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ABSTRACT OF THE DISSERTATION

Selected topics in stochastic optimization

by Anh Tuan Ninh

Dissertation Directors: András Prékopa - Yao Zhao

This report constitutes the Doctoral Dissertation for Anh Ninh and consists of three

topics: log-concavity of compound Poisson and general compound distributions, discrete

moment problems with fractional moments, and the recruitment stocking problems.

In the first topic, we find the conditions for the compound Poisson and general com-

pound distributions to be log-concave (log-convex). This problem is very important not

only from the stochastic optimization perspective but also from the theory of maximum

entropy in probability. Some interesting connection to Turán-type inequality will also

be mentioned.

In the second topic, we formulate a linear programming problem to find the mini-

mum and/or maximum of the expectation of a function of a discrete random variable,

given the knowledge of fractional moments. Using a determinant theorem we fully

characterize the dual feasible basis for this discrete fractional moment problem. With

the dual feasible basis structure, Prékopa dual method can be applied for its solution.

Numerical examples show that by the use of fractional moments, we obtain tighter

bounds for the objective.

In the third topic, we introduce a new class of inventory control model - the recruit-

ment stocking problems. In particular, we analyze a general class of inventory control

problem, in which we need to recruit a target number of individuals through designated
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outlets. As soon as the recruits of all outlets add up to the target number, the recruit-

ment is done and no more individuals will be admitted. The arrivals of individuals at

each outlet are random. To recruit an individual upon its arrival, we must provide a

pack of materials. We order the packs of materials in advance and hold them in the out-

lets. Outlets can neither transfer recruits nor cross-ship materials among themselves.

If an outlet runs out of stock, any futher recruit at the outlet will be lost. We propose

both exact and approximation methods to measure key performance metrics for the

system: Type I and II service levels and recruitment time. Extensive numerical study

shows the effectiveness of our proposed framework.
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Chapter 1

Introduction

This work consists of three selected topics in probability and stochastic optimization:

log-concavity (log-convexity) of compound Poisson and general compound distributions,

the discrete moment problems with fractional moments at the right-hand-side, and the

recruitment stocking problems.

The notion of a log-concave sequence was initially introduced by Fekete (1912) un-

der the name of 2-times or twice positive sequence as a special case of an r-times

positive sequence. From his famous convolution theorem on r-times positive sequences,

an important result for log-concave sequences can be derived, i.e., the convolution of

two log-concave sequences is log-concave. The continuous log-concavity comes up in

connection with failure rate in reliability theory (see, e.g.,Barlow, Proschan, 1965).

Prékopa was the first to introduced multivariate log-concave measures to prove con-

vexity of probabilistic constrained problems. Following are two fundamental theorems

from Prékopa (1971, 1973a,b). For further references, we refer to the monograph by

Prékopa (1995).

Theorem 1. Let f(x), x ∈ Rm be a log-concave probability density function and let P

be the probability measure generated by f . Then P is a logconcave measure.

Theorem 2. If f(x, y) is a logconcave function of the m + n variables contained in

x ∈ Rn, and y ∈ Rm, then ∫
Rm

f(x, y)dy (1.1)

is a log-concave function of x ∈ Rn.

An important consequence for the above theorem is that the convolution of two

log-concave functions in Rm is also log-concave.
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Compound Poisson distributions play important role in many applied areas: acturial

mathematics, physics, engineering, operations research. The log-concavity property, in

connection with a compound Poisson distribution, comes up primarily in stochastic

optimization, where frequently the convexity of the optimization problem depends on

it (see Prékopa, 1995). One example is the bond portfolio construction problem with

probabilistic constraints. The claims in subsequent periods enjoy independent com-

pound Poisson distributions. In addition, the log-concavity property for a compound

Poisson distribution (on nonnegative integers) is also very important from the point of

view of understanding compound Poisson limit theorems.

This dissertation is based on the papers from Anh Ninh, Prékopa (2013a,b). Chapter

2 is devoted to derive the conditions under which some compound Poisson distributions

and general compound distributions are log-concave (log-convex). In particular, we look

at the compound distributions with geometric, negative binomial, Poisson and gamma

distributed terms. Furthermore, we present an interesting connection of log-concavity

to various Turán type inequalities.

In Chapter 3 we review the fundamentals of discrete moment problems (DMP) and

introduce a variation of DMP when the right-hand-side contains fractional moments.

DMP came to prominence by the discovery (Samuels and Studden, 1989), Prékopa

(1988, 1990a,b) that the sharp Bonferroni bounds can be obtained as optimum valus

of discrete moment problems. The simplest discrete moment problem, where power

moments are used, is closefy connected with divided differences, and higher order convex

functions. We show that DMP with fractional moments can also be solved efficiently

using Prékopa dual algorithm.

In the last chapter we introduce a new class of inventory management, called recruit-

ment stocking problems. We need to recruit a target number of individuals through

designated outlets. As soon as the recruits of all outlets add up to the target number,

the recruitment is done and no more individuals will be admitted. The arrivals of indi-

viduals at each outlet are random. To recruit an individual upon its arrival, we must

provide a pack of materials. We order the packs of materials in advance and hold them

in the outlets. Outlets can neither transfer recruits nor cross-ship materials among
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themselves. If an outlet runs out of stock, any futher recruit at the outlet will be lost.

The recruitment stocking problem differs from previous research conducted in the

existing inventory management literature due to the finite target number which connects

all outlets in such a way that the recruitment is done as soon as the recruits at all outlets

reach the target. In most existing inventory models, we should satisfy demand as much

as supply allows. In other words, demand should be satisfied as long as inventory is

available. This is not true in the recruitment stocking problem, where as soon as the

target is met. no more demand will be served even if we have stock in the system.

With this unique feature under consideration, performance evaluation and inventory

allocation for this system are not known in the literature. In Chapter 4, we propose

both exact and approximation methods to measure kep performance metrics for the

systems: Type I, and II service levels and recruitment time.

The three topics in this dissertation are well connected. Log-concavity is used in

probabilistic constrained stochastic programming problems as well as discrete moment

bounds. Since log-concavity implies unimodality, we can take advantage of the shape

of the distribution to improve the quality of the lower and upper bounds in moment

problems (see Subasi et. al, 2009). Both log-concavity and discrete moment bounds

are encounterd in the context of the inventory management problem discussed in the

last chapter.
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Chapter 2

Logconcavity of compound distributions

2.1 Introduction

Compound Poisson distributions play important role in many applied areas: acturial

mathematics, physics, engineering, operations research, etc., see, e.g, Bowers et al.

(1986), Takács (1967), Prékopa (1995), Withers and Nadarajah (2011). The log-

concavity property, in connection with a compound Poisson distribution, comes up

primarily in stochastic optimization, where frequently the convexity of the optimiza-

tion problem depends on it (see Prékopa, 1995). One example is the bond portfolio

construction problem with probabilistic constraints. The claims in subsequent periods

enjoy independent compound Poisson distributions (see Prékopa, 2003). For solutions

of problems with discrete random variables in probabilistic constraints see Prékopa

(1990), Prékopa, Vizvári, Badics (1997), Dentcheva, Prékopa, Rusczyński (2000, 2002)

and Prékopa, Unuvar (2012), Yoda, Prékopa (2015). In addition, the log-concavity

property for a compound Poisson distribution (on nonnegative integers) is also very

important from the point of view of understanding compound Poisson limit theorems

via entropy, as initiated by Johnson et al. (2008) and Barbour et al. (2010) and further

studied in Yu (2009) and Johnson et al. (2011).

Let X1, X2, ..., be a sequence of nonnegative valued i.i.d random variables and con-

sider the sum

S = X1 +X2 + ...+XN , (2.1)

where N is a nonnegative random variable and N,X1, X2..., are independent. The

distribution of S is called compound distribution. If N is a Poisson random variable,
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with parameter λ > 0 :

fn = P (N = n) =
λn

n!
e−λ, n = 0, 1, 2..., (2.2)

then we say that S has compound Poisson distribution. In the same way we define

compound negative binomial etc. distributions, depending on the type of the random

variable N .

The notion of a log-concave sequence was first introduced by Fekete (1912) under

the name of 2 -times or twice positive sequence as a special case of an r -times positive

sequence, when r = 2. The sequence of nonnegative elements... a−2, a−1, a0,... is said

to be r -times positive if the matrix

A =



. . .
. . .

. . .

. . . a0 a1 a2

. . . a−1 a0 a1
. . .

a−2 a−1 a0
. . .

. . .
. . .

. . .


,

has no negative minor of order smaller than or equal to r (a minor is the determinant of

a finite square part of the matrix traced out by the same number of rows as columns).

The twice-positive sequences are those for which we have∣∣∣∣∣∣ ai aj

ai−t aj−t

∣∣∣∣∣∣ = aiaj−t − ajai−t ≥ 0,

for every i ≤ j and t ≥ 1. Fekete (1912) proved the following important theorem.

Theorem 3. The convolution of two r-times positive sequences is at least r-times pos-

itive.

Several authors define log-concavity of a sequence a0, a1, . . . by requiring only

a2
n ≥ an−1an+1, n = 1, 2, . . . . (2.3)

This property, alone, however, does not imply that the convolution of two log-concave
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sequences are also log-concave. For example, if the two sequences are defined as follows:

a0 = 0, a1 = 1/2, a2 = a3 = 0, a4 = 1/2, a5 = a6 = · · · = 0 (2.4)

b0 = b1 = b2 = b3 = 1/4, b4 = b5 = · · · = 0, (2.5)

then their convolution {cn} is not log-concave since c2
3 < c2c4. In view of this, log-

concavity should be defined in the same way as Fekete has defined the notion of twice

positive sequence, or, in addition to the requirement (2.3) we have to require that {an}

does not have internal zero. In other words, there are no indices 0 ≤ i < j < k ≤ n

such that ai 6= 0, aj = 0, ak 6= 0. Then, a special case of Theorem 1.1 states that the

convolution of two log-concave sequences that have no internal zeros is log-concave. If

the sequence i!ai is log-concave, then ai is said to be ultra-log-concave. A sequence {an}

is said to be unimodal if for some 0 ≤ j ≤ n we have a0 ≤ a1 ≤ · · · ≤ aj ≥ aj+1 ≥ · · · ≥

an. It is well-known that a log-concave sequence with no internal zeros is unimodal.

The sequence {an} is called log-convex if a2
n ≤ an−1an+1 for all n = 1, 2, . . . . For further

reading on log-concave and log-convex sequences in algebra and combinatorics, we refer

to the works of Stanley (1989) and Brenti (1989, 1994), Liu, Wang (2006).

A univariate discrete probability distribution, defined on the integers, is said to

be log-concave (log-convex) if the sequence of the corresponding probabilities is log-

concave (log-convex). A unimodal probability distribution is a probability distribution

which has a single mode. Since log-concavity implies unimodality, log-concavity pro-

vides us with the shape information of the probability distributions. This information

was proved to be very helpful to improve the quality of lower and upper bounds in mo-

ment problems (Subasi et. al, 2009). Some examples of discrete log-concave distribution

includes the Bernoulli distributions, binomial distributions, Poisson distributions, geo-

metric distributions, and negative binomial distributions. These distributions are also

unimodal.

Log-concavity for compound variables with nonnegative integer values of the form

S = X1 + · · · + XN was first studied in Johnson (2008) in connection with maximum

entropy property of discrete compound Poisson measures. He gave a conjecture on

the conditions to ensure log-concavity of S, in terms of the log-concavity of Xi, i =
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1, . . . , N . In the following year, Yu (2009) pointed out that this conjecture can be

deduced from the following result on log-concavity of infinite divisible sequences. A

probability distribution pn, n = 0, 1, 2 . . . with p0 > 0 is called infinitely divisible (see

Steutel, 1970) if and only if it satisfies

(n+ 1)pn+1 =
n∑
k=0

rkpn−k, n = 0, 1, 2 . . . , (2.6)

with nonnegative rk and
∑∞

k=0 rkpn−k. The following theorem is due to Hansen (1988):

Theorem 4. Let pn and rn, n = 0, 1, 2, . . . , be related by (2.6) with rk ≥ 0, p0 > 0 and

let rn be a log-concave (log-convex) sequence. Then, pn is log-concave (log-convex) if

and only if r2
0 − r1 ≥ 0.

In addition, it is well-known that (Panjer, 1981) if N is a Poisson random variable

with rate λ then the following relation holds:

(n+ 1)pn+1 =

n∑
i=0

λ(i+ 1)qi+1, i ≥ 0, (2.7)

where pn = P (S = n) and qn = P (Xi = n), n = 0, 1, 2, . . . . Theorem (4) and Panjer’s

recursion imply the necessary and sufficient conditions for a compound Poisson on

nonnegative integer to be log-concave (Yu, 2009): qn is log-concave and λq2
1 ≥ 2q2.

Similar conditions for the compound Poisson on nonnegative integer to be log-convex

can also be derived from Hansen’s theorem. Further results on infinite divisibility and

compound Poisson distributions can be found in Steutel, Van Harn (2003).

Various applications of log-concave sequences are known in probability theory, com-

binatorics, etc. Surprisingly, log-concavity property came up first in connection with

orthogonal polynomials. The first theorem in this respect was proved by Turán (1950).

It states that if Pn(x) is the nth Legendre’s polynomial, −1 ≤ x ≤ 1, then we have the

inequality

Pn(x)2 ≥ Pn−1(x)Pn+1(x). (2.8)

Inequalities of the type (2.8), valid for orthogonal polynomials, are called Turán type

inequalities. In recent years, many Turán type inequalities have been established for
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Laguerre polynomials, Hermite polynomials, Bessel functions, Tschebychef polynomials,

etc. Some of them will be derived in this paper in connection with the log-concavity

property of special compound Poisson distributions.

In Section 2, 3, 4 we are concerned with log-concavity property of some compound

distributions on non-negative integers. Let pn = P (S = n), n = 0, 1, 2 . . . . We prove

that the sequence {pn} without p0 is log-concave, when the terms in S have geometric,

negative binomial and Poisson distributions, respectively. In Section 5 we use the notion

of a log-concave function f(x), x ∈ R, meaning that f(λx+(1−λ)y) ≥ (f(x))λ(f(y))1−λ

for any x, y ∈ R, 0 < λ < 1, and prove the log-concavity of the continuous part of the

compound distribution with gamma distributed terms. In Section 6 we show the con-

nection between the log-concavity property of some compound distributions to various

Turán type inequalities. In Section 7 we briefly outline an application of log-concavity

in a bond portfolio construction problem.

2.2 Log-concavity of compound distributions with geometrically dis-

tributed terms

In this section we prove theorems for log-concavity and log-convexity of compound dis-

tributions with geometrically distributed terms. The log-concavity part in our theorem

can be deduced from Theorem 4.4 in Johnson et al. (2008). They proved that, for the

shifted geometrically distributed terms, if N is log-concave and a certain condition holds

then the compound distribution is log-concave. The mentioned condition is to ensure

that the first three terms p0, p1, p2 satisfy the log-concave inequality. Then, the authors

showed the log-concavity of p1, p2, . . . using Theorem 7.3 in Karlin (1968) (under no

condition on the parameters). The claim can also be implied from a binomial convolu-

tion theorem from Walkup (1976). For more information on linear transformation that

preserves log-concavity, e.g., see Wang, Yeh (2006).

The log-convexity statement presented in our theorem is new and can be proved

by the same method used for proving the log-concavity property. Note that the com-

pound distributions with geometrically distributed terms is log-concave or log-convex
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depending on the log-concavity or log-convexity of N is somewhat expected since the

geometric distribution is both log-concave and log-convex.

If X1, X2, . . . have geometric distribution with support {0, 1, 2, ..}, i.e., P (Xi = n) =

p(1− p)n(n = 0, 1, 2, . . . ), then, as one can easily verify,

pn = P (S = n) =

∞∑
k=1

fk

(
k + n− 1

n

)
pk(1− p)n, (2.9)

where P (N = k) = fk.

