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In Saccharomyces cerevisiae, Pah1 phosphatidate phosphatase, which catalyzes 

the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), plays a 

major role in the synthesis of the storage lipid triacylglycerol.  The evolutionarily 

conserved enzyme also regulates de novo phospholipid synthesis by controlling the level 

of PA, a precursor of membrane phospholipids.  In this work, we showed that the pah1Δ 

mutant is defective in growth on non-fermentable carbon sources.  Despite its apparent 

phenotype for respiratory deficiency, the pah1Δ mutant exhibited typical mitochondrial 

attributes, and even had an elevated mitochondrial membrane potential at the post-diauxic 

shift.  Although oxidative phosphorylation was not compromised, the cellular levels of 

ATP in quiescent pah1Δ mutant cells were reduced by two-fold, which correlated with a 

four-fold increase in membrane phospholipids.  Furthermore, the quiescent mutant cells 

exhibited three-fold elevations in mitochondrial superoxide and cellular lipid 

 ii



hydroperoxides, and acute sensitivity to hydrogen peroxide.  Consequently, the pah1Δ 

mutant had a shortened chronological life span.  This phenotype, along with the inability 

to grow on non-fermentable carbon sources and sensitivity to hydrogen peroxide was 

complemented by loss of the DGK1-encoded DAG kinase indicating that the 

underpinning of pah1Δ defects in quiescence was the imbalance of PA/DAG.  These 

results indicate that Pah1 PAP plays a crucial role in energy conservation and 

chronological life span through its regulation of lipid synthesis. 
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INTRODUCTION 
 
 

The synthesis of lipids is an energy (e.g., ATP) consuming process that cells 

engage in throughout growth (1-4).  In our laboratory, we utilize the unicellular eukaryote 

yeast Saccharomyces cerevisiae to study the regulation of lipid synthesis.  Yeast 

synthesizes lipids that are typical of multicellular higher eukaryotes (5-7).  Compared 

with other eukaryotic organisms, its genetic manipulation is easily accomplished for gene 

knockout and overexpression.  In addition, the entire genome sequence information of  S. 

cerevisiae allows for the genomic and proteomic analyses of lipid metabolism (5-7).  

Furthermore, with its short doubling time (ca, 90 min), yeast are easily grown to a large 

quantity for isolation of enzymes for biochemical studies (5-7).    

 

Pah1 Phosphatidate Phosphatase 

In exponentially growing yeast, phospholipids are synthesized from the precursor 

phosphatidic acid (PA) via the liponucleotide intermediate cytidine diphosphate 

diacylglycerol (CDP-DAG) for the formation of cellular membranes (2, 3).  As cells 

progress into the stationary phase, PA is channeled to DAG for the formation of the 

neutral storage lipid triacylglycerol (TAG) (8, 9).  The PA phosphatase (PAP), which 

catalyzes the dephosphorylation of PA to produce DAG and inorganic phosphate (Pi), has 

emerged as a key enzyme that controls the synthesis of phospholipids and TAG (Fig. 1) 

(2, 3, 10-12).  Since the discovery of PAP activity in chicken liver by Smith et al. in 

1957, the enzyme activity has been known to be of two types based on the requirement of 

magnesium ion (Mg2+ )as a cofactor, i.e., Mg2+-dependent and Mg2+-independent (10, 

13).   
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FIGURE 1.  Reaction catalyzed by phosphatidate phosphatase.  The figure shows the 

reaction catalyzed by the PAP enzyme.  In yeast, two forms of the enzyme exist; one 

form requires Mg2+ as a cofactor and the other enzyme has no cofactor requirement.   
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In S. cerevisiae, all of the genes encoding of PAP enzymes have been identified  

mainly through their purification (12).  The Mg2+-independent PAP is encoded by the 

DPP1 (diacylglycerol pyrophosphate phosphatase) and LPP1 (lipid phosphate 

phosphatase) genes (14, 15).  The DPP1 gene was identified using the sequence 

information of the purified enzyme that catalyzes the dephosphorylation of diacylglycerol 

pyrophosphate (DGPP) to produce PA (14, 16).  Subsequently, the LPP1 gene was 

identified by its sequence similarity to the DPP1 gene (15).  Dpp1 (33.5 kDa) and Lpp1 

(31.6 kDa) are integral membrane enzymes that are localized to the vacuole and the 

endoplasmic reticulum (ER) compartments, respectively (17, 18).  These enzymes have 

broad substrate specificity and catalyze the dephosphorylation of diverse lipid phosphate 

molecules including PA, DGPP, lyso-PA (14-16, 19).  They contain a conserved three-

domain lipid phosphatase motif that is composed of the consensus sequences KX6RP, 

PSGH, and SRX5HX3D (20).  The Mg2+-independent enzymes are implicated to play roles 

in lipid signaling rather than in lipid (e.g., TAG) synthesis.   

The Mg2+-dependent PAP is encoded by the PAH1 (phosphatidic acid 

phosphohydrolase) and APP1 (actin patch protein) genes.  The APP1 gene was identified 

from the sequence information of the PAP enzyme purified from yeast cells lacking the 

PAP-encoding genes PAH1, DPP1, and LPP1 (21, 22).  App1 (66 kDa) is a peripheral 

membrane enzyme containing the DXDX(T/V) catalytic motif in a domain that is weakly 

similar to a haloacid dehalogenase (HAD)-like domain (22, 23).  App1p is conserved 

only in fungi and catalyzes the dephosphorylation of PA and other lipid phosphate 

molecules such as lyso-PA and DGPP (22).  That App1 is shown to interact with many 

actin patch proteins implicates the role of the enzyme in endocytosis (22).  The PAH1 
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gene was identified by the reverse genetic approach using the sequence information of 

the purified enzyme that catalyzes the Mg2+-dependent dephosphorylation of PA (21).  

Pah1 (95 kDa) does not have a transmembrane region and thus functions on the 

membrane as a peripheral membrane enzyme (21).  This enzyme, which translocates 

from the cytosol to the nuclear/ER membrane, plays a major role in de novo lipid 

synthesis, particularly in the synthesis of the storage lipid TAG.  Pah1 PAP is specific for 

PA, and its enzymatic activity is based on the DXDX(T/V) catalytic motif within the 

HAD-like domain that is evolutionarily conserved in eukaryotes (21, 24).  The genetic 

and biochemical studies of Pah1 and its orthologs in mammalian cells have revealed that 

the PAP enzyme is a major regulator in lipid homeostasis and cell physiology (10, 11, 25-

30).   

 

Roles of Pah1 Phosphatidate Phosphatase in the Synthesis of  

Phospholipids and Triacylglycerol 

In the exponential phase, Pah1 PAP activity is relatively low and PA is primarily 

partitioned to CDP-DAG by the Cds1 CDP-DAG synthase (Fig. 2A) (31, 32).  CDP-

DAG is a high-energy liponucleotide intermediate found at a branch point in 

phospholipid synthesis, and is converted to diverse phospholipids.  CDP-DAG reacts 

with inositol to produce phosphatidylinositol (PI), which is catalyzed by the Pis1 PI 

synthase (Fig. 3) (33, 34).  CDP-DAG also reacts with serine to produce 

phosphatidylserine (PS), which is catalyzed by the Cho1 PS synthase (35).  The PS is 

then decarboxylated to phosphatidylethanolamine (PE) by the Psd1/Psd2 PS 

decarboxylases (Fig. 3).  In yeast, most PE is produced by the Psd1 PS decarboxylase 
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localized to the inner mitochondrial membrane, whereas a minor portion of PE is 

synthesized by the Psd2 PS decarboxylase localized in Golgi and vacuole membranes 

(36-38).  PE is then converted to phosphatidylcholine (PC) through three sequential 

methylations in which the first reaction is catalyzed by the Cho2 PE methyltransferase 

and the next two reactions are catalyzed by the Opi3 phospholipid methyltransferase in 

the ER (Fig. 3) (39-42).  When cells are supplemented with ethanolamine or choline, PE 

and PC are synthesized via the Kennedy pathway (Fig. 3).  These lipid precursors are 

phosphorylated by the Eki1ethanolamine kinase and the Cki1 choline kinase, 

respectively, to produce phosphoethanolamine and phosphocholine, which are then 

converted to CDP-ethanolamine and CDP-choline by the Ect1 phosphoethanolamine 

cytidylyltransferase and the Pct1 phosphocholine cytidylyltransferase, respectively (43-

46).  CDP-ethanolamine and CDP-choline may then react with DAG (generated by the 

Pah1 PAP reaction) to produce PE and PC by the Ept1 ethanolamine phosphotransferase 

and the Cpt1 choline phosphotransferase, respectively (47, 48).  The synthesis of PC and 

PE via the Kennedy pathway becomes essential in yeast cells defective in the de novo 

phospholipid synthesis via the CDP-DAG pathway (5, 49, 50).  In mitochondria, CDP-

DAG is also generated from PA by Tam41 CDP-DAG synthase (51).  Here, the CDP-

DAG reacts with glycerol-3-phosphate to produce phosphatidylglycerophosphate (PGP) 

by the Pgs1 PGP synthase (52, 53) (Fig. 3).  The PGP is then dephosphorylated to 

phosphatidylglycerol (PG) by the Gep4 PGP phosphatase (54).  The PG then combines 

with another molecule of CDP-DAG to produce cardiolipin (CL) in a reaction catalyzed 

by the Crd1 CL synthase (55, 56).  The CL is then subject to remodeling of its acyl 

chains: it is deacylated by the Cld1 CL-specific deacylase to produce monolysoCL 
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(MLCL), which is then reacylated by the Taz1 taffazin acyltransferase to produce the 

mature form of CL (57, 58).   
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FIGURE 2.  Synthesis of phospholipids and triacylglycerol during the growth of S. 

cerevisiae.  A, CDP-DAG pathway predominates during exponential phase.  B, TAG 

synthesis is elevated by Pah1 PAP activity as cells progress to stationary phase.  C, TAG 

is hydrolyzed to DAG, and then the DAG is phosphorylated by Dgk1 DAG kinase 

activity for the phospholipid synthesis during growth resumption.  The bold type 

indicates the predominate pathway during each growth phase. 
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FIGURE 3.  Pathways for the conversion of phosphatidic acid to phospholipids and 

triacylglycerol in S. cerevisiae.  Red color, lipids and enzymes involved in the CDP-

DAG pathway; Blue color, lipids and enzymes involved in the Kennedy pathway.   
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As the cells progress into the stationary phase, PAP activity is increased and PA is 

primarily converted to DAG (Fig. 2B) (8, 59, 60).  The DAG is then acylated to produce  

TAG in a reaction catalyzed by the Dga1/Are1/Are2 acyl-CoA-dependent DAG 

acyltransferases or by the Lro1 acyl-CoA-independent DAG acyltransferase (Fig. 3) (61-

65).   

Quiescent stationary phase cells may resume logarithmic if supplemented with 

fresh growth medium (Fig. 2C).  The TAG synthesized during the transition to stationary 

phase is hydrolyzed by Tgl3/Tgl4 TAG lipases to produce fatty acid and DAG (Fig. 3) 

(66, 67).  The fatty acid can be used for de novo phospholipid synthesis through the 

acylations of glycerol-3-phosphate to form PA and the DAG produced from the lipase 

reaction can be converted back to PA by Dgk1 DAG kinase (68, 69).  In either case, the 

PA produced is converted to CDP-DAG for phospholipid synthesis as discussed above.   

In addition to their roles as lipid intermediates, the substrate PA and product DAG 

of the Pah1 PAP reaction also function as signaling molecules in diverse cellular 

processes.  For example, PA is implicated in membrane proliferation, secretion, and 

vesicular trafficking, whereas in higher eukaryotes, DAG is involved in the activation of 

protein kinase C (70-79).  In yeast, PA plays a role in regulating the expression of the 

UASINO-containing phospholipid synthesis genes through its affinity with the 

transcriptional repressor Opi1 (80).  When the level of PA is increased in the nuclear/ER 

membrane, Opi1 becomes inactive by being tethered to the membrane through its 

interaction with PA and Scs2.  In contrast, when the level of PA is decreased, Opi1 is 

dissociated from the interaction and translocates into the nucleus where it represses the 

transcription of the UASINO-containing genes by binding to the Ino2 subunit of the Ino2-
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Ino4 transcriptional activator complex (80, 81). 

 

Phenotypes of pah1Δ 

The importance of Pah1 PAP in TAG synthesis as well as in the regulation of 

phospholipid synthesis is indicated by diverse phenotypes of cells lacking the enzyme, 

many of which are intimately related to the increased level of PA and the decreased 

levels of DAG and TAG (21, 24, 59, 82, 83).  The lack of Pah1 in the cell causes the 

accumulation of its substrate PA as well as the increased conversion of PA to 

phospholipids.  The increased level of PA in the pah1Δ mutant induces the expression of 

the UASINO-containing lipid synthesis genes (as mediated by the repressor Opi1), 

resulting in an increase in phospholipid synthesis (82).  Considering that Pah1 PAP 

activity is elevated as yeast cells progress to the stationary phase, the effect of the enzyme 

loss on phospholipid synthesis is greater in the stationary phase when compared with the 

exponential phase (59).  The increased levels of phospholipids in the pah1Δ mutant are 

responsible for aberrant expansion of the nuclear/ER membrane (24, 82).  The reduction 

of TAG levels in the pah1Δ mutant correlates with reduced number of lipid droplets 

when compared with wild type cells (59, 83).  The pah1Δ mutant defective in DAG 

acylation accumulates unincorporated fatty acids, and thereby becomes sensitive to 

exogenously supplemented fatty acids (59).  Moreover, the pah1Δ mutant exhibits the 

apoptotic phenotype in the stationary phase of growth (59).   

