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    Missing data is a common problem in longitudinal clinical trials. Substantial missing 

data could introduce potential biases and undermine the scientific credibility of causal 

conclusions from clinical trials. To handle the missing data issue, it is always required by 

the regulatory agencies to pre-specify a primary analysis and sensitivity analysis in 

protocol or statistical analysis plan (SAP). Recent National Research Council (NRC) 

report questioned the reasonableness of the missing at random (MAR) setting as the 

primary analysis since MAR is a very special and doubtful assumption for the missing 

data mechanism, and the report encourages to use not missing at random (NMAR) setting 

as the primary analysis. One of the NMAR mechanisms is non-future dependence 

missing data (NFD-NMAR). It is also one of the recommended methods in the NRC 

report. This dissertation addressed this issue and proposed a process to investigate the 

mean-shift model with NFD-NMAR mechanism (NFD-Delta method). The goal is to 
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provide, via the investigation process, a method of finding an appropriate shift parameter 

to specify the primary NMAR analysis in study protocol or SAP based on the criteria of 

maintenance of the type-I error rate for late phase trials by simulations. The simulation 

set-up should be based on either early phase data or information from interim data of the 

current trial. The shift parameter of the NFD-Delta method constitutes the sensitivity 

analysis.  

Several components were considered for the NFD shift parameter in this dissertation: the 

metric/unit, magnitude, and the algorithm to place the shift to examine the effect of these 

components on the type-I error rate (alpha) under the null hypothesis of no treatment 

effect.  For the metric factor, four different metric units were considered: constant STD1, 

constant RSD1,  STDk,  RSDk; for the magnitude factor, different values of shift parameter 

f were considered to investigate which f value is the appropriate shift parameter to control 

the type-I error rate to the nominal level; for the algorithm to implement the delta shift, 

three different methods were proposed: sequential, non-sequential and single adjustment 

method. Extensive simulations were conducted to investigate the type-I error rate. 

Correctness and robustness of the results were examined.   
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Chapter 1 

Introduction and Overview 

1.1 Missing Data Problem 

Missing data is a common problem in longitudinal clinical trials. Major reasons for 

participants to discontinue the assigned treatment include: adverse events, lack of 

tolerability, lack of efficacy, lost to follow-up, or simple inconvenience. Substantial 

missing data could undermine the scientific credibility of causal conclusions from clinical 

trials. An example to illustrate the possible bias caused by missing data is the following:  

Suppose that a high value is a bad outcome of an endpoint, e.g., blood pressure or pain 

score, patients with high values tend to discontinue the therapy and drop out of the study 

more easily than patients with lower values, especially when the therapy also 

accompanies tolerability issue. Then, the outcome of the study would be biased when 

there is a severe imbalance of dropout rates between treatment groups in a randomized 

clinical trial. The recent Food and Drug Administration-commissioned report The 

Prevention and Treatment of Missing Data in Clinical Trials by the National Research 

Council (NRC) panel, and subsequent publications called for increasing awareness of the 

potential frailty of conclusions in the presence of missing data, and provided 

recommendations of strategies in design to prevent and in analysis to treat missing data.  

Nevertheless, the report also acknowledges that missing data continues to be ubiquitous 

in clinical trials, and more research is needed to deal with the problem, especially 

methods for sensitivity analysis. 
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1.2 Sensitivity Analysis  

Although many statistical methods exist to deal with missing data in clinical trials, there 

is not a universal method since each trial has its own set of design and measurement 

characteristics. The properties of these methods depend heavily on the mechanisms 

leading to missing data, which are assumptions that cannot be verified or tested 

completely by the observed data.  Therefore, in reports and interpretations of trial results 

that contain substantial missing data, we need scientifically defensible analyses coupled 

with a sensitivity analysis to assess robustness of the results.  For clinical trials sponsored 

by the pharmaceutical industry, especially those pivotal trials for the New Drug 

Application (NDA), a common practice requested by the regulatory authorities is to 

specify a primary analysis and several sensitivity analyses for the primary endpoint.   

There are different types of sensitivity analyses. Some uses different sets of data such as 

all randomized or treated populations versus per-protocol population that excludes 

protocol violators, outliers, or influential observations; different analytical approaches 

about the distributional assumption such as parametric versus non-parametric methods; or 

different forms of summary statistics such as last time-point versus area under the curve.  

The most concern of missing data, however, is on the assumption of the missing data 

mechanism (MDM), since it is untestable in most cases. This dissertation also follows the 

same thread as in the NRC’s report to focus on the sensitivity analysis regarding the 

untestable assumption of MDM in clinical trial.  For example, if the primary analysis is 

based on the assumption of missing at random (MAR) mechanism, then the sensitivity 

analysis would be to allow departures from MAR.  If the primary analysis is based on a 

particular missing not at random (MNAR) mechanism, then the sensitivity analysis would 
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be to assess different degrees of MNAR and their impact on the results. I will continue 

the discussion of sensitivity analysis in relation to this dissertation in the next section.  

Then in Section 2.7, I will review the literature and continue more discussions on 

sensitivity analyses. 

1.3 Objectives and Research Plan  

Over the last several years, especially after the publications of the European Medicines 

Agency’s Guideline on Missing Data in Confirmatory Clinical Trials and the NRC’s 

report, both in 2010, the old-fashioned, widely used LOCF (last observation carried 

forward) and BOCF (baseline observation carried forward) methods have pretty much 

been abandoned as the primary (or even secondary) analysis for most NDA trials, since 

these methods assume extremely unreasonable models for missing data. In many 

occasions, for example, in the recent FDA’s Guidance for Industry Analgesic Indications, 

methods assuming MAR mechanism have also been denounced, since the justification of 

such a missing data mechanism is difficult. Instead, MDM that is ‘not missing at random’ 

(NMAR) or equivalently, ‘missing not at random’ (MNAR) is encouraged to use as the 

primary analysis. One of the NMAR mechanisms is the so-called non-future dependence 

missing data proposed by Kenward et al., abbreviated as NFD-NMAR in this dissertation.  

NFD-NMAR is also one of the recommended methods in the NRC report.  

I will investigate the NFD-NMAR mechanism in great detail in this dissertation for 

continuous endpoints. There are several steps in carrying out an analysis using the NFD-

NMAR mechanism. The foremost important step is to know the causal estimand that the 

analysis intends to address. A causal estimand requires both the target inferential 
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population and the endpoint of the analysis. The most commonly referenced ITT 

(intention to Treat) estimand essentially avoids missing data or requires no missing data 

entirely, hence it is ideal but not very practical or applicable in the presence of missing 

data (see Lachine, 2000). I will consider two other estimands described in the NRC’s 

report that require imputation of the missing data. One is the AAT (As Assigned 

Treatment) Estimand. For this estimand, it is assumed that the dropouts would follow the 

path in the originally assigned treatment group had they stayed in the study. The 

imputation of missing data does not cross treatment groups.  Another one is the ACT (As 

Control Treatment) Estimand. This estimand assumes that the discontinued subjects in 

the treatment group would switch to the path of the control group had they continued the 

study. The NRC report contains discussion of different views of these two causal 

estimands, but did not explicitly give the specific terms. These two phrases AAT and 

ACT were given in Shih and Aisner.   

Following Daniels and Hogan, the next step in carrying out analysis with the NFD-

NMAR mechanism is to assume a mean-shift (delta) model to link the un-identifiable 

part to the identifiable (observed) data.  The mean-shift model is a helpful interpretation 

of the NFD-NMAR, and has the advantage of including MAR mechanism as a special 

case.  This is called the NFD-Delta method in this dissertation.  The shift parameter of the 

NFD-Delta method is then constitutes the sensitivity analysis.   

Furthermore, there are several components to consider for the shift parameter: the 

metric/unit, magnitude, and the algorithm to place the shift(s).  In the literature, there is 

little discussion of these components, and as far as I know, no study has ever been done 

to examine the effect of these components on the type-I error rate (alpha) of the analysis.  
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In most of discussions of sensitivity analyses, other authors emphasized the ‘tipping 

point’, where the shift parameter changes the study result substantially, e.g., from 

statistical significance to non-significance.  However, I feel strongly that the selection of 

an appropriate shift parameter in an analysis can possibly be done only when we first 

understand their impact on the type-I error rate. Without this assessment, the sense of 

statistical significance/non-significance has no ground. It is conceivable that these three 

components: unit, magnitude, and algorithm, interplay in the findings of the ‘tipping 

point’ (in the sense from preserving the type-I error rate to losing power) when analyzing 

a data set.   

The above discussion is from the data analysis perspective. A more pertinent issue 

regarding a study with potential missing data due to dropouts at the study design stage is 

how to pre-specify in the protocol or the statistical analysis plan (SAP) a primary analysis 

and a sensitivity analysis strategy, as always required by the regulatory agency.  If the 

primary analysis is based on the assumption that the missing data are MAR, the 

sensitivity analysis will then (naturally) be the results based on graduate deviation from 

MAR.  There is no much of issues, the delta adjustment for the primary analysis (MAR) 

is set at zero (i.e., no adjustment).  However, recently the FDA and others have 

questioned the reasonableness of setting MAR as the primary analysis, since MAR is a 

very special and doubtful assumption for the missing data mechanism.  The central 

question I try to address in this dissertation is that, when the primary analysis cannot be 

set at zero adjustment under MAR assumption, what would then be an “appropriate” 

specification of the delta adjustment in the study protocol or SAP?  The 
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“appropriateness” that I advocate to use in this dissertation is the maintenance of the 

type-I error rate. 

This dissertation will be organized as follows. 

In Chapter 2, I shall briefly review the missing data framework in the literature, with a 

focus on the main theory of the NFD-NMAR mechanism and the mean-shift model as 

expressed in the pattern mixture model (PMM) approach, and the relationship between 

the PMM and selection model (SM) notions of NFD-NMAR.  The SM formulation is 

more convenient for performing simulations, and the PMM formulation is more useful 

for performing data analysis.  Hence we need both of them.   

In Chapter 3, I will focus on the implementation of NFD-NMAR together with the mean-

shift model, and the NFD-Delta method in this dissertation.  As I alluded to previously, 

there are steps and components for this implementation.  I will use a real data example of 

clinical trial in a pain study as the proto-type for illustration of the general framework. 

This data set consists of two treatment groups with about 200 subjects in each.  The study 

duration is 5 weeks and the endpoint is the daily average pain score (DAPS) reported at 

baseline and weekly after treatment.  It was a phase II study to be used for planning a 

future phase III trial, especially for planning the primary and sensitivity analyses of 

DAPS in the presence of missing data that is very much expected in the phase III trial 

with a longer duration.  In this phase II data, the dropout rates and reasons for withdrawal 

will be presented. Multiple imputation (MI) by the SAS
TM

 software will be involved. But 

there are several versions of the implementation, and I will point out the differences 

between those in the literature and in what I propose and give my rationale. 
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In Chapter 4, I will conduct extensive simulation studies.  My focus is to investigate the 

type-I error rate.  The simulation plan is structured in Table 1.1.   

(a) I first verify the well-known fact that the alpha level should be at the nominal 

level for the MMRM (mixed effect model for repeated measures by Proc Mixed 

in SAS) as well as for the multiple imputation (MI) method (by Proc MI plus Proc 

MIANALYZE in SAS) when the MDM is MAR. This is because they are 

likelihood-based methods.   

(b) When the MDM is NFD-NMAR or mixture of MAR and NFD-NMAR, I 

hypothesize that the simulated alpha level should still be close to the nominal 

level for MMRM and MI methods when the dropout rates are the same between 

treatment groups, but when the treatment groups’ dropout rates are different 

between treatment groups there will be inflation of the alpha level.  This 

hypothesis is based on the theorem in Wei and Shih. The degree of the inflation 

will be examined. 

(c) The most important part of this dissertation is the attempt to find a delta-shift for 

the NFD-Delta method so that the type-I error rate can be controlled closer to the 

nominal level when the MDM is NFD-NMAR or mixture of MAR & NFD-

NMAR, where the methods of MMRM and MI inflate the type-I error rate.  Since 

the NFD-Delta method involves different metric/units, magnitudes and algorithms 

(see Chapter 3), the simulation will investigate combinations of these settings. 

(d) While a delta, which is expressed in terms of metric/unit and magnitude and 

depends on the algorithm, may be found for the NFD-Delta method to control the 

alpha level at the nominal level when the MDM is (correctly) specified, i.e., when 
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MDM is truly NFD-MNAR or mixture of MAR & NFD-NMAR, I also 

investigate the robustness of the NFD-Delta when the MDM is actually MAR.  

Another scenario of the robustness is when the MDM is future-dependent. It 

would be interesting to examine whether the choice of the delta-shift is robust, or 

how robust the delta-shift is, under these situations.    

(e) The above plan is for the AAT (As assigned Treatment) Estimand. In addition, I 

will also conduct analysis for the ACT (As Control Treatment) Estimand. Since 

this estimand assumes that the discontinued subjects in the treatment group would 

follow the path of the control group, this represents another type of “penalty” 

other than the “delta shift” model. There are also different varieties of 

implementation of ACT.  I will give my version in contrast with others. 

As alluded to earlier, finding an appropriate shift parameter is important for a study 

protocol, where a primary data analysis plan must be pre-specified, followed by 

sensitivity analyses planned around this primary analysis.  Since each trial with its own 

design (including endpoint and study duration) and data, it is not possible to establish a 

universal shift parameter that is appropriate for all types of studies when the primary 

analysis has to be based on a NMAR scenario.  Rather, this dissertation will, via the 

investigation process, provide a method of finding an appropriate shift parameter for any 

late phase trial by simulations (Chapter 4) based on either early phase data or information 

from interim data of the current trial.   

Finally, I shall summarize the findings in Chapter 5, and provide additional comments 

and some potential future research topics.   
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Table 1.1  Simulation Plan for Investigation of Alpha Levels Under Different 

Missing Data Mechanism, Missing Data Pattern, and Methods of Data Analysis 

Estimand: AAT (See Chapter 2) 

Delta Metric: (See Chapter 3) 

 
Missing 

Data 

Mechanism 

(MDM) 

 Method of Data Analysis  

 Dropout 

rate 

between 

treatment 

groups 

PROC 

Mixed 

(MMRM) 

PROC MI + 

MMRM + 

MIANALYZE 

(Multiple 

Imputation) 

PMM – NFD Mean-Shift 

(NFD – Delta) 

    Magnitude Algorithm 

    Large Small Single 

adjustment 

Non-

sequential 

Sequential 

MAR Same  Should be 

at the 

nominal 

level 

Should be at 

the nominal 

level 

     

 Different  Should be 

at the 

nominal 

level 

Should be at 

the nominal 

level 

     

NFD-

NMAR 

Same  Should be 

close to the 

nominal 

level 

Should be 

close to the 

nominal level 

     

 Different  Possible 

inflation 

Possible 

inflation 

     

Mixture of 

MAR & 

NFD-

NMAR 

Same  Should be 

close to the 

nominal 

level 

Should be 

close to the 

nominal level 

     

 Different  Possible 

inflation 

Possible 

inflation 

     

Future 

Dependence 

Different Possible 

inflation 

Possible 

inflation 

     

 

Note: Table will be expanded for AAT estimand for different shift parameters, and 

revised for ACT Estimand, and Blanks are to be filled-in with observed alpha levels from 

simulations in Chapter 4. 
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Chapter 2 

Missing Data Framework:  Literature Review and Comments 

2.1 Notation 

The missing data literature is abundant since the problem of missing data has a long 

history.  I will limit the review to only those related to my research topics summarized in 

Table 1.1. Throughout this dissertation, the following conventions are used.  Let X 

represent treatment indicators and baseline covariates that are fully observed and 

conditioned on in the primary statistical analysis, or the design variables that would be 

adjusted for or conditioned on in the final statistical analysis. Let Y denote the primary 

outcome which is a continuous variable and is repeatedly measured during the trial. Let V 

represent auxiliary variables. Auxiliary variables are different from design variables X, 

they may represent subject-level characteristics that can help in drawing inference from 

incomplete response data. Some variables that are not included in the primary analytic 

model but could be correlated to some of the variables in the model can be included in V, 

such as the information on compliance or side effects of treatment, etc.. These variables 

can be used to reduce the uncertainty caused by the missing data and improve the 

precision of the estimation because of the correlations. Let M denote the indicator of 

whether Y is missing or observed.  In clinical trials with repeated measures, we usually 

include a subscript for the repeated measures.  That is, if the intended outcome measures 

are Y = (Y0 ,Y1, Y2, ..., YT), with T+1 scheduled visits, the corresponding missingness 

indicators are M = (M0, M1, M2, ..., MT), where Mj = 1 if Yj is missing, and Mj = 0 if it is 

observed for j = 0 to T (j=0 being baseline).  In many situations, it is helpful to allow 
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more than one missing-value code to indicate different types of missing data, such as M = 

1 for lack of efficacy, M = 2 for inability to tolerate a drug due to adverse events, M = 3 

for a missed clinic visit, and so on. This notation allows for different modeling 

assumptions for the different reasons of missing data. M is a random variable and is 

called missing data pattern in the literature. 

With multivariate Y, it is helpful to partition Y as (Yobs, Ymis).  Particularly, if T post-

treatment observations were intended to be taken on each subject after baseline visit 

(j=0), and the missing data pattern is monotone, then the observed data comprise Yobs = 

(Y0, Y1,…,Yj) for some j ≤ T , and M = (0,...,0, 1,...,1) when the first j+1  elements of M 

are 0’s and the remaining elements are 1’s. j varies across subjects.  Monotone patterns 

happen when patients drop out of the study due to death, withdrawal of consent, or 

moved away. The NRC’s report discussed design methods such as allowing concomitant 

or rescue medications to retain patients in the study (to provide measurements), to 

minimize dropouts due to “lack of efficacy”, and to continue collecting the data in the 

event of adverse effect even when the study treatment is altered or discontinued.  When 

data are collected for every patient, then ITT (intention to treat) estimand is an option for 

the data analysis. Otherwise, when missing data are present, ITT is not supported by the 

design and data.    

When missing data are present, the joint distribution of Y and M, written in the bracket 

notation as [Y, M] for convenience, is the key in studying the missing data problem, as 

noticed by Shih and Quan (1997).  The joint distribution may be factored in two different 

ways:  [Y, M] = [M| Y; φ] [Y; ], or [Y, M] = [Y| M; M] [M]. The former is called 

selection model (SM) approach and the latter is called pattern mixture model (PMM) 
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approach. When conditioning on X, the parameter  is pertinent to the treatment effect, is 

our primary interest. The parameter φ is about the MDM. The parameter M is pattern 

specific treatment effect, hence needs to be integrated over the patterns to relate them to 

. 

2.2 Missing Data Mechanisms 

While the missing data pattern M is a random variable, the distribution of M in relation to 

(Y, X, V) is the missing data mechanisms (MDM), which describes the process that 

causes the missing data.  Rubin (1976) first characterized restrictions on the distribution 

of M given (Yobs, Ymis, X ,V), using the SM approach, written in the bracket notation as [M 

| X, Vobs, Vmis, Yobs, Ymis] for convenience and defined three general different MDM as 

follows. Little (1995) later pointed it out that each of the three MDM in Rubin’s SM 

approach has an equivalent representation in terms of the predictive distribution of 

missing responses, namely Ymis given (M, Yobs, X, V) based on the PMM approach.  

Inferences from incomplete data rely on the assumption of MDM which cannot be 

verified from the data.   

The MDM can be classified as missing completely at random (MCAR), missing at 

random (MAR), and not missing at random (NMAR). 

Missing Completely At Random (MCAR) 

With the SM approach, missing data are missing completely at random (MCAR) if 

missingness does not depend on values of the covariates, auxiliary and outcome variables 

(X, V, Y).  That is,  
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                [M | X, Vobs, Vmis, Yobs, Ymis] = [M]                                                                  (2.1)  

MCAR assumption is very strong and generally unlikely to hold, especially in the 

missing data settings that are not under the control of investigators in clinical trials.  One 

example of the situation in which MCAR might be suitable is administrative censoring. 

In this situation, the outcomes are censored because a study is terminated at a pre-planned 

date, the outcome has not occurred yet for late accruals, the reason for missingness was 

unrelated to the response model and its covariates.   

MCAR has an unique feature that we can test whether the missing outcomes are MCAR 

if they are at least missing at random (Little, 1988). 

When MCAR is applicable, the missing data is ignorable. The inference based on 

observed data Yobs alone is appropriate. The method of generalized estimating equations 

(GEE) for unbalanced clustered data including repeated measures (Liang and Zeger, 

1986), being a sampling distribution based inference, requires the assumption of MCAR.   

Missing At Random (MAR) 

Missing at random (MAR) is more realistic than MCAR for many studies. MAR requires 

that the missingness does not depend on the missing responses Ymis and Vmis, 

conditionally on observed responses (Yobs, Vobs) and covariates X.  That is, with the SM 

approach: 

                [M | X, Vobs, Vmis, Yobs, Ymis] = [M | X, Vobs ,Yobs]                                         (2.2) 

With the PMM approach, the equivalent notion of MAR is: 
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               [Ymis,Vmis | X, Vobs,Yobs, M] = [Ymis,Vmis | X, Vobs,Yobs]                                    (2.3) 

which implies that the predictive distribution of the missing variables given the observed 

variables does not depend on the pattern of missing values.  This PMM notion of MAR is 

relevant from an analysis perspective since it relates to the predictive distribution of the 

missing values, which is the basis for principled methods of imputation.  The equivalence 

of (2.2) and (2.3) will be given in Section 2.5. 

Many standard analysis methods for incomplete data work under the MAR assumption. 

Therefore, as emphasized and stated in the NRC’s report, it is crucial that “both the MAR 

assumption and the assumptions underlying the data model (e.g., multivariate normality) 

be thoroughly justified before the results from these models can be considered valid for 

treatment comparisons”. Generally, with incomplete data, the assumptions about both the 

MDM and the data model are not verifiable from the observed data (although there are 

tests that can show that a dataset is not MCAR, there is no test that proves that any 

dataset is MCAR or MAR.). the inference and decisions about treatment effect often 

crucially depend upon the missing data mechanism. Even under MAR, different 

assumptions about the full data model will lead to different predictive distributions. This 

is the fundamental idea of the need to perform sensitivity analyses when missing data are 

present, as suggested in the ICH guideline (European Medicines Evaluation Agency, 

2010).   

When MAR is applicable, Rubin (1976) showed that the likelihood-based inference based 

on Yobs alone is appropriate, provided that the parameter of interest, , and that of the 

missing data process, φ, are functionally distinct. In this case, MAR together with distinct 
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parameters, is called “MDM is ignorable”.  The method of weighted GEE, the mixed-

effect models (Laird and Ware, 1982) in SAS
®
 PROC MIXED, and the multiple 

imputation method (Rubin, 1998; Schafer 1997) implemented in SAS
®
 PROC MI, 

require the MAR assumption  (Yuan, 2011). 

For a monotone pattern, it is easy to add the following notation.  At any given time j, let 

  
  = (Y0, Y1 ,...,Yj-1) denote the past history of measurements up to but not including time 

j, and let   
  = (Yj ,...,YT) denote the current and future measurements scheduled, 

including and after time j.  At time j, the predictive distribution of future values given the 

observed history is denoted by [  
 |  

 , X, Mj = 0].  For easy expression, we omit the 

auxiliary variable V here. With the PMM approach, the MAR condition (2.3) holds if 

predictions of future measurements for those who drop out at time j are equivalent in 

distribution to predictions for those who have observed data at and after time j.  That is, 

MAR is equivalent to 

                                   [  
 |  

 , X, Mj = 1] = [  
 |  

 , X, Mj = 0]                                     (2.4) 

Hence, under MAR assumption, the missing values at time j and beyond can be predicted 

sequentially from the histories of subjects who are still in the study at time j. 

Eq. (2.4) can be generalized by allowing the past measurements to include auxiliary 

covariates V. Let   
  = (Y0 ,Y1 ,...,Yj-1, V0 ,V1 ,...,Vj-1 ) represent the observed history of 

both outcomes and auxiliaries. Then MAR can be rewritten by replacing   
  with   

  in 

(2.4).  The validity of the MAR assumption can be improved by measuring and including 
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auxiliary variables V that are predictive of whether the outcome variables are missing and 

predictive of the values of the missing variables. 

