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ABSTRACT OF THE THESIS

Classifying Ground Terrain Using Multiview Methods

by ELIE ROSEN

Thesis Director: Dr. Kristin J. Dana

In this thesis, we acquire outdoor and indoor ground terrain photos at multiple viewing

angles in natural light as a means to discover fundamental differences between terrains

due to reflectance variation in natural illumination. Ground terrain affects robot con-

trol algorithms but little attention has been given to automatically determining the

ground terrain composition using vision-based recognition techniques. For example,

autonomous cars that can understand the presence of ice and wet road surfaces can au-

tomatically determine potential hazards, this in turn allows the car to adjust its driving

accordingly to keep passengers safe. We examine an existing classification method, Tex-

ton Boost, to set the basis for comparison to a new proposed method based on angular

gradient differential illumination histograms for automatically determining and classi-

fying ground terrain surfaces. A database of 50 ground covers, each imaged from 33

viewing angles including finely quantized angular directions for computing gradients,

was acquired by a mobile robot platform for this work. A selection of terrains in the

database include gravel, carpet, tile, snow, ice, pebbles, grass, leaves, concrete, and

asphalt. Multiple outdoor samples also include wet and dry varieties. The database of

1,650 ground terrain images is made publicly available for research use.
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Chapter 1

Introduction

In recent years there has been a steady increase of technical advances in autonomous

navigating robots, unmanned aerial vehicles, and self driving cars. A recent study on

self driving cars even proclaims that by the year 2030, about 20% of all vehicles on the

road will have full autonomous capabilities [54]. Currently these systems rely mostly

on physical measurement sensors such as LIDAR for detecting the location of roads,

obstacles, and intersections, and cameras for detecting road signs and lane markers on

pavement [38]. However, the largest problem facing wide-scale adoption of these vehicles

depends on the cars ability to drive safely in all driving conditions including more

common environmental conditions such as rain and less common but more dangerous

weather such as snow and ice [52]. In this thesis, we present methods for automatically

detecting and classifying ground terrains through image-based methods, we assert that

terrains can be classified on the basis of reflectance alone. An autonomous vehicle that

is aware of its local terrain can be integrated with better navigation algorithms to avoid

potential dangerous situations. Additionally, general mobile robotic devices including

indoor robots can benefit from knowing the terrain they traverse.

To facilitate this work, we require a large collection of sample terrains in a multitude

of settings including outdoors and indoors along with outdoor attributes of both wet

and dry surfaces. A novelty of this work includes removing the lab setting from sample

collection. Within a lab, too many characteristics of typical sampling procedures at-

tempt to control variables such as lighting, camera settings, and material quality such

as non-uniform or ideal surfaces that contain debris. These methods of collection are

too idealized and fail to give adequate representations of real materials in real world

environments. Examples of this can be found in [42, 51, 84] Instead, we have taken the
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lab outdoors or rather “into the wild” [16]. We designed a mobile robot platform for

collecting terrain samples in their natural environment and undisturbed from human

interaction. The robot in Figure 1.1 is our mobile lab. Here we work with non-ideal

lighting conditions that are determined by the time of year, time of day, and clarity of

the sky. By bringing the lab outdoors we are able to take samples of natural environ-

ment phenomena such as snow and ice, we also can examine differences in materials

affected by rain and small particle erosion as discussed later on in this chapter.

Figure 1.1: Mobile robot based sample collection platform

Material recognition through reflection is not new, there are many examples that

span the last decade of ground breaking work in this area [24, 26, 51, 39, 25, 44, 55].

Some work has been done in the space of classifying terrains through physical means by

measuring the friction experienced while navigating over terrain [80, 5, 76] however, the

classification of terrains and surfaces do not occur until after the robot has passed over

the terrain thus making this solution not possible for the use cases of safe autonomous
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navigation. While there are also many examples of terrain recognition out in the field

[102, 11, 45, 108, 14, 43], none explore the use of purely reflective and illumination

based methods. This work, examines the classification of ground terrains through only

image based methods.

To form our solution to this problem, we look at previous work specifically relating

to texture recognition with textons and texton histograms. Textons [51] are defined

as fundamental micro-structures that represent texture within an image. By placing

images through a filter bank, we can find clusters of texture features. A single cluster

of texture features defines a texton. In a given image we can define as few or as many

textons as we desire. Ultimately, the number of unique textons defined is a trade off

between how different textons are from each other or over-fitting the data which would

prevent the textons from being able to represent images with minor variations. A

collection of textons is referred to as a texton dictionary. Once textons are determined

across an image, we need to find an appropriate method for storing this information. In

Cula 2001 [18] textons are stored in n-dimensional histograms where n is the number

of textons represented. For a given image, each pixel is mapped to a texton to form

a texton map. The sum of a particular texton across an image is then added to its

representative bin in the histogram. Each histogram forms a fingerprint that uniquely

represents the texture within an image. That is, for a particular material, we can create

a material profile through a collection of histograms taken from multiple viewing angles

and levels of illumination [19]. Some work has previously been done in the space of

classifying materials without the need for a fixed viewpoint and illumination through

use of rotationally invariant filters to define the texton dictionary [92]. There is also

some work in the space of classification using only single images [94]. However, we can

build a more robust classification through use of multiple viewing angles.

One such method for classifying materials is Texton Boost [85], the authors imple-

ment a system for automatic detection, recognition, and segmentation of object classes

in photographs. Each segmentation in a photograph can then be classified to a material

or object. The initial purpose for Texton Boost is for multiple object scenes but we use

it to find dense clusters of similar texture across local samples of terrain materials. We
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use these results as an initial benchmark of performance and implement a similar but

novel method for classification using small angular gradient differential histograms. In

this method, we collect images of terrain samples and combine features of illumination

differences in photographs to build dense texton maps and weighted histograms based

on small changes in capture point location.

For this work, we introduce a new approach to classifying terrain through use of

small angular gradients between multiple viewpoints. We define angular gradients as

the combination of textons between two viewpoints separated by a differential angle

δ. This approach is unique compared to prior work that has been done based on large

changes in angular viewpoints evenly distributed across a hemisphere with respect to

the sample under test [40, 68, 71]. We find that these methods are too restrictive in that

they require coarsely quantized camera positioning to accurately represent materials.

Instead, in this work while also using a hemisphere image capture approach, we also

capture additional viewing angles that are separated by a small delta to form angular

gradient histogram pairs to build a more robust training set.

In combination with recent work such as [109], we are looking to explore the effects

of light reflectance on surfaces that are not guaranteed to be homogenous in nature.

Some examples of this include concrete with stones and snow that is mixed with road

debris. We also examine terrains from a macro perspective to extract texture that

defines overall physical properties of terrains.