Lemma 1. Let Sm =
∑m

i=1 cixi, with xi ≥ 0 and c =
∑m

i=1 ci ≤ 0. Suppose that

the sequence xi is either non-decreasing or non-increasing and there exists an integer

k such that ci ≥ 0 for i ≤ k and ci ≤ 0 for i > k. Then Sm is non-negative if xn

is non-decreasing. If we further know that c is zero, then Sm is non-positive if xi is

non-increasing.

Proof. Clearly, c1x1+c2x2+...+ckxk ≤ (c1+c2+...+ck)xk and ck+1xk+1+...+cmxm ≤

(ck+1 + ...+ cm)xk+1. Thus, we have

Sm ≤ (c1 + c2 + ...+ ck)xk + (ck+1 + ...+ cm)xk+1

= (c1 + c2 + ...+ ck)xk + [c− (c1 + ...+ ck)]xk+1

= (c1 + c2 + ...+ ck)(xk − xk+1) + cxk+1 ≤ 0.

The proof of the second assertion is similar.

Theorem 5. If N has log-concave (log-convex) distribution (with no internal zeros) on

the set of nonnegative integers and the terms Xi, i = 1, 2, .. are geometrically distributed,

then the sequence {pn}∞n=1, defined by (2.9), is log-concave (log-convex).

Proof. Let x = p, we have

pn = (1− p)n
∞∑
k=1

fk

(
k + n− 1

n

)
xk. (2.10)

In order to prove the log-concavity of {pn}∞n=1, it suffices to show that {gn}∞n=1 is

log-concave, where

gn =

∞∑
k=1

fk

(
k + n− 1

n

)
xk. (2.11)
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If we use the Cauchy product formula, we obtain

gn+1gn−1 − g2
n =

∞∑
m=2

xm
m−1∑
i=1

Tififm−i, (2.12)

where

Ti =

(
i+ n

n+ 1

)(
(m− i) + n− 2

n− 1

)
−
(
i+ n− 1

n

)(
(m− i) + n− 1

n

)
. (2.13)

Notice that if fk = 1, k = 1, 2, ..., then we have gn = x(1− x)−1−n. Thus,
m−1∑
i=1

Ti is the

coefficient at xm in the power series expansion of

(1− x)−nx(1− x)−2−nx− [(1− x)−1−nx]2 = 0, (2.14)

and it follows that
m−1∑
i=1

Ti = 0.

Case 1: m is odd. We can rewrite
m−1∑
i=1

Tififm−i as

m−1∑
i=1

Tififm−i =

[(m−1)/2]∑
i=1

(Ti + Tm−i)fifm−i. (2.15)

Case 2: m is even. We can rewrite

m−1∑
i=1

Tififm−i as

m−1∑
i=1

Tififm−i =

[(m−1)/2]∑
i=1

(Ti + Tm−i)fifm−i + Tm/2f
2
m/2. (2.16)

Using (2.13), we can easily verify that Tm/2 < 0. In either case, Ti + Tm−i is equal to(
m− i+ n− 2

n− 1

)(
i+ n− 2

n− 1

)
(2 + 4n)i2 − 2m(1 + 2n)i+ n(m2 −m+ 2) + 2(m− 1)

n2(1 + n)
.

(2.17)

By (2.17), we have that T1 +Tm−1 > 0 and T[(m−1)/2] +Tm−[(m−1)/2] < 0. Furthermore,

since the numerator is a quadratic function of i, there must exist an integer k such that

Ti+Tm−i > 0, for i < k and Ti+Tm−i < 0, for i > k. If {fk}∞k=1 is log-concave (without

internal zeros), then fifm−i is non-increasing, for i ≤ [m/2]. The assertion follows from

Lemma 1.
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2.3 Log-concavity of compound distributions with negative binomial

distributed terms

If X1, X2, ... are independent and have negative binomial distribution with support

{0, 1, 2, ..} and

P (Xi = n) =

(
r + n− 1

n

)
pn(1− p)r, n = 0, 1, 2, . . . , (2.18)

then, as one can easily verify, we have the equation:

P (S = n) =
∞∑
k=1

fk

(
kr + n− 1

n

)
pn(1− p)kr, (2.19)

where P (N = k) = fk. Before stating the theorem, let us prove the following.

Lemma 2. We have the relation:

∞∑
k=1

(
2k + n− 1

n

)
xk

= x(1− x)−1−n
[

(1 +
√
x)n − (1−

√
x)n

2
√
x

+
(1 +

√
x)n + (1−

√
x)n

2

]
.

Proof. By the binomial theorem, we have

(1 +
√
x)n =

n∑
k=0

(
n

k

)
xk/2, (2.20)

(1−
√
x)n =

n∑
k=0

(
n

k

)
xk/2(−1)k. (2.21)

From (2.20) and (2.21), we derive:

(1 +
√
x)n − (1−

√
x)n

2
√
x

+
(1 +

√
x)n + (1−

√
x)n

2
=

[n/2]∑
i=0

(
n+ 1

n− 2i

)
xi. (2.22)

Since we have the equation

∞∑
k=1

(
k + n− 1

n

)
xk = x(1− x)−1−n, (2.23)

it suffices to show that

∞∑
k=1

(
2k + n− 1

n

)
xk =

∞∑
k=1

(
k + n− 1

n

)
xk

[n/2]∑
i=0

(
n+ 1

n− 2i

)
xi. (2.24)
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Using the Cauchy product formula, for the coefficient of xk on the right-hand-side of

(2.24) we get
k∑
i=1

(
n+ i− 1

n

)(
n+ 1

n− 2(k − i)

)
. (2.25)

It is well-known (see,e.g.,Riordan, 1968) that(
n+ p

m

)
=

∑
2k≤m−n+p

(
n+ k

m

)(
m+ 1

n− p+ 1 + 2k

)
. (2.26)

For the case of m = n and p = 2i− 1, it specializes to:(
2k + n− 1

n

)
=

k∑
i=1

(
n+ i− 1

n

)(
n+ 1

n− 2(k − i)

)
. (2.27)

Equation (2.27) shows that the coefficient of xk is the same on both sides of (2.24) and

the assertion follows.

Note that the compound distributions with geometrically distributed terms is log-

concave or log-convex depending on the log-concavity or log-convexity of N since the

geometric distribution is both log-concave and log-convex. However, the negative bi-

nomial distribution is log-concave so in the statement of the following theorem, the

compound distribution with negative binomial distributed terms, in general, is not

log-convex even if N is log-convex.

Theorem 6. If N has log-concave distribution (with no internal zeros) on the set of

nonnegative integers and the terms Xi, i = 1, 2, .. are negative binomial distributed with

parameter r = 2, then the sequence {pn}∞n=1 is log-concave.

Proof. Let x = (1− p)2. Then we have

pn = pn
∞∑
k=1

fk

(
2k + n− 1

n

)
xk. (2.28)

In order to prove the log-concavity of {pn}∞n=1, it suffices to show that {gn}∞n=1 is

log-concave, where

gn =

∞∑
k=1

fk

(
2k + n− 1

n

)
xk. (2.29)

Using the Cauchy product formula, we obtain

gn+1gn−1 − g2
n =

∞∑
m=2

xm
m−1∑
i=1

Tififm−i, (2.30)
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where

Ti =

(
2i+ n

n+ 1

)(
2(m− i) + n− 2

n− 1

)
−
(

2i+ n− 1

n

)(
2(m− i) + n− 1

n

)
. (2.31)

Notice that if fk = 1, k = 1, 2, ..., then we have

ĝn =

∞∑
k=1

(
2k + n− 1

n

)
xk. (2.32)

Using Lemma 3.1, we can derive the formula:

ĝn+1ĝn−1 − ĝ2
n = − x2

(1− x)n+2
. (2.33)

We have the inequality
m−1∑
i=1

Ti < 0, since the sum on the left hand side is the coefficient

of xm in the series expansion of

− x2

(1− x)n+2
=

∞∑
i=0

−
(
n+ i+ 1

i

)
xi+2. (2.34)

Case 1: m is odd. We can rewrite
m−1∑
i=1

Tififm−i as

m−1∑
i=1

Tififm−i =

[(m−1)/2]∑
i=1

(Ti + Tm−i)fifm−i. (2.35)

Case 2: m is even. We can rewrite
m−1∑
i=1

Tififm−i as

m−1∑
i=1

Tififm−i =

[(m−1)/2]∑
i=1

(Ti + Tm−i)fifm−i + Tm/2f
2
m/2. (2.36)

Using (2.31), we can easily verify that Tm/2 < 0. In either case, Ti + Tm−i is equal to

Ci
(8 + 16n)i2 − 8m(1 + 2n)i+ 2n(2m2 −m+ 1) + 2(2m− 1)

n2(1 + n)
, (2.37)

where

Ci =

(
2(m− i) + n− 2

n− 1

)(
2i+ n− 2

n− 1

)
. (2.38)

It follows from (2.37) that T1 + Tm−1 > 0 and T[(m−1)/2] + Tm−[(m−1)/2] < 0. Further-

more, since the numerator in (2.37) is a quadratic function of i there must exist an

integer k such that Ti + Tm−i > 0, for i < k and Ti + Tm−i < 0, for i > k. If {fk}∞k=1 is

log-concave (without internal zeros), then fifm−i is non-increasing, for i ≤ [m/2]. The

assertion follows from Lemma 1.
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2.4 Log-concavity of the compound Poisson distribution with Poisson

distributed terms

If X1, X2, ... are i.i.d Poisson distributed random variables with parameter µ > 0 and

N follows Poisson distribution with parameter λ > 0, then we have the equation

pn = P (S = n) =

∞∑
k=1

(kµ)ne−kµ

n!

λke−λ

k!
, n = 0, 1, 2, . . . . (2.39)

Let x = e−µλ. Then we can write:

pn =
µne−λ

n!

∞∑
k=1

kn
xk

k!
. (2.40)

We have the following

Theorem 7. The sequence {pn}∞n=1, defined in (2.39), is log-concave.

Remark 1. Equation (2.40) can be rewritten as

pn = µne−λex
Bn(x)

n!
, n = 1, 2, ...,

where the Bn(k) are the Bell polynomials whose coefficients are the Stirling numbers of

the second kind S(n, k):

Bn(x) =

∞∑
k=0

S(n, k)xk. (2.41)

It suffices to show that the sequence {Bn(x)/n!}∞n=1 is log-concave. Thus, Theorem 4.1

follows from

Theorem 8. The sequence of Bell polynomials {Bn(x)/n!}∞n=1 is log-concave for any

x ∈ R.

Proof. It is well-known [6] that if {1, Z1, Z2, ...} is a log-concave sequence of nonnegative

real numbers and the sequence {a(n)}∞n=0 is defined by

∞∑
n=0

a(n)

n!
yn = exp

 ∞∑
j=1

Zj
j
yj

 , (2.42)

then the sequence {a(n)/n!}∞n=0 is log-concave and the sequence {a(n)}∞n=0 is log-convex.

Note that

e(ey−1)x = exp

 ∞∑
j=1

x

j!
yj

 . (2.43)
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In addition, we have

e(ey−1)x =

∞∑
n=0

Bn(x)

n!
yn, (2.44)

thus,

exp

 ∞∑
j=1

x

j!
yj

 =

∞∑
n=0

Bn(x)

n!
yn. (2.45)

Let Zj =
x

(j − 1)!
for j ≥ 1. It is easy to check that the sequence 1, Z1, Z2... is

log-concave for x ≥ 1 or x ≤ 0. Thus, according to Bender-Canfield’s Theorem,

{Bn(x)/n!}∞n=1 is a log-concave sequence for x ≥ 1 or x ≤ 0.

If 0 < x < 1, we can always find u ≥ 1 and v ≤ 0 such that x = u+ v. Furthermore,

it is proved in [1] that we have the following identity:

Bn(u+ v) =
n∑
k=0

(
n

k

)
Bk(u)Bn−k(v), (2.46)

hence, equation (2.46) can be rewritten as

Bn(u+ v)

n!
=

n∑
k=0

Bk(u)

k!

Bn−k(v)

(n− k)!
. (2.47)

In other words, Bn(x)/n! is the convolution of two log-concave sequences Bn(u)/n! and

Bn(v)/n!. Thus, the sequence {Bn(x)/n!}∞n=1 is log-concave for any x ∈ R.

Remark 2. Theorem 8 is the generalization of Lemma 2 in Asai et. al (2000) since

the Bell numbers b2(n) is the value of Bell polynomial at x = 1.

2.5 Log-concavity of the compound distribution with gamma distributed

terms

If the terms in a compound distribution are continuously distributed, then the proba-

bility distribution of S is of a mixed type. It has positive probability mass at 0 and has

a continous part with p.d.f. If the terms Xi are gamma distributed with the p.d.f

µθ

Γ(θ)
e−µxxθ−1, (2.48)

then the p.d.f of the continuous part of the probability distribution of S is

g(x) =

∞∑
i=1

fi
µiθ

Γ(iθ)
e−µxxiθ−1, x > 0, (2.49)
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and P (S = 0) = P (N = 0).

The compound Poisson distribution with gamma distributed terms has a wide range

of applications. For example, it has been used to model rain fall (Fisher, Cornish, 1960,

Ozturk, 1981). However, many mathematical properties of this distribution have not

been known (Withers, Nadarajah. 2011). In their paper, the authors derived the

representations for the moment generating function as well as some expansions for the

probability density and cumulative distribution for this compound Poisson distribution.

The following theorem holds for 1 ≤ θ ≤ 4 but detailed proof is presented only for

1 ≤ θ ≤ 2, for simplicity. At the end the proof for the more general case is outlined.

Theorem 9. If N has ultra-log-concave distribution (with no internal zeros) on the

set of nonnegative integers and the terms Xi, i = 1, 2, ... are gamma distributed with

parameter 1 ≤ θ ≤ 2, then the continuous part of the distribution of S is log-concave.

Proof. Simple calculation shows that

(ln g(x))′′ =

−µ+

∞∑
i=1

fi
µiθ

Γ(iθ)
(i− 1)xiθ−2

∞∑
i=1

fi
µiθ

Γ(iθ)
xiθ−1


′

. (2.50)

The derivative of the right-hand-side, with respect to x, equals

(ln g(x))′′ =
[ ∞∑
i=1

fi
µiθ

Γ(iθ)
xiθ−1

∞∑
i=1

fi
µiθ

Γ(iθ)
(iθ − 2)(iθ − 1)xiθ−3

−
( ∞∑
i=1

fi
µiθ

Γ(iθ)
(iθ − 1)xiθ−2

)2]
:
( ∞∑
i=1

fi
µiθ

Γ(iθ)
xiθ−1

)2
. (2.51)

If we start the summation from i = 0 and use the Cauchy product formula, then

the formula for the denominator of (ln g(x))′′ is the following

∞∑
j=1

j∑
i=0

fi+1fj+1−i
[(i+ 1)θ − 2][(i+ 1)θ − 1]x(j+2)θ−4µ(j+2)θ

Γ[(i+ 1)θ]Γ[(j − i+ 1)θ]

−fi+1fj+1−i
[(j − i+ 1)θ − 1][(i+ 1)θ − 1]x(j+2)θ−4µ(j+2)θ

Γ[(i+ 1)θ]Γ[(j − i+ 1)θ]
(2.52)

=
∞∑
j=0

x(j+2)θ−4µ(j+2)θ
j∑
i=0

Ti(θ)fi+1fj+1−i, (2.53)
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where

Ti(θ) =
[(i+ 1)θ − 1][(2i− j)θ − 1]

Γ[(i+ 1)θ]Γ[(j − i+ 1)θ]
. (2.54)

For simplicity, we write Ti instead of Ti(θ). Since x and µ are positive, we only need to

prove the non-positivity of the inner sum. First, we show that for 1 ≤ θ ≤ 2 we have

the following inequality

j∑
i=0

[(i+ 1)θ − 1][(2i− j)θ − 1]

Γ[(i+ 1)θ]Γ[(j − i+ 1)θ]

1

(i+ 1)!