Not Missing At Random (NMAR) 

With the selection model setting, we factor [Y, M|X] = [M|Y, X][Y|X] = [M|Yobs, Ymis, 

X][Y|X]. Under NMAR, the missing data mechanism [M|Y, X] = [M|Yobs, Ymis, X] 

depends not only on Yobs (as for MAR) but also on the missing data Ymis. In other words, 

if missingness or dropout depends on the values of missing variables Ymis after 

conditioning on the observed variables Yobs, MAR fails to hold, missing data are said to 

be not missing at random (NMAR) or missing not at random (MNAR).  Withdrawal after 

a sudden unrecorded drop in efficacy response could be NMAR because it would depend 

on unobserved data and could not be estimated from the observed data alone.   

For a monotone missing data pattern, missingness will be NMAR if there exists, for any j, 

at least one value of   
  for which  

                                       [  
 |  

 , X, Mj = 1] ≠ [  
 |  

 , X, Mj = 0]                                 (2.5) 

or equivalently, there exists, for any j, at least one value of   
  , such that  

                        P (Mj = 1| Mj-1 =0,   
     

 , X) ≠ P (Mj = 1| Mj-1 = 0,   
 , X)                 (2.6) 

For (2.5), we can see, under NMAR, the prediction of future observations for those who 

drop out cannot be properly predicted using data observed prior to dropping out or that 

the distribution [  
 |  

 ] varies between those who do and do not drop out at time j. Since 
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these differences cannot be predicted from the observed data, they are fully assumption 

driven. This is the key issue of missing data analysis in many clinical trials. 

When the MDM is NMAR, the statistical inference based on the joint distribution [M, V, 

Y|X] cannot ignore the MDM expressed by [M|Y, X]. In the literature, this is said “the 

missing data is non-ignorable”. As discussed before, although the assumptions used about 

missing data should be reasonable and thoroughly justified, ultimately most assumptions 

about missing data are not testable. Since the inference depends on the MDM assumption 

that cannot be verified from the observed data, a practical strategy is to do ‘sensitivity 

analyses’, in which several statistical models are considered simultaneously or a 

statistical model is further scrutinized using specialized tools. That is, specify a set of 

plausible models of the missing data mechanism in the protocol and investigate the 

sensitivity of the results of analysis to the models and method of handling missing values. 

This is more so with the NMAR situation. Unlike the well-developed literature on 

drawing inferences from incomplete data, the literature on sensitivity analysis to various 

modeling assumptions is relatively new, it is an active area of research and is evolving. 

More discussion on sensitivity analysis will be reviewed in Section 2.7.   

2.3 Selection model and Pattern Mixture Model Approaches 

There are two broad classes of models for the joint distribution of Y and M: selection 

models (SM), which factor the joint distribution as  

           [Yobs, Ymis, M | X ] = [M | Yobs, Ymis, X ] × [Yobs, Ymis | X ]                                     (2.7) 

and pattern mixture models (PMM), which factor the full-data distribution as 
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           [Yobs, Ymis, M | X ] = [Yobs, Ymis | M, X ] × [M | X ]                                                (2.8) 

Pattern mixture models (2.8) can be further factored to make the missing data 

extrapolation explicit within missing data pattern M:  

           [Yobs, Ymis, M] = [Ymis | Yobs, M, X ] × [Yobs | M, X ] × [M | X ]                              (2.9) 

2.3.1 Selection Models  

Selection models can be separated into two types, parametric and semi-parametric. 

Parametric selection models were first introduced by Rubin (1974) and Heckman (1976), 

based on parametric assumptions for the joint distribution of the full data (mostly, a 

normal distribution for responses data and a probit or a logit regression for the missing 

data indicators). For repeated measures, parametric selection models were proposed by 

Diggle and Kenward (1994), and semi-parametric models were described by Robins et al. 

(1995) and Rotnitzky et al. (1998).  I follow the parametric models in this dissertation. 

For an easier illustration of a standard formulation, we assume the full response data 

comprise (Y1, Y2). Assume Y2 is missing on some subjects, the aim is to obtain the mean 

of Y2 in each treatment group. A parametric selection model might assume that the full 

(hypothetical) complete response data follows a bivariate normal distribution in each 

treatment group (denoted by X): 

           (Y1, Y2 ) | X = x ~ N(μ(x), Σ(x))                                                                         (2.10) 

and the ‘selection mechanism’ part of the model (MDM) follows a logistic regression 

             logit{P(M = 1 | Y1 ,Y2, X )} = α0 +α1Y1 +α2Y2                                                (2.11) 
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The regression coefficients (α0, α1, α2) in (2.11) could be different for different treatment 

groups. 

In this example, if α1 = α2 = 0 then the MDM is MCAR.  If α2 = 0, then the MDM is 

MAR.  NMAR is when α2  0. 

Model (2.10) could be fit to observed data under MAR, even though it seems no 

empirical information about some of the model parameters. The model could be fit 

because of the parametric and structural assumptions being imposed on the (hypothetical) 

complete data distribution [Y1, Y2 |X] (i.e., bivariate normal). It is beneficial but need to 

use extreme caution because the assumptions underlying this parametric model cannot be 

tested from the observed data. The major advantage is convenience. When parametric 

selection models fit under the MNAR assumption, the parameters identification and the 

sensitivity to assumptions can cause big issues: examples can be seen in the reference of 

Kenward (1998), Little and Rubin (2002, Chapter 15), and the discussion of Diggle and 

Kenward (1994).  

Semi-parametric selection models do not assume a parametric model for the hypothetical 

completer data response distribution [Y1, Y2 |X], and hence less sensitive to this part of 

assumptions.   

Selection models are very sensitive to parametric assumptions about the hypothetical 

complete-data distribution. But the SM approach is useful for conducting simulation 

studies for incomplete data by probit or logit models such as (2.11) after generating the 

complete data set from a known distribution (such as multivariate normal distribution). 
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2.3.2 Pattern Mixture Models  

Pattern mixture models for repeated measures data were proposed by Little (1993, 1994) 

and followed by a number of extensions and generalizations. The connection between 

pattern mixture and selection models is described in Little and Wang (1996), 

Birmingham et al., (2003), and in Molenberghs et al. (1998).  

The PMM approach is especially useful for data analysis since it can be viewed from an 

imputation perspective, in which missing values Ymis can be imputed from their predictive 

distribution given the observed data including M; that is,   

                      p(ymis | yobs, x, M)                                                                                    (2.12) 

Under MAR assumption, this is equivalent to p(ymis | yobs, x), which is a conditional 

distribution obtained from the distribution of Y given X. Nevertheless, if the data is not 

MAR, the predictive distribution (2.12) is a direct by-product of the pattern mixture 

formulation because it conditions on the missing data pattern M. This more direct 

relationship between the pattern mixture formulation and the predictive distribution for 

imputations generates the benefits in transparency and computational simplicity in some 

situations, as described in Kenward and Carpenter (2008, Section 4.6). 

Under NMAR, the SM factorization requires full specification of the model for the 

missing data mechanism (MDM). Little (1994) and Little and Wang (1996) illustrated 

that for some PM models, the specification of the model for MDM in NMAR situations 

can be avoided by using assumptions about the mechanism to yield restrictions on the 

model parameters.  See more discussion in Section 2.4. 
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Pattern mixture formulations are suitable to sensitivity analysis because they separate the 

observed data distribution from the predictive distribution of the missing data given 

observed data. Sensitivity analyses can be formulated in terms of differences in mean or 

other measures between those with observed data and those with missing responses.  The 

non-future dependent MDM is of this kind of setting, and it is the focus of this 

dissertation. The next section will review the definitions of non-future dependent MDM 

in both SM and PMM approaches. Chapter 3 will elaborate it in more detail and relate it 

to the multiple imputation. 

2.4 Non-future Dependence Missing Data Mechanism 

2.4.1 Non-future Dependence Missing Data Mechanism Definition with Selection 

Model Approach 

Obviously there are many NMAR models as seen from the selection model setting:  The 

missing data mechanism [M|Y, X] = [M|Yobs, Ymis |X] depends both Yobs (as for MAR) 

and on Ymis.  As there are infinitely many different ways M can depend on Ymis, we shall 

further subclass the NMAR models.  First, for longitudinal data with Yj, j = 0, 1, 2, …, T, 

T+1 discrete time points, where j=0 is the baseline visit, the monotone missing data 

pattern can be characterized by the follow-up time, i.e., the last visit that a subject has a 

measurement observed, as L=0, 1, ..., T.  Patients with L = j-1 has Yj missing for all j, 

j+1, …,T.  Patients with the pattern L = T are the completers.   

A useful subclass of NMAR is called non-future dependence (NFD) missing introduced 

by Kenward et al. (2003).  In simple terms, the non-future dependence assumption states 
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that the probability of dropout at time j can only depend on observed data up to time j and 

the possibly missing value of Yj, and not future values beyond time j. 

In notation, for any time-point j, the selection model factorization for L= j is then written 

as  

[Y0, Y1, …, Yj, …, YT, L=j] = [L= j |Y0, Y1, …,Yj, …, YT] [Y0, Y1, …,Yj, …, YT]   

At the current time pint j+1, we may re-write the above expression in terms of the past 

history (observed):      
  = (Y0, Y1 ,...,Yj), and the current and future responses:     

  = 

(Yj+1 ,...,YT) as: 

[Y0, Y1, …, Yj, …, YT, L=j] = [L= j |    
 ,     

 ] [    
 ,     

 ]   (2.13) 

If the MDM is such that 

[L= j |    
 ,     

 ] = [L= j |     
 , Yj+1]      (2.14) 

it is then called non-future dependence (NFD) missing, since the current, unobserved 

outcome Yj+1 (in the pattern L = j) depends on the past observed outcomes     
  = (Y0, Y1 

,...,Yj) as well as  the current, unobserved response Yj+1, but not on the future responses 

    
  = (Yj+2,...,YT) (Kenward et al., 2003).   

2.4.2 Non-future Dependence Missing under Pattern Mixture Model 

With the pattern mixture framework, NFD missing also has a corresponding form, 

expressed by Kenward et al. (2003) in terms of “restrictions” or “constraints” as follows: 
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Assume the baseline value Y0 is always observed, and that the first missing data occurs at 

the first follow-up visit.  (If the first missing data occurs at a visit that is beyond the first 

follow-up visit, then we can absorb the always observed visits into Y0 as a vector for easy 

notation.)  For visits k ≥ 2 and all pattern j < k-1 

[Yk | Y0, Y1…, Yk-1, L= j] = [Yk| Y0, Y1, …, Yk-1, L ≥ k-1]   (2.15) 

Kenward (2003) showed that (2.15) is equivalent to  

[Yk | Y0, Y1…, Yk-1, L= j]= [Yk | Y0, Y1, …, Yk-1]    (2.16) 

Notice that in the above condition (2.15), the distribution [Yk| Y0, Y1, …, Yk-1, L = k-1] 

was left unspecified for k = 1,…, T. 

For easy comprehension, I illustrate the conditions in (2.15) in Table 2.1 for T = 4.  

Table 2.1  Illustration of Non-future Dependence MDM with T = 4 

 k=0 k=1 k=2 k=3 k=4 

L=0 x ?? ?=[Y2|Y0, Y1, L≥1] ?=[Y3|Y0, Y1, Y2, L≥2]

  

?=[Y4|Y0, Y1, Y3, L≥3]

  

L=1 x [Y1|Y0, L=1] ?? ?=[Y3|Y0, Y1, Y2, L≥2]

  

?=[Y4|Y0, Y1, Y3, L≥3]

  

L=2 x [Y1|Y0, L=2] [Y2|Y0, Y1, L=2] ?? ?=[Y4|Y0, Y1, Y3, L≥3] 

 

L=3 x [Y1|Y0, L=3] [Y2|Y0, Y1, L=3] [Y3|Y0, Y1, Y2, L=3] 

 

?? 

L=4 x [Y1|Y0, L=4] [Y2|Y0, Y1, L=4] [Y3|Y0, Y1, Y2, L=4] 

 

[Y4|Y0, Y1, Y3, L=4] 

?? is unidentified distribution (which implies that we need more assumption, and will 

relate to sensitivity analysis)  

 

Proof of Equivalence of (2.15) and (2.16) 
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The proof is shown in the following.  Note that there is a mistake in Kenward (2003) and 

is corrected in the following proof. 

First, observe that, for k ≥ 2 

[Yk | Y0, Y1, …, Yk-1]  

=                                 
    [Yk | Y0, Y1, …, Yk-1| L ≥k-1] [L ≥k-1]               (2.17) 

(a)  To Show that (2.15) implies (2.16): 

From Eq. (2.17),  

[Yk | Y0, Y1, …, Yk-1]  

=                                 
    [Yk | Y0, Y1, …, Yk-1| L ≥k-1] [L ≥k-1]  

=                                    
    [Yk | Y0, Y1, …, Yk-1| L ≥k-1] [L ≥k-1] 

(from Eq. (2.15))  

(Note:  The above step and the following steps are corrections to that in Kenward (2003)) 

= [Yk | Y0, Y1, …, Yk-1| L ≥k-1]           
     [L ≥k-1]) 

= [Yk | Y0, Y1, …, Yk-1| L ≥k-1] 

= [Yk | Y0, Y1, …, Yk-1| L = j]  for j < k-1    (from Eq. (2.15)). 

(b)  To Show that (2.16) implies (2.15) 

From (2.17), we have, for k ≥ 2: 

[Yk | Y0, Y1, …, Yk-1, L ≥k-1] [L ≥k-1]  
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= [Yk | Y0, Y1, …, Yk-1] -                                 
    

= [Yk | Y0, Y1, …, Yk-1] -                            
        (from Eq. (2.16)) 

= [Yk | Y0, Y1, …, Yk-1] (1-          
   ) 

= [Yk | Y0, Y1, …, Yk-1, L=j] [L ≥ k-1]   for j < k-1           (from Eq. (2.16)) 

Hence, [Yk | Y0, Y1…, Yk-1, L= j] = [Yk| Y0, Y1, …, Yk-1, L ≥ k-1] for j < k-1 

2.5   Equivalence of Definitions using SM and PMM Approaches 

In this Section, for simplicity we can omit the conditioning on X and just focus on the 

joint distribution [Y, M]. All the arguments will go through exactly the same when the 

conditioning on X is placed. For the SM approach, the factorization is [Y, M] = [M|Y] 

[Y], and for the PMM approach, the factorization is [Y, M] = [Y|M] [M]. 

If M is entirely independent of Y = (Yobs, Ymis), then the MDM is MCAR.  It follows that  

[Y, M] = [M|Y] [Y] = [M] [Y] = [Y|M] [M]. 

Therefore, MCAR definition is equivalent between SM and PMM approaches.  The next 

two sections reviews how the MAR and NFD NMAR representations are equivalent 

between the SM and PMM approaches. The equivalence of representations is important 

since the SM approach is useful for simulation set ups, while the PMM approach is the 

basis used in the multiple imputation for data analysis. 

2.5.1 Equivalence of MAR Definitions Between SM and PMM Approaches 

(The proof in this section is shown in Shih and Aisner, 2014) 
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For selection models, the MAR representation is [M|Yobs, Ymis] = [ M|Yobs].  Thus,  

 [Y, M] = [M|Y][Y] = [M|Yobs, Ymis][Y]= [M|Yobs][Y]   (2.18) 

Under this representation, (2.18) can be re-written as  

 [Yobs, Ymis, M] = [M|Yobs][Yobs, Ymis] 

           = 
             

        
 [Yobs, Ymis] 

             = [Yobs|M][M] 
           

        
 

              = [Yobs, M] [Ymis| Yobs]     (2.19) 

However, [Yobs, Ymis, M] = [Yobs, M] [Ymis| Yobs, M].  Equating this to (2.19), we obtain 

 [Ymis| Yobs, M] = [Ymis| Yobs].       (2.20) 

(2.20) is the representation or condition of MAR with the PMM approach.   

Reversely, when (2.20) is true, multiplying both sides of (2.20) by [Yobs, M] we obtain 

[Yobs, M] [Ymis| Yobs, M] = [Yobs, M] [Ymis| Yobs]. 

This leads to [Yobs, Ymis, M] = [Yobs, M] [Ymis| Yobs] 

         = [Yobs|M][M] 
           

        
 

          = 
             

        
 [Yobs, Ymis] 

           = [M|Yobs][Yobs, Ymis]     (2.21) 
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Hence, we have [Y, M] = [M|Y][Y] = [M|Yobs][Y], implying that [M|Y] = [M|Yobs], 

which is the representation or condition of MAR with the SM approach. 

2.5.2 Equivalence of NFD-NMAR Definitions Between SM and PMM Approaches 

The condition or representation of NFD NMAR in the SM approach was given in Eq. 

(2.14):  

[L= j |    
 ,     

 ] = [L= j |     
 , Yj+1] 

That is, the probability of the current measurement Yj+1 being missing (for the pattern 

L=j) depends on the past observed outcomes     
  = (Y0, Y1, …,Yj) and the presently 

missing outcome Yj+1, but not on the future outcomes (Yj+2, …,YT).   

For PMM approach, NFD missing representation is expressed in Eq. (2.15) or 

equivalently Eq. (2.16):  For visit k ≥ 2 and pattern j < k-1,  

[Yk | Y0, Y1…, Yk-1, L= j]= [Yk | Y0, Y1, …, Yk-1]   

Proof of the equivalence was given in Kenward et al. (2003), however, with some typos.  

The following is a re-write with corrections applied. 

(a) Show that Eq. (2.14) implies Eq. (2.16) 

Proof:  Use the notation Y = (Y0, Y1, …, YT),     
  = (Y0, Y1, …, Yj), and     

  = 

(Yj+1, Yj+2, …, YT) for any i ≥ 0.  We first need to establish an identity shown in Eq. 

(2.25) as follows.  With the SM factorization: 

[Y, L= i] = [Y] [L= i |Y] = [Y] [L= i |    
 ,     

 ]  
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          = [Y] [L= j |     
 , Yi+1]    (from Eq. (2.14))  (2.22) 

Also, with the PMM factorization:  

[Y, L= i] = [Y | L= i] [L= i]  

    = [Yi+2, …, YT |Y0, Y1, …, Yi+1, L= i] [Y0, Y1, …, Yi+1| L= i] [L= i] 

    = [Yi+2, …, YT |Y0, Y1, …, Yi+1, L= i] [L= i,Y0, Y1, …, Yi+1]  

    = [Yi+2, …, YT |Y0, Y1, …, Yi+1, L= i] [L= i |Y0, Y1, …, Yi+1] [Y0, Y1, …, Yi+1]  

    = [Yi+2, …, YT |    
 , Yi+1, L= i] [L= i |    

 , Yi+1] [    
 , Yi+1]     (2.23) 

Equating (2.22) and (2.23), we have: 

[Y] = [Yi+2, …, YT |    
 , Yi+1, L= i] [    

 , Yi+1]   (2.24) 

Or [    
 ,  Yi+1, Yi+2, …, YT ] = [Yi+2, …, YT |    

 , Yi+1, L= i] [    
 , Yi+1]  

This leads to  

     
                  

     
        

 = [Yi+2, …, YT |    
 , Yi+1, L= i] 

That is, [Yi+2, …, YT |    
 , Yi+1] = [Yi+2, …, YT |    

 , Yi+1, L= i]   (2.25) 

The proof of Eq. (2.16) is done by induction on the visit time-point k.  Starting k=1 is 

trivial because there is no restriction with k=1, only the unidentified conditional 

distribution [Y1|Y0, L=0]   (j has to be < k-1, for k ≥ 2 in Eq. (2.16)). 
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For a given j, j<k-1 implies k ≥ j+2.  Assume (2.16) is true for k ≥ j+2, …, i, we then 

need to show that (2.16) is true for k=i+1. 

So, for a given j, write (2.16) for k= j+2, …, i,  

[Yj+2 | Y0, Y1…, Yj+1, L= j]= [Yj+2 | Y0, Y1, …, Yj+1] 

[Yj+3 | Y0, Y1…, Yj+2, L= j]= [Yj+3 | Y0, Y1, …, Yj+2] 

: 

: 

[Yi | Y0, Y1…, Yi-1, L= j]= [Yi | Y0, Y1, …, Yi-1]  

 

Multiplying the above identities their left-hand sides and right-hand sides,  

[Yj+2 | Y0, Y1…, Yj+1, L= j] [Yj+3 | Y0, Y1…, Yj+2, L= j]…..[Yi | Y0, Y1…, Yi-1, L= j] 

 = [Yj+2 | Y0, Y1, …, Yj+1] [Yj+3 | Y0, Y1, …, Yj+2]….[Yi | Y0, Y1, …, Yi-1] 

we have:  

[Yj+2, Yj+3, …,Yi | Y0, Y1…, Yj+-1, L= j] = [Yj+2, Yj+3, …,Yi | Y0, Y1…, Yj+-1]         

Or, using the abbreviated notation: 

 [Yj+2, …,Yi |     
 , Yj+1, L= j] = [Yj+2, …,Yi |     

 , Yj+1]       (2.26) 

Next, notice that Eq. (2.25) is true for any i, hence is true for the given j; switching sides 

of (2.25) and applying it to the given j, we have: 

[Yj+2, …,Yi+1, …,YT |    
 , Yj+1, L= j] = [Yj+2, …,Yi+1, …,YT |    

 , Yj+1]     
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Integrate the above equation over (Yi+2, …,YT), we have  

[Yj+2, …,Yi+1|    
 , Yj+1, L= j] = [Yj+2, …,Yi+1|    

 , Yj+1]   (2.27) 

Dividing (2.27) by (2.26) gives: 

                 
             

                  
            

 = 
                 

       

                 
          

 

This leads to [Yi+1|    
 , Yj+1, L= j] = [Yi+1|    

 , Yj+1] 

The induction is done. 

(b) Show that Eq. (2.16) implies Eq. (2.14) 

Starting from factorization 

[Y, L= j] = [Y0, Y1, …, Yj+1, L= j] [Yj+2, …, YT |Y0, Y1, …, Yj+1, L= j] 

= [Y0, Y1, …, Yj+1, L= j] [Yj+2 |Y0, Y1, …, Yj+1, L= j] [Yj+3, …, YT |Y0, Y1, …, Yj+2, L= j] 

      = [Y0, Y1, …, Yj+1 | L= j] [L= j]    
     Yk |Y0, Y1, …, Yk-1, L= j]  (2.28) 

Applying Eq. (2.16) to the above, we have  

[Y, L= j] = [Y0, Y1, …, Yj+1 | L= j] [L= j]    
     Yk |Y0, Y1, …, Yk-1] 

     = [     
 , Yj+1 | L= j] [L= j] [Yj+2, …, YT |Y0, Y1, …, Yj+1] 

      = 
      

                      

      
        

       
        [Yj+2, …, YT |    

 , Yj+1] 
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      = 
      

                      

      
        

 [Y] 

…...= [L= j |    
 ,     

 ] [Y]       (2.29) 

Since [Y, L= j] = [Y] [L= j |Y], we have from (2.29): 

[L= j |Y] = [L= j |     
 , Yj+1], 

which is the SM representation, Eq. (2.14). 

2.6 Multiple Imputation Method with MAR Assumption 

In the following, I will review the multiple imputation (MI) method under the MAR 

assumption due to Rubin (1987). This will then be the basis for the main analysis under 

the NFD NMAR assumption in Chapter 3. We assume that the missing data pattern is 

monotone as the situation of dropouts in clinical trials.   

For a data set with monotone missing data pattern, the multiple imputation method is 

generally carried out in three steps:  (a) Use a multivariate model to impute (fill in) the 

missing values m times to obtain m complete data sets; (b) For each of the m complete 

data sets, perform the usual analysis for complete data (such as mixed-effect model for 

repeated measures, or MMRM in short), obtain the mean and within-imputation and 

between-imputation variances of the outcome measurements; and (c) Combine the m 

complete-data estimates by incorporating the within and between-imputation variances.   

