges from its peak of over 14 million 

km
2
 in March to under 5 million km

2
 in September (Fig. 1.2), with the greatest variability 

and change in the marginal ice zone. Simulations of future sea ice extent indicate greater 

losses are expected in summer than winter, likely evolving into an ice-free Arctic in 

September within the next few decades (Wang and Overland 2010; Overland and Wang 

2013). Such ice losses will have even greater impacts on Arctic meteorology, hydrology, 

and ecology, most notably through changes in atmospheric humidity, cloud cover, 

precipitation, and ocean temperature and salinity. 

 These important components of the Arctic cryosphere have therefore become a 

leading indicator of climate change globally, and the future evolution of the climate 

system depends on their interaction with the atmosphere, ocean, and each other. 

Developing a better understanding of these interactions requires a comprehensive, 

process-based approach that incorporates a large part of this system. This research project 

takes this approach to identify these physical processes and develop linkages among the 

components of the climate system to address these research questions. 
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Fig. 1.2) 1979-2010 average March and September Arctic sea ice concentration. Figure 

modified from NSIDC website. 

1.2 Data and Methodological Considerations 

 The melt onset date (MOD) is the focus of this research for multiple reasons. 

First, it is important in the climate system due to its ability to initiate feedbacks primarily 

by immediately reducing the surface albedo. Second, it is easier to detect than some other 

comparable measures of Arctic change. The change from ice to liquid in the surface and 

near-surface of the snowpack can be detected relatively easily by passive microwave 

sensors, with a record extending to 1979. Snow cover disappearance, a comparable 

measure of snowcover changes over land, is more difficult to measure and somewhat 

arbitrary to define due to uneven melting patterns and difficulty of observation beneath 
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the forest and shrub canopy in many parts of the world. The ability to accurately detect 

the MOD facilitates easier analysis of its changes over more than three decades, and 

allows for an analysis of its effects on subsequent climate processes. Finally, a 

comprehensive energy balance approach lends itself well to attributing snow melt onset 

due to the abrupt changes in the energy balance terms after this date.  

 This work focuses on snow melt onset, its trends and attribution, and its 

relationship with other components of the climate system. The scope and nature of these 

questions necessitates a comprehensive analysis that allows for easy comparison of 

multiple scales of data over a long time period, with the understanding that the 

components and processes of the Arctic climate system are often part of a highly related 

system of cause and effect. Consequently, data used here are primarily atmospheric 

reanalysis, regional climate model output, and remote sensing observations at a spatial 

and temporal resolution high enough to resolve important small-scale variability, but 

small enough to remain manageable in analysis. Addressing these questions that involve 

multiple fields of large and high-dimensional datasets is best suited for data mining and 

statistical analyses. These methods include singular value decomposition (SVD), 

principal component analysis (PCA), self organizing maps (SOM), simple and partial 

correlations, trend analysis, composites of the atmospheric geopotential height field, and 

inter-seasonal and extreme year analysis. Inputs into these analyses are comprised of a 

comprehensive list of atmospheric and hydrologic variables chosen based on their ability 

to provide multiple lines of evidence to support each of the conclusions.  
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1.3 Dissertation Organization 

 A near-hemispheric overview of terrestrial snow melt onset is first done to 

attribute earlier trends and variability in the MOD across much of northern hemisphere 

land using a comprehensive set of energy balance terms ranging from surface 

temperature, atmospheric energy advection, and cloud fraction. This large-scale analysis 

of terrestrial snow melt uses data from the satellite era, 1979-2012, which also allows 

trend analysis in this date and its energy balance to be undertaken. Much of the analysis 

is broken down in scale into regions to facilitate analysis and compare easily among 

locations with different physical characteristics. An attribution analysis is further 

performed using principal component regression, correlations between component 

loadings and mean surface atmospheric pressure, and a more detailed analysis of the 

influence of cloud cover and energy advection on the MOD.  