This thesis is organized as follows, Chapter 1 motivates real world situations and

examples for meaningful applications to this work. It also provides insights to current

work in the field of material recognition and background knowledge to the effects of

reflectance based illumination on materials. Chapter 2 provides details on the physical

design of a mobile robot platform for acquiring ground terrain samples out of the lab

and in the wild with all of the requirements and characteristics required to build a

ground terrain sample database. Chapter 3 brings the individual components discussed

in Chapter 2 all together to integrate into a full robotics platform that can automati-

cally take samples and navigate. Chapter 4 discusses the intricacies of imaging samples

of materials without the controlled environment of a lab to form a database of real
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world terrain samples in their natural environment. This process includes a strate-

gically planned positioning, posing, and sequential action sequence to coordinate the

collection of samples at a terrain location. Chapter 5 discusses methods for automat-

ically determining terrains. Chapter 6 discusses the results of these findings. Finally,

in Chapter 7 we provide conclusion to this work and comment on the success of these

methods and the future of work in this area of research.

1.1 Background

This research attempts to address two issues facing modern recognition of terrain sur-

faces. That is, the field of autonomous navigation lacks a proper collection of ground

terrain samples of surfaces that can look very different depending on outdoor envi-

ronmental conditions including weather and lighting. It also provides a classification

method based on illumination.

Consider for example the same material imaged in two separate environments, in

Figure 1.2a-d we see a normal sample of concrete exposed only to natural sunlight. The

concrete contains many small stones; however they blend together to form a terrain that

is uniform in depth and fairly consistent in color due to evenly distributed dirt particles.

Now examine Figure 1.2e-h; here we see the same composition of concrete however it

is saturated with natural rain. The rain removes many of the surface dirt particles

and causes the rocks to stand out and have sharper edges, you can also see additional

artifacts of light reflection on many of the edges. Overall this sample can look drastically

different under different conditions.

To further motivate the problem, take for example a series of indoor terrains as

shown in Figure 1.3, here we see three different types of carpet illuminated by fluorescent

lighting. We can see vast differences in texture and crevices where light is reflected.

Terrain images from outdoor environments tend to have less similarities. Take for

example samples of dirt, grass, and pavement in Figure 1.4. Here we see three textures

that while can be located close to each other spatially have textures that reflect light

very differently.
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Figure 1.2: Comparison between dry and wet images of concrete captured in natural
light. Wet concrete has reflective properties that are not present in dry concrete.

A very interesting part of this work is the examination of cold weather based phe-

nomena such as snow, ice, and partially melted snow/ice mixtures as shown in Figure

1.5. Snow is a very clear uniform white but also contains many specularities throughout

the sample, this feature is unique only to snow within the completed set of samples.

Ice is also interesting since it behaves almost like a mirrored surface. Melted snow is

very opaque in nature and tends to absorb light which causes it to appear darker and

is less reflective. These samples provide a very interesting application to the classifi-

cation process since they can all occur within local area each with their own physical

properties which would affect navigation on top of these terrains.
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(a) Woven pattern carpet (b) Black thick carpet (c) Soft gray carpet

Figure 1.3: Comparison of different types of carpet textures and materials

(a) Dirt (b) Grass (c) Pavement

Figure 1.4: Comparison of common outdoor terrains

(a) Snow (b) Water saturated snow (c) Ice

Figure 1.5: Comparison of cold weather related terrains
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Chapter 2

System Design

In order to facilitate the collection of high resolution terrain samples, we require a robust

robot and vision system to acquire images of terrains in a coordinated and consistent

manner. To accomplish this task we use a small but rugged mobile robot with a robotic

arm that is used for manipulating a machine vision camera around a terrain sample. In

addition to the manipulation requirements, special attention must be made to the lens

specification process to ensure a maximum field of view for a limited working distance.

In this chapter we summarize the criteria of selection of the mobile robot, robotic arm,

and camera with discussions on how each component meets the required constraints for

the overall system.

2.1 Pioneer 3-AT Mobile Robot

The Pioneer 3-AT Mobile Robot serves as a platform for supporting equipment to

a desired location for an image sample. Within its metal frame, three 12 volt lead

acid batteries supply power to itself, the 7 degree of freedom Cyton Gamma 300 Arm,

and a wireless networking adapter. A more detailed overview of the power distribution

network can be seen in Figure 2.2. The robot drives its all-terrain wheels through a dual

internal tread network each connected to two motors accompanied by high-resolution

shaft encoders for tracking distance traveled. The robot uses skid-steering which means

the wheels on a particular side operate synchronously together but independent from

the other side. Full specifications for the robot can be found in Table 2.1.

The robot is manipulated over a wireless network from a remote laptop running

control software. The commands are then transported through a RS232 serial bus to

the on-board microcontroller running ARCOS firmware. Various commands can be sent
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Figure 2.1: Pioneer 3-AT Mobile Robot

to the robot for teleoperation such as which direction to move and to stop. In return,

the robot provides data on how fast the robot is moving, the current mode of operation,

and an estimation of how far the robot has moved away from its origin location.

2.2 Cyton Gamma 300 Robot Arm

The robotic arm manipulator (Figure 2.4 attached to the front top of the Pioneer Mobile

Robot), is a key component to the collection of ground terrain samples. The arm has

seven servo motors defined as:

• Shoulder Roll: This is the lower most servo and controls the arms rotation with

respect to the base, this allows the arm to move 300◦ in front of the robot.

• Shoulder Pitch: Right above the roll servo, the pitch servo is used for lowering

and rising the arm, this manipulation has the greatest effect on the final height

of the arm.

• Elbow Roll: Half way up the arm, this roll servo allows the arm to begin manip-

ulating into complex forms.
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Figure 2.2: Mobile robot power distribution diagram

• Elbow Pitch: After the roll servo, the pitch can be adjusted to moved inwards or

outwards.

• Wrist Pitch: this servo controls the pitch orientation of the gripper.

• Wrist Roll: The final orientation of the gripper is set by this servo.

• Wrist Yaw: This servo controls the gripper and causes the gripper to compress or

contract.

The combination of each servo angle forms a single kinematic equation for finding

X,Y,Z coordinates of the gripper head. The included software and API can also solve

for the inverse kinematics of the system. That is, given an XYZ of the gripper location

what are the necessary servo angles for reaching this position. Figure 2.3 shows how

power is distributed to the arm.

Figure 2.3: Cyton Gamma 300 servo power distribution
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Attached to the gripper is a Basler Ace Area Scan camera, details of the camera

can be found in Section 2.3. The grippers orientation is locked to always maintain its

direction to a point on the ground six inches in front of the robot. This requires a

coordinate frame transformation as described in Section 3.3. Full specifications of the

arm can be found in Table 2.2.

