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This thesis deals with three problems. The first two of the problems are related in

that they are concerned with estimation of correlation and precision matrix in spectral

norm. These two problems are tackled in Chapters 2, 3. The third problem is the

construction of chi-squared type test for groups of variables in high dimensional linear

regression.

In Chapter 2, we study concentration in spectral norm of nonparametric estimates

of correlation matrices. We study two nonparametric estimates of correlation matrices

in Gaussian copula models and prove that when both the number of variables and

sample size are large, the spectral error of the nonparametric estimators is of no

greater order than that of the latent sample covariance matrix, at least when compared

with some of the sharpest known error bounds for the later. As an application, we
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establish the minimax optimal rate in the estimation of high-dimensional bandable

correlation matrices via tapering off of these nonparametric estimators. An optimal

convergence rate for sparse principal component analysis is also established.

In Chapter 3, we study the sparse precision matrix estimation procedure in the

same Gaussian copula model as in Chapter 2. We employ the scaled Lasso procedure

for inversion of nonparametric correlation matrix estimates based on Kendall’s tau.

We prove the optimal rate of convergence in estimation of sparse precision matrices

under the weaker condition of bound on the spectral norm of the precision matrix.

Chapter 4 deals with confidence regions and approximate chi-squared tests for

variable groups in high-dimensional linear regression. We develop a scaled group

Lasso for efficient chi-squared-based statistical inference of variable groups. We prove

that the proposed methods capture the benefit of group sparsity under proper condi-

tions, for statistical inference of the noise level and variable groups, large and small.

Oracle inequalities are provided for the scaled group Lasso in prediction and several

estimation losses, and for the group Lasso as well in a weighted mixed loss. Some

simulation results are also provided in support of the theory.
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Chapter 1

Introduction

In this thesis we have tackled three problems in high dimensional statistical estimation

and inference. The first problem relates to nonparametric estimation of correlation

matrices. The second problem relates to utilizing such nonparametric estimates for

estimation of precision matrices. The third problem concerns construction of asymp-

totic tests for groups of variables in high dimensional linear regression problems.

With the advent of modern technological revolution, large amounts of data have

become easily available. With the influx of data, the need to extract useful insights

from the data has also become paramount. One important problem in developing such

insights, relates to the estimation of the correlation structure that exists between a

given set of features based on a given sample. This problem is well understood when

the underlying distribution of the data is Gaussian. Sample correlation matrices based

on Pearson correlation coefficient perform well when number of features is small com-

pared to the number of samples. Even when number of features are larger compared

to the sample size, dimension reduction schemes such as sparse Principal Component

Analysis (PCA) based on sample correlation matrix perform well. However, for more

general non-Gaussian data, sample correlation matrix may fail to be consistent. Non-

parametric estimates of correlation matrices based on Kendall’s tau and Spearman’s

rho have been proposed for a more general Gaussian copula model. Accuracy of such

nonparametric estimates in various matrix norms have been studied. Among several

such choices of matrix norms, spectral norm is of particular interest due to its unique
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relevance in understanding the inherent subspace spanned by the data. Dimension re-

duction procedures like PCA, sparse PCA etc. depend on accuracy of the correlation

matrix estimate in spectral norm. In Chapter 2, we take up the study of convergence

of nonparametric estimates of correlation matrices in spectral norm. Expected spec-

trum error bound and a general large deviation bound for the maximum spectral error

of a collection of submatrices of a given dimension is established. These results prove

that the nonparametric estimates of correlation matrices for the larger class of Gaus-

sian copula models match the sharpest known rates of convergence in spectral norm

of sample correlation matrices in Gaussian data models. These results open up the

door for application of such nonparametric estimates of correlation matrices in any of

a multitude of statistical problems for which accuracy in spectral norm is crucial. As

an illustration we show two examples of sparse PCA and estimation of banded corre-

lation matrices via tapering off, where our results establish minimax optimal rates of

convergence of the plugged-in nonparametric correlation matrix estimates when the

underlying data follows a Gaussian copula model.

Continuing upon our development in Chapter 2, we study the estimation of inverse

correlation matrices also called precision matrices in Chapter 3. The precision matrix

captures the partial correlation structure of the data. In particular for Gaussian

graphical models, precision matrix has an important interpretation: if the off-diagonal

element of the precision matrix corresponding to indices (i, j) are zero, then there is

no edge between node i and node j. Nonparametric estimation of precision matrices

in Gaussian copula models have been studied under the assumption of column-wise

sparsity; the so called degree of the precision matrix or the associated graph. Optimal

rates of convergence in spectral norm have been established under the assumption of

matrix `1 norm bound on the precision matrix. In Chapter 3 we prove such an

optimal rate of convergence under the weaker spectral norm bound on the precision

matrix. In constructing such estimates, we employ the scaled Lasso procedure that
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was developed in Sun and Zhang [2012a] and was applied for estimation of sparse

precision matrices in Gaussian data models in Sun and Zhang [2013].

While Chapters 2, 3 deal with the connected problems of estimation of correlation

and precision matrices for high dimensional data, Chapter 4, tackles a different aspect

of high dimensional statistics.

Linear regression is one of the most widely used techniques in modeling data

of any size. For high dimensional data with a large number of available features

but only a small number of it significant, several regularization strategies such as

Lasso, SCAD, MCP etc have been developed that have good selection, estimation

and prediction power. However, research in developing tests of significance of such

estimated variables is still on going. In Zhang and Zhang [2014], the authors developed

a de-biasing procedure using relaxed projections for constructing tests for estimates

based on Lasso and scaled Lasso. This method is good for constructing inference for

individual parameters and these low-dimensional projection estimators for individual

coefficients can be directly used to construct efficient confidence regions and p-values

for a group of small number of parameters. However, when some inherent grouping

in the variable set is available, it might be more prudent to consider the groups of

variables together while building a model. Lasso penalty fails to account for the

grouping effect and group based regularization procedures like group Lasso etc. are

more appropriate for such cases. While group Lasso has been widely studied in terms

of group selection, estimation and prediction, direct inferential procedures for groups

of variables have not been studied. In Chapter 4, we develop a chi-squared based

group inference procedure for groups of variables using the ideas of de-biasing and low

dimensional projection in regression with group Lasso. Moreover, we also establish

faster rates of convergence of the group Lasso based test statistic to the chi-squared

distribution when the true set of parameters satisfy a strong group sparsity condition.

This shows the benefit of group sparsity in constructing asymptotic tests for groups
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of variables. Our construction provides asymptotic normality of the test statistic

even when the group to be tested is large. This provides considerable advantage over

current procedures and would enable one to possibly construct test for more general

sparse additive models. As part of our construction of tests for grouped variables, we

develop a scaled group Lasso procedure and establish oracle inequalities and optimal

convergence rates in estimation and prediction. The scaled group Lasso procedure

obviates the need for cross-validation in finding the tuning parameter for group Lasso

and estimates the scale parameter iteratively as part of the optimization scheme. We

also show the benefit of group sparsity in estimation of the scale parameter in terms

of faster convergence rates.

Before we dive into these topics, we note that Chapter 2 and Chapter 4 have

been developed in Mitra and Zhang [2014a] an d Mitra and Zhang [2014b] which are

available on arXiv.
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Chapter 2

Non-parametric Estimation of Correlation

Matrices

2.1 Introduction

We consider n iid copies {X i : 1 ≤ i ≤ n} of a d-dimensional Gaussian random

vector (X1, . . . , Xd)
T . We define X = (X1, · · · ,Xn)T ∈ Rn×d. We assume that X i’s

are centered and marginally scaled, so that EX = 0 and the correlation matrix is

given by EXXT = Σ ∈ Rd×d with 1 in the diagonal. In this paper, we work within

a high-dimensional ‘double asymptotic’ setting where d ∧ n → ∞. We assume that

instead of X, we only observe n iid copies Y i, 1 ≤ i ≤ n, of the transformed variables

(f1(X1), · · · , fd(Xd))
T

where fi’s are unknown but strictly increasing. This is a form of the copula model

Sklar [1959] for the distribution of the data. Because X follows a Gaussian dis-

tribution, it is a formulation of the Gaussian copula, cf. Bickel et al. [1993] and

references therein. A slightly different but equivalent formulation of the Gaussian

copula has been referred to as the nonparanormal model Liu et al. [2009]. Let

Y = (Y 1, · · · ,Y n)T . Our goal here is to estimate the latent correlation structure

Σ using the observed data matrix Y.

If we could observe the latent data matrix X, an obvious choice as an estimator

would be the sample correlation matrix given by Σ̃
s

= XTX/n. It is for this reason
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that we refer to the latent Σ̃
s

as an oracle estimator. It is also clear that Σ̃
s

is

a sufficient statistic for estimating Σ when X is known. As a consequence, any

statistical procedure based on Σ could be summarily described as g(Σ̃
s
) for some

function g. In this respect, Σ̃
s

possesses great utility as an ideal raw estimate that

lends itself to further analysis as the need be.

However, as noted above, we do not observe X but unknown strictly monotone

transformations of columns of it, Y. Thus the sample correlation matrix based on Y,

i.e. YTY/n, is in general inconsistent in estimating the latent correlation structure

Σ. Two candidate nonparametric estimators in such a scenario are considered in this

paper: Kendall’s tau developed in Kendall [1938] and Spearman’s rank correlation

coefficient, developed by Charles Spearman in 1904. These are two widely used

nonparametric measures of association. Their properties in fixed dimension have

been studied in Kendall [1938, 1948], Kruskal [1958] and many others. More recently,

in high-dimensional scenarios, correlation matrix estimators based on these measures

have been taken up for study in Liu et al. [2012a] and Xue and Zou [2012] among

others.

For the rest of this paper, we call Σ̂
τ

the correlation matrix estimator based on

Kendall’s tau and call Σ̂
ρ

the one based on Spearman’s rho. It will be interesting

to study whether for any statistical procedure, say g(Σ̃
s
), based on the raw estimate

Σ̃
s
, it is possible to provide justification for the use of g(Σ̂

τ
) or g(Σ̂

ρ
) as a viable

replacement. It is however cumbersome to study each individual procedure separately.

On the other hand, if g is sufficiently smooth with respect to some matrix norm, it

would suffice to study the accuracy of Σ̂
τ

and Σ̂
ρ

as estimates of Σ in such norms.

A complete description of properties of Σ̂
τ

and Σ̂
ρ

as estimators of large Σ neces-

sitates the derivation of the distributions of these matrix estimators. It is well known

that in the multivariate Gaussian model, Σ̃
s

follows a Wishart distribution Ander-

son [1958]. To the contrary, derivation of the distribution of Σ̂
τ

and Σ̃
s

seems at
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the present moment intractable. On the other hand, analysis of these nonparametric

estimators for each individual element of the correlation matrix has been taken upon

before. Both Kendall’s tau and Spearman’s rho are specific instances of U-statistics

with bounded kernels. In Hoeffding [1948], the asymptotic normality of these non-

parametric estimators for an individual correlation was established. Furthermore, the

celebrated Hoeffding [1963] inequality provides large deviation bounds for these esti-

mators as U-statistics with bounded kernels. These results provide tools for studying

the concentration of Σ̂
τ

and Σ̂
ρ

in the matrix max norm and its applications Liu

et al. [2012a], Xue and Zou [2012] and the corresponding Gaussian copula graphical

model Liu et al. [2012b].

It is important to note that while estimation accuracy in one specific matrix

norm could be more appropriate for a certain set of statistical problems, some other

set of problems might require accuracy in a different matrix norm. In this paper

we focus on the spectral norm, which is also understood as the `2 operator norm.

Many statistical problems can be studied with error bounds in the spectral norm

of estimated correlation matrices. A primary example is the principal component

analysis (PCA) since the spectral norm is essential in studying the effects of matrix

perturbation on eigenvalues and eigenvectors.

Before beginning the study of convergence of Σ̂
τ

and Σ̂
ρ

in the spectral norm, it is

worthwhile to note that convergence rate of the latent sample covariance matrix Σ̃
s

in

the spectral norm has been studied widely and established in a multitude of literature.

A detailed overview and further references can be found in Vershynin [2012] among

others. For example, one could derive, from the concentration inequality in Theorem

II.13 of Davidson and Szarek [2001], that for X ∈ Rn×d with iid N(0,Σ) rows,

√
E‖Σ̃

s
−Σ‖2S ≤ ‖Σ‖S

(
2
√

2
√
d/n+

√
2d/n+ 6(d/n3)1/4

)
, (2.1.1)
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so that the consistency of Σ̃
s

follows when d/n→ 0. Additionally, the concentration

inequality also provides a uniform bound on the spectral error for any s-dimensional

diagonal submatrix for larger d. Taking any integer s < d and sets A ⊂ {1, · · · , d},

we have by the union bound

max
|A|≤s
‖(Σ̃

s
−Σ)A×A‖S

/
max
|A|≤s
‖ΣA×A‖S (2.1.2)

≤
(√

s/n+
√

2
{
t+ log

(
d
s

)}
/n

)(
2 +

√
s/n+

√
2
{
t+ log

(
d
s

)}
/n

)

with at least probability 1 − 2e−t. These spectral error bounds are explicit and of

sharp order for the latent sample correlation matrix estimate Σ̃
s
. In this light, it is

apt to ask whether Σ̂
τ

and Σ̂
ρ

also submit similar error bounds.

In Han and Liu [2013] a rate of
√
d log d/n was established for Σ̂

τ
in a transellip-

tical family of distributions Liu et al. [2012b]. In a separate but simultaneous work in

Wegkamp and Zhao [2013] the same rate was established for Σ̂
τ

in an elliptical copula

correlation factor model, which can be also viewed as elliptical copula. In this paper,

we provide non-asymptotic spectrum error bounds in the more restrictive Gaussian

copula model for both Σ̂
τ

and Σ̂
ρ

which improve the convergence rates of these exist-

ing error bounds. In particular, we establish in Theorem 2.1 expected spectral error

bounds to match (2.1.1), and under mild conditions on the sample size, we establish

in Theorem 2.2 and its corollaries large deviation bounds to match (2.1.2). These

results establish that in the Gaussian copula model the nonparametric estimators Σ̂
τ

and Σ̂
ρ

perform as well as the oracle raw estimator Σ̃
s

in terms of the order of the

spectral error. Consequently, a methodology based on Σ̃
s

that hinges on a spectrum

error bound can be performed with the same rate of convergence if Σ̂
τ

or Σ̂
ρ

are used

in lieu of the latent Σ̃
s
.

We discuss two different statistical problems where our results could be applied.

The first, a ripe problem for application of spectral error bounds, is the estimation
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of a large bandable correlation matrix. For high-dimensional data, proper estimation

of large bandable Σ involves implementation of various regularization strategies such

as banding, tapering, thresholding etc. These procedures and their properties have

been studied in Wu and Pourahmadi [2003], Bickel and Levina [2008a,b], Karoui

[2008], Lam and Fan [2009], Cai and Liu [2011], Cai and Zhou [2012], and Cai and

Yuan [2012]. In particular, Cai et al. [2010b] established the optimal minimax rate of

convergence for a tapered version of Σ̃
s

for certain classes of unknown bandable Σ. In

Xue and Zou [2014], a tapering estimator based on the Spearman’s rank correlation

was studied for the same class of parameters in the Gaussian copula model. However,

the question of whether the nonparametric estimator could attain the optimal rate,

was not resolved in their paper. Our spectral error bounds imply that the optimal

rate is attained if one substitutes Σ̃
s

with either Σ̂
τ

or Σ̂
ρ
.

The second application involves error bounds in the estimation of the leading

eigenvector in PCA both with and without a sparsity assumption on the eigenvector.

With the advent and increasing prevalence of high dimensional data, various limita-

tions of traditional procedures had come to the fore. For instance, Johnstone and Lu

[2009] showed that when d/n→ c > 0, the principal component of Σ̃
s

is inconsistent

in estimating the leading eigenvector of the true correlation matrix. Several remedies

to this problem have been proposed, all being different formulations under the auspice

of a general sparse PCA paradigm. In sparse PCA, the eigenvectors corresponding

to the largest eigenvalues are assumed to be sparse. A vast array of sparse PCA

approaches has been proposed and studied in Jolliffe et al. [2003], Zou et al. [2006],

d’Aspremont et al. [2007], Vu and Lei [2012], Ma [2013], and Cai et al. [2013] among

others. For the elliptical copula family, Han and Liu [2013] established the optimal

rate of convergence in sparse PCA with Σ̂
τ

under an additional sign sub-Gaussian

condition. We will demonstrate that our spectral error bounds for the nonparametric

estimators can be directly applied to study the convergence rates for the principle
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component direction. In particular, for sparse PCA the minimax rate as described

in Vu and Lei [2012] will be established without imposing the sign sub-Gaussian

condition.

Our work is organized as follows. In Section 2.2 we describe the Gaussian copula

model and the Kendall’s tau and Spearman’s rho estimators for the correlation matrix.

In Section 2.3, we provide upper bounds for the expected spectral error for these two

correlation-matrix estimators in Theorem 2.1 and outline our analytical strategy.

In Section 2.4, we provides a general large deviation inequality in Theorem 2.2. In

Section 2.5 we discuss two problems where our results on spectral norm concentration

could be utilized. Some of the proofs are relegated to the final section.

2.2 Background & Preliminary Results

We describe the basic data model and define the nonparametric estimates of Σ.

2.2.1 Data Model and Notation

We consider the Gaussian copula or multivariate nonparametric transformational

model

(Y1, · · · , Yd)T = (f1(X1), · · · , fd(Xd))
T , (2.2.1)

where (X1, · · · , Xd)
T ∈ Rd is a multivariate Gaussian random vector with marginal

N(0, 1) distribution and fj are unknown strictly increasing functions. We are in-

terested in estimating the population correlation matrix of (X1, · · · , Xd)
T , denoted

by

Σ = E(X1, · · · , Xd)
T (X1, · · · , Xd), (2.2.2)

based on a sample of iid copies of (Y1, · · · , Yd)T . Since the fj absorbs the location

and scale of the individual Xj, it is natural to assume EXj = 0 and EX2
j = 1 on the
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marginal distribution.

The observations Y i = (Yi1, · · · , Yid)T , i = 1, · · · , n, are iid copies of (Y1, · · · , Yd)T .

They can be written as

Yij = fj(Xij) i = 1 · · · , n j = 1, · · · , d, (2.2.3)

whereX i = (Xi1, · · · , Xid)
T ∈ Rd are independent copies of (X1, · · · , Xd)

T ∼ N(0,Σ)

in (2.2.1). We denote by X = (X1, · · · ,Xn)T ∈ Rn×d the matrix with rows XT
i and

quite similarly Y = (Y 1, · · · ,Y n)T ∈ Rn×d.

We use the following notation throughout the paper. For vectors u ∈ Rd, the

`p norm is denoted by ‖u‖p =
(∑d

k=1 |uk|p
)1/p

, with ‖u‖∞ = max1≤k≤d |uk| and

‖u‖0 = #{j : uj 6= 0}. For matrices A = (Ajk)d×d ∈ Rd×d, the `p → `q operator

norm is denoted by ‖A‖(p,q) = max‖u‖p=1 ‖Au‖q. The `2 → `2 operator norm, known

as the spectrum norm, is

‖A‖S = ‖A‖(2,2) = max
‖u‖2=1

|uTAu|

The vectorized `∞ and Frobenius norms are denoted by

‖A‖max = max
j,k
|Ajk|, ‖A‖F =

√
trace

(
ATA

)
.

For symmetric matrices A, the jth eigenpair of A is denoted by λj(A) and θj(A), so

that λ1(A) = ‖A‖S and θ1(A) is the leading eigenvector. In addition to E and P,

which denote the expectation and probability measure, we denote by En the average

over iid copies of variables in (2.2.3). For example,

Enh(xj, xk) = n−1
n∑
i=1

h(Xij, Xik).
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The relation an = O(bn) will imply an ≤ Kbn for some fixed constant K > 0. Finally

we denote Sd−1 = {u ∈ Rd : ‖u‖2 = 1}.

2.2.2 Nonparametric Estimation of Correlation Matrix

The approach we adopt in estimating the correlation matrix Σ = (Σjk) in (2.2.2) is

based on Kendall’s tau (τ) or Spearman’s correlation coefficient rho (ρ).

With the observations Yij in (2.2.3), Kendall’s tau is defined as

τ̂jk =
2

n(n− 1)

∑
1≤i1<i2≤n

sgn(Yi1j − Yi2j)sgn(Yi1k − Yi2k), (2.2.4)

and Spearman’s rho as

ρ̂jk =

∑n
i=1(rij − (n+ 1)/2)(rik − (n+ 1)/2)√∑n

i=1(rij − (n+ 1)/2)2
∑n

i=1(rik − (n+ 1)/2)2
, (2.2.5)

where rij is the rank of Yij among Y1j, · · · , Ynj. In matrix notation,

T̂ = (τ̂jk)d×d, R̂ = (ρ̂jk)d×d. (2.2.6)

The population version of Kendall’s tau is given by

τjk = E sgn(Y1j − Y2j)sgn(Y1k − Y2k), (2.2.7)

while the population version of Spearman’s rho is given by

ρjk = 3E sgn(Y1j − Y2j)sgn(Y1k − Y3k). (2.2.8)

In matrix notation, the population version of (2.2.6) is

T = (τjk)d×d, R = (ρjk)d×d. (2.2.9)
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Since fj are strictly increasing functions, we have sgn(fj(u)− fj(v)) = sgn(u− v).

Thus, Kendall’s tau, Spearman’s rho and their population version are unchanged if

the observed Y = (Yij)n×d is replaced by the unobserved X = (Xij)n×d in their

definition. Since Xj follows a standard normal distribution, we have, from Kendall

[1948] and Kruskal [1958], that for Σjk = EXjXk,

Σjk = sin
(π

2
τjk

)
= 2 sin

(π
6
ρjk

)
. (2.2.10)

This immediately leads to the following correlation matrix estimator by Kendall’s

tau,

Σ̂
τ

= (Σ̂τ
jk)d×d, Σ̂τ

jk = sin
(π

2
τ̂jk

)
. (2.2.11)

In the same light we define the correlation matrix estimator by Spearman’s rho as

Σ̂
ρ

= (Σ̂ρ
jk)d×d, Σ̂ρ

jk = 2 sin
(π

6
ρ̂jk

)
. (2.2.12)

The following proposition states a slightly different version of Theorem 2.3 of

Wegkamp and Zhao [2013] and a direct application of their argument to Spearman’s

rho.

Proposition 2.1. Both matrices T − (2/π)Σ and R − (3/π)Σ are nonnegative-

definite, ‖T − (2/π)Σ‖S ≤ (1 − 2/π)‖Σ‖S, and ‖R − (3/π)Σ‖S ≤ (1 − 3/π)‖Σ‖S.

Consequently,

‖T‖S ∨ ‖R‖S ≤ ‖Σ‖S. (2.2.13)

2.3 Expected Spectrum Error Bounds

While Spearman’s rho and Kendall’s tau are structurally different, they can be rep-

resented neatly as U-statistics of a special type. In this section we develop bounds
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for the expected spectrum norm of their error via a certain decomposition of such

U-statistics. This decomposition also provides an outline of our analysis of the concen-

tration of the spectrum norm and the sparse spectrum norm of the error in subsequent

sections.

Given a sequence of n observations from a population in Rd, a matrix U-statistic

with order m and kernels hjk(x1, . . . ,xm) can be written as

Un = (Un;jk)d×d (2.3.1)

with elements

Un;jk =
(n−m)!

n!

∑
1≤i1 6=···6=im≤n

hjk(X i1 ,X i2 , · · · ,X im). (2.3.2)

Assume that hjk(x1, . . . ,xm) are permutation symmetric and set

hjk(x) = E
[
hjk(X1, · · · ,Xm)

∣∣∣X1 = x
]
− cjk (2.3.3)

with any constants cjk. The Hoeffding decomposition of Un can be written as

Un − EUn =
m∑
`=1

(
m

`

)
∆(`)

n (2.3.4)

where ∆(1)
n is an average of iid random matrices with elements

∆
(1)
n;jk = (En − E)hjk =

1

n

n∑
i=1

(
hjk(X i)− Ehjk(X1)

)
(2.3.5)

and ∆(`)
n = (∆

(`)
n;jk)d×d are matrix U-statistics with completely degenerate kernels of

order `. We refer to Hoeffding [1948], Hájek et al. [1967], Hájek [1968], van der Vaart

[2000] and Serfling [2009] for detailed exposition on the Hoeffding decomposition and
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additional references.

