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ABSTRACT OF THE DISSERTATION

Graph Mining Algorithms for the Analysis of Patent

Citation Networks

By ANDREW DAVID RODRÍGUEZ

Dissertation Director:

Myong K. Jeong

Patent and patent citation networks are rich datasets. In this dissertation we

develop graph mining algorithms for the analysis of patent citation networks. First

we develop a measure of patent influence within a patent citation network. Identifying

influential or important patents helps in decision making, including focusing investment.

We propose algorithms based on the powerful graph kernels for the ranking of patents

in influence, and we demonstrate how the von Neumann graph kernel is well suited for

influence analysis in patent citation networks.

Secondly, we present new similarity measures between patents in a patent citation

network. In the past, techniques such as text mining and keyword analysis have been

applied for patent similarity calculation. The drawback of these approaches is that

they depend on word choice and writing styles of authors. In this work we develop new

similarity measures for patents in a patent citation network using only the patent ci-

tation network structure. The proposed similarity measures use multi-stage co-citation

and bibliographic coupling links. Applications of the similarity measures include outlier

scoring of patents in patent citation networks.

Finally, we propose new methods for scoring and ranking patents in outlierness

within a patent citation dataset. A distinguishing characteristic of patent datasets is
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that they contain both attribute data describing patents, as well as graph structure

data in the citation network. Traditional outlier ranking techniques usually focus on

either homogeneous vector data or on graph structure data. In this work we propose

new outlier ranking methods developed specifically for patents in an attributed patent

citation network. One challenge is how outlier ranking should handle these two di↵erent

data types in an integrated fashion. To address this challenge, we first develop a new

patent subspace clustering algorithm that considers both types of data. Based on the

patent clustering result, we then develop methods for the scoring and ranking of patents

in outlierness within patent citation networks. Proposed outlier score functions consider

both patent attribute data and graph structure data. We compare the performance of

our developed approaches with existing approaches using synthetic data and real-life

U.S. patent data.
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Chapter 1

Introduction

1.1 Overview

Patent and patent citation data are rich datasets. Technological developments are

captured in the creation of patents, thus patent analysis is considered a critical tool for

company strategy formulation and planning [53, 54]. In addition, the growth of patent

bibliometrics requires the development of new methodologies, di↵erent from traditional

bibliometric methods [50]. Some of the patent citation network analysis methodologies

that have been developed include ones for measuring inventive progress [80], identifying

influential patents [40], measuring patent similarity [12, 81], identifying patent outliers

[84], the visualization of technological progress [42].

In this dissertation we present new algorithms for the analysis of patent citation

networks. This work is motivated by the goal of mining valuable information from

complex networks. Through patent citation network analysis, core technologies may be

identified, research and development investment can be focused, technological trends

over time are followed, and new technology opportunities are identified.

First we propose a measure of patent influence in a patent citation network lever-

aging graph kernels. Identifying important patents helps in decision making, including

focusing investment. In the past, centrality measures such as degree centrality and

betweenness centrality have been applied to identify influential or important patents in

patent citation networks [32]. How such a complex notion like technological influence

can be analyzed is an important research topic. However, no existing centrality mea-

sure leverages the powerful graph kernels for this purpose. Graph kernels are well suited

for this purpose since some consider the direct and indirect citations that a patent re-

ceives by considering powers of the citation network adjacency matrix. We consider the
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change in the matrix norm from the inclusion to the exclusion of a patent in the patent

citation network. The proposed approach provides a more robust understanding of the

identification of influential nodes, since it focuses on graph structure information by

considering both direct and indirect patent citations. Studies have shown that highly

cited patents are of greater technical importance than less frequently cited patents, in

the opinion of knowledgeable peer researchers and inventors [2]. This study leverages

the premise that the change of similarity matrix that results from removing a given node

indicates the importance of the node within its network, since each node makes a contri-

bution to the similarity matrix among nodes. The node resulting in the largest change

(i.e., decrease) in the similarity matrix norm is considered to be the most influential

node. We compare the performance of our proposed approach with other widely-used

centrality measures using artificial data and real-life U.S. patent data. Experimental

results show that our proposed approach performs better than existing methods.

We next present new similarity measures between patents in a patent citation net-

work. In the past, techniques such as text mining and keyword analysis have been

applied for the evaluation of patent similarity or dissimilarity [84]. The drawback of

these approaches is that they depend on word choice and writing style of authors.

Most existing graph-based approaches use common neighbor-based measures, which

only consider direct adjacency. In this work we propose new similarity measures for

patents in a patent citation network using only the patent citation network structure.

The proposed similarity measures use co-citation and bibliographic coupling links. A

challenge is when some patents are involved in a disproportionately large number of

citations, thus are considered more similar to many other patents in the patent cita-

tion network. To overcome this challenge, we propose a normalization technique to

account for the case where some pairs are ranked very similar to each other because

they both are cited by, or cite, many other patents. The nature of patents in patent

citation networks means that classification codes describing technology are available for

each patent. We validate our proposed similarity measures using U.S. class codes for

U.S. patents and the well-known Jacquard similarity index. Experiments show that the

proposed methods perform well when compared to the Jaccard similarity index.
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Finally, we present methods for scoring and ranking outliers in patent citation

datasets. Unlike some datasets, patent data is meticulously assembled. Additionally,

patent data contains both attribute data as well as graph structure data. Patent at-

tributes such as classification codes are specifically assigned based on the nature of the

technology. Similarly, graph structure data in the form of citations make and received

are carefully considered by patent writers. Traditional outlier ranking techniques fo-

cus on either homogeneous vector data or on graph structures [30]. However, many of

todays complex applications contain both types of data: multi-dimensional numeric in-

formation and relations between objects in attributed graphs. An open challenge is how

outlier ranking should handle these di↵erent data types in a unified or integrated fash-

ion. There is currently no work on patent citation network outlier or anomaly detection

that considers attributes in patent citation network, in addition to the citation network

structure. In this work we propose new outlier ranking methods developed specifically

for patents in an attributed patent citation network. An open challenge is how outlier

ranking should handle these di↵erent data types in an integrated fashion. To address

this challenge, we first develop a new patent subspace clustering algorithm. Based on

the patent clustering algorithm we then propose methods for the scoring and ranking of

outlier patents within patent citation networks. Outlier score functions consider both

patent attribute data and graph structure data. We compare the performance of our

developed approaches with existing approaches using synthetic data and real-life U.S.

patent data.

1.2 Dissertation outline

The chapters of this dissertation build upon each other and form a body of patent

citation network analysis research. The rest of the dissertation is organized as follows.

Following the introduction to patent citation network research in Chapter1, Chap-

ter 2 presents a graph kernel-based approach for identifying important or influential

patents within a patent citation network. Chapter 3 extends the patent citation analy-

sis to patent co-citation and bibliographic coupling analysis, and presents new pairwise
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patent similarity measures based on the citation structure of the patent citation net-

work. Chapter 4 builds on the graph-based co-citation similarity measure, and proposes

techniques for the scoring and ranking of outlier patents and patent citations in patent

citation networks. Additionally, in Chapter 4, a new subspace clustering algorithm

is presented for the clustering of patents in attributed patent citation networks. In

each of Chapters 2 through 4, numerical examples and experimental results are pre-

sented. Finally, Chapter 5 summarizes the research results and presents future research

opportunities.
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Chapter 2

Graph Kernel-Based Centrality Measure for Evaluating

the Influence of Patents in a Patent Citation Network

2.1 Introduction

In the creation of a new patent, it is typical for the new patent to refer to one or

more previous patents in a bibliography. These citations highlight information that may

be useful to the reader, explain how the current work relates to prior work, and indicates

influences on the current work [21, 51, 59]. Patent citation data has long been known

to be a source of information on technology innovation. Studies have shown that highly

cited patents are of greater technical importance than less frequently cited patents,

in the opinion of knowledgeable peer researchers and inventors [2]. Understanding

technological evolution is vital for business and drives growth, and an increasing number

of decision makers use patent citation analysis as a tool to survey and understand the

activities of their competitors [38, 39, 74].

Citing a patent implies that the contents of the cited patent are relevant to those

of the citing patent in some way. Extending this idea then, patent citation networks

explain the relationship among some set of patents that cite, and are cited by, each

other, where patents are the nodes of the network and an edge exists between the

two nodes if one patent cites the other. Citation networks have the distinguishing

characteristic of being acyclic, meaning that there are no closed loops of directed edges

in the network [59]. This characteristic results from all directed edges (citations) going

from an older patent to a newer patent, and never in the other direction. This type of

network is di↵erent from networks such as the World Wide Web (WWW) and social

networks, in which cycles in the networks are common.

In the general citation network, there are two kinds of nodes of particular interest:
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authorities and hubs. Authorities are nodes that contain especially useful information

on a topic of interest. Hubs, such as review papers in the scholarly article domain, are

nodes that tell where the best authorities can be found [43, 59]. Kleinberg proposed a

hyperlink structural analysis algorithm to determine authorizes and hubs in the World

Wide Web [43]. Discovering authoritative sources in the WWW is similar to finding

these important nodes in a patent citation network. Based only on the structural

analysis of the patent citation network, we aim score and rank nodes in importance in

order to identify the most important patents.

A great deal of research has been conducted with the goal of detecting influential

or important nodes in a variety of networks [8, 9, 22, 24, 57, 63, 70]. For this objective,

a variety of importance measures, called centrality measures, have been developed.

Degree centrality is defined as the number of edges incident to a node [59]. Degree

centrality can be made more specific to consider out-degree and in-degree centrality by

counting the number of directed edges that are directed out from a node or are directed

into a node, respectively. Another centrality measure is called closeness. In connected

graphs there is a natural distance metric between all pairs of nodes, given by the length

of the node-pair’s shortest path. The farness of a node i is defined as the sum of its

shortest path distances to all other nodes, and its closeness is defined as the inverse

of its farness. The betweenness score for a node i is equal to the number of shortest

paths (over all node pairs) that pass through node i. The random walk closeness

centrality [62] measures the speed with which a randomly walking message reaches a

node from elsewhere in the network, thus resulting in a random-walk version of closeness

centrality. Kwon et al. [45] propose the weighted reachability (WR) measure, which is

applied specifically to directed citation networks. The main idea of the WR measure

is to consider both adjacent nodes (direct citations) and non-adjacent nodes (indirect

citations). In this measure, direct citations are given a greater weight than indirect

citations, where indirect citations are weighted inversely proportional to the length of

the path between two nodes. Most of existing centrality measures do not consider the

non-adjacent nodes (indirect citations). Although some centrality measures, such as

WR, consider direct and indirect citations, its weighting system is not robust and o↵ers
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an opportunity for improvement.

This chapter proposes a new centrality measure focused on directed patent citation

networks with unweighted edges between pairs of nodes. We do so in two new ways: (1)

applying various graph kernels, which have not yet been applied for patent citation net-

work analysis (2) leveraging the direction of citations. As a whole, we call this proposed

approach graph kernel-based singular values-based centrality measure, or GKB-SVC.

We are able to quantify the importance of a node using the patent citation information,

specifically the patent citation network structure. The idea is to weight the adjacency

matrix and the higher orders (i.e., powers) of the adjacency matrix so that we capture

direct and indirect citations with a varying and flexible weighting scheme, providing a

centrality measure that is more robust than any existing measure. This chapter works

on the assumption that the change of the similarity matrix that results from the remov-

ing of a particular node reflects the importance of that node to the network to which

it belongs. We assume this relationship since each node contributes to the similarity

matrix of the network, when it is included in the network. Combined with the matrix

norms, which are a measure the size of a matrix, based on singular values, the pro-

posed measure computes the change of similarity matrix that results from removing a

node. The largest change in the matrix norm identifies the most influential node in the

network. Generally, the larger the change in the matrix norm, the more influential the

patent is in the patent citation network.

Our proposed centrality measure considers both paths of adjacent nodes and the

nodes that are reachable, but not adjacent, as opposed to many other centrality mea-

sures that only consider nodes that are adjacent. Furthermore, our procedure allows for

robust scoring and ranking of nodes in importance in order to identify influential nodes

of a directed citation network so that the key technology areas are clearly identified. To

evaluate the quality of the ranking produced by the proposed centrality measure applied

to a patent citation network networks, we compare our results to out-degree centrality,

WR [45], and original singular values-based centrality (SVC) [40] using artificial patent

citation data and real-life patent citation data. Ultimately, we show that our proposed

approach provides an improvement to the original SVC.
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The remainder of the chapter is organized as follows. First, Section 4.2 presents some

background on patent citation network research and gives an overview on various graph

kernels and matrix norms. Section 2.3 presents the details of the proposed centrality

measure, which leverages graph kernels. Section 2.4 presents the computational results

obtained using artificial patent citation networks. Section 2.5 provides a case study on

a real-life patent citation network dataset. Finally, Section 4.6 presents the conclusions

reached as a result of the experimental results.

2.2 Background

In this section we provide background on patent citation networks, centrality

measures, graph kernels, and matrix norms.

2.2.1 Graph kernels

We begin by describing the adjacency matrix. The adjacency matrix, denoted A, is

a matrix representation of which nodes are incident to which other nodes in a network,

such as a patent citation network. For a given graph G := (N,E) with |N | nodes and

|E| edges, let A = [aij ] be the adjacency matrix. If node j cites node i (i.e., there is

a directed edge from node i to node j), then aij = 1, otherwise aij = 0. That is, as

aij = 1 if there is an edge between node i and j, aij = 0 otherwise. Note that matrix

element aij may also be represented Aij . A simple example of node j cites node i is

shown in Figure 2.1.

Figure 2.1: Node j cites node i, and corresponding adjacency matrix, A
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Graph kernels help to compute implicit similarities between patents in a high-

dimensional feature space. In this application, they are leveraged to consider citations

that are indirect citations by applying the graph kernel to the adjacency matrix, A.

Graph kernels use an adjacency matrix of the original citation network (or a similarity

matrix of choice) as input [23, 35].

In this section, we introduce graph kernels that may be applied to patent citation

networks.

Exponential di↵usion kernel

The exponential di↵usion kernel is defined as:

KED =
1

X

k=0

↵kAk

k!
= exp(↵A),

where the elements of Ak, ak
ij , represent the number of paths from node i to node j of

length k. Note that this graph kernel has the ↵ parameter that can be use to adjust

the weight given to powers of A.

von Neumann kernel

The von Neumann di↵usion kernel [23] di↵ers from the exponential di↵usion kernel

by the discounting scheme. The von Neumann di↵usion kernel has an exponential

discounting rate and is defined as:

KV N =
1

X

k=0

↵kAk = (I� ↵A)�1,

where the discounting factor is ↵k. The von Neumann kernel is well defined for 0 <

↵ < ||A||�1
2 , where ||A||2 is the spectral radius of A.

Laplacian di↵usion kernel

The Laplacian exponential di↵usion is defined as [23]:

KLED =
1

X

k=0

↵k(�L)k

k!
= exp(�↵L),

where L = D - A, where D = Diag(ai) is the diagonal degree matrix, with diagonal

entries dii = [D]ii = ai =
n
P

j=1
aij .
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2.2.2 Matrix norms

In this section we describe how to quantify the change in the similarity matrix

when removing a node from the network. This quantity will be used to measure the

node’s centrality score and to rank nodes in importance. The matrix norm quantifies

the size of a matrix using some operation on the elements of the matrix [65]. In this

work, we use the matrix norm to quantify the similarity matrix both with the inclusion

and the exclusion of each node. In this way, we can calculate the di↵erence in the two

values and assign the di↵erence to be the centrality (or importance) of the node to

the network, since it quantifies the value of the absence of the node. The key idea is

that the larger the di↵erence in these two cases, the more important the node is to the

network. We systematically calculate the matrix norm with the exclusion of each node

in the network, one at a time, and are thus are able to rank all nodes in importance.

In the following paragraphs we describe the di↵erent matrix norms used.

Entry-wise norms

The entry wise matrix norms treat the n ⇥ n matrix as an vector of size n2. For

example, using the p-norm for vectors, we get:

||A||p = (
n

X

i=1

n
X

j=1

|aij |p)1/p.

The special case when p = 2 yields the Frobenius norm, and when p = 1 yields

the maximum norm. The max norm is the entry-wise norm with p = 1, written as

||A||1 = max{|aij |}.

Schatten norm

The Schatten norm is based on the singular values from the singular value decom-

position. In other words, the Schatten p-norms arise when applying the p-norm to the

vector of singular values of a matrix. The Schatten norm is defined as follows:
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||A||p =
n

X

i=1

�p
ii,

where �ii is the ith singular value of A for i = 1, 2, . . . , n.

2.3 Graph kernel-based SVC

2.3.1 Introduction of GKB-SVC

The motivation of graph kernel-based singular values-based centrality (GKB-SVC)

is to build on and improve the singular values-based centrality (SVC) presented in

[40]. In doing so, we generalize the centrality measure by allowing for weighting of

indirect citations of di↵erent lengths, thus making a more robust measure in order to

better identify influential patents (i.e., the core technologies) using the graph similarity

matrix to explain the relationship of the nodes (patents), and graph kernels to draw in-

trinsic information from the citation network structure. In particular, the graph kernel

parameter in the developed methods allow the weighting of direct and indirect citations

to be tuned based on the application. For example, in some applications, it may be de-

sirable to have the indirect citations substantially weighted, while in other applications

it may be desirable to only substantially weight direct citations and citations of lesser

lengths. We are able to achieve very similar node centrality ranking as both out-degree

centrality and SVC, while adding the flexibility o↵ered by graph kernel parameters.

The proposed GKB-SVC consists of 1) composition and graph kernelization of the

similarity matrix of nodes 2) executing the singular value decomposition with the re-

sulting modified similarity matrix 3) calculating the matrix norm using the obtained

singular values, when removing each node from the singular matrix, one at a time.

Figure 2.2 shows the process flow of our proposed centrality measure for identifying the

most influential patent in the directed patent citation network. While the method of

computing the di↵erence of the similarity matrix norm with the existence and nonex-

istence of node in the network works as one way to rank nodes in a patent citation

network, we propose improving original SVC in two key ways. The contribution of our

approach is to:
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1. Leverage the graph kernelization of adjacency matrix A.

2. Remove e↵ect of ith row only, corresponding to patent i, from kernelized matrix

(do not change ith column, but leave it as it is in the kernelized matrix).

First, the similarity scores between all pairs of nodes are calculated. In this chapter,

we adopt graph kernels such as: the exponential di↵usion graph kernel and the von

Neumann graph kernel applied to the graph adjacency matrix.

We calculate the e↵ect of each node by comparing the inclusion of the node to

the exclusion of the node in the network, and hence the similarity matrix. The node

resulting in the largest di↵erence is considered the most important node. We denote

the SVD of the kernelized adjacency matrix after removing the e↵ect of node t by:

K(�t) = U(�t)⌃(�t)V
T
(�t),

where the Schatten norms for the kernelized adjacency matrix after removing the e↵ect

of node t are given as:

||K(�t)||p =
l

X

i=1

�p
(�t)

ii

.

The GKB-SVC then is formulated as the di↵erence of the two norms:

pp(t) = ||K||p � ||K(�t)||p =
l

X

i=1

(�ii)p �
l

X

i=1

(�(�t)
ii

)p,

where �(�t)
ii

is the ith singular value when node t is removed, and l is the predetermined

number of elements to get the best lower rank approximation of the matrix K. In a

small network l = n, while in a large network, l is determined by experiment. Reducing

the original matrix, K, to a thin matrix using singular values can be interpreted as a

form of noise suppression and makes it possible to more e�ciently calculate the updates

of the singular values for an extremely large network [10].
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Figure 2.2: Process for ranking nodes of a citation network using proposed GKB-SVC
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When using p = 1, the nuclear norm, Equation 2.1 can be written as:

p1(t) = ||K||1 � ||K(�t)||1 =
l

X

i=1

(�ii) �
l

X

i=1

(�(�t)
ii

).

Similarly, when using p = 2, the Frobenius norm, Equation 2.1 can be written as:

p2(t) = ||K||2 � ||K(�t)||2 =
l

X

i=1

(�ii)2 �
l

X

i=1

(�(�t)
ii

)2.

Finally, the spectral norm (p = 1) makes for the simplest norm, as it uses only

the largest singular value rather than a summation. The centrality measure based on

spectral norm is the di↵erence of the largest singular values between the case of the

existence and the nonexistence of each node, and is given by:

p1(t) = �11 � �(�t)11 .

2.3.2 Properties of GKB-SVC for patent citation networks

To emphasize citation direction, in this work we propose only removing the row

of the graph kernelization of the adjacency matrix, A, corresponding to a given node.