The pah1Δ mutant also exhibits phenotypes whose molecular basis in connection 

with its altered lipid metabolism is not yet clear.  It is defective in cell wall integrity and 

easily ruptured by sonication (84, 85).  In addition, the pah1Δ mutant exhibits a high 
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mannose-to-glucose ratio, a high level of N-acetyl-glucosamine (GlcNAc) in cell wall, 

and hypersensitivity to K1 killer toxin (84).  Moreover, it is defective in vacuole fusion, 

and exhibits small fragmented vacuoles as opposed to large vacuoles in the stationary 

phase (86).  Furthermore, the pah1Δ mutant is sensitive to high temperature (37 °C) (21).  

Finally, the pah1Δ mutant cannot utilize the non-fermentable carbon source glycerol, 

suggesting a respiratory deficiency (24).   

 

Effects of Dgk1 Diacylglycerol Kinase on the pah1Δ Phenotypes 

Some of the phenotypes caused by the pah1Δ mutation require Dgk1 DAG kinase 

activity to produce PA, and consequently, its loss complements some pah1Δ phenotypes 

(see below).  The dgk1Δ single mutation does not lead to remarkable phenotypes (87).  

However, the overexpression of DGK1 gene causing the increase in the level of PA, like 

that occurring in the pah1Δ mutant, results in the temperature sensitivity at 37 °C and the 

abnormal nuclear/ER membrane expansion (68).  Furthermore, Dgk1 activity is increased 

in the pah1Δ mutant when compared with that of wild type cells (87).  The deletion of 

DGK1 gene in the pah1Δ mutant affects lipid composition displaying the normal level of 

PA, and the decrease in the level of phospholipids (87).  However, the phospholipid 

levels are still higher than that of wild type cells because of the low level of TAG in the 

dgk1Δ pah1Δ mutant (87).  The aberrant expansion of the nuclear/ER membrane and 

lipid droplet morphology of the pah1Δ mutant are complemented by the deletion of the 

DGK1 gene (87).  The inositol auxotrophy caused by the overexpression of PAH1 gene 

(because of the PA connection with the repressor Opi1) is also complemented by the 

overexpression of the DGK1 gene (87).   
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Mammalian Orthologs of Pah1 

In mammals, lipin-1 is a Pah1 ortholog (21).  Lpin1 was found as a mutated gene 

in the fatty liver dystrophy (fld) mouse displaying hypertriglyceridemia and insulin 

resistance due to diminished adipose tissue development (88).  The molecular function of 

Lpin1-encoded protein was revealed through the discovery of Pah1 PAP in S. cerevisiae 

(21).  Pah1 and lipin-1 share the conserved NLIP at the N-terminus and the HAD-like 

domain at the C-terminus (21, 88).  Like a Pah1, all lipins require Mg2+ as a cofactor for 

the enzyme activity, and are specific for PA (89).  In mammals, lipin-2 and lipin-3 also 

exhibit PAP activity (89).  The Lpin-1 mutation in mice results in reduced adipose tissue 

mass and insulin resistance (88, 90).  In addition, the deletion of Lpin-1 in Schwann cells 

causes peripheral neuropathy by demyelination due to endoneurial accumulation of PA 

(91, 92).  On the other hand, the tissue-specific overexpression of Lpin-1 in transgenic 

mice promotes obesity (90).  Furthermore, lipin-1 and lipin-2 mutations in humans 

exhibit childhood rhabdomyolosis and cardiac dysfunction, and Majeed syndrome, 

respectively (93, 94).    

 

Regulation of Pah1 Phosphatidate Phosphatase by 

Phosphorylation/Dephosphorylation 

The function of Pah1 PAP as a peripheral membrane enzyme is regulated by its 

phosphorylation and dephosphorylation for its subcellular localization, catalytic activity, 

and abundance (82, 95-102).  The enzyme in its phosphorylated state is cytosolic and 

inactive.  The cytosolic Pah1 PAP translocates to the nuclear/ER membrane via its 

dephosphorylation, and the dephosphorylated enzyme associated with the membrane is 

 
 



16 
 

physiologically active.  In addition to its subcellular localization, the catalytic activity and 

protein stability of Pah1 PAP are also regulated by phosphorylation and 

dephosphorylation (12). 

Pah1 PAP is one of the most highly phosphorylated proteins in S. cerevisiae, and 

is shown to be phosphorylated by multiple protein kinases presumably in the cytosol (96-

98, 103).  Previous studies on Pah1 PAP showed that it is a physiological target for 

phosphorylation by Pho85-Pho80, Cdc28-cyclin B, protein kinase A (PKA), and protein 

kinase C (PKC) (96-99).  Pah1 PAP is phosphorylated by Pho85-Pho80 at seven residues 

(Ser110, Ser114, Ser168, Ser602, Thr723, Ser744, and Ser748), that are contained within the 

minimal Ser/Thr-Pro motifs (95, 97).  In Pah1 PAP, simultaneous mutations of the seven 

phosphorylation sites to non-phosphorylatable alanine residues (7A mutant) results in a 

1.8-fold increase in its PAP activity (95).  In contrast, phosphorylation of E. coli-

expressed Pah1 PAP at the seven sites causes a 6-fold reduction in its catalytic efficiency 

(Vmax/Km).  Compared with wild type Pah1 PAP, the phosphorylation-deficient form of 

the enzyme is lower in its overall abundance, but shows a much higher level of the 

membrane association (97).  Of the seven phosphorylation sites, three sites (Ser602, 

Thr723, and Ser744) are also catalyzed by the Cdc28-cyclin B complex (96).  The alanine 

mutations of Pah1 PAP on these phosphorylation sites have little effect on its PAP 

activity in vitro (96).  The phosphorylation of Pah1 PAP by PKA occurs at Ser10, Ser677, 

Ser773, Ser774, and Ser788.  The PKA-mediated phosphorylation of Pah1 PAP at Ser10 has 

an inhibitory effect on its PAP activity, and affects the localization and function of the 

PAP enzyme in conjunction with phosphorylation by Pho85-Pho80 and Cdc28-cyclin B 

(98).  Furthermore, Pah1 is phosphorylated by PKC at Ser677, Ser769, Ser773, and Ser788.  
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Of these residues, Ser677, Ser773, and Ser788 are common target sites for phosphorylation 

by PKA.  Unlike Pho85-Pho80 and PKA, PKC has no major effect on the catalytic 

activity and the subcellular localization of Pah1 PAP (99).  However, phosphorylation of 

Pah1 PAP by PKC has the effect of reducing the enzyme level when it is not pre-

phosphorylated by Pho85-Pho80 (99).                           

The translocation of Pah1 PAP from the cytosol to the membrane surface requires 

its dephosphorylation that is catalyzed by the Nem1 (catalytic subunit)-Spo7 (regulatory 

subunit) phosphatase complex localized in the nuclear/ER membrane (100, 104).  Like 

Pah1 PAP, Nem1 has the DXDXT(T/V) catalytic motif in the HAD-like domain (104-

106).  In the process of the membrane translocation, Pah1 PAP interacts with the Nem1-

Spo7 phosphatase complex through its acidic tail, and once dephosphorylated, Pah1 PAP 

interacts with the membrane through its N-terminal amphipathic helix.  The membrane-

associated Pah1 PAP catalyzes the dephosphorylation of PA to produce DAG, and then it 

is degraded by proteasomes (82, 96, 100, 102, 104).     

 

Regulation of Pah1 Phosphatidate Phosphatase by Other Factors  
 

Pah1 PAP activity is also regulated by negatively charged phospholipids 

including CDP-DAG and PI or positively charged sphingoid bases such as sphinganine 

and phytosphingosine (107, 108).  Negatively charged phospholipids enhance Pah1 PAP 

activity, resulting in increased TAG synthesis or PE/PC synthesis via the Kennedy 

pathway (107).  CDP-DAG and PI decrease the Km of Pah1 PAP for PA, and the reduced 

PA level by Pah1 PAP activity represses UASINO-containing genes that encode enzymes 

for phospholipid synthesis via the CDP-DAG pathway (81, 107).  On the other hand, 
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positively charged sphingoid bases decrease Pah1 PAP activity in a parabolic competitive 

manner, leading to the elevated PA level, which is not converted to DAG by Pah1 PAP,  

derepresses UASINO-containing genes (107, 108). 

In addition, nucleotides, ATP, and CTP affect Pah1 PAP activity by a decrease in 

the catalytic efficiency and the chelation of the cofactor, Mg2+ (109).  The elevated 

cellular ATP level favors increases in the PA level and phospholipid synthesis (109).  

High CTP level also favors the increase in PA level and derepression of UASINO-

containing genes (110).  On the other hand, the low ATP level favors TAG synthesis than 

phospholipids synthesis (109). 

 Pah1 PAP is genetically regulated at the transcriptional level by growth phase and 

nutrient availability (60, 111).  The expression of PAH1 gene is induced in the stationary 

phase more than in the exponential phase (8).  Accordingly, during the exponential phase, 

membrane phospholipid synthesis occurs for cell growth, and then TAG synthesis is 

progressed at the expense of phospholipid synthesis in the stationary phase.  Furthermore, 

transcriptional regulation of Pah1 PAP by the growth phase is enhanced by inositol 

supplementation in the stationary phase cells (60).  The regulation of the PAH1 

expression in response to growth phase is also mediated by Ino2/Ino4/Opi1 regulatory 

circuit and transcriptional factors, Gis1 and Rph1 (2, 3, 60).  The essential mineral zinc, 

which serves as a cofactor for various enzymes, controls the expression of PAH1 gene 

(111, 112).  In the zinc depletion, the zinc-sensing and zinc-inducible transcriptional 

activator Zap1 is induced, and then Zap1 binds to the zinc-responsive cis-acting element 

(UASZRE) which is located in the PAH1 promoter (111).  Accordingly, Pah1 PAP activity 

is induced, resulting in the increase in TAG synthesis (111).    

 
 



19 
 

Mitochondria 

The mitochondria is a double membrane–bound organelle found in most 

eukaryotic cells, and consist of several compartments including the outer membrane, the 

inner membrane, the intermembrane space, the cristae space, and the matrix.  This 

organelle, which contains its own DNA (mtDNA) and a transcription/translation system, 

is required for essential cellular processes such as respiration, apoptosis, lipid synthesis, 

calcium signaling, and aging (113-115).  The integrity of mitochondrial structure is 

crucial, and its alterations in humans, are shown to be intimately associated with 

neurodegenerative diseases such as Parkinson’s and Alzheimer’s diseases, ischemia, and 

peripheral neuropathy from AIDS (113, 116, 117).  Furthermore, mitochondrial 

dysfunction contributes to the outbreak of metabolic syndromes including obesity, 

cardiovascular disease, and diabetes (118, 119).  

 

Oxidative Phosphorylation in Mitochondria 

Mitochondria produce ATP using an electron transport chain (ETC) localized in 

the inner mitochondrial membrane.  In higher eukaryotic organisms, the ETC is 

comprised of four complexes: NADH-ubiquinone oxidoreductase (complex I), succinate-

ubiquinone oxidoreductase (complex II), ubiquinol-cytochrome c oxidoreductase or 

cytochrome bc1 complex (complex III), and cytochrome c-O2 oxidoreductase (complex 

IV) (Fig. 4) (113).  S. cerevisiae possesses external (encoded by NDE1 and NDE2) and 

internal (encoded by NDI1) NADH dehydrogenases instead of complex I (120-123).  The 

external NADH dehydrogenases facing the mitochondrial intermembrane space catalyze 

the oxidation of cytosolic NADH to NAD+, whereas internal NADH dehydrogenase 
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facing the mitochondrial matrix oxidizes mitochondrial matrix NADH (120-123).  

Additionally, various systems involving the NAD-dependent and FAD-dependent 

glycerol-3-phosphate dehydrogenases (GPDH) and the ethanol-acetaldehyde shuttles also 

oxidize cytosolic NADH, providing electrons to the ubiquinone (coenzymeQ, or Q) (124-

127).  Complex II, which catalyzes the conversion of succinate to malate in the TCA 

cycle of the mitochondrial matrix, also transports electrons to the ubiquinone (128, 129).  

In the next step, ubiquinone reduced by electrons (ubiquinol) carries electrons to the 

cytochrome bc1 complex and cytochrome c (130).  Cytochrome c transfers electrons to 

the final acceptor (O2), simultaneously creating an electrochemical gradient that is used 

by the F1FO-ATP synthase to drive the production of ATP from ADP (131-133).  During 

the oxidative phosphorylation, complex III and IV pump protons into the mitochondrial 

intermembrane space in S. cerevisiae, creating the electrochemical gradient, whereas 

complex I as well as complexes III and IV functions as a proton pump in mammals (124).  
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FIGURE 4.  ATP synthesis by oxidative phosphorylation in S. cerevisiae.  