1

(j − i+ 1)!
≤ 0 , j = 0, 1, 2, . . . . (2.55)

We can rewrite the left hand side of (2.55) as

j∑
i=0

[(i+ 1)θ − 1][(2i− j)θ − 1]

(2i+ 1)!(2j − 2i+ 1)!

(2i+ 1)!(2j − 2i+ 1)!

Γ[(i+ 1)θ]Γ[(j − i+ 1)θ]

1

(i+ 1)!

1

(j − i+ 1)!
. (2.56)

Using the binomial theorem, we obtain the identity

j∑
i=0

[(i+ 1)θ − 1][(2i− j)θ − 1]

(2i+ 1)!(2j − 2i+ 1)!]
=

(θ − 2)(θj + θ − 2)22j−1

(2j + 2)!
(2.57)

which proves that

j∑
i=0

[(i+ 1)θ − 1][(2i− j)θ − 1]

(2i+ 1)!(2j − 2i+ 1)!]
≤ 0, θ ≤ 2. (2.58)

Next, we show that the sequence

hi =
(2i+ 1)!

(i+ 1)!Γ[(i+ 1)θ]
, i = 1, 2, 3, . . . (2.59)

is log-concave for 1.2 ≤ θ ≤ 2, or, equivalently, verifying that

(2i+ 1)!(2i+ 1)!

(i+ 1)!(i+ 1)!Γ2[(i+ 1)θ]
≥ (2i− 1)!

i!Γ[iθ]

(2i+ 3)!

(i+ 2)!Γ[(i+ 2)θ]
. (2.60)

The above inequality can be further simplified to

Γ[iθ]Γ[(i+ 2)θ]

Γ[(i+ 1)θ]
≥ (i+ 1)(2i+ 2)(2i+ 3)

(i+ 2)(2i)(2i+ 1)
. (2.61)

Boyd (1961) has shown that the following equation holds true:

Γ[iθ]Γ[(i+ 2)θ]

Γ2[(i+ 1)θ]
=2 F1(−θ,−θ, iθ, 1) = 1 +

∞∑
k=1

[(−θ)k]2

k!(iθ)k
. (2.62)

Using the first two terms in the expansion, we can easily verify the following inequality

1 +
θ

i
+
θ(1− θ)2

2i(1 + θi)
≥ (i+ 1)(2i+ 2)(2i+ 3)

(i+ 2)(2i)(2i+ 1)
, 1.2 ≤ θ ≤ 2. (2.63)
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Thus, the sequence {hi}∞i=1 is log-concave. Lemma 1 implies (2.55) for 1.2 ≤ θ ≤ 2.

For the case of 1 ≤ θ ≤ 1.2, the sequence {hi}∞i=1 might be log-convex and Lemma 1

cannot be used. However, hi can be modified slightly to be log-concave on the interval

of interest. Indeed, using expansion (2.62) with the first term corresponding to k = 1,

we can check that the new sequence

(2i+ 2)!

(i+ 1)!Γ[(i+ 1)θ]
, i = 1, 2, 3, . . . (2.64)

is log-concave. Therefore, if we rewrite the summation

j∑
i=0

Ti(θ)fi+1fj−i+1 as following

j∑
i=0

[(i+ 1)θ − 1][(2i− j)θ − 1]

(2i+ 2)!(2j − 2i+ 2)!

(2i+ 2)!(2j − 2i+ 2)!

Γ[(i+ 1)θ]Γ[(j − i+ 1)θ]
fi+1fj−i+1, (2.65)

and, use direct computation to verify that the sum

j∑
i=0

[(i+ 1)θ − 1][(2i− j)θ − 1]

(2i+ 2)!(2j − 2i+ 2)!]
≤ 0, 1 ≤ θ ≤ 1.2, (2.66)

is nonpositive in the given interval of θ, and inequality (2.55) follows. Now, we can

rewrite

j∑
i=0

Tifi+1fj−i+1 as

j∑
i=0

Ti
(i+ 1)!(j − i+ 1)!

[(i+ 1)!fi+1][(j − i+ 1)!fj−i+1]. (2.67)

The log-concavity of i!fi and Lemma 1 complete our proof.

Remark 3. In what follows we outline the proof for the log-concavity of the compound

distribution when 2 < θ ≤ 4. On this interval, the coefficient in the linear term of the

polynomial in (2.53) (corresponding to j = 1) is positive. The coefficients corresponding

to j = 2, 3, . . . can be shown to be non-positive using similar argument as in the case

of 1 ≤ θ ≤ 2. Thus, the assertion of our theorem will follow from the non-positivity the

summation of the first three terms. This summation can be simplified to a quadratic

function of (xµ)θ and its sign can be determined from its discriminant:

∆̄ =
(θ − 1)(θ − 2)2 + 4(θ − 1)(1− 2θ)

Γ[2θ]2
f2

2 +
4(θ − 2)2

Γ[θ]Γ[3θ]
f1f3. (2.68)

The following inequality for 2 < θ ≤ 4 can be verified using the expansion in (2.62)

4(θ − 2)2

Γ[θ]Γ[3θ]
≤ (1− θ)(θ − 2)2 + 4(θ − 1)(2θ − 1)

Γ[2θ]2
. (2.69)
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Hence, we have

∆̄ ≤ 4(θ − 2)2

Γ[θ]Γ[3θ]
(f1f3 − f2

2 ) < 0. (2.70)

The latter inequality follows from the assumption on the log-concavity of fi, i = 1, 2, . . . .

When the terms follow exponential distributions or Erlang-2 distributions, we have

a stronger statement as follows. Note that f(x) is called log-convex with x ∈ R, if

f(λx+ (1− λ)y) ≤ (f(x))λ(f(y))1−λ for any x, y ∈ R, 0 < λ < 1.

Theorem 10. If N has log-concave (log-convex) distribution (with no internal zeros)

on the set of nonnegative integers and the terms Xi, i = 1, 2, ... are gamma distributed

with parameter θ = 1 or θ = 2, then the continuous part of the distribution of S is

log-concave (log-convex).

Proof. The idea of the proof is similar to that of Theorem 9. We need to show the

non-positivity of the inner sum in equation (2.53). If j is even, we have

j∑
i=0

Tifi+1fj−i+1 =

j/2−1∑
i=0

Tifi+1fj−i+1 + Tj/2f
2
j/2+1 +

j∑
i=j/2+1

Tifi+1fj−i+1]

=

j/2−1∑
i=0

Tifi+1fj−i+1 + Tj/2f
2
j/2+1 +

j/2−1∑
i=0

Tj−ifj−i+1fi+1]

=

[(j−1)/2]∑
i=0

(Ti + Tj−i)fi+1fj−i+1 + Tj/2f
2
j/2+1. (2.71)

Similarly, if j is odd, then we have

j∑
i=0

Tifi+1fj−i+1 =

[(j−1)/2]∑
i=0

(Ti + Tj−i)fi+1fj−i+1, (2.72)

and for either case, we have

Ti + Tj−i =
(j − 2i)2θ2 − (j + 2)θ + 2

Γ[(i+ 1)θ]Γ[(j − i+ 1)θ]
. (2.73)

Case 1: θ = 1. Then

j∑
i=0

Ti =

j∑
i=1

2i− j − 1

(i− 1)!(j − i)!
=

j∑
i=1

(i− 1)− (j − i)
i!(j − i)!

=

j∑
i=2

1

(i− 2)!(j − i)!
−

j−1∑
i=1

1

(i− 1)!(j − i+ 1)!
= 0. (2.74)
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Case 2: θ = 2. Then

j∑
i=0

Ti =

j∑
i=0

4i− 2j − 1

(2i)!(2j − 2i+ 1)!
=

j∑
i=0

2i− (2j − 2i+ 1)

(2i)!(2j − i+ 1)!

=

j∑
i=1

1

(2i− 1)!(2j − 2i+ 1)!
−

j∑
i=0

1

(2i)!(2j − 2i)!

=

2j∑
i=0

(−1)(i+1)

(
2j

i

)
= 0. (2.75)

The numerator of Ti + Tj−i is a quadratic function of i. Furthermore, using (2.73),

we can verify that T[(j−1)/2] + Tj−[(j−1)/2] is negative. Thus, Ti + Tj−i has exactly one

change of sign (some number of initial terms are positive while all further terms are

negative). The assertion follows from Lemma 1.

2.6 Connection to Turán-type inequalities

In this section we show an interesting connection between the log-concavity of com-

pound Poisson with some well-known Turán type inequalities. These inequalities are

named after Paul Turán in a 1946 letter to Szegö (see Szegö, 1948) showed the inequality

for Legendre polynomials. Many inequalities in relation to classical orthogonal poly-

nomials have been proved: ultraspherical, Laguerre and Hermite polynomials, Jacobi

polynomials, Bessel functions of the first kind. We refer to Skovgaard (1954), Baricz

(2008) and the references therein. Recently, some Turán inequalities have been derived

from the log-convexity and log-concavity of more general functions. For example, Bar-

icz studied the log-convexity of the Kummer function (or the confluent hypergeometric

function):

1F1(a; c;x) =

∞∑
k=0

(a)k
(c)k

xk

k!
, (2.76)

where (a)k = a(a+1)...(a+k−1) is the Pochhammer’s symbol and showed the following

reverse Turán type inequality:

1F1(a; c+ 1;x)2 ≤1 F1(a; c;x)1F1(a; c+ 2;x). (2.77)

Carey and Gordy (2007) conjectured the following Turán type inequality:

1F1(a; c;x)2 >1 F1(a+ 1; c;x)1F1(a− 1; c;x), (2.78)
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for a > 0, c > a + 2, x > 0. A more general inequality was proved later in Barnard et.

al (2009) under some condition for the parameters:

1F1(a; c;x)2 ≥1 F1(a+ ν; c;x)1F1(a− ν; c;x). (2.79)

For more references on Turán type inequality on hypergeometric functions, see Karp,

Sitnik (2010). The authors studied the log-convexity and log-concavity of hypergeometric-

like functions and prove some beautiful results on hypergeometric functions.

Based on the log-concavity of the compound Poisson distribution with shifted geo-

metrically distributed terms, we can derive a corollary for Laguerre polynomials:

Ln(x) =

n∑
k=0

(
n

n− k

)
(−x)k

k!
.

It is a special case of Proposition 2.8 in Simic (2006) when he studied Turán type

inequality for Appell polynomials.

Corollary 1. The sequence
L′n(−x)

n
is log-concave for n = 1, 2, .. and x > 0.

Proof. If X1, X2, ... have the same geometric distribution with support {1, 2, 3..} and

P (Xi = n) = pqn−1(n = 1, 2, ..), then, we have

P (S = n) =
n∑
k=1

(
n− 1

k − 1

)
pk(1− p)n−kλk e

−λ

k!
. (2.80)

Simple calculation shows that, for {pn}∞n=1 in the above expression, we have the equa-

tions

pn =

n∑
k=1

(
n− 1

k − 1

)
pk(1− p)n−k(λ)k

e−λ

k!

=
n∑
k=1

(
n− 1

k − 1

)(
pλ

1− p

)k
(1− p)n e

−λ

k!
. (2.81)

Let
pλ

1− p
= x. Then (2.81) takes the form:

pn =
n∑
k=1

(
n− 1

k − 1

)
xk(1− p)n e

−λ

k!
. (2.82)

If we use the relations pn
2 ≥ pn−1pn+1, n = 2, 3, ..., then, by (2.82), we obtain:(

n∑
k=1

(
n− 1

k − 1

)
xk

k!
(1− p)ne−λ

)2

≥

(
n−1∑
k=1

(
n− 2

k − 1

)
xk

k!
(1− p)n−1e−λ

)
×(

n+1∑
k=1

(
n

k − 1

)
xk

k!
(1− p)n+1e−λ

)
(2.83)
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which reduces to(
n∑
k=1

(
n− 1

k − 1

)
xk

k!

)2

≥

(
n−1∑
k=1

(
n− 2

k − 1

)
xk

k!

)(
n+1∑
k=1

(
n

k − 1

)
xk

k!

)
, (2.84)

after cancelling by (1− p)ne−λ.

Let Bn =
n∑
k=1

(
n− 1

k − 1

)
xk

k!
for n = 1, 2, ... If we use Pascal’s identity

(
n

n− k

)
=

(
n− 1

k − 1

)
+

(
n− 1

n− k − 1

)
, (2.85)

then for Bn we get:

Bn =

n∑
k=1

xk

k!

[(
n

n− k

)
−
(

n− 1

n− k − 1

)]

=

n∑
k=1

xk

k!

(
n

n− k

)
−
n−1∑
k=1

xk

k!

(
n− 1

n− k − 1

)

=
n∑
k=0

xk

k!

(
n

n− k

)
−
n−1∑
k=0

xk

k!

(
n− 1

n− k − 1

)
= Ln(−x)− Ln−1(−x). (2.86)

It is well-known (see,e.g.,Riordan, 1968) that the Laguerre polynomials satisfy the fol-

lowing recurrence equation:

x
d

dx
Ln(x) = nLn(x)− nLn−1(x). (2.87)

This implies that Bn = −xL
′
n(−x)

n
and the assertion follows.

Based on Theorem 5, an interesting inequality on the confluent hypergeometric

function can be derived. This inequality is a special case of Theorem 1 in Barnard et.

al (2009).

Corollary 2. For k > 0, x > 0: 1F1(1 + k; 2;x)2 ≥ 1F1(k; 2;x)1F1(2 + k; 2;x).

Proof. Let X1, X2, ..., be i.i.d. random variables with P (Xi = n) = pqn(n = 0, 1, 2, ...).

Then the following formula holds for the probability mass function of the compound

Poisson distributions:

pn = P (S = n) =

∞∑
k=1

(
n+ k − 1

n

)
pk(1− p)nλk e

−λ

k!
.
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Let x = pλ. Then we have

pn =

∞∑
k=1

(
n+ k − 1

n

)
xk(1− p)n e

−λ

k!
. (2.88)

This distribution has connection with the confluent hypergeometric function:

1F1(a; c;x) =
∞∑
k=0

(a)k
(c)k

xk

k!
, (2.89)

where (a)k = a(a+ 1)...(a+k− 1) is the Pochhammer’s symbol. It can easily be shown

that
∞∑
k=1

(
n+ k − 1

n

)
xk

k!
= 1F1(1 + k; 2;x). (2.90)

Theorem 5 and equation (2.90) imply the statement.

The following corollary establishes a Turán type inequality for the hypergeometric

function 2F2. It is a consequence of the log-concavity property of the compound Poisson

with negative binomial distributed terms.

Corollary 3. The hypergeometric function 2F2 satisfies the following inequality

(n+ 1)2F2

n/2 + 1, n/2 + 3/2

3/2 , 2

∣∣∣∣x
2

≥ (n+ 2)2F2

n/2 + 3/2, n/2 + 2

3/2 , 2

∣∣∣∣x


∗ n2F2

n/2 + 1/2, n/2 + 1

3/2 , 2

∣∣∣∣x
 .(2.91)

Proof. Let X1, X2, ..., be i.i.d. random variables with P (Xi = n) = pn(1 − p)2(n =

0, 1, 2, ...). Then the following formula holds for the probability mass function of the

compound Poisson distributions:

pn = P (S = n) =

∞∑
k=1

(
2k + n− 1

n

)
pn(1− p)2kλk

e−λ

k!
.

Let x = (1− p)2λ. Then we have

pn = pne−λ
∞∑
k=1

(
2k + n− 1

n

)
xk

k!
. (2.92)
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Since the compound Poisson distribution with negative binomial distributed terms is

log-concave, we know that p2
n ≥ pn+1pn−1. Using (2.92), for pn, pn+1 and pn−1, we get[ ∞∑

k=1

(
2k + n− 1

n

)
xk

k!