The multivariate normal distribution is usually assumed for step (a) for the continuous 

response variables (with missing data) and other continuous covariates (such as age) that 
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are observed. This assumption can be relaxed with categorical covariates without missing 

data (such as sex, center, etc.) 

In step (a), for a variable with missing values, a model is fitted using observations with 

observed values for that variable.  With this resulting model, a new model is fitted and 

used to impute missing values for the variable. In SAS procedure Proc MI, missing 

values are imputed sequentially for variables with missing values in the order specified 

by VAR statement.  That is, for a variable Yj with missing values, the missing values are 

imputed (drawn) from the predictive distribution: 

                       Yj  ~  P(Yj | Y0, Y1, Y2, …, Yj-1 ) 

One example is regression method for monotone missing data.  In the regression method, 

a regression model is fitted for each variable with missing values, with the previous 

variables as covariates (we can also include other covariates, as people usually do).  

Based on the fitted regression model and its coefficients, a new regression model is 

drawn from the posterior predictive distribution of the parameters and it is used to impute 

the missing values for the variable (Rubin 1987). Repeat this process sequentially for 

each variable with missing values. 

                     Yj = β0 + β1 u1 + β2 u2 + … + βk uk 

where u1, u2, …, uk  are the covariates generated from preceding variables Y0, Y1,… , Yj-1. 

The following steps are carried out to impute missing values for Yj at each imputation and 

implemented in SAS
®
 proc MI (referred to SAS/STAT manual): 
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1. Fit a regression model using observed values for the variable Yj and its covariates 

u1, u2, …, uk . The regression parameter estimates for the fitted regression model is 

      0,   1, …,   k,), and the associated covariance matrix is   2
j
 
Vj , where Vj is the 

usual u′u inverse matrix derived from the intercept and covariates u1, u2, …, uk .  

2. New parameters β* = (β*0,  β*1, …, β*k) and   2
*j

  
are drawn from the posterior 

predictive distribution of the parameters (Rubin 1987).  They are simulated from 

(  0,   1, …,   k),   
2
j, and Vj .  The variance is derived as 

  2
*j

   
=   2

j (nj – k – 1) / g 

where g is a          random variate and nj is the number of observations with 

non-missing values for Yj.  The regression coefficients are derived as 

β* =    + σ*j  V′hj Z 

where V′hj is the upper triangular matrix in the Cholesky decomposition, Vj = V′hj 

Vhj, and Z is a vector of k + 1 independent random normal variates. 

3. The missing values are then replaced by 

β*0+ β*1 u1 + β*2 u2 + … + β*k uk + zi σ*j 

where u1, u2, …, uk are the values of the covariates and zi  is a simulated normal 

deviate. 

 

Similar to the regression method, the predictive mean matching method (regpmm) can 

also be used for imputation. For each missing value, it imputes an observed value that is 

selected from the specified number of closest observations to the predicted value from the 

simulated regression model (Rubin 1987). When the normality assumption is violated, 
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the predictive mean matching method is more appropriate than the regression method 

(Horton and Lipsitz 2001). 

Multiple imputation has some advantages over single imputation methods. It overcomes 

the major drawbacks of single imputation methods which assumes that each missing 

values are exactly known and fails to account for any potential variability. For example, 

mixed effect model based on PROC MIXED is a single imputation method and does not 

take into account the uncertainty associated with imputed values and may underestimate 

the standard errors of statistical point estimates. In multiple imputation, data are imputed 

based on a statistical model, and the parameters of that imputation model are not certain 

quantities but rather have a distribution associated with them. MI generates multiple 

imputed dataset and each of these datasets is imputed using predictions from a slightly 

different imputation model, parameters of which are sampled from a common estimated 

Bayesian posterior distribution, that is, imputed data are not certain. MI incorporates this 

uncertainty through multiple ‘plausible’ imputations for each missing value.  

In step (b), once multiple imputed datasets are obtained, each dataset is analyzed using a 

method chosen for complete data (e.g. analysis of covariance or MMRM with PROC 

MIXED in SAS).  

In step (c), use Rubin’s rule to combine the results of these analyses from individual 

datasets to perform an overall inference that takes into account the uncertainty and 

variability of imputations. 

With m imputations, m different sets of the point and variance estimates for a parameter 

Q can be computed. Suppose   i and   i are the point and variance estimates from the ith 
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imputed data set, i=1, 2, ..., m. Then the combined point estimate for Q from multiple 

imputations is the average of the m complete-data estimates: 

                                                      = 
 

 
     

   I                                                   (2.30) 

Suppose    is the within-imputation variance, which is the average of the m complete-

data estimates: 

                                                      = 
 

 
     

   i                                                                    (2.31) 

and B is the between-imputation variance 

                                                B = 
 

   
      

   i -  )
2                                                        

(2.32)
 

Then the variance estimate associated with Q is the total variance (Rubin 1987) 

                                                   T =    + (1+ 
 

 
) B                                         (2.33) 

where the multiplier (1+ 
 

 
)  is the finite number (m) correction.  As m increases, this 

correction approaches to 1. 

The ratio 

r =  
    

 

 
   

  
 

is called the relative increase in variance due to non-response (Rubin 1987).   
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In the clinical trial setting, MI has another advantage. It allows to use an imputation 

model that is different from the analysis model applied to the imputed data.  This allows 

to account for factors that are potentially correlated with missingness, but are not of 

interest for the inference regarding the treatment effect on the primary efficacy outcome.  

For analyses with MAR assumption, it can be directly implemented in SAS PROC MI 

and PROC MIANALYZE. For analyses with a particular NMAR assumption, the 

imputation step in SAS
®
 needs to be augmented by a specific NMAR model. 

2.7 Sensitivity Analysis 

As mentioned in Chapter 1, there are different types of sensitivity analyses. It is 

important to first qualify what may be and what may not be a sensitivity analysis in the 

trial protocol or the data analysis plan of a study. Morris, Kahan and White (2014) 

provided the following principles in terms of three questions to consider in practice: 

1. Does the proposed sensitivity analysis address the same question as the primary 

analysis? 

2. Is it possible for the proposed sensitivity analysis to arrive at a different result to 

the primary analysis? 

3. If the proposed sensitivity analysis leads to a different result, is there a genuine 

degree of uncertainty as to which will be believed? 

To qualify as a sensitivity analysis, the answer to all of the three questions should be 

‘yes’. 
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If an analysis is to address an important but different question to the primary analysis, it 

should be classified as a secondary analysis instead of a sensitivity analysis. An example 

is the analysis of different causal estimand. ITT analysis and AAT or ACT analyses are to 

answer different questions regarding the treatment effect for different target population.  

If one of the three estimand is the primary analysis, then the others are secondary, not 

sensitivity analyses. Considering them as sensitivity analyses may lead to false anxiety 

about the robustness of the results. 

It is not helpful or sometimes even dangerous for analyses that will always lead to the 

same conclusion as the primary analysis, since they then give a false measure of the 

robustness of results. For example, if we use multiple imputation with the same 

regression model, but only vary the number of imputations from 5 to 10, then only a 

minor degree of the results will turn out, but the conclusion will always be the same since 

all analyses make the same assumptions. 

Assume the first two answers are affirmative: the proposed analysis addresses the same 

question as the primary analysis and can lead to different conclusions.  Then we consider 

the third question. If it is clear that one analysis would always be preferred over the other, 

then the preferred one should be the primary analysis and the other one should not be 

done. For example, a multiple imputation analysis is obviously always preferred 

compared to a single imputation analysis with the same models. A single imputation 

analysis may give a different result since it may give an inappropriate, smaller standard 

error.   
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Scharfstein, et al. (2014) classified three main types of sensitivity analysis.  (a) Ad-hoc 

sensitivity analysis involves analyzing the data using a few different methods such as 

LOCF, complete-case analysis (CCA), MMRM, and MI. The underlying assumptions are 

very different for some of these methods. LOCF is a very strong, almost unreasonable 

NMAR model that assumes no variability after withdrawal for a subject. CCA assumes 

MCAR, while both MMRM and MI assume MAR.  (b) Local sensitivity analysis; and (c) 

Global sensitivity analysis. 

Local sensitivity analysis was due to Troxel, Ma and Heitjan (2004) and Ma, Troxel and 

Heitjan (2005), in which they developed an index of local sensitivity to the non-ignorable 

dropout process, i.e., MDM.  It is to use with the selection model approach, [Y, M|X] = 

[M|Y, X; φ] [Y|X; ]= [M|Yobs, Ymis, X; φ] [Y|X; ], where a perturbation is applied to 

the parameter φ of the dropout process [M|Yobs, Ymis, X; φ] and derives its ‘local 

influence’ on the parameter of interest (i.e., treatment effect) .  An example is seen in 

the MDM in (2.11):  

logit{P(M = 0 | Y1 ,Y2, X )} = α0 +α1Y1 +α2Y2  

A perturbation can be applied to the regression coefficient α2. 

In this framework, it seems that the non-ignorability of the MDM comes from the 

violation of the distinct parameter condition, as defined in Rubin (1976). That is, 

somehow, φ is not separated from , hence perturbing φ will affect . In fact, in the above 

example, the notion of the (local) sensitivity analysis of Troxel, Ma and Heitjan (2004) is 

to evaluate an estimate of  (e.g., MLE) as a function of α2 when α2 departs from 0 

(MAR).  On the other hand, even when φ and  are sets of distinct parameters, since 
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  [Y, M|X; , φ] = [M|Yobs, Ymis, X; φ] [Yobs|X; ] [Ymis| Yobs, X; , φ] 

the full-data log-likelihood function of (, φ) can be written as the sum of the above 

corresponding term as the following: 

ℓ(, φ) = ℓ1(φ) + ℓ2() + ℓ3(, φ) 

where the third term is the log-likelihood based on the conditional probability of the 

unobserved response giving the observed response history of the individual, which 

depends on the missing data process, hence involves both (, φ). It is through this term 

that a perturbation of φ will influence the estimation of .   

Other local sensitivity analyses such as Verbeke et al. (2001) and Molenberghs et al 

(2003) use essentially the same method as Troxel et al. (2004) and Ma et al. (2005), only 

to make the perturbation at the individual subject’s level.  For example, in the example of 

model (2.11), make α2 as α2i for each patient i who drops out.  Then the influence on  is 

aggregated by using Cook’s (1986) local influence assessment method. 

The local sensitivity analysis is to assess of inferences in a neighborhood of MAR. 

The so-called global sensitivity is not very different, in my opinion, from the local 

sensitivity. The hypothetical complete data model part, [Y|X; ], is still fully specified, 

and the sensitivity analysis is still to perturb on the MDM part. However, the literature on 

global sensitivity analysis mostly focused mainly on the PMM approach, although there 

is always an equivalent representation of the MDM for the SM approach. In the global 

sensitivity analysis, as in the local sensitivity analysis, we have a set of identified 
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parameters (that can be estimated from the observed data), and a set of unidentifiable 

parameters (that cannot be estimated from the observed data). In the example of the 

MDM (2.11), the parameter α2 is an unidentifiable parameter as it is the regression 

coefficient of the possibly missing data Y2.  The only additional part of global sensitivity 

analysis, from what I can tell, based on discussions in Daniel and Hogan (2008) and 

Scharfstein et al. (2014) is that the observed-data model part could be semi-parametric 

and that a Bayesian prior distribution could be put on the sensitivity parameter to reflect 

the uncertainty or certainty about the MDM part.   

This dissertation also follows the same thread as in the NRC’s report to focus on the 

sensitivity analysis regarding the untestable assumption of MDM in clinical trial.  For 

example, if the primary analysis is based on the assumption of missing at random (MAR) 

mechanism, then the sensitivity analysis would be to allow departures from MAR.  If the 

primary analysis is based on a particular not missing not at random (NMAR) mechanism, 

then the sensitivity analysis would be to assess different degrees of NMAR and their 

impact on the results.  
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Chapter 3   

NFD-Delta Method and Sensitivity Analysis Using Multiple 

Imputation with Pattern Mixture Model Approach 

3.1 Preliminary  

NFD-Delta Method is to address the non-future dependent missing data.  In addition to 

the NFD-NMAR model for the missing data mechanism, it also assumes the mean-shift 

model.  The first step is to determine the causal estimand (AAT), then the delta shift as 

the next step.  The delta shift involves options of the unit, the magnitude, and the 

algorithm.  I will systematically investigate these options using simulations in Chapter 4.  

In this Chapter, I will detail the procedures for AAT first and ACT next using a prototype 

data structure as shown in Table 3.1.  For ACT estimand, the control-based imputation 

will be used without the delta-shift (see Section 3.4).  

In general, consider a study with T scheduled post-baseline visits.  Let Yk denote the 

outcome at visit k, k =0, 1, 2, … T, where k=0 is the baseline visit.  For longitudinal data 

with missing data caused by dropouts, as commonly the case in clinical trials, a monotone 

pattern is formed naturally.  Under the monotone missing data pattern, if the subject’s 

outcome Yk is missing at visit k, then the outcome Yj at the future visit j>k is also 

missing.  For this discrete time model, let L be the follow-up time, i.e., the last visit that a 

subject has a measurement observed.  The monotone missing data pattern is then 

characterized by L=0, 1, …, T, where L=T is when the subject completes the study visits.  

We assume the baseline values are always observed.  A feasible analysis in this situation 



42 
 

 
 

is to base it on the PMM approach’s factorization.  We discuss the method with the case 

T=5 as displayed in Table 3.1. 

Table 3.1.  Monotone missing data for T=5 

 Yk 

 k=0 k=1 k=2 k=3 k=4 K=5 

L=0 x ? ? ? ? ? 

L=1 x x ? ? ? ? 

L=2 x x x ? ? ? 

L=3 x x x x ? ? 

L=4 x x x x x ? 

L=5 x x x x x x 

x denotes observed, ? denotes missing. 

 

With pattern mixed model under MAR, the conditional distributions of the variables with 

missing data (Ymis) given observed variables (Yobs) are the same across the missing data 

pattern (i.e., independent of the pattern).  For example, in the case of Table 3.1, for the 

observations in pattern L=0 only Y0 (baseline) is observed, we need to impute all other 

follow-up Y1 to Y5.  Under MAR with PMM approach: 

[Y1, Y2, Y3, Y4, Y5|Y0, L=0] = [Y1, Y2, Y3, Y4, Y5|Y0] 

= [Y5| Y0, Y1, Y2, Y3, Y4][Y1, Y2, Y3 Y4|Y0] 

= [Y5| Y0, Y1, Y2, Y3, Y4, L=5][Y4|Y0, Y1, Y2, Y3][Y1, Y2, Y3|Y0] 

= [Y5| Y0, Y1, Y2, Y3, Y4, L=5][Y4|Y0, Y1, Y2, Y3, L≥4][Y3|Y0, Y1, Y2][ Y1, Y2, |Y0] 

= [Y5| Y0, Y1, Y2, Y3, Y4, L=5][Y4|Y0, Y1, Y2, Y3, L≥4][Y3|Y0, Y1, Y2, 

L≥3][Y2|Y0,Y1][Y1|Y0] 
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= [Y5| Y0, Y1, Y2, Y3, Y4, L=5][Y4|Y0, Y1, Y2, Y3, L≥4][Y3|Y0, Y1, Y2, L≥3][Y2|Y0,Y1, 

L≥2][Y1|Y0, L≥1]                                                                                                     (3.1)  

Hence the joint distribution of [Y1, Y2, Y3, Y4, Y5|Y0, L=0] is estimable since all the 

factors in the right hand side of (1.6) are identifiable from the observed data.  Same 

factorization and application of the MAR to the variables with missing values are 

performed for patterns L=1, 2, 3, 4. Missing values are sampled from the 

predictive/conditional distributions.  This is the basis for the multiple imputation method.  

The analysis based on the multiple imputation procedures (PROC MI and PROC 

MIANALYZE) are directly applicable and most useful for imputing continuous outcome 

variables, as reviewed in Chapter 2. 

3.2   Data Analysis Under NFD using PMM: NFD-Delta Method 

The NFD NMAR defined in Eq. (2.15) or Eq. (2.16) is not a comprehensive set of 

restrictions.  Instead, there is one (and only one) conditional distribution (i.e., regression 

model) left unidentified, that is:  [Yk+1 | Y0, Y1…, Yk, L= k] for all follow-up visits k ≥ 1, 

since for L=k, Yk+1 is the current, unobserved outcome.  See the explanation in the next 

paragraph.  Therefore, we need to make an assumption for this unidentified model to 

proceed.  As in the MAR case, we link it with the L>k patterns where Yk+1 is observed.  

One such an assumption is the mean shift model as a simple departure from MAR.  This 

assumption is not verifiable from the observed data, and requires sensitivity analyses 

based on varying the shift values. 

Formally, we write the whole joint distribution with the pattern mixture factorization: 
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 [Y0, Y1, …, Yj, …, YT] = [Y0, Y1, …,Yj, …, YT| L= j] [L= j] 

The pattern-specific joint distribution [Y0, Y1, …,Yj, …, YT| L= j] can be written as 

[Y0, Y1, …,Yj, …, YT | L= j] = [Y0, Y1, …,Yj | L= j] [Yj+1 | Y0, Y1, …,Yj, L= j] x 

                          
           (3.2) 

The first factor of (3.2) is clearly identifiable from the observed data.  The second and 

beyond are not, due to missing data and require additional assumptions.  The second 

factor could be identified by linking it to the observed [Yj+1 | Y0, Y1, …,Yj | L ≥ j+1] by a 

shift parameter model (see Eq. (3.7) later).  The third and beyond factors could be 

identified with the help of the NFD mechanism assumption using (2.15) together with the 

same link as for the second factor as follows:  Via (2.15), for k ≥ j+2,   

[Yk | Y0, Y1, …,Yk-1, L= j] = [Yk | Y0, Y1, …, Yk-1, L ≥ k-1]. 

Furthermore, the right hand side [Yk | Y0, Y1, …, Yk-1, L ≥ k-1]  

=  
                  

                      
                

 
     , L=s]  (3.3) 

 and 
                  

                      
  

                        

                         
 
     

 

Notice that [Y0, Y1, …, Yk-1 | L=s] is identifiable from the observed data for s≥k-1.  [Yk | 

Y0, Y1,…, Yk-1, L=s] is identifiable from the observed data for s≥k.  The unidentified [Yk 

| Y0, Y1,…, Yk-1, L=k-1] is linked to [Yk | Y0, Y1,…, Yk-1, L≥k] by the same shift model 

as for the second factor.  Thus, all factors in (3.2) are identifiable.  The mean shift model 

as a simple yet useful way to describe the departure from MAR is expressed as 
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 E[Yk | Y0, Y1,…, Yk-1, L=k-1] = E[Yk | Y0, Y1,…, Yk-1, L≥k] + k.  (3.4) 

An illustration of the Specific Analysis under NFD with T=5  

We continue the pattern mixture approach to the analysis of data with a monotone 

pattern, since we shall make a link between the NFD missing to the MAR model.  We 

still use Table 3.1 example with T=5 for illustration.  First, for MAR, we have  

 [Y1|Y0, L=0] = [Y1|Y0, L>0] 

[Y2|Y0, Y1, L=1] = [Y2|Y0, Y1, L>1]      (3.5) 

[Y3|Y0, Y1, Y2, L=2] = [Y3|Y0, Y1, Y2, L>2] 

[Y4|Y0, Y1, Y2, Y3, L=3] = [Y4|Y0, Y1, Y2, Y3, L>3] 

[Y5|Y0, Y1, Y2, Y3, Y4, L=4] = [Y5|Y0, Y1, Y2, Y3, Y4, L>4] 

In the above, for the pattern L=j, the predictive/conditional distribution at the right-hand 

side can be obtained from the observed data in the pattern L>j.  Missing values in the 

pattern L=j (left hand size) are sampled from the predictive/conditional distribution of the 

right hand size, as performed by the multiple imputation procedures (PROC MI and 

PROC MIANALYZE) as discussed in previous sections. 

With NFD missing, we shall make additional assumptions to link between the 

distribution of the dropouts and that of the observed. The assumption about the 

observables can and should be checked with the data, but the link itself cannot be verified 

with the data and requires sensitivity analyses.  A simple way to describe the departure 

from MAR is by a shift model in the conditional means.  This mean shift-model 



46 
 

 
 

assumption cannot be verified from the data itself.  The justification for this choice is 

based mainly in interpretability. It works as follows.  First, assume linear regression (i.e. 

conditional mean) models for the observed (right hand side of 3.5), which can and should 

be checked with the observed data: 

E(Y1|Y0, L>0) = 1 + 1Y0  

E(Y2|Y0, Y1, L>1) = 2 + 20Y0 + 21Y1       (3.6) 

E(Y3|Y0, Y1, Y2, L>2) = 3 + 30Y0 + 31Y1 + 32Y2  

E(Y4|Y0, Y1, Y2, Y3, L>3) = 4 + 40Y0 + 41Y1 + 42Y2 + 43Y3  

E(Y5|Y0, Y1, Y2, Y3, Y4, L>4) = 5 + 50Y0 + 51Y1 + 52Y2 + 53Y3 + 54Y4 

All the intercepts and slope coefficients are directly obtainable from the observed data.  

Next, to embed the MAR specification in this large class of NMAR models, the class is 

indexed by shifts in linking the dropouts with the observed conditional means.  However, 

assume that the shift is in the intercept, not in the slops or the residual variances (Daniels 

and Hogan, 2008, page 240 [9]; National Research Council, 2010, page 100).  That is, 

E(Y1|Y0, L= 0) = (1+1) + 1Y0 = E(Y1|Y0, L>0) +1  for all Y0 

E(Y2|Y0, Y1, L=j ) = (2 + 2j) +20Y0 + 21Y1  

       = E(Y2|Y0, Y1, L>1) +2j    for j=0, 1 and all Y0, Y1 

E(Y3|Y0, Y1, Y2, L=j) = (3 + 3j) + 30Y0 + 31Y1 + 32Y2     (3.7) 
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                      = E(Y3|Y0, Y1, Y2, L>2) +3j    for j=0, 1, 2 and all Y0, Y1, Y2 

E(Y4|Y0, Y1, Y2, Y3, L=j) = (4 + 4j) + 40Y0 + 41Y1 + 42Y2 + 43Y3  

              = E(Y4|Y0, Y1, Y2, Y3, L>3) +4j         for j=0, 1, 2, 3 and all Y0, Y1, Y2, Y3 

E(Y5|Y0, Y1, Y2, Y3, Y4, L=j) = (5 + 5j) + 50Y0 + 51Y1 + 52Y2 + 53Y3 + 54Y4 

            = E(Y5|Y0, Y1, Y2, Y3, Y4, L>4) +5j      for j=0, 1, 2, 3, 4 and all Y0, Y1, Y2, Y3, Y4 

Furthermore, an additional simplification assumption is that 2j = 2 for j=0, 1; 3j = 3  

for j=0, 1, 2; 4j = 4  for j=0, 1, 2, 3; and 5j = 5  for j=0, 1, 2, 3, 4.  That is, shift is 

equivalent across patterns for each visit with missing data.  This is derived from the 

characteristic of the NFD missing; See Eq. (2.15) and Eq. (2.16) in Chapter 2.  Since the 

regression parameters are all obtainable, the left-hand side of (3.7) are estimable when 

the shift parameters  = (1, 2, 3, 4, 5) are specified.  The missing data in pattern L=j 

will be filled in sequentially with the conditional mean in (3.7).  Computationally, since 

(3.7) (for NFD missing) is only a shift of (3.6) (for MAR), we can utilize the multiple 

imputation procedure based on MAR and apply shifts to the imputed values obtained 

from PROC MI. 

Analytically, we show how to obtain the marginal means of the outcome at each visit in 

each pattern and the marginal mean at the final visit over the patterns.  Denote   
   

 

           .   It follows from (3.7) that for each follow-up visit post baseline we can 

sequentially obtain the patter-specific marginal means: 

  
   

  E(Y1| L= 0) = (1+1) + 1   
   

     (3.8) 
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where   
   

             is estimated directly from the patter-specific observed data.  