Nde1/Nde2, external NADH dehygrogenase; Ndi1, internal NADH dehydrogenase; 

Gpd1/Gpd2, NADH-dependent GPDH; Gut2, FAD-dependent GPDH; II, succinate 

dehydrogenase; Q, ubiquinone; III, cytochrome bc1 complex; Cyt c, cytochrome c; VI, 

cytochrome c oxidase; OMM, outer mitochondrial membrane; IMM, inner mitochondrial 

membrane; black arrow, electron pump;  blue arrow, proton flow. 
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Respiratory Supercomplexes in Mitochondria 

The ETC exists in the cell as supramolecular structures termed respiratory 

supercomplexes.  Complexes I, III, IV, and F1Fo-ATP synthase are organized into 

respiratory supercomplexes that exhibit different combinations among organisms (134-

139).  Although the role of the supercomplex organization is still unclear, it is considered 

to be an important factor to understand oxidative phosphorylation of mitochondria.  The 

formation of respiratory supercomplexes may increase the efficiency of electron transfer, 

but decrease the production of reactive oxygen species (ROS) (140-143).  In the aging rat 

heart, the levels of respiratory supercomplexes have been shown to decrease without a 

reduction in levels of individual electron transport chain complexes (140).  In cells of 

Barth syndrome patients, respiratory supercomplexes are shown to be less stable due to 

the lack of mature cardiolipin species (144).  In addition, the supercomplex formation of 

F1FO-ATP synthase is related to inner mitochondrial membrane morphology (145).     

       

Reactive Oxygen Species in Mitochondria 

ROS such as superoxide anion (O2
-·), hydroxyl radical (HO·), and hydrogen 

peroxide (H2O2) are highly reactive molecules generated from mitochondria, peroxisome, 

ER, and other compartments of cells (146-148).  In particular, during oxidative 

phosphorylation, superoxide is formed by electron leakage from the ETC of mitochondria 

(149-151).  ROS cause oxidative damage to surrounding molecules (e.g., DNA, protein, 

and lipid), which can lead to gene mutations, the loss of enzymatic activities and 

alterations in protein structure, the formation of toxic products, and eventually cell death 

(152-154).  To minimize the detrimental damages of ROS, cells effectively remove them 
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by antioxidant enzymes such as superoxide dismutase (SOD), peroxidase, and catalase as 

well as by non-enzymatic systems (155).  Cu, Zn-SOD (encoded by SOD1) localized in 

the cytosol/mitochondria and Mn-SOD (encoded by SOD2) localized in mitochondria 

convert superoxide anion into hydrogen peroxide (156-158).  The hydrogen peroxide 

produced by SOD or other oxidative stresses is removed by catalases and glutathione 

peroxidases that convert it to oxygen and water.  In S. cerevisiae, CTT1-encoded catalase 

T is localized in cytoplasm, whereas CTA1-encoded catalase A is localized in 

mitochondria and peroxisomes (159-162).  Glutathione peroxidases (Gpx1, Gpx2, and 

Gpx3) remove not only hydrogen peroxide but also organic hydroperoxides to protect 

cells effectively from oxidative stress (163).  In addition, a wide variety of antioxidants 

remove ROS to alleviate oxidative stress (154, 164).   

In yeast, a mutation in Cu, Zn-SOD results in an increase in the rate of 

spontaneous mutation under aerobic condition, but not under anaerobic condition (165).  

In addition, cells lacking Cu, Zn-SOD exhibit a poor growth in the presence of non-

fermentable carbon sources, cell death, and an increase in carbonylation damage to 

mitochondrial proteins (166).  Moreover, deficiency of the enzyme leads to the vacuole 

fragmentation by an elevation of iron-mediated oxidation (167).  The sod2Δ mutant 

exhibits sensitivity to pure oxygen on YEPD (3% glucose) and YPEG (3% ethanol and 

3% glycerol) (168).  Additionally, the lipid peroxidation of mitochondria caused by 

hydrogen peroxide decreases the activity of the complex III, leading to the stimulation of 

superoxide anion production and iron release (169).  Moreover, yeast cells lacking the 

CTT1 and CTA1 genes exhibit an increase in sensitivity to hydrogen peroxide in the 

stationary phase, but do not show a noticeable growth defect under normal growth 
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conditions (170).  In mice, overexpression of human catalase targeted to the mitochondria 

protects from the age-induced decrease in mitochondrial function and lipid-induced 

muscle insulin resistance (171).  By contrast, other studies show that the inactivation of 

catalases extends chronological life span in S. cerevisiae by increasing the level of 

hydrogen peroxide which activates SOD (172).  Although the relationship between ROS 

and cell survival is still a controversial issue, it is established that ROS is one of the 

critical factors for cell viability.   

 

Lipid Synthesis in Mitochondria 

Mitochondria also participate in lipid synthesis along with the ER, and have a 

distinct lipid composition when compared with other organelle membranes (131, 132, 

173, 174).  The major phospholipids constituting the mitochondrial membrane are 

imported from the ER, while CL, PE, and PG are synthesized at the inner mitochondrial 

membrane.  CL plays a key role in mitochondrial functions such as respiratory 

supercomplex stabilization, mitochondrial protein import, ceramide synthesis, aging, and 

cell wall and vacuolar biogenesis (175-179).  In yeast, the loss of Crd1 leads to a decrease 

in life span at 37 °C, respiratory deficiency, a loss of mtDNA, and swollen vacuolar 

morphology (177, 179, 180, 180, 181).  Additionally, the pgs1Δ mutant exhibiting no 

detectable levels of both PG and CL significantly decreases the replicative life span at 30 

°C (177).  Phenotypes of tafazzin-deficient cells, which exhibit a decrease in 

chronological life span and a fermentative growth defect, are alleviated by mutation of 

CLD1 gene controlling CL/MLCL ratio (182).  Moreover, overexpression of Cld1 affects 

respiration, leading to decrease in ATP production from oxidative phosphoryaltion (182).  
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In Trypanosoma brucei, deletion of PG synthase gene causing a loss of PG and decrease 

in the level of CL alters mitochondrial morphology, and reduces the amount of 

respiratory complexes III and IV (183).  On the other hand, acyl chain remodeling of CL 

by tafazzin does not affect mitochondrial morphology and mitochondrial function of 

oxidative phosphorylation in yeast, indicating that unremodeled CL supports roles of 

remodeled CL (184).   

Mitochondrial morphology and function are also regulated by PE, a non-bilayer-

forming phospholipid.  In yeast, PE and CL have overlapping functions in mitochondrial 

fusion, and the lack of both phospholipids in the crd1Δ psd1Δ double mutant causes a 

defect in mitochondrial fusion, the loss of mtDNA, and the decrease in the mitochondrial 

membrane potential (185).  In CHO cells, the reduction of mitochondrial PE by RNAi-

mediated knock down of PS decarboxylase results in decreased respiratory capacity, ATP 

production, and activities of ETC, as well as a defect in the supercomplex organization 

(186).  Cells deficient in mitochondrial PE also exhibit a gross defect in the 

mitochondrial ultrastructure (186).  Similarly, inactivation of PS decarboxylase in mice 

causes the production of aberrant mitochondrial morphology, leading to embryonic 

lethality (187).  

The minor lipids PA and DAG are critical to control fusion and fission events in 

mitochondria (188).  Mitochondrial fusion and fission, which regulate the tubular 

network morphology of mitochondria, are associated to mitochondrial inheritance, 

repairing mtDNA, efficiency of ATP production and dissipation, mitophagy, and 

apoptosis (113, 116, 189-195).  In plants, the addition of exogenous PA into cells 

depleted of phospholipase D, which hydrolyzes phospholipids into PA, increases ROS 
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production in the cellular membrane (196, 197).  Therefore, lipid metabolism in 

mitochondria is a crucial for the mitochondrial function.   

 

HYPOTHESIS 
 
 

The loss of Pah1 PAP activity causes striking changes in the lipid composition, 

such as a great reduction in the TAG level, an accumulation of fatty acids, and a 

significant increase in membrane phospholipids (21, 24).  These changes in lipid contents 

are directly or indirectly coupled to other phenotypes of the pah1Δ mutant, such as 

marked vacuole fragmentation, temperature sensitivity, fatty acid-induced lipotoxicity, 

and an aberrant expansion of the nuclear/ER membrane (21, 24, 59, 82, 83, 86).  In 

particular, the pah1Δ mutant exhibits the respiratory deficiency phenotype as indicated by 

the inability to grow on glycerol, a non-fermentable carbon source (24).  It is the 

molecular basis of this phenotype that this research addresses.  Based on the fact that 

mitochondrial phospholipids are essential to mitochondrial function, we hypothesized 

that the inability to grow on non-fermentable carbon sources is due to an effect of the 

pah1Δ mutation on mitochondrial lipid metabolism, which in turn, has an impact on 

mitochondrial structure and function.  We also addressed the hypothesis mitochondrial 

metabolism, such as the production of ROS has an impact on cell viability and 

chronological life span.  
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EXPERIMENTAL PROCEDURES 

 

Materials 

All chemicals were reagent grade or better.  Growth medium components were 

obtained from Difco Laboratories.  Phusion high fidelity DNA polymerase and the DNA 

gel extraction kit were purchased from New England Biolabs and Qiagen, respectively.  

Carrier DNA for yeast transformation was from Clontech.  Sodium DL-lactate solution, 

potassium acetate, ethanol, DL-dithiothreitol (DTT), lyticase, sorbitol, sucrose, aprotinin, 

benzamidine, bovine serum albumin, leupeptin, pepstatin, phosphoenolpyruvate (PEP) 

phenylmethylsulfonyl fluoride (PMSF), 30% hydrogen peroxide solution, xylenol orange, 

ammonium iron (II) sulfate hexahydrate, sodium azide, potassium cyanide (KCN), 

phenazine methosulfate (PMS), diethyl ether, hydrogen chloride-methanol solution, 2-

(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide (MTT), DL-glycerol-3-

phosphate, dihydroxyacetonephosphate (DHAP), ATP, and nitro blue tetrazolium (NBT) 

were purchased from Sigma-Aldrich.  BacTiter-GloTM Microbial Cell Viability Assay 

was purchased from Promega.  DNA size ladders, molecular mass protein standards, 

electrophoresis reagents, Triton X-100, and protein assay reagent were from Bio-Rad.  

Polyvinylidene difluoride (PVDF) membrane and the enhanced chemifluorescence 

Western blotting detection kit were from GE Healthcare.  Alkaline phosphatase-

conjugated goat anti-rabbit IgG antibodies and alkaline phosphatase-conjugated goat anti-

mouse IgG antibodies were from Thermo Scientific and Pierce, respectively.  

MitoSOX™Red mitochondrial superoxide indicator and tetramethylrhodamine methyl 

ester (TMRM), anti-porin (Por1) monoclonal antibody, anti-carboxypeptidase Y (Prc1) 
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monoclonal antibody, anti-OxPhos monoclonal antibody against subunit III (Cox3) of 

Complex IV, anti-phosphoglycerate kinase (Pgk1) antibody, and 3-12% polyacrylamide 

gradient gels were purchased from Life Technologies.  Radiochemicals and primulin 

were from Perkin-Elmer Life Sciences and MP Biomedicals, respectively.  Acrylamide 

solutions and scintillation counting supplies were from National Diagnostics.  Silica gel 

60 thin-layer chromatography (TLC) plates and glycerol were obtained from EM Science.  

Lipids and heptadecanoic acid (C17:0) were from Avanti Polar Lipids and Alfa Aesar, 

respectively.  

 

Strain and Growth Conditions 

The yeast strains used in this study are listed in Table 1.  Yeast cells were grown 

at 30 °C in synthetic complete (SC)-glucose (2%) or YEPD (1% yeast extract, 2% 

peptone, and 2% glucose) medium.  For growth on a non-fermentable source, 2% glucose 

was replaced with 2% ethanol, 3% glycerol, 2% acetate, or 2% lactate.  The sensitivity of 

yeast cells to hydrogen peroxide was assessed with the reagent at the concentration of 0-1 

mM or 0-4 mM depended on growth medium.  The growth of yeast cells in liquid 

medium was measured by absorbance at 600 nm (A600 nm) using a spectrophotometer.  

For measurement of growth on solid medium, liquid culture was adjusted to A600 nm = 

0.67, followed by 10-fold serial dilutions.  The serially diluted cell suspensions were 

spotted onto solid medium and cell growth was scored after incubation for 2-3 days.  For 

the growth of strain BY4741, the SC-glucose medium was modified (concentrations of 

histidine, methionine, and leucine were increased, glutamine, phenylalanine, and inositol 

were added) for optimum growth (198).   
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TABLE I. Strains and plasmids used in this study 

Strains or 
plasmids Genotype or relevant characteristics Source or 

Reference 
E. coli   

  DH5α F- φ80dlacZΔΜ15Δ (lacZYA-argF)U169 deoR recA1 endA1 
hsdR17(rk

- mk
+) phoA supE44 λ−thi-1 gyrA96 relA1 

(199) 

S. cerevisiae   

  W303-1A MATa ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 (200) 

  GHY57 pah1Δ::URA3 derivative of W303–1A (21) 

  YPY3 dgk1Δ::HIS3 derivative of W303–1A  This study 

  YPY4 dgk1Δ::HIS3 pah1Δ::URA3 derivative of W303–1A This study 

  BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (201) 

  GHY57-3 pah1Δ::URA3 derivative of BY4741 This study 

Plasmid   

  pGH317 pah1Δ::URA3 inserted into YEp351 (21) 

pYX142-mtGFP plasmid for expression of GFP fused with mitochondrial 
presequence  

(202) 
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DNA Manipulations and Yeast Transformation 

Standard methods were used for isolation of chromosomal and plasmid DNA, for 

digestion and ligation of DNA, and for PCR amplification of DNA (199, 203).  The 

plasmids used in this study are listed in Table 1.  Transformations of E. coli and yeast 

were performed as described previously (199, 204).  