Since the components of the Hoeffding decomposition are orthogonal,

E

(
m∑
`=2

(
m

`

)
∆

(`)
n;jk

)2

=
m∑
`=2

(
n

`

)−1(
m

`

)3

E
(

∆
(`)
m;jk

)2
≤
(
n

2

)−1(
m

2

)
Var
(
hjk
(
X1, · · · ,Xm)

)
.

A consequence of the above calculation of variance is

E
∥∥∥Un − EUn −m∆(1)

n

∥∥∥2
F
≤ m(m− 1)

n(n− 1)

d∑
j=1

d∑
k=1

Var
(
hjk
(
X1, · · · ,Xm)

)
.

We note that Kendall’s tau and Spearman’s rho are U-statistics of order m = 2 and

3 respectively, both with kernels satisfying

hjj(x1, · · · ,xm) = 1 and ‖hjk(x1, · · · ,xm)‖∞ ≤ 1 for j 6= k.

It follows that the high order terms of their Hoeffding decompositions are explicitly

bounded by

E
∥∥∥Un − EUn −m∆(1)

n

∥∥∥2
F
≤ m(m− 1)d(d− 1)

n(n− 1)
. (2.3.6)

Now we consider the term ∆(1)
n . It turns out that in the Gaussian copula model

(2.2.3), the first order kernel for Kendall’s tau can be written as

hjk(x1, . . . , xd) =


h(xj, xk,Σjk), j 6= k

1 j = k

with h(xj, xk, 0) = h0(xj)h0(xk), where h0(x) = 2Φ(x) − 1, and that of Spearman’s

rho is of the same form. This motivates a further decomposition of ∆(1)
n as a sum of
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∆(0)
n and ∆(1)

n −∆(0)
n , with

∆(0)
n =

(
∆

(0)
n;jk

)
d×d

=
(

(En − E)h0(xj)h0(xk)
)
d×d

, (2.3.7)

∆(1)
n −∆(0)

n =
(

(En − E)
(
h(xj, xk,Σjk)− h(xj, xk, 0)

))
d×d

It follows from the definition of the population Spearman’s rho in (2.2.8) that

Eh(Xj, Xk, 0) = Eh0(Xj)h0(Xk) = ρjk/3, ∀1 ≤ j ≤ k ≤ d.

Thus, the ∆(0)
n in (2.3.7) can be written as the difference between the sample covari-

ance matrix of h0(X) = (h0(Xij))n×d and its expectation:

∆(0)
n = n−1h0(X)Th0(X)−R/3. (2.3.8)

Moreover, we will prove that for both Kendall’s tau and Spearman’s rho

∣∣∣h(xj, xk,Σjk)− h(xj, xk, 0)
∣∣∣ ≤ C1

∣∣∣Σjk

∣∣∣, j 6= k. (2.3.9)

with C1 = 2/π + 1 ≤ 2 for Kendall’s tau and C1 ≤ 1 +
√

8/π ≤ 2 for Spearman’s

rho. Thus, since Var(h
2

0(Xij)) =
∫ 1

0
((2x − 1)2 − 1/3)2dx = 4/45 on the diagonal of

∆(1)
n −∆(0)

n and ∆(1)
n −∆(0)

n is an average of iid matrices,

E
∥∥∥∆(1)

n −∆(0)
n

∥∥∥2
S
≤ E

∥∥∥∆(1)
n −∆(0)

n

∥∥∥2
F
≤ C2

1

∑
j 6=k

Σ2
jk

n
+

4d

45n
. (2.3.10)

Let Un be the matrix U-statistics of either Kendall’s tau or Spearman’s rho,

Un = T̂ = (τ̂jk)d×d or Un = R̂ = (ρ̂jk)d×d as in (2.2.6) respectively, and Σ̂ the

corresponding estimator of Σ in (2.2.11) and (2.2.12). It follows from the expansion
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of the sine function in (2.2.11) and (2.2.12) that

(Σ̂−Σ)jk ≈ a0(Un − EUn)jk, (2.3.11)

with a0 = π/2 for Un = T̂ and a0 = π/3 for Un = R̂. Thus, the estimators Σ̂ can

be decomposed as

Σ̂−Σ = a0

{
(Un − EUn)−m∆(1)

n

}
+ a0m

(
∆(1)

n −∆(0)
n

)
+a0m∆(0)

n +
{

(Σ̂−Σ)− a0(Un − EUn)
}
, (2.3.12)

where the first two terms are bounded by (2.3.6) and (2.3.10) respectively and the

third term is explicitly expressed as the difference between a sample covariance matrix

and its expectation in (2.3.7). Moreover, the fourth term can be bounded with a

higher order expansion of sin(t) in (2.2.11) and (2.2.12). We note that the fourth

term on the right-hand side of (2.3.12) is not needed if one is interested in studying

T̂−T or R̂−R without the sine transformation. This analysis leads to the following

theorem.

Theorem 2.1. Let T̂ and R̂ be respectively the Kendall’s tau and Spearman’s rho ma-

trices in (2.2.6), T and R be their population version in (2.2.9), and Σ̂
τ

= (Σ̂τ
jk)d×d

and Σ̂
ρ

= (Σ̂ρ
jk)d×d be the corresponding estimators in (2.2.11) and (2.2.12) for the

population correlation matrix Σ in the Gaussian copula model (2.2.1). Then, for

certain numerical constant C0 and both Σ̂ = Σ̂
τ

and Σ̂ = Σ̂
ρ

E‖Σ̂−Σ‖S + E‖T̂−T‖S+E‖R̂−R‖S

≤ C0‖Σ‖S
(√

d/n+ d/n
)
. (2.3.13)
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In particular, defining n2 = 2bn/2c (where bxc is the integer part of x),

E‖T̂−T‖S ≤
√

2d(d− 2n)+/{n(n− 1)}+ 4(2/π + 1)2‖Σ‖2F/n

+10‖Σ‖S
(√

(d+ 1)/(3n) + (d+ 1)/n
)
, (2.3.14)

E‖Σ̂
τ
−Σ‖S ≤

π

2
E‖T̂−T‖S +

π

2

√
‖Σ‖2F − d

n2

+
π2
√

3d

8n2

,

for Kendall’s tau, and for Spearman’s rho, with n3 = 3bn/3c

E‖R̂−R‖S ≤
√

6d(d− 2n)/{n(n− 1)}+ 9(1 +
√

8/π)2‖Σ‖2F/n

+15‖Σ‖S
(√

(d+ 1)/(3n) + (d+ 1)/n
)

+ ‖Σ‖F/n, (2.3.15)

E‖Σ̂
ρ
−Σ‖S ≤

π

3
E‖R̂−R‖S +

π

9

√
‖Σ‖2F − d

n3

+
π2
√

3d

36n3

+
2π‖Σ‖F

3n
.

Corollary 2.1. If ‖Σ‖2Sd/n→ 0, then

E‖T̂−T‖S + E‖Σ̂
τ
−Σ‖S + E‖R̂−R‖S + E‖Σ̂

ρ
−Σ‖S → 0.

Remark 2.1. Up to a numerical constant factor, Theorem 2.1 match the bound (2.1.1)

for the expected spectral error of the oracle sample covariance matrix Σ̃
s
. While Han

and Liu [2013] and Wegkamp and Zhao [2013] focused on large deviation bound of

the spectral error of ‖Σ̂
τ
− Σ‖S in the elliptical copula model, a direct application

of their results requires ‖Σ‖Sd(log d)/n → 0 for the convergence in spectrum norm.

Although their results are of sharper order when ‖Σ‖S � log d, it seems that when

‖Σ‖S = O(1), the extra logarithmic factor cannot be removed in their analysis based

on the matrix Bernstein inequality Tropp [2011].

The proof of Theorem 2.1 requires a number of inequalities which provide key

details of the analysis outlined above the statement of the theorem. These inequalities

are crucial for our derivation of large deviation spectrum error bounds as well. We
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state these inequalities in a sequence of lemmas below and defer their proofs to the

Appendix.

Let ϕρ(x, y) be the bivariate normal density with mean zero, variance one, and

correlation ρ. Define

h(x, y, ρ) =

∫ ∫
sgn(x− u)sgn(y − v)ϕρ(u, v)dudv. (2.3.16)

Lemma 2.1. Let h(x, y, ρ) be as in (2.3.16). Based on X ∈ Rn×d with iid N(0,Σ)

rows, Kendall’s τ̂jk is a U-statistic of order 2 with a permutation symmetric kernel

hj,k(x1,x2) satisfying |hjk(x1,x2)| = 1 and

E
[
hjk(X1,X2)

∣∣∣X1 = x
]

= h(xj, xk,Σjk) ∀ j 6= k. (2.3.17)

With g(x, y, ρ) = h(x, y, ρ)− h(x, y, 0) and C1 = 2/π + 1,

∣∣g(x, y, ρ)
∣∣ ≤ C1|ρ|,

∣∣(∂/∂x)g(x, y, ρ)
∣∣ ≤ |ρ|. (2.3.18)

Moreover, with h0(x) = 2Φ(x)− 1 and ρjk in (2.2.8),

h(x, y, 0) = h0(x)h0(y), Eh(Xij, Xik, 0) = ρjk/3 ∀ j, k. (2.3.19)

Lemma 2.2. Let h(x, y, ρ) be as in (2.3.16) and C1 =
√

8/π+1. Based on X ∈ Rn×d

with iid N(0,Σ) rows, Spearman’s ρ̂jk is a U-statistic of order 3 with a permutation
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symmetric kernel hρj,k(x1,x2,x3) satisfying

|Eρ̂jk − ρjk| ≤ |ρjk|/(n+ 1) ≤ |Σjk|/(n+ 1), (2.3.20)

|hρjk(x1,x2,x3)| ≤ 1, (2.3.21)∣∣hρ(x, y, ρ)− hρ(x, y, 0)
∣∣ ≤ C1|ρ|, (2.3.22)∣∣(∂/∂x)

{
h
ρ
(x, y, ρ)− hρ(x, y, 0)

}∣∣ ≤ |ρ|, (2.3.23)

(1 + 1/n)h
ρ
(x, y, 0) = h(x, y, 0), (2.3.24)

where h
ρ
(xj, xk,Σjk) = E

[
hρjk(X1,X2,X3)

∣∣X1 = x
]
− τjk/(n+ 1).

Lemma 2.3. Inequalities (2.3.6) and (2.3.10) hold with C1 = 2/π+1 ≤ 2 and m = 2

for Kendall’s tau and C1 ≤ 1 +
√

8/π ≤ 2 and m = 3 for Spearman’s rho. Moreover,

for both Kendall’s tau and Spearman’s rho,

E‖(Un − EUn)−m∆(0)
n ‖2F ≤

m(m− 1)d(d− 2n)+
n(n− 1)

+ C2
1

‖Σ‖2F
n/m2

. (2.3.25)

Lemma 2.4. Let ∆(0)
n as in (2.3.7) and R = (ρjk)d×d. Then,

E‖∆(0)
n ‖S ≤ 5‖Σ‖S

(√
(d+ 1)/(3n) + (d+ 1)/n

)
(2.3.26)

and with at least probability 1− 2e−t
2
,

‖∆(0)
n ‖S ≤ 5‖Σ‖S

(√
(d+ t2/π)/(3n) + (d+ (t2 + 1)/π)/n

)
. (2.3.27)

Lemma 2.5. (i) Let Σ̂
τ

= (Σ̂τ
jk)d×d be as in (2.2.11) and ∆τ = (∆τ

jk)d×d with

∆τ
jk = τ̂jk − τjk. Let n2 = 2bn/2c where bxc is the integer part of x. Then,

√
E‖(Σ̂

τ
−Σ)− (π/2)∆τ‖2F ≤

π

2

√
‖Σ‖2F − d

n2

+
π2
√

3d

8n2

. (2.3.28)
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(ii) Let Σ̂
ρ

= (Σ̂ρ
jk)d×d be as in (2.2.12) and ∆ρ = (∆ρ

jk)d×d with ∆ρ
jk = ρ̂jk − Eρ̂jk.

Let n3 = 3bn/3c where bxc is the integer part of x. Then,

√
E‖(Σ̂

ρ
−Σ)− (π/2)∆ρ‖2F ≤

π

9

√
‖Σ‖2F − d

n3

+
π2
√

3d

36n3

+
π
√
‖Σ‖2F − d

3(n+ 1)
.(2.3.29)

Proof of Theorem 2.1. Let nm = mbn/mc. As in (2.3.12), for Kendall’s tau,

‖T̂−T‖S ≤
∥∥∥(Un − EUn)− 2∆(0)

n

∥∥∥
F

+ 2
∥∥∥∆(0)

n

∥∥∥
S
,

‖Σ̂
τ
−Σ‖S ≤

∥∥∥(Σ̂
τ
−Σ)− (π/2)(Un − EUn)

∥∥∥
F

+ (π/2)
∥∥∥T̂−T

∥∥∥
S
.

with Un = T̂ and EUn = T. It follows from (2.3.25) of Lemma 2.3 with m = 2,

(2.3.26) of Lemma 2.4 and (2.3.28) of Lemma 2.5 that the inequalities in (2.3.14)

hold.

Similarly, for Spearman’s rho,

‖R̂−R‖S ≤
∥∥∥(Un − EUn)− 3∆(0)

n

∥∥∥
F

+ 3
∥∥∥∆(0)

n

∥∥∥
S

+
∥∥∥EUn −R

∥∥∥
F
,

‖Σ̂
ρ
−Σ‖S ≤

∥∥∥(Σ̂
ρ
−Σ)− (π/3)(R̂−R)

∥∥∥
F

+ (π/3)‖R̂−R‖S,

with Un = R̂ and ‖EUn − R‖F = ‖(Eρ̂jk − ρjk)d×d‖F ≤
√
‖Σ‖2F − d/(n + 1) by

(2.3.20). Thus, (2.3.25), (2.3.26) and (2.3.29) yield the inequalities in (2.3.15).

2.4 Large Deviation Inequalities

While the upper bounds for the expected spectral error in Theorem 2.1 and Corollary

2.1 match (2.1.1) for the oracle sample covariance matrix, it is useful only when

d/n → 0 as is the case in many applications. For d > n, large deviation bounds

for the sparse spectral norm of the form (2.1.2) is often used instead. In the present

section we provide large deviation inequalities for both the spectral norm and the
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sparse spectral norm of the error for Kendall’s tau and Spearman’s rho.

The main result for this section is a large deviation bound in the following theorem

for the maximum spectral error in a collection of diagonal submatrices.

Theorem 2.2. Let T̂ and R̂ be respectively the Kendall’s tau and Spearman’s rho ma-

trices in (2.2.6), T and R be their population version in (2.2.9), and Σ̂
τ

= (Σ̂τ
jk)d×d

and Σ̂
ρ

= (Σ̂ρ
jk)d×d be the corresponding estimators in (2.2.11) and (2.2.12) for the

population correlation matrix Σ in the Gaussian copula model (2.2.1). Let 1 ≤ s ≤ d,

m ≥ 1 and As,m be a collection of m subsets A ⊂ {1, 2, · · · , d} with |A| ≤ s. Then,

there exists a certain numerical constant C such that for both Σ̂ = Σ̂
τ

and Σ̂ = Σ̂
ρ
,

‖(Σ̂−Σ)A×A‖S + ‖(T̂−T)A×A‖S + ‖(R̂−R)A×A‖S

≤ C‖ΣA×A‖S
(√

(s+ t+ logm)/n+ (s+ t+ logm)/n
)

+ C‖ΣA×A‖(2,∞)‖ΣA×A‖1/2S

√
(t+ logm)/n+ Cs(log d+ t)/n (2.4.1)

simultaneously for all A ∈ As,m with at least probability 1− e−t.

Corollary 2.2. If t+ log d ≤ βmax
{

log(ed/s),
√

(n/s)(t/s+ log(ed/s))
}

, then for

both Σ̂ = Σ̂
τ

and Σ̂ = Σ̂
ρ

and a certain numerical constant C,

max
|A|≤s

‖(Σ̂−Σ)A×A‖S + ‖(T̂−T)A×A‖S + ‖(R̂−R)A×A‖S
‖ΣA×A‖S + ‖ΣA×A‖1/2S ‖ΣA×A‖(2,∞)

(2.4.2)

≤ C(1 + β)
(√

(t+ s log(ed/s))/n+ (t+ s log(ed/s))/n
)

with at least probability 1− e−t.

Remark 2.2. Corollary 2.2 illustrates that for max|A|≤s ‖ΣA×A‖S = O(1) and under

a mild condition on (n, d, s), Theorem 2.2 yields a sparse spectral error bound that

matches (2.1.2) of the latent Σ̃
s
. Note that ‖ΣA×A‖(2,∞) ≤ ‖ΣA×A‖S. In compari-

son, the spectral error bounds in Han and Liu [2013] and Wegkamp and Zhao [2013],

which apply to the elliptical copula family, leads to max|A|≤s ‖(Σ̂
τ
− Σ)A×A‖S =
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O(s
√

(log d)/n) by the union bound. Han and Liu [2013] provided a concentration

inequality of order
√
s(log d)/n for Σ̂

τ
in the transelliptical family under an additional

‘sign sub-Gaussian’ condition. They also provide two examples of elliptical copulas

that satisfy the sign sub-Gaussian condition. The first example is the case of ellipti-

cal copulas with the latent correlation Σ satisfying a compound symmetric structure

(i.e. Σjk = ρ for all j 6= k). The second example is the case when Σ has a diagonal

block structure with each diagonal block having a compound symmetric structure.

However, it is unclear if the sign sub-Gaussian condition is readily verifiable in gen-

eral. Theorem 2.2 and Corollary 2.2 establish the concentration of the nonparametric

estimates for the Gaussian copula model without the sign sub-Gaussianity condition,

although the Gaussian copula family is smaller than the transelliptical family.

The corollary below states a simpler but slightly weaker version of Theorem 2.2

for s = d. It matches (2.1.2) for s = d when ‖Σ‖S = O(1) and t+ log d = O(
√
n/d).

Corollary 2.3. For a certain numerical constant C,

‖Σ̂−Σ‖S ≤ C‖Σ‖S
(√

(t+ d)/n+ (t+ d)/n
)

+C‖Σ‖1/2S ‖Σ‖(2,∞)

√
t/n+ C(t+ log d)d/n (2.4.3)

with at least probability 1− e−t for both Σ̂ = Σ̂
τ

and Σ̂ = Σ̂
ρ
.

The proof of Theorem 2.2 is carried out by establishing large deviation inequalities

for the first two terms in the decomposition in (2.3.12), an application of Lemma 2.4

to the third, and an application of an inequality of Wegkamp and Zhao [2013] to the

fourth.

Lemma 2.6. Let us take C1 = 2/π+1 ≤ 2 for Kendall’s tau and C1 ≤ 1+
√

8/π ≤ 2

for Spearman’s rho. For both Kendall’s tau and Spearman’s rho,

‖∆(1)
n −∆(0)

n ‖S ≤
√
C2

1‖Σ‖2F − 2d

n
+ 2
√

2‖Σ‖(2,∞)‖Σ‖1/2S

√
t

n
(2.4.4)
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with at least probability 1− e−t.

Lemma 2.7. Let Un − EUn − m∆(1)
n be as in (2.3.12). Then, with probability at

least 1− e−t, for a certain constant C > 0,

max
|A|≤s
‖
(
Un − EUn −m∆(1)

n

)
A×A‖S ≤ Cs(log d+ t)/n.

We state an inequality of Wegkamp and Zhao [2013] in Lemma 2.8 (i) below and

its extension to Spearman’s rho in Lemma 2.8 (ii).

Lemma 2.8. (i) Let Σ̂
τ

= (Σ̂τ
jk)d×d be as in (2.2.11) and ∆τ = (∆τ

jk)d×d with

∆τ
jk = τ̂jk − τjk. Let n2 = 2bn/2c where bxc is the integer part of x. Then,

∥∥(Σ̂
τ
−Σ)A×A

∥∥
S
≤ π

∥∥(T̂−T)A×A
∥∥
S

+
sπ2

8

∥∥∆τ
∥∥2
max

, (2.4.5)

with P
{∥∥∆τ

∥∥
max

> 2t
}
≤ d2e−n2t2 for all t > 0.

(ii) Let Σ̂
ρ

= (Σ̂ρ
jk)d×d be as in (2.2.12) and ∆ρ = (∆ρ

jk)d×d with ∆ρ
jk = ρ̂jk − Eρ̂jk.

Let n3 = 3bn/3c where bxc is the integer part of x. Then,

∥∥(Σ̂
ρ
−Σ)A×A

∥∥
S
≤ C2

∥∥(T̂−T)A×A
∥∥
S

+
sπ2

36

∥∥∆ρ
∥∥2
max

+
πs1/2‖ΣA×A‖(2,∞)

3(n+ 1)
(2.4.6)

with C2 = (π/3)(2 −
√

1− 1/4) < 1.2, and P
{∥∥∆ρ

∥∥
max

>
√

6t
}
≤ d2e−n3t2 for all

t > 0.

Proof of Theorem 2.2. We consider only Σ̂
τ

as the case for Σ̂
ρ

is nearly identical. It

follows from Lemma 2.8 that

∥∥(Σ̂
τ
−Σ)A×A

∥∥
S
≤ π

∥∥(T̂−T)A×A
∥∥
S

+ Cs(t+ log d)/n, ∀ |A| ≤ s,(2.4.7)
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with at least probability 1− e−t. As in the decomposition in (2.3.12),

T̂−T =
{

∆τ − 2∆(1)
n

}
+ 2

{
∆(1)

n −∆(0)
n

}
+ 2∆(0)

n . (2.4.8)

It follows from Lemma 2.7 that with at least probability 1− e−t,

max
|A|≤s

∥∥∥{∆τ − 2∆(1)
n

}
A×A

∥∥∥
S
≤ Cs(log d+ t)/n. (2.4.9)

By applying Lemma 2.6 to the m sub-matrices with the union bound,

‖(∆(1)
n −∆(0)

n )A×A‖S ≤ C‖ΣA×A‖F/
√
n

+C‖ΣA×A‖(2,∞)‖ΣA×A‖1/2S

√
(t+ logm)/n, ∀ A ∈ As,m, (2.4.10)

with at least probability 1−m exp(−t− logm) ≥ 1−e−t. Similarly, Lemma 2.4 yields

‖(∆(0)
n )A×A‖S ≤ C‖ΣA×A‖S

√
(s+ t+ logm)/n

+C‖ΣA×A‖S(s+ t+ logm)/n, ∀ A ∈ As,m (2.4.11)

with at least probability 1− e−t. The first term in (2.4.10) is dominated by the first

term in (2.4.11) due to ‖ΣA×A‖F ≤
√
s‖ΣA×A‖S. Thus, applying (2.4.9), (2.4.10)

and (2.4.11) to (2.4.8) yields (2.4.1) via (2.4.7).

2.5 Discussion

We describe two applications of our concentration inequality in the d > n case.

2.5.1 Tapering Estimate of Bandable Correlation Matrices

We consider the Gaussian copula model in (2.2.1). We assume that the correlation

matrix has a bandable structure in that the off-diagonal elements fall off to zero as we
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move further away from diagonal. There are several formulations of such bandability.

As in Cai et al. [2010b], we consider the parameter class

Fα(M0,M1) =

Σ : max
j

∑
|i−j|>k

|Σij| ≤M0k
−α ∀k, ‖Σ‖S ≤M1

 . (2.5.1)

We adopt the estimator of Cai et al. [2010b] and plug in Σ̂
τ

and Σ̂
ρ
:

Σ̂
τ−taper
(k) = (wijΣ̂

τ
ij)d×d Σ̂

ρ−taper
(k) = (wijΣ̂

ρ
ij)d×d (2.5.2)

where wij’s are defined as

wij =


1 when |i− j| ≤ k/2

2− 2
|i− j|
k

when k/2 < |i− j| < k

0 otherwise

The nonparametric tapering estimator Σ̂
ρ−taper
(k) has been considered previously in

Xue and Zou [2014], where an error bound

sup
Σ∈Fα(M0,M1)

EΣ

∥∥∥Σ̂ρ−taper
(k) −Σ

∥∥∥2
S
≤ CM0,M1

(k2 log d

n
+ k−2α

)

was established using a generalization of McDiarmid’s inequality, where EΣ is the

expectation in the Gaussian copula model (2.2.1) with correlation Σ in (2.2.2), and

CM0,M1 is a constant depending on M0 and M1 only. It was mentioned in their paper

that the above error bound may not be sharp as some key concentration inequalities

were not available for rank-based estimators. Such key concentration inequalities are

provided in Theorem 2.2 as the rate-optimal error bound in the following theorem

demonstrates.
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Theorem 2.3. Let EΣ be the expectation under which (2.2.1) and (2.2.2) hold. Con-

sider the tapered estimators Σ̂(k) = Σ̂
τ−taper
(k) or Σ̂(k) = Σ̂

ρ−taper
(k) given in (2.5.2).

