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ABSTRACT OF THE DISSERTATION

Static and dynamic analysis of periodic lattice structures

with applications to acoustic cloaks of the pentamode type

by Adam Julius Nagy

Dissertation Director: Dr. Andrew N. Norris

As a first step towards producing pentamode acoustic cloaks, so named for the type

of elasticity required, periodic lattice structured materials are designed that mimic the

acoustic properties of water. This material is termed Metal Water and is analyzed

in detail. The requirements considered are matching of density and wave speed, this

produces a type of metamaterial that couples acoustic wave energy from a background

fluid into an elastic medium without reflection. General elastodynamic, scattering, and

acoustic cloaking theories are reviewed. In application to scattering, a new method is

developed for cylindrically layered elastic media, which combines impedance and ma-

tricant propagator matrices in a stable integration scheme. A variety of techniques

are used to estimate and improve the homogenized material properties associated with

Metal Water. Dispersion curves are found by the application of Bloch-Floquet theory

where a new approach that utilizes Euler-Bernoulli beams is developed. Results are

compared against finite element methods capable of more accurately determining ho-

mogenized properties. Several designs are proposed in two and three dimensions with

detailed studies including dispersion curve analysis as well as statically determined

properties.
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Chapter 1

Introduction

Cloaking devices cause an object to be invisible to incoming waves, energy is diverted

and passes through the region without scattering. Interest in the subject started with

developments in the electromagnetic (EM) spectrum and have given life to the study of

acoustic cloaks. It was found in electromagnetism that strong anisotropic parameters

are required for EM cloaking [9, 10]. This is an obvious consequence as the device is

required to steer wave energy around an object in a rather short distance. Materials with

such characteristics do not occur naturally in nature and so metamaterials, meaning

man-made materials with extraordinary properties, must be created. Further studies in

EM metamaterials have shown unprecedented control of wave propagation for devices

such as: concentrators [11], beam splitters [12], and of course cloaks [13, 14]. By the

technique of transformation optics, material parameters can be derived to achieve the

desired effect. The method consists of applying a form-invariant coordinate transform

to the EM equations, which deforms space in a specified manner based on a mapping

function [12]. Similarly, transformation acoustics applies a form-invariant coordinate

transform to the Helmholtz equation.

The first theorized acoustic cloaks were of the inertial type where material properties

are described by an anisotropic density tensor and a scalar bulk modulus. In order to

achieve anisotropic mass properties, Milton et al. [15] conceptually described how

a system of spring-loaded masses could create the needed mass anisotropy, building

on the work of Willis [16] who demonstrated that, for a composite material in which

density varied, the effective density operator took the form of a second-order tensor.

One of the first proposed inertial cloaks came about by relating the electromagnetic

equation to the acoustic and matching associated parameters [13]. In order to produce
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anisotropic inertia a simple layering of fluids is sufficient [17, 18, 19]. Norris [20] later

showed the effective material properties of an acoustic cloak are not uniquely defined

and have special relations to the transformation mapping. This result meant that an

infinite number of mappings which define the material properties of the cloak can be

used in designing the device. One issue with the mapping function, which transforms

a point into a finite region, are singularities in the required material properties [21].

In application to inertial cloaks the transformation requires a singularity in density

meaning infinite mass is required. One way of resolving this issue is by relaxing the

transformation and instead map a small area to a larger one, such that the cloak could

be considered near perfect. This would help remove singularities in density but still

require a device with large mass.

Another approach is to consider cloaks made from an elastic medium, this relieves

the requirement of large mass and instead large anisotropy in elasticity is required

[15]. In this case materials that are described by pentamode elasticity are needed.

Pentamode materials are special as compression and shear waves are not coupled, this

is a consequence of the ideally infinite ratio between the bulk and shear moduli. The

Poisson’s ratio in such a material is approximately one half [22]. Fluid like behavior

occurs as the eigenvalues of the elasticity tensor are all zero except for one, meaning that

only one mode of deformation opposes applied stress. Transformation mappings have

been studied for pentamode cloaks [23], where properties including constant density,

constant radial stiffness, constant tangential stiffness and others including a mapping

that considers minimizing elastic anisotropy have been studied. Other studies have

considered the producibility of such a material [24] and whether shear rigidity would

play an important role in the cloak [25].

In developing acoustic cloaks of the pentamode type an important first step is de-

veloping an elastic based material that has the same acoustic response as water. To do

this micro-structured materials termed Metal Water are proposed and analyzed. The

designed material will be impedance matched to the exterior fluid which will couple the

two mediums as to not produce reflections when an acoustic wave is incident upon the

device. Metal Water can be thought as being the very first layer, coupling wave energy
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from an acoustic medium to an elastic. In order to develop Metal Water static homog-

enization theory and dispersion curve analysis is utilized. The results described here

are two and three dimensional structures capable of mimicking the acoustic properties

of water.

1.1 Outline of the Thesis

The thesis begins with a study of elastodynamics in chapter 2 where acoustic and elastic

waves are reviewed. Material symmetries are then discussed as it becomes important

to understand what components of the elasticity tensor should be considered when de-

signing structures with certain reflection planes. The chapter ends with a review of

the Christoffel equation which computes the group velocities for longitudinal and shear

waves in elastic media. In chapter 3 the global matrix method for scattering from a

layered elastic medium is developed, where the medium can be at most described by

elasticity with transverse isotropy. This method requires rather large matrices to be

inverted, especially in the application to acoustic cloaking theory where material prop-

erties of the cloak vary as a function of the radius. This is resolved by the integration

method reviewed and developed in chapter 4 where the Stroh formalism is used in con-

junction with the matricant and impedance matrices offering a stable solution scheme.

The method is able to quickly solve for a large number of layers with general anisotropy.

This is an important tool as it is used in chapter 5 where acoustic cloaking theory is

reviewed and examples are considered. It is shown that pentamode elasticity is required

for devices created using transformation acoustics theory. This special type of elasticity

only allows for longitudinal waves to propagate as shear wave speeds are zero in such

a medium. However, it is found that the cloaking medium can tolerate some level of

shear wave presence, shown by example. This is an important result as it means elastic

structures can be developed and used with this theory. Static homogenization methods

are reviewed in chapter 6 where elasticity components of periodic media can be found

by both analytical and finite element means. In chapter 7, Bloch-Floquet analysis is

extensively reviewed using several different methods with new results in the application

of Euler-Bernoulli beams. This offers dispersion curve analysis in which group velocities
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can be found and static elastic moduli can be backed out and compared against other

methods. Lastly, in chapters 8 and 9 Metal Water designs are considered and analyzed

in two and three dimensions. The thesis ends with chapter 10 where the summary of

results, original contributions and future work to be considered are discussed.
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Chapter 2

Brief review of elastodynamics

The method of producing metamaterial devices used in this thesis consists of creating

periodic lattice type structures with desired elastic and density properties. These struc-

tures are developed later in chapters 8 and 9 where the goal is to produce a material

with water like behavior, in an acoustic sense. In order to reach this goal we start with a

review of elastodynamics. Sections 2.1 and 2.2 go over the general equations of motion

for acoustic and elastic media. This will be helpful in chapters 3 and 4 where scattering

solutions of elastic cylindrical media are sought. Then in section 2.2.1 we review what

elements of the elasticity tensor must be considered due to material symmetries as well

as determining group velocities of longitudinal and shear waves from the density and

elastic moduli properties of the material. This is helpful in the understanding of how a

solid medium can be used to approximate an acoustic one by taking shear wave speeds

to zero. It can also be used to check the numeric results of homogenization methods,

reviewed in chapters 6 and 7, that seek to find elastic properties of lattice structures

based on the analysis of a unit cell.

2.1 Acoustic theory

Before entering the realm of elastic materials we briefly describe waves in acoustic

media. The pressure of an incident wave is defined by

Pinc = P0e
i(k·x−ωt), (2.1)

where P0 is the amplitude, k is the wave vector and ω is the angular frequency. The

wave vector has the property

k = |k| =
√
k2x + k2y + k2z = 2π/λ, (2.2)
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where λ is the wavelength. Considering two dimensional problems in the x − z plane,

such that the y component of k · x vanishes, we have

Pinc = P0e
i(kxx+kzz−ωt). (2.3)

Next we wish to convert to cylindrical coordinates, (r, θ, z), and represent the incident

wave as a series involving Bessel functions for later use in a detailed solution with

acoustic-elastic structure interaction, discussed in chapters 3 and 4. In cylindrical

coordinates kx = k cosα and kz = k sinα, where α is the angle between the wave

vector, k, and the x axis. Finally we will make use of the identity

eiz cos θ =

∞∑
n=−∞

inJn(z)e
inθ =

∞∑
n=0

ϵni
nJn(z) cosnθ, (2.4)

where Jn(z) is the Bessel function of the first kind, ϵn = 1 for n = 0 and ϵn = 2 for

n > 0 [26]. The incident pressure wave, equation (2.3), is rewritten using equation (2.4)

with

Pinc = P0e
i(kzz−ωt)

∞∑
n=0

ϵni
nJn(kxr) cosnθ. (2.5)

The scattered field has a different form as the incident wave will not usually fit the

boundary conditions of the outer surface of a cylinder and therefore an additional

scattered wave must be present [27]. The scattered wave must radiate outward by the

Sommerfeld radiation condition, which states that the energy radiated from sources

must scatter to infinity and energy from infinity does not radiate back to the field.

Therefore the scattered field is represented by Hankel functions of the first kind as

compared with Hankel functions of the second kind which would represent a wave

traveling inward toward the field. The scattered pressure is then

Psca = P0e
i(kzz−ωt)

∞∑
n=0

ϵni
nH(1)

n (kxr) cosnθ, r > a, (2.6)

where a is the outer radius of the cylinder. Understanding the incident and scattered

pressure fields in an acoustic medium will come into use later. Next elastodynamic

theory is reviewed.
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2.2 Elastic theory

We begin discussion of elastodynamic theory with the conservation of linear momentum,

given by

∇ · σ + ρb = ρ
∂v

∂t
, (2.7)

where σ is the symmetric Cauchy stress tensor, ρ is the density, b is the body force per

unit volume, v = ∂u/∂t is the velocity field and u is the displacement field in the body.

The constitutive relation between stress and strain is σ = C : ε, or in component form

σij = Cijklεkl, where C is the fourth order elasticity tensor having 34 = 81 components.

The strain-displacement relation is given by ε = 1
2(∇u+(∇u)T ), or in component form

εij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
. (2.8)

Later on it will be convenient to have the stain-displacement relation in cylindrical

coordinates for which

εrr =
∂ur
∂r

, εrθ =
1

2

(1
r

∂ur
∂θ

+
∂uθ
∂r

− uθ
r

)
, εrz =

1

2

(∂ur
∂z

+
∂uz
∂r

)
,

εθz =
1

2

(∂uθ
∂z

+
1

r

∂uz
∂θ

)
, εθθ =

1

r

(∂uθ
∂θ

+ ur
)
, εzz =

∂uz
∂z

.

(2.9)

Due to the symmetry of the Cauchy stress and strain tensors it is easily found that

Cijkl = Cjikl, Cijkl = Cijlk, which are known as the minor symmetries, reducing the

number of independent components from 81 to 36. We may further reduce the number

of components of the elasticity tensor by defining the strain energy density function

written as ω(ε) = 1
2ε : C : ε = 1

2Cijklεijεkl, which should remain invariant when com-

ponents ij are interchanged with kl [28]. This leads to the symmetry Cijkl = Cklij , the

major symmetries, reducing the independent components to 21. All symmetries of the

elasticity tensor have been found so far without consideration of material symmetries,

equation (2.7) can then be rewritten as

∇ · (C : ∇u) + ρb = ρ
∂2u

∂t2
. (2.10)

The above equation can be taken from the time domain to the frequency domain using

the Fourier transform, defined as

f̂(ω) = F [f(t)] =

∞∫
−∞

f(t)eiωtdt. (2.11)



8

Dropping the body force term and taking the Fourier transform of equation (2.10),

∞∫
−∞

∇ · σeiωtdt = ρ

∞∫
−∞

∂2u

∂t2
eiωtdt. (2.12)

Integrating the term on the right by parts twice gives

∞∫
−∞

∂2u

∂t2
eiωtdt = (

∂u

∂t
− iωu)eiωt

∣∣∣∣∞
−∞

−
∞∫

−∞

ω2ueiωtdt. (2.13)

Inspection of the above reveals that if the imaginary part of the frequency is greater or

equal to zero, which we will assume, only the last term survives. We have now found the

wave equation for elastodynamics, for which we can drop the hats by taking the inverse

Fourier transform, with the convention f(t) = F−1(f̂(ω)). Equation (2.10) becomes

∇ · (C : ∇u) + ω2ρu = 0. (2.14)

If the medium in question were a metamaterial with anisotropic density defined by the

density tensor ρ we find [29]

∇ · σ = −ω2ρ · u, (2.15)

where such a medium may be developed by the simple layering of fluids [19]. In the

next section we further reduce the number of independent components of the elasticity

tensor by considering material symmetries.

2.2.1 Material symmetries

Classes of anisotropic materials and the associated elasticity components are reviewed

in this section through the use of material planes of symmetry. Orthogonal transforma-

tions of the stress, strain and elasticity tensors are accomplished by using the rotation

tensor, A, with the properties AT · A = I, where AT = A−1. The components of A

for an in plane rotation in matrix form are

Ax(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 , Ay(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , Az(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ,
(2.16)
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where Ak(θ) describes the rotation θ about the k axis, for k ∈ {x, y, z}. Multiplying

all three matrices, [A] = Ax(ϕ)Ay(θ)Az(ψ) the components are

[A] =


cos θ cosϕ sinψ sin θ cosϕ− cosψ sin θ cosψ sin θ cosϕ+ sinψ sinϕ

cos θ sinϕ sinψ sin θ sinϕ+ cosψ cosϕ cosψ sin θ sinϕ− sinψ cosϕ

− sin θ sinψ cos θ cosψ cos θ

 , (2.17)

where ϕ, θ, and ψ are known as the Euler angles measured about the x, y, and z axes

respectively. Instead of using Euler angles it is sometimes easier to write the rotation

matrix in terms of three orthogonal unit vectors, these will make the basis coordinates

in the rotated system for which

[A] =


ûx v̂x ŵx

ûy v̂y ŵy

ûz v̂z ŵz

 =
[
û v̂ ŵ

]
. (2.18)

This is referred to as the direction cosines matrix where û, v̂, ŵ are orthogonal unit

vectors. Three laws regarding (2.18) are 1: the sum of the squares of the elements in

any row or column is one, 2: the sum of the products of corresponding elements in any

two rows or columns is zero, and 3: the determinant is one [30]. Next the rotation

matrices for the elasticity components utilizing Voigt notation are developed where due

to symmetry of the stress and strain tensors we define the components

ij =

⇓

α =

11 22 33 23, 32 13, 31 12, 21

⇓ ⇓ ⇓ ⇓ ⇓ ⇓

1 2 3 4 5 6

, (2.19)

such that the components of the stress and strain tensors may be rewritten in vector

form as

[σ](6x1) =



σ11

σ22

σ33

σ23

σ31

σ12


=



σ1

σ2

σ3

σ4

σ5

σ6


, [ε](6x1) =



ε11

ε22

ε33

2ε23

2ε31

2ε12


=



ε1

ε2

ε3

ε4

ε5

ε6


, (2.20)
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where the stress strain relationship is

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε1

ε2

ε3

ε4

ε5

ε6


, (2.21)

note that the elasticity matrix is fully anisotropic with 21 independent components as

explained in the beginning of section 2.2. The problem now becomes finding the six by

six rotation matrix. For a given rotation tensor A, the rotated stress tensor is given by

σ̂ = AσAT or in component form σ̂ib = AijσjmAbm. Undergoing a similar derivation

as done in [31] we find the components of the six by six rotation matrix, [Aσ](6x6), such

that [σ̂](6x1) = [Aσ](6x6)[σ](6x1). To find the first column of components of [Aσ] we have

[σ̂]3x3 =


A11 A12 A13

A21 A22 A23

A31 A32 A33



σ11 0 0

0 0 0

0 0 0



A11 A21 A31

A12 A22 A32

A13 A23 A33

 , (2.22)

expressed in components σ̂ib = Ai1Ab1σ11. Utilizing (2.20), the first column of Aσ

is, [Aσ](:, 1) = {A2
11, A

2
21, A

2
31, A21A31, A31A11, A11A21}T , we continue this process such

that,

[Aσ](:, 2) = {A2
12, A

2
22, A

2
32, A22A32, A32A12, A12A22}T , (2.23)

[Aσ](:, 3) = {A2
13, A

2
23, A

2
33, A23A33, A33A13, A13A23}T . (2.24)

Now for the off diagonal components, consider σ23 = σ32 such that

[σ̂]3x3 =


A11 A12 A13

A21 A22 A23

A31 A32 A33



0 0 0

0 0 σ23

0 σ32 0



A11 A21 A31

A12 A22 A32

A13 A23 A33

 , (2.25)
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in components σ̂ib = Ai2Ab3σ23 +Ai3Ab2σ32. Then the fourth and subsequent columns

of [Aσ] are found similarly

[Aσ](:, 4) = {2A12A13, 2A22A23, 2A32A33, A22A33 +A23A32, A32A13 +A33A12, A12A23 +A13A22}T ,

(2.26)

[Aσ](:, 5) = {2A13A11, 2A23A21, 2A33A31, A23A31 +A21A33, A33A11 +A31A13, A13A21 +A11A23}T ,

(2.27)

[Aσ](:, 6) = {2A11A12, 2A21A22, 2A31A32, A21A32 +A22A31, A31A12 +A32A11, A11A22 +A12A21}T .

(2.28)

Finally the components of Aσ are

[Aσ] =



A2
11 A2

12 A2
13 2A12A13 2A13A11 2A11A12

A2
21 A2

22 A2
23 2A22A23 2A23A21 2A21A22

A2
31 A2

32 A2
33 2A32A33 2A33A31 2A31A32

A21A31 A22A32 A23A33 A22A33 +A23A32 A23A31 +A21A33 A32A21 +A22A31

A31A11 A32A12 A33A13 A32A13 +A33A12 A33A11 +A31A13 A31A12 +A32A11

A11A21 A12A22 A13A23 A12A23 +A13A22 A13A21 +A11A23 A11A22 +A12A21


.

(2.29)

In the same fashion we find Aε where, ε̂ = AεAT and [ε̂](6×1) = [Aε](6×6)[ε](6×1)

[Aε] =



A2
11 A2

12 A2
13 A12A13 A13A11 A11A12

A2
21 A2

22 A2
23 A22A23 A23A21 A21A22

A2
31 A2

32 A2
33 A32A33 A33A31 A31A32

2A21A31 2A22A32 2A23A33 A22A33 +A23A32 A23A31 +A21A33 A32A21 +A22A31

2A31A11 2A32A12 2A33A13 A32A13 +A33A12 A33A11 +A31A13 A31A12 +A32A11

2A11A21 2A12A22 2A13A23 A12A23 +A13A22 A13A21 +A11A23 A11A22 +A12A21


.

(2.30)

Lastly a rotation matrix for the elasticity is found where the elastic equation in Voigt

notation is σI = CIJεJ where I, J take on values 1 through 6. In the rotated coordinates

σ̂I = ĈIJ ε̂J = [Aσ]IMσM = [Aσ]IMCMKεK = [Aσ]IMCMK [Aε]
−1
KJ ε̂J , (2.31)

which gives

0 = ([Aσ]IMCMK [Aε]
−1
KJ − ĈIJ)ε̂J → ĈIJ = [Aσ]IMCMK [Aε]

−1
KJ . (2.32)

In a lengthy derivation it can be shown that [Aσ]KJ = [Aε]
−1
JK , meaning the rotated

elasticity components take on the form [31]

ĈIJ = [Aσ]IMCMK [Aσ]JK ⇔ Ĉ = AσCAT
σ . (2.33)
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Material planes of symmetry

An orthotropic material has three orthogonal symmetry planes, starting with one plane

of symmetry we will show how the number of independent elements of the elasticity

matrix is reduced with each additional plane of symmetry. Starting by taking equation

(2.18) with the transformed system such that, ûx = ux, v̂y = vy, ŵz = −wz, or in

matrix form

[A] =


1 0 0

0 1 0

0 0 −1

 . (2.34)

Inserting into equation (2.29) we have

[Aσ] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1


, (2.35)

plugging this into equation (2.33) and requiring that the transformed elasticity matrix

is equivalent to the original, such that a material plane of symmetry exists, we obtain,

C14 = −C14, C15 = −C15, C24 = −C24, C25 = −C25, C34 = −C34, C35 = −C35,

C46 = −C46, C56 = −C56, which imply these terms must be zero, reducing the number

of independent terms from 21 to 13. This material is defined as monoclinic as there is

a single symmetry plane through the origin and it’s elasticity components are

[C]Mono =



C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66


. (2.36)
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We add an additional plane of symmetry with ûx = ux, v̂y = −vy, ŵz = wz, or in

matrix form

[A] =


1 0 0

0 −1 0

0 0 1

 , (2.37)

this means the components of the elasticity transformation matrix are

[Aσ] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


. (2.38)

Continuing in the same fashion yields: C16 = C26 = C36 = C45 = 0, reducing the

number of independent components to nine. By inspection if we were to consider a

rotation such that ûx = −ux, v̂y = vy, ŵz = wz, we would find no further elements

that vanish, this is due to the form of equation (2.29), which means reflections about

two orthogonal symmetry planes are not independent of the third plane. The elasticity

components of an orthotropic material are then

[C]Ortho =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (2.39)

This is an important result as later on when developing materials with three orthogonal

planes of symmetry in three dimensions or two planes in two dimensions these will be

the elasticity components to consider. Transverse isotropy is considered next, which is

described as having a transverse plane in which material properties are the same in all

directions. Taking equation (2.16) where we wish to consider any rotation about the
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x3 axis as invariant yields

[Aσ] =



cos2 θ sin2 θ 0 0 0 −2 cos θ sin θ

sin2 θ cos2 θ 0 0 0 2 cos θ sin θ

0 0 1 0 0 0

0 0 0 cos θ sin θ 0

0 0 0 − sin θ cos θ 0

cos θ sin θ − cos θ sin θ 0 0 0 cos2 θ − sin2 θ


, (2.40)

where θ is taken about the x3 axis. Using equation (2.33) we find the elasticity matrix

takes the form

[C]TI =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 (C11 − C12)/2


. (2.41)

The components of the transformed elasticity matrix are computed using the software

package Maple. With a bit of algebra the above is attained where we have reduced the

number of independent components to five. Using equation (2.40) and asking Maple to

solve the system such that [C] = [Ĉ], for any θ yields

[C]TI =



C22 C22 − 2C66 C23 0 0 0

C22 − 2C66 C22 C23 0 0 0

C23 C23 C33 0 0 0

0 0 0 C55 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


. (2.42)

The above system has five independent components, this is seen if we introduce

C12 = C22 − 2C66 or C66 = C22−C12
2 , and we transform this into equation (2.41) by

redefining the names of the independent components. This review was done as it is

important to understand what elasticity components should be considered when devel-

oping structured materials with unique planes of symmetry. For more information on
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different types of symmetries such as: trigonal, tetragonal, cubic, isotropic and so on,

reference [31] is an excellent source.

2.2.2 Group velocities

Next we develop an understanding of how anisotropic material properties of the con-

stitutive elasticity tensor affect the group velocities of longitudinal and shear waves. A

plane harmonic wave traveling along the direction of the wave vector k with amplitude

vector u0 takes the form

u = u0e
i(k·x−ωt), (2.43)

where the wave vector can be expressed as k = ω
c n, where c is the group velocity. It

is interesting to take a moment and describe how u0 and n are related. For instance if

u0 × n = 0, the wave is a linearly polarized longitudinal wave. If u0 · n = 0, the wave

is a linearly polarized transverse wave [32]. The first term of the equation of motion

in Cartesian coordinates is obtained by a substitution of equation (2.43) into equation

(2.14),

∇u =
∂

∂xi
u0je

i(ω
c
nkxk−ωt)eiej =

iω

c
niu0je

i(ω
c
nkxk−ωt)eiej =

iω

c
nu,

∇ · (C : ∇u) =
∂

∂xm
· ( iω
c
Cijklnku0le

i(ω
c
nzxz−ωt)eiej)

=
∂

∂xi
(
iω

c
Cijklnku0le

i(ω
c
nzxz−ωt))ej

= −ω
2

c2
Cijklnku0lnie

i(ω
c
nzxz−ωt)ej = −ω

2

c2
n ·C · n · u,

(2.44)

where the last relation comes from the symmetries of the elasticity tensor. Plugging

the above into equation (2.14) we find

(n ·C · n− ρc2I) · u = 0, (2.45)

where n · C · n is known as the acoustic tensor and I is the diagonal identity tensor.

The above equation has nontrivial solutions so long as

det(n ·C · n− ρc2I) = 0, (2.46)

for which in three dimensions there will be three solutions for the group velocity, one

longitudinal and two transverse speeds. Following the steps of [32] we find relations for
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the group velocities for the most general anisotropic material. The acoustic tensor is

defined as Γ(n) = n ·C ·n or in components Γjk = Cijklninl. Then for fully anisotropic

media

Γ11 = C11n
2
1 + C66n

2
2 + C55n

2
3 + 2C16n1n2 + 2C15n1n3 + 2C56n2n3,

Γ12 = C16n
2
1 + C26n

2
2 + C45n

2
3 + n1n2(C12 + C66) + n1n3(C14 + C56) + n2n3(C46 + C25),

Γ13 = C15n
2
1 + C64n

2
2 + C53n

2
3 + n1n2(C14 + C65) + n1n3(C13 + C55) + n2n3(C63 + C54),

Γ22 = C66n
2
1 + C22n

2
2 + C44n

2
3 + 2C26n1n2 + 2C46n1n3 + 2C24n2n3,

Γ23 = C65n
2
1 + C24n

2
2 + C34n

2
3 + n1n2(C46 + C25) + n1n3(C36 + C45) + n2n3(C23 + C44),

Γ33 = C55n
2
1 + C44n

2
2 + C33n

2
3 + 2C45n1n2 + 2C35n1n3 + 2C34n2n3,

(2.47)

note Γ = ΓT . Solutions of equation (2.46) for general anisotropy are much too long to

reproduce here and so we leave with an equation to be solved

0 = (Γ11 − ρc2)(Γ22 − ρc2)(Γ33 − ρc2) + Γ12Γ23Γ13 + Γ13Γ12Γ23

+ Γ2
23(ρc

2 + Γ11) + Γ2
12(ρc

2 + Γ33) + Γ2
13(ρc

2 + Γ22).
(2.48)

This equation can be used to check the results we find later on where material group

velocities are found from dispersion curves for various metamaterials with proposed

substructure.

Transverse isotropy

Plugging the constitutive relations of equation (2.41) into equation (2.47) the compo-

nents of the acoustic tensor are

Γ11 = C11n
2
1 +

C11 − C12

2
n22 + C44n

2
3,

Γ12 = (C11 +
C12

2
)n1n2,

Γ13 = (C13 + C44)n1n3,

Γ22 =
C11 − C12

2
n21 + C11n

2
2 + C44n

2
3,

Γ23 = (C13 + C44)n2n3,

Γ33 = C44n
2
1 + C44n

2
2 + C33n

2
3.

(2.49)

Recalling our derivation of transversely isotropic media, we took rotations about the

x3 axis and let any rotation θ about this axis to be symmetric such that material
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properties in the x1 − x2 plane are isotropic. Following the reasoning in [31], we start

by considering propagation in the x1 − x2 plane, such that n3 = 0. Since this plane is

isotropic we consider propagation in any direction and to simplify the analysis we let

[n] = [1, 0, 0]T , inserting into equation (2.45) we have
C11 − ρc2 0 0

0 C11−C12
2 − ρc2 0

0 0 C44



u1

u2

u3

 =


0

0

0

 . (2.50)

The longitudinal velocity also known as the P wave velocity is found by allowing [u] =

[1, 0, 0]T , plugging into equation (2.50) immediately yields C11 − ρc2P = 0, or

cP = ±

√
C11

ρ
. (2.51)

Following the same procedure the in plane shear wave velocity is found by letting

[u] = [0, 1, 0]T ,

cSH = ±

√
C11 − C12

2ρ
. (2.52)

Finally the out of plane shear wave velocity is then found by taking [u] = [0, 0, 1]T ,

cSV = ±

√
C44

ρ
. (2.53)

Cubic material

By making use of the work in [33], the fourth order elasticity tensor for a cubic material

can be expressed in terms of three moduli. In terms of the compliance tensor, S, where

C = S−1, the elasticity of the material is defined by

S±1 = (3κ)∓1J+ (2µ1)
∓1(I−D) + (2µ2)

∓1(D− J), (2.54)

where I is the fourth order identity tensor with components Iijkl =
1
2(δikδjl + δilδjk),

Jijkl =
1
3δijδkl, and

Dijkl = δi1δj1δk1δl1 + δi2δj2δk2δl2 + δi3δj3δk3δl3, (2.55)

where δij is Kronecker’s delta [34]. The acoustic tensor in component form is then

Γjk =κnjnk + 2µ1

[
1

2
(nknj + niniδjk)− (n21δj1δk1 + n22δj2δk2 + n23δj3δk3)

]
+ 2µ2

[
n21δj1δk1 + n22δj2δk2 + n23δj3δk3 −

1

3
njnk

]
,

(2.56)
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where the individual components written out are

Γ11 = κn21 + µ1(n
2
2 + n23) +

4

3
µ2n

2
1,

Γ22 = κn22 + µ1(n
2
1 + n23) +

4

3
µ2n

2
2,

Γ33 = κn23 + µ1(n
2
1 + n22) +

4

3
µ2n

2
3,

Γ12 = n1n2(κ+ µ1 −
2

3
µ2),

Γ13 = n1n3(κ+ µ1 −
2

3
µ2),

Γ23 = n2n3(κ+ µ1 −
2

3
µ2).

(2.57)

Solving for the Christoffel equation, det(Γ(n) − ρc2), the eigenvalues of Γ are equal

to ρc2 for which there will be two shear speeds and one longitudinal. Three unique

directions are chosen that will come into use later. We find

ρc2


1

0

0

 =

{
κ+

4

3
µ2, µ1, µ1

}
,

ρc2


1/

√
2

1/
√
2

0

 =

{
1

3
(3κ+ 3µ1 + µ2), µ1, µ2

}
,

ρc2


1/

√
3

1/
√
3

1/
√
3

 =

{
1

3
(3κ+ 4µ1),

1

3
(µ1 + 2µ2),

1

3
(µ1 + 2µ2)

}
,

(2.58)

where in brackets is the unit direction n in consideration. This analysis was completed

here as these directions have a specific meaning when it comes to dispersion curves

with cubic symmetries discussed towards the end of chapter 9. This review of material

symmetries and group velocities was done due to it’s importance when designing lattice

structured metamaterials which will be discussed later in the thesis. Next attention is

turned to acoustic scattering solutions from cylindrical elastic media.
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Chapter 3

Elastic scattering solutions

A goal of this thesis is to produce elastic based metamaterials with application to

acoustic cloaking. The problem is defined by reducing acoustic scattering of a cylin-

drical elastic scatterer to zero. To understand this phenomenon we start by deriving

scattering solutions of a general multi-layered elastic cylinder in an acoustic background

medium. Cloaking theory is reviewed in chapter 5 where the elastic moduli and density

properties are found to be functions of the radius of the cloak. We approximate con-

tinuous properties by the discrete layering of materials. The approximation is valid if

the layer thickness is small compared to the global dimensions of the cloak. Scattering

solutions are developed for isotropic cylinders and fluid filled cylinders in sections 3.1

and 3.2, respectively. Potential functions are used to solve for isotropic or at most

transversely isotropic cylinders. The problem, shown in figure 3.1, is of an incident

wave interacting with a cylindrical layering of fluids and solids in a background exter-

nal fluid. As similarly done in [35] and [36] we begin with scalar and vector potentials

Figure 3.1: Problem setup of an incident wave in an external fluid interacting with
cylindrical layers of fluids and solids.
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that solve the equilibrium equations in cylindrical coordinates and generalize the equa-

tions in matrix form to solve for the scattering coefficients. This leads to the global

matrix method solution, reviewed in section 3.3.

3.1 Isotropic cylinders

The displacement in the cylindrical solid is written in terms of the scalar potential, φ,

and vector potential, ψez, with

u = (∇φ+∇× ψez)e
−iωt, (3.1)

where φ represents longitudinal motion and ψez represents transverse, we omit the time

dependence eiωt henceforth. The potentials are

φ =
1

kL

∞∑
n=0

A0
nR

l
0nz

l
n(kLr) cosnθ, ψ =

1

kT

∞∑
n=0

nA0
nT

l
0nz

l
n(kT r) sinnθ, (3.2)

where l = 1, 3, and A0
n = ϵni

n [36]. For l = 1: z1n(kLr) = Jn(kLr), which is the

Bessel function of the first kind representing incident waves, and for l = 3: z3n(kLr) =

Hn(kLr), which is the Hankel function of the first kind representing scattered waves.

kL and kT are the longitudinal and transverse wave numbers, respectively. Rlon are

the unknown longitudinal scattering coefficients and T l0n are the unknown transverse

scattering coefficients. In cylindrical coordinates the gradient and curl operators take

the form

∇φ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ,

∇× ψez =
1

r

∂ψ

∂θ
er −

∂ψ

∂r
eθ.

(3.3)

Using Equations (3.1) and (3.2) the displacement components are found with

ur =

∞∑
n=0

A0
n cosnθ

[
Rl0nz

l′
n(kLr) +

n2

kT r
T l0nz

l
n(kT r)

]
,

uθ =

∞∑
n=0

(n−1A0
n

∂

∂θ
cosnθ)

[ n

kLr
Rl0nz

l
n(kLr) + nT l0nz

l′
n(kT r)

]
.

(3.4)

In order to simplify the solution equation (3.4) is rewritten in matrix form. We define

the vectors P0n and B0n as

P0n = A0
n cosnθer, B0n = ηnA

0
n

∂

∂θ
cosnθeθ, (3.5)
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where ηn = n−1. The unknown scattering coefficients are written in vector form as

wl
0n =

Rl0n
T l0n

 . (3.6)

Defining the 2×2 matrix

Ul
n =

 zl
′
n(kLr) (η2nkT r)

−1zln(kT r)

(ηnkLr)
−1zln(kLr) η−1

n zl
′
n(kT r)

 , (3.7)

the displacement is then written as

u =
(
P0n B0n

)
2×2

(
U1
n U3

n

)
2×4

w1
0n

w3
0n


4×1

, (3.8)

where u =
[
ur uθ

]T
. The strains are found by combining the displacement compo-

nents of equation (3.4) into the strain definition of equation (2.9), this yields

εrr =

∞∑
n=0

A0
n cosnθ

[
Rl0nkLz

l′′
n (kLr) + T l0n(

n2

r
zl

′
n(kT r)−

n2

kT r2
zln(kT r))

]
,

εθθ =
1

r

∞∑
n=0

A0
n cosnθ

[
Rl0n

[
zl

′
n(kLr)−

n2

kLr
zln(kLr)

]
+

T l0n
[ n2
kT r

zln(kT r)− n2zl
′
n(kT r)

]]
,

εrθ =
1

2

∞∑
n=0

(n−1A0
n

∂

∂θ
cosnθ)

[
R0n

[2n
r
zl

′
n(kLr)−

2n

kLr2
zln(kLr)

]
+

T0n
[
(
2n3

kT r2
− nkT )z

l
n(kT r)−

2n

r
zl

′
n(kT r)

]]
.

(3.9)

The stress strain constitutive relations for an isotropic medium are

σrr

σθθ

σzz

σθz

σrz

σrθ


=



2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





εrr

εθθ

εzz

2εθz

2εrz

2εrθ


. (3.10)

We can write the above relations using the longitudinal and transverse wavenumbers

where

kT =
ω

cT
=

ω√
µ/ρ

, kL =
ω

cL
=

ω√
(λ+ 2µ)/ρ

, (3.11)
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and cT , cL are the transverse and longitudinal group velocities as found from the

Christoffel equation from the previous chapter. The stress strain relation is then

σrr

σθθ

σzz

σθz

σrz

σrθ


= µ



(kT /kL)
2 (kT /kL)

2 − 2 (kT /kL)
2 − 2 0 0 0

(kT /kL)
2 − 2 (kT /kL)

2 (kT /kL)
2 − 2 0 0 0

(kT /kL)
2 − 2 (kT /kL)

2 − 2 (kT /kL)
2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





εrr

εθθ

εzz

2εθz

2εrz

2εrθ


. (3.12)

A substitution of the strain relations from equations (3.9) into the constitutive relations

of equation (3.12) yields the stresses σrr and σrθ,

σrr = µ

∞∑
n=0

A0
n cosnθ

[
Rl0n

[
2kLz

l′′
n (kLr) + (2kL −

k2T
kL

)zln(kLr)
]
+

T l0n
[2n2
r
zl

′
n(kT r)−

2n2

kT r2
zln(kT r)

]]
,

σrθ = µ
∞∑
n=0

(n−1A0
n

∂

∂θ
cosnθ)

[
R0n

[2n
r
zl

′
n(kLr)−

2n

kLr2
zln(kLr)

]
+

T0n
[
n[

2n2

kT r2
− kT ]z

l
n(kT r)− 2

n

r
zl

′
n(kT r)

]]
.

(3.13)

These equations are converted to the matrix form with

t =
(
P0n B0n

)
2×2

(
T1
n T3

n

)
2×4

w1
0n

w3
0n


4×1

, (3.14)

where t =
[
σrr σrθ

]T
and

Tl
n = µ×kL(2zl′′n (kLr)− (

k2T
k2L

− 2)zln(kLr)) 2(η2nr)
−1(zl

′
n(kT r)−

zln(kT r)
kT r

)

2(ηnr)
−1(zl

′
n(kLr)−

zln(kLr)
kLr

) (ηnr)
−1((2n2 − (kT r)

2) z
l
n(kT r)
kT r

− 2zl
′
n(kT r))

 .