 

Construction of the dgk1Δ and dgk1Δ pah1Δ Mutants 

Yeast deletion mutations were generated by the method of one-step gene 

replacement (205).  For construction of the dgk1Δ mutant (YPY3), the strain W303-1A 

was transformed with the dgk1Δ::HIS3 disruption cassette that was amplified by PCR 

from the genomic DNA of the dgk1Δ::HIS3 mutant in the RS453 strain background (87).  

The yeast transformant exhibiting histidine prototrophy was confirmed for the deletion of 

DGK1 by PCR analysis.  For construction of the dgk1Δ pah1Δ mutant (YPY4), YPY3 

was transformed with the pah1Δ::URA3 disruption cassette that was produced from 

pGH317 by digestion with XbaI and SphI (21).  The dgk1Δ transformant exhibiting uracil 

prototrophy was confirmed for the deletion of PAH1 by PCR analysis.   

 

Preparation of Yeast Cell Extracts 

All steps for preparation of yeast cell extracts were performed at 4 °C.  Yeast 

cultures were harvested at 1,500 × g for 5 min, washed with water, resuspended in lysis 

buffer (50 mM Tris-HCl, pH 7.5, 0.3 M sucrose, 10 mM β-mercaptoethanol, 0.5 mM 

PMSF, 1 mM benzamidine, 5 µg/ml aprotinin, 5 µg/ml leupeptin, and 5 µg/ml pepstatin).  

The cell suspension was added with glass beads (0.5-mm diameter) and then subjected to 
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five repeats of 1 min burst and 2 min cooling using a BioSpec Product Mini-BeadBeater-

16 (206).  The disrupted cells were centrifuged at 1,500 × g for 10 min to separate 

unbroken cells and cells debris (pellet) from cell extracts (supernatant).  The protein 

concentration of cell extracts was determined by the method of Bradford using bovine 

serum albumin as a standard (207).   

 

Isolation of Mitochondria 

Yeast mitochondria were prepared according to the method of Meisinger et al. 

(208).  Exponential (4 L) and stationary phase (2 L) cultures were harvested, washed with 

water, and measured for cell wet weight.  Cells were resuspended in 100 mM Tris-H2SO4 

(pH 9.4) buffer containing 10 mM DTT (2 ml/g wet weight cells).  After incubation for 

20 min at 30°C with gentle shaking, the cell suspension was centrifuged at 3,000 × g for 

5 min.  The cell pellet was washed with 20 mM potassium phosphate (pH 7.4) buffer 

containing 1.2 M sorbitol, resuspended in the same buffer containing lyticase (3680 U/g 

wet cell), and incubated for 1.5 h at 30 °C with gentle shaking.  The resulting 

spheroplasts were harvested by centrifugation for 5 min at 3,000 × g, washed, and 

resuspended with pre-cooled homogenization buffer (10 mM Tris-HCl buffer, pH 7.4, 0.6 

M sorbitol, 1 mM EDTA, and 1 mM PMSF) at 6.5 ml/g wet cell weight, followed by 

disruption using a Dounce glass homogenizer with 15 strokes on ice. The homogenized 

spheroplasts were diluted 2-fold in the same buffer, and centrifuged at 1,500 × g for 5 

min at 4 °C to remove cell debris and nuclei.  The supernatants were centrifuged at 4,000 

× g for 5 min at 4 °C, and the resulting supernatant was centrifuged at 12,000 × g for 15 

min at 4 °C to collect crude mitochondria.  The crude mitochondria (0.2 ml/mg) were 
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resuspended in SEM buffer (250 mM sucrose, 1 mM EDTA, 10 mM MOPS-KOH, pH 

7.2), and homogenized with 10 strokes on ice (208).  The homogenized mitochondria 

were layered on a gradient consisting of 15%, 23%, 32%, and 60% sucrose in 10 mM 

MOPS-KOH (pH 7.2) buffer containing 1 mM EDTA, and centrifuged at 134,000 × g 

(Beckman SW28 rotor) for 1 h at 4 °C.  The mitochondrial fraction at the interface 

between the 32% and 60% sucrose layers was collected and diluted with 2 volumes of 

SEM buffer, followed by centrifugation at 10,000 × g for 15 min at 2 °C.  Protein 

concentration of the purified mitochondria was determined by the method of Bradford 

using bovine serum albumin as a standard (207).  

 

SDS-PAGE and Western Blot Analysis 

SDS-PAGE using 10% slab gels and Western blotting using PVDF membrane 

were performed as described previously (209-211).  Mouse anti-porin monoclonal 

antibodies, rabbit anti-PS synthase antibodies, mouse anti-carboxypeptidase Y 

monoclonal antibodies, and mouse anti-phosphoglycerate kinase antibodies were used at 

dilution of 1:1,000.  Alkaline phosphatase-conjugated goat anti-mouse IgG antibodies 

and goat anti-rabbit IgG antibodies were used at a dilution of 1:5,000.  Immune 

complexes were detected using the enhanced chemifluorescence Western blotting 

detection kit.  Fluorimaging was used to acquire images from immunoblots, and the 

relative densities of the images were analyzed using ImageQuant software.  

 

Blue Native Polyacrylamide Gel Electrophoresis 

Mitochondria (200 μg) were isolated from yeast cultures (A600 nm = 1.0-1.2) in 

 
 



34 
 

YPEG (1% yeast extract, 2% peptone, 0.95% ethanol, and 3% glycerol) medium, and  

were incubated for 1 h at 4 ºC with gentle shaking in 40 µl of digitonin buffer (30 mM 

HEPES-KOH, pH=7.4, 1.875% (w/v) digitonin, 50 mM potassium acetate, 2% glycerol, 

1/50 volume protease inhibitor cocktail, and 1 mM PMSF).  The lysed mitochondria were 

centrifuged at 125,000 × g (TLA-55 rotor) for 20 min at 4 ºC, and the supernatant was 

subjected to blue native-polyacrylamide gel electrophoresis (BN-PAGE) using a 3-12% 

linear gradient slab gel at 4 ºC for 20 h under a high voltage in the XCell Superlock Mini-

Cell (212).  Following electrophoresis, the polyacrylamide gel was stained with 

Coomassie blue or electroblotted onto a PVDF membrane.  The protein complexes on the 

PVDF membrane were detected by immunoblotting with anti-OxPhos monoclonal 

antibody against subunit III of Complex IV (175).  Data were analyzed using 

QuantityOne software from Bio-Rad. 

 

Analysis of Mitochondrial Tubulation 

Yeast strains transformed with pYX142–mtGFP (from M. Greenberg), and the 

transformants harboring the plasmid were selected for leucine prototrophy (202).  The 

yeast transformants were grown at 30 °C in SC-glucose medium to the post-diauxic and 

the stationary phases, and were analyzed for green fluorescence by the Zeiss LSM 710 

confocal microscope.    

 

Electron Microscopy 

Samples were prepared according to the method of Bozzola and Russell (213).  

The purified mitochondria were fixed with glutaraldehyde, washed with Millonig 
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phosphate buffer for 5 min, and then drawn off and placed in 2% osmium tetroxide for 60 

min at 4 °C.  Samples were rinsed with deionized water for 5 min and dehydrated at room 

temperature with ethanol (50% for 5 min, 70% for 10 min, 95% for 10 min, and 100% for 

10 min (the 100% incubation was repeated 3 times)) and with propylene oxide (100 % for 

10 min, repeated 3 times).  Dehydrated samples were infiltrated with 50% mixture of 

epoxy resin and propylene oxide for 3 h followed by 100% epoxy resin for 2 h, 

embedded in 100% resin in a flat mold for orientation and allowed to polymerize 

overnight at 70 °C.  500 nm thick sections were cut using a glass knife and Leica 

Ultracut-R Ultramicrotome.  They were heat-fixed to glass slides and stained for 20 

seconds with Toluidine Blue to select the most appropriate areas for imaging.  The 

selected block was trimmed and 120 nm thin sections were cut using Leica UC6 

Ultramicrotome and diamond knife (Diatome-U.S.).  120 nm thin sections were placed on 

100 and 150 mesh copper grid (EMS) and stained for 15 min with 2% uranyl acetate, 

rinsed with deionized water and further stained with Reynold’s lead citrate for 5 min.  

The grids were imaged using JEOL 1200EX transmission electron microscope at 60 kv 

and captured with Gatan Orius 830 Digital imaging System.   

 

Lipid Analysis 

Lipids were extracted from purified mitochondria (500 μg) according to the 

method of Bligh and Dyer, and phospholipids were analyzed by two-dimensional TLC 

with HPTLC plates.  The first dimension was separated using the solvent system of 

chloroform/methanol/ammonium hydroxide/water (45:25:2:3, v/v) for 40 min (214, 215).  

After drying the plate in the vacuum, the solvent system of chloroform/methanol/glacial 
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acetic acid/water (32:4:5:1, v/v) were used for phospholipid separation in the second 

dimension (215).  After spraying with 0.05% primulin in acetone/water (80:20), 

phospholipids on the plates were visualized by fluoroimaging followed by quantification 

with ImageQuant software.  

For fatty acid analysis by gas chromatography, extracted lipids from 1.5 mg of 

mitochondria were dried by nitrogen gas and resuspended in hexane.  Mixture including 

sample, 1 ml of hydrogen chloride-methanol, 100 μg of heptadecanoic acid (C17:0) for 

standard were incubated for transmethylation at 70 °C for 1 h, and then cooled down at 

room temperature.  1 ml of 1N Sodium chloride and 2 ml of hexane were added to the 

mixture.  After centrifugation, the upper phase was collected and added 2 volumes of 

toluene for preventing lipid oxidation, dried by nitrogen gas, and then resuspended in 

hexane.  The analysis of fatty acid methyl esters was performed by a Hewlett Packard 

5890 gas chromatography equipped with a 30-m X 0.32-mm Supelco MDN-55 column 

and a flame ionization detector; helium was the carrier gas (10 p.s.i.).  The column 

temperature was programmed as follows: 100 °C for 10 min and then increased to 300 °C 

at 10 °C/min. The injector and detector temperatures were 250 °C.  Fatty acid methyl 

esters were identified by reference standards.  

For radiolabeling of lipids, yeast cells were grown in SC-glucose medium to the 

late exponential phase (A600 nm ~ 1).  The cells were harvested, washed, and resuspended 

in SC-glycerol (3%) medium and [2-14C]acetate (1 μCi/ml).  After incubation for 4 h, the 

radiolabeled cells were harvested and lipids were extracted by the method of Bligh and 

Dyer (214).  Radiolabeled lipids were separated by one-dimensional TLC on silica gel 60 

plates using the solvent system of hexane/diethyl ether/gracial acetic acid (40:10:1, v/v) 
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(216).  The radiolabeled lipids on the TLC plates were dried in a vacuum system, 

visualized by PhosphorImaging analysis, and quantified by ImageQuant software.  [2-

14C]acetate was used as a standard to calculated the radioactivity of the radiolabeled 

lipids.  

 

Measurement of Oxygen Consumption 

For measurement of oxygen consumption, yeast cells were grown in SC-glucose 

medium to the post-diauxic and the stationary phases (217).  The cultures were diluted 

10-fold in the fresh medium, and were measured for oxygen consumption using an 

oxygen electrode (Vernier Labpro) in a 500 µl chamber.  The cultures containing 0.05% 

sodium azide, which is one of ETC inhibitors, were used as controls to confirm 

mitochondrial oxygen consumption. 

 

Measurement of Mitochondrial Membrane Potential  

Mitochondrial membrane potential was measured using TMRM, which is a 

cationic red-orange fluorescent dye that is readily sequestered by active mitochondria.  

Yeast strains were grown to the post-diauxic and the stationary phases.  The cultures 

corresponding to 1 A600 nm unit of cells were harvested, washed twice with phosphate-

buffered saline (PBS, pH 7.0), and then incubated for 30 min at 30 °C in the buffer 

containing 40 μM TMRM.  After washing with PBS, the TMRM-labeled cells were 

diluted in PBS at A600 nm = 0.1, and 10,000 cells were measured for fluorescence by C6 

flow cytometer (BD Biosciences). 
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Mitochondrial ATP Synthase Activity 

Mitochondrial F1FO-ATPase activity was measured by following the oxidation of 

NADH (extinction coefficient of 6,220 M-1cm-1) in the coupled reactions of pyruvate 

kinase and lactate dehydrogenase.  The reaction mixture in a total volume of 1 ml 

contained 20 μg of mitochondria isolated from stationary phase cells, 50 μg/ml pyruvate 

kinase, 50 μg/ml lactate dehydrogenase, 50 mM HEPES-KOH (pH 8.0), 5 mM MgSO4, 

2.5 mM ATP, 2.5 mM PEP, 0.3 mM NADH, and 2 μg/ml antimycin.  The enzyme 

reaction was initiated by addition of ATP into the reaction mixture, and A340 nm was 

continuously measured for 2 min.  The reaction was linear with time and protein 

concentration.  Subsequently, the reaction mixture was added with 2 μg/ml oligomycin, 

an inhibitor for F1FO-ATPase activity, and the measurement was repeated to correct for 

non-mitochondrial ATPase activity.  Specific activity was defined as nmol of NADH 

oxidized per min per mg of protein. 