Then,

sup
Σ∈Fα(M0,M1)

EΣ

∥∥∥Σ̂(k) −Σ
∥∥∥2
S
≤ CM0,M1

(k + log d

n
+
k2(log d)2

n2
+ k−2α

)
(2.5.3)

for all 1 ≤ k ≤ n, where CM0,M1 is a constant depending on M0 and M1 only. In

particular, for k = min
(
n1/(2α+1), d

)
and log d ≤ βnα/(1+2α),

sup
Σ∈Fα(M0,M1)

EΣ

∥∥∥Σ̂(k) −Σ
∥∥∥2
S
≤ CM0,M1(1 + β) min

(
n
−2α
1+2α +

log d

n
,
d

n

)
.(2.5.4)

The rate-optimality of (2.5.4) was proved in Cai et al. [2010b] and a combination

of their analysis and Theorem 2.2 proves Theorem 2.3. For H = (Hij)d×d = Σ̂−Σ,

(wijHij)d×d = k−1
d+2k−1∑
`=1

HA`×A` − k−1
d+k−1∑
`=1

HB`×B`

where A` = {1 ∨ (` − 2k), . . . , `} for 1 ≤ ` < p + 2k and B` = {1 ∨ (` − k), . . . , `}

for 1 ≤ ` < p + k. Let Ad+2k+`−1 = B`. Since {HA`+2jk×A`+2jk
, ` + 2jk < d + 2k}

are disjoint diagonal blocks for ` = 1, . . . , 2k and {HA`+jk×A`+jk , `+ jk ≥ d+ 2k} are

disjoint diagonal blocks for ` = 1, . . . , k,

∥∥∥(wijΣ̂ij)d×d −Σ
∥∥∥
S
≤
∥∥∥((1− wij)Σij

)
d×d

∥∥∥
S

+ 3 max
`≤2d+3k−2

∥∥∥HA`×A`

∥∥∥
S

with |A`| ≤ 2k. Since wij = 0 for |i − j| ≤ k, the first term above is bounded

by M0k
−α in the class. It follows from Theorem 2.2 that the second term above is

bounded by

EΣ max
`≤2d+3k−2

∥∥∥HA`×A`

∥∥∥2
S
≤ CM0,M1

∫ ∞
0

(k + t+ log d

n
+
k2(log d+ t)2

n2

)
e−tdt,
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which implies (2.5.3).

Although the estimator in (2.5.2) is not adaptive due to the requirement of k as

an input, this example demonstrates the utility of our results when Kendall’s tau

and Spearman’s rho are used in place of the oracle sample covariance matrix. Based

on the availability of the latent sample covariance matrix Σ̂
s
, Cai and Yuan [2012]

proposed a block thresholding estimator to achieve the optimal rate in (2.5.4) without

the knowledge of α. An interesting problem is whether the same can be achieved using

the Kendall’s tau or Spearman’s rho, as it seems to need a modification of Theorem

2.2 for off diagonal blocks of the error Σ̂−Σ.

2.5.2 Principal Component Analysis

Theorem 2.1 immediately yields the following theorem via the Weyl [1912] and Davis

and Kahan [1970] inequalities.

Theorem 2.4. Consider the Gaussian copula model in (2.2.1). Let P k, P̂
τ

k and

P̂
ρ

k be the projections to the span of the k leading eigenvectors of Σ, Σ̂
τ

and Σ̂
ρ

respectively corresponding to their k largest eigenvalues. Let λj be the j-th largest

eigenvalue of Σ. Then, for a certain numerical constant C,

max
(
E
∥∥∥P̂ τ

k − P k

∥∥∥
S
,E
∥∥∥P̂ τ

k − P k

∥∥∥
S

)
≤ C‖Σ‖S(

√
d/n+ d/n)/(λk − λk+1).

Now we consider the problem of estimating the direction of a sparse leading eigen-

vector. We illustrate the utility of our sparse spectral error bound in the sparse PCA

problem by plugging in {Σ̂
τ
, Σ̂

ρ
} in place of Σ̃

s
in a formulation of Vu and Lei [2012].

In particular, we consider an integer s < d to be an upper bound on the number of

nonzero components of the principal eigenvector θ1 of Σ. The following describes the
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sparse estimates of the principal eigenvector based on Σ̂
τ

and Σ̂
ρ
.

θ̂
τ

1;s = arg max
v∈Sd−1:‖v‖0≤s

∣∣∣vT Σ̂
τ
v
∣∣∣ θ̂

ρ

1;s = arg max
v∈Sd−1:‖v‖0≤s

∣∣∣vT Σ̂
ρ
v
∣∣∣ (2.5.5)

The following theorem provides the rate of convergence for sparse PCA.

Theorem 2.5 (Sparse PCA). Consider the Gaussian copula model in (2.2.1). Let

(λ1,θ1) be the leading eigenpair of Σ with ‖θ1‖0 ≤ s → ∞. Let λ2 be the second

largest eigenvalue of Σ. Let θ̂
τ

1;s and θ̂
ρ

1;s be the estimate obtained by the optimization

defined in (2.5.5). If t + log d ≤ β
√

(n/s)(t+ log(ed/s)), then for both θ̂1;s = θ̂
τ

1;s

and θ̂1;s = θ̂
ρ

1;s and some numeric constant C > 0,

∣∣∣sin∠(θ̂1;s,θ1)
∣∣∣ ≤ C(1 + β)

λ1 − λ2

(
‖Σ‖S + ‖Σ‖1/2S ‖Σ‖(2,∞)

)√
(t+ s log(ed/s))/n

with probability at least 1− e−t.

Theorem 2.5 follows from Corollary 2.2 by an application of a similar result from

Wang et al. [2013]. We omit the proofs.

2.6 Proofs

Proof of Lemma 2.1. By (2.2.4), the kernel for Kendall’s tau is

hj,k(x1,x2) = sgn(x1j − x2j)sgn(x1k − x2k).

The definition of h(x, y, ρ) in (2.3.16) directly yields (2.3.17) and the first identity of

(2.3.19). It remains to verify the properties of g(x, y, ρ) in (2.3.18) and compute the

expectation in (2.3.19).
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We first prove the following inequality:

max
y

∣∣∣Φ(y)− Φ(y
√

1− ρ2)
∣∣∣ ≤ |ρ|/2, ∀ − 1 ≤ ρ ≤ 1. (2.6.1)

For fixed ρ, the above maximum is attained, (d/dy){Φ(y) − Φ(y
√

1− ρ2)} = 0,

when e−y
2/2 =

√
1− ρ2e−y2(1−ρ2)/2 or equivalently (1 − ρ2)ey

2ρ2 = 1. Let yρ =

ρ−1
√
− log(1− ρ2) be the solution. Since the equality is attained in (2.6.1) at ρ = 1,

(2.6.1) is a consequence of

d

dρ

Φ(yρ)− Φ(yρ
√

1− ρ2)
ρ

=
ϕ(yρ

√
1− ρ2)√

1− ρ2
− Φ(yρ)− Φ(yρ

√
1− ρ2)

ρ2
(2.6.2)

≥ 0.

By the monotonicity of the normal density ϕ(t) in |t|,

Φ(yρ)− Φ(yρ
√

1− ρ2) ≤ yρ
(
1−

√
1− ρ2

)
ϕ(yρ

√
1− ρ2).

Since yρρ =
√
− log(1− ρ2) ≤

√
ρ2/(1− ρ2), (2.6.2) follows from

yρ
(
1−

√
1− ρ2

)
=

yρρ
2

1 +
√

1− ρ2
≤ ρ2√

1− ρ2
.

This completes the proof of (2.6.1).

The joint normal density can be factorized as ϕρ(u, v) = ϕ(u)ϕρ(v|u) with the

conditional density ϕρ(v|u) ∼ N(ρu, 1− ρ2). By (2.3.16),

g(x, y, ρ) =

∫
sgn(x− u)ϕ(u)

{∫
sgn(y − v)

{
ϕρ(v|u)− ϕ(v)

}
dv
}
du

=

∫
sgn(x− u)ϕ(u)

{
2

∫ y

−∞

{
ϕρ(v|u)− ϕ(v)

}
dv
}
du

= 2

∫
sgn(x− u)ϕ(u)

{
Φ((y − ρu)/

√
1− ρ2)− Φ(y)

}
du. (2.6.3)
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This gives the first part of (2.3.18) since |Φ((y − ρu)/
√

1− ρ2)− Φ(y − ρu)| ≤ |ρ|/2

by (2.6.1) and |Φ(y − ρu)− Φ(y)| ≤ |ρu|/
√

2π.

Similarly, since sgn(x− u) = 2I{u ≤ x} − 1,

∂

∂x
g(x, y, ρ) =

∂

∂x
4

∫ x

−∞
ϕ(u)

{
Φ((y − ρu)/

√
1− ρ2)− Φ(y)

}
du

= 4ϕ(x)
{

Φ((y − ρx)/
√

1− ρ2)− Φ(y)
}
.

It follows that

∣∣∣ ∂
∂x
g(x, y, ρ)

∣∣∣ = 4ϕ(x)
∣∣∣Φ((y − ρx)/

√
1− ρ2)− Φ(y)

∣∣∣
≤ 4ϕ(x)

( |ρx|√
2π

+
|ρ|
2

)
.

This gives the second part of (2.3.18) due to

max
x>0

4ϕ(x)(x/
√

2π + 1/2) ≤ 0.987 < 1.

For j 6= k, (2.2.8) gives

Eh0(X1j, X1k, 0) = Esgn(X1j −X2j)sgn(X1k −X3k) = ρjk/3.

Since U = Φ(X1) ∼ uniform(0, 1),
∫
h
2

0(x)ϕ(x)dx = 4Var(U) = 1/3. The second

identity of (2.3.19) follows.

Proof of Lemma 2.2. We need to include the sample size n in the subscript. As in

Hoeffding [1948], Spearman’s rho can be written as

ρ̂n,jk =
n− 2

n+ 1
un,jk +

3

n+ 1
τ̂n,jk (2.6.4)
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where un,jk is a U-statistic of order 3 with kernel

h∗jk(x1,x2,x3) = 3sgn(x1,j − x2j)sgn(x1k − x3k). (2.6.5)

For x ∈ [0, π/2], both sinx and sinx− 2 sin(x/3) are concave functions with sinx−

2 sin(x/3) = 0 at the two endpoints, so that sin(2x/3) ≤ 2 sin(x/3) ≤ sinx. Thus,

with x = π|ρjk|/2, (2.2.10) implies that

sgn(τjk) = sgn(ρjk), (π/3)|ρjk| ≤ (π/2)|τjk| ≤ (π/2)|ρjk|. (2.6.6)

Since Eujk = ρjk, |Eρ̂jk − ρjk| = 3|ρjk − τjk|/(n + 1) ≤ |ρjk|/(n + 1). This gives

(2.3.20) as |ρjk| ≤ |Σjk| by the concavity of sin(t) in (0, π/6). Since un,jk and τ̂n,jk

are U-statistics with kernel independent of n, ρ̂n,jk is a U-statistic with kernel

hρjk(X1,X2,X3) =
n− 2

n+ 1
u3,jk +

3

n+ 1
τ̂3,jk. (2.6.7)

Since |u3,jk| = |4ρ̂3,jk − 3τ̂3,jk| ≤ 1 always holds, (2.3.21) follows.

Let g(x, ρ) =
∫
h(x, y, ρ)ϕ(y)dy. It follows from (2.6.5) that

E
[
u3,jk

∣∣∣X1 = x
]

= h(xj, xk, 0) + g(xj,Σjk) + g(xk,Σjk).

Similarly, E
[
3τ̂3,jk

∣∣X1 = x
]

= 2h(xj, xk,Σjk) + τjk. Thus, we may take

h
ρ
(xj, xk,Σjk) =

n− 2

n+ 1

(
h(xj, xk, 0) + g(xj,Σjk) + g(xk,Σjk)

)
+

2

n+ 1
h(xj, xk,Σjk)

with cjk = τjk/(n+ 1) in (2.3.3). Since g(x, 0) =
∫
h(x, 0)h(y, 0)ϕ(y)dy = 0, (2.3.24)
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holds. Moreover, with g(x, y, ρ) = h(x, y, ρ)− h(x, y, 0) as in (2.3.18),

h
ρ
(x, y, ρ)− hρ(x, y, 0) =

n− 2

n+ 1

(
g(x, ρ) + g(y, ρ)

)
+

2

n+ 1
g(x, y, ρ),

so that (2.3.22) and (2.3.23) are consequences of

∣∣g(x, ρ)
∣∣ ≤ |ρ|(√2

π
+

1

2

)
,
∣∣∣ ∂
∂x
g(x, ρ)

∣∣∣ ≤ |ρ|, (2.6.8)

Since
∫

sgn(x− u)ϕ(x)dx = −h0(u), (2.6.3) and (2.6.1) yield

∣∣∣g(y, ρ)
∣∣∣ =

∣∣∣2 ∫ h0(u)ϕ(u)
{

Φ((y − ρu)/
√

1− ρ2)− Φ(y)
}
du
∣∣∣

≤ 2

∫ ∣∣∣h0(u)
(
ρ/2 + ρu/

√
2π
)∣∣∣ϕ(u)du

Since
∫
|h0(u)|ϕ(u)du =

∫ 1

0
|2x− 1|dx = 1/2 and

∫
|h0(u)u|ϕ(u)du = −2

∫ ∞
0

h0(u)dϕ(u) = 2

∫
ϕ2(u)du = 1/

√
π,

we have |g(y, ρ)| ≤ |ρ|(1/2 +
√

2/π). In addition, (2.3.18) yields

∣∣∣ ∂
∂x
g(x, ρ)

∣∣∣ ≤ max
x,y

∣∣∣ ∂
∂x
g(x, y, ρ)

∣∣∣ ≤ |ρ|.
Hence, (2.6.8) holds and the proof is complete.

Proof of Lemma 2.3. By Lemmas 2.1 and 2.2, both Kendall’s tau and Spearman’s

rho are U-statistics with kernel bounded by 1, so that (2.3.6) holds. By (2.3.18) and

(2.3.22), (2.3.9) holds, so that (2.3.10) holds. Since completely degenerate U-statistics

of order two or higher are orthogonal to U-statistics of order 1, (2.3.6) and (2.3.10)
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yield

E‖(Un − EUn)−m∆(0)
n ‖2F

≤ m(m− 1)d(d− 1)

n(n− 1)
+m2

(
C2

1

∑
j 6=k

Σ2
jk

n
+

4d

45n

)
.

Inequality (2.3.25) follows from C2
1 ≥ 2 + 4/45 and

∑
j 6=k Σ2

jk = ‖Σ‖2F − d.

Proof of Lemma 2.4. Let Nε be the largest number of ε-balls one can pack in the

(1 + ε)-ball centered at the origin and {u(j), j ≤ Nε} be the centers of such ε-balls

in one of such configurations. From straight forward volume comparison we have

Nεε
d ≤ (1 + ε)d. For each u ∈ Sd−1, ‖u− u(j)‖2 ≤ 2ε for some j ≤ Nε, so that

∣∣∣uT∆(0)
n u

∣∣∣ ≤ ∣∣∣uT(j)∆(0)
n u(j)

∣∣∣+
∣∣∣(u− u(j))

T∆(0)
n (u+ u(j))

∣∣∣
≤
∣∣∣uT(j)∆(0)

n u(j)

∣∣∣+ 2ε(2 + 2ε)‖∆(0)
n ‖S.

It follows that

‖∆(0)
n ‖S ≤ sup

j≤Nε

∣∣uT(j)∆(0)
n u(j)

∣∣
1− 4ε(1 + ε)

, Nε ≤ (1 + 1/ε)d. (2.6.9)

SinceX has iidN(0,Σ) rows, it can be written asX = ZΣ1/2 with a standard normal

matrix Z ∈ Rn×d. Let h0 (X) be the n×d matrix with elements h0 (Xij) = 2Φ(Xij)−1

and

fu (Z) = ‖h0
(
ZΣ1/2

)
u‖2/

√
n.

By (2.3.7), ∆(0)
n has elements (En − E)h0 (xj)h0 (xk) so that

uT∆(0)
n u = f 2

u(Z)− Ef 2
u(Z). (2.6.10)
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Since (d/dt)Φ(t) ≤ 1/
√

2π, for any V,W ∈ Rn×d we have

|fu (V)− fu (W) | ≤
√

2

nπ
‖(V−W)Σ1/2‖F ≤

√
2‖Σ‖S
nπ

‖V−W‖F

Thus, the Lipschitz norm of fu (·) is bounded by
√

2‖Σ‖S/(nπ). By the Gaussian

concentration inequality Borell [1975], we have

P
{∣∣∣fu(Z)− Efu(Z)

∣∣∣ > t
√

2‖Σ‖S/(πn)
}
≤ 2e−t

2/2. (2.6.11)

It follows that

Ef 2
u(Z)−

(
Efu(Z)

)2
= Var

(
fu(X)

)
≤ 2‖Σ‖S

πn

∫ ∞
0

e−t
2/2dt2 =

4‖Σ‖S
πn

.

We note that Ef 2
u(Z) = uTRu/3 ≤ ‖R‖S/3 as in (2.3.8), so that by (2.6.10)

∣∣uT∆(0)
n u

∣∣ ≤ ∣∣∣f 2
u(X)−

(
Efu(X)

)2∣∣∣+
4‖Σ‖S
πn

≤
(
fu(X)− Efu(X)

)2
+ 2
(
‖R‖S/3

)1/2∣∣∣fu(X)− Efu(X)
∣∣∣+

4‖Σ‖S
πn

.

This inequality and (2.6.9) yield

‖∆(0)
n ‖S ≤

ζ2n + 2
(
‖R‖S/3

)1/2
ζn + 4‖Σ‖S/(πn)

1− 4ε(1 + ε)
(2.6.12)

with ζn = maxj≤(1+1/ε)d

∣∣∣fu(j)
(X)− Efu(j)

(X)
∣∣∣. It follows from (2.6.11) that

P
{
ζn > t

√
2‖Σ‖S/(πn)

}
≤ 2(1 + 1/ε)de−t

2/2. (2.6.13)
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Let x∗ = 2(d log(1 + 1/ε) + log 2). We have

Eζ2n ≤
2‖Σ‖S
πn

∫ ∞
0

min
{

2(1 + 1/ε)de−t
2/2, 1

}
dt2 =

2‖Σ‖S
πn

(
x∗ + 2

)
Taking ε satisfying ε(1+ε) = 1/20, we find 1/(1−4ε(1+ε)) = 5/4 and log(1+1/ε) ≤ π,

so that x∗ ≤ 2(πd+ log 2) and

Eζ2n ≤ 4‖Σ‖S
(
d/n+ (1 + log 2)/(πn)

)
.

Combining this with (2.6.12), we have

E‖∆(0)
n ‖S ≤ (5/4)

{
Eζ2n + 2(‖R‖S/3)1/2Eζn + 4‖Σ‖S/(πn)

}
≤ 5‖Σ‖S

{
d/n+ (2 + log 2)/(πn)

}
+5
(
‖Σ‖S‖R‖S/3

)1/2(
d/n+ (1 + log 2)/(πn)

)1/2
.

This yields (2.3.26) due to 2 + log 2 ≤ π and ‖R‖S ≤ ‖Σ‖S. Moreover, by (2.6.13)

P
{
ζn >

√
2πd+ 2t2

√
2‖Σ‖S/(πn)

}
≤ 2eπd−(2πd+2t2)/2 = 2e−t

2

and outside this event (2.6.12) gives

‖∆(0)
n ‖S ≤ 5‖Σ‖S(d/n+ (t2 + 1)/(πn))

+5
(
‖Σ‖S‖R‖S/3

)1/2√
d/n+ t2/(πn).

This completes the proof due to ‖R‖S ≤ ‖Σ‖S.

Proof of Lemma 2.5. (i) Let x = (π/2)τjk and y = (π/2)∆τ
jk so that Σ̂jk = sin(x+ y)

and Σjk = sinx. Because sin(x+ y)− sinx− y = (cosx− 1)y−
∫ y
0

(y− t) sin(x+ t)dt,

∣∣∣Σ̂τ
jk − Σjk − (π/2)∆τ

jk

∣∣∣ ≤ 2|xy|
π

+
y2

2
≤ π

2

∣∣∣τjk∆τ
jk

∣∣∣+
π2

8

∣∣∣∆τ
jk

∣∣∣2.
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Since τ̂jk is a U-statistic of order m = 2 and a sign kernel in (2.2.4), the Hoeffding

decoupling argument gives E(∆τ
jk)

2 ≤ E
(
2 Bin(n2, pjk)/n2 − 2pjk

)2 ≤ 1/n2 and

E(∆τ
jk)

4 ≤ E
(

2 Bin(n2, pjk)/n2 − 2pjk

)4
≤ 3/n2

2,

where pjk = (1 + τjk)/2. Since
∑

j 6=k τ
2
jk ≤

∑
j 6=k Σ2

jk = ‖Σ‖2F − d, we have

∑
j,k

E
∣∣∣τjk∆τ

jk

∣∣∣2 ≤ ‖Σ‖2F − d
n2

,
∑
j,k

E
∣∣∣∆τ

jk

∣∣∣4 ≤ 3d2

n2
2

.

Consequently, (2.3.28) holds.

(ii) Let x = (π/6)Eρ̂jk, y = (π/6)∆ρ
jk and z = (π/6)(Eρ̂jk − ρjk) so that Σ̂jk =

2 sin(x+ y) and Σjk = 2 sin(x− z). Due to |z| ≤ (π/6)|Σjk|/(n+ 1) by (2.3.20),

∣∣∣Σ̂ρ
jk − Σjk −

π

3
∆ρ
jk

∣∣∣ = 2
∣∣∣ sin(x+ y)− sin(x− z)− y

∣∣∣
≤ 4|xy|

π
+ y2 + 2|z|

≤ π

9

∣∣∣Σjk∆
ρ
jk

∣∣∣+
π2

36
|∆ρ

jk|
2 +

π|Σjk|
3(n+ 1)

.

Similar to part (i), (2.3.29) follows from E(∆τ
jk)

2 ≤ 1/n3 and E(∆τ
jk)

4 ≤ 3/n2
3.

Proof Of Lemma 2.6. We write

∆(1)
n −∆(0)

n = (En − E)G = n−1
n∑
i=1

G(X i)− EG(X1)

with G(x) =
(
gjk(x)

)
d×d, where gjk(x) = h

ρ
(xj, xk,Σjk)− h

ρ
(xj, xk, 0) for Kendall’s

tau and gjk(x) = h(xj, xk,Σjk) − h(xj, xk, 0) for Spearman’s rho. It follows from

(2.3.18) and (2.3.23) that

|gjk(y)− gjk(x)| ≤ |Σjk| {|yj − xj|+ |yk − xk|} .
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This inequality implies that for all d-dimensional vectors x and y,

‖G(x)−G(y)‖S ≤ max
u:‖u‖2=1

d∑
j=1

d∑
k=1

|ujuk||gjk(x)− gjk(y)|

≤ max
u:‖u‖2=1

d∑
j=1

d∑
k=1

|ujukΣjk| (|xj − yj|+ |xk − yk|)

≤ 2 max
u:‖u‖2=1

d∑
j=1

d∑
k=1

|ujukΣjk(xj − yj)|

≤ 2 max
u:‖u‖2=1

d∑
j=1

|uj(xj − yj)|max
j

∑
k

|ukΣjk|

≤ 2‖Σ‖(2,∞)‖x− y‖2.