  
   

  E(Y2| L= j) =  (2 + 2) +20   
   

+ 21  
   

   for j=0, 1              (3.9) 

        where   
   

    
   

      
   

 are estimated directly from data,   
   

 is obtained from (3.8) 
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  E(Y4| L= j) = (4 + 4) + 40   
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  for j=0, 1, 2, 3          (3.11) 
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+ 52  
   

 + 53  
   

 + 54  
   

  for j=0, 1, 2, 3, 4                                                            
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In many clinical trials, the primary interest is on the marginal mean of the final visit at the 

last time-point T.  For the illustration of T=5,   

E(Y5) =                  
         

   
  

                  (3.13) 

where    = P(L=j) is also estimated by the proportion of subjects in the pattern L=j.   

3.3 Sensitivity Analyses with NFD-Delta Method 

We continue the proto-type Table 3.1 for illustrative discussion.  With the NFD-Delta 

method for the NFD-NMAR model, the shift parameters   = (1, 2, 3, 4, 5) can vary 

over a space of , D(), to perform sensitivity analysis to examine how the result 

changes from the MAR case  = (0, 0, 0, 0, 0).  In general we need to consider three 

factors which interplay in making the delta shift:  the metric (unit or scale), the 

magnitude, and the way (algorithm) to apply the delta shift as an adjustment to the 

imputed values obtained from the MAR model.  The delta added to the conditional mean 

value from MI (under MAR) will be a positive value if higher Y means worse response 

(such as the blood pressure or the pain score). 

3.3.1 Metric of Delta  

I will consider the following different metrics (units/scales) for the delta.  Let STDk be 

the (marginal) standard deviation of Yk at the k-th visit (pooling treatment groups).  STDk 

can be obtained from the complete data after MI (assuming MAR).   The second choice is 

RSDk, which is the residual standard deviation of Yk conditioning on the previous 

responses (Y0, …,Yk-1), also obtained after the MI.  We can see that STDk usually 

increases as the time-point k moves from 1 to T.  The rationale for increasing the delta is 
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that, when a subject drops out, the treatment effect would wear off more and more as time 

goes by, hence more adjustment is needed for later time-points than the earlier time-

points.   On the other hand, RSDk would decrease as the time-point k moves toward T, 

since more (previous) responses will be conditioned on.  The interpretation is that we 

should “penalize” more the earlier dropouts than the later dropouts.  For completers, there 

is no penalty at all.  In addition to these two non-constant (increasing for STDk and 

decreasing for RSDk), another possibility is to set a constant delta unit/scale.  We can 

solicit it from the medical investigator to give a subject-matter expert’s unit scale and use 

it for every time-point.  Or, we can simply use STD1 or RSD1 throughout the time-points.   

All the four options: STD1, RSD1, STDk, and RSDk will be considered in Chapter 4 when 

I perform simulations for sensitivity analyses. 

3.3.2 Magnitude of Delta: Shift Parameter 

After the metric is chosen, for example, RSDk, we may set the maximum range of 

departure from MAR at visit k equal to within a factor fk of RSDk.  If prior belief about 

the value of k  is confined to within fk x RSDk, then D() = (f1 x RSD1 , …, f5 x RSD5).  

Each missing value at visit k is then replaced with E(Yk| Y0, …, Yk-1 , L> k-1) + Unif x fk 

x RSDk, where E(Yk| Y0, …, Yk-1 , L> k-1) is estimated from the imputation steps under 

MAR and Unif is a random sample from the uniform (0,1) distribution.  Daniel and 

Hogan (2008, page 241 [9]), for example, used fk =1 for all k = 1,.., T.  Since the metric 

already varies with time, setting fk = f independent of time is quite reasonable.  This f is 

called “shift parameter” in this dissertation.  In the sensitivity analysis, f will be increased 

from 0 (i.e., no adjustment of delta) to a value where the result changes drastically.  This 
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will then be the “tipping point” or “break-down point”.  Sometimes, the sensitivity 

analysis is also called “stress analysis”. 

3.3.3 Three Implementation Procedures -  Single Adjustment, Sequential and Non-

sequential Algorithm 

Single Adjustment 

There are also different ways to place the delta at each time point.  The single adjustment 

algorithm is the simplest way: Only Unif x f x RSDk-first, or Unif x f x STDk-first is applied 

to the time-point where missing value first occurred for the patient.  The adjustments for 

the rest time-points will be taken care of by the correlations through the MI process. 

Taking an example of RSDk-first as the metric of delta and assuming the first time-point 

with missing value is Week 1, single adjustment can be implemented in steps as follows: 

i. Impute missing values at time-point 1 assuming MAR, using PROC MI (TRTN is 

the treatment group variable with 0 representing control group and 1 representing 

the experimental group):  

      proc mi data=datain out=week1_imput nimpute=5          

                  seed=1234;  

    var TRTN week0 week1; 

    class TRTN; 

    monotone reg(week1= TRTN week0);  

run; 

  

As a result of this step, missing data in both control and experimental treatment 

groups are imputed using a model estimated from subjects with non-missing 
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values at time-point 1.  At this stage, the imputed values are not yet delta-

adjusted, which will be done in the next 2 steps. 

ii. Use the imputed dataset obtained in step (i), obtain RSDk-first for the time point 1 

using the same regression model specified in MI procedure in step (i).  For the 

example in step (i), obtain RSD1 (=RSDk-first, if first time point with missing data 

is Week 1): 

proc reg data=week1_imput outest=RSD_wk1 covout; 

  model week1= TRTN week0; 

  by _imputation_;  

run; 

Get the RSDk-first value from the output dataset RSD_wk1 and save it as variable 

RSD1. 

iii. After step (ii), make the imputed value at time point 1 worse by a value of Unif x f 

x RSD1 for those who dropped out at Week 1.  Assuming the macro variable &f1 

contains the value of f  for Week 1 adjustment: 

data week1_imput;  

  merge week1_imput RSD_wk1;  

  by _imputation_; 

run;  

 

data week1_imput_adjusted;  

  set week1_imput;  

  f1=&f1.; 

  if LASTVIS=0 then week1=week1+f1*ranuni(1234)*rsd1; 

run; 
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In this step, for the above example, only the imputed values at Week 1 was 

adjusted by delta.  For subsequent visits (Week 2, Week 3, ....) of the patient who 

dropped out at Week 1, no delta-adjustment was implemented.  The adjustments 

for these time-points will be taken care by the correlations through the subsequent 

MI process.  Be aware here, the delta-adjustment is applied to both control group 

and experimental group. In Ratitch et al. (2013), delta-adjustment was only 

applied to the subjects in the experimental group.   

iv. After the delta-adjustment in step (iii), impute all the remaining time-points 

sequentially by repeating steps (i-iii) for each time-point.  Use output dataset from 

step (iii) as input to the next call to PROC MI.  Include only the variable 

corresponding to the time-point that needs to be imputed in the VAR statement 

plus predictors (treatment group, baseline, and previous time-points).  For 

example, for time point 2 (Week 2), the following code can be used for MI 

process (use nimpute=1 for subsequent time points):  

      proc mi data=week1_imput_adjusted out= week2_imput 

                   nimpute=1 seed=1234;  

    var TRTN week0 week1 week2; 

    class TRTN; 

    monotone reg(week2= TRTN week0 week1);  

  run; 

v. At the end of process, the final multiply-imputed dataset where all missing values 

are filled is ready for analysis by standard SAS procedures with the results 

combined using PROC MIANALYZE.  
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If STD is chosen as the metric of delta, in step (iii), use PROC MEANS on the imputed 

dataset from PROC MI to obtain the STD for that time point and use it when perform the 

delta-adjustment and then follow the same process specified above. 

Non-sequential Delta Adjustment 

The non-sequential algorithm is to apply Unif x f x (STD1, RSD1, STDk, or RSDk) at each 

time-point k where missing data occur, only once, after the MI (under MAR) is 

completed.  Taking an example of RSDk as the metric of delta, it can be implemented in 

the steps as follows: 

i. Impute all the missing values for all the time-points assuming MAR, using PROC 

MI: 

      proc mi data=datain out=datain_imput nimpute=5  

                  seed=1234;  

        class TRTN;   

        var TRTN week0 week1 week2 week3 week4 week5; 

    monotone method=REG;         

run;  

  

As a result of this step, all the missing data in both control and experimental 

treatment arms are predicted and imputed in turn, given the observed values of all 

the other variables.   

ii. Use the imputed dataset obtained in step (i), obtain RSDk for each time point 

using a regression model with the variable corresponding to the time point that 
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needs to be imputed as the response variable, treatment group and previous time 

points (including baseline) as the predictors.  For example: 

proc reg data=datain_imput outest=RSD_wk1 covout; 

  model week1= TRTN week0; 

  by _imputation_;  

  run; 

proc reg data=datain_imput outest=RSD_wk2 covout; 

  model week2= TRTN week0 week1; 

  by _imputation_;  

  run; 

proc reg data=datain_imput outest=RSD_wk3 covout; 

  model week3= TRTN week0 week1 week2; 

  by _imputation_;  

  run; 

Similarly, derive RSDk for subsequent visits and save them as variables RSD1, 

RSD2, ..... 

iii. After step (ii), merge the imputed dataset from step (i) and the derived RSDk for 

each time point from step (ii), then adjust the imputed values for each time point 

worse by a value of Unif x f x RSDk.  Assuming the macro variables &f1, &f2, 

&f3, &f4, and &f5 contains the value of f  for delta adjustments: 

data datain_adj;  

  set datain;  

  by _imputation_;   

  f1=&f1.; f2=&f2.; f3=&f3.; f4=&f4.; f5=&f5.; 
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  if lastvis=0 then do;  

     week1=week1+f1*ranuni(1234)*rsd1; 

     week2=week2+f2*ranuni(1234)*rsd2; 

     week3=week3+f3*ranuni(1234)*rsd3; 

     week4=week4+f4*ranuni(1234)*rsd4; 

     week5=week5+f5*ranuni(1234)*rsd5;          

  end;   

 

  else if lastvis=1 then do;  

     week2=week2+f2*ranuni(1234)*rsd2; 

     week3=week3+f3*ranuni(1234)*rsd3; 

 week4=week4+f4*ranuni(1234)*rsd4; 

 week5=week5+f5*ranuni(1234)*rsd5;   

  end;   

 

  else if lastvis=2 then do;           

 week3=week3+f3*ranuni(1234)*rsd3; 

 week4=week4+f4*ranuni(1234)*rsd4; 

 week5=week5+f5*ranuni(1234)*rsd5;   

  end;   

 

  else if lastvis=3 then do;           

 week4=week4+f4*ranuni(1234)*rsd4; 

 week5=week5+f5*ranuni(1234)*rsd5;   

  end;   

 

  else if lastvis=4 then do;           

 week5=week5+f5*ranuni(1234)*rsd5;    

  end;  

run; 
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iv. At the end of this process, the final multiply-imputed dataset where all missing 

values are filled and adjusted is ready for analysis by standard SAS procedures 

with the results combined using PROC MIANALYZE.  

Sequential Delta Adjustment 

The sequential algorithm is to apply Unif x f x (STD1, RSD1, STDk, or RSDk) sequentially 

at each time-point k where missing data occur during the MI process.  Taking an example 

of RSDk as the metric of delta and assuming the first time-point with missing value is 

Week 1, sequential delta adjustment can be implemented in steps as follows:  

i. Impute missing values at time-point 1 assuming MAR, using PROC MI: 

      proc mi data=datain out=week1_imput nimpute=5  

                  seed=1234;  

    var TRTN week0 week1; 

    class TRTN; 

    monotone reg(week1= TRTN week0);  

run; 

  

As a result of this step, missing data in both control and experimental treatment 

arms are imputed using a model estimated from subjects with non-missing values 

at time-point 1. At this stage, the imputed values are not yet delta-adjusted, which 

will be done in the next 2 steps. 

ii. Use the imputed dataset obtained in step (i), obtain RSDk for the time point using 

the same regression model specified in MI procedure in step (i).  For the example 

in step (i), obtain RSD1 (RSDk for Week 1): 
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proc reg data=week1_imput outest=RSD_wk1 covout; 

  model week1= TRTN week0; 

  by _imputation_;  

run; 

Get the RSD1 value from the output dataset RSD_wk1 and save it as variable 

RSD1. 

iii. After step (ii), make the imputed value at time point 1 worse by a value of Unif x f 

x RSD1.  Assuming the macro variable &f1 contains the value of f  for Week 1 

adjustment: 

data week1_imput;  

  merge week1_imput RSD_wk1;  

  by _imputation_; 

run;  

 

data week1_imput_adjusted;  

  set week1_imput;  

  f1=&f1.; 

  if LASTVIS=0 then week1=week1+f1*ranuni(1234)*rsd1; 

run; 

In this step, the imputed values at Week 1 were adjusted by delta.  Be aware here, 

the delta-adjustment is applied to both control group and experimental group.  In 

Ratitch et al. (2013), delta-adjustment was only applied to the subjects in the 

experimental group. 

vi. After the delta-adjusting in step (iii), impute all the remaining time-points 

sequentially by repeating steps (i-iii) for each time-point.  Use output dataset from 
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step (iii) as input to the next call to PROC MI.  Include only the variable 

corresponding to the time-point that needs to be imputed in the VAR statement 

plus predictors (treatment arm, baseline, and previous time-points).  For example, 

for time point 2 (Week 2), the following code can be used for MI process (use 

nimpute=1 for subsequent time points):  

      proc mi data=week1_imput_adjusted out= week2_imput 

                   nimpute=1 seed=1234;  

    var TRTN week0 week1 week2; 

    class TRTN; 

    monotone reg(week2= TRTN week0 week1);  

  run; 

Different than the single-adjustment which only adjusts the imputed values of the 

time-point where missing value first occurred for the patient and the adjustments 

for the rest time-points are taken care by the correlations through the MI process, 

sequential delta adjustment algorithm will apply the delta adjustment to all the 

subsequent time points. For example, for the time point Week 2, delta adjustment 

of Unif x f x RSD2 will be applied to the imputed Week 2 values for all patients 

who dropped out at and before Week 2, which including those dropped out at 

Week 1 as well.  For example, the following SAS code can be used to implement 

the delta-adjustment after PROC MI for Week 2:  

  data week2_imput_adjusted;  

   set week2_imput;  

   f2=&f2.; 

   if LASTVIS in (0,1) then  

      week2=week2+f2*ranuni(1234)*rsd2; 
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  run; 

Similarly for the subsequent time points. 

iv. At the end of this process, the final multiply-imputed dataset where all missing 

values are filled is ready for analysis by standard SAS procedures with the results 

combined using PROC MIANALYZE.  

In addition, when the missing values are multiply imputed by the NMAR model, other 

restrictions may also be considered.  For example, for a pain score that ranges from 0 to 

10, the imputed value should also be restricted in this range. Suppose that a clinical 

interpretation of withdrawal due to ineffective therapy means that the missing value 

should not be better than the baseline value, the imputed value should then also adopt this 

restriction.     

3.4  Methods for ACT Estimand 

There is another type of analysis often requested by the regulatory authority and 

performed by the pharmaceutical company: the control-based analysis.  The control-

based analysis is to address the ACT (as control treatment) Estimand.  Strictly speaking, 

as discussed in Section 2.7, ACT is a different estimand from the AAT estimand, and 

addressed a different question from that of the AAT estimand, hence should not really be 

viewed as a ‘sensitivity analysis’ per se.  Rather, the analysis of the ACT estimand should 

be regarded as an analysis for a secondary aim.  Nevertheless, I will present simulation 

studies for the ACT estimand analysis. 
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The ACT Estimand assumes that all discontinued patients would follow the path of the 

control patients.  For a double blind trial, patients may discontinue the therapy or take 

recue medication (hence invalidate the response) for different reasons, but not for the 

reason of “treatment group” – since “treatment group” is masked.  Hence, this model of 

MDM is different from the “response” non-future dependence or “response” dependence 

missingness.  It is rather a “covariate” (i.e., treatment group) missing.  For the simulation 

studies, I consider three situations, first: only MAR, second: NFD-NMAR, third: mixture 

of MAR and NFD-NMAR.  In AAT analysis, the AE or LOE are considered to be 

NMAR, and any other reasons including lost-to-follow-up are considered to be MAR.  

The basic idea here is that the delta shift penalty used previously in AAT analyses is now 

replaced by using the control group’s patients to impute the missing data for the treatment 

group’s patients. Obviously this is a conservative approach. However, there is no 

simulation work in the literature, as far as I know, to investigate the degree of 

conservativeness of this approach.  Since, unlike AAT analysis where there is shift 

parameter to adjust the level of penalty, there is no such a device in this ACT analysis to 

adjust for the level penalty.  Hence it is important to investigate how the differential 

dropout rate affects the type-I error rate of the ACT analysis – and that is purpose of the 

simulation for ACT analysis. 

In a typical data set with missing data, we include reason of missing data:  LOE (lack of 

efficacy) and AE (adverse event) in the NMAR category and assume NFD missingness, 

and any other reason (“Other”) such as lost-to-follow-up in the MAR category.  The idea 

of ACT analysis can be illustrated by the following diagrams by an example of mixture 

data of MAR and NMAR, the following steps illustrate the implementation of ACT 
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analysis.  Notice that the imputation for the NMAR category involves time-point by time-

point steps: 

1. For MAR Category:  

In order to impute MAR missing data for all time-points, first separate the input 

dataset DATAIN into two datasets: NMAR, containing all subjects with NMAR 

missing data from both treatment groups; and DATAIN_MAR, containing the rest of 

the subjects which includes the completed subjects and subjects with any MAR 

missing data from both treatment groups.  Then perform PROC MI on the dataset 

DATAIN_MAR to impute the MAR missing data using regression based MI for all 

the time points and save the imputed values obtained from PROC MI for both control 

and experimental groups.  

<DATAIN>:  

SubjID Treatment Y0 Y1 Y2 Y3 Y4 Y5 Reason 

#001 PBO X X X X X x  

#002 PBO X X     Other  

#003 PBO X X X X   LOE  

#004 PBO X      AE  

#005 DRG X X X X X x  

#006 DRG X X     Other 

#007 DRG X X     AE 

#008 DRG X      AE 

…         
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<DATAIN_MAR>:  (Block out the NMAR cases in the grey area that are AE and 

LOE dropouts) 

SubjID Treatment Y0 Y1 Y2 Y3 Y4 Y5 Reason 

#001 PBO X X X X X x  

#002 PBO X X 
   

 Other  

#003 PBO X X X X   LOE  

#004 PBO X      AE  

#005 DRG X X X X X x  

#006 DRG X X 
   

 Other 

#007 DRG X X     AE 

#008 DRG X      AE 

…         

 

The following SAS code can be used: 

data datain_mar nmar;; 

  set datain; 

  if label='NMAR' then output nmar; 

  else output datain_mar; 

run; 

 

proc mi data=datain_mar out=mar_out nimpute=1 seed=1234; 

  class TRTN; 

     monotone method=REG; 

  var TRTN week0 week1 week2 week3 week4 week5;  

run; 

 

 

 

    <MAR_OUT>: 
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SubjID Treatment Y0 Y1 Y2 Y3 Y4 Y5 Reason 

#001 PBO X X X X X x  

#002 PBO X X Y22 Y23 Y24 Y25 Other  

#003 PBO X X X X   LOE  

#004 PBO X      AE  

#005 DRG X X X X X x  

#006 DRG X X Y62 Y63 Y64 Y65 Other 

#007 DRG X X     AE 

#008 DRG X      AE 

…         

 

 

 

data mar_missing; 

   set mar_out; 

   if lastvis ne 5; 

run; 
 

 

     

<MAR_MISSING>: 

 

SubjID Treatment Y0 Y1 Y2 Y3 Y4 Y5 Reason 

#001 PBO X X X X X x  

#002 PBO X X Y22 Y23 Y24 Y25 Other  

#003 PBO X X X X   LOE  

#004 PBO X      AE  

#005 DRG X X X X X x  

#006 DRG X X Y62 Y63 Y64 Y65 Other 

#007 DRG X X     AE 

#008 DRG X      AE 

…         
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2. For NMAR for both control and experimental treatment groups:  

Similar to the delta-adjustment methods, we break the imputation process into a 

sequence of MIs, where each MI is intended to impute missing values at one time-

point only, as follows. 

i. In order to impute NMAR missing data at time-point 1 (assume Week 1 in this 

example), first prepare an input dataset, making sure that it will contain only the 

intended donor and recipient patterns.  

data datain_nmar; 

  set datain; 

 if label='MAR' then output mar; 

 else output datain_nmar; 

run; 

 

<DATAIN> 

 

<DATAIN_NMAR>:  (Block out the MAR cases in the grey area that are “Other” 

dropouts)  

SubjID Treatment Y0 Y1 Y2 Y3 Y4 Y5 Reason 

#001 PBO X X X X X x  

#002 PBO X X     Other  

#003 PBO X X X X   LOE  

#004 PBO X      AE  

#005 DRG X X X X X x  
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#006 DRG X X     Other 

#007 DRG X X     AE 

#008 DRG X      AE 

…         

 

Separate the input dataset DATAIN_NMAR into two datasets: DATAIN_IMP1, 

containing all control subjects and those subjects from the experimental group that 

have values at time-point 1 missing (LASTVIS=0); and DATAIN_REST1, 

containing the rest of the subjects from the experimental group with non-missing 

value at time-point 1 (e.g., Week 1). 

data datain_imp1 datain_rest1; 

  set datain_nmar; 

  if trtabn=1 and lastvis>0 then output datain_rest1; 

  else output datain_imp1;  

run; 

<DATAIN_NMAR> 

 

<DATAIN_IMP1>: 

SubjID Treatment Y0 Y1 Y2 Y3 Y4 Y5 Reason 

#001 PBO X X X X X x  

#002 PBO X X     Other  

#003 PBO X X X X   LOE  

#004 PBO X 
 

    AE  

#005 DRG X X X X X x  

#006 DRG X X     Other 
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#007 DRG X X     AE 

#008 DRG X 
 

    AE 

…         

 

ii. Call PROC MI to impute missing data at time-point 1 (Week 1) using dataset 

DATAIN_IMP1 as input.  

proc mi data=datain_imp1 out=datain_reg_imp1 nimpute=1  

        seed=1234;   

    var week0 week1;  

    monotone reg(week1 = week0);     

run; 

 

<DATAIN_REG_IMP1>: 

SubjID Treatment Y0 Y1 Y2 Y3 Y4 Y5 Reason 

#001 PBO X X X X X x  

#002 PBO X X     Other  

#003 PBO X X X X   LOE  

#004 PBO X Y41     AE  

#005 DRG X X X X X x  

#006 DRG X X     Other 

#007 DRG X X     AE 

#008 DRG X Y81     AE 

…         
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Note that treatment group is not included as an effect in the model (it is not 

included in the VAR statement). Since subjects from the experimental arm with 

non-missing values at time-point t are not included in the input dataset, they will 

not contribute to the estimation of an imputation model for time-point t. The 

imputation model will be estimated using control subjects only, while this call to 

PROC MI will impute missing data at time-point t for all subjects who need 

imputation at that time-point. This way, subjects from experimental arm will be 

imputed based on the control subjects’ model. 

iii. Assemble back a dataset containing all subjects. 

data datain1; 

   set datain_reg_imp1 datain_rest1; 

run; 

iv. Repeat steps (i)-(iii) for all other time-points sequentially using a reconstructed 

dataset (e.g., DATAIN1) as a starting point in step (i) to get the final imputed 

NMAR dataset DATAIN5 which includes the subjects with NMAR missing data 

and the subjects with no any missing data (completers) from both treatment 

groups. 