(3.15)

The global matrix method can be developed using this formulation of displacement and

stress vectors for cylindrical layers of isotropic materials. It will be continuity of radial

displacement ur and traction components σrr and σrθ that will allow for this. Next

these vectors are found for layers of acoustic fluids.
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3.2 Acoustic fluids

We review section 2.1 from the previous chapter in order to solve for either fluid filled

cylindrical layers or the background fluid in matrix form. The pressure in an acoustic

fluid is given by

P =

∞∑
n=0

(A0
n cosnθ)R

l
0nκkz

l
n(kr), (3.16)

where κ = ρc2, is the bulk modulus, k = ω/c, is the wave number, and in cylindrical co-

ordinates it is convenient to note σrr = −P . Next we take advantage of the momentum

balance equation in order to find the displacement field in the fluid. The momentum

balance equation gives

ρ
∂v

∂t
+∇P = −ρω2u+∇P = 0, (3.17)

where the gradient of P in cylindrical coordinates is

∇P =
∂P

∂r
er +

1

r

∂P

∂θ
eθ. (3.18)

Using equation (3.16) and looking at the radial component of the gradient we find

∂P

∂r
=

∞∑
n=0

A0
n cosnθR

l
0nκk

2zl
′
n(kr) = ρω2

∞∑
n=0

A0
n cosnθR

l
0nz

l′
n(kr), (3.19)

comparing with equation (3.17) the radial displacement is

ur =
∞∑
n=0

A0
n cosnθR

l
0nz

l′
n(kr). (3.20)

Undergoing the same analysis the angular component of the displacement is found by

analyzing the second term of equation (3.18), where

1

r

∂P

∂θ
=

1

r

∞∑
n=0

(n−1A0
n

∂

∂θ
cosnθ)Rl0nκkz

l
n(kr), (3.21)

this implies

uθ =
∞∑
n=0

(n−1A0
n

∂

∂θ
cosnθ)Rl0n

n−1

rk
zln(kr). (3.22)

Comparing to the previous analysis for elastic cylinders there is no need to change

how the displacements are defined in equation (3.8). To change from solid to fluid

displacement or traction we take shear moduli terms as zero and replace kL by k.
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3.3 Global matrix method

The previous sections worked to form the stress and displacements components of fluid

or elastic cylinders in matrix form. Next we construct these elements into a global

matrix system to solve for the scattering problem of a plane wave incident upon a

system of concentrically layered fluid or elastic cylinders.

3.3.1 Acoustic scattering from a solid elastic cylinder

Starting with the simplest case of a plane wave incident upon a single elastic cylinder

we use continuity of displacement and traction to create a global matrix to solve this

scattering problem. The system is defined by

solid, ρ1, λ1, µ1, 0 ≤ r < a,

fluid, ρ0, κ0 = ρ0c
2
0, a ≤ r <∞.

(3.23)

In the outer fluid the displacement is given by

u(r) =
(
P0n B0n

)a1n(k0r) a3n(k0r)

c1n(k0r) c3n(k0r)

R1,0
0n

R3,0
0n

 . (3.24)

Boundary conditions for this problem require continuity of radial displacement, ur, and

traction components σrr, σrθ. Equation (3.24) has the radial displacement component

as

ur = A0
n cosnθ

(
a1n(k0r) a3n(k0r)

)R1,0
0n

R3,0
0n

 , (3.25)

where

a1n(k0r) = J
′
n(k0r), a3n(k0r) = H(1)′

n (k0r). (3.26)

The stresses σrr and σrθ in the outer fluid are

σrr = A0
n cosnθ

(
ᾱ1
n(r, k0, κ0) ᾱ3

n(r, k0, κ0)

)R1,0
0n

R3,0
0n

 , σrθ = 0, (3.27)

where

ᾱ1
n(r, k0, κ0) = −κ0k0Jn(k0r), ᾱ3

n(k0r) = −κ0k0H(1)
n (k0r). (3.28)
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In this example the radius of the solid goes to zero, this means the scalar potentials

must take the form

φ =
1

kL

∞∑
n=0

A0
n cosnθR

1
0nJn(kLr),

ψ =
1

kT

∞∑
n=0

nA0
n sinnθT

1
0nJn(kT r).

(3.29)

The displacement in the solid is given by

ur = A0
n cosnθ

(
a1n(kLr) b1n(kT r)

)R1,1
0n

T 1,1
0n

 , (3.30)

where

a1n(kLr) = J
′
n(kLr), b1n(kT r) =

n2

kT r
Jn(kT r). (3.31)

The stresses are then given by

σrr = A0
n cosnθ

(
α1
n(kLr) β1n(kT r)

)R1,1
0n

T 1,1
0n

 ,

σrθ = −A0
n sinnθ

(
γ1n(kLr) δ1n(kT r)

)R1,1
0n

T 1,1
0n

 ,

(3.32)

where

α1
n(kLr) = µ1kL(2J

′′
n (kLr)− (

k2T
k2L

− 2)Jn(kLr)),

β1n(kT r) = µ1
2n2

r
(J

′
n(kT r)−

Jn(kT r)

kT r
),

(3.33)

and

γ1n(kLr) = µ1
2n

r
(J

′
n(kLr)−

Jn(kLr)

kLr
),

δ1n(kT r) = µ1
n

r
((2n2 − (kT r)

2)
J
(
nkT r)

kT r
− 2J

′
n(kT r)).

(3.34)

The system that results when boundary conditions for displacements and stresses are

applied is given by
a3n(k0a) a1n(kLa) b1n(kTa)

ᾱ3
n(a, k0, κ0) α1

n(kLa) β1n(kTa)

0 γ1n(kLa) δ1n(kTa)



−R3,0

0n

R1,1
0n

T 1,1
0n

 = R1,0
0n


a1n(k0a)

ᾱ1
n(a, k0, κ0)

0

 . (3.35)

This is the global matrix to be solved for the simplest case of one elastic cylinder in an

acoustic background medium.
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3.3.2 Acoustic scattering from a fluid filled elastic cylinder

The system properties for this problem are

fluid, ρin, κin = ρinc
2
in, 0 ≤ r < b,

solid, ρ1, λ1, µ1, b ≤ r < a,

fluid, ρ0, κ0 = ρ0c
2
0, a ≤ r <∞.

(3.36)

We must keep in mind that the solid layer does not contain r = 0 which means both

Bessel functions, Jn(X) and Yn(X), are present there. In the outer fluid the displace-

ment is given by

u(r) =
(
P0n B0n

)a1n(k0r) a3n(k0r)

c1n(k0r) c3n(k0r)

R1,0
0n

R3,0
0n

 . (3.37)

We will only be interested in continuity of ur and tractions σrr and σrθ. Equation (3.37)

states that

ur = A0
n cosnθ

(
a1n(k0r) a3n(k0r)

)R1,0
0n

R3,0
0n

 , (3.38)

where

a1n(k0r) = J
′
n(k0r), a3n(k0r) = H(1)′

n (k0r). (3.39)

Next the stresses, σrr and σrθ are given by

σrr = A0
n cosnθ

(
ᾱ1
n(r, k0, κ0) ᾱ3

n(r, k0, κ0)

)R1,0
0n

R3,0
0n

 , σrθ = 0, (3.40)

where

ᾱ1
n(r, k0, κ0) = −κ0k0Jn(k0r), ᾱ3

n(k0r) = −κ0k0H(1)
n (k0r). (3.41)

In the solid, so long as the radius does not go to zero, that is the solid is a shell, then

Bessel functions Jn(X) and Yn(X) solutions are possible. For this situation the scalar

potentials are given by

φ =
1

kL

∞∑
n=0

A0
n cosnθ(R

1
0nJn(kLr) +R2

0nYn(kLr)),

ψ =
1

kT

∞∑
n=0

nA0
n sinnθ(T

1
0nJn(kT r) + T 2

0nYn(kT r)).

(3.42)
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The radial displacement in the solid is given by

ur = A0
n cosnθ

(
a1n(kLr) b1n(kT r) a2n(kLr) b2n(kT r)

)


R1,1
0n

T 1,1
0n

R2,1
0n

T 2,1
0n


, (3.43)

where

a1n(kLr) = J
′
n(kLr), b1n(kT r) =

n2

kT r
Jn(kT r),

a2n(kLr) = Y
′
n(kLr), b2n(kT r) =

n2

kT r
Yn(kT r).

(3.44)

The stresses are then

σrr = A0
n cosnθ

(
α1
n(kLr) β1n(kT r) α2

n(kLr) β2n(kT r)

)


R1,1
0n

T 1,1
0n

R2,1
0n

T 2,1
0n


,

σrθ = −A0
n sinnθ

(
γ1n(kLr) δ1n(kT r) γ2n(kLr) δ2n(kT r)

)


R1,1
0n

T 1,1
0n

R2,1
0n

T 2,1
0n


,

(3.45)

where

α1
n(kLr) = µ1kL(2J

′′
n (kLr)− (

k2T
k2L

− 2)Jn(kLr)),

β1n(kT r) = µ1
2n2

r
(J

′
n(kT r)−

Jn(kT r)

kT r
),

α2
n(kLr) = µ1kL(2Y

′′
n (kLr)− (

k2T
k2L

− 2)Y (
nkLr)),

β2n(kT r) = µ1
2n2

r
(Y

′
n(kT r)−

Yn(kT r)

kT r
),

(3.46)

and

γ1n(kLr) = µ1
2n

r
(J

′
n(kLr)−

Jn(kLr)

kLr
),

δ1n(kT r) = µ1
n

r
((2n2 − (kT r)

2)
J
(
nkT r)

kT r
− 2J

′
n(kT r)),

γ2n(kLr) = µ1
2n

r
(Y

′
n(kLr)−

Yn(kLr)

kLr
),

δ2n(kT r) = µ1
n

r
((2n2 − (kT r)

2)
Y

(
nkT r)

kT r
− 2Y

′
n(kT r)).

(3.47)
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In the inner fluid the displacement is given by

ur = A0
n cosnθ

(
a1n(kinr)

)(
R1,in

0n

)
, (3.48)

where

a1n(kinr) = J
′
n(kinr). (3.49)

The stresses are

σrr = A0
n cosnθ

(
ᾱ1
n(r, kin, κin)

)(
R1,in

0n

)
, σrθ = 0, (3.50)

where

ᾱ1
n(r, kin, κin) = −κinkinJn(k0r). (3.51)

There are six unknown coefficients in this problem, which are

R3,0
0n , R

1,1
0n , T

1,1
0n , R

2,1
0n , T

2,1
0n , R

1,in
0n , (3.52)

note that we are taking R1,0
0n as a known amplitude of incoming waves. The six boundary

conditions needed to solve this system are continuity of traction components σrθ, σrr,

and displacement ur at each boundary. At n = 0 the system has a singularity which

is resolved by multiplying the σrθ equations by r
n . The final six by six system to be

solved is

a3n(k0a) a1n(kLa) b1n(kTa) a2n(kLa) b2n(kTa) 0

ᾱ3
n(a, k0, κ0) α1

n(kLa) β1n(kTa) α2
n(kLa) β2n(kTa) 0

0 a
nγ

1
n(kLa)

a
nδ

1
n(kTa)

a
nγ

2
n(kLa)

a
nδ

2
n(kTa) 0

0 a1n(kLb) b1n(kT b) a2n(kLb) b2n(kT b) a1n(kinb)

0 α1
n(kLb) β1n(kT b) α2

n(kLb) β2n(kT b) ᾱ1
n(b, kin, κin)

0 b
nγ

1
n(kLb)

b
nδ

1
n(kT b)

b
nγ

2
n(kLb)

b
nδ

2
n(kT b) 0



×



−R3,0
0n

R1,1
0n

T 1,1
0n

R2,1
0n

T 2,1
0n

−R1,in
0n


= R1,0

0n



a1n(k0a)

ᾱ1
n(a, k0, κ0)

0

0

0

0


.

(3.53)
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Clearly as more layers are added to the system the matrix to be solved grows quickly,

which is a general pitfall of the global matrix method especially for larger systems.

3.3.3 Acoustic scattering from a cladded rod

In the example studied here we see how replacing the inner fluid of the previous problem

with an elastic medium grows the matrix to be solved. The system setup is

solid, ρ2, λ2, µ2, 0 ≤ r < b,

solid, ρ1, λ1, µ1, b ≤ r < a,

fluid, ρ0, κ0 = ρ0c
2
0, a ≤ r <∞.

(3.54)

Again in the background outer fluid the displacement is given by

u(r) =
(
P0n B0n

)a1n(k0r) a3n(k0r)

c1n(k0r) c3n(k0r)

R1,0
0n

R3,0
0n

 . (3.55)

For fluid-solid interfaces we are only interested in continuity of displacement ur and

traction components σrr and σrθ. The radial displacement for the background medium

is

ur = A0
n cosnθ

(
a1n(k0r) a3n(k0r)

)R1,0
0n

R3,0
0n

 , (3.56)

where

a1n(k0r) = J
′
n(k0r), a3n(k0r) = H(1)′

n (k0r). (3.57)

Next the stresses, σrr, and σrθ are

σrr = A0
n cosnθ

(
ᾱ1
n(r, k0, κ0) ᾱ3

n(r, k0, κ0)

)R1,0
0n

R3,0
0n

 , σrθ = 0, (3.58)

where

ᾱ1
n(r, k0, κ0) = −κ0k0Jn(k0r), ᾱ3

n(k0r) = −κ0k0H(1)
n (k0r). (3.59)

Solid annulus (b < r < a)

Since we have two elastic media in contact, we will now be concerned about the conti-

nuity of uθ displacements between solid-solid interfaces. As in the previous section for
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b < r < a where the radius of the solid doesn’t go to zero the scalar potentials must

take the form

φ =
1

kL

∞∑
n=0

A0
n cosnθ(R

1,1
0n Jn(kL1r) +R2,1

0n Yn(kL1r)),

ψ =
1

kT

∞∑
n=0

nA0
n sinnθ(T

1,1
0n Jn(kT1r) + T 2,1

0n Yn(kT1r)).

(3.60)

The displacement components in the solid are given by

ur = A0
n cosnθ

(
a1n(kL1r) b1n(kT1r) a2n(kL1r) b2n(kT1r)

)


R1,1
0n

T 1,1
0n

R2,1
0n

T 2,1
0n


,

uθ = −A0
n sinnθ

(
c1n(kL1r) d1n(kT1r) c2n(kL1r) d2n(kT1r)

)


R1,1
0n

T 1,1
0n

R2,1
0n

T 2,1
0n


,

(3.61)

where

a1n(kL1r) = J
′
n(kL1r), b1n(kT1r) =

n2

kT1r
Jn(kT1r),

a2n(kL1r) = Y
′
n(kL1r), b2n(kT1r) =

n2

kT1r
Yn(kT1r),

c1n(kL1r) =
n

kL1r
Jn(kL1r), d1n(kT1r) = nJ

′
n(kT1r),

c2n(kL1r) =
n

kL1r
Yn(kL1r), d2n(kT1r) = nY

′
n(kT1r).

(3.62)

The stresses are then

σrr = A0
n cosnθ

(
α1
n(kL1r) β1n(kT1r) α2

n(kL1r) β2n(kT1r)

)


R1,1
0n

T 1,1
0n

R2,1
0n

T 2,1
0n


,

σrθ = −A0
n sinnθ

(
γ1n(kL1r) δ1n(kT1r) γ2n(kL1r) δ2n(kT1r)

)


R1,1
0n

T 1,1
0n

R2,1
0n

T 2,1
0n


,

(3.63)
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where

α1
n(kL1r) = µ1kL1(2J

′′
n (kL1r)− (

k2T1
k2L1

− 2)Jn(kL1r)),

α2
n(kL1r) = µ1kL1(2Y

′′
n (kL1r)− (

k2T1
k2L1

− 2)Yn(kL1r)),

β1n(kT1r) = µ1
2n2

r
(J

′
n(kT1r)−

Jn(kT1r)

kT1r
),

β2n(kT1r) = µ1
2n2

r
(Y

′
n(kT1r)−

Yn(kT1r)

kT1r
),

(3.64)

and

γ1n(kL1r) = µ1
2n

r
(J

′
n(kL1r)−

Jn(kL1r)

kL1r
),

γ2n(kL1r) = µ1
2n

r
(Y

′
n(kL1r)−

Yn(kL1r)

kL1r
),

δ1n(kT1r) = µ1
n

r
((2n2 − (kT1r)

2)
Jn(kT1r)

kT1r
− 2J

′
n(kT1r)),

δ2n(kT1r) = µ1
n

r
((2n2 − (kT1r)

2)
Yn(kT1r)

kT1r
− 2Y

′
n(kT1r)).

(3.65)

Solid core (r < b)

Since the radius of the solid is allowed to go to zero the scalar potentials must take the

form

φ =
1

kL

∞∑
n=0

A0
n cosnθR

1,2
0n Jn(kL2r),

ψ =
1

kT

∞∑
n=0

nA0
n sinnθT

1,2
0n Jn(kT2r).

(3.66)

The displacement components are

ur = A0
n cosnθ

(
a1n(kL2r) b1n(kT2r)

)R1,2
0n

T 1,2
0n

 ,

uθ = −A0
n sinnθ

(
c1n(kL2r) d1n(kT2r)

)R1,2
0n

T 1,2
0n

 ,

(3.67)

where

a1n(kL2r) = J
′
n(kL2r), b1n(kT2r) =

n2

kT2r
Jn(kT2r),

c1n(kL2r) =
n

kL2r
Jn(kL2r), d1n(kT2r) = nJ

′
n(kT2r).

(3.68)
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The stresses are then

σrr = A0
n cosnθ

(
α1
n(kL2r) β1n(kT2r)

)R1,2
0n

T 1,2
0n

 ,

σrθ = −A0
n sinnθ

(
γ1n(kL2r) δ1n(kT2r)

)R1,2
0n

T 1,2
0n

 ,

(3.69)

where

α1
n(kL2r) = µ1kL2(2J

′′
n (kLr)− (

k2T2
k2L2

− 2)Jn(kL2r)),

β1n(kT2r) = µ1
2n2

r
(J

′
n(kT2r)−

Jn(kT2r)

kT2r
),

(3.70)

and

γ1n(kL2r) = µ1
2n

r
(J

′
n(kL2r)−

Jn(kL2r)

kL2r
),

δ1n(kT2r) = µ1
n

r
((2n2 − (kT2r)

2)
Jn(kT2r)

kT2r
− 2J

′
n(kT2r)).

(3.71)

Here the system has seven unknown coefficients which are found by equating the dis-

placement and traction at the boundaries. For fluid-elastic boundaries we require con-

tinuity of displacement ur and traction components σrr and σrθ. For elastic-elastic

boundaries the additional continuity of angular displacement, uθ, is needed. The sys-

tem to be solved is



a3n(k0a) a1n(kL1a) b1n(kT1a) a2n(kL1a) b2n(kT1a) 0 0

ᾱ3
n(a, k0, κ0) α1

n(kL1a) β1
n(kT1a) α2

n(kL1a) β2
n(kT1a) 0 0

0 γ1n(kL1a) δ1n(kT1a) γ2n(kL1a) δ2n(kT1a) 0 0

0 a1n(kL1b) b1n(kT1b) a2n(kL1b) b2n(kT1b) a1n(kL2b) b1n(kT2b)

0 c1n(kL1b) d1n(kT1b) c2n(kL1b) d2n(kT1b) c1n(kL2b) d1n(kT2b)

0 α1
n(kL1b) β1

n(kT1b) α2
n(kL1b) β2

n(kT1b) α1
n(kL2b) β1

n(kT2b)

0 γ1n(kL1b) δ1n(kT1b) γ2n(kL1b) δ2n(kT1b) γ1n(kL2b) δ1n(kT2b)



×



−R3,0
0n

R
1,1
0n

T
1,1
0n

R
2,1
0n

T
2,1
0n

−R1,2
0n

−T1,2
0n


= R

1,0
0n



a1n(k0a)

ᾱ1
n(a, k0, κ0)

0

0

0

0

0


.

(3.72)

The global matrix method for solving scattering from concentrically placed elastic or

fluid filled cylinders can be generalized to any finite number of cylinders. However, this

method can be numerically challenging depending on the number of cylinders to be

considered. This is the case when considering the efficiency of acoustic cloaks as many

layers are needed to approximate properties that continuously change as a function of
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the radius. The next section reviews changing the elastic material from isotropic to

transversely isotropic media.

3.4 Elastic scattering solutions for transversely isotropic cylinders

As done before we use potential functions to describe the displacement field however

here we require an additional function due to the added complexity of transversely

isotropic media. Using scalar potentials to describe the displacement as first used by

Buchwald [37] and later used by [38] and [39] we define

u = ∇φ+∇× (χez) +
(∂ψ
∂z

− ∂φ

∂z

)
ez. (3.73)

The components of u are then

ur =
∂φ

∂r
+

1

r

∂χ

∂θ
, uθ =

1

r

∂φ

∂θ
− ∂χ

∂r
, uz =

∂ψ

∂z
. (3.74)

For this problem the cylinder is located along the z axis. Oblique incidence is also

considered such that the incoming plane wave may have a wave vector component with

non-zero kz, the general solution of the equilibrium equations are then in the form

{φ, χ, ψ} = {φ̄, χ̄, ψ̄}ei(nθ+kzz−ωt) where

φ̄ = R l
on

1

k1
z ln(k1r) +

1

k2
S l
on z

l
n(k2r),

ψ̄ =
κ1
k1
R l
on z

l
n(k1r) + S l

on

κ2
k2
z ln(k2r),

χ̄ = −T l
on

1

k3
z ln(k3r), (3.75)

and R l
on, S

l
on, T

l
on are unknown coefficients. As before z ln(x) are cylindrical functions

where z 1
n (x) = Jn(x) for solutions that are regular at r = 0, z 2

n (x) = Yn(x) for real

valued irregular solutions at r = 0, z 3
n (x) = H

(1)
n (x) for outgoing (radiating) solutions

and z 4
n (x) = H

(2)
n (x) for ingoing solutions. Again Jn(x) is the Bessel function of the first

kind, Yn(x) is the Bessel function of the second kind, H
(1,2)
n (x) is the Hankel functions

of the first and second kind. The displacement field can be represented as a linear

combination of any two of the four types of cylindrical functions f ln(x), (l = 1, 4). The

wavenumbers k1, k2, k3, and non-dimensional numbers κ1, κ2 are given by [40]

k21, 2 =
a∓

√
a2 − b

2 c11 c44
, k23 =

ρω2 − c44k
2
z

c66
, κi =

c66 k
2
3 − c11 k

2
i(

c13 + c44
)
kz

, (i = 1, 2),

a =
(
c11 + c44

)
ρω2 +

(
c213 + 2c13c44 − c11 c33

)
k2z ,

b = 4c11 c44
(
ρω2 − c33 k

2
z

)(
ρω2 − c44 k

2
z

)
.

(3.76)
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For isotropic materials the wavenumbers ki and κi reduce to k21 = ω2ρ/(λ+ 2µ)− k2z ,

k22 = k23 = ω2ρ/µ− k2z , κ1 = 1, and κ2 = −k22/k2z . Using equations (3.73), (3.74), (3.75)

and the constitutive relation for transversely isotropic materials, equation (2.41), the

displacement and traction vectors are obtained in matrix form as

u =


ur

uθ

uz

 =

[∑
l

Xl(r)wl

]
ei(nθ+kzz−ωt), t =


σrr

σrθ

σrz

 =

[∑
l

Yl(r)wl

]
ei(nθ+kzz−ωt), (3.77)

where wl =
(
R l
on S l

on T l
on

)T
is the unknown coefficient vector, the summation on l

is over any two of the possible l = 1, 4, and

Xl(r) =


f ln

′
(k1r) f ln

′
(k2r) − in

k3r
f ln(k3r)

in
k1r
f ln(k1r)

in
k2r
f ln(k2r) f ln

′
(k3r)

iκ1
k1
f ln(k1r)

iκ2
k2
f ln(k2r) 0

 , (3.78)

Yl(r) = −izl(r)Xl(r), (3.79)

and zl, l = 1, 4, follows from [40]:

zl(r) =


2c66 in2c66 ikzrc44

−in2c66 2c66 0

−ikzrc44 0 Zz



+ c0


ξ3(y1 − y2) in(y1 − y2) iξ3(ξ1 − ξ2)

−in(y1 − y2) ξ2y1 − ξ1y2 n(ξ1 − ξ2)

−iξ3(ξ1 − ξ2) n(ξ1 − ξ2) 0

 ,

(3.80)

Zz = c44

(
n2(ξ1y1 − ξ2y2)− ξ1ξ2ξ3(y1 − y2)

ξ3(ξ2y1 − ξ1y2)− n2(y1 − y2)

)
, yi = κir (i = 1, 2),

c0 =
c66k

2
3r

2

ξ3(ξ2y1 − ξ1y2)− n2(y1 − y2)
, ξj = kjr

f ln
′
(kjr)

f ln(kjr)
(j = 1, 2, 3).

(3.81)

Note that zl(r) acts as an impedance relating the stresses and displacements via equa-

tions (3.79) and (3.77). An explicit derivation can be found in [40] where it should

be noted that z1(r) (l ≡ 1) is the exact form of the conditional impedance of a solid

cylinder, that is a cylinder with material at r = 0. Lastly we can follow the steps of

section 3.3 in order to build a global matrix solution for cylinders involving transverse

isotropy. Although as noted before this method can become challenging for systems



35

with large numbers of layers, for that reason an integration scheme using Stroh formal-

ism is reviewed in the next chapter which can quickly solve these larger systems.
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Chapter 4

Stable solution method for layered structures

This chapter reviews the work in [41] which focuses on producing a stable method to

solve for elastic scattering using the matricant propagator approach. As compared to

the global matrix method of the previous chapter this method offers a less numerically

challenging solution for systems with large numbers of elastic layers, which also has

the advantage for solving for layers with complete general anisotropy. In section 4.1

we review the Stroh formalism which here focuses on transforming the equilibrium

equations in cylindrical coordinates to a linear system of ordinary differential equations

dependent on the radial coordinate. The outcome of this approach is a scattering

solution using the impedance matrix which satisfies the Ricatti differential equation,

however it is found to be inherently unstable. A stable solution method is found by

combining the impedance matrix and matricant for radially inhomogeneous cylindrically

anisotropic structures. The impedance and matricant matrices are defined in section

4.2. In section 4.3 the instability of the problem is shown and an approach for a stable

solution technique is found using several different expansions, which are compared in

section 4.3.6. Lastly a scattering example is done in section 4.4. It will be the method

developed here that is used in the next chapter which focuses on developing acoustic

cloaks of the pentamode type.

4.1 Stroh formalism for cylindrically anisotropic media

Here we review the Stroh formalism of the equations of elasticity in cylindrical co-

ordinates in order to develop the matricant. The equations of motion in cylindrical
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coordinates are

ρür = σrr,r + r−1σrθ,θ + r−1(σrr − σθθ) + σrz,z,

ρüθ = σrθ,r + r−1σθθ,θ + 2r−1σrθ + σθz,z,

ρüz = σrz,r + r−1σθz,θ + r−1σrz + σzz,z,

(4.1)

where the conventional notation is used with commas referring to partial derivative

with respect to the given coordinate. These three equations are rewritten in matrix

form using three traction vectors defined by

tr =


σrr

σrθ

σrz

 , tθ =


σrθ

σθθ

σθz

 , tz =


σrz

σθz

σzz

 . (4.2)

Rewriting equation (4.1) in matrix form using equation (4.2) gives

(rtr),r + tθ,θ +Ktθ + rtz,z = rρü, (4.3)

where

K =


0 −1 0

1 0 0

0 0 0

 . (4.4)

Using the stress-strain relationship, σij = Cijklεkl, and considering a fully anisotropic

medium we wish to write the equations of motion, equation (4.3), in displacement form.

Using the strain-displacement equation (2.9) and Voigt notation of the constitutive

relations from equation (2.21) the three traction vectors in terms of displacement are

tr = Qu,r + r−1R(u,θ +Ku) +Pu,z,

tθ = RTu,r + r−1T(u,θ +Ku) + Su,z,

tz = PTu,r + r−1ST (u,θ +Ku) +Mu,z,

(4.5)

where the displacement vector has the form u =
[
ur uθ uz

]T
. In a more condensed

matrix form the traction vectors are [42, 43]
tr

tθ

tz

 =


Q̂ R P

RT T̂ S

PT ST M̂




u,r

r−1(u,θ +Ku)

u,z

 , (4.6)
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where

Q̂ =


C11 C16 C15

C16 C66 C56

C15 C56 C55

 , T̂ =


C66 C26 C46

C26 C22 C24

C46 C24 C44

 , M̂ =


C55 C45 C35

C45 C44 C34

C35 C34 C33

 ,

R =


C16 C12 C14

C66 C26 C46

C56 C25 C45

 , P =


C15 C14 C13

C56 C46 C36

C55 C45 C35

 , S =


C56 C46 C36

C25 C24 C23

C45 C44 C34

 .

(4.7)

We consider solutions in the form of time-harmonic cylindrical waves where the dis-

placement and radial traction vectors are

u = U(n)(r)ei(nθ+kzz−ωt), irtr = V(n)(r)ei(nθ+kzz−ωt), (4.8)

where ω is the frequency, kz is the axial wave number, and n = 0, 1, 2, . . . is the

circumferential number. Plugging equation (4.8) into equations (4.3) and (4.6) yields a

differential equation for the state vector, η(n), which is comprised of the displacement

and radial traction vectors.

d

d r
η(n)(r) =

i

r
G(r)η(n)(r) with η(n)(r) =

U(n)(r)

V(n)(r)

 . (4.9)

The six by six matrix that relates the derivative of the state vector to itself is known

as the system matrix, which has the form

iG =

g{1} ig{2}

ig{3} −g{1}+

 , (4.10)

where all terms depend on the radial coordinate, r, and superscript + indicates Hermi-

tian transpose [42] . The three by three matrices in equation (4.10) are

g{1} = −Q̂−1R̃− ikzrQ̂
−1P, g{2} = g{2}T = −Q̂−1,

g{3} = g{3}+ = T̃− R̃+Q̂−1R̃+ ikzr
[
PT Q̂−1R̃− S̃− (PT Q̂−1R̃− S̃)+

]
+ r2

[
k2z(M̂−PT Q̂−1P)− ρω2I

]
,

(4.11)

where I is the three by three identity matrix and

R̃ = Rκ, S̃ = κS, T̃ = T̃+ = κ+T̂κ, with κ = K+ inI
(
= −κ+

)
. (4.12)
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The system matrix, G, has the important symmetry which follows from the form of

equation (4.10),

G = TG+T, with T =

0 I

I 0

 . (4.13)

The problem is now reduced to finding a solution to equation (4.9) subject to appro-

priate boundary conditions. Next we introduce the matricant and impedance matrices

based on solutions of equation (4.9).

4.2 Impedance and matricant matrices

In this section we develop the conditional impedance matrix which relates U(r) and

V(r) from equation (4.8) associated with displacement and traction, respectively. The

dimension of each vector is taken as general m = 3, 2, 1, where m = 3 is the general

case, m = 2 if z−dependence is not considered, i.e. kz = 0 perpendicular incidence,

and m = 1 for pure out-of-plane shear horizontal (SH) motion. The m×m conditional

impedance matrix z is defined such that

V(r) = −iz(r)U(r). (4.14)

In section 4.1 we found the equations for linear elastodynamics can be cast as a system

of 2m linear ordinary differential equations via equation (4.9) with

dη

d r
= Qη with η(r) =

U

V

 , Q(r) =

Q1 Q2

Q3 Q4

 , (4.15)

where Q = i
rG(r) from equation (4.9) [40]. Using the conditional impedance rela-

tion, equation (4.14), in equation (4.15) we find that z(r) satisfies a differential Riccati

equation

d z

d r
+ zQ1 −Q4z− izQ2z− iQ3 = 0, (4.16)

which can be solved for with an initial condition z(r0) at a specified r = r0. For

transverse isotropy, equation (3.80) gives an explicit form of the conditional impedance

matrix and can be used as the initial condition z(r0). Our approach for solving the
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conditional impedance matrix, z, is to first solve for the 2m × 2m matricant M(r, r0)

which is defined as the solution of the initial value problem

dM

d r
(r, r0) = Q(r)M(r, r0), M(r0, r0) = I(2m), M =

M1 M2

M3 M4

 . (4.17)

Using the matricant the state vector η can be propagated with

η(r) = M(r, r0)η(r0). (4.18)

Using equation (4.14) and the matricant relations, equations (4.17) and (4.18), we find

U (r) = (M1 − iM2z(r0))U (r0) , V (r) = (M3 − iM4z(r0))U (r0) . (4.19)

Combining the above relations the conditional impedance can be expressed in terms of

the matricant as

z(r) = i
(
M3 − iM4z(r0)

)(
M1 − iM2z(r0)

)−1
. (4.20)

The propagator nature of the matricant is apparent from equation (4.18) and from

the property M(r, r1) M(r1, r0) = M(r, r0), and in particular M(r, r0) = M(r0, r)
−1.

Also, the symmetry from equation (4.13) implies M(r, r0) = TM+(r0, r)T. Hence,

M−1(r, r0) = TM+(r, r0)T, that is, M is T-unitary [44].

Another approach for finding the conditional impedance uses the two point

impedance matrix [41], which like the matricant relates vectors at two values of r

but by the following way [40]V(r0)

−V(r)

 = −iZ(r, r0)

U(r0)

U(r)

 , Z =

Z1 Z2

Z3 Z4

 . (4.21)

The relations between the matricant of equation (4.17) and the impedance matrix of

equation (4.21) evaluated at cylindrical surfaces r, r0 are easily deduced

M(r, r0) =

 −Z−1
2 Z1 iZ−1

2

iZ3 − iZ4Z
−1
2 Z1 −Z4Z

−1
2

 ,

Z(r, r0) =

 −iM−1
2 M1 iM−1

2

iM4M
−1
2 M1 −M3 −iM4M

−1
2

 .

(4.22)
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Introducing equation (4.22) into equation (4.20), we can relate the conditional

impedance z(r) to the two point impedance matrix Z(r, r0) according to

z(r) = Z3

(
Z1 − z(r0)

)−1
Z2 − Z4. (4.23)

We leave the development of the two point impedance matrix here however in [41]

a recursive algorithm for layered piecewise uniform transversely isotropic cylinders is

developed and a general global two point impedance is found relating surfaces r0 to

some rk.

4.3 Stable solution technique for general anisotropy

In this section we develop a stable numerical scheme for solving the conditional

impedance matrix defined by equation (4.14). We consider fully anisotropic media

where the properties are radially dependent, i.e. density and elastic moduli are arbi-

trary functions of r: ρ(r), Cijkl(r).

4.3.1 Stability issues

Due to the stiff nature of equation (4.17) direct numerical integration for the matricant,

M(r, r0), leads to exponentially growing instabilities, which become unavoidable at

large values of n and/or kr. Additionally singularities and numeric instabilities form

when equation (4.16) is integrated for the conditional impedance z(r), which is a well

known issue for Riccati equations [45]. These occur at finite values of r associated with

traction-free modes for a given frequency. We can avoid singularities caused by traction-

free modes by inverting the equation and using the admittance A = z−1 [46]. The

admittance satisfies a similar Riccati differential equation, which follows from equation

(4.16)

dA

d r
+ iAQ3A+AQ4 −Q1A+ iQ2 = 0. (4.24)

Although singularities still occur except now corresponding to rigid modes. Switch-

ing back and forth between integrating the impedance and admittance seems to be a

solution however the locations of the singularities are not known in advance and can
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be clustered together causing issues with a switching scheme. The curves shown in

Figure 4.1 exemplify the problem of singularities in the impedance where appearance

of peaks indicate values of r beyond which an accurate numerical solution can not be

obtained regardless of the step size in the integration scheme. The inability of such

standard methods to obtain correct results was the motivation behind the proposed

solution technique discussed next.
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Figure 4.1: Solid, aluminium cylinder integrated with 200 evenly spaced steps, using
the fourth order scheme of section 4.3.4, from r = 0.5 to r = 1.0, with kz = 0 and
ka = 10. Plotted is the determinant of the upper left 2 × 2 sub-matrix of the the 3 × 3
conditional impedance matrix normalized by n3 + 1 vs. r. Where equation (3.80) was
used for the initial impedance at r = 0.5 m.

4.3.2 Möbius scheme

In order to accurately calculate the conditional impedance and matricant we follow an

approach based on [45] which views the solution of the Riccati equation as a ”Grassma-

nian flow” of m-dimensional subspaces on a larger vector space of dimension 2m. The

idea is to recast the equation for z in the form of a forward marching scheme of step

size h based on equation (4.20)

z(r + h) = i
(
M3 − iM4z(r)

)(
M1 − iM2z(r)

)−1
, (4.25)

where M = M(r + h, r). The key to the method is that M can always be calculated

in a stable manner for sufficiently small step size h. This approach is one of a class
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of methods called Möbius schemes, which by design are formulated on the natural

geometrical setting of the larger vector space. Accordingly Möbius schemes are able

to handle numerical instability and pass smoothly and accurately through singularities

[45]. The method therefore combines both the matricant and the impedance, each of

which is unstable when solved in a global sense separately.

4.3.3 Approximations for M(r + h, r)

Using the Möbius scheme shifts the problem to finding approximations for M(r+ h, r)

accurate to some given order in step size h. We develop approximations in the form

M(r + h, r) = I(2m) + hM(1)(r) +
h2

2!
M(2)(r) +

h3

3!
M(3)(r) + . . . , (4.26)

where the terms M(2)(r) do not require explicit integration schemes for their evaluation.

Considering the first case of Q being sufficiently smooth, then the identity

M(r + h, r) = I(2m) +

h∫
0

Q(r + s)M(r + s, r) d s, (4.27)

may be written in the form of a series in powers of h by using equation (4.26) for the

left member and a Taylor series evaluated at r for Q in the integral,

hM(1) +
h2

2!
M(2) +

h3

3!
M(3) + . . . =

h∫
0

([
Q+ sQ′ +

s2

2!
Q′′

+
s3

3!
Q′′′ + . . .

]
×

[
I(2m) + sM(1) +

s2

2!
M(2) + . . .

])
d s.

(4.28)

Comparing equal orders of hk in equation (4.28) yields

M(1)(r) = Q(r),

M(2)(r) = Q′(r) +Q(r)M(1)(r),

M(3)(r) = Q′′(r) + 2Q′(r)M(1)(r) +Q(r)M(2)(r),

M(4)(r) = Q′′′(r) + 3Q′′(r)M(1)(r) + 3Q′(r)M(2)(r) +Q(r)M(3)(r),

(4.29)

and so on. Using equation (4.26) an approximation for the matricant can be found

however the series used in equation (4.29) is restricted to profiles that are analytically

smooth functions of r and is not suitable for piece-wise constant or piece-wise smooth
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profiles and therefore derivatives of the profile are to be avoided. The approximation

formed from equations (4.26) and (4.29) is only valid to O(h), and the iterative scheme

of equation (4.25) shares the same accuracy.