 Next, analysis focuses on part of northern Canada west of Hudson Bay. This 

study region was chosen for its relatively flat and homogeneous land cover and its late 

average MOD. A range of near-surface energy and atmospheric variables in northern 

Canada are analyzed at the beginning of the melt season. Emphasis is placed on the date 

of melt onset in three distinct sub regions to isolate the primary regional differences. This 

is followed by a comparison of energy balance terms to evaluate the importance of each 

term relative to each other, and how they differ regionally. Attribution of melt is 

examined primarily with analysis of extreme early and late melt years, synoptic pattern 

composites, and separation of the contribution between radiative and synoptic influences 

on the MOD using variable thresholds.  

 Finally, Chapter 4 shifts analysis of melt onset beyond terrestrial snow to the 
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remainder of the Arctic, including the onset of snow melt on sea ice and on the Greenland 

ice sheet. This focuses less on attribution than potential linkages among these two fields 

as well as the atmospheric circulation during the spring and summer months. This is 

because the MOD over sea ice and the GrIS is found to be less important to these systems 

than the subsequent summer melt season and their interactions. Different types of 

statistical methods that facilitate analysis of multiple covarying spatio-temporal datasets 

are employed for this purpose, identifying how and where these relationships appear most 

strongly. The analysis also explores the important question of to what extent sea ice 

variability and loss near Greenland can influence surface melt on the ice sheet and 

therefore the ice sheet surface mass balance. 
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Chapter 2: Controls on Spatial and Temporal Variability in 

Northern Hemisphere Terrestrial Snow Melt Timing, 1979-

2012 

 

2.1 Introduction 

 The Arctic climate system has undergone rapid changes in the late 20
th
 and 21

st
 

centuries (Lemke et al. 2007). Increased global temperatures are associated with 

accelerating losses in sea ice, glacial mass balance, permafrost, and snow cover extent 

and duration (Serreze et al. 2009; Liston and Hiemstra 2011; Camill 2005; Comiso et al. 

2008; Johannessen et al. 2004, Post et al. 2009).  Amplified warming in the Arctic 

relative to lower latitudes has occurred primarily as a result of feedbacks in the 

cryosphere, particularly the reduction in albedo associated with spring snow loss (Serreze 

and Francis 2006; Dery and Brown 2007). This amplified warming also potentially 

influences mid-latitude weather patterns (Francis and Vavrus 2012; Tang et al. 2014). 

Snow cover is a major component of the cryosphere and the Earthôs climate system, 

playing a central role in some of these feedbacks. However, despite the importance of 

terrestrial snow cover, spatiotemporal variability in spring snow melt drivers is poorly 

understood. 

As the Arctic warms, terrestrial spring snow melt (particularly snow 

disappearance) has occurred an average of two to four weeks earlier than it did in the late 

1970ôs (Foster et al. 2008; Tedesco et al. 2009, Takala et al. 2009, Wang et al. 2013), 

although attributing these changes has been a challenge (Rupp et al. 2013). June snow 

cover extent has declined the most rapidly during this period, faster than the trend in 
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September sea ice loss (Derksen and Brown 2012) and by nearly 50% since 1967 (Brown 

et al. 2010). Northern Hemisphere snow cover across the entire spring season has shown 

similar earlier melt trends responding to warmer temperatures and changes in 

atmospheric circulation (Dye 2002; Brown 2000; Dery and Brown 2007; Wang et al. 

2013), with less pronounced trends over North America than Eurasia (Dyer and Mote 

2006; Brown and Robinson 2011; Wang et al. 2013; Ye et al. 2015). The regional and 

monthly differences in these trends suggest that melt drivers may exhibit considerable 

variability, requiring attribution that adequately resolves these differences.   