 

<DATAIN_IMP2>: 

SubjID Treatment Y0 Y1 Y2 Y3 Y4 Y5 Reason 

#001 PBO X X X X X x  

#002 PBO X X     Other  
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#003 PBO X X X X   LOE  

#004 PBO X Y41 
 

   AE  

#005 DRG X X X X X x  

#006 DRG X X     Other 

#007 DRG X X     AE 

#008 DRG X Y81 
 

   AE 

…         

(Note that case #007 is put back) 

… 

… 

 

<DATAIN_REG_IMP5>: 

SubjID Treatment Y0 Y1 Y2 Y3 Y4 Y5 Reason 

#001 PBO X X X X X x  

#002 PBO X X     Other  

#003 PBO X X X X Y34 Y35 LOE  

#004 PBO X Y41 Y42 Y43 Y44 Y45 AE  

#005 DRG X X X X X x  

#006 DRG X X     Other 

#007 DRG X X Y72 Y73 Y74 Y75 AE 

#008 DRG X Y81 Y82 Y83 Y84 Y85 AE 

…         

 

3. Final complete imputed data with MAR and NMAR:  
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Assemble back a dataset containing all imputed MAR and NMAR data obtained from 

step (1) and (2): 

data all; 

  set mar_missing datain5; 

  run; 

<ALL>: 

SubjID Treatment Y0 Y1 Y2 Y3 Y4 Y5 Reason 

#001 PBO X X X X X x  

#002 PBO X X Y22 Y23 Y24 Y25 Other  

#003 PBO X X X X Y34 Y35 LOE  

#004 PBO X Y41 Y42 Y43 Y44 Y45 AE  

#005 DRG X X X X X x  

#006 DRG X X Y62 Y63 Y64 Y65 Other 

#007 DRG X X Y72 Y73 Y74 Y75 AE 

#008 DRG X Y81 Y82 Y83 Y84 Y85 AE 

…         

 

4. At the end of this process, the final control-based imputed dataset where all missing 

values are filled is ready for analysis by standard SAS procedures with the results 

combined using PROC MIANALYZE.  
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Chapter 4 

Simulations 

In this Chapter, I will conduct simulation studies to evaluate the different methods.  The 

criteria of the evaluation will be based on the alpha level (i.e., type-I error rate) in two 

aspects: correctness and robustness.  A good method should not only hold the alpha at the 

nominal level when the MDM assumption is correct (i.e., correctness), but should also 

maintain the alpha close to the nominal level even when the missing data mechanism 

(MDM) assumption is not exactly correct (i.e., robustness). 

4.1 Simulation Models, Configurations, and Dropout Patterns 

I will consider various scenarios of the MDM and perform 5,000 simulation runs for each 

scenario.  Given the nominal level of alpha= 0.025 (one-sided test), the width of the 95% 

C.I. of the alpha level based on 5,000 simulation runs will be 

1.96*sqrt(0.025*0.975/5000) = 0.00433. 

For each simulation run, the complete data is generated from multivariate normal 

distributions of sample size N=200 for each treatment group A (Control) and group B, 

with mean vector A and B respectively, and a common variance-covariance matrix, .  

The numerical configurations mimic the real Pain Study data example, which has 

baseline y0 and five weekly follow-up visits y1 to y5.  

Example Data 
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The example pain study is a phase II, double-blind, randomized, placebo-controlled 

clinical trial. The primary efficacy parameter is the pain total score ranging from 0 to 10, 

with lower values corresponding to more favorable outcomes. Study visits are scheduled 

at baseline (pre-dose) and post-baseline at weeks 1, 2, 3, 4, and 5. The primary efficacy 

endpoint is the change from baseline to week 5 in the pain total score. The following 

table presents the percentages of subjects discontinued and completed by treatment 

group:  

Disposition Control Group 

 (N=213) 

Active Group 

(N=220) 

________________________________________________________ 

Subjects Completed  189 (88.7%) 189 (85.9%) 

    

Subjects Discontinued   24 (11.3%) 31 (14.1%) 

     Adverse Event 8 (3.8%) 21 (9.6%) 

     Lack of Efficacy 1 (0.5%) 1 (0.5%) 

     Other 15 (7.0%) 9 (4.1%) 

There were more dropouts in the active group compared with control group (14.1% vs. 

11.3%). In the control group, 3.8% out of 11.3% of subjects discontinued due to AEs, 

compared with 9.6% out of 14.1% in the active group. 

The pattern of the missing data by treatment group is presented as follows: 

Treatment 

Group 
Pattern 

Week

0 

Week 

1 

Week 

2 

Week 

3 

Week 

4 

Week 

5 
Freq Percent 

Control 

Group 

1 x x x x x x 189 88.73 

2 x x x x x o 7 3.29 

3 x x x x o o 4 1.88 

4 x x x o o o 9 4.23 

5 x x o o o o 4 1.88 

Active 

Group 

  

1 x x x x x x 189 85.91 

2 x x x x x o 3 1.36 

3 x x x x o o 4 1.82 
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Treatment 

Group 
Pattern 

Week

0 

Week 

1 

Week 

2 

Week 

3 

Week 

4 

Week 

5 
Freq Percent 

4 x x x o o o 15 6.82 

5 x x o o o o 9 4.09 

“x”denotes observed; “o” denotes missing;  

"." denotes missing but to be imputed to achieve the monotone missingness.  

All subjects have non-missing values at baseline (Week 0) and Week 1. The following 

figure  depicts the missing data pattern: 

 

Simulation Models, Configurations, and Dropout Patterns 

The simulation models, configurations and dropout patterns will mimic the Pain Study 

data example. 
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Under the null hypothesis, i.e., treatment groups have the same mean pain scores, let  

 A = B = (6.88, 6.15, 5.52, 5.25, 5.07, 4.92)      (4.1) 

Or, expressed in term of the mean changes from baseline () for both treatment group: 

 A = B = (-0.73, -1.36, -1.63, -1.81, -1.96)    (4.2) 

The common variance-covariance (correlation) matrix, , for (Y0, Y1, Y2, Y3, Y4, Y5) is: 

2.27 

(1.00) 

1.85 

(0.66) 

1.70 

(0.52) 

1.70 

(0.48) 

1.69 

(0.46) 

1.60 

(0.42) 

1.85 

(0.66)  

3.50 

(1.00) 

3.45 

(0.85) 

3.45 

(0.78) 

3.28 

(0.71) 

3.13 

(0.65) 

1.70 

(0.52) 

3.45 

(0.85) 

4.70 

(1.00) 

4.48 

(0.89) 

4.34 

(0.83) 

4.13 

(0.76) 

1.70 

(0.48) 

3.45 

(0.78) 

4.48 

(0.89) 

5.48 

(1.00) 

5.17 

(0.91) 

5.14 

(0.88) 

1.69 

(0.46) 

3.28 

(0.71) 

4.34 

(0.83) 

5.17 

(0.91) 

5.87 

(1.00) 

5.65 

(0.92) 

1.60 

(0.42) 

3.13 

(0.65) 

4.13 

(0.76) 

5.14 

(0.88) 

5.64 

(0.92) 

6.29 

(1.00) 

 

The incomplete data is generated with different MDM scenarios using selection models.  

The baseline y0 is always observed. 

For MAR, the model of missing data is based on the following logistic model: 

Pr(mij = 1| yi0, yi1, yi2, yi3, yi4, yi5) = exp(a+b*yi,j-1)/[1+ exp(a+b*yi,j-1)]  (4.3) 

j =1 to 5. That is, the probability of the (current) yij being missing (mij=1) or observed 

(mij=0) depends on the value of the immediate visit yi,j-1.  We then make a monotone 
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pattern:  mij=1 implying mij’=1 for all j’>j.   Eq.(4.3) can be written as:           

          
 ,                       

The values of a and b are chosen to consider four different proportions of dropouts under 

MAR: A and B groups with the same a and b; with different a but same b; with same a 

but different b; and with different a and b.  Table 4.1 displays the average dropout 

proportions over 5000 simulation runs.  Note that, when a and b are the same, there is no 

differential dropout rates between treatment groups.  The dropout rate is more sensitive to 

the intercept a than to the slope b.  The sample mean differences between A and B groups 

are also shown in Table 4.1 for each of the scenarios of dropout patterns.  These 

differences are not zero (null hypothesis setting) as a consequence of the differential 

dropouts in A and B.  Positive b implies that higher chance to drop out for higher Yj-1 

values.  Within each treatment group, when high Yj-1 tends to dropout and low value 

tends to stay, the change from baseline (high value) would tend to be more negative.  In 

the simulations I let the multivariate normal play out its full range without restricting the 

pain score within 0 and 10.   

Table 4.1  Cumulative dropout rates at each time point (%) by treatment group, 

resulting mean change from baseline, and difference (A - B) departure from the 

null hypothesis – MAR 

Treatment 

Group 

a b Week1 Week2 Week3 Week4 Week5 

A -6.91 0.58 6.9 11.7 15.4 18.5 21.1 

A   -0.71 -1.38 -1.71 -1.94 -2.15 

B -6.91 0.58 6.9 11.8 15.4 18.5 21.1 

B   -0.71 -1.38 -1.70 -1.94 -2.14 

 B - A   0.00  0.00 0.01 0.01 0.01 

A -6.21 0.58 12.4 20.6 26.1 30.4 34.0 

A   -0.70 -1.40 -1.77 -2.03 -2.26 

B -5.81 0.58 17.0 27.2 33.8 39.0 43.0 
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B   -0.69 -1.41 -1.80 -2.09 -2.33 

B - A   0.01 -0.01 -0.03 -0.06 -0.08 

A -6.91 0.58 6.9 11.7 15.4 18.5 21.1 

A   -0.71 -1.38 -1.71 -1.94 -2.15 

B -6.91 0.68 13.1 21.3 26.6 30.7 34.1 

B   -0.70 -1.40 -1.77 -2.04 -2.26 

B - A   0.02 -0.02 -0.06 -0.09 -0.11 

A -6.21 0.58 12.4 20.6 26.1 30.4 34.0 

A   -0.70 -1.40 -1.77 -2.03 -2.26 

B -5.81 0.68 28.1 41.9 49.4 54.5 58.4 

B   -0.66 -1.44 -1.89 -2.22 -2.49 

B - A   0.04 -0.03 -0.13 -0.19 -0.23 

 

For NFD-NMAR, the model of missing data is based on the following logistic model: 

Pr(mij = 1| yi0, yi1, yi2, yi3, yi4, yi5) = exp(a+b*yij)/[1+ exp(a+b*yij)]   (4.4) 

j=1 to 5.  That is, the probability of the (current) yij being missing (mij=1) or observed 

(mij=0) depends on the value of the current visit yij itself.  With a monotone pattern:  

mij=1 implying mij’=1 for all j’>j.  Eq.(4.4) can be written as:                   

  
 ,                      

The values of a and b are chosen to consider four different proportions of dropouts under 

NFD-NMAR: A and B groups with the same a and b; with different a but same b; with 

same a but different b; and with different a and b.  Table 4.2 displays the average dropout 

proportions over 5,000 simulation runs.  Note that when a and b are the same there is no 

differential dropout rate between treatment groups.  The dropout rate is more sensitive to 

the intercept a than to the slope b.  The sample mean differences between A and B groups 

are also shown in Table 4.2 for each of the scenarios of dropout patterns.  These 

differences are not zero (null hypothesis setting) as a consequence of the differential 
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dropout rates in A and B.  (Positive b implies that higher chance to drop out for higher Yj 

values.)  

Table 4.2  Cumulative dropout rates at each time point (%) by treatment group, 

resulting mean change from baseline, and difference (A - B) departure from the 

null hypothesis – NFD-NMAR 

Treatment 

Group 

a b Week1 Week2 Week3 Week4 Week5 

A -6.91 0.68 10.3 16.8 21.8 25.8 29.1 

A   -0.83 -1.57 -1.95 -2.21 -2.44 

B -6.91 0.68 10.3 16.8 21.8 25.8 29.1 

B   -0.83 -1.56 -1.94 -2.20 -2.43 

B - A   0.00 0.01 0.00 0.00 0.00 

A -6.21 0.68 17.0 26.6 33.2 38.1 42.1 

A   -0.88 -1.69 -2.11 -2.39 -2.65 

B -5.81 0.68 21.9 33.4 40.8 46.2 50.4 

B   -0.93 -1.76 -2.21 -2.51 -2.78 

B - A   -0.04 -0.08 -0.10 -0.12 -0.13 

A -6.91 0.58 5.4 9.3 12.7 15.6 18.1 

A   -0.78 -1.47 -1.80 -2.03 -2.25 

B -6.91 0.68 10.3 16.9 21.8 25.7 29.0 

B   -0.83 -1.57 -1.95 -2.21 -2.43 

B - A   -0.05 -0.11 -0.15 -0.17 -0.19 

A -6.21 0.58 9.9 16.5 21.7 25.9 29.4 

A   -0.81 -1.55 -1.92 -2.18 -2.41 

B -5.81 0.68 22.0 33.2 40.7 46.1 50.3 

B   -0.93 -1.76 -2.22 -2.51 -2.78 

B - A   -0.12 -0.22 -0.30 -0.34 -0.37 

 

We also consider mixture of MAR and NFD-NMAR in a data set by using both models 

(4.3) and (4.4) as shown in Table 4.3.  I consider three scenarios:  the first one where the 

MAR and NFD-NMAR proportions are the same for both treatment groups (both groups 

have more NMAR than MAR); the second scenario where NMAR models have different 

slopes but both groups has more NMAR than MAR; and the third scenario where NMAR 

models have different intercepts and slopes (so that group A has more NMAR and less 
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MAR cases while group B has the reverse).  The sample mean differences between A and 

B groups are also shown in Table 4.3 for each of the scenarios of dropout patterns.  These 

between-group differences in changes from baseline are not zero (null hypothesis setting) 

for the second and third scenarios as a consequence of the differential dropout rates in A 

and B.   

Table 4.3  Cumulative dropout rates at each time point (%) by treatment group, 

resulting mean change from baseline, and difference (A - B) deviation from the 

null hypothesis – Mixture of MAR and NFD-NMAR 

Treatment 

Group 

 a b Week1 Week2 Week3 Week4 Week5 

A MAR -7.25 0.50 2.8 5.0 6.7 8.3 9.8 

 NFD-

NMAR 

-6.11 0.57 8.2 13.9 18.4 22.1 25.3 

A    -0.79 -1.51 -1.89 -2.18 -2.45 

B MAR -7.25 0.50 2.8 5.0 6.7 8.3 9.8 

 NFD-

NMAR 

-6.11 0.57 8.3 13.9 18.4 22.2 25.3 

B    -0.79 -1.51 -1.89 -2.17 -2.44 

B - A    0.00 0.01 0.01 0.01 0.01 

A MAR -7.25 0.50 2.8 5.0 6.7 8.3 9.8 

 NFD-

NMAR 

-6.91 0.58 4.4 7.6 10.4 12.8 15.0 

A    -0.76 -1.45 -1.80 -2.05 -2.29 

B MAR -7.25 0.50 2.8 5.0 6.7 8.3 9.8 

 NFD-

NMAR 

-6.91 0.68 8.4 13.8 17.9 21.4 24.2 

B    -0.80 -1.52 -1.91 -2.20 -2.46 

B - A    -0.03 -0.07 -0.11 -0.14 -0.17 

A MAR -7.25 0.50 2.8 5.0 6.7 8.3 9.8 

 NFD-

NMAR 

-7.91 0.58 1.7 3.1 4.3 5.4 6.4 

A    -0.74 -1.40 -1.72 -1.95 -2.15 

B MAR -7.25 0.50 2.8 5.0 6.7 8.3 9.8 

 NFD-

NMAR 

-6.91 0.68 8.4 13.8 17.9 21.4 24.2 

B    -0.80 -1.52 -1.91 -2.20 -2.46 

B - A    -0.05 -0.12 -0.19 -0.25 -0.31 
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As introduced in Chapter 1, the foremost step in analyzing an incomplete data from 

clinical trials in to consider the causal estimand.  I consider the AAT Estimand in Section 

4.2, then the ACT Estimand in Section 4.3.  The AAT estimand here is the mean 

difference of the changes from baseline at the end of the final visit (Week 5) between 

treatment groups A and B, assuming patients who discontinued the therapy would follow 

the path as the originally assigned treatment.  The ACT estimand, on the other hand, 

assumes that all patients who discontinued the therapy (NMAR) would follow the path of 

the control group. 

4.2 Consideration of Methods for the AAT Estimand: MMRM, MI and NFD-

Delta Methods 

For the AAT Estimand, each incomplete data set is analyzed under the null structure (4.2) 

by the mixed effect model for repeated measures (MMRM), the multiple imputation (MI) 

method, and a NFD-NMAR mean-shift method (NFD-Delta) to test the null hypothesis at 

the last time-point: 

 H0:    A (Week 5) - B (Week 5) = 0     (4.5) 

versus H1:    A (Week 5) - B (Week 5) > 0     (4.6) 

The objective of the simulations is to examine the respective alpha level for each method 

under different scenarios.  I will set the one-sided test at the nominal level of 0.025.   

The MMRM and MI methods need no extra explanation.  For the NFD-Delta method, 

there are three basic considerations:   
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First, choose a metric/unit for the delta-shift, which can be, from simple (STD1, RSD1) to 

more involved ones (STDj, RSDj).  The (STD1, RSD1) metric is constant over time 

points, while (STDj, RSDj) changes over time points.  

Second, choose the shift-parameter f to determine the amount of the delta-shift as in the 

following expression (see Chapter 3): 

j = fj X STDj (or RSDj, or STD1, or RSD1) X Unif   (4.7) 

where fj  = f for all time-point  j = 1, .., 5  and Unif is a random variable from the standard 

uniform distribution U(0,1). 

Third, consider the non-sequential, sequential, or the single-adjustment method to place 

the delta-shift, as discussed in Chapter 3. 

4.3 Simulation Results 

 4.3.1 Correctness and Robustness of the MMRM and MI  

I start with MMRM and MI because these likelihood based methods are known to be 

appropriate, i.e., giving the correct alpha levels, when the MDM is MAR.  I first verify 

this fact in Table 4.4.1 to show correctness of these methods.  As shown in Table 4.4.1, 

based on 5,000 simulations runs, MMRM is slightly more conservative than MI when the 

dropout proportions are unequal between treatment groups. MI, as a likelihood-based 

method, provides unbiased estimation of B - A at Week5. 

Table 4.4.1  Correctness of the Alpha Level for MMRM and MI When MDM is 

MAR (nominal alpha=0.025 one-sided test)  

Treatment 

Group 

a b Week5 

Dropout    

MMRM 

Type=UN 

MI  

nimpute=5 
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Rates 

A -6.91 0.58 21.1   

B -6.91 0.58 21.1   

B - A 

(Week 5) 

0.01 0.023 0.022 

A -6.21 0.58 34.0   

B -5.81 0.58 43.0   

B - A 

(Week 5) 

-0.08 0.023 0.024 

A -6.91 0.58 21.1   

B -6.91 0.68 34.1   

B - A 

(Week 5) 

-0.11 0.018 0.021 

A -6.21 0.58 34.0   

B -5.81 0.68 58.4   

B - A 

(Week 5) 

-0.23 

 

0.017 0.022 

Estimate of  B - A at 

Week 5: 

2.5-97.5 percentile range over 

simulation runs:   

0.042 

 

(-0.052,0.060) 

0.003; 

 

( -0.573, 0.575) 

 

Next in Table 4.4.2, I show that MMRM and MI are not necessarily robust when the 

underlying MDM is actually NFD-NMAR.  (This is what I suspected, see Chapter 2.)  

Hence we need to find a right method to correct the alpha level under NFD-NMAR, see 

next sub-section.   

Table 4.4.2  Robustness of the Alpha Level for MMRM and MI When MDM is 

NFD-NMAR  (nominal alpha=0.025 one-sided test)   

Treatment Group a b Week5 

Dropout 

Rates 

MMRM 

Type=UN 

MI nimpute=5 

A -6.91 0.68 29.1   

B -6.91 0.68 29.1   

B - A 

(Week 5) 

0.00 0.024 0.024 

A -6.21 0.68 42.0   

B -5.81 0.68 50.4   
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A - B 

(Week 5) 

-0.13 0.046 0.051 

A -6.91 0.58 18.1   

B -6.91 0.68 29.0   

B - A 

(Week 5) 

-0.19 0.060 0.062 

A -6.21 0.58 29.4   

B -5.81 0.68 50.3   

B - A 

(Week 5) 

-0.37 

 

0.136 

 

0.149 

 

Estimate of  B - A at 

Week 5: 

2.5-97.5 percentile range 

over simulation runs:   

-0.231 

 

(-0.738,0.252) 

-0.265 

 

( -0.779, 0.224) 

 

Table 4.4.2 shows: 

 Inflated type-I error rate when use MMRM or MI under NFD-NMAR in the situation 

that dropout rates are different between treatment groups; 

 The degree of inflation of type-I error rate is more dependent on the degree of the 

imbalance of the dropout rates between treatment groups than the dropout rate itself 

in each treatment group.  When the dropout rates are the same between treatment 

groups, no type-I error inflation occurs. 

 The point estimate of MI B - A at Week 5 is biased. 

Next, we consider the situation of mixture of MAR and NFD-NMAR in Table 4.4.3 for 

MI and MMAR. 

 

 



83 
 

 
 

Table 4.4.3  Robustness of the Alpha Level for MMRM and MI When MDM is 

Mixture of MAR and NFD-NMAR   

Treatment 

Group 

 a b Week 5 

Dropout 

 Rates 

MMRM 

Type=UN 

MI 

nimpute=5 

A MAR -7.25 0.50 9.8   

 NFD-

NMAR 

-6.11 0.57 25.3   

A 

(Week 5) 

-2.45 

 

  

B MAR -7.25 0.50 9.8   

 NFD-

NMAR 

-6.11 0.57 25.3   

B 

(Week 5) 

-2.44   

B - A 

(Week 5) 

0.01 0.024 0.024 

A MAR -7.25 0.50 9.8   

 NFD-

NMAR 

-6.91 0.58 15.0   

A 

(Week 5) 

-2.29   

B MAR -7.25 0.50 9.8   

 NFD-

NMAR 

-6.91 0.68 24.2   

B 

(Week 5) 

-2.46   

B - A 

(Week 5) 

-0.17 0.046 0.047 

A MAR -7.25 0.50 9.8   

 NFD-

NMAR 

-7.91 0.58 6.4   

A 

(Week 5) 

-2.15   

B MAR -7.25 0.50 9.8   

 NFD-

NMAR 

-6.91 0.68 24.2   

B 

(Week 5) 

-2.46   

B - A 

(Week 5) 

-0.31 0.068 0.074 

Estimate of  B - A at Week 5: 

2.5-97.5 percentile range over 

simulation runs: 

-0.123 

(-0.593,0.347) 

-0.142 

(-0.608,0.325) 
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Table 4.4.3 show that, with mixed MAR and NFD-NMAR, 

 No inflation on type-I error rate occurs when drop out distributions are the same 

between treatment groups (same MAR and same NFD-NMAR proportion); 

 Type-I error rate is inflated when the NFD-NMAR dropout rate is imbalanced 

between treatment groups.  Here, we assume, as more likely the case in practice, 

MAR dropouts rates are similar between treatment groups.  The greater imbalance 

of the NFD-NMAR dropout rates, the higher inflation of the type-I error rate. 

4.3.2 Correctness and Robustness of the Delta Mean-Shift (NFD-Delta) Method 

I continue to investigate the NFD-Delta method (as described in Chapter 3).  The goal is 

to find an appropriate shift parameter so that the inflated alpha level under the NFD-

NMAR by MI and MMRM (seen in Table 4.4.2) may be adjusted at least to some extent 

close to the nominal level by the NFD-Delta method.  I anticipated that the shift 

parameter will depend on the unit (STD1 RSD1, STDk, or RSDk) and the algorithm 

(sequential, non-sequential, or single-adjustment).  However, we also need to pay 

attention how robust, when applying the delta mean-shift, the NFD-Delta method is under 

the MAR situation, since in practice, we do not really know the true MDM.   

4.3.2.1   Delta Mean-shift (NFD-Delta) Method with Unit of STD1 

STD1 is the pooled standard deviation (over treatment groups) of Y1 derived from the 

complete data after the MI (under MAR).  The algorithms using STD1 as the (constant) 

scale of the delta shift for all the time-points with missing data are either sequential or 
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non-sequential.  Since STD1 is applied to all time-points, the “single adjustment” method 

is not applicable here. 

Correctness 

Simulations shown in Table 4.5.1 are to demonstrate the correctness of the alpha levels 

for the mean-shift (NFD-Delta) method under the null hypothesis and when MDM is 

NFD-NMAR using the STD1 (i.e., pooled STD at Week 1 of the original Y value) as the 

constant unit over the time-points for the delta adjustment (see expression (4.6)).  Table 

4.5.1 also shows the sensitivity analyses by varying the shift parameter f with different 

algorithm (non-sequential and sequential).   