 

Measurement of ATP in Yeast Cells 

Intracellular levels of ATP were measured by the luciferase assay using the 

BacTiter-GloTM Microbial Cell Viability Assay kit.  ATP reacts with luciferin by 

luciferase to generate adenyl-luciferin, which was then oxidized to generate light.  Yeast 

cultures corresponding to 5 A600 nm units of cells were harvested at indicated time points 

and resuspended in 80 μl sterile water, and mixed with an equal volume of BacTiter-

GloTM Reagent in 96 well opaque plates.  After incubation for 3 min, luminescence 

produced from the cells was measured with a luminometer (Luminoskan Acent 

Microplate Leader).  ATP (100 nM-100 μM) was used as a standard in the assay. 
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Measurement of Mitochondrial Superoxide 

Intracellular superoxide levels were measured using MitoSOX Red, a 

mitochondrial superoxide indicator.  Yeast cells were grown to the post-diauxic, and the 

stationary phases.  The cultures corresponding to 1 A600 nm units of cells were harvested, 

washed twice with PBS (pH 7.0), and then incubated for 30 min at 30 °C in the buffer 

containing 5 μM MitoSOX Red.  After washing twice with PBS, the MitoSOX Red-

labeled cells (10,000) were measured by C6 flow cytometer (BD Biosciences). 

 

Measurement of Lipid Hydroperoxides 

The levels of lipid hydroperoxides were measured by an assay using the ferrous 

oxidation-xylenol orange complex (218).  Yeast cells were grown to the stationary phase 

in 500 ml of SC-glucose medium, and lipids were extracted by the method of Bligh and 

Dyer (214).  The weight of extracted lipids were measured and dissolved in chloroform.  

25 μl of lipid solution (1.25 mg of lipid) was mixed with an equal volume of a complex 

regent consisting of 2 M sorbitol, 3.9 mM ammonium iron (II) sulfate, 2.26 mM xylenol 

orange, and 2.8 % sulfuric acid.  After incubation for 30 min, the reaction mixture was 

measured at A560 nm.  The levels of lipid hydroperoxides were calculated using hydrogen 

peroxide as a standard.  

 

Superoxide Dismutase Assay 

 SOD activity was determined in the polyacrylamide gel by NBT-negative staining 

(219, 220).  For this assay, 10 μg of cell extracts was resolved by native PAGE with a 

12% slab gel.  The polyacrylamide gel was incubated for 10 min in 50 mM potassium 
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phosphate buffer (pH 7.8) and for 20 min in the buffer containing 0.5 mg/ml NBT, 

washed briefly, and then incubated for 15 min in the buffer containing 10 μg/ml of 

riboflavin and 0.25% TEMED.  After washing, the polyacrylamide gel was illuminated 

on a light box for color development, and was subjected to image processing.  The clear, 

unstained region, which indicates SOD activity, against a dark blue background was 

quantified by ImageQuant software.  

 

Catalase Assay 

 Catalase activity was measured spectrophotometrically by following the 

decomposition of hydrogen peroxide (extinction coefficient of 40 mM-1cm-1) at A240 nm 

(221).  The reaction mixture in a total reaction volume of 250 μl contained 50 mM 

potassium phosphate buffer (pH 7.0), 20 mM hydrogen peroxide, 20 μg of cell extract or 

purified mitochondria.  Specific activity was defined as the decomposition of 1 μmol of 

hydrogen peroxide per min per mg protein.   

 

NADH-dependent Glycerol-3-Phosphate Dehydrogenase Assay 

NADH-dependent GPDH activity was conducted with 40 μg of cell extract in 20 

mM Imidazole-HCl (pH 7.0), 1 mM DTT, 1 mM MgCl2, 0.09 mM NADH, 0.67 mM 

DHAP at room temperature using a spectrophotometer (222).  An extinction coefficient 

of NADH is 6.22 mM-1 cm-1 at A340 nm.  Specific activity of NADH-dependent GPDH 

activity was defined as nmol of NADH oxidized per min per mg of protein.    
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FAD-dependent Glycerol-3-Phosphate Dehydrogenase Assay 

Cells were grown in SC-ethanol (2%) medium at 30 °C with shaking overnight.  

The activity assay was performed for 10 min at A562 nm using a spectrophotometer in a 

total volume of 1 ml containing 50 mM Hepes (pH 7.5), 10 mM KCN, 0.5 mM MTT, 0.2 

mM PMS, 0.05% Triton X-100, 50 mM DL-glycerol-3-phosphate, 50 μM FAD, and 50 

μg purified mitochondria at room temperature (223, 224).  An extinction coefficient for 

reduced MTT at A562 nm is 8.1 mM-1cm-1.  Specific activity of FAD-dependent GPDH 

activity was defined as 1 nmol of MTT reduced per min per mg protein.   

 

Analysis of Yeast Chronological Life Span  

For analysis of chronological life span, yeast cultures saturated in SC-glucose 

medium were diluted in the fresh medium at A600 nm = 0.01 and grown to the late 

exponential phase (A600 nm ~ 1) (225).  The exponential phase cells were diluted in the 

fresh medium at A600 nm = 0.1, and grown for 2 days with shaking at 250 rpm.  The 

cultures reached at the stationary phase (day 0) were continuously incubated for two 

weeks during which aliquots were taken daily and plated onto YEPD agar plates.  

Colonies formed after 2-day incubation were counted as being produced from viable 

cells.  The viability of yeast cells at day 0 in the stationary phase was set 100%.   

 

Analyses of Data 

Statistical analyses were performed with SigmaPlot software.  The p values < 

0.05 were taken as a significant difference.  
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RESULTS 

  

The pah1Δ Mutant Is Defective in Growth on Non-fermentable Carbon Sources 

One of the distinct phenotypes shown by the pah1Δ mutant is the lack of growth 

on glycerol (24).  Since non-fermentable carbon sources are metabolized by 

mitochondrial respiration, the growth defect on glycerol indicates that the pah1Δ mutant 

is respiratory deficient.  To confirm this phenotype, we also examined the growth of wild 

type and the pah1Δ mutant on other non-fermentable carbon sources including acetate, 

ethanol, and lactate.  Cells were grown in YEPD medium overnight and spotted on YP 

plates containing 2% ethanol, 2% acetate, 2% lactate, or 3% glycerol.  As on glycerol, the 

pah1Δ mutant was not able to grow on acetate or lactate (Fig. 5A).  Although it exhibited 

growth on ethanol, its growth was much slower than that of wild type.  Consistent with 

the poor growth on ethanol, the pah1Δ mutant cultured in medium containing glucose 

showed a slower growth than wild type in the post-diauxic phase, i.e., when ethanol 

produced by fermentation of glucose was metabolized (data not shown).  A similar result 

was also obtained with the strain BY4741, which has a shorter life span than W303-1A 

(Fig. 5B) (226).  The pah1Δ mutant derivative of BY4741 was not able to grow on media 

containing non-fermentable carbon sources, while the wild type BY4741 strain did not 

exhibit the growth defect.   
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FIGURE 5.  Cell growth on non-fermentable carbon sources.  Yeast strains (A, 

W303-1A; B, BY4741) were grown at 30 °C to saturation in YEPD medium.  The 

saturated cultures were harvested, washed, and resuspended in water at A600 nm = 0.67.  

After 10-fold serial dilutions, 5 μl of each cell suspension was spotted onto YP agar 

medium containing the indicated carbon source, followed by incubation for 3 days (2% 

glucose) or 5 days (2% ethanol, 2% acetate, 2% lactate, or 3% glycerol).         
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The pah1Δ Mutant Is Not Defective in Mitochondrial Tubulation 

Mitochondria exhibit a dynamic change in morphology through the process of 

fission and fusion, and they appear as small, fragmented units or as larger networks of 

elongated units (190, 227, 228).  In nutrient-starved conditions, mitochondria form a 

tubular network to improve the efficiency of ATP production (229).  The growth defect 

of the pah1Δ mutant on non-fermentable carbon sources raised a question about its 

mitochondrial morphology and function.   

At first, we examined the mitochondrial morphology of wild type and the pah1Δ 

mutant in the post-diauxic and the stationary phases by using a mitochondria-targeted 

green fluorescence (GFP) protein.  In fluorescence microscopy analysis, both wild type 

and the pah1Δ mutant in the stationary phase showed a tubular network of mitochondria, 

indicating that starvation induced mitochondrial tubulation (Fig. 6).  In collaboration with 

Eugenia Mileykovskaya and William Dowhan, we also examined mitochondrial 

membrane structures by electron microscopy.  This analysis indicated no major 

differences between the wild type and the pah1∆ mutant (Fig. 7).   
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FIGURE 6.  Mitochondrial tubulation in wild type and the pah1Δ mutant.  Wild type 

(W303-1A) and the pah1∆ mutant were transformed with pYX142–mtGFP, a plasmid 

that expresses the mitochondria-targeted GFP.  The yeast transformants were grown to 

the post-diauxic and stationary phases, and were visualized by fluorescence microscopy.  
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FIGURE 7.  Electron micrographs of mitochondria isolated from wild type and the 

pah1Δ mutant.  Purified mitochondria from wild type (W303-1A) and the pah1∆ mutant 

were prepared for electron microscopy  and visualized using JEOL 1200EX transmission 

electron microscope at 60 kv and captured with Gatan Orius 830 Digital imaging System.   
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The pah1Δ Mutant Exhibits a Reduction in Respiratory Supercomplex Levels 

Respiratory supercomplexes are major components for oxidative phosphorylation 

that transfer electrons and create a proton gradient for ATP synthesis (121).  They 

assemble to form respiratory supercomplexes that are thought to play a role in 

enhancement of electron flow and thereby preventing the formation of excess oxygen 

radicals.  In S. cerevisiae, the ETC complexes III and IV associate to form the 

supercomplexes III2+IV (trimer) and III2+IV2 (tetramer).  In collaboration with Eugenia 

Mileykovskaya and William Dowhan, the formation of the respiratory supercomplexes 

was determined from mitochondria purified from wild type and the pah1Δ mutant grown 

in the YPEG medium.  The mitochondrial fraction was solubilized with digitonin, and 

then separated by BN-PAGE.  Immunoblot analysis with anti-Complex IV polyclonal 

antibody showed the trimeric and tetrameric forms of respiratory supercomplexes, which 

exhibited migration at the expected size of the protein complexes (Fig. 8A).  Compared 

with wild type, the pah1∆ mutant showed a 20% reduction in the levels of both trimeric 

and tetrameric forms of mitochondrial respiratory supercomplexes (Fig. 8B).     
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FIGURE 8.  Respiratory supercomplexes III2IV2 and III2IV in wild type and pah1Δ 

mitochondria.  A, mitochondria (17.6 μg) purified from wild type (W303-1A) and the 

pah1∆ mutant were solubilized in digitonin and were subjected to BN-PAGE (left).  

Mitochondrial supercomplexes separated in the gel were transferred to a PVDF 

membrane, and were subjected to immunoblot analysis with anti-OxPhos polyclonal 

antibody against subunit III of Complex IV (right).  B, relative amounts of III2IV (timer) 

and III2IV2 (tetramer) supercomplexes in wild type (W303-1A) and pah1∆ strains.  AU, 

arbitrary units.  
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Levels of Mitochondrial PS and PA Are Altered in the Stationary of the pah1Δ 

Mutant 

The phospholipid synthesis in mitochondria plays an important role not only for 

mitochondrial functions but also for cellular functions (173, 174).  CL, a signature 

phospholipid in mitochondria, is crucial for electron transport and oxidative 

phosphorylation as well as for the stability of respiratory chain complexes (175, 178).  In 

S. cerevisiae, de novo synthesis of cellular PE mainly occurs from PS in mitochondria by 

Psd1 PS decarboxylase (36).   

Accordingly, we examined whether the composition of mitochondrial 

phospholipids is altered in the pah1Δ mutant.  Cells were harvested in the exponential 

and the stationary phases.  Mitochondria were purified by centrifugation with sucrose 

gradient, and then the purity was confirmed by western blotting with anti-Por1 

(mitochondrial marker), anti-Prc1 (vacuole marker), anti-Cho1 (ER marker) and anti-

Pgk1 (cytosol marker) antibodies (Fig. 9).  Phospholipids extracted by the method of 

Bligh and Dyer were separated by two dimensional TLC.  Quantitation analysis showed 

that wild type and the pah1Δ mutant were very similar in the levels of the major 

mitochondrial phospholipids such as PC, PE, and PI in the exponential phase (Fig. 10).  

Notably, no significant difference was shown in the level of mitochondria-specific CL 

between the two strains.  In contrast, the pah1Δ mutant showed alterations in the levels of 

the minor mitochondrial phospholipids PS and PA in the stationary phase (Fig. 10).  

Compared with wild type, the pah1Δ mutant showed a 40% increase of the PS level, and 

a 40% decrease of the PA level in mitochondrial phospholipids.  These changes of the 

pah1Δ mutant in the levels of mitochondrial PS and PA were also confirmed by mass 
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spectrometry (data not shown).  On the other hand, non-mitochondrial fraction of the 

pah1Δ mutant exhibited increase in the phospholipid level like a previously shown for the 

phospholipid level of whole cells (Fig. 10) (24, 59).   