 It is well understood that the most important variables controlling snow melt are 

radiative fluxes, energy advection, turbulent heat fluxes, and the temperature departures 

that synthesize these (Groisman et al. 1994; Zhang et al. 1997; Aizen et al. 2000; Ohmura 

2001; Kapsch et al. 2013; Mioduszewski et al. 2014). Furthermore, the time period in 

which snow can begin melting is generally controlled by insolation, whereas inter-annual 

variation in this date can mostly be attributed to variability in downwelling longwave 

(LW) radiation, which is largely a function of cloud cover variations and heat and 

moisture transport changing the mean atmospheric thickness (Zhang et al. 2001; Sedlar 

and Devasthale 2012; Kapsch et al. 2013; Kapsch et al. 2014). Regionally, radiative 

fluxes have been found to play a larger role in melt energy at high latitudes, with 

advective energy and resultant sensible heat fluxes contributing more to melt at lower 

latitudes and earlier in the season (Ohmura 2001; Leathers and Robinson 1997; Zhang et 

al. 1996, 1997; Semmens et al. 2013). Turbulent fluxes can be important in the lower 

latitudes by enhancing or counteracting radiative fluxes (Male and Granger 1981), but 

have not been found to be significant drivers of snow melt on a large scale (Liston and 
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Heimstra 2011; Shi et al. 2013). 

 Synoptic conditions that generate the patterns that control energy advection have 

been studied on a regional and hemispheric scale (Aizen et al. 2000; Bamzai 2003; 

Vicente-Serrano et al. 2006; Ueda et al. 2003; Tedesco et al. 2009; Shi et al. 2011; Shi et 

al. 2013; Ye et al. 2015). There has been some success correlating winter snow conditions 

and subsequent melt season timing with teleconnections such as the Arctic Oscillation 

and Pacific North American pattern, with up to 50% of the variance in these conditions 

explained in some regions (Tedesco et al. 2009; Bamzai 2003; Brown and Goodison 

1996). Spring snow conditions also correlate with geopotential heights and modes of 

atmospheric circulation (Vicente-Serrano et al. 2006;  Stone et al. 2002; Bao et al. 2011), 

but correlation strengths again depend on the region as well as methodological 

considerations such as time lags and spatial and temporal averaging. For example, using 

monthly averages not only removes some of the signal, but introduces mixed 

environmental conditions by incorporating both snow-covered (melting and frozen) and 

snow-free surfaces into the analysis, particularly one that covers many melt seasons. 

A detailed analysis of energy balance terms is another method in understanding 

the snow melt process. While synoptic conditions generally control these terms, 

atmospheric teleconnections are only a metric for certain modes of regional circulation, 

which are then manifested through the surface energy balance. Small- and point-scale 

studies of snow melt attribution often have the advantage of utilizing energy balance data 

at a high temporal resolution in detailed analysis (e.g. Sicart et al. 2006; Stone et al. 2002; 

Pomeroy et al. 2003; Marsh et al. 2010; Gleason et al. 2013), but can be difficult to 
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generalize beyond the unique geography of the study location and are often limited to one 

melt season. Larger scale energy balance studies have had some success attributing spring 

snow melt while operating within a different set of constraints. Iijima et al. (2007) 

concluded that the advection of heat and moisture played the greatest role in eastern 

Siberian snow ablation, while Ueda et al. (2003) found that early snow melt years on the 

East European Plain are associated with anomalous low-level warm air advection.  

 Here, we use atmospheric reanalysis data to assess trends in the melt onset date 

(MOD) and its drivers, and to attribute MOD variability in distinctive regions. Regions of 

homogeneous snow melt are identified using principal component analysis (PCA) and 

much of the analysis proceeds using these regions. Thirty four year trends in MOD and 

melt forcing variables are obtained using the Mann Kendall trend test and Sen's slope to 

assess regional MOD and its drivers. An attribution analysis is further performed using 

principal component regression, correlations between component loadings and mean 

surface atmospheric pressure, and a more detailed analysis of the influence of cloud cover 

and energy advection on MOD. Maintaining the focus on the surface energy balance 

allows for a unique and improved understanding of what type of forcing is necessary to 

initiate the snow melt season, while combining these multi-scaled approaches over a 

relatively long time period places results in the context of the observed hemispheric 

changes in snow melt onset. 