Figure 2.4: Cyton Gamma 300 Robot Arm

2.3 Basler Ace Area Scan Camera

The camera of choice for this work is the Basler Ace acA2040-90uc; this camera is suited

well due to its high resolution and global shutter. Basler also has a comprehensive API
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for interfacing with the camera to easily adjust features such as exposure and white

balance. Full specifications can be found in Table 2.3.

Figure 2.5: Basler Ace acA2040-90uc

2.3.1 Lens selection methodology

Choosing a lens for the Basler Camera required careful considerations to the intended

use. The lens must meet a few criteria as limited by the design of the entire robot

system:

• The maximum reach of the arm which affects the maximum angle that can be

reached

• The arm can only support up to a 300 g payload

• The arm distance to the sample area

Based on the criteria given, a single focus lens was better suited for this design. The

was due to the nature of lenses that support multiple focal points containing additional

lenses which would bring the payload size to greater than 300g. To determine the

appropriate focal length, we used the following equation,

1

f
=

1

do
+

1

di
, (2.1)

where f is the focal length, do is the distance of the object to the camera sensor, and di

is the distance of the lens to the object. From this proportionality, we determined that

the smallest available focal length would provide us with the greatest working area.
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We chose a focal length of 25 mm and its specifications are described in more detail in

Table 2.4.

Figure 2.6: TechSpec 25mm Camera Lens

2.4 Software and Central Processing

To accommodate the communication and processing needs of each component, a laptop

is used to interconnect all of the devices. The laptop needs to run separate programs

for controlling each component of the robot. The robots movement is controlled by

a teleoperation program for sending velocity commands to the motors. In order to

connect to the robot, a mobile cellphone based WIFI hotspot is used to host the robot

and the laptop on the same network. The arm connects to the laptop over USB2.0

and has a graphical user interface for manipulating the arm. Finally, the camera is

controlled through a custom script that is ran through the arm software API. This

script is provided in Appendix B.
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Table 2.1: Specifications of the Pioneer 3-AT Mobile Robot [2]

Construction Body: 1.6 mm aluminum (powder-coated)

Tires: Reinforced Pneumatic

Operation Robot Weight: 12 kg

Operating Payload:

Tile/floor – 12 kg

Grass/dirt – 10 kg

Asphalt – 5 kg

Skid Steering Drive Turn Radius: 0 cm

Swing Radius: 34 cm

Max. Forward/Backward Speed: 0.7 m/s

Rotation Speed: 140◦/s

Max. Traversable Step: 10 cm

Max. Traversable Gap: 15 cm

Max. Traversable Grade: 35%

Traversable Terrain: Asphalt, flooring, sand, and dirt.

Batteries Run Time: 2-4 hours w/3 batteries

Supports up to 3 at a time

Capacity: 7.2 Ah (each)

Chemistry: lead acid

Hot-swappable Batteries: Yes

User Control Panel MIDI programmable piezo buzzer

Main power indicator

Battery charge indicator

2 AUX power switches

System reset

Motor enable push button



15

Table 2.2: Specifications of the Cyton Gamma 300 Arm [77]

Axis Range Total 7 independent axes

Shoulder Roll (Spin): 300◦

Shoulder Pitch (Articulate): 210◦

Elbow Roll (Spin): 300◦

Elbow Pitch (Articulate): 210◦

Wrist Yaw (Articulate): 210◦

Wrist Pitch (Articulate): 210◦

Wrist Roll (Spin): 300◦

Mechanical Total weight: 1.2Kg

Payload at full reach: 300g

Payload at mid reach: 350g

Arm length : 53.4cm (base to tip)

Reach: 48cm

Maximum linear arm speed: 20 cm/sec

Maximum speed (free move): 100 cm/sec

Maximum joint speed 30 rpm

Repeatability +/-0.5mm

Gripper: 2 parallel fingers, Maximum opening: 3.5cm

Electrical Battery supply: 12V DC 2A
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Table 2.3: Specifications of the Basler Ace Area Scan Camera [8]

Resolution 2048 px x 2048 px

Pixel Size horizontal/vertical 5.5 m x 5.5 m

Frame Rate 90 fps

Interface USB 3.0

Video Output Format Mono 8, Bayer BG 8, Bayer BG 12, Bayer BG 12p

Pixel Bit Depth 10, 12 bits

Lens Mount C-mount

Digital Input 1

Digital Output 1

General Purpose I/O 2

Power Consumption (typical) 2.6 W

Weight 80 g

Sensor Technology Progressive Scan CMOS, global shutter

Max. Image Circle 1 inch

Sensor Size 11.26 mm x 11.26 mm

Table 2.4: Specifications of the TechSpec High Resolution Lens

Focal Length FL (mm) 25

Maximum Camera Sensor Format 1”

Field of View, 1” Sensor (◦) 104 mm – 35◦

Working Distance (mm) 150 – ∞
Aperture (f/#) f/1.8 – f/22

Numerical Aperture NA, Object Side 0.031

Distortion (%) < −2.0

Number of Elements (Groups) 7 (6)

Coating MgF2

Coating Specification 1
4λMgF2 @ 550nm

Outer Diameter (mm) 37.5

Length (mm) 45.3

Mount C-Mount

Weight (g) 113
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Chapter 3

Computer Vision and Robot Integration

As described in the previous chapter, the complete robot consists of:

• Pioneer 3-AT Mobile Robot

• Cyton Gamma 300 7 DoF Robotic Arm

• Basler Ace acA2040-90uc

The complete design as shown in Figure 3.1 was strategically put together in order to

meet the objectives of this research. As a result, the final robot design and integra-

tion came to be through many design iterations and careful planning. This chapter

describes the design considerations implemented for putting the pieces together, the

communication networks and buses required for all the pieces to work together, and

finally a robot coordinate frame designed for taking sample images with respect to the

world.

3.1 Design Considerations

Below we list and describe the limitations and criteria for assembling and integrating

the mobile robot platform.

• Arm mount - We mount the arm on the top of the mobile robot. This required

an additional steel mounting plate to support the weight of the arm when facing

in front of the robot.

• Payload weight - The arm can only support a maximum of 300 g, this is also not

guaranteed for every possible position. To account for this, the camera and lens

were chosen such that they only weigh 203 g.
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Figure 3.1: Complete robot system design

• Maximum arm reach - In order to increase the size of the sample area, we itera-

tively adjusted the working distance to allow for a large sample area that could

fit 33 sample points.