]2

≥
∞∑
k=1

(
2k + n− 1

n

)
xk

k!

∞∑
k=1

(
2k + n− 1

n

)
xk

k!
. (2.93)

Simple calculation shows that

∞∑
k=1

(
2k + n− 1

n

)
xk

k!
= x

∞∑
k=0

(2k + n+ 1)!

n!(2k + 1)!

xk

(k + 1)!
. (2.94)

We can rewrite the right-hand-side of (2.94) as

x

∞∑
k=0

(2k + n+ 1)!

n!(2k + 1)!

xk

(k + 1)!

= x(n+ 1)

∞∑
k=0

(n+ 2)(n+ 3)...(n+ 2k + 1)

(2k + 1)!

xk

k!

= x(n+ 1)

∞∑
k=0

(n+ 2)(n+ 4)...(n+ 2k)(n+ 3)(n+ 5)...(n+ 2k + 1)

3.5...(2k + 1).4.6...(2k + 2)

xk

k!

= x(n+ 1)

∞∑
k=0

(n/2 + 1)...(n/2 + k)(n/2 + 3/2)...(n/2 + k + 1/2)

(3/2)(5/2)...((2k + 1)/2).2.3...(k + 1)

xk

k!

= x(n+ 1)

∞∑
k=0

(n/2 + 1)k(n/2 + 3/2)k

(
3

2
)k(2)k

xk

k!
. (2.95)

Hence, we have showed that

∞∑
k=1

(
2k + n− 1

n

)
xk

k!
= x(n+ 1)2F2

n/2 + 1, n/2 + 3/2

3/2 , 2

∣∣∣∣x
 . (2.96)

The assertion follows from (2.93) and (2.96).

2.7 Applications

To illustrate the role of log-concavity in probabilistic constrained stochastic program-

ming we present the bond portfolio construction model. Let us introduce the notations:

If the liabilities were deterministic values then our optimal bond portfolio model
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n number of bond types which are candidates for inclusion into the
portfolio

m number of periods
aik cash flow of a bond of type k in period i, k = 1, . . . , n and i =

1, . . . ,m
pk unit price of bond of type k
ξi random liability value in period i, i = 1, . . . ,m
zi cash carried forward from period i to period i + 1, i = 1, . . . ,m,

where z1 is an initial cash amount that we include into the portfolio
and zm+1 = 0; zi, i = 1, . . . ,m are decision variables

xk decision variable, number of bonds of type k to include into the
portfolio

ρi rate of interest in period i, i = 1, . . . ,m.

(Hodges and Schaefer, 1977) would be the following

min

{
n∑
k=1

pkxk + z1

}
subject to

n∑
k=1

aikxk + (1− ρi)zi − zi+1 ≥ ξi, i = 1, . . . ,m

xk ≥ 0, k = 1, . . . , n

zi ≥ 0, i = 1, . . . ,m, zm+1 = 0,

(2.97)

where the positivity of the variables means no short-selling allowed.

The probabilistic constrained variant of it can be formulated as

min

{
n∑
k=1

pkxk + z1

}
subject to

m∏
i=1

P

(
n∑
k=1

aikxk + (1− ρi)zi − zi+1 ≥ ξi|ξi > 0

)
≥ p

xk ≥ 0, k = 1, . . . , n

zi ≥ 0, i = 1, . . . ,m, zm+1 = 0,

(2.98)

where p is a safety (reliability) level chosen by ourselves, e.g., p = 0.8, 0.9, 0.95 etc.

Compound distributions such as the compound Poisson and the compound negative
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binomial are used extensively in the theory of risk to model the distribution of total

claims incurred in the subsequent periods. The exponential or gamma distribution can

be used to fit the individual claim severities (Branda, 2012). Theorem 9 implies the

convexity of the set determined by the constraint (2.98) and solution methods of the

model can be found in Prékopa (2003). In the case of discrete insurance claim sizes and

strictly log-concave aggregate loss distribution, we make use of disjuctive reformulation

by p-efficient points and the solution of a multiple choice knapsack problem is used to

generate new p-efficient points (Prékopa, Unuvar 2012). Problem (2.98) can also be

used in a rolling horizon manner for rebalancing the portfolio.
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Chapter 3

Discrete Moment Problems

3.1 Introduction

Discrete moment problems (DMP) came to prominence by the discovery of Prékopa

(1988, 1990a,b) that sharp probability bounds (e.g. Dawson, Sakoff, 1967) can be

obtained as optimal values of linear programming problems involving binomial bounds

of the number of occurences of events. Moment problems where the random variable

has discrete support are already mentioned in Karlin, Studden (1966), but Prékopa

gave a full characterization of the dual feasible bases and gave tractable algorithmic

solution.

Let X be a discrete random variable, the possible values of which are known to be

the numbers z0 < z1 < · · · < zn and

pi = P (X = zi), i = 0, 1, . . . , n. (3.1)

Given the knowledge of some power moments µk = E(Xk), k = 1, . . . ,m, or the bino-

mial moments Sk = E[
(
X
k

)
], k = 1, . . . ,m, where m < n, the discrete moment bounding

problem provides us with the sharp lower and upper bounds on a linear functional,

defined on the unknown probability distribution {pi}. They can be formulated as the

following LPs:

min(max)
n∑
i=0

fipi

subject to

Ap = b (3.2)

p ≥ 0,
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where

A =



1 1 ... 1

z0 z1 ... zn

...

zm0 zm1 ... zmn


, b =



µ0

µ1

...

µm


, (3.3)

and fi = f(zi), i = 0, . . . , n, and

min(max)

n∑
i=0

fipi

subject to

Ãp = b̃ (3.4)

p ≥ 0,

where

Ã =



1 1 ... 1

z0 z1 ... zn

...(
z0
m

) (
z1
m

)
...

(
zn
m

)


, b̃ =



S0

S1

...

Sm


, (3.5)

and fi = f(zi), i = 0, . . . , n. Problems (3.2) and (3.4) are called the power and binomial

moment problems, respectively. They can be transformed into each other by the use of

Stirling numbers of the first and second kind (Prékopa, 1995).

DMP were introduced and studied by Prékopa (see, e.g. Prékopa, 1988, 1990a,b,

1992, 1999, 2001). In those papers, the author used linear programming techniques

to develop theory and numerical solution of the optimization problems. Since its in-

troduction, DMPs have been used extensively in various application areas. Some of

such applications include the reliability evaluations of networks such as commnication

systems, power generation or transmission systems, e.g, Prékopa and Boros presented

sharp lower and upper bounds for the probability that a feasible flow exists in a stochas-

tic transportation network. Another application is due to Prékopa where the author

introduced moment bounding methods to value of financial derivatives (2001). DMP

can also be used to provide lower and upper bounds for the probability distribution

when the analytical form cannot be obtained otherwise. For example, Prékopa, Long,
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Szántai (2004) gave bounds on the length of the critical path in PERT. In Chapter 4

of this thesis, we demonstrate how to evaluate the recruitment time in clinical trials by

the use of DMP.

With its increasing practial importance, intensive research has been developed both

in theory and computational methods in recent years. From the theory perspective,

DMP has been extended to its multivariate counterpart, namely, the multivariate dis-

crete moment problem (MDMP). It has been initiated by Prékopa (1992, 1998, 2000)

and later further developed in Mádi-Nagy, Prékopa (2004, 2011), Mádi-Nagy (2009).

Another direction of extension is to incorporate the shape of the distribution in the

optimization, Subasi et al. (2008, 2009). Along with the advancement of DMP theory,

efficient solution methods have been proposed to overcome the instability of the moment

matrix. The first algorithm for DMP was introduced by Prékopa (1990). His optimiza-

tion methods are of dual type and are in close relationship with the dual method of

Lemke [4] for the solution of the general linear programming problem. They are sta-

ble and fast thanks to the discovery of the structures of dual feasible bases. Recently,

Mádi-Nagy (2012) proposed a different approach to treat the numerical difficulties using

multivariate polynomial bases.

Another special property of DMP is that closed-form formula for lower and upper

bounds can be derived (see, Prékopa 1995) from the dual feasible basis structures. In

case of power discrete moment problem, when one or two moments are used at the

right-hand-side, some classical inequalities are recovered, for example, the Jensen and

the EdmundsonMadansky inequalities.

Fractional moments have been used within the context of the (discrete) maximum

entropy problems to find probabilities in a distribution, where some of the fractional

moments are given (see, e.g. Novi Inverardi and Tagliani, 2006). The authors reported

signicant improvement when using the information of fractional moments for recovering

a probability distribution via maximum entropy setup. In this chapter, we present the

theory and a solution method for the bounding problems with fractional moments in

the spirit of the discrete moment problem proposed by Prékopa. The discrete fractional
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moment problem can be defined as:

min(max)

n∑
i=0

fi(zi)pi

subject to
n∑
i=0

zαki pi = µk k = 0, ...,m (3.6)

pi ≥ 0 i = 0, ..., n,

where αk, k = 0, 1, 2, . . . are positive numbers. We consider three objective functions:

(1) The function f(z) is absolutely monotonic. The optimum values of problems

(3.6) give sharp lower and upper bounds for E(f(X)).

(2) fr = 1, fi = 0, if i 6= r, for some 0 ≤ r ≤ n. The optimum values of problems

(3.6) give sharp lower and upper bounds for P (X = zi).

(3) f0 = · · · = fr−1 = 0, fr = · · · = fn = 1, for some 1 ≤ r ≤ n. The optimum

values of problems (3.6) give sharp lower and upper bounds for P (X ≥ zr).

The chapter is organized as follows. Section 2 presents some basic notions and

theorems for the discrete moment problems with fractional moments. In Section 3

basis structure theorems are presented for the above mentioned objective functions. In

Section 4 we provide a detailed description of the dual method that solves the problem

and a procedure to estimate fractional moments. Numerical results are reported in

Section 5.

3.2 Basic notions and theorems

A function f(z) is said to be absolutely monotonic on (0,∞) if it has derivatives of all

orders and

f (k)(z) ≥ 0, z ∈ (0,∞), k = 0, 1, 2, . . . . (3.7)

Theorem 11. Assume that f(z) is an absolutely monotonic function on (0,∞), 0 ≤

α0 < α1 < · · · < αm ≤ 1 and 0 < z0 < z1 < · · · < zm. Then the following inequality
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holds:

D(z, f) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zα0
0 zα0

1 . . . zα0
m

...

z
αm−1

0 z
αm−1

1 . . . z
αm−1
m

zαm0 zαm1 . . . zαmm

f(z0) f(z1) . . . f(zm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0 (3.8)

Proof. It it well-known (Bernstein, 1914) that any absolutely monotonic function can be

expressed as a series of polynomial with nonnegative coefficient. Thus, we can rewrite

f(z) as follows:

f(z) =
∞∑
i=0

ciz
i. (3.9)

Then the original determinant D(z, f) can be represented as:

D(z, f) =

∞∑
i=0

D(z, ciz
i) (3.10)

The ith term (i ≥ 1) in the series (3.10) is ci times the determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zα0
0 zα0

1 . . . zα0
m

...

z
αm−1

0 z
αm−1

1 . . . z
αm−1
m

zαm0 zαm1 . . . zαmm

zi0 zi1 . . . zim

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.11)

This is a generalized Vandermonde determinant which is known to be positive (Karlin

and Studden, 1966, pp.9) and the assertion follows.

Theorem 12. Assume that α0 < α1 < · · · < αm and 0 < z0 < z1 < · · · < zm, then we

have the following inequality

(−1)t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0 1 . . . 1

zα0
0 zα0

1 . . . zα0
t zα0

t+1 . . . zα0
m

...

z
αm−2

0 z
αm−2

1 . . . z
αm−2

t z
αm−2

t+1 . . . z
αm−2
m

z
αm−1

0 z
αm−1

1 . . . z
αm−1

t z
αm−1

t+1 . . . z
αm−1
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0 (3.12)
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Proof. It can be easily verified that the above determinant can be simplified as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣

zα0
0 zα0

1 − zα0
0 . . . zα0

t+1 − zα0
t . . . zα0

m − zα0
m−1

...

z
αm−2
0 z

αm−2
1 − z

αm−2
0 . . . z

αm−2
t+1 − z

αm−2
t . . . z

αm−2
m − z

αm−2
m−2

z
αm−1
0 z

αm−1
1 − z

αm−1
1 . . . z

αm−1
t+1 − z

αm−1
t . . . z

αm−1
m − z

αm−1
m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We rewrite it as follows:

m−1∏
j=0

αj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫ z0

0
xα0−1
1 dx1

∫ z1

z0

xα0−1
2 dx2 . . .

∫ zt+1

zt

xα0−1
t dxt . . .

∫ zm

zm−1

xα0−1
m+1

...∫ z0

0
x
αm−2−1
1 dx1

∫ z1

z0

x
αm−2−1
2 dx2 . . .

∫ zt+1

zt

x
αm−2−1
t dxt . . .

∫ zm

zm−1

x
αm−2−1
m+1∫ z0

0
x
αm−1−1
1 dx1

∫ z1

z0

x
αm−1−1
2 dx2 . . .

∫ zt+1

zt

x
αm−1−1
t dxt . . .

∫ zm

zm−1−1
x
αm−1−1
m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which can be reduced to:

m−1∏
j=0

αj

∫ z0

0

∫ z1

z0

. . .

∫ zm−1

zm−2

D̄dx1dx2 . . . dxm+1, (3.13)

where

D̄ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

xα0−1
1 xα0−1

2 . . . xα0−1
t . . . xα0−1

m+1

...

x
αm−2−1
1 x

αm−2−1
2 . . . x

αm−2−1
t . . . x

αm−2−1
m+1

x
αm−1−1
1 x

αm−1−1
2 . . . x

αm−1−1
t . . . x

αm−1−1
m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It is well known (Karlin and Studden, 1966, pp.9) that D̄ is positive since it is the

determinant of a generalized Vandermonde matrix and the assertion of the theorem

follows.
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3.3 DMP with fractional moments

A generalization of the discrete moment problem, called totally positive linear program-

ming problem, was introduced in Prékopa [13]. It is the LP:

min(max) f0p0 + f1p1 + · · ·+ fnpn

s.t. a00 p0 + . . .+ a0npn = 1

a10 p0 + . . .+ a1npn = b1

a20 p0 + + a2npn = b2

...
...

am0p0 + . . . amnpn = bm,

pi > 0, i = 1, 2, . . . , n,

where all (m + 1)×(m + 1) submatrices of A and all (m + 2)×(m + 2) submatrices offT
A

 have positive determinants, where A = (aik). By the theorems established in

the previous section the discrete fractional moment problem belongs to this class and

we can apply the dual feasible basis structure theorem in Prékopa (1990d).

The following theorem is due to Prékopa (1990a,d).

Theorem 13. The dual feasible bases have the following structures:

minimization problem, m+ 1 even

• {j,j+1, . . . , k,k+1}

minimization problem, m+ 1 odd

• {0,j,j+1,. . . ,k,k+1}

maximization problem, m+ 1 even

• {0,j,j+1, . . . , k,k+1,n}

maximization problem, m+ 1 even

• {j,j+1,. . . ,k,k+1,n}
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The positivity of all minors of order m + 1 from A follows from the fact that the

generalized Vandermonde matrix is totally positive. We obtain the following dual fea-

sible bases structure for the case of fr = 1, fi = 0, if i 6= r, for some 0 ≤ r ≤ n based

on Prékopa’s theorem (1990a).