2.2 Study Area 

The study area includes all land between 55º N and 75º N, hereafter Northern 

Hemisphere. The study area is divided into two regions for display purposes: the North 
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Eurasian region is denoted E and is bounded by 40° E ï 180° E, while the North 

American region is denoted N and bounded by 170° W ï 60° W. Snow cover 

characteristics across this large area tend to be almost exclusively tundra and taiga as 

defined by Sturm et al. (1995). All of the Arctic coast, particularly Canada north and west 

of Hudson Bay, is characterized by bare or shrubby tundra, which transitions into 

generally taiga of varying canopy height and density in the remainder of this area (e.g. 

Bicheron et al. 2008). This area is further divided into subregions of homogeneous snow 

melt onset for analysis, the methodology of which is described in section 2.3 (Fig. 2.1).  

2.3 MERRA Data 

Near-surface energy balance and atmospheric variables, hereafter forcing 

variables, were obtained from the National Aeronautics and Space Administration 

Modern Era Retrospective-Analysis for Research and Applications (MERRA) products 

(Bosilovich et al. 2011; Cullather and Bosilovich 2011, 2012; Rienecker et al. 2011). 

MERRA is run on a 1/2° latitude by 2/3° longitude global grid with 72 hybrid-sigma 

vertical levels to produce analyses at 6-h intervals covering the modern satellite era from 

1979 to present. Data were obtained for a 122-day period from March 1 ï June 30 

capturing the melt season from 1979 ï 2012. The earliest mean MOD is in mid-late 

March, so there are a few grid cells during the earliest melt years when the MOD is 

earlier, but the effect of this on the analysis is insignificant.  

Different MERRA variables were used for different analyses depending on what 

was most appropriate, and include: Net and incoming shortwave (SW) and longwave 

(LW) radiation, LW and SW cloud radiative effect (CRE), sensible heat fluxes (positive 



19 

 

 

fluxes moving from the snow surface to the atmosphere), 2 m daily mean and maximum 

temperature, diurnal temperature range, 850 hPa temperature and specific humidity, and 

1000-500 hPa thicknesses. Energy convergence is also included, and is defined in terms 

of the remaining energy balance terms as 

t

AE
Fsfc+RtopAF

µ

µ
-¹ÖÐ-

~
    

where Rtop is the downward radiative flux at the top of the atmosphere, Fsfc is the net 

surface energy flux (positive upwards), and AE is the total energy in the atmospheric 

column. Energy convergence is obtained using a combination of MERRA moist static 

energy fields following Cullather and Bosilovich (2012, Appendix). It should be noted 

that there is redundancy in EC, which is primarily the convergence of moist static energy 

into the atmospheric column, and as such includes water vapor and is a strong mechanism 

for influencing downwelling LW radiation. EC was chosen over other alternatives such 

as sensible heat advection or u- and v-component transport based on ease of computation 

and to apply a comprehensive analysis of all the components of this term, even with 

redundancy. This type of integrative approach is more aligned with this type of large-

scale analysis, whereas it would be important for a case study to resolve EC into its 

components moreso than done here. 

All of these variables were aggregated from hourly to daily, though daily 

temperatures were derived from hourly 2 m temperature data. Statistical significance of 

trends at Ŭ = 0.05  in forcing variables as well as the date of melt onset were analyzed 

using a Mann-Kendall trend test (Mann 1945, Kendall 1975), with the associated Sen's 

Slope applied to the data to obtain a change over the 34-year period (Helsel and Hirsch 
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2002) 

MERRA has been evaluated extensively since its release (Cullather and 

Bosilovich 2012; Reichle et al. 2011; Robertson et al. 2011; Kennedy et al. 2011; Zib et 

al. 2012), but is subject to many of the limitations of other reanalysis systems. Because 

most of the data assimilated into MERRA are from remote sensing products, calibration 

issues across different platforms in the last 35 years potentially introduce some bias into 

the outputs. These tend to be strongest over lower latitudes and over the ocean 

(Bosilovich et al. 2011; Robertson et al. 2011), with the greatest influence in the Arctic 

likely being negative biases in water vapor and downward LW radiation (Bosilovich et al. 