Recall that X = (X1, · · · ,Xn)T ∈ Rn×d with iid X i ∼ N(0,Σ), so that the matrix

Z = XΣ−1/2 has iid N(0, 1) entries. Since X i are iid vectors, we may write MG =

EG(X1). Let Zi = Σ−1/2X i. Define a function f : Rn×d → R by

f(Z) = ‖(En − E)G‖S =
∥∥∥ 1

n

n∑
i=1

{
G(Σ1/2Zi)−MG

}∥∥∥
S
.

For matrices V = (V 1, · · · ,V n)T and W = (W 1, · · · ,W n)T in Rn×d, we have

|f(V)− f(W)| =

∣∣∣∣∣ ‖ 1

n

n∑
i=1

G(Σ1/2V i)−MG‖S − ‖
1

n

n∑
i=1

G(Σ1/2W i)−MG‖S

∣∣∣∣∣
≤ 1

n

n∑
i=1

‖G(Σ1/2V i)−G(Σ1/2W i)‖S

≤ 2‖Σ‖(2,∞)
1

n

n∑
i=1

‖Σ1/2V i −Σ1/2W i‖2

≤ 2
‖Σ‖(2,∞)‖Σ‖1/2S√

n
‖V−W‖F .
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We have here a Lipschitz continuity in nd variables. An application of the concen-

tration inequality for Lipschitz continuous functions yields that for any t > 0

P
(
f(Z)− Ef(Z) > 2‖Σ‖(2,∞)‖Σ‖1/2S

t√
n

)
≤ exp

{
−t2/2

}
with f(Z) = ‖(En − E)G‖S = ‖∆(1)

n −∆(0)
n ‖S. From (2.3.10) it follows that

E2f(Z) ≤ E‖∆(1)
n −∆(0)

n ‖2S ≤ C2
1

∑
j 6=k

Σ2
jk

n
+

4d

45n
≤ C2

1‖Σ‖2F − 2d

n
,

where C1 = 2/π + 1 ≤ 2 for Kendall’s tau and C1 ≤ 1 +
√

8/π ≤ 2 for Spearman’s

rho, with C2
1 ≥ 2 + 4/45.

Proof of Lemma 2.7. By Lemmas 2.1 and 2.2,
(
Un−EUn

)
jk

are U-statistics of order

m and their kernels are uniformly bounded by 1, where m = 2 for Kendall’s tau and

m = 3 for Spearman’s rho. Let D = (Djk)d×d with Djk =
(
Un − EUn −m∆(1)

n

)
jk

.

Since m∆(1)
n is the first order Hoeffding decomposition of

(
Un−EUn

)
jk

, Djk is second

order degenerate. Thus, by Arcones and Gine [1993], P
{∣∣Djk

∣∣ > Ct/n
}
≤ 4e−t for

a certain numerical constant C. This gives P
{
‖D‖max > Ct/n

}
≤ 4d2e−t. Because

max|A|≤s ‖DA×A‖S ≤ s‖D‖max, choosing t = s(2 log 2d+ t) completes the proof.

Proof of Lemma 2.8. We prove part (ii) only as part (i) can be found in Wegkamp

and Zhao [2013]. Let x = (π/6)Eρ̂jk, y = (π/6)∆ρ
jk and z = (π/6)(Eρ̂jk − ρjk), so

that Σ̂jk = 2 sin(x+ y) and Σjk = 2 sin(x− z). By (2.3.20),

∣∣∣Σ̂ρ
jk − Σjk − cos((π/6)ρjk)(π/3)∆ρ

jk

∣∣∣
= 2

∣∣∣ sin(x+ y)− sin(x− z)− y cos(x− z)
∣∣∣

≤ 2|z|+ y2

≤ π2

36
|∆ρ

jk|
2 +

π|Σjk|
3(n+ 1)

.
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We have ‖(|∆ρ
jk|2)A×A‖S ≤ s

∥∥∆ρ
∥∥2
max

and ‖(|Σjk|)A×A‖S ≤
√
s‖Σ‖(2,∞). The tail

probability bound for
∥∥∆ρ

∥∥
max

follows by applying the union bound to the Ho-

effding [1963] inequality. As in Wegkamp and Zhao [2013], due to cos((π/6)ρjk) =√
1− Σ2

jk/4,

∥∥∥( cos((π/6)ρjk)∆
ρ
jk

)
A×A

∥∥∥
S
≤

∞∑
m=0

∣∣∣∣(1/2

m

)∣∣∣∣ 4−m∥∥∥∆ρ
∥∥∥
S
.

This completes the proof as
∑∞

m=0

∣∣∣(1/2m )∣∣∣ 4−m = 2−
√

1− 1/4.
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Chapter 3

Nonparametric Estimation of Sparse Precision

Matrices

3.1 Introduction

We consider n iid copies {X i : 1 ≤ i ≤ n} of a p-dimensional Gaussian random

vector X. We define X = (X1, · · · ,Xn)T ∈ Rn×p. We assume X i’s are centered and

scaled, so that EX = 0 and the correlation matrix is given by EXXT = Σ ∈ Rp×p.

Given the population correlation matrix Σ, an important problem is the estimation

of the matrix Θ = Σ−1 also called the precision matrix. Suppose that instead of

X = (X1, · · · , Xp)
T we only observe n iid copies (Y i, 1 ≤ i ≤ n) of the transformed

variable

Y = (f1(X1), · · · , fp(Xp))
T . (3.1.1)

Here fi’s are unknown but strictly increasing. Let Y ∈ Rn×p be the new data matrix

with each row being n independent copies of Y . This model has been referred to as

a multivariate Gaussian transformational family in Mitra and Zhang [2014a]. The

objective is to estimate the latent precision matrix Θ from Y.

If X were observable, a direct inversion of sample correlation matrix Σ̂
s

= XTX/n

estimated from the data would be a straight forward solution especially for p < n

scenarios. However, the modern regime of statistical problems often involve high

dimensional scenarios where p > n → ∞. In such cases, Σ̂
s

is not invertible and
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additional sparsity assumptions are usually imposed on the target Θ for estimation

via regularization. An example of such assumptions are, an upper bound s on the

number of non-zero off diagonal entries of Θ. Another example is an upper bound d

on the maximum number of nonzero entries in any column of Θ; usually referred to

as the degree of the matrix Θ.

Assuming observable X, several regularization strategies have been developed that

aim to efficiently estimate Θ under such sparsity conditions. A detailed theoretical

study of the convergence of such regularized estimates in different matrix norms have

been done. Yuan and Lin [2007] has developed the graphical Lasso (gLasso) procedure

based on Lasso (Tibshirani [1996b]) penalization of off-diagonal entries. The model

selection properties of gLasso has been studied in Ravikumar et al. [2008]. In Roth-

man et al. [2008], a Sparse Permutation Invariant Covariance Estimation (SPICE)

procedure was proposed that is identical to the gLasso formulation. A convergence

rate of
√
s(log p)/n in the spectral norm is established for such estimators. See also

Ravikumar et al. [2011]. Lam and Fan [2009] have studied the gLasso formulation

under concave penalties. Also Banerjee et al. [2008], Friedman et al. [2008] have

proposed similar formulations for estimation of Θ where all elements of Θ are pe-

nalized. In Yuan [2010] and Cai et al. [2011], the authors established a much faster

rate of convergence of d
√

(log p)/n using Dantzig selector (Candes and Tao [2007])

based estimates. In particular the CLIME estimator proposed by Cai et al. [2011]

used Dantzig selector based estimate for each column of Θ separately. Their re-

sults required that the matrix `1 norm of Θ, denoted by ‖Θ‖1 be bounded. Similar

procedures based on Lasso have also been studied. In particular Meinshausen and

Bühlmann [2006] proposed a neighborhood selection method based on Lasso for each

node of a Gaussian graphical model. See also Yang and Kolaczyk [2010], Rocha et al.

[2008] etc. In Sun and Zhang [2013], the authors used the scaled Lasso procedure

developed in Sun and Zhang [2012a] to estimate each column of Θ. In contrast to
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related work in this problem, their approach does not require a cross validation pro-

cedure for estimating the tuning parameter. This scaled Lasso procedure yields a

convergence rate of d
√

(log p)/n under the boundedness assumption on the spectral

norm ‖Θ‖S of the precision matrix Θ. More recently Zhang and Zou [2014] intro-

duced a new convex loss function called D-trace loss and obtained estimates of Θ

under `1 penalization. They provided algorithms for optimization and established

d
√

(log p)/n convergence rate in spectral norm for sub-Gaussian distributions under

irrepresentability conditions.

Considerable research has also been directed towards the study of estimation

of correlation and precision matrices under more general distribution families as in

(3.1.1). When only Y is observable (instead of X), the estimation of the latent

correlation Σ is done through nonparametric estimates. Spectral norm consistency

of nonparametric estimates of the latent correlation matrix Σ has been studied in

detail for elliptical copula families in Han and Liu [2013],Wegkamp and Zhao [2013]

for Kendall’s tau, and for Gaussian copula models in Mitra and Zhang [2014a] for

both Kendall’s tau and Spearman’s rho based nonparametric estimates. In Liu et al.

[2009] a nonparanormal family was defined that relaxes the Gaussianity assumption;

it is a reformulation of the Gaussian copula model and a slight variant of (3.1.1).

Liu et al. [2009] established a convergence rate of
√

(s log p log2 n)/
√
n for estimation

of Θ in spectral norm. In this work the authors used gLasso procedure on sample

correlation matrix constructed via estimation of unknown copula function. In Liu

et al. [2012a], Xue and Zou [2012], the authors proposed nonparametric estimates of

Σ based on Kendall’s tau and Spearman’s rho and proposed its use in estimation

Θ via gLasso, CLIME, neighborhood Lasso and neighborhood Dantzig selector etc.

Assuming bound on ‖Θ‖1, Liu et al. [2012a] established a d
√

(log p)/n convergence

rate for such estimates. In related work, Liu and Wang [2012] developed a calibrated

procedure (TIGER) for estimation of Gaussian graphical models where they used
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square root Lasso (See Belloni et al. [2011]) . Liu et al. [2012b] developed a rank based

CLIME method for more general elliptical models with correlation matrices based on

Kendall’s tau. Zhao and Liu [2014] developed a calibrated estimation procedure for

precision matrices for elliptical models. All these works require bound on matrix `1

norm of the matrix Θ. More recently, Barber and Kolar [2015] developed a Lasso

based procedure for confidence intervals for individual elements of the precision matrix

based on Kendall’s tau estimate of correlation matrix in transelliptical copula models.

We apply the scaled Lasso based procedure described in Sun and Zhang [2013] to

the nonparametric estimates of correlation estimates and establish the d
√

(log p)/n

convergence rate in spectral norm under the weaker condition of bound on ‖Θ‖S. In

particular, Theorem 3.1 gives the detailed convergence rate and related assumptions.

Our work is organized into two sections. In Section 3.2 we describe the scaled Lasso

procedure for nonparametric estimates of precision matrices and provide convergence

rates. In Section 3.3 we describe the scaled Lasso procedure based on nonparametric

correlation matrix estimates and provide probability inequalities necessary for con-

sistency of scaled Lasso estimates. The proof of Theorem 3.1 is similar to the one

in Sun and Zhang [2013]. We nonetheless provide a proof for the sake of completion

and relegate it to the final section.

3.2 Problem Setup & Main Results

We use the following notations. For vectors u ∈ Rp, the `p norm is denoted by

‖u‖p =
(∑d

k=1 |uk|p
)1/p

, with ‖u‖∞ = max1≤k≤d |uk| and ‖u‖0 = #{j : uj 6= 0}.

For matrices A = (Ajk)p×p ∈ Rp×p, the `p → `q operator norm is denoted by

‖A‖p,q = max‖u‖p=1 ‖Au‖q. The `2 → `2 operator norm, known as the spectrum

norm, is ‖A‖S = ‖A‖2,2 = max‖u‖2=1 |uTAu|. The vectorized `∞ and Frobenius

norms are denoted by ‖A‖max = maxj,k |Ajk| and ‖A‖F =
√

trace
(
ATA

)
. For sym-

metric matrices A, the jth eigenvalue of A is denoted by λj(A) so that λ1(A) = ‖A‖S.
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For A,B ⊂ {1, · · · , p}, the matrix AA,B ∈ R|A|×|B| is constructed from A with corre-

sponding rows and columns as indexed in A,B. The matrix A−A,−B ∈ R(p−|A|)×(p−|B|)

will denote the matrix A with indices in A,B not chosen. For any matrix A, Ai·,A·j
will denote the ith row and jth column of A resp. In all subsequent discussion, E and

P denote the expectation and probability measure. Give a function f and an iid

sample {Xi}ni=1, we denote by Enf(X) = 1/n
∑n

i=1 f(Xi).

Finally the asymptotic relation an = O(bn) will imply an ≤ Kbn for some fixed

constant K > 0. The notations a∨ b and a∧ b will denote respectively the maximum

and minimum of a and b.

3.2.1 Nonparametric Estimates of Correlation Matrices

We consider the multivariate nonparametric transformation family as described in

Mitra and Zhang [2014a]. Let Y i = (Yi1, · · · , Yip) with Yij = fj(Xij). Here the

univariate functions fj’s are continuous, monotone and unknown. The objective is

to estimate the inverse of the correlation matrix Σ = EXXT , denoted by Θ = Σ−1

using the observations Y = (Yij)n×p only. To this end, we use the nonparametric

estimates of correlation matrices as follows. The population versions of Kendall’ tau

and Spearman’s rho are given by

τjk = Esgn(Yi1j − Yi2j)sgn(Yi1k − Yi2k), ρjk = 3Esgn(Yi1j − Yi2j)sgn(Yi1k − Yi3k).

(3.2.1)
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The sample Kendall’s tau and Spearman’s rho estimates of dependence between Y·j
and Y·k are given by

τ̂jk =
2

n(n− 1)

∑
1≤i1<i2≤n

sgn(Yi1j − Yi2j)sgn(Yi1k − Yi2k), (3.2.2)

ρ̂jk =

∑n
i=1(rij − (n+ 1)/2)(rik − (n+ 1)/2)√∑n

i=1(rij − (n+ 1)/2)2
√∑n

i=1(rik − (n+ 1)/2)2
, (3.2.3)

where rij denote the rank of Yij among Y·j. We will denote by T, T̂ ∈ Rp×p, the

population and sample version of Kendall’s tau matrix and similarly for R, R̂. Kendall

[1948] and Kruskal [1958] provided a recipe for constructing the correlation matrix

Σ using Kendall’s tau and Spearman’s rho measures of association. Since fj’s are

strictly increasing, it follows from their results that,

Σjk = sin(
π

2
τjk) = 2 sin(

π

6
ρjk). (3.2.4)

Using these identities, nonparametric estimates of Σ based on τ and ρ̂ has been

proposed and analyzed. Let us define,

[Σ̂
τ
]j,k =


sin(

π

2
τ̂jk) j 6= k

1 j = k

, [Σ̂
ρ
]j,k =


2 sin(

π

6
ρ̂jk) j 6= k

1 j = k

. (3.2.5)

See Liu et al. [2012a], Xue and Zou [2012], Han and Liu [2013], Wegkamp and Zhao

[2013], Mitra and Zhang [2014a],,Barber and Kolar [2015] etc. In particular Mitra

and Zhang [2014a] showed that, under the Gaussian copula model in (3.1.1), for any

set A with |A| ⊂ {1, · · · , p} with |A| ≤ m < p and 0 < ε < 1 and some fixed constant
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C > 0,

max
A:|A|≤m

‖(Σ̂
τ
−Σ)A×A‖S ≤ C‖Σ‖S(‖Σ‖1/2S + 1)

√
m log(ep/ε)/n

= f(Σ,m, n, p, ε), say, (3.2.6)

with probability at least 1 − ε. The same error rate is also true for Σ̂
ρ
. These rates

match corresponding results for sample correlation matrix Σ̂
s

(given X is observable)

as provided in Davidson and Szarek [2001]. See also Vershynin [2012] etc.

3.2.2 Inversion of Nonparametric Matrices via Scaled Lasso

We now describe the scaled Lasso procedure (Sun and Zhang [2013]) for estimation

of sparse precision matrix by some Θ̂ so that Θ̂Σ̂ ≈ Ip where Σ̂ = {Σ̂
τ
, Σ̂

ρ
} is

constructed based on data coming from a Gaussian copula model in (3.1.1). For ease

of discussion we only deal with Σ̂
τ

in the following while noting that the same results

hold for Σ̂
ρ
.

Let Θ∗ = (Θ∗ij)p × p be the positive definite target matrix satisfying ΣΘ∗ = Ip.

We define the degree of the matrix Θ∗ as

deg(Θ∗) = max
j
|Sj|+ 1 = d, (3.2.7)

where Sj = {i 6= j : Θ∗ij 6= 0}; number of off-diagonal nonzero elements in the jth

column. Scaled Lasso is used to estimate Θ∗ column by column under the sparsity

condition (3.2.7) . As mentioned in Introduction, one advantage of employing a scaled

Lasso based estimation procedure is due to the relaxation of the condition of bound

in `1 norm of Θ∗. We impose the following spectral norm bound condition on Σ and
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Θ∗, namely

‖Σ‖S ∨ ‖Θ∗‖S = O(1). (3.2.8)

Before we begin our description of the scaled Lasso procedure, let us define the fol-

lowing quantities. Let β ∈ Rp×p and

σ2
j = (Θ∗jj)

−1 β·j = −Θ∗·j(Θ∗jj)−1. (3.2.9)

Clearly then diag(Θ∗) = diag(σ−2j , 1 ≤ j ≤ p) and Θ∗ = β · diag(Θ∗). The scaled

Lasso based inversion is based on the idea of solving the following problem.

{β̂·j, σ̂j} = arg min
b,σ

{
bT Σ̂

τ
b

2σ
+
σ

2
+ λ0

p∑
j=1

|bk|

}
, where bj = −1. (3.2.10)

The penalty function (3.2.10) was defined in Sun and Zhang [2013] based on the theory

of scaled Lasso developed in Sun and Zhang [2012a]. The only difference is that since

we are working with a correlation matrix Σ, the scaling parameter Σ
−1/2
kk = 1 and is

omitted in the penalty term. The tuning parameter is given by

λ0 = A
√

2(log p2)/nε,

where A > 1 and 0 < ε < 1 are fixed constants. We also consider the non-scaled

Lasso problem as given by,

β̂
Lasso

·j = arg min
b

{
bT Σ̂

τ
b

2
+ λ

p∑
j=1

|bk|

}
, where bj = −1. (3.2.11)

The optimization problem in (3.2.10), (3.2.11) are non- convex unless Σ̂
τ

(or Σ̂
ρ
) are

positive semi definite. While the matrices T̂, R̂ are positive semi definite, the matrices
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Σ̂
τ
, Σ̂

ρ
are indefinite. However, according to theories developed in Zhang and Huang

[2008], Zhang [2010], bound on minimum and maximum eigenvalues of submatrices

of a particular order of Σ is sufficient for theoretical guarantees on consistency etc.

of the estimator in (3.2.11). Let us assume the

Sparse Minimum Eigenvalue Condition: λmin(ΣA,A) ≥ c∗ + f(Σ,m, n, p, ε),

(3.2.12)

for all sets A ⊂ {1, · · · , p} with |A| = m ≤ d and some small fixed constant c∗ > 0.

Under the condition that d
√

(log p)/n = o(1), the condition (3.2.12) implies that

λmin(ΣA,A) = c∗ + o(1). The sparse minimum eigenvalue condition (3.2.12) ensures

that

λmin(Σ̂
τ

A,A) > c∗ > 0 for all A ⊂ {1, · · · , p} with |A| ≤ m < d

via (3.2.6) and Weyl’s inequality. The sparsity of Lasso estimator as in (3.2.11) has

been developed in Zhang and Huang [2008] under a sparse Riesz condition (SRC). In

light of assumptions (3.2.8) and (3.2.12), it follows from their theory that ‖β̂
Lasso

·j ‖0 =

O(d). See also Zhang [2010] where variable selection consistency and sign consistency

of parameter estimates for minimax concave penalty has been established under SRC.

The optimization problem in (3.2.11) submits the following KKT conditions.


Σ̂
τ

k·β̂
Lasso

·j (λ) = −λsgn(β̂Lassok,j (λ)) if β̂Lassokj 6= 0

Σ̂
τ

k·β̂
Lasso

·j (λ) ∈ λ[−1, 1] if β̂Lassokj = 0

(3.2.13)
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with β̂Lassojj (λ) = −1. The final solution for (3.2.10) is given by the iterative scheme

σ̂2
j ← [β̂

Lasso

·j ]T Σ̂
τ
β̂
Lasso

·j ,

λ′ ← σ̂2
jλ0,

β̂
Lasso

·j ← β̂
Lasso

·j (λ′).

(3.2.14)

The final estimate is then given by

diag(Θ̃
τ
) = diag(σ̂2

j , 1 ≤ j ≤ p), Θ̃
τ

= −β̂ · diag(Θ̃
τ
). (3.2.15)

The final step of the estimation process involves a symmetrization procedure using

the optimization

Θ̂
τ

= arg min
M : M=MT

‖M− Θ̃
τ
‖1 = max

1≤j≤p

p∑
i=1

|[M− Θ̃
τ
]ij|, (3.2.16)

where Θ̃
τ

is obtained via (3.2.14) and (3.2.15). Before we proceed to bound the

error in estimation of Θ∗ via nonparametric estimate Θ̃
τ
, we first define the following

quantity. This symmetrization step can be solved efficiently via linear programming;

see Yuan [2010]. We state our main theorem concerning the convergence of Θ̂ to Θ∗.

Let us use the notation ρ∗ = ‖Σ‖S and ρ∗ = λmin(Σ).

Theorem 3.1. Let 0 < ε < 1. Also assume that d
√

(log(p/ε))/n < 1. Additionally

let (ρ∗/ρ∗ + 1/2)(
√
ρ∗ + 1)

√
(d log(p/ε))/n < a for some small constant a > 0.

Let Σ satisfies the minimum eigenvalue condition in (3.2.12). Also assume that

‖Σ‖S ∨ ‖Θ∗‖S = O(1). Then

‖Θ̂
τ
−Θ∗‖S ≤ ‖Θ̂

τ
−Θ∗‖1 ≤ C ′1‖Θ∗‖1

d log p

n
+ C ′2

{
max
j

√
Θ∗jj

}
d

√
log p

n
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with probability at least 1− ε and C ′1, C
′
2 > 0 are fixed constants.

It is easy to see that under the stronger condition that ‖Θ∗‖1 = O(1), conver-

gence rate for ‖Θ̂
τ
−Θ∗‖S matches the convergence rate established for Σ̂

τ
in Liu

et al. [2012a] under `1 bound. Also, since ‖Θ∗‖1 = maxj
∑p

i=1 |Θ∗ij| ≤ dmaxi,j |Θ∗ij| ≤

dmaxj |Θ∗jj|, the same convergence rate is retained under the boundedness of ‖Θ∗‖S

and uniform upper bound on the diagonal elements of Θ∗. Also note that the condi-

tion (ρ∗/ρ∗ + 1/2)(
√
ρ∗ + 1)

√
(d log(p/ε))/n is small if

max{ρ∗
√
ρ∗,
√
ρ∗}/
√
d is small which is true for large enough d and ‖Σ‖S bounded.

The results on the consistency of Θ̂
τ

as described in Theorem 3.1 hinges on the

corresponding consistency results for scaled Lasso estimates. Oracle inequalities for

the Lasso has been derived under the so called sign restricted cone invertibility condi-

tions (SCIF) in Ye and Zhang [2010]. Oracle inequalities for scaled Lasso was derived

under those cone conditions in Sun and Zhang [2012a]. Let us write,

Σ̂
τ

=

 Σ̂τ
j,j Σ̂

τ

j,−j

Σ̂
τ

−j,j Σ̂
τ

−j,−j

 . (3.2.17)

Define,

(σ∗j )
2 = βT·jΣ̂

τ
β·j and z∗(j) = ‖Σ̂

τ

−j,j − Σ̂
τ

−j,−jβ−j,j‖∞/σ∗j .