We also analyzed fatty acid composition of the mitochondrial fraction from 

stationary phase cells by the gas chromatography.  This analysis showed that major fatty 

acid levels were similar to that of wild type cells (Fig. 11).   
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FIGURE 9.  Isolation of mitochondria from wild type and the pah1Δ mutant.  Wild 

type (W303-1A) and pah1Δ mutant cells were grown at 30 °C in SC-glucose medium to 

the exponential and the stationary phases.  After treatment of lyticase, spheroplasts were 

disrupted by Dounce glass homogenizer.  Crude mitochondria were collected by 

centrifugation at 12,000 × g for 15 min at 4 °C.  Purified mitochondria were collected by 

sucrose gradient centrifuged at 134,000 × g for 1 h at 4 °C from the interface between the 

32% and 60% sucrose layers.  10 μg cell extract and 2 μg purified mitochondrial fraction 

were subjected to SDS-PAGE and western blot analysis using anti-Por1 (porin), Prc1 

(vacuolar carboxypeptidase), Cho1 (phosphatidylserine synthase), and Pgk1 (3-

phosphoglycerate kinase) antibodies.  C, cell extract; M, mitochondria. 
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FIGURE 10.  Mitochondrial phospholipid composition of wild type and pah1Δ 

mitochondria.  Wild type (W303-1A) and the pah1Δ mutant were grown at 30 °C in SC-

glucose medium to the exponential and stationary phases.  Mitochondria were purified 

from the yeast cultures, and were extracted for lipids by the method of Bligh and Dyer.  

Non-mitochondrial fraction was collected by centrifugation at 100,000 × g, for 1h at 4 °C 

from the supernatant after removing crude mitochondria.  Phospholipids from 500 μg 

mitochondria were separated by two-dimensional TLC on silica gel 60 plates, stained 

with 0.05% primulin, and subjected to fluoroimaging and image quantification using 

ImageQuant software.  
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FIGURE 11.  Fatty acid composition of mitochondrial phospholipids in wild type 

and the pah1Δ mutant.  Lipids were extracted from 1.5 mg of mitochondria by the 

method of Bligh and Dyer, and were methylated using 1 ml of hydrogen chloride - 

methanol at 70 °C for 1 h.  Fatty acid methyl esters were analyzed by gas 

chromatography.  A, the percentages shown for the individual fatty acid were normalized 

to the total fatty acids detected including palmitic acid (C16:0), palmitoleic acid (C16:1), 

stearic acid (C18:0), and oleic acid (C18:1).  B, the amount of individual fatty acid was 

calculated by standard heptadecanoic acid (C17:0).  
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The pah1Δ Mutant Exhibits an Elevated Mitochondrial Membrane Potential 

in the Post-diauxic Phase 

We measured the oxygen consumption to examine the oxidative phosphorylation 

function during cell growth.  In the exponential phase, wild type and the pah1∆ mutant 

showed the same rate of oxygen consumption (data not shown).  Similarly, no significant 

difference was observed in the two yeast strains for oxygen consumption in the post-

diauxic phase as well as in the stationary phase (Fig. 12A).   

Next, we analyzed the mitochondrial membrane potential, which is required for 

ATP production, in wild type and the pah1Δ mutant by staining with TMRM, a 

potentiometric fluorescent dye that is readily sequestered by active mitochondria (230, 

231).  To figure out the proper concentration of TMRM for dyeing the 1 A600 nm unit of 

cells, we treated wild type cells with different concentration of TMRM for 30 min.  As a 

result, we decided to choose 40 μM TMRM to the 1 A600 nm unit of cells.  Wild type and 

the pah1Δ mutant were stained with TMRM, and the fluorescence of the stained cells was 

analyzed by a flow cytometer.  Compared with wild type, the pah1Δ mutant showed 2.7-

fold higher levels of the TMRM fluorescence in the post-diauxic phase (Fig. 12B).  In the 

stationary phase, however, no significance difference was shown for the TMRM 

fluorescence in wild type and the pah1Δ mutant.  This result indicates that the membrane 

potential of the pah1Δ mutant is not defective, but is higher in the post-diauxic phase. 
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FIGURE 12.  Oxygen consumption and mitochondrial membrane potential in wild 

type and the pah1Δ mutant.  A, wild type (W303-1A) and the pah1Δ mutant were 

grown in SC-glucose medium to the post-diauxic and the stationary phases.  The cultures 

were diluted 10-fold in the fresh medium measured for oxygen consumption by oxygen 

electrode for 5 min.  B, wild type (W303-1A), the dgk1Δ mutant, the pah1Δ mutant, and 

the dgk1Δ pah1Δ mutant in the post-diauxic and the stationary phases were harvested, 

washed with PBS, and incubated for 30 min in the buffer containing TMRM, a 

potentiometric fluorescent dye to monitor the membrane potential of mitochondria.  After 

washing with PBS, the TMRM-stained cells were measured for fluorescence by the flow 

cytometer.    
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The pah1Δ Mutant Is not Defect in the Mitochondrial F1FO-ATP Synthase 

In oxidative phosphorylation, the production of ATP occurs by mitochondrial 

F1FO-ATP synthase coupled with the H+ flux (131-133).  The enzyme also catalyzes the 

reverse reaction, i.e., ATP hydrolysis, in the absence of membrane potential or pH 

gradient (232).  Accordingly, we measured the activity of F1FO-ATP synthase as its 

ATPase activity from the mitochondria of wild type and the pah1Δ mutant in the 

stationary phase.  Mitochondria from the stationary phase cells were purified by sucrose 

gradient centrifugation.  The ATPase activity was measured by the oxidation of NADH in 

the coupled reaction.  Compared with wild type, the pah1Δ mutant showed the same level 

of mitochondrial F1FO-ATPase activity (Fig. 13).  This result indicates that the 

mitochondrial F1FO-ATP synthase is functional in the pah1Δ mutant.   
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FIGURE 13.  F1FO-ATP synthase activity of wild type and the pah1Δ mutant.  20 μg 

of  mitochondria purified from the stationary phase cells were measured for F1FO-ATPase 

activity.  A unit of ATP synthase activity was defined as nmol of NADH oxidized per 

min.     
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The pah1Δ Mutant Exhibits a Decrease in Cellular ATP levels  

in the Post-diauxic Phase 

One of important roles in mitochondria is to produce ATP needed for cell growth 

and survival by the oxidative phosphorylation (113).  We measured its cellular levels by 

the ATP bioluminescence assay.  In the assay, ATP reacts with luciferin to generate 

adenyl-luciferin, which is then oxidized by oxygen to generate light.  The absolute 

requirement of ATP for the luciferase reaction is represented as the extent of 

bioluminescence.  Cells were grown from the exponential (6 h) to the post diauxic phases 

(24 h) (Fig. 14A).  At the indicated time points, cells were harvested and the level of ATP 

was measured ATP bioluminescence assay (Fig. 14B).  This analysis showed that both 

wild type and the pah1Δ mutant had the same level of ATP in the exponential phase.  In 

the post-diauxic phase, however, the pah1Δ mutant showed 45% lower levels of ATP 

when compared with the wild type control.   
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FIGURE 14.  ATP levels of wild type and the pah1Δ mutant during cell growth.  

Wild type (W303-1A) and pah1∆ mutant cells were grown in SC-glucose medium, 

during which yeast cultures corresponding to 5 A600 nm units of cells were harvested at the 

indicated time points from the exponential to the post-diauxic phases.  Harvested cells 

were washed, and measured for the ATP levels by the luciferase assay.  A, cell growth at 

A600 nm.  B, cellular ATP levels  
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The pah1Δ Mutant Exhibits Increased Lipid Synthesis in the Post-diauxic Phase 

We examined wild type and the pah1Δ mutant for their ATP levels and lipid 

synthesis during growth on glycerol.   This non-fermentable carbon source was chosen 

because of its pronounced effect on the growth of the pah1Δ mutant.  Wild type and the 

pah1Δ mutant were first grown in SC-glucose medium to the exponential phase (A600 nm 

=1).  After transfer to SC-glycerol medium, the yeast cultures were incubated for 4 h in 

the absence (for ATP measurement) or presence (for lipid analysis) of [2-14C]acetate.  

The ATP level was measured by the ATP bioluminescence assay.  The [2-14C]acetate 

labeled lipids were extracted by the method of Bligh and Dyer, and then separated by one 

dimensional TLC.  When cultured in medium containing glucose, wild type and the 

pah1∆ mutant showed the same cellular ATP level (Fig. 15A).  When cultured in SC-

glycerol medium, however, the pah1∆ mutant showed 50% lower ATP level than wild 

type.  By contrast, the pah1Δ mutant without a significant cell growth showed the 3- and 

1.5-fold increases in phospholipid and fatty acid synthesis, respectively (Fig. 15B).  

Above all, the pah1Δ mutant exhibited 2.2-fold higher levels of lipid synthesis than wild 

type during growth on glycerol wild type.   
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FIGURE 15.  ATP levels and lipid synthesis during growth of wild type and the 

pah1Δ mutant in SC-glycerol medium.  A, wild type (W303-1A) and the pah1∆ mutant 

were grown at 30 °C to the late exponential phase (A600 nm = 1) in SC-glucose medium.  

The yeast cells were harvested, washed with sterilized water, and incubated for 4 h in the 

medium containing non-fermentable glycerol as a carbon source.  The cellular ATP 

levels were measured by the luciferase assay.  B, the yeast strains were grown in the same 

way as described in A except for the addition of [2-14C]acetate (1 μCi/ml) in the glycerol 

medium.  Lipids were extracted from the radiolabeled cells and subjected to one 

dimensional TLC on silica gel 60.  The radiolabeled lipids were visualized by 

phosphorimaging and were quantified by ImageQuant software with [2-14C]acetate as a 

standard. PL, phospholipid; FA, fatty acid; Erg; ergosterol; ErgE; ergosterol ester 

separated on TLC. 
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The pah1Δ Mutant Exhibits an Increase in Superoxide Levels 

Superoxide is generated by electron leaks as byproducts during oxidative 

phosphorylation, and unless removed react readily with other nearby molecules, causing 

a detrimental effect on the cellular structure and function (152-154).  The lower levels of 

respiratory supercomplexes in the pah1Δ mutant raised a possibility that it produces more 

ROS than wild type.  We first measured the mitochondrial superoxide levels in wild type 

and the pah1Δ mutant by staining with MitoSOX Red, a fluorescent indicator that 

permeates live cells where it is oxidized by mitochondrial superoxide to produce red 

fluorescence.  The red fluorescence signals were measured with a flow cytometer.  As a 

result, in the post-diauxic phase, wild type and the pah1Δ mutant showed similar 

mitochondrial superoxide level (Fig. 16).  In the stationary phase, however, the pah1Δ 

mutant showed 2-fold higher mitochondrial superoxide level than wild type.   
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FIGURE 16.  Mitochondrial superoxide levels in wild type, dgk1Δ, pah1Δ, 

dgk1Δ pah1Δ mutant cells.  Wild type (W303-1A), the dgk1Δ mutant, the pah1∆ 

mutant, and the dgk1Δ pah1∆ mutant were grown at 30 °C in SC-glucose medium to the 

post-diauxic and the stationary phases.  Cells corresponding to 1 A600 nm were harvested, 

washed with PBS, and incubated for 30 min in the buffer containing MitoSOX Red.  

Fluorescence from the stained cells was measured with a flow cytometer. 
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The pah1Δ Mutant Exhibits an Increase in Lipid Hydroperoxides 

The higher superoxide level in the pah1Δ mutant indicates the presence of 

elevated ROS level, which reacts with macromolecules (e.g., DNA, proteins, and lipids).  

The reaction of ROS with polyunsaturated fatty acids induces lipid peroxidation.  In the 

stationary phase, the levels of total phospholipids and free fatty acids in the pah1∆ 

mutant were 60% and 77 % higher, respectively, than those in wild type (59).  

Accordingly, we measured lipid hydroperoxides in wild type and the pah1Δ mutant by a 

colorimetric assay using the ferrous oxidation-xylenol orange complex. Lipids were 

extracted the method of Bligh and Dyer from stationary phase cells, and then the amounts 

of lipids were measured by a chemical balance.  After incubation with reagent for 30 min, 

the lipid hydroperoxides were measured.  The pah1Δ mutant and wild type showed 

similar lipid hydroperoxides level per mg of lipid (Fig. 17A).  However, compared with 

wild type, the pah1Δ mutant showed 3-fold higher lipid hydroperoxides level per cells 

because of its higher lipid contents (Fig. 17B).   
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FIGURE 17.  Lipid hydroperoxides in wild type and the pah1Δ mutant.  Wild type 

(W303-1A) and the pah1Δ mutant were grown at 30 °C in SC-glucose medium to the 

stationary phase.  Lipids were extracted from the yeast cells in the stationary phase by the 

method of Bligh and Dyer, and the lipid hydroperoxides levels were measured with the 

ferric-xylenol orange complex reagent.  A, lipid hydroperoxide content/mg lipid.  B, lipid 

hydroperoxide content/g cells. 
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The pah1Δ Mutant Exhibits a Decrease in Cta1 Catalase 1 and  

Sod2 Superoxide Dismutase Activities 

The elevated mitochondrial superoxide level in the pah1Δ mutant and its 

increased sensitivity to hydrogen peroxide suggested a possibility that the ROS level in 

the pah1Δ mutant is increased by a deficiency in antioxidant enzymes.  Accordingly, we 

examined the main antioxidant enzymes, SOD and catalase, for their catalytic activities. 

SOD catalyzes the conversion of superoxide to hydrogen peroxide, and catalase 

decomposes the reaction product hydrogen peroxide to water and oxygen.    

To measure SOD activity, cell extracts from stationary phase cells were resolved 

by non-denaturing polyacrylamide gel electrophoresis, and then subjected to in-gel 

activity staining.  Two different forms of SOD, Sod1 and Sod2, were distinguished by 

electrophoretic mobility in the polyacrylamide gel.  This analysis showed that the 

Sod1activity, which is localized in the cytosol, was not significantly different in wild type 

and the pah1∆ mutant (Fig. 18).  In the case of Sod2 activity, which is localized in 

mitochondria, was lower in the pah1∆ mutant when compared with the wild type.    