2011; Kennedy et al. 2011). However, many of MERRA's energy balance and advective 

terms used in this study have demonstrated some of the lowest biases among reanalysis 

products in comparison and validation studies (Cullather and Bosilovich 2011; Zib et al. 

2012; Lindsay et al. 2014). 

 

2.4 Melt Onset Data 

 The annual melt onset date (MOD) data was obtained from Wang et al (2013; 

updated to 2012). Here, we briefly introduce the satellite data and the melt detection 

algorithm. Satellite-borne microwave sensors are effective tools for examining changes in 

snow melt dynamics over the Arctic due to their high sensitivity to liquid water in snow 

and the general absence of cloud cover issues faced in visible imagery analysis (e.g. Glen 

and Paren 1975, Zwally and Gloersen 1977). Melt onset was determined using an 

algorithm based on temporal variations in the differences of the brightness temperature 

(Tb) between 19 GHz and 37 GHz (vertical polarization) from passive microwave 
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satellite data (Wang et al. 2013). A continuous time series of daily Tb was obtained from 

the Scanning Multichannel Microwave Radiometer (SMMR, 1979ï1987), SSM/I (1987 

to 2008), and the Special Sensor Microwave Imager/Sounder (SSMIS, 2009-2012) 

mapped to the 25 km EASE-Grid available at the National Snow and Ice Data Center in 

Boulder, Colorado (Armstrong et al. 1994; Knowles et al. 2002). Sensor cross calibration 

was performed by applying adjustment coefficients derived in previous studies (Abdalati 

et al. 1995; Jezek et al. 1993; Stroeve et al. 1998). Since our melt detection algorithm 

only uses the relative change in the temporal variations in Tb, slight offsets in Tbs 

between sensors should not affect algorithm performance. Nevertheless, the differences 

in the SMMR and SSM/I(S) sensors may still introduce some uncertainties in the long-

term trends of MOD, and changes in sensor calibration could potentially have caused an 

apparent but not real change in MOD. As explained in Tedesco et al. (2009), this 

uncertainty cannot be quantified, but these data were calibrated as well as possible by 

Wang et al. (2013). The gaps in the SMMR data (due to its narrower swath and 

availability of every other day) and SSM/I(S) data are filled by linear interpolation from 

adjacent days.  

The melt detection algorithm is capable of distinguishing early periodic snow melt 

onset from the main seasonal melt onset (Wang et al. 2008; 2013). Multiple melt events 

were determined based on temporal variations in the differences of the brightness 

temperature between 19 GHz and 37 GHz (TbD =19 v - 37 v) from the passive 

microwave satellite measurements. The MOD was detected if the difference in daily TbD 

and the previous 3-day average (M) was greater than a threshold (TH1=0.35 x M) for 

four or more consecutive days. An iterative approach was used for melt end date (MED) 
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detection: melt end was detected as the first day when daily TbD was less than a 

threshold (TH2=mean TbD in July + 7K) for at least 28 continuous days. If these 

conditions were not met at a given grid cell, the number of days was reduced from 28 to 

21, and then to 14 if necessary. Melt duration was the number of days between MOD and 

MED for each melt event, with the main melt event identified as the event with the 

longest melt duration. More details on the determination of the melt detection thresholds 

can be found in Wang et al. (2013).  

The melt detection algorithm was evaluated using observations at weather stations 

across the pan-Arctic (Wang et al., 2008; 2013). The results showed that the primary 

MOD was associated with the early stage of the final ablation of the snowpack when the 

snowpack was wet but still fully covering the ground. The detected MODs corresponded 

to a clear shift in the statistical distribution of mean daily air temperatures from largely 

below freezing to above freezing. Since melt characteristics and melt season timing over 

permanent snow and ice are different from seasonal snow cover over land, a land ice 

mask was used to mask out those areas in our analysis (Brown et al. 1998). Due to the 

uncertainty of microwave measurements in complex alpine terrains (e.g. Tong et al. 

2010), the performance of the melt detection algorithm in mountainous areas may have a 

larger uncertainty and needs to be tested further.   