The original SVC does not use this approach and as a result, has a drawback that

ranks some leaf nodes too highly. In order to rank node, SVC removes ith row and

ith column of the similarity matrix when calculating the di↵erence in the existence and

nonexistence of a node i in the network. In this way, nodes that have many paths

leading to them, such as leaf nodes, are ranked too highly as compared to nodes that

are not leaf nodes (i.e., nodes that are cited by other nodes). We propose modifying

SVC by only removing the ith rows of the similarity matrix, and not the ith column,

since the row of the matrix indicates how a patent is cited, while the column indicates

how many other patents the particular patent cites. In this way, we acknowledge that

the cited patent is more important than the citing patent. In this work, we remove the

e↵ect of node i by setting values in row i of matrix K to zero, while leaving column

values of the matrix unchanged, when comparing the existence to the nonexistence of

node i in a patent citation network. In Proposition 1 we relate the e↵ect of removing
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only the row in our proposed method to the existing out-degree centrality measure. See

Appendix A for proof.

Proposition 1 If A is the adjacency matrix, then the proposed remove row modifi-

cation to SVC, using the Frobenius norm (p=2) for the directed patent citation network,

is equal to out-degree centrality given by:

p2(t) =
n

X

i=1

(�ii)2 �
n

X

i=1

(�(�t)
ii

)2

= out-degree of node t,

where �ii is the ith singular value of A and �(�t)
ii

is the ith singular value having

removed the e↵ect of node t.

One of the advantages our GKB-SVC measure provides over other methods is the

flexibility allowed by way of choosing the ↵ parameter value. For example, in the von

Neumann graph kernel, a smaller ↵ (↵ < 1) means that smaller degrees of separation

are given more weight. A larger ↵ (↵ > 1) means that higher degrees of separation are

given more weight. A special case is ↵ = 1, where paths of all lengths have the same

weight. This results follows from the fact that the kth power of ↵ will be the coe�cient

for kth power of the adjacency matrix, A, as can be seen in Equation 2.1. The weights

will be applied to all decedents of a node when calculating the nodes centrality score,

depending on how many levels from the node each decedent is located. The descendants

of a node are all the nodes along the path from that node to a terminal node. A terminal

node or a leaf is a node with out-degree of zero. Proposition 2 shows that when the

same weight for direct and indirect citations are applied (i.e. ↵ = 1) the total number

of paths to all decedents can be calculated using von Neumann GKB-SVC. Specifically,

Proposition 2 shows that our proposed centrality measure counts the total number of

paths to decedents of a node when the graph kernel parameter ↵ = 1. See Appendix B

for proof.

Proposition 2 The total number of paths, of length 1 to m, where m is the longest

path of any indirect citation for a given node t, is equal to one less than the remove row

von Neumann graph kernel score using the entry-wise matrix norm and graph kernel
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parameter ↵ = 1.

We can specifically leverage the flexibility of GKB-SVC applied to patent citation

networks. In particular, for the exponential di↵usion graph kernel and the von Neumann

graph kernel, we can choose ↵ parameter for best performance in any given network,

as we will explore in the next section.

2.4 Experimental results

In this section we experiment with di↵erent graph kernel parameters and com-

pare our proposed GKB-SVC measure with existing centrality measures using artificial

datasets. The centrality measures considered for comparison purposes are out-degree

centrality, original SVC, and GKB-SVC.

2.4.1 Data description: Example patent citation networks

Artificial dataset 1: 10-node patent citation network

Figure 2.3: Artificial dataset 1 - example patent citation network called Graph 1

We first use the 10-node example citation network seen in Figure 2.3. Note that

Node 1 is the root node of this acyclic graph. Additionally note that all other patents

in this network either directly cite Node 1, or indirectly cite Node 1, by citing a node

that itself cites Node 1, either directly or indirectly. Also, it is possible for there to
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exist more than one citation path between any pair of nodes. Take Node 1 and Node 10

for example. Between these two nodes there are the paths 1!3!6!10 and 1!6!10

and 1!5!10, and others. In total, there are 16 paths between Node 1 and Node 10, of

lengths 1, 2, 3, or 4. The adjacency matrix for the patent citation network in dataset

1 is given by,

A =

2
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Next we discuss the expected ranking of all 10 nodes for the network in Figure 2.3.

The advantage of this example network is that we can systematically determine how

we expect the nodes of the network to be ranked. We expect that Nodes 7, 9 and

10 are the least important nodes and scored similarly since they have similar citation

structure, and are the least cited of all patents, being cited zero times each. Note the

zero entries in the 7th, 9th, and 10th row of the adjacency matrix, A In a similar way,

Nodes 8 is the next-most least important node since it is only cited by one other node,

Node 9. Thus, we expect Node 8’s score to be greater than that of Nodes 7, 9, and

10. We expect that Nodes 2 and 3 are not as highly ranked as Node 1, but are more

highly ranked than Nodes 4, 5, and 6, which we expect to be scored the same, due to

them having the same citation structure and citation count. To summarize then, our

expected ranking of the nodes for Graph 1 in descending order, from most important

to least important are shown in Table 2.1.

Artificial dataset 2: Six 10-node patent citation networks

Next we continue our comparison of centrality measures by scoring Node 1 (i.e.,

the root node) of six example graphs using existing methods and our proposed method.
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Table 2.1: Expected node influence rank for example citation Graph 1

Expected rank Node
1 1
2 2
3 3
4 4, 5, 6 (tie)
7 8
8 7, 9, 10 (tie)
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Figure 2.4: Artificial dataset 2 - six example patent citation networks with labels
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We compare the scorings of Node 1 for the di↵erent graphs and use those root node

scorings as an indicator of the importance of the graphs themselves. Note that this is

a scoring of root nodes over six di↵erent graphs, seen in Figure 2.4, and not the usually

performed ranking of all nodes within a single graph [45].

We consider the direct and indirect citations for all Node 1s of the six citation

networks in dataset 2. We expect Node 1 of Graph 1 to be the highest ranking of

all the six Node 1s of the dataset since it has the most direct and indirect citations.

Generally, we expect the ranking to decrease from Graph 1 to Graph 6, since the total

number of direct and indirect citations decreases. We summarize our expected ranking

of the Node 1s for the six example networks in descending order, from most important

to least important are shown in Table 2.2.

Table 2.2: Expected Node 1 influence rank for six example citation networks from
dataset 2

Expected rank Node 1 from network
1 1
2 2
3 3
4 4
5 5
6 6

Artificial dataset 3: 15-node patent citation network

The network in artificial dataset 3 is like Graph 1, but has five additional nodes

that each cite Node 7, as seen in Figure 2.5. In other words Node 7 now has out-degree

of five in this patent citation network. Clearly, this change will cause Node 7 to be

considered more important than it previously had been in dataset 1. If we compare

Node 7 to Node 4, we see that Node 7 has a higher out-degree. However, Node 4 has

more indirect citations than Node 7. We expect that with these additional citations,

the ranking relationship between Node 4 and Node 7 will depend on the graph kernel

parameter used.
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Figure 2.5: Artificial dataset 3 - example citation graph with five additional nodes
citing Node 7

2.4.2 Parameter selection for GKB-SVC

We use the example citation network in Figure 2.3 to compare our proposed ap-

proach with existing methods and find that our method outperforms original SVC that

was proposed by Kim et al.. Notice in Table 2.3 that Node 9 is ranked second, thus is

ranked too highly. Compare that to Node 9’s expected ranking of eighth in Table 2.1.

This is because it is a leaf node and has many indirect paths to it. When Kim’s SVC

is performed, it removes both the ith row and ith column, meaning that the node’s

incoming incitation and outgoing citations are considered for importance rankings, re-

sulting in Node 9 being ranked important because its exclusion has a large e↵ect on the

similarity matrix.

Table 2.3: Node rankings of Graph 1 using original SVC approach

Rank Node
1 1
2 9
3 2
4 7, 10
6 8
7 3
8 4,5,6
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We score and rank all nodes of Graph 1 using our proposed graph kernel-based SVC

and the exponential di↵usion and von Neumann graph kernel with ↵ = {0.01, 0.5, 0.85, 2.0}.

In this experiment, we find that ↵ >= 0.5 (from this set of values) yields the best node

scoring and ranking results. The reason that lesser ↵ values, such as ↵ = 0.01, do not

perform as well is because the indirect citations are weighted su�ciently small that the

GKB-SVC ranking becomes similar to out-degree centrality. Note that the concept of

GKB-SVC ranking nodes similarly to out-degree centrality for small ↵ values is also

seen for the real-life data experimental results.

2.4.3 Exponential di↵usion graph kernel

Artificial dataset 1

Exponential di↵usion graph kernel parameter ↵ = 0.85 and p=2 norm has the best

ranking performance.

Table 2.4: Artificial dataset 1: e↵ect of ↵ parameter and p norm on ranking nodes of
Graph 1 when using exponential di↵usion GKB-SVC

p = 1 p = 2 p =1
↵ ↵ ↵ Expected

Node 0.01 0.5 0.85 2.0 0.01 0.5 0.85 2.0 0.01 0.5 0.85 2.0 rank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 4 4 4 4 4 4 4 4 4 4 4 4 4
6 4 4 4 4 4 4 4 4 4 4 4 4 4
7 8 8 8 8 8 8 8 8 7 9 9 9 8
8 7 7 7 7 7 7 7 7 9 7 7 7 7
9 10 10 10 10 8 8 8 8 10 8 8 8 8
10 8 8 8 8 8 8 8 8 7 9 9 9 8

In Table we observe ↵ = 0.5 produce a better ranking, since Node 8, is now higher

than Node 10 for all tree p norms. Nodes 7, 9, and 10, do not all have the same score, as

is expected, when using the p = 1 norm. Our best observed ranking results for ↵ = 0.85

is using the p = 2 norm.
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Artificial dataset 2

Exponential di↵usion graph kernel parameter ↵ = 0.85 and p=2 norm has the best

ranking performance.

Table 2.5: Artificial dataset 2: e↵ect of ↵ parameter and p norm on ranking Node 1s
of dataset 2 when using exponential di↵usion GKB-SVC

p = 1 p = 2 p =1
↵ ↵ ↵ Expected

Node 0.01 0.5 0.85 2.0 0.01 0.5 0.85 2.0 0.01 0.5 0.85 2.0 rank
1 1 1 1 1 1 1 1 1 4 1 1 1 1
2 2 2 2 2 2 2 2 2 3 2 2 2 2
3 3 3 3 3 3 3 3 3 1 3 3 3 3
4 4 4 4 4 4 4 4 3 5 5 5 6 4
5 5 5 5 5 5 5 5 3 6 6 6 5 5
6 5 6 6 6 6 6 6 6 2 4 4 4 6

Artificial dataset 3

Depending on ↵ parameter, Node 7 may be ranked fourth or seventh most impor-

tant.

2.4.4 von Neumann graph kernel

Artificial dataset 1

von Neumann graph kernel parameter ↵ = 0.85 and p=2 norm has the best ranking

performance.

Artificial dataset 2

von Neumann graph kernel parameter ↵ = 0.85 and p=2 norm has the best ranking

performance.
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Table 2.6: Artificial dataset 3: e↵ect of ↵ parameter and p norms on ranking nodes of
dataset 3 when using exponential di↵usion GKB-SVC

p = 1 p = 2 p =1
↵ ↵ ↵

Node 0.01 0.5 0.85 2.0 0.01 0.5 0.85 2.0 0.01 0.5 0.85 2.0
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 5 5 5 5 5 4 4 4 4 4 4
5 4 5 5 5 6 5 4 4 4 4 4 4
6 4 5 5 5 6 5 4 4 4 4 4 4
7 7 4 4 4 4 4 7 7 7 7 7 7
8 13 13 13 8 8 8 8 8 9 8 8 8
9 15 15 15 15 9 9 9 9 10 9 9 9
10 14 14 14 14 9 9 9 9 8 10 10 10
11 8 8 8 9 9 9 9 9 11 11 11 11
12 8 8 8 9 9 9 9 9 11 11 11 11
13 8 8 8 9 9 9 9 9 11 11 11 11
14 8 8 8 9 9 9 9 9 11 11 11 11
15 8 8 8 9 9 9 9 9 11 11 11 11

Table 2.7: Artificial dataset 1: e↵ect of ↵ parameter and p norm on ranking nodes of
Graph 1 when using von Neumann GKB-SVC

p = 1 p = 2 p =1
↵ ↵ ↵ Expected

Node 0.01 0.5 0.85 2.0 0.01 0.5 0.85 2.0 0.01 0.5 0.85 2.0 rank
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 4 4 4 4 4 4 4 4 4 4 4 4 4
6 4 4 4 4 4 4 4 4 4 4 4 4 4
7 9 8 8 7 8 8 8 8 7 9 9 9 8
8 7 7 7 9 7 7 7 7 9 7 7 7 7
9 8 10 10 10 8 8 8 8 10 8 8 8 8
10 9 8 8 7 8 8 8 8 7 9 9 9 8
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Table 2.8: Artificial dataset 2: e↵ect of ↵ parameter and p norm on ranking Node 1s
of dataset 2 when using von Neumann GKB-SVC

p = 1 p = 2 p =1
↵ ↵ ↵ Expected

Node 0.01 0.5 0.85 2.0 0.01 0.5 0.85 2.0 0.01 0.5 0.85 2.0 rank
1 1 1 1 1 1 1 1 1 4 1 1 1 1
2 2 2 2 2 2 2 2 2 3 2 2 2 2
3 3 3 3 5 3 3 3 5 1 3 3 5 3
4 4 4 4 4 4 4 4 4 5 5 6 4 4
5 5 5 5 3 5 5 5 3 6 6 5 3 5
6 5 6 6 6 6 6 6 6 2 4 4 6 6

Artificial dataset 3

Depending on ↵ parameter, Node 7 may be ranked fourth or seventh most impor-

tant. Recall again the flexibility our method allows by way of choosing the ↵ parameter

value. A smaller ↵ means that smaller degrees of indirect citation separation are given

more weight. A larger ↵ means that higher degrees of indirect citation separation are

given more weight. This results follows from the fact that a power of ↵ will be the

coe�cient for the powers of the adjacency matrix, A.

We see that with the ↵ values we used in the raking of the 15-node network, the

node ranking results are not sensitive to the graph kernel type. That is, we get fairly

consistent ranking results with the both the exponential di↵usion and von Neumann

graph kernels that we experimented with here.

We see that overall graph kernel parameter ↵ = 0.85 and p=2 norm has the best

ranking performance, and that results are not very sensitive to graph kernel type used,

among the two kernels used in this experiment.

2.4.5 Guideline for the selection of a graph kernel and its parameter

Given that graph kernels provide flexibility in weighing of indirect citations, the

decision must be made as to which graph kernel to apply and how to select the best value

of the graph kernel parameter. The tuning of graph kernel parameters will depend on

the particular application, so it can vary from application to application [23]. As a part
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Table 2.9: Artificial dataset 3: e↵ect of ↵ parameter and p norm on ranking node of
dataset 3 when using von Neumann GKB-SVC

p = 1 p = 2 p =1
↵ ↵ ↵

Node 0.01 0.5 0.85 2.0 0.01 0.5 0.85 2.0 0.01 0.5 0.85 2.0
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 10 10 11 5 4 4 4 4 4 4 4
5 4 10 10 11 5 4 4 4 4 4 4 4
6 4 10 10 11 5 4 4 4 4 4 4 4
7 12 4 4 4 4 7 7 7 7 7 7 7
8 13 13 13 5 8 8 8 8 9 8 8 8
9 14 15 15 15 9 9 9 9 10 9 9 9
10 15 14 14 14 9 9 9 9 8 10 10 15
11 7 5 5 6 9 9 9 9 11 11 11 10
12 7 5 5 6 9 9 9 9 11 11 11 10
13 7 5 5 6 9 9 9 9 11 11 11 10
14 7 5 5 6 9 9 9 9 11 11 11 10
15 7 5 5 6 9 9 9 9 11 11 11 10

of this work, we experimented with di↵erent graph kernels, graph kernel parameters, and

matrix norms. To emphasize the direct citations, and rank more highly the nodes that

have more direct citations, we can use small ↵. To emphasize the indirect citations we

can use a larger ↵. This results from greater ↵ values giving greater weight to matrices

of higher order in the expansion of the von Neumann graph kernel.

We experimented with di↵erent matrix norms and ↵ parameter values using the

two small artificial datasets described above, for which the expected relative influence

ranking of nodes is well-understood, by design. For example, considering only direct ci-

tations, a patent with nine direct citations should be considered more influential than a

patent with one direct citation. Further, considering both direct and indirect citations,

a patent with one direct citation and two indirect citations should be considered more

influential than a patent with one direct citation and one indirect citation. We exper-

imented with di↵erent matrix norms and ↵ parameters, comparing influence ranking

results over the di↵erent matrix norms and ↵ parameters to the expected ranking. We
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then choose matrix norm and ↵ parameter value that produce the same influence rank-

ing results as the expected ranking in the case of the two artificial datasets. The idea

is that a large patent citation network can be thought of as composed of many small

citation networks. If the ranking results are desirable in small citation networks (arti-

ficial datasets), then ranking results will also be desirable when extended to the large

citation network. Based on extensive experiments, for the application of ranking patent

importance in patent citation networks, we recommend the following as GKB-SVC pa-

rameters: von Neumann graph kernel, with ↵ = 0.85, and Schatten norm with p = 2.

For the experiments that follow, we fix the graph kernel, graph kernel parameter, and

matrix norm as such. We use the von Neumann graph kernel because its interpretation

in relation to the patent citation network dataset is reasonable, as the von Neumann

graph kernel considers the powers of the adjacency matrix, which correspond to direct

and indirect citations. Other kernels do not have a clear interpretation to the patent

citation network.

2.4.6 Comparison of out-degree centrality, original SVC, and GKB-

SVC

In this section we compare the ranking of all 10 nodes of Graph 1 seen in Figure

2.3 using the three methods described. We compare these results with the expected

ranking. In particular, we leverage the exponential di↵usion and von Neumann graph

kernel, as graph kernels help to compute implicit similarities between patents in a high-

dimensional feature space.

(1) Out-degree centrality

(2) Closeness centrality

(3) Betweenness centrality

(4) Original SVC

(5) Proposed GKB-SVC



27

Artificial dataset 1

Results for the case of ranking the 10 nodes in dataset 1 can be seen in Table

2.10. There we see our proposed GKB-SVC and out-degree centrality perform the best

because they provide the ranking as is expected. Original SVC ranks Node 9 too highly

since it considers citations and times cited as equally important. Refer to Table 2.2 for

detail on expected ranking of nodes.

Table 2.10: Comparison of centrality measures for ranking 10 nodes from dataset 1

Out-degree Closeness Betweenesss SVC GKB-SVC Expected
Node Patent Score Patent Score Patent Score Patent Score Patent Score rank

1 1 9 1 0.11 1 0.07 1 7.93 1 621.19 1
2 2 7 2 0.10 2 0.00 3 2.22 2 173.64 2
3 3 6 2 0.10 2 0.00 7 0.87 3 49.69 3
4 4 4 4 0.09 2 0.00 8 0.35 4 5.64 4
5 4 4 4 0.09 2 0.00 8 0.35 4 5.64 4
6 4 4 4 0.09 2 0.00 8 0.35 4 5.64 4
7 8 0 7 0.08 2 0.00 4 1.89 8 1.00 8
8 7 1 7 0.08 2 0.00 6 1.38 7 1.72 7
9 8 0 7 0.08 2 0.00 2 4.36 8 1.00 8
10 8 0 7 0.08 2 0.00 4 1.89 8 1.00 8

Artificial dataset 2

Results for the case of ranking the six Node 1s in dataset 2 can be seen in Table

2.11. Our proposed GKB-SVC performs the best because it provides the ranking as

is expected. For this dataset, out-degree is unable to distinguish the di↵erence in

importance of citation networks 1, 2, and 3, since it only considers direct citations of

Node 1, which are the same for those three graphs, while clearly Node 1 from network

1 has the greatest importance among the example networks provided. Original SVC

ranks Node 1 from citation network 6 as fourth most important, ahead of Node 1

from network 4, which is not substantiated since Node 1 from network 4 has six direct

citations and three indirect citations, while Node 1 in network 6 has only five direct

citations and no indirect citations.



28

Table 2.11: Comparison of centrality measures for ranking Node 1s from dataset 2

Out-degree Closeness Betweenesss SVC GKB-SVC Expected
Node Patent Score Patent Score Patent Score Patent Score Patent Score rank

1 1 9 1 0.1111 6 0.07 1 7.93 1 621.19 1
2 1 9 1 0.1111 5 0.19 2 5.51 2 197.93 2
3 1 9 1 0.1111 1 1.60 3 3.00 3 7.50 3
4 4 6 4 0.0833 2 1.42 5 1.23 4 6.90 4
5 5 5 5 0.0769 3 1.33 6 1.13 5 6.70 5
6 5 5 6 0.0000 4 0.44 4 2.24 6 4.61 6

2.5 Case study

In this section, the relative performance of the existing centrality measures and

the proposed methods are compared using the Coe�cient of Variation (CV), which is a

method to evaluate the discrimination ability of the centrality measures [40]. The cen-

trality measures considered for comparison in this case study are out-degree centrality,

original SVC, and the graph kernel-based SVC proposed in this chapter.