• Power - With the three 7.2 Ah batteries, the robot can run continuously for 2.5

- 3 hours. The laptop controlling the robot and additional components only has

enough battery power to last 2 hours so this was the limiting factor to sample

collection

• Communication - While the robot can communicate over WIFI, the camera and

arm required a wired connection. This made it necessary to use an additional

push cart to keep the laptop close to the robot. Wire management was also
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important to make sure that the arm would not get tangled with the camera

wire. To account for this, the camera cable was held over the arm during sample

collection process.

3.2 Communication

All the components of the robot communicate through a multitude of buses for trans-

porting and receiving data. In order to coordinate the data transmission, a laptop

computer is used as a central host. Figure 3.2 shows the communication channels em-

ployed in this design. One can see that this system utilizes the following communication

protocols:

• RS232 Serial

• USB 3.0

• USB 2.0

• IEEE 802.11 WIFI

3.3 System Coordinate Frame

By default the Cyton Gamma 300 arm moves with respect to its own internal coordinate

frame set at the center of the manipulator base. Let this point be known as the origin

or O = (0, 0, 0), ux represents a unit vector in the x direction, uy represents a unit

vector in the y direction, and uz represents a unit vector in the z direction. Using this

notation, a 3D point pa = (xa, ya, za) can be found for this coordinate frame

p = O + xaux + yauy + zauz. (3.1)

However, the base of the arm is not typically the camera’s view. Instead the co-

ordinate frame must be translated such that the center of interest or the new origin

becomes the location of terrain sampling. With the coordinate frame centered at the
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Figure 3.2: Mobile robot network design

surface point of interest, a uniform sampling across a hemisphere can be expressed with

respect to the sample area. This translation can be represented as

pb = (xb, yb, zb) =



1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1





xa

ya

za

1


=



xa + ∆x

ya + ∆y

za + ∆z

1


(3.2)

where ∆x represents the coordinate frame translation in the x direction, ∆y represents

the coordinate frame translation in the y direction, and ∆z represents the coordinate
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frame translation in the z direction. For this robot it was measured that the sample

area is located 0 mm in the x direction, positive 190.5 mm in the y direction, and

negative 279.4 mm in the z direction. This places the sample area positive 127 mm

along the y coordinate frame of the robot and level with the ground as shown in Figure

3.3. These measurements account for the arm placement that is offset from the edge of

the Pioneer robot. The new sample coordinate frame does not require a rotation since

the original arm coordinate frame matched our needs.

3.3.1 Maximum sample area

In Section 2.3.1 the criteria for selecting a camera lens was carefully laid out as a

function of characteristics designed to work with the overall system design. This sets

the stage ultimately for mathematically finding the largest possible sample area given

the constraints of the system. For this work, the sample area is defined as a square

bounding area that is centered around a fixed point that is found in Section 3.3.

Figure 3.4 shows the maximum reach the arm is capable of as enclosed in red.

Beyond the red area, the arm cannot extend any further and therefore limits the overall

sample area.

The sample area FOV = X2 where X is the length of one side of the sample area,

can be found as a function of focal length f of the camera lens, the working distance

Wd to the sample area, and the size of the CCD sensor SCCD

FOV =
SCCD ×Wd

f
. (3.3)

Figure 3.5 shows this relationship between the camera and sample area. SCCD is known

from Table 2.3, Wd was measured to be 304.8 mm, and the focal length f was determined

from the lens selection criteria in Section 2.3.1. This gives a FOV of 127x127 mm.

3.3.2 Smallest feature size

Now that we know the field of view, we can then calculate the smallest feature size that

the camera can capture. Using the following equation,
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SmallestFeature =
2× FOV

ImageResolution
(3.4)

we discover that the smallest feature size is 60.8 µm per pixel. This information is

useful for representing the amount of terrain data contained per image.
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Figure 3.3: Coordinate frame transformation from arm coordinate frame to sample area
coordinate frame. The sample area origin is denoted as a small sphere.
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Figure 3.4: Maximum arm reach for a radius of 304.8 mm from sample area. Red
borders show the furthest points the robotic arm can reach forming a partial hemisphere
of coverage over a sample.



25

Figure 3.5: Field of view as a result of camera working distance
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Chapter 4

Ground Terrain Database

In this chapter we describe the pipeline for collecting a sample. We start by determining

a series of point locations for image capture, at each location a pose must be set to orient

the camera with the sample, and finally a manipulation action sequence is designed

to bring the robotic arm to each point successively and collect images. Figure 4.1

describes this process. We also examine the efficiency of the procedure and the storage

requirements for collecting 50 samples.

The sample data set includes a multitude of terrains located in common outdoor

and indoor environments including: carpet, tile, street paint, brick, concrete, gravel,

dirt, mulch, pavement, metal, grass, ice, slush, snow, rocks, rubber mat, sand, and

wood. Some of the outdoor surfaces are also collected in two forms of environmental

conditions including wet and dry: concrete, pavement, mulch, and metal. A complete

list of these samples can be found in Appendix D.

4.1 Capture Point locations

The location of each capture point was determined from the limitations of the Cyton

Gamma robot arm ability to reach around a sample as discussed in Section 3.3.1. It was

determined that there should be an arch of points along a center axis spanning from

45◦ to -45◦ in the x axis. On the arc 7 evenly spaced points were chosen each separated

by 15◦ these points form the basis of the image sample collection and are referred

to as point1 1 to point7 1 from positive x to negative x respectively. Furthermore,

4 additional corner locations were chosen to provide angles which would encounter a

greater difference of environmental lighting effects from the arch. These points are

referred to as point8 1 which is located 30◦ up and 20◦ back from point6 1, point9 1
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Figure 4.1: The process of taking samples follows this pipeline, positions are loaded,
poses are set, and finally a manipulation action sequence occurs. This repeats for every
sample.

which is located in located 30◦ up and 20◦ forward from point6 1, as well as point10 1

and point11 1 which are on opposite corners. Figure 4.2 denotes these points in yellow.

We define these positions as fundamental measurement points.

4.1.1 Small angular changes for gradient computation

At every fundamental measurement (r, θ, φ) point, we have also measured two different

angles (r, θ + δ, φ) and (r, θ − δ, φ) with δ = 5◦ to examine the properties of small

angular changes on illumination differences in samples. The first set of angles is denoted

by purple and are post fixed with 2 Figure 4.2. The second set of angles is denoted in

green and are post fixed with 3 in Figure 4.2. In total there are 33 collection points.

