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ABSTRACT OF THE DISSERTATION

Computational Advances in Rado Numbers

By KELLEN JOHN MYERS

Dissertation Director: Doron Zeilberger

In this dissertation, we present new methods in the computation of Rado numbers.

These methods are applied to several families of equations. The Rado number of an

equation is a Ramsey-theoretic quantity associated to the equation. For any particular

equation E , the Rado number Rr

(
E
)

is the smallest N such that any r-coloring χ :

{1, 2, . . . , N} → {1, 2, . . . , r} must induce a monochromatic solution to E . We will lay

out the history of this field and provide some structure as context for new results. Then

we will discuss the new methods and computational tools that provide the foundation

of the thesis.

The 2-color Rado numbers R2

(
2x+2y+kz = 3w

)
and R2

(
kx+(k+1)y = (k+2)z

)
are

computed for small values of the parameter k. The 2-color off-diagonal Rado numbers

R2

(
x + ay = z;x + by = z

)
are provided for 1 ≤ a, b ≤ 20. Likewise, 3-color off-

diagonal Rado numbers R3

(
x + y = az;x + y = bz;x + y = cz

)
are computed for

1 ≤ a, b, c ≤ 5. We confirm the long-standing conjecture that the 3-color generalized

Schur numbers R3

(
x1 + · · · + xm−1 = xm

)
are m3 − m2 − m − 1 for m = 7, 8, 9, 10

(effectively doubling the empirical evidence for the conjecture) and provide the related

Rado numbers R3

(
x1 + · · ·+ xm−2 + kxm−1 = xm

)
for certain (k,m) values. We prove

a lower bound for the r-color non-homogeneous Schur numbers: Rr

(
x + y + c = z

)
≥

3r−1
2 (c + 1) for c ≥ 0. We also compute the precise values for r = 4 and −20 ≤ c ≤ 7
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and generalize this bound for m ≥ 3 variables.

We provide the 2-color Rado numbers for 1
x + 1

y = 1
z and a few other equations

involving reciprocals. We also construct a coloring proving R2

(
x2 + y2 = z2

)
> 6500.

(It is not known whether this Rado number is finite.) We compute the 2- and 3-color

Rado numbers for other sums-of-squares equations,
∑a

i=1 x
2
i =

∑b
i=1 y

2
i , and we prove a

universal upper bound for a ≤ b ≤ ca for a constant c between 1 and 2 (different values

of c give different upper bounds). We follow this with Rado numbers for other assorted

families of quadratic equations. We also present quantitative analogues of Hindman’s

theorem, which guarantees monochromatic solutions to systems like {x+y+ z = w, x ·

y · z = v}.

We conclude by suggesting a number of conjectures, extensions, and generalizations

of these results for future work.
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Chapter 1

Introduction

This dissertation will present a number of important new computational results in

Diophantine Ramsey theory, the study of the Ramsey-theoretic properties of equations

with integer solutions.

To begin, we will discuss the historical development of Ramsey theory and its con-

nection to Diophantine equations, with special attention to Rado numbers.

Ramsey theory of any variety will, almost invariably, include a coloring function

which we will call χ. If S is some structure, then S (or some component of S) is colored

with r colors according to:

χ : S → [r]

where [r] is our notation for {1, 2, 3, . . . , r}.

The major tenet of Ramsey theory is that for certain structures S that are “regular”

in some way, and sufficiently large (typically meaning |S| is large enough), there is some

sub-structure S′ ⊆ S that must be constant according to χ (i.e. for some particular

“color” i, and for all s′ ∈ S′, χ(s′) = i). We call that substructure S′ “monochromatic.”

Quantitative aspects of Ramsey theory consider how large |S| must be in order

to have this monochromatic sub-structure, which is usually dependent on |S′| and r,

i.e. |S| = f(|S′|, r). In some cases, S and S′ are the same type of structure (e.g. in

Ramsey’s theorem, they are complete graphs), while in other cases (in particular, the

focus of this dissertation) this is not true.

Many narratives begin with Ramsey’s theorem, proved in 1926, but the perspective

of this dissertation will represent a reversal of roles. We will regard Ramsey’s theorem

as a graph-theoretic diversion and focus on Diophantine topics, beginning our narrative

with Issai Schur.
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Issai Schur was born in 1875 the son of a Jewish merchant. After a childhood

in Mogilev and Liepāja, now in Belarus and Latvia respectively, he studied at the

University of Berlin under the supervision of Ferdinand Georg Frobenius. Although

the majority of his work is in the areas of number theory and algebra, we will instead

focus on the seeds he planted that would become a part of Ramsey theory.

Schur continued his scholarly work at the University of Berlin, with a brief tenure

in Bonn. He married another Russian-Jewish immigrant. He remained in Berlin until

the rise of the Nazi Party in Germany. He was removed from his position in 1935 and

fled the country. Sadly, he died in 1941 in Tel Aviv, having been displaced from his

home in Germany, his life’s work in mathematics cut short.

In [Soi00], Soifer discusses the effects of the second World War on mathematicians,

particularly mathematicians in this area of study, and laments that Jews in Germany

around Schur’s age (58 in 1933) recognized too late the severity of Nazi persecution.

Soifer notes that older Jews, having lived so long in Germany at times when anti-

semitism was not so rampant, were slower to perceive the shifting politics and policies

towards Jews. Schur was one of many who were reluctant to leave their homes, jobs,

friends, and families for the relative safety of England, the USA, or elsewhere.

In fact, Schur himself was the very last Jewish professor to be dismissed from the

University of Berlin, having been exempted from the initial mass-dismissal of Jews.

Schur was so popular that his exemption from the initial dismissal in 1933 was widely

supported, even by the now-infamous Bieberbach. Schur declined many offers to leave

Germany for positions in the USA and in England, while a great many of his younger

Jewish colleagues had already left Germany. He was eventually removed after two

years in defiance of the 1933 general directives that removed Jews from academic and

governmental positions. He fled to Palestine (now Israel) and died soon thereafter. This

story is perhaps a great tragedy, in that Schur’s love for his home in Berlin and the

support of his friends and colleagues there kept him too long in a country in which the

ruling party was slowly, but steadily, turning the nation against him and his people.

In 1916, Schur proved the following theorem. This is, arguably, the first real result

in Ramsey theory except perhaps Hilbert’s so-called “cube lemma” [Hil92], which was
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overlooked until much later. Schur’s theorem was, instead, the starting point for the

work of Rado and others in one area of Ramsey theory. The later work of Ramsey

himself originated an area of study that would converge with Schur’s and Rado’s work

to become the larger field now called Ramsey theory (which has since then expanded

even further).

Theorem 1.1 (Schur’s Theorem). For any r-coloring of Z+, that is χ : Z+ → [r], there

is a triple (x, y, z) such that x+ y = z and χ(x) = χ(y) = χ(z).

The solution (x, y, z) in this theorem is called “monochromatic.” One important

consequence of this theorem is that to each value of r we may associate the smallest

integer S(r) for which the following modification of Schur’s theorem holds:

Theorem 1.1 (Schur’s Theorem, finite version). For each r ∈ Z+ there is an integer

S(r) such that for any r-coloring of [S(r)], that is χ : [S(r)] → [r], there is a triple

(x, y, z) such that x+ y = z and χ(x) = χ(y) = χ(z).

This can be proved by modifying a proof of the first version of Schur’s theorem or

derived as a consequence of the original theorem and the compactness principle (which

can be applied to many other Ramsey-theoretic statements of the infinite variety to

derive finite versions).

Schur proved this theorem in the course of an attack on mathematics’ most famous

problem, Fermat’s Last Theorem. He used Theorem 1.1 to prove the following:

Theorem 1.2. For n ∈ Z+ there is a prime q such that for all primes p ≥ q, xn +yn ≡

zn (mod p) has a nontrivial solution (x, y, z).

Here, “nontrivial” means that none of the integers x, y, z is divisible by p.

Richard Rado, a student of Schur, would find greater significance in what we now call

Schur’s theorem, and Rado’s work is now a seminal part of an area that may be called

Diophantine Ramsey theory. Rado’s work generalizes Schur’s theorem substantially

and describes in greater detail the principles and structures at work in this theory.

We will move from Rado’s work all the way to current work in the next two chapters,

developing the appropriate notation, language, and theory along the way.
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Richard Rado, like Schur, was a Jew in Berlin in 1933, but was younger than Schur.

Like many of his generation, he fled Nazi Germany to England immediately, where he

worked under the supervision of G. H. Hardy. Not only can we view Rado’s work (at

least in regards to Diophantine Ramsey theory) as a direct extension of the work of

Schur, but throughout his long life (1906-1989) we might say that Rado continued to

contribute to mathematics in the spirit of his advisor who was lost to us in 1941.

It is important here to remark that Brauer and van der Waerden also contributed to

this developing theory around this time. Alfred Brauer was another student of Schur.

He generalized Schur’s theorem in a different way in [Bra28], which [Soi00] notes is a

result that often goes unmentioned. At the same time, B. L. van der Waerden devised

his well-known result on arithmetic progressions [vdW27]:

Theorem 1.3. For any r-coloring χ of Z+, and any k, there are a, d ∈ Z+ such that

χ(a) = χ(a + d) = χ(a + 2d) = · · · = χ(a + (k − 1)d), which is to say there exists a

monochromatic arithmetic progression of length k.

Although the theorems of Schur, Rado, and van der Waerden are all well known

and widely cited, the historical details in the preceding narrative are drawn primarily

from [Soi00]. An excellent, and more detailed, account of the history can be found

therein, while [Soi11] contains a brief overview of that same narrative.
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Chapter 2

Ramsey Theory and Richard Rado

The next two chapters will summarize the existing body of work in the area of Dio-

phantine Ramsey theory, particularly those results that discover, bound, or otherwise

determine so-called Rado numbers, which we will define below.

2.1 Notation, Definitions, & Conventions

Before we continue, we should discuss notation. We will use symbols x, y, z, w with

or without subscripts to indicate variables in our Diophantine equations. Unspecified

(integer) coefficients will be denoted a, b, c, d, k, ` with or without subscripts. Unless

otherwise noted (e.g. in Theorem 2.9), we assume coefficients are positive, so that

ax+ by + cz = dw is not the same as ax+ by = cz + dw.

All references to an “equation” (be it one in particular, or an arbitrary equation) or

to “E” should be taken to indicate a Diophantine equation with integer coefficients, un-

less otherwise stated. The reader may assume that Diophantine equations are equations

of polynomials with integer coefficients, although statements in this dissertation general

enough to apply to all polynomials are also generally applicable to other Diophantine

equations as well (e.g. 2x = y + z).

The parameter m, when necessary, will indicate the number of variables in the

equation, in which case we will abide by the convention that those variables are always

x1 through xm, so that m is always the exact number of variables (so that E does

not have x1 through xm but also z). In some cases, we will enumerate the variables

differently, but m will generally refer to the total number of variables (while a, b, k or

some other parameter might enumerate a subset of the variables).
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In some sections we will define a particular parametrized family of equations, some-

thing like {Ek : k ∈ Z+}. In these cases, the scope of this definition is generally that

particular section.

The parameter r will denote the number of colors, wherever necessary.

We will define some of our key terms as follows:

Definition 2.1. For a positive integer r, the set [r] is the set {1, 2, 3, . . . , r}.

Definition 2.2. A function χ is an r-coloring of S if χ : S → [r].

Definition 2.3. A set S′ is said to be monochromatic under χ if |χ(S′)| = 1.

One says simply “monochromatic” if χ is understood in context, which it usually

will be.

Definition 2.4. The r-color Rado number for the equation E is the least integer N

such that any r-coloring of [N ] will contain a monochromatic solution to E. We denote

this Rr

(
E
)

= N .

We adopt the convention that if a particular equation E does not necessarily admit

monochromatic solutions for all r-colorings, then Rr

(
E
)

=∞ (in this case, there is no

such N , and min ∅ =∞). We also make the following complementary definitions:

Definition 2.5. For an equation E, we say E is r-regular if Rr

(
E
)
<∞. The greatest

r for which E is r-regular is the degree of regularity of E and is denoted dor(E). If E is

r-regular for all r, we say E is simply regular and dor(E) =∞.

The degree of regularity is well-defined due to the following lemma:

Lemma 2.6. For any equation E, Rr

(
E
)
≤ Rr+1

(
E
)
, and thus if E is (r+ 1)-regular it

is also r-regular.

This lemma should require no proof, but we should note that it is decidedly not the

case that the strict inequality Rr

(
E
)
< Rr+1

(
E
)

should hold (not in general). If we

allow a somewhat trivial example, it is clear that Rr

(
x = y

)
= 1 for all r. More about

degrees of regularity can be found in [BLM96].
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2.2 Ramsey’s Theorem

Regardless of the fact that our narrative of Ramsey theory is meant to emphasize Dio-

phantine Ramsey theory, the story would not be complete without Ramsey’s theorem.

It is an important piece of the framework in this general area, provides some important

context, and will be used subsequently to prove Schur’s theorem.

We state Ramsey’s theorem for graphs in a general way:

Theorem 2.7 (Ramsey’s theorem). For any integer r and any integers k1, k2, . . . , kr,

there is an integer N = R(k1, k2, . . . , kr) such that for any r-coloring of the edges of a

complete graph on N vertices, that is χ : E(KN )→ [r], there is a set W of vertices such

that the restriction χ|E(W ) takes the constant value i and |W | = ki. In other words,

there is a monochromatic ki-clique of color i for some i.

Like the finite version of Schur’s Theorem (1.1), this statement defines a particular

quantity which is in this case known as a Ramsey number. A classic result is that

R(3, 3) = 6, which could be proved easily even by exhaustion.

It is also useful to note that this function takes on initial values at R(2, 2, . . . , 2) = 2

or perhaps R(1, 1, . . . , 1) = 1, depending on how trivial you allow values of ki to become.

If any ki is 2, one might simply eliminate this ki, i.e.

R(k1, k2, . . . , ki−1, 2, ki+1, . . . , kr) = R(k1, k2, . . . , ki−1, ki+1, . . . , kr).

If any ki is 1, the Ramsey number must be 1, because any single vertex is a K1 with

vacuously monochromatic edges:

R(k1, k2, . . . , ki−1, 1, ki+1, . . . , kr) = 1.

And we may observe a final triviality, that R(n) = n.

These boundary cases (and/or the case R(3, 3) = 6) prove the finiteness of this

quantity for other choices of k1, . . . , kr, once one has established the following relations:

R(k1, k2, . . . , kr−2, kr−1, kr) ≤ R
(
k1, k2, . . . , kr−2, R(kr−1, kr)

)
,

R(k1, k2) ≤ R(k1 − 1, k2) +R(k1, k2 − 1).
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Proof for these bounds will be omitted, but may be found readily in standard texts

and resources like [GRS90]. It may be important to note that these bounds are ex-

tremely generous and represent a very gross overestimate of the upper bound in virtually

all cases (this is a common theme in Ramsey Theory).

These bounds, which are enough to establish Ramsey’s theorem, are generally proved

using the pigeon-hole principle, which is itself a sort of rudimentary Ramsey-theoretic

result that predates all others.

Theorem 2.8 (The Pigeon-Hole Principle). If f : A → B, then there is b ∈ B such

that |f−1(b)| ≥
⌈
|A|
|B|

⌉
.

Proof. Assume not. Then for all b ∈ B, we have |f−1(b)| <
⌈
|A|
|B|

⌉
. This implies that

|f−1(b)| < |A|
|B| , since the two possible maximum values |f−1(b)| could take under this

assumption would be
⌊
|A|
|B|

⌋
if this fraction is not an integer, or simply |A||B| − 1 if it is.

And so we conclude:

|A| =
∑
b∈B
|f−1(B)| < |B| |A|

|B|
= |A|

which is a contradiction.

This is a Ramsey-theoretic type statement if we consider χ : S → [r]. If |S| ≥ kr,

then there must be a monochromatic S′ ⊆ S such that |S′| ≥ k. At its heart, this

principle asserts that among some data, at least one datum is at least as large as the

average. We could say the Pigeon-Hole Principle is at the heart of Ramsey theory.

A large body of work exists exploring the area of Ramsey theory in graphs, and

again [Soi00] contains a historically-motivated, yet thorough and mathematically rich,

narrative of this area of Ramsey theory. We will not discuss any of the graph-theoretic

results besides Ramsey’s Theorem (Theorem 2.7).

2.3 Schur’s Theorem

We now revisit Schur’s theorem, and in the tradition of more conventional narratives,

prove the theorem by a very elegant application of Ramsey’s theorem.
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Theorem 1.1 (Schur’s Theorem). For any r ∈ Z+, there is an S(r) ∈ Z+ such that

for all r-colorings χ : [S(r)]→ [r] there is a solution (x, y, z) to the equation x+ y = z

such that χ(x) = χ(y) = χ(z).

Proof. Let N = R(3, 3, . . . , 3) be the r-color Ramsey number for triangles. Consider

any coloring χ : [N ] → [r] and induce an r-coloring χ∗ on the edge set of a complete

graph of size N , that is χ∗ : E(KN ) → [r], where the color of edge ij is defined to be

χ∗(ij) = χ(|i− j|).

By Ramsey’s theorem, there must exist a monochromatic K3 (i.e. triangle) in this

graph. In that case, we have three edges ij, ik, jk such that:

χ∗(ij) = χ∗(ik) = χ∗(jk).

Without loss of generality, we may assume i > j > k, so that we obtain:

χ(i− j) = χ(i− k) = χ(j − k),

and (x, y, z) = (i− j, j − k, i− k) is a solution to the equation x+ y = z.

In particular, this theorem bounds the Schur number S(r) by the Ramsey number

R(3, 3, . . . , 3), and these two numbers are currently known to be bounded (asymptoti-

cally) by:

(c1)r ≤ S(r) ≤ R(3, 3, . . . , 3︸ ︷︷ ︸
r

) ≤ c2r!,

where c1 and c2 are constants, c2 ≈ 2.6752 [Wan90], and c1 ≈ 3.17177 [Exo94] [CG83].

At the present time, this seems to be the best asymptotic upper bound for S(r).

It is easy to see that S(2) = 5, and one might note trivially that S(1) = 2. It is also

straightforward to prove that S(3) = 14. Exact values and bounds have been proved

for S(r) for a few other small values of r and are provided in Table 2.1.

S(4) = 45
161 ≤ S(5) ≤ 316
537 ≤ S(6)

1681 ≤ S(7)

Table 2.1: Bounds for S(4) through S(7)
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The first line of the table is from [BG65], the second from [Fre79] and [Exo94], and

the last two from [FS00]. A recent PhD thesis by M. I. Sanz is cited in [CMD13] as

having proved S(5) ≤ 305, but at this time we have been unable to obtain the primary

text to verify this new bound.

Despite significant advances towards computing numerous other Diophantine-Ramsey-

theoretic quantities, we still find ourselves unable to improve the bounds for S(5) due

to the steep rise in complexity in searching colorings with greater numbers of colors.

However, we are optimistic that computational methods, theoretical advances, and the

ever-increasing power of computing will enable the computation of S(5) in the near

future.

2.4 Rado’s Theorem(s)

In 1933, Richard Rado extended the work of Schur, his advisor, to settle a similar

question for not just x + y = z but for any homogeneous linear equation – and for

systems thereof.

Consider the homogeneous linear equation with integer coefficients:

m∑
i=1

aixi = 0.

Here we temporarily defy our convention, since this representation of an equation could

include negative coefficients. In [Rad33], we find the following two important theorems:

Theorem 2.9 (Rado’s First Theorem). A linear equation (as above) is regular if and

only if there is J ⊆ {1, 2, . . . n} such that
∑
i∈J

ai = 0.

Theorem 2.10 (Rado’s Second Theorem). A linear equation (as above, with m ≥ 3)

is 2-regular if and only there are i1, i2 such that ai1 > 0 and ai2 < 0.

The condition in the second theorem is quite weak; it only rules out equations that

would have no solutions over the positive integers. Requiring m ≥ 3 rules out equations

like 3x = 2y, and it is easy to see that:

Lemma 2.11. The r-color Rado number Rr

(
ax = by

)
is 1 if a = b and ∞ otherwise.
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Proof. If a = b, then (x, y) = (1, 1) is a monochromatic solution. Otherwise, we may

assume gcd(a, b) = 1 and take a prime p dividing a so that a = pka′, where p does not

divide a′ or b. For any integer n, write n = p`n′, where p does not divide n′. Define

χ(n) to be the parity of the quotient of ` when divided by k.

If (x, y) is a solution to this equation, we could take x = p`1x′ and y = p`2y′, where

p does not divide x′ or y′. Then substituting, we would have: (pka′)(p`1x′) = b(p`2y′),

and thus `1 + k = `2, which implies χ(x) 6= χ(y).

Rado also includes the analogous criterion for systems of homogeneous linear equa-

tions – a subset of the columns must sum to zero, but the remaining columns must

also meet some linear conditions. We will not need to discuss this further, but one may

consult [GRS90] or [LR03] for details.
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Chapter 3

Ramsey Quantities & Computational Ramsey Theory

Theorem 2.9 is usually called “Rado’s Theorem,” and this theorem has the flavor of a

much deeper result. However, Theorem 2.10 is actually more practical for computa-

tional work because it shows that any linear homogeneous equation (more or less) is

2-regular. Although some such equations may have 2-color Rado numbers too big to

compute practically, it is at least feasible to compute these Rado numbers in the sense

that none of them is infinite.

Definition 2.5 may seem superfluous, especially when most Rado numbers known

are for 2 colors, but the distinction between r- and (r+ 1)-regular equations is of great

interest. Knowing precise conditions for only the boundary cases r = 2 and r =∞, and

then only for linear equations, we are left to wonder whether we can formulate such

conditions even for 3-regularity.

In 2009, Alexeev & Tsimerman [AT10] gave an example of an Er such that dor(Er) =

r, which settles the question clearly: there are equations of each degree of regularity.

Before this, there were already some examples: it was known that dor(x+2y = 4z) = 2

[FR] and that dor(x+ y = 3z) = 3 [FGR86].

Rado conjectured that for each k, there is an m such that if E contains m variables

or more and is r regular, then it is r′ regular for all r′ > r. Fox and Kleitman in [FK06]

prove this conjecture for m = 3, giving r = 24 as sufficient.

The unfortunate trouble with 3-regularity and general r-regularity is that for any

fixed E , the Rado number increases with r, and so too does the likelihood that this E will

no longer be r-regular at all. Computations that run indefinitely might be an indication

that the Rado number is very large (perhaps computable with faster computers), but

it could just as easily be the case that the Rado number is infinite.
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In this chapter we will discuss a number of existing results, most (but not all) of

which will be for 2 colors. We will also lay out a number of techniques that will tackle

the computation of Rado numbers. Although some of these will be inspired by the

existing techniques in the literature, they will not necessarily be limited to 2-colorings.

We will discuss how these methods have (and have not) been effective in the past before

we move on in later chapters to discuss new results.

3.1 Existing Methods & Results

One of the earliest results in the determination of Rado numbers comes from Beu-

telspacher & Brestovansky [BB82]. This particular theorem is of special interest be-

cause it is one of very few (nontrivial) results that speaks to a relationship between two

(or more) Rado numbers with different r values:

Theorem 3.1. The r-color Rado numbers for x1 + · · ·+xm−1 = xm have the following

relationship:

Rr

(
x1 + x2 + · · ·+ xm−1 = xm

)
≥ mRr−1

(
x1 + x2 + · · ·+ xm−1 = xm

)
− 1.

These are defined especially as:

Definition 3.2. A generalized Schur number is Rr

(
x1 + x2 + · · ·+ xm−1 = xm

)
.

These numbers are sometimes denoted Sm(r). However, we will avoid this notation

because we use the subscript for r in Rr

(
E
)
, rather than m.

Generalized Schur numbers exist, as a corollary of Rado’s Theorem (Theorem 2.9),

and they are perhaps the Rado numbers that are of greatest interest.

Theorem 3.1 is proved by constructing r-colorings recursively, giving this recursive

lower bound. Applying induction provides the following bound:

Theorem 3.3. Rr

(
x1 + x2 + · · ·+ xm−1 = xm

)
≥ mr −

(
mr−1 +mr−2 + · · ·+m+ 1

)
This bound is known to be tight in the case r = 2, as follows:

Theorem 3.4 (Generalized 2-color Schur numbers). R2

(
x1 +x2 + · · ·+xm−1 = xm

)
=

m2 −m− 1
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The fact that this result was one of the first in this area, and that it is not tight for

larger values of r, should indicate that the generalization of Schur numbers to different

equations is a qualitatively easier step than the move to greater numbers of colors.

These are called generalized Schur numbers not just because the equations look

similar to x+ y = z in some way, but also because one can prove the existence of these

numbers using the same proof as we did for Theorem 1.1, but with Km instead of K3,

obtaining monochromatic solutions of the form:

(x1, x2, . . . , xm−1, xm) = (i1 − i2, i2 − i3, . . . , im−2 − im−1, im−1 − im, i1 − im)

A recent survey of generalized Schur numbers can be found in [Ahm]. We will

discuss some new results for generalized Schur numbers in Section 4.5.

However, the bound from [BB82] is not tight for r = 4 as evidenced by S(4) = 45,

and bounds like S(5) ≥ 161 in Table 2.1 show it isn’t tight for r = 5, 6, 7. In [Exo94],

the lower bound Rr

(
x+ y = z

)
≥ c(3.17176)r for some c is given, which means that for

sufficiently large r, the bound from [BB82] in Theorem 3.3 could not be tight.

3.1.1 Rado Numbers for Homogeneous Equations

We will begin our survey of existing results, starting with linear homogeneous equa-

tions, which are closest in some sense to Schur numbers. In 1984, Burr & Loo wrote a

manuscript which is now frequently cited for some of its results, despite being unpub-

lished. One of the most significant results from that paper is:

R2

(
x+ y = kz

)
=

(
k

2

)
, k ≥ 4

This appears in [MS07], for example, and is usually (if not always) given without

proof. Note that for k = 1, 2, 3 we have Rado number 5, 1, 9 respectively.

In [HM97], Harborth & Maasberg provide Rado numbers for two families of equa-

tions:

R2

(
ax+ ay = 2z

)
=
a(a2 + 1)

2
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R2

(
ax+ ay = (a+ 1)z

)
= a(a+ 1)

Other new Rado numbers appeared in the textbook Ramsey Theory on the Integers

by Landman & Robertson [LR03], including:

R2

(
ax+ by = bz

)
=


a2 + 3a+ 1 b = 1

b2 a < b

a2 + a+ 1 2 ≤ b < a

Landman & Robertson also give R2

(
ax+ ay = bz

)
; however, it is a formula with 14

cases, and so we leave it to the curious reader to investigate.

In 2005, Hopkins & Schaal [HS05] give lower bounds analogous to those from The-

orem 3.3 for more general equations:

R2

(
a1x1 + a2x2 + · · ·+ am−1xm−1 = xm

)
≥ a1b

2 + (2a2
1 + 1)b+ a3

1,

where it is stipulated that a1 < ai and b = a2 + · · ·+ am−1. They conjecture that this

is tight and prove it for a1 = 2, while the case a1 = 1 was earlier proved independently

in both [Fun90] and [JS01]. Three years later, Guo & Sun [GS08] settle the question

by verifying the conjecture.

In 2008, Myers & Robertson [MR08] give the following:

R2

(
x+ y + kz = `w

)
≤
(
`− k + 1

2

)
whenever `− k ≥ 4. They prove it is tight when k ≥ `− k. They also give a formulas

for various fixed values of k − ` and also for ` = 2. Saracino and Wynne extend this

result in [SW08] to ` = 3.

Schaal & Vestal [SV08] proved in 2008 that:

R2

(
x1 + x2 + · · ·+ xm−1 = 2xm

)
=

⌈
m− 1

2

⌈
m− 1

2

⌉⌉
for m ≥ 6 (where m = 3, 4, 5 give Rado numbers 1, 4, 5 respectively). This was recently

generalized by Saracino [Sar13] as:

R2

(
x1 + x2 + · · ·+ xm−1 = axm

)
=

⌈
m− 1

a

⌈
m− 1

a

⌉⌉
.

where m ≥ 2a2 − a+ 2 (and for some other smaller values of m).
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3.1.2 Rado Numbers for Non-Homogeneous Equations

The first result on non-homogeneous equations is credited to Burr & Loo [BL] in a paper

by Schaal in 1993 [Sch93]. It is a straightforward generalization of Schur’s theorem:

R2

(
x+ y + c = z

)
= 4c+ 5,

where we assume c ≥ 0. The case c < 0 is also credited to Burr & Loo in [MS07], which

is:

R2

(
x+ y + c = z

)
= c−

⌈ c
5

⌉
+ 1.