Table 4.5.1  Correctness of the Alpha Level for Mean-shift Method (NFD-Delta) 

When MDM is NFD-NMAR; Delta unit = STD1 

Treatment 

Group 

a b Week 5  

Dropout    

Rates 

f=0.25     

Non-seq/  

Sequential 

f=0.5     

Non-seq/ 

Sequential 

f=1.0     

Non-seq/ 

Sequential 

f=1.5        

Non-seq/ 

Sequential 

A -6.91 0.68 29.1     

B -6.91 0.68 29.1     

B - A 

(Week 5) 

0.00 

(STD1=1.79) 

  

0.024/ 

0.022 

0.023/ 

0.021 

0.023/ 

NN 

0.021/ 

NN 

Estimate of  B - A 

at Week 5: 

2.5-97.5 percentile 

range over simulation 

runs: 

0.002/ 

0.000 

 
(-0.49,0.47)/ 

(-0.50,0.49) 

0.002/ 

0.001 

 
(-0.50,0.48)/ 

(-0.52,0.51) 

0.002/ 

0.003 

 
(-0.51,0.49)/ 

(-0.59,0.59) 

0.002/ 

NN 

 
(-0.53,0.50)/ 

NN 

A -6.21 0.68 42.0     

B -5.81 0.68 50.4     

B - A 

(Week 5) 

-0.13 

(STD1=1.75) 

0.045/ 

0.023 

0.037/ 

0.012 

0.027/ 

0.003 

0.016/ 

NN 

A -6.91 0.58 18.1     

B -6.91 0.68 29.0     

B - A 

(Week5) 

-0.19 

(STD1=1.81) 

0.051/ 

0.029 

0.040/ 

0.013 

0.024/ 

0.003 

0.014/ 

NN 

A -6.21 0.58 29.4     
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B -5.81 0.68 50.3     

B - A 

(Week 5) 

-0.37 

(STD1=1.78) 

0.108/ 

0.037 

0.084/ 

0.008 

0.041/ 

0.001 

0.017/ 

0.000* 

Estimate of  B - A 

at Week 5: 

2.5-97.5 percentile 

range over simulation 

runs: 

-0.219/ 

-0.089 

 
(-0.73,0.27)/ 

(-0.60,0.42) 

-0.172/ 

0.087 

 
(-0.70,0.33)/ 

(-0.45,0.63) 

-0.08/ 

0.441 

 
(-0.62,0.44)/ 

(-0.18,1.06) 

0.016/ 

0.795 

 
(-0.54, 0.55)/ 

(0.068, 1.52) 

*NN: “Not Needed”, since the value is already known to be less than 0.025. 

Table 4.5.1 shows that, with STD1 as the metric for delta: 

 If dropout rates are the same between treatment groups, the alpha level holds at 

nominal level even under NFD-NMAR, no adjustment is needed. 

 If dropouts rates are different between treatment groups:  

o The greater imbalance of dropout rates, the higher inflation of the type-I error 

rate  by MI is, thus the larger f is needed for adjustment; 

o The sequential method corrects the type-I error inflation rapidly and could 

easily over-correct and leads to losing power.  So, when use the sequential 

method, we should start with a small f and gradually to make the correction.  

The over-correction of the sequential algorithm is demonstrated in the last 

case with f =1.5, where the point estimate of B - A (Week 5) and the 2.5-

97.5% range becomes positive. 
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o The non-sequential correction method is milder than the sequential method 

and may need larger f to adjust. 

A more realistic scenario is MDM is mixture of MAR and NFD-NMAR.  This mixture 

MDM is a representation of different reasons of withdrawal:  NFD-NMAR represents 

withdrawal for AE (adverse event) or LOE (lack of efficacy), and MAR represents 

withdrawal for LOF (loss of follow-up).  Table 4.5.2 is the same as Table 4.5.1 except 

that the missing data is generated using this mixture MDM, and the NFD-Delta method, 

as described in Chapter 3, is used by incorporating the corresponding shifting parameters 

f=(0, v) for (MAR, NFD-NMAR) where v varies at: 0.25, 0.5 and 1.  Three scenarios are 

here: First scenario that the two treatment groups have the same MAR (~10%) and 

NMAR (~25%); the second scenario that group A has MAR (~ 10%) and NMAR (15%), 

while group B has MAR (~ 10%) and NMAR (24%).  In the NMAR model, the intercept 

(a) is the same, but the slopes (b) are different between the two treatment groups.  For the 

third scenario, group A has MAR (~ 10%) and NMAR (6%), while group B has MAR (~ 

10%) and NMAR (24%).  In the NFD-NMAR model, the intercepts and the slopes are 

both different between the two treatment groups.   

Table 4.5.2  Correctness of the Alpha Level for Mean-shift Method (NFD-Delta) 

When MDM is Mixture of MAR and NFD-NMAR; Delta unit = STD1   

Treatment 

Group 

 a b Week 5 

Dropout 

Rates 

f=0.25    

Non-seq/ 

Sequential 

f=0.50      

Non-seq/ 

Sequential 

f=1.0      

Non-seq/ 

Sequential 

A MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.11 0.57 25.3    

A 

(Week 5) 

-2.45 

 

   

B MAR -7.25 0.50 9.8    

 NFD- -6.11 0.57 25.3    
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NMAR 

B 

(Week5) 

-2.44    

B - A 

(Week 5) 

0.01 0.024/0.023 0.022/0.020 0.023/NN 

A MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.91 0.58 15.0    

A 

(Week 5) 

-2.29    

B MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.91 0.68 24.2    

B 

(Week 5) 

-2.46    

B - A 

(Week 5) 

-0.17 0.040/0.024 0.032/0.012 0.022/NN 

A MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-7.91 0.58 6.4    

A 

(Week 5) 

-2.15    

B MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.91 0.68 24.2    

B 

(Week 5) 

-2.46    

B - A 

(Week 5) 

-0.31 0.051/0.020 0.037/0.004 0.017/NN 

Estimate of  B - A at Week 5: 

2.5-97.5 percentile range over 

simulation runs: 

-0.101/-

0.008 

 

(-0.57,0.37)/ 

(-0.48,0.47) 

-0.060/0.127 

 

(-0.53,0.41)/ 

(-0.36, 0.62) 

(two-sided 

alpha=0.053) 

0.022/NN 

 

(-0.45,0.50)/ 

NN 

 

Similar to the pure NFD-NMAR case, Table 4.5.2 shows that: 
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 If dropout rates are the same between treatment groups, the alpha level holds at the 

nominal level even under mixture of MAR and NFD-NMAR, and no adjustment is 

needed. 

 If dropout rates are different between treatment groups:  

o The greater imbalance of the dropout rate of NFD-NMAR, the higher the 

inflation of the type-I error rate by MI, thus a larger f is needed for 

adjustment; 

o The sequential method corrects the type-I error inflation rapidly and could 

easily over-correct and leads to power loss.  So, when use sequential method, 

we should start with a small f to gradually make the correction; 

o The over-correction of the sequential method can be seen from the last case 

with f=0.5 where the point estimate of  B - A (Week5) becomes positive; 

o The non-sequential correction method is milder than the sequential method 

and may need a larger f to adjust. 

Next, we also consider the case where the NFD-Delta method is used when the missing 

data is actually MAR.  This is rarely the case that MAR occurs but not recognized in a 

clinical trial.  Nevertheless, I report here the over-correction by the shift of the mean from 

MI could lead to severe loss of power in this rare situation.  

Robustness 



90 
 

 
 

Table 4.5.3  Robustness of the Alpha Level for Mean-shift Method (NFD-Delta) 

When MDM is MAR; Delta unit = STD1  

Treatment 

Group 

a b Week 5 

Dropout 

Rates 

f=0.25     

Non-seq/ 

Sequential 

f=0.5       

Non-seq/ 

Sequential 

f=1.5       

Non-seq/ 

Sequential 

A -6.91 0.58 21.1    

B -6.91 0.58 21.1    

B - A 

(Week 5) 

0.01 0.023/0.023 0.023/0.022 0.021/NN 

A -6.21 0.58 34.0    

B -5.81 0.58 43.0    

B - A 

(Week 5) 

-0.08 0.019/0.01 0.015/0.005 0.006/NN 

A -6.91 0.58 21.1    

B -6.91 0.68 34.1    

B - A 

(Week 5) 

-0.11 0.015/0.006 0.010/0.001 0.003/NN 

A -6.21 0.58 34.0    

B -5.81 0.68 58.4    

B - A 

(Week 5) 

-0.23 

 

0.018/0.002 0.011/0.000 0.001/NN 

Estimate of  B - A 

at Week 5: 

2.5-97.5 percentile 

range over simulation 

runs: 

0.060/0.233 

 

(-0.52,0.64)/ 

(-0.36,0.82) 

0.118/0.466 

 

(-0.47,0.71)/ 

(-0.14,1.10) 

0.347/NN 

 

(-0.27,0.97)/ 

NN 

As shown in Table 4.5.3,  

 When MDM is MAR, alpha level should be at or close to the nominal level if MI is 

used.  But if mean shift method (NFD-delta) is used instead, the alpha level will be 

deflated, leading to losing power to some extent even when small f is used.  When 

large f is used, the test could lose much of the power. 

 The sequential acts more wildly than the non-sequential method. 
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 Mean-shift method (NFD-Delta) is robust under MAR only when the dropout 

distribution is the same between treatment groups. 

4.3.2.2  Delta Mean-shift (NFD-Delta) Method with Unit of RSD1 

RSD1 is the residual standard deviation of Y1 adjusted for treatment group and Y0 based 

on the complete data after the MI (under MAR).  The algorithms using RSD1 as the 

(constant) scale of the delta shift for all the time-points with missing data are either 

sequential or non-sequential.  Since RSD1 is applied to all time-points, the “single 

adjustment” method is not applicable here. 

Correctness 

Simulations shown in Tables 4.6.1 to 4.6.3 are to demonstrate the same as Table 4.5.1 to 

4.5.3 except for using the constant RSD1 (i.e., regression RSD at Week 1, adjusted for 

treatment group and baseline) as the scale/unit for the delta adjustments over time-points.  

These tables also show the sensitivity analyses by varying the shift parameter f with 

different algorithms (sequential and non-sequential).   

Table 4.6.1  Correctness of the Alpha Level for Mean-shift Method (NFD-Delta) 

When MDM is NFD-NMAR; Delta unit = RSD1  

Treatment 

Group 

a b Week 5 

Dropout 

Rates 

f=0.25      

Non-seq/ 

Sequential 

f=0.5        

Non-seq/ 

Sequential 

f=1.5           

Non-seq/ 

Sequential 

A -6.91 0.68 29.1    

B -6.91 0.68 29.1    

B - A 

 (Week 5) 

0.00 0.024/0.022 0.024/0.022 0.023/NN 

A -6.21 0.68 42.0    

B -5.81 0.68 50.4    

B - A 

 (Week 5) 

-0.13 0.045/0.026 0.040/0.017 0.024/NN 
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A -6.91 0.58 18.1    

B -6.91 0.68 29.0    

B - A 

 (Week 5) 

-0.19 0.053/0.034 0.046/0.019 0.021/NN 

A -6.21 0.58 29.4    

B -5.81 0.68 50.3    

B - A 

 (Week 5) 

-0.37 

(RSD1=1.36) 

0.116/0.053 0.094/0.016 0.035/NN 

Estimate of  B - A 

at Week 5: 

2.5-97.5 percentile 

range over simulation 

runs: 

-0.230/-0.131 

 

(-0.75,0.26)/ 

(-0.64,0.38) 

-0.194/0.004 

 

(-0.71,0.30)/ 

(-0.53,0.53) 

-0.051/NN 

 

(-0.60,0.47)/ 

NN 

    *NN: “Not Needed”, since the value is already known to be less than 0.025. 

Compared between Tables 4.5.1 (metric is STD1) and 4.6.1 (metric is RSD1): 

 At same level of f, using RSD may be easier than using STD to control the degree 

of the correction and to avoid over-correction that sequential method might cause; 

 When the dropout rates are quite different between treatment groups, larger f may 

be needed to correct type-I error inflation by using the RSD metric than that by 

using the STD metric since RSD values are smaller and decreasing toward the end 

of the time-point. 

Next, we consider the situation of mixture of MAR and NMAR in Table 4.6.2. 

Table 4.6.2  Correctness of the Alpha Level for Mean-shift Method (NFD-Delta) 

When MDM is Mixture of MAR and NFD-NMAR; Delta unit = RSD1 

Treatment 

Group 

 a b Week 5 

Dropout 

Rates 

f=0.25    

Non-seq/ 

Sequential 

f=0.50     

Non-seq/ 

Sequential 

f=1.0      

Non-seq/ 

Sequential 

A MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.11 0.57 25.3    

A -2.45 
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(Week 5) 

B MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.11 0.57 25.3    

B 

(Week 5) 

-2.44    

B - A 

(Week 5) 

0.01 0.024/0.022 0.023/0.020 0.023/0.019 

A MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.91 0.58 15.0    

A 

(Week 5) 

-2.29    

B MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.91 0.68 24.2    

B 

(Week 5) 

-2.46    

B - A 

(Week 5) 

-0.17 0.042/0.028 0.036/0.016 0.027/NN 

A MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-7.91 0.58 6.4    

A 

(Week 5) 

-2.15    

B MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.91 0.68 24.2    

B 

(Week 5) 

-2.46    

B - A 

(Week 5) 

-0.31 0.056/0.026 0.044/0.009* 0.024/NN 

Estimate of  B - A at Week 5: 

2.5-97.5 percentile range over 

simulation runs: 

-0.111/-0.041 

 

(-0.58,0.36)/ 

(-0.51,0.43) 

-0.080/0.061 

 

(-0.55,0.39)/ 

( -0.42, 0.54) 

(two-sided 

alpha=0.039) 

-0.018/NN 

 

(-0.49, 0.45)/ 

NN 

 

Similar to the pure NMAR case, and comparing between Tables 4.5.2 (STD metric) and 

4.6.2 (RSD metric), for the mixture of MAR and NMAR case: 
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 At same level of f, using RSD metric may be easier to control the degree of the 

correction and avoid over-correction that sequential method might cause than 

using STD metric; 

 When the dropout rates are quite different between treatment groups, larger f may 

be needed to correct type-I error inflation by using RSD than by using STD since 

RSD values are smaller and decreasing toward the end of the time-point. 

Again, we also consider the case where the NFD-Delta method is used when the missing 

data is actually MAR.  As indicated previously, this is rarely the case that MAR occurs 

but not recognized in a clinical trial.  Nevertheless, I report here the over-correction by 

the shift of the mean from MI could lead to severe loss of power in this rare situation, as 

shown in Table 4.6.3, when the dropouts are different between treatment groups.  

Table 4.6.3  Robustness of the Alpha Level for Mean-shift Method (NFD-Delta) 

When the MDM is  MAR; Delta unit = RSD1 

Treatment 

Group 

a b Week 5 

Dropout 

Rates 

f=0.25     

Non-seq/ 

Sequential 

f=0.5        

Non-seq/ 

Sequential 

f=1.5       

Non-seq/ 

Sequential 

A -6.91 0.58 21.1    

B -6.91 0.58 21.1    

B - A 

(Week 5) 

0.01 0.022/0.023 0.023/0.023 0.021/NN 

A -6.21 0.58 34.0    

B -5.81 0.58 43.0    

B - A 

(Week 5) 

-0.08 0.021/0.012 0.018/0.007 0.009/NN 

A -6.91 0.58 21.1    

B -6.91 0.68 34.1    

B - A 

(Week 5) 

-0.11 0.017/0.009 0.012/0.003 0.005/NN 

A -6.21 0.58 34.0    

B -5.81 0.68 58.4    
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B - A 

(Week 5) 

-0.23 0.019/0.004 0.014/0.000 0.002/NN 

Estimate of  B - A 

at Week 5: 

2.5-97.5 percentile 

range over simulation 

runs: 

0.047/0.176 

 

(-0.54,0.63)/ 

(-0.41,0.76)  

0.090/0.352    

 

(-0.50,0.67)/ 

(-0.25,0.96) 

0.262/NN 

 

(-0.34,0.87)/ 

NN  

 

4.3.2.3  Delta Mean-shift (NFD-Delta) Method with Unit of  STDk 

STDk is the pooled standard deviation (over treatment groups) of Yk based on the 

complete data after the MI (under MAR).  The algorithms using STDk as the (time-

varying) scale of the delta shift for each time-points with missing data are either 

sequential or non-sequential.  For the single adjustment method, STDk-first is used, which 

is the STD of the time-point where the missing data first occurred for that subject.  The 

single adjustment algorithm applies the delta shift only once at the time-point where the 

missing data first occurred, then the rest adjustments are taken care of automatically 

through the correlations.  STDk increases as k increases from 1 to T. 

Correctness 

Table 4.7.1  Correctness of the Alpha Level for Mean-shift Method (NFD-Delta) 

When MDM is NFD-NMAR; Delta unit = STDk  

Treatment 

Group 

a b Week 5 

Dropout 

Rates 

f=0.25      

Single-

adjust/ 

Non-seq/ 

Sequential 

f=0.5        

Single-

adjust/  

Non-seq/ 

Sequential 

f=1.0 

Single-adjust/ 

Non-seq/ 

Sequential 

f=1.5 

Single-

adjust/ 

Non-seq/ 

Sequential 

A -6.91 0.68 29.1     

B -6.91 0.68 29.1     

B - A 0.00 

 

0.023/0.024/ 

0.022 

0.022/0.023/ 

0.021 

0.022/0.023/ 

0.019 

0.021/0.021/ 

NN 
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 (Week 5) Estimate of  B - A at 

Week 5: 

 

2.5-97.5 percentile range 

over simulation runs: 

-0.000/ 

0.002/ 

0.000 

(-0.49,0.47)/ 

(-0.49,0.47)/ 

(-0.51,0.49) 

-0.000/ 

0.002/ 

0.001 

(-0.50,0.48)/   

(-0.50,0.48)/ 

(-0.54,0.53) 

-0.000/ 

0.002/ 

0.003 

(-0.52,0.49)/ 

(-0.52,0.50)/ 

(-0.67,0.67) 

-0.000/    

0.003/ 

NN 

(-0.54,0.52)/ 

(-0.55,0.52)/ 

NN 

A -6.21 0.68 42.0     

B -5.81 0.68 50.4     

B - A 

 (Week 5) 

-0.13 0.037/0.042/ 

0.020 

0.033/0.034/ 

0.008 

0.025/0.021/ 

0.002 

0.016/0.013/ 

NN 

A -6.91 0.58 18.1     

B -6.91 0.68 29.0     

B - A 

 (Week 5) 

-0.19 0.048/0.047/ 

0.024 

0.039/0.035/ 

0.008 

0.024/0.019/ 

0.001 

0.014/0.009/ 

NN 

A -6.21 0.58 29.4     

B -5.81 0.68 50.3     

B - A 

 (Week 5) 

-0.37 

(STDk; k=1 to 5) = 

(1.78,2.03,2.18,2.25,2.34) 

0.100/0.101/ 

0.025 

0.073/0.070/ 

0.003 

 

0.039/0.027/ 

0.000 

0.017/0.007*

/NN 

 

Estimate of  B - A at 

Week 5: 

 

2.5-97.5 percentile range 

over simulation runs: 

-0.223/ 

-0.204/ 

-0.046 

(-0.73,0.28)/ 

(-0.72,0.29)/ 

(-0.57,0.48) 

-0.180/ 

-0.14/ 

0.189 

(-0.69,0.33)/ 

(-0.67,0.36)/ 

(-0.37,0.75) 

-0.092/ 

-0.020/ 

0.737 

(-0.62,0.44)/ 

(-0.57, 0.51)/ 

(0.03,1.46) 

-0.000/ 

0.103/ 

NN 

(-0.55,0.55)/ 

(-0.46, 0.66)/ 

NN 

 

As in the case of previous metric STD1 or RSD1, Table 4.7.1 shows that when using 

STDk: 

 When the dropout rates are the same between treatment groups, the alpha level holds 

at nominal level. 

 When the dropout rates are different between treatment groups: 

o STDk increases as time point increases.  The single adjustment method only 

adjusts at the first time point with missing data, the extent of its correction is 

lowest among the three methods.  The graduate control of the type-I error rate 

by increasing f is smother than the sequential method.  It is a good choice for 

low to intermediate imbalance of dropout rates when using STDk.  In addition, 
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the single adjustment is easier to implement than sequential and non-

sequential methods. 

o Non-sequential method is another good choice for low to intermediate 

imbalance of dropout rate between treatment groups when using STDk.  It 

may need a little larger f than the single adjustment needs. 

o More caution is needed for the sequential method with STDk.  It can easily 

and unexpectedly over-correct and cause the unstable results when large 

imbalance in dropout rates is present.  So, I recommend that we should avoid 

this approach.  It is only acceptable if the difference in dropout rates is very 

large, and meanwhile, use small f, say 0.25. 

Next, we consider the case of mixture of MAR and NMAR as shown in Table 4.7.2. 

Table 4.7.2  Correctness of the Alpha Level for Mean-shift Method (NFD-Delta) 

When MDM is Mixture of MAR and NFD-NMAR; Delta unit = STDk  

Treatment 

Group 

 

 a b Week 5 

Dropout 

rates 

f=0.25    

Single- 

adjust/  

Non-seq/ 

Sequential 

f=0.50   

Single-

adjust/  

Non-seq/ 

Sequential 

f=1.0    

 Single- 

adjust/  

Non-seq/ 

Sequential 

A MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.11 0.57 25.3    

A 

(Week 5) 

-2.45 

 

   

B MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.11 0.57 25.3    

B 

(Week 5) 

-2.44    

B - A 

(Week 5) 

0.01 0.021/ 

0.023/  

0.021 

0.022/ 

0.023/  

0.020 

0.021/ 

0.022/  

NN 

A MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.91 0.58 15.0    
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A 

(Week 5) 

-2.29    

B MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.91 0.68 24.2    

B 

(Week 5) 

-2.46    

B - A 

(Week 5) 

-0.17 0.037/  

0.036/  

0.018 

0.031/ 

0.028/  

0.006 

0.020/ 

0017/  

NN 

A MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-7.91 0.58 6.4    

A 

(Week 5) 

-2.15    

B MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.91 0.68 24.2    

B 

(Week 5) 

-2.46    

B - A 

(Week 5) 

-0.31 

 

0.045/ 

0.047/  

0.012 

0.030/ 

0.029/  

0.001 

0.014/ 

0.009/  

NN 

Estimate of  B - A at Week 5: 

 

 

2.5-97.5 percentile range over 

simulation runs: 

-0.101/ 

-0.087/  

0.028 
(-0.57,0.37)/ 

(-0.56,0.38)/ 

(-0.44,0.51) 

-0.059/ 

-0.033/  

0.207 
(-0.53,0.42)/  

(-0.51, 0.44)/  

(-0.30,0.72) 

0.027/ 

0.076/  

NN 
(-0.46,0.52)/  

(-0.41,0.56)/ 

NN 

 

The observations are similar to the case of pure NFD-NMAR in Table 4.7.1. 

The case of using NFD-Delta method when the missing data is actually MAR is shown in 

Table 4.7.3.   