The original pool of patents used for the computational experiments includes U.S.

patents in the area of information and security issued from 1976 to 2007 [40]. The

dataset actually used for the experiments are U.S. patents in the area of information

and security issued between 1994 and 2007. For these experiments, we take the top

1% most frequently cited patents from 1994 to 2007 as the nodes in the patent citation

network. In order to have a single connected tree structure to which to apply centrality

measures, we select the patents that cite, either directly or indirectly, the most cited

patent from the original dataset, which is patent US-5349655. Our patent citation

network then consist of 4,241 nodes and 18,385 edges.

In this experiment for the graph kernel-based SVC, the singular value decomposition

is performed on the similarity matrix with 4,241 columns and rows. In Table 2.14 we

show results from ranking real-life patents. We see that patent US-5892900 is the

highest ranked patent using out-degree centrality, and Patent while Patent US-5349655

is the the higher ranked patent when using GKB-SVC. Here again, we observe the

nature of out-degree centrality measure, and the di↵erence that considering indirect

citations makes. Additionally, we see that original SVC ranks leaf nodes, which may
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have many indirect paths leading to them, too highly, as original SVC rankings do not

have many top 20 ranked patents in common with the other three approaches.

We use the top 1% of patents that directly or indirectly cite the most cited, Patent

US-5349655, so we would expect that patent to be ranked among the most important.

Observe the flexibility in our proposed approach since US-5349655 is ranked as the most

important node when using ↵ = 0.85, while for lesser values, such as ↵ = 0.5, we see

that US-5745604 is ranked first and US-5349655 is ranked second in importance (not

shown in table).

Table 2.12: Comparison of ranking of U.S. patents using di↵erent centrality measures
‘US-’ prefix omitted)

Rank Out-degree SVC GKB-SVC
1 5892900 7266217 5349655
2 5982891 7281133 5745604
3 5943422 7171020 5892900
4 5920861 7224819 5862260
5 5910987 7305104 5822436
6 5915019 7076445 6064764
7 5917912 7254249 5943422
8 6185683 7184572 5920861
9 5949876 7197160 5832119
10 6112181 7249257 6301590
11 5862260 7159240 5982891
12 6226618 7310823 6047296
13 6122403 7239734 6052486
14 5745604 7257707 5613002
15 6157721 7136502 5915019
16 6253193 7286685 5949876
17 6237786 7197461 6122403
18 6327652 7210034 5910987
19 6330670 7302574 6338070
20 6138119 7248717 6185683

In addition to comparing the ranking results of the 20 highest ranked nodes when

applying di↵erent centrality measures, we also use CV, which is a normalized measure

to quantify the spread of the data. CV is defined as follows, CV=�
µ , where � is the

standard deviation of the top 20 scores, and µ is the mean of the top 20 scores. Because

CV is a measure of how well importance ranking is distinguished, the greater the CV,
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the more desirable. Table 2.13 displays the CV for the di↵erent centrality measures

applied to real-life data. In Table 2.13 we see that the proposed GKB-SVC performs

better than existing centrality measures when considering how well importance scores

distinguish patent rankings.

Table 2.13: Coe�cient of variation for centrality scores of top 20 ranked nodes

Centrality measure Average Standard deviation CV
Out-degree centrality 183.80 58.37 0.32
SVC 58808.74 60371.51 1.03
GKB-SVC 430961.62 1232572.6 2.86

We plot the citation network using the top 20 nodes based on our GKB-SVC cen-

trality measure. If an edge exists between a top 20 node, and another top 20 node, then

that edge is also drawn. The size of the node is proportional to its centrality score,

with a larger node size indicating a larger centrality score. In Figure 2.6 we show a plot

of a subset of the nodes and edges.

In addition to comparing the ranking results of the 20 highest ranked patents when

applying di↵erent centrality measures, we also evaluate CV for the top 50 highest ranked

patents quantify the spread of the data. Once again, because CV is a measure of how

well importance ranking is distinguished, the greater the CV, the more desirable. Table

2.15 displays the CV for the di↵erent centrality measures applied to real-life data for the

top 50 ranked patents. Since we are now considering more (additional) scores, the CV

results will be di↵erent. In Table 2.15 we see that the proposed GKB-SVC still performs

better than existing centrality measures when considering how well importance scores

distinguish the top 50 ranked patents.

2.6 Conclusion

In this chapter, we present a graph kernel-based method for ranking patents in

influence given a patent citation network. Specifically we propose the von Nuemann

graph kernel to weigh both the direct and the indirect citations that a patent receives

from later patents, in order to evaluate patent influence. The presented methods were
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Figure 2.6: Patent citation network of the top 20 ranked important nodes using pro-
posed von Neumann GKB-SVC with ↵=0.85 (‘US-’ prefix omitted)
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Table 2.14: Comparison of ranking of U.S. patents using di↵erent centrality measures
(‘US-’ prefix omitted)

Out-degree SVC (remove col.) SVC (remove row) GKB-SVC
Rank Patent Score Patent Score Patent Score Patent Score

1 5892900 383 7266217 228288.94 5349655 1066981.05 5349655 4888907.01
2 5982891 249 7281133 191601.19 5745604 736123.08 5745604 2934315.58
3 5943422 240 7171020 114041.82 5892900 43737.29 5892900 156147.09
4 5920861 211 7224819 112578.89 5862260 36031.10 5862260 132886.45
5 5910987 201 7305104 99208.33 5822436 25995.72 5822436 105942.50
6 5915019 193 7076445 51187.34 6064764 19785.15 6064764 73534.48
7 5917912 193 7254249 43034.75 5943422 16728.27 5943422 53760.46
8 6185683 191 7184572 42847.58 5920861 13603.13 5920861 43824.74
9 5949876 183 7197160 36113.06 5832119 8937.72 5832119 32579.09
10 6112181 177 7249257 33727.89 6301590 8713.12 6301590 28903.35
11 5862260 175 7159240 32202.77 5982891 7253.75 5982891 23901.15
12 6226618 155 7310823 28926.90 5915019 6229.13 6047296 20890.77
13 6122403 154 7239734 27992.95 6052486 6025.27 6052486 20885.94
14 5745604 151 7257707 25856.69 5949876 5157.02 5613002 19465.97
15 6157721 145 7136502 20858.23 6122403 4954.15 5915019 18232.00
16 6253193 141 7286685 20627.20 5613002 4922.71 5949876 16781.38
17 6237786 137 7197461 19003.55 6047296 4824.71 6122403 14462.24
18 6327652 133 7210034 17301.14 5910987 4345.28 5910987 12004.94
19 6330670 133 7302574 15479.36 6185683 4073.57 6338070 11215.34
20 6138119 131 7248717 15296.15 6112181 3702.97 6185683 10591.89
21 6233684 124 7305553 13896.40 5917912 3678.54 6112181 10225.83
22 6311214 122 7278168 13022.05 6338070 3315.35 5917912 10092.34
23 6240185 121 7281274 11942.95 6157721 3123.07 6253193 8802.53
24 6389402 120 7266181 11678.15 6253193 2839.04 6157721 8055.41
25 6292569 119 7292692 11021.17 6138119 2512.59 6246777 7091.52
26 6363488 119 7289643 10714.20 6311214 2498.05 6311214 6772.44
27 5832119 107 7286667 10713.36 6246777 2465.96 6138119 6465.70
28 6345256 98 7287168 10713.36 6452915 1873.05 5826013 5652.22
29 6243480 92 7292691 10713.36 5930767 1840.87 6363209 5646.75
30 5822436 89 7302709 10433.82 5826013 1795.36 5930767 5572.54
31 6314409 85 7137004 10285.37 6243480 1646.52 6452915 4989.27
32 6427140 82 7139408 9879.76 6332031 1570.66 5765030 4696.82
33 6064764 80 7107463 9692.79 6363209 1513.48 6332031 4381.06
34 5349655 79 7302058 9202.21 6233684 1490.30 6243480 4228.81
35 6385596 78 7266704 8881.11 6237786 1473.54 6233684 3820.15
36 6345104 73 7263187 8412.81 6240185 1382.73 6275599 3809.62
37 6449367 73 7310422 8350.77 5765030 1353.12 6237786 3426.66
38 6614914 71 7305592 8149.52 6275599 1322.65 6499059 3278.72
39 6452915 63 7287159 7181.92 6292569 1244.37 6240185 3218.02
40 5930767 59 7299499 6826.34 6499059 1126.01 5822517 3212.33
41 6343138 58 7213757 6588.20 5822517 951.98 6292569 2838.73
42 6108644 57 7159210 6525.24 6026193 924.31 5854916 2706.00
43 6609199 57 7076655 6470.28 6345104 919.89 6026193 2686.74
44 6236365 56 7308576 6335.77 6285776 883.48 6345104 2421.40
45 6332031 55 7299358 6308.75 5854916 843.13 6285776 2399.89
46 6275599 52 7302689 6015.98 6324573 743.29 6324573 1883.64
47 6658568 52 7209573 5996.56 6343138 706.68 6567796 1700.14
48 6246777 50 7277695 5971.13 6567796 703.84 6286036 1654.21
49 6249252 50 6993154 5889.43 6327652 648.69 6343138 1609.11
50 6263313 47 7213269 5836.80 6507817 590.47 6424979 1480.26
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Table 2.15: Coe�cient of variation for centrality scores of top 50 ranked nodes

Centrality measure Average Standard deviation CV
Out-degree centrality 121.28 66.16 0.55
SVC (rm col) 28796.49 45048.42 1.56
SVC (rm row) 41522.1 180667.35 4.35
GKB-SVC 175081.02 796012.32 4.55

specifically developed to be applied to patent citation networks, but may also be applied

to literature citation networks, where there is a natural sense of later works being

influenced by prior works. The proposed methods have some limitation in that older

(i.e., from an earlier date) patents tend to be considered more influential within the

patent citation network because they tend to accumulate more direct and indirect

citations with time.

The study utilizes the idea that the change in similarity matrix caused by removing

a node from the network is valuable for determining the importance of that node in the

network, since each node contributes to the similarity matrix. The proposed GKB-SVC

approach works by leveraging graph kernels in order to generalize the SVC approach.

Additionally, this approach works by removing the e↵ect of only row values (i.e., setting

elements in row i of the similarity matrix to zero as an indication of its nonexistence

in the citation network), and not ith column values of the similarity matrix when

comparing the existence to the nonexistence of node i in a patent citation network.

Using this method, the impact of node i as a cited patent, rather than citing patent,

is emphasized. This fact means that leaf nodes, which may have many indirect paths

leading to them, are not incorrectly ranked too highly.

The von Neumann di↵usion graph kernel allows us to consider citation paths of

greater than length one. In this way, we are able to account for patents that do not

directly cite node i, but which also cite a patent that cited node i, extended to the

general case of any number of intermediate citations. Our proposed method o↵ers more

generality and flexibility than that of out-degree centrality and SVC. As a guideline

for the application of node centrality in patent citation networks, we find the von
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Neumann graph kernel, with ↵ = 0.85, and Schatten norm with p = 2 to yield the best

performance.

In the case of the real-life dataset, we saw that our method performs better than

out-degree centrality and original SVC. In particular, our method allows for the gener-

alization of these type of centrality measures, allowing for flexibility in the application

of centrality measures. Finally, our proposed GKB-SVC outperforms existing centrality

measures in discriminating ranking when CV is considered.

Potential future research directions include (1) considering assigning a weight of zero

for indirect citations greater than some length c, so that older patents do not have the

advantage of having many long indirect citation paths that contribute to their influence

score, (2) considering time information of a patent to account for the rate of citations

made (i.e., consider how the citation network evolves with time), and (3) extending

the application of the method to identify influential publications in literature citation

networks.

In our next chapter, we will move from the analysis of patent citations for the

purpose of influence ranking to the analysis of co-citation and bibliographic coupling

links for the purpose of pairwise patent similarity ranking.
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Chapter 3

Multi-stage Similarity Measure for Calculation of

Pairwise Patent Similarity in a Patent Citation Network

3.1 Introduction

With the expected increase in the number and complexity of patents, quickly an-

alyzing patents to find similar and outlying patents or groups of patents in a patent

citation network has become a critical ability and provides business advantages [26, 34,

38, 41, 47, 80]. Most new patents are influenced by previous works in some way. This

influence is captured by a patent’s citation of a previous work, and can be thought of

as an extension of the previous work(s). Taken all together, patents and the citation

links between them can be represented in a patent citation network. It is important

to analyze the patent citation network to gain an understanding of past, current, and

possible future technological trends [27]. Most of the existing citation network research

explains the similarity for a pair of patents as either citing or cited patent, strictly

on an pairwise adjacency basis. That is, only direct citation links are considered [59].

Additionally, much patent citation network research calculates the patent similarity us-

ing keywords [80, 60]. Identifying patent relationships by analyzing direct and indirect

citation links, as well as determining quality of the citing patents is given in [6]. In

our work, we focus on patent co-citations for the purpose of developing a similarity

measure, relying only on the patent citation network structure. Using only the patent

citation network structure, we are able to extract important relational evidence that

can be missed when using keyword analysis since word choice depends on author writing

style, whereas citations directly capture patent relationship. A co-citation link occurs

when two patents are cited together by another patent. For example, if patent x and

patent y are both cited by patent i, then we say patent x and y are co-cited by patent i.
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Whereas citations are important for considering influence of patents, co-citations give

insight into similarity of patents. Figure 3.1 demonstrates the di↵erence in considering

citations versus co-citations.

x!

i!

y!

i!

x!

Figure 3.1: Example patent citation networks highlighting citation of x by i, indicating
influence of patent x (left); and co-citation of x and y by i, indicating relatedness (or
similarity) of patents x and y (right)

There are two main approaches used to explain the similarity (or relatedness) be-

tween nodes in a citation network when only considering the citation network structure

– co-citation and bibliographic coupling [20, 16, 59]. These methods can be used for

measuring the pairwise similarity between two patents of a patent citation network.

Small [73] introduced co-citation to measure relatedness of scientific literature docu-

ments by their co-citation frequency. In this case, two patents are said to be co-cited

if they are simultaneously cited by another patent. For example, in Figure 3.2, patents

14 and 15 are both cited by patents 17, 18, 19, and 20. This means that patents 14 and

15 are in co-citation, though they do not directly or indirectly cite each other. Patents

are said to be bibliographically coupled if they have at least one same bibliographic

reference in their own references [37]. In this example citation network, patents 14

and 15 both cite patents 9, 10, 11, and 12. This means that patents 14 and 15 are

bibliographically coupled, though they do not have a direct or indirect citation between

each other. Figure 3.2 shows examples of both co-citation and bibliographic coupling

for patents 14 and 15 in an example patent citation network. In this work, we focus on

co-citation as a similarity measure.
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Figure 3.2: Example patent citation network highlighting bibliographic coupling and
co-citation

To the best of our knowledge, no patent similarity research considers multi-stage

co-citation for patent citations, and only leverages the citation network structure. That

is, no patent similarity approach leverages co-citations of greater than length one in the

patent citation network, while not leveraging any other patent data. By considering

multi-stage co-citation, we are able to capture the importance of the citing patents

by way of indirect co-citations, and we do not rely on writing style or word choice in

keyword analysis.

An indirect citation means two patents are connected by one or more intermediate

patents in the patent citation network. While direct citations reveal related recent

prior arts, indirect citation links reveal tracks of technological change over time [81].

Considering both direct and indirect citations provides more information for assessing

patent similarities. When evaluating the similarity of two patents, considering both

direct and indirect co-citations leads to more complete similarity assessment, since it

accounts for the immediate relationships of patents, as well as the patents’ technology
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track over time.

Some methods of patent citation analysis consider both direct and indirect citation

links (usually these works only consider a limited number of indirect stages and do

not leverage information about all the stages of citations). For example, multi-stage

patent citation analysis was used by Wartburg et al. to measure inventive progress [80].

Our work is di↵erentiated from the work in [80] since we use co-citation, rather than

bibliographic coupling. In that work, similarity between a new patent and its directly

cited prior patents depends on the number of patents which are cited by the later patent.

For example, if a new patent cited 10 patents, then its similarity to each of those ten

patents is equally 1/10. In general, if a new patent cites n patents, then its similarity to

each patent is equally 1/n. Extending the idea, similarity scores are multiplied in this

way as the indirect citation path length increases. Our work is further distinguished

from the work of Wartburg et al. since that work aims to gauge the technical value

added of invention and cluster patents into technical subfields, whereas we aim to

develop a similarity measure for calculating pairwise patent similarity. Wartburg et al.

rely on expert judgement to validate the technical value added of patents. We use class

codes of patents to validate the patent similarity results.

In this chapter, we propose a general method for assessing patent similarity, given

a patent citation network, considering both direct and indirect co-citations. The main

contribution of this chapter is developing patent similarity measures based on direct

co-citation links and multi-stage (indirect) co-citation links, including a normalization

technique to improve performance. It will also be shown that integration of direct

and multi-stage indirect co-citation with normalization will improve the e↵ectiveness of

the similarity measure when compared to using the direct co-citation measures alone.

To validate our approach, we use U.S. patent class codes as a distinct indicator of

relatedness and the well-known Jaccard similarity coe�cient [76].

The rest of the chapter is organized as follows. In Section 4.2 we provide background

on the patent similarity measure problem. In Section 3.3 we define the new similarity

measures based on direct and multi-stage co-citation. Section 3.4 provides experiment

results using a real-life patent citation network. Finally, conclusions and future work
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will be given in Section 3.5.

3.2 Background

The adjacency matrix of a given network, denoted A, is defined as follows. If patent

i is cited by patent j, there is an arc between i and j, (i, j). If there is an arc between

patent i and patent j, then the (i, j)th element of adjacency matrix is 1, otherwise 0.

For example, the citation edge represented by the arc 1!5 means that patent 1 is cited

by patent 5. A simple example of node j cites node i is shown in Figure 3.3.

Figure 3.3: Node j cites node i, and corresponding adjacency matrix, A

3.2.1 Existing methods for patent similarity analysis

Patent citation analysis is based on the examination of citation links among di↵erent

patents [19, 58, 20, 12]. In the area of similarity measures for patents in patent citation

networks, leveraging only network structure, usually direct co-citations are considered.

Other approaches rely on text or keyword analysis [83, 77, 81, 52], but in this work, we

only consider network structure.

The most common approaches in previous graph-based similarity measures involve

counting the number of neighbors two nodes have in common. Then, nodes are similar

to the extent that they share common neighbors. In patent citation networks, the

neighbor idea is adjusted to consider direct citations a patent receives. This most basic

measure has the drawback that the nodes with large degree tend to be found more

similar to other nodes than the lower degree nodes, because the higher degree nodes

have the potential to have many neighbors in common with other nodes, even if a only
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small fraction of their neighbors are in common. Salton proposed the Cosine similarity

measure, which is widely used in citation networks [71]. This similarity measure regards

the ith and jth rows of A as vectors and uses the cosine of the angle between them as

their similarity score. In an undirected network, the number nij of common neighbors

of nodes i and j is given by
P

k AikAjk, which is the (i, j)th element of A2. Suppose

nodes i and j have degrees ki and kj respectively. The cosign similarity of i and j is

the number of common neighbors of the two nodes divided by the geometric mean of

their degrees, and is given by [59]:

�ij = cos(✓) =
x · y
|x||y| =

P

k AikAjk
q

P

k A2
ik

q

P

k A2
jk

=
nij

p

kikj

,

where 0  �ij  1, and �ij = 1 means that two nodes have exactly the same set of

neighbors. �ij = 0 means that they have none of the same neighbors in common.

Another common neighbor-based similarity measure is the Pearson coe�cient [59].

Pearson coe�cients are used to identify when nodes are similar or dissimilar, compared

with the expected number of common neighbors in the network, if neighbor connections

were made at random. Suppose vertices i and j have degrees ki and kj respectively. We

then consider the number of common neighbors we expect vertices i and j to have. In a

network with N nodes, the probability of connecting to any other node is 1
N , if chosen

uniformly at random (neglecting the possibility of choosing the same node twice and

choosing itself). Assume node j chooses kj neighbors at random; node i then has k
j

N

probability of choosing a same neighbor that node j chose, and so on for each succeeding

choice. Total expected number of common neighbors between the two vertices is k
i

k
j

N .

Non-normalized Pearson coe�cients are given by r⇤ij =
P

k AikAjk �
k

i

k
j

N . Normalized

Pearson coe�cients are given by [59]:

rij =
cov(Ai, Aj)

�i�j
,

where �1  rij  1, and �i�j is the maximum value of the covariance of any two sets

of quantities.
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The Jaccard index can also be used as a neighbor-based similarity measure between

patents in a patent citation network. In particular, a relative co-citation of two patents

i and j can be computed for a similarity score. The Jaccard index of the sets C(i)

and C(j), where C(i) denotes the set of all patents that cite i. The measure uses the

cardinality of the intersection of nodes that directly cite both nodes i and j divided by

cardinality of the union of nodes that cite i and j, and is given by:

simJaccard(i, j) =
|C(i) \ C(j)|
|C(i) [ C(j)| .

A graph lattice property is used to extend the Jaccard index in [20]. We note that

the main di↵erence in these measures is the normalization method used. In our pro-

posed approach we normalize based on the total number of citations received by each

node. We also propose using multiple stages of co-citations, not just direct neighbors

for the similarity calculation.