Also let us assume that SCIF1(ξ, S, Σ̂
τ

−j,−j) (See Section 3.3 for definition) is bounded

away from 0. In light of the theory developed in Sun and Zhang [2012a] and Sun and

Zhang [2013], the scaled Lasso results for the nonparametric matrix estimate Σ̂
τ

follows exactly the same way, based on probability bounds for the quantities σ∗j/σj

and z∗(j). We provide the following results which follows from Theorem 3.2, 3.3 in

Section 3.3

Corollary 3.1 (Corollary to Theorem 3.2). Let 0 < ε < 1 and d
√

log(p/ε)/n ≤ 1.
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Then for n large enough and ‖Σ‖S ∨ ‖Θ∗‖S = O(1), with probability at least 1− ε

max
1≤j≤p

|
(
σ∗j/σj

)2 − 1| = O

(√
log(p/ε)

n

)
. (3.2.18)

Corollary 3.2 (Corollary to Theorem 3.3). Let 0 < ε < 1 and d
√

log(p/ε)/n < 1.

Assume that ‖Σ‖S ∨ ‖Θ∗‖S = O(1). Then with probability at least 1− ε

max

{
max
1≤j≤p

‖Σ̂
τ

−j,j − Σ̂
τ

−j,−jβ−j,j‖∞
σ∗j

, max
1≤j≤p

‖Σ̂
τ

−j,j − Σ̂
τ

−j,−jβ−j,j‖∞

}

= O

(√
log(p2/ε)

n

)
.

From Corollaries 3.1, 3.2, it follows using the proofs in Sun and Zhang [2012a]

that

|σ̂j/σ∗j − 1| = OP

(
d log p

n

)
, ‖β̂−j,j − β−j,j‖1/σ∗j = OP

(
d

√
log p

n

)
. (3.2.19)

Using these results, the proof of Theorem 3.1 follows using the same argument as

in Sun and Zhang [2013] with slight changes as appropriate. We provide a detailed

proof in Section 3.4 nonetheless for the sake of completion.

3.3 Scaled Lasso with Nonparametric Correlation Matrix Es-

timate

We define the cone,

C (ξ, S) =
{
u ∈ Rp−1 : ‖uSc‖1 ≤ ξ‖uS‖1

}
(3.3.1)
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and the corresponding sign restricted cone as

C−(ξ, S) =
{
u ∈ C (ξ, S) : ujΣj·u ≤ 0 ∀j /∈ S

}
. (3.3.2)

Let us consider the sign restricted cone invertibility condition given by

SCIF1(ξ, S,Σ) = inf

{
|S|‖Σu‖∞
‖u‖1

: u ∈ C−(ξ, S)

}
> 0. (3.3.3)

The SCIF1 is the most general condition and is weaker than restricted eigenvalue

(RE) condition (Bickel et al. [2009]) and compatibility condition (van de Geer [2007]).

Oracle inequalities for Lasso has been studied in Ye and Zhang [2010] under SCIF.

Oracle inequalities for grouped variables under a group based SCIF has been studied

in Mitra and Zhang [2014b].

We consider the optimization problem (3.2.11). Note that pre-multiplying w−j −

β̂−j,j to the KKT conditions in (3.2.13), it follows that

(w−j − β̂−j,j)(Σ̂
τ

−j,−jβ̂−j,j − Σ̂τ
−j,j) = λ(‖β̂−j,j‖1 − ‖w−j‖1),

which can be rearranged to obtain,

(w−j − β̂−j,j)Σ̂
τ

−j,−jβ̂−j,j(β̂−j,j − β−j,j)

≤ λ(‖β̂−j,j‖1 − ‖w−j‖1) + ‖w−j − β̂−j,j‖1‖Σ̂
τ

−j,j − Σ̂
τ

−j,−jβ−j,j‖∞

≤ λ(‖β̂−j,j‖1 − ‖w−j‖1) + σ∗j z
∗
(j)‖w−j − β̂−j,j‖1. (3.3.4)

Equation (3.3.4) is analogous to the basic inequality which is the starting point for the

analysis of scaled Lasso estimators as described in Sun and Zhang [2012a]. It is easy

to check that the consistency results in Sun and Zhang [2012a], especially Theorem

1 and Theorem 2 (except the asymptotic normality) follow mutatis mutandis and we
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have the convergence result as in (3.2.19). We only need to check that probability

bounds on σ∗j/σj and z∗(j) submit similar rates. The following Theorems 3.2, 3.3

provide explicit rates.

Theorem 3.2. Let us consider the true precision matrix Θ∗. Let us define the degree

of the precision matrix as deg(Θ∗) = maxj |{l : Θ∗lj 6= 0}| = d. Take any 0 < ε <

1/10. Then with probability at least 1− 10ε,

∣∣∣(σ∗j/σj)2 − 1
∣∣∣

≤ C
‖Θ∗·j‖2

Θ∗jj

{
d log(d/ε)

n
+ (‖Σ‖S + ‖Σ‖3/2S )

√
log(1/ε)

n
+ ‖Σ‖S

log(e/ε)

n

}
, (3.3.5)

where C > 0 is a fixed numeric constant.

Proof of Theorem 3.2. Define Aj ⊂ {1, · · · , p} such that |Aj| = |{l : Θ∗lj 6= 0}| ≤

deg(Θ∗) ≡ d ∀j. In the following we omit the superscript ∗ in Θ∗ for ease of

notation. Note that,

(
σ∗j/σj

)2 − 1 =
1

Θjj

ΘT·jΣ̂
τ
Θ·j − 1

=
1

Θjj

{
ΘT·j(Σ̂

τ
−Σ)Θ·j + ΘT·jΣΘ·j

}
− 1

=
1

Θjj

{
ΘT·j(Σ̂

τ
−Σ)Θ·j + Θ2

jjβ
T·jΣβ·j

}
− 1

=
1

Θjj

{
ΘT·j(Σ̂

τ
−Σ)Θ·j + Θjj

}
− 1

= {ΘT·j(Σ̂
τ
−Σ)Θ·j}/Θjj.

Now note that as in Wegkamp and Zhao [2013], using Taylor expansion,

|ΘT·j(Σ̂
τ
−Σ)Θ·j| ≤ π

2
|ΘT·j

{
cos((π/2)T) ◦ (T̂−T)

}
Θ·j|

+
π2

8
|ΘT·j

{
sin((π/2)T̄) ◦ (T̂−T) ◦ (T̂−T)

}
Θ·j|,
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where T̄ is such that [T̄]j,k lies in the interval between [T̂]j,k and [T]j,k. Now using

properties of Hadamard product, we have

|ΘT·j
{

sin((π/2)T̄) ◦ (T̂−T) ◦ (T̂−T)
}

Θ·j| ≤ d‖Θ·j‖22‖(T̂−T)Aj ,Aj‖2max.

Now using [Barber and Kolar, 2015, Lemma C.1] cos((π/2)T) =
∑

r trarb
T
r with

‖ar‖∞, ‖br‖∞ ≤ 1 and
∑

r tr = 4. Thus again from [Barber and Kolar, 2015, Lemma

D.2]

|ΘT·j
{

cos((π/2)T) ◦ (T̂−T)
}

Θ·j| ≤
∑
r

tr|(Θ·j ◦ ar)T (T̂−T)(Θ·j ◦ br)|
≤ 4|ΘT·j(T̂−T)Θ·j|.

We thus have,

|ΘT·j(Σ̂
τ
−Σ)Θ·j| ≤ d

π2

8
‖Θ·j‖22‖(T̂−T)Aj ,Aj‖2max + 2π|ΘT·j(T̂−T)Θ·j|. (3.3.6)

Using Hoeffding inequality, for any t > 0 and some fixed small constant c1 > 0,

P
[
‖(T̂−T)Aj ,Aj‖2max ≤ c1

log d+ t

n

]
> 1− 2e−t. (3.3.7)

Now we use the decomposition from Mitra and Zhang [2014a], namely

T̂−T = 2∆(0)
n + 2(∆(1)

n −∆(0)
n ) + (T̂−T− 2∆(1)

n ), (3.3.8)

where,

[∆(0)
n ]j,k = (En − E)h0(Xj)h0(Xk),

[∆(1)
n −∆(0)

n ]j,k = (En − E)(h(Xj, Xk,Σjk)− h0(Xj)h0(Xk)).
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Here h(Xi1j, Xi1k,Σjk) = E
{

sgn(Xi1j −Xi2j)sgn(Xi1k −Xi2k)|X i1·
}

and h0(X) =

2Φ(X) − 1. We now control each term one by one. First note that from (proof of )

[Mitra and Zhang, 2014a, Lemma 4], for any t > 0,

P

[
|ΘT·j∆(0)

n Θ·j| ≤ ‖Θ·j‖22
{
√

8‖Σ‖S
t

nπ
+

4√
3

√
‖R‖S‖Σ‖S

√
t

nπ
+ 4
‖Σ‖S
nπ

}]

> 1− 2e−t. (3.3.9)

Now note that from [Mitra and Zhang, 2014a, Lemm 6], it follows by Gaussian con-

centration of Lipschitz continuous function that, for any t > 0

|ΘT·j(∆(1)
n −∆(0)

n )Θ·j −M | ≤ 2‖Θ·j‖22‖Σ‖2,∞‖Σ‖1/2S

t√
n

with probability at least 1− 2e−t
2/2. Here M = EΘT·j(∆(1)

n −∆(0)
n )Θ·j. Note that

EΘT·j(∆(1)
n −∆(0)

n )Θ·j
=
∑
l,m

[Θ]l,j[Θ]m,jE[∆(1)
n −∆(0)

n ]l,m

=
∑
l,m

[Θ]lj[Θ]mjE

{
1

n

n∑
i=1

E [g(Xil, Xim,Σlm)− Eg(Xil, Xim,Σlm)]

}

= 0,

so that for any t > 0,

P

[
|ΘT·j(∆(1)

n −∆(0)
n )Θ·j| ≤

√
8‖Θ·j‖22‖Σ‖2,∞‖Σ‖1/2S

√
t

n

]
> 1− 2e−t. (3.3.10)
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Finally note that, the elements of the matrix (T̂ − T − 2∆(1)
n ) are degenerate U-

statistic. Let us write,

|ΘT·j(T̂−T−∆(1)
n )Θ·j| ≤ d‖Θ·j‖22‖(T̂−T− 2∆(1)

n )Aj ,Aj‖max.

Now by using exponential inequality for degenerate U-statistic we have, for any t > 0

we have P{‖(T̂−T− 2∆(1)
n )Aj ,Aj‖max) ≤ c2(log d+ t)/n} > 1− e−t. Thus,

P
[
|ΘT·j(T̂−T−∆(1)

n )Θ·j| ≤ c2‖Θ·j‖22d log d+ dt

n

]
> 1− 4e−t. (3.3.11)

Now using Equations (3.3.6), (3.3.7), (3.3.8), (3.3.9), (3.3.10), (3.3.11) and putting

e−t = ε > 0 the final theorem follows. Note that we have also used the inequalities

‖R‖S ≤ ‖Σ‖S (see [Mitra and Zhang, 2014a, Proposition 1]) and ‖Σ‖2,∞ ≤ ‖Σ‖S.

Theorem 3.3. Let us consider the true precision matrix Θ∗. Define the degree of

the precision matrix as

deg(Θ∗) = max
j
|{l : Θ∗lj 6= 0}| = d.

Let 0 < ε < 1/5. Then with probability at least 1− 5ε,

‖Σ̂
τ

−j,j − Σ̂
τ

−j,−jβ−j,j‖∞ ≤ C

{
(‖Σ‖S‖Θ∗·j‖22 + ‖Θ∗·j‖2‖Σ‖S + 1)

√
log(p/ε)

n

+ ‖Θ∗·j‖2
(√

d log(dp/ε)

n
+
d log(dp/ε)

n

)}
,

where C > 0 is a fixed constant.
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In the following we will prove Theorem 3.3. First note that,

‖Σ̂
τ

−j,j − Σ̂
τ

−j,−jβ−j,j‖∞ =
‖Σ̂

τ

−j,jΘ
∗
j,j + Σ̂

τ

−j,−jΘ
∗
−j,j‖∞

Θ∗j,j

= (Θ∗j,j)
−1‖(Σ̂

τ

−j,· −Σ−j,·)Θ∗·,j‖∞
= (Θ∗j,j)

−1 max
k 6=j

p∑
l=1

(Σ̂τ
kl − Σkl)Θ

∗
lj.

Now to prove Theorem 3.3, we consider the decomposition of Σ̂
τ
−Σ as described in

Mitra and Zhang [2014a],

Σ̂
τ
−Σ = (Σ̂

τ
−Σ)− π

2
(T̂−T) +

π

2

{
(T̂−T)− 2∆(1)

n

}
+ π

(
∆(1)

n −∆(0)
n

)
+ π∆(0)

n . (3.3.12)

The following lemmas control each term in the decomposition term by term.

Lemma 3.1. Take 0 < ε < 1. Then with probability at least 1− ε, we have

‖[∆(0)
n ]−j,·Θ∗·,j‖∞ ≤ (4‖Σ‖S‖Θ∗·j‖22 + 1)

√
log(2p/ε)

n
.

Proof of Lemma 3.1. Note that

‖[∆(0)
n ]−j,·Θ∗·,j‖∞ = max

k 6=j
|
∑
l

[∆(0)
n ]k,lΘ

∗
lj| =

1

n

n∑
i=1

{
h0 (Xik)

∑
l

h0 (Xil) Θ∗lj −M

}
,

whereM = Eh0 (Xik)
∑

l h0 (Xil) Θ∗lj. Let us writeWi = h0 (Xik), Vi =
∑

l h0 (Xil) Θ∗lj

so that we can write

‖[∆(0)
n ]−j,·Θ∗·,j‖∞ =

1

n

∑
i

WiVi − EWiVi.

Recall that h0 (X) = 2Φ(X) − 1. Note that |Wi| ≤ 1 for all i. Now we use the
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symmetrization technique. (see Van Der Vaart and Wellner [1996]). Let (W ′
i , V

′
i )

be iid copies of (Wi, Vi) for all i. Let {εi}n1 be a sequence of Rademacher random

variables so that P(εi = 1) = P(εi = −1) = 1/2 and are independent of {Wi, Vi}n1

Then, for all λ ∈ R

E exp{λ
n∑
i=1

WiVi − EWiVi} = E exp{λ
n∑
i=1

WiVi − EW ′
iV
′
i }

= E exp

{
λE

(
n∑
i=1

(WiVi −W ′
iV
′
i )
∣∣∣WiVi

)}

≤ E exp

{
λ

(
n∑
i=1

(WiVi −W ′
iV
′
i )

)}

= E exp

{
λ

(
n∑
i=1

εi(WiVi −W ′
iV
′
i )

)}

=
∏
i≤n

E exp {λεiWiVi}E exp {−λεiWiVi}

≤
∏
i≤n

E exp
{
λ2V 2

i

}
.

Now using Chernoff bound for any λ > 0,

P

(
1

n

∑
i

(WiVi − EWiVi) > t

)
≤ e−nλt E exp

{
λ
∑
i

(WiVi − EWiVi)

}

≤ e−nλt E exp

{
λ2
∑
i

V 2
i

}
.

Now note that Vi =
∑

l h0 (Xil) Θ∗lj is Lipschitz continuous with Lipschitz constant√
2/π‖Θ∗·j‖2 and EVi = 0, so that using Gaussian concentration of Lipschitz func-

tions (see Borell [1975]),

P
(
|Vi| >

√
2/π‖Σ‖1/2S ‖Θ

∗·j‖2t
)
≤ 2e−t

2/2,

so that E exp(tVi) ≤ exp{(‖Σ‖S‖Θ∗·j‖22t2)/π}. Let c = (‖Σ‖S‖Θ∗·j‖22)/π. Now using
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[Han and Liu, 2013, Lemma A.1], it follows that

E exp

(
Vi√
12c

)2

≤ 2.

Let us write λ20 = 1/(12c) and choose λ =
√

(1/n) log(2p/ε). Note that λ < λ0 for n

large enough. Now take t = Cλ, where choice of C will be specified below. We have,

P

(
1

n

∑
i

(WiVi − EWiVi) > Cλ

)
≤ e−Cnλ

2 [E exp
{
λ2V 2

i

}]n
≤ e−Cnλ

2 [E exp
{
λ20V

2
i

}]nλ2/λ20
≤ e−nλ

2(C−log 2/λ20).

Here in the second inequality, we have used the fact that since x→ xα is concave for

α < 1, and applied Jensen’s inequality. Taking C = (12 log 2/π)‖Σ‖S‖Θ∗·j‖22 + 1, we

have,

P

(∑
l

[∆(0)
n ]k,lΘ

∗
lj > C

√
log(2p/ε)

n

)
≤ ε

2p
.

The other direction also follows similarly using Chernoff bound. Finally the lemma

follows using union bound and the fact that (12 log 2)/π ≤ 4.

Lemma 3.2. Take 0 < ε < 1/2. Then with probability at least 1− 2ε, we have

‖[∆(1)
n −∆(0)

n ]−j,·Θ∗·,j‖∞ ≤ ‖Θ∗·j‖2(‖Σ‖2,∞ + 1)

√
log(p/ε)

n
.

Proof of Lemma 3.2. Let us write gkl(Xik, Xil) = hkl(Xik, Xil,Σkl)− h0 (Xik)h0 (Xil)

and let Mkl = Egkl(Xik, Xil).

∑
l

[∆(1)
n −∆(0)

n ]k,lΘ
∗
lj =

1

n

n∑
i=1

∑
l

(gkl(Xik, Xil)−Mkl)Θ
∗
lj.

Using [Mitra and Zhang, 2014a, Lemma 6], note that, with X = (Xik),Y = (Yik) ∈
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Rn×p

∣∣∣∣∣ 1n
n∑
i=1

∑
l

(gkl(Xik, Xil)−Mkl)Θ
∗
lj −

1

n

n∑
i=1

∑
l

(gkl(Yik, Yil)−Mkl)Θ
∗
lj

∣∣∣∣∣
≤ 1

n

n∑
i=1

∑
l

|Xik − Yik||Σkl||Θ∗lj|+
1

n

n∑
i=1

∑
l

|Xil − Yil||Σkl||Θ∗lj|

≤ 1√
n
‖Σ·k‖2‖Θ∗·j‖2‖X·k −Y·k‖2 +

1√
n
‖Θ∗·j‖2‖X−Y‖F

≤ 1√
n
‖Θ∗·j‖2(‖Σ·k‖2 + 1)‖X−Y‖F .

Thus by Gaussian concentration of Lipschitz continuity we have,

P

(
|
∑
l

[∆(1)
n −∆(0)

n ]k,lΘ
∗
lj| ≤ ‖Θ∗·j‖2(‖Σ·k‖2 + 1)

√
t

n

)
> 2e−t/2.

We have used the fact that E
∑

l[∆
(1)
n −∆(0)

n ]k,lΘ
∗
lj = 0. Thus the final Lemma follows

by union bound and taking e−t/2 = ε.

Now consider the second order degenerate term in the U-statistics representation

of Kendall’s tau.

Lemma 3.3. For any ε > 0 with probability at least 1− ε, we have

‖[(T̂−T)− 2∆(1)
n ]−j,·Θ∗·,j‖∞ ≤ C‖Θ∗·j‖2 {d log(2d/ε)/n} ,

where C > 0 are fixed constants.

Proof of Lemma 3.3. For brevity let us write(T̂ − T) − 2∆(1)
n ≡ D = (Djk)p×p. We

have ‖D−j,·Θ∗·,j‖∞ = maxk 6=j |
∑p

l=1DklΘ
∗
lj| ≤ maxk 6=j ‖DAk,Ak‖S‖Θ

∗·j‖2. Now note

that ‖DAk,Ak‖S ≤ d‖DAk,Ak‖max. From exponential inequality for degenerate U-

statistics it is clear that P(‖DAk,Ak‖max > Ct/n) ≤ 4d2e−t. putting 4d2e−t = ε we

have the result.



62

The final lemma handles the Taylor’s expansion term.

Lemma 3.4. For ε > 0, with probability at least 1− ε,

‖[(Σ̂
τ
−Σ)− π

2
(T̂−T)]−j,·Θ∗·,j‖∞

≤ ‖Θ∗·j‖2
π2 ‖T‖2,∞

√
log(dp/ε)

n2

+
π2

8

√
d log(dp/ε)

n2

 .

Proof of Lemma 3.4. Let us denote (Σ̂
τ
− Σ) − π

2
(T̂ − T) = M = (Mjk)p×p. As

before, ‖M−j,·Θ∗·j‖∞ = maxk 6=j |
∑p

l=1MklΘ
∗
lj|. Define Aj ⊂ {1, · · · , p} such that

|Aj| = |{l : Θ∗lj 6= 0}| ≤ deg(Θ∗) ≡ d ∀j. By Wegkamp and Zhao [2013], Lemma 5 in

Mitra and Zhang [2014a], we have

|Mkl| ≤ π/2|τkl(τ̂kl − τkl)|+ π2/8|τ̂kl − τkl|2,

which implies that

max
k 6=j
|

p∑
l=1

MklΘ
∗
lj| ≤

π

2
‖Θ∗·j‖2‖T‖2,∞ max

k 6=j,l∈Ak
|τ̂kl − τkl|

+
√
d
π2

8
‖Θ∗·j‖2 max

k 6=j,l∈Ak
|τ̂kl − τkl|2.

From Hoeffding’s inequality it follows that P(maxk 6=j,l∈Ak |τ̂kl−τkl| > t) ≤ e−n2t2+log dp.

Setting e−n2t2+log dp = ε yields the result.

Proof of Theorem 3.3 follows.

Proof of Theorem 3.3. The theorem follows directly from Lemmas 3.1, 3.2, 3.3, 3.4.

Final result follows using the fact that ‖T‖S ≤ ‖Σ‖S. Also, we use the fact that for

any symmetric matrix A, ‖A‖2,∞ ≤ ‖A‖S.
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3.4 Proof of Main Theorem

Proof of Theorem 3.1. Let us consider the following definitions using notations from

Sun and Zhang [2013]. Let A,B ⊂ {1, · · · , p} with A∩B = ∅. Also let |A| = a, |B| ≤

b. Define

δ±a (Σ̂
τ
) = max

A,u:‖u‖2=1
±{‖Σ̂

τ

A×Au‖2 − 1}, θ2a,b(Σ̂
τ
) = max

A,B,u,v:‖u‖2=‖v‖2=1
vT Σ̂

τ

A,Bu/n.

(3.4.1)

Note that, from (3.2.6), we have

max
A:|A|≤m

‖(Σ̂
τ
−Σ)A×A‖S ≤ C‖Σ‖S(‖Σ‖1/2S + 1)

√
m log(ep/ε)/n = ρ∗(

√
ρ∗ + 1)c, say,

(3.4.2)

with probability at least 1 − ε for n large enough and some fixed constant C > 0.

In (3.4.2), we have used the definition c = C2

√
m log(ep/ε)/n and ρ∗ = ‖Σ‖S. It is

to be noted that in general Σ̂
τ

may not be positive semi-definite and thus a similar

result for 1 − δ−m(Σ̂
τ
) is not available. Now note that using shifting inequality from

Ye and Zhang [2010], Cai et al. [2010a], for l ≥ d, and setting m = 4l,

SCIF1(ξ, Sj; Σ̂
τ

−j,−j) ≥
1

1 + ξ

{
1− δ−|Sj |+l(Σ̂

τ

−j,−j)− ξ
√
|Sj|
4l
θ
(2)
4l,4l+|S+j|(Σ̂

τ

−j,−j)

}

≥ 1

1 + ξ

{
1− δ−4l(Σ̂

τ
)− ξ

√
d

4l
(1 + δ+4l(Σ̂

τ
))

}

≥ 1

1 + ξ

{
min

A:|A|≤4l
λmin(Σ̂

τ

A×A)− ξ
√
d

4l
max

A:|A|≤4l
‖Σ̂

τ
‖S

}

≥ 1

1 + ξ

{
ρ∗ − ρ∗(

√
ρ∗ + 1)c− ξ

√
d

4l
(ρ∗ + ρ∗(

√
ρ∗ + 1)c)

}
.