An expansion accurate to second order can be obtained by using a Taylor series

expansion evaluated at the midpoint [45]

Q(r + s) ≈ Q(r +
h

2
) + (s− h

2
)Q

′
(r +

h

2
) + (s− h

2
)2Q

′′
+O(s3). (4.30)

Substitution into equation (4.27) using equation (4.26) then gives

M(1) = M(2) = Q(r +
h

2
), M(3) =

(
I(2m) +

1

2
Q

′
(r +

h

2
)
)
M(1). (4.31)

This leads to an expansion up to O(h2) requiring only Q at a single position with no

derivatives

TS 2nd : M(r + h, r) = I(2m) + hQ(r +
h

2
) +

h2

2
Q2(r +

h

2
) + O(h3). (4.32)

The form of equation (4.32) suggests an alternative expression that is accurate to the

same order

EXP 2nd(a) : M(r + h, r) = exp
(
hQ(r +

h

2
)
)
+O(h3). (4.33)

The approximations of equations (4.32) and (4.33), together with equation (4.25) each

yield a second order accurate Möbius scheme. Detailed comparisons are provided in

section 4.3.6.

4.3.4 Lagrange interpolation expansions

In order to obtain higher order expressions without using derivatives ofQ(r) we consider

Lagrange polynomial expansions for Q in equation (4.27) . The Lagrange polynomial

of order n approximates Q(r + s) with [47]

Q(r + s) =
n∑
j=0

Q(r + xjh)Lj
( s
h

)
, Lj(x) =

n∏
l=0,l ̸=j

(
x− xl
xj − xl

)
, (4.34)
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where xj ∈ [0, 1], and j = 0, 1, . . . , n are chosen points. Substituting into equation

(4.28) and using the notation Qxj = Q(r + xjh) implies the sequence

M(k) =

{ n∑
j=0

L
(k)
j Qxj

}
M(k−1), M(0) ≡ I,

L
(k)
j = k

∫ 1

0
Lj(x)x

k−1 dx,

k = 1, 2, 3 . . . . (4.35)

Note that
∑n

j=0 L
(k)
j = 1. In the following subsections we derive expansions based on

equation (4.34) for n = 1 and n = 3.

Two point approximation: Halves

We approximate Q with two points using equation (4.34) for n = 1. In this case the

integrals L
(k)
j can be simplified with the result that

M(k) =

{ 1∑
j=0

Lj
( k

k + 1

)
Qxj

}
M(k−1), M(0) ≡ I, k = 1, 2, 3 . . . . (4.36)

Taking equi-space points x0 =
1
4 and x1 =

3
4 , yields

LP 2nd : M(r + h, r) = I(2m) +
h

2

(
Q 1

4
+Q 3

4

)
+
h2

24

(
Q 1

4
+ 5Q 3

4

)(
Q 1

4
+Q 3

4

)
+O(h3).

(4.37)

This again gives a Möbius scheme of second order accuracy in h and it also suggests,

by analogy with equation (4.33),

EXP 2nd(b) : M(r + h, r) = exp
(h
2
Q 3

4

)
exp

(h
2
Q 1

4

)
+O(h3). (4.38)

Note that the expansions given in equations (4.37) and (4.38) only agree with one

another to first order, O(h).
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Four point approximation: Fourths

Taking four evenly spaced points to approximate Q, xj =
1
8 +

j
4 , j = 0, 1, 2, 3, and using

the symbolic algebra program Maple, yields

LP 4th :

M(1) =13
48Q 1

8
+ 11

48Q 3
8
+ 11

48Q 5
8
+ 13

48Q 7
8
,

M(2) =
(

23
720Q 1

8
+ 67

240Q 3
8
+ 43

240Q 5
8
+ 367

720Q 7
8

)
M(1),

M(3) =
(
− 1

48Q 1
8
+ 19

80Q 3
8
+ 7

80Q 5
8
+ 167

240Q 7
8

)
M(2),

M(4) =
(
− 23

560Q 1
8
+ 389

1680Q 3
8
− 67

1680Q 5
8
+ 1427

1680Q 7
8

)
M(3).

(4.39)

Substitution of these terms into equation (4.26) gives M(r + h, r) up to fourth order

accuracy. Interestingly, when more points were taken to evaluate Q the numerical

accuracy was not found to improve. This was tried with even spacings, using from five

up to ten points. Again, by analogy with equation (4.38),

EXP 2nd(c) : M(r + h, r) = exp
(
h
4Q 7

8

)
exp

(
h
4Q 5

8

)
exp

(
h
4Q 3

8

)
exp

(
h
4Q 1

8

)
+O(h3),

(4.40)

which, like equations (4.37) and (4.38), is consistent with the four-term Lagrange in-

terpolation scheme.

4.3.5 Fourth order Magnus integrator scheme

The Magnus integrator, created by Wilhelm Magnus [48], and further developed in

[49] with a convergence proof and recurrence relations, is a method to approximate a

solution to equation (4.17) with

M(r + h, r) = eΩM(r, r − h). (4.41)

Here we consider a fourth order Magnus integrator scheme similarly done in [50] for the

Helmholtz equation. We use the following definitions to march a solution forward in r,

MG 4th :

M(r + h, r) = eΩM(r, r − h),

Ω =
h

2
(Q(1) +Q(2)) +

√
3h2

12
(Q(2)Q(1) −Q(1)Q(2)),

Q(1) = Q(r + h(
1

2
−

√
3

6
)), Q(2) = Q(r + h(

1

2
+

√
3

6
)).

(4.42)
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As a fourth order scheme the numerical precision of this method is very similar to that

of the four point Lagrange polynomial approximation, equation (4.39), which is seen in

the examples of the following section.

4.3.6 Numerical examples and convergence

In order to illustrate the convergence property of the different expansions proposed

(exponential, Magnus, Taylor series, Lagrange polynomials), we consider a solid alu-

minium sample with properties ρ = 2700 kg/m3, E = 70 GPa, G = 26 GPa and radius

of r = 1 m and normalized these properties with respect to water for which ρ = 1000

kg/m3 and speed of sound in water c = 1.470 km/s. The numerical values reported

were computed by implementing the Möbius scheme, equation (4.25), and in the case

of the Magnus integrator implementing equation (4.20), starting at r = 0.5 with ini-

tial condition given by the explicit solution, equation (3.80) from [40] and discussed

in section 4.3. In all examples we take kz = 0. Figure 4.2 plots the difference of the

determinant of the upper left 2 × 2 sub-matrix of the exact conditional impedance from

equation (3.80), and that calculated by iterating equation (4.25) until r = 1 is reached.

The right hand side of Figure 4.2 refers to the type of approximation used: Taylor

Series (TS), Lagrange Polynomial (LP), Exponential (EXP), Magnus (MG), and to the

accuracy order. Thus, LP 1st was calculated using equation (4.29), TS 2nd by (4.31),

EXP (a) by (4.33), EXP (b) by (4.38), EXP (c) by (4.40), LP 2nd by (4.37), LP 4th

by (4.39), MG 4th by (4.42), and LP 3rd was calculated using a Lagrange Polynomial

with points {x0, x1, x2} = {1
6 ,

1
2 ,

5
6}. Interestingly, the three EXP methods (equations

(4.33), (4.38) and (4.40)) gave similar results and were the best results for the fewest

number of approximation points. Figure 4.3 plots the difference of the upper 2 × 2

sub-matrices at r = 1.0 vs. the number of steps used in the iteration from r = 0.5 to

r = 1.0. As expected, the higher order schemes are more accurate and require fewer

steps in the integration process to yield the same accuracy as a lower order scheme.
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Figure 4.2: Solid, aluminium cylinder integrated with 2000 evenly spaced steps from
r = 0.5 to r = 1.0, with kz = 0, n = 0 and ka = 5. Plotted is the difference of
the determinants of the upper left 2 × 2 sub-matrices of equation (3.80) and those
calculated from section 4.3. As noted in section 4.3.6, the right hand side refers to the
type and order accuracy, they are listed top to bottom as worst to best at r = 1

4.4 Scattering example

In this section we explore the use of the impedance matrix by considering acoustic

scattering from a solid aluminum cylinder immersed in water. Perpendicular plane

wave incidence, i.e. kz = 0, in a uniform exterior fluid is considered with time harmonic

dependence e−iωt. The total radial stress and displacement fields in the surrounding

fluid are

σrr = −Kk
∞∑

n=−∞
in
(
Jn(kr) +BnH

(1)
n (kr)

)
ei(nθ−ωt),

ur = −
∞∑

n=−∞
in
(
J

′
n(kr) +BnH

(1)′
n (kr)

)
ei(nθ−ωt),

(4.43)

where r is the radial coordinate, K is the bulk modulus, k is the wave number, H
(1)
n is

the Hankel function of the first kind, and the coefficients Bn are to be determined [27].

Unlike Chapter 3, here we take the summation over positive and negative values of n

allowing for the use of the einθ term whereas before we dealt with summation over the

positive range of n giving cosnθ and sinnθ terms. We consider an initial impedance

z(r = b) = z1 using equation (3.80) and then integrating via the proposed technique

we find the impedance of the outer surface z(r = a) = z2. Using the definition of the
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Figure 4.3: Solid, aluminium cylinder integrated from r = 0.5 to r = 1.0, with kz = 0,
n = 0 and ka = 25. Plotted is the difference of the determinants of the upper left 2
× 2 sub-matrices of equation (3.80) and those calculated from section 4.3 at r = 1 vs.
number of steps.

conditional impedance matrix from equation (4.14) and writing this statement for r = b

and r = a gives

V(b) = −iz1U(b), V(a) = −iz2U(a). (4.44)

The conditional impedance matrix, z2 = z(a), is found from the integration technique

outlined in section 4.3 and can be checked directly for transversely isotropic materials

using equation (3.80). Considering acoustic fluid in the exterior we write equation

(4.44) for r = a in detail for which the shear stress, σrθ, must be zero with

ia

σrr(a)
0

 = −iz2

ur(a)
uθ(a)

 = −i

p1 q1

p2 q2

ur(a)
uθ(a)

 . (4.45)

Eliminating uθ using the second row of equation (4.45) implies

ia
σrr(a)

ur(a)
=

i

q2
(q1p2 − q2p1) ≡ −iz0. (4.46)

Using equation (4.43) and equating it with equation (4.46) we find the scattering coef-

ficient

Bn = − KkaJn(ka) + z0J
′
n(ka)

KkaH
(1)
n (ka) + z0H

(1)′
n (ka)

. (4.47)

Numerical simulation for a solid aluminium cylinder was considered with properties

normalized with respect to water and with the total pressure field illustrated in Figure
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4.4. Figure 4.5 shows both the total scattering cross-section σtot and the back-scattering

amplitude f(π), where the far field form function, f(θ) is

f(θ) =
2√
k

∞∑
n=0

i2n−1ϵnBn cosnθ, (4.48)

where ϵ0 = 1 and ϵm = 2 for m > 0. The total scattering cross section is then

σtot =
4π

ka
Imag(f(0)). (4.49)

Figure 4.5 closely matches the behavior of a similar analysis conducted in [51].
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Figure 4.4: Plotted pressure field described by equation (4.43) for an aluminium cylin-
der, integrated from r = 0.5 to r = 1.0 (area between the two red circles drawn) using
the fourth order scheme, equation (4.39), with 500 steps. The initial impedance at
r = 0.5 was found using equation (3.80). ka = 5, kz = 0, and σtot = 2.468.

The Riccati equation for the impedance matrix was formulated by seeking solutions

of 3D elasticity in the form of time-harmonic cylindrical waves. As discussed in section

4.3.1 direct integration of the Riccati equation leads to exponentially growing insta-

bilities associated with traction-free modes for the impedance and rigid modes for the

admittance. We developed a new stable numerical scheme for cylindrically anisotropic

structures that passes through these singularities by combining the impedance and

matricant. This scheme evaluates the impedance matrix for continuous systems by

integrating the Riccati equation over the thickness of each layer. Different expan-

sion methods were considered and compared, it was noted that matrix exponential
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Figure 4.5: Total scattering cross section and backscattering amplitude plotted against
non-dimensional frequency, ka. Aluminum cylinder with the same properties as listed
in figure 4.4, integrated using the fourth order scheme from r = 0.5 to r = 1.0 using
500 steps. The initial impedance at r = 0.5 was found using equation (3.80).

approximations yielded the best results. An example of acoustic scattering from a solid

aluminum cylinder immersed in water was considered using the impedance matrix and

compared with the literature. Plots of the total pressure field, form function and total

scattering cross section agree with previously published results. It will be this method

that is used in the next chapter that focuses on scattering from different targets sur-

rounded in many layers of elastic media characterized by the pentamode type of acoustic

cloaks.
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Chapter 5

Pentamode materials for transformation acoustics

Interest in cloaking objects from incident waves first started in the electromagnetic

spectrum by using a transformation of coordinates in the wave equation called trans-

formation optics [52, 53, 54]. Similar transformations can be done to the acoustic wave

equation and devices such as cloaks and lenses can be developed with specific goals

using transformation acoustics [55, 56, 57]. We consider passive, directionally inde-

pendent, broadband cloaks. In chapters 8 and 9 the development of these devices is

made by designing materials with periodic substructure. In general, acoustic cloaks fall

into three categories inertial cloaks, pure pentamode cloaks, and a combination of the

two [20]. Inertial cloaks achieve the desired phenomenon by having material properties

described by an anisotropic density tensor and a scalar bulk modulus, which can be

achieved by the simple layering of fluids [19]. These types of cloaks have been largely

studied in the literature [58, 59, 60, 61]. Pentamode cloaks achieve the effect with an

anisotropic elasticity tensor and a scalar density. The name pentamode refers to the

five zero eigenvalues of the elasticity tensor, this means that there is only one mode

of deformation that induces stress. The types of cloaks that are of interest here are

the pure pentamode or the combination of the two where a material with pentamode

elasticity is considered with possible anisotropic density.

5.1 Pentamode materials as fluids

It can be easily seen that pentamode elasticity is required for acoustic transformations as

it means that shear waves will not be able to propagate. In this sense these materials

can be thought of as anisotropic fluids. Considering periodic microstructure design

which will have certain symmetries we look at two dimensional cylindrical elasticity
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with the following relations
σrr

σθθ

σrθ

 =


C11 C12 0

C12 C22 0

0 0 C66



εrr

εθθ

2εrθ

 . (5.1)

If we use the Christoffel equation, det(Γ(n) − ρc2I) = 0, from equation (2.46), to find

the group velocities we find

ρc2 =



{C11, C66} for n =

[
1 0

]T
,

{C22, C66} for n =

[
0 1

]T
,

{λ+, λ−} for n = 1√
2

[
1 1

]T
,

(5.2)

where

2λ± = C11 + C22 ±
√

(C11 − C22)2 + 4C2
12. (5.3)

In order to find fluid like properties from the elastic medium we remove shear waves.

This means the lower values for the wave speed, c, found in equation (5.2) must be

zero as these represent the shear wave speeds. Setting these speeds to zero obtains the

relations

C66 = 0, C11C22 = C2
12. (5.4)

Another method to find this behavior is to simply take the eigenvalues of the elasticity

tensor and set all but one to zero. Looking at equation (5.1) the eigenvalues are λ+, λ−,

and C66, taking all but one to zero gives the same result, equation (5.4). In this sense the

material will only propagate bulk waves and can be thought of as a type of anisotropic

fluid.

5.2 Cloaking theory

If one were to consider a pentamode cloak with transversely isotropic symmetry (see

[20]) having elastic components displayed in equation (2.41), then all shear moduli must

be set to zero, which implies that C44 = 0 and C12 = C11. The result of setting all but

one eigenvalue to zero is C11C33 − C2
13 = 0. The material then has two independent
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moduli for which we define C11 = Kr(r) and C33 = K⊥(r), which are defined by a map-

ping function, f(r), which maps in two dimensions a larger annulus to a much smaller

one which ideally becomes a point, reference figure 5.1. Interestingly the mapping func-

tion has a large degree of freedom with boundary condition on the outer surface of the

cloak, f(b) = b, and that for the cloak to become effective we take at the inner surface

f(a) = δ ≈ 0. We note that setting δ equal to zero results in a perfect cloak map-

ping however as seen next this requires moduli to become singular. Instead by taking

δ small but non-zero we can attain near perfect cloaking and avoid the singularities

in the moduli. If we consider a pure pentamode cloak in two dimensions where the

Figure 5.1: Mapping diagram shown where f(r) maps the physical space (left) to the
virtual space (right). The cloaking material is between radii r = a (inner surface) and
r = b (outer surface).

density is isotropic we have

ρ(r) = ρ0f
′ f

r
, Kr(r) = K0

1

f ′
f

r
, K⊥(r) = K0f

′ r

f
, (5.5)

then the elasticity components are

C =


C11 C13 0

C13 C33 0

0 0 C66

 =


Kr

√
KrK⊥ 0

√
KrK⊥ K⊥ 0

0 0 0

 , (5.6)

where ρ0 and K0 are the background fluids density and bulk modulus. For three dimen-

sional cylindrical structures the form for the elasticity components can be simplified.

Letting s have components

s =
[
f/r f

′
1 0 0 0

]
, (5.7)
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the elasticity components are then [20]

C = K0
r

ff ′ s
T s. (5.8)

The large degree of freedom in f is also seen in pure inertial cloaks and as shown in

[19] instead of choosing a mapping and then finding material properties to suit such

a transformation the inverse problem is possible where material characteristics can be

considered to put further constraints on f . Such transformations have been studied

for pentamode cloaks [23], where properties including constant density, constant radial

stiffness, constant tangential stiffness and others including a mapping that considers

minimizing elastic anisotropy have been studied.

Using the stable impedance Ricatti method of chapter 4 we can simulate a cloak

using the elastic properties in equation (5.6) and change the properties as a function of

r by discretizing between the radii r = a and r = b. Doing this resulted in the example

of figure 5.3. The total field without the cloak is in figure 5.2. The linear mapping

function was used,

f(r) =
(
(a− δ)r − (b− δ)a

)
/(a− b), (5.9)

where we took δ = 0.01b. The solution was found using the second order Taylor series,

equation (4.32), with 2000 evenly spaced steps between r = a and r = b.
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Figure 5.2: Total pressure field de-
scribed by equation (4.43) for an alu-
minum cylinder of radius r = 1 m.
Impedance was found directly from
(3.80). ka = 5, kz = 0, and σtot= 2.468.
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Figure 5.3: Total pressure field for alu-
minum cylinder surrounded by cloak-
ing medium for r = a = 1 m to
r = b = 1.25 m. kb= 1, kz=0, and
σtot = 0.0127.
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5.2.1 Effects of shear

Unfortunately the relation for the shear moduli, C66 = 0, must be relaxed in order for

the material to maintain it’s structure. Effects of shear in cloaking mediums has been

studied [25]. Here we explore what adding a shear modulus to the elastic properties of

equation (5.8) does to the efficiency of the cloak for two dimensional structures. We

add a shear modulus µ to the elasticity components in the following manner

C =
(
K

r

ff ′ −
2µ

3ssT
)
sT s+ µ

2I(3) 0(3)

0(3) I(3)

 , (5.10)

where I(3) is a 3x3 identity matrix and 0(3) is a 3x3 matrix of zeros. This essentially adds

an isotropic modulus where we have using lamé parameters the standard λ = K−2µ/3

relation. Additionally we consider a shear modulus that includes a small amount of

damping. This is done by giving the shear modulus a small imaginary part by taking

µ = µ̂e−iψ, where we take ψ = 0.05. We start by considering a bubble of radius r = 1

m surrounded by water for which the total pressure field can be found in figure 5.6, for

ka=5. The scattering cross section at this frequency is σtot(ka = 5) = 6.57. We apply

several different cloaks between the radii r = a = 1 m and r = b = 0.8 m while varying

the shear modulus. Examples of the total pressure field are given in the figures of 5.5,

for which the frequency was kept constant at ka = 5 and δ = .01b for the transformation

function.
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Figure 5.4: Total normalized pressure field for a traction free surface at r = 1 m.
Parameters are ka= 5, kz=0, and scattering cross section and backscatter are σtot = 6.57
and f(π) = 0.89.
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(a) K/µ = 5, σtot = 4.51.
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(b) K/µ = 10, σtot = 1.92.
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(c) K/µ = 15, σtot = 1.30.
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(d) K/µ = 25, σtot = 0.81.
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(e) K/µ = 50, σtot = 0.50.
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(f) K/µ = 100, σtot = 0.21.

Figure 5.5: Total normalized pressure field for cloaks varying in shear modulus. All
examples have ka=5, and δ = 0.01b for the mapping.
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Varying the frequency and computing the back scatter and scattering cross section

was also done. Figure 5.6 computes this for the case of a traction free surface without

a cloaking medium.
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Figure 5.6: Scattering cross section, equation (4.49), and back scatter, equation (4.48),
frequency behavior for a traction free surface at r = 1 m surrounded by water.
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(a) K/µ = 22, δ = 0.1b.
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(b) K/µ = 22, δ = 0.01b.
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(c) K/µ = 100, δ = 0.1b.
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(d) K/µ = 100, δ = 0.01b.

Figure 5.7: Scattering cross section σtot and back scatter frequency behavior, with
changing δ parameter between left and right. Cloak between radii a = 1 and b = 0.8.

In the figures of 5.7, two different levels of shear moduli as well as the parameter

δ were studied. It is seen that at a shear modulus of roughly five percent of the bulk

the δ parameter has little affect. At smaller shear modulus, roughly one percent of

the bulk, the δ parameter has much more influence and it seems that this level for

the shear modulus is tolerable. It is clear that when the ratio of κ/µ becomes large

enough the cloaking medium becomes more effective. This is because the theory used
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here requires pentamode elasticity and does not account for wave energy to be entered

into shearing modes. We leave cloaking theory here with the result that by adding in

some amount of shear modulus we can still have an effective device, especially when the

shear modulus is roughly one percent or less compared to the bulk modulus. Next our

attention is focused on producing periodic micro-structure designs that may be able to

produce cloaking devices. This is done by first reviewing static and dynamic methods

that account for a materials global elastic response based on the study of a repeating

unit cell.
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Chapter 6

Metallic foams and static homogenization

This chapter focuses on a static means of determining the effective elastic constants of

foam structures. In the review of acoustic cloaking theory from the previous chapter

it was found that pentamode elasticity is required for elastic based devices that are

created with transformation acoustics. This class of material also satisfies the problem

of relating the elastic equation of motion to the acoustic. In order to achieve penta-

mode elasticity we turn to metallic foams as they offer the ability to achieve the desired

macroscopic properties based on a unit cell design. Metallic foams have been largely

studied, most notably by Gibson and Ashby [62], and can offer exotic properties includ-

ing negative Poisson’s ratio [63]. More recently studies looking into the feasibility of

creating pentamode materials [24] has occurred with focus on the creation of metama-

terial devices. Foam structures are also known to have relatively small shear rigidity in

comparison to the compression stiffness which is essential for approximating pentamode

behavior. Furthermore, the regular structure of the foam allows the simultaneous vari-

ation of both the effective density and bulk modulus. We review static homogenization

theory of cellular materials by both analytical and numerical methods for consistency

and accuracy. Later on in chapter 8 these methods are used to design a material that

can mimic the acoustic properties of water.

6.1 Analytical

As a step towards creating cloaking devices the first problem considered is that of

mimicking the acoustic properties of water in two dimensions. This material falls into

the category of pentamode elasticity, requiring isotropic behavior, matching of the bulk

modulus, maintaining small shear modulus by comparison, and matching of the density
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of water. The material is called Metal Water and is developed later in chapter 8. In two

dimensions, foams that have the property of being isotropic fall under regular hexagonal

geometry (honeycomb lattice). In this case we review the results of Kim and Al-Hassani

[64] for which effective elastic constants can be determined based on strut geometry for

such a structure. In the three dimensional case tetrahedral geometry (diamond lattice)

is needed to achieve isotropy for which case we review the results of [65], which is done

later in the beginning of chapter 9.

Effective moduli for honeycomb structures was found by Kim and Al-Hassani [64]

by using figure 6.1 and applying loads on a rectangular boundary and then by strain

energy formulation a displacement can be calculated caused by the applied load giving

a constitutive relation between stress and strain, later on we do the same analysis on

the three-dimensional structure to calculate an effective bulk modulus. From [64], the

effective in-plane Young’s modulus, E∗
i , Poisson’s ratio, ν∗ij , and shear modulus, G∗

ij ,

are given for plane strain as

Figure 6.1: General cellular structure.
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E∗
1 =

l sin θ

2b(h+ l cos θ)(N ′
l cos

2 θ +Ml sin
2 θ)

,

E∗
2 =

h+ l cos θ

2bl sin θ(N ′
l sin

2 θ +Ml cos2 θ + 2Mh)
,

ν∗12 =
l sin θ(N ′

l −Ml) cos θ sin θ

(h+ l cos θ)(N ′
l cos

2 θ +Ml sin
2 θ)

,

ν∗21 =
(h+ l cos θ)(N ′

l −Ml) cos θ sin θ

l sin θ(N ′
l sin

2 θ +Ml cos2 θ + 2Mh)
,

G∗
12 =

(h+ l cos θ)l sin θ

2b((h2N ′
l + 2l2N ′

h) sin
2 θ +Ml(l + h cos θ)2)

,

(6.1)

where

N ′
l = Nl + 2(1 + ν)kMl. (6.2)

Ma and Na refer to axial and bending compliance where

Ma =

a/2∫
0

dx

EA
, Na =

a/2∫
0

x2 dx

EI
. (6.3)

Here h and l are the strut lengths, b is the depth into the page such that A = bt with

member thickness t, I = bt3/12, and θ describes the angle between vertical and the

strut as shown in figure 6.1. The relation to the Voigt moduli for two dimensional

elasticity are given by [66]:

CCC =


C11 C12 C16

C12 C22 C26

C16 C26 C66

 =


E∗

1
1−ν∗12ν∗21

ν∗21E
∗
1

1−ν∗12ν∗21
0

ν∗12E
∗
2

1−ν∗12ν∗21
E∗

2
1−ν∗12ν∗21

0

0 0 G∗
12

 , (6.4)

and hence

C11 =
l sin θ

4bMhMlN
′
l (h+ l cos θ)

(
2Mh +Ml cos

2 θ +N ′
l sin

2 θ
1

2Mh
+ 1

Ml
cos2 θ + 1

N ′
l
sin2 θ

)
,

C22 =
(h+ l cos θ)

4bMhMlN
′
l l sin θ

(
Ml sin

2 θ +N ′
l cos

2 θ
1

2Mh
+ 1

Ml
cos2 θ + 1

N ′
l
sin2 θ

)
,

C12 =
cos θ sin θ

4bMhMlN
′
l

(
N ′
l −Ml

1
2Mh

+ 1
Ml

cos2 θ + 1
N ′
l
sin2 θ

)
,

C66 =
(h+ l cos θ)l sin θ

2b((h2N ′
l + 2l2N ′

h) sin
2 θ +Ml(l + h cos θ)2)

.

(6.5)

Using an alternative method similar to Wang and Cuitino [67] these constants were
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found as

C11 =
R2 sin θ

4M1M2N(R1 +R2 cos θ)

(
2M1 +M2 cos

2 θ +N sin2 θ
1

2M1
+ 1

M2
cos2 θ + 1

N sin2 θ

)
,

C22 =
(R1 +R2 cos θ)

4M1M2NR2 sin θ

(
M2 sin

2 θ +N cos2 θ
1

2M1
+ 1

M2
cos2 θ + 1

N sin2 θ

)
,

C12 =
cos θ sin θ

4M1M2N

(
N −M2

1
2M1

+ 1
M2

cos2 θ + 1
N sin2 θ

)
,

C66 =
(R1 +R2 cos θ)R2 sin θ

2
[(
R2

1N2 +R2
2N1

)
sin2 θ +M2

(
R2 +R1 cos θ

)2] ,
(6.6)

where

N−1 =
1

N2
+

1

N2 +
R2

2

R2
1
N1

. (6.7)

These equations were derived using a unit cell as shown in figure 6.2, where it is

Figure 6.2: Structure and unit cell description.

easily seen that R1 = h
2 and R2 = l

2 . Again Mi is the axial compliance and Ni the

bending compliance. We see similarity between equations (6.5) and (6.6) however all

of the moduli differ, for C11, C22 and C12 the difference arises because of the more

complicated form of N in equation (6.7) as compared with N ′
l , which is equivalent to

N2. The shear modulus C66 is different because of the disparity between the terms

2l2N ′
h and R2

2N1. We will make use of the Kim and Al-Hassani results, equation (6.5),

for the remainder of the thesis.
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Limit of thin members

In the limit of very thin members Nl and Nh become much larger than Ml and Mh,

and taking the limit as the ratio Ma/Nb → 0,

C = C0


α 1 0

1 1
α 0

0 0 0

 , C0 =
cos θ sin θ

2b[Ml + 2Mh cos2 θ]
, α =

l sin2 θ

(h+ l cos θ) cos θ
. (6.8)

This is of pentamode form since C has only one non-zero eigenvalue. It is interesting

to note that the ratio C11/C22 depends on the geometrical parameter α, which will be

important in cloak design. For the regular hex we have α = 1. From this analysis we
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Figure 6.3: Values for θ and h/l to attain α = 1 in equation (6.8).

see designs for which h = l requires the angle θ = π/3, meaning the structure has regular

hexagonal shape. Utilizing equation (6.5) Ashby charts can be created that show an

effective range of elastic properties as well as density properties based on parameters

defining the strut geometry. With that it is possible to find and create materials

that can accommodate acoustic cloaking depending on the versatility of the unit cell.

This analysis is continued later in chapter 8 where we consider regular hexagonal foam

structures, θ = π/3, and use equation (6.5) to find the effective moduli in order to design

the first Metal Water prototype. The next section reviews a finite element method that

allows for a more precise method of producing desired moduli from the study of a single

unit cell.
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6.2 Finite element homogenization

Figure 6.4: Example of a periodic elastic material for which elastic moduli can be
calculated via static homogenization technique with finite elements.

The methods of section 6.1 rely on beam or foam mechanics theories to produce

the effective elasticity of structured foam like materials. We next want to compare the

results of the previous section to another approximation of the homogenized properties

to do this we turn to finite elements. With this method general periodic structures

can be analyzed such as the one shown in figure 6.4. Derivation of the macroscopic

elastic moduli for structures with periodic unit cells was done by [68] and was further

developed in [1] to include boundary conditions for unit cells with symmetric properties.

A complete review of the theory and it’s application is given in [69, 70, 71]. The

homogenized elasticity is found from

CHijkl =
1

|Y |

∫
Y

Cijkl − Cijpqχ
kl
p,q dY, (6.9)

where Y is an open rectangular parallel-piped describing the unit cell, |Y | denotes the

total area of the unit cell in two dimensions or the volume in three dimensions, and χklp

is a periodic displacement solution of the governing equation which is [1]∫
Y

vi,jCijpqχ
kl
p,q dY =

∫
Y

vi,jCijkl dY. (6.10)
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The governing equation (6.10) was derived in [68] and came about by performing a

double-scale asymptotic expansion on the virtual displacement equation where vi is an

arbitrary test function. Next we go through the derivation of applying the finite element

method as done in [1, 70]. We take equations (6.9) and (6.10) and go into further detail

by writing out in component form the various cases for three dimensional geometries.

In two dimensions, equation (6.10) would only need to be considered for the three cases

of: a) k = l = 1, b) k = l = 2, and c) k = 1, l = 2. In three dimensions we will have

to consider six cases which will include cases a) b) and c) as well as d) k = 1, l = 3, e)

k = 2, l = 3, and f) k = l = 3. Assuming orthotropic anisotropy, the elastic constants

to be concerned with include those listed in equation (2.39). For case a) k = l = 1

equation (6.10) yields∫
Y

[(
C1111χ

11
1,1 + C1122χ

11
2,2 + C1133χ

11
3,3

)
v1,1 +

(
C2211χ

11
1,1 + C2222χ

11
2,2 + C2233χ

11
3,3

)
v2,2

+
(
C3311χ

11
1,1 + C3322χ

11
2,2 + C3333χ

11
3,3

)
v3,3 + C2323

(
χ11
2,3 + χ11

3,2

)(
v2,3 + v3,2

)
+C1313

(
χ11
1,3 + χ11

3,1

)(
v1,3 + v3,1

)
+ C1212

(
χ11
1,2 + χ11

2,1

)(
v1,2 + v2,1

)]
dY

=

∫
Y

[
C1111v1,1 + C2211v2,2 + C3311v3,3

]
dY,

(6.11)

and the homogenized properties are

CH1111 =
1

|Y |

∫
Y
C1111 −

[
C1111χ

11
1,1 + C1122χ

11
2,2 + C1133χ

11
3,3

]
dY,

CH2211 =
1

|Y |

∫
Y
C2211 −

[
C2211χ

11
1,1 + C2222χ

11
2,2 + C2233χ

11
3,3

]
dY,

CH3311 =
1

|Y |

∫
Y
C3311 −

[
C3311χ

11
1,1 + C3322χ

11
2,2 + C3333χ

11
3,3

]
dY.

(6.12)

For case b) k = l = 2 equation (6.10) yields∫
Y

[(
C1111χ

22
1,1 + C1122χ

22
2,2 + C1133χ

22
3,3

)
v1,1 +

(
C2211χ

22
1,1 + C2222χ

22
2,2 + C2233χ

22
3,3

)
v2,2

+
(
C3311χ

22
1,1 + C3322χ

22
2,2 + C3333χ

22
3,3

)
v3,3 + C2323

(
χ22
2,3 + χ22

3,2

)(
v2,3 + v3,2

)
+C1313

(
χ22
1,3 + χ22

3,1

)(
v1,3 + v3,1

)
+ C1212

(
χ22
1,2 + χ22

2,1

)(
v1,2 + v2,1

)]
dY

=

∫
Y

[
C1122v1,1 + C2222v2,2 + C3322v3,3

]
dY,

(6.13)
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and the homogenized properties are

CH1122 =
1

|Y |

∫
Y
C1122 −

[
C1111χ

22
1,1 + C1122χ

22
2,2 + C1133χ

22
3,3

]
dY,

CH2222 =
1

|Y |

∫
Y
C2222 −

[
C2211χ

22
1,1 + C2222χ

22
2,2 + C2233χ

22
3,3

]
dY,

CH3322 =
1

|Y |

∫
Y
C3322 −

[
C3311χ

22
1,1 + C3322χ

22
2,2 + C3333χ

22
3,3

]
dY.

(6.14)

For case c) k = 1, l = 2 equation (6.10) yields∫
Y

[(
C1111χ

12
1,1 + C1122χ

12
2,2 + C1133χ

12
3,3

)
v1,1 +

(
C2211χ

12
1,1 + C2222χ

12
2,2 + C2233χ

12
3,3

)
v2,2

+
(
C3311χ

12
1,1 + C3322χ

12
2,2 + C3333χ

12
3,3

)
v3,3 + C2323

(
χ12
2,3 + χ12

3,2

)(
v2,3 + v3,2

)
+C1313

(
χ12
1,3 + χ12

3,1

)(
v1,3 + v3,1

)
+ C1212

(
χ12
1,2 + χ12

2,1

)(
v1,2 + v2,1

)]
dY

=

∫
Y

[
C1212

(
v1,2 + v2,1

)]
dY,

(6.15)

and the homogenized properties are

CH1212 =
1

|Y |

∫
Y
C1212

(
1− χ12

1,2 − χ12
2,1

)
dY, (6.16)

For case d) k = 1, l = 3 equation (6.10) yields∫
Y

[(
C1111χ

13
1,1 + C1122χ

13
2,2 + C1133χ

13
3,3

)
v1,1 +

(
C2211χ

13
1,1 + C2222χ

13
2,2 + C2233χ

13
3,3

)
v2,2

+
(
C3311χ

13
1,1 + C3322χ

13
2,2 + C3333χ

13
3,3

)
v3,3 + C2323

(
χ13
2,3 + χ13

3,2

)(
v2,3 + v3,2

)
+C1313

(
χ13
1,3 + χ13

3,1

)(
v1,3 + v3,1

)
+ C1212

(
χ13
1,2 + χ13

2,1

)(
v1,2 + v2,1

)]
dY

=

∫
Y

[
C1313

(
v1,3 + v3,1

)]
dY,

(6.17)

and the homogenized properties are

CH1313 =
1

|Y |

∫
Y
C1313

(
1− χ13

1,3 − χ13
3,1

)
dY, (6.18)
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For case d) k = 2, l = 3 equation (6.10) yields∫
Y

[(
C1111χ

23
1,1 + C1122χ

23
2,2 + C1133χ

23
3,3

)
v1,1 +

(
C2211χ

23
1,1 + C2222χ

23
2,2 + C2233χ

23
3,3

)
v2,2

+
(
C3311χ

23
1,1 + C3322χ

23
2,2 + C3333χ

23
3,3

)
v3,3 + C2323

(
χ23
2,3 + χ23

3,2

)(
v2,3 + v3,2

)
+C1313

(
χ23
1,3 + χ23

3,1

)(
v1,3 + v3,1

)
+ C1212

(
χ23
1,2 + χ23

2,1

)(
v1,2 + v2,1

)]
dY

=

∫
Y

[
C2323

(
v2,3 + v3,2

)]
dY,

(6.19)

and the homogenized properties are

CH2323 =
1

|Y |

∫
Y
C2323

(
1− χ23

2,3 − χ23
3,2

)
dY, (6.20)

For case f) k = l = 3 equation (6.10) yields∫
Y

[(
C1111χ

33
1,1 + C1122χ

33
2,2 + C1133χ

33
3,3

)
v1,1 +

(
C2211χ

33
1,1 + C2222χ

33
2,2 + C2233χ

33
3,3

)
v2,2

+
(
C3311χ

33
1,1 + C3322χ

33
2,2 + C3333χ

33
3,3

)
v3,3 + C2323

(
χ33
2,3 + χ33

3,2

)(
v2,3 + v3,2

)
+C1313

(
χ33
1,3 + χ33

3,1

)(
v1,3 + v3,1

)
+ C1212

(
χ33
1,2 + χ33

2,1

)(
v1,2 + v2,1

)]
dY

=

∫
Y

[
C1133v1,1 + C2233v2,2 + C3333v3,3

]
dY,

(6.21)

and the homogenized properties are

CH1133 =
1

|Y |

∫
Y
C1133 −

[
C1111χ

33
1,1 + C1122χ

33
2,2 + C1133χ

33
3,3

]
dY,

CH2233 =
1

|Y |

∫
Y
C2233 −

[
C2211χ

33
1,1 + C2222χ

33
2,2 + C2233χ

33
3,3

]
dY,

CH3333 =
1

|Y |

∫
Y
C3333 −

[
C3311χ

33
1,1 + C3322χ

33
2,2 + C3333χ

33
3,3

]
dY.