In addition to the general graph-based similarity measures mentioned above, node

similarity measures for specific applications have been developed. A similarity mea-

sure for the classification of texts, based on textual structure and semantics for natural

language processing applications, is presented in [3]. The textual structure is evalu-

ated using existing node similarity measures, such as Cosine similarity and Pearson

coe�cients. A similarity measure based on random walks on directed acyclic graphs is

presented in [28]. The similarity measure is motivated by the potential need for litera-

ture recommendations for individuals who are searching for relevant literature in their

topic of study. An application of similarity measures to resolve ambiguities of names

of authors in scientific papers is presented in [4]. In this work, neighbor-based metrics

are used to distinguish between authors represented by the same alias in collaborative

networks. A similarity measure for the purpose of link prediction in both unweighted

and weighted networks is proposed in [49]. The proposed similarity index combines a

resource allocation index and a local path index, but the method neglects a key charac-

teristics of citation networks – link direction. To the best of our knowledge, no research

has been done on multi-stage indirect co-citation including normalization for the total
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number of individual citation each patent has received in a PCN.

Table 3.1: A sample of current U.S. patent classes

Class Description
2 Apparel
4 Baths, closets, sinks, and spittoons
5 Beds
7 Compound tools
8 Bleaching and dyeing: fluid treatment and chemical modification of textiles and fibers
12 Boot and shoe making
. . . . . .

379 Telephonic communications
380 Cryptography
381 Electrical audio signal processing systems and devices
382 Image analysis
. . . . . .

706 Data processing - artificial intelligence
707 Data processing: database, data mining, and file management or data structures
708 Electrical computers: arithmetic processing and calculating
709 Electrical computers and digital processing systems: multicomputer data transferring
. . . . . .

3.2.2 Classification codes for U.S. patents

This section provides some background on the classification system for new U.S.

patents. U.S. patents are manually classified by the United States Patent and Trade-

mark O�ce (USPTO) into a scheme of about 400 classes and about 135,000 subclasses

[46]. Table 3.1 provides a sample of patent classes and their descriptions. The classes

and subclasses form a classification hierarchy, with possible subclasses of subclasses.

The classification tree can go as deep as 15 levels, but varies greatly from patent to

patent. Many domains have three or four levels of subclasses. In some domains, there

is only one level of subclasses below a class. When applying our similarity measure

developed in this work, we expect that the similarity between two patents containing

the same classification codes to be higher than two patents that contain di↵erent clas-

sification codes. For example, let us consider three patents – patent x, patent y, and

patent z. If patent x and patent y have 4 out of 5 classification codes in common, while

patent x and patent z have 2 of 5 classification codes in common, then we expect that
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using our co-citation method (which does not rely on classification codes), we would

find patents x and y to be more similar than patents x and z. In this way, we use the

class codes as an independent test of similarity. Using classification codes to compare

patent relatedness and validate patent similarity measures are approaches that have

been used in the past [11, 81].

As mentioned, in addition to classes, there are also subclasses for the classification

of patents. For our validation, we use subclasses since subclasses capture with more de-

tail the patents contents. Table 3.2 shows selected U.S. class codes for selected patents.

When a non-zero value appears in the table for some patent and class code pair, that

value represents the total number of subclasses within the class for that patent. For

example, Patent US-5920861 has one subclass within class 375 and three subclasses

within class 707. Table 3.5 contains detailed class and subclass code information for

two patents.

Table 3.2: Number of subclasses within U.S. class codes that are associated with the
selected patents

Patent U.S. class codes
ID 342 348 375 380 386 704 705 707 708 709 713

US-5920861 0 0 1 0 0 0 0 3 0 0 0
US-5917912 0 4 3 0 0 0 1 0 0 0 2
US-6138119 0 0 1 0 0 0 0 3 0 0 0
US-5930767 0 0 0 0 0 0 3 0 0 0 0
US-6363209 0 0 0 0 4 0 0 0 0 0 0
US-6237786 0 4 3 1 0 0 2 0 0 0 0
US-6240185 0 0 0 6 0 0 6 0 0 0 3
US-6499059 0 0 0 0 0 0 0 1 0 4 0
US-6292569 0 0 0 3 0 0 0 0 0 0 5
US-6658432 0 0 0 0 0 0 0 4 0 0 0
US-6226618 0 0 0 6 0 0 5 0 0 0 0
US-6389402 0 4 2 1 0 0 6 0 0 0 0
US-6016476 0 0 0 0 0 0 6 0 0 0 1
US-6427140 0 4 3 0 0 0 2 0 0 0 1
US-6249252 4 0 0 0 0 0 0 0 0 0 0
US-6208745 0 0 5 0 0 0 0 0 0 0 1
US-6449367 0 0 0 6 0 0 0 0 0 0 3
US-6606596 0 0 0 0 0 3 0 0 0 1 0
US-6507817 0 0 0 0 0 5 0 0 0 0 0
US-6578000 0 0 0 0 0 5 0 0 0 0 0
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3.3 Proposed multi-stage similarity measures

3.3.1 Multi-stage co-citation similarity measure

In this section we define multi-stage co-citation similarity measures for the directed

patent citation network. An example of a patent citation network is presented in Figure

3.4. Again, the adjacency matrix of the given network will be denoted A.

Let G := (V,E) be a citation network and let N be the total number of nodes or

patents in the citation network. C0(x, x) gives the number of nodes directly citing a

patent x. C0(x, y) represents the number of nodes directly citing both nodes x and y.

That is, citing both nodes x and y at stage 0 (total direct co-citations), and is given

by the (x, y)th element of AAT . That is, C0(x, y) represents the number of unique

length-1 path pairs from both nodes x and y to a single node at level 0. {C0(x, y)}

represents the set of nodes citing both x and y at stage 0. In our example citation net-

work in Figure 3.2, {C0(14, 15)} = {17, 18, 19, 20}. In order to define the multi-stage

co-citation similarity measure, we introduce the concepts of the level-r citations for a

node and the level-r co-citations for two nodes below.

Definition 1

Let Cr(i, i) be the level-r citations for node i. That is, Cr(i, i) is the number of

citations that patent i receives by way of r intermediate patents. Cr(i, i) is given by:

Cr(i, i) =
N

X

k=1

Ar+1
ik .

Definition 2

Let Cr(i, j) be the level-r co-citations for patents i and j. That is, Cr(i, j) is the

number of co-citations that patents i and j receive by way of r intermediate nodes. The

number of level-r co-citations is given by:

Cr(i, j) =
N

X

k=1

Ar+1
ik Ar+1

jk .

To illustrate the first definition, consider the following example. If one patent is

cited directly by another patent, then there are no intermediate nodes, thus that is a
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Figure 3.4: Level-1 co-citations in example patent citation networks to show C0(x, y)
and C1(x, y) co-citation for node pair (x, y) in two cases: case 1: i = j (left) and case
2: i 6= j (right)

level-0 citation. To illustrate the second definition, consider the following example. If

there is a directed path of length r + 1 from patent x to the patent v, and a directed

path of length r + 1 from patent y to patent v, then the patents x and y are co-cited

by patent v at level-r. If patent i is the same as patent j, then Definition 2 reduces to

Definition 1.

Let C1(x, y) represent the number of indirect citations citing both patents x and y

at level (or stage) 1. That is, C1(x, y) represents the number of unique length-2 path

pairs from both x and y to individual nodes at level-1. {C1(x, y)} represents the set

of indirect citations citing both x and y at stage 1, i.e., represents the set of unique

length-2 path pairs from both x and y to individual nodes at level-1.

Our formulation for C1(x, y), unique length-2 co-citations of nodes x and y, can be

represented as follows:

C1(x, y) =
N

X

i=1

N
X

j=1

↵i(x)↵j(y)C0(i, j),
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Figure 3.5: Four possible level-2 co-citations for node pair (l,m)

where ↵i(x) = 1, if patent i cites patent x, and ↵i(x) = 0 otherwise,

and ↵j(y) = 1, if patent j cites patent y, and ↵j(y) = 0 otherwise.

C1(x, y) can be decomposed as follows:

C1(x, y) =

8

>

>

>

<

>

>

>

:

P

i2S1

↵i(x)↵i(y)C0(i, i) +
P

i,j2S2

↵i(x)↵j(y)C0(i, j), if x 6= y

P

i2S1

↵i(x)↵i(y)C0(i, i) + 1
2

P

i,j2S2

↵i(x)↵j(y)C0(i, j), if x = y,
(3.1)

where

S1 = {i 2 V |(x, i), (y, i) 2 E} is the set of all i that cite both x and y,

S2 = {i, j 2 V |(x, i), (y, j) 2 E, i 6= j} is the set of all i, j that cite both x and y.

In Equation 3.1, C1(x, y) is the sum of the direct citations of the individual patents

that co-cite x and y, plus the sum of the direct co-citations of the patents in which

one node cites x and one node cites y. Figure 3.4 shows two possible level-1 co-citations

for nodes x and y. For example, in our citation network in Figure 3.2, let nodes x and

y be Nodes 14 and 15, respectively. Then {C1(14, 15)} = {22, 23, 24, 25}.
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Figure 3.4 shows two possible level-1 co-citations for patents x and y. Two patents

may be very similar based on the co-citations received in the future, but not directly

co-cited, as seen in the right had side of Figure 3.4 above. If we use existing

neighbor-based approaches, the lack of the direct co-citation will mean that

the patents have a similarly score of zero, since they are not directly co-

cited. Using our proposed approach, those two patents can have a similarity score

greater than zero, and indeed may be found to be very similar despite the lack of any

direct co-citation. In Figure 3.4, C1(x, y) = 3 for both cases since in our approach, x

and y are co-cited by 3 nodes, when considering the one level of intermediate nodes, i

and j. On the left hand side of Figure 3.4, x and y are co-cited at level 0, so C0(x, y) is

greater for the left hand side network, than it is for the right hand side network. The

ability to capture co-citations at di↵erent levels is the key contribution of this work.

Taking this idea further, we can increase the stage of indirect co-citation to gain

more information. If we consider the level-2, then:

C2(x, y) =
N

X

i=1

N
X

j=1

↵i(x)↵j(y)C1(i, j) (3.2)

=
X

i2S1

↵i(x)↵i(y)C1(i, i) +
X

i,j2S2

↵i(x)↵j(y)C1(i, j), (3.3)

where C2(x, y) is the number of indirect citations citing both x and y at level-2, citation

path of length 3. In Equation 3.2, C2(x, y) is the sum of the level-2 indirect citations of

the individual patents that co-cite x and y, plus the sum of the indirect co-citations

of the patents in which one node cites x and one node cites y at level-1. Figure 3.5

shows four possible level-2 co-citations for two nodes l and m. Again, we demonstrate

the ability to capture co-citations of various configurations at di↵erent levels using our

approach. For example, nodes l and m may or may not be directly co-cited at level-0.

Then, those node(s) that cite nodes l and m at level-0 may or may not be directly

co-cited themselves, resulting in four combinations to consider at level-2. Our proposed

approach introduces the level-r co-citation, which allows for node pairs to have a co-

citation similarity score at each possible level of the citation network structure.

To gain the most information from the patent citation network, we need to take

into account all of the direct and indirect citations of patents x and y. To take these
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citations into account, we propose the following multi-stage co-citation similarity

measure:

CT (x, y) =
M
X

r=0

Cr(x, y),

where

Cr(x, y) =
N

X

i=1

N
X

j=1

↵i(x)↵j(y)Cr�1(i, j),

=
X

i2S1

↵i(x)↵i(y)Cr�1(i, i) +
X

i,j2S2

↵i(x)↵j(y)Cr�1(i, j),

for r � 1, and where M is such that Cm(x, y) = 0, for all m > M .

CT (x, y) is the sum of all the direct and indirect citations citing both patent x and

y. That is, the sum of all the direct and indirect co-citations of a pair of patents. One

of the drawbacks of CT (x, y) is that all levels of co-citations in the citation network

have the same weight. To overcome this drawback we present weighted multi-stage

co-citation similarity measure at level M as:

CM (x, y) =
M
X

r=0

wrCr(x, y),

where wr = ↵r+1, and 0 < ↵  1. The result is that the closer a co-citation is to the

patent pair in question, the greater weight it receives, with direct co-citations having

the greatest weight.

3.3.2 Multi-stage bibliographic coupling similarity measure

Let G := (V,E) be a patent citation network and let N be the total number of

nodes or patents in the citation network. B0(x, y) represents the number of patents

cited by both x and y at stage 0. That is, B0(x, y) represents the number of unique

length-1 path pairs from a single node at level 0 to both x and y. {B0(x, y)} represents

the set of patents cited by both x and y at stage 0. See Figure 3.6 for an example of

nodes x and y bibliographically coupled. Additionally, the special case B0(x, x) gives

the number of patents directly cited by a patent x.

B1(x, y) then represents the number of patents indirectly cited by both patents x
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Figure 3.6: Example of simple bibliographic coupling of nodes x and y at level 0,
indicating relatedness of patents x and y

and y at stage 1. That is, B1(x, y) represents the number of unique length-2 path pairs

from a single node at level 1 to both nodes x and y. {B1(x, y)} represents the set of

patents indirectly cited by patents x and y at stage 1. That is, {B1(x, y)} represents

the set of unique length-2 path pairs from a single node at level 1 to both x and y.

B1(x, x) gives the number of indirect citations cited by a patent x.

Our formulation for B1(x, y), indirect bibliographic coupling, can be represented as

follows:

B1(x, y) =
N

X

i=1

N
X

j=1

�i(x)�j(y)B0(i, j),

where

�i(x) = 1, if patent i is cited by patent x, �i(x) = 0 otherwise.

�j(y) = 1, if patent j is cited by patent y, �j(y) = 0 otherwise.

B1(x, y) can be decomposed as follows:

B1(x, y) =

8

>

>

>

<

>

>

>

:

P

i2S1

�i(x)�i(y)B0(i, i) +
P

i,j2S2

�i(x)�j(y)B0(i, j), if x 6= y

P

i2S1

�i(x)�i(y)B0(i, i) + 1
2

P

i,j2S2

�i(x)�j(y)B0(i, j), if x = y,

(3.4)

where

S1 = {i 2 V |(i, x), (i, y) 2 E} is set of all i that are cited by both x and y

S2 = {i, j 2 V |(i, x), (j, y) 2 E, i 6= j} is set of all i and j that are cited by x and y.

In Equation 3.4, B1(x, y) is the sum of patents that are directly cited by patents
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in the set {B0(x, y)} plus the sum of the directly bibliographic coupled patents in

which one patent is cited by x and one patent is cited by y.

Still, we can increase the stage of indirect bibliographic coupling to gain more patent

similarity information. If we consider the stage 2 (citation length of 3 hops), then:

B2(x, y) =
N

X

i=1

N
X

j=1

�i(x)�j(y)B1(i, j) (3.5)

=
X

i2S1

�i(x)�i(y)C1(i, i) +
X

i,j2S2

�i(x)�j(y)B1(i, j), (3.6)

where B2(x, y) is the number of patents indirectly cited by both patents x and y at

level 2. In Equation 3.5, B2(x, y) is the sum of the indirect citations of the patents in

the set of B0(x, y) at level 2 plus the sum of the indirect bibliographic coupling of

the patents in which one of them is cited by x and one of them is cited by y at level 2.

To gain more information still from the patent citation network, we can take into

account all of the direct and indirect citations in common by patent x and y. To take

these citations into account, we propose the following multi-stage bibliographic

coupling:

BT (x, y) =
M
X

r=0

Br(x, y),

where

Br(x, y) =
N

X

i=1

N
X

j=1

�i(x)�j(y)Br�1(i, j)

=
X

i2S1

�i(x)�i(y)Br�1(i, i) +
X

i,j2S2

�i(x)�j(y)Br�1(i, j),

for r � 1, and where M is such that Bm(x, y) = 0, for all m > M .

BT (x, y) is the sum of all the common direct and indirect citations made by both

patents x and y. One of the drawbacks of BT (x, y) is that it does not consider the

position of the citation in the citation network. To overcome this drawback, we present

weighted multi-stage bibliographic coupling at level M as:

BM (x, y) =
M
X

j=0

wrBr(x, y),

where wr = ↵r+1, and 0 < ↵  1. Again, it is observed that nodes that are closer to

the patents x and y in the citation network will have a greater weight than those that

are farther. Patents that are directly cited by x and y will have the greatest weight.
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3.3.3 Normalized multi-stage co-citation and bibliographic coupling

similarity measures

Sum$total$number$cita%ons$for$each$patent$x$and$y$$

START$

End$

Determine$op8mal$weight$parameter(s)$for$mul8>stage$similarity$$

Calculate$co>cita8on$similarity$score$for$patent$pair$x$and$y+

Rank$similarity$of$all$patent$pairs$

Input$data:$network$adjacency$
matrix,$A"(direct$network)$$

Normalize$the$calculated$co>cita8on$$
similarity$using$equa8on$for$CM(x,y)normalized 

Figure 3.7: Flowchart showing co-citation similarity calculation with normalization

As we have seen in the previous sections, co-citation considers how patents

are similar based on how future patents cite them. Investigating longer co-citation

chains, and getting more information from the historical citation has its advantages.

The challenge is when some patents have a large number of citations, they
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may be considered similar to many other patents in the patent citation

network, merely because they are highly cited. This is not always a detriment,

but experimentation has shown that similarity performance can su↵er because of the

large number of citations, both direct and indirect, that a patent has. To overcome

this drawback, we propose the new idea of leveraging the overall citation information

for each patent in the patent citation network. See Figure 3.7 for a flowchart of this

solution.

A stage-wise normalization would normalize the score contribution at each stage

of the multi-stage co-citation. When computing the total citations over all levels, we

weigh the number of citations at each level by the coe�cient ↵r+1 weighting scheme,

where r is the level. The normalized multi-stage co-citation similarity measure is given

by:

CM (x, y)normalized =
CM (x, y)

C1(x, x) + C1(y, y)
,

where C1(x, x) and C1(y, y) are the weighted sums of all direct and indirect citations of

patents x and y, respectively, over all M stages, and C1(i, i) =
PM

r=0

PN
k=1 ↵r+1Ar+1

ik ,

so that direct citations have the greatest weight and weight decreases as the indirect

citation length increases. Normalized multi-stage bibliographic coupling similarity mea-

sure follows the same formulation, and is given by:

BM (x, y)normalized =
BM (x, y)

B1(x, x) + B1(y, y)
,

where B1(x, x) and B1(y, y) are the weighted sums of all citations made by patents

x and y, respectively, over all M stages. Similar to the co-citation case, B1(i, i) =
PM

r=0

PN
k=1 ↵r+1Ar+1

ki .

When applying the co-citation similarity measure idea, patents that are cited to-

gether are considered similar. Our normalized similarity measures help to avoid skewing

results such that highly cited patents are determined to be similar to each other merely

because they both have many citations. A relatively small ↵ values suggest that the

direct and closer indirect citations are best for capturing patent similarity. Based on

extensive experiments, we recommend that for multi-stage co-citation, without normal-

ization, we use ↵ = 0.01 and for multi-stage co-citation, with normalization, we use
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↵ = 0.1. Based on extensive experiment, the following table provides guidelines for the

case of multi-stage co-citation and bibliographic coupling.

Table 3.3: Guidelines for parameters of proposed co-citation and bibliographic coupling
similarity measures

Method ↵

Multi-stage co-citation, without normalization 0.01
Multi-stage co-citation, with normalization 0.1
Multi-stage bibliographic coupling, without normalization 10.0
Multi-stage bibliographic coupling, with normalization 0.7

3.4 Experimental results

In this section, we use the U.S. class codes as an independent test of similarity. Using

classification codes to compare patent relatedness and to validate patent similarity

measures are approaches that have been used in the past [11, 81]. In particular, the

patent classification system is used for validation in [81]. The idea is that similarity

between two patents belonging to the same patent category should be higher than two

patents from di↵erent categories. We follow this validation idea in this work.

3.4.1 Data description

The dataset actually used for the experiments are U.S. patents in the area of

information and security issued between 1994 and 2007 [78]. For these experiments, we

take the top 1% most frequently cited patents from 1994 to 2007 as our nodes in the

patent citation network. In order to have a single connected tree structure to which to

apply similarity measures, we select the patents that cite, either directly or indirectly,

the most cited patent from the original dataset, which is patent US-5349655. Our

patent citation network then consist of 4,241 nodes and 18,385 edges.
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3.4.2 Parameter optimization for multi-stage co-citation

Experimentation with co-citation similarity measure shows performance improves

when we apply both of our proposed approaches: multi-stage co-citation and normalized

co-citation (direct and multi-stage). See Figure 3.8. Consider direct co-citation, not

normalized as the baseline. When we introduce normalization to the direct co-citation

approach, by considering the total times the pair of patents is cited, we achieve an

improvement over the baseline. Through experimentation, for the case of normalized

multi-stage co-citation, we find that ↵ = 0.1 performs the best, achieving a Spearman

rank correlation coe�cient value of 0.4, thus we recommend this as the parameter value

for normalized multi-stage co-citation. The better performance of ↵ = 0.1 over ↵ < 0.1

indicates that for normalized multi-stage co-citation, we should consider the indirect

co-citations, and not merely consider the direct co-citations. The better performance

of ↵ = 0.1 over ↵ > 0.1 indicates that for normalized multi-stage co-citation, much of

the emphasis should be on direct and lower level co-citations.