In 1993, Schaal [Sch93] does for non-homogeneous equations what Beutelspacher

and Brestovansky did for Schur’s theorem, proving:

R2

(
x1 + x2 + · · ·+ xm−1 + c = xm

)
= m2 + (c− 1)(m+ 1),

This requires c to be even or m to be odd (otherwise, the even/odd coloring shows the

Rado number is infinite).

In 1995, Schaal also takes a new step forward and proves R3

(
x+y+c = z

)
= 13c+14,

a 3-color Rado number that generalizes Schur’s theorem. Kosek & Schaal in 2001 [KS01]

would generalize this to x1 + · · · + xm−1 + c = xm, which has six different forms for

different types of m, c pairs. Jones & Schaal would generalize the 1995 result in a

different way, giving bounds on R2

(
x+ y + c = kz

)
. This work is continued in [MS07]

as well, where it is proved that:

R2

(
x+ y + c = kz

)
≥


⌈

2d 2+c
k e+c

k

⌉
c > 0⌈

kd 2−c
k e−c
2

⌉
c < 0

and in particular the following:

R2

(
x+ y + c = 2z

)
=


|c|+ 1 c even

∞ c odd

for c, k > 0, which is conjectured to be tight. Similar bounds (and conjectures) are

given for negative c or k. For k = 3, the bounds are proved to be tight in [KSW09].

Bialostocki, Lefmann, & Meerdink [BLM96] also discuss some bounds for a few

non-homogeneous linear equations.
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3.1.3 Rado Numbers for Inequalities

There are a few types of Rado numbers that are defined somewhat differently. We

have mentioned the idea of Rado numbers for systems of equations, and the idea of a

Rado number for an inequality or system of inequalities is analogous. In some cases,

the objective is simply R2

(
E
)

where E is now some inequality like x + y < z, while

in other cases we may have some objective equation or inequality E but also require a

condition like x < y < z. Sometimes an equation (not an inequality) is combined with

this x < y < z in a way that distinguishes the variables, e.g. the strict generalized

Schur numbers require solutions to x1 + · · ·+xm−1 = xm where xi < xi+1, which really

means no repeated variables (since otherwise, x1 through xm−1 are indistinguishable).

In 1996, Schaal & Wise [SW96] proved the following Rado number for an inequality:

Rr

(
x1 + x2 + · · ·+ xn + c < xm

)
=

(m+ c− 1)(m− 1)r − (c+ 1)

m− 2
,

where it is assumed that c > 1−m (otherewise the Rado number is 1, trivially).

In [Sch98] and [BS00], Schaal & Bialostocki give a strict version of generalized Schur

numbers:

R2

(
x1 + x2 + · · ·+ xm−1 < xm;xi < xi+1

)
=

9

16
m3 +QP (m2),

where QP (md) is an explicit quasipolynomial of degree d in m. For the unfamiliar

reader, we will discuss quasipolynomials in Section 3.8. In 1998, Schaal produced a

combined version, strict numbers for a generalized Schur inequality (with all ai > 0):

1 +
m−1∑
j=1

(
j +

m−1∑
i=1

ai

)
aj ≤ R2

(
a1x1 + a2x2 + · · ·+ am−1xm−1 < xm;xi < xi+1

)
≤ R2

(
x1 + x2 + · · ·+ xΣai < x1+Σai ;xi < xi+1

)
Newer results on strict generalized Schur numbers can be found in [AEMS13].

3.1.4 Off-Diagonal Rado Numbers

In Section 2.2, we defined Ramsey numbers in a way that allowed us to find a complete

graph of size ki for the color class i, where it was not required that ki be the same



18

for every i. In the case that the ki are not all equal, these are sometimes called “off-

diagonal” Rasmey numbers (on a table of values, they would be off the diagonal). We

can likewise define off-diagonal Rado numbers:

Definition 3.5. The r-color off-diagonal Rado number for equations E1, E2, . . . , Er is

the least N such for that any r-coloring χ of [N ] there is an i such that χ induces a

monochromatic solution to Ei of color i.

We will denote this Rr

(
E1; E2; . . . ; Er

)
and adopt the usual convention that it is ∞

if no such N exists.

Off-diagonal Schur numbers are introduced by Robertson [Rob00] and further dis-

cussed by Robertson & Schaal [RS01], where they prove for k ≤ ` that:

R2

(
x1 + · · ·+ x`−1 = x`;x2 + · · ·+ xk−1 = xk

)
=


3`− 4 k = 3, ` ≥ 3, ` odd

3`− 5 k = 3, ` ≥ 3, ` even

k`− `− 1 ` ≥ k ≥ 4

This completely characterizes 2-color off-diagonal generalized Schur numbers, but

like regular Schur numbers, these off-diagonal Schur numbers are still of great interest

for r > 2. In [Ahm], Ahmed gives a number of computational results for off-diagonal

generalized Schur numbers.

In [MR07], Myers & Robertson give the following theorem, analogous to Rado’s

2-color theorem 2.10:

Theorem 3.6. For E1 and E2 linear, homogeneous equations, assumed to be nontrivial

as in 2.10. Then R2

(
E1; E2

)
<∞.

They provide values and bounds for Rado numbers of the form R2

(
ax + by =

z; ax+ cy = z
)

and other related equations.

3.1.5 A Partial Ordering of Equations

Lemma 2.6 we show how Rr1

(
E
)

and Rr2

(
E
)

are related for different numbers of colors

r1 and r2. We hope to find a relationship between Rado numbers for different equations

instead. First, we introduce the following relationship between equations:
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Definition 3.7. The equation E ′ is a specialization of E if it is possible to obtain the

equation E ′ by setting equal some of the variables in E (and subsequently relabeling the

variables, if necessary, to match those in E).

This definition is what leads us to the following lemma:

Lemma 3.8. For any equation E ′ obtained from E by specializing variables, and for

any r, Rr

(
E
)
≤ Rr

(
E ′
)
.

Proof. Because E ′ is a specialization of E , all solutions to E ′ are solutions to E (assign-

ing some values multiple times in E according to how variables were assigned in the

specialization). Consider a coloring of length n that evidences Rr

(
E
)
> n, having no

solutions to E . This coloring must also have no solutions to E ′. Thus Rr

(
E ′
)
> n. Since

this holds for all such n, Rr

(
E ′
)
≥ Rr

(
E
)
.

This lemma allows us to define a relationship between Diophantine equations (or

rather, between parametrized families of Diophantine equations), where we say E ≺ E ′

whenever E ′ can be obtained from E by specializing variables.

We can also say E ⊆ E ′ if it is obtained by fixing some undetermined coefficient(s).

It should be clear that each of these relations is a partial order, and we can take

the transitive closure of their union to form our partial order. This gives rise to the

following organization of some of the existing results in the following figure.
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In Figure 3.1.5, the Hasse diagram for this partial order is given. The covering

relations are color-coded depending on which relation is indicated. We illustrate the ≤

relationship with green arrows, where the arrow points the same direction as ≤, so that

if E1 ≤ E2, then there is a green arrow from E2 to E1. Thus, an upper bound for E2 (the

equation higher up in the Hasse diagram) is inherited by E1. Likewise, the red arrows

that indicate ⊆ are like logical implication – with any type of bound being inherited in

the direction of these arrows.

This figure will help us organize our thoughts, in particular addressing which equa-

tions are most important or interesting as we study Rado numbers. Note that upper

bounds pass down this poset, meaning that ideals in this partial order have some sig-

nificance (the same is not true for filters).

To maintain readability, this figure is limited to a subset of existing results in this

area. There are no non-homogeneous equations, and even some homogeneous equations

have been omitted from the periphery of this poset. Some of the possible arrows have

been omitted as well (e.g. between the two families directly below ax = by).

It is probably clear that in most cases, as we read the poset from top to bottom,

the dates go further back.

From this figure, we can see that there are a number of open questions that we may

tackle. The most interesting problem would be to give an upper bound for R2

(
ax +

by = cz
)
, which would provide a universal upper bound. Any result of this generality

might also lead to a complete solution, computing 2-color Rado numbers for any linear

homogeneous equations. This is a lofty goal, so it is important to approach the problem

incrementally. There are many families not in this poset because they have not yet been

subject to any serious study. For example, we will examine kx+ (k+ 1)y = (k+ 2)z in

Section 4.2.

The results of [Sar13] and [GS08] are extremely strong in two different ways – to

combine them, e.g. to solve the problem directly above each in the poset, would be

another strong step forward towards a general solution. However, these results are

strong enough that we believe the best place to look for incremental results will be

somewhere else, like above the results from [MR08]. We should be able to solve more
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than just families like ax+ay = bz, and in the future we expect that the known families

in this poset will include many more between ax+ by = cz and those that it currently

covers in the Hasse diagram.

3.2 General Methodology

In most cases, we have three potential objectives from a computation:

• prove Rr

(
E
)
< N for some N ;

• prove Rr

(
E
)
> N for some N ; or

• prove Rr

(
E
)

= N for some N .

Some algorithms require N to be fixed (i.e. as part of the input, along with r and

E), while others (particularly in the third case) will determine some value of N along

the way.

Lower bounds are most frequently proved by exhibiting a coloring that does not

contain monochromatic solutions, which we will define as follows:

Definition 3.9. A coloring of {1, 2, . . . , n} (for some n) is said to be valid if it does

not contain monochromatic solutions to the equation in question.

So a valid coloring always serves as a witness to some lower bound for a Rado

number – a valid coloring of lengh N proves Rr

(
E
)
> N .

Upper bounds can be proved in a few ways, but generally speaking it is not so easy

to prove an upper bound. Many direct methods for proving upper bounds reduce to

assuming that some valid coloring is N long and deriving a contradiction.

Methods to prove upper and lower bounds can be combined to produce exact Rado

numbers, but there are also algorithms that function to directly prove Rado numbers.

For example, we will discuss the RADO package, which will simply give an exact Rado

number for a given r and E , while the SAT solving methods we will discuss will only

tell you whether a given N is an upper or lower bound (which we then repeat until we

find the exact Rado number).



23

3.3 Structural Methods for Lower Bounds

Many existing proofs for lower bounds rely on the construction of valid colorings by

capitalizing on the structure of the equation in some way.

The first example is a fairly simple, but frequently effective, method. Considering

the example x+ 2y+ 3z = w, we can observe that in any case, w must be the largest of

any solution (x, y, z, w). This means that if 1 is red (without loss of generality), a red

monochromatic solution must contain some value of w that is at least 6. Thus we may

safely color 1 through 5 red and maintain a valid coloring.

We then color 6 blue, and in the same way we know any blue solution must have w

at least 36. So we can safely color 6 through 35 blue.

From here, the process – if it allows for continuation – becomes more delicate be-

cause potential monochromatic solutions might include elements from more than one

monochromatic interval. But we can do our best to go back and forth, adding runs

of red and blue until it becomes impossible. This process can be done with a fixed

equation or one with unspecified coefficients.

In our example x+ 2y+ 3z = w, we can color 36 through 40 red before the solution

(36, 1, 1, 41) becomes an issue. At that point, we cannot assign any color to 41.

So we have determined that R2

(
x + 2y + 3z = w

)
≥ 41. As it turns out, this is

tight, which one might determine exhaustively (which we can do at this point in under

a second) or by referring to [GS08].

Although this methodology is simple, it can be automated (in more than one way),

and has been used (in non-automated ways) in [HM97], [HS05], [JS01], [SW08], [SV08],

[Sch93], [JS04], [Sch95], and more to provide lower bounds for various Rado numbers.

This method could also be applied in a greedy sense, coloring each integer one

by one, rather than arguing from some inequality derived from E , simply coloring

i, i+1, . . . , i+k until i+k+1 would produce a monochromatic triple (and then, switch

colors).

Another method to constructing bounds is to use a parity argument. This could be

useful, for example, with equations like x+ y = u+ v+w, since an all-odd set contains
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no solutions.

Of course, because solutions to an equation like x + y = u + v + w will scale,

a coloring by parity alone may not get us far, since the evens will contain plenty of

solutions (indeed, even solutions are in bijection with all solutions). However, coloring

large intervals by parity has been used, e.g. [MR08]. This is often combined with large

monochromatic intervals, as described above.

Because these two methods, and similar methods, require few parameters, a brute

force (or random) search of all possible “structured” colorings of this type can give

us lower bounds. It is important to note that in some of the previously studied cases,

these bounds do turn out to be tight. However, that is not something we can necessarily

assume in general (e.g. see Appendix B).

3.4 Random Methods for Lower Bounds

There are a number of methods for randomly constructing valid, or nearly-valid, col-

orings. One of the most interesting methods is called simulated annealing. This is a

general purpose random method for numerous applications to many different problems

that could be considered optimization. It has been used to study different linear struc-

tures in the integers, which Butler, Costello, & Graham [BCG10] call “constellations.”

Starting with some initial coloring, we randomly change the colors of various integers

with some probability. Preference is given to changes that decrease the number of

monochromatic solutions, but not absolute preference – sometimes a “bad” change is

made. This methodology can be varied widely depending on the parameters, which need

not even be fixed – the parameters could adapt to the current state of the coloring.

The initial color could be generated by other means, although frequently simulated

annealing overcomes issues with a “bad” choice of initial state.

The work in [BCG10] verifies some of the intuition in Section 3.3, showing that

many simulated annealing methods result in colorings that are comprised of a few long

monochromatic intervals.

In Section 3.7, we will discuss an algorithm known as backtracking in greater depth.
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This algorithm can be randomized, and this amounts to essentially taking a valid col-

oring (e.g. the length-one coloring “red”) and assigning a random color to the next

integer. If that assignment results an invalid coloring, undo this and try again. Unlike

the rigorous version, this algorithm would need to also randomly step back several steps

when it encounters invalid colorings.

All of the structural methods in Section 3.3 could also be randomized, which would

give a non-exhaustive search. Because sets of randomly generated lower bounds are not

rigorous (i.e. they are not complete enough to prove the corresponding upper bound),

a random search through the parameter space of such methods may be slightly less

useful, only proving lower bounds, but much faster.

3.5 Forcing Methods for Upper Bounds

Upper bounds may also be computed by something we will call “forcing.” Assuming

we have a valid coloring, with some of the colors known, we can force the assignment

of other colors in order to maintain the validity of the coloring.

We can use this idea to reprove the fact that S(2) ≤ 5 in this framework as follows:

Proof. Assume for contradiction that we have a valid coloring of [5]. Without loss of

generality, say that 1 is red. Because (1,1,2) is a solution to x+ y = z, we know that a

valid coloring cannot have 2 red. Thus 2 is blue.

Because 2 is blue, 4 must be red in our valid coloring for the same reason.

Now that 1 and 4 are both red, 3 must be blue.

Finally, we have solutions (1,4,5) and (2,3,5), which make it impossible to color 5

with either color in a way that keeps the coloring valid.

Interestingly, in this case we have also produced the coloring red-blue-blue-red,

which proves the matching lower bound S(2) > 4. (However, it is not always the case

that this methodology provides a matching lower bound.)

This method is described in [MR08], which is itself inspired by previous ad hoc use of

this idea throughout the previous literature, including [HM97], [HS05], [JS01], [MR08],
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[SW08], [SV08], and [Sch95]. The latter, in particular, includes a significant application

of this methodology. However, this method is implemented in a Maple package in

[MR08] that automates entire proofs (for a few particular equations), which allows

instantaneous proofs of the paper’s results. Some of these results reproduce existing

results that had originally been proved by careful, and perhaps tedious, implementation

of this algorithm by a human.

The idea behind this algorithm is to start with some initial partial colorings, some

integers in a red set R and some others in a blue set B. We assume that these sets

comprise part of a valid coloring. Each set could contain partial solutions, and if we

can find a solution with all but one integer monochromatic, we can assume that this

last integer must be the opposite color from the rest of the solution set (since we need

the coloring to be valid).

This process can proceed algorithmically.Consider the following illustrative example.

First, let our equation be x + y = 4z. We will simply start with R = {1} and B = ∅.

The process proceeds as follows, where at each step we will list new members of R and

B, plus all uncolored elements from 1 to 15.

Red Blue Unassigned

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 5 6 9 10 7 8 11 12 13 14 15

4 5 6 7 8 10 11 12 14 15 13

Table 3.1: The forcing algorithm for x+ y = 4z

We can observe that at each step, we can go back and forth – updating B, then R,

then B. This is because B starts out as ∅. At the last step listed, we have seen that

the assumption that a valid coloring exists of length 15 leads to a contradiction: that

4 (and 5, 6, and 10) must somehow be both blue and red.

In this case, we can actually determine not just that R2

(
x + y = 4z

)
≤ 15, but

R2

(
x + y = 4z

)
≤ 10. This value of 10 turns out to be correct. With different initial

sets, the process would potentially update R and B at each step instead, but by starting

with one of the two empty, the updates alternate.

It is not necessarily required that the bound (15 above) be fixed – in some cases,
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we can consider the “unassigned” group to contain all integers, and draw from this set

until a contradiction is reached.

3.5.1 Multicolored Forcing Methods

As written, this method is limited to only two colors. However, it is entirely possible

to implement a version of this algorithm for 3 or more colors. The idea would require a

more careful use of this idea of “forcing” – if (a, b, c, d) is a solution to E and a, b, c are

already in R, we can only assume that d is in B because there is no other possibility.

For r colors, there would be 2r sets indexed by all possible subsets of colors. We

would actually reverse our paradigm, though, so that now if an integer i is currently in

set Cc1,c3 , this means it is NOT possible that i has color c1 or c3.

In this case, we would find a solution s = (s1, . . . , sm) that is already monochromatic

of color c except for sj , where sj is currently in the color-set CC . Assuming c is not

already in C, we can move sj from CC to CC∪{c}.

The sets of integers with a definite color are those of the form C2[r]−{c} for each

c. We could use the integers in those sets to draw conclusions about the rest of the

integers, by finding all-but-one-monochromatic solutions.

Because this system requires a much more complex set of moves to get an integer

of indeterminate color (i.e. C∅) to a definite color (r − 1 steps, in fact), it would be

important to make two modifications:

• an automated approach to assigning colors to a few integers to “jump start” the

process, since it will not be enough to simply assume that 1 is red (for example,

running the algorithm 5 times with each of the 35 colorings of the first five integers

in a 3-coloring); and

• an implementation of inferences other than those that can be drawn from integers

in sets of the form C2[r]−{c}, that is, attempting to draw conclusions from integers

that may still have two or more possible colors.

This methodology requires further refinement in its implementation. It is also diffi-

cult to use this algorithm for equations with unspecified parameters because there are
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cases where it becomes difficult to determine whether certain solutions include integers

(while it would be safe to meaninglessly assign colors to non-integers, it would not be

safe to start using those assignments to draw conclusions about integers).

In Section 3.6, we will discuss how the language of satisfiability (a.k.a. SAT) can

be used to formalize this type of methodology in a way that does not require us to

reinvent (or re-implement) the proverbial wheel. These methods will lose some of their

strengths in being directly tailored to questions in Diophantine Ramsey theory but will

benefit from the existence of effective SAT solvers.

3.6 Lower & Upper Bounds in the Language of SAT

In [Ahm09], Ahmed describes how the problem of computing van der Waerden numbers

can be translated into a problem of logical satisfiability (or “SAT”). Like many problems

in computer science, satisfiability has a yes or no answer: “Is a certain logical statement

satisfiable, for some assignment of the variables?” For example, the statement x ∧ y is

satisfiable, with the assignment x = y = True. Here ∧ represents “and,” ∨ will represent

“or,” and ¬ will represent “not.” However, the statement x ∧ (¬x) is not satisfiable,

because any assignment of x will make this statement false. Satisfiability could also be

rephrased in terms of Boolean algebra, but we will continue to use the logical notation

∧, ∨, ¬.

We will reserve x and y for variables in our E from now on, and we will enumerate

our logical variables in this section using v instead.

For our purposes, we have an equation E and a specific N and r, and we want to

know whether there is any r-coloring of [N ] such that no monochromatic solutions to

E exist. First, we can formulate our method in the case of r = 2. We designate the

variable vi to indicate that i is colored blue (and if vi is false, i is colored red).

SAT solving algorithms generally accept input in one of several normal forms. In

this case, we will use the DIMACS format [DIM93] for SAT problems, which uses

conjunctive normal form (CNF). The statement to be satisfied must be the conjunction

(“and”) of a number of clauses. These clauses are themselves all disjunctions (“or”)
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of literals (variables or their negations). There are important theorems noting that all

statements can be written in this normal form, but we might actually find that this

form is quite natural for our problem.

The conditions we must impose are relatively simple: We know any satisfying as-

signment will result in a valid coloring (and if not, there is no such coloring) because

each vi will be either true or false. We take every solution (x1, x2, . . . , xm) and form

two clauses: (
vx1 ∨ vx2 ∨ · · · ∨ vxm

)
∧
(
¬vx1 ∨ ¬vx2 ∨ · · · ∨ ¬vxm

)
These two clauses force at least one of the xi to be red, and at least one to be

blue, i.e. not monochromatic. As an example, if we wanted to prove the 2-color Schur

number S(2) > 4, we would need to gather up all solutions to x+y = z (we may assume

x ≤ y to save some time). They are:

{
(1, 1, 2), (1, 2, 3), (1, 3, 4), (2, 2, 4)

}
This gives us the following formula:

F (v1, v2, v3, v4) =
(
v1 ∨ v2

)
∧
(
¬v1 ∨ ¬v2

)
∧
(
v1 ∨ v2 ∨ v3

)
∧
(
¬v1 ∨ ¬v2 ∨ ¬v3

)
∧(

v1 ∨ v3 ∨ v4

)
∧
(
¬v1 ∨ ¬v3 ∨ ¬v4

)
∧
(
v2 ∨ v4

)
∧
(
¬v2 ∨ ¬v4

)
We can use a SAT solver to produce a satisfying assignment to F (v1, v2, v3, v4), e.g.

v1 = v4 = False, v2 = v3 = True, which is red-blue-blue-red.

We could then consider two additional solutions, (1, 4, 5) and (2, 3, 5), obtaining:

G(v1, v2, v3, v4, v5) = F (v1, v2, v3, v4) ∧
(
v1 ∨ v4 ∨ v5

)
∧
(
¬v1 ∨ ¬v4 ∨ ¬v5

)
∧(

v2 ∨ v3 ∨ v5

)
∧
(
¬v2 ∨ ¬v3 ∨ ¬v5

)
A SAT solver would tell us that G is not satisfiable, proving S(2) ≤ 5.

Because our usual equations include three variables (or more), most of our clauses

will too. This means our problems fall into the framework of 3-SAT, the problem of

deciding the satisfiability of a general formula in CNF where each clause has 3 literals.

This problem is well-known to be NP-hard.
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Our framework for these problems is complicated by the need to have more than

two colors, in which case we we will introduce additional clauses. For each color j and

each solution (x1, . . . , xm) to E , we have the clause:

(
vx1,j ∨ vx2,j ∨ · · · ∨ vxm,j

)
Each vi,j (which, in practice, is translated to vNj+i) represents that i is colored the

color j. We no longer require the negation, since that was to accommodate the second

color of the two. We must explicitly enforce that a color is assigned to each i, so we

must include for each i the clause:

(
vi,1 ∨ vi,2 ∨ · · · ∨ vi,r

)
However, that is not enough! We must also insist that no i is assigned to multiple

colors. For each i, we include the following clauses, which are a bit more complicated

because we need one for each 1 ≤ j < j′ ≤ r, i.e. for
(
r
2

)
pairs:

¬vi,j ∨ ¬vi,j′

The DIMACS format for CNF formulas requires us to count the numbers of variables

and clauses. This is actually not simple, at least not in most cases, since we would need

to enumerate the number of solutions to E in [N ]. Since we have already listed them,

the best way is to simply count the length of that list – rather than try to exploit some

special cases (e.g. if E is x + y = z, it is not hard). Each solution to E contributes r

clauses, and we have to add on N(1 +
(
r
2

)
) clauses to enforce the well-definedness of our

coloring. If the solution set is dense (i.e. E has roughly o(Nm−1) solutions in [N ]), we

will have o(Nm−1 +Nr2) clauses.

It is not difficult to count the number of variables, though. Even in cases where

some i is never used in a solution to E , it is used in the clauses that enforce the well-

definedness of the coloring. For that reason, we know there are rN variables.

In some respects, using a SAT solver is a generalization or restatement of the forcing

methods we describe in Section 3.5 – the logical deductions we make as we “force” some

contradiction are precisely the types of steps we would expect a computer to do if it were
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parsing our CNF looking for a contradiction (or for a satisfying assignment). While

the idea of forcing described in Section 3.5 is tailor-made for Rado numbers, it has its

limitations and is difficult to implement efficiently. SAT solvers are not tailor-made for

these types of systems, but SAT solvers are important tools and many different SAT

solvers exist to tackle these tough problems like computing Rado numbers, like Walk-

SAT, GRASP, and MiniSAT. These SAT solvers rely on high performance computing,

written for efficiency and effectiveness in lower-level languages than computer algebra

systems or the like, and are highly effective in many cases.

In Section 3.7 we will discuss another high performance program that we have

designed and implemented called RADO. That program is robust and effective in many

cases, but SAT solvers have their own advantages. In particular, when the solution

set is sparse, the RADO program does not adapt to this and will consider a significant

number of redundant cases. A SAT solver will not do this, and will instead reap the

benefits of the sparsity by having far fewer clauses to satisfy.

3.7 The RADO Package & Exhaustive Computation

To compute Rr

(
E
)

for a specific value of r and E with no unspecified coefficients, we can

work under a number of different paradigms. In this section, we consider the problem

to be one of searching a tree of all possible colorings. In the most basic sense, the

algorithm used to compute these Rado numbers is a search of the r-ary tree of valid

colorings using a backtracking depth-first search.

Although this is a standard sort of algorithm, many of the details in the implementa-

tion are significant in making feasible these large-scale computations. For that reason,

this section (unlike other sections in this chapter) will detail a significant undertak-

ing: the development and implementation of an efficient, high-performance, parallelized

backtracking algorithm tailor-made for computing Rado numbers. The development of

the RADO program should be considered a part of the work towards this dissertation.

http://www.cs.rochester.edu/u/kautz/walksat/
http://www.cs.rochester.edu/u/kautz/walksat/
http://vlsicad.eecs.umich.edu/BK/Slots/cache/sat.inesc.pt/~jpms/grasp/
http://minisat.se/
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3.7.1 The Backtracking Algorithm

Backtracking algorithms were described in [BG65], wherein one of the first applications

of backtracking was determining S(4) = R4

(
x + y = z

)
= 45. Backtracking is, more

or less, a straightforward implementation of a depth-first search on some tree (in our

case, an r-ary tree). Technically speaking, we are not searching the tree, since at no

point would we halt at a node and say “we found what we were looking for and can

stop searching” until we have explored the entire tree (effectively, the search does not

halt until it returns to the root of the tree).

Due to the relatively ubiquitous nature of tree-searching in computer science and

software engineering, backtracking is a well-known methodology for searching trees, and

is applied to other complex problems like the so-called traveling salesman problem.

There are advantages to depth-first searches (DFS), just as there are for breadth-

first (BFS), but our algorithm will depend on one important fact about depth-first

searches – they tend to require less memory, in general, since we need not track all

nodes at a particular depth as we move through each level in the tree. In this sense, it

is equivalent to the “right hand” method for exiting a maze, which can be executed by

a single person, while the “split up at every turn” requires a team of maze-explorers so

large that somehow at every fork in the maze, the group can subdivide.

We will discuss some implications of DFS vs. BFS in Section 3.7.2, but generally

speaking every vertex in the search tree (corresponding to a particular coloring) will

require the same amount of CPU time to determine its validity, regardless of the organi-

zation of the search. Although the Blue Gene system we currently use has a significant

number of features (in both architecture and software) that could be used to our ad-

vantage, the main advantage of using the Blue Gene system is simply the ability to

harness the collective power of a large number of CPUs in parallel.

For example, the nodes (one node is 4 CPUs) of each rack (1024 nodes) are arranged

in a 5-dimensional discrete torus, so that a node has efficient access to its ten neigh-

bors (two in each direction), including shared access to RAM. However, our search is

not memory-intensive, nor does it require such a feature to enable communication or
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memory sharing between CPUs or nodes.

Our backtrack will terminate immediately if the search reaches a depth of 1000.

This arbitrary cut-off is meant to indicate that a particular search is unlikely to ever

terminate (and in cases where it is feasible, the Rado number might be infinite).

3.7.2 Parallel Methodologies

The tree search is parallelized by splitting an initial search into a queue of valid colorings.