(6.22)
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6.2.1 Vectorization of the equations

Case a) k = l = 1. Using Voigt notation and letting χ11
1 = Φ1, χ

11
2 = Φ2, and

χ11
3 = Φ3, we find∫

Y

[(
C11Φ1,1 + C12Φ2,2 + C13Φ3,3

)
v1,1 +

(
C21Φ1,1 + C22Φ2,2 + C23Φ3,3

)
v2,2

+
(
C31Φ1,1 + C32Φ2,2 + C33Φ3,3

)
v3,3 + C44

(
Φ2,3 +Φ3,2

)(
v2,3 + v3,2

)
+C55

(
Φ1,3 +Φ3,1

)(
v1,3 + v3,1

)
+ C66

(
Φ1,2 +Φ2,1

)(
v1,2 + v2,1

)]
dY

=

∫
Y

[
C11v1,1 + C21v2,2 + C31v3,3

]
dY,

(6.23)

and the homogenized properties are

CH11 =
1

|Y |

∫
Y
C11 −

[
C11Φ1,1 + C12Φ2,2 + C13Φ3,3

]
dY,

CH21 =
1

|Y |

∫
Y
C21 −

[
C21Φ1,1 + C22Φ2,2 + C23Φ3,3

]
dY,

CH31 =
1

|Y |

∫
Y
C31 −

[
C31Φ1,1 + C32Φ2,2 + C33Φ3,3

]
dY.

(6.24)

Equation (6.23) is rewritten in the form∫
Y

{[
v1,1 v2,2 v3,3 v2,3 + v3,2 v1,3 + v3,1 v1,2 + v2,1

]

×



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





Φ1,1

Φ2,2

Φ3,3

Φ2,3 +Φ3,2

Φ1,3 +Φ3,1

Φ1,2 +Φ2,1



}
dY

=

∫
Y

{[
v1,1 v2,2 v3,3 v2,3 + v3,2 v1,3 + v3,1 v1,2 + v2,1

]



C11

C12

C13

0

0

0



}
dY.

(6.25)
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Next we define

ϵ(v) =
[
v1,1 v2,2 v3,3 v2,3 + v3,2 v1,3 + v3,1 v1,2 + v2,1

]T
,

ϵ(Φ) =
[
Φ1,1 Φ2,2 Φ3,3 Φ2,3 +Φ3,2 Φ1,3 +Φ3,1 Φ1,2 +Φ2,1

]T
,

(6.26)

and again using orthotropic elasticity,

C =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


=

[
d1 d2 d3 d4 d5 d6

]
(6.27)

Then equation (6.25) may be written as∫
Y
ϵ(v)TCϵ(Φ)dY =

∫
Y
ϵT (v)d1dY, (6.28)

and the homogenized elastic properties are

CH11 =
1

|Y |

∫
Y

(
C11 − dT1 ϵ(Φ)

)
dY,

CH21 =
1

|Y |

∫
Y

(
C21 − dT2 ϵ(Φ)

)
dY,

CH31 =
1

|Y |

∫
Y

(
C31 − dT3 ϵ(Φ)

)
dY.

(6.29)

Case b) k = l = 2. Letting χ22
1 = Ψ1, χ

22
2 = Ψ2, and χ

22
3 = Ψ3. Doing as done in the

previous section for case a) we find∫
Y
ϵ(v)TCϵ(Ψ)dY =

∫
Y
ϵT (v)d2dY, (6.30)

and the homogenized properties

CH12 =
1

|Y |

∫
Y

(
C12 − dT1 ϵ(Ψ)

)
dY,

CH22 =
1

|Y |

∫
Y

(
C22 − dT2 ϵ(Ψ)

)
dY,

CH32 =
1

|Y |

∫
Y

(
C32 − dT3 ϵ(Ψ)

)
dY.

(6.31)

Case c) k = 1 ,l = 2. Letting χ12
1 = Θ1, χ

12
2 = Θ2, and χ

12
3 = Θ3, we find∫

Y
ϵ(v)TCϵ(Θ)dY =

∫
Y
ϵT (v)d6dY, (6.32)



71

and the homogenized properties

CH66 =
1

|Y |

∫
Y

(
C66 − dT6 ϵ(Θ)

)
dY. (6.33)

Case d) k = 1 ,l = 3. Letting χ13
1 = Ω1, χ

13
2 = Ω2, and χ

13
3 = Ω3, we find∫

Y
ϵ(v)TCϵ(Ω)dY =

∫
Y
ϵT (v)d5dY, (6.34)

and the homogenized properties

CH55 =
1

|Y |

∫
Y

(
C55 − dT5 ϵ(Ω)

)
dY. (6.35)

Case e) k = 2 ,l = 3. Letting χ23
1 = Γ1, χ

23
2 = Γ2, and χ

23
3 = Γ3, we find∫

Y
ϵ(v)TCϵ(Γ)dY =

∫
Y
ϵT (v)d4dY, (6.36)

and the homogenized properties

CH44 =
1

|Y |

∫
Y

(
C44 − dT4 ϵ(Γ)

)
dY. (6.37)

Case f) k = l = 3. Letting χ33
1 = Υ1, χ

33
2 = Υ2, and χ

33
3 = Υ3, we find∫

Y
ϵ(v)TCϵ(Υ)dY =

∫
Y
ϵT (v)d3dY, (6.38)

and the homogenized properties

CH13 =
1

|Y |

∫
Y

(
C13 − dT1 ϵ(Υ)

)
dY,

CH23 =
1

|Y |

∫
Y

(
C23 − dT2 ϵ(Υ)

)
dY,

CH33 =
1

|Y |

∫
Y

(
C33 − dT3 ϵ(Υ)

)
dY.

(6.39)

There is some overlap in the cases, for instance we expect the moduli CH13 = CH31, which

can be compared by using cases a and f. This can provide as a first check on correct

implementation of the theory. Next finite elements are reviewed and used in this theory

and a comparison study is done.
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6.2.2 FEM application

Consider case a) (k=l=1) which yields the governing equation (6.28). We took the

displacements χ11
i = Φi and let Φ =

[
Φ1 Φ2 Φ3

]T
, using the finite element method

displacements take the form [72]

Φi(y) =
∑

NiK(y)Φ̂e
K , (6.40)

where summation is taken over all elements, NiK are interpolation functions known as

the shape functions and depend on the type of element used and Φ̂e
K are the nodal

displacements of element e. The strains are then

ϵ(Φ)ij =
∑

AijKΦ̂
e
K =

∑
BΦ̂e, (6.41)

where B is known as the strain-displacement matrix and

AijK =
1

2

(∂NiK

∂yj
+
∂NjK

∂yi

)
. (6.42)

Applying equation (6.41) to (6.28) we find [1, 70]∫
Y
BTCB dY Φ̂ =

∫
Y
BTd1 dY, (6.43)

where all of the element nodal displacements, Φ̂e, have been assembled into a global

displacement vector, Φ̂. Equation (6.43) is rewritten as

KΦ̂ = f , (6.44)

where

K =

∫
Y
BTCBdY, and f =

∫
Y
BTd1 dY, (6.45)

which is the global set of equations used in the finite element analysis. As noted by [70]

if we consider just a single element the force vector has the form

f ei =

∫
Y e

BeT

i d1 dY, (6.46)

where i denotes the node of element e and BeT
i is the strain-displacement matrix for

node i of element e. When the force vector in equation (6.46) is compared to an initial

strain loading defined as [73]

{fε0i }e =
∫
Y e

BeTCε0 dY, (6.47)
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we find

Cε0 = d1 →



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


.



ε011

ε022

ε033

2ε023

2ε013

2ε012


=



C11

C12

C13

0

0

0


, (6.48)

which implies

ε011 = 1, else ε0ij = 0, (6.49)

note that this was case a) for k = l = 1. Similarly if we continue the analysis on the

other cases we find for each case

ε0kl = 1, else ε0ij = 0, for case k, l. (6.50)

That is for case b) k = l = 2 → ε022 = 1, for c) k = 1, l = 2 → ε012 = 1, and so

on. Unfortunately many FEM packages do not come with an initial strain loading

option but recent versions of COMSOL have added this capability. Lastly it should

be noted that the boundary conditions for this analysis are periodic conditions on the

displacements such that for a cubic unit cell the left and right sides have the same

displacement, the top and bottom, and the front and back pairs.

Triangular elements

We first used MATLAB to implement the finite element homogenization technique

and benchmarked our results with [1]. Using the PDE toolbox in MATLAB a mesh

containing two dimensional triangular elements can be made. The periodic structure

consists of a unit square cell containing a 0.4 x 0.6 void. This example was studied by

both [1] and [2]. Figure 6.5 contains the geometry and was created and meshed using

the PDE toolbox in MATLAB. Next we must review triangular finite elements to form

the matrix equations and to apply the unit initial strains for the various cases. It should

be noted that in two dimensions only the cases k = l = 1, k = l = 2 and k = 1, l = 2
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Figure 6.5: Unit cell studied in [1] consists of a unit square containing a 0.4 x 0.6 void,
figure was created and meshed using the PDE toolbox in MATLAB

need to be studied. As a reference on finite elements [3] was used for theory as well as

codes which were adapted for the homogenization problem. Consider the triangular

Figure 6.6: Triangular element with nodes i, j, and m, reference [3] used here.

element of figure 6.6 for which node i has coordinates (xi, yi). The strain-displacement
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matrix for this element is

Be =
1

2A


yj − ym 0 ym − yi 0 yi − yj 0

0 xm − xj 0 xi − xm xj − xi

xm − xj yj − ym xi − xm ym − yi xj − xi yi − yj

 . (6.51)

Next we apply equation (6.46) to find the forces needed on each element to produce a

unit initial strain which is then

f e = AeBeTdi, (6.52)

whereAe is the area of the element and di is the vector of elastic constants corresponding

to the case being evaluated. For instance in two dimensions and considering plane

strain problems, that is that the depth of the geometry into the page is relatively large

compared to other dimensions, we have

C =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 =


C11 C12 0

C12 C22 0

0 0 C66

 =
[
d1 d2 d3

]
, (6.53)

where E is the material’s Young’s modulus and ν the Poisson ratio. The element

stiffness is found by

ke = AeBeTCBe. (6.54)

Then the global matrix equation (6.44) can be formed by assembling the forces from

equation (6.52) and stiffnesses from equation (6.54). The boundary conditions on the

unit cell are periodic and as derived in [1] they can be broken down into two cases. As

noted before for the two dimensional problem only cases (k = l = 1), (k = l = 2), and

(k = 1, l = 2) need to be solved, for (k = l = 1) and (k = l = 2) the boundary conditions

are rollers on the outer edge of the unit cell, that is the displacement normal to the

edges is zero. For the case (k = 1, l = 2) the condition is perpendicular rollers, meaning

on the boundary displacement parallel to the edge is zero. These conditions can be

easily applied to the global equation by setting the corresponding nodal displacements

to zero which has the effect of removing rows and columns corresponding to that degree

of freedom. After the nodal displacements are found the homogenized properties given
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in equation (6.29) are found by summing, for example

CH11 =
1

|Y |
∑

C11 − dT1 B
eΦe, (6.55)

where the summation is taken over all the elements.

For the example given by [2, 1] the elastic properties of the material used were

C11 = C22 = 30 and C12 = C66 = 10, with these properties the homogenization

technique produced the results of table 6.1. Implementing the homogenization theory

Elements CH11 CH12 CH22 CH66 Reference

20x20 4-node 13.015 3.241 17.552 2.785 [2]
3rd adapt. 12.844 3.131 17.421 2.668 [2]
436 8-node 12.839 3.139 17.422 2.648 [1]

Table 6.1: Table is directly from [1] for which the unit cell of figure 6.5 was used and
compared against the results of [2].

using MATLAB with 3-node triangular elements resulted in table 6.2 for which we see

agreement. Note that using lower order elements such as the linear triangular element

used here requires more elements than those reported by [1] or [2] as they used higher

order quadrilateral elements. Lastly using MATLAB for finite element analysis is quite

tedious as FEM packages such as ANSYS and COMSOL have efficient solvers capable

of inverting equation (6.44) quickly and have the added benefit of a graphics user

interface. Our last example using 16,256 elements required approximately 268 minutes

to compute.

Elements CH11 CH12 CH22 CH66
242 13.385 3.404 17.810 3.065
1,016 13.035 3.250 17.562 2.794
4,064 12.903 3.177 17.469 2.695
16,256 12.844 3.140 17.425 2.652

Table 6.2: Results based on a MATLAB code using linear triangular elements. Nodal
displacement solutions located in figures 6.7, 6.8 and 6.9.

Quadrilateral elements

The limitations of MATLAB previously described are eliminated through the use of

ANSYS Mechanical APDL FEM package, which features an optimized solver that can
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Figure 6.7: Displacement solution for
(k = l = 1) corresponding to ε011 = 1.
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Figure 6.8: Displacement solution for
(k = l = 2) corresponding to ε022 = 1.
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Figure 6.9: Displacement solution for
(k = 1, l = 2) corresponding to ε012 = 1.

implement more complex elements. Unfortunately the version of ANSYS available did

not have a built in method of implementing a unit initial strain. The strategy devised

was to use ANSYS to construct the geometry and mesh then export the mesh data

into a MATLAB code which would compute the nodal forces necessary to implement a

unit initial strain found from equation (6.46). The nodal forces are then inserted back

into ANSYS in a quick manner by using batch mode. Then solving the system the

strains and areas necessary to compute the homogenized properties are exported back

into MATLAB following equation (6.55).

In order to find the nodal forces we detail the derivation here using 4-node quadri-

lateral elements. In the previous section we used triangular elements for which the
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Figure 6.10: Quadrilateral element in
terms of the global coordinates (xi, yi).

Figure 6.11: Quadrilateral element in
terms of the natural coordinates (ζ, η).

strain-displacement matrix can be obtained easily due to the simplicity of the element,

here we will have to use the shape functions and natural coordinates. The natural coor-

dinates are used to map an irregular element in global coordinates (xi, yi), figure 6.10,

to a unit square in (ζ, η) coordinates, figure 6.11, which helps simplify the analysis.

The shape functions in natural coordinates are [3]

N1 =
1

4
(1− ζ)(1− η), N2 =

1

4
(1 + ζ)(1− η),

N3 =
1

4
(1 + ζ)(1 + η), N4 =

1

4
(1− ζ)(1 + η).

(6.56)

We can find the nodal forces necessary to implement a unit strain by defining

B =
[
B1 B2 B3 B4

]
, (6.57)

where

Bi =


a∂Ni∂ζ − b∂Ni∂η 0

0 c∂Ni∂η − d∂Ni∂ζ

c∂Ni∂η − d∂Ni∂ζ a∂Ni∂ζ − b∂Ni∂η

 (6.58)
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, and

a =
1

4

(
y1(ζ − 1) + y2(−1− ζ) + y3(1 + ζ) + y4(1− ζ)

)
,

b =
1

4

(
y1(η − 1) + y2(1− η) + y3(1 + η) + y4(−1− η)

)
,

c =
1

4

(
x1(η − 1) + x2(1− η) + x3(1 + η) + x4(−1− η)

)
,

d =
1

4

(
x1(ζ − 1) + x2(−1− ζ) + x3(1 + ζ) + x4(1− ζ)

)
.

(6.59)

Following equation (6.47), let

di = Cε0i , (6.60)

where for the given case ε0i takes on the values
1

0

0

 ,

0

1

0

 ,

0

0

1

 . (6.61)

Lastly the integral of equation (6.47) is done in the natural coordinates as

f e =

1∫
−1

1∫
−1

BTdi d ζ d η. (6.62)

Following this procedure the nodal force vector required to implement an initial strain

for the 4-node quadrilateral element is

f e =
1

2



(y2 − y4)d1 + (x4 − x2)d3

(x4 − x2)d2 + (y2 − y4)d3

(y3 − y1)d1 + (x1 − x3)d3

(x1 − x3)d2 + (y3 − y1)d3

(y4 − y2)d1 + (x2 − x4)d3

(x2 − x4)d2 + (y4 − y2)d3

(y1 − y3)d1 + (x3 − x1)d3

(x3 − x1)d2 + (y1 − y3)d3



=



f1x

f1y

f2x

f2y

f3x

f3y

f4x

f4y



, (6.63)

where dj is the j
th element of di from equation (6.60) corresponding to the particular

case of initial strain and fmx is the nodal force at node m in the x direction and fmy

the nodal force at node m in the y direction. It should be noted that equation (6.63)

is in terms of the global coordinates.
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Elements CH11 CH12 CH22 CH66
304 12.941 3.201 17.496 2.732
1,282 12.857 3.149 17.436 2.664
11,889 12.814 3.118 17.402 2.630
107,001 12.801 3.107 17.392 2.620

Table 6.3: Results from ANSYS using the 4-node quadrilateral element.

Hassani example using COMSOL

The last FEM package we turned to was COMSOL which has a built in method of

adding desired initial strains. Using the same example as before, figure 6.5, we bench-

mark our application of the static homogenization for which table 6.4 shows convergence

based on the number of elements used. Here we see quicker convergence since we are

using 6-node quadratic triangular elements. It should be noted that this method is eas-

Elements CH11 CH12 CH22 CH66
70 13.083 3.292 17.603 2.801
500 12.887 3.173 17.459 2.680
4,940 12.819 3.123 17.407 2.633
19,330 12.807 3.112 17.397 2.624
77,328 12.801 3.107 17.392 2.620

Table 6.4: Results from COMSOL using triangular elements.

ily implemented in COMSOL where the homogenization integral, for example equation

(6.29), is done within COMSOL and as compared with the MATLAB implementation

the longest solution time was on the order of half a minute. This ends the review of

static methods that produce the effective elastic moduli of periodic structures. The

next chapter focuses on reviewing methods that can perform this homogenization task

in a dynamic sense by considering Bloch-Floquet conditions on a unit cell.
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Chapter 7

Dynamic homogenization

This chapter focuses on the problem of solving dispersion relations which characterizes

the relation between the wave vector and frequency dependence, ω(k), for periodic

structures. First the concept of the Brillouin zone is discussed in section 7.1. It is

used to describe the range of wave vectors that should be considered when analyzing

a medium with periodic structure. In section 7.2 the plane wave expansion method

is reviewed for structures made from fluids only. In looking for solid structures that

can accommodate Pentamode behavior elastic models are studied. The first being a

lattice constructed of masses and springs, where the work in [74] is reviewed in section

7.3. In section 7.4 we review beam theories including Euler-Bernoulli, Rayleigh and

Timoshenko. This is done as beams are used as the building blocks of the theories used

in sections 7.5, 7.6, and 7.7. The work in section 7.5 uses Euler-Bernoulli beams and has

not been seen in the literature. For comparison to more standard procedures, section

7.6 deals with Timoshenko beams and the development of reflection and transmission

matrices, here the work of [6] is reviewed. Lastly, section 7.7 reviews the implementation

of Bloch-Floquet problems using finite elements, where the work of [75] is reviewed. The

motivation of this chapter is to understand the derivation of theories used to create

dispersion curves. This will give us a tool to further investigate material properties of

periodic media as well as a check on the static properties that the theories of chapter

6 produce.

7.1 The Brillouin zone and k space

In Bloch-Floquet problems we seek dispersion curves which define at what frequencies

a medium will allow for wave propagation as a function of the wave vector. As written
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by Léon Brillouin in [4] the wave vector, k, can be confined to a k-space defined by

the irreducible Brillouin zone such that any solution involving k outside this zone is

repeated via a reflection based on the symmetry of the structure. These zones are

found by considering a structure’s direct and reciprocal lattice vectors. The direct

lattice vectors, defined by di ∀ i ∈ {1, 2, 3} in three dimensions, define a structure’s

geometry and class such as cubic or hexagonal. For example the direct lattice vectors

of a two dimensional hexagonal lattice are shown in Figure 7.1. The vectors are such

that any point defined by n1d1 + n2d2 for ni being an integer is another lattice point.

The structure is then found by connecting the lattice points and drawing perpendicular

bisecting lines, as done in Figure 7.1. The Brillouin zone is then defined by the

Figure 7.1: Direct lattice space with direct lattice vectors d1 and d2. The connection
between the lattice points and the structure they define is made by connecting lattice
points, shown here with dashed lines, and drawing perpendicular bisecting lines between
two lattice points. Also defined here in red dashed lines is a possible choice of a primitive
cell to be considered.

reciprocal lattice vectors, bi, i ∈ {1, 2, 3}, which have the property bi · dj = δij (or

bi ·dj = 2πδij depending on the formulation), where δij is the Kronecker delta function.

In two dimensions we can define the matrices

D =

d1x d1y

d2x d2y

 and B =

b1x b2x

b1y d2y

 , (7.1)

then

B ·D = I,→ B = D−1. (7.2)
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Alternatively if we consider three dimensional problems then the relation between the

direct and reciprocal lattice vectors is written as [76]

b1 =
d2 × d3

d1 · (d2 × d3)
, b2 =

d3 × d1

d1 · (d2 × d3)
, b3 =

d1 × d2

d1 · (d2 × d3)
. (7.3)

A plane wave traveling through the medium will have the form

ψ = Aei(ωt−2πa·x), (7.4)

where x is a position vector and a defines the direction and wavelength of the propa-

gating wave, such that

|a|2 = a21 + a22 =
1

λ2
, (7.5)

where λ is the wavelength. Since the medium may be discontinuous we let the position

vector be defined only at lattice points x = n1d1 + n2d2. We then simplify equation

(7.4) by taking

2πa · x = 2πa · (n1d1 + n2d2) = n1k1 + n2k2, (7.6)

where k1 = 2πa · d1 and k2 = 2πa · d2. Equation (7.4) may then be rewritten as

ψ = Aei(ωt−k1n1−k2n2). (7.7)

The importance of Brillouin zones comes into play since we can replace the components

of the wave vector, k =
[
ki kj

]T
, by

k
′
i = ki + 2πmi, ∀ mi = integers, (7.8)

without changing the plane wave in equation (7.7). This is because

ei(−k1n1−k2n2) = ei(−(k1+2πm1)n1−(k2+2πm2)n2) = ei(−k1n1−k2n2)ei(−2πm1n1)ei(−2πm2n2)

= ei(−k1n1−k2n2),

(7.9)

since mi and ni are both integers. The change to k
′
i corresponds to the wave vector

changing to

a
′
= a+m1b1 +m2b2, (7.10)

which is seen from equation (7.6) and the property di · bj = δij . Looking back at

equation (7.4) we see that the direction of the wave and magnitude of the wave length,
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equation (7.5), now depends on the integers m1 and m2 that define a
′
. Any wave vector

of the form a
′
= a+m1b2+m2b2 corresponds to the same plane wave traveling through

the medium, figure 7.2 details this ambiguity pictorially. Brillouin then constructed

Figure 7.2: As stated by Brillouin, [4], this example shows the ambiguity of the wave
vector, a, in reciprocal lattice space created due to the integers m1 and m2 in equation
(7.9). Any choice of the wave vector a

′
= a +m1b1 +m2b2 corresponds to the same

plane wave traveling through the medium.

rules for choosing the area for which the wave vector must be confined, they include

that the area be independent of the basis coordinates, allow for wave propagation in

all directions, and requires that the longest wave length must be accommodated for

[4]. This means that a complete period for every possible direction of propagation is

contained within the zone. To construct a zone that accomplishes these requirements

Brillouin placed the origin in the center of the zone and confined the space by drawing

perpendicular bisectors of the lines joining each point in the reciprocal lattice space,

as shown in figure 7.3. If the lattice structure contains symmetries the zones can be

further restricted to an irreducible Brillouin zone, this lets us consider a smaller k-space

that contains all solutions of the wave and whose perimeter is known as the k-path. In

two dimensions there are several examples including those in figure 7.4. It is important

to note that in figure 7.4 the definition of the reciprocal lattice vectors is di ·bj = 2πδij ,

this eliminates having to multiply the reciprocal space by a factor of 2π as Brillouin

did [5].
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Figure 7.3: Like constructing a structure in direct lattice space as done in figure 7.1.
The Brillouin zones are constructed much the same way only now done in reciprocal
lattice space where perpendicular bisecting lines are drawn to construct the zones.
Brillouin zones shown by enclosed regions of solid lines.

7.2 Plane wave expansion for acoustic media

Here we use the plane wave expansion method to formulate the Bloch Floquet prob-

lem using acoustic media. Although we do not use this method later in the thesis for

development of metamaterial devices it is an important first step in learning how to

implement Bloch-Floquet conditions. We start with a simple analysis of one dimen-

sional structures in section 7.2.1 and then continue on to structures with two or more

dimensions in section 7.2.2. As expected the problem boils down to solving a general-

ized eigenvalue problem. Simple examples are considered however numerical solutions

are left to be conducted by the reader.

7.2.1 One dimension

We start with the simplest example of Bloch-Floquet problems in in one dimension using

the plane wave expansion method. The goal of this section is to understand the dynamic

properties of one dimensional metamaterials made from at least two differing fluids,

characterized by a density and bulk modulus, with periodic structure. In using the

plane wave expansion method geometric details are dealt with by a Fourier expansion.

Consider figure 7.5 and let α be the material properties, either the bulk modulus Ki
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Figure 7.4: Irreducible Brillouin zones for square and hexagonal lattice structures,
additional zones can be found in [5]. Here the definition of the reciprocal lattice vectors
is di · bj = 2πδij , this eliminates having to multiply the reciprocal space by a factor of
2π as Brillouin did.

or the density ρi. Due to the periodic nature of the system, α(x) = α(x+ L), where L

is the period of the structure. We can then write the bulk modulus and density as a

Fourier series for which

K(x) =

∞∑
n=−∞

Kne
ignx, Kn =

1

L

L∫
0

K(x)e−ignx dx,

ρ(x) =

∞∑
n=−∞

ρne
ignx, ρn =

1

L

L∫
0

ρ(x)e−ignx dx,

(7.11)

where

gn =
2nπ

L
. (7.12)

In the example for figure 7.5 we find

Kn =
1

L

[ x1∫
0

K1e
−ignx dx+

x2∫
x1

K2e
−ignx dx

]
=

1

L

[K1

ign
(1− e−ignx1) +

K2

ign
(e−ignx1 − e−ignx2)

]
,

ρn =
1

L

[ x1∫
0

ρ1e
−ignx dx+

x2∫
x1

ρ2e
−ignx dx

]
=

1

L

[ ρ1
ign

(1− e−ignx1) +
ρ2
ign

(e−ignx1 − e−ignx2)
]
.

(7.13)
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Figure 7.5: Example of one dimensional, periodic structure to be considered.

Next the acoustic equation is reduced to an eigenvalue problem through the application

of Bloch-Floquet conditions. The acoustic equation in one dimension is

∇ · σ = ρü, → d

dx
(K(x)

du

dx
) + ρ(x)ω2u = 0, (7.14)

instead of writing it in one line we can split it up into two equations where

σ = K(x)
du

dx
,

d

dx
σ = −ρ(x)ω2u. (7.15)

Then we write the displacement, u(x), and the stress, σ(x), as

u(x) = U(x)eikx, σ(x) = S(x)eikx, (7.16)

where U(x) and S(x) are periodic functions with the form

U(x) =

∞∑
n=−∞

Une
ignx, S(x) =

∞∑
n=−∞

Sne
ignx. (7.17)

Combining equations (7.11), (7.15)1, (7.16), and (7.17) we find∑
n

Sne
ignx =

∑
m

Kme
igmx

∑
l

i(kl + k)Ule
iglx. (7.18)

Comparing coefficients in the exponential terms we find n = l +m, which means

Sn =
∑
l

i(k + kl)Kn−lUl. (7.19)

Then by combining equations (7.11), (7.15)2, (7.16), and (7.17) we find∑
n

i(gn + k)Sne
ignx = −ω2

∑
m

ρme
igmx

∑
l

Ule
iglx, (7.20)
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which leads to

i(gn + k)Sn = −ω2
∑
l

ρn−lUl. (7.21)

Combining equations (7.19) and (7.21) yields

∑
l

[
(k + gl)Kn−l(k + gn)− ρn−lω

2

]
Ul = 0, (7.22)

which is a general eigenvalue problem and can be solved for the example shown in figure

7.5 by using equations (7.13)1 and (7.13)2. Next we reformulate equation (7.22) into

a matrix equation by taking a discrete summation in equation (7.22) for the indices l

and n over {−N,−N + 1, . . . , N − 1, N}. The matrix equation is then

[DAD− ω2B]U = 0, (7.23)

where D is a diagonal matrix with entries {D1, D2, . . . , D2N+1}, and A, D, B are all

of size (2N + 1) by (2N + 1). We then arrange U as follows

U =



U−N

U−N+1

...

UN−1

UN


, (7.24)

the structure of the first term of equation (7.23) is then

DAD =



D1A11D1 D1A12D2 . . . D1A1(2N+1)D2N+1

D2A21D1 . . . . . . D2A2(2N+1)D2N+1

...
...

...
...

D2N+1A(2N+1)1 . . . . . . D(2N+1)A(2N+1)(2N+1)D2N+1


. (7.25)

Comparison of equations (7.25) and (7.22) gives

D = diag{D1 = k+g−N , D2 = k+g−N+1, . . . , D2N = k+gN−1, D2N+1 = k+gN},

(7.26)
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and the form of A is then

A =



K0 K−1 K−2 . . . K−2N+1 K−2N

K1 K0 K−1 . . . K−2N+2 K−2N+1

K2 K1 K0 . . . K−2N+3 K−2N+2

...
...

...
...

...
...

K2N−1 K2N−2 K2N−3 . . . K0 K−1

K2N K2N−1 K2N−2 . . . K1 K0


. (7.27)

Since we are using complex Fourier expansions we see thatA is Hermitian from equation

(7.27), because of this we can make use of the toeplitz MATLAB command. We can

then solve equation (7.23) for k and ω pairs yielding the dispersion relations of the

metamaterial, from there important characteristics can be found such as band gaps and

material group velocities. We leave the discussion there and continue the development

further.

7.2.2 Two or more dimensions

Again we must expand the material parameters by a Fourier series, for which we have

the periodicity

f(x) = f(x+X), (7.28)

where x is a vector describing a spatial coordinate and X is a vector describing the

dimensions of a single periodic cell. The Fourier series expansion in multiple dimensions

is written as

f(x) =
∑
k

fke
ik·x, fk =

1

V

∫
V

f(x)e−ik·x dV, (7.29)

where V is either the volume of the unit cell in three dimensions or the area of the unit

cell in two dimensions [77]. Also note that this definition requires that k · X = 2πn

for integer n, this is from the periodicity condition (7.28). In multiple dimensions the

displacement is written in the form

u = U(x)eik·x, U(x) =
∑
g

Uge
ig·x, (7.30)
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where as an example in two dimensions, g may be written as

g = g1e1 + g2e2 =
2nπ

a
e1 +

2mπ

b
e2. (7.31)

where a is the dimension of the unit cell in the 1 direction and b is the dimension of

the unit cell in the 2 direction. This means the summation in equation (7.30) is really

a double summation over m and n. The strain, ε = ∇u↔ εi =
∂u
∂xi

, is then

ε =
∑
g

i(g + k)Uge
i(g·x+k·x). (7.32)

The relation for the stress is σ = µ · ε↔ σi = µijεj , where

µ =
∑
g
′

µg′eig
′ ·x, (7.33)

the stress is then

σ =
∑
g′

∑
g

Ugµg′ · i(g + k)ei(g
′
+g)·xeik·x. (7.34)

We rewrite the stress in order to simplify the summation where we let

σ =
∑
g′′

σg′′eig
′′ ·xeik·x, σg′′ =

∑
g

µg′′−g · i(g + k)Ug. (7.35)

Next we use the equilibrium equation, ∇ · σ = ρü, which gives

∑
g

i(k+ g) · σgei(g+k)·x = −ω2
∑
g
′

∑
g
′′

ρg′eig
′ ·xUg′′ei(g

′′
+k)·x, (7.36)

analysis of the exponential factors of (7.36) has g = g
′
+ g

′′
, which allows us to write

i(k+ g) · σg = −ω2
∑
g
′′

ρg−g′′Ug′′ . (7.37)

Combining equations (7.35) and (7.37) we find the generalized eigenvalue problem for

which ∑
g
′

[
(k+ g) · µg−g′ · (k+ g

′
)− ω2ρg−g′

]
Ug′ = 0. (7.38)

Again solving equation (7.38) yields the dispersion relations for ω(k). We consider the

two dimensional example shown in figure 7.6. First we analyze the terms of µ, and
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consider an acoustic medium by allowing the shear modulus to go to zero. The normal

stresses in the medium are σi = µijεj which can be written in matrix notation withσ1
σ2

 = K(x, y)

1 0

0 1

ε1
ε2

 . (7.39)

Analyzing equation (7.38) we will take the following definitions

k = k1e1 + k2e2, g =
2mπ

a
e1 +

2nπ

b
e2, g

′
=

2rπ

a
e1 +

2sπ

b
e2, (7.40)

and rewrite it as∑
r

∑
s

[
Km−r,n−s

[
(k1 + g(x)m )(k1 + g(x)r ) + (k2 + g(y)n )(k2 + g(y)s )

]
− ω2ρm−r,n−s

]
Ur,s = 0,

(7.41)

with

g(x)r =
2πr

a
, g(x)m =

2πm

a
, g(y)s =

2πs

b
, g(y)n =

2πn

b
. (7.42)

We then find Ki,j and ρi.j for equation (7.41) by considering the example shown in

figure 7.6. The Fourier coefficients of the bulk modulus are

Figure 7.6: Example of two dimensional, unit cell for a periodic structure consisting of
centered inclusion of material with constant bulk modulus, K+K0, and density, ρ+ρ0,
surrounded by material with bulk modulus, K0, and density, ρ0.

Ki,j =

1/2∫
−1/2

1/2∫
−1/2

K0e
−i(gix+gjy) dx d y +

c/2∫
−c/2

c/2∫
−c/2

Ke−i(gix+gjy) dxd y, (7.43)
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we then find

K0,0 = K0 + c2K,

Ki,0 =
2cK sin

gic

2
gi

, for {i} ̸= 0

K0,j =
2cK sin

gjc

2
gj

, for {j} ̸= 0

Ki,j =
4K sin

cgi
2

sin
cgj
2

gigj
for {i, j} ̸= 0.

Similarly

ρ0,0 = ρ0 + c2ρ,

ρi,0 =
2cρ sin

gic

2
gi

, for {i} ̸= 0

ρ0,j =
2cρ sin

gjc

2
gj

, for {j} ̸= 0

ρi,j =
4ρ sin

cgi
2

sin
cgj
2

gigj
for {i, j} ̸= 0.

This approach allows for the study of metamaterials created by fluids only. We leave

the discussion there with numerical examples being left for the reader to solve. In the

next section we consider materials described by networks of masses and springs.

7.3 Mass spring model

Here we consider an analysis which only uses masses and the longitudinal stiffness of

the elements of the primitive cell similar to the study conducted in [74]. We consider

structures that have only three associated struts connected to a center junction. This is

the property of hexagonal foam structures, studied in section 6.1. We will later consider

adding more complexity to the problem but here this is done as a learning experience

of developing models and applying Bloch-Floquet conditions. The equation of motion

of a spring is

m
d2 x

d t2
= −µjx, (7.44)

where x is the amount of stretch in the spring and m is an attached mass. Applying

this equilibrium equation to the reference configuration of the unit cell in figure 7.7 we

find the wave equation at the point a0 will be
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Figure 7.7: Periodic cell geometry to be considered.

3∑
j=1

µjAj(u0 − uj) = ω2m0u0, (7.45)

where

Aj = (a0 − aj)(a0 − aj)
T ∀ j = 1, 2, 3, (7.46)

and µj is the stiffness of segment [a0,aj ]. The Floquet periodic conditions are

uj = eik·gju1, (7.47)

where gj = aj − a1. Using equation (7.47) in (7.45) leads to

3∑
j=1

µjAju0 −
3∑
j=1

eik·gjµjAju1 = ω2m0u0. (7.48)

The wave equation at point a1 = a
′
0 is

3∑
j=1

µ
′
jBj(u0

′ − u
′
j) = ω2m1u

′
0, (7.49)

where Bj = (a
′
0 − a

′
j)(a

′
0 − a

′
j)
T and µ

′
j is the stiffness of segment [a

′
0,a

′
j ]. It is clear

that µj = µ
′
j . Comparing elements of Bj and Aj we write the positions

a0 =

0
0

 = a
′
1, a1 = L

cos θ
sin θ

 = a
′
0, a2 = L

− cos θ

sin θ

 ,
a3 = L

 0

−1

 , a
′
2 = L

2 cos θ
0

 , a
′
3 = L

 cos θ

1 + sin θ

 ,
(7.50)
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Figure 7.8: Periodic cell geometry to be considered.

and find

Aj = Bj . (7.51)

We can then rewrite equation (7.49) as

3∑
j=1

µjAj(u1 − u
′
j) = ω2m1u1, (7.52)

Floquet periodic conditions are now

u
′
j = eik·g

′
ju0, g

′
j = a

′
j − a0, (7.53)

comparing g
′
j and gj we find

gj = −g
′
j , (7.54)

equation (7.53) can then be written as

u
′
j = e−ik·gju0, (7.55)

then the wave equation at point a1 is

−
3∑
j=1

e−ik·gjµjAju0 +
3∑
j=1

µjAju1 = ω2m1u1. (7.56)

Combining equations (7.48) and (7.56) we find
3∑
j=1

µjAj −
3∑
j=1

eik·gjµjAj

−
3∑
j=1

e−ik·gjµjAj

3∑
j=1

µjAj


u0

u1

 = ω2

m0u0

m1u1

 . (7.57)
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Which can be simplified into a more standard form with

(
K− ω2M

)u0

u1

 = 0, M = diag(m0,m1), (7.58)

where

K =
3∑
j=1

Kj , Kj = µjvjv
+
j diag(Aj ,Aj), vj =

 1

−exp(−ik · gj)

 . (7.59)

Note that Kj = K+
j ⇒ K = K+, where superscript + denotes Hermitian transpose.