3.4.3 Parameter optimization for multi-stage bibliographic coupling

Multi-stage bliographic coupling similarity measure performance improves when

we increase the weight parameter to about ↵ = 10. After this ↵ value, we observe

very small improvement in the correlation coe�cient for greater ↵ values. An ↵ value

greater than 1 would give a greater weight (in the overall summation) to bibliographic

coupling that occurs at indirect (higher up) levels, compared to the weight given at

the direct level. See plotted red line in Figure 3.9. The interpretation of this result is

that it is important for two nodes to be bibliographicly coupled at an higher indirect

stage, in addition to just at a direct stage, for them to be considered similar, using our

approach. It would require considering a longer citation history for two nodes to be

similar, not merely the direct stage, or a very small weighted indirect stage. Rather, we

must consider higher up indirect stages also, when calculating similarity of two patents.
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Table 3.4: Pair-wise patent similarity scores using proposed normalized multi-stage co-
citation similarity measure (CC score) and existing Jaccard similarity index for U.S.
class codes of patents (US- prefix omitted in patent number)

Rank Node pair CC score Jaccard index
1 5745604 , 5943422 1.0000 0.1818
2 5745604 , 5832119 0.7259 0.5556
3 6567796 , 6658432 0.7143 0.1429
4 6338070 , 6499059 0.6981 0.0769
5 6301590 , 6507817 0.6961 0.1429
6 6567796 , 6587547 0.6804 0.1250
7 6587547 , 6658093 0.6689 0.1250
8 6578000 , 6606596 0.6160 0.1000
9 5745604 , 6185683 0.6078 0.0714
10 6507817 , 6578000 0.6046 0.2222
11 5745604 , 5862260 0.5999 0.5714
12 5745604 , 6157721 0.5587 0.0667
13 6064764 , 6246777 0.5514 0.5000
14 5822436 , 5862260 0.4779 0.1000
15 6246777 , 6332031 0.4737 0.3333
16 5745604 , 6064764 0.4588 0.1429
17 5862260 , 6122403 0.4545 0.5000
18 5862260 , 6052486 0.4485 0.1667
19 6064764 , 6332031 0.4466 0.2500
20 6064764 , 6275599 0.4098 0.5000
21 5943422 , 6185683 0.4020 0.0667
22 5745604 , 5822436 0.3930 0.2000
23 5915019 , 5920861 0.3886 0.0667
24 5943422 , 6157721 0.3856 0.2143
25 5765030 , 5826013 0.3851 0.2857
26 5910987 , 5920861 0.3803 0.0769
27 6246777 , 6275599 0.3780 1.0000
28 5910987 , 5915019 0.3773 0.5385
29 5915019 , 5943422 0.3765 0.0588
30 6157721 , 6185683 0.3731 0.0556
31 5832119 , 5862260 0.3724 0.6250
32 5920861 , 6185683 0.3720 0.0769
33 5915019 , 5917912 0.3698 0.4667
34 5915019 , 5949876 0.3641 0.5714
35 6138119 , 6185683 0.3632 0.0769
36 5745604 , 6240185 0.3603 0.0870
37 5910987 , 5917912 0.3591 0.5385
38 5910987 , 5949876 0.3531 0.5385
39 6122403 , 6311214 0.3523 0.4286
40 5920861 , 6138119 0.3511 1.0000
41 5917912 5920861 0.3511 0.0667
42 6064764 6243480 0.3503 0.5000
43 5915019 6138119 0.3489 0.0667
44 5915019 6185683 0.3459 0.4286
45 5745604 6292569 0.3411 0.0667



56

Table 3.5: Detailed information on the US-6240185, US-6389402 patent pair

US-6240185 US-6389402

Title

Steganographic techniques
for securely delivering elec-
tronic digital rights man-
agement control informa-
tion over insecure commu-
nication channels

Systems and methods for
secure transaction manage-
ment and electronic rights
protection

Issue date May 29, 2001 May 14, 2002

Class codes

380/232 ; 380/205;
380/210; 380/221;
380/227; 380/231; 705/51;
705/52; 705/54; 705/55;
705/59; 705/76; 713/176;
713/189; 713/193; 726/21;
G9B/20.002; G9B/27.01;
G9B/27.05

705/51;
348/E5.006;348/E5.008;
348/E7.06; 348/E7.07;
375/E7.009; 375/E7.024;
380/201; 705/1.1; 705/37;
705/53; 705/57; 705/80

3.4.4 Validation of similarity scores

To validate results obtained by applying our proposed similarity measure that is

based on the patent citation network, we compute the well-known Jaccard similarity

coe�cient for the set of the top 100 ranked patents, and compare them to our developed

approach. The top 100 patents are determined based on the centrality (importance)

measure developed earlier in work [68, 67]. Table 3.4 shows the similarity score for the

pairs of patents (separated by a comma) using two di↵erent methods. The scores are

ordered, or ranked, such that the most similar pairs of patents are at the top of the

table for the proposed co-citation approach. The Jaccard similarity coe�cient is given

in the fourth column for comparison. The Jaccard similarity coe�cient is defined as

the size of the intersection divided by the size of the union of the sample sets [76]:

J(A, B) =
|A \B|
|A [B| , (3.7)

where |A\B| is the cardinality of the intersection of subclass codes for Patents A and

B, and |A [ B| is the cardinality of the union of subclass codes for Patents A and B.

For example, if patent A has subclass codes 1, 2, and 3, and patent B has subclass

codes 1, 3, 4 and 7, then |A \ B| = 2 and |A [ B| = 5, and we have J(A, B) = 2/5.
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Table 3.4 shows pair-wise node similarity scores using the Jaccard index method and

the proposed co-citation similarity measure.

To validate using Jaccard similarity coe�cient, we use the set of “Current U.S.

Class” codes for each patent. When a patent is created, it is associated with class and

subclass codes describing the nature of the work. Codes for all U.S. patents can be

found on the UP Patent and Trademake O�ce website [78]. In addition to U.S. Class

codes, there are other codes such as International codes that may be used. In this study,

we use the classification codes titled “Current U.S. Class” and consider the subclass

for the intersection and union counts for the Jaccard similarity index. Table 3.5 shows

detailed class code information for two patents: US-6240185 and US-6389402. Notice

the class/subclass hierarchy where the class is the number preceding the forward slash,

and the subclass is the code following the forward slash.

Since our proposed measure considers the patent citation network structure, rather

than the U.S. Class codes, our approach shows a di↵erent similarity, which focuses more

on the network structure characteristics, rather than the category and subcategory of

patents. In addition, our approach is not sensitive to the writing style of the author of

the patent.

We compare the Spearman rank correlation coe�cient, r, for co-citation methods:

1) Single stage co-citation, without normalization (baseline)

2) Multi-stage co-citation, without normalization

3) Single stage co-citation, with normalization

4) Multi-stage co-citation, with normalization after CC calculation

Similarly, we compare the Spearman rank correlation coe�cient, r, for bibliography

methods:

1) Single stage bibliographic coupling, with normalization

2) Single stage bibliographic coupling, without normalization

3) Multi-stage bibliographic coupling, with normalization after CC calculation
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Figure 3.8: Parameter evaluation for multi-stage co-citation similarity, normalized and
not normalized, using weighting coe�cient ↵r+1, where r is the stage. Spearman rank
correlation performance when compared to Jaccard similarity between patent pairs
using U.S. Class codes for 100 patents shows best performance when applying our
approaches: normalized multi-stage co-citation.
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Figure 3.9: Parameter evaluation for multi-stage bibliographic coupling similarity, nor-
malized and not normalized, using weighting coe�cient ↵r+1, where r is the stage.
Spearman rank correlation performance when compared to Jaccard similarity between
patent pairs using U.S. Class codes for 100 patents shows best performance when greater
weight is given to the higher levels of bibliographic coupling.
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4) Multi-stage bibliographic coupling, without normalization

The results for co-citation similarity and bibliographic coupling are plotted in Fig-

ures 3.8 and 3.9, respectively. Tables 3.7 and 3.8 show the corresponding best Spearman

rank correlation coe�cient performance over the parameter evaluation. For the co-

citation similarity measures, we achieve the best results with normalized multi-stage.

For bibliographic coupling similarity measures, we achieve the best results when we

use multi-stage bibliographic coupling. In both cases, multi-stage approaches outper-

form direct approaches, validating that consideration of indirect co-citations and bibli-

ographic coupling do assist in determining patent pair similarity. Normalization helps

to improve results in the case of co-citation because the variance of the citations that

a patent receives is greater than the variance of the citations makes. For example, con-

sider the 100 most cited patents and the 100 patents that make the most citations from

our dataset. The 100 most cited patents have a range of 712 citations and a variance of

16036.82, while the 100 patents that make the most citations have a range of 52 cita-

tions and a variance of 101.97. These statistics support our results wherein multi-stage

co-citation benefits from normalization, while multi-stage bibliographic coupling does

not.

Table 3.6: Spearman correlation performance of proposed co-citation similarity methods
when comparied to Jaccard similarity using U.S. Class codes for 100 U.S. patents

Similarity measure r

Single stage co-citation, without normalization 0.29
Multi-stage co-citation, without normalization 0.31
Single stage co-citation, with normalization 0.37
Multi-stage co-citation, with normalization 0.40

3.5 Conclusion

The objective of this work was to develop a similarity measures for patents in

complex patent citation networks. To this end, we introduce new similarity measures

that uses direct and multi-stage co-citation, as well as normalization of the co-citation
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Table 3.7: Improvement factor of Spearman correlation over baseline: performance of
proposed co-citation similarity methods when comparied to Jaccard similarity using
U.S. class codes for 100 U.S. patents

Similarity measure Improvement (%)
Single stage co-citation, without normalization Baseline
Multi-stage co-citation, without normalization 6.8
Single stage co-citation, with normalization 27.5
Multi-stage co-citation, with normalization 37.9

Table 3.8: Spearman correlation performance of proposed bibliographic coupling sim-
ilarity methods when comparied to Jaccard similarity using U.S. Class codes for 100
U.S. patents

Similarity measure r

Single stage bibliographic coupling, with normalization -0.08
Single stage bibliographic coupling, without normalization 0.01
Multi-stage bibliographic coupling, with normalization 0.06
Multi-stage bibliographic coupling, without normalization 0.30

similarity score. The multi-stage co-citation provides more complete information from

given patent citation network because it considers direct as well as indirect co-citations.

We compared our similarity measure to one based on U.S. class codes using the Jaccard

index. We achieved the best performance when we considered multi-stage co-citation

and normalized with parameter ↵ = 0.1. The proposed similarity measure helps ana-

lysts determine patent similarity, which can be extended for the clustering of patents,

the detection of outlier patents, and so on. Additionally, these methods may be applied

to literature citation networks which have a structure similar to patent citation net-

works. For bibliographic coupling, we achieved the best results when looking further up

the citation chain. The proposed similarity measure helps analysts determine patent

similarity, which can be used for the clustering of patents and the detection of outlier

patents, as well.

For future work, we plan to explore the idea of distinguishing the weights for the

two co-citation cases shown in Figure 3.4. That is, we explore the e↵ect of weighting
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length two co-citation di↵erently in the case that: (1) a single patent is the interme-

diate patent, or (2) two di↵erent patents are intermediate patents. Additional future

work is to leverage the proposed similarity measures in order to identify outlier or

anomaly patents. In calculating the similarity, we are able to calculate dissimilarity

between patents. Finally, while integrating co-citation and bibliographic coupling sim-

ilarity measures seems like a natural extension of this work, there are challenges to

doing so. For example, a patent author can decide which prior patents to cite, but a

patent author cannot decide what future patents will cite his patent. As a future work,

we can study the development of a bibliographic coupling similarity measure and the

integration of co-citation and bibliographic coupling approaches.

In the next chapter, we leverage the co-citation similarity result for the purpose of

patent outlier ranking in patent citation networks.
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Chapter 4

Patent Clustering and Outlier Ranking Methodologies for

Attributed Patent Citation Networks

4.1 Introduction

In recent years, there has been an emphasis on analyzing data using graph theo-

retical methods [17, 79]. Graph-based data mining approaches attempt to analyze data

that can be represented in a graph, consisting of nodes and edges. While there has

been much work on graph-based data mining [16, 82, 31, 36], there is still much room

for contribution in the area of graph-based outlier ranking and detection. Figure 4.1

is a representation of a real-life patent citation network, and an example of such graph

data, where nodes represent individual patents and edges represent citations made by

one patent to another.

Outlier detection, or anomaly detection, has to do with identifying entities that

are unusual or that deviate from the rest of the dataset [7, 30]. This is an important

research topic that has been researched within diverse areas and application domains

[30, 48, 5, 66]. Many anomaly detection techniques have been specifically developed

for certain application domains, while others are more generic [14]. Researchers have

adopted concepts from diverse disciplines such as statistics, machine learning, data

mining, information theory, spectral theory, and have applied them to specific prob-

lem formulations. The goal of graph outlier ranking is to score and rank objects to

the degree that they di↵er from majority of dataset in the graph data. That is, node

relationship data is analyzed to identify interesting or exceptional objects. From an

abstract level, an anomaly or outlier is defined as a pattern or object that does not con-

form to expected normal behavior [14]. A straightforward anomaly detection approach,

then, is to define a region or characteristic representing normal behavior and identify
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Figure 4.1: Representation of 4,241 patents in a real-life patent citation network

any observation in the data that does not belong to this normal region as an anomaly.

Several factors make these seemingly simple tasks of identifying outliers and validating

results very challenging. Firstly, often the input data contain noise that tends to be

similar to the actual anomalies and is therefore di�cult to distinguish and remove. For

identifying outliers, defining a region that encompasses all possible normal behavior can

be very di�cult. In addition, the boundary between normal and anomalous behavior

is often not well-defined. For this reason, an anomalous observation that are close to

the boundary can actually be normal, and vice versa. For validation, the availability

of labeled data for training/validation of models used by anomaly detection techniques

is often a major challenge. In many domains normal behavior evolves and a current

notion of normal behavior might not be su�ciently representative in the future. The

exact notion of an anomaly is di↵erent for di↵erent application domains, and applying

a technique developed in one domain to another is not always straightforward.

Applications of graph outlier ranking include credit card fraud detection, computer

network security and intrusion detection, identifying exceptionally cross-disciplinary
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authors in author-paper networks, virus detection in a computer network, detecting

fraudulent financial transaction, detecting abusive users in a communication or online

social network, and so on [15, 72]. For example, in a computer network, it is critical

to track the spread of diseases in the form of viruses and worms spreading from host

to host in a computer network [5]. A↵ected machines may exhibit slightly anomalous

behavior, such as a loss of performance or violations of specific policies, which may be

hard to detect on the basis of an individual machine, but may be apparent when the

communication graph structure is analyzed.

With the expected increase in the number and complexity of patents, quickly ana-

lyzing patents to find outlier patents or groups of patents in a patent citation network

(PCN) has become an advantage and provides business advantages [80, 47]. Most new

patents are related to previous works in some way. This relatedness between patents

is captured by a patent’s citation of a previous work, and can be thought of as an

extension of the previous work(s). Taken all together, patents and the citation links

between them can be represented in a patent citation network. Individual patents also

contain rich information that describe its characteristics. It is important to analyze

the patent citation network to gain an understanding of past, current, and possible

future technological trends [27]. Outlier detection has been used to identify new tech-

nological opportunities using semantic patent analysis [84]. In this proposed work, we

develop outlier ranking methods that can be used to identify patents that di↵er from

the majority of patents in the patent citation network. The identified outlier patents

from this work serve as a starting point to evaluate possible new areas of technological

opportunity.

In a patent citation network, an outlier node may correspond to a patent in the

citation network that is di↵erent from the other patents in some way. For example, a

patent itself may deal with an innovation that bridges multiple technology areas, such

as automotive and metal alloys. Information between patents is represented by directed

edges (i.e. arc) indicating a citation. An outlier citation corresponds to a patent cita-

tion that links two patents that we would not expect to be linked, given the rest of the

patent citation network. For example, an outlier edge may be a medical patent that
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Table 4.1: Sample attributes for U.S. patent data

Patent U.S. patent attributes
ID Class codes Year granted Country Times cited

5920861 375/E7.009; 707/999.004; 707/999.009; 707/999.102 1999 USA 550
6138119 375/E7.009; 707/999.004; 707/999.009; 707/999.102 2000 USA 411
6363209 386/252; 386/259; 386/329; 386/E5.004; G9B/20.002; G9B/27.033; G9B/27.05 2002 Japan 13
5930767 705/26.41; 705/27.2; 705/77 1999 USA 268
6606596 704/270 ; 704/231; 704/246; 704/251; 709/206; 715/752 2003 USA 93

cites a patent in the area of computer networking. Clusters of outlier nodes represent

a subgraph of nodes that are di↵erent from the majority of the graph [82]. A cluster

outlier corresponds to a subgraph that is di↵erent from the majority of the PCN, which

indicates an unusual patent group relative to the surrounding patents in the PCN.

In general, outlier ranking in patent citation networks corresponds to identify-

ing exceptional: (1) nodes, (2) edges, or (3) clusters (or subgraphs). Detection of an

anomalous cluster of nodes in a network is a di↵erent and more recent research topic

[61, 18, 5], and may be a sign of a technology shift. In this work we focus on ranking

nodes in outlierness.

Patent datasets are rich with information that is carefully assembled. Additionally,

patent citation network data contain both graph structure data and object attribute

data. Graph structure data in the form of citations made and received are carefully

considered by patent writers. Patent attributes such as classification codes are specif-

ically assigned based on the nature of the technology. See Table 4.2 for a sample of

patent attribute data. Traditional outlier ranking techniques typically focus on either

homogeneous vector data or on graph structures. However, many recent complex ap-

plications contain both types of data: multi-dimensional numeric and/or categorical

information and relations between objects in attributed graphs. An open challenge is

how outlier ranking should handle these di↵erent data types in a unified or integrated

fashion. There is currently no work on patent citation network outlier de-

tection that considers attributes in patent citation network, in addition to

the citation network structure. This work proposes new methods for the ranking

of outlier patents within patent citation networks represented by attributed graphs.
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In this work, we propose the following characteristics for outlier nodes in graphs.

First, an outlier node is not highly clustered with other objects (based on node at-

tributes and graph structure). That is, a node should be considered more regular, the

more it can be clustered with other nodes in the network. For this reason, this work

will also address the patent clustering problem. Second, an outlier node has low node

centrality within the network. Since centrality is a measure of importance or cohesive-

ness of a node to the network which it belongs, a highly central node should not be

considered an outlier node. Finally, low similarity to other nodes in the network, based

on graph structure, is a characteristic of an outlier node. If a node is similar to other

nodes in the network, then it should not be considered an outlier. We will use these

three characteristics in our proposed outlier score function.

The remainder of the work is organized as follows. First, Section 4.2 provides

background on outlier node detection in graph data. Next, Section 4.3 presents a new

subspace clustering algorithm for patents in an attributed patent citation network. Sec-

tion 4.4 presents our proposed node outlier scoring functions. Section 4.5 presents a

data description for the artificial and real-life data used in experiments, along with ex-

perimental results for outlier ranking in patent citation networks data. Finally, Section

4.6 concludes this work and presents future research plans.

4.2 Background

In this section we provide a literature review of some existing outlier node ranking

methods. We review both graph-based approaches, as well as integrated attribute and

graph-based outlier ranking algorithms.

Anomaly detection methods can be classified based on the underlying design prin-

ciples, such as those based on graph communities, graph compression, graph decom-

position, distance metrics, and probabilistic modeling of graph features [66]. For an

extensive survey of anomaly detection, see [14]. For an extensive survey on anomaly

detection in time-evolving networks, covering anomalous nodes, edges, subgraphs, and

events, see [66]. Anomaly detection techniques can then be further categorized based on

the types of anomalies they detect and within the type of data they detect anomalies.
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For example, identifying anomalies in weighted graphs was presented in [1]. Anomalies

have also been researched in large graph datasets [48, 36], which is a data type that

is becoming more common due to growing data collection and richness of data, and in

bipartite graphs [75]. In the following sections, we present some of the most relevant

existing methods for outlier node ranking.

4.2.1 Graph structure-based node outlier ranking methods

In 2007, Xu et al. present a method of network clustering, or graph partitioning,

called Structural Clustering Algorithm for Networks (SCAN) in order to discover struc-

tures in networks [82]. In particular, this work attempts to distinguish roles of nodes

(also called vertices) . In addition to partitioning the network, the method also identi-

fies two types of nodes that have a unique role within the network: hubs, which bridge

more than one cluster, and outliers, which are marginally connected to a single cluster.

This approach uses only the network structure in order to detect the clusters, hubs,

and outliers. Vertices are clustered base on the structural similarity of a neighborhood.