Theorem 14. The dual feasible bases have the following structures:

minimization problem, m+ 1 even

• r /∈ I,

• {0, i, i+1, . . . , j, j+1, r-1, r, r+1, k, k+1, . . . , t ,t +1}, if 2 ≤ r ≤ n− 1,

• {i, i+1, . . . , j, j+1, r-1, r, r+1, k, k+1, . . . , t ,t +1,n}, if 1 ≤ r ≤ n− 2,

• {0, 1, i, i+1, . . . , j, j+1}, if r = 0, and

• {i, i+1, . . . , j, j+1, n-1, n}, if r = n;

minimization problem, m+ 1 odd

• r /∈ I,

• {0, i, i+1, . . . , j, j+1, r-1, r, r+1, k, k+1, . . . , t ,t +1, n}, if 2 ≤ r ≤ n− 2,

• {i, i+1, . . . , j, j+1, r-1, r, r+1, k, k+1, . . . , t ,t +1 }, if 1 ≤ r ≤ n− 1,

• {0, 1, i, i+1, . . . , j, j+1, n}, if r = 0, and

• {0, i, i+1, . . . , j, j+1, n-1, n}, if r = n;

maximization problem, m+ 1 even

• {i, i+1, . . . , j, j+1, r, k, k+1, . . . ,t ,t +1,n}, if 0 ≤ r ≤ n− 1,

• {0, i, i+1, . . . , j, j+1, r, k, k+1, . . . ,t ,t +1}, if 1 ≤ r ≤ n;

maximization problem, m+ 1 odd

• {i, i+1, . . . , j, j+1, r, k, k+1, . . . ,t ,t +1}, if 0 ≤ r ≤ n,

• {0, i, i+1, . . . , j, j+1, r, k, k+1, . . . ,t ,t +1, n}, if 1 ≤ r ≤ n− 1.
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where in all parentheses the numbers are arranged in increasing order. If n > m + 2,

then all bases for which r /∈ I, are dual degenerate. The bases in all other cases are

dual nondegenerate.

We designate A the matrix of the equality constraint and by a0, . . . , an its columns.

We say that A has the alternating sign property if for every 1 ≤ i1 < · · · < it < · · · <

im+2 ≤ n, we have the inequality

(−1)t

∣∣∣∣∣∣ 0 . . . 0 1 . . . 1

ai1 . . . ait ait+1 . . . aim+2

∣∣∣∣∣∣ > 0 (3.14)

From Theorem 12, we know that A has alternating sign property. All minors of order

m + 1 from A are positive. The following theorem of Prékopa (1990a) gives the dual

feasible bases structure for the case that f0 = · · · = fr−1 = 0, fr = · · · = fn = 1, for

some 1 ≤ r ≤ n.

Theorem 15. The dual feasible bases have the following structures:

minimization problem, m+ 1 even

• I ⊂ {0, . . . , r-1}, if r ≥ m+ 1,

• {0, i, i+1, . . . , j, j+1, r-1, k, k+1, . . . , t ,t +1}, if 2 ≤ r ≤ n− 1,

• {i, i+1, . . . , j, j+1, r-1, k, k+1, . . . , t ,t +1,n};

minimization problem, m+ 1 odd

• I ⊂{0, . . . , r-1}, if r ≥ m+ 1,

• {0, i, i+1, . . . , j, j+1, r-1, k, k+1, . . . , t ,t +1,n}, if 2 ≤ r ≤ n,

• {i, i+1, . . . , j, j+1, r-1, k, k+1, . . . , t ,t +1}, if 1 ≤ r ≤ n− 1;

maximization problem, m+ 1 even

• I ⊂{r, . . . , n}, if n− r ≥ m,

• {i, i+1, . . . , j, j+1, r, k, k+1, . . . ,t ,t +1,n}, if 1 ≤ r ≤ n− 1,
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• {0, i, i+1, . . . , j, j+1, r, k, k+1, . . . ,t ,t +1}, if 1 ≤ r ≤ n;

maximization problem, m+ 1 odd

• I ⊂{r, . . . , n}, if n− r ≥ m,

• {i, i+1, . . . , j, j+1, r, k, k+1, . . . ,t ,t +1}, if 1 ≤ r ≤ n,

• {0, i, i+1, . . . , j, j+1, r, k, k+1, . . . ,t ,t +1}, if 1 ≤ r ≤ n− 1.

where in all parentheses the numbers are arranged in increasing order. Those bases for

which I ⊂{0, . . . , r-1} (I ⊂{r, . . . , n}) are dual nondegenerate in the minimization

(maximization) problem, if r > m+ 1 (n− r+ 1 > m+ 1). The bases in all other cases

are dual nondegenerate.

3.4 The dual algorithm and selection of fractional moments

Given a set of m fractional moments (α0, . . . , αm−1), the moment bounding problems

with fractional moments can be solved by Prékopa’s dual method. For DMPs, since

the Vandermonde systems are ill-conditioned (Prékopa (1990a,d), Prékopa, Szedmák

(2003)), the solutions of problem (3.2), using a primal approach, is computationally

difficult. Prékopa’s idea (1988) was to use a specialized form of the dual algorithm of

Lemke. This approach is extremely efficient when the dual feasible bases are known.

Given the dual feasible bases for the discrete moment problems with fractional moments

in Section 2 and 3, the dual algorithm can be applied for the discrete fractional moments

as well. In order to avoid the instability coming from generalized Vandermonde matrix,

we can employ LDU decomposition for generalized Vandermonde matrices (Demmel,

Koev, 2005) in the course of the algorithm. The dual method for the solution of problem

(3.6) can be described in the following steps:

Prékopa’s dual algorithm

Step 1. Pick any dual feasible basis in agreement with the above result; let I =

{i0, . . . , im} be the set of basic subscripts.



37

Step 2. Determine the corresponding primal feasible solution pi = (B−1b)i, for i ∈ I,

and pi = 0 for i ∈ {0, . . . , n} − I.

• If pik ≥ 0, for every ik ∈ I, then B is a primal-dual feasible basis, and

therefore the current basic solution is optimal. Otherwise, go to Step 4.

• If pik < 0, for some ik then the ithk vector of B is a candidate for outgoing.

Go to Step 3.

Step 3. Include that vector into the basis that restores the dual feasible basis structure

and go to Step 2.

Step 4. Stop. The optimum value fTBB
−1b is a lower (upper) bound for E[f(X)],

depending on the type of the optimization problem.

Computation of fractional moments Fractional moments can be computed based

on the moment generating function (Novi Inverardi, Tagliani, 2005). In what follows, we

propose a bounding method based on the discrete moment problem (with consecutive

integere moments) to estimate fractional moments E(Xα). It can be easily seen that

for any α, all minors of order m+1 from A and all minors of order m+2 from

fT
A

 or

−fT
A

 are positive, where f has the form Xα. Hence, the bounding problems can be

solved efficiently by Prékopa’s dual method (Prékopa [13]). It is interesting to remark

the optimal basis is the same for all functions f having the form of xα. Thus, the lower

bound (LBα) and upper bounds (UBα) can be computed explicitly by the use of the

available optimal basis.

3.5 Applications

We present an application of discrete moment bounding with fractional moments in the

context of degradation process of long chain molecules. This application was taken from

Prékopa (1953). Initially, the long chain molecule has n units and n−1 bonds. Assume

that bonds split independently with the same probability p. After degradation process,
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we have polymers of different length. Let us denote a1 as the number of monomers, . . . ,

an n-mers and ξ
(n)
1 , . . . , ξ

(n)
n as the corresponding random variables. The probability

mass function (p.m.f) of the distribution of the number of mers P (a1, a2, . . . , an) can

be represented as follows:

(1− p)n

p

(a1 + a2 + · · ·+ an)!

a1! . . . an!

(
p

1− p

)a1+a2+···+an
(3.15)

We are interested the p.m.f of the number of k-mers P (ξ
(n)
k ). We propose to estimate

those probabilitities using moments. The mean E(ξ
(n)
k ) and V ar(ξ

(n)
k ) are computed

in the paper by Prékopa (1953). Method to compute higher moments is also presented

in that paper. Fractional moments are estimated by the bounding procedure described

in the previous section. The following table shows the lower and upper bound for the

probability that the number of 2-mers is more than 9. The result shows significant

improvement of both lower and upper bounds when using fractional moments.

Integer vs Fractional moments
# of Mo. LBint UBint LBfrac UBfrac

2 0 0.14754 0 0.11312
4 0 0.06222 0 0.05507
6 0.000028 0.05436 0.00169 0.05436
8 0.004787 0.04961 0.00527 0.03894

Table 3.1: Integer and fractional moment bounds for P (ξ
(n)
k ≥ 10)

Moment problems with high-order integer moments are known to be unstable. Frac-

tional moments offer some alleviation for stability issue and provide better accuracy for

both lower and upper bounds, however, estimation of fractional moment can be difficult.
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Chapter 4

Recruitment stocking problems

4.1 Introduction

There are four primary phases in clinical trials. They are used to ensure the safety

and efficacy of a proposed treatment. Phase I tests safety and dosage ranges in a small

group of people. Phase II further tests safety and also tests for efficacy in a larger

group. Phase III, assuming success in Phase I and II, confirms the safety and efficacy

results in a much larger group of patients, on the orders of hundreds or thousands, and

monitors for adverse effects of the treatment. Assuming success in Phase III, a drug is

then approved for commercialization and further Phase IV studies assess the treatment

over the long-term. Time is very critical in clinical trials since the patent lifetime is

limited. However, the recruitment of patient is extremely slow. Moreover, it has to

follow strict FDA regulations.

This research is motivated from the recruitment process in Phase III of clinical

trials. Patients arrive randomly to multiple locations or sites. Upon arrival, a medical

package will be provided if avaiable, otherwise, the patient is rejected. The clinical trial

is closed once the target number of patients is recruited. To measure the performance

of a clinical trial, we can look at some of key metrics: time to recruit the target number

of subjects, inventory overage of medical packages and the number of patients rejected

at the end of the trial.

The recruitment process in clinical trial is just an example of recruiment process.

In this chapter, we introduce a more general class of inventory control problem - the re-

cruitment stocking problem. We need to recruit a target number of individuals through

designated outlets. As soon as the recruits of all outlets add up to the target number,
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the recruitment is done and no more individuals will be admitted. The arrivals of indi-

viduals at each outlet are random. To recruit an individual upon its arrival, we must

provide a pack of materials. We order the packs of materials in advance and hold them

in the outlets. Outlets can neither transfer recruits nor cross-ship materials among

themselves. If an outlet runs out of stock, any futher recruit at the outlet will be lost.

This chapter answers the following questions: given the inital inventory levels at

each locations in the system, how to measure the performance metrics efficiently?

1. What is the chance that we will reject some patients before the recruitment target

is reached? (type I service level)

2. How many patients we will reject before the target is reached? (type II service

level)

3. How long does it take to recruit the target number of patients? (recruitment

time)

The recruitment stocking problem widely exists in practice. For instance, in market-

ing research, we have to recruit testers to try new products in a short time. In fashion

industry, when an item is at the end of its life cycle, we want to allocate its inventory

in such a way that we will sell out the inventory as soon as possible.

The recruitment stocking problem differs from existing inventory management lit-

erature by the finite recruitment target which connects all outlets in a such way that

the recruitment is done as soon as the recruits at all outlets sum up to the target. In

most existing inventory models, we should satisfy demand as much as supply allows. In

other words, demand will be satisfied if inventory is available. This is not true in the

recruitment stocking problem, where, as soon as the target is met, no more demand will

be satisfied even if we have stock available. Due to this distinctive feature, performance

metrics must be evaluated differently in recruitment stocking problem. In standard

inventory control literature, performance metrics are estimated using steady-state ap-

proximation, however, for recruitment stocking problems, the performance metrics are

transient since the system will eventually terminates.
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Recruitment stocking problems are closely related to some of classical problems in

probability theory. In occupancy problems, r balls are thrown randomly in n urns with

each ball independently assigned to a given urn at some probability. There is a rich

literature on the topic, e.g, see Johnson, Kotz (1977), Holst (1986), and the references

therein. Another variation to the problem is the overflow problem, in which the urns

have finite capacity. Thus, once full, the balls can fall outside of urns, and the number

of balls that overflow is the random variable of interest (Ramakrishna, Mukhopadhyay,

1988). This setting is indeed very similar to the recruitment stocking problems since

the overflow balls can be considered as the number of rejected subjects. However, the

key difference between classical occupancy problems and our problem is that occupancy

problems assume homegeneous arrivals and capacities across urns. But in recruitment

stocking settings, the arrival of subjects are inherently different from each other and,

thus, so do the amount of inventory allocated to the locations.

A related problem was studied by Fleishacker et. al (2014) in the context of in-

ventory management for clinical trials, however, in the paper, the authors assume that

there is enough inventory so that no patient will be rejected from the trial. In a recent

paper, Fok et. al (2014) considered rejections during recruitment and proposed some

allocation rule for inventory. They focused on a special case of recruitment stocking

problem when the total initial inventory is the same as recruitment target.

The rest of the chapter is organized as follows. In Section 2, we define and charac-

terize the recruitment stocking process. The exact analysis for type II service level is

presented in Section 3. Section 4 is devoted to asymptotic approximations and bound-

ing schemes for recruitment time. Numerical examples are demonstrated in Section

5.

4.2 Recruitment stocking processes

In this section, we state the assumptions of the recruitment stocking problems and

present the mathematical framework for RSPs.
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4.2.1 Modeling Assumptions

• Demand Process: Demand occurs only at the lowest echelon (at sites) and the de-

mand processes are mutually independent Poisson processes with known demand

rates.

• Fixed recruitment target, H: The system has a predefined recruitment target,

H, which is the necessary sample size for the study. Once the target is reached,

recruitment is closed and no more customers will be needed.

• Inflexible Supply: Products are assumed to be made before the recruitment (for

example, in clinical trials, this constraint is due to statistical consistency con-

siderations and/or the significant fixed costs associated with the production and

quality control).

• Inability of Cross-Shipping: We also assume that cross-shipping and back-shipping

is not allowed.

4.2.2 Some notations

• Tm(n): the time to recruit n subjects at location m.

• T (H): the recruitment time to recruit the target H at all locations.

• Rm: the number of rejected arrivals at location m at the end of recruitment

period.

• R: the total number of rejected arrivals across all locations at the end of recruit-

ment period.

• si, i = 1, . . . ,M : inventory levels at locations 1, . . . ,M .

• S: the total inventory in the system, S = s1 + · · ·+ sM .

• λi, i = 1, . . . ,M : arrival rates at locations 1, . . . ,M , correspondingly.

• Suppose that the random vector X = (X1, X2, . . . , XM ) follows a multinomial dis-

tribution with the mass parameterH and the probability vector p = (p1, p2, . . . , pM ),
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where H,M are positive integers, and pi, i = 1, . . . ,M are real non-negative with

p1 + p2 + · · · + pM = 1. Let a1, . . . , aM and b1, . . . , bM be sets of integers so

that 0 ≤ ai ≤ bi ≤ H for i = 1, . . . ,M . We call the following expression as the

rectangular probability of the multinomial distribution X:

PH{a1 ≤ X1 ≤ b1, . . . , aM ≤ XM ≤ bM}, (4.1)

where the lower script H refers to the summation of all the components of the

vector X.

4.2.3 Characterizations

In this section we define and characterize the recruitment stocking process.

Definition 1. Let Xm(t) be the number of arrivals at location m during (0, t]. Due to

the possibility of having stockout, the number of subjects recruited Xm(t) at location m

up to time t and the number of arrivals Nm(t) are related by the simple relation:

Nm(t) = min(Xm(t), sm), (4.2)

and the stochastic process N(t) that counts the total number of recruited subjects in the

system is the summation of recruits over all the locations:

N(t) =
M∑
m=1

Nm(t). (4.3)

We call N(t) the recruitment stocking process.