Again numeric examples are left for the reader and we wish to add the physics of

bending into the system and to do so we start by reviewing beam theories next.

7.4 Review of beam theories

In this section we review the derivation for several different types of beam theories using

[78] as reference. Longitudinal motion is reviewed in section 7.4.1 and transverse bend-

ing is covered in section 7.4.2. Beam theories covered include Euler-Bernoulli, Rayleigh

and Timoshenko. The Euler-Bernoulli model is used in section 7.5, while Timoshenko

theory is used later in section 7.6 in application to transmission and reflection matrices.

7.4.1 Longitudinal motion

We consider elastic rods with cross-sectional area A(x), density ρ(x), Young’s modulus

E(x), and applied distributed axial forces p(x, t). An equilibrium of the axial forces on

a differential beam element is shown in figure 7.9. In this theory we neglect Poisson’s

Figure 7.9: Equilibrium of the balance of axial forces on a differential beam element.
N(x, t) is an axial force and p(x, t) is a distributed axial load.

effect and understand the beam as a one-dimensional continuous medium where the
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axial stress is written as

σ(x, t) = E(x)ε(x, t) = E(x)
∂u(x, t)

∂x
, (7.60)

such that the axial force is

N(x, t) = A(x)σ(x, t) = E(x)A(x)
∂u(x, t)

∂x
. (7.61)

Force balance on a differential element as depicted in figure 7.9 yields

p(x, t)dx+
∂N(x, t)

∂x
dx = m(x)

∂2u(x, t)

∂t2
dx, (7.62)

rearranging terms and using equation (7.61) we find

m(x)
∂2u(x, t)

∂t2
− ∂

∂x

(
E(x)A(x)

∂u(x, t)

∂x

)
= p(x, t). (7.63)

This is the full equation of longitudinal motion in a beam.

7.4.2 Transverse motion in beams

We start with Kirchhoff’s assumptions which are: 1) normals remain straight, 2) nor-

mals remain unstretched, and 3) normals remain normal. Under these assumptions

Figure 7.10: Motion of a beam under Kirchoff’s three assumptions, where u(x, t) is
the axial displacement and w(x, t) is the transverse displacement as measured from the
neutral (z = 0) surface.
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the displacements are taken as

ux(x, z, t) = u(x, t)− zϕ(x, t),

uz(x, z, t) = w(x, t),

(7.64)

where ϕ(x, t) is the rotation of the cross section of the beam, u(x, t) and w(x, t) are

the axial and transverse displacements respectively as measured from the neutral axis,

z = 0 surface. The strain εx = ∂ux
∂x is then

εx(x, z, t) =
∂u(x, t)

∂x
− zκ(x, t), κ(x, t) =

∂ϕ(x, t)

∂x
, (7.65)

where κ(x, t) is the curvature of the neutral axis of the beam. Also note that the shear

strain is

εxz(x, z, t) =
1

2

(∂ux(x, z, t)
∂z

+
∂uz(x, z, t)

∂x

)
=

1

2

(∂w(x, t)
∂x

− ϕ(x, t)
)
. (7.66)

Then to find the axial force in the beam, N(x, t) we have

N(x, t) =

∫
A
E(x)εx(x, z, t)dA = E(x)

∂u(x, t)

∂(x)
A(x)− E(x)κ(x, t)

∫
A
z dA, (7.67)

since z is measured from the x-axis which is located at the neutral axis or area centroid

of the beam we find
∫
A z dA = 0. We then have

N(x, t) = E(x)A(x)
∂u(x, t)

∂x
. (7.68)

The resultant moment in the beam is

Figure 7.11: Axial stress distribution within the beam.

M(x, t) =

∫
A
σx(x, z, t)z dA, σx(x, z, t) = E(x)εx(x, z, t), (7.69)
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inserting the result of equation (7.65) we have

M(x, t) = E(x)
∂u(x, t)

∂x

∫
A
z dA− E(x)

∂ϕ(x, t)

∂x

∫
A
z2 dA,

= −E(x)I(x)
∂ϕ(x, t)

∂x
I(x) =

∫
A
z2 dA.

(7.70)

where I is the moment of inertia. Lastly the resultant shear force on a section of the

beam is

Q(x, t) =

∫
A
σxz(x, z, t) dA. (7.71)

We next consider the equilibrium of the moments and transverse forces on a differential

element of the beam, as shown in figure 7.12, which yields

Figure 7.12: Equilibrium balance of transverse forces and moments on a differential
beam element. ϱ(x, t) is an applied moment, q(x, t) is an applied transverse force.

q(x, t) +
∂Q(x, t)

∂x
= m(x)

∂2w(x, t)

∂t2
,

ϱ(x, t)− ∂M(x, t)

∂x
+Q(x, t) +

1

2

∂Q(x, t)

∂x
dx = ρ(x)I(x)

∂2ϕ(x, t)

∂t2
.

(7.72)

The first equation of (7.72) is the balance of transverse forces the second is the balance

of moments. Considering linear theory the term 1
2
∂Q(x,t)
∂x dx is dropped from the balance

of moments. We then have as our equilibrium equations

q(x, t) +
∂Q(x, t)

∂x
= m(x)

∂2w(x, t)

∂t2
,

Q(x, t) =
∂M(x, t)

∂x
+ ρ(x)I(x)

∂2ϕ(x, t)

∂t2
− ϱ(x, t).

(7.73)

Combining the two balances and using M(x, t) = −E(x)I(x)∂ϕ(x,t)∂x , we find

q(x, t)− ∂ϱ(x, t)

∂x
− ∂2

∂x2
(
E(x)I(x)

∂ϕ(x, t)

∂x

)
= m(x)

∂2w(x, t)

∂t2
− ∂

∂x

(
ρ(x)I(x)

∂2ϕ(x, t)

∂t2
)
,

(7.74)

which is the full equation of bending motion for a beam.
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Euler-Bernoulli theory

In this theory small angle approximation is used such that

ϕ(x, t) ≈ ∂w(x, t)

∂x
, (7.75)

note that this approximation causes the shear strain εxz as defined in (7.66) to be zero,

which means shear deformation is neglected. Additionally the effect of rotary inertia

is ignored, i.e. Iρ = ρ(x)I(x) is assumed to be zero. Applying these approximations to

equation (7.74) yields

m(x)
∂2w(x, t)

∂t2
+

∂2

∂x2
(
E(x)I(x)

∂2w(x, t)

∂x2
)
= q(x, t)− ∂ϱ(x, t)

∂x
. (7.76)

Rayleigh theory

Similar to the Euler theory the small angle approximation is used, ϕ(x, t) = ∂w(x,t)
∂x ,

and we keep the effects of rotary inertia. Applying this to equation (7.74) gives

m(x)
∂2w(x, t)

∂t2
− ∂

∂x

(
ρ(x)I(x)

∂3w(x, t)

∂x∂t2
)

+
∂2

∂x2
(
E(x)I(x)

∂2w(x, t)

∂x2
)
= q(x, t)− ∂ϱ(x, t)

∂x
.

(7.77)

7.4.3 Timoshenko theory

Unlike Euler and Rayleigh theories the effect of shear deformation is included in Tim-

oshenko beam theory. We start with the stress strain relation for the shear

σxz(x, z, t) = 2µ(x)εxz(x, z, t), (7.78)

where µ(x) is the shear modulus. In order to reduce the theory to one dimension we

consider the shear angle γ(x, t) such that

γ(x, t) =
1

KA(x)

∫
A
2εxz(x, z, t) dA, (7.79)

where K is a shape factor, dependent on the geometry of the cross-section. The resultant

shear force can then be found as

Q(x, t) =

∫
A
σxz(x, z, t) dA = µ(x)A(x)Kγ(x, t). (7.80)
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Now we have two angles one caused by the bending stress, ϕ(x, t) and one caused by

the shear stress γ(x, t), let the total angle be defined by

ψ(x, t) = ϕ(x, t) + γ(x, t) ≈ ∂w(x, t)

∂x
, (7.81)

where again we have used the small angle approximation for the total angle, ψ(x, t).

Combining equations (7.70) and (7.81) we find the resultant moment,

M(x, t) = −E(x)I(x)
∂

∂x

(∂w(x, t)
∂x

− γ(x, t)
)
. (7.82)

Lastly, we combine equations (7.80) and (7.82) and use equation (7.73) to find

m(x)
∂2w(x, t)

∂t2
− ∂

∂x

[
KA(x)µ(x)

(∂w(x, t)
∂x

− ϕ(x, t)
)]

= q(x, t),

ρ(x)I(x)
∂2ϕ(x, t)

∂t2
−KA(x)µ(x)

(∂w(x, t)
∂x

− ϕ(x, t)
)
−

∂

∂x

(
E(x)I(x)

∂ϕ(x, t)

∂x
= ϱ(x, t).

(7.83)

Reference [79] derives the shape factor K for various cross-sections and for a rectangular

section

Krect =
10(1 + ν)

12 + 11ν
, (7.84)

where ν is Poisson’s ratio. With the beam theories reviewed we can now use these

models in the application of two dimensional periodic media.

7.5 An Euler-Bernoulli model with inertial mass junctions

The method considered here involves a Bloch-Floquet formulation using Euler-Bernoulli

beams that has not been seen in the literature. We consider elements as depicted in

figure 7.13 where we denote connecting rods of points ai and aj by [ai,aj ] with length,

lij = |ai − aj | and direction eij = l−1
ij (ai − aj) where the density, stiffness and beam

coefficients are ρij , µij , lij . We have also added a beam moment, Ii, at point ai. Each

node has a displacement vector defined by

ui =


u1

u2

θ


i

, (7.85)

describing the displacement in the 1 and 2 directions as well as the rotation about the

3 direction.
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Figure 7.13: Periodic cell geometry to be considered.

7.5.1 Longitudinal motion

Displacement of rod [ai,aj ] is taken as a function of x, which is the one dimensional

linear parameter that takes values of 0 to lij such that uij = uij(x, t). The longitudinal

wave motion of the rod, first derived in equation (7.63), is described by

ρij(x)
∂2uij(x, t)

∂t2
− ∂

∂x
µlij(x)

∂uij(x, t)

∂x
= pij(x, t), (7.86)

where pij(x, t) is a distributed axial load, with units force per unit length, and µlij(x)

is the axial stiffness usually taken as µlij(x) = E(x)A(x), where E(x) is the Young’s

Modulus and A(x) is the cross-sectional area. Taking time dependence eiωt, such that

uij(x, t) = uij(x)e
iωt, keeping the stiffness constant along each rod, µlij(x) = µlij , and

taking pij(x, t) = 0 we have

µlij
∂2uij(x)

∂x2
= −ω2ρijuij(x), (7.87)

with boundary conditions

uij(0) = eij · ui, uij(lij) = eij · uj . (7.88)

The solution of equation (7.87) is then

uij(x) = eij · ui cos(sijωx) +
eij · uj − eij · ui cos(sijωlij)

sin(sijωlij)
sin(sijωx), (7.89)
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where sij =
√

ρij
µlij

. The force due to longitudinal motion at point ai is found from

equation (7.61) with

fij long = µlij
∂uij(0)

∂x
eij =

Aijuj −Aijui cos(sijωlij)

sin(sijωlij)
µlijsijω, (7.90)

where Aij = eije
T
ij .

7.5.2 Transverse motion

The equation describing the transverse displacement of Euler-Bernoulli beams was de-

rived in equation (7.76). Here the transverse displacement equation is

ρij(x)
∂2wij(x, t)

∂t2
+

∂2

∂x2
µbij(x)

∂2

∂x2
wij(x, t) = qij(x, t)−

∂βij
∂x

, (7.91)

where wij(x) is the transverse displacement of rod [ai,aj ], qij(x, t) are the distributed

transverse forces, βij are the body couples and µbij(x) is the bending stiffness usually

taken as µbij(x) = E(x)I(x). Simplifying (7.91) by taking zero loading conditions,

taking material properties as uniform in the rod and using time dependence eiωt we

attain

µbij
∂4wij(x)

∂x4
= ρijω

2wij(x), (7.92)

with boundary conditions

wij(0) = e⊥ij · ui, wij(lij) = e⊥ij · uj ,

w
′
ij(0) = e3 · ui = θi, w

′
ij(lij) = e3 · uj = θj ,

(7.93)

where e⊥ij = e3 × eij . The force at point ai due to bending is then

fij bend = −µbij
∂3wij(x)

∂x3
e⊥ij + µbij

∂2wij(x)

∂x2
e3, (7.94)

where the first term arises from the transverse shear force and the second from the

bending moment generated in the beam. The solution of equation (7.92), describing

flexural motion, is found by writing it in the form

∂4wij(x)

∂x4
− γ4ijwij(x) = 0, x ∈ [0, lij ], (7.95)

where we set γ4 = γ4ij =
ρij
µbij
ω2 for simplicity. The general solution to equation (7.95) is

wij(x) = c1e
−γx + c2e

γx + c3 sin γx+ c4 cos γx. (7.96)
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Applying boundary conditions from equation (7.93) we find the transverse displacement

and subsequent derivatives used to be

wij(x) =
1

2(1− cch)

{[
(c− ch)(cos γx− cosh γx) + (s+ sh)(sin γx− sinh γx)

]
wij(lij)

+
1

γ

[
(sh − s)(cos γx− cosh γx) + (c− ch)(sin γx− sinh γx)

]
w

′
ij(l)

+
[
(1− cch + ssh) cos γx+ (1− cch − ssh) cosh γx+ (csh + sch)(sinh γx− sin γx)

]
wij(0)

+
1

γ

[
(sch − csh)(cos γx− cosh γx) + (1− cch − ssh) sin γx+ (1− cch + ssh) sinh γx

]
w

′
ij(0)

}
,

(7.97)

w
′
ij(x) =

γ

2(1− cch)

{[
(c− ch)(− sin γx− sinh γx) + (s+ sh)(cos γx− cosh γx)

]
wij(lij)

+
1

γ

[
(sh − s)(− sin γx− sinh γx) + (c− ch)(cos γx− cosh γx)

]
w

′
ij(l)

+
[
− (1− cch + ssh) sin γx+ (1− cch − ssh) sinh γx+ (csh + sch)(cosh γx− cos γx)

]
wij(0)

+
1

γ

[
(sch − csh)(− sin γx− sinh γx) + (1− cch − ssh) cos γx+ (1− cch + ssh) cosh γx

]
w

′
ij(0)

}
,

(7.98)

w
′′
ij(x) =

γ2

2(1− cch)

{[
(c− ch)(− cos γx− cosh γx) + (s+ sh)(− sin γx− sinh γx)

]
wij(lij)

+
1

γ

[
(sh − s)(− cos γx− cosh γx) + (c− ch)(− sin γx− sinh γx)

]
w

′
ij(l)

+
[
− (1− cch + ssh) cos γx+ (1− cch − ssh) cosh γx+ (csh + sch)(sinh γx+ sin γx)

]
wij(0)

+
1

γ

[
(sch − csh)(− cos γx− cosh γx)− (1− cch − ssh) sin γx+ (1− cch + ssh) sinh γx

]
w

′
ij(0)

}
,

(7.99)

w
′′′
ij (x) =

γ3

2(1− cch)

{[
(c− ch)(sin γx− sinh γx) + (s+ sh)(− cos γx− cosh γx)

]
wij(lij)

+
1

γ

[
(sh − s)(sin γx− sinh γx) + (c− ch)(− cos γx− cosh γx)

]
w

′
ij(l)

+
[
(1− cch + ssh) sin γx+ (1− cch − ssh) sinh γx+ (csh + sch)(cosh γx+ cos γx)

]
wij(0)

+
1

γ

[
(sch − csh)(sin γx− sinh γx)− (1− cch − ssh) cos γx+ (1− cch + ssh) cosh γx

]
w

′
ij(0)

}
,

(7.100)

where c = cos γl, s = sin γl, ch = cosh γl, sh = sinh γl. The forces in equation (7.94)

can be found by simplifying the above into matrix form with
w

′′′
(0)

−w′′
(0)

−w′′′
(l)

w
′′
(l)

 =
1

1− cch


γ3(csh + sch) γ2ssh −γ3(s+ sh) γ2(ch − c)

γ2ssh γ(sch − csh) γ2(c− ch) γ(sh − s)

−γ3(s+ sh) γ2(c− ch) γ3(csh + sch) −γ2ssh

γ2(ch − c) γ(sh − s) −γ3ssh γ(sch − csh)




w(0)

w
′
(0)

w(l)

w
′
(l)

 ,
(7.101)
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which is simplified further by

w
′′′
(0)

−w′′
(0)

−w′′′
(l)

w
′′
(l)


=

K1 K2

KT
2 K3




e⊥ij · ui

e3 · ui

e⊥ij · uj

e3 · uj


. (7.102)

Note that K3 has the property

K3 =

1 0

0 −1

K1

1 0

0 −1

 , (7.103)

where the relation is that K1 and K3 are the same except for a minus sign in the off

diagonal terms.

7.5.3 Application of Bloch-Floquet periodic conditions

As we have found repeatedly in previous sections the usual form of Bloch Floquet

problems is solved by an eigenvalue problem in the form

Hu = ω2Mu → det(H− ω2M) = 0. (7.104)

This is derived by noting the equilibrium equation of point ai is

∑
j∈Ni

fij = −ω2Miui, (7.105)

where Ni are the points connected with ai and the mass matrix has the form

Mi =


mi 0 0

0 mi 0

0 0 Ii

 , (7.106)

where mi is the mass located at point ai and Ii is the beam moment remembering the

displacement has the form ui =
[
u1, u2, θ

]T
i
. The force at point ai is found from

summing equations (7.90) and (7.94) for which we have

fij = µlij
∂uij(0)

∂x
eij − µbij

∂3wij(0)

∂x3
e⊥ij + µbij

∂2wij(0)

∂x2
e3. (7.107)
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In terms of ui and uj we find

fij =
Aijuj −Aijui cos(sijωlij)

sin(sijωlij)
µl
ijsijω

−
µb
ij

1− cch

[
γ3(csh + sch)e

⊥
ij · ui + γ2sshe3 · ui − γ3(s+ sh)e

⊥
ij · uj + γ2(ch − c)e3 · uj

]
e⊥ij

+
µb
ij

1− cch

[
− γ2sshe

⊥
ij · ui − γ(sch − csh)e3 · ui − γ2(c− ch)e

⊥
ij · uj − γ(sh − s)e3 · uj

]
e3

(7.108)

Grouping terms involving ui and uj and taking

Aij = eije
T
ij , A⊥

ij = e⊥ije
⊥T
ij , A⊥3

ij = e⊥ije
T
3 , A3⊥

ij = e3e
⊥T
ij , A3 = e3e

T
3 , (7.109)

the force is then

fij =

[
Aij

sin(sijωlij)
µlijsijω+

µbij
1− cch

(
γ3(s+ sh)A

⊥
ij + γ2(c− ch)(A

⊥3
ij −A3⊥

ij

)
− γ(sh − s)A3

)]
uj

−
[
Aij

cos(sijωlij)

sin(sijωlij)
µlijsijω+

µbij
1− cch

(
γ3(csh + sch)A

⊥
ij + γ2ssh(A

⊥3
ij +A3⊥

ij ) + γ(sch − csh)A3

)]
ui,

= P
(2)
ij uj −P

(1)
ij ui,

(7.110)

where P
(n)
ij ∀ n = 1, 2, 3 as

P
(1)
ij = µ̃ij ŝij cot(ŝij)Aij + µbij

(
e⊥ij , e3

)
K1

(
e⊥ij , e3

)T
,

P
(2)
ij = µ̃ij ŝij csc(ŝij)Aij − µbij

(
e⊥ij , e3

)
K2

(
e⊥ij , e3

)T
,

P
(3)
ij = µ̃ij ŝij cot(ŝij)Aij + µbij

(
e⊥ij , e3

)
K3

(
e⊥ij , e3

)T
.

(7.111)

We defined P
(3)
ij for simplification later and take

ŝij = sijlijω, and µ̃ij = µlij/lij . (7.112)

7.5.4 Hexagonal lattice

Next we apply the Floquet periodic conditions on the displacements by considering the

unit cell located in figure 7.14. As seen there are two points in the unit cell, a1 and a2

each having three connecting links. The Floquet periodic conditions are then
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Figure 7.14: Periodic cell

uj = eik·gju1, gj = aj − a1, j ∈ N2,

uj = eik·gju2, gj = aj − a2, j ∈ N1,

(7.113)

where N1 = {2, 3, 4} and N2 = {1, 5, 6}. Applying equations (7.110) and (7.113) to the

equilibrium equation, (7.105), we find∑
j=2,3,4

(
P

(2)
1j e

ik·gju2 −P
(1)
1j u1

)
= −ω2M1u1,

∑
j=1,5,6

(
P

(2)
2j e

ik·gju1 −P
(1)
2j u2

)
= −ω2M2u2.

(7.114)

Written into matrix form this becomes


[
P

(1)
12 + P

(1)
13 + P

(1)
14

]
−
[
P

(2)
12 eik·g2 + P

(2)
13 eik·g3 + P

(2)
14 eik·g4

]
−
[
P

(2)
21 eik·g1 + P

(2)
25 eik·g5 + P

(2)
26 eik·g6

] [
P

(1)
21 + P

(1)
25 + P

(1)
26

]

u1

u2

 = ω
2

M1 0

0 M2

u1

u2

 ,
(7.115)

which is rewritten into the familiar general eigenvalue problem with

H(ω,k)u = ω2Mu, (7.116)

where (ω, k) pairs must satisfy

det

(
H(ω,k)− ω2M

)
= 0. (7.117)

Note that this is a more difficult problem than the standard forms found in earlier

sections due to the dependence of H(ω,k) on ω, however solution pairs can still be
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found by numerical means. Alternatively we may take the summation strictly over N1

since ∑
j∈N2

P
(1)
2j =

∑
j∈N1

P
(3)
1j , (7.118)

and [ ∑
j∈N1

P
(2)
1j e

ik·gj
]
=

[ ∑
j∈N2

P
(2)
2j e

ik·gj
]+

. (7.119)

Equation (7.114) is rewritten to attain

H1 =
∑
j∈N1

P
(1)
1j , H2 = −

∑
j∈N1

P
(2)
1j e

ik·gj , H3 =
∑
j∈N1

P
(3)
1j , (7.120)

where

H(ω,k) =

H1 H2

H+
2 H3

 , (7.121)

where superscript + denotes the Hermitian transpose. Next we consider a simpler

structure using a rectangular lattice and later show numerical examples with comparison

to COMSOL results.

7.5.5 Rectangular lattice

Here we consider the rectangular lattice structure shown in figure 7.15. The equations

Figure 7.15: Unit Cell for the rectangular lattice.

of motion for this structure are∑
j=1,2,3,4

(
P

(1)
0j −P

(2)
0j e

ik·gj
)
u0 = ω2M0u0, (7.122)
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where

P
(1)
01 = µ̃01ŝ01 cot(ŝ01)


1 0 0

0 0 0

0 0 0

+ µb
01


0 0 0

0 K11 −K12

0 −K21 K22

 ,

P
(1)
02 = µ̃02ŝ02 cot(ŝ02)


0 0 0

0 1 0

0 0 0

+ µb
02


K11 0 K12

0 0 0

K21 0 K22

 ,

P
(1)
03 = µ̃03ŝ03 cot(ŝ03)


1 0 0

0 0 0

0 0 0

+ µb
03


0 0 0

0 K11 K12

0 K21 K22

 ,

P
(1)
04 = µ̃04ŝ04 cot(ŝ04)


0 0 0

0 1 0

0 0 0

+ µb
04


K11 0 −K12

0 0 0

−K21 0 K22

 ,

(7.123)

P
(2)
01 = µ̃01ŝ01 csc(ŝ01)


1 0 0

0 0 0

0 0 0

− µb
01


0 0 0

0 K13 −K14

0 −K23 K24

 ,

P
(2)
02 = µ̃02ŝ02 csc(ŝ02)


0 0 0

0 1 0

0 0 0

− µb
02


K13 0 K14

0 0 0

K23 0 K24

 ,

P
(2)
03 = µ̃03ŝ03 csc(ŝ03)


1 0 0

0 0 0

0 0 0

− µb
03


0 0 0

0 K13 K14

0 K23 K24

 ,

P
(2)
04 = µ̃04ŝ04 csc(ŝ04)


0 0 0

0 1 0

0 0 0

− µb
04


K13 0 −K14

0 0 0

−K23 0 K24

 .

(7.124)
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Taking all members to be of the same properties such that µ̃ij = µ̃, ŝij = ŝ and µbij = µb

we find the summations used in equation (7.122) are

∑
j=1,2,3,4

(
P

(1)
0j

)
= µ̃ŝ cot(ŝ)


2 0 0

0 2 0

0 0 0

+ µb


2K11 0 0

0 2K11 0

0 0 4K22

 ,

∑
j=1,2,3,4

(
P

(2)
0j e

ik·gj
)
= 2µ̃ŝ csc(ŝ)


cos(k̂x) 0 0

0 cos(k̂y) 0

0 0 0



− 2µb


K13 cos(k̂y) 0 iK14 sin(k̂y)

0 K13 cos(k̂x) −iK14 sin(k̂x)

iK23 sin(k̂y) −iK23 sin(k̂x) K24(cos(k̂x) + cos(k̂y))

 .

(7.125)

Simplifying the problem further we take the lattice to be square such that joining

points have distance l between them. The non-dimensional wave vector components

are then

k̂x = lkx, k̂y = lky. (7.126)

From equation (7.122) we find

(
2µ̃ŝ


cot(ŝ)− csc(ŝ) cos(k̂x) 0 0

0 cot(ŝ)− csc(ŝ) cos(k̂y) 0

0 0 0



+ 2µb


K11 +K13 cos(k̂y) 0 iK14 sin(k̂y)

0 K11 +K13 cos(k̂x) −iK14 sin(k̂x)

iK23 sin(k̂y) −iK23 sin(k̂x) 2K22 +K24(cos(k̂x) + cos(k̂y))


)
u0

= ω2M0u0,

(7.127)

We know for a square lattice the irreducible Brillouin zone is triangular, as shown in

figure 7.4, if we consider the case along Γ−X for which k̂y = 0 we find

(
2µ̃ŝ


cot(ŝ)− csc(ŝ) cos(k̂x) 0 0

0 cot(ŝ)− csc(ŝ) 0

0 0 0



+ 2µb


K11 +K13 0 0

0 K11 +K13 cos(k̂x) −iK14 sin(k̂x)

0 −iK23 sin(k̂x) 2K22 +K24(cos(k̂x) + 1)


)
u0 = ω2M0u0,

(7.128)
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Then the solution is found from

Det


B1 0 0

0 B2 B3

0 B4 B5

 = 0, (7.129)

where

B1 = µ̃ŝ[cot(ŝ)− csc(ŝ) cos(k̂x)] + µb[K11 +K13]−
1

2
m0ω

2,

B2 = µ̃ŝ[cot(ŝ)− csc(ŝ)] + µb[K11 +K13 cos(k̂x)]−
1

2
m0ω

2,

B3 = −iµbK14 sin(k̂x), B4 = iµbK14 sin(k̂x),

B5 = µb[2K22 +K24(cos(k̂x) + 1)]− 1

2
I0ω

2,

(7.130)

and the simplification K23 = −K14 was used. Taking the determinant, the equation to

be solved is[
µ̃ŝ[cot(ŝ)− csc(ŝ) cos(k̂x)] + µb[K11 +K13]−

1

2
m0ω

2

]
×[(

µ̃ŝ[cot(ŝ)− csc(ŝ)] + µb[K11 +K13 cos(k̂x)]−
1

2
m0ω

2
)(
µb[2K22

+K24(cos(k̂x) + 1)]− 1

2
I0ω

2
)
−

(
µbK14 sin(k̂x)

)2]
= 0.

(7.131)

This equation has the form a ∗ (bd− c2) = 0, where solutions are a = 0 and or bd = c2.

We start with a, which is

µ̃ŝ[cot(ŝ)− csc(ŝ) cos(k̂x)] + µb[K11 +K13]−
1

2
m0ω

2 = 0. (7.132)

Since ŝ and Kij are rather complicated functions of ω we solve for k̂x instead of ω, for

which we find

cos(k̂x) = cos(ŝ) +
µb sin(ŝ)

µ̃ŝ
[K11 +K13]−

m0ω
2

2µ̃ŝ
sin(ŝ), (7.133)

noting that kx must be real for real ω we have the constraint

| cos(ŝ) + µb sin(ŝ)

µ̃ŝ
[K11 +K13]−

m0ω
2

2µ̃ŝ
sin(ŝ)| ≤ 1. (7.134)
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As a check the units of the variables have proportionality γ ∝ 1/m, µ̃ ∝ N/m, µb ∝

Nm2. Working on the second part of equation (7.131), the bd = c2, we find

cos(k̂x)

[
µ̃ŝµbK24[cot(ŝ)− csc(ŝ)] + (µb)2[2K22K13 +K24K11 +K24K13]

− µb

2
ω2[K13I0 +K24m0]

]
+ cos2(k̂x)(µ

b)2K24K13 − sin2(k̂x)(µ
b)2K2

14 =

− µ̃ŝµb[cot(ŝ)− csc(ŝ)](2K22 +K24) +
µ̃ŝ

2
[cot(ŝ)− csc(ŝ)]I0ω

2 − (µb)2[2K22K11

+K24K11] +
µb

2
K11I0ω

2 + µbK22m0ω
2 +

µb

2
K24m0ω

2 − 1

4
m0I0ω

4.

(7.135)

The above equation is in the form

a cos(x) + b cos2(x) + c sin2(x) = d, (7.136)

the solution for x is then

x = cos−1

(
−a±

√
a2 − 4(b− c)(c− d)

2(b− c)

)
. (7.137)

7.5.6 Examples

Examples using this theory are shown in figures 7.16 and 7.17. The numeric computa-

tions are based on the properties in table 7.1 for the square lattice and table 7.2 for the

hexagonal lattice. For the square lattice we plot the solutions for equations (7.133) and

(7.135) which were found using ky = 0, that is solutions along Γ −X of the Brillouin

zone located in figure 7.4. For the hexagonal lattice the path of the wave vector taken

is along the perimeter of the Brillouin zone from figure 7.4.

E (GPa) ν ρV (kg/m3) L (m) t (m)

210 .25 25 · 103 .25 .0125

Table 7.1: Parameters of the square lattice for the example shown in figure 7.16.

E (GPa) ν ρV (kg/m3) l (mm) t (mm)

69 .33 2.7 · 103 4.39 0.35

Table 7.2: Hexagonal lattice parameters for the example shown in figure 7.17.

The dispersion curves in figure 7.17 (top) were obtained using a combination of

minimum value threshold and minimum peak finding methods for the 6×6 determinant
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Figure 7.16: Dispersion curves of the square lattice for ky = 0. Properties located in
table 7.1. In the top figure the black curves correspond to quasi-longitudinal motion
described by equation (7.133); the blue and red curves correspond to the pair of quasi-
transverse solutions described by equation (7.135). The bottom dispersion curves were
calculated using COMSOL.

evaluated on a discretized grid of wave vector and frequency parameters. This provides

a fast solution technique, which can be refined by taking smaller grid steps. Figure 7.17

(bottom) shows that the dispersion curves computed by the present simplified theory

agree well with those found using FEM. A close comparison shows some small deviations

from the FEM results (which can safely be considered as an accurate benchmark) but

the overall agreement is remarkable considering the simplicity of the present approach.

We next review a more standard approach seen in the literature that uses reflection

and transmission matrices with Timoshenko beam elements.
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Figure 7.17: Dispersion curves of the regular hexagonal lattice with properties located in
table 7.2. Shown are the first six Floquet branches for wave-vector along the perimeter
of the Brillouin zone. Top figure is found using the theory of this section while the
bottom curves were calculated using COMSOL.

7.6 Reflection/transmission matrices of Timoshenko beams

In this section the work of [6] is heavily reviewed. This is for accuracy but more

importantly for the understanding and derivation of another method used in solving for

dispersion behavior. The method of producing reflection and transmission matrices for

beam structures is more standardly found in the literature [80, 81, 82]. It comes down

to considering incoming and exiting waves at an intersection. We review this method

here as a comparison to the previous one of section 7.5. The equations of free vibration

for a Timoshenko beam were derived in section 7.4 and are located in equations (7.83)

and (7.63). Uniform beams are considered here, where E(x) = E, I(x) = I, A(x) =
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A, ρ(x) = ρ, and µ(x) = µ, this gives

µAK
(∂ϕ(x, t)

∂x
− ∂2w(x, t)

∂x2
)
+ ρA

∂2w(x, t)

∂t2
= 0, (7.138)

EI
∂2ϕ(x, t)

∂x2
+ µAK

(∂w(x, t)
∂x

− ϕ(x, t)
)
− ρI

∂2ϕ(x, t)

∂t2
= 0, (7.139)

ρA
∂2u(x, t)

∂t2
− EA

∂2u(x, t)

∂x2
= 0. (7.140)

The general solutions which satisfy these equilibrium equations for the axial displace-

ment, u(x, t), the transverse displacement, w(x, t), and the angle due to bending, ϕ(x, t),

are

w(x, t) =

(
a+1 e

−ik1x + a+2 e
−k2x + a−1 e

ik1x + a−2 e
k2x

)
eiωt, (7.141)

ϕ(x, t) =

(
− iPa+1 e

−ik1x −Na+2 e
−k2x + iPa−1 e

ik1x +Na−2 e
k2x

)
eiωt, (7.142)

u(x, t) =

(
c+e−ik3x + c−eik3x

)
eiωt, (7.143)

where the coefficients a±i , P , N , and c± will be solved for later. The derivatives of these

solutions that are needed are

∂w(x, t)

∂x
=

(
− ik1a

+
1 e

−ik1x − k2a
+
2 e

−k2x + ik1a
−
1 e

ik1x + k2a
−
2 e

k2x

)
eiωt,

∂2w(x, t)

∂x2
=

(
− k21a

+
1 e

−ik1x + k22a
+
2 e

−k2x − k21a
−
1 e

ik1x + k22a
−
2 e

k2x

)
eiωt,

∂ϕ(x, t)

∂x
=

(
− k1Pa

+
1 e

−ik1x + k2Na
+
2 e

−k2x − k1Pa
−
1 e

ik1x + k2Na
−
2 e

k2x

)
eiωt,

∂2ϕ(x, t)

∂x2
=

(
ik21Pa

+
1 e

−ik1x − k22Na
+
2 e

−k2x − ik21Pa
−
1 e

ik1x + k22Na
−
2 e

k2x

)
eiωt,

∂u(x, t)

∂x
=

(
− ik3c

+e−ik3x + ik3c
−eik3x

)
eiωt,

∂2u(x, t)

∂x2
=

(
− k23c

+e−ik3x − k23c
−eik3x

)
eiωt,

(7.144)

applying these to the equations of motion, equations (7.138)-(7.140), we find[
a+1 e

−ik1x + a−1 e
ik1x

][
µK(k21 − k1P )− ρω2

]
+

[
a+2 e

−k2x + a−2 e
k2x

][
µK(k2N − k22)− ρω2

]
= 0,[

a+1 e
−ik1x − a−1 e

ik1x
][
iPEIk21 + µAKi(−k1 + P )− iPρIω2

]
+[

a+2 e
−k2x − a−2 e

k2x
][

−NEIk22 + µAK(−k2 +N)−NρIω2
]
= 0,[

c+e−ik3x + c−eik3x
][
EAk23 − ρAω2

]
= 0.

(7.145)
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The first equation of (7.145) implies

P = k1
(
1− ω2

k21C
2
s

)
, N = k2

(
1 +

ω2

k22C
2
s

)
, (7.146)

where

Cs =

√
µK
ρ
. (7.147)

Plugging equations (7.146) and (7.147) into the second and third equations of (7.145)

yields

k21 =
ω2

2

[
(
1

Cs
)2 + (

Cr
Cb

)2
]
±

√
(
ω

Cb
)2 +

ω4

4

[
(
1

Cs
)2 − (

Cr
Cb

)2
]2
,

k22 = −ω
2

2

[
(
1

Cs
)2 + (

Cr
Cb

)2
]
±

√
(
ω

Cb
)2 +

ω4

4

[
(
1

Cs
)2 − (

Cr
Cb

)2
]2
,

k23 =
ρω2

E
= (

Cr
Cb

)2ω2,

(7.148)

where

Cb =

√
EI

ρA
, Cr =

√
I

A
. (7.149)

Now the solutions, equations (7.141), (7.142) and (7.143), can be written in terms of

known material properties, the circular frequency ω and six unknown coefficients. The

coefficients can be found from a given set of boundary conditions which define resultant

shear, moment and axial forces at a given location. As found in section 7.4 they are

Q(x, t) = µAK
(∂w(x, t)

∂x
− ϕ(x, t)

)
, M(x, t) = −EI ∂ϕ(x, t)

∂x
,

F (x, t) = EA
∂u(x, t)

∂x
.

(7.150)

7.6.1 Joint continuity and the propagation matrix

As done in the work of [6], the square lattice is considered for which there are four cases

of transmission and reflection waves at the joint intersection, as depicted in figure 7.18.

Each wave represented is traveling in one direction having only three associated coef-

ficients, this is seen from equations (7.141)-(7.143). Vectors of coefficients to describe
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Figure 7.18: As done by [6] the four cases of reflection and transmission of waves
entering the joint section from the right, bottom, left, or top are shown. The variables
a+, a−, and so on are vectors of coefficients as described by equation (7.151)

transmission and reflection waves are defined by

a+ =


a+1

a+2

c+

 , a− =


a−1

a−2

c−

 , b+ =


b+1

b+2

d+

 , b− =


b−1

b−2

d−

 ,

e+ =


e+1

e+2

g+

 , e− =


e−1

e−2

g−

 , f+ =


f+1

f+2

h+

 , f− =


f−1

f−2

h−

 .
(7.151)

Labeling the four cases, Case 1: wave a+ causing reflection and transmission waves

a−, b−, e+, f+. Case 2: wave b+ causing reflection and transmission waves a−, b−,

e+, f+. Case 3: wave e− causing reflection and transmission waves a−, b−, e+, f+.