Network clustering or graph partitioning is the division of a graph into a set of

subgraphs called clusters. Given a graph G := (N,E), where N is a set of nodes and E

is a set of edges between nodes, the goal of graph partitioning is to divide G into k dis-

joint subgraphs Gi := (Ni, Ei), in which Ni \Nj = ; for any i 6= j, and N =
Pk

i=1 Ni.

SCAN is applied to simple undirected and unweighted graphs with the goal of

clustering networks optimally and identifying hubs and outliers. In SCAN, the neigh-

borhood around two connected vertices is considered. The neighborhood of a vertex are

itself plus all of the vertices connected to it by an edge. When two nodes are considered

together, their combined neighborhood reveals neighbors common to the two vertices.

SCAN is based on common neighbors, and nodes are assigned to a cluster based on how

they share neighbors. A social network is a good illustration for how and why SCAN

works. Persons who share many friends create a community. The more friends they

have in common, the tighter the community. In social networks also, there are persons

who play roles. Some are friendly with numerous communities and bridge tie communi-

ties together: hubs. Some are not well connected to a group: outliers. A similar graph
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Figure 4.2: Sample SCAN result showing two clusters, one hub, and two outliers

partitioning methodology, for the purpose of outlier detection is presented, in [13].

Random walk methods have been used for for numerous information retrieval tasks,

including keyword extraction, text summarization, and web searches [55]. These ap-

proaches represent data in a stochastic graph and perform a random walk along edges

of the graph to determine the importance or centrality of individual nodes.

In 2006, Moonesinghe et al. present a stochastic graph-based algorithm, called Out-

Rank for detecting outlying objects [55]. The main idea of this approach is to represent

the underlying dataset as a weighted undirected graph, where each node represents an

object and each weighted edge represents the similarity between objects. By trans-

forming the edge weights into transition probabilities, the approach models the system

as a Markov chain, and finds the dominant eigenvector of the transition probability

matrix. The values in the eigenvector are then used to determine the outlierness of

each object. A key challenge of using the random walk approach is defining the appro-

priate similarity metric for constructing the neighborhood graph. The paper proposes
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two approaches for defining similarity: (1) cosine similarity between objects and (2)

shared-nearest neighbor density.

The Markov chain formulation, is as follows:

c = ST c,

where S is the transition matrix and c is the stationary distribution representing con-

nectivity value for each object in the dataset. For a general transition matrix, neither

the existence nor the uniqueness of a stationary distribution is guaranteed, unless the

transition matrix is irreducible and aperiodic, as stated in the Perron-Fobenius theo-

rem. The transition matrix, S, of the Markov chain model is obtained by normalizing

the originally defined similarity matrix, SO:

S(i, j) =
SO(i, j)

Pn SO(i, j)
.

The normalization ensures that the row sum for each row of the transition matrix equals

1, which is a required property of the Markov chain. Another important property is

that the probabilities in S do not change with time. After computing the transition

matrix S, we must be sure that it is both irreducible and aperiodic so that a unique

stationary distribution is achieved [33]. An approach provided in [64].

The OutRank-↵ algorithm uses cosine similarity to form the transition probability

matrix for the Markov chain model. In this model, the initial connectivity vector is

set to 1/n, where n is the number of nodes, and the damping factor is set to 0.1. For

the OutRank-� algorithm, a similarity measure is used that considers the number of

common neighbors for each node pair. In particular, this algorithm uses the cardinality

of the set of common neighbors in the similarity measure.

In 2010, Akoglu et al. presented a method for the identification of outliers called

OddBall. Outliers are identified using their neighborhoods, that is, a sphere, or a ball

that surrounds the node (hence the name OddBall). The goal is to spot strange nodes

in a graph with weighted edges. The proposed methods uses egonets, which are the

induced subgraph of the node of interest and its neighbors; and gives a set of numerical

features for egonets. To identify outliers, the methods uses patterns that egonets follow,

such as patterns in density, weights, principal eigenvalues, and ranks.



71

4.2.2 Characteristics of patent citation networks

Patent citation networks have specific characteristics. For example, graph struc-

ture contains important citation relationship information among patents. Additionally,

patents (nodes) can be seen as individual objects described by carefully assigned mul-

tivariate attribute data. The rich combination of these data types is called attributed

graphs or information networks. For this specialized data, there are very few methods

for graph outlier detection, in general. There is currently no existing approach

for node outlier ranking that considers both graph structure and attribute

data for patents in PCN.
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Figure 4.3: Attributed graph representation of patent citation network – combined
graph structure and node attribute data

Attributed graphs, also called information networks, contain additional data to

the usual G := (N,E) graph data. In the attributed graph data, nodes are individual
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objects. In our case, a node represents an individual patent in a patent citation network.

The di↵erence from traditional graph data is that nodes are described by multivariate

attribute data. Edges between nodes still signify some relationship between the nodes.

For example, in a patent citation network, edges may represent citations among patents.

An example attributed graph for patent data is shown in Figure 4.3. In this figure,

the citation information between patents is represented by directed edges, and node

attributes are shown in an attribute vector.

4.2.3 Graph structure and node attribute-based node outlier ranking

methods

Traditional outlier ranking techniques focus on either multivariate (vector) data or

on data in the form of graphs. As we have described, there are however datasets that

contain both, multidimensional information and relationships between objects in the

form of attributed graphs. There are currently two existing approaches for identifying

outliers in graphs, based on both node attributes and graph structure. The GOutRank

approach from 2013 [56] handles such datasets by combining the outlier scoring. The

approach first uses a subspace cluster result of the attributed graph data, which in this

case is allowed to have cluster overlap, in that a node may belong to more than one

cluster. A subspace clustering result in an attributed graph is a set of subspace clusters

Res = {(C1, S1) . . . (Cn, Sn)}, where Ci ⇢ V is a densely connected subgraph with high

attribute similarity in the subspace Si ⇢ A, where A is the set of all attributes.

For the second approach, in 2010, Goa et al. present a method for the identification

of community outliers [25]. This approach addresses a di↵erent problem from the prob-

lem we are addressing, since their goal is to find the outlier within a given community.

In the next paragraphs we will focus on the GOutRank method presented in [56], and

show how our proposed subspace clustering approach outperforms this existing method.

In 2013, Muller et al. present an approach for outlier ranking using subspaces of

attributed graphs [56]. Subspaces are subset of the attribute space, as opposed to the

full feature space. The method, GOutRank, introduces a methodology for scoring and

ranking nodes of a graph by deviation in both graph and attribute properties.
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First, GOutRank score function for node n, based only on the subspace clustering

result, is defined as:

GOutRank(n) =
1
2
⇥

X

{(C,S)2Res|o2C}

|C|
Cmax

+
|S|

Smax
, (4.1)

where |C| is the number of objects in cluster C, and |S| is the number of attributes

used to define the subspace; Cmax is the maximum cluster size in Res and Smax the

maximal dimensionality of all subspace clusters in Res. Note that this fist formulation

for outlier score uses only the subspace clustering result for outlier score. Note also

that all nodes in the same cluster will have the same outlier score using this formulation

since there is no way to distinguish the outlierness of nodes in the same cluster. Our

proposed outlier scoring approach will directly address this drawback, and provided a

way to distinguish the outlierness of nodes in the same cluster.

GOutRank was modified to include a graph structure term in the outlier score

function. The score function for node n with node degree scoring is defined as:

GOutRank(n) =
1
3
⇥

X

{(C,S)2Res|o2C}

|C|
Cmax

+
|S|

Smax
+

deg(n)
degmax

, (4.2)

where |C| is the number of objects in cluster C, and |S| is the number of attributes used

to define the subspace; Cmax is the maximum cluster size in Res, and Smax the maximal

dimensionality of all subspace clusters in Res. degmax is the maximum degree for all

nodes in the overall network. The third term in the formulation considers the graph

properties of each node. Specifically, the term considers degree, or number of connected

edges, for node n, deg(n). We note that this value only considers the direct neighbors

of a node and does not consider any indirect link information. Traditionally, degree

is used as a basic centrality measure. A contribution of our proposed outlier scoring

approach will address this drawback by considering indirect links and co-citation links

in the graph structure.

4.2.4 Subspace clustering for outlier detection

In data mining, clustering is a process that aims to group similar objects while sep-

arating dissimilar ones. For traditional clustering of multivariate data, the similarity



74

of objects corresponds to the similarity of attribute values. For graph data, clustering

methods determine groups of nodes that correspond to densely connected subgraphs

within a graph. We begin this section with a review of subspace clustering. As with the

datasets used in this work, much of the complex data today has two aspects: attribute

data to characterize single objects and graph data to represent some relationship be-

tween objects. Researchers have found that analyzing both data sources simultaneously

can increase the quality of mining methods [29]. Combined object attribute and graph

structure clustering approaches have been introduced [29]. Approaches detect densely

connected node sets within a large graph that also show high similarity according to

their attribute values. Depending on the attribute set, it may be that full-space clus-

tering leads to uninformative clustering results. For this reason, subspace clustering

was introduced to identify locally relevant subsets of attributes for each cluster. We will

review in detail a method to determine sets of nodes that show high similarity in subsets

of their dimensions (i.e. attributes), and that are also densely connected within their

given graph. Resulting clusters are optimized according to their graph density, size (in

terms of number of nodes), and number of relevant attributes or dimensions. The goal

of the existing model, called GAMER, is to confine the clustering to a manageable size

of only the most interesting clusters, and was not originally developed for node outlier

ranking.

Subspace clustering is an important process because it avoids the curse of dimen-

sionality. Additionally, it avoids identifying an outlier node based on single or few

attributes (which may have little significance) in high-dimensional data. Subspace

clustering also allows for identification of nodes that may be outliers in various ways,

considering some combinations of the attributes. In other words, there may exist nodes

in the attributed graph that are similar if some subset of the attributes are considered

while others are ignored, which helps to identify nodes that are outliers in particular

ways. In this way, subspace clustering methods detect relevant subspace projections

individually for each cluster [44]. Consider the following example for demonstration

purposes. In this example nodes are persons, edges are friendships, and the attribute
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tuple considered is a person’s (Interest, Age, Employer). First, we consider the (Inter-

est, Employer) pair:

1. Nodes in subspace cluster 1: Interest: Programming, Employer: Tech company

2. Nodes in subspace cluster 2: Interest: Art, Employer: Museum

3. Node in no subspace cluster: Interest: Art, Employer: Tech company

2! 5!

4! 6!

11!

1!

13!12!

9!

10!
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43!

Museum 2!
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44!

Museum 1!
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Law!
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39!

Museum 2!
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Tech 2!
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25!

Tech 1!

Cluster 5!
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45!

Museum 3!
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41!

Museum 1!

Program.!
32!

Tech 3!

Figure 4.4: Example of the ability of subspace clustering to identify node clusters based
on various attribute combinations and graph connectivity over the network

In this example, subspace cluster 1 is shown at the top of the graph, while subspace

cluster 2 is shown at the bottom left. Node(s) that do not belong to any cluster, such

as (Interest, Employer) subspace clustering, including Node 3, are more likely potential

outliers, based only on subspace clustering, since they are not highly clustered with

other nodes in the network. Notice that cluster 2 and cluster 5 are both Interest:

Art, Age: early to mid-40s, and Employer: Museum. The reason these are two
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di↵erent subspace clusters is because the two clusters are separated in terms of

graph structure. In this way, subspace clustering in attributed graphs takes on

a di↵erent purpose than traditional multivariate data clustering – both attribute

values and graph structure must be considered simultaneously in order to

cluster nodes. Another key di↵erence is that clusters may be defined by 2 of 3

attributes (i.e., some subspace of the attributes) or 3 of 3 attributes (i.e., full space,

depending on algorithm parameter value for number of attributes), allowing for more

flexibility in the identifying of clusters. For example, cluster 4 uses the two attributes

(Age, Employer). Finally, we allow for overlap in clusters so that we can identify the

multiple ways in which nodes are similar to other nodes. See Nodes 7 and 11, for

example, which belong to two di↵erent clusters each, indicating that they are similar

to other nodes, and thus have less outlierness.
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Figure 4.5: Patent citation network with combination of attribute and graph data,
demonstrating one potential attribute subspace cluster, considering the attribute sub-
space (Country, Class)
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For our problem, we have a dataset that includes node attributes and graph struc-

ture. Our subspace clustering algorithm considers both types of data to find subspace

clusters. Because our input data includes graph data, our subspace clustering takes

on important role, as it also identifies clusters considering graph data, and not merely

attribute values. That is, we do not merely use a multivariate clustering result, nor do

we merely use a graph structure clustering result, but both multivariate data and graph

data are considered simultaneously for subspace clustering. Nodes in clusters may have

the same or similar attribute values but be separated within the the graph structure, so

they are in di↵erent clusters. Note that the result of our subspace clustering algorithm

will be used in our outlier score function, shown in Equation 4.7, so we leverage the

ability of nodes belonging to more than one cluster as we calculate the outlier score for

each node.

In this section, we model attribute data together with graph data by using a

vertex-labeled graph G := (V,E, l) with vertices V , edges E 2 V ⇥ V and a labeling

function l : V ! Rd, where Dim = 1, ..., d is the set of dimensions, or attributes, that

describe objects.

Next we describe a state-of-the-art subspace clustering algorithm for attributed

graphs, called GAMER, as presented in [29]. At a high level, the GAMER algorithm is

as follows:

% Step 1

for all 2V -1 many possible vertex combinations do

for for all 2d -1 many possible attribute dimension combinations do

if subset satisfies Definition 1 for the attribute similarity condition then

add to set STEP 1 CLUSTERS

end if

end for

end for

% Step 2

if a cluster in STEP 1 CLUSTERS meet the graph connectivity condition then

add to set STEP 2 CLUSTERS
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end if

% Step 3:

if a cluster in STEP 2 CLUSTERS is found to be redundant then

remove redundant subspace cluster from STEP 2 CLUSTERS

end if

Now we go into the details of the GAMER algorithm, and break up the steps

according to the steps provided in the original literature.

GAMER Step 1: Find subspace clusters considering object attribute values

Consider all possible combinations of attribute subspaces and all vector combinations.

For vertex combinations, there will be a total of 2V � 1, where V is the number of

vertices in the graph. For attribute subspaces, there will be a total of 2d�1, where d is

the number of attributes for the overall dataset. A subspace cluster is a set of objects

with a set of relevant dimensions, where within the relevant dimensions the variation

of the object’s attribute values is restricted to a maximal width w. Of all possible

subspaces, choose the subspaces satisfying the following definition.

Definition 1: Subspace cluster property

Given a set of vectors X ✓ Rd and given a set of dimensions S ✓ Dim, the pair

(X,S) is a subspace cluster, if it meets the following two conditions:

(1.1) 8i 2 S : 8x1, x2 2 X : |x1[i]� x2[i]  w

(1.2) 8i 2 Dim \ S : 9x1, x2 2 X : |x1[i]� x2[i] > w

GAMER Step 2: Calculate density of resulting quasi-clique

The density of a quasi-clique is given by:

�(O) =
minv2O{degO(v)}

(|O|� 1)
.

where degO(v) is the degree of vertex v within the set O. That is,

degO(v) = |{o 2 O|(v, o) 2 E}|.

GAMER Step 3: Find twofold clusters

Twofold clusters satisfy the following requirements:
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(3.1) Dimension requirement: (X,S) is a subspace cluster with |S| � Smin

(3.2) Density requirement: O fulfills the quasi-clique property with �(O) � �min

(3.3) Cluster size requirement: Induced subgraph of O is connected and |O| � nmin

GAMER Step 4: Calculate quality of a twofold cluster

Given a twofold cluster C = (O,S), the quality of C is given by:

Q(C) = �(O)a ⇥ |O|b ⇥ |S|c

GAMER Step 5: Check redundancy of subspace clusters

The redundancy model identifies clusters that provide little or no additional information

when compared to another cluster. There are two redundancy parameters: robj for the

objects in a cluster, and rdim for the attributes (dimensions) that describe a cluster.

Given the redundancy parameters robj , rdim 2 [0, 1], the binary redundancy relation

denoted �red is defined by:

For all twofold cluster pairs C = (O,S), and C = (O,S):

C �red C , Q(C) < Q(C) ^ |O \O|
|O| � robj ^

|S \ S|
|S| � rdim.

GAMER Step 6: Output optimal overall clustering

After defining a relation for pairwise redundancy of clusters, the algorithm now de-

fines the overall clustering, i.e., given all twofold clusters Clusters they want to get a

meaningful subset Result ✓ Clusters.

The final clustering must be redundancy-free and maximal. Assume we are given

the set of all twofold clusters in the set Clusters, the optimal twofold clustering set

Result ✓ Clusters satisfies the following two conditions:

6.1 ¬9Ci, Cj 2 Result : Ci �red Cj (redundancy-free requirement)

6.2 8Ci 2 Clusters \ Result : 9Cj 2 Result : Ci �red Cj (maximality)

Given the set of all twofold clusters in the set Clusters as {Ca, Cb, Cc} with binary

redundancy relationships:
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Ca �red Cb,

Cb �red Cc,

¬(Ca �red Cc),

the resulting subspace clusters Result = {Ca, Cc}.

The GAMER subspace clustering algorithm, summarized above, is used in the

GOutRank outlier score function shown in Equations 4.1 and 4.2. For applications to

PCN, it has a couple of significant drawbacks. (1) For sparse data, a subspace cluster

is identified in the case where one patent has attribute value 0 and another patent has

less than or equal to specified threshold, w. The drawback results from the attribute

similarity measure simply checking the absolute value of the di↵erence of the node

attributes. This means patents with no subclasses and patents with a small number of

subclasses can be clustered together (see later in this section for a detailed description

of patent attribute data used). (2) The GAMER algorithm only considers direct links

between objects for its graph connectivity measure, since the minimum node degree

among nodes in a cluster is used. This means that the entire cluster graph structure is

not considered, but only a characteristic of a single node is considered.

As seen in Section 4.2, many node outlier ranking methods focus strictly on graph

structure. Graph structure-based models often only consider a nodes direct connections

(or neighbors). Most node outlier ranking approaches, including SCAN, GOutRank-

↵, GOutRank-�, and OddBall, do not simultaneously consider both patent attribute

data and graph structure data. Graph structure-based models have the drawback of

not considering the important characteristics of patent citation network data such as

co-citation relationships and the node similarity that can be mined from those

relationships. Another major issue is that to date no approach has been developed

specifically for patent citation networks.

Due to these drawbacks, the outlier detection problem in PCN data has much

opportunity for contribution. In this work we propose the use of both graph structure

data and node attribute data to improve the results of outlier ranking of patents in a
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patent citation network. In particular, the first contribution is in the area of subspace

clustering in PCNs, in which we define new attribute similarity and graph connectivity

criteria. The second contribution allows for nodes in the same cluster to be distinguished

in outlierness. We are better able to quantify a nodes regularity by considering the

attributes that describe nodes. In particular, we consider the distance of an object from

the center of the cluster to which it belongs. Existing graph structure-based approaches

only use direct neighbor information, and do not consider indirect node relationships.

We propose using a similarity matrix, which is constructed from the adjacency matrix,

but considers multi-stage indirect co-citations between pairs of patents. The similarity

measure results provides more information on the relationship for a node to the other

nodes in the graph to which it belongs than using only adjacency information. To

summarize, the key contributions of this chapter are:

1. A new patent subspace clustering algorithm for outlier ranking, based on attribute

and graph data

1.1. A new attribute similarity measure for sparse data

1.2. A new graph connectivity measure based on direct and indirect links

within a cluster

2. A weighted subspace clustering measure for node regularity within a cluster

3. A new graph-based node outlier measure for patents based on node centrality and

the co-citation similarity measure

In this work we use the USPTO U.S. class codes for attributes to describe the

patents (nodes) in the network. Values for the class code attributes then will be the

total number of subclass codes for that class. This will be the entirety of the vector

data used in our work going forward. See Table 4.2 for a sample of patent classes and

subclasses. We will demonstrate the patent attribute data extraction from this type of

raw class/subclass data, to the final multivariate attribute data. Based on this subclass

count attribute vector data, outlier patent may be one of the following:
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(1) Belong to di↵erent technology area than rest of dataset

(2) Focused in narrow technology area (high count of subclasses within one/few classes)

(3) Spread over many technology areas (lower count of subclasses within many classes).

Table 4.2: Sample U.S. Class codes for U.S. patent data

Patent U.S. patent class codes
ID class/subclass

6658432 707/999.001; 707/999.104; 707/999.107; 707/E17.117
6226618 705/51; 380/279; 380/281; 380/282; 380/285; 380/30; 380/44; 705/53; 705/57; 705/59; 705/71
6389402 705/51; 348/E5.006; 348/E5.008; 348/E7.06; 348/E7.07; 375/E7.009; 375/E7.024; 380/201; 705/1.1; 705/37; 705/53; 705/57; 705/80
6016476 705/18; 705/26.1; 705/42; 705/44; 705/65; 705/76; 713/186
6427140 705/80; 348/E5.006; 348/E5.008; 348/E7.06; 348/E7.07; 375/E7.009; 375/E7.024; 375/E7.025; 705/53; 713/193

Based on the five U.S. patents and the U.S. classes/subclasses in Table 4.2, we get

the classes in Table 4.3, with six unique classes: 348, 375, 380, 705, 707, and 713.