Table 4.7.3  Robustness of the Alpha Level for Mean-shift Method (NFD-Delta) 

When the MDM is  MAR; Delta unit = STDk  

Treatment 

Group 

a b Week 5 

Dropout 

Rates 

f=0.25 

Single-adjust/   

Non-seq/ 

Sequential  

f=0.5 

Single-adjust/ 

Non-seq/ 

Sequential 

f=1.0 

Single-adjust/ 

Non-seq/ 

Sequential 

A -6.91 0.58 21.1    

B -6.91 0.58 21.1    
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B - A 

(Week 5) 

0.01 0.021/0.023/ 

0.023 

0.022/0.023/ 

0.022 

NN 

A -6.21 0.58 34.0    

B -5.81 0.58 43.0    

B - A 

(Week 5) 

-0.08 0.016/0.018/ 

0.008 

0.013/0.013/ 

0.003 

NN 

A -6.91 0.58 21.1    

B -6.91 0.68 34.1    

B - A 

(Week 5) 

-0.11 0.013/0.013/ 

0.004 

0.011/0.008/ 

0.001 

NN 

A -6.21 0.58 34.0    

B -5.81 0.68 58.4    

B - A 

(Week 5) 

-0.23 

 

0.012/0.014/ 

0.001 

0.009/0.008/ 

0.000 

NN 

Estimate of  B - A at 

Week 5: 

 

2.5-97.5 percentile range 

over simulation runs: 

0.055/0.081/ 

0.297 

 

(-0.53,0.63)/  

(-0.50,0.67)/  

(-0.30,0.90) 

0.111/0.158/ 

0.621 

 

(-0.49,0.69)/  

(-0.43,0.76)/  

(-0.02,1.28) 

NN 

Also, similar to the previously examined cases with metrics STD1 or RSD1, we would 

lose power if the mean-shift method is used under MAR, as the alpha is lower than the 

nominal level, unless the dropout rates are the same between treatment groups. 

4.3.2.4  Delta Mean-shift (NFD-Delta) Method with Unit of RSDk 

RSDk is the residual standard deviation of Yk adjusted for treatment group and Y0 to Yk-1 

based on the complete data after the MI (under MAR).  The algorithms using RSDk as the 

(time-varying) scale of the delta shift for each time-points with missing data are either 

sequential or non-sequential.  For the single adjustment method, RSDk-first is used, which 

is the RSD of the time-point where the missing data first occurred for that subject.  The 

single adjustment algorithm applies the delta shift only once at the time-point where the 

missing data first occurred, then the rest adjustments are taken care of automatically 

through the correlations. RSDk decreases as k increases from 1 to T. 
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Correctness    

Table 4.8.1  Correctness of the Alpha Level for Mean-shift Method (NFD-Delta) 

When MDM is NFD-NMAR; Delta unit = RSDk  

Treatment 

Group 

a b Week 5 

Dropout 

rates 

f=0.25   

Single-adjust/ 

 Non-seq/  

Sequential 

f=1.5     

Single-adjust/ 

Non-seq/ 

Sequential 

f=2.0    

Single-adjust/ 

Non-seq/ 

Sequential 

f=2.5     

Single-adjust/ 

Non-seq/ 

Sequential 

A -6.91 0.68 29.1     

B -6.91 0.68 29.1     

B - A 

(Week 5) 

0.00 0.023/0.024/ 

0.022 

0.022/0.023/ 

0.020 

0.021/0.024 

/NN 

0.020/0.023/ 

NN 

A -6.21 0.68 42.0     

B -5.81 0.68 50.4     

B - A 

(Week 5) 

-0.13 0.038/0.048/ 

0.030 

0.024/0.031/ 

0.004 

0.020/0.027/ 

NN 

0.016/0.022/ 

NN 

A -6.91 0.58 18.1     

B -6.91 0.68 29.0     

B - A 

(Week 5) 

-0.19 0.052/0.057/ 

0.039 

0.030/0.033/ 

0.004 

0.022/ 0.024/ 

NN 

0.016/0.020/ 

NN 

A -6.21 0.58 29.4     

B -5.81 0.68 50.3     

B - A 

(Week 5) 

-0.37 

(RSDk; k=1 to 5) = 

(1.36, 1.12, 1.08, 0.98, 

0.89) 

0.111/0.126/ 

0.067 

0.042/0.060/ 

0.001 

0.026/0.044/ 

NN 

0.016/0.030/ 

NN 

Estimate of  B - A 

at Week 5: 

 

2.5-97.5 percentile 

range over simulation 

runs: 

-0.239/-0.242/ 

-0.161 

 

(-0.74,0.26)/  

(-0.76,0.25)/  

(-0.67,0.34) 

-0.102/ 

-0.125/ 0.362 

 

(-0.62,0.42)/ 

(-0.66,0.38)/ 

(-0.34,0.95) 

-0.047/ 

-0.078/ NN 

 

(-0.57, 0.48)/ 

(-0.61,0.44)/ 

NN 

0.008/-0.031/ 

NN 

 

(-0.53,0.54)/ 

(-0.58,0.50)/ 

NN 

 

Table 4.8.1 shows that, using RSDk metric, under NMAR 

 When dropout rates are the same between treatment groups, the alpha level holds at 

the nominal level. 

 When dropout rates are different between treatment groups: 
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o The single adjustment method only adjusts at the first time-point where 

missing data occurs, and the adjustments for the rest time-points will be taken 

care by the correlations through the MI process. Since RSDk decreases as time 

point increases, the extent of correction by the single adjustment is larger than 

non-sequential method at Week 5, but less than the (cumulative) sequential 

method. 

o The non-sequential correction is the weakest, hence requires larger shift f.   

o As shown, with the last simulation layout, the single adjustment method could 

correct the alpha level to the nominal level with the shift parameter f =2.0 

using the RSDk-first metric, and provides a consistent estimate of B - A at 

Week 5. 

o We should always be cautious when using the sequential method, as it easily 

over-correct and results in losing power.  

o Compared to STDk, we need larger shift f when using RSDk. 

 

Table 4.8.2  Correctness of the Alpha Level for Mean-shift Method (NFD-Delta) 

When MDM is Mixture of MAR and NFD-NMAR; Delta unit = RSDk 

Treatment 

Group 

 a b Week 5 

Dropout 

Rates 

f=0.25   

Single-adjust/ 

Non-seq/ 

Sequential 

f=0.50    

Single-adjust/ 

Non-seq/ 

Sequential 

f=1.0     

Single-adjust/ 

Non-seq/ 

Sequential 

A MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.11 0.57 25.3    

A 

(Week 5) 

-2.45 

 

   

B MAR -7.25 0.50 9.8    
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 NFD-

NMAR 

-6.11 0.57 25.3    

B 

(Week 5) 

-2.44    

B - A 

(Week 5) 

0.01 0.022/0.024/ 

0.022 

0.022/0.024/ 

0.022 

0.022/0.023/ 

NN 

A MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.91 0.58 15.0    

A 

(Week 5) 

-2.29    

B MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.91 0.68 24.2    

B 

(Week 5) 

-2.46    

B - A 

(Week 5) 

-0.17 0.040/0.044 

/0.031 

0.036/0.040/ 

0.020 

0.029/0.032/ 

NN 

A MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-7.91 0.58 6.4    

A 

(Week 5) 

-2.15    

B MAR -7.25 0.50 9.8    

 NFD-

NMAR 

-6.91 0.68 24.2    

B 

(Week 5) 

-2.46    

B - A 

(Week 5) 

-0.31 

 

0.055/0.064/ 

0.034 

0.044/0.052/ 

0.016 

0.028/0.037/ 

NN 

Estimate of  B - A at Week 5: 

 

 

2.5-97.5 percentile range over 

simulation runs: 

-0.120/-0.122/ 

-0.067 

 

(-0.58,0.34)/  

(-0.59,0.35)/  

(-0.53,0.40) 

-0.097/-0.102/ 

0.010 

 

(-0.56,0.37)/  

(-0.57,0.37)/  

(-0.46,0.48) 

-0.050/-

0.063/NN 

 

(-0.52, 0.42)/  

(-0.53,0.40)/ 

NN 
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Table 4.8.2 shows the similar observation for the mixture MAR and NMAR data as in 

Table 4.8.1 for the purely NMAR data.  As shown, with the last simulation layout, the 

single adjustment method could correct the alpha level to the nominal level with the shift 

parameter f =1.0 using the RSDk-first metric, and provides a consistent estimate of B - 

A at Week 5. 

Table 4.8.3  Robustness of the Alpha Level for Mean-shift Method (NFD-Delta) 

When the MDM is MAR; Delta unit = RSDk 

Treatment 

Group 

a b Week 5 

Dropout 

Rates 

f=0.25        

Single-adjust/ 

Non-seq/ 

Sequential 

f=1.5           

Single-adjust/ 

Non-seq/ 

Sequential 

f=2.5      

Single-adjust/ 

Non-seq/ 

Sequential 

A -6.91 0.58 21.1    

B -6.91 0.58 21.1    

B - A 

(Week 5) 

0.01 0.021/0.023/0.

022 

0.022/0.023 

/0.021 

NN  

A -6.21 0.58 34.0    

B -5.81 0.58 43.0    

B - A 

(Week 5) 

-0.08 0.018/0.021/ 

0.014 

0.009/0.013/ 

0.003 

NN 

A -6.91 0.58 21.1    

B -6.91 0.68 34.1    

B - A 

(Week 5) 

-0.11 0.016/0.018/ 

0.011 

0.006/0.008/ 

0.000 

NN 

A -6.21 0.58 34.0    

B -5.81 0.68 58.4    

B - A 

(Week 5) 

-0.23 

 

0.014/0.020/ 

0.007 

0.003/0.007/ 

0.000 

NN 

Estimate of  B - A 

at Week 5: 

 

2.5-97.5 percentile 

range over simulation 

runs: 

0.036/0.031/ 

0.135 

 

(-0.55,0.61)/ 

(-0.55,0.61)/ 

(-0.45,0.71) 

0.216/0.168/ 

0.807 

 

(-0.38,0.81)/ 

(-0.42,0.77)/ 

(0.14,1.49) 

NN 
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Table 4.8.3 shows that, consistent to the previously examined cases with metrics STD1, 

RSD1, and STDk, we would lose power if the mean-shift method is used under MAR, 

unless the dropout rates are the same between treatment groups. 

4.4 Robustness of NFD-Delta Method for Dependent Dropouts 

Let D = log(L) denote the log of the follow up time L.  For dependent dropouts, I follow 

the approach in Wei and Shih (2001) by generating (Y0, Y1, Y2, Y3, Y4, Y5, D) from 

multivariate normal distribution with mean 

  (6.88, 6.15, 5.52, 5.25, 5.07, 4.92, 1.75)     (4.8) 

for treatment group A and  

 (6.88, 6.15, 5.52, 5.25, 5.07, 4.92, 2.3)     (4.9) 

for treatment group B. 

a.  Low Dependence Case 

For the low dependence case, the correlations between D and Y are between 0.10 to 0.17 

for group A and 0.08 to 0.13 for Group B.  The variance-covariance (correlation) matrix 

is 

 Y0 Y1 Y2 Y3 Y4 Y5 D 

Y0 2.27 

(1.00) 

1.85 

(0.66) 

1.70 

(0.52) 

1.70 

(0.48) 

1.69 

(0.46) 

1.60 

(0.42) 

0.175 

(0.17) 

Y1 1.85 

(0.66)  

3.50 

(1.00) 

3.45 

(0.85) 

3.45 

(0.78) 

3.28 

(0.71) 

3.13 

(0.65) 

0.175 

(0.14) 

Y2 1.70 

(0.52) 

3.45 

(0.85) 

4.70 

(1.00) 

4.48 

(0.89) 

4.34 

(0.83) 

4.13 

(0.76) 

0.175 

(0.12) 

Y3 1.70 

(0.48) 

3.45 

(0.78) 

4.48 

(0.89) 

5.48 

(1.00) 

5.17 

(0.91) 

5.14 

(0.88) 

0.175 

(0.11) 
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Y4 1.69 

(0.46) 

3.28 

(0.71) 

4.34 

(0.83) 

5.17 

(0.91) 

5.87 

(1.00) 

5.65 

(0.92) 

0.175 

(0.11) 

Y5 1.60 

(0.42) 

3.13 

(0.65) 

4.13 

(0.76) 

5.14 

(0.88) 

5.64 

(0.92) 

6.29 

(1.00) 

0.175 

(0.10) 

D 0.175 

(0.17) 

0.175 

(0.14) 

0.175 

(0.12) 

0.175 

(0.11) 

0.175 

(0.11) 

0.175 

(0.10) 

0.45 

(1.0) 

for treatment group A, and the variance-covariance (correlation) matrix is 

 Y0 Y1 Y2 Y3 Y4 Y5 D 

Y0 2.27 

(1.00) 

1.85 

(0.66) 

1.70 

(0.52) 

1.70 

(0.48) 

1.69 

(0.46) 

1.60 

(0.42) 

0.175 

(0.13) 

Y1 1.85 

(0.66)  

3.50 

(1.00) 

3.45 

(0.85) 

3.45 

(0.78) 

3.28 

(0.71) 

3.13 

(0.65) 

0.175 

(0.10) 

Y2 1.70 

(0.52) 

3.45 

(0.85) 

4.70 

(1.00) 

4.48 

(0.89) 

4.34 

(0.83) 

4.13 

(0.76) 

0.175 

(0.09) 

Y3 1.70 

(0.48) 

3.45 

(0.78) 

4.48 

(0.89) 

5.48 

(1.00) 

5.17 

(0.91) 

5.14 

(0.88) 

0.175 

(0.08) 

Y4 1.69 

(0.46) 

3.28 

(0.71) 

4.34 

(0.83) 

5.17 

(0.91) 

5.87 

(1.00) 

5.65 

(0.92) 

0.175 

(0.08) 

Y5 1.60 

(0.42) 

3.13 

(0.65) 

4.13 

(0.76) 

5.14 

(0.88) 

5.64 

(0.92) 

6.29 

(1.00) 

0.175 

(0.08) 

D 0.175 

(0.13) 

0.175 

(0.10) 

0.175 

(0.09) 

0.175 

(0.08) 

0.175 

(0.08) 

0.175 

(0.08) 

0.85 

(1.00) 

for treatment group B. 

The missing data is generated by comparing exp(D) = L to the intervals  < 1, (1, 2), (2, 

3), (4, 5), and > 5:  if j-1 < L < j then yj to y5 are set missing.  Completers are those with 

L > 5.  The baseline y0 is always observed. 

In this case, Table 4.9 shows that the dropouts do not affect the mean change from 

baseline in the treatment groups; the resulting A and B are basically the same as 

(4.2).  Hence it seems that weak correlations between D and Y in the range of 0.10 to 

0.17 do not materially differ from the MCAR case where D and Y are independent. 
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Table 4.9  Cumulative dropout rates at each time point (%) by treatment group and 

resulting mean change from baseline, and difference (B - A) – Dependent 

Dropouts with weak correlation 

Treatment 

Group 

Week1 Week2 Week3 Week4 Week5 

A 0.4 5.8 16.6 29.4 41.7 

A -0.73 -1.36 -1.63 -1.81 -1.97 

B 0.6 4.1 9.7 16.2 22.8 

B -0.74 -1.36 -1.63 -1.81 -1.96 

B - A 0.00 0.00 0.01 0.00 0.01 

 

Table 4.10  Robustness of the alpha level for MI and mean-shift method (NFD-

Delta) when the MDM is Dependent Missing (Low Correlation) (nominal 

alpha=0.025); Delta unit = STDk / RSDk ; Algorithm = Non-sequential 

Treatment 

Group 

Week5 Dropout 

Rates 

MI 

nimpute=5 

NFD-Delta                                                  

Non-Sequential 

f = 0.25 f = 0.5 f = 1.0 

A 41.7     

A  

(Week5) 

-1.97     

B 22.8     

B 

(Week5) 

-1.96     

A - B 

(Week5) 

0.01 0.030 0.052/ 

0.038 

0.075/ 

0.044 

0.153/ 

0.061 

Estimate of  B - 

A at Week 5: 

2.5-97.5 

percentile range 

over simulation 

runs: 

-0.006 

 

(-0.51,0.51) 

-0.066/-0.027 

 

(-0.57,0.44)/ 

 (-0.53,0.48) 

-0.125/-0.049 

 

(-0.64,0.38)/ 

 (-0.55,0.46) 

-0.244/-0.091 

 

(-0.76,0.28)/  

(-0.60,0.42) 

 

Table 4.10 shows that: 
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 Type-I error rate will not inflate much if we use MI under future-dependent 

missing data mechanism with low (or weak) correlation between D and Y 

which is close to the case of MCAR in which D and Y are independent; 

 Non-future dependent mean-shift model doesn’t work robustly if the MDM is 

future-dependent even with low or weak correlation between D and Y: the 

type-I error rate is inflated and will not be corrected to the nominal level: 

o The bigger the magnitude, the bigger inflation of type-I error rate. 

o STD seems to cause more inflation than RSD. 

 

b. Intermediate Dependence Case 

For the intermediate dependence case, the correlations between D and Y are about 0.50 

for group A and 0.36 for Group B.  The variance-covariance (correlation) matrix is 

 Y0 Y1 Y2 Y3 Y4 Y5 D 

Y0 2.27 

(1.00) 

1.85 

(0.66) 

1.70 

(0.52) 

1.70 

(0.48) 

1.69 

(0.46) 

1.60 

(0.42) 

0.50 

(0.49) 

Y1 1.85 

(0.66)  

3.50 

(1.00) 

3.45 

(0.85) 

3.45 

(0.78) 

3.28 

(0.71) 

3.13 

(0.65) 

0.625 

(0.50) 

Y2 1.70 

(0.52) 

3.45 

(0.85) 

4.70 

(1.00) 

4.48 

(0.89) 

4.34 

(0.83) 

4.13 

(0.76) 

0.719 

(0.49) 

Y3 1.70 

(0.48) 

3.45 

(0.78) 

4.48 

(0.89) 

5.48 

(1.00) 

5.17 

(0.91) 

5.14 

(0.88) 

0.777 

(0.49) 

Y4 1.69 

(0.46) 

3.28 

(0.71) 

4.34 

(0.83) 

5.17 

(0.91) 

5.87 

(1.00) 

5.65 

(0.92) 

0.804 

(0.49) 

Y5 1.60 

(0.42) 

3.13 

(0.65) 

4.13 

(0.76) 

5.14 

(0.88) 

5.64 

(0.92) 

6.29 

(1.00) 

0.830 

(0.49) 

D 0.50 

(0.49) 

0.625 

(0.50) 

0.719 

(0.49) 

0.777 

(0.49) 

0.804 

(0.49) 

0.830 

(0.49) 

0.45 

(1.0) 

for treatment group A, and the variance-covariance (correlation) matrix is 

 Y0 Y1 Y2 Y3 Y4 Y5 D 

Y0 2.27 1.85 1.70 1.70 1.69 1.60 0.50 
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(1.00) (0.66) (0.52) (0.48) (0.46) (0.42) (0.36) 

Y1 1.85 

(0.66)  

3.50 

(1.00) 

3.45 

(0.85) 

3.45 

(0.78) 

3.28 

(0.71) 

3.13 

(0.65) 

0.625 

(0.36) 

Y2 1.70 

(0.52) 

3.45 

(0.85) 

4.70 

(1.00) 

4.48 

(0.89) 

4.34 

(0.83) 

4.13 

(0.76) 

0.719 

(0.36) 

Y3 1.70 

(0.48) 

3.45 

(0.78) 

4.48 

(0.89) 

5.48 

(1.00) 

5.17 

(0.91) 

5.14 

(0.88) 

0.777 

(0.36) 

Y4 1.69 

(0.46) 

3.28 

(0.71) 

4.34 

(0.83) 

5.17 

(0.91) 

5.87 

(1.00) 

5.65 

(0.92) 

0.804 

(0.37) 

Y5 1.60 

(0.42) 

3.13 

(0.65) 

4.13 

(0.76) 

5.14 

(0.88) 

5.64 

(0.92) 

6.29 

(1.00) 

0.830 

(0.36) 

D 0.50 

(0.36) 

0.625 

(0.36) 

0.719 

(0.36) 

0.777 

(0.36) 

0.804 

(0.37) 

0.830 

(0.36) 

0.85 

(1.00) 

for treatment group B. 

The missing data is generated by comparing exp(D) = L to the intervals  < 1, (1, 2), (2, 

3), (4, 5), and > 5:  if j-1 < L < j then yj to y5 are set missing.  Completers are those with 

L > 5.  The baseline y0 is always observed.  Table 4.11 shows that the dependent dropout 

rates with  intermediate correlations between D and Y affect the mean changes from 

baseline in each treatment group. The resulting A and B are not the same and the 

between-group differences in changes from baseline are not zero and this case differs 

from the case where D and Y are independent or with low correlations. 

Table 4.11  Cumulative dropout rates at each time point (%) by treatment group, 

resulting mean change from baseline, and difference (B - A) departure from the 

null hypothesis – Dependent Dropouts (Intermediate Correlation) 

Treatment 

Group 

Week1 Week2 Week3 Week4 Week5 

A 0.4 5.8 16.6 29.4 41.7 

A -0.73 -1.32 -1.50 -1.59 -1.63 

B 0.6 4.1 9.7 16.1 22.7 

B -0.73 -1.34 -1.57 -1.71 -1.82 
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B - A 0.00 -0.02 -0.07 -0.12 -0.19 

 

Table 4.12  Robustness of the alpha level for MI and mean-shift method (NFD-

Delta) when the MDM is Dependent Missing (Intermediate Correlation) (nominal 

alpha=0.025); Delta unit = STDk  / RSDk; Algorithm = Non-sequential 

Treatment 

Group 

Week5 Dropout 

Rates 

MI 

nimpute=5 

NFD-Delta 

Non-Sequential 

f = 0.25 f = 0.5 f = 1.0 

A 41.7     

A  

(Week5) 

-1.63     

B 22.7     

B 

(Week5) 

-1.82     

A - B 

(Week5) 

-0.19 0.060 0.092/ 

0.069 

0.131/ 

0.084 

0.240/ 

0.109 

Estimate of  B - 

A at Week 5: 

 

2.5-97.5 percentile 

range over 

simulation runs: 

-0.087 

 

 

(-0.58,0.43) 

-0.146/ 

-0.109 

 

(-0.64,0.37)/ 

(-0.61,0.41) 

-0.205/ 

-0.130 

 

(-0.69,0.30)/ 

(-0.63,0.38) 

-0.322/ 

-0.173 

 

(-0.82,0.19)/ 

(-0.67,0.34) 

 

Table 4.12 shows that: 

 Type-I error rate will be inflated if we use MI under future-dependent missing 

data mechanism with intermediate correlation between D and Y; 

 Non-future dependent mean-shift model doesn’t work robustly if the MDM is 

future-dependent even with intermediate correlation between D and Y: the 

type-I error rate is inflated more than those with low or weak correlation 

between D and Y: 

o The bigger the magnitude, the bigger inflation of type-I error rate. 
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o STD seems to cause more inflation than RSD. 

 

c. High Dependence Case  

From the results of low and intermediate dependence cases, for the high dependence 

case, we expect that the difference of mean changes from baseline between treatment 

group will get bigger and type-I error rate will get more inflated than low or 

intermediate dependence cases. The simulation for the high dependence case was not 

done since we have already seen the trend from the low and intermediate dependence 

cases. 

Non-future dependent mean-shift model doesn’t work robustly if the MDM is future-

dependent. Methodology for dealing with future-dependence missing data is an on-

going research topic.  Scharfstein, McDermott, Olson, Wiegand (2014) proposed a 

fully parametric methodology for global sensitivity analysis that can be extended to 

future-dependent missing data. The method can be implemented by the associated 

software built in R package. This topic is out of the scope of this dissertation and will 

not be discussed here in details. 

4.5 Method for ACT Estimand – Control-based Imputation 

ACT analysis has been used as another kind of sensitivity analysis.  However, strictly 

speaking, ACT analysis should not be regarded as a sensitivity analysis; rather, it should 

be regarded as a secondary analysis since it is to address a different estimand to the AAT 

estimand (See Section 2.7).  ACT analysis assumes that the dropouts are all NMAR and 

that those from the treatment group would behave like those in the control (e.g., placebo) 
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group, while AAT does not make this assumption.  The discrepancy in the results, if it 

appears, would then be attributed to the interpretation of the different estimands. Note 

that in the literature (Ratitch et al., 2013; Lu, 2014), other authors regard placebo 

dropouts are all MAR. 

I consider three scenarios here.  The first scenario is the NFD-NMAR case, followed by 

the second scenario of the mixture of MAR and NFD-NMAR case.  The third scenario is 

when the underlying MDM is really (the unlikely case of) MAR, thus the ACT analysis 

should not really be applied.  The purpose is of the third scenario is to demonstrate the 

ACT analysis will lose power under MAR. 