Case 4: wave f− causing reflection and transmission waves a−, b−, e+, f+. Next
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we consider the forces and moments acting at an orthogonal joint, as shown in figure

7.19, where for simplicity we take thicknesses h1 = h3 and h2 = h4. The equilibrium

Figure 7.19: Free body diagram of orthogonal joint intersection.

conditions are

Q1 −Q3 + F4 − F2 = mẅj ,

Q4 −Q2 + F3 − F1 = müj ,

M3 +M4 −M1 −M2 −
h2
2
(Q1 +Q3)−

h1
2
(Q2 +Q4) = ρIϕ̈j ,

(7.152)

where m, I, and ρ are the mass, moment of inertia, and density of the joint. Evaluating

the shear, moment and axial forces at time t = 0 and position x = 0 or y = 0 yields

Q1(x = 0, t = 0) = (µAK)1
[
(−ik11 + iP1)(a

+
1 − a−1 ) + (−k21 +N1)(a

+
2 − a−2 )

]
,

Q2(y = 0, t = 0) = (µAK)2
[
(−ik12 + iP2)(b

+
1 − b−1 ) + (−k22 +N2)(b

+
2 − b−2 )

]
,

Q3(x = 0, t = 0) = (µAK)3
[
(−ik13 + iP3)(e

+
1 − e−1 ) + (−k23 +N3)(e

+
2 − e−2 )

]
,

Q4(y = 0, t = 0) = (µAK)4
[
(−ik14 + iP4)(f

+
1 − f−1 ) + (−k24 +N4)(f

+
2 − f−2 )

]
,

(7.153)
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M1(x = 0, t = 0) = −(EI)1
[
− k11P1a

+
1 + k21N1a

+
2 − k11P1a

−
1 + k21N1a

−
2

]
,

M2(y = 0, t = 0) = −(EI)2
[
− k12P2b

+
1 + k22N2b

+
2 − k12P2b

−
1 + k22N2b

−
2

]
,

M3(x = 0, t = 0) = −(EI)3
[
− k13P3e

+
1 + k23N3e

+
2 − k13P3e

−
1 + k23N3e

−
2

]
,

M4(y = 0, t = 0) = −(EI)4
[
− k14P4f

+
1 + k24N4f

+
2 − k14P4f

−
1 + k24N4f

−
2

]
,

(7.154)

F1(x = 0, t = 0) = (EA)1(c
− − c+)ik31 ,

F2(y = 0, t = 0) = (EA)2(d
− − d+)ik32 ,

F3(x = 0, t = 0) = (EA)3(g
− − g+)ik33 ,

F4(y = 0, t = 0) = (EA)4(h
− − h+)ik34 ,

(7.155)

where (µAK)i = µiAiKi, (EA)i = EiAi, and klm is the wave number where l represents

the direction, 1 or 2, and m is to identify for which beam the wave number is associated.

We also have continuity of the displacements at the joint such that

u1 = uj , u2 = wj , u3 = uj , u4 = wj ,

w1 = wj −
h2
2
ϕj , w2 = −uj −

h1
2
ϕj ,

w3 = wj +
h2
2
ϕj , w4 = −uj +

h1
2
ϕj ,

ϕ1 = ϕ2 = ϕ3 = ϕ4 = ϕj .

(7.156)

Using the equilibrium equations at the joint, equation (7.152), and the continuity con-

ditions, equation (7.156), we find the matrix form of the equations of motion at the

joint to be

Q+
2 b

+ +Q−
2 b

− +Q+
3 e

+ +Q−
3 e

− +Q+
4 f

+ +Q−
4 f

− = Q+
1 a

+ +Q−
1 a

−, (7.157)
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where

Q
+
2 =


0 0 (EA)2ik32

−(µAK)2i(−k12 + P2) −(µAK)2(−k22 +N2) 0

−(EI)2k12P2 − h1
2

(µAK)2i(−k12 + P2) (EI)2k22N2 − h1
2

(µAK)2(−k22 +N2) 0

 ,

Q
−
2 =


0 0 −(EA)2ik32

(µAK)2i(−k12 + P2) (µAK)2(−k22 +N2) 0

−(EI)2k12P2 +
h1
2

(µAK)2i(−k12 + P2) (EI)2k22N2 +
h1
2

(µAK)2(−k22 +N2) 0

 ,

Q
+
3 =


−(µAK)3i(−k13 + P3) −(µAK)3(−k23 +N3) 0

0 0 −(EA)3ik33

(EI)3k13P3 − h2
2

(µAK)3i(−k13 + P3) −(EI)3k23N3 − h2
2

(µAK)3(−k23 +N3) 0

 ,

Q
−
3 =


(µAK)3i(−k13 + P3) (µAK)3(−k23 +N3) 0

0 0 (EA)3ik33

(EI)3k13P3 +
h2
2

(µAK)3i(−k13 + P3) −(EI)3k23N3 +
h2
2

(µAK)3(−k23 +N3) 0

 ,

Q
+
4 =


0 0 −(EA)4ik34

(µAK)4i(−k14 + P4) (µAK)4(−k24 +N4) 0

(EI)4k14P4 − h1
2

(µAK)4i(−k14 + P4) −(EI)4k24N4 − h1
2

(µAK)4(−k24 +N4) 0

 ,

Q
−
4 =


0 0 (EA)4ik34

−(µAK)4i(−k14 + P4) −(µAK)4(−k24 +N4) 0

(EI)4k14P4 +
h1
2

(µAK)4i(−k14 + P4) −(EI)4k24N4 +
h1
2

(µAK)4(−k24 +N4) 0

 ,

(7.158)

and

Q+
1 =


Q+

11 Q+
12 0

0 0 Q+
23

Q+
31 Q+

32 0

 ,

Q−
1 =


Q−

11 Q−
12 0

0 0 Q−
23

Q−
31 Q−

32 0

 ,
(7.159)

where

Q+
11 = −ω2m− h2

2
iP1 − (µAK)1i(−k11 + P1),

Q+
12 = −ω2m− h2

2
N1 − (µAK)1(−k21 +N1),

Q+
23 = −ω2m− (EA)1ik31 ,

Q+
31 = ω2ρIiP1 + (EI)1k11P1 +

h2
2
(µAK)1i(−k11 + P1),

Q+
32 = ω2ρIN1 − (EI)1k21N1 +

h2
2
(µAK)1(−k21 +N1),

(7.160)
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Q−
11 = −ω2m+

h2
2
iP1 + (µAK)1i(−k11 + P1),

Q−
12 = −ω2m+

h2
2
N1 + (µAK)1(−k21 +N1),

Q−
23 = −ω2m+ (EA)1ik31 ,

Q−
31 = −ω2ρIiP1 + (EI)1k11P1 −

h2
2
(µAK)1i(−k11 + P1),

Q−
32 = −ω2ρIN1 − (EI)1k21N1 −

h2
2
(µAK)1(−k21 +N1).

(7.161)

Eliminating wj , ϕj and uj from the continuity conditions at the joint gives

U1 =


0 −h2

2 1

0 1 0

−1 −h1
2 0

U2 =


1 −h2 0

0 1 0

0 0 1

U3 =


0 −h2

2 1

0 1 0

−1 h1
2 0

U4, (7.162)

which is rewritten as

U1 = R11U2 = R12U3 = R13U4, (7.163)

where Ui =
[
wi ϕi ui

]T
, ∀ i = {1, 2, 3, 4, j}. With this we are in a position to

develop transmission and reflection matrices.

Case 1: Wave a+ causes reflection and transmission waves a−, b−, e+, f+. The

displacement vectors for each beam are

U1 = X+
1 a

+ +X−
1 a

−,

U2 = Y−
2 b

−, U3 = X+
3 e

+, U4 = Y+
4 f

+,

(7.164)

where

X+
m =


e−ik1mx e−k2mx 0

−iPme
−ik1mx −Nme

−k2mx 0

0 0 e−ik3mx

 , X−
m =


eik1mx ek2mx 0

iPme
ik1mx Nme

k2mx 0

0 0 eik3mx

 ,

Y+
m =


e−ik1my e−k2my 0

−iPme
−ik1my −Nme

−k2my 0

0 0 e−ik3my

 , Y−
m =


eik1my ek2my 0

iPme
ik1my Nme

k2my 0

0 0 eik3my

 .
(7.165)
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Applying continuity of displacements, equation (7.162), gives

b− =

[
R11Y

−
2

]−1[
X+

1 a
+ +X−

1 a
−
]
,

e+ =

[
R12X

+
3

]−1[
X+

1 a
+ +X−

1 a
−
]
,

f+ =

[
R13Y

+
4

]−1[
X+

1 a
+ +X−

1 a
−
]
.

(7.166)

Lastly the equilibrium equations at the joint, equation (7.157), where for this case we

only consider a+, a−, b−, e+, and f+, gives

Q−
2 b

− +Q+
3 e

+ +Q+
4 f

+ = Q+
1 a

+ +Q−
1 a

−. (7.167)

Using equations (7.166) and (7.167) we can reduce everything to one vector of coeffi-

cients such that we can find the transmission tij and reflection matrices rij where

a− = r11a
+, b− = t12a

+, e+ = t13a
+, f+ = t14a

+, (7.168)

where

a− =

[(
Q−

2

[
R11Y

−
2

]−1
+Q+

3

[
R12X

+
3

]−1
+Q+

4

[
R13Y

+
4

]−1
)
X−

1 −Q−
1

]−1

×[
Q+

1 −
(
Q−

2

[
R11Y

−
2

]−1
+Q+

3

[
R12X

+
3

]−1
+Q+

4

[
R13Y

+
4

]−1
)
X+

1

]
a+,

(7.169)

then

r11 =

[(
Q−

2

[
R11Y

−
2

]−1
+Q+

3

[
R12X

+
3

]−1
+Q+

4

[
R13Y

+
4

]−1
)
X−

1 −Q−
1

]−1

×[
Q+

1 −
(
Q−

2

[
R11Y

−
2

]−1
+Q+

3

[
R12X

+
3

]−1
+Q+

4

[
R13Y

+
4

]−1
)
X+

1

]
,

(7.170)

and

t12 =

[
R11Y

−
2

]−1[
X+

1 +X−
1 r11

]
,

t13 =

[
R12X

+
3

]−1[
X+

1 +X−
1 r11

]
,

t14 =

[
R13Y

+
4

]−1[
X+

1 +X−
1 r11

]
.

(7.171)

Case 2: Following the same procedure from above, we consider the case of wave b+

causing reflection and transmission waves a−, b−, e+, f+. The displacements of each

beam are

U2 = Y+
2 b

+ +Y−
2 b

−,

U1 = X−
1 a

−, U3 = X+
3 e

+, U4 = Y+
4 f

+.

(7.172)
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Applying continuity of displacements, equation (7.162), is rewritten in terms of U2,

with

U2 =


0 −h1

2 −1

0 1 0

1 h2
2 0

U1 =


0 −h1

2 −1

0 1 0

1 −h2
2 0

U3 =


1 −h1 0

0 1 0

0 0 1

U4, (7.173)

which we take equivalent to

U2 = R21U1 = R22U3 = R23U4. (7.174)

The coefficients are

a− =

[
R21X

−
1

]−1[
Y+

2 b
+ +Y−

2 b
−
]
,

e+ =

[
R22X

+
3

]−1[
Y+

2 b
+ +Y−

2 b
−
]
,

f+ =

[
R23Y

+
4

]−1[
Y+

2 b
+ +Y−

2 b
−
]
.

(7.175)

Lastly we use the equilibrium equations at the joint, equation (7.157), where for this

case we only consider b+, a−, b−, e+, and f+, this gives

Q+
2 b

+ +Q−
2 b

− +Q+
3 e

+ +Q+
4 f

+ = Q−
1 a

−. (7.176)

Using equations (7.175) and (7.176) we can reduce everything in terms of one vector of

coefficients

a− = t21b
+, b− = r22b

+, e+ = t23b
+, f+ = t24b

+, (7.177)

where the transmission tij and reflection matrices rij are

r22 =

[
Q−

2 +

(
−Q−

1

[
R21X

−
1

]−1
+Q+

4

[
R23Y

+
4

]−1
+Q+

3

[
R22X

+
3

]−1
)
Y−

2

]−1

×[
−Q+

2 +

(
−Q+

3

[
R22X

+
3

]−1 −Q+
4

[
R23Y

+
4

]−1
+Q−

1

[
R21X

−
1

]−1
)
Y+

2

]
,

(7.178)

and

t21 =

[
R21X

−
1

]−1[
Y+

2 +Y−
2 r22

]
,

t23 =

[
R22X

+
3

]−1[
Y+

2 +Y−
2 r22

]
,

t24 =

[
R23Y

+
4

]−1[
Y+

2 +Y−
2 r22

]
.

(7.179)
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Case 3: Wave e− causes reflection and transmission waves a−, b−, e+, f+. The

displacements of each beam are

U3 = X+
3 e

+ +X−
3 e

−,

U1 = X−
1 a

−, U2 = Y−
2 b

−, U4 = Y+
4 f

+.

(7.180)

Applying continuity of displacements, equation (7.162) is rewritten in terms of U3,

U3 =


1 h2 0

0 1 0

0 0 1

U1 =


0 h2

2 1

0 1 0

−1 −h1
2 0

U2 =


0 h2

2 1

0 1 0

−1 h1
2 0

U4, (7.181)

which is taken as

U3 = R31U1 = R32U2 = R33U4, (7.182)

with

a− =

[
R31X

−
1

]−1[
X+

3 e
+ +X−

3 e
−
]
,

b− =

[
R32Y

−
2

]−1[
X+

3 e
+ +X−

3 e
−
]
,

f+ =

[
R33Y

+
4

]−1[
X+

3 e
+ +X−

3 e
−
]
.

(7.183)

The equilibrium equations at the joint, equation (7.157), where for this case we only

consider e−, a−, b−, e+, and f+, become

Q−
2 b

− +Q+
3 e

+ +Q−
3 e

− +Q+
4 f

+ = Q−
1 a

−. (7.184)

Then using equations (7.183) and (7.184) we can reduce everything in terms of one

vector of coefficients

a− = t31e
−, b− = t32e

−, e+ = r33e
−, f+ = t34e

−, (7.185)

where the transmission tij and reflection matrices rij are

r33 =

[(
Q−

2

[
R32Y

−
2

]−1
+Q+

4

[
R33Y

+
4

]−1 −Q−
1

[
R31X

−
1

]−1
)
X+

3 +Q+
3

]−1

×[(
Q−

1

[
R31X

−
1

]−1 −Q−
2

[
R32Y

−
2

]−1 −Q+
4

[
R33Y

+
4

]−1
)
X−

3 −Q−
3

]
,

(7.186)
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and

t31 =

[
R31X

−
1

]−1[
X+

3 r33 +X−
3

]
,

t32 =

[
R32Y

−
2

]−1[
X+

3 r33 +X−
3

]
,

t34 =

[
R33Y

+
4

]−1[
X+

3 r33 +X−
3

]
.

(7.187)

Case 4: Wave f− causes reflection and transmission waves a−, b−, e+, f+. The

displacements of each beam are

U4 = Y+
4 f

+ +Y−
4 f

−,

U1 = X−
1 a

−, U2 = Y−
2 b

−, U3 = X+
3 e

+.

(7.188)

Applying continuity of displacements, we rewrite (7.162) in terms of U4,

U4 =


0 h1

2 −1

0 1 0

1 h2
2 0

U1 =


1 h1 0

0 1 0

0 0 1

U2 =


0 h1

2 −1

0 1 0

1 −h2
2 0

U3, (7.189)

which we rewrite as

U4 = R41U1 = R42U2 = R43U3, (7.190)

a− =

[
R41X

−
1

]−1[
Y+

4 f
+ +Y−

4 f
−
]
,

b− =

[
R42Y

−
2

]−1[
Y+

4 f
+ +Y−

4 f
−
]
,

e+ =

[
R43X

+
3

]−1[
Y+

4 f
+ +Y−

4 f
−
]
.

(7.191)

Lastly the equilibrium equations at the joint, equation (7.157), where for this case we

only consider f−, a−, b−, e+ and f+, are

Q−
2 b

− +Q+
3 e

+ +Q+
4 f

+ +Q−
4 f

− = Q−
1 a

−. (7.192)

Using equations (7.191) and (7.192) we can reduce everything to one vector of

coefficients such that we can find the transmission tij and reflection matrices rij where

a− = t41f
−, b− = t42f

−, e+ = t43f
−, f+ = r44f

−, (7.193)
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where

r44 =

[(
Q−

2

[
R42Y

−
2

]−1
+Q+

3

[
R43X

+
3

]−1 −Q−
1

[
R41X

−
1

]−1
)
Y+

4 +Q+
4

]−1

×[(
Q−

1

[
R41X

−
1

]−1 −Q−
2

[
R42Y

−
2

]−1 −Q+
3

[
R43X

+
3

]−1
)
Y−

4 −Q−
4

]
,

(7.194)

and

t41 =

[
R41X

−
1

]−1[
Y+

4 r44 +Y−
4

]
,

t42 =

[
R42Y

−
2

]−1[
Y+

4 r44 +Y−
4

]
,

t43 =

[
R43X

+
3

]−1[
Y+

4 r44 +Y−
4

]
.

(7.195)

Total reflection and transmission relations

Having gone through all four cases the total orthogonal joint relations are the sum of

the four cases such that we sum equations (7.168) (7.177) (7.185) (7.193) to find

a− = r11a
+ + t21b

+ + t31e
− + t41f

−,

b− = t12a
+ + r22b

+ + t32e
− + t42f

−,

e+ = t13a
+ + t23b

+ + r33e
− + t43f

−,

f+ = t14a
+ + t24b

+ + t34e
− + r44f

−.

(7.196)

Next we apply the Bloch-Floquet conditions.

7.6.2 Bloch-Floquet conditions

Referring to figure 7.20 we have the following relationships

A+ = X+
1 (x =

l1
2
)a+, a− = X−

1 (x =
l1
2
)A−,

E+ = X+
3 (x =

l3
2
)e+, e− = X−

3 (x =
l3
2
)E−,

b+ = Y+
2 (y =

l2
2
)B+, B− = Y−

2 (y =
l2
2
)b−,

F+ = Y+
4 (y =

l4
2
)f+, f− = Y−

4 (y =
l4
2
)F−,

(7.197)

where X±
m and Y±

m are defined in equation (7.165). The Bloch conditions are

F+ = B+e−ik2 , F− = B−e−ik2 , E+ = A+e−ik1 , E− = A−e−ik1 . (7.198)
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Figure 7.20: Waves to be considered of the square periodic cell.

The last step is to combine equations (7.197), (7.196), and (7.198) into the eigenvalue

problem

A(ω,k)Z = 0, (7.199)
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where we can find the elements

A1,1 = I, A1,2 = −X+
1 (
l1
2
), A2,3 = −X−

1 (
l1
2
), A2,4 = I,

A3,9 = I, A3,10 = −X+
3 (
l3
2
), A4,11 = −X−

3 (
l3
2
), A4,12 = I,

A5,5 = −Y+
2 (
l2
2
), A5,6 = I, A6,7 = I, A6,8 = −Y−

2 (
l2
2
),

A7,13 = I, A7,14 = −Y+
4 (
l4
2
), A8,15 = −Y−

4 (
l4
2
), A8,16 = I,

A9,2 = r11, A9,4 = −I, A9,6 = t21, A9,12 = t31, A9,16 = t41,

A10,2 = t12, A10,6 = r22, A10,8 = −I, A10,12 = t32, A10,16 = t42,

A11,2 = t13, A11,6 = t23, A11,10 = −I, A11,12 = r33, A11,16 = t43,

A12,2 = t14, A12,6 = t24, A12,12 = t34, A12,14 = −I, A12,16 = r44,

A13,5 = −Ie−ik2 , A13,13 = I, A14,7 = −Ie−ik2 , A14,15 = I,

A15,1 = −Ie−ik1 , A15,9 = I, A16,3 = −Ie−ik1 , A16,11 = I,

(7.200)

otherwise Ai,j = 0, and the coefficient matrix is

Z =



A+

a+

A−

a−

B+

b+

B−

b−

E+

e+

E−

e−

F+

f+

F−

f−



T

. (7.201)

We note that each block of Ai,j is a 3 × 3. This method can be extended to other

lattice types such as the hexagonal lattice done in [6]. We have reviewed this method as

a comparison tool against that of section 7.5. Here Timoshenko beams were used which

adds more complexity to the problem as the effect of shear deformation is included into

the theory. It is also apparent that the reflection transmission method produces much

larger matrices that must be solved for, this is seen in the square lattice example of

section 7.5.5, where only a 3× 3 matrix system needs to be solved.
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7.7 Finite element approach

Using the standard stiffness and mass matrices of finite elements we can formulate

the Bloch-Floquet problem by establishing constraints on the boundary nodal degrees

of freedom of a unit cell. We review the work of Phani et al. [75] where hexagonal

honeycomb structures made from Timoshenko beam elements is studied. The nodal

displacements of point j on the lattice are defined by

qj =


uj

vj

ϕj

 , (7.202)

where uj , vj represent displacement along the x and y directions and ϕj represents a

rotation about the z axis, which would disappear when working with solid elements.

The periodic condition on the boundary nodes of the unit cell is

qj = qie
i(k·rij−ωt), (7.203)

where rij = rj − ri, is the vector between the two lattice points i and j. The standard

equation of motion in finite elements is

Mq̈+Kq = f , (7.204)

where M, K and f are the standard mass, stiffness and forcing matrices of the finite

element method. For free wave motion we set f to zero and taking e−iωt time dependence

we have

[−ω2M+K]q = 0, (7.205)

which is the standard eigenfrequency analysis. In order to produce the Bloch-Floquet

analysis equation (7.205) is manipulated using a transformation matrix, T, which is

easiest to describe by an example. Consider the primitive cell given in figure 7.21 with

nodal points ai for i = 1..6. By the Bloch-Floquet conditions

q2 = q5e
ik·r25 , r25 = a2 − a5,

q6 = q1e
ik·r61 , r61 = a6 − a1.

(7.206)
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We apply the conditions via a matrix in the following manner

q = Tq̃ →



q1

q2

q3

q4

q5

q6


=



I 0 0 0

0 Ieik·r25 0 0

0 0 I 0

0 0 0 I

0 I 0 0

Ieik·r61 0 0 0





q1

q5

q3

q4


. (7.207)

Then in order to change the eigenfrequency analysis from a single unit to a periodic

structure with Bloch-Floquet conditions we transform equation (7.205) using the T

matrix by taking

TH [−ω2M+K]Tq = 0, (7.208)

which is the general eigenvalue problem, where superscript H is the Hermitian transpose

[75]. Solving the eigenvalue problem of equation (7.208) yields the dispersion behavior

of the periodic structure. Next we write out a few stiffness and mass matrices for

different types of beam elements. For the plane truss (PT ) element

KPT =
AE

L



c2 cs −c2 −cs

cs s2 −cs −s2

−c2 −cs c2 cs

−cs −s2 cs s2


, (7.209)

where A is the cross-sectional area, E the Young’s modulus, L the length, s = sin θ,

c = cos θ, and θ is the angle measured from the horizontal. The mass matrix is

MPT =
ρAL

6



2c2 2cs c2 cs

2cs 2s2 cs s2

c2 cs 2c2 2cs

cs s2 2cs 2s2


, (7.210)

where ρ is the density of the element[3]. Lastly the elements must be assembled into
a global matrix system and Bloch-Floquet conditions can be implemented. For plane
frame (PF ) elements the stiffness matrix is given as follows
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Figure 7.21: Elements of the primitive cell.

KPF =
E

L



AC2 + 12I
L2 S

2 (A− 12I
L2 )CS − 6I

L
S −(AC2 + 12I

L2 S
2) −(A− 12I

L2 )CS − 6I
L
S

AS2 + 12I
L2 C

2 6I
L
C −(A− 12I

L2 )CS −(AS2 + 12I
L2 C

2) 6I
L
C

4I 6I
L
S − 6I

L
C 2I

SYM.. AC2 + 12I
L2 S

2 (A− 12I
L2 )CS 6I

L
S

AS2 + 12I
L2 C

2 − 6I
L
C

4I


, (7.211)

where KPF is written in global coordinates with C = cos θ and S = sin θ. The mass

matrix for this element is

M
′
PF =

ρAL

420



140 0 0 70 0 0

0 156 22L 0 54 −13L

0 22L 4L2 0 13L −3L2

70 0 0 140 0 0

0 54 13L 0 156 −22L

0 −13L −3L2 0 −22L 4L2


, (7.212)
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Figure 7.22: Plane frame element where prime denotes local coordinates.

which is written in local coordinates and can be transformed to the global coordinates

using the transformation matrix

R =



C S 0 0 0 0

−S C 0 0 0 0

0 0 1 0 0 0

0 0 0 C S 0

0 0 0 −S C 0

0 0 0 0 0 1


, (7.213)

such that

M = RTM
′
R. (7.214)

Next we derive the finite element matrices for Timoshenko beams.

7.7.1 Timoshenko beam element

The one dimensional finite element matrices for the Timoshenko beam are give in [83]

as K = Kb +Ks where

Kb =
EI

L



0 0 0 0

0 1 0 −1

0 0 0 0

0 −1 0 1


, Ks =

µGA

4l



4 2l −4 2l

2l l2 −2l l2

−4 −2l 4 −2l

2l l2 −2l l2


(7.215)
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with µ being a correction shear factor usually taken as 5/6 for rectangular sections and

with Poisson’s ratio close to one third.

In two dimensions we go through the derivation of the finite element matrices as

done in [75] and seek to explicitly write out the terms. We define qr(t) as having the

six nodal degrees of freedom at the two nodes of each element with

qr(t) =
[
u1(t), v1(t), θz1(t), u2(t), v2(t), θz2(t)

]T
. (7.216)

The displacements at a position x and time t are given by

u(x, t) =
6∑

r=1

ar(x)qr(t), v(x, t) =
6∑

r=1

br(x)qr(t), θz(x, t) =
6∑

r=1

cr(x)qr(t), (7.217)

where the shape functions ar, br, cr for r = 1..6 are given by

a1 =
1

2
(1− ζ), a2 = 0, a3 = 0, a4 =

1

2
(1 + ζ), a5 = 0, a6 = 0,

b1 = 0, b2 =
1

4(1 + 3β)
[2 + 6β − 3(1 + 2β)ζ + ζ3],

b3 =
1

4(1 + 3β)
[1 + 3β − ζ − (1 + 3β)ζ2 + ζ3], b4 = 0,

b5 =
1

4(1 + 4β)
[2 + 6β + 3(1 + 2β)ζ − ζ3],

b6 =
1

4(1 + 3β)
[−(1 + 3β)− ζ + (1 + 3β)β2 + ζ3],

c1 = 0, c2 =
1

4(1 + 3β)
(−3 + 3ζ2),

c3 =
1

4(1 + 3β)
[−1 + 6β − (2 + 6β)ζ + 3ζ2], c4 = 0,

c5 =
1

4(1 + 3β)
(3− 3ζ2), c6 =

1

4(1 + 3β)
[−1 + 6β + (2 + 6β)ζ + 3ζ2],

(7.218)

with

ζ =
x

L
, and β =

EIz
κGAL2

, (7.219)

again κ is the shear correction factor in Timoshenko beam theory. The kinetic and

potential energies per unit thickness are

T =
1

2

L/2∫
−L/2

ρdu̇2 dx+
1

2

L/2∫
−L/2

ρdv̇2 dx+
1

2

L/2∫
−L/2

ρIz θ̇z
2
dx,

U =
1

2

∫
−L/2L/2

Ed
(du
dx

)2
dx+

1

2

L/2∫
−L/2

EIz
(d θz
dx

)2
dx+

1

2

L/2∫
−L/2

κdG
(d v
dx

− θz
)2

dx.

(7.220)
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Applying equation (7.217) to equation (7.220) we have

T =
1

2

6∑
r=1

6∑
s=1

q̇r q̇s

L/2∫
−L/2

ρ(daras + dbrbs + Izcrcs) dx,

U =
1

2

6∑
r=1

6∑
s=1

qrqs

L/2∫
−L/2

[Eda
′
ra

′
s + EIzb

′′
r b

′′
s + κGd(b

′
r − cr)(b

′
s − cs)] dx.

(7.221)

Then by using the Euler-Lagrangian equations of motion

d

d t

( ∂L
∂q̇r

)
− ∂L
∂qr

= fr, (7.222)

where L = T − U , or

d

d t

( ∂T
∂q̇r

)
− ∂U

∂qr
= fr, (7.223)

we can generate the mass and stiffness matrices. These matrices are left to be assembled
however the terms ∂T

∂q̇r
and ∂U

∂qr
have been found where

∂U

∂q1
=
Ed(q1 − q4)

4L
,

∂U

∂q2
=

1

1280L3(1 + 3β)2

[
q2

(
240EIz + κGdL

2
(−1218L + 609(1 + L

2
) + 2640β + 2880β

2 − 2640Lβ)
)
+

q3
(
240EIz + κGdL

2
(−338L + 169(1 + L

2
) + 360β − 1320L

2
β + 960Lβ + 2880Lβ

2
)
)
+

q5
(
− 240EIz + κGdL

2
(−2880β

2 − 609(1 + L
2
) + 1218L− 2640β + 2640Lβ)

)
+

q6
(
240EIz + κGdL

2
(960Lβ + 2880Lβ

2
+ 169(1 + L

2
) − 338L + 360β − 1320L

2
β)

)]
,

∂U

∂q3
=

1

3840L3(1 + 3β)2

[
q2

(
720EIz + κGdL

2
(−1014L + 507(1 + L

2
) − 3960L

2
β + 8640Lβ

2
+ 1080β + 2880Lβ)

)
+

q3
(
EIz(1680 + 5760β + 8640β

2
) + κGdL

2
(−454L + 227(1 + L

2
) + 720β

2
+

9360L
2
β
2
+ 480β − 1680L

2
β + 1200Lβ − 1440Lβ

2
)
)
+

q5
(
− 720EIz + κGdL

2
(1014L− 507(1 + L

2
) + 3960L

2
β − 8640Lβ

2 − 1080β − 2880Lβ)
)
+

q6
(
720EIz + κGdL

2
(2640Lβ + 720Lβ

2
+ 147 + 67L

2 − 214L + 7920L
2
β
2 − 2640L

2
β)

)]
,

∂U

∂q4
=
Ed(q4 − q1)

4L
,

∂U

∂q5
=

−1

1280L3(1 + 3β)2

[
q2

(
240EIz + κGdL

2
(−1218L + 609(1 + L

2
) + 2640β + 2880β

2 − 2640Lβ)
)
+

q3
(
240EIz + κGdL

2
(−338L + 169(1 + L

2
) + 360β − 1320L

2
β + 960Lβ + 2880Lβ

2
)
)
+

q5
(
− 240EIz + κGdL

2
(−2880β

2 − 609(1 + L
2
) + 1218L− 2640β + 2640Lβ)

)
+

q6
(
240EIz + κGdL

2
(960Lβ + 2880Lβ

2
+ 169(1 + L

2
) − 338L + 360β − 1320L

2
β)

)]
,

∂U

∂q6
=

1

3840L3(1 + 3β)2

[
q2

(
720EIz + κGdL

2
(−1014L + 507(1 + L

2
) − 3960L

2
β + 8640Lβ

2
+ 1080β + 2880Lβ)

)
+

q3
(
720EIz + κGdL

2
(−214L + 67L

2
+ 7920L

2
β
2
+ 147 − 2640L

2
β + 2640Lβ + 720Lβ

2
)
)

q5
(
− 720EIz + κGdL

2
(1014L− 507(1 + L

2
) + 3960L

2
β − 8640Lβ

2 − 1080β − 2880Lβ)
)
+

q6
(
720EIz + κGdL

2
(2160Lβ + 147 − 294L + 227L

2
+ 9360L

2
β
2 − 1680L

2
β)

)]
,

(7.224)
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∂T

∂q̇1
=
ρdL(13q̇1 + 11q̇4)

48
,

∂T

∂q̇2
=

ρL

107520(1 + 3β)2

[
q̇2

(
51156Iz + d(31431 + 180432β + 262080β

2
)
)
+

q̇3
(
Iz(14196 − 110880β) + d(13679 + 76776β + 110880β

2
)
)
+

q̇5
(
− 51156Iz + d(22329 + 142128β + 221760β

2
)
)
+

q̇6
(
Iz(14196 − 110880β) + d(−12081 − 77784β − 107520β

2
+ 80640β

3
+ 120960β

4
)
)]
,

∂T

∂q̇3
=

ρL

107520(1 + 3β)2

[
q̇2

(
Iz(14196 − 110880β) + d(13679 + 76776β + 110880β

2
)
)
+

q̇3
(
Iz(6356 − 47040β + 262080β

2
) + d(6091 + 34104β + 51156β

2
)
)
+

q̇5
(
Iz(−14196 + 110880β) + d(10961 + 71064β + 110880β

2
)
)
+

q̇6
(
Iz(1876 − 73920β + 221760β

2
) + d(−5753 − 36960β − 49280β

2
+ 36960β

3
+ 55440β

4
)
)]
,

∂T

∂q̇4
=
ρdL(11q̇1 + 13q̇4)

48
,

∂T

∂q̇5
=

ρL

107520(1 + 3β)2

[
q̇2

(
− 51156Iz + d(22329 + 142128β + 221760β

2
)
)
+

q̇3
(
Iz(−14196 + 110880β) + d(10961 + 71064β + 110880β

2
)
)
+

q̇5
(
51156Iz + d(31431 + 180432β + 262080β

2
)
)
+

q̇6
(
Iz(−14196 + 110880β) + d(−14799 − 83496β − 107520β

2
+ 80640β

3
+ 120960β

4
)
)]
,

∂T

∂q̇6
=

ρL

107520(1 + 3β)2

[
q̇2

(
Iz(14196 − 110880β) + d(−12081 − 77784β − 107520β

2
+ 80640β

3
+ 120960β

4
)
)
+

q̇3
(
Iz(1876 − 73920β + 221760β

2
) + d(−5753 − 36960β − 49280β

2
+ 36960β

3
+ 55440β

4
)
)
+

q̇5
(
Iz(−14196 + 110880β) + d(−14799 − 83496β − 107520β

2
+ 80640β

3
+ 120960β

4
)
)
+

q̇6
(
Iz(6356 − 47040β + 262080β

2
) + d(7127 + 40320β + 47040β

2 − 80640β
3

− 114240β
4
+ 40320β

5
+ 60480β

6
)
)]
.

(7.225)

Again by plugging these terms into equation (7.223) the mass and stiffness matrices

can be found. This is reviewed here to give another method to compare to. It also

gives the reader some insight into what is occurring in finite element packages and can

be implemented in MATLAB for relatively simple structures. Also noted here is that

the spacing of nodes when discretizing structures with finite elements should be one

sixth of the wavelength or smaller. That is for a wave to be accurately registered by

the method in the structure there should be at least six nodes per wavelength. We

leave this section as a review which can be used in future investigation. Lastly further

research of Bloch-Floquet problems using finite elements, in this thesis, is used with

COMSOL using solid elements. We use the results of section 7.5 later as a comparison

tool for when the geometry becomes more complicated as is the case when developing

Metal Water which is described in the next chapter.
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Chapter 8

Designing Metal Water I

Having reviewed static homogenization methods in chapter 6 and dynamic methods in

chapter 7 we are equipped with the tools necessary to design and evaluate metamaterial

devices. As a first step we focus the objective to finding a metallic foam that has the

same acoustic properties of water. We call this material Metal Water. Since water is

isotropic and inviscid the first requirement is that the material also be isotropic and have

very small shear modulus compared with it’s bulk modulus. Small shear modulus is

a defining characteristic of pentamode materials required for transformation acoustics

as discussed in section 5.1. The other requirement is that the solid have the same

overall density as the fluid. The design process for creating a structured material

that can mimic the acoustic properties of water consists of utilizing the analytic static

homogenization theory of section 6.1 until a design that can closely match the elastic

and density properties of water comes about. This is done in section 8.1. To finalize the

design an iterative process is done using the finite element homogenization technique

of Hinton and Hassani [69, 70, 71] which was heavily reviewed in section 6.2. Results of

the static finite element method are shown in section 8.2. Once the design is finalized

we further investigate dynamic properties of the prototype by generating dispersion

curves using the Bloch-Floquet theories discussed in chapter 7, however COMSOL is

used primarily for this process, results are shown in section 8.3. Additional designs that

are easier to produce are considered in section 8.4.