The result is the attribute vector for each of the five patents (patent row data from

Table 4.2 is shown in column vector form):
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Table 4.3: Example patent attributes: number of subclasses within U.S. class codes for
the five U.S. patents from Table 4.2

Patent U.S. class codes subclass counts
ID 348 375 380 705 707 713

6658432 0 0 0 0 4 0
6226618 0 0 6 5 0 0
6389402 4 2 1 6 0 0
6016476 0 0 0 6 0 1
6427140 4 3 0 2 0 1
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4.3 New subspace clustering algorithm for patents in a patent citation

network

Subspace clustering will be based on patent attributes and graph connectivity.

See the attributes shown in Table 4.4 for example. An example of the key subspace

clustering idea is as follows. Class A and Class D values for Patent 1 and Patent 3 are

similar, indicating they have similar combination of technology, while Patent 2 has value

0 for both of those classes, thus we are able to distinguish Patent 2 as not belonging

to the same subspace cluster, giving Patent 2 a higher outlier score. Consider the class

examples:

Class A: Encryption

Class B: Databases

Class C: Programming languages

Class D: Hardware

We can cluster Patent 1 and Patent 3 as patents related to hardware encryption,

while Patent 2 is related to databases, and is not in that same cluster. If Patent 2 is

not highly clustered with other nodes in the network, it is more likely to be an outlier,

using our proposed score function.

Table 4.4: Node attributes example

Class A Class B Class C Class D
Patent 1 7 0 0 2
Patent 2 0 2 0 0
Patent 3 5 0 0 3

The high level steps for our proposed Patent Clustering for Outlier Ranking, PCOR,

are as follows:

Step 1: Find subspace clusters based only on object attributes, add to set

STEP 1 CLUSTERS.

Step 2: Refine those subspace clusters in STEP 1 CLUSTERS based only on graph

connectivity of cluster, add to set STEP 2 CLUSTERS.

The proposed algorithm works by first clustering nodes based on attribute values
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and then refining those clusters based on graph connectivity. In Step 1, we consider

that the PCN data is sparse data, and avoid clustering patents based on zero-value

attributes. This reduces the number of uninformative clusters that result using existing

approaches. In Step 2, we consider how well clusters are connected by considering the

direct and indirect links among nodes within a subspace cluster. This approach is an

improvement over the existing approach since it is a cluster-based measure, rather than

a node-based measure. That is, the links of the entire cluster are considered, not just

the direct links of the least well connected node.

4.3.1 Attribute similarity criterion

PCOR Step 1: Find subspace clusters based only on object attribute values

We again consider all possible combinations of attribute subspaces and all vector

combinations. A subspace cluster is a set of objects with a set of relevant dimensions,

where within the relevant dimensions, the variation of the objects’ attribute values is

restricted to a ratio greater than or equal to qmin. Of all possible subspaces, we choose

the subspaces satisfying the following definition.

Definition 1: Subspace cluster property

Given a set of vectors X ✓ Nd and given a set of dimensions S ✓ Dim, the pair

(X,S) is a subspace cluster, if it meets the following three conditions:

(1.1) 8i 2 S : 8x1, x2 2 X : x1[i] 6= 0 ^ x2[i] 6= 0

(1.2) 8i 2 S : 8x1, x2 2 X : min
n

x1[i]
x2[i] ,

x2[i]
x1[i]

o

� qmin

(1.3) 8i 2 Dim \ S : 9x1, x2 2 X : min
n

x1[i]
x2[i] ,

x2[i]
x1[i]

o

< qmin

4.3.2 Graph connectivity criterion

PCOR Step 2: Calculate graph connectivity of resulting subspace clusters

from Step 1
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After obtaining the set of subspace clusters based only on attribute data,

STEP 1 CLUSTERS, check the indirect links among objects within the cluster.

Definition 2: Graph connectivity property

IM (oi,j) is the level-M node-cluster indirect link measure for node oi,j , which is

node i in cluster j, and is given by:

IM (oi,j) =
M
X

r=1

N
X

k=1

Ar
C

ij,k
,

where A r
C

i

is the adjacency matrix for objects within cluster Ci, M is the desired

length of indirect path between two nodes within the subspace cluster to be considered,

and N is the number of nodes in PCN. If node p is not in this cluster, then the pth row

and pth column of the original adjacency matrix are 0 vectors in A C
i

. In order for a

cluster (Ci, Si) to be in STEP 2 CLUSTERS, it must meet the following constraint:

c(Oi) � cmin,

where c(Oi) = minj{IM (oi,j)}/|Oi| is the node-cluster indirect link value for object o,

and IM
max is the maximum node-cluster indirect link value over all objects in cluster

Ci. The algorithm is summarized in Algorithm 1. A numerical example is presented

to show the advantages of our proposed approach over GAMER, using the attributed

patent citation network shown in Figure 4.6.

4.3.3 Subspace clustering numerical example

In this section we present a numerical example for our proposed subspace clus-

tering algorithm, PCOR, and compare it to the state-of-the-art GAMER algorithm.

The attributed graph used as input for this numerical example is seen in Figure 4.6.

Parameters for both the proposed subspace clustering algorithm PCOR and the ex-

isting GAMER algorithm are given in Table 4.5. Note that PCOR has some similar

parameters to GAMER, but fewer overall parameters. In particular, PCOR does not

have parameters for reducing the redundancy in the resulting subspace clusters. This

is because PCOR was developed specifically for outlier detection, while GAMER was
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Algorithm 1 Patent subspace clustering algorithm
1: procedure PCOR(attributed graph, nmin, amin, qmin, cmin)
2: % Step 1: Find valid attribute subspace clusters based only on
3: % object attribute values
4: for (8o ✓ O, where |o| � nmin) do . x are attribute vectors for objects o
5: for (8s ✓ S, where |s| � amin) do
6: for (8x1, x2 2 X,8e 2 s) do
7: if (x1[e] 6= 0 && x2[e] 6= 0) &&
8: min {x1[e]/x2[e], x2[e]/x1[e]} � qmin &&
9: 8i 2 \s : 9x1, x2 2 X : min

n

x1[e]
x2[e] ,

x2[e]
x1[e]

o

< qmin then
10: % (Xi, Si) meets the attribute similarity conditions,
11: % (Xi, Si) is specific (attribute set, node set) pair
12: <add (Xi, Si) to set STEP 1 CLUSTERS>
13: end if
14: end for
15: end for
16: end for
17:

18: % Step 2: Select portion of STEP 1 CLUSTERS based on
19: % graph connectivity
20: for (8i 2 attribute-based clusters set STEP 1 CLUSTERS) do
21: <calculate cluster graph connectivity using indirect links>
22: for (8j 2 nodes in this ith subspace cluster) do
23: <calculate connectivity for this node oi,j in this cluster>
24: %Ar

C
i

is rth power of adjacency matrix of cluster i
25: %M = number of indirect levels, N= number of nodes in PCN
26: IM (oi,j) =

PM
r=1

PN
k=1 Ar

C
ij,k

. oi,j is node j of cluster i

27: end for
28: c(Oi) = minj{IM (oi,j)}/|Oi|
29: if c(Oi) � cmin then
30: % (Xi, Si) meets the graph connectivity condition
31: <add (Xi, Si) to set STEP 2 CLUSTERS>
32: end if
33: end for
34: FinalClustering  STEP 2 CLUSTER
35: return FinalClustering . Final patent subspace cluster result
36: end procedure
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Figure 4.6: Example attributed PCN to demonstrate subspace clustering algorithm

developed as a general purpose subspace clustering algorithm. In our algorithm, we

want to identify all the ways in which patents are similar to other patents in the PCN,

so we do not perform a redundancy reduction step as the final step of our algorithm. We

break down the steps of the algorithms into two common steps for both algorithms, so

that the working of the algorithms can be compared side-by-side. Step 1: find subspace

clusters based on attribute values only. Step 2: based on the result of Step 1, select the

portion of subspace clusters that satisfy the graph connectivity requirement. We again

note that GAMER would have, Step 3: reduce the redundancy in the set of subspace

clusters from Step 2, while PCOR has no such step.

Step 1: Find subspace clusters based on attribute values only. Let the set S be

the set of attributes used in this first possible subspace clustering, where each value in

the set S refers to the attribute number. Let Oi be the ith subspace cluster where the

values in the set Oi are the node IDs belonging to that subspace cluster.

GAMER:

S = {1, 2, 3}

O1 = {1, 2, 3, 4, 5}



88

Table 4.5: Subspace clustering algorithm parameters

GAMER PCOR Parameter meaning
w = 2.0 qmin = 0.6 Attribute similarity threshold
�min = 0.5 cmin = 0.5 Graph connectivity threshold
nmin = 4 nmin = 4 Minimum number nodes per cluster
amin = 2 amin = 2 Minimum number attributes per cluster
robj = 0.2 [none] Redundancy in nodes (objects) threshold
rdim = 0.2 [none] Redundancy in attributes (dimensions) threshold
a = 1 [none] Weight for graph structure cluster quality term
b = 1 [none] Weight for number of nodes cluster quality term
c = 1 [none] Weight for number of attributes cluster quality term

O2 = {1, 2, 3, 4}

. . .

O6 = {2, 3, 4, 5}

S = {1, 2}

O7 = {1, 2, 3, 4, 5}

. . .

O12 = {2, 3, 4, 5}

S = {1, 3}

O13 = {1, 2, 3, 4, 5}

. . .

O18 = {2, 3, 4, 5}

S = {2, 3}

O19 = {1, 2, 3, 4, 5}

. . .

O24 = {1, 3, 5, 6}

O25 = {2, 3, 4, 5}
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The major drawback of this step of the GAMER algorithm is that GAMER does

not check for zero values among attributes. As a result, the algorithm identifies many

subspace clusters because of the attributes with zero values, and potentially clusters

those patents with other patents that have value less than or equal to the threshold, w.

PCOR:

S = {1, 2}

O1 = {1, 2, 3, 4, 5}

O2 = {1, 2, 3, 4}

O3 = {1, 2, 3, 5}

O4 = {1, 2, 4, 5}

O5 = {1, 3, 4, 5}

O6 = {2, 3, 4, 5}

Our proposed algorithm checks for zero values in the comparison of attribute values,

and uses a ratio comparison rather than simple absolute value of di↵erence (width), in

order to better handle sparse data. The result is fewer and higher quality subspace

clusters in Step 1.

Step 2: Select portion of clusters from Step 1 based on graph connectivity. We

use the graph connectivity measures provided earlier for both GAMER and PCOR to

compute these scores.

GAMER:

�(O1) = 1/4

�(O2) = 1/3

. . .

�(O24) = 2/3

�(O25) = 1/3

Using min degree only considers the direct links in the cluster for the least well-

connected node. This means that the more nodes in the cluster, the less connectivity.

With �min = 0.5, only cluster O24 remains after the graph connectivity check. Low

degree of a single node in the other subspace clusters cause the clusters to be lost.

PCOR:
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c(O1) = 3/4

c(O2) = 1

c(O3) = 1

c(O4) = 0

c(O5) = 0

c(O6) = 2/3

Our algorithm considers indirect links among nodes within a cluster. The result is

that we do not penalize lesser degree nodes, as long as indirect (length greater than

one) paths exist among nodes in a cluster.

Step 3: Reduce redundancy among subspace clusters from Step 2.

GAMER:

GAMER uses a quality to reduce redundancy. This is likely because GAMER was

not originally developed for outlier detection, but rather for clustering. In this numerical

example, there is only 1 subspace cluster, so we do not actually have any redundant

clusters to remove.

PCOR:

Our algorithm does not have a redundancy reduction step since our subspace cluster-

ing algorithm was developed specifically for outlier detection in PCN. For this reason,

we want to know all of the di↵erent ways that patents can be clustered with other

patents.

Table 4.6: Resulting subspace clusters using existing and proposed algorithms, with
attribute set, S, specified

GAMER clustering result PCOR clustering result
S = {2, 3} : S = {1, 2} :

O1 = {1, 3, 5, 6} O1 = {1, 2, 3, 4, 5}
O2 = {1, 2, 3, 4}
O3 = {1, 2, 3, 5}
O4 = {2, 3, 4, 5}
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4.4 New node outlier ranking methods for attributed graphs

Next we will apply the PCOR subspace clustering algorithm developed in Section

4.3 of this work for node outlier scoring and ranking in this section. Patent datasets

are rich with information. Patent attributes such as classification codes are specifically

assigned based on the nature of the technology. Similarly, graph structure data in

the form of citations made and received are carefully considered by patent writers.

Traditional outlier ranking techniques focus on either homogeneous vector data or on

graph structures. Our hypothesis is that outliers are best detected by a combination of

all available information. In this section we present score functions for outlier ranking in

patent citation networks, which contain both types of data: multi-dimensional numeric

and relations between objects in attributed graphs. There is currently no work on patent

citation network outlier detection that considers attributes in patent citation network,

in addition to the citation network structure. We will use the developed PCOR subspace

clustering algorithm from the previous section for this outlier ranking.

4.4.1 Integrated graph structure-based and node attribute model

In this section we present the score function for the combined outlier score,

starting with the weighted subspace clustering and moving to the graph-based contri-

bution. One of our contributions is the formulation of an outlier scoring function that

considers the outlier score based on subspace clustering and on graph structure. To

this end, we propose the general integrated outlier score for patent o as:

OSI(o) = (wC ⇥OSC(o)) + (wG ⇥OSG(o)) ,

where wC is the weight given to the cluster-based outlier score, OSC(o) is the cluster-

based outlier score for object o, wG is the weight given to the graph-based outlier score,

and OSG(o) is the graph-based outlier score for object o. The cluster-based outlier

score will consider both attribute and graph structure information as was presented
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in the proposed subspace clustering algorithm above. In the following paragraphs, we

propose specific formulations.

Our proposed integrated outlier rank score for patent o, OSI(o), will be given

by a weighted combination of clustering and graph structure outlier scores. For the

clustering outlier score, we use our proposed subspace clustering algorithm that was

presented above. In addition, we consider the distance of an object from the center of

the cluster to which it belongs so that outlierness of nodes belonging to the same cluster

can be distinguished. We call this contribution weighted subspace clustering. For

the graph structure-based method, we use a node’s centrality and a node’s similarity

to the other nodes in the network to quantify outlierness.

4.4.2 Weighted subspace clustering

The objective of the proposed research is to develop advanced methods in patent

outlier ranking leveraging both node attribute data and patent citation data. To this

end, we propose new score functions which outperform the GOutRank approach [56].

For the calculation that uses cluster information, we propose the following score function

for the outlier score of node n that considers the all clusters to which the node belongs:

scoreC
IF

(o) =
↵

Cmax

X

i

|Ci|⇥ I(o 2 Ci) +
(1� ↵)
Smax

+
X

i

|Si|⇥ I(o 2 Ci), (4.3)

where I(o 2 Ci) is an indicator function such that I(o 2 Ci) = 1 if object o is in Cluster

Ci, and I(o 2 Ci) = 0 otherwise. We extend the idea of object belonging to a cluster

to consider the distance of an object to the center of the cluster to which it belongs by

introducing the term wo
i :

scoreC(o) =
X

o2(C
i

,S
i

)

wo
i



↵⇥
✓

|Ci|
Cmax

◆

+ (1� ↵)⇥
✓

|Si|
Smax

◆�

, (4.4)

where |Ci| is the number of objects in cluster Ci, and |Si| is the number of attributes

used to describe the subspace cluster; Cmax is the maximum cluster size in the subspace

cluster result, and Smax the maximal dimensionality in the subspace cluster result. wo
i
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considers the distance between object and the center of the subspace cluster to which it

belongs (based on node attribute values), and is the weight given to object o belonging

to cluster i (a function of distance from object o to center of cluster i), and do
C

i

is the

actual distance of object o to the center of cluster Ci.
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Figure 4.7: Weight function for di↵erent � values

We use a point-cluster distance measure to measure the distance between an object

and the center of the cluster(s) that to which it belongs. The Euclidian distance between

an object and cluster Ci is denoted d(o, Ci) and is written as follows:

do
C

i

= d(o, Ci) = d(o, X̄C
i

) =
p

(o1 � µi1)2 + (o2 � µi2)2 + · · · + (on � µin)2,

where ni = |Ci| and where µi is the mean of points in the cluster Ci. In order to give

a lower regularity score to the nodes that are farther from the center of the cluster(s)

to which it belongs, and a greater score to those nodes that are closer to the center of

the cluster(s) to which they belong, we have the following formulation:
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wo
i = f(do

C
i

) = e
��⇥do

C

i , (4.5)
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Figure 4.8: Example of four clusterings for di↵erent attribute subspaces, and point
cluster distance for object o and Cluster Ci

so that the greater the distance from an object to the center of a cluster, the less the

weight for object o in cluster i, as seen in Figure 4.7.

In Figure 4.8 Clusters C1 and C2 arise from the same attribute subspace, while

Clusters C3 and C4 each arise from their respective attribute subspace. The axis labels

indicate the relevant attribute subspace utilized. In this figure, we show two dimensions

for ease of viewing. The idea can be expanded to n dimensions. We use the cluster-

based method developed in this section for our integrated outlier ranking formulation

so that:
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OSC(o) = scoreC(o). (4.6)

The second portion of the score function will build on scoreC(o) score function,

and integrates a graph structure-based outlier score from Section 4.4.3. The integrated

score function is given in the below Equation (4.7):

OSI(o) = (wC ⇥OSC(o)) + (wG ⇥OSG (o))

= wC ⇥
X

o2(C
i

,S
i

)

wo
i



↵⇥
✓

|Ci|
Cmax

◆

+ (1� ↵)⇥
✓

|Si|
Smax

◆�

+ wG ⇥
c(o)
cmax

,

where wC and wG are the weights for the cluster-based term and the graph structure-

based term, respectively. The graph structure-based outlier score is given in the next

subsection.

4.4.3 Graph structure-based methods

A node in a network should not be considered an outlier if it is central to the

network, or if it is similar to other nodes in the network. Our proposed graph-based

outlier score leverages both of these aspects by combining a centrality score and a

similarity score in the outlier score function, which is given by:

c(o) =
N

X

k=1

[Aok + Cok] ,

where A is the adjacency matrix and C is the normalized multi-stage co-citation simi-

larity matrix where the similarity between nodes x and y is given by [69]:

C = CM (x, y)normalized =
CM (x, y)

C1(x, x) + C1(y, y)
.

In this way our outlier score function considers the similarity of patents using indi-

rect links and the co-citation relationship, which is of high importance in PCNs. The
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combination of our proposed approaches is seen in Figure 4.9, which shows a flowchart

of the entire outlier score process.

Proposed(subspace(clustering(algorithm(
(A6ribute(and(graph(structure7based)(
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Figure 4.9: Proposed patent outlier ranking flowchart

4.5 Experimental results

In this section we first present experimental results based on three artificial

datasets. We use the small artificial datasets to demonstrate the working of our ap-

proach. Since true outlier labels are not available for real-life data, we first use the

artificial datasets in which node outliers are easy to identify in order to show the work-

ing of our methods. The first artificial dataset is a small attributed graph that mimics

a real-life patent citation network. The second artificial dataset is a subspace clustering

result for an attributed graph to demonstrate contribution of the weighted subspace

clustering approach. The third artificial dataset contains only graph structure data and

highlights the graph-based portion of our outlier score function contribution. In this

way, we are able to show the performance individually for each of our contributions



97

from earlier sections. In the later part of this section, we will present results based

on a real-life attributed patent citation network dataset, using all contributions in a

combined manner.

4.5.1 Data description: Example patent citation networks

In this section we provide details on three artificial datasets and one real-life

dataset. We will use each of the datasets to demonstrate the performance of our pro-

posed methods. First, we use artificial dataset 1 to show the advantage of our subspace

clustering algorithm result when used in cluster-based outlier score function. Next,

we use artificial dataset 2 to show the advantage of weighted subspace clustering to

distinguish outlierness of nodes that belong to the same cluster. Finally, we use artifi-

cial dataset 3 to show the advantage of our graph-based outlier score function. After

providing results for artificial datasets, we apply our proposed methods to a real-life

patent citation network.

Artificial dataset 1: 6-node attributed patent citation network

First we present the example attributed graph from Section 4.3, originally used to

demonstrate the proposed subspace clustering algorithm. We compare our experimental

results for node outlier ranking with the existing approach. In this dataset, there are six

nodes with three attributes describing each node. Attribute values are integers greater

than or equal to zero, like the actual attribute values will be in a real-life attributed

PCN. The attributes that describe the nodes then are interpreted as class code counts,

as were presented in Section 4.2.4.