4.2 Camera Pose

For each of the 33 points, an arm pose is selected such that the arm is able to manipulate

to the desired position and orient the camera towards a sample. Figure 4.3 demonstrates
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Figure 4.2: Top down view of capture point locations

one such pose, here the arm is oriented in the negative x direction with a 5◦ pitch to

prevent the arm from hitting a joint movement limit. The gripper is parallel to the

sample at point4 1 since it is located directly above the sample. A complete listing of

all points and poses can be found in Appendix A.

4.3 Manipulation Action Sequence

After determine the positions and poses, a manipulation action sequence was made to

drive the robot arm and camera to each position. An action sequence is defined as the
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Figure 4.3: Arm placed in position point4 1

paths the robot arm takes to settle into each fixed position. The arm moves to each

point starting at point1 1 and then proceeds to point1 2 and point1 3 it continues this

until it reaches point11 3. At each point the software is paused to allow for an image to

be taken. The arm is not intelligent to form paths that would prevent it from colliding

with itself or reaching joint movement maximums. As a result, a path was determined

for certain points through a combination of waypoints that is, in order to reach a point

the arm must manipulate to one or more additional locations first before it can get to

the targeted point. One such example of this is shown in Figure 4.4, here the arm is

unable to reach point3 1 since the manipulation from point2 3 will cause a collision on

itself as shown in Figure 4.5 Therefore by extending the arm away from the targeted

point and instructing it to come back from the extension, the arm is now able to reach
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the desired location without issue.

Figure 4.4: Sequence of arm movement from point2 3 to point3 1 by waypoint point9 1

4.4 Collection of Samples

Now that we have established a consistent and repeatable method for collecting samples,

it is best to address the process for manipulating the robot and collection samples out

in the wild. Figure 4.6 shows the mobile robot at a sample location, the arm is standing

by waiting to be given the signal to collect images, a laptop on a pushcart acts as a

central command center for controlling the robot, arm, and camera.

4.4.1 Camera gain, white balance, and exposure

Before collecting a sample, a simple initialization routine is preformed to find an optimal

gain, white balance, and exposure setting. Algorithm 1 gives a general outline for the

process. First the arm is moved to point4 1 which is located directly above the sample,

then the camera grabs a series of images and readjusts the parameters until they meet a

threshold that the camera software determines to be desirable. Once the value is found,

the camera stores this value for the entire duration of a single sample taking period.
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Figure 4.5: Example of arm movement failure moving from point2 3 to point3 1

We keep a record of these values in a text file that accompanies each sample.

while (gain/whitebalance/exposure)! = AutoCalc Off do

Grab a new image;

++n;

if n > 100 then

throw error (”Unable to find suitable value” );

end

end

Algorithm 1: Process for setting gain, white balance, and exposure values
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Figure 4.6: Robot setup to capture a ground terrain sample outdoors

4.4.2 Digital storage requirements

Images are captured as an 8 bit bitmap, this means that for each pixel there are 8 bits

or 1 byte of color data for the values of red, green, and blue. As a result images are

always non compressed and contain exactly the same amount of data per photo. Each

photo is 2040x2046 pixels, therefore by using this equation:

ImageSize(MB) =
3 ·W ·H

106
(4.1)

we can solve for a single image storage requirement. Therefore, each image uncom-

pressed requires 12.52 MB of digital storage space.

One can see how quickly the storage requirements grows with each sample of 33

images,

SampleSize(MB) = ImageSize · I (4.2)

where I is the number of images per sample. This comes out to 413.16 MB per
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complete sample. Therefore the entire ground terrain database size is,

DatabaseSize(MB) = SampleSize ·N (4.3)

where N is the number of samples in the database. This comes out to 20,658 MB

or 20.66 GB required to store the entire database uncompressed. These 50 samples

contain 1,650 individual images in total.
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Chapter 5

Classifying Ground Terrain Surfaces

In this chapter, we discuss in detail both Texton Boost and Angular Gradient Dif-

ferential Histogram Classification for the purpose of classifying a multitude of ground

terrain surfaces. Both methods follow a similar means for initial training but diverge in

classification and recognition. Both methods rely on k-means based texton dictionaries

and dense per-pixel texton mappings of images. The general summary for this method

is described below and in more detail in the following sections:

Training

1. Initial K-means training

(a) Take a selection of 4 images from each sample providing 200 total sample

images

(b) Run the images through a 19×19 filter bank containing

(c) Create a collection of subsampled pixels selecting 1,000 random pixels per

filtered image

(d) Preform K-means clustering to locate 100 centroids

2. Texton histogram training

(a) Calculate a dense Euclidean distance to each centroid per each training image

(b) Sort distances in ascending order

(c) Weight the top eight closest distances

(d) Create a histogram based on softbins for each training image

Classification
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1. Filter all the images

2. Create texton histograms for every image in the database

3. Find the distance between each histogram from the training data

4. Sort the distances, the closest distance is its label

Figure 5.1: High level overview of terrain classification process

5.1 Image Preprocessing

In order to process these images in any reasonable amount of time, each image is

preprocessed in the following ways. first, each image is re-sized using downsampling

and anti-aliasing to 1
4 of the original image size (500×500 pixels). Second, the images

are averaged and converted to grayscale. Neglecting the RGB color channels for these

images is an important criteria in this process since the targeted area of interest lies

with changes in illumination between viewing angles which does not require color. These

steps greatly reduce individual file size to become a more reasonable 245 KB.

5.2 K-means based Texton Learning

We use k-means to create 100 clusters or textons that form the basis of a texton dictio-

nary to be used for mapping later on. a In order to map each pixel to a representative

texton label, we first filter the images against a 19×19 convolutional filter bank to ex-

tract edge features and gradients from within the images. We then subsample 1,000

pixels from each filter response to create our training set for k-means. Finally a texton
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dictionary is created by running k-means clustering on the collection of all of the sub-

sampled pixels. Figure 5.2 shows the process of converting from one training image to

the texton dictionary.

Figure 5.2: Process for converting training images to texton dictionary

5.3 Dense Texton Mapping

The second part of training involves running the same 200 training images through

a texton mapping scheme. Using the same filter bank responses, we calculate the

Euclidean distance of each pixel against each of the 100 textons using the following

equation,

di(pixel) = (R(pixel)− ti)T (R(pixel)− ti), (5.1)

where di(pixel) is the distance between the pixel response and the ith texton; R(pixel) is

the 15×1 response vector at the current pixel, ti is the 15×1 response vector associated

with texton ti. The collection of these calculation is a vector with 100 distances for

each pixel. Figure 5.4 shows a collection of dense texton maps, here one can see how

edges and grooves in terrains tend to classify similarly. The results of terrains with

depth based features provide the most interesting responses, grass, gravel, and carpet

can clearly be seen through the texton mapping while dry concrete and pavement are

difficult to distinguish.