Some preliminary properties of {N(t), t ≥ 0} are discussed below. It can be easily

seen that the probability of having n th or more recruits in the system during the

interval (0, t] is equal to the probability that the n th recruit occurs at or before t:

P{N(t) ≥ n} = P{T (n) ≤ t}, n = 0, . . . ,H. (4.4)
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Type II service level and expected recruitment time The mean number of

rejected subjected is the difference between the mean arrivals of subjects in the system

and the target H.

R = X1[T (H)] + · · ·+XM [T (H)]−H, (4.5)

and since the expectation is additive, we obtain:

E[R] = E[X1(T (H))] + · · ·+ E[XM (T (H))]−H, (4.6)

Each of the term is the expected number of arrivals at sites:

E[Xi(T (H))] = λiE[T (H)], i = 1, . . . ,M. (4.7)

Thus, the expected value of R is

E[R] = E[T (H)]

M∑
i=1

λi −H. (4.8)

Probability mass function of N(t) The recruitment stocking process, {N(t); t > 0}

counts the number of recruits upto time t. It consists of a discrete random variable

N(t) for each t > 0. We present the closed-form formula for the pmf for this random

variable in this section. The following lemma is straightforward, but since it is needed

in the main proof for the formula, we state it here without proof.

Lemma 3. The probability

∑
x1+x2+···+xM=s

x1<s1,x2<s2,...,xM<sM

P{X1(t) = x1} . . . P{XM (t) = xM}, (4.9)

is the product of a rectangle multinomial probability and a Poisson cdf:

Ps{X1(t) < s1, . . . , XM (t) < sM}P{X1(t) + · · ·+XM (t) = s}. (4.10)

The pmf for N(t) is presented in the following theorem.

Theorem 16. The pmf for N(t) (i.e., the number of recruits in (0, t]) is given by the
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expression:

P{N(t) = s} = Ps{X1(t) < s1, . . . , XM (t) < sM}P (
M∑
m=1

Xm(t) ≤
M∑
m=1

sm)

+
M∑
k=1

∑
1≤i1≤···≤ik≤M

P{Xi1 ≥ si1} . . . P{Xik ≥ sik}

Ps−
∑k
j=1 sij

{Xj(t) < sj ; j 6= i1, . . . , ik}P{
k∑
j=1

Xij (t) =
k∑
j=1

sij}, (4.11)

where the rectangle multinomial probability Ps−
∑k
j=1 sij

{Xj(t) < sj ; j 6= i1, . . . , ik} = 0,

if s ≤
∑k

j=1 sij .

Proof. Let xm be the particular value of the random variable Nm(t), then we have the

following expression for P{N(t) = s}:

P{N(t) = s} =
∑

x1+x2+···+xM=s
x1≤s1,x2≤s2,...,xM≤sM

P{N1(t) = x1} . . . P{NM (t) = xM}, (4.12)

where the pmf for Nm(t) is given as follows:

P{Nm(t) = xm} =


e−λmλxmm
xm!

for xm < sm

1−
sm∑

xm=0

e−λmλxmm
xm!

if xm = sm

The main idea of the proof is to relax those constraints on xi, i = 1, . . . ,M to strict

inequalities xi < si and divide the set x1 ≤ s1, . . . , xM ≤ sM into the following disjoint

sets:

x1 < s1, . . . , xM < sM (4.13)

xi1 = si1 ;xj < sj , j 6= i1, i1 = 1, . . . ,M (4.14)

. . .

xi1 = si1 , . . . , xik = sik ;xj < sj , j 6= i1, . . . , ik, 1 ≤ i1 ≤ · · · ≤ ik ≤M, (4.15)

then carry out the summation in equation (4.12) over these sets above. Let’s start with

the simplest set; x1 < s1, . . . , xM < sM . This set depicts the scenarios that the number

of arrivals to all locations is strictly less than their inventory levels. The probability

corresponding to this set is the following:∑
x1+x2+···+xM=s

x1<s1,x2<s2,...,xM<sM

P{X1(t) = x1} . . . P{XM (t) = xM}. (4.16)
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Notice that the above type of summation can be simplied into the following expression

by Lemma 3:

Ps{X1(t) < s1, . . . , XM (t) < sM}P{X1(t) + · · ·+XM (t) = s}. (4.17)

The more general set xi1 = si1 , . . . , xik = sik ;xj < sj , j 6= i1, . . . , ik, 1 ≤ i1 ≤ · · · ≤

ik shows the scenarios that we has depleted inventory at locations i1, . . . , ik. Under this

scenarios, the corresponding probability is:∑
x1+x2+···+xM=s

xi1=si1 ,...,xik=sik ;xj<sj ,j 6=i1,...,ik,1≤i1≤···≤ik

P{N1(t) = x1} . . . P{NM (t) = xM}. (4.18)

The above probability can be rewritten as:

P{Xi1(t) ≥ si1} . . . P{Xik(t) ≥ sik}
∑

∑
xj=s−si1−···−sik
xj<sj ,j 6=i1,...,ik

∏
j

P{Xj(t) < xj} (4.19)

Notice that the summation can be rewriten as the product of a rectangle multinomial

probability and a Poisson cdf by Lemma 3. The proof is complete.

Moments of N(t) The first three moments can be found explicitly by the following

formula on the mean, variance and skewness of a sum of independent variables.

E(
M∑
i=1

Xi) =
M∑
i=1

E(Xi)

Var(

M∑
i=1

Xi) =

M∑
i=1

Var(Xi) (4.20)

Skew(
M∑
i=1

Xi) =

∑M
m=1 Var(Xi)

3/2Skew(Xi)

[
∑M

i=1 Var(Xi)]3/2

The closed-form formula for the mean of N(t) is presented below:

E[N(t)] = t
M∑
m=1

λm −M +
M∑
m=1

Γ(1 + sm, λmt)

sm!
, (4.21)

where Γ(a, z) is the Gamma function:

Γ(a, z) =

∫ ∞
z

ta−1e−tdt (4.22)

Shape of the distribution N(t) is the sum of many integer-valued random variables,

and in general, its pmf can have more than one mode. The following theorem shows

that N(t) is unimodal in two cases.
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Theorem 17. (a) For t ≤ 1
maxλm

, then N(t) has log-concave pmf:

P{N(t) = s}2 ≥ P{N(t) = s+ 1}P{N(t) = s− 1}. (4.23)

(b) Furthermore, there exists a positive number τ such that for t > τ , N(t) has mono-

tone increasing probability mass function.

P{N(t) = s+ 1} ≥ P{N(t) = s} (4.24)

Proof.

(a). Consider the arrival process at location m:

Nm(t) = min(Xm(t), sm). (4.25)

The support for this random variable Nm(t) is the discrete set {0, . . . , sm}. It can be

easily seen that for P{Nm(t) = n}, n = 0, . . . , sm − 1 is a log-concave sequence since

the Poisson random variable is log-concave. Thus, the log-concavity property of the

pmf of N(t) will follow if we can show that

P{Nm(t) = sm − 1}2 ≥ P{Nm(t) = sm}P{Nm(t) = sm − 2}. (4.26)

Using the pmf for N(m)(t) and further simplify the above inequality, we obtain:

1

sm − 1
≥

∞∑
j=sm

(sm − 1)!(λmt)
j−sm

j!
. (4.27)

Rewriting the infinite summation, the inequality becomes:

1

sm − 1
≥ eλmt(λmt)−smγ(sm, λmt), (4.28)

where γ(a, z) is the lower imcomplete gamma function:

γ(a, z) =

∫ z

0
ta−1e−tdt (4.29)

Let x = λmt. To prove the inequality (4.28), we need to show the positivity of the

following function for 0 < x ≤ 1:

f(x) =
e−xx−sm

sm − 1
− γ(sm, x) (4.30)



48

It can be easily veried that the first derivative of f(x) is:

f ′(x) = xsm−1e−x +
e−xsmx

−sm−1 + e−xx−sm

sm − 1
(4.31)

Since x is a positive number and sm > 1, thus, f ′(x) is strictly positive. In other words,

f(x) is strictly increasing. Now, we will show that f(1) ≤ 0.

We have the following recurrence for the incomplete gamma function:

γ(sm + 1, x) = smγ(sm, x)− xsme−x. (4.32)

At x = 1, we obtain:

γsm + 1, 1 = smγ(sm, 1)− e−1. (4.33)

Furthermore, for 0 ≤ t ≤ 1, the following inequality holds true:

tsm−1e−t ≥ tsme−t. (4.34)

Now, integrating from 0 to 1 for both sides, we obtain:

γ(sm − 1, 1) ≥ γ(sm, 1). (4.35)

The negativity of f(1) follows directly from (4.33) and (4.35). This shows that Nm(t) is

log-concave if λmt ≤ 1. Since the convolution of log-concave sequence are log-concave,

the proof for the first part of our theorem is complete.

(b). The key idea of the proof is to show that, when t is large enough, the following

expression in the formula for the pmf of N(t) in Theorem 16 is increasing in s:

P{Xi1 ≥ si1} . . . P{Xik ≥ sik}Ps−∑k
j=1 sij

{Xj(t) < sj ; j 6= i1, . . . , ik}

P{Xi1(t) + · · ·+Xik(t) = si1 + · · ·+ sik}. (4.36)

Note that k is the number of locations that reject subjects. Without loss of generality,

we will prove the statement for the case that k = 1. After simplying those terms that

are independent of s, we have to show:

Ps−si1{Xj(t) < sj ; j 6= i1} ≤ Ps+1−si1{Xj(t) < sj ; j 6= i1} (4.37)
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It is well-known (Levin, 1981) that the rectangle multinomial probability can be

expressed in terms of Poisson and truncated Poisson random variables as follows:

Ps−si1{Xj(t) < sj ; j 6= i1} =
(s− si1)!

(t
∑M

j=1,j 6=i1 λ)s−si1 (e
−t
∑M
j=1,j 6=i1

λ
)

M∏
j=1,j 6=i1

P{Xj(t) ≤ sj}

P{W = s− si1}, (4.38)

where W is the sum of independent truncated Poisson random variables, namely W =∑M
j=1,j 6=i1 Yj and Yj ∼ TP (Xj(t)) with range 0, 1, . . . , sj − 1.

The inequality (4.37) simplifies to the following:

P{W = s− si1} ≤
P{W = s+ 1− si1}

s+ 1− si1
. (4.39)

It can be easily seen that the truncated Poisson distribution is log-concave, so the

distribution for W is also log-concave since log-concavity is closed under convolution.

Thus, we obtain:

P{W = s− si1}
P{W = s+ 1− si1}

≤ P{W = Wmax − 1}
P{W = Wmax}

, (4.40)

where Wmax = s1− 1 + · · ·+ sM − 1. Substitute W = Y1 + · · ·+ YM and the pmf for Yj

to yield:

P{W = s− si1}
P{W = s+ 1− si1}

≤
M∑

j=1,j 6=i1

sj − 1

λt
, (4.41)

and take limit when t goes to ∞. Since the limit for the right hand side goes to 0, it

follows that the fraction on the left also goes to 0 when t is large enough.

4.2.4 Recruitment time

In general, the distribution for recruitment time T (H) is unknown except for two special

cases. The first case corresponds to the scenarios when we do not want to have any

inventory overage at the end of recruitment. In other words, the total inventory in the

system S is the same as the target H. Thus, the recruitment time T (H) is the time for

the last location to delete its inventory:

T (H) = max
m=1,...,M

Tm(sm), (4.42)
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where Tm(sm) is the time for location m to deplete its inventory sm. Under Poisson

arrivals assumption, it can be easily seen that Tm(sm) follows an Erlang distributions

with shape parameter sm and scale parameter λm. Thus, T (H) is the maximum ordered

statistics for M Erlang random variables. The second case looks at the other extreme

when inventory is not expensive. Hence, we can choose to carry a lot of inventory in

the system, S � H. In this case, the distribution of T (H) can be well approximated

by a single Erlang distribution with shape parameter H and scale parameter
∑

m λm.

Detailed discussions on the computation of the mean recruitment time will be presented

in Section 4.

4.2.5 Type I Service level

We are interested in the probability that no subject is rejected at the end of recruitment.

Since there is no rejections, the total number of subjects arriving in the system is H:

X1 +X2 + · · ·+XM = H,

and the number of subjects Xm arriving at location m, m = 1, . . . ,M have to be less

than or equal to the inventory level sm. Hence, Type I service level can be written as:

PH{X1 ≤ s1, X2 ≤ s2, . . . , XM ≤ sM} (4.43)

Under Poisson arrivals assumption, (X1, X2, . . . , XM ) has a multinomial distribution

with parameter H and p = (p1, . . . , pM ), where pi is defined as follows:

pi =
λi

λ1 + λ2 + · · ·+ λM
, (4.44)

thus Type I service level is the rectangle probability of the multinomial distribution.

Levin (1981) used approximate algorithm to compute the c.d.f. More efficient methods

are developed recently by Frey (2009) and Lebrun (2012). We refer to their papers for

a more detailed discussion.

4.3 Exact analysis

In this section we provide the exact analysis for Type II service level or the mean

number of subjects rejected at the end of recruitment.
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4.3.1 Type II service levels

Key ideas and challenges Type II service level E[R] can be written explicitly as:

E[R] =

∞∑
l=1

l × P{R = r}. (4.45)

Hence, to find Type II service level, we need to compute the probability that we are

rejecting r subjects in the system P{R = r}. This probability can be found by two-

step conditioning procedure. The first step conditions on where stock out happens.

This step can be explained with a simplest case when rejection happens at only one

location. In other words, r subjects can only be rejected at location 1, or location 2,

. . . , or location M . They are nonoverlapping events, thus the probability of rejecting r

subjects at exactly one location can be computed as:

M∑
i1=1

P{Ri1 = r;Rm = 0,m 6= i1}, (4.46)

where each summand is the probability that r subjects are rejected at location i1.

Now, what happens if two locations reject r subject? First, we have to determine

where we reject r subjects, location i1 and i2, for example. Then, we have to understand

how r rejections happen. Specifically, if ri1 and ri2 are denoted as the number of rejected

subjects at location i1 and location i2, correspondingly, we have to impose the following

constraint:

ri1 + ri2 = r, (4.47)

and compute the probabilities of rejecting ri1 subjects at location i1 and ri2 subjects at

location i2 and sum them up to obtain the probability of rejecting r subjects at exactly

two locations:

∑
1≤i1,i2≤M

P{Ri1 = ri1 ;Ri2 = ri2 ;Rm = 0,m 6= i1, i2}, (4.48)

In general, the probability of rejecting r subjects in the system can be computed as

follows:

min(r,M−1)∑
k=1

∑
1≤i1≤···≤ik≤M

∑
ri1+···+rik=r

P{Ri1 = ri1 , . . . , RiK = riK ;Rm = 0,m 6= i1, . . . , ik},

(4.49)



52

where the summand is called the k-location r-rejected probability, i.e., the probability

of rejecting r subjects at a given set of k locations: ri1 at location i1, ri2 at location i2,

and so on. The first two summations enumerate over all possible combinations of the

locations that reject r subjects. The inner-most summation splits r rejections among

the set of K locations.

Some notes on the complexity of this procedure are in order. First, we observe

that: (1) k cannot exceed M − 1 since otherwise, the system does not carry enough

inventory to serve the target (2) k cannot exceed r since otherwise, there will be more

than r rejected patients. Therefore, given the total rejected customers r, the number of

sites that have stock out k can take value between 1, 2, . . . ,min(M − 1, l). In the worst

case, we have exponential number of combinations in terms of the number of locations

2M . The second level of complexity comes from the large number of scenarios of how r

rejections happen at k location. Specificaly, given the set of k locations i1, . . . , ik, the

number of rejected customers at those sites must satisfy the linear equation:

ri1 + · · ·+ rik = r. (4.50)

The number of k-tuples ri1 , . . . , rik is well-known (see Murty, 1981). It is
(
r−1
k−1

)
. Thus,

in the worst case (when k ranges from 1, . . . ,M − 1), we have:

M−1∑
k=1

(
M

k

)(
r − 1

k − 1

)
=

M

M + r

(
M + r

r

)
−
(
M − 1

r − 1

)
. (4.51)

It is computationally expensive to evaluate P{R = r} with this brute-force approach:

there are two many k-location r-rejected probabilities, and at the moment, we do not

know how to evaluate them. Note that a k-location r-rejected probability is not simply

the probability that out of H + r arrivals, rij are rejected at location ik, j = 1, . . . , k

since we need to make sure that the last arrival will be recruited (otherwise, the trial

would already finish).