For this example patent citation network, we provide a “Yes” label, depending on

the expected outlierness for each node in the network. That is, if a node clearly is an

outlier we mark it as such. If a node is clearly an outlier, then we mark the Expected

Outlier column of Table 4.9 with “Yes.” If it is unclear whether a node should or

should not be an outlier, then we mark the column with a “-.”
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Figure 4.10: Artificial dataset 1 - example attributed PCN for node outlier ranking
based on subspace clustering, where attributes indicate patent class counts
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Figure 4.11: Artificial dataset 2 - example attributed graph for outlier ranking based
on weighted subspace clustering; two attributes describe each node
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Artificial dataset 2: 14-node attributed patent citation network

To test our developed weighted subspace clustering method, we will also use the

14-node example citation network seen in Figure 4.11. Note that this is a directed,

acyclic graph, like the patent citation networks we have been working using through-

out this work. In addition to the attributed graph, this example dataset also shows

a resulting cluster, called C1. The reason this dataset provides a cluster is so that we

can explicitly apply our weighted subspace clustering approach to that cluster. We will

use this same clustering result as input to both existing and our outlier score function.

Note that the attribute values are di↵erent than the ones in our real-life data, but our

idea of weighted subspace clustering still holds for this attribute data.

Figure 4.12: Artificial dataset 2 - given clustering of nodes using two attributes to
describe nodes
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Table 4.7: Attribute values for the 14 nodes of the artificial dataset 2, with attributes
a1 and a2 describing each node

Node a1 a2

1 0.30 0.57
2 0.58 0.58
3 0.20 0.54
4 0.64 0.24
5 0.45 0.45
6 0.08 0.41
7 0.46 0.15
8 0.90 0.30
9 0.17 0.26
10 0.49 0.31
11 0.69 0.45
12 1.20 0.02
13 0.30 0.28
14 0.17 0.83

Artificial dataset 3: 14-node patent citation network

The value of this example network is that we can systematically determine how we

expect nodes in the network to be ranked in outlierness. As an example, we would not

expect Node 4 to be an outlier in this network since it is cited by four other nodes (the

most citations in this network) and it cites two other nodes (tied for the most in this

network). Node 6 in comparison is not cited by any other node, and makes one citation.

We will present our general expected outlier ranking for this graph, and compare an

existing method to our proposed method.

Real-life patent citation network

Total patent citation network data consists of 4,142 nodes and 18,385 edges, and

form a single connected tree structure. The citation network contains directed, un-

weighted edges. The dataset actually used for the experiments are U.S. patents in the

area of information and security issued between 1994 and 2007. For this experiment,

we take the top 1% most frequently cited patents from 1994 to 2007 as the nodes in the

patent citation network. In order to have a single connected tree structure to which
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Figure 4.13: Artificial dataset 3 - example PCN graph data

to apply outlier detection method, we select the patents that cite, either directly or

indirectly, the most cited patent from the original dataset, which is patent US-5349655.

Our patent citation network then consist of 150 nodes and 215 edges. Overall, patent

attributes include: patent class codes, year granted, country of origin, and so on. In

this work we focus on the U.S. class codes, as was described in Section 4.2.4. This

dataset then contains 42 attributes describing each patent.

4.5.2 Artificial dataset 1: 6-node attributed patent citation network

First, outlier scores for artificial dataset 1 using the our proposed subspace clus-

tering and weighted subspace clustering methods (we do not show results for strictly

graph-based methods here). Our new subspace clustering method is described in Sec-

tions 4.3, and our weighted subspace clustering approach is described in Section 4.4.2.

Subspace clustering results for this 6-node PCN dataset was provided in the numerical

example, and is summarized in Table 4.6. Table 4.8 provides outlier scores and ranking

for artificial dataset 1. Notice in these results that our proposed weighted subspace
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clustering is able to assign a unique outlier score to each node in the dataset. Also,

node 6 is identified as the outlier which is validated by both its position in the network

and its attribute values, as seen in Figure 4.10.

Table 4.8: Comparison of outlier scoring and ranking for artificial dataset 1 using
proposed cluster-based method

Outlier rank Node ID Outlier score
1 6 0.00
2 2 0.22
3 1 0.38
4 5 0.79
5 3 1.04
6 4 1.14
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Figure 4.14: Artificial dataset 1 - example attributed patent citation network outlier
ranking results using existing (left) and proposed (right) methods, where shaded node
indicates outlier

We compare outlier ranking of our proposed methods with that of the existing

GOurRank method. In Table 4.9, an outlier rank of 1st identifies the node that is most

outlier, while outlier rank of 6th identifies the least outlier node (i.e., most regular

node). Node 6 has the outlier attribute values and is not well connected to the rest
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Table 4.9: Comparison of outlier ranking for artificial dataset 1 using existing and
proposed methods (rank 1st is the greatest outlier)

Node GOutRank outlier rank PCOR-based outlier rank Expected outlier
1 3rd tied 3rd -
2 1st tied 2nd -
3 3rd tied 5th -
4 1st tied 6th -
5 3rd tied 4th -
6 3rd tied (node 6 not an outlier) 1st (node 6 is the outlier) Yes

of the PCN. Existing methods do not handle sparse data well, and will cluster Node

6 with other nodes because of the zero attribute value for attribute 3. Our proposed

approach overcomes this drawback and will not cluster patents based on zero values

in the class code attribute. Additionally, the existing subspace clustering method is

not able to distinguish the outlier rank of nodes in the same cluster. For this reason,

the existing method has two ranks of nodes (note we show competition rank in result

tables).

4.5.3 Artificial dataset 2: 14-node attributed patent citation network

Table 4.10: Given subspace clustering result for artificial dataset 2

Subspace Cluster details
cluster Num. attributes used Attributes used Num. nodes in cluster Cluster members
1 of 1 2 a1, a2 11 1,2,3,4,5,6,7,9,10,11,13

Next we present our results for artificial dataset 2, which is an example of an

attributed PCN, and a given subspace clustering result. In this experiment, we show

the value of the weight term wo
i as proposed in Equation 4.4. In this experiment, we

do not find the subspace cluster, but we assume one is already given to us. From this

point, we work to find the outlier score and ranking for nodes, based on the node at-

tribute values, and the outlier score function. The major drawback of existing subspace

clustering scoring is that all objects in a single cluster will have outlier same score. We

demonstrated the ability of our proposed methods to provide a unique outlier score
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in the previous section. In this section we provide an example to illustrate in detail

how our proposed method works. For example, given the resulting subspace cluster

in Table 4.10, using the existing score function for subspace clustering, Node 5 and

Node 6 outlier score cannot be di↵erentiated, simply because they belong to the same

cluster. As a solution to this major drawback, in Section 4.4.2, we proposed calculating

a weight based on each objects distance to cluster mean so that objects have unique

score. Using our contribution, Node 5 is nearer to the center of the cluster than Node 6,

thus receives a greater weight (to be used as a coe�cient) than Node 6. Node 5 is more

central to cluster than Node 6, thus Node 6 is more of an outlier, within the cluster

to which it belongs. Table 4.11 present the weights for each node, which is a function

of the distance to the center of the cluster to which it belongs, as was presented in an

earlier section.

Table 4.11: Weights for the 11 nodes that are in cluster C1

Node wo
1

1 0.6924
2 0.6149
3 0.6370
4 0.5953
5 0.8878
6 0.5566
7 0.6447
9 0.6257
10 0.8255
11 0.5755
13 0.7891

Table 4.12 demonstrates the advantage of our weighted subspace clustering. The

attribute-based location (not graph location) of the node within the cluster is shown

in Figure 4.12. The smallest weight of 0.5566 is given to Node 6 since it is farthest

from the center of the cluster. The greatest weight of 0.8878 is given to Node 5 since

it is nearest to the center of the cluster. Based on the subspace clustering result given,

Nodes 8, 12, and 14 have rank 1 for outlierness. This ranking is because these nodes do

not belong to any cluster in this given example, as seen in Figure 4.12 and Table 4.11.
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Table 4.12: Comparison of outlier score and ranking based only on subspace clustering
attribute term for 14 nodes of artificial dataset 2

Node GOutRank score GOutRank rank Proposed score Proposed rank
1 1 4 1.38 11
2 1 4 1.23 7
3 1 4 1.27 9
4 1 4 1.19 6
5 1 4 1.78 14
6 1 4 1.11 4
7 1 4 1.29 10
8 0 1 0.00 1
9 1 4 1.25 8
10 1 4 1.65 13
11 1 4 1.15 5
12 0 1 0.00 1
13 1 4 1.58 12
14 0 1 0.00 1

After those outlier nodes, the existing score function shown in Equation 4.2 is not able

to distinguish outlierness of the remaining nodes. Notice how Nodes 5 and 6 have the

same outlier rank in the existing rank column of Table 4.12 (bolded). In contrast, in

the Proposed rank column, Node 6 is the most outlier among nodes that are in cluster

C1, and Node 5 is the least outlier among all nodes in the attributed PCN.

4.5.4 Artificial dataset 3: 14-node patent citation network

In this section we present our results for artificial dataset 3, which demonstrates

the advantages of our graph-based scoring presented in Section 4.4.3. We present our

outlier ranking results alongside the ranking results of the graph-based approach from

GOutRank, and show how our approach outperforms outlier scoring and ranking from

existing outlier ranking algorithms. The major drawback of existing graph-based ap-

proaches is that they do not consider indirect link relationships, which contain im-

portant information in patent citation networks. We demonstrate how our methods

presented in Section 4.4.3 use the co-citation similarity measure to achieve better out-

lier ranking results. Table 4.13 and Figure 4.15 show the node outlier ranking for

both existing and proposed approaches. Notice that the existing approach describe in
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Equation 4.2 cannot distinguish the outlier rank of Nodes 1 and 6 using graph struc-

ture, while our proposed approach described in Section 4.4.3 can greatly distinguish

outlierness of those nodes.

Table 4.13: Comparison of outlier ranking based only on graph structure term for 14
nodes of artificial dataset 3

Node GOutRank rank Proposed rank
1 1 13
2 3 14
3 3 7
4 14 12
5 3 2
6 1 1
7 10 8
8 10 8
9 10 8
10 10 8
11 3 2
12 3 2
13 3 2
14 3 2

We discuss the general expected outlier ranking of nodes in artificial dataset 3 using

the graph structure. The value of this example network is that we can systematically

determine how we expect nodes in the network to be ranked in outlierness. As an

example, we would not expect Node 4 to be an outlier in this network since it is cited

by four other nodes (the most citations in this network) and it cites two other nodes

(tied for the most in this network). We present the nodes we expect to be outliers for

this graph, and those we expect to not be outlier in this graph. Node 6 should have

the highest outlier rank since it cites only one other patent, and is not itself cited by

any patent. We expect Node 1 to have a low outlier rank since it is co-cited with Node

2 at level-0, level-1, and level-2, meaning the two patents are very similar, based on

graph structure. Also, we expect Node 2 to have a low outlier rank since it is most

co-cited throughout the PCN, indicating high similarity or relatedness to other nodes

in the network.
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Figure 4.15: Artificial dataset 3 - example patent citation network and graph-based
outlier ranking results for existing (left) and proposed (right) methods, where darker
shade indicates greater outlierness

4.5.5 Real-life patent citation network

For these results, we use our combined contributions to outlier ranking in patent

citation networks presented in earlier sections, and summarized in Equation 4.7 and

Figure 4.9. For this experiment, we take 150 patents as the nodes in the patent citation

network. In order to have a single connected tree structure to which to apply outlier

detection method, we select the patents that cite, either directly or indirectly, the most

cited patent from the original dataset, which is patent US-5349655. Note we included

one patent that was not connected to the rest of the network for experimental reasons.

Our patent citation network then consist of 150 nodes and 215 edges. Table 4.14

shows the top 5 outlier patents from the dataset based on our proposed contributions.

Additionally, top outliers are shown in red in Figure 4.16. Outlier nodes are correctly

characterized by their minimal connection to the rest of the network. Additionally,

outlier nodes are characterized by being minimally clustered in the subspace clustering

result.

Our approach identified patent US-6216183 as the top outlier. This patent concerns

securing information entered on an input device, which is coupled to a universal serial

bus (USB). The outlier rank is justified as this patent is actually not connect to the

rest of the network by a citation, and is used as a control for the real-life dataset.
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Table 4.14: Top five ranked outlier patents from the real-life PCN dataset

Outlier rank Patent Class codes
1 US-6216183 710/100; 711/163; 726/18
2 US-5930767 705/26.41; 705/27.2; 705/77
3 US-6026193 382/232; 348/473; 380/202; 386/E5.004; 704/E19.009; G9B/20.002
4 US-6038564 707/702; 707/966; 707/999.01; 707/999.2; 707/E17.032
5 US-6041412 726/3; 713/180; 713/186

A patent that is not connected to the rest of the dataset may indicate the entrance

of a technology from a new area. The second ranked outlier patent is US-5930767,

which concerns transaction methods, systems, and devices. This patent is found to be

an outlier because it contains only three subclasses in a single class, 705, indicating

that it is a narrow, specialized technology as compared to the other patents in the

patent dataset. The third ranked outlier patent is US-6026193, which relates to video

steganography. This patent has an unusual combination of class codes: 380, 382, and

386, which concern cryptography, image analysis, and motion video signal processing

for recording or reproducing, respectively. This is the only patent in this dataset to have

this combination of three class codes. The fourth ranked outlier patent is US-6038564,

which concerns a method and apparatus for integrating distributed information. This

patent contains five subclasses within class 707, again indicating that it is a specialized

technology. This patent deals with programs for ensuring data integrity that is stored

distributively in multiple processing devices. Finally, the fifth ranked outlier patent is

US-6041412, which deals with apparatus and method for providing access to secured

data or area. This patent is minimally connected to the PCN as it makes one citation,

and is not itself cited, thus its identification as an outlier.

4.6 Conclusion and future work

In this work we present a new subspace clustering algorithm and new node out-

lier ranking methods that leverage both node attribute data and graph structure data

found in attributed patent citation networks. The objective of this research is to de-

velop advanced methods for outlier ranking geared specifically towards patent citation
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Figure 4.16: Real-life patent citation network outlier ranking results using score function
that combines cluster-based and graph-based methods, where red nodes indicate patent
outliers
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networks. To this end, we presented patent outlier ranking methods based on citation

graph structure considering subspace clusters to which a node belongs and based on

graph structure, leveraging the multi-stage co-citation similarity measure and node cen-

trality. Additionally, we are able to distinguish the outlierness of nodes belonging to the

same cluster by considering the distance of a node to the center of the cluster to which

it belongs, which was a major drawback of existing subspace clustering approaches.

This work is significant since, to the best of our knowledge, it is the first measure

of its type developed specifically for patent citation networks, and the characteristics of

that type of data. Experimental results show our approaches outperform other state-of-

the-art approaches. It may be utilized for detection of outlier patents in patent citation

networks that may be extended for identification of technology opportunities. Although

we applied the approaches to patent citation networks, the developed methods may be

applied to other types of attributed graph data data where the attribute data is sparse,

and the co-citation relationship is meaningful.

One possible future work includes building on the subspace clustering-based models

to consider categorical data. In this work, we focused on numerical values for class code

attributes, but patent data also contains categorical data, which may further be lever-

aged to identify outliers. A second possible future work builds on graph-based models.

In the background section of this work, regarding graph-based outlier approaches, we re-

viewed works that identify outliers by finding patents that do not belong to any cluster.

As stated in [82], a challenge of this approach is often how to define the neighborhoods

based on network structure. We may leverage the co-citation similarity matrix that we

developed previously in order to help in defining the network structure. Rather than

simply using common neighbors, we may leverage the rich multi-stage co-citation based

similarity scores to construct an idea of a logical neighborhood. A third possible future

work is to rank outliers in a time-evolving PCN, rather than a static attributed PCN.

In this way, we can consider the the rate at which direct and indirect links are added.
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Chapter 5

Concluding Remarks and Future Research

5.1 Concluding remarks

In this dissertation, we have proposed and developed several methodologies for

patent influence measures, similarity measures, and outlier detection in patent citation

networks. In Chapter 2, we proposed a measure of patent influence that leverages the

powerful graph kernels. The new centrality measure is based on the change of the node

similarity matrix after leveraging graph kernels. The proposed approach provides a

more robust understanding of the identification of influential nodes, since it focuses on

graph structure information by considering direct and indirect patent citations. This

study leverages the concept that the change of similarity matrix that results from re-

moving a given node indicates the importance of the node within its network, since

each node makes a contribution to the similarity matrix among nodes. We calculate

the change of the similarity matrix norms for a given node after we calculate the sin-

gular values for the case of the existence and the case of nonexistence of that node

within in the network. Then, the node resulting in the largest change (i.e., decrease) in

the similarity matrix norm is considered to be the most influential node. We compare

the performance of our proposed approach with other widely-used centrality measures

using artificial data and real-life U.S. patent data. Experimental results show that our

proposed approach performs better than existing methods, and provides robustness

that existing approaches do not.

In Chapter 3, we moved from the analysis of citation to the analysis of co-citations,

and we proposed a similarity measure between patents in a patent citation network us-

ing only the graph structure. In the past, techniques such as text mining and keyword
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analysis have been applied for patent similarity calculation. The drawback of these ap-

proaches is that they depend on word choice and writing style of authors. In this work

we propose two new similarity measures for patents in a patent citation network using

only the patent citation network structure. The first proposed similarity measure uses

co-citation links. The second developed similarity measure uses bibliographic coupling

links. A challenge is when some patents are involved in a disproportionately large num-

ber of citations, thus are considered more similar to many other patents in the patent

citation network. To overcome this challenge, we develop a normalization technique to

account for the case where some pairs are ranked very similar to each other because

they both are cited by, or cite, many other patents. We validate our proposed similarity

measures using U.S. class codes for U.S. patents and the well-known Jacquard similarity

index. Experiments show that the proposed methods perform well when compared to

the Jaccard similarity index and considering Spearman correlation coe�cient.

In Chapter 4, we proposed methods for ranking outlier patents and patent citations

in a patent citation network. There is currently no work on patent citation network

anomaly detection that considers attributes in patent citation networks, in addition

to the citation network structure. Patent citation networks have the distinguishing

characteristic that each patent is given carefully assigned attributes, such as classifica-

tion codes at the time of the patent creation. We first develop a subspace clustering

algorithm to cluster patents. Then we propose patent outlier score functions. One

score function using the subspace clustering result, while the other score function uses

graph-based measures, including those developed in Chapter 3. Experiments using ar-

tificial datasets show that the proposed methods outperform existing approaches, when

applied to patent citation network data.

5.2 Future research

For patent influence measure research, potential future research opportunities in-

clude (1) considering assigning a weight of zero for indirect citations greater than some

length c, so that older patents do not have the advantage of having many long indirect
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citation paths that contribute to their influence score and (2) considering time infor-

mation of a patent to account for the rate of citations made (i.e., consider how the

citation network evolves with time).

For patent similarity measure research, a meaningful integration of co-citation and

bibliographic coupling similarity measures would be a possible extension.

Future studies on anomaly detection or patent outlier ranking are needed. One

possible future work includes building on the subspace clustering-based models to con-

sider categorical data. Additionally, little research has been done on validating the

results of anomalous or outlier patents. A meaningful line of research would be to de-

velop anomaly or outlier ranking validation methods, which are applicable to attributed

graphs. Moreover, we can extend methods to consider additional attribute data, such as

temporal data, in order to study the evolving patent citation network. Another future

work would be to apply outlier detection approaches to other types of attributed graph

data.
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Appendix A

Proof of Proposition 1

Let A be the n ⇥ n adjacency matrix where aij is 1 if node i cites node j, and 0

otherwise. We know that the sum of the squared singular values �ii is equal to the sum

of the squared values of the matrix, over all (i, j) pairs. The sum of squares of singular

values for A is the number of 1s in the adjacency matrix since A is a {0,1} matrix and

12 = 1 and 02 = 0, so we have:
n

X

i=1

(�ii)2 =
n

X

i=1

n
X

j=1

(aii)2

=
n

X

i=1

n
X

j=1 6=t

(aii)

= number of 1s in A.

This means that the di↵erence of sum of the squares of the singular values between

the case of the existence and the case of nonexistence of each node is:

p2(t) =
n

X

i=1

(�ii)2 �
n

X

i=1

(�(�t)
ii

)2

=
n

X

i=1

n
X
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n
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X
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(aii)2

=
n

X

i=1

n
X

j=1

(aii)�
n

X

i=1

n
X

j=1 6=t

(aii)

= number of 1s in row t

= out-degree of node t.

And we have shown that using RR SVC scores starting with just the adjacency

matrix, A, is equal to out-degree centrality score.
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Appendix B

Proof of Proposition 2

Recall that KV N =
1
P

k=0
↵kAk = (I � ↵A)�1 = I + A + A2 + A3 + . . .. Let ak

ij be the

aij element of Ak. Then,

e(t) = K�K(�t).

e(t)� 1 =
n

X

i=1

n
X

j=1

(aii)�
n

X

i=1

n
X

j=1 6=t

(aii)

= number of 1s in row t of A + A2 + A3 + . . .

= direct and indirect out-degree of node t.

where ak
ij is the aij element of Ak. And we have shown that one less than the centrality

score using the graph kernel-based SVC with von Neumann kernel and parameter ↵ = 1,

and using the entry-wise matrix norm, is equal to total number of paths of length 1 to

m, for each node in the network.
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