37

Figure 5.3: Process for converting training images to dense texton maps

Figure 5.4: Select results from the texton map training

5.4 Texton Boost

This method iteratively builds a strong classifier as a sum of weak classifiers, to select

discriminative features. The set of weak classifiers forms a decision stump that is then

thresholded to provide a threshold feature response [85, 91]. The response is then put

into a set of shared feature classes to form a single feature that can classify multiple

classes at the same time. This becomes a learned strong classifier that comes from the

addition of weak classifiers.
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5.5 Weighted Histograms

We used a method of weighted histograms over traditional histograms to account for

close similarities between textons. If this was done with a regular histogram we would

just take a texton map and count each cluster occurrence and place them into 100 bins

each representing a single texton. Instead, we weight the eight closest distances using

the following equation,

softbin(i) = 1− d(i)
8∑

i=1
d(i)

. (5.2)

Each bin in the histogram is now the sum of weighted occurrences. We call this a

weighted softbin histogram. Figure 5.5 shows a selection of softbin weighted histograms.

Figure 5.5: Weighted histograms for multiple ground terrains

We preform this step across every image both for training and testing. The collection

of training image softbin histograms form the working data set for classification.

5.6 Classification

Now that we have trained the system through k-means, texton mapping, and weighted

softbin histograms, we can begin to classify outdoor surfaces. Experiments were deter-

mined to best utilize the trained data. Here we pick three such methods for classifi-

cation. Each is a trade off between robustness of classification and additional sample
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requirements. We also utilize multiple histogram distance metrics to fine tune the

classification.

5.6.1 Single Angle Histograms

As a preliminary course of action, we examined the success of correctly classifying

terrains through single angle histograms. The texton histogram for each angle was

compared against a training set consisting of all the texton histograms from all of the

images collected. This provides a benchmark for the remaining experiments. To prevent

training/testing overlap, we have split each image in half to reserve the right side images

for training and left side images for testing.

5.6.2 Eleven Angular Gradient Histograms

From the 33 images taken per sample, 11 of which are considered to be fundamental

points. Using these points, we adjust the terrain dictionary to now contain histograms

as the combination of 11 angles through averaging. We then find the distance between

all 11 histograms to 11 new histograms for testing. We expect that this method will

have a very high classification rate due to the number of angles required but ultimately

the goal of this work is to achieve a high recognition rate using as few angles as possible.

5.6.3 Pair-wise Angular Gradient Histograms

Following a similar method as with the eleven angular gradient histograms, instead we

now take a pair of capture angles with a small delta between them. Using a single pair

consisting of a fundamental angle and a delta angle we build one training histogram

through different combination methods including; subtraction, averaging, and taking

the bin minimum. After iterating over all images to build a terrain dictionary we then

classify terrains through both Euclidean distance and histogram intersection.
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Chapter 6

Results

In this chapter, we examine the performance of the methods outlined in Chapter 5. We

explore the performance of Texton Boost and compare the results to Angular Gradient

Differential Histograms. Lastly, we explore the precision and accuracy of these methods

and discuss conditions for optimal system performance. Appendix D contains a list of

samples and their respective numeric and written labels.

6.1 Angular Gradient Differential Histogram Classification

6.1.1 Eleven angle histograms

When classifying terrains from all eleven fundamental angles, we find the system to be

able to correctly recognize all terrains at a rate of 98%. However, this is not a fair

representation of the data due overlap in the training and testing data. Figure 6.1

shows a graphical representation of the confusion matrix. Here the axis represent the

label number and the diagonal of the matrix represents instances of a training point

correctly matching a testing class. The only material to not be correctly classified to

its sample was terrain number 20 (grass) to sample 22 (grass3). In total there is only

as many testing points as there are samples. To preform a more robust analysis of this

method, we would need significantly more samples.

6.1.2 Single angle histograms

Lets now begin to challenge the system. By examining single angle histograms, we

compare an image from all available angles against a training set that is comprised of

the histograms of all possible angles. Here we see in Figure 6.2 an overall recognition



41

Figure 6.1: Confusion matrix for eleven angle histogram classification. Overall recog-
nition rate is 98%

rate of 88.42% when the training set contains 1,650 histograms. The confusion for this

method mostly stems from dry and wet terrains, with an overall good recognition across

unique terrains.

6.1.3 Pairwise angle histograms

After examining both eleven and pairwise angular histogram methods, lets now exam-

ine the success of classifying terrains through a combination of angle pairs. For each

experiment, we vary the method of histogram combination and classification metric. To

combine pairs of histograms we analyze the performance of subtracting, averaging, and

taking the minimum bin between the pair histograms. For classification we examine

the case of using Euclidean distance and histogram intersection [12]. The histogram

intersection provides a percentage of how closely related the sample under test is to a
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Figure 6.2: Confusion matrix for single angle histogram classification. Overall recogni-
tion rate is 88.42%

pair in the set of training pairs.

In Table 6.1, we examine the recognition rate across the three possible combinations

of pairs of angles. That is, we examine the success of a fundamental angle paired with

the first delta, a fundamental paired with its second delta, and the combination of both

delta angles. We also compare the recognition rate of single angle histograms but with

the same reduced training set which comes as a consequence of the pairwise training

process. It is important to note that for single angle histograms, the recognition rate

is slightly smaller (a reduction of 2%). This is due to a reduction in training points

of 2
3 or 1,100 less training points for comparison. We also not that variations between

pair angles used for training slightly effect the recognition rate. As such, we find that

pairing angles 1 with 2 provides the highest rate of recognition.

Next, we look at Table 6.2 to see which combinational method provides the best
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Table 6.1: Recognition rates for different combinations of pairwise angle histogram
classification (mean only)

1 1 and 2 1 and 3 2 and 3

86.18% 89.45% 87.45% 88.55%

recognition rate. Surprisingly we find that subtracting angle histograms provides a

very poor result. After further review, we find that this is due to a loss of almost all

terrain texture information embedded within the histograms. For example, an image of

a terrain and an image of the same terrain but captured at a slightly adjusted angle, will

contain almost exactly the same texton information where instead the only differences

in composition will be as a result of differences in light reflection. Overall, across

most terrains, the resulting histogram will contain too little distinguishing features to

accurately classify these terrains correctly. However, Looking at the average bin values

between terrain histograms provides the best results. Likewise, with the results of

the subtraction example we find that the knowledge of the natural lights effects on

viewing angle has an important effect to the overall recognition. By taking the average

between histograms bins, we find that we are not changing the texture composition of a

terrain, but rather, we are now incorporating information about natural light from these

viewing angles which is therefore causing the training data to become less invariant due

to the effects of natural illumination and provides a much better recognition. We also

anticipate, that more training data would also further improve this result.