This search factors out any symmetry in the tree by only using the color i if the color

(i − 1) is already in use. (In other words, the branch beginning red-red-blue is the

equivalent to that of red-red-green, so we only do one of those two). Each worker

is assigned a branch (an initial valid coloring that can presumably be extended) and

explores this branch of the tree depth-first. When a worker has explored the entire

branch, it is assigned a new branch to explore.

The parallelized algorithm is controlled by a master process that directs the workers

in their search. This master process keeps track of any idle workers and the queue of

branches not yet explored. This queue is a first-in, first-out (FIFO) structure, although

that may not be important – changing the order of the search would not necessarily

have an appreciable effect on the effectiveness of the algorithm.

The master process must build up the queue (which is initially empty) before it

can hand off any branches to workers. The master process searches the tree from the

root (where we assume 1 has color 0, which we might say is “red,” without loss of

generality). The master process knows how many workers there are, and it will search

the tree breadth first until it finds enough branches to hand one off to each worker. For

any significantly large tree, this will be relatively fast, and using BFS here will not be

problematic because the width of the tree is bounded – once it hits the required width,

it fills the queue and starts the DFS in parallel.

The number of nodes, within the current architecture, is always set at a power of

2, and with 4 CPUs per node, the total number of CPUs is also a power of 2. With

one master process (and possibly a few other non-worker processes we will discuss in

Section 3.7.5), there will be slightly fewer than 2k workers, where usually 7 ≤ k ≤ 12.
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In the case of a binary tree, the master routinely has enough branches at depth k + 1

or k + 2 – very few of these trees will thin out appreciably after only 8-12 generations.

Once the master process has filled the queue accordingly, it hands off one branch to

each worker, and each worker explores this branch depth first, reporting back regularly

to the master process how many colorings it has checked, how many times it has checked

a potential solution to E , and, when finished, the entire list of maximal valid colorings

(which would be leaves in the tree). That worker is then assigned the next branch from

the queue, and this repeats until the queue is empty and there are idle workers.

3.7.3 Tree Cleaving

Once the queue is empty, of course, we run the risk of leaving workers idle. Even if the

queue had exactly enough branches to give one to each worker, these branches do not

take the same amount of time to explore. Generally speaking, it is very feasible that –

without any other strategy – the methodology described above would simply leave the

majority of the workers idle for an extended time. This is, of course, easily corrected if

we can add more branches to the queue and then hand them out.

The master process tracks the state of workers, and if any workers are idle, it initiates

a process we call cleaving. All workers are asked to report their maximal valid colorings,

i.e. leaves on the search tree, and the rest of this process is discussed in section 3.7.5.

However, we also have to refill the queue (that was the purpose for halting all work).

If each worker reported back “I was searching at branch B and extended it to branch

Bb (a concatenation of B and some b) while producing the following maximal valid

colorings {Bv1, Bv2, . . . , Bvk},” we would have a problem – each worker would only

report one place to start searching again, Bb.

Instead, the queue is replenished by considering the branch b that a worker is ex-

ploring and noting that there are many unexplored branches from b. If you write the

tree left-to-right, all branches to the left of b are explored (and returned as Bvi), while

those to the right are unexplored, so the worker can return all of those branches to the

queue as Bb′i, where b′ < b is an initial segment of b and i is one of the colors following

whatever is in the respective position in b. That means it can generate up to (r− 1)|b|
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new branches to search, which means at each cleave, the queue could grow to be at

most as large as roughly (r − 1)WRr

(
E
)
, where W is the number of workers and of

course Rr

(
E
)

may not be known in advance. That is probably a gross overestimate in

most cases, but the size of the queue after cleaving is bounded (assuming Rr

(
E
)
<∞).

For a concrete example, consider a worker who is assigned to explore the branch

01201 (for ease, colors are just 0, 1, and 2), and that worker finds maximal valid

extensions of that branch 000, 002, 01002, 0202, 120021, and is searching branch 122021

when the cleave command is received.

That worker returns the following maximal valid colorings, where we have underlined

the initial B = 01201 for clarity:

• 01201000

• 01201002

• 0120101002

• 012010202

• 01201120021

The worker also returns its current branch, split accordingly, as 01201122021, and

this is dissected into the following new branches:

• 01201122021

• 01201122022

• 012011221

• 012011222

• 012012

Each of these unexplored branches is the prefix 01201, then some truncation of b,

then one more digit that must be later than the corresponding digit of b. For example,

the third entry is the prefix (01201), then the first three digits of b (122), then a digit
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greater than the fourth digit of b (in this case 1, which is greater than 0). This list

constitutes all neighbors of this branch b in the unexplored direction – those that come

after b lexicographically. This cleaving process essentially splits the search space at the

frontier of what has been already explored – sending the maximal explored branches to

the certificate and all vertices adjacent to the boundary of the search to the queue. No

branches are added from B because those have been counted elsewhere, earlier in the

search, before B was put into the queue itself. This example is illustrated in Figure 3.2.

Figure 3.2: The cleaving process for DFS

This figure shows the place where the worker node is currently searching, circled

in red. The branches that have already been searched and explored as far as possible

are returned to the master process as a list of maximal valid colorings (i.e. a list of

the leaves, boxed in blue). The grey nodes are not necessarily leaves, but they are

unexplored and all of them are returned as new items to add to the queue. The split is

illustrated with a red line, and this divisiveness is why we call it cleaving.
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Figure 3.3: The queue and colorings over time

In Figure 3.3, this is illustrated based on the output of a particular computation.

The size of the queue is adjusted to be monotonically decreasing. Sharp drops in the

queue size occur after a cleave is initiated – many of the branches given to workers after

a cleave take only an instant to explore and return. As workers become tied up with

more robust branches, this slows down to a steadier pace. Similar jumps can be seen

in the numbers of colorings checked. Note that in this successful implementation, the

number of idle workers is never appreciable (it coincides with the axis).

Communication between the master process and the workers is not carefully syn-

chronized, which means that if the master process were to issue a cleave command to the

workers, if it did not receive enough immediate responses, it might issue another cleave

command. Even if all workers reported back, the master might not receive enough

branches back to fill up the queue for very long. This is especially problematic near the

end of the search, where workers spend very little time on each branch from the queue.

If we do not account for this issue, it results in something called “state flapping.”

The master process will issue cleave commands when it hits the threshold for cleaving,

but receive only enough colorings back to immediately hand them out – and then cleave

again. This gives workers too little time to explore their branches in depth, which is

precisely why they aren’t returning enough new branches to explore. This is most

likely to occur near the end of a computation, but it is possible (by introducing this
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Figure 3.4: State flapping

problem into the algorithm) to make the last few minutes of a normal search take hours,

days, or worse. Depending on how this problem is introduced, the state flapping may

cause workers to spend the majority of their time cleaving, communicating, and waiting

(rather than searching). On the other hand, if state flapping is avoided in the wrong

way, cleave commands may not be issued properly, at which point workers go idle, and

the process grinds to a halt as a very small number of workers are stuck exploring

what’s left of the tree. This is illustrated in Figure 3.4. In this plot, each quantity has

been normalized from 0 to 1, but we can see that the queue is eliminated around time

t = 1400 – however, the master fails to delegate more tasks to workers, and the progress

grinds to a halt (the “colorings checked” figure essentially flattens out, as almost no

progress is being made) while almost all workers go idle.

The solution that avoids these two problematic scenarios is to give each worker

process a one-second timer. Each worker process ignores commands from the master

for one full second at a time. This allows workers to commit the majority of their

time to searching the tree and checking colorings, only checking once per second for

commands that the master may have issued. The master will send a cleave command

any time the queue is empty, but that command will only be processed by the worker

at its next one-second check. The master also waits to issue a cleave command until

after it has heard back from at least one worker after the previous cleave command (so
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that it does not continuously issue cleave commands while it has not even heard back

from any of the workers).

3.7.4 Checking for Valid Colorings

For a fixed coloring, a worker process will have to check whether that coloring is valid.

Because this is a depth first search, each such coloring is an extension (by one element)

of a valid coloring, so the integer at the end of the coloring would have to be a part

of any monochromatic solution to E . In order to check for monochromatic solutions,

we check all possible evaluations of E (where one or more of the variables must be the

element from the end of the coloring) using what we have termed the value-iterator

(VI).

The VI checks quickly, in a predetermined order, for any possible monochromatic

solution. The VI is optimized in the case of certain symmetry in the equations, like in

the case of x2
1 + · · ·+ x2

k = z2, assuming x1 ≤ x2 ≤ · · · ≤ xk ≤ z (and so we know the

largest integer in the coloring isn’t just one of these, it must be z). At this time, the

VI will not optimize for equations like x + y + 3z = 10w, where the only assumption

we can make is that x ≤ y. This is one improvement we hope to make in the future.

It is important to note that having more variables in E will (generally speaking) make

the Rado number smaller. However, it increases the complexity of the VI by a factor of

the current depth of the search (which is not a favorable trade-off). There is significant

room for improvement in the VI, especially when handling nonlinear equations like

x2 + y2 = z2, where solutions to the equation are sparse. We will discuss some future

improvements to the VI and other parts of this process in Section 6.1.

3.7.5 Engineering Challenges

Finally, we will discuss some of the challenges implementing the algorithm above. Al-

though the algorithm may seem, at this point, very much complete, there are still some

issues to address. In particular, we will discuss how information is written to disk and

how the equation E is interpreted in the algorithm. We will also go over some issues

related to using the Excalibur Blue Gene system. We should again acknowledge again
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Rutgers Discovery and Informatics Institute (RDI2) for its support for this research.

These computing resources are truly invaluable.

A Benchmark

We will repeat this result explicitly in Section 4.4, however we will provide one example

of the magnitude of these computations. This should give give some idea as to the

arithmetic efficiency of the RADO package. In order to compute R3

(
x + 3y = z

)
= 94,

we check over 200 billion colorings and check 90 trillion possible solutions. This takes

512 CPUs over 34 hours. The entire system runs at about 732 million checks of E per

second, which is about 1.5 million per CPU per second.

It is not clear what is typical for a generic E , since many computations are instanta-

neous and many are intractable, but this gives us some idea of the magnitude of some

computations. Considering the scale of this computation, this example highlights how

important it is to minimize the number of checks of E and to check E as efficiently as

possible.

Filesystem & Hard Disk Issues

When exploring these trees, workers report back the maximal valid colorings (i.e. leaves

on the tree). As they are generated, in no particular order, these colorings can be written

to disk. This is easier said than done.

If a full certificate (the entire search tree) is being created, there are other manager

processes that handle the output (a list of all maximal valid colorings) from the workers,

in order to keep the master process free for the more important, low-latency task of

keeping the workers working. These manager processes offload I/O from workers in

order to prevent thrashing the hard disk and other I/O issues. The managers also

compress the output using LZ4 compression, which allows for compression on-the-fly at

a relatively good compression ratio. According to LZ4 specifications, LZ4 is about 66%

as good as zlib, but 20 times as fast, in general. In our tests comparing LZ4 and zlib in

RADO, we see about 50% as good compression but each manager can handle 15 workers,

instead of 4, giving us a significant increase in the total number of workers. Workers
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send results to the managers in 32MB (uncompressed) batches, so that managers and

workers spend less time on communication.

A partial certificate, containing only summary information, can also be produced

(in which case, there are no manager processes).

Efficient Arithmetical Operations

In order to compute these Rado numbers, the numbers of colorings checked (i.e. number

of nodes in the search) is extremely large, and for each coloring checked, the number of

times the equation E is evaluated is likewise very large. The example in Section 3.7.5

gives us an idea of how intensive these computations can be.

In order to evaluate E this many times, within a feasible time-frame, the arithmetic

operations that define E are translated into a function fE (subtracting all terms to one

side), and this function is evaluated repeatedly (and E is satisfied if and only if fE = 0).

This simplifies our methodology slightly, but the real question is how to implement the

function fE .

It would be possible to simply hard-code the function in C++. However, in that

case it would be impractical to modify and recompile the RADO package for every single

input E (in fact, strictly speaking, E would not be input). As noted above, the function

fE will be called billions, trillions, or even quadrillions of times. One would stagger

to estimate the total number of times fE has been evaluated for all E throughout the

development and application of our RADO package.

Of course, one could very easily write a high-level version of the RADO package in

Mathematica or Maple, where a function is a known type of data and could be input

in the abstract sense. However, writing in a high-level computer-algebra system would

be slow and impractical in many other ways, since our backtracking methodology is

CPU-intensive. It is worth noting as well that parallel computation using proprietary

software would also be prohibitively expensive.

From a design perspective, the goal is to take an input E , build a function fE in

some way by parsing that input, and do so in a way that allows extremely rapid and

repeated execution of fE for numerous integer-valued inputs. In order to do this, we use
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a technique called just-in-time (JIT) compilation. A user-input string representing fE

is parsed and translated into machine code equivalent to that which a compiler would

have produced if we had hard-coded the equation.

This JIT compilation allows our function to be comprised of a set of low-level opera-

tions corresponding to the arithmetical operations in fE , and will work for any function

the user provides. It is the best of both worlds. The only restriction on user input

is that fE must be a polynomial with integer coefficients, completely expanded (i.e.

x2 + 2x + 1 and not (x + 1)2). This restriction is somewhat arbitrary, but by impos-

ing this structure on the input E , translation to fE is direct and provides an optimal

representation of the arithmetic in the function fE .

Even in a non-parallelized algorithm, optimizing fE to be evaluated as quickly as

possible is an extremely effective optimization, since fE is evaluated a huge number of

times and becomes the bottleneck in any serious use of RADO.

Job Management

On the IBM Blue Gene system “Excalibur” users send their jobs through a front-end

system that passes the job to the actual Blue Gene system. We have developed a

number of scripts and auxiliary functions on the front end to perform useful functions,

including:

• batch a number of jobs for some parametrized family (e.g. for the family x+ay =

z, or simply Ea, a script could generate jobs for each value of a, where the user

provides parameters for the jobs along with a range of a values, so that multiple

jobs are submitted);

• summarize the results of any particular computation, including statistics for the

computation, a summary of the parameters for the job, and the Rado number;

• batch summarize a set of jobs, dumping the summary into a large output file that

can be parsed to analyze a large family of related jobs; and

• run a series of tests against known values of Rado numbers and other performance
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tests to ensure that changes to the RADO package do not degrade performance or

introduce errors or bugs.

One important feature we have not used is Checkpointing – where a job is essentially

saved for later use. This would allow us to interrupt a job and resume it later, saving

our progress, rather than face the limitations imposed by the scheduler (48 hours with

4096 CPUs, at most). Using this feature would allow us to tackle one or two extremely

difficult computations that require more CPU power than the 48× 4096 CPU-hours we

can use now.

3.8 Grouping Single Rado Numbers into Families

Much of the computational work in this thesis uses the RADO package or a SAT solver,

neither of which can tackle families of equations, just one equation at a time. This

might result in the computation of a sequence of Rado numbers, like S(r) = 1, 5, 14, 45.

It would then be the hope to use that information to discern a formula, and at least

conjecture if not prove the formula, using some other tools. (Of course, in the case of

S(r) we have not yet made progress.)

Our goal is to use the Rado numbers we have produced, essentially combing these

data for patterns to which we match our conjectures and eventual theorems about

parametrized families of equations. Those conjectures can be proved either using some

of the computational methods that apply to parameterized families or by traditional

non-computational methods.

We will first note that in [JS04], [MR08], and [SW08], we find that Rado numbers

for a particular family will often be quasipolynomials.

Definition 3.10. The function f : Z→ R or f : Z+ → R is a quasipolynomial if there

are polynomials p0, p1, . . . , pM−1 such that for all k in the domain of f , f(k) = pi(k)

for k ≡ i (mod M).

It is not uncommon to find programs to fit quasipolynomials to data, including

packages in Maple and the OEIS Super-Seeker, a service provided by the Online En-

cyclopedia of Integer Sequences, http://oeis.org. We have also constructed some

http://oeis.org
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packages in Mathematica that do the same with some human guidance to account for

“noise” at low values of the function (since some of our functions will be quasipoly-

nomials only when k > 4 or the like). However, we are required to have a significant

amount of data before we can fit a quasipolynomial. For example, we could continue

to investigate x+ y+ kz = `w as in [MR08], and we might proceed with the belief that

R2

(
x+y+kz = `w

)
∼ (k/`)2, which for a fixed ` seems to give a quasipolynomial in k.

But [SW08] shows that these quasipolynomials may have very large period (M above).

We use this methodology to formulate Conjecture 4.4 in Section 4.2.

The occurrence of quasipolynomials is natural in these contexts, when many argu-

ments require us to say something like “consider the coloring that assigns red to all

integers up to m−1
2 ,” where this might mean the greatest integer up to, but not includ-

ing, m−1
2 . If that is a lower bound, then we add 1 to this quantity, which is precisely

the ceiling of m−1
2 . Similar constructions generally result in floors or ceilings, e.g. in

the theorem of Schaal & Vestal [SV08]:

R2

(
x1 + · · ·+ xm−1 = 2xm

)
=

⌈
m− 1

2

⌈
m− 1

2

⌉⌉
Not only does this expression include a ceiling, it’s actually an interesting nested

pair of ceilings. However, some straightforward analysis of this function tells us that

we could have said equivalently:

R2

(
x1 + · · ·+ xm−1 = 2xm

)
=

1

4
·



m2 −m m ≡ 0 (mod 4)

m2 − 2m+ 1 m ≡ 1 (mod 4)

m2 −m+ 2 m ≡ 2 (mod 4)

m2 − 2m+ 1 m ≡ 3 (mod 4)

This is illustrated in Figure 3.5, where a quasipolynomial of degree 2 and modulus

4 is used (in other words, we assume p0, p1, p2, p3 are all quasipolynomials of degree 2).

This requires 8 interpolating points, which are colored blue. The following green points

all coincide with these parabolas because we know the theorem to be true, but if we

were unsure, this would certainly provide some empirical support. Of course, since two
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of these curves coincide, we only see three parabolas. (It might be hard to distinguish

p0 and p2 at this scale as well).

Figure 3.5: Quasipolynomial interpolation of
⌈
m−1

2

⌈
m−1

2

⌉⌉
Many of the families of equations studied in this thesis are deliberately chosen far

from the typical families studied in the literature, and as such will not necessarily

exhibit the same behavior – defying our attempts to interpolate quasipolynomials to

our data. However, it is still quite important to remark that this technique is often

highly effective at fitting data. The leading term in each case is m2/4, and we expect to

see quasipolynomials in other cases where the leading term is the same for all moduli.
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Chapter 4

Rado Numbers for Linear Equations

Many existing results in Diophantine Ramsey theory give specific Rado numbers for

linear equations, typically in some parametrized families. The results of Guo & Sun

[GS08] and of Saracino [Sar13] give some of the strongest generalizations of [BB82]

thusfar. We will repeat these two as theorems here, respectively, for emphasis.

Theorem 4.1. The 2-color Rado number R2

(
a1x1 + · · · + am−1xm−1 = xm

)
, where

a1 ≤ ai and b = a2 + · · ·+ am−1, is a1b
2 + (2a2

1 + 1)b+ a3
1.

Theorem 4.2. The 2-color Rado number R2

(
x1 + · · ·+xm−1 = axm

)
is
⌈
m−1
a

⌈
m−1
a

⌉⌉
.

We look to extend our understanding of linear equations and their Rado numbers by

moving outside the confines of these two theorems – either by changing the equations

or using 3 or more colors. In the next two sections, we will explore the 2-color Rado

numbers for families of linear equations previously not investigated. As noted in Section

3.1.5, there is room for improvement in discovering Rado numbers for equations with

three or four variables similar to x+ y + kz = `w or ax+ by = cz.

4.1 The Equation 2x+ 2y + kz = 3w

In this section we will consider the equation Ek to be 2x+ 2y + kz = 3w.

k = 1 2 3 4 5 6 7 8 9 10 11 12 13

R2

(
Ek
)

= 5 4 9 12 10 16 21 18 25 28 29 32 41

k = 14 15 16 17 19 21 23 25 27 29 31

R2

(
Ek
)

= 36 49 56 53 69 81 81 115 123 129 157

Table 4.1: 2-color Rado numbers for 2x+ 2k + kz = 3w

As of yet, we are unable to determine the Rado number for this family. Although

it appears to nearly fit our quasipolynomial approximations, it does not quite fit –
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even when a few terms are discarded. We should also note that there is an interesting

relationship between k and how difficult to compute the Rado seems. We will discuss

that shortly. For now, we offer only the conjecture:

Conjecture 4.3. The 2-color Rado number R2

(
2x+ 2y + kz = 3w

)
∼ k2/9.

This conjecture is based on our analysis of the quasipolynomial approximations that

do not fit, but seem to closely model the growth of this function of k. We will also

suggest that the modulus of the quasipolynomial (assuming that is the correct type of

function) will be divisible by 3.

We will take a quick look at the computational time and complexity required to

produce Table 4.1.

Figure 4.1: Data for the family 2x+ 2y + kz = 3w

All of the data series in Figure 4.1 have been normalized to [0, 1]. We can see here

a very strong relationship between the number of evaluations of fEk and the time (in

CPU·seconds) the computation requires. This confirms our analysis in Section 3.7.5

about the way in which the speed of evaluating fE governs the efficiency of our RADO

package.

We can also observe that the number of colorings checked trends generally with

the number of evaluations of fEk . Although we might expect that this would grow as

the Rado number grows (since the maximum depth of the tree is longer), we might
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also hedge on the fact that the average depth of the tree does not necessarily have a

relationship to the maximum depth.

The most apparent phenomenon in the figure is the huge spike at k = 16. Despite

the fact that the Rado number seems innocuous, not out of place in the sequence, this

computation took far longer than one might expect for it to produce that figure. Similar,

but smaller, jumps occur at k = 9, 11, 13, 19. The prime or prime-power coefficient in

this type of problem seems to make the tree much thicker, requiring a longer computing

time, even though the Rado number is about the same.

This is not an isolated phenomenon. For example, R2

(
x2 + y2 + 13z2 = w2

)
is

extremely difficult to compute, while the same with 12 instead of 13 takes only a few

seconds to compute. We could even consider the most extreme example so that we can

consider why this happens. Consider x1 + · · ·+ x18 = x19 and 7x+ 11y = z. We would

expect that the first is much easier to compute – not just because of the Rado number

being lower (by Lemma 3.8), but because in general the complexity of the tree is much

worse in the latter case. If we let z = x19 = N for some fixed N , how many ways can

we write N as the sum of 18 integers, vs. the sum 7x+ 11y? The flexibility in the first

case means that branches of that search tree are pruned earlier.

Although this heuristic seems fairly vague and relatively anecdotal, prime and prime-

power coefficients (in linear or nonlinear equations) seem to coincide frequently with

especially time-intensive computations.

4.2 The Equation kx+ (k + 1)y = (k + 2)z

In this section, let Ek denote the equation kx + (k + 1)y = (k + 2)z. This family of

linear equations is a one-parameter section of the general family ax+ by = cz.

As described in Section 3.1.5, the family ax+ by = cz is at the heart of the partial

order of linear equations, and an explicit formula for R2

(
ax + by = cz

)
would be a

tremendous breakthrough. Attacking this family Ek is similar to what has been done

with ax+ ay = bz, ax+ by = bz, and the like (see Figure 3.1.5).

Using the RADO package, we can compute the value of R2

(
Ek
)

for small values of k
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as follows:

k = 1 2 3 4 5 6 7 8 9 10 11 12 13

R2

(
Ek
)

= 1 10 17 15 23 28 36 45 55 71 78 97 105

k = 14 15 16 17 18 19 20 21 22 23 24 25

R2

(
Ek
)

= 120 136 153 171 190 210 231 253 276 300 325 351

Table 4.2: 2-color Rado numbers for kx+ (k + 1)y = (k + 2)z

In Appendix B, a more detailed analysis of the computational data for this family

is presented.

As described in Section 3.8, we can attempt to interpolate this family using a

quasipolynomial. For example, an email to superseeker@oeis.org with the follow-

ing text:

lookup 1 10 17 15 23 28 36 45 55 71 78 97 105 120 136 153 171 190 210

will return an email that says, in part, the following:

SUGGESTION: apparently the differences of order 2 in the difference

table of depth 1 have become constant. If this is true then the

next four terms of the sequence are:

[231, 253, 276, 300]

TRY "RATE", CHRISTIAN KRATTHENTHALER’S MATHEMATICA PROGRAM FOR GUESSING

A CLOSED FORM FOR A SEQUENCE. ("Rate" is "Guess" in German. For

a description of RATE, see

http://www.mat.univie.ac.at/~kratt/rate/rate.html)

RATE found the following formula(s) for the nth term:

((1 + n)*(2 + n))/2

We note that the next four terms provided are correct (and for all other terms

computed, in fact), which inspires the following conjecture:

Conjecture 4.4. The 2-color Rado number R2

(
kx + (k + 1)y = (k + 2)z

)
is k2+3k+2

2

for k ≥ 11.
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We can verify this conjecture in many different ways (although of course, verification

is verification, regardless of how many times or ways it is done), but we cannot produce

this result using abstract or symbolic computation – thus not proving it for all k. The

maximal colorings are given in Appendix B and we note that these colorings do not

conform to the typical patterns exhibited in the existing literature, as described in

Chapter 3.

4.3 Off-Diagonal Rado Numbers

In Section 3.1.4, we discuss the definition of an off-diagonal Rado number, where each

color has its own equation. In the case of 2-color off-diagonal Rado numbers, the result

from [MR07] in that section gives us a good idea that we can proceed without much

fear of trying to compute infinite quantities.

We offer the following data for a family of new off-diagonal Rado numbers. Let Ek

bet x+ y = kz. Then we can compute the following Rado numbers for R2

(
Ek; E`

)
.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 5 2 8 10 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21

2 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

3 9 6 8 9 11 12 18 15 17 18 20 21 23 24 26 27 29 30

4 10 10 12 14 16 18 20 22 24 26 28 30 34 36 38 40 42

5 15 15 28 30 35 38 43 45 50 53 58 60 65 68 73 75

6 21 21 36 42 45 51 54 60 63 69 72 78 81 87 90

7 28 28 49 53 77 84 91 98 105 116 119 126 133 140

8 36 48 68 68 96 104 112 120 128 136 144 152 160

9 45 59 81 81 90 126 171 180 194 203 216 225

10 55 70 60 115 155 150 200 215 225 240 250

11 66 83 99 132 127 132 187 248 314 330

12 78 96 114 150 174 228 294 288 360

13 91 111 130 169 195 254 286 260

14 105 126 147 210 217 245 315

15 120 150 165 223 240 270

16 136 168 184 208 264

17 153 187 221 230

18 171 207 225

19 190 228

20 210

Table 4.3: Table of Rado numbers for sums of squares.

Here in Table 4.3, we have computed a large number of these. Note that we only fill

in the table for k ≤ `, since the off-diagonal Rado number operator has symmetry in its

arguments. We might also note that the diagonal of this table includes R2

(
Ek; Ek

)
=
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R2

(
Ek
)
, which reminds us how we named these “off-diagonal” in the first place. Those

are already known due to the results in [LR03] (or to over-do it, [Sar13]) to be R2

(
x+

ky = z
)

=
(
k+1

2

)
(for k ≥ 4).

We offer the following conjectures:

Conjecture 4.5. For ` ≥ 5, the 2-color Rado number R2

(
E1; E`

)
is ` + 1 for ` even

and (3`+ 1)/2 for ` odd.

We initially formulated this conjecture by interpolatating the data as in Section 3.8,

although this sequence already exists in the Online Encyclopedia of Integer Sequences

as A063914.

Conjecture 4.6. For ` ≥ 2, the 2-color Rado number R2

(
E2; E`

)
is
⌊
`
2

⌋
.

We will note that this is a quasipolynomial, since
⌊
`
2

⌋
could only be `

2 or `−1
2 . Our

next conjecture will be in the form of a floor, and we will no longer continue to remind

the reader that this is also a quasipolynomial.

Conjecture 4.7. For ` ≥ 10, the 2-color Rado number R2

(
E3; E`

)
is
⌊

3`+1
2

⌋
.

Although we do not have sufficient data to formulate a more precise conjecture, we

would like to offer the following conjecture to end this section:

Conjecture 4.8. For ` and k sufficiently large, the Rado number R2

(
Ek; E`

)
is a

quasipolynomial in k and ` of degree 2.

4.4 Some 3-color Rado Numbers

It is possible to use the RADO package to compute Rado numbers with any number

of colors, although current implementation makes the (arbitrary) restriction that one

must use between 2 and 8 colors. It is important to recall that Rado’s Theorems 2.9

and 2.10 do not provide precise conditions for the 3-regularity of any type of equation,

and as we noted, there is a distinction between k- and (k + 1)-regularity for all k.