4.5.1  Alpha Level of ACT Analysis When MDM is NFD-NMAR 

The layout of the NFD-NMAR case is as shown previously in Table 4.2. 

Table 4.13  Alpha Level of the ACT Analysis When MDM is NFD-NMAR 

Treatment 

Group 

a b Week 5 

Dropout  Rates 

ACT Analysis 

nimpute=5 

A -6.91 0.68 29.1  

B -6.91 0.68 29.1  

B - A 

(Week 5) 

0.00 0.008 

A -6.21 0.68 42.0  

B -5.81 0.68 50.4  

B - A 

 (Week 5) 

-0.13 0.004 

A -6.91 0.58 18.1  

B -6.91 0.68 29.0  

B - A 

(Week 5) 

-0.19 0.024 

A -6.21 0.58 29.4  

B -5.81 0.68 50.3  

B - A 

(Week 5) 

-0.37 0.024 

Estimate of  B - A at Week 5: -0.177 
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2.5-97.5 percentile range over simulation runs: (-0.50, 0.13) 

 

Table 4.13 is very interesting.  It shows that the control-based imputation, being very 

conservative works (i.e., preserve the nominal alpha level) only when there is a large 

imbalance in dropout rates between the treatment groups.  If the differential dropouts rate 

are minor, e.g., less than 10%, this method could lose power. 

Next, we examine the case of mixture of MAR and NMAR. 

 

4.5.2  Alpha Level of ACT Analysis When MDM is Mixture of MAR and NFD-

NMAR 

The layout of the mixture of MAR and NFD-NMAR case is as shown previously in Table 

4.2. 

Table 4.14  Alpha Level of the ACT Analysis When MDM is Mixture of MAR and 

NFD-NMAR 

Treatment 

Group 

 a b Week 5 

Dropout 

Rates 

ACT Analysis  

nimpute=5 

A MAR -7.25 0.50 9.8  

 NFD-NMAR -6.11 0.57 25.3  

A 

(Week 5) 

-2.45 

 

 

B MAR -7.25 0.50 9.8  

 NFD-NMAR -6.11 0.57 25.3  

B 

(Week 5) 

-2.44  

B - A 

(Week 5) 

0.01 0.010 

A MAR -7.25 0.50 9.8  

 NFD-NMAR -6.91 0.58 15.0  

A 

(Week 5) 

-2.29  
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B MAR -7.25 0.50 9.8  

 NFD-NMAR -6.91 0.68 24.2  

B 

(Week 5) 

-2.46  

B - A 

(Week 5) 

-0.17 0.024 

A MAR -7.25 0.50 9.8  

 NFD-NMAR -7.91 0.58 6.4  

A 

(Week 5) 

-2.15  

B MAR -7.25 0.50 9.8  

 NFD-NMAR -6.91 0.68 24.2  

B 

(Week 5) 

-2.46  

B - A 

(Week 5) 

-0.31 0.040 

Estimate of  B - A at Week 5: 

 

2.5-97.5 percentile range over 

simulation runs: 

-0.143 

 

(-0.53,0.24) 

 

As show in Table 4.14, the conservative control-based imputation in the mixture of MAR 

and NMAR data loses power when the dropouts rates are similar (in each category of 

MAR and NMAR) between treatment groups, as the alpha is lower than the nominal 

level.  On the other hand, the third scenario shows that it may be necessary to regard all 

MAR as NMAR (as in Table 4.13) in order to reach the nominal alpha level when the 

MAR/NMAR rates reversed in each treatment group. Therefore, I carry out the following 

simulation, as shown in Table 4.15, treating all MAR as if they were NMAR.  It confirms 

that by regarding all dropouts are NMAR, the conservative control-based imputation 

would lose much power when the dropouts rates are similar (as the alpha level was much 

lower than the nominal level), but it preserves the nominal alpha level in other situations.  

This is an empirical support to the literature of Ratitch et al., 2013 and Lu, 2014. 
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Table 4.15  Alpha Level of the ACT Analysis When MDM is Mixture of MAR and 

NFD-NMAR (Treat MAR as NMAR) 

Treatment 

Group 

 a b Week 5 

Dropout 

Rates 

ACT Analysis 

nimpute=5 

A MAR -7.25 0.50 9.8  

 NFD-NMAR -6.11 0.57 25.3  

A 

(Week 5) 

-2.45 

 

 

B MAR -7.25 0.50 9.8  

 NFD-NMAR -6.11 0.57 25.3  

B 

(Week 5) 

-2.44  

B - A 

(Week 5) 

0.01 0.007 

A MAR -7.25 0.50 9.8  

 NFD-NMAR -6.91 0.58 15.0  

A 

(Week 5) 

-2.29  

B MAR -7.25 0.50 9.8  

 NFD-NMAR -6.91 0.68 24.2  

B 

(Week 5) 

-2.46  

B - A 

(Week 5) 

-0.17 0.013 

A MAR -7.25 0.50 9.8  

 NFD-NMAR -7.91 0.58 6.4  

A 

(Week 5) 

-2.15  

B MAR -7.25 0.50 9.8  

 NFD-NMAR -6.91 0.68 24.2  

B 

(Week 5) 

-2.46  

B - A 

(Week 5) 

-0.31 0.023 

Estimate of  B - A at Week 5: 

 

2.5-97.5 percentile range over simulation runs: 

-0.113 

 

(-0.47, 0.24) 
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4.5.3  Lack of Robustness of ACT Analysis When MDM is MAR 

The layout of the MAR case is as shown previously in Table 4.1.  As expected, if the 

missing data is actually all MAR, the control-based imputation is too conservative, results 

in losing almost all the power of the study, as shown in Table 4.16. 

Table 4.16   Alpha Level of the ACT Analysis When MDM is MAR 

Treatment 

Group 

a b Week 5 

Dropout Rates 

ACT Analysis 

nimpute=5 

A -6.91 0.58 21.1  

B -6.91 0.58 21.1  

B - A 

(Week 5) 

0.01 0.012 

A -6.21 0.58 34.0  

B -5.81 0.58 43.0  

B - A 

(Week 5) 

-0.08 0.003 

A -6.91 0.58 21.1  

B -6.91 0.68 34.1  

B - A 

(Week 5) 

-0.11 0.005 

A -6.21 0.58 34.0  

B -5.81 0.68 58.4  

B - A 

(Week 5) 

-0.23 0.001 

Estimate of  B - A at Week 5: 

 

2.5-97.5 percentile range over simulation runs: 

-0.001 

 

(-0.32, 0.31) 

 

4.6 Sample Size and Shift Parameter Selection 

To examine whether the sample size affects the type-I error rate and the selection of shift 

parameter f, I performed additional simulations on the non-future dependent data with 

sample size of N=400 for each treatment group. Delta mean shift method was used and I 

compared the results to those results for the sample size of N=200 and examined whether 

or not the sample size affects the selection of the shift parameter. To serve this purpose, 
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non-sequential algorithm with RSDk unit was selected to use since it’s more stable and 

easier to control, which is also one of our recommendations of the algorithm and unit to 

use. 

The following Table 4.17 displays the average dropout proportions over 5,000 simulation 

runs with sample size of N=400 for each treatment group. 

Table 4.17  Cumulative dropout rates at each time point (%) by treatment group, 

resulting mean change from baseline, and difference (A - B) – NFD-NMAR 

(N=400 for Each Treatment Group)  

Treatment 

Group 

a b Week1 Week2 Week3 Week4 Week5 

A -6.91 0.68 10.3 16.7 21.8 25.8 29.1 

A   -0.83 -1.57 -1.95 -2.21 -2.44 

B -6.91 0.68 10.3 16.8 21.8 25.9 29.2 

B   -0.83 -1.57 -1.95 -2.21 -2.44 

B - A   0.00 0.00 0.00 0.00 0.00 

A -6.21 0.68 17.1 26.6 33.2 38.2 42.2 

A   -0.89 -1.69 -2.11 -2.39 -2.65 

B -5.81 0.68 22.2 33.4 40.8 46.4 50.6 

B   -0.93 -1.76 -2.21 -2.52 -2.79 

B - A   -0.04 -0.08 -0.11 -0.12 -0.14 

A -6.91 0.58 5.4 9.4 12.8 15.7 18.3 

A   -0.78 -1.47 -1.80 -2.04 -2.25 

B -6.91 0.68 10.3 16.8 21.8 25.8 29.1 

B   -0.83 -1.57 -1.95 -2.21 -2.44 

B - A   -0.05 -0.10 -0.14 -0.17 -0.19 

A -6.21 0.58 9.8 16.4 21.6 25.9 29.5 

A   -0.82 -1.55 -1.92 -2.18 -2.41 

B -5.81 0.68 22.2 33.5 40.9 46.4 50.5 

B   -0.93 -1.77 -2.21 -2.52 -2.78 

B - A   -0.11 -0.22 -0.29 -0.34 -0.37 

 

Compare this table to Table 4.2, we can see that the numbers in the two tables are almost 

the same. Therefore, it shows that the sample size does not affect the dropout rate, the 

resulting mean change from baseline, and difference of mean change from baseline.  
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The following Table 4.18 displays the results of the alpha level for mean-shift method 

under  NFD-NMAR using non-sequential algorithm with RSDk for N=200 and N=400 for 

each treatment group. 

Table 4.18   Comparison of the Alpha Levels for Mean-shift Method (NFD-Delta) 

When MDM is NFD-NMAR Using Non-sequential Algorithm; Delta unit =RSDk; 

N=200 vs N=400 

Treatment 

Group 

a b Week 5 

Dropout 

Rates 

f=0.25 

N=200/       

N =400 

f=1.5  

N=200/       

N =400     

f=2.0  

N=200/       

N =400        

f=2.5     

N=200/       

N =400     

A -6.91 0.68 29.1     

B -6.91 0.68 29.2     

B - A 

 (Week 5) 

0.00 0.024/0.024 0.023/0.023 0.024/0.024 0.023/0.023 

A -6.21 0.68 42.2     

B -5.81 0.68 50.6     

B - A 

 (Week 5) 

-0.14 0.048/0.048 0.031/0.031 0.027/0.027 0.022/0.022 

A -6.91 0.58 18.3     

B -6.91 0.68 29.1     

B - A 

 (Week 5) 

-0.19 0.057/0.057 0.033/0.033 0.024/0.024 0.020/0.020 

A -6.21 0.58 29.5     

B -5.81 0.68 50.5     

B - A 

 (Week 5) 

-0.37 0.126/0.126 0.060/0.060 0.044/0.044 0.030/0.030 

Estimate of  B - A at 

Week 5: 

 

2.5-97.5 percentile range 

over simulation runs: 

-0.242/        

 -0.242 

 

(-0.76,0.25)/ 

(-0.76,0.25) 

-0.125/          

-0.125 

 

(-0.66,0.38)/ 

(-0.66,0.38) 

-0.078/         

-0.078 

 

(-0.61,0.44)/ 

(-0.61,0.44) 

-0.031/         

-0.031 

 

(-0.58,0.50)/ 

(-0.58,0.50) 

 

Table 4.18 shows that the alpha level for N=200 and N=400 are exactly same for each 

scenario and each shift parameter f.  The estimates of B - A at Week 5 and its 2.5-

97.5 percentile range are all the same as well. Therefore, we can say that the sample size 

would not affect the type-I error rate and the selection of shift parameter when use mean-

shift method under the MDM of NFD-NMAR. 
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To double confirm this conclusion, I also performed a simulation to check the alpha 

levels using single-adjustment algorithm with RSDk. The results are displayed in the 

following Table 4.19. 

Table 4.19  Comparison of the Alpha Levels for Mean-shift Method (NFD-Delta) 

When MDM is NFD-NMAR Using Single-adjustment Algorithm with N=200 and 

N=400 for Each Treatment Group; Delta unit =RSDk   

Treatment 

Group 

a b Week 5 

Dropout 

Rates 

f=0.25 

N=200/       

N =400 

f=1.5  

N=200/       

N =400     

f=2.0  

N=200/       

N =400        

f=2.5     

N=200/       

N =400     

A -6.91 0.68 29.1     

B -6.91 0.68 29.2     

B - A 

 (Week 5) 

0.00 0.023/0.023 0.022/0.022 0.021/0.021 0.020/0.020 

A -6.21 0.68 42.2     

B -5.81 0.68 50.6     

B - A 

 (Week 5) 

-0.14 0.038/0.038 0.024/0.024 0.020/0.020 0.016/0.016 

A -6.91 0.58 18.3     

B -6.91 0.68 29.1     

B - A 

 (Week 5) 

-0.19 0.052/0.052 0.030/0.030 0.022/0.022 0.016/0.016 

A -6.21 0.58 29.5     

B -5.81 0.68 50.5     

B - A 

 (Week 5) 

-0.37 0.111/0.111 0.042/0.042 0.026/0.026 0.016/0.016 

Estimate of  B - A at 

Week 5: 

2.5-97.5 percentile range 

over simulation runs: 

-0.239/         

-0.239 

(-0.74,0.26)/ 

(-0.74,0.26) 

-0.102/          

-0.102 

(-0.62,0.42)/ 

(-0.62,0.42) 

-0.047/         

-0.047 

(-0.57,0.48)/ 

(-0.57,0.48) 

0.008/         

0.008 

(-0.53,0.54)/ 

(-0.53,0.54) 

 

Similar to the case of non-sequential algorithm, with single-adjustment approach, the 

type-I error rate for sample size N=200 and N=400 are exactly same. The estimate of B 

- A at Week 5 and its 2.5-97.5 percentile range are all the same as well. However, an 

interesting case may arise when we use STDk. The following table shows the results of 

the alpha level for N=200 and N=400 for mean-shift method under NFD-NMAR when 

we use STDk with non-sequential algorithm. 
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Table 4.20  Comparisons of Alpha Levels for Mean-shift Method (NFD-Delta) When 

MDM is NFD-NMAR Using Non-sequential Algorithm with N=200 and N=400 for 

Each Treatment Group; Delta unit = STDk   

Treatment 

Group 

a b Week 5 

Dropout 

Rates 

f=0.25 

N=200/      

N =400 

f=0.5  

N=200/      

 N =400     

f=1.0  

N=200/      

N =400        

f=1.5     

N=200/       

N =400     

A -6.91 0.68 29.1     

B -6.91 0.68 29.2     

B - A 

 (Week 5) 

0.00 0.024/0.025 0.023/0.024 0.023/0.022 0.021/0.020 

A -6.21 0.68 42.2     

B -5.81 0.68 50.6     

B - A 

 (Week 5) 

-0.14 0.042/0.056 0.034/0.043 0.021/0.025 0.013/0.013 

A -6.91 0.58 18.3     

B -6.91 0.68 29.1     

B - A 

 (Week 5) 

-0.19 0.047/0.067 0.035/0.046 0.019/0.018 0.014/0.007 

A -6.21 0.58 29.5     

B -5.81 0.68 50.5     

B - A 

 (Week 5) 

-0.37 0.101/0.173 0.070/0.106 0.027/0.027 0.007/0.006 

Estimate of  B - A at 

Week 5: 

 

2.5-97.5 percentile range 

over simulation runs: 

-0.204/        

-0.205 

 

(-0.72,0.29)/ 

(-0.57,0.16) 

-0.140/          

-0.144 

 

(-0.67,0.36)/ 

(-0.51,0.23) 

-0.020/        

 -0.021 

 

(-0.57,0.51)/ 

(-0.40,0.36) 

0.103/   

0.102 

 

(-0.46,0.66)/ 

(-0.30,0.51) 

 

From the above Table 4.20, we can see that the alpha levels for N=200 and N=400 are 

little different for some shift parameters f, especially for f=0.25 and f=0.50.  The 

estimates are not the same either. We could not exactly explain why this occurred, but 

these results further confirmed our conclusion that the alpha level is not stable and not 

easy to control when we use STDk, compared to use RSDk. Therefore, we would always 

recommend using RSD instead of STD whenever possible.    
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Chapter 5 

 

Conclusion and Discussion  

5.1 Summary 

Missing data is a common problem in longitudinal clinical trials. Substantial missing data 

could introduce potential biases in the comparison of treatment groups and undermine the 

scientific credibility of causal conclusions from clinical trials.  In recent NRC report, it 

notes that the missing data can be reduced and prevented to some extent by good study 

design and implementation, and by the vigilance and extent of data collection. 

Nevertheless, although good study design, implementation, and data collection could 

reduce the amount of missing data, missing data is probably unavoidable and still likely 

to be present in most clinical trials and would need to be handled during analysis on the 

basis of some assumptions regarding the missing outcomes.  

To handle the missing data issue, it is always required by the regulatory agencies to pre-

specify a primary analysis and sensitivity analysis in protocol or statistical analysis plan 

(SAP). Recent NRC report questioned the reasonableness of the MAR setting as the 

primary analysis since MAR is very special and doubtful assumption for the missing data 

mechanism, and the report encourages to use NMAR setting as the primary analysis. One 

of the NMAR mechanisms is non-future dependence missing data (NFD-NMAR). It is 

also one of the recommended methods in the NRC report. This dissertation addressed this 

issue and proposed a process to investigate the mean-shift model with NFD-NMAR 

mechanism (NFD-Delta method).  The goal was to find an “appropriate” specification of 

the delta adjustment in the study protocol or SAP. The “appropriateness” is based on the 



121 
 

 
 

maintenance of the type-I error rate. The shift parameter of the NFD-Delta method then 

constitutes the sensitivity analysis. 

The process of NFD-Delta method for specifying the primary (NMAR) analysis for a 

phase III study protocol has to be based on its phase II study experience in order to gather 

information on the set up for simulations. The set up information includes study duration 

and time-points of longitudinal data collection, expected dropout rates and reasons in 

each treatment group, and the expected outcomes and correlations of repeated measures 

for the control group under the null hypothesis. The attempt is, through the simulations, 

to find an appropriate shift parameter to specify the primary NMAR analysis in the phase 

III study protocol/SAP.  

Several components were considered for the NFD shift parameter in this dissertation: the 

metric/unit, magnitude, and the algorithm to place the shift to examine the effect of these 

components on the type-I error rate (alpha) under the null hypothesis of no treatment 

effect.   

In this dissertation, I conducted extensive simulations to investigate the type-I error rate 

for different methods. With NFD-Delta method, for the metric factor, four different 

metric units were considered: constant STD1, constant RSD1,  STDk,  RSDk; for the 

magnitude factor, different values of shift parameter f were considered from low to high, 

for example, f was chose from 0.25 to 2.5, etc. to investigate which f value is the 

appropriate shift parameter to control the type-I error rate to the nominal level; for the 

algorithm to implement the delta shift, three different method were used: sequential, non-

sequential and single adjustment method. The evaluation of different method and the 
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selection of shift parameter is to control and maintain the type-I error rate at the nominal 

level.    

MMRM and MI under NFD-NMAR assumption 

First, I examined the MMRM and MI method under NFD-NMAR mechanism and the 

results showed that MMRM and MI inflated type-I error rate in the situation when 

dropout rates are different between treatment groups and the point estimate is biased. The 

degree of inflation of type-I error rate is more dependent on the degree of the imbalance 

of the dropout rates between treatment groups than the dropout rate itself in each 

treatment group. When the dropout rates are the same between treatment groups, no type-

I error inflation occurs.  It is similar for the case of the mixture of MAR and NFD-

NMAR. 

Correctness of NFD-Delta (mean-shift) method under NFD-NMAR assumption 

I also examined the NFD-Delta (mean-shift) method under NFD-NMAR mechanism and 

different algorithm sequential, non-sequential and single adjustment to place the delta 

with different metric STD1, RSD1, STDk and RSDk. The simulation results show that if 

dropout rates are the same between treatment groups, the alpha level holds at nominal 

level under NFD-NMAR, no adjustment is needed. When the dropout rates are different 

between treatment groups, the greater imbalance of dropout rates, the higher inflation of 

the type-I error rate is, thus the larger f is needed for adjustment. The sequential method 

corrects the type-I error inflation rapidly and could easily over-correct and leads to losing 

power.  So, when use the sequential method, we should start with a small f and gradually 

to make the correction. The non-sequential correction method is milder than the 
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sequential method and may need larger f to adjust. At same level of f, using RSD may be 

easier than using STD to control the degree of the correction and to avoid over-correction 

that sequential method might cause. When the dropout rates are quite different between 

treatment groups, larger f may be needed to correct type-I error inflation by using the 

RSD metric than that by using the STD metric since RSD values are smaller and 

decreasing toward the end of the time-point.  

When STDk is used: 

Since the single adjustment method only adjusts at the first time point with missing data, 

the extent of its correction is lowest among the three algorithm methods.  The graduate 

control of the type-I error rate by increasing f is smoother than the sequential method.  It 

is a good choice for low to intermediate imbalance of dropout rates when using STDk.  In 

addition, the single adjustment is easier to implement than sequential and non-sequential 

methods. Non-sequential method is another good choice for low to intermediate 

imbalance of dropout rate between treatment groups when using STDk.  It may need a 

little larger f than the single adjustment does. More caution is needed for the sequential 

method with STDk. It can easily and unexpectedly over-correct and cause the unstable 

results when large imbalance in dropout rates is present. So, I recommend that we should 

avoid this approach.  It is only acceptable if the difference in dropout rates is very large, 

and meanwhile, use small f, say 0.25. 

When RSDk is used: 

The single adjustment method only adjusts at the first time-point where missing data 

occurs, and the adjustments for the rest time-points will be taken care by the correlations 
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through the MI process. Since RSDk decreases as time point increases, the extent of 

correction by the single adjustment is larger than non-sequential method, but less than the 

(cumulative) sequential method. The non-sequential correction is the weakest, hence 

requires larger shift f.  We should always be cautious when using the sequential method, 

as it easily over-correct and results in losing power. Compared to STDk, we need larger 

shift f when using RSDk. 

Similar for the case of mixture of MAR and NFD-NMAR. 

5.2 Discussion 

5.2.1  Final Recommendations and Limitations with the NFD-Delta Method 

Through the simulations conducted in this dissertation based on the diabetic pain study 

results, the non-sequential or the single adjustment algorithm using the metric of RSD 

seem to work better than the sequential algorithm or using the STD metric, thus are my 

recommendations. Looking back to Table 2.1, only one time point is unidentifiable and 

needs to make the assumption to link the distribution of dropouts and that of the observed 

by the shift. This might be one reason that contributions to the good performance of 

single adjustments of mean-shift model. However, since each trial with its own design 

(including endpoint and study duration) and data, it is not possible to establish a universal 

shift parameter that is appropriate for all types of studies when the primary analysis has 

to be based on a NMAR scenario. Rather, this dissertation provided, via the investigation 

process, a method of finding an appropriate shift parameter for any late phase trial by 

simulations based on either early phase data or information from interim data of the 

current trial. 
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The limitation of the NFD-Delta method is on its assumption of the non-future 

dependence missing data mechanism.  

The simulation results show that we would lose power if the mean-shift method is used 

under MAR, unless the dropout rates are the same between treatment groups.  This is a 

minor limitation since MAR is very unlikely.  Another scenario is when the MDM is 

future-dependent. Results show that the NFD-Delta (mean-shift) doesn’t work robustly 

for future-dependent missing data. Methodology for dealing with future-dependence 

missing data is an on-going research topic.  

5.2.2 Regarding the ACT Estimand - Control-based Imputation 

The simulation shows that the control-based imputation, being very conservative (i.e., 

preserve the nominal alpha level) works only when there is a large imbalance in dropout 

rates between the treatment groups.  If the differential dropouts rate are minor, e.g., less 

than 10%, this method could lose power. 

5.2.3 Power Issue 

Power is always another issue. From the simulation results, we can see the mean-shift 

method could lose power if we over-adjust the delta aggressively. To investigate the 

power, we need first to fix the type-I error rate. Based on the simulation results and my 

recommendations, to investigate the power, we need to use single-adjustment (or non-

sequential adjustment) method, use RSD and fix the shift parameter f that corrects the 

alpha level to the nominal level and then use simulations to investigate the power under a 

set of specified alternative hypotheses.   
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5.3 Future Work 

In this dissertation, for the NFD-delta method, I applied the delta-adjustment to both 

control group and experimental group. A future work is to apply delta-adjustment to the 

subjects in experimental group only.    
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