Catalase activity in cell extract and purified mitochondria from the stationary 

phase was measured at A240 nm.  In contrast to SOD activity, catalase activity was reduced 

by 30 % in the pah1Δ mutant (Fig. 19).  Mitochondrial catalase activity was not different 

in wild type and the pah1Δ mutant, and was not considered to contribute to the decrease 

of the enzyme activity in the pah1Δ mutant (Fig. 19).   
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FIGURE 18.   Superoxide dismutase activity of wild type and the pah1Δ mutant.  

Cell extracts (10 μg) were prepared from Wild type (W303-1A) and the pah1Δ mutant in 

the stationary phase, and were resolved by non-denaturing polyacrylamide gel 

electrophoresis with a 12% slab gel.  After electrophoresis, the polyacrylamide gel was 

incubated for 20 min in the solution of nitro blue tetrazolium and for 15 min in the 

solution of riboflavin and TEMED, followed by exposure to white light.  The unstained 

region, which indicates SOD activity, against a dark blue background of the gel was 

quantified by ImageQuant software. 

 

 

 

 

 

 

 

 

 

 

 
 



82 
 

 

 

 

 

                                                   

Sod2 -

Sod1 -

  

                                

 

                             

S
up

er
ox

id
e 

di
sm

ut
as

e,
 

A
U

/m
g

0

3

6

9

12
Sod1
Sod2

WT pah1Δ
                

 

   

       

 

 
 



83 
 

 

 

 

 

 

 

 

 

 

FIGURE 19.  Catalase activity of wild type and the pah1Δ mutant.  Cell extracts (20 

μg) and mitochondrial fractions (20 μg) from stationary phase cells were prepared from 

wild type (W303-1A) and the pah1Δ mutant grown in SC-glucose medium, and were 

measured for catalase activity by the rate of hydrogen peroxide reduction at A240 nm.  A 

unit of catalase activity was defined as 1 μmol hydrogen peroxide decomposition per 

min.     
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The pah1Δ Mutant Is Sensitive to Hydrogen Peroxide 

The pah1Δ mutant exhibiting a higher level of superoxide might be expected to 

be sensitive to hydrogen peroxide.  To determine this possibility, we analyzed the growth 

of wild type and the pah1Δ mutant in culture medium containing various amounts of 

hydrogen peroxide.  Compared with wild type, the pah1Δ mutant showed a growth defect 

that was dependent on the concentration of hydrogen peroxide (Fig. 20 A).  At 1 mM 

hydrogen peroxide in SC-glucose medium, wild type showed no defect in growth, 

whereas the pah1Δ mutant showed almost no growth.  The pah1Δ mutant exhibited less 

sensitivity to hydrogen peroxide on YEPD medium than on SC-glucose medium (Fig. 

20B).  The results showed that the pah1Δ mutant could not grow on YEPD plate 

containing 4 mM hydrogen peroxide, whereas the growth of wild type cells was not 

affected.  We also tested whether the pah1∆ mutant is sensitive more in the non-

fermentable carbon sources medium including 0.95% ethanol and 3% glycerol than the 

fermentable carbon source medium.   Both wild type and the pah1∆ mutant displayed 

similar pattern to the result of YEPD medium but slightly increased sensitivity (3.5 mM 

H2O2) (Fig. 20C).  These results support the conclusion that the pah1∆ mutant is 

vulnerable to oxidative stress. 
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FIGURE 20.  Sensitivity to hydrogen peroxide.  A, wild type (W303-1A) and the 

dgk1Δ mutant, the pah1∆ mutant, and the dgk1Δ pah1∆ mutant were grown to saturation 

in SC-glucose medium.  The yeast cultures were harvested, washed with water, and 

adjusted to A600 nm = 0.67.  After 10-fold serial dilutions, 5 μl of each cell suspension was 

spotted onto SC-glucose agar medium containing the indicated concentrations of 

hydrogen peroxide, followed by incubation for 3 days.  B, wild type (W303-1A) and the 

pah1∆ mutant grown in YEPD medium were spotted onto YEPD medium containing the 

indicated concentrations of hydrogen peroxide.  C, wild type (W303-1A) and the pah1∆ 

mutant grown in YEPD medium were spotted onto YPEG medium containing the 

indicated concentrations of hydrogen peroxide.   
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NADH-and FAD-dependent Glycerol-3-Phosphate Dehydrogenase Activities Are 

not Affected by the pah1Δ Mutation 

Glycerol-3-phosphate which is a backbone of the lipid is produced from DHAP 

by NADH-dependent GPDH (Gpd1 and Gpd2) (233, 234).  On the other hand, FAD-

dependent GPDH (Gut2) found in mitochondria catalyzes the conversion of glycerol-3-

phosphate to yield DHAP (235, 236).  We questioned whether the activities of NADH- 

and FAD-dependent GPDH activities might be lower and higher, respectively, in the 

pah1∆ mutant than wild type cells, because glycerol-3-phosphate is needed for 

phospholipid synthesis.  We monitored reduction in NADH substrate absorbance at A340 

nm to test the NADH-dependent GPDH activity from cell extracts.  To test FAD-

dependent GPDH activity, we purified mitochondria grown in SC-ethanol (2%) medium 

because the enzyme is activated in the presence of non-fermentable carbon sources (236, 

237).  We monitored decrease in FAD substrate absorbance at A562 nm for 10 min.   

The NADH-dependent GPDH activity was elevated in both wild type and the 

pah1Δ mutant in the post-diauxic phase than in the exponential phase (Fig. 21A).  In the 

stationary phase, wild type cells exhibited ~ 30% lower activity than in the post-diauxic 

phase, whereas it was not decreased in the pah1Δ mutant.  On the other hand, FAD-

dependent GPDH activity was not changed by the pah1Δ mutation in the stationary phase 

(Fig. 21B).     
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FIGURE 21.  NADH- and FAD-dependent glycerol-3-phosphate dehydrogenase 

activities of wild type and the pah1Δ mutant.  A, cell extracts (40 μg) were prepared 

from the exponential, the post-diauxic, and the stationary phases of wild type (W303-1A) 

and the pah1Δ mutant cells grown in SC-glucose medium.  The NADH-dependent GPDH 

activity assay was conducted with 40 μg of cell extracts at A340 nm.  A unit of NADH-

dependent GPDH activity was defined as nmol of NADH oxidized per min.   B, cells 

were grown in SC-ethanol medium at 30 °C.  50 μg purified mitochondria was used for 

FAD-dependent GPDH activity assay at A562 nm.  A unit of FAD-dependent GPDH 

activity was defined as 1 nmol of MTT reduced per min.    

 

 

 

 

 

 

 

 

 

 
 



90 
 

 

                            

N
AD

H
-d

ep
en

dn
et

 G
PD

H
, 

U
/m

g

0

20

40

60

80
WT
pah1Δ

Exp
on

en
tia

l

Pos
t-d

iau
xic

Stat
ion

ary

A.

 

 

             

FA
D

-d
ep

en
de

nt
 G

P
D

H
, 

U
/m

g

0

40

80

120

160

WT pah1Δ

B.

 

        

 
 



91 
 

The pah1Δ Mutant Exhibits a Shortened Chronological Life Span  

We analyzed the chronological life span of wild type and the pah1Δ mutant.  In 

the viability assay, the yeast cells in the stationary phase were evaluated on their ability to 

form colonies on rich growth medium.  Both wild type and the pah1Δ mutant exhibited a 

reduction in viability over time in the stationary phase (Fig. 22A).  Compared with wild 

type, the pah1Δ mutant showed a rapid decrease in viability.  Whereas wild type showed 

a 50% reduction of viability in 8 days, the pah1Δ mutant showed the same extent of 

reduced viability in 3 days with almost complete loss of viability in 7 days (Fig. 22A).  

The rapid decrease of the pah1Δ mutant viability indicates that the chronological life 

span is > 2-fold shorter than that of wild type.  A similar reduction in chronological life 

span was also shown by the pah1Δ mutant derived from the BY4741 strain (Fig. 22B).  

The strain BY4741 exhibits a shorter life span than W303-1A, and it showed a 50% 

reduction of viability in 4 days.  The pah1∆ mutant in the BY4741 background exhibited 

a 50% reduction of viability in less than one day, and showed no viability in 2 days.   
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FIGURE 22. Chronological life span.  Yeast strains (A, wild type W303-1A and its 

mutant derivatives dgk1Δ, pah1Δ, and dgk1Δ pah1Δ; B, wild type BY4741and its mutant 

derivative pah1Δ) were grown in SC-glucose medium to the exponential phase, which 

were diluted at A600 nm = 0.1 in the fresh medium and then grown for 48 h to the 

stationary phase (Day 0).  The stationary phase cultures were continuously incubated, 

during which an aliquot was taken daily and plated onto YEPD agar plates.  Colonies 

formed on the plates were scored after incubation for 2 days.   
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The Deletion of DGK1 Gene Complements Phenotypes of the pah1Δ Mutant 

The DGK1-encoded DAG kinase counteracts Pah1 PAP by converting DAG to 

PA (87).  Several phenotypes of the pah1∆ mutant which include nuclear/ER membrane 

expansion, reduced lipid droplet formation, and increased phospholipid content, are 

complemented by introduction of the dgk1∆ mutation indicating these phenotypes are 

related with the elevated level of PA in the pah1∆ mutant (87).  Accordingly, we 

questioned whether introduction of the DGK1 into pah1∆ rescues phenotypes that we 

found in this study.   

At first, we performed growth on media containing non-fermentable carbon 

sources with wild type, dgk1∆ mutant, pah1∆ mutant, and dgk1∆ pah1∆ mutant cells 

(Fig. 5A).  The mutation of the DGK1 gene in the pah1∆ mutant improved the growth on 

non-fermentable carbon sources.  Moreover, the growth of the double mutant was not 

limited in the presence of ethanol.  However, the growth of the double mutant did not 

reach the level exhibited by wild type cells.   

The pah1∆ mutant exhibited around 2-fold increase in the mitochondrial 

membrane potential in the post-diauxic phase.  We wondered whether the deletion of the 

DGK1 gene in the pah1∆ mutant affects the mitochondrial membrane potential (Fig. 

12B).  In the post-diauxic phase, the mitochondrial membrane potential was similar 

between the wild type and dgk1∆ mutant cells.  The dgk1∆ pah1∆ double mutant 

exhibited about 1.5-fold increase in the mitochondrial membrane potential than wild type 

cells.  However, comparing with the pah1∆ mutant, the double mutant exhibited 60 % 

decrease in the mitochondrial membrane potential in the post-diauxic phase.            
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We also measured the superoxide level in mitochondria using (Fig. 16B).  In 

both the post-diauxic and the stationary phases, the superoxide level was not increased in 

the dgk1∆ mutant and the dgk1∆ pah1∆ mutant.  Only the pah1∆ mutant exhibited highly 

increased superoxide level in the stationary phase.      

  Furthermore, the double mutant exhibited better growth than the pah1∆ mutant 

in the presence of hydrogen peroxide (Fig. 20A).  In the presence of 0.6 mM hydrogen 

peroxide, the pah1∆ mutant exhibited sensitivity to the hydrogen peroxide, while the 

double mutant did not sensitive to the same concentration of the hydrogen peroxide.  

Even though the double mutant displayed sensitivity to the 1 mM hydrogen peroxide than 

wild type cells, the growth was improved over that of the pah1∆ mutant.  The dgk1∆ 

single mutation did not exhibit the phenotype of the sensitivity to the hydrogen peroxide. 

Finally, we examined the chronological life span of the dgk1∆ pah1∆ mutant 

(Fig. 22A).  The dgk1∆ single mutation did not decrease the chronological life span.  

After day 4, the chronological life span of the dgk1∆ mutant was actually better than wild 

type cells.  The chronological life span of the dgk1∆ pah1∆ double mutant exhibited 

viability of similar pattern with that of the pah1∆ mutant.  However, the double mutant 

exhibited the increase in life span when compared with the pah1∆ mutant.  Until day 3, 

the viability of the dgk1∆ pah1∆ mutant was not dramatically decreased within day 3, 

whereas, the pah1∆ mutant exhibited 50% viability at the same day. 
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DISCUSSION 

 
In S. cerevisiae, Pah1 PAP, which catalyzes the dephosphorylation of PA to yield 

DAG, plays a crucial role in the synthesis of the storage lipid TAG (2, 10, 11).  This 

evolutionarily conserved enzyme also plays a regulatory role in de novo phospholipid 

synthesis through the consumption of PA, a precursor of membrane phospholipids (2, 10, 

11).  The importance of Pah1 PAP in lipid metabolism is shown by the phenotypes of 

yeast cells containing altered levels of the enzyme activity.  The lack of the enzyme 

activity causes phenotypes that are directly and indirectly associated with altered levels of 

PA and DAG, which include the aberrant nuclear/ER membrane expansion, reduced 

number of lipid droplets, and fatty acid induced-lipotoxicity (21, 24, 59, 82, 86).  

Conversely, the overexpression of Pah1 PAP has detrimental effects on cell viability, 

which include auxotrophic requirements for inositol and choline (95, 96), and DAG 

toxicity (69).  In the case of mammalian cells, loss of lipin PAP enzymes result in 

metabolic disorders that include lipodystrophy, insulin resistance, peripheral neuropathy, 

rhabdomyolysis, and inflammation (28, 29, 88, 90, 92, 93, 238-244), whereas the 

overexpression of lipin-1 causes an obese phenotype and induces expression of genes 

involved in TCA cycle enzymes and oxidative phosphorylation (245).  