The last line of the string of inequalities above follows from Weyl’s inequality and

(3.4.2) as follows. First note that λmin(Σ̂
τ

A×A) ≥ λmin(ΣA×A) − ‖(Σ̂
τ
−Σ)A×A‖S, so
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that taking minimum over all sets A such that |A| ≤ 4l

min
A:|A|≤4l

λmin(Σ̂
τ

A×A) ≥ min
A:|A|≤4l

λmin(ΣA×A)− max
A:|A|≤4l

‖(Σ̂
τ
−Σ)A×A‖S

≥ ρ∗ − ρ∗(
√
ρ∗ + 1)c.

The bound on maxA:|A|≤4l ‖Σ̂
τ
‖S follows using triangle inequality and (3.4.2). Now

take l = ξ2d(ρ∗/ρ∗)
2 > d so that

SCIF1(ξ, Sj; Σ̂
τ

−j,−j) ≥
ρ∗

1 + ξ

{
1

2
− (

ρ∗
ρ∗

+
1

2
)(
√
ρ∗ + 1)c

}
.

Thus it is clear that under the condition of boundedness of ρ∗ = ‖Σ‖S, the quantity

SCIF1(ξ, Sj; Σ̂
τ

−j,−j) is bounded from below for all j. Moreover, note that under the

condition of the theorem, the quantity (ρ∗/ρ∗+1/2)(
√
ρ∗+1)c is small. Now we verify

the convergence rate for Θ̃
τ

in estimating Θ∗. Following Sun and Zhang [2013], we

have

‖Θ̃
τ

·j −Θ∗·j‖1
= ‖

{
−(0, β̂j,j)Θ̃jj − (β−j,j, 0)Θ̃jj

}
−Θ∗·j +

{
−(β̂−j,j, 0) + (β−j,j, 0)

}
Θ̃jj‖1

≤ ‖Θ̃jj(−β−j,j − βj,j)−Θ∗·j‖1 + |Θ̃jj| ‖β̂−j,j − β−j,j‖1

≤ ‖Θ∗·j‖1(Θ̃jj/Θ
∗
jj − 1) + |Θ̃jj| ‖β̂−j,j − β−j,j‖1

≤ ‖Θ·j‖1
∣∣(σ̂j/σj)−2 − 1

∣∣+ (σ̂j/σ
∗)−2(σ∗j/σj)

−1‖β̂−j,j − β−j,j‖1
σjσ∗j

≤ ‖Θ·j‖1C1
d log p

n
+ σ−1j

{
1 + C2

d log p

n

}√
1 + C3

√
log p

n

{
C4d

√
log p

n

}
.
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Here we have used the fact that βjj = β̂jj = 1 and that

|(σj/σ̂j)2 − 1|

= |(σj/σ∗j )2(σ∗j/σ̂j)2 − 1|

≤ |(σj/σ∗j )2 − 1||(σ∗j/σ̂j)2 − 1|+ |(σj/σ∗j )2 − 1|+ |(σ∗j/σ̂j)2 − 1|

= OP(
√

log p/n) OP(d log p/n) +OP(
√

log p/n) +OP(d log p/n) for all j

= OP(d log p/n) for all j.

Thus it follows directly that

‖Θ̃−Θ∗‖1 ≤ C ′1‖Θ∗‖1
d log p

n
+
C ′2
σj
d

√
log p

n
.

Now from (3.2.16) the final statement of the theorem for Θ̂
τ

follows.
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Chapter 4

Inference for Grouped Variables

4.1 Introduction

We consider the linear regression model

y = Xβ + ε, (4.1.1)

where X = (x1, . . . ,xp) ∈ Rn×p is a design matrix, y ∈ Rn is a response vector,

ε ∼ Nn(0, σ2In) with an unknown noise level σ, and β = (β1, . . . , βp)
T ∈ Rp is a vector

of unknown regression coefficients. We are interested in making statistical inference

about a group of coefficients βG = (βj, j ∈ G)T . For small p, the F -distribution, which

is approximately chi-square with proper normalization, provides classical confidence

regions for βG and p-values for testing βG. We want to construct approximate versions

of such procedures for potentially large groups in high-dimensional models where p is

large, possibly much larger than n.

For individual regression coefficients, Zhang and Zhang [2014] proposed a low-

dimensional projection estimator (LDPE) for regular statistical inference at the para-

metric n−1/2 rate under proper conditions. Their results provide

√
n
(
β̂G − βG

)
= N|G|

(
0, σ2VG,G

)
+ RemG (4.1.2)

along with known covariance structure VG,G and sufficient conditions for the asymp-

totic normality, RemG = o(1), when the group size |G| is bounded. For random
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designs, the above covariance structure matches the Fisher information in the least

favorable sub-model in a general context as described in Zhang [2011], and a proof

of the asymptotic efficiency of the LDPE was provided in van de Geer et al. [2014].

Earlier, Sun and Zhang [2012a] proved the consistency and efficiency of a scaled Lasso

estimate of the noise level σ. However, the analysis of the LDPE, which guarantees

‖RemG‖∞ . ‖β‖0(log p)/
√
n, does not directly imply sharp error bound for the `2- or

equivalently chi-square-based group inference for large groups. As Var(χ|G|) ≈ 1/2,

the trivial bound ‖RemG‖2 . |G|1/2‖β‖0(log p)/
√
n yields an extra

√
|G| factor.

Thus, the group inference problem is unsolved when one is unwilling to impose

the condition |G|1/2‖β‖0(log p)/
√
n → 0. Our goal is to construct β̂G satisfying

‖RemG‖2 = o(1) in an expansion of form (4.1.2) with moderately large |G|. The

impact of such a result is certainly beyond F - or chi-square-type statistical inference.

Our approach is based on the natural idea that group sparsity can be exploited in

statistical inference of variable groups. To this end, we propose to use an estimated

efficient score matrix to correct the bias of a scaled group Lasso estimator. This

combines and extends the ideas of the group Lasso Yuan and Lin [2006], scaled Lasso

and LDPE, and will be shown to captures the benefit of group sparsity in both high-

dimensional estimation as in Huang and Zhang [2010] and in bias correction.

The type of statistical inference under consideration here is regular in the sense

that it does not require model selection consistency, and that it attains asymptotic

efficiency in the sense of Fisher information without being super-efficient. A char-

acterization of such inference is that it does not require a uniform signal strength

condition on informative features, e.g. a lower bound on the non-zero |βj| above an

inflated noise level due to model uncertainly adjustment, known as the “beta-min”

condition. Many attempts have been made to assess the model selected by high di-

mensional regularizers; For example, some early work was done in Knight and Fu
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[2000], sample splitting was considered in Wasserman and Roeder [2009] and Mein-

shausen et al. [2009], and subsampling was considered in Meinshausen and Bühlmann

[2010] and Shah and Samworth [2013]. Leeb and Potscher [2006] proved that the sam-

pling distribution of statistics based on selected models is not estimable. Berk et al.

[2010] and Laber and Murphy [2011] proposed conservative approaches. Alternative

approaches were proposed in Lockhart et al. [2014] and Meinshausen [2014].

The basic idea of Zhang and Zhang [2014] and Zhang [2011] is to correct the bias of

high-dimensional regularized estimators by projecting its residual to a direction close

to that of the efficient score. Such bias correction, which has been called de-biasing, is

parallel to correcting the bias of nonparametric estimators in semiparametric inference

Bickel et al. [1993]. Bühlmann [2013] adopted a similar approach to correct the bias

of ridge regression. van de Geer et al. [2014] considered an extension to generalized

linear model. Javanmard and Montanari [2014] obtained sharper results for Gaussian

designs. Belloni et al. [2014] considered estimation of treatment effects with a large

number of controls. Sun and Zhang [2012b], Ren et al. [2013] and Jankova and

van de Geer [2014] considered extensions to graphical models and precision matrix

estimation.

Since our proposed method relies upon group regularized initial estimator, in the

following we provide a brief discussion of the literature on the topic. The group Lasso

Yuan and Lin [2006] can be defined as

β̂(ω) = arg min
β
Lω(β), Lω(β) =

‖y −Xβ‖22
2n

+
M∑
j=1

ωj‖βGj‖2, (4.1.3)

where {Gj, , 1 ≤ j ≤M} forms a partition of the index set {1, . . . , p} of variables. It

is worthwhile to note that when the group effects are being regularized, the choice

of basis XGj = (xk, k ∈ Gj) within the group may not play a prominent role, so

that the design is often “pre-normalized” to satisfy XT
Gj

XGj/n = IGj×Gj as in Yuan
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and Lin [2006]. The group Lasso and its variants have been studied in Bach [2008],

Koltchinskii and Yuan [2008], Obozinski et al. [2008], Nardi and Rinaldo [2008],

Liu and Zhang [2009], Huang and Zhang [2010], and Lounici et al. [2011] among

many others. Huang and Zhang [2010] characterized the benefit of group Lasso in `2

estimation, versus the Lasso Tibshirani [1996a], under the assumption of strong group

sparsity; see (4.2.1). Huang et al. [2009] and Breheny and Huang [2011] developed

methodologies for concave group and bilevel regularization. We refer to Bühlmann

and van de Geer [2011] and Huang et al. [2012] for further discussion and additional

references. More recently, In Bunea et al. [2014], the authors developed a square root

group Lasso procedure based on square root Lasso , developed in Belloni et al. [2011],

that achieves optimal estimation properties with a tuning sequence that bypasses the

need to estimate the scale parameter of the noise.

This paper is organized as follows. In Section 4.2, we describe the main results

of the paper on statistical inference of variable groups. In Section 4.3, we study a

scaled group Lasso needed for the construction in Section 4.2. In Section 4.4, we

present some simulation results to demonstrate the feasibility and performance of the

proposed methods.

4.2 Group Inference

We present our results in five subsections. In Subsection 4.2.1 describes our working

assumption on the availability of a certain initial estimates of β and σ. The working

assumption is based on the existing literature on group Lasso and will be verified in

Section 4.3 under proper conditions. In Subsection 4.2.2 develops bias correction for-

mulations as extension from statistical inference of real parameters. Subsection 4.2.3

provides optimization strategies (see equations (4.2.20) and (4.2.23)) for construction

of inference procedures for groups of variables. Subsection 4.2.4 provides sufficient

conditions (Theorem 4.3) under which a feasible solution to the optimization problem
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(4.2.20) is available. Subsection 4.2.5 discusses strategies for finding feasible solutions.

We use the following notation throughout the paper. For vectors u ∈ Rd, the `p

norm is denoted by ‖u‖p = (
∑d

k=1 |uk|p)1/p, with ‖u‖∞ = max1≤k≤d |uk| and ‖u‖0 =

#{j : uj 6= 0}. For matrix A = (Ajk)d1×d2 ∈ Rd1×d2 , the spectrum norm is denoted

by ‖A‖S = max‖u‖2=‖v‖2=1 u
TAv, the Frobenius norm by ‖A‖F = {trace(ATA)}1/2,

and the nuclear norm by ‖A‖N = max‖B‖S=1 trace(BTA). Given A ⊂ {1, · · · , p}, for

any vector u ∈ Rp, uA ∈ R|A| denotes a vector with corresponding components from

u, XA ∈ Rn×|A| denotes the sub-matrix of X with corresponding columns as indicated

by the set A, X−A denotes the sub-matrix of X with column indices belonging to the

complement of A, and R(XA) denotes the column space spanned by columns of XA.

Additionally, E and P, denote the expectation and probability measure and
D−→ the

convergence in distribution. Finally, β∗ denotes the true regression coefficient vector.

4.2.1 Working assumption based on strong group sparsity

We assume an inherent and pre-specified non overlapping group structure of the

feature set. Put precisely, assume that {1, · · · , p} = ∪Mj=1Gj such that Gj ∩Gk = ∅.

Define dj = |Gj| for all j so that
∑M

j=1 dj = p. For any index set T ⊂ {1, · · · ,M},

we define GT = ∪j∈TGj. In the following, we allow the quantities n, p,M, dj’s etc. to

all grow to infinity.

In light of this group structure, further results on consistency of group regularized

estimators of β∗ will be based on a weighted mixed `(2,1), defined as
∑M

j=1 ωj‖uGj‖2

for u = (uGj ; 1 ≤ j ≤ M) ∈ Rp with uGj ∈ R|Gj |, where ω = (ω1, · · · , ωM) ∈ RM

with ωj > 0 for all j. This norm will be used both as penalty and as a key loss

function. Weighted mixture norm of this type provides suitable description of the

complexity of the unknown β when the following strong group sparsity holds Huang

and Zhang [2010].

Strong group sparsity: With the given group structure {Gj, j = 1, . . . ,M} as
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a partition of {1, . . . , p}, there exists a group-index set, S∗ ⊂ {1, · · · ,M}, such that

|S∗| ≤ g, |GS∗| ≤ s, supp(β∗) ⊂ GS∗ = ∪j∈S∗Gj. (4.2.1)

In this case, we say that the true coefficient vector β∗ is (g, s) strongly group sparse

with group support S∗.

Under the strong group sparsity assumption, various error bounds for group reg-

ularized methods have been established in the literature as we reviewed in the in-

troduction. With the support of the existing results and our own in Section 4.3, we

make the following working assumption.

Working assumption: Suppose that we have estimators β̂
(init)

and σ̂ satisfying

∣∣∣∣ σ̂σ∗ − 1

∣∣∣∣+
1

n1/2

M∑
j=1

ωj

∥∥∥XGj β̂
(init)

Gj
−XGjβ

∗
Gj

∥∥∥
2

= OP

(
s+ g logM

n

)
, (4.2.2)

where ωj ∝
√
|Gj|/n+

√
(2/n) logM , σ∗ = ‖Xβ∗− y‖2/

√
n is an oracle estimate of

the noise level σ, and Gj, s and g are as in (4.2.1).

As we will prove in Section 4.3, the error bound for β̂
(init)

in (4.2.2) is attain-

able under proper conditions on the design matrix if the group Lasso is used with a

consistent estimate of σ, and the error bounds for both β̂
(init)

and σ̂ in (4.2.2) are

attainable if a scaled group Lasso is used. See Corollaries 4.1 and 4.2. The working

assumption exhibits the benefit of strong group sparsity, since a reasonable working

assumption under the `0 sparsity condition ‖β̂‖0 ≤ s would be

∣∣∣∣ σ̂σ∗ − 1

∣∣∣∣+
( log p

n

)1/2
‖β̂

(init)
− β∗‖1 = OP

(
s log p

n

)
. (4.2.3)

Although error bounds in (4.2.2) and (4.2.3) do not dominate each other due to

different interpretation of s when supp(β∗) 6= GS∗ , the right-hand side of (4.2.2) is of

smaller order when s is of the same order in both settings and g � s.
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4.2.2 Bias correction via relaxed projection

Given a regularized initial estimator β̂
(init)

of the regression coefficient vector, Zhang

and Zhang [2014] proposed to use a relaxed projection to correct the bias of β̂
(init)
j

via

β̂j = β̂
(init)
j +

zTj (y −Xβ̂
(init)

)

zTj xj
, (4.2.4)

where zj is designed to be nearly orthogonal to all xk, k 6= j. For the estimation of

βG, a formal vectorization of (4.2.4) is

β̂G = β̂
(init)

G + (ZT
GXG)†ZT

G(y −Xβ̂
(init)

), (4.2.5)

where ZG is an n × |G| matrix and A† denotes Moore-Penrose pseudo inverse of a

matrix A. The problem is to choose β̂
(init)

and ZG.

Zhang and Zhang [2014] proposed two choices of zj to match `1 regularized initial

estimators β̂
(init)

, which naturally controls ‖β̂
(init)

− β∗‖1. The first proposal is a

point zj ≈ zoj in the Lasso path in the regression of xj against X−j = (xk, k 6= j):

xj = X−jγ−j + zoj . (4.2.6)

The Karush-Kuhn-Tucker (KKT) conditions for zj automatically controls ‖zTj X−j‖∞,

and thus

∣∣∣∣∣β̂j − β∗j − zTj ε

zTj xj

∣∣∣∣∣ =

∣∣∣∣∣∣z
T
j X−j(β̂

(init)

−j − β∗−j)
zTj xj

∣∣∣∣∣∣ ≤ ‖z
T
j X−j‖∞‖β̂

(init)

−j − β∗−j‖1
|zTj xj|

in an `∞-`1 split. The second proposal of Zhang and Zhang [2014], closely related

to the first one and given in the discussion section of their paper, is a constrained
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variance minimization scheme

zj = arg min
z

{
‖z‖22 : |zTxj/n| = 1,max

k 6=j
|zTxk/n| ≤ λ′j

}
. (4.2.7)

While the Lasso with penalty level λj provides a feasible solution zj/λ
′
j = (xj −

X−jγ̂−j)/λj for (4.2.7), an advantage of (4.2.7) is a guaranteed bias bound

∣∣∣∣∣β̂j − β∗j − zTj εn
∣∣∣∣∣ ≤ λ′j‖β̂

(init)

−j − β∗−j‖1
n

whenever the optimization problem is feasible. For Gaussian designs, such feasibility

of z = nzoj/x
T
j z

o
j follows from an application of the union bound Javanmard and

Montanari [2014].

The algebraic extension of the above proposals is straightforward. Write

XG = X−GΓ−G,G + Zo
G. (4.2.8)

We may directly approximate Zo
G via a regularized multivariate regression in (4.2.8)

or mimic properties of Zo
G with a regularized optimization scheme. The question is

to make a right choice of the regularization to match a proper initial estimator of

β. One possibility is to use an `1 regularized estimate of Γ−G,j in the univariate

regression of xj against X−G for all individual j ∈ G. This has been considered in

van de Geer [2014]. However, the advantage of such a scheme is unclear compared

with directly using (β̂j, j ∈ G)T with the β̂j in (4.2.4). It is worthwhile to mention

that the central limit theorem for (4.2.4) came with large deviation bounds to justify

Bonferroni adjustments Zhang and Zhang [2014], so that (4.2.4) and its variations can

be used to test H0 : β∗G = 0 versus an alternative hypothesis on ‖β∗G‖∞, especially

when an `1 regularized β̂
(init)

is used van de Geer et al. [2014]. However, we are

interested in extensions of traditional F - or chi-square-type tests for `2 alternatives
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and to take advantage of group sparsity of β∗.

4.2.3 An optimization strategy

In this subsection we propose a multivariate extension of (4.2.7) to match the group

structure and weights in our working assumption (4.2.2).

We write (4.2.5) in terms projections so that the resulting optimization scheme

will be rotation and scale free within the subspaces under consideration. As our goal

in essence is to construct inferential procedure for XGβG, we rewrite the regression

problem (4.1.1) as follows:

y = XGβG +
∑
Gk 6⊆G

XGk\GβGk\G + ε = µG +
∑
Gk 6⊆G

µGk\G + ε. (4.2.9)

Here and in the sequel, the following notation is used. For any A ⊂ {1, . . . , p},

µA = XAβA and QA is the orthogonal projection to R(XA), the column space of

XA, i.e.

QA = XA(XT
AXA)−1XT

A. (4.2.10)

By Q⊥A, we denote orthogonal projection into R⊥(XA). In the simplest case where

the variable group of interest matches the group sparsity in the following sense:

XGβ
∗
G =

∑
Gk∩G 6=∅

XGkβ
∗
Gk
, (4.2.11)

e.g. G = Gj0 for some j0, (4.2.9) becomes

y = µG +
∑

Gk∩G=∅

µGk + ε.
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Let PG be an orthogonal projection matrix close to QG in certain distance and ap-

proximately orthogonal to QGk\G for all k with Gk 6⊆ G. We write (4.2.5) in terms of

projections as

β̂G = (PGXG)†PG

(
y −

∑
Gk 6⊆G

µ̂
(init)
Gk\G

)
, when rank(PGXG) = |G|,(4.2.12)

µ̂G = (PGQG)†PG

(
y −

∑
Gk 6⊆G

µ̂
(init)
Gk\G

)
, when ‖PGQ⊥G‖S < 1, (4.2.13)

where µ̂
(init)
A = XAβ

(init)
A with an initial estimator β̂

(init)
. We note that ‖PGQ⊥G‖S < 1

iff rank(PGXG) = rank(XG), so that the condition in (4.2.13) is slightly weaker than

the condition in (4.2.12). Moreover, ‖PGQ⊥G‖S = ‖PG − QG‖S = cos θmin where

θmin is the minimum principle angle between subspaces R(PG) and R⊥(XG). Thus,

‖PGQ⊥G‖S = 1 iff the two subspaces have a nontrivial intersection.

Given σ̂ an estimate of the noise level, we test the hypothesis H0 : βG = 0 with

the following statistic:

TG =
1

σ̂

∥∥∥∥∥PG

(
y −

∑
Gk 6⊆G

µ̂
(init)
Gk\G

)∥∥∥∥∥
2

. (4.2.14)

A test of this form can be easily converted into elliptical confidence regions for linear

mappings of βG in usual way.

Let PG = ZG(ZT
GZG)†ZT

G and assume rank(ZT
GXG) = |G|. We show that (4.2.12)

and (4.2.13) are consistent with (4.2.5) as follows. Since both ZG and XG are n ×

|G| matrices, we have rank(XG) = rank(ZG) = |G| ≤ n, so that rank(PGQG) =

rank(PGXG) = |G|. It follows that PGXG(PGXG)†PG = PG. As ZT
GXG is a |G| ×

|G| invertible matrix, PGXG(ZT
GXG)−1ZT

G = PG. Since rank(PGXG) = |G|, we

are allowed to cancel PGXG to obtain (PGXG)†PG = (ZT
GXG)†ZT

G. This provides

the consistency between (4.2.12) and (4.2.5). Furthermore, since XG = QGXG =
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(PGQG)†PGXG, we also have XGβ̂G = µ̂G for the consistency of (4.2.13).

Let Q be the projection toR(X). In the low-dimensional case of rank(X) = p < n,

we may set PG = Q
∏

Gk 6⊆G Q⊥Gk\G, so that (4.2.12) is the least squares estimator of

βG and T 2
G/|G| is the F -statistic for testing H0 : βG = 0 when σ̂ is the degree adjusted

estimate of noise level based on the residuals of the least squares estimator. Of course,

we need to relax the requirement of the orthogonality condition PGQGk\G = 0 for all

Gk 6⊆ G in the high-dimensional case.

To find the proper relaxation, we first inspect the deviation of (4.2.12), (4.2.13)

and (4.2.14) from the low-dimensional regression theory. Let β∗ be the true β and

µ∗A = XAβ
∗
A for all A ⊂ {1, . . . , p}. It follows immediately from (4.2.12), (4.2.13) and

(4.2.14) that

β̂G = β∗G + (PGXG)†
(
PGε− RemG

)
, when rank(PGXG) = |G|, (4.2.15)

µ̂G = µ∗G + (PGQG)†
(
PGε− RemG

)
, when ‖PGQ⊥G‖S < 1, (4.2.16)

with a remainder term

RemG =
∑
Gk 6⊆G

PG

(
µ̂

(init)
Gk\G − µ

∗
Gk\G

)
=
∑
Gk 6⊆G

(
PGQGk\G

)(
µ̂

(init)
Gk\G − µ

∗
Gk\G

)
.

Moreover, when β∗G = 0,

∣∣∣∣TG − ‖PGε‖2
σ

∣∣∣∣ ≤
∥∥RemG

∥∥
2

σ̂
+
∣∣∣σ
σ̂
− 1
∣∣∣ ‖PGε‖2

σ
. (4.2.17)

As PG is an orthogonal projection matrix depending on X only, PGε/σ is a standard

normal vector living in the image of PG and ‖PGε/σ‖22 has the chi-square distribution

with rank(PG) degrees of freedom. Thus, chi-square based inference can be carried

out using the projection estimators in (4.2.12) and (4.2.13) and test statistic TG in
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(4.2.14) under proper conditions on ‖RemG‖2 and σ̂. For example,


supt

∣∣∣P{‖(PGXG)(β̂G − β∗G)‖2 ≤ σ̂t
}
− P

{
χ2
|G| ≤ t

}∣∣∣→ 0,

supt

∣∣∣P{‖(PGQG)(µ̂G − µ∗G)‖2 ≤ σ̂t
}
− P

{
χ2
|G| ≤ t

}∣∣∣→ 0,

µ∗G = 0 ⇒ supt

∣∣∣P{T 2
G ≤ t

}
− P

{
χ2
|G| ≤ t

}∣∣∣→ 0,

(4.2.18)

under the conditions ‖RemG‖2 → 0, rank(PG) = |G| and |G|1/2(σ̂/σ − 1)→ 0.