4.3.2 Relaxation theorem

The relaxation theorem shows how to compute a single k-location r-rejected probability,

i.e., the summand in the equation (4.49), in an efficient manner.
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Simple case For clarity of the presentation, we first focus on the derivation for the

probability of rejecting exactly one patient P{R = 1}. Intuitively, the system rejects 1

customer if and only if there is only one site that runs out of stock. Let i1 be the index

of this site. Clearly, i1 can take value from 1 to M . Thus, two equations (4.48) and

(4.49) become very simple and P{R = 1} can be written as follows:

P{R = 1} =
M∑
i1=1

P{Ri1 = 1;Rm = 0,m 6= i1}, (4.52)

where P{Ri1 = 1;Rm = 0,m 6= i1} is the probability that we reject 1 customer at site

i1. Note that, this rejected patient cannot be the last arrival (since the last arrival must

be recruited). Therefore, the main idea here is to assume that no rejection happens and

exclude the unneccesary event. In particular, the probability P{Ri1 = 1;Rm = 0,m 6=

i1} can be computed by:

P{Ri1 = 1;Rm = 0,m 6= i1} = PH+1{Xi1 = si1 + 1;Xm ≤ sm,m 6= i1}

− pi1PH{X ′i1 = si1 ;X ′m ≤ sm,m 6= i1}, (4.53)

where the first term denotes the probability that, among H + 1 arriving patients to

the system, there are exactly si1 + 1 patients at site i1 and there is no stock out at

other sites (as if there is no stock out). This probability is called the relaxed k-location

r-rejected probability since it contains the event that the H + 1 patient is rejected at

site i1 and thus, has to be excluded by the use of the second term. It is the probability

that, among the first H patients, there are exactly si1 patients arriving at site i1 and

there is no stock out at other sites, and the H + 1 customer is rejected at site i1.

Equation (4.53) can be further simplified in a few steps. First, because order arriv-

ing at sites are filled on a first-come-first-served basis, and because the arrival process to

sites is a Poisson process with arrival rate λi, the vector (X1, . . . , XM ) follows the multi-

nomial distribution with mass parameter H+1 and probability vector p = (p1, . . . , pM )

as defined in (4.44). Thus, the probability PH+1{Xi1 = si1 + 1;Xm ≤ sm,m 6= i1} can

be rewritten as follows:

PH+1{Xm ≤ sm,m 6= i1|Xi1 = si1 + 1}PH+1{Xi1 = si1 + 1}. (4.54)



54

It is well-known that the distribution of the conditional probability in the above equa-

tion is a multinomial distribution with parameters H − si1 with adjusted probabilities

p′i = λi/
∑M

m=1,m 6=i1 λi:

PH−si1{Xm ≤ sm,m 6= i1}, (4.55)

and PH+1{Xi1 = si1 + 1} is the marginal distribution of the multinomial distribution,

thus, follows binomial distribution with parameters H + 1 and pi1 = λi1/
∑M

m=1 λm.

That is,

PH+1{Xi1 = si1 + 1} =

(
H + 1

si1 + 1

)
p
si1+1

i1
(1− pi1)H−si1 . (4.56)

In a similar way, we can also rewrite the second term PH{X ′i1 = si1 ;X ′m ≤ sm,m 6= i1}

as

PH{X ′m ≤ sm,m 6= i1|X ′i1 = si1}PH{X ′i1 = si1}, (4.57)

where the distribution of the conditional probability is the same multinomial distribu-

tion defined in (4.55) and PH{X ′i1 = si1} is the binomial distribution with parameters

H and pi1 . Using equations (4.54) and (4.57) yields:

PH{Xi1 = si1 ;Xm ≤ sm,m 6= i1}
PH+1{X ′i1 = si1 + 1;X ′m ≤ sm,m 6= i1}

=
PH(Xi1 = si1)

PH+1(X ′i1 = si1 + 1)
. (4.58)

It can be easily verified that:

PH{Xi1 = si1}
PH+1{X ′i1 = si1 + 1}

=
si1 + 1

pi1(H + 1)
. (4.59)

The above formula is then used to obtain a much simpler equation in place of (4.53) to

compute the probability of rejecting exactly 1 patient in the system at location i1:

P{Ri1 = 1;Rj = 0, j 6= i1} =
H − si1
H + 1

PH+1{Xi1 = si1 + 1;Xm ≤ sm,m 6= i1, }. (4.60)

The analysis for the general case is more involved and is presented below.

General case Let K be the number of sites that have stock out and denote the

subscripts of those sites that run out of stock as {i1, . . . , ik}. Then, if the number

of rejected patients at locations i1, . . . , ik are ri1 , . . . , rik , correspondingly, then the
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k-location r-rejected probability is:

PH+r{Xij = sij + rij , j = 1, . . . , k;Xm ≤ sm, m 6= i1, . . . , ik}

−
k∑
t=1

pitPH+r−1{X ′ij = sij + rij , j 6= t;X ′it = sit + rit − 1;X ′m ≤ sm, m 6= i1, . . . , ik}.

(4.61)

The first summand in equation (4.61) denotes the probability that, among H+r arriving

patients, sites ij serves exactly sij and reject rij patients (j = 1, . . . , k) due to stock

out, and there is no stock out at other locations. This probability is called the relaxed

k-location r-rejected probability since it does not capture the condition that the last

recruited patient cannot be rejected. Thus, the inner summation of probabilities is

introduced to address this issue. It is the probability that among the first H + r − 1

arriving patients to the system: (1) there are exactly sij + rij patients arriving at site

ij , j ∈ {1, . . . , k} \ t (2) site t serves sit patients, rejects rit patients and the H + r

customer is rejected at site t (3) there is no stock out at other sites. A simpler expression

for P{R = r} can also be found. The main idea is to find out the ratio between the

first summand and each of the term in the inner summation. The simplication process

is based on the observation that the arrival process at site t is independent from other

sites. Thus, we can use conditional probability to separate site t from others. The step-

by-step derivation is straight forward, hence, omitted (see Appendix for more details).

Equation (4.61) now becomes:

H −
∑k

j=1 sij

H + r
PH+r{Xij = sij + rij , j = 1, . . . , k;Xm ≤ sm, m 6= i1, . . . , ik}. (4.62)

Now we are ready to state the relaxation theorem for the k-location r-rejected

probability, i.e., the probability of rejecting r subjects at a given set of k locations: ri1

subjects are rejected at location i1, . . . , rik subjects are rejected at location ik.

Theorem 18. The k-location r-rejected probability is linearly related to its relaxed

version, in particular, it is equal to the following expression:

H −
∑k

j=1 sij

H + r
PH+r{Xij = sij + rij , j = 1, . . . , k;Xm ≤ sm, m 6= i1, . . . , ik}. (4.63)
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4.3.3 Decomposition theorem

At the end of the relaxation step, we obtain the following formula to compute the

inner-most summation in equation (4.49):

∑
∑k
j=1 rij=r

H −
∑k

j=1 sij

H + r
PH+r{Xij = sij + rij , j = 1, . . . , k;Xm ≤ sm, m 6= i1, . . . , ik}.

(4.64)

Since rejections can happen in various ways at those locations, thus, in the equation

(4.49), the inner summation adds up all these k-location r-rejected probabilities to

account for all the possible scenarios. A better approach is to rewrite the above equation

as follows:

H −
∑k

j=1 sij

H + r
PH+r{Xij ≥ sij + 1,

k∑
j=1

Xij = r +

k∑
j=1

sij ;Xm ≤ sm, m 6= i1, . . . , ik}.

In the following theorem, we show how to evaluate the above expression. First, we

introduce Binopdf(x, n, p) as the value of pmf of a binomial distribution at x, with N

as the number of trials and the probability of success for each trial is p.

Theorem 19. Assume that the vector X = (X1, . . . , XM ) follows multinomial distri-

bution (H + r, p1, . . . , pM ). Furthermore, the summation of the last k components of X

is r, then we have:

PH+r{X1 ≤ si, . . . , XM−k ≤ sM−k, XM−k+1 ≥ sM−k+1, . . . , XM ≥ sM}

= PH{X1 ≤ si, . . . , XM−k ≤ sM−k)Pr(XM−k+1 ≥ sM−k+1, . . . , XM ≥ sM}

×Binopdf{r,H + r,

M∑
i=M−k+1

pi}

where (X1, . . . , XMk
) follows the multinomial distribution with mass parameter H and

probabilities

p
(−)
i =

pi∑M−k
i=1 pi

, i = 1, . . . ,M − k (4.65)

and (XM−k+1, . . . , XM ) follows the multinomial distribution with mass parameter r and

probabilities.

p
(+)
i =

pi∑M
i=M−k+1 pi

, i = M − k + 1, . . . ,M. (4.66)
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Proof. The rectangle probability PH+r{X1 ≤ si, . . . , XM−k ≤ sM−k, XM−k+1 ≥

sM−k+1, . . . , XM ≥ sM} given that the summation of the last k terms of the vector X

is r can be expressed explicitly as follows:∑
x1≤s1,...,xM−k≤sM−k

xM−k+1≥sM−k+1,...,xM≥sM∑M
i=M−k+1 xi=r

(H + r)!

x1! . . . xM !
px11 . . . pxMM . (4.67)

Since X1 + · · ·+XM = H + r and XM−k+1 + · · ·+XM = r, we have:

X1 + · · ·+XM−k = H, (4.68)

and we can rewrite equation (4.67) as:

(H + r)!

H!r!

∑
x1≤s1,...,xM−k≤sM−k∑M−k

i=1 xi=H

H!

x1! . . . xM−k!
px11 . . . p

xM−k
M−k ×

∑
xM−k+1≥sM−k+1,...,xM≥sM∑M

i=M−k+1 xi=r

r!

xM−k+1! . . . xM !
p
xM−k+1

M−k+1 . . . p
xM
M .

The assertion of the lemma follows directly after applying formula (4.65) and (4.66) in

the above equation. �

Applying the Decomposition Theorem 19 to Equation (4.64), we obtain a much

simpler formula to compute the probability of rejecting r patients at sites i1, . . . , ik:

H −
∑k

j=1 sij

H + r
PH+r{Xij ≥ sij + 1,

k∑
j=1

Xij = r +
k∑
j=1

sij ;Xm ≤ sm,m 6= i1, . . . , ik}

=
H −

∑k
j=1 sij

H + r
Binopdf{r +

k∑
j=1

sij , H + r,
k∑
j=1

pij} (4.69)

×PH{Xm ≤ sm, m 6= i1, . . . , ik}Pr+∑k
j=1 sij

{Xij ≥ sij + 1, j = 1, . . . , k}

Remarks. This two-step procedure reduces the effort to evaluate the inner-most sum-

mation in equation (4.49) significantly since it is shown to be a product of three simple

probabilities which can be computed by known methods. Consequently, for a system

with less than 15 locations, evaluation of Type II service level is quite fast. Notice that

we still have the exponential number of scenarios arise from the first two summations in

(4.49), thus, in practice when the number of locations is much larger, another method

is needed. This topic will be discussed in the following section.
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4.4 Approximate analysis of recruitment time

Being able to evaluate recruitment time efficiently is very important for many reasons.

First, it is a proxy for the expected number of rejected customers. Moreover, recruit-

ment time plays an important role for the recruitment process, e.g., in clinical trials,

time can be quite costly due to limited patent lifetime. Thus, supply chain managers

need to know how to compute the expected recruitment time for a given initial inven-

tory position. In this section we show how to evaluate time by the use of asymptotic

approximation and bouding methods.

4.4.1 Asymptotic results

When the total inventory in the system S =
∑M

i=1 si exceeds the target H, as dis-

cussed in Section 4.2.4, the recruitment time T can be well approximated by an Erlang

distribution Er(H,λ).

Let E[Ri] be the expected number of rejected arrivals at location i by the recruitment

time T . The total number of rejected arrival in the system is:

E[R] =
M∑
i=1

E[Ri]. (4.70)

In order to compute the expected number of rejected arrivals E[Ri] at location i, we

need to be able to compute the probability of rejecting r arrivals there. This probability

can be approximated as follows:

P{Ri = r} =

∫ ∞
0

P{Ri = r|T = t}fEr(t)dt, (4.71)

where fEr(t) is the pdf of the Erlang approximation Er(H,λ) for the recruitment time

T .

Replacing P{Ri = r|T = t} by the probability that a Poisson process with rate λi

has exactly si+r arrivals and carrying out the above integration, we obtain the explicit

formula for the probability of rejecting r arriavls at location i:

P{Ri = r} =
λHλsi+ri H(H + 1) . . . (H + si + r − 1)

(si + r)!(λ+ λi)si+r+H
. (4.72)
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4.4.2 Discrete moment bounds

The asymptotic approximation presented in the previous section works very well when

we carry excessive amount of inventory in the system. However, inventory is often

expensive and we need to make sure that total inventory S is as close to the target H

as possible. In this case, we propose a different method to give lower and upper bounds

on the expected reruitment time.

Since the first few moments of N(t) can be computed easily, we propose to obtain

the lower and upper bounds on P (N(t) < H̄) through the moment problems by the use

of linear programming. Let ps = P (N(t) = s) and S =
∑M

m=1 sm, then N(t) can take

values from the set 0, . . . , S. For now, assume that some of the moments of N(t) are

available µ1, . . . , µm, then the lower bound and upper bound on P (N(t) < H̄) is the

optimal values of the LPs:

min(max)
H̄−1∑
s=0

ps

subject to
S∑
s=0

skps = µk k = 0, ...,m (4.73)

ps ≥ 0 s = 0, ..., S,

The above problems have been studied extensively by Prékopa (1990) under the name of

discrete moment problem. He also developed a special dual algorithm based on explicit

dual basis structure for the solution of the bounding problem. For a more detailed

description, we refer to Prékopa (1989,1990). Furthermore, the optimal solutions of

problem (4.73) can be expressed in closed form by Lagrangian polynomials lk(z), Lk(z),

where k is the number of used moments:

E[lk(z)] ≤ P (N(t) < H) ≤ E[Lk(z)] (4.74)

The expected time to recruit the rest of the patients to meet with the patient target

is:

E(TH̄) =

∫ ∞
0

P (TH̄ ≥ t)dt, (4.75)
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and equations (4.4), (4.75) give:

E(TH̄) =

∫ ∞
0

P (N(t) < H̄)dt. (4.76)

Now, integrating the polynomial Lk(z)(or lk(z)) (obtained by the two LPs) over the

interval (0,∞) should provide us with lower and upper bounds for E(TH̄).∫ ∞
0

lk(t)dt < E(TH̄) <

∫ ∞
0

Lk(t)dt (4.77)

Two integrals in (4.77) are improper, thus, we will first compute the following finite

integral: ∫ a

0
P (N(t) < H̄)dt, (4.78)

where a is a sufficiently large number and give an upper bound estimate on the tail∫∞
a P (N(t) < H̄)dt. If we denote this upper bound as ε, then the lower and upper

bound on E(TH̄) is:∫ a

0
lk(t)dt <

∫ a

0
P (Nt < H)dt < E(TH̄) < ε+

∫ a

0
P (Nt < H)dt < ε+

∫ a

0
Lk(t)dt

(4.79)

Intuitively, this approach should work well since P (N(t) < H̄) becomes very small as

t approaches infinity, i.e., the upper tail of the integral (4.76) should decay fast. The

following lemma establishes an exponential upper bound for the tail of the integral in

(4.76).