Table 6.2: Recognition rates for multiple methods of pairwise angle histogram classifi-
cation

Subtraction Average Min

Euclidean Distance 20.73% 86.91% 85.82%

Histogram Intersection 11.45% 89.45% 82.36%

Lastly, in Figure 6.3 we find that the confusion of this method is overall much better

as compared to single angle histograms. We find that this comes from this methods

ability to better classify both wet and dry terrains although still not perfectly.
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Figure 6.3: Confusion matrix for pairwise angle histogram classification. Overall recog-
nition rate is 89.45%.

6.2 Texton Boost Performance

We also further compare our method to Texton Boost. Using the images of single

angles, we show the results of this method in Figure 6.4. We find that overall, the

algorithm is able to correctly classify a given terrain 83.68% of the time. In particular,

the algorithm tends to confuse terrains such as wood with carpet and sand with dry

concrete. Overall, this method does not work as well with our set of data. We find

that this is mostly a factor of the composition of the data including very similar images

of terrains only adjusted by viewing angle and direction. The algorithm attempts to

create segments from these images however the homogenous nature of many of these

samples makes it difficult to find significant areas of interest that would be used to

further make correct classifications.
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Figure 6.4: Confusion matrix of Texton Boost performance in image form, overall
recognition rate of 34 unique terrains is 83.68%

6.3 Discussion

Overall, the recognition for both single and pairs of angles is very good. We find that

that the recognition for single angles is much larger when a significantly larger training

set is used. When constraining the single image classification to a smaller training set,

we find that the pairwise angle classification preforms significantly better. In Figure

6.5 we see that overall in the case of pairwise recognition we achieve 100% recognition

across more samples than with single angle histograms.

Particular interest to this work is to instances for where we are unable to correctly

classify a terrain. For example, ice, has an overall recognition rate of 27%. When

looking at Figure 6.3, we can see that ice (label 24) is most often incorrectly recognized

as slush or a mixture of ice and snow (label 32). Figure 6.6 investigates the similarities

of these terrains by examining their texton maps, here we see that the two terrains
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Figure 6.5: Comparison of 100% sample recognition between single angle and pair-
wise classification. Single angle has 15 instances of 100% recognition, pairwise has 24
instances of 100% recognition.

contain very few textons in general and many of them are the same. However, for

this particular example and for the overall application target for this work, one would

generally combine autonomous navigation profiles to act similarly for both snow and

mixtures of snow and ice.

Figure 6.6: Texton histograms for ice and snow/ice mixture terrains
(histogram intersection = 95%). The histogram for sand is also added to pro-
vide further comparison to an additional sample.

Lastly, we also compare the recognition of wet surfaces against dry. We find that the

overall recognition rate for wet/dry surfaces is 86.30%. Figure 6.8 shows histograms for

a few of the wet and dry terrains, note how many of the histograms are very similar with

respect to certain textons, however we also see that the primary fundamental textons

that describe the terrain remain the same while the occurrence of these textons is less.

We examine the likeness between the wet and dry terrains in Table 6.3 by exploring

the histogram intersection between the two. The table show that while the terrains
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Figure 6.7: Incorrect classification of the wetdirt3 sample. Here we see incorrect labeling
to wet dirt, wet and dry pavement, and pine needles.

are mostly similar, there is at least a 10% difference between wet and dry samples that

provide just enough uniqueness for the system to be able to accurately label the terrains

separately.

Figure 6.8: Comparison of dry and wet terrain histograms

Table 6.3: Histogram intersection for wet and dry terrains

Concrete Gravel Mulch Pavement

80.03% 88.84% 89.75% 80.03%
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Chapter 7

Conclusion and Future Work

In this thesis, we have proposed a new method for classifying terrains through multiview

images. We designed and integrated a partially-autonomous mobile robot platform for

acquiring ground terrains in an outdoor setting. We discussed novel ways for construct-

ing texton dictionaries for clustering terrain information. Additionally, we have taken

these texton dictionaries to build angular gradient differential histograms to classify

a multitude of outdoor terrains with high accuracy. Finally, we have also found that

the addition of a small angular shift in viewing direction to an angular gradient his-

togram provides a more robust means to classify terrains due to the effects of natural

illumination.

There are many potential opportunities to continue this work in the future including

an examination between different types of snow, ice, and snow ice mixtures. For example

in 7.1 you can see the vast differences between specularities across each sample. It would

be of great interest to fine tune autonomous robotic systems to account for the physical

differences of these materials.

(a) Snow (b) Water saturated snow (c) Ice

Figure 7.1: Comparison of cold weather related texton maps

Another extended area of work is to further examine the differences between terrains
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that are both wet and dry. For example, the texton maps shown in Figure 7.2 are two

samples from the same patch of concrete. However, Figure 7.2a is dry and Figure 7.2b

has been saturated with water. Although they are both the same material and have

the same composition, the effects of local environmental conditions dramatically bring

out additional features for examination.

(a) Dry (b) Wet

Figure 7.2: Comparison of texton maps for wet and dry samples of concrete
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Appendix A

Table of Imaging Poses

Position Name Rolla Pitcha Y awa Rollb Pitchb Y awb

point1 1 0 45 90 0 5 180

point1 2 0 50 90 0 0 -180

point1 3 5 45 90 0 0 180

point2 1 0 60 90 0 0 180

point2 2 0 65 90 0 0 180

point2 3 5 60 90 0 0 180

point3 1 0 75 90 0 0 -180

point3 2 0 80 90 0 0 180

point3 3 5 75 90 0 0 180

point4 1 0 90 90 0 5 180

point4 2 0 95 90 0 45 180

point4 3 5 90 90 0 0 180

point5 1 -180 75 270 180 0 0

point5 2 -180 70 270 180 0 0

point5 3 -175 75 270 180 0 0

point6 1 -180 60 270 180 0 0

point6 2 -180 55 270 180 0 0

point6 3 -175 60 270 180 0 0

point7 1 -180 45 270 180 0 0

point7 2 -180 50 270 180 0 0

point7 3 -175 45 270 180 0 0
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point8 1 -160 60 270 180 -5 0

point8 2 -160 65 270 -180 -45 0

point8 3 -165 60 270 180 0 0

point9 1 160 60 -90 -180 45 -360

point9 2 160 65 -90 -180 45 -360

point9 3 165 60 -90 -180 45 -360

point10 1 -20 60 90 0 45 -180

point10 2 -20 65 90 0 45 -180

point10 3 -15 60 90 0 45 -180

point11 1 20 60 90 0 -45 -180

point11 2 20 65 90 0 -45 -180

point11 3 15 60 90 0 -15 -180

Table A.1: Position and poses for camera placement. Arm positions with respect to the

arm base are postfixed with a. Gripper positions with respect to the surface coordinate

frame are postfixed with b.
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Appendix B

Code for Automated Camera Control and Arm Movement

1 void CameraWidget : : onRunProgramCode

2 (

3 )

4 {

5 // Automat ica l l y c a l l P y l o n I n i t i a l i z e and

PylonTerminate to ensure the py lon runtime system

6 // i s i n i t i a l i z e d during the l i f e t i m e o f t h i s o b j e c t .