For melt attribution analysis, this MOD dataset is regridded to the MERRA model 

grid using a patch recovery interpolation method (Zienkiewicz and Zhu 1992). This 

interpolation method is a type of finite element method that operates by determining 

(recovering) the derivatives of the finite elements at each node of the generated data 
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mesh. Though computationally more expensive than more common piecewise 

polynomial interpolation methods, the ñsuperconvergentò property of patch recovery 

allows for less resulting interpolation error because the solution error converges faster 

than expected based on the maximum error in the domain of the boundary value problem.  

2.5 Principal Component Analysis of Variability in the Date of Melt 

Onset 

 Spatial clusters with similar MOD were identified with Principal Component 

Analysis (PCA) using analysis in what is referred to as S-mode (Richman 1986), which is 

used to identify spatial clusters in time series. Here, PCA in S-mode was used on the 

standardized and mean-centered melt onset field to isolate regions of homogeneous 

variance in MOD. The principal components of PCA are eigenvectors, which are the 

linear combinations of the original variables but weighted by their contribution to 

explaining the variance in each dimension. These components were then linearly 

transformed, or rotated, using the varimax method (Kaiser 1958), implemented using 

MATLABôs órotatefactorsô function. This is an important step for such an application of 

PCA because rotated components are then less domain-dependent and more localized in 

space, which helps to draw out physically meaningful clusters (Richman 1986).   

To identify regions with similar MOD, each of the resulting 34 components was 

correlated with the melt onset anomaly field. In 16 of the 18 first components, one region 

of uniform correlation coefficients with R
2
 > 0.2 could be identified (Fig. 2.1). For this 

function of PCA, the strength of the correlation is not nearly as important as the spatial 

orientation of correlation coefficients. Components 19 to 34 explain less than 20% of the 
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variance in the melt anomaly field as the components begin to degenerate into primarily 

statistical noise (i.e. are not physically meaningful; Hwang and Nettleton 2003). Not all 

northern hemisphere land is incorporated into the subregion due to the nature of PCA, but 

we sacrifice some areal coverage for accuracy in the development of targeted regions. For 

example, regions with a strong gradient in MOD due to topography particularly near the 

coast will not be identified by the PCA algorithm, such as across much of the Rockies 

and in Greenland and Scandinavia. This limitation was part of the justification for not 

incorporating the longitudes of the latter in the broader analysis. 

 

Fig. 2.1) 16 study regions obtained from the first 18 components obtained from S-mode 

PCA. Eurasian regions are denoted with the ñEò prefix while North American regions are 

denoted with the ñNò prefix. 

 

In the 16 regions identified, melt onset timing covaries among the region's grid 

cells reasonably well through the 34 year period. The MOD does not necessarily occur on 

the same date within each region every year, but it is likely that these regions respond to 

the same atmospheric forcing much of the time around the MOD. In many of these 

regions, there is considerable similarity in topography and landcover. For example, 

Region 5N aligns well with the Yukon River Valley, 6N covers the tundra of Northeastern 

Canada and part of the Canadian Archipelago, and 6E represents a significant subset of 



25 

 

 

the Russian Plain. However, the Urals nearly cut Region 4E in half, and  Region 8E 

overlays part of the Russian Far East with topography dominated by a complex system of 

mountain ranges, so topography is not always uniform. The extent to which landcover 

types are homogeneous throughout regions is more likely a function of climate rather 

than any influence landcover has on MOD, which would manifest in the PCA output. 

Additionally, dominant snowpack (Sturm et al. 1995) and landcover types are not nearly 

as important for snow melt onset as they are for the melt dynamics of the ensuing melt 

season. 