As mentioned in Section 3.7, in order to avoid lengthy computations (especially

in the case when the Rado number could be infinite), we have hard-coded a bail-out

http://oeis.org/A063914
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value of 1000. Should the search of the tree of all valid colorings ever reach this length,

the node at that depth will return an error and the master process will terminate the

entire computation. There is, of course, no reason to believe there are not 3-color Rado

numbers greater than 1000 (surely, there must be), but it is also not safe to assume

that any computation of this type will terminate in any reasonable timespan, since it

could easily be the case that the tree is unbounded (as easily as x+ 2y = 4w).

However, Rado’s Theorem (Theorem 2.9) provides conditions that are sufficient

(although stronger than necessary), giving us a set of equations we can guarantee are

safe in at least some sense. We first present some results of that type:

Theorem 4.9. The 3-color Rado number R3

(
x+ y + z = w

)
is 43.

Note that this is a generalized Schur number with m = 3, r = 3. This result is

not new, and we can present Table 4.4. The first row and column are each trivial, the

second row is a consequence of Theorem 3.1 from [BB82], and the other non-underlined

data are drawn from [Ahm], which provides some new results as well as a summary and

some background on generalized Schur numbers. The underlined data are new results

in this dissertation.

r m in x1 + · · ·+ xm−1 = xm
2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9

2 1 5 11 19 29 41 55 71 89

3 1 14 43 94 173 286 439 638 889

4 1 45

5 1

Table 4.4: Generalized Schur numbers

All 2-color generalized Schur numbers were given by [BB82], where it is determined

that Sm(2) = m2 − m − 1. Theorem 3.3 gives us a bound of Rr

(
x1 + · · · + xm−1 =

xm
)
≥ mr − (mr−1 + mr−2 + · · · + m2 + m + 1), but from the table above we can

see that this lower bound is not tight in all cases. It remains to be seen whether

R3

(
x1 + · · · + xm−1 = xm

)
= m3 − m2 − m − 1. We would agree at this time with

the conjecture of [Ahm] that this is true, considering we have verified this for twice as

many values of m as known previously. We will discuss those results shortly, but we
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begin with the following theorem:

Theorem 4.10. The 3-color Rado number R3

(
x+ y + 2z = w

)
is 94.

This Rado number was proved using the RADO package. It required approximately

22.5 hours on 128 nodes (512 CPUs), checking over 4 million colorings and evaluating

the polynomial fE(x, y, z, w) = x+ y+ 2z−w about 95 trillion times. The writing of a

certificate has been suppressed due to considerations of disk space. One might make a

conservative estimate that the certificate would exceed the terabyte range – in fact, we

owe our apologies to the administrators of the Excalibur system for accidentally filling

up the entire hard drive on at least one occasion.

Theorem 4.11. The 3-color Rado number R3

(
2x+ 2y = 3z

)
is 54.

This Rado number was also proved using the RADO package. The computation only

required 8 seconds on 128 nodes (512 CPUs), checking only about a million colorings

and evaluating the polynomial fE(x, y, z) = 2x + 2y − 3z about 380 million times.

Compared to Theorem 4.10, which might seem like a similar computation, this was

actually much faster. That is strange for a number of reasons, not the least of which is

that the equation 2x+ 2y = 3z has fewer variables (making it, heuristically, harder to

compute), not to mention that this is not guaranteed to be finite, a priori.

Interestingly, it is not nearly as easy to compute R3

(
2x + 2y = kz

)
for other odd

values of k (not even k = 1). It is important to note that there is no guarantee that

these numbers are finite, let alone within the computing power of RADO or any other

algorithm.

We may revisit Theorem 4.10 to generate the following data, which inspires us to

make the following computations:

k = 1 2 3

R3

(
Ek
)

= 43 94 173

Table 4.5: 3-color Rado numbers for Ek, x+ y + kz = w

We now generalize our focus a bit to the equation x1 + · · ·+ xm−2 + kxm−1 = xm.

This generalization may seem to increase the complexity of the equation, but it allows
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us to make more computations by potentially reducing the numbers of variables in our

equations. The figures in Table 4.6 are computed using RADO or SAT methods.

k = 1 2 3 4 5 6

m = 3 14 43 94 173 286 439

4 43 94 173

5 94

6 173

7 ?

Table 4.6: 3-color Rado numbers for x1 + · · ·+ xm−2 + kz = w

Note that the first row is a part of Section 4.4.1, while the first column consists of

3-color generalized Schur numbers (all known values are m3 −m2 −m− 1). Along the

antidiagonals (where k + m is constant), we know by Lemma 3.8 that these increase

from bottom-left to top-right. However, in all of these computations we should note

that these are equal. We believe this pattern continues, and will make the relevant

conjecture shortly.

We should note that this allows us to compute the values for (m, k) = (5, 2) and

(4, 3) implicitly – since they must be between the values for (6, 1) and (3, 4). This also

gives us an upper bound on the generalized Schur number R3

(
x1 + · · ·+x6 = x7

)
≤ 286

(the location of this is noted with a ?). However, we already know that m3−m2−m−1 is

a lower bound for the generalized 3-color Schur numbers as in [BB82], which is precisely

286 for m = 7. The same is true for the 8-variable equation, and so this gives us a more

complete Table 4.7 and also a strong Theorem 4.12.

k = 1 2 3 4 5 6

m = 3 14 43 94 173 286 439

4 43 94 173 286 439

5 94 173 286 439

6 173 286 439

7 286 439

8 439

Table 4.7: 3-color Rado numbers for x1 + · · ·+ xm−2 + kz = w, version 2

Theorem 4.12. For m = 7, 8, 9, 10, the 3-color generalized Schur number R3

(
x1 +· · ·+

xm−1 = xm
)

is m3 −m2 −m− 1.
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The proof is simply done by computing R3

(
x + ky = z

)
= 286, 439, 638, 889 for

k = 5, 6, 7, 8. (Note that not all of these data are included in Table 4.7.) Those

computations are done by SAT methods, although k = 5 was also verified by RADO.

Even though each of these computations is harder than the corresponding generalized

Schur number, in the sense that the Rado number must be (non-stritly) larger, it

requires us to consider equations with a fixed number of variables (in particular, fewer

variables!) which is much better for either the SAT method or RADO. This indirect

sort of computation is precisely why we make very clear the importance of the ideas in

Section 3.1.5. We make the following conjecture:

Conjecture 4.13. For k ≥ 1, the 3-color Rado number R3

(
x+ ky = z

)
is (k + 2)3 −

(k + 2)2 − (k + 2) − 1. (This implies the existing popular conjecture that the 3-color

generalized Schur number R3

(
x1 + · · ·+ xm−1 = xm

)
is m3 −m2 −m− 1.)

We can also compute a similar set of data for x + y + z = kw, and if we can

generalize some of the work of [Sch95] and [BB82], the Table 4.8 should inspire us to

consider generalizing the work of [Sar13].

k = 1 2 3 4 5 6 7 8

R3

(
Ek
)

= 43 8 1 12 25 40 171 422

Table 4.8: 3-color Rado numbers for Ek, x+ y + z = kw

4.4.1 3-color Off-Diagonal Rado Numbers

In Section 4.3, we discuss off-diagonal Rado numbers. Definition 3.5 was stated to apply

to more than two colors, so we need not generalize it here. We will now discuss some

results for 3-color off-diagonal Rado numbers.

If we let Ea be x + ay = z, we can compute some values of R3

(
Ea; Eb; Ec

)
, which

are shown in Table 4.4.1. This table was computed using a combination of the RADO

package and SAT solving programs.

Many of these computations were very difficult, requiring significant computing time

and power. Unfortunately, even with this much data, we cannot yet offer a conjecture
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(a, b, c) R3

(
Ea; Eb; Ec

)
(a, b, c) R3

(
Ea; Eb; Ec

)
(1,1,1) 14 (2,2,5) 76

(1,1,2) 24 (2,3,3) 69

(1,1,3) 39 (2,3,4) 83

(1,1,4) 57 (2,3,5) 98

(1,1,5) 90 (2,4,4) 101

(1,2,2) 31 (2,4,5) 119

(1,2,3) 47 (2,5,5) 140

(1,2,4) 49 (3,3,3) 94

(1,2,5) 67 (3,3,4) 113

(1,3,3) 58 (3,3,5) 132

(1,3,4) 70 (3,4,4) 137

(1,3,5) 82 (3,4,5) 160

(1,4,4) 85 (3,5,5) 188

(1,4,5) 107 (4,4,4) 173

(1,5,5) 124 (4,4,5) 202

(2,2,2) 43 (4,5,5) 237

(2,2,3) 54 (5,5,5) 286

(2,2,4) 65

Table 4.9: 3-color off-diagonal Rado numbers for x+ ay = z for a ≤ 5

for some closed-form for R3

(
Ea; Eb; Ec

)
. However, each of these is a bound on the

corresponding off-diagonal generalized Schur number.

4.5 Some 4-color Rado Numbers

We will end this chapter with some 4-color Rado numbers. We will examine the equation

x+ y + c = z. We can prove the Rado numbers listed in Table 4.10.

c = -2 -1 0 1 2 3 4 5 6 7

R4

(
x+ y + c = z

)
= 2 1 45 83 121 161 201 241 281 321

Table 4.10: 4-color Rado numbers for x+ y + c = z

It is interesting to note that we can very easily construct a bound for, say, c = 6

– it takes less than a second. But it takes several CPU-hours to confirm that this

lower bound is tight. For c < 0, it is easy to see that Rr

(
x + y + c = z

)
≤ −c, since

(−c,−c,−c) is a solution. We can verify that this bound is tight for −20 ≤ c ≤ −1

(which is not interesting enough to be included in the table above).

In light of the fact that we know R2

(
x + y + c = z

)
= 4c + 5 and R3

(
x + y + c =
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z
)

= 13c + 14 (for c ≥ 0), we can see that it is not quite the same here. The function

is not linear for c ≥ 0, but we can modify the appropriate conjecture accordingly:

Conjecture 4.14. The 4-color Rado number R4

(
x+ y+ c = z

)
with c ≥ 2 is 40c+ 41.

We will even offer another conjecture, based on these observations. We suspect this

conjecture could be adapted to a similar statement about non-homogeneous generalized

Schur numbers for more than four colors.

Conjecture 4.15. For each r > 0 and c ≥ 0, there are constants C and m such that

Rr

(
x+ y + c = z

)
= mc+m+ 1 for c ≥ C.

We also believe it is true that m ≤ Rr

(
x+ y = z

)
.

Although at this time we are not able to prove Conjecture 4.14e, we can provide proof

of the lower bound. We should acknowledge that this draws heavily from the ideas in

[Sch95]. This is proved using the ideas in Section 3.3, and we also believe the conjecture

can be proved completely using the techniques used to prove the corresponding results

for fewer colors.

Proof. Let Ec be our equation x+ y + c = z. Consider the coloring χ : [40c+ 41]→ [4]

defined as follows:
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χ(i) =



1, 1 ≤ i ≤ c+ 1

2, c+ 2 ≤ i ≤ 3c+ 3

1, 3c+ 4 ≤ i ≤ 4c+ 4

3, 4c+ 5 ≤ i ≤ 9c+ 9

1, 9c+ 10 ≤ i ≤ 10c+ 10

2, 10c+ 11 ≤ i ≤ 12c+ 12

1, 12c+ 13 ≤ i ≤ 13c+ 13

4, 13c+ 14 ≤ i ≤ 27c+ 27

1, 27c+ 28 ≤ i ≤ 28c+ 28

2, 28c+ 29 ≤ i ≤ 30c+ 30

1, 30c+ 31 ≤ i ≤ 31c+ 31

3, 31c+ 32 ≤ i ≤ 36c+ 36

1, 36c+ 37 ≤ i ≤ 37c+ 37

2, 37c+ 38 ≤ i ≤ 39c+ 39

1, 39c+ 40 ≤ i ≤ 40c+ 40

By the result on 3-color non-homogeneous Schur numbers in [Sch95], we know that

[1, 13c + 13] does not contain a monochromatic solution to Ec. It should also be self-

evident that there is no solution of color 4, since that solution would have to have:

z = c+ x+ y ≥ c+ (13c+ 14) + (13c+ 14) = 27c+ 28.

It remains to show that there is no monochromatic solution that involves x, y, or z

greater than 27c+ 27. Assume we have a monochromatic solution (x, y, z) to Ec. Since

z is the largest of the three, we know z ≥ 27c + 28. However, if x and y are both less

than 27c + 28, they can be at most 13c + 13 (in order to agree in color with z, they

cannot be color 4). This would imply:

27c+ 28 ≤ z = x+ y + c ≤ (13c+ 13) + (13c+ 13) + c = 27c+ 26.
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And so in any case, we must have z and (without loss of generality) y both greater

than 27c+ 27.

If the solution is color 3, we have z − y ≤ 5c + 4, since the interval of color 3

containing y and z is [31c + 32, 36c + 36], which is precisely that long. This means

x = z − y − c ≤ 4c+ 4, so that x cannot be color 3 after all.

If the solution is color 2, y and z must belong to one of the the intervals [28c +

29, 30c+ 30], [37c+ 38, 39c+ 39]. If z and y are in the same of these two intervals, then

their difference is at most 2c + 1 (the length of these intervals). But in that case we

have x = z − y − c ≤ (2c+ 1)− c = c+ 1, which implies x is color 1 instead.

If z is from [37c+ 38, 39c+ 39] and y from [28c+ 29, 30c+ 30], then their difference

must be somewhere in [7c+ 8, 11c+ 10], putting x into [6c+ 8, 10c+ 10]. However, that

interval is colored partially color 3, and partially color 1.

If this solution is color 1 (this is the worst case, clearly), then y and z each belong

to one of four intervals:

[27c+ 28, 28c+ 28], [30c+ 31, 31c+ 31], [36c+ 37, 37c+ 37], [39c+ 40, 40c+ 40]

Of course, they cannot belong to the same interval, because these intervals are length

c and would give z − y ≤ c (i.e. x ≤ 0).

If y is in [27c+28, 28c+28] and z in [30c+31, 31c+31], then the difference z−y = x+c

is at most 4c+ 3 and at least 2c+ 3, meaning c+ 3 ≤ x ≤ 3c+ 3. However, that implies

that χ(x) = 2 instead of 1.

If y is in [36c+ 37, 37c+ 37] and z in [39c+ 40, 40c+ 40], the previous case applies.

If y is in [27c+ 28, 28c+ 28] and z in [36c+ 37, 37c+ 37], then we find z− y must be

in the interval [8c+ 9, 10c+ 9], meaning x is in [7c+ 9, 9c+ 9]. This is a contradiction,

since that would give χ(x) = 3.

If y is in [30c+ 31, 31c+ 31] and z in [39c+ 40, 40c+ 40], the previous case applies.

If y is in [27c + 28, 28c + 28] and z in [39c + 40, 40c + 40], then z − y must be in

[11c+ 13, 13c+ 12], meaning x is in [10c+ 13, 12c+ 12], meaning x is color 4.

Finally, if y is in [30c + 31, 31c + 31] and z in [36c + 37, 37c + 37], then z − y is in

[5c+ 6, 7c+ 6], putting x in [4c+ 6, 6c+ 6], which would give χ(x) = 3.
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By this exhaustive set of contradictions, we find this coloring is in fact valid, and

this proves the lower bound.

We should say that the coloring χ in this proof is the same as the coloring ∆

in [Sch95], followed by an interval as large as possible of the new fourth color, followed

by another copy of ∆ shifted appropriately. This argumentation provides us with the

value of m to refine Conjecture 4.15 to a stronger conjecture.

Conjecture 4.16. For each r ≥ 1 and c ≥ 0, there is a constant C such that Rr

(
x +

y + c = z
)

= 3r−1
2 c+ 3r−1

2 + 1 for c ≥ C.

Let ar = 3r−1
2 . The lower bound in these cases can be demonstrated just like in

the proof above by taking the existing constructions for r = 2, 3, 4 as χ2, χ3, χ4 and

extrapolating to construct χr by coloring [1, ar−1c + ar−1] according to χr−1, then

coloring [ar−1c+ ar−1 + 1, (2ar−1 + 1)c+ 2ar−1 + 1] the new color r, then coloring the

remainder [(2ar−1 +1)c+2ar−1 +1, (3ar−1 +1)c+3ar−1 +1] according to χ (translated).

This is an interesting sequence of colorings – each is an extension of the previous, and

there is a sort of “self-similarity” here. The proof that this coloring is valid will be the

same as that already given for c = 4.

As a lower bound for Schur numbers, this is asymptotically similar to that of [BB82],

which gives Rr

(
x+y+c = z

)
≥ 2859·3n−7+1

2 , and like [BB82], our result provides explicit

lower bounds for Ramsey numbers for triangles as noted in Section 2.2. (These bounds

are, of course, not the best known.)

We can prove a general lower bound by applying this argument to r colors, by

induction:

Theorem 4.17. For r ≥ 0 and c ≥ 0, Rr

(
x+ y + c = z

)
≥ 3r−1

2 c+ 3r−1
2 + 1.

Proof. For a fixed c, define χ2, χ3, χ4 as noted above (χ3 is Schaal’s ∆ and χ4 is our

previous χ). For any r, define χr recursively as described above (a copy of χr−1, then

the largest possible interval of the new color r, then another copy of χr−1).

We have observed that this coloring is the appropriate length, although we can of

course verify this: If we let the length of χr be arc + ar, then the length of χr+1 will
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have to be 2(arc + ar) plus this interval of color r, which can be at most the interval

[arc+ ar + 1, 2(arc+ ar + 1) + c− 1], which gives us ar+1 = 3ar + 1. We can check that

3r−1
2 satisfies this recurrence & initial values.

By construction, there are no monochromatic solutions of color r. By induction,

there can be none in the truncation of χr+1 to the domain of χr (since it agrees with

χr on this domain.

Because the interval of color r is sufficiently long, we may again conclude that in

any monochromatic solution we have not yet eliminated, y and z must be on the same

side of this long interval of color r (assuming again that x ≤ y ≤ z). However, we can

take care of this case either by some argumentation like the previous proof, or with a

little sleight of hand. If (x, y, z) is a solution and the gap between x and y spans this

long interval colored r, then we are really going to start arguing about the difference of

z− y (or z− y− c) and the relative location of z and y will be all that matters because

z − y (or z − y − c) is translation invariant.

In particular, translate y and z down by τ = 2(arc+ ar + 1) + c, so that they lie in

the exact same spot in the first copy of χ that they did in the second copy of χ (so that

χ(y) = χ(y − τ) and χ(z) = χ(z − τ)). Because it lies entirely in the domain of χr−1,

this new solution (x, y − τ, z − τ) cannot be monochromatic so neither can (x, y, z) be.

So the coloring χr is valid, and by induction, this holds for all r.

We can offer the following generalization as the final result of this chapter:

Theorem 4.18. For m ≥ 3, r ≥ 1, and c ≥ 0, Rr

(
x1 + · · · + xm−1 + c = xm

)
≥

(mr−mr−1−· · ·−m2−m−1)+(mr−1+mr−2+· · ·+m2+m+1)c = mr+1−2mr+1
m−1 +mr−1

2 c.

Proof. First, for the sake of completeness, consider the case r = 1. Our claim is that

R1

(
x1 + · · · + xm−1 + c = xm

)
≥ (m − 1) + (1)c, which is of course tight. In any

solution xm ≥ m − 1 + c (so the 1-coloring of [1,m − 2 + c] is valid), but the solution

(1, 1, 1, . . . , 1,m−1+c) will make any coloring of length m−1+c invalid (here “coloring”

is meaningless, we have only one color, so the elements 1 and m − 1 + c must be the

same color).
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For a fixed r and m, consider the coloring χ2 as defined in [Sch93]. This coloring is:

χ2(i) =


0 1 ≤ i ≤ m− 2 + c

1 m+ c− 1 ≤ i ≤ m2 + cm− 2m

0 m2 + cm− 2m+ 1 ≤ i ≤ m2 −m− 1 + c(m+ 1)− 1

This coloring is proved to be valid by Schaal – he proves our lower bound for r = 2

(and that it is tight in cases where the Rado number is finite). Note the m− 2 + c as

in the trivial case of r = 1. We will again follow the pattern as in Theorem 4.17 and

construct the coloring χr by sandwiching a run of color r of maximal size between two

copies of χr−1. In particular, if we let fr−1(m) + gr−1(m)c be the length of χr−1, we

can construct the coloring χr as:
[ 1 , fr−1(m) + gr−1(m)c ] 7→ χr−1

[ fr−1(m) + gr−1(m)c+ 1 , (m− 1)(fr−1(m) + gr−1(m)c+ 1) + c− 1 ] 7→ r

[ (m− 1)(fr−1(m) + gr−1(m)c+ 1) + c , (m− 1)(fr−1(m) + gr−1(m)c+ 1) + c+ fr−1(m) + gr−1(m)c− 1 ] 7→ χr−1 ◦ τ

where τ represents the translation by (m− 1)(fr−1(m) + gr−1(m)c+ 1) + c. Note that

the length of χr can be simplified to:

(m− 1)(fr−1(m) + gr−1(m)c+ 1) + c+ fr−1(m) + gr−1(m)c− 1 = (mfr−1(m) +m− 2) + (mgr−1(m) + 1)c.

The reader can verify that there are no solutions of color r by confirming that the

least element of color r could be substituted for x1, . . . , xm−1 to obtain a value of xm

that is (m−1)(fr(m)+gr(m)c+1)+c, which is just past the end of the color-r interval.

Likewise, it is easy to observe that:

2
(
(m− 1)(fr−1(m) + gr−1(m)c+ 1) + c

)
+ c > (mfr−1(m) +m− 2) + (mgr−1(m) + 1)c,

since, in particular, the difference can be written 4c + m + (m − 2)fr−1(m) + (3cm −

2c)gr−1(m). This means at most one of x1, . . . , xm−1 can be in the last of our three

intervals (and we may assume it is xm−1). The same translation argument from Theo-

rem 4.17 (with xm − xm−1 in the role of z− y) applies, proving that if χr−1 is valid, so

is χr.

Finally, the recurrences fr(m) = mfr−1(m) + m − 2 and gr(m) = mgr−1(m) + 1

with initial values f2(m) = m2 − m − 2 and g2(m) = m + 1 have unique solutions

fr(m) = mr−mr−1−· · ·−m2−m−2 and gr(m) = mr−1 +mr−2 + · · ·+m2 +m+1.
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We also conjecture that this bound is tight, depending now on m as well as r:

Conjecture 4.19. In Theorem 4.18, for each m and r there is C such that this lower

bound is tight for c ≥ C, so long as c is even or m odd.

The exclusion of certain (c,m) pairs is due to the fact that if c is odd and m is even,

the equation is not 2-regular, as proved in the original [Sch93].

We should note that this provides a bound on Ramsey numbers as well:

Corollary 4.20. The r-color Ramsey number R(m,m, . . . ,m︸ ︷︷ ︸) ≥ mr − mr−1 − · · · −

m2 −m.

This is established using the construction from Section 2.3. We drop the −1 term

because we can actually do one better: we can color edges labeled 1 through n+ 1 by

their differences only using 1 through n (there is no difference of n + 1). It should be

noted that this does not provide particularly strong bounds for Ramsey numbers for

two (heuristic, but empirically supported) reasons. First, it is not necessarily true that

as m and r grow the Schur numbers and corresponding Ramsey numbers continue to

be close to one another. Second, we have conjectured that our theorem is tight only

for c sufficiently large. These bounds are the worst case, in that sense, with c = 0.

In [Rad14], Table X gives lower bounds that are much larger than this. However, this

bound is interesting because it is constructive, it holds for all m and r, and it continues

to explore the relationship between Schur and Ramsey numbers.

Figure 4.5 shows the 4-coloring of K41 avoiding monochromatic triangles that we

derive from our coloring of [1, 40]. Likewise, Figure 4.5 shows the 4-coloring of K171

avoiding monochromatic K4.

We can also combine this bound with Lemma 3.8 to obtain the following corollary.

Note that in this formulation, we continue to follow our conventions that ai > 0.

Corollary 4.21. For c ≥ 0 and an equation E of the form
∑m−1

i=1 aixi + c = xm,

letting m0 =
∑m−1

i=1 ai + 1, the r-color Rado number Rr

(
E
)

is at least (mr
0 −m

r−1
0 −

· · · −m2
0 −m0 − 1) + (mr−1

0 +mr−2
0 + · · ·+m2

0 +m0 + 1)c.
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Figure 4.2: 4-coloring the edges of K41 with no monochromatic K3
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Figure 4.3: 4-coloring the edges of K171 with no monochromatic K4
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Chapter 5

Rado Numbers for Nonlinear Equations

There are very few results concerning Rado numbers for nonlinear equations. In this

chapter, we will make computational progress in approaching this challenging, unex-

plored facet of Diophantine Ramsey theory. Many of these results are computational,

but we do present several abstract results that prove bounds or otherwise make state-

ments about the regularity of infinite families of nonlinear equations.

5.1 Previous Results

Despite being mostly unexplored, there are a few results that speak to the regular-

ity of nonlinear equations. We start with a seminal result proved independently by

Furstenberg [Fur77] and Sárközy [Sár79]:

Theorem 5.1. For any r-coloring of Z+ there is n ∈ Z+ such that the equation x−y =

n2 has a monochromatic solution (x, y).

This type of property is frequently also called regularity, but it has a slightly different

meaning (due to the introduction of a parameter n that may depend on the coloring).

There are other results of this type, including [FH13], where a similar result is proved

for 9x2 + 16y2 = n2 and certain other quadratic equations (although not x2 + y2 = n2).

This result required much deeper analysis, using the machinery of Fourier analysis

and Gowers U -norms that are a recent and powerful development in proving results

of this type, on the border of additive combinatorics, analytical number theory, and

Diophantine Ramsey theory.

We can verify the theorem for r = 2 by simply computing R2

(
x − y = z2

)
=

9, which would be larger than the corresponding Furstenberg-Sarközy number, since
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the latter relaxes the monochromatic conditions to only x and y. We offer Table 5.1

which includes these Furstenberg-Sarközy numbers and some of the corresponding Rado

numbers, which were produced using SAT solving methods. We can only prove the 5-

color number is between 181 and 200.

r = 1 2 3 4 5

r-color F-S no. 2 5 29 58 [181, 200]

Rr

(
x− y = z2

)
2 9 204 ≥ 800

Table 5.1: Furstenberg-Sarközy numbers

Erdős, Sárközy, and Sós [ESS89], and later Khalfalah and Szémeredi [KS06], provide

a number of generalizations of this sort of result, where we examine x − y = f(n) or

x+ y = f(n) and look for monochromatic x and y that satisfy the equation for one or

even infinitely many values of n (but without regard to the color of z).

In [Soi00], the author suggests that Arie Bialostocki has evidence that R2

(
x2 +y2 =

z2
)
> 60, 000. We are unable to verify this bound, but can generate a large lower bound

for this quantity (6500), in addition to providing some results that are similar to this

question, but a bit more tractable, which we will do throughout the chapter.

In [Gra07], Graham states that Rödl has proved the 2-regularity of the quadratic

equation yz+ xz = xy, perhaps better known as 1
x + 1

y = 1
z . We have been able to add

to this result by proving (using RADO):

Theorem 5.2. The 2-color Rado number R2

(
yz + xz = xy

)
= R2

(
1
x + 1

y = 1
z

)
is 60.

Furthermore, R2

(
1
x + 1

y + 1
z = 1

w

)
is 40. With 5 variables it is 48, and with 6 variables

it is 39.

To our knowledge, the only source of any Rado numbers for nonlinear equations

is [DSV13], in which the following are proved:

Theorem 5.3. For any positive integer n, R2

(
x+ yn = z

)
= 1 + 2n+1.

Theorem 5.4. For any integer c ≥ 2, R2

(
x+ y2 + c = z

)
= c2 + 7c+ 7.

Theorem 5.5. For any integer a ≥ 2, R2

(
x+ y2 = az

)
= a− 1.
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Two of these equations are quadratic, but one is of arbitrary degree n (where n

is the only parameter in this family of equations). These three families of equations

intersect with some of the families we will discuss in the subsequent sections.

5.2 Pythagorean Triples & Other Sums of Squares

In [EG80], Erdős and Graham propose determining the 2-regularity of Pythagorean

triples (solutions to x2 + y2 = z2). Graham states in [Gra08] that he believes it would

be difficult to make this determination or even to guess the outcome. Unfortunately,

we have not resolved this question, but we will provide a lower bound, in addition to

exact Rado numbers for some related quadratic equations.