8.1 Analytical static homogenization

Designs for Metal Water are first proposed and evaluated using the static homogeniza-

tion technique of section 6.1. This first step in prototyping gives a quick estimation on
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the elastic properties of proposed structures. Density properties can quickly be deter-

mined from the ratio of solid to void filling space in a unit cell design. Furthermore we

are considering water as an isotropic material with zero shear modulus, as it is a type

of pentamode material as discussed in section 5.1. Designs that have regular hexagonal

structure are considered as analysis of equation (6.5) with associated figure 8.1 and

subsequent analysis from figure 6.3 displays this result. The regular hexagon has h = l

Figure 8.1: General cellular structure.

and θ = π/3 with parameters shown in figure 8.1. Using equations (6.1), (6.2) and (6.3)

we have isotropy, with E∗
1 = E∗

2 = E∗, ν∗12 = ν∗21 = ν∗ and E∗ = 2G∗(1 + ν∗), where

E∗ =
2√

3b(N ′ + 3M)
, ν∗ =

N ′
l −Ml

N ′ + 3M
, (8.1)

and N ′ = N ′
l = N ′

h, M =Ml =Mh. These moduli are for plane strain which is a good

approximation as we expect to create materials that have relatively large thickness

compared to other cell dimensions. Using equation (6.4), the effective elasticity of a

regular hexagonal foam is therefore

C =

√
3

12M(N ′ +M)b


N ′ + 3M N ′ −M 0

N ′ −M N ′ + 3M 0

0 0 2M

 , (8.2)

which is the same result reported by [84] but with N replaced by N ′. The effective

elasticity is isotropic since C11 = C22 ≡ λ∗ + 2µ∗ and C66 = 1
2(C11 − C12) = G∗ ≡ µ∗,
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where λ∗, µ∗, are the effective Lamé moduli. Hence,

λ∗ =

√
3

12Mb

(1− δ

1 + δ

)
, µ∗ =

2δλ∗
1− δ

, where δ =
M

N ′ . (8.3)

Note that the effective Poisson’s ratio, defined by λ∗/µ∗ = 2ν∗/(1−2ν∗), is related to the

plane strain one by ν∗ = ν∗/(1 + ν∗). So, ν∗ ≈ 1
2 , indicating the near-incompressibility

of the foam relative to the ease of shearing. In order to mimic the acoustic properties

of water we first match the group velocity as studied previously in section 2.2.2. Using

equation (2.51) the group velocity for longitudinal wave motion in elastic media is

cP =
√
C11/ρ where for a fluid the speed is given by

√
K/ρ, where K is the fluid’s

bulk modulus. In matching the density we must also equate C11 = K in order to get

the same wave speed behavior. Using equation (8.2) the effective bulk modulus is

K =

√
3(N ′ + 3M)

12M(N ′ +M)b
. (8.4)

A simple geometry with uniform thickness function, t(x) = t, using figure 8.2 as refer-

ence, means the axial and bending compliance are

M =
l

2btE
, N =

l3

2bt3E
. (8.5)

For this case using equation (6.2) we see N ′ ≈ N and we can take the parameter δ = t2

l2
,

which is expected to be small in order for the theories of section 6.1 to be valid. The

area fraction of solid is ϕ = Am/A, where Am and A are the area of material and the

total area of the fundamental unit cell respectively. Using figure 8.2 the area fraction

Figure 8.2: Quarter unit cell configuration. Thickness is symmetric about the center
line of each member.
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can be found where

ϕ =
2√
3

t

l
⇒ δ =

3

4
ϕ2. (8.6)

The acoustic fluid has density ρf and elasticity defined by

C =


K K 0

K K 0

0 0 0

 , (8.7)

where K is the fluid bulk modulus. Fluid-like behavior therefore requires

ρeff ≈ ρf , C11 ≈ C12 ≈ K, C66 ≪ C11, (8.8)

where we have taken C66 to be small compared to other elasticity components in order to

have pentamode like behavior while finding structures that can maintain shape. Using

ρeff = ϕρs, where ρs is the density of solid material, the three conditions of equation

(8.8) are satisfied if

ρf
ρs

= ϕ,
K

E
=

1

4
ϕ, ϕ≪ 1. (8.9)

Hence, we must have

ρs ≫ ρf and
E

ρs
= 4

K

ρf
. (8.10)

The first condition is satisfied if the foam is made of a much heavier material than

the fluid. The second condition will not in general be satisfied, since it requires a

very special relation between the solid and the fluid properties. Additionally trying to

equate, C11 = C22 = C12 = K, is not possible as setting C11 = C12 from (8.2) yields

4M = 0. This means for hexagonal foams it is impossible to have C11 = C12 exactly,

so instead we minimize the function

F =
[
(C11 −K)2 + (C12 −K)2

]
=

1

24

[
48K2 +

1

M2
− 8

√
3K

M
+

4

(M +N ′)2
]
. (8.11)

In order to minimize F we take ∂F/∂M = 0 and ∂F/∂N
′
= 0 resulting in

∂F

∂M
=

1

24

[8√3KM − 2

M3
− 8

(M +N ′)3
]
= 0,

∂F

∂N ′ = − 1

3(M +N ′)3
= 0,

(8.12)



139

the second relation gives M +N
′
>> 1 the first yields

8
√
3KM − 2 =

(
2M

M +N ′

)3

. (8.13)

Trying a perturbation based on a small parameter ϵ where N
′
>> M in general, we

take N
′ ∝ O(1ϵ ) and M ∝ O(1). We see ∂F

∂N
′ ∝ O(ϵ3). Setting N

′
= ϵ−1n we rewrite

equation (8.13) as

8
√
3KM − 2− 8ϵ3M3

(Mϵ+ n)3
= 0. (8.14)

If we take the perturbation expansion ofM asM ≈M0+ϵM1+ϵ
2M2+O(ϵ3). Equation

(8.14) becomes

8
√
3K(M0 + ϵM1 + ϵ2M2)− 2 =

(
2(M0 + ϵM1 + ϵ2M2)

M0 + ϵM1 + ϵ2M2 +N ′

)3

, (8.15)

which yields the following equations in orders of ϵ

O(ϵ
0
) 8

√
3KM

4
0 − 2N

′3
+ 2M0N

′2
(−3 + 4

√
3KN

′
) + 6M

2
0N

′
(−1 + 4

√
3KN

′
) + 2M

3
0 (−5 + 12

√
3KN

′
) = 0,

O(ϵ) 2M1(4
√
3K(M0 +N

′
)
2
(4M0 +N

′
) − 3(5M

2
0 + 2M0N

′
+N

′2
)) = 0,

O(ϵ
2
) 6M

2
1 (−5M0 −N

′
+ 4

√
3K(M0 +N

′
)(2M0 +N

′
)) + 2M2(4

√
3K(M0 +N

′
)
2
(4M0 +N

′
)

− 3(5M
2
0 + 2M0N

′
+N

′2
)) = 0.

(8.16)

Solving the equations of (8.16) gives M1 = M2 = 0, such that we can take M ≈ M0

and find equation (8.14) becomes

8
√
3KM − 2 =

(
2M

M +N ′

)3

. (8.17)

This relation between M and N
′
minimizes equation (8.11) which allows for the C11

and C12 moduli to be closely valued.

8.1.1 Hexagonal foams with varying thickness

The analysis of the previous section suggests that a hex-metal foam with uniformly

thick struts will not work unless the metal happens to satisfy equation (8.10), which is

unlikely. Considering beams with thickness, t(x), that varies along the length the axial

and bending compliances are

M =
1

E

∫ l/2

0

dx

A(x)
, N =

1

E

∫ l/2

0

x2 dx

I(x)
, (8.18)
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where A(x) = bt(x) and I(x) = 1
12bt

3(x). The area of the unit cell is unchanged since it

only depends on l, which is seen from figure 8.2. The area of the unit cell is A = 3
√
3l2

4

and the area the material occupies within the unit cell is approximately

Am ≈
∫ l/2

0

t(x)

2
dx+

∫ l/2

−l/2
t(x) dx+

∫ l/2

0

t(x)

2
dx = 3

∫ l/2

0
t(x) dx, (8.19)

where we have ignored the junction. The area fraction of solid, ϕ = Am/A, is

ϕ ≈ 4

l2
√
3

∫ l/2

0
t(x) dx. (8.20)

The main conditions are matching the density, equation (8.9)1, K ≈ λ∗, equation (8.3),

and that the shear modulus is small, which requires

ρf
ρs

=
2√
3

∫ l
0 tdx

l2
,

K

E
=

√
3

12b

1∫ l
0 t

−1 dx
, δ ≪ 1. (8.21)

For a given fluid (water) and metal, these define constraints on the tapering of the

beams. Considering the joints are not accounted for in the stiffness analysis Kim and

Al-Hassani [85] introduced an effective half length Lj to attain more accurate results.

Close inspection of the area integrals or for the equations that calculate M and N we

see some parts of the geometry are integrated twice while others are left out. The

proposed effective half wall length is

Lj =
l

2
− t

2 cos(θ)
j, (8.22)

where j, the joint stiffening factor, can be obtained from comparison with results of

finite element analysis and t, here, is the thickness at the cell wall joint.

8.1.2 Hex foam with circular holes

Looking for simple geometry that is easily machinable we consider a thickness function

that comes about from drilling holes into a plate. The geometry is represented in figure

8.2, with examples located in figures 8.5 and 8.6. The holes are of radius r and the

minimum thickness is t0, located at the center of a strut member. The area fraction of

solid is then

ϕ = 1− π

2
√
3

(
1 +

t0
2r

)−2
= 1− 2π

3
√
3
(
r

l
)2, (8.23)
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which must satisfy the condition ϕ > ϕ0, where ϕ0 would represent the area fraction

when t0 goes to zero. The minimum is ϕ0 = 1− π
2
√
3
= 0.0931, for t0 = 0. Thus,

ϕ = 1− 1− ϕ0
α2

with α = 1 +
t0
2r
. (8.24)

The normalized bulk modulus from equation (8.21) is

γ ≡ K

E
=

√
3

12

( l/2∫
0

dx

t(x)

)−1

, (8.25)

where the thickness function for the circular hole pattern is

t(x) = 2r
(
α−

√
1− (x/r)2

)
. (8.26)

Applying equation (8.26) to (8.25) the normalized bulk modulus is

γ =

√
3

6

{
2α√
α2 − 1

tan−1

(√
α+ 1

α− 1
tan

ψ

2

)
− ψ

}−1

, ψ = ψj , (8.27)

where, sinψj ≡ Lj
r .

Evaluation of M and N for the circular hole model

We note that

l =
2√
3
(r +

t0
2
). (8.28)

The expression for M follows from equations (8.18) and (8.26), using the substitution

x = r sinψ,

M =
1

E

∫ Lj

0

dx

A(x)
=

1

bE

∫ Lj

0

dx

t(x)
=

1

2bEr

∫ Lj

0

dx

α−
√

1− (xr )
2

=
1

2bE

∫ ψj

0

cosψ dψ

α− cosψ
, (8.29)

where ψj is defined in equation (8.27). Similarly, the expression for N is

N =
1

E

∫ Lj

0

x2 dx

I(x)
=

12

bE

∫ Lj

0

x2

t(x)3
dx =

3

2bE

∫ ψj

0

sin2 ψ cosψ

(α− cosψ)3
dψ. (8.30)

The basic integral identity used is∫
dψ

α− cosψ
=

2√
α2 − 1

tan−1
(√α+ 1

α− 1
tan

ψ

2

)
, (8.31)
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which immediately gives

M =
1

bE

[
α√

α2 − 1
tan−1

[√α+ 1

α− 1
tan(

ψ

2
)
]
− ψ

2

]
sin−1(

Lj
r
)

0 . (8.32)

To simplify the integral for N note that

N =
3

2bE

1

2

d2

dα2

∫
sin2 ψ cosψ

α− cosψ
dψ, (8.33)

which can be rewritten using the identity

sin2 ψ cosψ

α− cosψ
= α2 + α cosψ − sin2 ψ − α(α2 − 1)

α− cosψ
, (8.34)

as

N =
3

2bE

(
ψ − d2 I1

dα2

)
, (8.35)

where

I1 =
1

2

∫
α(α2 − 1)

α− cosψ
dψ = α

√
α2 − 1 tan−1

(√
α+ 1

α− 1
tan

ψ

2

)
. (8.36)

Explicit differentiation yields

d I1
dα

= −sinψ

2
+

sinψ cosψ

2(cosψ − α)
+

(2α2 − 1)

α(α2 − 1)
I1, (8.37)

and
d2 I1
dα2

=
sinψ cosψ

2(cosψ − α)2
− (2α4 − α2 + 1)

α2(α2 − 1)2
I1 +

(2α2 − 1)

α(α2 − 1)

d I1
dα

=
sinψ cosψ

2(cosψ − α)2
+

(2α2 − 1)

α(α2 − 1)

sinψ

2

[
− 1 +

cosψ

cosψ − α

]
+

[
(2α2 − 1)2 − (2α4 − α2 + 1)

] I1
α2(α2 − 1)2

=
sinψ

2(cosψ − α)

[2α2 − 1

α2 − 1
+

cosψ

cosψ − α

]
+

(2α2 − 3)

(α2 − 1)2
I1.

Finally, N follows from equations (8.35), (8.36) and (8.38) as

N =
3

2bE

[
ψ −

sinψ

2(cosψ − α)

[ 2α2 − 1

α2 − 1
+

cosψ

cosψ − α

]
−

α(2α2 − 3)

(α2 − 1)3/2
tan

−1 [√α + 1

α− 1
tan(

ψ

2
)
]]sin−1(

Lj
r

)

0 . (8.38)

For small thickness, a ≡ α− 1 ≪ 1, we have

ϕ = ϕ0 +O(a), γ =

√
a

π
√
6
+ O(a) =

√
t0/r

2π
√
3
+ O(t0/r). (8.39)

This will work if the metal has relative density (specific gravity) greater than 1/ϕ0. If

it is larger than 1/ϕ0 then additional holes can be made into the junction area of the
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solid part to reduce the density without changing the γ parameter much. If the specific

gravity is less than 1/ϕ0 then mass has to be somehow added. Either way, the idea is

to select a to give the right value of γ for the metal. Since we are trying to match the

bulk modulus of water where K ≈ 2.25 GPa, and metals have E in the many GPa, it

means that a must be small. Very small a could be a problem in machining, so that

suggests we want large specific gravity, and relatively small E.

An example for an aluminum plate where the density of aluminum is roughly 2700

kg/m3 and the Young’s modulus is 69 GPa gives ϕAl = 1/2.7 = 0.37 and γAl =

2.25/69 = 0.0326. Equation (8.24) gives ϕ = 1/2.7 if a = 0.2 (t0 = 0.4r), and this value

of a gives γ = 0.058, using equation (8.39). This is too big, but could be reduced by

additional thinning of the strut thickness without reducing ϕ much.

Numerical analysis

We analyze equations (8.24) and (8.27) in order to determine what density of solid

material, ρs, and what Young’s modulus, E, could be used to build a foam with the

smallest possible unit cell size. First we find a useful range for α, defined in equation

(8.24)2, which implies, using equations (8.23) and (8.27)2, that

l

r
=

2α√
3

and sinψj ≈
l

2r
=

α√
3
. (8.40)

In order for ψj to remain real we must impose α ≤
√
3, also in order for the design to

remain physically consistent we must have α ≥ 1, so we allow

1 ≤ α ≤
√
3 ⇔ ϕ0 ≈ 0.0931 ≤ ϕ ≤ 0.6977. (8.41)

Applying equations (8.24) and (8.27), figures 8.3 and 8.4 were created by considering

t0 = 1mm. To gain a physical understanding of the structure at these extremes, for

α = 1.01 and α =
√
3, figures 8.5 and 8.6 were created.

In order to have smaller unit cell sizes we wish α to be close to
√
3 however such

structures with relatively high thickness compared to strut length ratios may not be

characterized by this analysis, since we are assuming that the thickness is much smaller

compared to the strut length. This result is seen when the equations for M and N ,
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Figure 8.3: Plot of the estimated Young’s modulus, E, and expected dimension size, l.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

 (Kg/m
3

)

l (
m

m
) 

fo
r 

t
0

=
1

m
m

α=3
1/2

α = 1

x 10
3

Figure 8.4: Plot of the estimated density, ρs, and expected dimension size, l.

equations (8.32) and (8.38), are used in (6.5), the shear correction term, k, in equation

(6.2) has a very strong influence on the strength for such structures. Possibly an FEM

analysis may gain further insight into how well the foam mechanics theory captures the

behavior for relatively high thickness.

8.1.3 Modified triangular penetration pattern

Here we consider the geometry of figure 8.7 for which we have a triangular penetration

pattern with straight thin sections notched into the middle of the members, this will

have the impact of decreasing bending capacity. The thickness function is
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tη(x) =


t1, 0 ≤ |x| < r sin η,

t(x), r sin η ≤ |x| < l
2 ,

(8.42)

where t1 = t0−ts is the thickness of the notched section, the angular extent is 0 < η < π
6

and t(x) is the undeformed thickness function of (8.26). The amount of area being

subtracted is then∫ r sin η

0
(t(x)− t1)dx = r2as, where as ≡

( ts
r
+ 2− cos η

)
sin η − η. (8.43)

The relative (area) density ϕ is now given by

ϕ = 1− π + 6as

2
√
3α2

. (8.44)
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Figure 8.7: A single member of the modified triangular penetration pattern in discus-
sion, described by θ, r and t1, where equation (8.26) describes the thickness of the
circular cut-out region.

The axial and bending compliances of the cell wall are then, respectively,

M =
1

bE

[ ∫ r sin η

0

dx

t1
+

∫ Lj

r sin η

1

2r(α−
√
1− (xr )

2)
dx

]
=
r sin η

bEt1
+

1

2bE

[
η − ψj +

2α√
α2 − 1

[
tan−1

(√α+ 1

α− 1
tan(

ψj

2
)
)
− tan−1
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(∫ r sin η
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r sin η

x2dx(
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√
1− (xr )

2)
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=
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2bE
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sinψj
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+
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cosψj − α

]
+
α(3− 2α2)

(α2 − 1)3/2
tan−1
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2bE
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+
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+
α(3− 2α2)
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(√α+ 1

α− 1
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η

2
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+

4

bE

(r sin η
t1

)3
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(8.45)

We want the area fraction, ϕ, of equation (8.44) to equal ϕw = ρw/ρ, the value that

gives the density of water. Putting ϕ = ϕw implies that

t0
r

= 2

[ √
3

1− ϕw

(
π

6
+ (

ts
r
+ 2− cos η) sin η − η

)]1/2
− 2. (8.46)

Note that the function [(2− cos η
)
sin η − η] has maximum value of 0.0434 at η = π/6.

If tsr is small then the numerator is essentially π/3, and therefore,

t0
r

≈
(

2π√
3(1− ϕw)

)1/2

− 2. (8.47)

In other words, if ts
r is small, the ratio t0

r is insensitive to ts and η, and is essentially

determined by the density of the metal. We want t0
r not to be too small. For ϕ ≈ ϕ0 =
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1− π
2
√
3
= 0.0931 we can use the slope of the function to get

t0
r

≈
(
2
√
3

π

)1/2(
ϕw − ϕ0

)
= 1.0501

(
ϕw − ϕ0

)
. (8.48)

This is a good approximation for brass but doesn’t do as well for aluminum. The idea

with aluminum is that we can get a relatively large t0
r , which is very good. The C11 = K

condition is then met by choosing ts and η. Unfortunately under closer inspection of

the moduli produced using equations (8.45) for M and N , defined in equation (6.5),

and the density found using this geometry we are not able to simultaneously match the

bulk modulus and density properties required. We further tweak the design in the next

section.

8.1.4 Straight-edged design

Figure 8.8: Straight-edged design unit cell configuration. Thickness is symmetric about
the center line of each member.

The geometry of figure 8.8 is considered here. This unit cell is defined by the six

parameters l, rs, q, t0, , t1 and ts, of which only four are independent since they satisfy

the two relations:

t0 = t1 + ts,

l = rs +
1√
3
(t0 + 4q).

(8.49)
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The length l alone defines the unit cell size, while the fine details of unit cell depend on

the relative sizes of t0 > 0, q ≥ 0, rs ≥ 0 and t1 > 0. The limit q = 0, or equivalently,
√
3(l−rs) = t0 is seemingly equivalent to η = π/6 in the previous design. The fractional

area of solid is

ϕ =
4

3l2
(
q2 + 2qt0 +

t20
4
+

√
3

2
t1rs

)
=

1

4l2

(
(l − rs)

2 − t20 + 2
√
3(l − rs)t0 +

8√
3
t1rs

)
. (8.50)

The thickness function is

tt(x) =


t1, 0 ≤ |x| < rs

2 ,

t0 +
2√
3

(
x− rs

2

)
, rs

2 ≤ |x| < l
2 ,

(8.51)

using this function the compliances are found as

M =
1

bE

(∫ rs
2

0

dx

t1
+

∫ Lj

rs
2

dx
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)
=
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2bE
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√
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1

d y

y

)
,

N =
12

bE

(∫ rs
2

0

x2

t31
dx+

∫ Lj

rs
2

x2

t3t (x)
dx

)
=

1

2bE

(
r3s
t31

+ 9
√
3

∫ γ1

1

(y + γ2)
2

y3
d y

)
,

(8.52)

where

γ1 = 1 +
(2Lj − rs)√

3t0
, γ2 =

rs√
3t0

− 1. (8.53)

Simplifying equation (8.52) gives

M =
1

2bE

(
rs
t1

+
√
3 ln γ1

)
,

N =
1

2bE

(
r3s
t31

+ 9
√
3

[
ln γ1 +

(γ1 − 1)γ22
2γ1

(
1 +

1

γ1
+

4

γ2

)])
.

(8.54)

In order to organize and solve the system we define the nondimensional parameters

χ1 =
rs
l
, χ2 =

t0
l
, χ3 =

t1
rs
. (8.55)

Then the area fraction is

ϕ =
1

4

(
(1− χ1)

2 − χ2
2 + 2

√
3(1− χ1)χ2 +

8√
3
χ2
1χ3

)
. (8.56)

The parameter χ3 should be very small to ensure that N ≫ M , in which case C11

depends on M , essentially, and they are all basically a function of χ3:

M ≈ 1

2bE
χ−1
3 , N ≈ 1

2bE
χ−3
3 . (8.57)
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A solution can be found to closely match the properties of water by using l
t1

= 1
χ1χ3

,

we have for aluminum

Aluminum : χ1 ≈ 0.4095, χ2 ≈ 1.023, χ3 ≈ 0.11 ⇒ l

t1
≈ 22. (8.58)

Using these parameters figure 8.9 was created. The effective elasticity is

CFM =


2.12 2.02 0

2.02 2.12 0

0 0 0.05

GPa, (8.59)

where subscript FM stands for the foam mechanics theory result, equation (8.2).

Figure 8.9: Straight edge design using the parameters in equation (8.58).

A more precise evaluation can be made using the full relations forM and N . Fixing

χ2, the two identities ϕ = ϕw and C11 = K can be simultaneously solved numerically

to give χ1 and χ3. Then varying χ2 one finds a unique value that gives a minimum

for l
t1

= 1
χ1χ3

. The values of the latter for aluminum and brass were found to be 21.4

and 19.8, respectively. In each case the optimal design has q very close to zero, which

means the junction region is essentially an equilateral triangle of side 3a0 where

l − rs =
√
3a0, (8.60)

this is seen in figure 8.9. Noting that q is close to zero in the solutions for brass and
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aluminum we tweak the design again to utilize more of the space in the cell to acquire

a greater density in a smaller unit cell size.

8.1.5 Metal Water I

Figure 8.10: Metal Water I design.

The results for the straight edged design show that for aluminum in particular that

the mass is concentrated in the equilateral triangles at the junctions. This is not an

optimal junction shape for space filling. Here we explore a variation on the previous

design that starts with the equilateral triangle junction but modifies it to reduce the unit

cell size, that is, to reduce l
t1
. This model has the same axial and bending compliance

as the previous one described by equation (8.54) but here the idea is to insert a 2q by

a3 rectangular region into the hexagonal joint as shown in figure 8.10. By inspection

a3 ≤ rs and

ϕ =
4

3l2
(2qt0 + q2 +

t20
4
+

√
3

2
rst1 + 2

√
3qa3)

=
1

4l2
(
(l − rs)

2 − t20 + 2
√
3t0(l − rs) +

8√
3
rst1 + 8a3(l − rs)−

8√
3
t0a3

)
=

1

4

(
(1− χ1)

2 − χ2
2 + 2

√
3χ2(1− χ1) +

8√
3
χ2
1χ3 + 8χ4(1− χ1)−

8√
3
χ2χ4

)
,

with χ4 =
a3
l and χ1, χ2 and χ3 defined in equation (8.55). Also required is that χ4

χ1
≤ 1
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in order for a3 ≤ rs. For a3 = 2q, χ4 =
1
2

(√
3(1− χ1)− χ2

)
and

ϕ =
4

3l2
(
a23(

√
3 +

1

4
) + a3t0 +

t20
4
+

√
3

2
rst1

)
=

4

3

(
χ2
4(
√
3 +

1

4
) + χ2χ4 +

1

4
χ2
2 +

√
3

2
χ2
1χ3

)
. (8.61)

Completing the square, we can write equation (8.61) as

3
( t0
2
+ q +

a3√
3

)2 − ( t0
2
− q +

√
3a3

)2
=

3

2
ϕl2 −

√
3rst1 − 2a23, (8.62)

or equivalently,(
t0
2
+ (2−

√
3)q + a3

)(
t0
2
+ (2 +

√
3)q − a3

)
=

3

4
ϕl2 −

√
3

2
rst1 − a23. (8.63)

With this model we are able to make better use in the filling space of a unit cell

while matching the density and elastic properties required to mimic water. The elastic

properties are very much based on the uniform strut thickness while the junction is

used to match density properties while adding some additional strength. Ideally if we

could machine petals at the junction that only minimally contact the struts we could

further decouple the mass and elasticity problem. However we do not further tweak

this design as machinability is also a concern.

A MATLAB code was written using equations (8.61), (8.54) and (6.6) in order to

simultaneously match the bulk modulus and density using aluminum. The parameter

t1 = 1mm was chosen in order to shrink the unit cell size while maintaining a dimension

that could still be machined. It was found that when this analysis is compared with

FEM results the foam mechanics theory generally underestimates the results by 5−10%.

We then chose to lower the required bulk modulus to K ≈ 2.0 GPa in searching for

solution parameters. The set of dimensions found are located in table 8.1, where the

density is perfectly matched. The effective elasticity was found to be

t1 = 1.00 t0 = 1.42 l = 12.89 a3 = 6.05
ts = 0.42 rs = 8.58 q = 1.51

Table 8.1: Optimized parameters for the Metal Water I design of figure 8.10, using
E = 69 GPa and ν = 1/3. All dimensions given in millimeters.
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CFM =


1.98 1.87 0

1.87 1.98 0

0 0 0.051

GPa, (8.64)

where subscript FM denotes the result using the foam mechanics theory used here and

first reviewed in section 6.1. Figure 8.11 shows what this material looks like. Colored

in blue is the added section for mass between the previous design of section 8.1.4 and

the current.

Figure 8.11: Metal Water I design based on MATLAB solution, parameters located in
table 8.1.

8.2 Static finite element homogenization

In this section we iterate the designs using the static homogenization technique of

section 6.2 until we can more perfectly match the elasticity and density requirements.

From the discussion in the previous section we choose to search for structures made

from aluminum as it seems to be better suited for achieving our goals.

8.2.1 The straight-edged design

Here the straight edged-design of section 8.1.4 is used with the finite element homog-

enization technique. We start with the parameters found in equation (8.58) for this
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design and iterate using the finite element homogenization method. The optimized

parameters are reported in table 8.2, where density is perfectly matched. Using these

t1 = 1.00 t0 = 21.00 l = 21.42
ts = 20.00 rs = 8.77 q = 0.23

Table 8.2: Optimized parameters for the design of figure 8.10, using E = 69 GPa and
ν = 1/3. All dimensions given in millimeters.

parameters the expected elasticity found by finite element homogenization is

CFEM =


2.20 2.089 0

2.089 2.20 0

0 0 0.056

GPa. (8.65)

We also used slightly different elastic properties for aluminum with Young’s modulus

given by E = 75.5 GPa and Poisson’s ratio as ν = 0.35. This is done to determine

the sensitivity of the geometry to the elasticity of the aluminum slab being machined.

The optimized parameters are reported in table 8.3. We see some difference between

the parameters located in tables 8.2 and 8.3 however they’re not too far off, each time

the density of aluminum is taken as ρAl = 2700 kg/m3. Using the parameters of table

t1 = 1.00 t0 = 23.09 l = 23.56
ts = 22.09 rs = 9.60 q = 0.27

Table 8.3: Optimized parameters for the design of figure 8.10, using E = 75.5 GPa and
ν = 0.35. All dimensions given in millimeters.

8.3, the expected elasticity was found to be

CFEM =


2.20 2.11 0

2.11 2.20 0

0 0 0.047

 . (8.66)

8.2.2 Metal Water I

Here the Metal Water I design of section 8.1.5 is used. We note this design is capable

of more optimally filling space reducing the cell size needed. Using E = 69 GPa and

ν = 1/3 the optimized parameters are located in table 8.1. The expected elasticity is
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then

CFEM =


2.22 2.11 0

2.11 2.22 0

0 0 0.053

GPa, (8.67)

where we see about a 10% underestimation from the foam mechanics theory result in

equation (8.64). The figures in 8.12 show the displacement solutions and stresses using

the finite element homogenization theory with the parameters of table 8.1 used. A

quarter cell was used as we have symmetry about the x and y axes. The simulation

was also done using the full cell yielding the same elastic moduli as shown in equation

(8.67).

ε011 = 1. ε022 = 1.

ε012 = 1.

Figure 8.12: Static homogenization implementation using COMSOL, as described in
section 6.2, using the parameters of table 8.1 with aluminum.

These are quite spectacular results as the elasticity matrix for aluminum, using
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Young’s modulus, E = 69 GPa and Poisson’s ratio of ν = 1/3 has the components

Calum =


102.09 50.28 0

50.28 102.09 0

0 0 25.90

GPa, (8.68)

using plane strain. This means we are able to take a solid slab of aluminum and ma-

chine it in a particular fashion in order to mimic the elastic and density properties of

water. Processes investigated for the physical machining included: Wire EDM (electri-

cal discharge machining), CNC milling, and Waterjet. While Wire EDM has the best

precision by far it comes with the steepest cost. In the end the Metal Water I prototype

was fabricated by waterjet machining by the WhitCraft Group, shown in figure 8.13. It

has since been sent to the Naval Research Laboratory in Washington D.C. for testing.

Figure 8.13: Manufactured Metal Water I prototype produced by waterjet machining
by the WhitCraft Group.

8.3 Dynamic study of Metal Water I

The finalized version of Metal Water I, with dimensional parameters located in table 8.1,

is used with Bloch-Floquet theory in COMSOL. We have a hexagonal lattice structure

such that the wave vector, k, is taken along the perimeter of figure 7.4b. Additionally as

we are considering two dimensional geometry the lowest branch emerging from the origin

of the wave vector represents shear waves and the second lowest represents longitudinal

waves. The tangent to the dispersion curve at any point gives the group velocity, such



156

that

cj =
dω(k)

d |k|
, (8.69)

where j depends on the branch under investigation [75]. The dispersion behavior for

Figure 8.14: Dispersion curves found by COMSOL using Bloch-Floquet analysis.

Metal Water I is shown in figure 8.14, the group velocity for shear waves was found to be

cs = 230 m/s along both Γ−K and Γ−M. The longitudinal wave speed was found to

be cL = 1491 m/s along both directions. This shows the material behaves isotropically

at low frequency however we do see some anisotropy in these speeds when considering

all directions of the wave vector. As a check we use the discussion of material group

velocities from section 2.2.2 which allows two independent checks on the results from

the static finite element homogenization theory and Bloch Floquet when applied in

COMSOL. Using the previous results, equation (8.67), and taking cL =
√
C11/ρ and

cs =
√
C66/ρ we attain exactly the same results using ρ = 1000 kg/m3 which is the

density of water which we matched the structure to. We also see that the structure

has a frequency homogenization limit for the pure longitudinal mode around 25, 000 Hz.

Between roughly 25, 000 to 35, 000 Hz and along the Γ−M path we have a partial band

gap and do not expect any propagation of waves. This is a consequence of the unit cell

size, using figure 8.1 where we are using regular hexagons with l = 12.89mm the vertical

height of one entire cell is around 61 mm. Using the wave speed of water as 1500 m/s

and the unit cell size as the wavelength the expected homogenization frequency limit is



157

roughly 24, 500 Hz, which is similar to the behavior seen in the dispersion curves. The

dispersion curves were also found using the method of section 7.5, as shown in figure

8.15. Here Euler-Bernoulli beams are used as the building blocks of the structure. The

junctions in Metal Water I are then turned into point masses with associated moment

of inertia. As expected there is better agreement between figures 8.14 and 8.15 at

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Figure 8.15: Dispersion curves found by method of section 7.5.

lower frequencies. The branches of figure 8.15 are shifted upward compared to the

FEM results.

8.3.1 Negative index lens

An interesting phenomenon of the dispersion curves of figure 8.14 is that the longitu-

dinal branch intersects branches with a negative group velocity, shown more clearly in

figure 8.16. As the wave vector increases from Γ outward there are modes that have

negative slope and by equation (8.69) they also have negative group velocity. This

was investigated by a group at Institut d’lectronique de microlectronique et de nan-

otechnologie (IEMN) [86, 87], where numerical as well as physical testing on the Metal

Water I design was conducted. There is difficulty, however, in coupling modes at these

frequencies as the slab is intended for wavelengths on the order of the unit cell size.

Here we mention the wave vector location of the intersection between the longitudinal
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Figure 8.16: Intersections of longitudinal branch to branches with negative wave speed.

branch and the first branch with negative velocity. We vary the wave vector by angle

ψ as shown in figure 8.17 and note the location, results shown in table 8.4. It should

Figure 8.17: Varying wave vector along the irreducible Brillouin zone to find the
longitudinal-negative branch intersections.

be noted that the study done in [87] considered the second intersection.

8.4 Metal Water II: A corrugated design

Having designed and fabricated Metal Water I we next look for structures that are more

readily producible. This design considers the folding and bonding of metallic sheets

inspired by the production capability of Cellular Materials Inc. (CMI). A quarter cell

is shown in figure 8.18, note that when the cell is mirrored we have vertical struts of

thickness 2t while struts along the angle keep thickness t only. Mass is then added by

adhering lead wire in various locations. Several designs were found using a variety of

materials including: aluminum, brass, and lead for the extra mass needed to match
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ψ (rad) k (m−1)

0π/60 [48.99, 0.00]

1π/60 [50.25, 2.63]

2π/60 [49.90, 5.24]

3π/60 [49.56, 7.85]

4π/60 [49.24, 10.47]

5π/60 [47.35, 12.69]

6π/60 [47.06, 15.29]

7π/60 [46.77, 17.95]

8π/60 [44.94, 20.01]

9π/60 [44.67, 22.76]

10π/60 [42.87, 24.75]

Table 8.4: Wave vector value at the intersect of the longitudinal branch and the first
negative branch.

density. The properties used in calculations for these materials are

Aluminum

{
E = 69 GPa, ν = 0.33, ρ = 2, 700 kg/m3,

Brass

{
E = 100 GPa, ν = 0.40, ρ = 8, 400 kg/m3,

Lead

{
E = 16 GPa, ν = 0.44, ρ = 11, 340 kg/m3.

(8.70)

Three unique designs were studied where each has the dimension l = 4.387 mm and

then the thickness was found by trying to match the bulk modulus. For aluminum the

thickness must be t = 0.35 mm and for brass it must be t = 0.23 mm, found using the

foam mechanics theory of section 6.1. Lead was used to add mass and was attached in

the COMSOL model by taking a 10 % overlay into the strut thickness. Figures 8.19,

8.20, and 8.21 show the COMSOL dispersion curves and geometry of where lead mass

was added for each design. Longitudinal and shear wave speeds are also found

in the figures. We note that a more perfect matching for the longitudinal speed could

be found by iterating the design further in COMSOL. Interestingly, Design 1, figure

8.19 using aluminum seems to be the best design. This is because the third branch is

higher and the frequency range for which there is only the longitudinal mode present

is the greatest. Lastly physical production of this material by CMI is an issue due to

the required bonding of corrugated sheets.
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Figure 8.18: Quarter cell design to be considered for CMI production. Thickness in the
quarter cell is constant described by dimension t. Missing is added masses that can be
tacked on in a variety of locations.

8.5 Application to cloaking

All of the methods used to create Metal Water I worked in the Cartesian coordinate

system and produced a unit cell with rectangular shape. In application to cloaking

theory the unit cell will need to be slightly deformed in order for a circular section to

come about. This can be done by a mapping of the r direction to y and θ direction to

x. This approximation is made as the unit cell size is expected to be small compared

to the global scale of the cloak. The next step is to remove the constraints h = l and

θ = π/3 in reference to figure 8.1. This has the consequence of creating anisotropic

structures while maintaining small shear modulus. This is needed as the cloaking theory

reviewed in section 5.2 requires anisotropic pentamode behavior defined by equations

(5.5) and (5.6). The procedure then comes down to finding a suitable structure with

parameters that can accommodate the transformation function, f(r), that is used to

define the elastic and density properties of the cloak as a function of the radius, r. Then
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Figure 8.19: Design 1 using (top) aluminum and (bottom) brass. Each design has added
lead masses located at the center of the struts.

by taking a discrete number of layers and following the steps of figure 8.22 a cloaking

medium can come about [88]. Such an example was done for two unique layers in figure

8.23 using the foam mechanics model.

In relation to inertial cloaks the inverse problem was found in which using a structure

which layers three unique fluids a mapping function f(r) could be found [19]. Finding

the inverse problem for the pentamode cloak, that is finding a mapping function which

depends on the designed microstructure of the material would be extremely useful for

future development of cloaks and other devices that utilize transformation acoustics.

Instead of finding designs that suit the mapping function f(r), we find relations based

on the cell geometry that define the mapping function. This type of analysis is left for

future work but would be of great use in determining the proficiency of a proposed cell

design in application to producing an acoustic cloaking device. The development of

two dimensional structures is left here, the next chapter will focus on producing three

dimensional structures that again mimic the acoustic properties of water.
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Figure 8.20: Design 2 using (top) aluminum and (bottom) brass. Each design has added
lead masses located at the center of the struts as well as the junction.
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Figure 8.21: Design 3 using (top) aluminum and (bottom) brass. Each design has added
lead masses located one third the distance plus and minus of the center of each strut.
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Figure 8.22: Process for creating additional metamaterials.

Figure 8.23: Example of achieving a cloaking medium. Here the foam mechanics theory
was used to develop two unique layers based on a mapping function f(r) that defines
the elastic and density properties required, equation (5.5).
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Chapter 9

Designing three dimensional Metal Water

Having developed two dimensional structures that mimic the acoustic properties of wa-

ter in the previous chapter we investigate further by doing the same in three dimensions.

The diamond lattice structure is chosen here as it only has four struts intersecting at a

joint. This is a minimum requirement for three dimensional structures and it should be

able to produce a smaller shear modulus as compared to other structures, it should also

be able to offer better isotropy in its effective moduli. Section 9.1 begins with a brief

derivation of the effective bulk modulus for cubic lattice structures, after which the

work of Warren and Kraynik [65], which undergoes a strength of materials approach to

deriving the effective moduli of the diamond lattice is reviewed. The section is ended by

listing the results of Norris [7], which aims to more accurately find the effective moduli.