2.6 R-mode Principal Component Analysis and Multiple Linear 

Regression 

Multiple linear regression analysis was performed with eight forcing variables 

encompassing a range of potential melt drivers: downwelling LW, incoming SW, 

sensible heat fluxes, LW CRE, 2 m temperature, 850 hPa specific humidity, 1000-500 

hPa thicknesses, and EC. Anomalies were calculated relative to a fixed day of the year 

(DOY), i.e. relative to the 34-year mean of the variable for a given DOY. Then, the 

variable anomalies were averaged over a 1-4 day period prior to MOD such that the 

averaging period maximized the correlation between the 34-year time series of time-

averaged anomalies and melt onset anomalies. Anomalies of Net LW and SW could not 

be used due to their strong dependency on surface conditions (i.e. whether snow-

covered), which strongly influences the relationship between anomalies and MOD 

timing, so incoming LW and SW were used instead. This is a problem when defining 

anomalies relative to the day of the year because in some years, the melt season will be 
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well underway with snow disappearance even possible. 

Before regression was conducted, R-mode PCA was done on the eight variables. 

This type of PCA is the extraction of features from a set of variables such that the dataset 

is represented by a smaller number of new, orthogonal components (Richman 1986), 

rather than the S-mode which finds clusters in a spatial field of time series. Each 

component is often comprised of only one or a few highly correlated variables in the 

dataset, allowing physical interpretation while reducing dataset dimensionality and 

multicollinearity. They can then be used to replace the original variables in an analysis 

such as multiple linear regression, which is done here using MOD anomalies as the 

dependent variable. We seek to use these distinct ñmelt schemesò developed by the PCA 

to explain MOD anomalies through regression. For example, increased water vapor in the 

atmosphere does not alone drive melt onset in a particular year, but it can do so in 

coincidence with increased atmospheric thicknesses, surface temperature, LW radiation, 

and potentially low cloud cover. 

Identifying the variables that comprise each PC is done by correlating each 

componentôs loading pattern with the field of variables. The loading pattern is itself a 

correlation matrix, obtained by correlating the original data with each principal 

component, such that each component has a loading pattern. This second correlation 

results in a vector of correlation coefficients for each component, but determining the 

correlation cutoff value for which a variable should be considered to comprise that 

component is not trivial. This variable selection has been studied extensively (e.g. 

Cadima and Joliffe 1995; Al-Kandari and Joliffe 2001), and a universal cutoff value is 



27 

 

 

not recommended (Joliffe 2002). Therefore, we apply an empirical method to determine 

this cutoff loading by using biserial correlation analysis following Richman and Gong 

(1999), which locates the point at which the PC loading pattern agrees best with the 

corresponding signal in the original data.  In this analysis, the biserial correlation peaks 

near a component loading value of 0.45, meaning that variables within each component 

with a correlation coefficient higher than 0.45 are considered to comprise that 

component.  

A primary advantage of R-mode PCA is the reduction of variables made possible 

by constructing much of the variance in the data into the first few components. Several 

methods for component selection criteria in PCA exist (e.g. an overview in Joliffe 

(2002)); here, we selected the first components that explain more than 90% of the dataset 

variance. This resulted in retention of the first four components, and rejection of trailing 

components. In addition to containing redundancy and degenerating into noise, the 

trailing components have very small variances that generate significant instability (i.e. 

large confidence intervals) in linear regression coefficients, if they were to be used. 

Regression analysis proceeded on the retained components using a backward selection 

linear model, discarding resultant regression coefficients not significant at Ŭ = 0.05. 

Because both dependent and independent variables were standardized to run the PCA, the 

regression coefficients are in standardized units, and can be interpreted as the MOD 

response (standard deviation of days) to a one standard deviation change in the given 

component with the remaining components held constant. 
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2.7 Surface Atmospheric Pressure Analysis 

Synoptic conditions at MOD were identified by correlating the S-mode PCA 

loading pattern corresponding to each region with mean sea level pressure (SLP) 

averaged between the dates of earliest and latest melt in the given region. This reveals the 

spatial configuration of SLP during the range of time when snow begins to melt in each 

region. A positive correlation indicates the tendency for positive SLP anomalies during 

late melts and/or negative SLP anomalies during early melts, with the opposite true for 

negative correlations. Wind direction can then be inferred based on the orientation of SLP 

centers relative to each other. As such, this analysis also provides a physical mechanism 

for regional variations in EC that are explored further as well. However, this type of 

analysis does not account for climatologically favored, semi-permanent systems such as 

the Siberian High and Aleutian Low and their existing effect on wind direction.  