We still need to find an upper bound for ‖RemG‖2. To this end we use (4.2.2) to

obtain

‖RemG‖2 ≤
(

max
Gk 6⊆G

Mkω
−1
k ‖PGQGk

‖S
) ∑
Gk 6⊆G

ωk‖µ̂(init)
Gk
− µGk‖2

= OP

(
s+ g logM

n1/2

)(
max
Gk 6⊆G

Mkω
−1
k ‖PGQGk

‖S
)
, (4.2.19)

whereMk = max‖XGk
uGk‖2=1 ‖XGk\GuGk\G‖2. We note thatMk = 1 when XT

Gk
XGk/n =

Idk×dk . The error bound in (4.2.19) motivates the following extension of (4.2.7):

PG = arg min
P

{
‖PQ⊥G‖S : P = P2 = PT , ‖PGQGk\G‖S ≤ ω′k ∀ Gk 6⊆ G

}
. (4.2.20)

We say that PG is a feasible solution of (4.2.20) if it satisfies all the constraints. We

summarize the above analysis in the following theorem.

Theorem 4.1. Let β̂G be given by (4.2.12) and TG by (4.2.14) with a feasible solution

PG of (4.2.20) with rank(PG) = |G|. Suppose that (4.2.2) holds for β̂
(init)

and σ̂, and

|G|
n
→ 0,

s+ g logM

n1/2

(
|G|1/2

n1/2
+ max

Gk 6⊆G
Mk

ω′k
ωk

)
→ 0, (4.2.21)

with the Mk in (4.2.19). Then, (4.2.18) holds. In particular, with ‖RemG‖2 = oP(1),

(PGXG)
(
β̂G − β∗G

)
= N(0, σ2PG) + RemG. (4.2.22)
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Remark 4.1. The optimization problem (4.2.20) also provides geometric insights. As

we have mentioned earlier, the quantity ‖PGQ⊥G‖S, which equals ‖PG − QG‖S, is

the so-called ‘gap’ between the subspaces spanned by PG and QG, which we try to

minimize. This minimization is done subject to upper-bounds on ‖PGQGk\G‖S. When

p < n and ω′k = 0, PG in (4.2.20) is the projection to the orthogonal complement of∑
Gk 6⊆GR(XGk\G) in R(X), or equivalently the linear space

(∏
Gk 6⊆G Q⊥Gk\G

)
R(X).

Proof of Theorem 4.1. It follows from (4.2.19) and the feasibility of PG in (4.2.20)

that

‖RemG‖2 = oP(1)

in (4.2.15), (4.2.16) under condition (4.2.21) and (4.2.17). In addition, (4.2.2) and

(4.2.21) imply

∣∣∣σ
σ̂
− 1
∣∣∣ = oP(|G|−1/2) +OP(n−1/2) = oP(|G|−1/2),

so that by (4.2.17)

∣∣∣∣TG − ‖PGε‖2
σ

∣∣∣∣ ≤ oP(1) + oP(1)
‖PGε‖2
σ|G|1/2

= oP(1).

The conclusions follow immediately.

A modification of (4.2.20), which removes the factors Mk in condition (4.2.21), is

to write

y = X̃GβG +
∑
Gk 6⊆G

QGk\GµGk + ε,

where X̃G is a n × |G| matrix defined by X̃GvG =
∑M

k=1

(
Q⊥Gk\GXGk∩G

)
vG∩Gk . We

note that X̃G = XG when XT
Gk

XGk/n = IGk×Gk for all k with 0 < |Gk \ G| < |Gk|.
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Let Q̃G be the projection to the column space of X̃G. The optimization scheme and

statistical methods are changed accordingly as follows:

PG = arg min
P

{
‖PQ̃

⊥
G‖S : P = P2 = PT , ‖PGQGk\G‖S ≤ ω′k ∀ k

}
,

β̂G = (PGX̃G)†PG

(
y −

∑
Gk 6⊆G

QGk\Gµ̂
(init)
Gk

)
, when rank(PGX̃G) = |G|,(4.2.23)

TG =
1

σ̂

∥∥∥∥∥PG

(
y −

∑
Gk 6⊆G

QGk\Gµ̂
(init)
Gk

)∥∥∥∥∥
2

.

With {XG,QG} replaced by {X̃G, Q̃G}, our analysis yields the following theorem.

Theorem 4.2. Let PG, β̂G and TG be given by (4.2.23). Suppose that (4.2.2) holds

and

|G|
n
→ 0,

s+ g logM

n1/2

(
|G|1/2

n1/2
+ max

Gk\G 6=∅

ω′k
ωk

)
→ 0. (4.2.24)

Then, (4.2.18) and (4.2.22) hold with {XG,QG} replaced by {X̃G, Q̃G}.

The optimization problems in (4.2.20) and (4.2.23) are still somewhat abstract for

the moment, although our theorems only require feasible solutions. In the following

we prove the feasibility of PG in (4.2.20) for Gaussian designs and describe penalized

regression methods to find feasible solutions of (4.2.20) and (4.2.23).

4.2.4 Feasibility of relaxed orthogonal projection for random

designs

Let ei be the i-th canonical unit vector of Rn. Throughout this subsection, we assume

that the matrix X has iid subGaussian rows eTi X satisfying EX = 0, E(XTX/n) = Σ
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with a positive-definite Σ, and that for certain constant v0 > 1

sup
b6=0

E exp

(
(eTi Xb)2

v0b
TΣb

+
1

v0

)
≤ 2. (4.2.25)

where Let Γ−G,G = Σ−1−G,−GΣ−G,G. We write the regression model (4.2.8) as

XG = X−GΓ−G,G + Zo
G =

M∑
k=1

XGk\GΓGk\G,G + Zo
G. (4.2.26)

Let Po
G be the orthogonal projection to the column space of Zo

G,

Po
G = Zo

G

(
(Zo

G)TZo
G

)†
(Zo

G)T . (4.2.27)

We use the following lemma to evaluate Po
G. The inequality is well known; See for

example Vershynin [2012], and for Gaussian X the supplementary material for Ma

[2013].

Lemma 4.1. Let Bk be matrices of p rows and rank rk. Let Pk be the projection

to the range of XBk and Ω1,2 = ((BT
1 ΣB1)

†)1/2BT
1 ΣB2((B

T
2 ΣB2)

†)1/2. Let r =

rank(Ω1,2) and 1 ≥ λ1 ≥ · · · ≥ λr > 0 be the nonzero singular values of Ω1,2. Define

λmin = λrI{r = r1 = r2}. Then, there exists a numerical constant C0 > 1 such that

when C0v0
√
t/n+ (r1 + r2)/n < ε0 < 1,

P
{
‖((BT

1 ΣB1)
†)1/2BT

1 (XTX/n)B2((B
T
2 ΣB2)

†)1/2 −Ω1,2‖S ≤ ε0
}
≥ 1− e−t,(4.2.28)

and

P

{
‖P1P2‖S ≤

λ1(1 + ε0)

1− ε0
, ‖P1P

⊥
2 ‖2S ≤ 1−

(
λmin(1− ε0)

1 + ε0

)2
}
≥ 1− e−t.(4.2.29)

Moreover, λ1 < 1 iff rank(B1,B2) = r1 + r2 and λmin > 0 iff rank(BT
1B2) = r1 = r2.
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Proof of Lemma 4.1. Let uj, 1 ≤ j ≤ rk, be the eigenvectors of BT
kΣBk correspond-

ing to positive eigenvalues and Uk = (u1, . . . ,urk). Let Zk = XBk((B
T
kΣBk)

†)1/2Uk ∈

Rn×rk . We have EZk = 0, E(ZT
kZk/n) = Irk×rk , E(ZT

1 Z2/n) = UT
1 Ω1,2U2, and

sup
‖b‖2≤1

E exp

(
(eTi Zkb)

2

v0
+

1

v0

)
≤ 2, k = 1, 2.

Moreover, Pk = Zk(Z
T
kZk)

†ZT
k and ‖UT

1 Ω1,2U2‖S = ‖Ω1,2‖S ≤ 1.

For 1 ≤ j ≤ k ≤ 2 and any vectors vk ∈ Rrk with ‖vk‖2 = 1,

vTj

(
ZT
j Zk/n− EZT

j Zk/n
)
vk =

1

n

n∑
i=1

{
(eTi Zjvj)(e

T
i Zkvk)− vTj E(ZT

j Zk/n)vk

}

is an average of iid variables with

E exp

(
(eTi Zjvj)(e

T
i Zkvk)− vTj E(ZT

j Zk/n)vk

v0

)

≤

{
2∏

k=1

√
E exp ((eTi Zkvk)2/v0)

}
e1/v0

≤ 2.

Since the size of an ε-net of the unit ball in Rrk is bounded by (1+2/ε)rk , the Bernstein

inequality implies that for r∗ = r1 + r2 and a certain numerical constant C0,

P
{
‖ZT

j Zk/n− E(ZT
j Zk/n)‖S > C0v0 max

(√
t/n+ r∗/n, t/n+ r∗/n

)}
≤ e−t/3.

This yields (4.2.28) as ‖UT
1 ∆U2‖S = ‖∆‖S for all ∆ of proper dimension.

Suppose rank(Pk) = rk. Let r0 = rank(P1P2) and 1 ≥ λ̂1 ≥ · · · ≥ λ̂r0 > 0 be

the (nonzero) singular values of P1P2. We have ‖P1P2‖S = λ̂1 and ‖P1P
⊥
2 ‖S =

‖P1 −P2‖S =

√
1− λ̂2min with λ̂min = λ̂r0I{r0 = r1 = r2}. By definition,

P1P2 = Z1(Z
T
1 Z1)

−1ZT
1 Z2(Z

T
2 Z2)

−1ZT
2 .
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Since (ZT
kZk)

−1/2ZT
k are unitary maps from the range of Pk to Rrk , the singular values

of P1P2 is the same as those of

(ZT
1 Z1)

−1/2ZT
1 Z2(Z

T
2 Z2)

−1/2.

Now suppose that ‖ZT
j Zk/n − E(ZT

j Zk/n)‖S ≤ C0v0
√
t/n+ r/n ≤ ε0 < 1 for

1 ≤ j ≤ k ≤ 2. Recall that 1 ≥ λ1 ≥ · · · ≥ λr > 0 are the nonzero singular values of

Ω1,2 and λmin = λrI{r = r1 = r2}. As E(ZT
kZk/n) = Irk×rk , we have rank(Pk) = rk.

Moreover, as E(ZT
1 Z2/n) = UT

1 Ω1,2U2 with unitary maps U1 and U2, the Weyl

inequality implies that

λ̂1 ≤
λ1(1 + ε0)

1− ε0
, λ̂min ≥

λmin(1− ε0)
1 + ε0

.

Thus, (4.2.29) holds. As the conditions for λ1 < 1 and λmin > 0 follow from the

positive-definiteness of Σ, the proof is complete.

As we have discussed below (4.2.14), when Po
G is used, (4.2.12) has the interpre-

tation as

β̂G = (Po
GXG)†Po

G

(
y − µ̂(init)

−G

)
=
(

(Zo
G)TXG

)†
(Zo

G)T
(
y −X−Gβ̂

(init)

−G

)
.

Theorem 4.3. Suppose the subGaussian condition (4.2.25) holds with

0 < c∗ ≤eigen(Σ) ≤ c∗ and fixed {v0, c∗, c∗}.

Let ω′k = ξn−1/2
(√
|G|+ |Gk \G| +

√
log(M/δ)

)
, λmin be the smallest eigenvalue of

{Σ−1/2G,G (Σ−1)G,GΣ
−1/2
G,G }1/2, ξn−1/2

(√
|G| +

√
log(M/δ)

)
≤ ηn, and an = λmin(1 −

ηn)/(1 + ηn). Then, there exist numerical constants ε0 ∈ (0, 1) and ξ0 <∞ such that
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when ξ ≥ ξ0v0 and ηn ≤ ε0,

P


(4.2.20) has a feasible solution PG with

rank(PGXG) = |G| and ‖PGQ
⊥
G‖S ≤

√
1− a2n

}
≥ 1− δ. (4.2.30)

Let β̂G and TG be as in (4.2.12) and (4.2.13). Suppose that (4.2.2) holds for β̂
(init)

and σ̂, and

|G|
n
→ 0, max

Gk\G6=∅

|Gk|
n
→ 0,

s+ g logM

n1/2

(
|G|1/2

n1/2
+ max

Gk\G 6=∅

ω′k
ωk

)
→ 0. (4.2.31)

Then, (4.2.18) and (4.2.22) hold with ‖RemG‖2 = oP(1).

Proof of Theorem 4.3. By (4.2.27), Po
G is the orthogonal projection to the range of

Zo
G = XBo

G with Bo
G = (Σ−1)∗,G(Σ−1)−1G,G. By definition, QGk\G is the projection to

the range of XGk\G = XBGk\G and QG to the range of XG = XBG, where BGk\G

and BG are 0-1 diagonal matrices projecting to the indicated spaces. Define Ω =

Σ
−1/2
G,G

{
(Σ−1)G,G}1/2. We have BT

Gk\GΣBo
G = ΣGk\G,∗B

o
G = 0, BT

GΣBo
G = ΣG,∗B

o
G =

(Σ−1)G,G = (Bo
G)TΣBo

G and

(BT
GΣBG)−1/2BT

GΣBo
G

(
(Bo

G)TΣBo
G

)−1/2
= Σ

−1/2
G,G

{
(Σ−1)G,G}1/2 = Ω ∈ R|G|×|G|.

Moreover, Ω = Σ
−1/2
G,G

{
(Σ−1)G,G}1/2 is a |G|× |G| matrix of rank |G| and the smallest

singular value of Ω is λmin. Thus, by (4.2.29) of Lemma 4.1 and the definition of ω′k

and an,

P
{
‖PGQGk\G‖S ≤ ω′k ∀k ≤M, ‖PGQ⊥G‖S ≤

√
1− a2n

}
≥ 1− δ.

This yields (4.2.30). It remains to proof maxGk\G 6=∅Mk = OP(1) in view of Theorem

4.1. To this end, we notice that due to the condition |Gk|+ g logM � n, (4.2.28) of
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Lemma 4.1 with B1 = B2 implies ‖XT
AXA/n−ΣA,A‖S = oP(1) for both A = Gk and

A = Gk \G and all k with Gk \G 6= ∅, so that maxGk\G 6=∅Mk = oP(1) +O(1).

4.2.5 Finding feasible solutions

While (4.2.30) of Theorems 4.3 guarantees a feasible solution of (4.2.20), we discuss

here penalized multivariate regression methods for finding feasible solutions of (4.2.20)

and (4.2.23). As the only difference between (4.2.20) and (4.2.23) is the respective use

of XG and X̃G. We provide formulas here only for (4.2.20), with the understanding

that formulas for (4.2.23) can be generated in the same way with XG replaced by X̃G.

In view (4.2.26), a general formulation of the penalized multivariate regression is

Γ̂−G,G = arg min
Γ−G,G

 1

2n

∥∥∥∥∥XG −
∑
Gk 6⊆G

XGk\GΓGk\G,G

∥∥∥∥∥
2

F

+R(Γ−G,G)

 , (4.2.32)

where ‖ · ‖F is the Frobenius norm and R(Γ−G,G) is a penalty function. Define

ZG = XG −
∑
Gk 6⊆G

XGk\GΓ̂Gk\G,G, PG = ZG(ZT
GZG)−1ZT

G. (4.2.33)

Our main interest is to find a feasible solutions of (4.2.20) and (4.2.23), not to estimate

Γ−G,G.

The following weighted group nuclear penalty matches the dual of the constraint

in (4.2.20) and (4.2.23):

R(Γ−G,G) =
∑
Gk 6⊆G

ξω′′k
n1/2

∥∥∥XGk\GΓGk\G,G

∥∥∥
N
. (4.2.34)

It follows from the KKT conditions for (4.2.32) and (4.2.34) that

∥∥QGk\GZG/
√
n
∥∥
S
≤ ξω′′k . (4.2.35)
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If we set ω′′k = ωk in (4.2.34), then conditions (4.2.21) and (4.2.24) become

ξ‖(ZT
GZG/n)−1/2‖S

s+ g logM

n1/2
→ 0, (4.2.36)

provided maxGk 6⊆GMk = O(1) in the case of Theorem 4.1. When the group sizes are

not too large, one may even consider to replace the weighted group nuclear penalty

with a weighted group Frobenius penalty

R(Γ−G,G) =
∑
Gk 6⊆G

ξω′′k
n1/2

∥∥∥XGk\GΓGk\G,G

∥∥∥
F

as this can be conveniently computed using the group Lasso software.

Remark 4.2. Compared with existing sample size condition n1/2 � ‖β‖0 log p for

statistical inference of a univariate parameter at n−1/2 rate, the sample size con-

ditions in (4.2.21), (4.2.24) (4.2.31) and (4.2.36) clearly demonstrate the benefit of

group sparsity as in Huang and Zhang [2010]. Moreover, the extra factor
√
|G| is

removed in a number of scenarios even in case of large group sizes. For example |G| .

minGk 6⊆G{|Gk| + log(M/δ)} in (4.2.24) and (4.2.31), or ξ‖(ZT
GZG/n)−1/2‖S � |G|1/2

in (4.2.36).

4.3 Mixed Norm Consistency Results

Using the group sparsity of the regression coefficient vector and sparse eigenvalue con-

ditions on the design matrix, Huang and Zhang [2010] provided `2 oracle inequalities

to show the benefits of the group Lasso over the Lasso. In this section we provide

similar results on mixed weighted norms for both the group Lasso and the scaled

group Lasso under different conditions on the design.
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4.3.1 Assumptions for fixed design matrix

In the Lasso problem, performance bounds of the estimator are derived based on

various conditions on the design matrix, for example, restricted isometry property

Candes and Tao [2005], the compatibility condition van de Geer [2007], the sparse

Riesz condition Zhang and Huang [2008], the restricted eigenvalue condition Bickel

et al. [2009], Koltchinskii [2009], and cone invertibility conditions Ye and Zhang [2010].

van de Geer and Bühlmann [2009] showed that the compatibility condition is weaker

than the restricted eigenvalues condition for the prediction and `1 loss, while Ye

and Zhang [2010] showed that both conditions can be weakened by cone invertibility

conditions. In the following, we define grouped versions of such conditions.

Let us first define a group wise mixed norm cone for T ⊂ {1 · · · ,M} and ξ ≥ 0

as

C (G)(ξ,ω, T ) =

{
u :

∑
j∈T c

ωj‖uGj‖2 ≤ ξ
∑
j∈T

ωj‖uGj‖2 6= 0

}
. (4.3.1)

Following Nardi and Rinaldo [2008] and Lounici et al. [2011], the restricted eigenvalue

(RE) is defined as

RE(G)(ξ,ω, T ) = inf
u

{
‖Xu‖2√
n‖uGT ‖2

: u ∈ C (G)(ξ,ω, T )

}
. (4.3.2)

For the weighted `2,1 norm, the group-wise compatibility constant (CC) can be defined

as

CC(G)(ξ,ω, T ) = inf
u

 ‖Xu‖2
√∑

j∈T ω
2
j

√
n
∑

j∈T ωj‖uGj‖2
: u ∈ C (G)(ξ,ω, T )

 . (4.3.3)

We also introduce the notion of group wise cone invertibility factor and extend it to

sign-restricted cone invertibility factor. The cone invertibility factor (CIF) is defined
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as

CIF
(G)
1 (ξ,ω, T ) = inf

u∈C (G)(ξ,ω,T )

maxj

[
ω−1j ‖XT

Gj
Xu‖2

]∑
j∈T ω

2
j

n
∑

j∈T ωj‖uGj‖2
. (4.3.4)

Now we define the sign-restricted cone as

C (G)
− (ξ,ω, T ) =

{
u : u ∈ C (G)(ξ,ω, T ), uTGjX

T
Gj

Xu ≤ 0 ∀j ∈ T c
}
, (4.3.5)

and the group-wise sign-restricted cone invertibility factor (SCIF) as

SCIF
(G)
1 (ξ,ω, T ) = inf

u∈C
(G)
− (ξ,ω,T )

maxj

[
ω−1j ‖XT

Gj
Xu‖2

]∑
j∈T ω

2
j

n
∑

j∈T ωj‖uGj‖2
. (4.3.6)

It follows from ‖Xu‖22
/

maxj(ω
−1
j ‖XT

Gj
Xu‖2) ≤

∑
j ωj‖uGj‖2 ≤ (1+ξ)

∑
j∈T ωj‖uGj‖2

and the Cauchy-Schwarz inequality that

(RE(G)(ξ,ω, T ))2 ≤ (CC(G)(ξ,ω, T ))2 ≤ (ξ + 1) CIF
(G)
1 (ξ,ω, T ). (4.3.7)

Moreover, the SCIF is always no smaller than the CIF. Thus, following (4.3.7), the re-

stricted eigenvalue condition RE(G)(ξ,ω, T ) > κ0 implies that all the other quantities

are bounded from below by κ0. In the following we derive the mixed norm consistency

results for the non-scaled group Lasso problem in Theorem 4.4 and extend it to the

scaled group Lasso in Theorem 4.5. We establish these results under the weakest

assumption on the SCIF.

The SCIF in (4.3.6) will be used to derive oracle inequalities for the prediction

and weighted `2,1 loss. For the `2 loss, we define the SCIF as

SCIF
(G)
2 (ξ,ω, T ) = inf

u∈C
(G)
− (ξ,ω,T )

maxj

[
ω−1j ‖XT

Gj
Xu‖2

]
(
∑

j∈T ω
2
j )

1/2

n‖u‖2/(1 + ξ)
. (4.3.8)
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We may also use the `2 version of the CIF, denoted by CIF
(G)
2 (ξ,ω, T ) and defined

by replacing the sign-restricted cone C (G)
− (ξ,ω, T ) with the cone in (4.3.1). It follows

from a shifting inequality Cai et al. [2010a], Ye and Zhang [2010] that

ωmin

√
s‖u‖2

∑
j∈S∗

ωj‖uGj‖2 ≤ 3
(∑
j∈S∗

ω2
j

)
max
|T |≤s
‖uGT ‖22

for u ∈ C (G)(3,ω, S∗) and |S∗| ≤ s, where ωmin = min1≤j≤M ωj. Thus,

(∑
j∈S∗ ω

2
j

)1/2
SCIF

(G)
2 (3,ω, S∗)

≤
(∑

j∈S∗ ω
2
j

)1/2
CIF

(G)
2 (3,ω, S∗)

≤
3
∑

j∈S∗ ω
2
j/(ωmin

√
s)

min|T |≤s(RE(G)(3,ω, T ))2
.

Again, the cone invertibility factors provide error bounds of sharper form than (4.3.2),

in view of Theorem 4.4 below and Theorem 3.1 of Lounici et al. [2011].

4.3.2 Mixed norm consistency for group Lasso

Theorem 4.4. Let β̂ = β̂(ω) be a solution of (4.1.3) with data (X,y) and β∗ be a

vector with supp(β∗) ⊂ GS∗ for some S∗ ⊂ {1, · · · ,M}. Let ξ > 1 and define

E =

{
max

1≤j≤M

‖XT
Gj

(y −Xβ∗)‖2
ωjn

≤ ξ − 1

ξ + 1

}
. (4.3.9)

Then in the event E, we have

‖Xβ̂ −Xβ∗‖22/n ≤
{2ξ/(ξ + 1)}2

∑
j∈S∗ ω

2
j

SCIF
(G)
1 (ξ,ω, S∗)

, (4.3.10)

and

{ M∑
j=1

ω2
j

(‖β̂Gj − β∗Gj‖2
ωj

)q}1/q

≤
2ξ
(∑

j∈S∗ ω
2
j

)1/q
SCIF(G)

q (ξ,ω, S∗)
, q = 1, 2. (4.3.11)
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Moreover, if the regression model in (4.1.1) holds with Gaussian error and a design

matrix X satisfying maxj≤M ‖XGj/
√
n‖S ≤ 1, then

P(E) > 1− δ, (4.3.12)

when ωj ≥ Aσ
{√

dj/n+
√

(2/n) log(M/δ)
}

for some 0 < δ < 1 and A ≥ (ξ +

1)/(ξ − 1).