The Warren and Kraynik results are used thereafter as they estimate both the bulk

and shear modulus. In section 9.2 the effective elasticity equations are parameterized

in terms of strut geometry and several different lattice materials are studied in order

to reduce the shear modulus while maintaining a match in the bulk modulus with wa-

ter. Bloch-Floquet analysis is accomplished in COMSOL and group velocities in the

quasi-static limit are calculated for several different designs. Analysis of changing the

strut geometry is completed in sections 9.2.3 through 9.2.6. Lastly section 9.3 considers

matching the acoustic properties of water using the cubic lattice in one direction, where

the wave speed and density are matched. It is done only in one direction as the cubic

lattice has rather large anisotropy. Application to cloaking theory is left out however

the analysis used here for producing materials with desired macroscopic elastic and

density properties can easily be applied to such a theory.
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9.1 Analytical static homogenization

We first investigate the cubic lattice using the strain energy method to find the effective

bulk modulus. The strain energy in a strut of length L due to bending moment M(x),

Figure 9.1: Cubic lattice unit cell geometry, each strut has length L.

Figure 9.2: Applying σ1 to the cubic lattice. Each face has area 4L2.

axial load R and shear load V is [89]

U =

∫ L

0

M2(x)

2EI(x)
dx+

∫ L

0

R2

2EA(x)
dx+

∫ L

0

kV2

2GA(x)
dx, (9.1)

where k is a shear correction factor. When load σ1 is applied to the unit cell, as shown

in figure 9.2, we find the strain energy to be

U1 = P 2M/2, where M =

∫ L

0

dx

EA(x)
. (9.2)

The displacement and strain in the 1 direction is then

δ1 =
∂U1

∂P
= PM, ϵ1 =

2δ1
2L

= PM/L. (9.3)

The effective Young’s modulus can be found using

E∗
1 =

σ1
ϵ1

=
1

4LM
. (9.4)



166

In order to find the effective bulk modulus we can load the unit cell with a hydrostatic

pressure, σ, and then do the same analysis. This means there are three directions

in which the strain written in equation (9.3) occurs. The change in volume due to

hydrostatic loading is then

∆ = ϵii = 3PM/L. (9.5)

Finally using the definition of the bulk modulus, K = σ/ϵii,

K =
σL

3PM
=

1

12LM
. (9.6)

We leave the cubic case for now and return to it later using COMSOL simulation.

Furthermore isotropic elasticity is not expected and higher shear moduli as compared

to the diamond lattice will occur.

Figure 9.3: Geometry associated with the Warren and Kraynik model. The unit cell
consists of four half-struts of equal length, L.

Following the work of Warren and Kraynik [65], the effective elastic properties of a

tetrahedral structure are reviewed. This structure is the building block of the diamond

lattice and it can be used to find its effective elastic properties. As shown in figure 9.3

the geometry consists of a tetrahedral unit cell with four half struts of equal length L.

The forces acting on the midpoints of each strut are considered in components parallel

and normal to each strut,

Fi = (Fi · ei)ei + (ei × Fi)× ei, i = 1 · · · 4, (9.7)
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where the unit vector ei is taken parallel to the ith strut. Displacements of the midpoints

are taken as

∆i =M(Fi · ei)ei +N(ei × Fi)× ei + Lψ × ei, (9.8)

where M is the axial compliance, N is the bending compliance and ψ is a rigid body

rotation of the entire cell. The strut midpoints are defined by the undeformed position,

b0
i , plus a deformation δi = ∆i −∆4, such that

bi = b0
i + δi. (9.9)

Lastly equilibrium of forces and moments require

4∑
i=1

Fi = 0,

4∑
i=1

ei × Fi = 0. (9.10)

Cutting the volume element in figure 9.4 along x = 0 and finding a force balance on

Figure 9.4: Figure to relate forces, Fi, to stresses σij .

the remaining volume yields the relation

12
√
2L2(σxxi+ σxyj+ σxzk) = F2 − F3. (9.11)

Cutting along y = 0 gives

12
√
6L2(σxyi+ σyyj+ σyzk) = −3(F2 + F3)− 2F4, (9.12)

lastly along z = −L gives

6
√
3L2(σxzi+ σzyj+ σzzk) = −F4. (9.13)
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These relations can be plugged into the equilibrium equation, (9.10), to find further

relations. Taking a case of pure shear where δi = γ(b0
i · k)j, where γ is the magnitude

of the shearing strain. The relation

σyz =
γM

D
[3(17N + 7M) + (N −M)(f1 + f2)], (9.14)

can be found where fi are functions that deal with the three dimensional orientation of

the structure, found in equation (9.17). Similarly taking a case of uniaxial extension,

δi = ε(b0
i · k)k, the normal stress is

σxx =
ε(N −M)

D
[(16N + 11M) +M(f1 − f2)], (9.15)

where

D = 288
√
3LMN(2M +N). (9.16)

Unlike the motivation behind [65], where the lattice was unstructured and took ran-

dom orientations, which is common in production metallic foams, we do not wish to

average over all possible orientation angles. The functions fi(θ, ϕ, ψ) and f∗i (θ, ϕ, ψ)

are evaluated at fi(0, 0, 0) and f
∗
i (0, 0, 0) where

f1(θ, ϕ) = 4
√
2(2 sin 2θ − sin 4θ) cos 3ϕ− (4 cos 2θ + 7 cos 4θ),

f2(θ, ϕ, ψ) = (3 + 4 cos 2θ − 7 cos 4θ) cos 2ψ + 4
√
2(3 sin 3θ − sin θ) sin 3ϕ sin 2ψ

− 4
√
2(2 sin 2θ + sin 4θ) cos 3ϕ cos 2ψ,

f3(θ, ϕ, ψ) = (2 sin 2θ + 7 sin 4θ) sinψ + 4
√
2(cos 2θ − cos 4θ) cos 3ϕ sinψ

+ 6
√
2(cos θ − cos 3θ) sin 3ϕ cosψ,

f4(θ, ϕ, ψ) = 7(2 sin 2θ − sin 4θ) sin 3ψ + 4
√
2(7 cos 2θ + cos 4θ) cos 3ϕ sin 3ψ

+ 2
√
2(7 cos θ + 9 cos 3θ) sin 3ϕ cos 3ψ,

(9.17)

and f∗i is found from fi by replacing (sin pψ, cos pψ) by (cos pψ,− sin pψ). Evaluating

fi(0, 0, 0) and f
∗
i (0, 0, 0) yields

f1 = −11, f2 = 0, f3 = 0, f4 = 0,

f∗1 = −11, f∗2 = 0, f∗3 = 0, f∗4 = 32
√
2.

(9.18)

Then for the case of pure shear

σyz = µγ, → µWK =
M

D
(40N + 32M), (9.19)
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and for the case of uniaxial extension

σxx = λε, → λWK =
N −M

D
16N. (9.20)

where subscript WK denotes the result of Warren and Kraynik.

Figure 9.5: Regular tetrahedral unit cell for determining the bulk modulus using strain
energy formulation. Note for a regular tetrahedral structure, i.e. diamond lattice,
the edge length of the unit tetrahedron, a, to the half-strut length, L, are related by
4L = a

√
2/3, then the area of each face, A0, in terms of L is A0 = 6

√
3L2. The volume

of the tetrahedron is V = 8
√
3L3.

Using figure 9.5 the results of [65], equations (9.19) and (9.20), can be independently

checked by finding the bulk modulus using a strain energy formulation. Consider the

origin, which is the junction point between all struts, as fixed. The strain energy of one

of the struts is

U1 = P 2M/2. (9.21)

The displacement of the strut in the direction of P , which is axial deformation, is

δ1 =
∂U1

∂P
= PM. (9.22)

The total strut length after stress σ is applied is then L′ = L− PM . Considering load

P is applied to all struts the deformed volume, using the equation for the volume of a

tetrahedron, V = 8
√
3L3, is

V ′ = 8
√
3(L− PM)3 = 8

√
3
[
L3 − 3L2PM + 3LP 2M2 − P 3M3

]
≈ 8

√
3
[
L3 − 3L2PM

]
,

(9.23)

where the approximation is used assuming infinitesimal deformation. The change in

volume of the unit cell is then

∆V = 8
√
3L3 − 8

√
3
[
L3 − 3L2PM

]
= 24

√
3L2PM. (9.24)
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The bulk modulus can be easily determined by

K =
V σ

∆V
=

8
√
3L3σ

24
√
3L2PM

. (9.25)

This can be simplified by using P = 6σ
√
3L2, which is found by taking the stress,

σ, applied to one of the faces on the unit cell having area 6
√
3L2. The effective bulk

modulus is then

K =
1

18
√
3LM

, (9.26)

which is the result that Warren and Kraynik [65] found for a randomly oriented configu-

ration of unit cells. It should be noted that by taking the Lamé parameters of equations

(9.19) and (9.20) and assuming N ≫ M an approximate bulk modulus can be found,

where

λWK ∝ 1

18
√
3LM

, µWK ∝ 40M

N
, → KWK ≈ 1

18
√
3LM

, (9.27)

which agrees with the result of the strain energy method as shear is not accounted for.

A problem with these results is that the volume used for the tetrahedron should not be

used since tetrahedrons are not capable of filling three dimensional space. Instead the

volume for the diamond lattice should be used where for the regular diamond structure

V =
64

√
3L3

9
. (9.28)

This changes the results and was compensated for by the work of Norris [7]. In that

work the effective elasticity was found to be
C11 C12 0

C12 C22 0

0 0 C66

 ≈ C0


ϖ 1 0

1 ϖ−1 0

0 0 0

 , (9.29)

with

C0 =
d

d− 1

cs2R2(R1 + cR2)

V (M2 + dc2M1)
, ϖ =

(d− 1)c(R1 + cR2)

s2R2
, (9.30)

where d = 2, 3 corresponding to two and three dimensions, c = cos θ, s = sin θ, V is

the volume, and the parameters R1, R2, θ are shown in figure 9.6. The volume, for the

diamond lattice used here, is

V = 6
√
3(sR2)

d−1(R1 + cR2). (9.31)
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Figure 9.6: Unit cell used in the work of Norris [7], where there are three identical
struts with length R2 all oriented an angle θ away from the opposite direction of the
fourth strut with length R1.

For the case of the regular tetrahedral structure, R1 = R2 = L, θ = cos−1 1
3 . This

gives isotropic behavior as ϖ = 1 in equation (9.29). The volume is then the same as

equation (9.28). Looking for materials with small shear modulus the approximation

λ ≈ C11 is used, giving

λN =
1

16
√
3LM

, (9.32)

where subscript N denotes the result of Norris. This is similar to the Warren and

Kraynik result shown in equation (9.27).

Using equation (9.30) the equations can be reformulated using an elastic filling

fraction, ϕel, which will refer to the volume fraction of material necessary to achieve

the desired bulk modulus. The axial compliances are M1 = M2 = L
AE , where A is the

rod cross-sectional area. C0 of equation (9.30) gives

C0 =
4

9

AEL

V
=
ϕelE

9
. (9.33)

In order to match the bulk modulus of water we take C0 = K ≈ 2.2GPa then for steel,

for which Young’s modulus is E ≈ 193GPa, we find ϕelsteel ≈ 1/10. This result means

that in order to match just the strength of water we must fill approximately 10% of the

volume of the unit cell assuming uniform circular cross-section struts.
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9.2 Parameterization

Here the results of Warren and Kraynik, which gave an approximation on both the

effective bulk and shear moduli, are parameterized into a simpler form. Assuming rods

of constant circular cross-section the axial compliance, M , and bending compliance, N ,

are given by

M =

∫ L

0

dx

EA
, N =

∫ L

0

x2 dx

EI
, (9.34)

where for a rod I = πr4/4, this results in

M =
L

Eπr2
, N =

4L3

3Eπr4
. (9.35)

Simplifying the first lamé parameter, found in equation (9.20), gives

λWK =
(N −M)16N

288
√
3LMN(2M +N)

= Eπ
4
3α

2 − 1

18
√
3α2(2 + 4

3α
2)
, (9.36)

where α = L/r and r is the rod radius. The shear modulus is taken as

µWK =
M(40N + 32M)

288
√
3LMN(2M +N)

= Eπ
5α2 + 3

36
√
3α4(2 + 4

3α
2)
. (9.37)

The approximation, λWK ≈ KH2O, could be used since relatively long thin rods are

expected which will mean µWK ≪ λWK . However, if the small amount of shear modulus

is taken into account then the bulk modulus is

KH2O = λWK +
2

3
µWK = Eπ

4α4 + 2α2 + 3

36
√
3α4(2α2 + 3)

. (9.38)

The density can be found by using the volume and number of elements, rods and masses

in the unit cell. Referring to figure 9.7, the unit cell consists of 16 full length rods, that

is each rod has a full length of 2L, and 8 masses, points that we may add a specified

amount of mass to and the volume these components occupy is Vtot =
512

√
3

9 L3. The

density is then

ρH2O =
9ρrodπ

16
√
3α2

+
9m

64
√
3L3

, (9.39)

where m is the mass located at each vertex. Parameters created are a non-dimensional

α = L/r and a dimensional β = m/L3 having units of density. The ratio between λ

and µ is computed for comparison in terms of α where

µWK

λWK
=

3 + 5α2

2α2(43α
2 − 1)

. (9.40)
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Figure 9.7: Full unit cell of the diamond lattice. It consists of 16 rods and 8 masses.

Clearly as α = L/r becomes greater the shear modulus must become smaller. Solving

equation (9.38) for the bulk modulus of water and equation (9.39) for the density

examples were considered for a variety of materials. Using steel where Young’s modulus

is Esteel = 193 GPa and ρsteel = 8000 kg/m3 a solution is found with

αsteel = 2.828, βsteel = −255.2 kg/m3, (9.41)

where ρH2O = 1000 kg/m3 and the bulk modulus of water as KH2O = 2.2 GPa was

used. Since β is negative we must find materials that are lighter but keep relatively

large stiffness. The contribution of just the steel rods to the density, i.e. the first term

in equation (9.39), is 1020.7 kg/m3, so if we took β to be zero we would not be too far

off. The effective Lamé parameters using steel are λsteel ≈ 1.86 GPa and µsteel ≈ 0.51

GPa. For aluminum the results are

αalum = 1.616, βalum = −670.25 kg/m3, (9.42)

where Ealum = 69 GPa and ρalum = 2700 kg/m3. This results in a high shear stiffness

material, where the lamé parameters are λalum ≈ 1.21 GPa and µalum ≈ 1.49 GPa.

This is due to the relatively small α which means the rods are rather short compared

to the radius. In order to increase α higher stiffness materials are required, for ceramic



174

Figure 9.8: Predicted bulk modulus using equation (9.38), for steel, aluminum, ceramic
alumina, and silicon carbide (SiC) rods where Esteel = 193 GPa, Ealum = 69 GPa,
Eceram = 370 GPa and ESiC = 450 GPa. Red dashed line represents the bulk modulus
of water, KH2O ≈ 2.2 GPa.

alumina a solution is found with

αceram = 4.00, βceram = 9242.9 kg/m3, (9.43)

where Eceram = 370 GPa and ρceram = 3920 kg/m3. Figure 9.8 was generated using

equation (9.38) and plots the effective bulk modulus as a function of α using several

different materials. Clearly a three dimensional material will be very difficult to produce

as high stiffness but lighter materials are required by the theory. These results are valid

for larger α corresponding to longer and thinner rods. Lastly it should be noted that

the filling factor, which is the proportional amount of space that could be occupied

by spheres in point contact with each sphere centered at the vertices of the lattice, is

π
√
3

16 ≈ 0.34 for the diamond lattice [90]. This result means that the lattice geometry has

difficulty in filling space and is the reason that very stiff materials are needed. In two

dimensions we only needed a material that was on the order of ten times the stiffness of

water, here in three dimensions we need something on the order of one hundred times

the stiffness.
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Figure 9.9: Using equation (9.38) for steel, α = 2.828, which creates the geometry shown
to the left. Dispersion curves found from Bloch-Floquet analysis using COMSOL are
on the right. Shown are various wave speeds for longitudinal and transverse motion
along paths of the Brillouin zone that have the point Γ.

Figure 9.10: Brillouin zone for the diamond lattice [8]. The irreducible region is enclosed
by the points Γ, X, L, W, K, and U listed in equation (9.44).

9.2.1 Comparison using FEM

Next the results of Warren and Kraynik are compared using COMSOL. Instead of

using the static homogenization technique, reviewed in section 6.2, we go straight to

Bloch-Floquet analysis. Looking for quasi-static wave speeds by taking the derivative

of the frequency with respect to the wave vector, as shown in equation (8.69), we take

small steps away from Γ in the irreducible Brillouin zone, shown in figure 9.10 for the
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diamond lattice. The points are defined by [8]

Γ =


0

0

0

 , X = c0


1

0

0

 , L =
c0
2


1

1

1

 ,

W = c0


1

1/2

0

 , K =
3c0
4


1

1

0

 , U = c0


1

1/4

1/4

 ,
(9.44)

where c0 =
√
3π/(4L). Using the steel result of equation (9.41), where the density is

not too far off, figure 9.9 was generated. Longitudinal and transverse wave speeds are

shown in the dispersion curve figures along various directions. The longitudinal wave

speed is about 2000 m/s and for water we desire 1500 m/s. Iterating the Bloch-Floquet

analysis just for the desired wave speed and neglecting the density requirement we find

αsteel ≈ 22.4. However this does not solve the problem since we are only finding
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Figure 9.11: Right side shows the geometry for α = 22.4. Dispersion curves shown on
left using steel.

solutions for which c =
√

K
ρ ≈ 1500 m/s. In order to be water like we require both the

density and the bulk modulus be equivalent to water, this ensures that the medium is

matched both in impedance and speed. For α = 22.4, figure 9.11 was generated. The

bulk modulus is found by noting the filling fraction for this example is ϕel = 0.00203,

which for steel gives an effective density of 16 kg/m3. The bulk modulus as calculated

by Bloch-Floquet analysis via COMSOL is then; KFEM = 44.83 MPa, whereas the

Warren and Kraynik result, equation (9.38), gives Kpred = 38.68 MPa, which is close
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to the FEM result. Likewise for α = 2.83, shown in figure 9.9, we found ϕel = 0.128,

which means the effective density is 1024 kg/m3 and the bulk modulus calculated by

FEM is KFEM = 4.49 GPa and that calculated by (9.38) gives Kpred = 2.2 GPa.

This puts light to the fact that the theory is valid for thin members, in the example

of α = 22.4 we were to able to find closer agreement of the calculated bulk modulus

between the analytical and FEM results however for α = 2.8 the results are quite off.

9.2.2 Examples using tetrahedral and spherical shaped masses

In order to match the density masses are added to the strut intersections. Using an

all steel design where the rod is simulated as being in full contact with the tetrahedral

shaped mass figures 9.12, 9.13, and 9.14 were generated. So far the dispersion curves in

this chapter have been taken with an unrealistic rod radius of 1 m, which explains the

rather low frequencies seen in the dispersion curves. The cell size can be scaled down

which has the effect of raising the frequencies in the band diagrams without changing

the wave speeds shown in the figures. This is seen between figures 9.13 and 9.14, where

the geometry is exactly the same except in figure 9.14 the rod radius was scaled down

to 1 cm. After enough iterations figure 9.15 was created which matches the density

and wave speed very closely. Unfortunately the shear wave speed is high meaning there

is not much of a frequency range where only the purely longitudinal mode is present,

which is the desired goal of producing a material that mimics water-like behavior.

The next design considers using spherical masses where, in order to reduce the

materials effective shear modulus, rods are not in full contact with the sphere. The

geometry is shown in figure 9.16. The rod material was changed to silicon carbide

which is much stiffer than steel. This has the effect of increasing α which lowers the

expected shear modulus of the material. The spherical masses are taken as steel. Doing

this resulted in figure 9.17, which is matched to water in speed and density. The shear

speed is still rather high with an effective shear moduli of G ≈ 0.25 GPa. Using a

stiffer material such as tungsten carbide, where the material properties are E = 550

GPa and ρ = 15, 630 kg/m3, figure 9.18 was created. We investigate further by looking

into changing the rod geometry.
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Figure 9.12: Dispersion curves found from Bloch-Floquet analysis using COMSOL.
Using all steel design with α = 4.2, this gives an effective density of ρ = 1126 kg/m3.
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Figure 9.13: Dispersion curves for α = 4.4 using tetrahedral masses, geometry shape
similar to figure 9.12 left. Using all steel design the effective density is 996 kg/m3.

9.2.3 Hollow Rods

Here rods consisting of inner radius ri and outer radius r are considered. Again the

axial compliance, M , and bending compliance, N , are given by

M =

∫ L

0

dx

EA
, N =

∫ L

0

x2 dx

EI
, (9.45)

where I is the moment of inertia, for a beam I = bt3/12 and for a rod I = πr4/4. For

a hollow rod I = π
4 (r

4 − r4i ) then

M =
L

Eπ(r2 − r2i )
, N =

4L3

3Eπ(r4 − r4i )
. (9.46)
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Figure 9.14: Dispersion curves for all steel design. Geometry same as in figure 9.13
with α = 4.4 however here r = 1 cm.
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Figure 9.15: Finalized version of the all steel design with tetrahedral masses in full
contact. Parameters are α = 4.32, L = 13 cm, ρ = 1000 kg/m3.

The effective moduli are

λWK =
(N −M)16N

288
√
3LMN(2M +N)

= Eπ
(r2 − r2i )(4L

2 − 3(r2 + r2i ))

36
√
3L2(2L2 + 3(r2 + r2i ))

, (9.47)

µWK =
M(40N + 32M)

288
√
3LMN(2M +N)

= Eπ
(r4 − r4i )(5L

2 + 3(r2 + r2i ))

24
√
3L4(2L2 + 3(r2 + r2i ))

, (9.48)

and the bulk modulus is

KH2O = Eπ
(r2 − r2i )(4L

4 + 2L2(r2 + r2i ) + 3(r2 + r2i )
2)

36
√
3L4(2L2 + 3(r2 + r2i ))

, (9.49)

because the term (r2−r2i ) shows in the numerator taking hollow cylinders is of no help.

The density is

ρH2O =
9ρrodπ(r

2 − r2i )

16
√
3L2

+
9m

64
√
3L3

. (9.50)
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Figure 9.16: Geometry using spherical masses with limited contact region. Used to
create figure 9.17.
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Figure 9.17: Silicon carbide rods with steel masses. Rod radius is r = 1.16 mm.
Effective properties are ρ = 1000 kg/m3, G ≈ 0.25 GPa, and ν ≈ 0.45.

9.2.4 Double coned rods

Trying the coned shape geometry, as seen in [24], in order to investigate if a reduction in

shear modulus occurs. The rod geometry is shown in figure 9.19, the axial and bending

compliances are

M =

∫ L

0

dx

EA
=

L

EπrR
, (9.51)

N =

∫ L

0

x2 dx

EI
=

4L3

3EπRr3
. (9.52)

Using equations (9.19) and (9.20) the effective moduli are

λWK =
(N −M)16N

288
√
3LMN(2M +N)

= EπrR
4L2 − 3r2

36
√
3L2(2L2 + 3r2)

, (9.53)
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Figure 9.18: Tungsten carbide rods with steel masses. Parameters: L = 13 mm,
α = 5.6, effective density, ρ = 1000 kg/m3.

Figure 9.19: Double coned shape geometry of rod.

µWK =
M(40N + 32M)

288
√
3LMN(2M +N)

= EπRr3
5L2 + 3r2

24
√
3L4(2L2 + 3r2)

. (9.54)

The bulk modulus is

KH2O = EπRr
4L4 + 2L2r2 + 3r4

36
√
3L4(2L2 + 3r2)

. (9.55)

An example using this geometry was found using steel double coned shaped rods with

tetrahedral aluminum masses, shown in figure 9.20. Here we see a rather large range in

frequency where only the purely longitudinal mode occurs in the band diagram. This

design is capable of filling more space due to the rod geometry and exotic materials with

extreme stiffness such as silicon carbide are not needed, making it easier to manufacture.
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Figure 9.20: Double coned shaped example using steel rods and aluminum tetrahedral
masses. Parameters are L = 13 mm, L/r = 1.8, R = r/2.5, where R is the radius of
the rod measured at the contact region with the tetrahedral mass.

Figure 9.21: Two radii and length model, for possible reduction in shear modulus.

9.2.5 Two length and radii model

The geometry shown in figure 9.21 is considered here where there are two radii and

lengths used to define the rod. The axial and bending compliances are

M =

∫ l1

0

dx

Eπr21
+

∫ l1+l2

l1

dx

Eπr22
=

l1
Eπr21

+
l2

Eπr22
, (9.56)

N =

∫ l1

0

x2 dx

Eπr41/4
+

∫ l1+l2

l1

x2 dx

Eπr42/4
=

4l31
3Eπr41

+
4l2

3Eπr42

[
3l21 + 3l1l2 + l22

]
. (9.57)

Simplifying further gives

M =M0

[
1 + (

r1
r2
)2
l2
l1

]
,

N = N0

[
1 + (

r1
r2
)4
[
3
l2
l1

+ 3(
l2
l1
)2 + (

l2
l1
)3
]]
,

(9.58)

where

M0 =
l1

Eπr21
, and N0 =

4l31
3Eπr41

. (9.59)
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The lamé moduli are rather complicated functions and are not reproduced here. What

Figure 9.22: The effect on the axial and bending compliance by reducing the radius of
a small piece of the midsection of the length is shown, using equation (9.58).

Figure 9.23: The effect on bending and axial compliance for reducing the radius of a
small section near the junction, using equation (9.58).

is important are the studies shown in figures 9.22 and 9.23, where the parameters of

figure 9.21 are used to change the bending and axial compliances of equation (9.58). It’s

seen that this model can affect the bending compliance much more than the axial by

reducing a small length of the midsection of the rod. This will have the intended affect

of lowering the effective shear modulus while maintaining most of the bulk modulus.

Models using tungsten carbide rods with steel masses were constructed and studied

using COMSOL located in figures 9.25 and 9.26. Again the rods are only in contact

with the spherical mass at the rod base.
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Figure 9.24: Geometry used for the two length and radii model, L = l1 + l2 + l3, where
l3 begins at the junction center.

The approximate density in terms of design parameters is

ρ ≈ 9πρrod(r
2
1l1 + r22l2)

16
√
3(l1 + l2)3

+
9m

64
√
3(l1 + l2)3

. (9.60)

9.2.6 Tapered ends

The design considered here, shown in figure 9.27, consists of tapering the rod ends, this

should have the effect of lowering the shear stiffness of the material. The radius is

r(x) =


r2−r1
l1

x+ r1, 0 ≤ x ≤ l1

r2, x ≥ l1.

(9.61)

The axial and bending compliance are then

M =

∫ l1

0

dx

Eπ( r2−r1l1
x+ r1)2

+

∫ l1+l2

l1

dx

Eπr22
=

1

Eπr2

[ l1
r1

+
l2
r2

]
,

N =

∫ l1

0

x2 dx

Eπ( r2−r1l1
x+ r1)4/4

+

∫ l1+l2

l1

x2 dx

Eπr42/4

=
4

3Eπr32

[ l31
r1

+
(l1 + l2)

3 − l31
r2

]
.

(9.62)

Using this design, COMSOL models were produced in figures 9.29 and 9.30 with design

parameters located in figure 9.28. The best designs are those located in figures 9.20

and 9.30, both of which use machinable materials such as steel and aluminum. Further

work must be done but clearly tapering the rod ends seems to be the most effective
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Figure 9.25: Two length and radii model with spherical masses. Tungsten carbide
rods with steel spheres, effective density is 1000 kg/m3. Parameters: L = 13 mm,
L/r1 = 4.93, l3 = L/6.1, r2 = r1/2, l2 = L/20, where l1, l2, and l3 are shown in figure
9.24.

way of lowering the shear wave speed as compared to the other designs studied. In

summary producing three dimensional metamaterials capable of mimicking the acoustic

properties of water is a difficult task. A problematic hurdle here is that as we look

into designs that seek to minimize shear stiffness we find the parameter α = L/r

decreases which has the opposite effect. One solution could be a type of ball joint

at the mass junctions, which would be able to sustain a hydrostatic loading but would

deform rapidly due to a shear loading. Further work on producibility must be conducted

however it is clear that designing a material capable of mimicking the acoustic properties

of water is feasible. Next the cubic lattice is studied where matching to water is found

along one direction.

9.3 Cubic example

Here the cubic lattice geometry shown in figure 9.31 is studied, it is noted that

anisotropic behavior in the effective elasticity is to be expected. The goal here is

to match the wave speed only in one direction while simultaneously matching density.

This device will be water-like along three directions parallel to the rods in the unit cell.

The Brillouin zone for the cubic lattice is shown in figure 9.32, where the points in the



186

0

0.5

1

1.5

2

x 10
4

503m/s

1500m/s

480m/s 495m/s

1454m/s1501m/s

Figure 9.26: Two length and radii model with spherical masses. Tungsten carbide
rods with steel spheres, effective density is 1000 kg/m3. Parameters: L = 13 mm,
L/r1 = 5.34, l3 = L/6.3, r2 = r1/1.5, l2 = L/40, where l1, l2, and l3 are shown in figure
9.24.

Figure 9.27: Rod geometry for tapered end design.

irreducible zone are defined by

Γ =
π

L


0

0
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π

L
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0

1

0

 , M =
π

L


1

1

0
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π

L


1

1

1

 . (9.63)

An example using steel was created where the wave speed is matched to water along

Γ − X, located in figure 9.33. Here there is full contact with the mass and the rods.

Additionally the dispersion curves were generated at higher frequencies, shown in figure

9.34, where significant band gaps are present. This type of material could be used to

filter undesired frequencies. The wave speeds calculated by COMSOL are checked using

the Christoffel equation. The elasticity components of cubic materials are defined
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Figure 9.28: Geometry used for the tapered end model, L = l1+ l4+ l3, where l3 begins
at the junction center. Radius r1 is the larger radius of the rod which tapers to radius
r4 located at the contact zone of the rod with the mass junction.

by three parameters, κ, µ1 and µ2 [33]. This was derived earlier in equation (2.58),

where the wave speeds were found using the wave vector directions used here. Equating

the speeds this material has elastic properties κ = 0.77 GPa, µ1 = 0.026 GPa, and

µ2 = 1.11 GPa, which can be checked using (2.58) using ρ = 1000 kg/m3. In figure 9.33

water like behavior is seen in the Γ−X branch. This is similar to what was seen in the

previous section using the diamond lattice, however here this can only be accomplished

in this one direction of the k path defined by the irreducible Brillouin zone. Since the

Γ−X direction in k space is equivalent to directions parallel to the rods the structure

has water like response along three directions normal to the faces. This concludes the

study of periodic lattice structures and the designing process of metamaterials here.

The next chapter concludes the thesis where original contributions, current work and

future work are discussed.
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Figure 9.29: Tapered end geometry. Tungsten carbide rods with steel masses. Pa-
rameters: L = 13 mm, L/r1 = 4.62, r4 = r1/1.5, l3 = L/5.8, l4 = L/3. Dimension
definitions shown in figure 9.28.
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Figure 9.30: Tapered end geometry. All steel design. Parameters: L = 13 mm, L/r1 =
2.80, r4 = r1/2, l3 = L/3.5, l4 = L/5. Dimensions definitions shown in figure 9.28.
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Figure 9.31: Cubic lattice design. Parameters are: L, the total length of the unit cell,
a the length of one side of the cubic mass located at the joint, and r, the rod radius.

Figure 9.32: Brillouin zone of the cubic lattice [8]. Irreducible zone is enclosed by the
points Γ, M, X and R, defined in equation (9.63).
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Figure 9.33: All steel design. Parameters: L = 85.8 mm, a = 42 mm, and r = 4 mm.
Dimension definitions shown in figure 9.31.



190

0

1

2

3

4

5
x 10

4

Figure 9.34: All steel design. Parameters: L = 85.8 mm, a = 42 mm, and r = 4 mm.
Effective density, ρ = 1000 kg/m3. Dimension definitions shown in figure 9.31.
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Chapter 10

Conclusions and future work

The main objective of this thesis was to produce materials that mimic the acoustic

properties of water. This was done by designing lattice type materials where elastic

and density properties are found from analysis of a unit cell. A robust study was ac-

complished in which macroscopic material properties were found by static and dynamic

methods and several designs were proposed and studied in both two and three dimen-

sions. Before beginning such an analysis an exhaustive review was completed starting

with general elastodynamic theory where acoustic and elastic waves were studied in

chapter 2. Designed materials with periodic structure containing reflection planes were

considered to achieve the desired goal, elastic material symmetries were reviewed as

it becomes important to understand what components of the elasticity tensor should

be considered when designing a new material. Chapter 2 ended with a review of the

Christoffel equation which computes the group velocities for longitudinal and shear

waves in elastic media. Understanding how to find wave speed behavior from a mate-

rial’s elastic and density properties became valuable as a check on the homogenization

methods reviewed in chapters 6 and 7, where by using the static methods elastic moduli

can be found and by the dynamic methods group velocities can be found.

In chapter 3 the standard global matrix method for scattering from a cylindrically

layered elastic medium was developed. The medium could have at most elasticity de-

scribed by transverse isotropy and the method was found to require the inversion of

rather large matrices dependent on the number of layers considered. This is problem-

atic, especially in the application of acoustic cloaking theory where material properties

of the cloak are required to vary as a function of the radius. This problem was re-

solved by the integration method reviewed and developed in chapter 4, where the Stroh
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formalism was used in conjunction with the matricant and impedance matrices offer-

ing a stable solution scheme. It was found that the method is able to quickly solve

for a large number of layers with general anisotropy and was used in chapter 5 where

acoustic cloaking theory was reviewed and examples were considered. It was shown

that pentamode elasticity is required for devices that are created using transformation

acoustics theory. This type of elasticity is so named due to the five zero valued eigen-

values of it’s elasticity tensor. Additionally it was shown this special type of elasticity

only allows for longitudinal waves to propagate as shear wave speeds are zero in such

a medium. Examples of acoustic cloaks using pentamode elasticity were considered

where some amount of shear modulus was added to the medium, this was done as any

elastic material able to keep structure will require a certain amount of shear rigidity.

The cloaking medium is able to tolerate some level of shear wave to be present and

still be effective. This result makes it possible to consider designed elastic structures to

serve as the cloaking medium.

As a first step towards producing pentamode type cloaks, the goal of acoustically

simulating water was chosen. In order to do this periodic structures were considered

and homogenization theories were reviewed to accurately design the material. Static

homogenization methods are reviewed in chapter 6 where elasticity components of pe-

riodic media can be found by both analytical and finite element means. In chapter

7, Bloch-Floquet analysis is extensively reviewed using several different methods with

new results in the application of Euler-Bernoulli beams. This offers dispersion curve

analysis in which group velocities can be found and static elastic moduli can be backed

out and compared against the results of the previous chapter.

Lastly, in chapters 8 and 9 Metal Water designs were considered and analyzed in

two and three dimensions. In two dimensions it was found that by using the regular

hexagonal lattice, simulating water like behavior is very possible and does not require

the use of exotic materials. In three dimensions the diamond lattice was required for

isotropic behavior, this is somewhat problematic as it is difficult to fill space in such

a lattice and as a result much stiffer materials were found to be required. However,

by analyzing several different types of strut geometries and mass junctions an example
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was found where double coned steel rods with tetrahedral aluminum mass junctions was

able to solve the problem offering a range of frequencies where only the longitudinal

mode exists, refer to figure 9.20. The cubic lattice was studied last where matching to

water occurs in three orthogonal directions. It was noticed that such a material has

fairly large band gaps, noted in figure 9.34, and could be used as a filtering device.

10.1 Original contributions

The original work completed in this thesis is largely in chapters 8 and 9, where unit cell

designs for Metal Water were found for two and three dimensional structures. In two

dimensions, Metal Water I was developed and produced, a three dimensional version has

not yet been produced. A cubic structure was also found in which acoustic matching to

water occurs along three orthogonal directions. The application of static and dynamic

homogenization theories has been used for other types of devices, especially in the

use of Bloch-Floquet theory in developing dispersion curves. The analytical static

homogenization theory of Kim and Al-Hassani [64] for which an estimate on elastic

moduli was reviewed. It was further developed in section 8.1 where several different

unit cells with various types of struts were considered. Other contributions include the

stable integration method which combines the matricant and impedance matrices to

solve for acoustic scattering from layered media, located in chapter 4 and first published

in [41]. Also new is the development of Bloch-Floquet solutions for elastic honeycomb

structures using Euler-Bernoulli beams, done in section 7.5.

10.2 Current and future work

Many methods were reviewed especially under the application of Bloch-Floquet theory

in chapter 7. Only the new method of using Euler-Bernoulli beams was compared to

finite element results. Comparison of the other methods where a study of how adding

physics to the problem changes the dispersion curves can be done. For instance, in the

mass spring model only longitudinal modes are captured, for the Euler-Bernoulli and

Timoshenko beams both longitudinal and bending modes are captured. Current work,
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in the process of being published, extends the use of Euler-Bernoulli beams into three

dimensions where comparison to finite element results shows that torsional modes are

not accounted for in the theory.

Other work currently being done is the design of a micro-structured elastic slab

device which takes an incoming acoustic wave and speeds it up in a given direction

without reflection. This type of device is being designed with the methods studied here

and time domain simulations done in COMSOL show the effectiveness of the device.

Another point not discussed in detail is the water-device boundary, in two dimensions

it has been seen that by water filling the bordering edges of the device better acoustic

conduction is seen in simulation. In the proposed three dimensional structures this type

of boundary does not exist and the question of how to best couple the two mediums,

fluid and elastic lattice, arises.

Currently two dimensional analysis can be done in COMSOL at Rutgers where

things such as reflection transmission spectrum analysis and full scale simulations can

be considered. In three dimensions there is a lack of computing power for full scale

simulation, where the micro-structure lattice design cannot be present in the model.

Instead by utilizing the static homogenization method, reviewed in chapter 6 for three

dimensions, a solid medium with effective elastic and density properties can replace the

lattice. This type of analysis works so long as the wavelengths considered are at least

on the order of the unit cell size, the analysis would be limited as the homogenization

limit of the structure would not be seen.

Possibly the greatest area for future work is in the general production of meta-

material devices. In two dimensions the Metal Water I design was produced with

waterjet machining, which has thickness limitations and can be costly. The proposed

CMI designs, which are constructed by bonding corrugated sheets, has had problems

in the bonding process but may have recently been resolved. Further development on

anisotropic two dimensional designs for acoustic cloaks is currently in the process of

being published. Three dimensional anisotropic designs has yet to be considered in the

application of cloaking theory. The ultimate goal for future investigation is the creation

of a multi-layered cloaking device and physical testing.
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