5.2.1 Families of Equations of the Form ax2 + by2 = cz2

Our current computational tools cannot yet determine the 2-regularity of equations in

this family, and it is important to note that this family is in some sense as general

as ax + by = cz – although this linear equation is known to be 2-regular, we do not

yet have an expression for the Rado number R2

(
ax + by = cz

)
. This suggests that

R2

(
ax2 + by2 = cz2

)
would be difficult to determine, assuming we can even find a way

to decide whether it is finite.

Using the SAT-solving methodology described in 3.6, we have been able to produce

a valid coloring of [6500], giving us:

Theorem 5.6. R2

(
x2 + y2 = z2

)
> 6500.

This confirms, at least partially, the anecdote from [Soi00] mentioned above. This

coloring is provided in Appendix A. Note that as always, the construction of this lower

bound does not exclude the possibility that R2

(
x2 + y2 = z2

)
=∞.

We believe that further development of these SAT techniques will allow us to in-

crease this lower bound, but it is interesting to note that producing bounds of size

approximately 6000–6500 does not require a significant amount of time in our current

environment, while attempts to simply produce a slightly higher bound (e.g. 6600) fails

to terminate even after a much more significant amount of time.
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Further investigation may resolve whether this indicates that a faster or smarter

algorithm (or faster computing environment) is necessary to increase the bound or that

truly 6500 < R2

(
x2 + y2 = z2

)
< 6600. It is the belief of the author that this is not the

case and that R2

(
x2 + y2 = z2

)
=∞. We offer the following pessimistic conjecture:

Conjecture 5.7. For all a, b, c ∈ Z+ such that a+ b 6= c, R2

(
ax2 + by2 = cz2

)
=∞.

Let us hope our intuition is wrong, because resolving this question would be re-

markable and it is our belief that it would be easier to resolve if our conjecture is

incorrect.

We can extend Theorem 5.6 to the following set of equations:

Theorem 5.8. For 3 ≤ k ≤ 20, R2

(
x2 + y2 = kz2

)
> 5000.

This is not true for k = 2 (the reader should take a moment to consider why). It

is entirely possible to increase these lower bounds in many cases without using any

appreciable computing power – these lower bounds are generously low simply to allow

us to state them for all such k succinctly.

5.2.2 Primitive Pythagorean Triples

Although we have not been able to determine whether R2

(
x2 + y2 = z2

)
is finite, it is

easy to prove the following:

Theorem 5.9. The set of primitive Pythagorean triples is not 2-regular.

Although we have not explicitly defined what this means, since this is not technically

a Rado number, we believe the corresponding definition is quite clear. If we could

prove that this set were 2-regular, its Rado number would be an upper bound for

R2

(
x2 + y2 = z2

)
, since we are examining a subset of the set of solutions to this

equation. (However, it is not so – this set is not 2-regular.)

Proof. Consider a coloring where each z in any primitive triple x2 + y2 = z2 is colored

red, and all other integers are blue. There are clearly no blue primitive triples because

for any such a triple, the z is red.
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On the other hand, if we assume there is a red triple, which we might write

(z1, z2, z3), where each of these must be a hypotenuse in its own primitive triple:

x2
1 + y2

1 = z2
1 ,

x2
2 + y2

2 = z2
2 ,

x2
3 + y2

3 = z2
3 , and

z2
1 + z2

2 = z2
3

Because each such triple is primitive, these z values must be parametrized as:

z1 = m2
1 + n2

1,

z2 = m2
2 + n2

2,

z3 = m2
3 + n2

3,

z1 = 2m3n3, and

z2 = m2
3 − n2

3

where each (mi, ni) pair is coprime and not both odd. Modulo 4, this gives 8 possibilities

for each pair and a total of 83 = 512 possibilities to check that:

m2
1 + n2

1 ≡ 2m3n3 (mod 4), and

m2
2 + n2

2 ≡ m2
3 − n2

3 (mod 4).

These 512 possibilities are easily checked, and we can verify that these two congru-

ences are not simultaneously satisfiable. Thus no such triple (z1, z2, z3) exists, and we

conclude that there are no red monochromatic primitive triples.

This does present one interesting question: Is it possible that the non-regularity

of a set S of solutions to an equation, or any set of integer tuples, could imply the

non-regularity of the set S ∪ 2S ∪ 3S ∪ . . . ? This could settle the question of Erdős and

Graham, but would also provide some insight into other linear and nonlinear equations.

5.2.3 The Family x2
1 + · · ·+ x2

k = z2 and Other Sums of Squares

Because we have found the equation x2 + y2 = z2 to be fairly intractable, we can

approach a more general problem, wherein we consider equations consisting of sums of
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squares. If we consider Ea,b to be the equation:

a∑
i=1

x2
i =

b∑
j=1

yj ,

then we can say that, heuristically speaking, there are “more” solutions to Ea+1,b than

Ea,b. Of course, that is not to say that solutions to Ea+1,b are a superset of those of Ea,b.

Generally speaking, though, if the left and right hand sides of this equation represent

the quantity N , then we are hoping that N has many representations as a sum of a

squares and as a sum of b squares. This is, generally speaking, true for larger values of

N , a, and b.

This general notion might allow us to postulate that R2

(
Ea+1,b

)
≤ R2

(
Ea,b
)
, but

this isn’t quite true for certain combinations of a and b. We also offer the following

conjecture, for which we seem to have significant empirical evidence:

Conjecture 5.10. For a fixed r and a, there is B sufficiently large such that for b ≥ B,

Rr

(
Ea,b

)
is finite.

Unfortunately, for a and b sufficiently large, most computational methodologies

become very slow due to the presence of a+ b variables – even if we compensate for the

fact that the x’s and y’s are respectively indistinguishable.

We offer first, with the significance of a theorem, one computational result:

Theorem 5.11. The 2-color Rado number R2

(
E1,3

)
is 105.

The equation E1,2 is the Pythagorean equation, which we cannot tackle, but we can

actually provide the following, covering infinitely many other (a, b) pairs:

Theorem 5.12. For some constant c there is a constant M such that for any a and b

such that a ≤ b ≤ ca, R2

(
Ea,b
)
< M .

We conjecture that this generalizes to r-color numbers Rr

(
Ea,b
)
, and we will prove

it for r = 3. Note that the interesting cases are the ones not covered by the “sufficiently

large” condition. We can resolve many of them by computation, as we will see.

Proof. First, assume there is a valid coloring in which 1, 2, and 3 are all red.
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If b− a is even, say b− a = 2k, then consider the solution:

12 + 12 + · · ·+ 12︸ ︷︷ ︸
a−k

+ 32 + · · ·+ 32︸ ︷︷ ︸
k

= 12 + 12 + · · ·+ 12︸ ︷︷ ︸
a−k=b−3k

+ 12 + 12 + 22 + · · ·+ 12 + 12 + 22︸ ︷︷ ︸
3k

This solution is feasible because each xi = 3 corresponds to three y terms 1,1,2, and

with k of them, that gives us the correct number of x and y terms (and of course, it is

important to note 32 = 12 + 22 + 22). This requires b ≤ 3a (c.f. a− k ≥ 0) in order to

have enough variables on each side to make this work.

Likewise, if b−a is divisible by 3, we can do the same trick to obtain solutions using

the identity 12 + 12 + 12 + 12 = 22.

Using both of those ways of balancing the scales between a and b allows us to deal

with any possible b − a, since gcd(2, 3) = 1. In fact, if we let b − a = k, we can find

solutions of the form:

. . .︸︷︷︸
a−3k

+ 22 + · · ·+ 22︸ ︷︷ ︸
3k

= . . .︸︷︷︸
b−4k

+ 12 + 12 + 12 + 32 + · · ·+ 12 + 12 + 12 + 32︸ ︷︷ ︸
4k

This requires a− 3k ≥ 0, i.e. b ≤ 4
3a, so c = 4

3 will suffice.

For other initial colorings, like 1 red, 2 red, 3 blue, we must repeat this argument and

obtain a similar bound. In Figure 5.1 we illustrate the tree of all colorings, truncated

according to Table 5.2. In this table, the monochromatic elements of each branch are

given as well as the corresponding way to configure those elements into two equal sums

of squares, where one side has one extra square (like in the examples above, but with

no divisibility restriction on b− a).

The worst case (greatest number of squares) is 12 · 22 = 12 · 12 + 62, which proves

that this theorem holds for c = 13
12 .
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Monoch. Set Sums of squares

{1, 2, 3} 22 + 22 + 22 = 12 + 12 + 12 + 32

{1, 2, 6} 12× 22 = 12× 12 + 62

{1, 3, 4} 32 + 32 = 12 + 12 + 42

{1, 3, 8} 8× 32 = 8× 12 + 92

{2, 3, 4} 22 + 42 + 42 = 32 + 32 + 32 + 32

{2, 3, 5} 32 + 32 + 32 + 32 + 32 = 22 + 22 + 22 + 22 + 22 + 52

{2, 3, 6} 9× 22 + 62 + 62 = 12× 32

{2, 4, 6} 42 + 42 + 42 = 22 + 22 + 22 + 62

{3, 4, 5} 52 = 3, 4

{3, 4, 7} 7× 42 = 7× 32 + 72

{3, 5, 8} 52 + 52 + 52 + 52 = 32 + 32 + 32 + 32 + 82

{3, 6, 9} 62 + 62 + 62 = 32 + 32 + 32 + 92

{4, 6, 8} 42 + 82 + 8 = 62 + 62 + 62 + 62

{1, 3, 5, 6} 12 + 62 + 62 + 62 = 32 + 52 + 52 + 52 + 52

{1, 3, 6, 7} 62 + 62 + 62 = 12 + 32 + 72 + 72

{1, 4, 5, 6} 42 + 42 + 42 + 42 = 12 + 12 + 12 + 52 + 62

{2, 5, 8, 9} 52 + 82 = 22 + 22 + 92

{3, 5, 6, 7} 62 + 62 + 62 = 32 + 52 + 52 + 72

{1, 2, 4, 5, 9} 22 + 42 + 42 + 52 + 52 = 1, 1, 1, 1, 12 + 92

{1, 2, 4, 7, 9} 22 + 42 + 42 + 72 = 12 + 12 + 12 + 12 + 92

{1, 2, 4, 8, 9} 22 + 42 + 82 = 12 + 12 + 12 + 92

{1, 2, 5, 7, 9} 22 + 22 + 22 + 52 + 72 = 12 + 12 + 12 + 12 + 12 + 92

Table 5.2: Table for proof of Theorem 5.12
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This proof was constructed using computer-assisted methods – a sort of guided

backtrack on the tree, along with computer-assisted checking of various combinations

of squares. This process could be automated and extended to allow for a deeper search

in this tree. We could reject sums-of-squares equations that lead to small c values and

hold out for a deeper search that gives a better c value. By adjusting the parameters

of this proof, we can improve the value of c for which the theorem holds.

Note that if it is possible to prove the 2-regularity of x2 +y2 = z2 then we can make

such a trade-off with ratio 2:1 on any branch of this tree, meaning that as a corollary,

we would establish the 2-regularity of any equation with a ≤ b ≤ 2a.

In fact, we prove below in Table 5.3 that R2

(
E2,3

)
= 19, so we know that a similar

looking tree of depth 19 can give us c = 3/2. Thus we have, as a corollary of Theorem

5.12 and the 2-regularity of E2,3:

Corollary 5.13. Theorem 5.12 holds for c = 3/2.

We offer the following strong, but believable, conjecture:

Conjecture 5.14. For a and b sufficiently large, regardless of b−a, we have R2

(
Ea,b
)
<

∞. We conjecture that “sufficiently large” means min{a, b} ≥ N for some N .

Strictly speaking, our methodology in the proof of Theorem 5.12 can only prove

c = c′+1
c′ , where c′ and c′+1 are the largest numbers of squares used in one of these “trade

offs.” We could not improve the bound without proving the 2-regularity of x2 +y2 = z2

without modifying this method in some way. However, it may be possible to improve

this method with a more rigorous look at cases like those where we did not require our

“trade off” to be c′ + 1 squares for c squares. This would require careful consideration

of some divisibility conditions on b− a but might result in better bounds for c.

If b− a is very large, i.e. b > ca, this theorem does not apply, but in that case, we

may employ a different exchange like trading in 20 copies of 12 for 22 + 42, which would

work if b − a = 18. This requires only that b ≥ 20 (but if b − a = 18, it must be true

that b ≥ 19). That assumes, however, that 1, 2, 4 are all the same color in our coloring

as well! We expect to be able to generalize this theorem to cover cases where b − a is

large.
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We offer the following data for Rr

(
Ea,b
)
:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 ? 105 37 23 18 20 20 15 16 20 23 17 21 26 17 23 28 25 29

2 1 19 10 8 12 12 7 11 9 15 11 11 12 11 13 14 11 14 13

3 1 10 9 6 9 9 7 9 9 7 9 9 10 9 9 8 9 12

4 1 9 9 6 9 9 7 9 9 5 9 9 5 9 9 8 9

5 1 9 9 6 9 9 7 9 9 5 9 9 5 9 9 4

6 1 9 9 5 9 9 5 9 9 5 9 9 5 9 9

7 1 9 9 5 9 9 5 9 9 5 9 9 5 9

8 1 9 9 5 9 9 5 9 9 5 9 9 5

9 1 9 9 5 9 9 5 9 9 5 9 9

10 1 9 9 5 9 9 5 9 9 5 9

11 1 9 9 5 9 9 5 9 9 5

12 1 9 9 5 9 9 5 9 9

13 1 9 9 5 9 9 5 9

14 1 9 9 5 9 9 5

15 1 9 9 5 9 9

16 1 9 9 5 9

17 1 9 9 5

18 1 9 9

19 1 9

20 1

Table 5.3: Table of Rado numbers for sums of squares.

This table is symmetric, so redundant entries have been excluded. The first row is

repeated and discussed in further detail in Section 5.2.4. Based on this data, and based

on our proof of Theorem 5.12, we might even offer a stronger conjecture – that for a

and b sufficiently large, R2

(
Ea,b
)
≤ M for some fixed M (where M might depend on

b − a). We can see as a corollary of our proof of 5.12 that we have a universal bound

on (a, b) pairs to which the theorem applies (and that bound will vary – the corollary,

which has a better c value, will have a worse M value a priori). We believe the true

value of M is 9, as it is in the original proof of the theorem.

If these conjectures hold true, is likely that similar conjectures hold for 3- or r-color

Rado numbers for Ea,b. For now, we offer one example computation:

Theorem 5.15. The 3-color Rado number R3

(
E3,4

)
= 32.

Like Theorem 5.11, this required a substantially long time to compute, and like

E1,3 for its respective number of colors, this may represent the lowest possible 3-regular

(resp. 2-regular) combination of a and b (a 6= b). It is important to note that this also

provides another corollary:
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Corollary 5.16. Theorem 5.12 holds with 3 colors for c = 4/3.

5.2.4 The Subfamily with b = 1

We will now consider a subfamily of these equations, Ek = E1,k. We can provide

the following table, which verifies our heuristic that R2

(
Ea+1,b

)
≤ R2

(
Ea,b
)

in some,

but not all, cases. In fact, as k grows, we eventually see an up-tick, because fixing

a = 1 and letting k grow is not necessarily in the spirit of that heuristic (although it

certainly leads us to believe that a+b > N for some N is not the criterion for bounding

these R2

(
Ea,b
)
).

k = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N = ? 105 37 23 18 20 20 15 16 20 23 17 21 26 17 23

k = 18 19 20 21 22 23 24 25 26 27 28 29 30

N = 28 25 29 29 26 36 32 27 38 33 35 41 36

Table 5.4: 2-color Rado numbers for x2
1 + · · ·+ x2

k = z2

Figure 5.2: 2-color Rado numbers for x2
1 + · · ·+ x2

k = z2

This is now entry A250026 in the Online Encyclopedia of Integer Sequences (OEIS).

These become difficult to compute using RADO for larger values of k due to the increasing

number of variables – the VI for any equation has complexity roughly O(nm) where n

http://oeis.org/A250026
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is the current length of the coloring. Some optimization can shave off a factor of n or

even a bit more, but not much more. Instead, for values k > 17, we compute this in

Mathematica implementing a fairly mundane backtracking algorithm with almost no

optimizations – however, we make use of the computer-algebra system to store the k-

fold sums of each color-class, eliminating the complexity in the VI. However, for k > 30,

the speed limiations of doing the tree-search in a computer algebra system start to slow

down the computation as the tree becomes deeper.

Note that family Ek provides the worst possible case for Theorem 5.12, even though

for k sufficiently large it seems clear that we should be able to prove that R2

(
Ek,1

)
is

finite.

We will offer some further analysis of this family, with attention to the challenges

of computing these numbers, in Appendix C.

5.2.5 The Family x2 + y2 + kz2 = w2

We now consider the equation Ek to be x2 + y2 = kz2 = w2, inspired in part by our

desire to understand the previous families, and by the approach taken to understand

Rado numbers for linear equations, where this form (one new coefficient, one variable

on right hand side) seems to be the most tractable.

We first present the following computations, which were relatively intensive but very

much tractable using the RADO package.

Theorem 5.17. The 2-color Rado numbers for x2 + y2 + kz2 = w2 are as presented in

Table 5.2.5.

k 1 2 3 4 5 6 7 8 9 10 11 12

R2

(
Ek
)

105 37 40 41 55 85 43 68 77 84 70 77

Table 5.5: 2-color Rado numbers for Ek, R2

(
x2 + y2 + kz2 = w2

)
This table could be extended using the RADO package, except that k = 13 is extremely

difficult to compute. This phenomenon was discussed in Section 4.1. These data are

interesting because it is not at all clear how k affects R2

(
Ek
)
.

For some variety, we also offer the following:
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Theorem 5.18. The 2-color Rado number R2

(
x2 + y2 = z2 + 2w2

)
is 33.

5.3 Other Families of Nonlinear Equations

We may first observe that these families come in pairs that are related by specializing

certain variables. For example, x1 + · · ·+xk = z2 can be specialized to x+(k−1)y = z2

by setting x1 = x and x2 = · · · = xk = y. From Lemma 3.8, and for any a+ b = k, we

obtain the following relations:

The following inequalities hold (for any r):

Rr

(
x1 + · · ·+ xk = z2

)
≤ Rr

(
ax+ by = z2

)
Rr

(
x1 + · · ·+ xk = y + z2

)
≤ Rr

(
kx = y + z2

)
Rr

(
x1 + · · ·+ xk + y2 = z2

)
≤ Rr

(
kx+ y2 = z2

)
Rr

(
x2

1 + · · ·+ x2
k = z2

)
≤ Rr

(
ax2 + by2 = z2

)
The first two equations are of particular importance because they include only one

quadratic term, which means that if we collapse all the variables, we could possibly

obtain a solution that consists of only one element (which we will call a singleton

solution).

If a linear homogeneous equation has a singleton solution, like x+ y = z+w having

the solution (7, 7, 7, 7), then it also has the solution (1, 1, 1, 1) since the equation is

linear. The Rado number must be 1 since that singleton solution is monochromatic by

virtue of having only one element in the first place. Singleton-solutions like these are

automatic upper bounds on the Rado number, making linear equations like x+y = z+w

trivial in this sense.

For nonlinear equations, it is also true that singleton-solutions provide an immediate

upper bound. But in the nonlinear setting, solutions cannot be obtained from one

another by scalar multiplication, allowing for a Rado number higher than 1 even in this

singleton-solution scenario. We may apply this to obtain:
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Lemma 5.19. The following inequalities hold (for any r and any a > b ≥ 0):

Rr

(
ax+ by = z2

)
≤ a+ b

Rr

(
ax = by + z2

)
≤ a− b

Despite being a relatively straightforward lemma, this gives us a bound for Rr

(
E
)

for each of these equations that is independent of r, which is not possible in the most

commonly considered cases (i.e. linear equations). Taking Ek as x+ (k− 1)y = z2, it is

clear that if we think of k as being held fixed and increase r that:

R2

(
Ek
)
≤ R3

(
Ek
)
≤ · · · ≤ Rk

(
Ek
)

= Rk+1

(
Ek
)

= · · · = k,

and similarly for the other three equations with these r-independent upper bounds.

The same can be said for any other a+ b = k combination and any other equation with

a singleton-solution derived bound.

This can be summarized in the following straightforward lemma:

Lemma 5.20. Let E(a, b, p, q) be the equation:

a∑
i=1

xi +

b∑
i=1

y2
i =

p∑
i=1

zi +

q∑
i=1

w2
i .

Whenever k = p−a
b−q is an integer, Rr

(
E(a, b, p, q)

)
≤ k for any r.

Having established upper bounds for some of these families, we will provide some

details about each family. Unsurprisingly, we will find more interesting behavior in the

families that do not submit to such a lower bound.

5.3.1 The Family x1 + · · ·+ xk = z2

Throughout this subsection, let Ek denote the equation x1 + · · · + xk = z2. We first

recall the lemma that for any r, Rr

(
Ek
)
≤ k. For r ≥ k we have equality trivially, since

each integer can be assigned its own color and the only possible monochromatic solution

to the equation would be the singletons {0} and {k} (0 not really being included since

we always work over Z+).



81

r\k 1 2 3 4 5 6 7 8

1 1 2 2 2 3 3 3 3

2 - 2 3 4 5 6 5 5

3 - - 3 4 5 6 7 8

4 - - - 4 5 6 7 8

5 - - - - 5 6 7 8

6 - - - - - 6 7 8

7 - - - - - - 7 8

8 - - - - - - - 8

Table 5.6: 2-color Rado numbers for Ek, x1 + x2 + · · ·+ xk = z2

Computations for R2

(
Ek
)

appear in Table 5.6. Entries below the diagonal are not

indicated since they are trivial. (Each is equal to k since r > k, so we can conclude that

the columns are eventually constant.) The entries in row 2 show that R2

(
Ek
)
≤ k is

not tight when k ≥ 7. We can also consider the first row, where values are significantly

lower than k, and obtain Lemma 5.21.

Lemma 5.21. The 1-color Rado number is R1

(
x1 + · · ·+ xk = z2

)
=
⌈√

k
⌉

.

Proof. If there is a solution to Ek, then it is clear that z =
√
x1 + · · ·+ xk ≥

√
k, and

since z is an integer, z ≥
⌈√

k
⌉
.

So the first solution (which is monochromatic, since there is only one color) is

of the form (1, . . . , 1, 2, . . . , 2, d
√
ke), which gives R2

(
Ek
)

= d
√
ke. The solution set

{1, 2,
⌈√

k
⌉
} is feasible because k ≤

(⌈√
k
⌉)2
≤ 2k for any k ∈ Z+.

Note that in some cases, the solution set might exclude 1s or 2s (but not both of

course), but either way
⌈√

k
⌉

is still the largest element in the solution set.

Of course, a 1-color Rado number isn’t particularly interesting, but it is important

in the sense that these provide lower bounds, so that we have:

Corollary 5.22. For all r and k,
⌈√

k
⌉
≤ Rr

(
x1 + · · ·+ xk = z2

)
≤ k.

The combination of these two results is somewhat remarkable because now we know

lower and upper bounds for these Rado numbers that grow quite slowly.
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5.3.2 The Families x+ (k − 1)y = z2 and ax+ by = z2

This family is obtained from those in the previous section by collapsing variables as in

Lemma 3.8. The upper bound based on a singleton solution a + b still applies, so for

k = a+ b we have the following:

R2

(
x1 + · · ·+ xk = z2

)
≤ R2

(
ax+ by = z2

)
≤ a+ b.

In this case, however, we cannot find a case in which the upper bound is not tight.

For all a, b ≤ 10, it is the case that R2

(
ax + by = z2

)
= a + b. Although it may be

premature, we offer the following conjecture:

Conjecture 5.23. For any a, b ∈ Z+, R2

(
ax+ by = z2

)
= a+ b.

This would, of course, imply the same for any other number of colors. It is important

to note that this conjecture fails even by allowing a single extra term. This is witnessed

by the computation R2

(
3x + 5y + 6z = w2

)
= 9. The conjecture also fails with a < 0

or b < 0, as we will see shortly.

5.3.3 The Family x1 + · · ·+ xk = y + z2

The family Ek, x1 + · · ·+ xk = y + z2, in this section introduces an extra term on the

right-hand side. This still allows for an upper bound according to a singleton solution,

which will now be k−1 instead of k. However, we will quickly see that this is not tight.

(Note: The singleton solution does not exist when k = 1.)

k = 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R2

(
Ek
)

= 9 1 2 3 4 3 5 5 5 5 6 6 7 7

Table 5.7: 2-color Rado numbers for Ek, x1 + · · ·+ xk = y + z2

We suspect that this number is bk/2c, but would not yet present this formally as a

conjecture.

If we collapse variables and reduce this family to the corresponding family kx =

y+ z2, we can refer to [DSV13] to give k− 1 as the corresponding Rado number, which
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is linear, as is our conjecture for the Rado number for x1 + · · ·+ xk = y + z2, although

they do not agree.

5.3.4 The Family x1 + · · ·+ xk + y2 = z2

In this family, we no longer have a singleton solution to provide any upper bound.

However, this family does not necessary grow very large, which still appeals to our

heuristic that with many variables, the Rado number generally stays smaller.

k = 1 2 3 4 5 6 7 8

R2

(
Ek
)

= 9 5 7 6 5 6 6 6

Table 5.8: 2-color Rado numbers for Ek, x1 + · · ·+ xk + y2 = z2

5.3.5 The Family kx+ y2 = z2

We present this family to contrast the previous, because now we will see some defiance

of this new lack of a nice upper bound:

k = 1 2 3 4 5

R2

(
Ek
)

= 9 96 69 41

Table 5.9: 2-color Rado numbers for Ek, kx+ y2 = z2

5.4 Hindman Numbers

The RADO package can give us a way of attacking problems involving multiple equations.

For example, if we want find the least N such that any r-coloring of [N ] satisfies one

(or more) of the equations E1, . . . , Ek, then we can find Rr

(
fE1 · fE2 · · · · · fEk = 0

)
,

which means we just enter the product of all fEi into RADO. The only real difficulty

here is carefully expanding this product, since RADO cannot parse a function that is

fully expanded (although we can do this easily using a computer algebra system like

Mathematica).

Likewise, if we want the r-coloring of [N ] to satisfy all of the equations E1, . . . , Ek,

we can find Rr

(
(fE1)2 + · · ·+ (fE2)2 = 0)

)
.
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Of course, both of these operations will result in nonlinear equations, even when the

Ei are linear. In the “or” case, we know the resulting Rado number could not increase,

while in the “and” case it could not decrease. We will approach one problem of the

latter type.

By hacking together the system of equations x+ y = z and xy = w, we can confirm

and comment on some results regarding a theorem of Hindman [Hin79]:

Theorem 5.24. For any r-coloring of Z+, there are monochromatic x, y, z, w such that

x+ y = z and xy = w.

This is actually a corollary of a much stronger infinitary statement that Hindman

proves using the methods of mathematical logic. The full theorem is:

Theorem 5.25. For any r-coloring of Z+, there is an infinite monochromatic set B

such that all nonempty finite sums and products of elements of B are monochromatic.

Although it is not explicit in previous statements of Theorem 5.24, we should note

carefully that it is fairly clear in the existing literature that this theorem usually includes

the stronger condition that all of x, y, z, w (or at least x and y, a priori) are distinct.

We can define Hr as the least such N for a given r. In [Hin79], Hindman tells us

that Ron Graham has proved the following (by computer):

Theorem 5.26. The 2-color Hindman number is H2 = 252.

However, this computation includes a lower bound that is demonstrated by two

color classes:

Red = {1, 3, 5, 8, 12, 14, 16, 18, 20, 22, 24, . . . }

Blue = {2, 4, 6, 7, 9, 10, 11, 13, 15, 17, 19, . . . }

Without our careful note above, we might immediately balk at 2 and 4 being blue,

since (x, y, z, w) = (2, 2, 4, 4) is a solution! However, Graham implicitly assumes that

this is a strict system – that none of the variables can be equal. This means our RADO

package is not exactly what is needed here (at least, not without some modifications;

see Section 6.3). However, we can define H ′r to be the analogous number, where now
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we are really looking for any solution to the system x + y = z, xy = w, regardless of

whether the four variables are distinct.

It is trivial to note that H ′r ≤ Hr, so we know H ′2 ≤ 252 based on Graham’s result.

We offer the following results:

Theorem 5.27. The non-strict 2-color Hindman number is H ′2 = 39. The next non-

strict Hindman number is very large, giving us 1000 < H ′3 ≤ H3.

These are proved by expanding the polynomial (x+ y − z)2 + (xy −w)2 and deter-

mining (using RADO) that:

H ′2 = R2

(
w2 + x2 + 2xy − 2wxy + y2 + x2y2 − 2xz − 2yz + z2

)
= 39.