 

2.8 MOD and Forcing Variable Trends and Variability  

 The mean MOD varies from March across the boreal forest region to early June in 

the Arctic tundra, with a strong inverse relationship with longitude (in addition to the 

first-order relationship with latitude) evident on both continents (Fig. 2.2a). MOD 

variability is largest across southern North America, northwestern Eurasia, and coastal 

locations. In those regions, the standard deviation exceeds two weeks (Fig. 2.2b), which 

is roughly consistent with the regions of earliest MOD (Fig. 2.2a). This pattern exhibits 

larger variation over locations that average earlier MODs, and about half as much 

variation over northern North America and eastern Eurasia. There are marked differences 
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Fig. 2.2) a) 34-year mean and b) standard deviation of MOD. Units are (a) DOY and (b) 

days. 

 

in spatial patterns of the mean of forcing variables in the 3-day time period prior to and 

including MOD (Fig. 2.3). The spatial patterns in these means are similar to the pattern in 
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MOD for several of these variables, including net SW and LW radiation, diurnal and 2 m 

temperature, and sensible heat fluxes. More surface energy, primarily from radiative 

fluxes (Fig 2.3a and 2.3b), and warmer temperatures (Fig 2.3h) is available in the 

northernmost locations where snow begins to melt in May and June. This is primarily due 

to greater insolation closer to the solstice, with an average of over 150 W m
-2
 more net 

SW radiation compared to the southern part of the Eurasian and North American regions 

where melt starts earlier. Additionally, more moisture in the atmosphere on average in 

these northern regions, shown in 850 hPa specific humidity (Fig. 2.3e), combines with 

higher atmospheric thicknesses to generate levels of net LW radiation comparable to 

other regions, which would otherwise be lower due to less energy converging into the 

atmospheric column. This results in higher 2 m temperatures, but a lower diurnal 

temperature range due to similar daily maximum temperatures near freezing.  

A larger percentage of energy is derived from outside the region than from local 

radiative fluxes in southern and western regions of North America and Eurasia where 

snow begins melting earlier in March and April. This is shown in higher levels of EC 

farther south and west in these regions (Fig. 2.3g) but with lower atmospheric thicknesses 

(Fig. 2.3d) and specific humidity (Fig 2.3e) leading to lower mean 2 m temperatures (Fig 

2.3h). While spatial differences in EC exceed 300 W m
-2
, only a fraction is available as 

part of the surface energy balance to melt snow. Some of this energy is radiated out to 

space or is temporarily stored in the air column, while the remainder heats the column 

and is thermally radiated to the surface. Finally, regional differences in LW radiation 

generated by clouds are under 40 W m
-2
 (Fig. 2.3f), although inter-annual differences can 

exceed 100 W m
-2
 given that years with relatively clear and overcast conditions are 
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averaged together. 

 
Fig. 2.3) 34-year mean for the 3-day period prior to MOD for a) Net LW radiation b) Net 

SW radiation c) Sensible heat flux d) 1000-500 hPa thickness e) 850 hPa specific 

humidity f) LW CRE g) Energy convergence h) Mean 2-m temperature i) Diurnal 

temperature range. 

 

 Most of the strongest trends toward earlier MOD are located across northern 

regions and are limited to regions 4E-10E, where melt begins 10-15 days sooner (Table 

2-1). Across much of the remainder of Eurasia and northern North America, statistically 

significant (Ŭ=0.05) trends suggest that MOD occurs 7-10 days earlier. The southern half 

of the North American region has no significant MOD trend, and no significant trend 

toward later MOD was found in any region. Significant trends in forcing variables exist 

mostly in regions where there are strong trends in MOD (Table 2-1). Because of the 

strong seasonal cycle of forcing variables, earlier MOD occurs when most forcings 

(particularly net LW and SW, specific humidity, 1000-500 hPa thickness, and 2 m 

temperature) have smaller values than at the date of mean melt onset (Fig. 2.4). The only 

exception is EC, which is higher earlier in the year when the atmosphere acts as more of  