Remark 4.3. From Theorem 4.4, max{‖β̂ − β∗‖22,
∑M

j=1 ωj‖β̂Gj − β
∗
Gj
‖2} = O((s +

g logM)/n) when the SCIF can be treated as constant. This shows the benefit of

the group Lasso compared with the Lasso as in Huang and Zhang [2010]. The same

convergence rate can be derived from the `2 consistency result in Huang and Zhang

[2010]. Their result however, is derived under a sparse eigenvalue condition on the

design matrix X.

Proof of Theorem 4.4. The KKT conditions for the group Lasso asserts that

1

n
XT
Gj

(y −Xβ̂) = ωjβ̂Gj/‖β̂Gj‖2, β̂Gj 6= 0,

1

n
‖XT

Gj
(y −Xβ̂)‖2 ≤ ωj, β̂Gj = 0.

(4.3.13)

It follows that in the event E

ω−1j ‖XT
Gj

(Xβ̂ −Xβ∗)‖2/n ≤ 1 + ‖XT
Gj
ε‖2/(nωj) ≤ 2ξ/(ξ + 1). (4.3.14)

Now take any w ∈ Rp. Pre-multiplying by (β̂Gj −wGj)
T on both sides in (4.3.13),

we have

(β̂ −w)TXT (ε−X(β̂ − β∗))/n ≥
M∑
j=1

ωj‖β̂Gj‖2 −
M∑
j=1

ωj‖wGj‖2.
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Rearranging we get,

1

n
(Xβ̂ −Xβ∗)T (Xβ̂ −Xw) +

∑
j 6∈S∗

ωj‖β̂Gj −wGj‖2

≤
∑
j 6∈S∗

ωj‖β̂Gj −wGj‖2 −
M∑
j=1

ωj‖β̂Gj‖2 +
M∑
j=1

ωj‖wGj‖2 + (β̂ −w)TXTε/n

≤
∑
j∈S∗

ωj‖β̂Gj −wGj‖2 + 2
∑
j 6∈S∗

ωj‖wGj‖2 +
M∑
j=1

‖β̂Gj −wGj‖2‖XT
Gj
ε‖2/n

≤
∑
j∈S∗

ωj‖β̂Gj −wGj‖2 + 2
∑
j 6∈S∗

ωj‖wGj‖2 +
ξ − 1

ξ + 1

M∑
j=1

ωj‖β̂Gj −wGj‖2.

It follows that

1

n
(Xβ̂ −Xβ∗)T (Xβ̂ −Xw) +

2

ξ + 1

∑
j 6∈S∗

ωj‖β̂Gj −wGj‖2

≤ 2ξ

ξ + 1

∑
j∈S∗

ωj‖β̂Gj −wGj‖2 + 2
∑
j /∈S∗

ωj‖wGj‖2.

Putting w = β∗ and h = β̂ − β∗, we have

(1 + ξ)‖Xh‖22/n+ 2
∑
j /∈S∗

ωj‖hGj‖2 ≤ 2ξ
∑
j∈S∗

ωj‖hGj‖2,

whence it follows that h ∈ C (G)(ξ,ω, S∗). Moreover, from KKT conditions (4.3.13),

pre-multiplying both sides by hGj for j /∈ S∗, we have in the event E ,

hGjX
T
Gj

Xh/n ≤ ‖hGj‖2
(
‖XT

Gj
ε‖2/n− ωj

)
≤ 0.
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Hence h ∈ C (G)
− (ξ,ω, S∗). Consequently, by (4.3.6) and (4.3.14),

(1 + ξ)‖Xh‖22/n
2ξ
∑

j∈S∗ ω
2
j

≤
∑

j∈S∗ ωj‖β̂Gj − β
∗
Gj
‖2∑

j∈S∗ ω
2
j

≤
maxj ω

−1
j ‖XT

Gj
Xh‖2

n SCIF
(G)
1 (ξ,ω, S∗)

≤ 2ξ/(ξ + 1)

SCIF
(G)
1 (ξ,ω, S∗)

.

The bound for the weighted `2,1 loss follows as
∑M

j=1 ωj‖hGj‖2 ≤ (1+ξ)
∑

j∈S∗ ωj‖hGj‖2.

The proof for the `2 loss is nearly identical and thus omitted.

Finally, we prove (4.3.12). As ε ∼ Nn(0, σ2In), it follows from the Gaussian

concentration inequality that for any 0 < δ < 1, with probability at least 1− δ,

‖XT
Gj
ε‖2/(σ‖XGj‖S) ≤ ‖ε/σ‖2 ≤

√
n
{√

dj +
√

2 log(1/δ)
}
.

The result in (4.3.12) follows by an application of union bound.

4.3.3 Scaled Group Lasso

In the optimization problem (4.1.3), scale-invariance considerations have not been

taken into account. Usually the individual penalty level ωj’s could be chosen pro-

portional to the scale σ as a remedy. This issue has been discussed and studied, as

pertaining to the Lasso problem, in several literature. See Huber [2011], Städler et al.

[2010], Antoniadis [2010], Sun and Zhang [2010], Belloni et al. [2011], Sun and Zhang

[2012a], Sun and Zhang [2013] and many more. In Bunea et al. [2014], the authors

extended the idea of square root Lasso in Belloni et al. [2011] to group Lasso prob-

lems. They developed the so-called group square root Lasso (GSRL) procedure that

bypasses the need to estimate the unknown scale parameter σ. In our development,

we follow the recipe prescribed in Sun and Zhang [2012a] which provides an iterative

scheme for estimation of the scale parameter σ and thereby that of ωj’s and thus

obviates the need for cross validation.
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Following Antoniadis [2010] we define an optimization problem,

(β̂, σ̂) = arg min
β,σ

Lω(β, σ), (4.3.15)

where Lω(β, σ) =
‖y −Xβ‖22

2nσ
+

(1− a)σ

2
+

M∑
j=1

ωj‖βGj‖2. (4.3.16)

Following Sun and Zhang [2010] we define an iterative algorithm for the estimation

of {β, σ},

σ̂(k+1) ← ‖y −Xβ̂
(k)
‖2/
√

(1− a)n,

ω′ ← σ̂(k+1)ω,

β̂
(k+1)

← arg minβ Lω′(β),

(4.3.17)

where Lω′(β) was as defined in (4.1.3). Due to the convexity of the joint loss function

Lω(β, σ), the solution of (4.3.15) and the limit of (4.3.17) give the same estimator,

which we call scaled group Lasso. The constant a ≥ 0 provides control over the

degrees of freedom adjustments. In practice, for scaled group Lasso in the p > n

setting, we take a = 0 for all subsequent discussions. It is clear that that with a = 0

and ω′ = σ̂ω, one has σ̂Lω(β, σ̂) = Lω′(β)+ σ̂2/2. The algorithm in (4.3.17) suggests

a profile optimization approach. The following lemma is similar to Proposition 1 in

Sun and Zhang [2012a] and characterizes the solution via partial derivative of the

profile objective.

Lemma 4.2. Let β̂(ω) denote a solution of the optimization problem in (4.1.3).

Then, β̂(σω) is a minimizer of Lω(β, σ) in (4.3.16) for given σ, and the profile loss

function Lω(β̂(σω), σ) is convex and continuously differentiable in σ with

∂

∂σ
Lω(β̂(σω), σ) =

1

2
− ‖y −Xβ̂(σω)‖22

2nσ2
. (4.3.18)
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Moreover, the algorithm in (4.3.17) converges to a minimizer (β̂, σ̂) in (4.3.15) sat-

isfying β̂ = β̂(σ̂ω), and the estimator β̂ and σ̂ are scale equivariant in y.

Proof of Lemma 4.2. For η ≥ 0 define

Lω(β, σ, η) =
‖y −Xβ‖22

2nσ
+
σ

2
+

M∑
j=1

ωj‖βGj‖
1+η
2 +

ησ2

2

and β̂(σω, η) = arg minβ Lω(β, σ, η). As Lω(β, σ, η) is convex in (β, σ), the profile

loss Lω(β̂(σω, η), σ, η) is convex in σ for all η ≥ 0. Note that for η > 0

∂

∂σ
Lω(β̂(σω, η), σ, η)

=

{
∂

∂θ
Lω(θ, σ, η)

∣∣∣
θ=β̂(σω,η)

}T
∂β̂(σω, η)

∂σ
+
∂

∂t
Lω(β̂(σω), t, η)

∣∣∣
t=σ

= 1/2− ‖y −Xβ̂(σω, η)‖22/(2nσ2) + ησ

as all derivatives involved are continuous. Moreover, as Lω(β, σ) = Lω(β, σ, 0) is

strictly convex in Xβ,

lim
η→0+

∂

∂σ
Lω(β̂(σω, η), σ, η)→ 1/2− ‖y −Xβ̂(σω)‖22/(2nσ2).

Consequently,

Lω(β̂(σ2ω), σ2)− Lω(β̂(σ1ω), σ1) = lim
η→0+

∫ σ2

σ1

{ ∂

∂σ
Lω(β̂(σω, η), σ, η)

}
dσ

=

∫ σ2

σ1

{
1/2− ‖y −Xβ̂(σω)‖22/(2nσ2)

}
dσ.

All other claims follow from the joint convexity of Lω(β, σ) and the strict convexity

of the loss function in Xβ.

We now present the consistency theorem for scaled group Lasso which extends
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Theorem 4.4 by providing convergence results for the estimate of scale. Define

µ(ω, ξ) =
2ξ
∑

j∈S∗ ω
2
j

SCIF
(G)
1 (ξ,ω, S∗)

, τ− =
2µ(ω, ξ)(ξ − 1)

ξ + 1
, τ+ =

τ−
2

+ µ(ω, ξ).

Let md,n be the median of the beta(d/2, n/2− d/2) distribution and define

ω∗,j ≥
√
mdj ,n +

√
2 log(M/δ)

(n ∨ 2)− 3/2
, A∗ =

(ξ + 1)/(ξ − 1)√
1− 2µ(ω∗, ξ)(ξ + 1)/(ξ − 1)

,

where ω∗ is the vector with elements ω∗,j. We will show that
√
mdj ,n ≤ (dj/n)1/2 +

n−1/2 in the proof of the following theorem.

Theorem 4.5. Let {β̂, σ̂} be a solution of the optimization problem (4.3.16) with

data (X,y) and β∗ be a vector with supp(β∗) ⊂ GS∗ for some S∗ ⊂ {1, · · · ,M}. Let

ξ > 1.

(i) Suppose SCIF
(G)
1 (ξ,ω, S∗) > 0 in (4.3.6) and τ+ < 1. Define the following event

E =

{
max

1≤j≤M

‖XT
Gj

(y −Xβ∗)‖2
ωjnσ∗/

√
1 + τ−

<
ξ − 1

ξ + 1

}
, (4.3.19)

where σ∗ = ‖y −Xβ∗‖2/
√
n is the oracle noise level. Then in the event E, we have

σ∗√
1 + τ−

≤ σ̂ ≤ σ∗√
1− τ+

, (4.3.20)

‖Xβ̂ −Xβ∗‖22/n ≤
(σ∗)2{2ξ/(ξ + 1)}2

∑
j∈S∗ ω

2
j

(1− τ+)SCIF
(G)
1 (ξ,ω, S∗)

, (4.3.21)

and

{ M∑
j=1

ω2
j

(‖β̂Gj − β∗Gj‖2
ωj

)q}1/q

≤
2σ∗ξ

(∑
j∈S∗ ω

2
j

)1/q
√

1− τ+SCIF(G)
q (ξ,ω, S∗)

, q = 1, 2. (4.3.22)
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(ii) Suppose the regression model in (4.1.1) holds with Gaussian error and a design

matrix satisfying maxj≤M ‖XGj/
√
n‖S ≤ 1. If

√
nµ(ω, ξ)→ 0, then

√
n (σ̂/σ − 1)

D−→ N(0, 1/2). (4.3.23)

Moreover, if ωj = Aω∗,j with A ≥ A∗, then

P(E) ≥ 1− δ. (4.3.24)

Corollary 4.1. Consider the setup of Theorem 4.5 (ii). Assume that the design

matrix X satisfies the following sign restricted cone invertibility condition:

SCIF
(G)
1 (ξ, S∗) > c > 0 for some fixed c > 0.

Let 0 < δ < 1 be a fixed small constant and take

ωj = A

{√
dj/n+

√
(2/n) log(M/δ)

}
with a constant A > (ξ + 1)/(ξ − 1).

Then, for a certain fixed constant C > 0 and with probability at least 1− δ

max

{∣∣∣1− σ̂

σ∗

∣∣∣, ‖Xβ̂ −Xβ∗‖22
σ2

,
‖β̂ − β∗‖22

σ2
,
M∑
j=1

‖β̂Gj − β
∗
Gj
‖2

σ/ωj
,

M∑
j=1

‖XGj(β̂Gj − β
∗
Gj

)‖2
n1/2σ/ωj

}
≤ C {|GS∗|+ |S∗| log(M/δ)}

/
n. (4.3.25)

Corollary 4.1 touches upon the mixed prediction loss
∑M

j=1 ωj‖XGj β̂Gj−XGjβ
∗
Gj
‖2
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the first time in this section. The reason for this omission is two fold. Firstly,

{ M∑
j=1

ω2
j

(‖XGj β̂Gj −XGjβ
∗
Gj
‖2

n1/2ωj

)q}1/q

≤ max
j≤M

∥∥∥∥XGj√
n

∥∥∥∥
S

{ M∑
j=1

ω2
j

(‖β̂Gj − β∗Gj‖2
ωj

)q}1/q

so that (4.3.11) and (4.3.22) automatically generate the corresponding bounds for

the mixed prediction error under the respective conditions. Secondly, upper bounds

for the mixed prediction loss can be obtained by reparametrization within the given

group structure. The following corollary provides details of such reparametrization

in the case of scaled group Lasso.

Corollary 4.2. Let XGj = UGjΛGjV
T
Gj

be the SVD of XGj with ΛGj ∈ R|Gj |×|Gj |.

Define b by bGj = ΛGjV
T
Gj
βGj and U by Ub =

∑M
j=1UGjbGj . Then,

{ M∑
j=1

ω2
j

(‖XGj β̂Gj −XGjβ
∗
Gj
‖2

ωj

)q}1/q

=

{ M∑
j=1

ω2
j

(‖b̂Gj − b∗Gj‖2
ωj

)q}1/q

≤
2σ∗ξ

(∑
j∈S∗ ω

2
j

)1/q
√

1− τ+SCIF(G)
q (ξ,ω, S∗)

, q = 1, 2,

when the conditions for (4.3.22), including the definition of the estimator and the

SCIF, hold with X, β and β∗ replaced by U, b and b∗ respectively.

Remark 4.4. Corollary 4.1 can be viewed as an extension of the main results of Huang

and Zhang [2010] to the scaled group Lasso although here the regularity condition of

the design is of a weaker form and smaller penalty levels are allowed.

Proof of Theorem 4.5. We follow the proof in Sun and Zhang [2012a]. Let t ≥

σ∗/
√

1 + τ− and hGj = β̂Gj(tω) − β∗Gj . As the oracle noise level is defined as

(σ∗)2 = ‖y −Xβ∗‖22/n, we have

(σ∗)2 − ‖y −Xβ̂(tω)‖22/n = (Xh)T (2ε−Xh)/n = (Xh)T (ε+ y −Xβ̂(tω))/n.(4.3.26)
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Suppose E happens so that ‖XT
Gj
ε‖2/n ≤ tωj(ξ − 1)/(ξ + 1). It follows that

∣∣(Xh)Tε/n
∣∣ =

∣∣∣∣∣
M∑
j=1

hTGjX
T
Gj
ε/n

∣∣∣∣∣ ≤ ξ − 1

ξ + 1

M∑
j=1

tωj‖hGj‖2.

Moreover, the KKT condition implies

∣∣∣hTXT (y −Xβ̂(tω))/n
∣∣∣ =

∣∣∣∣∣
M∑
j=1

hTGjX
T
Gj

(y −Xβ̂(tω))/n

∣∣∣∣∣ ≤
M∑
j=1

tωj‖hGj‖2.

As (Xh)T (2ε−Xh)/n ≤ 2(Xh)Tε/n, inserting these inequalities to (4.3.26) yields

−
(
ξ − 1

ξ + 1
+ 1

) M∑
j=1

tωj‖hGj‖2 ≤ σ∗2 − ‖y −Xβ̂(tω)‖22/n ≤ 2
ξ − 1

ξ + 1

M∑
j=1

tωj‖hGj‖2.

A rescaled version β̂(tω) can be written as

β̂(tω)

t
= arg min

b

{
‖y/t−Xb‖22

2n
+

M∑
j=1

ωj‖bGj‖2

}

as the group Lasso estimator with target β∗/t and noise vector ε/t. As t ≥ σ∗/
√

1 + τ−,

the condition of Theorem 4.4 is satisfied with the rescaled noise ε/t, so that

t−1
M∑
j=1

ωj‖hGj‖2 =
M∑
j=1

ωj‖β̂Gj(tω)/t− β∗Gj/t‖2 < µ(ω, ξ).

As τ− = 2µ(ω, ξ)(ξ − 1)/(ξ + 1) and τ+ = µ(ω, ξ){(ξ − 1)/(ξ + 1) + 1}, we have

−τ+t2 = −
(
ξ − 1

ξ + 1
+ 1

)
t2µ(ω, ξ) < σ∗2 − ‖y −Xβ̂(tω)‖22/n < 2

ξ − 1

ξ + 1
t2µ(ω, ξ) = τ−t

2.

The upper bound above for t = σ∗/
√

1 + τ− implies

t2 − ‖y −Xβ̂(tω)‖22/n < t2 − (σ∗)2 + τ−t
2 = 0,
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so that σ̂ > t = σ∗/
√

1 + τ− by Lemma 4.2. Similarly, the lower bound yields

σ̂ ≥ σ∗/
√

1− τ+.

As σ̂ ≥ σ∗/
√

1 + τ−, the error bounds in Theorem 4.4 holds for {y/σ̂,β∗/σ̂, β̂/σ̂},

which implies (4.3.21) and (4.3.22) due to σ̂ ≤ σ∗/
√

1− τ+. When (4.1.1) holds with

Gaussian error, |σ̂/σ∗ − 1| = oP (µ(ω, ξ)) = oP (n−1/2) by (4.3.20) and the condition

in µ(ω, ξ), so that (4.3.23) follows from the central limit theorem for σ∗/σ ∼ χn/
√
n.

Let u∗ = ε/‖ε‖2, QGj
be the orthogonal projection to the range of XGj and

f(u∗) = ‖QGj
u∗‖2. As f(u∗) = 1 for n = 1, we assume n ≥ 2 without loss of

generality. The vector u∗ is uniformly distributed in the sphere Sn−1 and f(u∗) is

a unit Lipschitz function of u∗ with median
√
mdj ,n. As σ∗ = ‖ε‖2/

√
n, ‖XT

Gj
(y −

Xβ∗)/(nσ∗)‖2 ≤ f(u∗) when ‖XGj/
√
n‖S ≤ 1. In this case and for t > 0 and n ≥ 2,

P

{
‖QGj

u∗‖2 ≥
√
mdj ,n +

t√
n− 3/2

}
≤ e(4n−6)

−2P
{
N(0, 1) > t

}
≤ e−t

2/2

by the Lévy concentration inequality as in Lemma 17 of Sun and Zhang [2013]. Thus,

P(E) ≥ 1 − δ by the union bound when (ξ − 1)ωj/{(ξ + 1)
√

1 + τ−} ≥ ω∗,j. Now,

consider ωj = Aω∗,j. Let τ∗ = 2µ(ω∗, ξ)(ξ − 1)/(ξ + 1). It follows from (4.3.1) and

(4.3.6) that µ(ω, ξ) = A2µ(ω∗, ξ), so that τ− = A2τ∗. Consequently,

(ξ − 1)ωj
(ξ + 1)

√
1 + τ−ω∗j

=
(ξ − 1)A

(ξ + 1)
√

1 + A2τ ∗−
≥ 1

if and only if A ≥ {(ξ + 1)/(ξ − 1)}
/
{1− {(ξ + 1)/(ξ − 1)}2τ ∗−}1/2 = A∗. Finally, we

note that
√
mdj ,n ≤ Ef(u∗) + e(4n−6)

−2E|N(0, 1/(n− 3/2))|/2 ≤ (dj/n)1/2 + n−1/2.

4.4 Simulation Results

We provide a few simulation results for our theories developed in Sections 4.2.1 and

4.3. As a prelude, in the following we first show the performance of scaled group
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Lasso procedure in a simulation experiment. We consider a two simulation designs

with (n = 1000, p = 200) and (n = 1000, p = 2000) design matrices with the elements

of the design matrix generated independently from N(0, 1). We assume that the true

parameter β∗ has an inherent grouping with total set of p parameters divided into

groups of size dj = 4. In the design (n = 1000, p = 200) we have total number of

groups M = 50 and in (n = 1000, p = 2000), M = 500. For both scenarios, the true

parameter β∗ is assumed to be (g = 2, s = 8) strong group sparse with its non-zero

coefficients in {−1, 1}. Both simulation designs have a N(0, σ2) error added to the

true regression model Xβ∗ with σ = 1. We also assume that the design matrix is

group wise orthogonalized in the sense of XT
Gj

XGj/n = IGj×Gj , j = 1, . . . ,M .

In estimation of σ we employ the scaled group Lasso procedure as shown in 4.3.17.

The groupwise penalty factors ωj’s are chosen to equal to λ
√
dj for some fixed λ > 0.

The implementation of group Lasso procedure is via the R package gglasso.
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Figure 4.1: Normal QQ plot for the test statistic for σ̂ in (4.3.23) in Theorem 4.5

with n = 1000, p = {200, 2000}, g = 2, s = 8. The results are produced with 100

replications of the scaled group Lasso. The red dotted line is fitted through 1st and

3rd sample quantile.

n p # of Groups M g s σ̂(SE(σ̂))

1000 200 50 2 8 0.997 (0.02)

1000 2000 500 2 8 1.002(0.02)

Table 4.1: Table summarizing simulation set up for two scenarios along with estimate

of scale parameter after 100 replications along with its standard error. The true value

of the scale parameter is σ = 1.

Table 4.1 summarizes the two design setups and estimates of scale parameter.

In the design setup with (n = 1000, p = 200), the estimate of σ̂ averaged over a

100 replications is 0.997 with a standard deviation of 0.02. In the design setup with

(n = 1000, p = 2000), the estimate of σ̂ averaged over a 100 replications is 1.0002
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with a standard deviation of 0.02. Additionally Figure 4.1 shows the Gaussian Q-Q

plots of the test statistic
√

2n (σ̂/σ − 1).

4.4.1 Asymptotic test statistic

We also seek the empirical validation of the asymptotic convergence of the group βGj

as described in our theoretical results. For bias correction we take the penalty function

in (4.2.32) to be the Frobenius norm and apply group Lasso based optimization. We

also consider a new simulation design similar as before with (n = 1000, p = 200) and

σ = 1. We will consider two different schemes for empirical analysis for asymptotic

convergence.

Small group sizes

The true parameter β∗ is simulated to be (s = 40, g = 10) strong group sparse with

its nonzero values in the interval [2,3]. More specifically, β∗ is grouped into groups of

sizes dj = 4 for all j. We construct the test statistic of µGj as in (4.2.14) for one of

the nonzero groups. Figure 4.2 provides χ2
4 based Q-Q plot for the sample quantiles

of our test statistic.
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Figure 4.2: Chi square Q-Q plot for the test statistic for µ̂Gj with n = 1000, p =

200, g = 10, s = 40. The theoretical quantiles were drawn from χ2
4 random variable.

The group being tested has size 4.

Large group sizes

The true parameter β∗ is simulated to be (s = 40, g = 2) strong group sparse with

its nonzero values between [2,3]. More specifically, β∗ is grouped into 20 groups each

of sizes dj = 20 for all j. We let the sparsity of the true parameter β∗ to be s = 40

contained within 2 separate groups. Again, we construct the test statistic of µGj as in

(4.2.14) for one of the nonzero groups. Figure 4.3 shows the Q-Q plot for this group’s

test statistic. As the figure suggests, for large group sizes asymptotic normality of

the group test statistic is empirically supported.
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Figure 4.3: Normal QQ plot for the test statistic for µ̂Gj with n = 1000, p = 200, g =

2, s = 40. Here the group size of the test group is 20.
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