For r = 3 the computation halted when it reached the bailout value of 1000, meaning

that a valid coloring of length 1000 was found. This might lead us to worry that

Hindman’s theorem might be incorrect, but it is entirely possible that H ′3 not infinite,

just much larger than H ′2.

We can also define Hr(m) and H ′r(m) to be the corresponding quantities for the

following system:

x1 + · · ·+ xm−1 = xm

x1 · · · · · xm−1 = z

We are bending the rules of our convention on using the letter m – there are m+ 1

variables here, but only m in the first equation, which is the equation for the general-

ized Schur number from Section 3.1. This deviates significantly from what Hindman

proposes, since [Hin79] discusses sets of integers and all of their (nonempty) sums and

products. The reduction to {x, y, x+y, xy} is what connects us to Schur’s theorem, and

we have taken this in a different direction – the direction of generalized Schur numbers.

In this notation, we have H ′2(3) = 39 and H2(3) = 252. However, at this time H2(4)

is not tractable to RADO. The SAT approach, however, yields:

Theorem 5.28. The 2-color 4-variable (per equation) generalized (non-strict) Hind-

man number is H ′2(4) = 450. Similarly, H ′2(5) = 11, 000.
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While these hacks for RADO cannot be used to force conditions like x 6= y, at least not

in a way that is feasible, the SAT solver does not care, so long as the appropriate clauses

are included (or not) as desired. We can, in fact, use a SAT solver (very carefully) to

produce the data in Table 5.10, which includes strict Hr(m) and non-strict H ′r(m)

generalized Hindman numbers for r colors and m variables.

m = 3 m = 4 m = 5 m = 6

H ′2(m) 39 450 11000 62500

H2(m) 252 23100

Table 5.10: Generalized Hindman numbers

We have also been able to extend the lower bound produced by RADO using SAT

methods to show that H ′3(3) > 100, 000, which is quite an enormous lower bound!

We might worry about having to draw a distinction between “strict” Rado numbers,

where all variables must be distinct in monochromatic solutions, and what Graham and

Hindman propose, which only requires that the xi are distinct. However, it is clear that

xi 6= y (for m > 2, which we ought to assume), and if xi = z, but all the xi are distinct,

then m = 3 and the other xj is 1. We will proceed using their definition, so that our

results agree, although this is not necessarily in line with our conventions for other

quantities we will compute.

We will discuss extensions of this strictness idea in Section 6.3. For now, we offer

the following specialization of Hindman’s theorem, which should assure us that all of

these quantities are finite:

Theorem 5.29. For any χ : Z+ → [r], and any m, there is x1, x2, . . . , xm, z such that

x1 + x2 + · · ·+ xm−1 = xm, x1 · x2 · · · · · xm−1 = z, and χ(x1) = χ(x2) = · · · = χ(xm) =

χ(z).

We can also consider define two sets:

Definition 5.30. The k-fold sumset of the multiset S is the set of all sums of between

1 and k distinct elements of S. Denote this Σk(S).

Definition 5.31. The k-fold productset of the multiset S is the set of all products of

between 1 and k distinct elements of S.Denote this Πk(S).
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These two types of sets are more robust, a step towards extending our results in

a spirit closer to Hindman’s original work. To that end, we know that a third type

of Hindman number is finite. Hindman’s original theorem tells us, for example, the

following:

Theorem 5.32. For any coloring χ : Z+ → {0, 1} there are x, y, z such that the set

Σk({x, y, z}) ∪Πk({x, y, z}) is monochromatic.

We can call these “strong” Hindman numbers. We could even find a strict version

of this, which is:

Theorem 5.33. For any coloring χ : Z+ → {0, 1} there are distinct x, y, z such that

the set Σk({x, y, z}) ∪Πk({x, y, z}) is monochromatic.

At this time we are not yet able to compute any of these strong Hindman numbers,

strict or not, except for m = 3, a case that reduces to the non-strong version. We can

provide a lower bound: the smallest of these, H∗2 (4), must be at least 300,000.

5.5 Non-Polynomial Rado Numbers

In this section, we will break from the convention suggested in Chapter 2, where a

concretely-minded reader might have assumed that for the purposes of this dissertation,

a Diophantine equation is a polynomial with integer coefficients. Here, we consider the

exponential equation:

x1 + · · ·+ xm−1 = knxm .

Fixing k = 1 and n = 2, we can determine the following:

Theorem 5.34. The 2-color Rado numbers R2

(
x1 + · · · + xm−1 = 2xm

)
are 2, 16, 8,

32, 64, 32, 32 for m = 3, 4, 5, 6, 7, 8, 9 (respectively).

Although it seems interesting to vary n or k and produce different Rado numbers

for these non-polynomial equations, we offer as potential discouragement the following
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lower bounds:

R2

(
x+ y = 3z

)
≥ 100, 000

R2

(
x+ y = 2 · 2z

)
≥ 100, 000

R2

(
x+ y = 3 · 2z

)
≥ 100, 000

R2

(
x+ y = 2 · 3z

)
≥ 100, 000

We hope in the future to learn more about these exponential Rado numbers.
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Chapter 6

Further Directions

In this chapter we discuss some directions in which this work leads. We will note some

future work from the computational perspective, improving and advancing some of the

computational methods described in this dissertation. We will discuss open problems

in finding or bounding Rado numbers and also put forward a number of variations on

Rado numbers that are also amenable to the methods detailed in this dissertation.

6.1 Computational Methods

There are a number of improvements that can be made to the RADO package in order to

continue to push the limits of this exhaustive method of computation. There are ways

to improve the efficiency of the Value Iterator, in particular allowing further reductions

in complexity by a more intelligent implementation of the optimization for variables

that are indistinguishable.

It would also be interesting to add to the RADO package something to handle unex-

pectedly large search trees, besides having a bailout at a fixed depth in the tree.

It is possible to continue to improve the implementation of SAT solvers, both for

general SAT problems and perhaps tailor-made for Rado numbers and related Ramsey-

theoretic questions. It should be noted that we have not made special effort to adapt

any SAT solving software to our problems in this dissertation – all results were obtained

using MiniSAT (see: http://minisat.se). Further work with SAT solvers will likely

provide better lower bounds especially in cases of sparse solution sets.

Backtracking algorithms may also be able to take advantage of the structure of these

solution sets (again, most especially in the case of sparse solution sets) by backtracking

over the sets, rather than just through Z+ in a linear fashion. This will provide greater

http://minisat.se
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efficiency by excluding redundant structure in the tree that we would otherwise cover

many times.

It is entirely possible that there are enough methods that an integrated platform

could be developed to apply multiple methodologies automatically, given any particular

r and E . The computer could simultaneously, sequentially, or in some other way attempt

to determine bounds or values for Rr

(
E
)

using a mixture of these methodologies, not just

by attempting each one in succession but by hybridizing the methods. For example, the

SAT-solver method could generate lower bounds, but a mixture of DFS/backtracking

and simulated annealing could attempt to extend these branches of the search tree even

further. A SAT-solver could also refine a DFS to skip irrelevant branches. Randomized

and structured lower-bound constructions could be easily combined in the hopes that

they can improve one another.

6.2 Equations of Interest

For linear equations, we now have the ability to generate significant data, individual

Rado numbers using the RADO package, SAT solvers, or other high-performance meth-

ods. In some cases, for specialized equations, the more abstract methods may also apply

to symbolic equations (equations with unspecified coefficients), proving in the abstract

certain bounds or exact Rado numbers.

The equation of most interest would be ax+ by = cz – a closed-form for the 2-color

(or even r-color) Rado number for this equation would be incredibly meaningful, and

as discussed in Section 3.1.5, this would provide a bound for all other equations by

Lemma 3.8. We believe the results from Section 4.2 can be generalized to provide Rado

numbers for kx+ (k+ 1)y = (k+ j)z and/or kx+ (k+ j)y = (k+ j + 1)z, and perhaps

eventually kx+ (k+ j)y = (k+ j + `)z – even under the restriction that k, j, ` > 0 this

would still be a major step in the right direction.

A very recent preprint of Saracino on the Arχiv appears to have determined Rado

numbers for equations more general than those in [Sar13] and [GS08], simultaneously

generalizing both results. This impressive unification of existing work may represent
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significant progress in closing the gap on ax + by = cz. Future work may attempt

to approach the problem from other angles, or may take this new result of Saracino

and extend it further. (We remark that this result appears in this chapter because it

was only posted online a matter of weeks before the final draft of this dissertation was

submitted.)

In the future, we would of course hope to settle the question of whether x2 +y2 = z2,

x2 + ky2 = z2, etc. are 2-regular – either by proving specific cases computationally or

by settling the larger question of precisely which families of quadratic equations are

2-regular.

It would be interesting to consider whether Lemma 5.20 could be interpreted in a

way that makes sense when the quantity p−a
b−q is not an integer.

In general, computational methods, when applied to nonlinear equations, open the

door to further study. We can verify the intuition that motivates Conjecture 5.14

empirically, but we believe that the techniques of additive combinatorics and Fourier

analysis may also be brought to bear on the problem. Further work on these sums-

of-squares equations might settle this conjecture and provide more insight into these

particular equations and their Ramsey-theoretic properties.

Although many of the Rado numbers presented in this dissertation are for homo-

geneous equations, the tools developed here are all applicable to non-homogeneous

equations as well. Additional work is already underway to apply these methods to

multiple families of non-homogeneous equations (linear and nonlinear) to continue this

work.

6.3 Other Types of Rado Numbers

Sections 4.3 and 4.4.1 give a proof-of-concept for our RADO package in computing off-

diagonal Rado numbers. While we have carried out some interesting computations in

those sections, providing some new results, we have not yet adapted other computational

methods to these problems. Open problems in off-diagonal Rado numbers could easily

be translated into SAT-solving problems as in [Ahm], but some of these open problems
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are simple enough that we could tackle them with our more symbolic, abstract methods,

providing a computer-based proof of some theorems for whole families of equations as

in [MR07].

We have also begun preliminary investigation into Rado numbers for equations like

x2+y2 = z2+w2. Unlike its linear analogue x+y = z+w, the solutions to this quadratic

equation are not translation invariant, but they are trivial unless we introduce some

prohibition on matching (in this case, it might suffice to say x < z < w < y). So even

for the linear equation x + y = z + w, let alone the nonlinear x2 + y2 = z2 + w2, we

can ask the question “What is R∗r(E)?” where we can define R∗ to be a Rado number

that does not allow repeated values of some or all variables. Picking the appropriate

definition may be important, since it is arguable that 1+1 = 1+1 is trivial, but perhaps

2 + 2 = 1 + 3 is not. It would depend on the definition.

There is some existing work (see Section 3.1.3) on Rado numbers constrained by

inequalities of this sort, in particular generalized Schur numbers as in [Sch98], for which

the usual proofs might be carried out with only minor modifications that constrain a

variable to take a different value. The existing work exploring these strict Rado numbers

can certainly continue with the aid of computational tools like those used in this thesis

with only minor modifications (for the RADO package, changes would be made to the

value iterator primarily).

Future work can also tackle other varieties of Rado-type numbers. For example,

there are “Rainbow” Rado numbers, where we look for solutions that have one of each

color. This has been investigated by a number of authors, e.g. [CJR07] . There is a

definition for a set being rainbow with respect to some χ, analogous to Definition 2.3,

which should be fairly clear. While this may seem like a very different question (and

in some ways, it is), many of our techniques like RADO and SAT-solvers would apply

without significant modification. The clauses in the SAT solver would be somewhat

different. For RADO, the VI would have to change to check for rainbow solutions instead

of monochromatic solutions – adding virtually nothing to the computing time (at least,

per coloring checked, there may of course be more or fewer colorings to check).
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There are also mixed versions of these, for example “strict, off-diagonal Rado num-

bers.” Our computational methods would require two small changes, rather than one,

to tackle such a hybrid problem.

The Hindman numbers from Section 5.4 for r > 2 should be easier to resolve with

improved methods for finding RADO numbers, solving SAT problems, or otherwise tack-

ing this type of problem. Despite being extremely large, we can compute some of

these quantities due to the extreme sparsity of solutions to multiplicative equations like

xyz = w.

It is also feasible, by computer methods or otherwise, to investigate the statistical

properties of solutions to equations when an interval [N ] is colored, e.g. [RZ98]. We

could study not only the general statistical questions (minimum, average, etc. number

of monochromatic solutions), but also more complex questions like discrepancy or other

combinatorial questions related to equations over colored sets of integers.
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Appendix A

Certificate for R2

(
x2 + y2 = z2

)
> 6500

To provide a certificate for this lower bound from Section 5.2.3, we can provide a valid

coloring of that length. We will provide three different representations of the coloring,

to accommodate different methods of verification and inspection. The first will be in

terms of a binary string, where we simply list 0 for red and 1 for blue, in the order in

which they occur (i.e. if χ(7) = 1, the 7th digit is 1).

1110000111001001111010001100100100111000001110101111110111101111010001

0010000100001011001010011111011100000100111011000110000110101101101011

0011011001001111001111000000000000000000001110101101111001001000100011

0000010010111001001001111010000000000110110110011010011110101101110111

1001110110000110000110111101100001010111010010111000000001100100010010

0010001000010110011110011010000000111111010001110011001001011011110101

0011111011001000110100101000111111000100110110010100101100011001001000

0001010000111010001000000011110110100100001010111110001010101011101011

1000000110000010001110001101010001001101111000001110000110000001101111

0110111001000111010010111011000000101010111100001010000010010100110100

0111001110010010000100110000111010010001000111110001001100111001100100

0001011100001000010111110001100010011001000011110110011101010000000001

0000111011110011010100010000001101111000010110000000000000100111010011

0111110000101100000101110010101011100000111011100000000011011001110111

0000011110011000100101011100010100110100110111110000010011011100101110

0100001101110000011111010011000111111110010000011110100011010101010101

1000101010100001101000100010100001110101111101100000101100100110100000

1011010011001001000101100000100001001011010001101010100001101001011100
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0011011000110100000011010011010110111000110001000010000010011010000111

0111000010100111010100000110100111100011110101111110001000100100100000

1010101010110100000011001100011011101001000010001101100001011010101010

0111100001110110000100100000000001100000011100101110000011100011001000

1000011011001100000001001100000010011001010110000000010111110000010111

1111000101101010000010111000110101100000001001110100001100001100001011

0100010001100010000100010010111000001000100010010101000001010001100101

0100100001001100010010001000000100110010000001000001000001010010000100

0001100011001000001000111000001000100010011010001100001001010010010100

1100000000111101010010110001110001100100010010100100110010110101001001

0100001100010000000000100001100010101100010001001000111000011001100101

0011110001100001110000000000100001110010100011000100000000000011000000

0010101000001010010111010010000010011101110110000000100100000010100010

1111100000000000111110010001001110001010011101010100001011011010100000

1101000111000011110011100001000000001000001000011110001110010001111011

0001010000011011101110000110010001010000000010101000010001000110111000

1001010000110100100001111111100000000011010010000010010011001010000101

1000000101001001000111010100110110010111011111101100101100111110110110

1011111110101100011110100000001111011111110111111101101000101111101100

1011101110010011011101111000010110111111111011111100101011011011111010

1110010001110101111011100110001110111110110010111111000101111001100001

1111110101111110111100111010011001101101100101111110010101010000101001

1001100100011011101010110010011001000101011010100000111110001001100100

1010001100000111010100001010111100111101000011000011110000011001100001

0001101111011110101011010011100000110000001111010111011010110001000000

0100101101010001111000111000011010101111100001010011111111110111011111

1111001101010000011001001100110001011110100000100101111101100110001111

0101111110011010101011111101011100000000100001000001110000000001011001

1101111001100011101011101101111011110111111110001011011110001100110111

0111101011110000111111001101101111110111101011100001100110011111111111



96

1101010010100011111100110101100110110110101011111110011000101110010000

0111111110010011111101111001001010101101111111000111101000011011101110

1100000001111100000011110111100110111111001101110001000111010011110010

0110100001101101100101011011110101001011101110101111100111111101101101

1101011010010110011111111011111111100011111110011011111111011101110110

1011110011010110101101010100100111101110111010011101111111101001110011

1111010101100100111100100010010011111011101101001101010010101111000010

1110111110011011000100110110111111111001011101110011111010101100111100

1111010101111110111011101110111111001101011101101011010100011010100010

1101001101111101111100011110110101001110101010101111111110111101101110

1011111010101111010001101110111001100111101000011011011111110111011111

0011110110011111101110000101100001011111010111101101011011111111110000

1101010001001001111111010110101010001100001111111101001110101101101111

0110101011011011101011101111110111011111101111110110101110001100111111

1100010100101100111111111101100011101100011000101110011001100111010111

0111111110111101001101110111100101101110101110110100110111111010100100

0111101000001100010000101000110001100001010000000000100101100100100000

1110001001011000000011100001101011011010010000101001001100100110010010

0001110010011001011110000101101101010101101100101011101000100000101000

0110100101010100011000001011100001010000110011001100000010000110110101

1011110100010101110000110001101000001011111100001110111100101001100101

0111000111111100100000000000010001011100000111000001101101000110100100

1111101010011001101100000110111100000000100100001101010011110100101100

1101011010001100011000011011101001001111100011100010100011001000011011

0100000100001101111111010001010011101000100000100100000001110100000111

0111010001111000110100110100100011000000111011100100000001001101001101

1001100011011000100110000100110110111110111100010001111110000011010111

1100100100110100000001000101000010000100110011110101111001011010111100

0011111011010000010000011111111010110010001100101000100111001010001111

1011000000000011011101010101010110001011111101001000101000011010110100
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0101110100110101110101101101011110000011001111000011100110001101011010

1010110110100011010110010101100010101101000010000010110110100100011011

1000100100110011100100001000001000100011010010001010101001111101001000

0111100011010011110010011011100010001001001110010111111010000100110100

1001111110000010110111101111100111101100010111111000000010000000010111

0010101000100101000000111000111111111000010111001101001100110011011010

0001011011011100010101000001000001111100001100000100111011001100110110

0101010000001100110101101000110101001010000110111001101010010110110000

0001001111110000101011111110000110100011001010000111101110110100110111

1101111001001011101000100111010000110100010000010010010001110110000010

0100100001100010011011011001000100100100000010110001100111001101100100

0100000001000000000101000000000100001000010100101101100100010000000000

0101100000000110010010010010000000000001000110000000101011011011110001

0110010001100010110000000101000000101001100100010000101100000001110101

000001001000000001000001000000001000000000011000000100010000

The next representation is the actual partition of [1, 6500] into two color classes.

Each of these two sets is free of solutions to the Pythagorean equation.

Red: {4, 5, 6, 7, 11, 12, 14, 15, 20, 22, 23, 24, 27, 28, 30, 31, 33, 34, 38, 39, 40, 41,

42, 46, 48, 55, 60, 65, 67, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 87, 88, 90,

92, 93, 99, 103, 104, 105, 106, 107, 109, 110, 114, 117, 118, 119, 122, 123, 124, 125, 128,

130, 133, 136, 138, 141, 142, 145, 148, 149, 151, 152, 157, 158, 163, 164, 165, 166, 167,

168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 186, 188, 191,

196, 197, 199, 200, 202, 203, 204, 206, 207, 208, 211, 212, 213, 214, 215, 217, 218, 220,

224, 225, 227, 228, 230, 231, 236, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 250,

253, 256, 257, 260, 262, 263, 268, 270, 273, 277, 282, 283, 287, 290, 291, 292, 293, 296,

297, 298, 299, 302, 307, 310, 311, 312, 313, 315, 317, 321, 323, 324, 326, 330, 331, 332,

333, 334, 335, 336, 337, 340, 341, 343, 344, 345, 347, 348, 350, 351, 352, 354, 355, 356,

358, 359, 360, 361, 363, 366, 367, 372, 373, 376, 378, 379, 380, 381, 382, 383, 384, 391,

393, 394, 395, 399, 400, 403, 404, 406, 407, 409, 412, 417, 419, 421, 422, 428, 431, 432,

434, 435, 436, 439, 441, 442, 444, 446, 447, 448, 455, 456, 457, 459, 460, 463, 466, 467,
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469, 471, 472, 474, 477, 478, 479, 482, 483, 485, 486, 488, 489, 490, 491, 492, 493, 495,

497, 498, 499, 500, 504, 506, 507, 508, 510, 511, 512, 513, 514, 515, 516, 521, 524, 526,

527, 529, 530, 531, 532, 534, 536, 542, 543, 544, 546, 548, 550, 552, 556, 558, 562, 563,

564, 565, 566, 567, 570, 571, 572, 573, 574, 576, 577, 578, 582, 583, 584, 587, 589, 591,

592, 593, 595, 596, 599, 604, 605, 606, 607, 608, 612, 613, 614, 615, 618, 619, 620, 621,

622, 623, 626, 631, 634, 638, 639, 641, 642, 643, 647, 649, 650, 652, 656, 659, 660, 661,

662, 663, 664, 666, 668, 670, 675, 676, 677, 678, 680, 682, 683, 684, 685, 686, 688, 689,

691, 693, 694, 697, 699, 700, 701, 705, 706, 710, 711, 713, 714, 716, 717, 718, 719, 721,

722, 725, 726, 727, 728, 732, 734, 735, 737, 738, 739, 741, 742, 743, 749, 750, 751, 753,

754, 757, 758, 762, 763, 766, 767, 769, 770, 771, 772, 773, 775, 779, 780, 781, 782, 784,

785, 786, 787, 789, 795, 796, 797, 800, 801, 802, 804, 805, 808, 809, 811, 812, 813, 814,

819, 822, 823, 827, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 841, 842, 843, 844,

848, 853, 854, 857, 859, 861, 862, 863, 865, 866, 867, 868, 869, 870, 873, 878, 879, 880,

881, 883, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 900, 901, 905,

907, 908, 911, 917, 918, 919, 920, 922, 925, 926, 927, 928, 929, 931, 935, 936, 938, 940,

942, 946, 947, 948, 949, 950, 954, 958, 959, 960, 961, 962, 963, 964, 965, 966, 969, 972,

973, 977, 981, 982, 983, 984, 985, 990, 991, 994, 995, 996, 998, 999, 1001, 1003, 1007,

1008, 1009, 1011, 1013, 1014, 1017, 1019, 1020, 1023, 1029, 1030, 1031, 1032, 1033,

1035, 1036, 1039, 1043, 1044, 1046, 1050, 1051, 1053, 1054, 1055, 1056, 1059, 1063,

1064, 1065, 1066, 1067, 1073, 1075, 1076, 1079, 1080, 1081, 1090, 1091, 1093, 1094,

1095, 1096, 1097, 1102, 1104, 1105, 1106, 1109, 1111, 1113, 1115, 1117, 1119, 1122,

1123, 1124, 1126, 1128, 1130, 1132, 1133, 1134, 1135, 1138, 1140, 1141, 1142, 1144,

1145, 1146, 1148, 1150, 1151, 1152, 1153, 1157, 1159, 1165, 1168, 1169, 1170, 1171,

1172, 1174, 1177, 1178, 1180, 1181, 1184, 1186, 1187, 1188, 1189, 1190, 1192, 1195,

1197, 1198, 1201, 1202, 1204, 1205, 1207, 1208, 1209, 1211, 1214, 1215, 1216, 1217,

1218, 1220, 1221, 1222, 1223, 1225, 1226, 1228, 1231, 1233, 1234, 1235, 1238, 1240,

1242, 1244, 1245, 1246, 1247, 1250, 1252, 1253, 1255, 1259, 1260, 1261, 1262, 1265,

1268, 1269, 1270, 1273, 1275, 1276, 1277, 1278, 1279, 1280, 1283, 1285, 1286, 1289,

1291, 1294, 1298, 1299, 1300, 1303, 1304, 1305, 1307, 1308, 1309, 1310, 1312, 1313,

1314, 1315, 1316, 1318, 1319, 1322, 1324, 1325, 1326, 1327, 1331, 1335, 1336, 1337,
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1338, 1340, 1342, 1343, 1347, 1349, 1351, 1352, 1353, 1354, 1355, 1358, 1360, 1361,

1366, 1367, 1368, 1373, 1375, 1382, 1383, 1384, 1386, 1387, 1388, 1390, 1391, 1393,

1394, 1396, 1397, 1398, 1399, 1400, 1402, 1404, 1406, 1408, 1410, 1413, 1415, 1416,

1417, 1418, 1419, 1420, 1423, 1424, 1427, 1428, 1429, 1432, 1436, 1438, 1439, 1441,

1442, 1443, 1444, 1446, 1447, 1448, 1451, 1454, 1455, 1456, 1457, 1459, 1462, 1464,

1466, 1468, 1470, 1471, 1476, 1477, 1478, 1479, 1483, 1486, 1487, 1488, 1489, 1491,

1492, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1501, 1502, 1503, 1506, 1507, 1508,

1509, 1510, 1511, 1515, 1516, 1518, 1522, 1523, 1524, 1525, 1526, 1530, 1531, 1532,

1535, 1536, 1538, 1539, 1540, 1542, 1543, 1544, 1545, 1548, 1551, 1552, 1555, 1556,

1557, 1558, 1559, 1560, 1561, 1563, 1564, 1567, 1568, 1569, 1570, 1571, 1572, 1574,

1575, 1578, 1579, 1581, 1583, 1586, 1587, 1588, 1589, 1590, 1591, 1592, 1593, 1595,

1601, 1602, 1603, 1604, 1605, 1607, 1615, 1616, 1617, 1619, 1622, 1624, 1626, 1627,

1628, 1629, 1630, 1632, 1636, 1637, 1638, 1641, 1643, 1646, 1647, 1648, 1649, 1650,

1651, 1652, 1654, 1655, 1659, 1661, 1662, 1663, 1664, 1667, 1668, 1669, 1670, 1673,

1674, 1675, 1676, 1678, 1681, 1683, 1684, 1685, 1687, 1688, 1689, 1692, 1693, 1694,

1696, 1697, 1698, 1699, 1701, 1702, 1703, 1705, 1706, 1708, 1712, 1713, 1714, 1715,

1716, 1718, 1719, 1720, 1722, 1723, 1724, 1726, 1727, 1729, 1731, 1733, 1734, 1735,

1736, 1737, 1739, 1741, 1742, 1743, 1746, 1747, 1749, 1751, 1753, 1754, 1756, 1757,

1758, 1759, 1761, 1762, 1765, 1766, 1767, 1769, 1770, 1772, 1773, 1774, 1776, 1777,

1778, 1779, 1780, 1781, 1783, 1784, 1787, 1788, 1790, 1791, 1792, 1793, 1794, 1795,

1797, 1798, 1799, 1800, 1801, 1803, 1804, 1805, 1806, 1807, 1809, 1811, 1812, 1814,

1815, 1816, 1817, 1819, 1820, 1821, 1822, 1823, 1826, 1827, 1828, 1831, 1832, 1834,

1835, 1836, 1837, 1838, 1840, 1841, 1842, 1846, 1847, 1848, 1849, 1850, 1852, 1853,

1854, 1856, 1857, 1858, 1860, 1861, 1864, 1866, 1867, 1868, 1871, 1872, 1873, 1874,

1876, 1877, 1879, 1881, 1882, 1884, 1885, 1887, 1889, 1890, 1893, 1894, 1895, 1896,

1897, 1898, 1899, 1900, 1905, 1907, 1909, 1910, 1912, 1915, 1916, 1917, 1921, 1922,

1923, 1926, 1927, 1929, 1930, 1931, 1933, 1934, 1936, 1938, 1939, 1941, 1942, 1945,

1946, 1948, 1951, 1953, 1955, 1956, 1958, 1959, 1961, 1963, 1964, 1965, 1966, 1969,

1970, 1971, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1984, 1985,

1986, 1987, 1990, 1991, 1992, 1994, 1996, 1999, 2000, 2001, 2003, 2004, 2005, 2007,
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2008, 2010, 2011, 2012, 2016, 2017, 2018, 2019, 2022, 2023, 2026, 2027, 2029, 2031,

2032, 2037, 2038, 2039, 2042, 2043, 2044, 2045, 2049, 2050, 2051, 2052, 2053, 2054,

2055, 2056, 2057, 2058, 2060, 2061, 2062, 2063, 2067, 2068, 2070, 2072, 2073, 2074,

2077, 2078, 2079, 2081, 2082, 2083, 2084, 2085, 2086, 2087, 2088, 2089, 2090, 2091,

2092, 2095, 2096, 2097, 2098, 2099, 2100, 2101, 2102, 2104, 2106, 2108, 2109, 2110,

2111, 2112, 2114, 2116, 2117, 2119, 2123, 2125, 2126, 2128, 2129, 2130, 2131, 2132,

2134, 2135, 2139, 2143, 2146, 2147, 2148, 2149, 2150, 2151, 2152, 2154, 2155, 2157,