Lemma 4.

∫ ∞
a

P (N(t) < H)dt ≤ Ce−λa(λa)x+1, where C is a constant:

C =
2

λx!

H−1∑
s=0

[(
s+M − 1

M − 1

)
−
(
s− S − 1

M − 1

)]
. (4.80)

Proof. Let c be the number of nonnegative integers solutions (x1, . . . , xM ) to the

equation:

x1 + · · ·+ xM = s, (4.81)

and satisfying additional constraints:

x1 ≤ s1, x2 ≤ s2, . . . , xM ≤ sM . (4.82)
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Explicit expression of c can be found using inclusion-exclusion formula (e.g, Rosen

et. al, 2000) and the well-known result on the number of integer solutions of a linear

equation (Murty, 1981). However, the formula is rather complicated, we instead use

the following upper bound on c:(
s+M − 1

M − 1

)
−
(
s− S − 1

M − 1

)
, (4.83)

where S =
M∑
m=1

sm (change this to st). The first term in equation (4.83) is the number of

nonnegative integer solutions to equation (4.81), relaxing the constraints on x1, . . . , xM .

The second term counts the number of nonnegative interger solutions to equation (4.81)

under the condition that x1 > s1, . . . , xM > sM and x1 + · · · + xM = s. We can give

the following upper bound on each of the term P (N1(t) = x1) . . . P (NM (t) = xM ) in

equation (4.12):

P (N1(t) = x1) . . . P (NM (t) = xM ) ≤ P (Njs(t) = xjs). (4.84)

Site js is selected based on the condition that the number of recruits there xj is strictly

less than its inventory level sj . The existence of such a site is due to the fact that we

carry enough inventory at M sites to serve s patients (s = 0, . . . ,H−1). Then, a simple

bound on P (N(t) = s) is the following

P (N(t) = s) ≤
[(
s+M − 1

M − 1

)
−
(
s− S − 1

M − 1

)]
e−λjs t

(λjst)
xjs

xj !
(4.85)

Taking the summation over s = 0, 1, . . . ,H − 1 gives the following upper bound on

P (N(t) < H):

P (N(t) < H) ≤ e−λt (λt)
x

x!

H−1∑
s=0

[(
s+M − 1

M − 1

)
−
(
s− S − 1

M − 1

)]
, (4.86)

where x, λ are the inventory level and the recruitment at the site that achieves the

maximum among all the sites js, s = 0, . . . ,H − 1. Integrating both sides of the above

gives the inequality:∫ ∞
a

P (N(t) < H)dt ≤
H−1∑
s=0

[(
s+M − 1

M − 1

)
−
(
s− S − 1

M − 1

)]∫ ∞
a

e−λt
(λt)x

x!
dt (4.87)
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The integral on the right hand side can be rewritten as:

1

λx!
Γ(x− 1, λa), (4.88)

where Γ(x− 1, λa) is the upper incomplete gamma function:

Γ(x− 1, λa) =

∫ ∞
λa

e−zzxdz. (4.89)

It is well-known (see, e.g. Natalini, Palumbo, 2000) that Γ(x− 1, λa) is bounded above

by:

Γ(x− 1, λa) < B(λa)x−1e−λa, (4.90)

where B is a constant such that λa > B
B−1(x − 1). Since a is assumed to be a large

number, it is safe to select B = 2, for example. The assertion follows directly from

(4.87) and(4.90). �

In what follows, we obtain a tighter lower and upper bound for P (N(t) < H) by

imposing a lower bound on pi in the linear programming formulation. Equation (4.12)

can be rewritten as:

P (N(t) = s) =
∑

x1+x2+···+xM=s
x1≤s1,x2≤s2,...,xM≤sM

P (min(X1(t), s1) = x1) . . . P (min(XM (t), sM ) = xM ),

(4.91)

and notice that if we relax the constraints on xi, i = 1, . . . ,M to strict inequalties

xi < si, we obtain the lower bound on P (N(t) = s):

P (N(t) = s) >
∑

x1+x2+···+xM=s
x1<s1,x2<s2,...,xM<sM

P (min(X1(t), s1) = x1) . . . P (min(XM (t), sM ) = xM ).

(4.92)

Under this new information, the problem can still be solved efficiently by dual method

by Prekopa due to the explicit structure of dual feasible bases. In particular, when the

first two or three moments are used, closed form formulas are available.

There are two ways to improve on the quality of the lower and upper bounds on

E(T ). We can either use higher order moments (third, fourth moments) or find a

better lower bound on the probability P (N(t) = s). The former approach requires

the knowledge of moments of the summation of many random variables. This can be
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quite expensive and hence, we propose to relax the inequality and give a lower bound

on higher moments instead. The latter approach to improve on P (N(t) = s) is very

promising since we can add arbitrary number of terms to the right-hand-site of (4.92).

4.5 Numerical results

In this section we want to test the effectiveness of the approximations and bounds

for key performance metrics: Type I, Type II service levels and recruitment time. In

particular, we compare the values obtained by approximations and bounds to those from

exact analysis (small number of locations) and simulation (medium and large number

of locations). In the small example, we want to recruit 30 subjects at 5 locations and

we have 50 packages in the system. In the medium example, the number of subjects to

be recruited is 70 over 10 locations with 200 packages. The large example requires 600

subjects at 32 locations and we have 1200 packages in the system. Lastly, we carry out

a randomized study by varying the number of subjects, locations and packages.

4.5.1 Small example

Assume that the arrival rate is 0.2 subjects per day and the stock levels are set to

be 10 at each location. Type I service level is a multinomial probability and can be

evaluated exactly to be 89.2%. Type II service level can also be evaluated exactly

since the number of locations is small enough. On average, we reject 0.248 subjects

throughout recruitment. This number is very close to the result obtained by simulation

0.249. The accuracy for recruitment time is summarized in the following table:

Exact LB UB SIM

30.25 30.21 32.31 30.25

Table 4.1: Expected recruitment time E[T ]: small case

The expected recruitment time computed by exact approach in the first column is

verified by the simulation result in the last column. It takes 30.25 days with the current

inventory positions to recruit 30 subjects. The values in the table also confirms that

the lower and upper bounds are quite accurate.
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4.5.2 Medium case

We repeat the same exercise in the previous section, however, the number of locations

is 10 and each has the arrival rate of 0.1 subjects per day. The initial inventory level is

10 for every location. We want to recruit 70 subjects. Type I service level is computed

exactly to be 32.3%. As expected, when type I service level decreases, Type II service

level increases. On average, the system rejects 2.09 subjects throughout recruitment

process. This is the exact value computed by our relaxation-decomposition scheme. A

value of 2.08 rejected subjects is obtained by simulation.

The expected recruitment time is reported in the following table. Now, it takes

about 72 days to finish recruitment of 70 subjects. This number is very close to the

lower and upper bounds.

Exact LB UB SIM

72.09 71.18 74.93 72.08

Table 4.2: Expected recruitment time E[T ]: medium case

4.5.3 Large case

In this large example, we test our methods on the data of a clinical trial (Fleishhacker

et. al, 2014). The trial tested the efficacy of an antibiotic in treating a specific type

of infection and is a typical example of Phase III biologic drug trial. The trial’s pa-

tient horizon (i.e. the target number of patients to be recruited) was 600, and the

patient recruitment was accomplished in nine months. During the trial, each patient

received and needed only one clinical trial package (i.e. drug supply, packaging, and

labeling), and all treatments were administered intravenously in a hospital or doctor’s

office. Previously collected drug stability data supported a 24-month shelf life for the

investigational drug, and thus drug expiration was not a concern for this trial. Assume

that we are given 1200 medical packages to distribute over these 30 clinical trial sites.

For now, the intial stock levels are set in such a way that they are in proportion with

the corresponding recruitment rate.

Type I service level is evaluated to be 89.2%. Type II service level and expected
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# of Sites Enrollment Rate by Site (patients per day - sites separated by commas)

Latvia 4 0.02, 0.04, 0.05, 0.08
Russia 4 0.03, 0.06, 0.06, 0.28
Ukraine 4 0.02, 0.04, 0.05, 0.06
United States 12 0.03, 0.04, 0.05, 0.06, 0.08, 0.08, 0.11, 0.11, 0.14, 0.14, 0.16, 0.18
Poland 6 0.01, 0.02, 0.04, 0.04, 0.04, 0.06

Table 4.3: Enrollment Data for 30 Site Trial conducted in Five Countries.

recruitment time cannot be evaluated exactly due to a large number of locations. Thus,

in the following, we only present bounds obtained by discrete moment method and

simulation. On average, it takes 275 days (simulated result) to recruit 600 patients at

30 clinical trial sites with the given inventory levels. This number is very close to the

lower bound obtained by the moment method.

Exact LB UB SIM

NA 275.24 277.28 275.31

Table 4.4: Expected recruitment time E[T ]: large case

4.5.4 Randomized study

In this section we want to compare the accuracy of moment bound methods and the

asymptotic approximations. We generate 1000 scenarios of recruitment by varying

the recruitment target, inventory, number of locations and recruitment rates. The

recruitment rates are generated by a uniform distribution and the initial stockings are

allocated according to arrival rates. Other parameter values are chosen based on the

following table. The first row shows if we have excessive inventory in the system or

not. For example, if the ratio between S and H is 1, it means that we carry the same

amount of inventory as the target. However, if this ratio is 2, we overstock inventory:

carry twice as much inventory as the target.

Values

S/H 100 % , 150 %, 200 % (S −H is inventory overage)
M 5, 10, 15, 20, 25, 30 (number of locations)
S 500, 1000, 1500 (total number of inventory)

Table 4.5: Parameters for the randomized study
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We consider two cases: overstock and understock. Overstock case corresponds to

those scenarios that the total of inventory in the system is either 1.5 or 2 times higher

than the target. If the total inventory is the same as the target, we call it understock.

At heavy overstock, asymptotic approximation on recruitment performs very well com-

pared to simulation. This is expected since if we carry a lot of inventory in the system,

we rarely reject subjects and the total arrival process to the system behaves similar to

a single Poisson process with the rate equals to the summation of rates at all locations.

% Error Min Average Max

Approx. 0.1 % 1.3 % 2.4 %

Table 4.6: Expected recruitment time E[T ] when overstock (S/H > 1): asymptotic
approx.

At understock, i.e., S/H = 1, the asymptotic approximation can be very poor but

the moment bounds are much better.

% Error Min Average Max

Approx. 5.1 % 24.5 % 44.1 %
LB 2.6 % 6.9 % 14.4 %
UB 4.0 % 8.4 % 15.9 %

Table 4.7: Expected recruitment time E[T ] when understock (S/H = 1): asymptotic
approx. vs. moment bounds

4.6 Conclusion

We define and characterize a new class of inventory control problem - the recruitment

stocking problem, which can be found in clinical trials, marketing research/new product

launch, as well as inventory management for end-of-life-cycle products. The recruitment

stocking problem differs from previous research conducted in the classical inventory

management literature. With this unique feature under consideration, performance

evaluation and inventory allocation for this system are not known. In this chapter, we

are limited to discussion on performance evaluation, i.e., we propose both exact and

approximation methods to measure key performance metrics for the system: Type I
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and II service levels and recruitment time. The question of how to allocate inventory for

this system is for our future research. We can also generalize the recruitment stocking

problems in multiple directions when the system is multi-echelon and adapt different

type of inventory policies at each level, or the arrival process is more general than

Poisson type. The results in this thesis will serve as a foundation for further extension.

4.7 Appendix

In Section 4.3.2, we omit the details of how to obtain the formula (4.64) for the relax-

ation theorem in the general case when rejections happen at more than one location.

For the sake of completeness, the step-by-step derivation is presented below. The key

idea to rewrite the expression (4.61) is to relate the first term in that expression with

every summand within the summation. In particular, we are interested in the following

ratio:
PH+r−1{X ′ij = sij + rij , j 6= t;X ′it = sit + rit − 1;X ′m ≤ sm, m 6= i1, . . . , ik}

PH+r{Xij = sij + rij , j 6= t;Xit = sit + rit ;Xm ≤ sm, m 6= i1, . . . , ik}
. (4.93)

The meaning of the probabilities in the numerator and denominator is explained in

Section 4.3.2. In the next step, we condition on the location t that recruits the last

subject and simplify the above ratio in a few steps.

PH+r−1{X ′ij = sij + rij , j 6= t;X ′it = sit + rit − 1;X ′m ≤ sm, m 6= i1, . . . , ik}
PH+r{Xij = sij + rij , j 6= t;Xit = sit + rit ;Xm ≤ sm, m 6= i1, . . . , ik}

=
PH+r−1{X ′ij = sij + rij , j 6= t;X ′m ≤ sm, m 6= i1, . . . , ik|X ′it = sit + rit − 1}PH+r−1(X

′
it = sit + rit − 1))

PH+r{Xij = sij + rij , j 6= t;Xm ≤ sm, m 6= i1, . . . , ik|Xit = sit + rit}PH+r{Xit = sit + rit}

=
PH+r−sit−rit {X

′
ij = sij + rij , j 6= t X ′m ≤ sm, m 6= i1, . . . , ik}PH+r−1{X ′it = sit + rit − 1)}

PH+r−sit−rit {Xij = sij + rij , j 6= t;Xm ≤ sm, m 6= i1, . . . , ik}PH+r{Xit = sit + rit}

=
PH+r−1{X ′it = sit + rit − 1}

PH+r{Xit = sit + rit}

=
sit + rit

pit(H + r)

Note that PH+r−1{X ′it = sit + rit − 1} and PH+r{Xit = sit + rit} are binomial

probabilities with parameters H + r − 1 and H + r, respectively, and probability

pit = λit/
∑M

m=1 λm. Equation (4.64) is easily obtained after taking the summation

over t (the location that recruits the last subject) in the expression (4.61).
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variable réelle. Mathematische Annalen, 75(4):449–468, 1914.

[8] D. Bertsimas and I. Popescu. Optimal inequalities in probability theory: A convex
optimization approach. SIAM Journal on Optimization, 15(3):780–804, 2005.

[9] N.L. Bowers, H.U. Gerber, J.C. Hickman, D.A. Jones, and C.J. Nesbitt. Actuarial
mathematics, volume 2. Society of Actuaries Chicago, 1986.

[10] AV Boyd. Gurland’s inequality for the gamma function. Scandinavian Actuarial
Journal, 1960(3-4):134–135, 1960.

[11] M. Branda. Underwriting risk control in non-life insurance via generalized linear
models and stochastic programming. Proceedings of the 30th International Con-
ference on Mathematical Methods in Economics, 2012.

[12] F. Brenti. Unimodal, log-concave and Pólya frequency sequences in combinatorics,
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[48] G. Mádi-Nagy and A. Prékopa. On multivariate discrete moment problems and
their applications to bounding expectations and probabilities. Mathematics of
Operations Research, 29(2):229–258, 2004.

[49] G. Mádi-Nagy and A. Prékopa. Bounding expectations of functions of random
vectors with given marginals and some moments: Applications of the multivariate
discrete moment problem. Mathematical Inequalities and Applications, 14(1):101–
122, 2011.

[50] A. Markov. On certain applications of algebraic continued fractions. PhD thesis,
PhD thesis, St. Petersburg, 1884. in Russian, 1884.



71

[51] P. Novi Inverardi, A. Petri, G. Pontuale, and A. Tagliani. Stieltjes moment problem
via fractional moments. Applied mathematics and computation, 166(3):664–677,
2005.

[52] P. Novi Inverardi, G. Pontuale, A. Petri, and A. Tagliani. Hausdorff moment prob-
lem via fractional moments. Applied mathematics and computation, 144(1):61–74,
2003.
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[58] A. Prékopa. Logarithmic concave measures and functions. Acta Scientiarum Math-
ematicarum, 34(1):334–343, 1973.
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