In this study, we showed that the pah1Δ mutant is limited for ATP level, which 

correlated with an increase in lipid synthesis when cells progressed into the stationary 

phase (Fig. 23).  Although the pah1Δ mutant is not defective in oxidative 

phosphorylation, it produced a higher mitochondrial superoxide level.  The increased  
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FIGURE 23.  Model for the loss of viability in the pah1Δ mutant.  The pah1Δ mutant 

lacking PAP activity utilizes the PA precursor exclusively for the synthesis of membrane 

phospholipids.  This process requires more ATP when compared with that of wild type 

cells that utilize PA for the synthesis of TAG.  Therefore, the ATP synthesized by the 

mitochondria of pah1Δ cells is depleted due to the increased use for lipid synthesis.  

Furthermore, increased oxidative stress (high levels of ROS and lipid hydroperoxides) 

leads to cell damage in the stationary phase.  Finally, ATP deletion and cell damage by 

toxic products decrease viability of the pah1Δ mutant in the stationary phase.   
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ATP consumption and higher ROS production contribute to a reduction of viability of the 

pah1Δ mutant in the stationary phase, i.e., shortens its chronological life span.  We found 

that the ATP level was reduced in the post-diauxic phase pah1Δ mutant cells or in pah1Δ 

mutant cells grown with glycerol as a carbon source.  We expected that the pah1Δ mutant 

is defective in oxidative phosphorylation and produces a reduced ATP level.  However, 

in the exponential phase when mitochondrial function is not active as well as in the post-

diauxic phase, the pah1∆ mutant was similar to wild type in regard to the components of 

oxidative phosphorylation, such as the oxygen consumption rate, mitochondrial 

membrane potential, and mitochondrial F1FO-ATP synthase activity.  Unlike other 

respiratory deficient mutants (e.g., ρ0, ρ-, PET mutant), the pah1Δ mutant did not form 

petite colonies when grown on glucose medium.  Based on these observations, we did not 

consider the pah1Δ mutant to be defective in the production of ATP by mitochondrial 

oxidative phosphorylation.  Instead, we interpreted the decreased ATP level upon growth 

on a non-fermentable carbon source (or in the post-diauxic phase) was the result from the 

increased ATP consumption.   

 The pah1Δ mutant that is defective in the PA-to-DAG conversion and TAG 

synthesis (21), exhibits higher levels of the PA-derived phospholipids and the 

accumulation of fatty acids (59).  The increased phospholipid synthesis caused by a 

defect in TAG synthesis and the resulting accumulation of fatty acids might not be 

expected to affect total cellular lipid levels.  Yet, the increased phospholipid and fatty acid 

levels in the pah1Δ mutant resulted in the mutant having an elevated cellular lipid level 

when compared with the wild type control.  The pah1Δ mutant grown with glucose to the 

late exponential phase and then transferred to glycerol-containing growth medium had a 
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two-fold greater amount of total lipid when compared with that of wild type.  At the same 

time, the ATP level was 40% lower in the pah1Δ mutant when compared with the wild 

type.  Since the increase is pronounced in the post-diauxic phase when otherwise TAG 

synthesis is higher, an increased demand for ATP make the pah1Δ mutant limited for its 

cellular levels, leading to a growth defect.  Thus, we posit that the reduced level of ATP 

due to its over-consumption for phospholipid synthesis contributes to a reduction in cell 

viability in the stationary phase.   

The pah1∆ mutation causes an elevation of Dgk1 DAG kinase activity leading to 

the elevation of PA levels (87).  However, the deletion of the DGK1 gene in the 

pah1Δ mutant does not increase the net cellular lipid levels (87).  Fatty acid and PA 

levels in the dgk1Δ pah1Δ double mutant are similar to wild type but not slightly 

increased in major phospholipid levels because of blocking of TAG production from PA 

(87).  We found that the dgk1∆ mutation improves viability of the pah1Δ mutant and 

growth on non-fermentable carbon sources, and decreases the mitochondrial membrane 

potential in the post-diauxic phase.  Thus, the lower level of lipid in the 

dgk1Δ pah1Δ  mutant alleviates the demand for ATP, resulting in the improved viability.  

These results indicated that the PA produced from DAG by Dgk1 DAG kinase is required 

for the phenotype exhibited by the pah1∆ mutant.   

Nevertheless, we expect that other mechanisms are associated with the decreased 

viability of the pah1∆ mutant, because deletion of DGK1 in the pah1∆ mutant did not 

completely rescue the phenotype of the pah1∆ mutant.  Interestingly, the viability of cells 

is consistent with the TAG level.  The dgk1Δ mutant, which exhibits the TAG level 

higher than that of wild type because DAG cannot be converted into PA, showed 
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increased viability in the late stationary phase when compared with wild type cells.  The 

TAG level and viability were elevated in the dgk1Δ pah1Δ  mutant than in the 

pah1Δ mutant.  Mutants defective in the TAG synthesis exhibit apoptotic phenotypes, 

presumably because of increased levels of free fatty acid and DAG (246).  The pah1∆ 

mutant also exhibits lipotoxicity induced by an increase in free fatty acids.  Even though 

dgk1∆ mutation in the pah1∆ mutant decreased the level of free fatty acids than the 

pah1∆ mutant, the dgk1Δ pah1Δ  mutant still exhibited the elevated level of free fatty 

acid than wild type cells in the stationary phase.  These observations suggested that the 

reduced level of TAG in the pah1Δ is related to its reduced viability in the late stationary 

phase.   

Mitochondria are involved in a wide variety of cellular processes, including ATP 

production, lipid synthesis and transfer, aging, and apoptosis (113-115).  Many of these 

processes occur in the mitochondrial membrane, and phospholipids play important roles 

in mitochondrial morphology and respiratory capacity (116, 175, 177, 178, 186, 188).  In 

particular, phospholipid composition in the mitochondrial inner-membrane significantly 

affects the formation of respiratory supercomplexes from ETC complexes (144, 186).  

The deletion of PAH1 gene causes the expansion of nuclear/ER membrane because of the 

increased level of PA (95).  Accordingly, we wondered whether the pah1∆ mutation 

affects the mitochondrial membrane, resulting in defects on the mitochondrial 

morphology and functions.  However, we did not detect great changes in the composition 

of the major mitochondrial phospholipids in the pah1∆ mutant.  We found that the pah1∆ 

mutant exhibited no defects in the levels of mitochondrial PE and CL, while 

supercomplexes levels were a bit lower in the pah1∆ mutant when compared with the 
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wild type control.  Interestingly, we found a lower level of PA in the mitochondria of the 

pah1∆ mutant.  The basis for this observation is unclear.  In yeast, PE is primarily 

synthesized in the mitochondria and then transported to the ER for the synthesis of PC 

(36, 37).  If the pah1∆ mutant is defective in mitochondrial function, then PE production 

and transfer to the ER to produce PC would not be efficiently carried out.  Our data 

indicated that the pah1∆ mutation does not cause defects on lipid production and 

trafficking in mitochondria.      

In mammalian cells, the level of PA in mitochondria is related to the 

mitochondrial fusion and fission.  PA produced from CL via phospholipase D induces 

mitochondrial fusion leading to tubulated mitochondria, whereas a decrease in the level 

of PA through its conversion to DAG by lipin-1β causes mitochondrial fission leading to 

fragmented mitochondria (131, 247).  HeLa cells depleted for PA due to phospholipase 

A1–mediated hydrolysis exhibits fragmented mitochondria (248).  Based on these 

observations, we expected that the pah1Δ mutant would exhibit a more fragmented 

mitochondrial morphology in the stationary phase.  However, this was not observed in 

our studies.  Overall, we did not find a relationship between the PA level in the 

mitochondria and mitochondrial morphology (e.g., fusion/fission).   

The mitochondria are also a main organelle for the production of ROS, such as 

superoxide and hydrogen peroxide, which cause oxidative damage to the major classes of 

cellular molecules (nucleic acids, proteins, and lipids) and, eventually lead to reduced cell 

viability (217, 249-251).  To generate ATP in mitochondria, electrons are transferred to 

oxygen through ETC and ROS is produced simultaneously.  We found that stationary 

phase pah1Δ cells exhibited elevated superoxide and lipid hydroperoxides levels.  
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Moreover, the mitochondrial membrane potential was elevated in post-diauxic pah1∆ 

mutant cells.  Even though we did not detect significant defects in CL and PC levels, 

which are important phospholipids for formation of respiratory supercomplexes, we 

found that the pah1∆ mutant exhibited the lower level of respiratory supercomplexes in 

non-fermentable carbon sources.  We suggest that the increased oxidative 

phosphorylation in the pah1∆ mutant due to requirement of ATP for lipid production 

cause the elevated superoxide production, and then superoxide is readily react with high 

level of lipid in the pah1∆ mutant, leading to production of toxic byproducts.  Apparently, 

a consequence was an increase in sensitivity to hydrogen peroxide.  In addition, we 

suggest that lower levels of mitochondrial respiratory supercomplexes in the pah1∆ 

mutant affected the superoxide level.   Even though the role of supercomplexes is still 

controversial, they could improve the efficiency of electron transfer among ETC.   

The dgk1Δ pah1Δ mutant was less sensitive to the hydrogen peroxide than the 

pah1∆ mutant, because the dgk1Δ pah1Δ mutant exhibited similar level of superoxide 

with that of wild type.  However, sensitivity to the hydrogen peroxide in the 

dgk1Δ pah1Δ mutant is higher than in wild type.  We speculate that increased levels of 

phospholipids and fatty acids in the dgk1Δ pah1Δ mutant affect its sensitivity to 

hydrogen peroxide.   

Even though the level of superoxide was higher in the pah1∆ mutant, SOD 

activity was not affected.  Catalase activity from cytosol but not from mitochondria was 

even reduced in the pah1∆ mutant.  Accordingly, these enzyme activities could not be 

sufficient to remove the increased level of superoxide in the pah1∆ mutant.   Moreover, 

the pah1Δ mutation is synthetically lethal with the lack of the TSA1 gene encoding 
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thioredoxin peroxidase, an antioxidant enzyme in yeast (252).  This finding suggests that 

the pah1∆ mutant is under high oxidative stress. 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

This work indicates that the pah1Δ mutant become deleted for energy in the 

stationary phase.  The dgk1Δ pah1Δ  double mutation does not affect total levels of 

cellular lipids, whereas the pah1Δ single mutation leads to the increase in it in the 

stationary phase (59, 87).  The dgk1Δ mutation complements the pah1Δ mutation with 

respect to lipid hydroperoxidation, ATP demand, and increase in chronological life span.  

Accordingly, we speculate that the PA production from increased Dgk1 DAG kinase 

activity in the pah1Δ mutant is critical for the viability of the pah1Δ mutant.  However, it 

is still unclear that PA level is used for the synthesis of phospholipids or participates in 

the activation of lipid production pathway signaling.  We still need to figure out whether 

glycerol-3-phosphate and fatty acid productions are clearly induced to produce lipid in 

the stationary phase in the pah1Δ mutant.  

In addition, the increase in total levels of cellular lipids in the pah1Δ mutant 

causes the secondary effect such as oxidative stress caused by superoxide and lipid 

hydroperoxides productions in the stationary phase.  We found that anti-oxidant enzyme 

activities were not induced in the pah1Δ mutant than wild type, even though the 

pah1Δ mutant was exposed to the oxidative stress more than wild type.  Transcription 

factors such as a zinc finger DNA-binding protein (encoded by Msn2/Msn4) and yeast 

AP-1, a member of the AP-1 family of transcription factors, are involved in the 
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expression of antioxidant enzymes.  Msn2/Msn4 upon its activation translocates to the 

nucleus, and induces the expression of oxidative stress response genes containing stress 

response element (STRE) in the promoter (253, 254).  For example, the CTT1gene 

encoding cytosolic catalase has been shown to be upregulated through the cis-acting 

element under oxidative stress (253, 255).  In addition, upon activation by hydrogen 

peroxide, Yap1 translocates from the cytosol to the nucleus, and induces the expression 

of antioxidant genes including GPX3 and TRX2 (256, 257).  Accordingly, additional 

studies to examine the effects of pah1Δ  mutation on these oxidative stress response 

pathways are warranted.  We also will examine whether overexpression of antioxidant 

enzymes including SOD, catalase, and thioredoxin peroxidase in the pah1Δ mutant and 

addition of antioxidants to the growth medium decrease the sensitivity to the hydrogen 

peroxide and/or improve the chronological life span.  

    Target of rapamycin (TOR), a Ser/Thr kinase, is associated with a wide range 

of cellular processing such as ribosome biogenesis, regulation of cell cycle and size, 

autophagy, and cell wall integrity pathway in yeast (258, 258-261).  TOR, which is active 

in the presence of nutrient including glucose, promotes cell proliferation pathway, 

whereas TOR is inactive in the nutrient depletion (258, 259).  Accordingly, TOR is active 

in the exponential phase, and then it is inactive in the stationary phase.  The tor1Δ 

mutation extends chronological life span by changes of mitochondrial function and 

oxidative stress (262-264).  Autophagy is also an important cellular processing when 

cells survive in the nutrient depletion for energy production.  In mammals and bacteria, 

PA and DAG participate in TOR signaling, resulting in regulation of autophagy (265-

268).  The phenotypes of the pah1Δ mutant are similar to characteristics when TOR 
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signaling is malfunctioned considerably.  Therefore, the investigation of TOR signaling 

in the pah1Δ mutant could be helpful to understand the mechanism the effects of Pah1 

PAP on life span.  
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