2158, 2159, 2160, 2161, 2162, 2164, 2166, 2167, 2168, 2170, 2176, 2177, 2178, 2179,

2180, 2181, 2182, 2183, 2184, 2185, 2186, 2192, 2193, 2195, 2196, 2197, 2199, 2200,

2204, 2205, 2206, 2208, 2210, 2211, 2215, 2217, 2219, 2221, 2222, 2223, 2224, 2226,

2229, 2232, 2234, 2236, 2237, 2238, 2239, 2240, 2243, 2245, 2246, 2247, 2251, 2252,

2253, 2254, 2259, 2260, 2264, 2265, 2266, 2267, 2269, 2270, 2271, 2272, 2273, 2274,

2275, 2276, 2278, 2279, 2280, 2281, 2282, 2284, 2285, 2286, 2287, 2292, 2293, 2294,

2298, 2299, 2301, 2302, 2303, 2308, 2311, 2312, 2313, 2315, 2317, 2318, 2319, 2320,

2321, 2324, 2328, 2332, 2333, 2334, 2335, 2338, 2339, 2341, 2342, 2343, 2345, 2347,

2348, 2349, 2350, 2351, 2352, 2353, 2354, 2356, 2358, 2360, 2361, 2362, 2363, 2365,

2366, 2367, 2369, 2370, 2371, 2374, 2378, 2379, 2380, 2382, 2383, 2385, 2387, 2388,

2389, 2390, 2393, 2395, 2396, 2398, 2399, 2400, 2401, 2410, 2411, 2412, 2413, 2414,

2415, 2416, 2417, 2418, 2421, 2423, 2424, 2426, 2427, 2428, 2429, 2430, 2432, 2433,

2435, 2436, 2439, 2440, 2442, 2444, 2445, 2446, 2447, 2449, 2452, 2453, 2454, 2455,

2456, 2457, 2459, 2461, 2462, 2464, 2465, 2467, 2468, 2469, 2473, 2475, 2477, 2478,

2481, 2484, 2485, 2487, 2491, 2498, 2501, 2502, 2504, 2507, 2508, 2514, 2517, 2520,

2522, 2530, 2532, 2535, 2536, 2537, 2542, 2544, 2545, 2546, 2547, 2548, 2549, 2550,

2555, 2563, 2571, 2574, 2576, 2577, 2578, 2580, 2586, 2589, 2590, 2592, 2596, 2600,

2601, 2603, 2604, 2607, 2611, 2616, 2617, 2618, 2619, 2621, 2624, 2634, 2641, 2642,

2644, 2646, 2649, 2652, 2658, 2660, 2664, 2665, 2667, 2668, 2669, 2673, 2675, 2680,

2684, 2685, 2688, 2689, 2690, 2694, 2700, 2703, 2704, 2706, 2713, 2714, 2715, 2717,

2722, 2723, 2726, 2727, 2728, 2729, 2737, 2739, 2746, 2751, 2752, 2756, 2758, 2759,

2762, 2763, 2766, 2769, 2772, 2773, 2775, 2782, 2783, 2785, 2787, 2789, 2791, 2792,

2793, 2794, 2796, 2798, 2799, 2802, 2803, 2806, 2807, 2809, 2810, 2811, 2814, 2818,
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2820, 2822, 2825, 2826, 2828, 2829, 2832, 2833, 2835, 2836, 2837, 2839, 2841, 2844,

2846, 2848, 2849, 2850, 2851, 2852, 2858, 2859, 2860, 2862, 2863, 2866, 2867, 2869,

2870, 2872, 2874, 2875, 2876, 2879, 2880, 2881, 2882, 2883, 2887, 2889, 2891, 2892,

2893, 2894, 2896, 2898, 2903, 2904, 2909, 2911, 2912, 2913, 2914, 2917, 2918, 2919,

2920, 2925, 2926, 2927, 2928, 2929, 2932, 2933, 2936, 2937, 2938, 2939, 2941, 2942,

2943, 2946, 2951, 2956, 2958, 2960, 2963, 2965, 2966, 2970, 2971, 2972, 2973, 2974,

2977, 2978, 2979, 2980, 2981, 2982, 2987, 2989, 2993, 2996, 2998, 3001, 3002, 3003,

3005, 3006, 3007, 3008, 3009, 3010, 3011, 3013, 3014, 3016, 3019, 3021, 3023, 3024,

3025, 3030, 3031, 3032, 3036, 3037, 3038, 3039, 3042, 3044, 3046, 3052, 3053, 3054,

3055, 3057, 3059, 3060, 3071, 3075, 3085, 3086, 3089, 3091, 3093, 3094, 3095, 3096,

3097, 3100, 3101, 3103, 3104, 3107, 3108, 3111, 3112, 3113, 3115, 3120, 3122, 3123,

3124, 3125, 3126, 3128, 3129, 3131, 3137, 3140, 3141, 3144, 3145, 3146, 3151, 3153,

3160, 3161, 3164, 3166, 3168, 3170, 3177, 3179, 3183, 3184, 3185, 3186, 3187, 3188,

3189, 3190, 3192, 3193, 3194, 3195, 3197, 3198, 3199, 3200, 3201, 3205, 3206, 3207,

3208, 3209, 3210, 3211, 3212, 3213, 3215, 3218, 3219, 3223, 3228, 3229, 3232, 3233,

3234, 3238, 3240, 3244, 3247, 3252, 3257, 3266, 3267, 3268, 3270, 3273, 3278, 3279,

3280, 3283, 3284, 3287, 3291, 3296, 3298, 3303, 3304, 3305, 3306, 3313, 3314, 3317,

3320, 3327, 3332, 3334, 3338, 3339, 3340, 3341, 3344, 3345, 3348, 3349, 3363, 3365,

3367, 3368, 3370, 3372, 3373, 3374, 3381, 3382, 3385, 3387, 3390, 3391, 3394, 3397,

3400, 3402, 3404, 3412, 3413, 3416, 3417, 3418, 3420, 3424, 3425, 3427, 3428, 3429,

3430, 3431, 3440, 3441, 3443, 3444, 3451, 3456, 3457, 3459, 3460, 3462, 3464, 3466,

3469, 3477, 3478, 3479, 3484, 3486, 3487, 3488, 3489, 3492, 3496, 3500, 3503, 3504,

3505, 3506, 3507, 3508, 3509, 3515, 3516, 3517, 3518, 3519, 3520, 3525, 3530, 3531,

3534, 3541, 3542, 3545, 3549, 3550, 3551, 3553, 3554, 3555, 3559, 3561, 3562, 3567,

3568, 3570, 3571, 3574, 3576, 3577, 3578, 3579, 3582, 3585, 3588, 3589, 3591, 3593,

3596, 3601, 3603, 3605, 3606, 3608, 3612, 3616, 3618, 3624, 3625, 3633, 3636, 3639,

3643, 3645, 3648, 3650, 3651, 3653, 3656, 3657, 3666, 3676, 3677, 3678, 3686, 3687,

3690, 3699, 3703, 3707, 3710, 3712, 3717, 3718, 3721, 3723, 3726, 3728, 3731, 3733,

3735, 3737, 3738, 3740, 3741, 3746, 3750, 3754, 3756, 3757, 3761, 3770, 3772, 3773,

3777, 3778, 3785, 3787, 3789, 3792, 3793, 3795, 3796, 3801, 3802, 3804, 3805, 3806,
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3808, 3809, 3811, 3812, 3818, 3822, 3825, 3827, 3828, 3831, 3833, 3835, 3836, 3838,

3840, 3845, 3846, 3847, 3848, 3850, 3854, 3860, 3861, 3864, 3867, 3868, 3869, 3871,

3872, 3875, 3878, 3888, 3889, 3891, 3895, 3899, 3900, 3906, 3908, 3910, 3913, 3914,

3919, 3920, 3925, 3927, 3929, 3936, 3940, 3944, 3948, 3955, 3956, 3959, 3961, 3965,

3968, 3970, 3973, 3975, 3977, 3978, 3979, 3982, 3984, 3986, 3987, 3988, 3990, 3993,

3995, 3996, 3999, 4005, 4011, 4012, 4013, 4018, 4021, 4023, 4025, 4026, 4030, 4032,

4034, 4036, 4038, 4048, 4053, 4056, 4060, 4062, 4068, 4070, 4072, 4077, 4079, 4080,

4081, 4084, 4088, 4092, 4093, 4096, 4097, 4102, 4104, 4105, 4106, 4107, 4110, 4113,

4121, 4125, 4131, 4132, 4137, 4140, 4141, 4148, 4152, 4153, 4154, 4155, 4157, 4160,

4161, 4162, 4163, 4165, 4171, 4173, 4178, 4181, 4183, 4186, 4197, 4198, 4199, 4200,

4203, 4205, 4207, 4208, 4209, 4211, 4212, 4214, 4215, 4223, 4225, 4228, 4230, 4232,

4234, 4235, 4236, 4239, 4240, 4241, 4242, 4251, 4253, 4254, 4258, 4260, 4263, 4266,

4271, 4274, 4276, 4278, 4281, 4284, 4288, 4290, 4294, 4301, 4305, 4312, 4319, 4322,

4324, 4328, 4329, 4330, 4333, 4334, 4343, 4344, 4345, 4347, 4349, 4350, 4352, 4355,

4356, 4367, 4370, 4371, 4372, 4376, 4379, 4380, 4381, 4384, 4385, 4386, 4388, 4392,

4393, 4396, 4397, 4400, 4401, 4405, 4407, 4411, 4420, 4425, 4427, 4428, 4431, 4435,

4440, 4441, 4443, 4446, 4450, 4452, 4456, 4459, 4461, 4462, 4465, 4472, 4474, 4476,

4477, 4479, 4480, 4481, 4486, 4488, 4489, 4490, 4491, 4492, 4495, 4496, 4497, 4499,

4500, 4501, 4502, 4504, 4506, 4507, 4508, 4511, 4512, 4513, 4516, 4517, 4518, 4519,

4521, 4523, 4524, 4525, 4526, 4527, 4528, 4529, 4530, 4531, 4532, 4534, 4535, 4537,

4540, 4541, 4543, 4544, 4546, 4547, 4548, 4549, 4550, 4554, 4555, 4556, 4558, 4559,

4561, 4564, 4565, 4566, 4567, 4568, 4569, 4570, 4574, 4575, 4576, 4577, 4580, 4582,

4585, 4588, 4590, 4591, 4593, 4594, 4595, 4596, 4598, 4600, 4601, 4603, 4604, 4607,

4608, 4610, 4611, 4614, 4615, 4617, 4618, 4620, 4621, 4622, 4623, 4627, 4628, 4630,

4631, 4634, 4635, 4637, 4642, 4643, 4644, 4645, 4647, 4650, 4653, 4655, 4657, 4659,

4662, 4665, 4666, 4668, 4670, 4674, 4676, 4677, 4678, 4680, 4681, 4682, 4683, 4684,

4686, 4688, 4689, 4690, 4691, 4694, 4696, 4697, 4699, 4701, 4703, 4705, 4706, 4707,

4710, 4711, 4712, 4713, 4714, 4716, 4720, 4721, 4722, 4723, 4725, 4727, 4728, 4729,

4730, 4733, 4734, 4737, 4738, 4741, 4742, 4743, 4744, 4745, 4746, 4748, 4749, 4750,

4751, 4754, 4757, 4759, 4762, 4767, 4769, 4770, 4771, 4773, 4775, 4779, 4780, 4781,
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4782, 4785, 4786, 4787, 4790, 4792, 4793, 4794, 4795, 4796, 4798, 4805, 4806, 4807,

4808, 4812, 4817, 4818, 4820, 4822, 4823, 4826, 4827, 4829, 4831, 4835, 4836, 4837,

4845, 4846, 4848, 4849, 4850, 4851, 4852, 4853, 4854, 4855, 4856, 4857, 4858, 4859,

4861, 4862, 4863, 4865, 4869, 4870, 4871, 4872, 4873, 4877, 4878, 4879, 4880, 4881,

4884, 4887, 4889, 4890, 4891, 4894, 4896, 4897, 4899, 4900, 4906, 4908, 4910, 4911,

4914, 4915, 4918, 4921, 4922, 4923, 4924, 4925, 4928, 4933, 4934, 4935, 4936, 4937,

4938, 4939, 4940, 4942, 4943, 4945, 4946, 4947, 4948, 4951, 4953, 4955, 4956, 4961,

4963, 4964, 4966, 4969, 4970, 4973, 4975, 4978, 4980, 4981, 4982, 4985, 4986, 4987,

4990, 4991, 4992, 4993, 4996, 5000, 5002, 5003, 5005, 5006, 5012, 5013, 5014, 5018,

5019, 5020, 5022, 5024, 5025, 5026, 5029, 5030, 5032, 5033, 5034, 5035, 5038, 5041,

5043, 5044, 5045, 5046, 5047, 5049, 5050, 5051, 5052, 5055, 5063, 5065, 5066, 5067,

5069, 5071, 5072, 5076, 5078, 5079, 5080, 5082, 5083, 5084, 5085, 5086, 5088, 5089,

5091, 5092, 5093, 5094, 5095, 5096, 5097, 5101, 5103, 5104, 5105, 5106, 5107, 5111,

5115, 5117, 5118, 5119, 5124, 5125, 5126, 5129, 5131, 5132, 5135, 5137, 5138, 5140,

5141, 5142, 5145, 5146, 5147, 5148, 5149, 5150, 5154, 5158, 5159, 5161, 5162, 5163,

5164, 5165, 5166, 5167, 5169, 5170, 5173, 5175, 5176, 5179, 5182, 5183, 5186, 5187,

5188, 5191, 5194, 5195, 5196, 5198, 5199, 5202, 5203, 5204, 5205, 5207, 5208, 5211,

5214, 5220, 5225, 5226, 5227, 5229, 5230, 5231, 5238, 5239, 5240, 5241, 5242, 5245,

5247, 5253, 5254, 5256, 5257, 5259, 5260, 5263, 5265, 5266, 5267, 5268, 5269, 5270,

5271, 5273, 5274, 5275, 5277, 5279, 5280, 5281, 5282, 5284, 5285, 5286, 5287, 5289,

5290, 5293, 5294, 5299, 5301, 5306, 5307, 5309, 5312, 5314, 5319, 5320, 5321, 5322,

5328, 5331, 5333, 5334, 5335, 5336, 5337, 5339, 5340, 5341, 5342, 5343, 5352, 5354,

5357, 5358, 5360, 5361, 5362, 5365, 5366, 5368, 5370, 5371, 5372, 5374, 5375, 5379,

5380, 5382, 5384, 5385, 5386, 5392, 5395, 5396, 5397, 5398, 5399, 5400, 5401, 5402,

5403, 5404, 5407, 5411, 5413, 5415, 5417, 5419, 5421, 5424, 5425, 5426, 5428, 5435,

5437, 5438, 5440, 5441, 5442, 5444, 5446, 5447, 5448, 5449, 5452, 5454, 5457, 5459,

5460, 5461, 5463, 5467, 5469, 5470, 5473, 5475, 5479, 5481, 5484, 5487, 5489, 5494,

5495, 5496, 5497, 5498, 5501, 5502, 5507, 5508, 5509, 5510, 5514, 5515, 5518, 5519,

5520, 5523, 5525, 5528, 5530, 5532, 5534, 5537, 5540, 5542, 5543, 5544, 5547, 5549,

5552, 5553, 5555, 5557, 5560, 5561, 5562, 5564, 5566, 5569, 5571, 5572, 5573, 5574,
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5576, 5577, 5578, 5579, 5580, 5582, 5585, 5588, 5590, 5591, 5593, 5594, 5595, 5598,

5602, 5603, 5604, 5606, 5607, 5609, 5610, 5613, 5614, 5618, 5619, 5621, 5622, 5623,

5624, 5626, 5627, 5628, 5629, 5630, 5632, 5633, 5634, 5636, 5637, 5638, 5641, 5643,

5644, 5646, 5647, 5648, 5650, 5652, 5654, 5656, 5657, 5663, 5665, 5666, 5668, 5669,

5670, 5671, 5676, 5677, 5678, 5681, 5683, 5684, 5689, 5690, 5692, 5693, 5696, 5700,

5701, 5702, 5704, 5705, 5706, 5708, 5709, 5711, 5712, 5716, 5717, 5719, 5726, 5728,

5729, 5730, 5731, 5733, 5734, 5737, 5739, 5740, 5742, 5743, 5750, 5751, 5752, 5753,

5754, 5756, 5759, 5764, 5770, 5771, 5776, 5779, 5780, 5781, 5783, 5790, 5791, 5792,

5793, 5794, 5795, 5796, 5798, 5799, 5800, 5801, 5802, 5803, 5804, 5805, 5807, 5811,

5812, 5814, 5816, 5818, 5819, 5820, 5822, 5823, 5825, 5827, 5828, 5829, 5830, 5831,

5832, 5836, 5837, 5838, 5848, 5849, 5850, 5851, 5853, 5857, 5858, 5861, 5863, 5864,

5867, 5868, 5871, 5872, 5875, 5878, 5880, 5881, 5882, 5883, 5885, 5888, 5891, 5895,

5896, 5897, 5899, 5901, 5903, 5904, 5905, 5906, 5907, 5909, 5910, 5911, 5912, 5913,

5919, 5920, 5921, 5922, 5925, 5926, 5927, 5928, 5929, 5931, 5932, 5936, 5939, 5940,

5943, 5944, 5947, 5950, 5951, 5953, 5955, 5957, 5958, 5959, 5960, 5961, 5962, 5965,

5966, 5969, 5971, 5974, 5976, 5977, 5978, 5981, 5983, 5985, 5986, 5988, 5990, 5991,

5992, 5993, 5996, 6000, 6001, 6004, 6006, 6008, 6009, 6011, 6014, 6017, 6018, 6019,

6020, 6021, 6022, 6023, 6025, 6026, 6033, 6034, 6035, 6036, 6038, 6040, 6048, 6049,

6050, 6051, 6054, 6056, 6057, 6058, 6061, 6062, 6064, 6066, 6067, 6068, 6069, 6074,

6078, 6081, 6083, 6084, 6087, 6093, 6098, 6099, 6101, 6102, 6104, 6108, 6110, 6111,

6112, 6114, 6115, 6119, 6121, 6122, 6123, 6124, 6127, 6129, 6130, 6131, 6133, 6134,

6135, 6136, 6137, 6139, 6140, 6142, 6143, 6145, 6146, 6147, 6151, 6154, 6155, 6156,

6157, 6158, 6160, 6161, 6163, 6164, 6166, 6167, 6168, 6169, 6172, 6173, 6174, 6176,

6177, 6180, 6183, 6186, 6187, 6189, 6190, 6191, 6193, 6194, 6196, 6197, 6199, 6200,

6201, 6202, 6203, 6204, 6206, 6209, 6210, 6211, 6214, 6215, 6219, 6220, 6223, 6226,

6227, 6229, 6230, 6231, 6233, 6234, 6235, 6236, 6237, 6238, 6239, 6241, 6242, 6243,

6244, 6245, 6246, 6247, 6248, 6249, 6251, 6253, 6254, 6255, 6256, 6257, 6258, 6259,

6260, 6261, 6263, 6264, 6265, 6266, 6268, 6269, 6270, 6271, 6273, 6275, 6276, 6278,

6281, 6284, 6285, 6287, 6288, 6289, 6291, 6292, 6293, 6294, 6295, 6296, 6297, 6298,

6299, 6300, 6301, 6303, 6306, 6307, 6308, 6309, 6310, 6311, 6312, 6313, 6316, 6317,
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6319, 6320, 6322, 6323, 6325, 6326, 6328, 6329, 6330, 6331, 6332, 6333, 6334, 6335,

6336, 6337, 6338, 6339, 6341, 6342, 6343, 6346, 6347, 6348, 6349, 6350, 6351, 6352,

6354, 6356, 6359, 6362, 6367, 6368, 6369, 6371, 6374, 6375, 6377, 6378, 6379, 6382,

6383, 6384, 6386, 6389, 6390, 6391, 6392, 6393, 6394, 6395, 6397, 6399, 6400, 6401,

6402, 6403, 6404, 6406, 6408, 6409, 6412, 6413, 6415, 6416, 6417, 6419, 6420, 6421,

6422, 6424, 6427, 6428, 6429, 6430, 6431, 6432, 6433, 6437, 6439, 6441, 6442, 6443,

6444, 6445, 6447, 6448, 6450, 6451, 6452, 6453, 6454, 6455, 6456, 6457, 6459, 6460,

6461, 6462, 6463, 6465, 6466, 6467, 6468, 6469, 6470, 6471, 6472, 6474, 6475, 6476,

6477, 6478, 6479, 6480, 6481, 6482, 6483, 6486, 6487, 6488, 6489, 6490, 6491, 6493,

6494, 6495, 6497, 6498, 6499, 6500}

Blue: {1, 2, 3, 8, 9, 10, 13, 16, 17, 18, 19, 21, 25, 26, 29, 32, 35, 36, 37, 43, 44, 45,

47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 70, 73, 78, 83, 85, 86, 89, 91,

94, 95, 96, 97, 98, 100, 101, 102, 108, 111, 112, 113, 115, 116, 120, 121, 126, 127, 129,

131, 132, 134, 135, 137, 139, 140, 143, 144, 146, 147, 150, 153, 154, 155, 156, 159, 160,

161, 162, 183, 184, 185, 187, 189, 190, 192, 193, 194, 195, 198, 201, 205, 209, 210, 216,

219, 221, 222, 223, 226, 229, 232, 233, 234, 235, 237, 248, 249, 251, 252, 254, 255, 258,

259, 261, 264, 265, 266, 267, 269, 271, 272, 274, 275, 276, 278, 279, 280, 281, 284, 285,

286, 288, 289, 294, 295, 300, 301, 303, 304, 305, 306, 308, 309, 314, 316, 318, 319, 320,

322, 325, 327, 328, 329, 338, 339, 342, 346, 349, 353, 357, 362, 364, 365, 368, 369, 370,

371, 374, 375, 377, 385, 386, 387, 388, 389, 390, 392, 396, 397, 398, 401, 402, 405, 408,

410, 411, 413, 414, 415, 416, 418, 420, 423, 424, 425, 426, 427, 429, 430, 433, 437, 438,

440, 443, 445, 449, 450, 451, 452, 453, 454, 458, 461, 462, 464, 465, 468, 470, 473, 475,

476, 480, 481, 484, 487, 494, 496, 501, 502, 503, 505, 509, 517, 518, 519, 520, 522, 523,

525, 528, 533, 535, 537, 538, 539, 540, 541, 545, 547, 549, 551, 553, 554, 555, 557, 559,

560, 561, 568, 569, 575, 579, 580, 581, 585, 586, 588, 590, 594, 597, 598, 600, 601, 602,

603, 609, 610, 611, 616, 617, 624, 625, 627, 628, 629, 630, 632, 633, 635, 636, 637, 640,

644, 645, 646, 648, 651, 653, 654, 655, 657, 658, 665, 667, 669, 671, 672, 673, 674, 679,

681, 687, 690, 692, 695, 696, 698, 702, 703, 704, 707, 708, 709, 712, 715, 720, 723, 724,

729, 730, 731, 733, 736, 740, 744, 745, 746, 747, 748, 752, 755, 756, 759, 760, 761, 764,

765, 768, 774, 776, 777, 778, 783, 788, 790, 791, 792, 793, 794, 798, 799, 803, 806, 807,
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810, 815, 816, 817, 818, 820, 821, 824, 825, 826, 828, 830, 840, 845, 846, 847, 849, 850,

851, 852, 855, 856, 858, 860, 864, 871, 872, 874, 875, 876, 877, 882, 884, 885, 899, 902,

903, 904, 906, 909, 910, 912, 913, 914, 915, 916, 921, 923, 924, 930, 932, 933, 934, 937,

939, 941, 943, 944, 945, 951, 952, 953, 955, 956, 957, 967, 968, 970, 971, 974, 975, 976,

978, 979, 980, 986, 987, 988, 989, 992, 993, 997, 1000, 1002, 1004, 1005, 1006, 1010,

1012, 1015, 1016, 1018, 1021, 1022, 1024, 1025, 1026, 1027, 1028, 1034, 1037, 1038,

1040, 1041, 1042, 1045, 1047, 1048, 1049, 1052, 1057, 1058, 1060, 1061, 1062, 1068,

1069, 1070, 1071, 1072, 1074, 1077, 1078, 1082, 1083, 1084, 1085, 1086, 1087, 1088,

1089, 1092, 1098, 1099, 1100, 1101, 1103, 1107, 1108, 1110, 1112, 1114, 1116, 1118,

1120, 1121, 1125, 1127, 1129, 1131, 1136, 1137, 1139, 1143, 1147, 1149, 1154, 1155,

1156, 1158, 1160, 1161, 1162, 1163, 1164, 1166, 1167, 1173, 1175, 1176, 1179, 1182,

1183, 1185, 1191, 1193, 1194, 1196, 1199, 1200, 1203, 1206, 1210, 1212, 1213, 1219,

1224, 1227, 1229, 1230, 1232, 1236, 1237, 1239, 1241, 1243, 1248, 1249, 1251, 1254,

1256, 1257, 1258, 1263, 1264, 1266, 1267, 1271, 1272, 1274, 1281, 1282, 1284, 1287,

1288, 1290, 1292, 1293, 1295, 1296, 1297, 1301, 1302, 1306, 1311, 1317, 1320, 1321,

1323, 1328, 1329, 1330, 1332, 1333, 1334, 1339, 1341, 1344, 1345, 1346, 1348, 1350,

1356, 1357, 1359, 1362, 1363, 1364, 1365, 1369, 1370, 1371, 1372, 1374, 1376, 1377,

1378, 1379, 1380, 1381, 1385, 1389, 1392, 1395, 1401, 1403, 1405, 1407, 1409, 1411,

1412, 1414, 1421, 1422, 1425, 1426, 1430, 1431, 1433, 1434, 1435, 1437, 1440, 1445,

1449, 1450, 1452, 1453, 1458, 1460, 1461, 1463, 1465, 1467, 1469, 1472, 1473, 1474,

1475, 1480, 1481, 1482, 1484, 1485, 1490, 1493, 1504, 1505, 1512, 1513, 1514, 1517,

1519, 1520, 1521, 1527, 1528, 1529, 1533, 1534, 1537, 1541, 1546, 1547, 1549, 1550,

1553, 1554, 1562, 1565, 1566, 1573, 1576, 1577, 1580, 1582, 1584, 1585, 1594, 1596,

1597, 1598, 1599, 1600, 1606, 1608, 1609, 1610, 1611, 1612, 1613, 1614, 1618, 1620,

1621, 1623, 1625, 1631, 1633, 1634, 1635, 1639, 1640, 1642, 1644, 1645, 1653, 1656,

1657, 1658, 1660, 1665, 1666, 1671, 1672, 1677, 1679, 1680, 1682, 1686, 1690, 1691,

1695, 1700, 1704, 1707, 1709, 1710, 1711, 1717, 1721, 1725, 1728, 1730, 1732, 1738,

1740, 1744, 1745, 1748, 1750, 1752, 1755, 1760, 1763, 1764, 1768, 1771, 1775, 1782,

1785, 1786, 1789, 1796, 1802, 1808, 1810, 1813, 1818, 1824, 1825, 1829, 1830, 1833,

1839, 1843, 1844, 1845, 1851, 1855, 1859, 1862, 1863, 1865, 1869, 1870, 1875, 1878,
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1880, 1883, 1886, 1888, 1891, 1892, 1901, 1902, 1903, 1904, 1906, 1908, 1911, 1913,

1914, 1918, 1919, 1920, 1924, 1925, 1928, 1932, 1935, 1937, 1940, 1943, 1944, 1947,

1949, 1950, 1952, 1954, 1957, 1960, 1962, 1967, 1968, 1972, 1983, 1988, 1989, 1993,

1995, 1997, 1998, 2002, 2006, 2009, 2013, 2014, 2015, 2020, 2021, 2024, 2025, 2028,

2030, 2033, 2034, 2035, 2036, 2040, 2041, 2046, 2047, 2048, 2059, 2064, 2065, 2066,

2069, 2071, 2075, 2076, 2080, 2093, 2094, 2103, 2105, 2107, 2113, 2115, 2118, 2120,

2121, 2122, 2124, 2127, 2133, 2136, 2137, 2138, 2140, 2141, 2142, 2144, 2145, 2153,

2156, 2163, 2165, 2169, 2171, 2172, 2173, 2174, 2175, 2187, 2188, 2189, 2190, 2191,

2194, 2198, 2201, 2202, 2203, 2207, 2209, 2212, 2213, 2214, 2216, 2218, 2220, 2225,

2227, 2228, 2230, 2231, 2233, 2235, 2241, 2242, 2244, 2248, 2249, 2250, 2255, 2256,

2257, 2258, 2261, 2262, 2263, 2268, 2277, 2283, 2288, 2289, 2290, 2291, 2295, 2296,

2297, 2300, 2304, 2305, 2306, 2307, 2309, 2310, 2314, 2316, 2322, 2323, 2325, 2326,

2327, 2329, 2330, 2331, 2336, 2337, 2340, 2344, 2346, 2355, 2357, 2359, 2364, 2368,

2372, 2373, 2375, 2376, 2377, 2381, 2384, 2386, 2391, 2392, 2394, 2397, 2402, 2403,

2404, 2405, 2406, 2407, 2408, 2409, 2419, 2420, 2422, 2425, 2431, 2434, 2437, 2438,

2441, 2443, 2448, 2450, 2451, 2458, 2460, 2463, 2466, 2470, 2471, 2472, 2474, 2476,

2479, 2480, 2482, 2483, 2486, 2488, 2489, 2490, 2492, 2493, 2494, 2495, 2496, 2497,

2499, 2500, 2503, 2505, 2506, 2509, 2510, 2511, 2512, 2513, 2515, 2516, 2518, 2519,

2521, 2523, 2524, 2525, 2526, 2527, 2528, 2529, 2531, 2533, 2534, 2538, 2539, 2540,

2541, 2543, 2551, 2552, 2553, 2554, 2556, 2557, 2558, 2559, 2560, 2561, 2562, 2564,

2565, 2566, 2567, 2568, 2569, 2570, 2572, 2573, 2575, 2579, 2581, 2582, 2583, 2584,

2585, 2587, 2588, 2591, 2593, 2594, 2595, 2597, 2598, 2599, 2602, 2605, 2606, 2608,

2609, 2610, 2612, 2613, 2614, 2615, 2620, 2622, 2623, 2625, 2626, 2627, 2628, 2629,

2630, 2631, 2632, 2633, 2635, 2636, 2637, 2638, 2639, 2640, 2643, 2645, 2647, 2648,

2650, 2651, 2653, 2654, 2655, 2656, 2657, 2659, 2661, 2662, 2663, 2666, 2670, 2671,

2672, 2674, 2676, 2677, 2678, 2679, 2681, 2682, 2683, 2686, 2687, 2691, 2692, 2693,

2695, 2696, 2697, 2698, 2699, 2701, 2702, 2705, 2707, 2708, 2709, 2710, 2711, 2712,

2716, 2718, 2719, 2720, 2721, 2724, 2725, 2730, 2731, 2732, 2733, 2734, 2735, 2736,

2738, 2740, 2741, 2742, 2743, 2744, 2745, 2747, 2748, 2749, 2750, 2753, 2754, 2755,

2757, 2760, 2761, 2764, 2765, 2767, 2768, 2770, 2771, 2774, 2776, 2777, 2778, 2779,
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2780, 2781, 2784, 2786, 2788, 2790, 2795, 2797, 2800, 2801, 2804, 2805, 2808, 2812,

2813, 2815, 2816, 2817, 2819, 2821, 2823, 2824, 2827, 2830, 2831, 2834, 2838, 2840,

2842, 2843, 2845, 2847, 2853, 2854, 2855, 2856, 2857, 2861, 2864, 2865, 2868, 2871,

2873, 2877, 2878, 2884, 2885, 2886, 2888, 2890, 2895, 2897, 2899, 2900, 2901, 2902,

2905, 2906, 2907, 2908, 2910, 2915, 2916, 2921, 2922, 2923, 2924, 2930, 2931, 2934,

2935, 2940, 2944, 2945, 2947, 2948, 2949, 2950, 2952, 2953, 2954, 2955, 2957, 2959,

2961, 2962, 2964, 2967, 2968, 2969, 2975, 2976, 2983, 2984, 2985, 2986, 2988, 2990,

2991, 2992, 2994, 2995, 2997, 2999, 3000, 3004, 3012, 3015, 3017, 3018, 3020, 3022,

3026, 3027, 3028, 3029, 3033, 3034, 3035, 3040, 3041, 3043, 3045, 3047, 3048, 3049,

3050, 3051, 3056, 3058, 3061, 3062, 3063, 3064, 3065, 3066, 3067, 3068, 3069, 3070,

3072, 3073, 3074, 3076, 3077, 3078, 3079, 3080, 3081, 3082, 3083, 3084, 3087, 3088,

3090, 3092, 3098, 3099, 3102, 3105, 3106, 3109, 3110, 3114, 3116, 3117, 3118, 3119,

3121, 3127, 3130, 3132, 3133, 3134, 3135, 3136, 3138, 3139, 3142, 3143, 3147, 3148,

3149, 3150, 3152, 3154, 3155, 3156, 3157, 3158, 3159, 3162, 3163, 3165, 3167, 3169,

3171, 3172, 3173, 3174, 3175, 3176, 3178, 3180, 3181, 3182, 3191, 3196, 3202, 3203,

3204, 3214, 3216, 3217, 3220, 3221, 3222, 3224, 3225, 3226, 3227, 3230, 3231, 3235,

3236, 3237, 3239, 3241, 3242, 3243, 3245, 3246, 3248, 3249, 3250, 3251, 3253, 3254,

3255, 3256, 3258, 3259, 3260, 3261, 3262, 3263, 3264, 3265, 3269, 3271, 3272, 3274,

3275, 3276, 3277, 3281, 3282, 3285, 3286, 3288, 3289, 3290, 3292, 3293, 3294, 3295,

3297, 3299, 3300, 3301, 3302, 3307, 3308, 3309, 3310, 3311, 3312, 3315, 3316, 3318,

3319, 3321, 3322, 3323, 3324, 3325, 3326, 3328, 3329, 3330, 3331, 3333, 3335, 3336,

3337, 3342, 3343, 3346, 3347, 3350, 3351, 3352, 3353, 3354, 3355, 3356, 3357, 3358,

3359, 3360, 3361, 3362, 3364, 3366, 3369, 3371, 3375, 3376, 3377, 3378, 3379, 3380,

3383, 3384, 3386, 3388, 3389, 3392, 3393, 3395, 3396, 3398, 3399, 3401, 3403, 3405,

3406, 3407, 3408, 3409, 3410, 3411, 3414, 3415, 3419, 3421, 3422, 3423, 3426, 3432,

3433, 3434, 3435, 3436, 3437, 3438, 3439, 3442, 3445, 3446, 3447, 3448, 3449, 3450,

3452, 3453, 3454, 3455, 3458, 3461, 3463, 3465, 3467, 3468, 3470, 3471, 3472, 3473,

3474, 3475, 3476, 3480, 3481, 3482, 3483, 3485, 3490, 3491, 3493, 3494, 3495, 3497,

3498, 3499, 3501, 3502, 3510, 3511, 3512, 3513, 3514, 3521, 3522, 3523, 3524, 3526,

3527, 3528, 3529, 3532, 3533, 3535, 3536, 3537, 3538, 3539, 3540, 3543, 3544, 3546,



109

3547, 3548, 3552, 3556, 3557, 3558, 3560, 3563, 3564, 3565, 3566, 3569, 3572, 3573,

3575, 3580, 3581, 3583, 3584, 3586, 3587, 3590, 3592, 3594, 3595, 3597, 3598, 3599,

3600, 3602, 3604, 3607, 3609, 3610, 3611, 3613, 3614, 3615, 3617, 3619, 3620, 3621,

3622, 3623, 3626, 3627, 3628, 3629, 3630, 3631, 3632, 3634, 3635, 3637, 3638, 3640,

3641, 3642, 3644, 3646, 3647, 3649, 3652, 3654, 3655, 3658, 3659, 3660, 3661, 3662,

3663, 3664, 3665, 3667, 3668, 3669, 3670, 3671, 3672, 3673, 3674, 3675, 3679, 3680,

3681, 3682, 3683, 3684, 3685, 3688, 3689, 3691, 3692, 3693, 3694, 3695, 3696, 3697,

3698, 3700, 3701, 3702, 3704, 3705, 3706, 3708, 3709, 3711, 3713, 3714, 3715, 3716,

3719, 3720, 3722, 3724, 3725, 3727, 3729, 3730, 3732, 3734, 3736, 3739, 3742, 3743,

3744, 3745, 3747, 3748, 3749, 3751, 3752, 3753, 3755, 3758, 3759, 3760, 3762, 3763,

3764, 3765, 3766, 3767, 3768, 3769, 3771, 3774, 3775, 3776, 3779, 3780, 3781, 3782,

3783, 3784, 3786, 3788, 3790, 3791, 3794, 3797, 3798, 3799, 3800, 3803, 3807, 3810,

3813, 3814, 3815, 3816, 3817, 3819, 3820, 3821, 3823, 3824, 3826, 3829, 3830, 3832,

3834, 3837, 3839, 3841, 3842, 3843, 3844, 3849, 3851, 3852, 3853, 3855, 3856, 3857,

3858, 3859, 3862, 3863, 3865, 3866, 3870, 3873, 3874, 3876, 3877, 3879, 3880, 3881,

3882, 3883, 3884, 3885, 3886, 3887, 3890, 3892, 3893, 3894, 3896, 3897, 3898, 3901,

3902, 3903, 3904, 3905, 3907, 3909, 3911, 3912, 3915, 3916, 3917, 3918, 3921, 3922,

3923, 3924, 3926, 3928, 3930, 3931, 3932, 3933, 3934, 3935, 3937, 3938, 3939, 3941,

3942, 3943, 3945, 3946, 3947, 3949, 3950, 3951, 3952, 3953, 3954, 3957, 3958, 3960,

3962, 3963, 3964, 3966, 3967, 3969, 3971, 3972, 3974, 3976, 3980, 3981, 3983, 3985,

3989, 3991, 3992, 3994, 3997, 3998, 4000, 4001, 4002, 4003, 4004, 4006, 4007, 4008,

4009, 4010, 4014, 4015, 4016, 4017, 4019, 4020, 4022, 4024, 4027, 4028, 4029, 4031,

4033, 4035, 4037, 4039, 4040, 4041, 4042, 4043, 4044, 4045, 4046, 4047, 4049, 4050,

4051, 4052, 4054, 4055, 4057, 4058, 4059, 4061, 4063, 4064, 4065, 4066, 4067, 4069,

4071, 4073, 4074, 4075, 4076, 4078, 4082, 4083, 4085, 4086, 4087, 4089, 4090, 4091,

4094, 4095, 4098, 4099, 4100, 4101, 4103, 4108, 4109, 4111, 4112, 4114, 4115, 4116,

4117, 4118, 4119, 4120, 4122, 4123, 4124, 4126, 4127, 4128, 4129, 4130, 4133, 4134,

4135, 4136, 4138, 4139, 4142, 4143, 4144, 4145, 4146, 4147, 4149, 4150, 4151, 4156,

4158, 4159, 4164, 4166, 4167, 4168, 4169, 4170, 4172, 4174, 4175, 4176, 4177, 4179,

4180, 4182, 4184, 4185, 4187, 4188, 4189, 4190, 4191, 4192, 4193, 4194, 4195, 4196,
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4201, 4202, 4204, 4206, 4210, 4213, 4216, 4217, 4218, 4219, 4220, 4221, 4222, 4224,

4226, 4227, 4229, 4231, 4233, 4237, 4238, 4243, 4244, 4245, 4246, 4247, 4248, 4249,

4250, 4252, 4255, 4256, 4257, 4259, 4261, 4262, 4264, 4265, 4267, 4268, 4269, 4270,

4272, 4273, 4275, 4277, 4279, 4280, 4282, 4283, 4285, 4286, 4287, 4289, 4291, 4292,

4293, 4295, 4296, 4297, 4298, 4299, 4300, 4302, 4303, 4304, 4306, 4307, 4308, 4309,

4310, 4311, 4313, 4314, 4315, 4316, 4317, 4318, 4320, 4321, 4323, 4325, 4326, 4327,

4331, 4332, 4335, 4336, 4337, 4338, 4339, 4340, 4341, 4342, 4346, 4348, 4351, 4353,

4354, 4357, 4358, 4359, 4360, 4361, 4362, 4363, 4364, 4365, 4366, 4368, 4369, 4373,

4374, 4375, 4377, 4378, 4382, 4383, 4387, 4389, 4390, 4391, 4394, 4395, 4398, 4399,

4402, 4403, 4404, 4406, 4408, 4409, 4410, 4412, 4413, 4414, 4415, 4416, 4417, 4418,

4419, 4421, 4422, 4423, 4424, 4426, 4429, 4430, 4432, 4433, 4434, 4436, 4437, 4438,

4439, 4442, 4444, 4445, 4447, 4448, 4449, 4451, 4453, 4454, 4455, 4457, 4458, 4460,

4463, 4464, 4466, 4467, 4468, 4469, 4470, 4471, 4473, 4475, 4478, 4482, 4483, 4484,

4485, 4487, 4493, 4494, 4498, 4503, 4505, 4509, 4510, 4514, 4515, 4520, 4522, 4533,

4536, 4538, 4539, 4542, 4545, 4551, 4552, 4553, 4557, 4560, 4562, 4563, 4571, 4572,

4573, 4578, 4579, 4581, 4583, 4584, 4586, 4587, 4589, 4592, 4597, 4599, 4602, 4605,

4606, 4609, 4612, 4613, 4616, 4619, 4624, 4625, 4626, 4629, 4632, 4633, 4636, 4638,

4639, 4640, 4641, 4646, 4648, 4649, 4651, 4652, 4654, 4656, 4658, 4660, 4661, 4663,

4664, 4667, 4669, 4671, 4672, 4673, 4675, 4679, 4685, 4687, 4692, 4693, 4695, 4698,

4700, 4702, 4704, 4708, 4709, 4715, 4717, 4718, 4719, 4724, 4726, 4731, 4732, 4735,

4736, 4739, 4740, 4747, 4752, 4753, 4755, 4756, 4758, 4760, 4761, 4763, 4764, 4765,

4766, 4768, 4772, 4774, 4776, 4777, 4778, 4783, 4784, 4788, 4789, 4791, 4797, 4799,

4800, 4801, 4802, 4803, 4804, 4809, 4810, 4811, 4813, 4814, 4815, 4816, 4819, 4821,

4824, 4825, 4828, 4830, 4832, 4833, 4834, 4838, 4839, 4840, 4841, 4842, 4843, 4844,

4847, 4860, 4864, 4866, 4867, 4868, 4874, 4875, 4876, 4882, 4883, 4885, 4886, 4888,

4892, 4893, 4895, 4898, 4901, 4902, 4903, 4904, 4905, 4907, 4909, 4912, 4913, 4916,

4917, 4919, 4920, 4926, 4927, 4929, 4930, 4931, 4932, 4941, 4944, 4949, 4950, 4952,

4954, 4957, 4958, 4959, 4960, 4962, 4965, 4967, 4968, 4971, 4972, 4974, 4976, 4977,

4979, 4983, 4984, 4988, 4989, 4994, 4995, 4997, 4998, 4999, 5001, 5004, 5007, 5008,

5009, 5010, 5011, 5015, 5016, 5017, 5021, 5023, 5027, 5028, 5031, 5036, 5037, 5039,
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5040, 5042, 5048, 5053, 5054, 5056, 5057, 5058, 5059, 5060, 5061, 5062, 5064, 5068,

5070, 5073, 5074, 5075, 5077, 5081, 5087, 5090, 5098, 5099, 5100, 5102, 5108, 5109,

5110, 5112, 5113, 5114, 5116, 5120, 5121, 5122, 5123, 5127, 5128, 5130, 5133, 5134,

5136, 5139, 5143, 5144, 5151, 5152, 5153, 5155, 5156, 5157, 5160, 5168, 5171, 5172,

5174, 5177, 5178, 5180, 5181, 5184, 5185, 5189, 5190, 5192, 5193, 5197, 5200, 5201,

5206, 5209, 5210, 5212, 5213, 5215, 5216, 5217, 5218, 5219, 5221, 5222, 5223, 5224,

5228, 5232, 5233, 5234, 5235, 5236, 5237, 5243, 5244, 5246, 5248, 5249, 5250, 5251,

5252, 5255, 5258, 5261, 5262, 5264, 5272, 5276, 5278, 5283, 5288, 5291, 5292, 5295,

5296, 5297, 5298, 5300, 5302, 5303, 5304, 5305, 5308, 5310, 5311, 5313, 5315, 5316,

5317, 5318, 5323, 5324, 5325, 5326, 5327, 5329, 5330, 5332, 5338, 5344, 5345, 5346,

5347, 5348, 5349, 5350, 5351, 5353, 5355, 5356, 5359, 5363, 5364, 5367, 5369, 5373,

5376, 5377, 5378, 5381, 5383, 5387, 5388, 5389, 5390, 5391, 5393, 5394, 5405, 5406,

5408, 5409, 5410, 5412, 5414, 5416, 5418, 5420, 5422, 5423, 5427, 5429, 5430, 5431,

5432, 5433, 5434, 5436, 5439, 5443, 5445, 5450, 5451, 5453, 5455, 5456, 5458, 5462,

5464, 5465, 5466, 5468, 5471, 5472, 5474, 5476, 5477, 5478, 5480, 5482, 5483, 5485,

5486, 5488, 5490, 5491, 5492, 5493, 5499, 5500, 5503, 5504, 5505, 5506, 5511, 5512,

5513, 5516, 5517, 5521, 5522, 5524, 5526, 5527, 5529, 5531, 5533, 5535, 5536, 5538,

5539, 5541, 5545, 5546, 5548, 5550, 5551, 5554, 5556, 5558, 5559, 5563, 5565, 5567,

5568, 5570, 5575, 5581, 5583, 5584, 5586, 5587, 5589, 5592, 5596, 5597, 5599, 5600,

5601, 5605, 5608, 5611, 5612, 5615, 5616, 5617, 5620, 5625, 5631, 5635, 5639, 5640,

5642, 5645, 5649, 5651, 5653, 5655, 5658, 5659, 5660, 5661, 5662, 5664, 5667, 5672,

5673, 5674, 5675, 5679, 5680, 5682, 5685, 5686, 5687, 5688, 5691, 5694, 5695, 5697,

5698, 5699, 5703, 5707, 5710, 5713, 5714, 5715, 5718, 5720, 5721, 5722, 5723, 5724,

5725, 5727, 5732, 5735, 5736, 5738, 5741, 5744, 5745, 5746, 5747, 5748, 5749, 5755,

5757, 5758, 5760, 5761, 5762, 5763, 5765, 5766, 5767, 5768, 5769, 5772, 5773, 5774,

5775, 5777, 5778, 5782, 5784, 5785, 5786, 5787, 5788, 5789, 5797, 5806, 5808, 5809,

5810, 5813, 5815, 5817, 5821, 5824, 5826, 5833, 5834, 5835, 5839, 5840, 5841, 5842,

5843, 5844, 5845, 5846, 5847, 5852, 5854, 5855, 5856, 5859, 5860, 5862, 5865, 5866,

5869, 5870, 5873, 5874, 5876, 5877, 5879, 5884, 5886, 5887, 5889, 5890, 5892, 5893,

5894, 5898, 5900, 5902, 5908, 5914, 5915, 5916, 5917, 5918, 5923, 5924, 5930, 5933,
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5934, 5935, 5937, 5938, 5941, 5942, 5945, 5946, 5948, 5949, 5952, 5954, 5956, 5963,

5964, 5967, 5968, 5970, 5972, 5973, 5975, 5979, 5980, 5982, 5984, 5987, 5989, 5994,

5995, 5997, 5998, 5999, 6002, 6003, 6005, 6007, 6010, 6012, 6013, 6015, 6016, 6024,

6027, 6028, 6029, 6030, 6031, 6032, 6037, 6039, 6041, 6042, 6043, 6044, 6045, 6046,

6047, 6052, 6053, 6055, 6059, 6060, 6063, 6065, 6070, 6071, 6072, 6073, 6075, 6076,

6077, 6079, 6080, 6082, 6085, 6086, 6088, 6089, 6090, 6091, 6092, 6094, 6095, 6096,

6097, 6100, 6103, 6105, 6106, 6107, 6109, 6113, 6116, 6117, 6118, 6120, 6125, 6126,

6128, 6132, 6138, 6141, 6144, 6148, 6149, 6150, 6152, 6153, 6159, 6162, 6165, 6170,

6171, 6175, 6178, 6179, 6181, 6182, 6184, 6185, 6188, 6192, 6195, 6198, 6205, 6207,

6208, 6212, 6213, 6216, 6217, 6218, 6221, 6222, 6224, 6225, 6228, 6232, 6240, 6250,

6252, 6262, 6267, 6272, 6274, 6277, 6279, 6280, 6282, 6283, 6286, 6290, 6302, 6304,

6305, 6314, 6315, 6318, 6321, 6324, 6327, 6340, 6344, 6345, 6353, 6355, 6357, 6358,

6360, 6361, 6363, 6364, 6365, 6366, 6370, 6372, 6373, 6376, 6380, 6381, 6385, 6387,

6388, 6396, 6398, 6405, 6407, 6410, 6411, 6414, 6418, 6423, 6425, 6426, 6434, 6435,

6436, 6438, 6440, 6446, 6449, 6458, 6464, 6473, 6484, 6485, 6492, 6496}

Finally, we present a visual interpretation of the coloring (read left-to-right, then

top-to-bottom) in Figure A.1.
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Figure A.1: Coloring proving the lower bound for R2

(
x2 + y2 = z2

)
.
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Appendix B

The Family kx+ (k + 1)y = (k + 2)z

In Section 4.2 we present some data for the family of equations kx+(k+1)y = (k+2)z.

For each k, Table B.1 gives the Rado number, the CPU time required (in CPU-seconds),

the number of colorings checked, the number of times fE is evaluated, the number of

times the tree is cleaved, and the number of leaves (i.e. number of maximal colorings)

which is also the length (number of lines of text) of the uncompressed certificate.

k R2

(
Ek
)

CPU time Cols. checked Evals. of fE Cleaves Leaves

1 1 0 1 1 * *

2 10 16 19 311 * *

3 17 0 41 1697 * *

4 15 0 53 1617 * *

5 23 0 201 17834 1 15

6 28 0 1311 162927 1 17

7 36 0 275 35102 1 15

8 45 16 7361 2065837 1 16

9 55 0 6057 1718335 1 15

10 71 32 20083 12699518 3 50

11 78 32 42209 21194015 3 94

12 97 144 303695 185894001 6 598

13 105 96 132953 92713633 6 386

14 120 816 1689197 1533140154 10 1720

15 136 816 1390631 1394194518 18 2141

16 153 3296 5502381 6829417208 10 2698

17 171 4128 8351443 8482384666 14 2310

18 190 122464 155029995 260985312167 20 4465

19 210 21552 31125057 45458377262 16 3727

20 231 727808 722679941 1654046397071 90 100429

21 253 291184 392834951 674637589862 20 6018

22 276 2931456 2088238859 6720815411113 65 134527

23 300 2329472 2290866899 5280949472008 122 86629

24 325 72693760 43253507521 168256031472106 309 864306

25 351 7605760 5437255877 17482566990496 212 436428

Table B.1: Computational data for the family kx+ (k + 1)y = (k + 2)z
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A 0 indicates that the computation took less than 1 seconds (all figures are rounded

to the nearest second). A * indicates that this computation was completed by the

master process before it could produce enough valid colorings to fill up the queue and

pass off branches to workers. This does not indicate any problem – a valid certificate

is still produced, and the computation is of course still correct. However, the master

process will not collect these two statistics in this case.

All computations for k = 1, 2, . . . , 19 were done with 16 CPUs. For k = 20, 22, 23,

there were 128 CPUs, and for k = 21, 24, 25 there were 512. Note that this is factored

into “CPU-time” (not just “time”), but changing the number of CPUs would affect the

number of times the tree is cleaved, as well as how long the master process works to

build up the queue at the beginning of the algorithm. Notice that k = 24 does not have

an explosion in the number of cleaves required – it would have far more than 309 if we

had used 128 or 16 CPUs (and it would have failed to terminate in the allotted time!).

No certificates were written, so in every case, there were 15, 127, or 511 workers plus

one master process.

Figure B.1: Rado numbers for Ek

We can continue our discussion from Section 4.1, where we noticed how various

data besides just the Rado numbers seem to be related. First, we’ll take a look at the
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Rado numbers for this family, along with the interpolating polynomial from Conjecture

4.4, in Figure B.1. In these figures, as before, we normalize these data series to be

simultaneously visible.

Figure B.2: CPU time for computing Rado numbers for Ek

As in Section 4.1, we can see in Figure B.2 the relationship between the computing

time required, the number of colorings checked, and the evaluations of the polynomial

fEk(x, y, z) = kx+ (k+ 1)y− (k+ 2)z. Notice, as we observed before, that the number

of evaluations of fEk and the time required for the computation overlap – so much so

they are difficult to distinguish.

Figure B.3: Statistics for cleaving and number of leaves for Ek
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In Figure B.3, we see how the computing time relates to the number of leaves and

the number of times a cleave order is issued. We can see that the peaks for these also

tend to coincide with the CPU time (and so also the graphs from B.2).

Figure B.4: Representative maximum-length valid colorings for Ek

To finish this appendix, we have Figure B.4 illustrating representative valid colorings

of length R2

(
Ek
)
− 1 for k = 2 to k = 17.

We note that some pattern may be present, as these seem to be a somewhat well-

behaved set of intervals (with some exceptions, particularly k = 11, 13). For some k

values there are other maximum length valid colorings that differ by one color assign-

ment, and these are chosen to be the ones with the fewest changes from red to blue
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k Coloring

2 (1, 1, 2, 2, 1, 1, 1)

3 (1, 2, 3, 2, 1, 1, 1, 2, 1, 1, 1)

4 (2, 3, 2, 2, 3, 2)

5 (2, 1, 1, 2, 3, 3, 1, 1, 2, 1, 1, 3, 1)

6 (3, 4, 3, 3, 4, 3, 4, 3)

7 (3, 5, 3, 4, 5, 3, 5, 3, 4)

8 (4, 5, 4, 5, 4, 4, 5, 4, 5, 4)

9 (4, 6, 4, 6, 5, 4, 6, 4, 6, 4, 5)

10 (4, 8, 4, 4, 1, 2, 4, 5, 6, 5, 7, 4, 7, 4, 5)

11 (5, 7, 5, 7, 5, 6, 7, 5, 7, 5, 7, 5, 6)

12 (5, 9, 5, 5, 1, 2, 5, 6, 7, 6, 7, 6, 8, 5, 8, 5, 6)

13 (6, 8, 6, 9, 5, 8, 7, 6, 8, 6, 8, 6, 8, 6, 7)

14 (7, 8, 7, 8, 7, 8, 7, 7, 8, 7, 8, 7, 8, 7, 8, 7)

15 (7, 9, 7, 10, 6, 9, 7, 8, 9, 7, 9, 7, 9, 7, 9, 7, 8)

16 (8, 9, 8, 9, 8, 9, 8, 9, 8, 8, 9, 8, 9, 8, 9, 8, 9, 8)

17 (8, 10, 8, 10, 8, 10, 8, 10, 9, 8, 10, 8, 10, 8, 10, 8, 10, 8, 9)

Table B.2: Representative maximum-length valid colorings for Ek

as we read the coloring left to right (preferring red-red-red-red-red to red-red-blue-red-

red). We could also interpret these as (finite) sequences, where a1, a2, a3 would indicate

the length of each monochromatic interval. That gives us the same data in a different

form, as listed in Table B.2.
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Appendix C

Sums of Squares

In this appendix we provide a comparison of the effectiveness of an optimized VI, as

described in Section 3.7.4. We will use data from some of the Rado numbers in Section

5.2.4.

Figure C.1: Number of evaluations of fEk for each VI

In Figures C.1 and C.2, we see a comparison of the number of evaluations of fEk

for k = 3, . . . , 10. The old VI is clearly inferior to the new VI because it requires more

computations. These two figures are normalized to [0, 1], but by the same factor. Notice

that in Figure C.2, we can see the new VI is just flatlined on the axis compared to the

others, even at k = 10. It is impossible – with our resources – to use the inefficient

older VI to compute R2

(
E11

)
, while it is very easy to do so with the new VI. Even

considering R2

(
E10

)
, the new VI completes the computation in moments, while the old

VI takes over a day.

This shows us quite clearly the benefits of using the improved VI – it also makes

clear the case, as we argue in Section 6.1, that we ought to expand this intelligent VI
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Figure C.2: Number of evaluations of fEk for each VI (zoomed)

to work for equations like 2x + 2y = 3z (which, as we see in Section 4.4, takes a long

time to compute for r = 3).
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