7 Pylon : : PylonAutoInitTerm autoInitTerm ;

8

9 try

10 {

11 // Only l o o k f o r cameras suppor ted by Camera t

.

12 CDeviceInfo i n f o ;

13 i n f o . SetDev iceClass ( Camera t : : DeviceClass ( ) ) ;

14

15 // Create an i n s t a n t camera o b j e c t wi th the

f i r s t found camera d e v i c e t h a t matches the

s p e c i f i e d d e v i c e c l a s s .

16 Camera t camera ( CTlFactory : : GetInstance ( ) .

CreateF i r s tDev i ce ( i n f o ) ) ;

17

18 // Open the camera to a l l o w parameter changes
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19 camera . Open ( ) ;

20

21 // Turn t e s t image o f f .

22 camera . Test ImageSe lector =

Test ImageSe l ec to r Of f ;

23

24 // Carry out luminance c o n t r o l by us ing the ”

once” gain auto f u n c t i o n .

25 AutoGainOnce ( camera ) ;

26

27 // Carry out whi te ba lance us ing the ba lance

whi te auto f u n c t i o n .

28 AutoWhiteBalance ( camera ) ;

29

30 // Carry out luminance c o n t r o l by us ing the ”

once” exposure auto f u n c t i o n .

31 AutoExposureOnce ( camera ) ;

32

33 // Get the camera ’ s nodemap to a d j u s t

parameters v i a s t r i n g

34 GenApi : : INodeMap& nodemap = camera . GetNodeMap

( ) ;

35

36 // Get any necessary camera nodes

37 GenApi : : CEnumerationPtr t r i g g e r S e l e c t o r (

nodemap . GetNode ( ” T r i g g e r S e l e c t o r ” ) ) ;

38 GenApi : : CEnumerationPtr t r i g g e r S o u r c e (nodemap .

GetNode ( ” Tr iggerSource ” ) ) ;

39 GenApi : : CEnumerationPtr tr iggerMode (nodemap .

GetNode ( ”TriggerMode” ) ) ;
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40

41 // Set the camera up f o r s o f t w a r e t r i g g e r i n g

42 t r i g g e r S e l e c t o r−>FromString ( ”FrameStart” ) ;

43 triggerMode−>FromString ( ”On” ) ;

44 t r i gge rSourc e−>FromString ( ” Software ” ) ;

45

46

47 // This smart p o i n t e r w i l l r e c e i v e the grab

r e s u l t data .

48 CGrabResultPtr ptrGrabResult ;

49 S t r i n g t f i l ename ;

50

51 const QStr ingLi s t manipActionList = m pPlugin

−>getManipActionList ( ) ;

52 int numActions = ( int ) manipActionList . s i z e ( ) ;

53

54 for ( int i i = 0 ; i i < numActions ; ++i i )

55 {

56

57 m pPlugin−>runManipulat ionAction (

manipActionList [ i i ] . t oStdSt r ing ( ) ) ;

58

59 // Set up the stream grabber to s t a r t

a c q u i s i t i o n

60 camera . StartGrabbing ( ) ;

61

62 // Execute a t r i g g e r so the camera can

a c q u i r e

63 camera . ExecuteSoftwareTr igger ( ) ;

64
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65 // Wait f o r an image and then r e t r i e v e

i t . A t imeout o f 5000ms i s used

66 camera . Ret r i eveResu l t (15000 ,

ptrGrabResult ,

TimeoutHandling ThrowException ) ;

67

68 // Image grabbed s u c c e s s f u l l y ?

69 i f ( ptrGrabResult−>GrabSucceeded ( ) )

70 {

71

72 /∗ The pylon grab r e s u l t smart

p o i n t e r c l a s s e s pr ov i de a

c a s t opera tor to the IImage

73 // i n t e r f a c e . This makes i t

p o s s i b l e to pass a grab

r e s u l t d i r e c t l y to the

74 // f u n c t i o n t h a t saves an

image to d i s k ∗/

75

76 }

77

78 // Save image

79 CImagePers istence : : Save (

ImageFileFormat Bmp ,

f i l ename , ptrGrabResult ) ;

80

81 }

82

83
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84 // end the command f o r the stream

grabber to s t op a c q u i s i t i o n

85 camera . StopGrabbing ( ) ;

86

87 }

88

89 camera . Close ( ) ;

90

91 // Sample Completed

92

93 return 0 ;

94 }
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Appendix C

Imaging Procedure

The procedure for collecting a single sample is as follows:

1. Turn on wireless network hotspot

2. Turn on robot (robot automatically connects to hotspot on initialization)

3. Connect laptop to mobile network

4. Run software for robot teleoperation

5. navigate robot to sample area of interest

6. Run software for arm manipulation

7. Load positions

8. Load poses

9. Initialize manipulation action sequence

10. Acquire 33 images as arm follows action sequence

11. Sample collection completes, navigate to next sample repeat from step 9

Overall, this process takes 15 minutes to complete per sample.
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Appendix D

List of Database Samples

 

 

 

 

 

 

 

 

Sample Label Image Sample Label Image 

1.blackcarpet 26. redcarpet 

 

2. blackcarpet2 27. redtile 

 

3. blacktile 28. rocks 

 

4. blacktile2 29. rocks2 

 

5. bluecarpet 30. rubbermat 

 

6. streetpaint 31. sand 

 

7. browncarpet 32. slush1 
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8. mixedcarpet 33. slush2 

 

9. drybrick 34. snow1 

 

10. dryconcrete 35. snow2 

 

11.dryconcrete2 36.wetconcrete 

 

12.dryconcrete3 37.wetconcrete2 

 

13. drygravel 38. wetdirt 

 

14. dryground 39. wetdirt2 

 

15. dryleaves 40. wetdirt3 

 

16. drymetal 41. wetdirt4 

 

17. drymulch 42.wetdirtwrocks
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18. drypavement 43. wetgravel 

 

19.drypavement2 44. wetmetal 

 

20. grass 45. wetmulch 

 

21. grass2 46. wetpavement 

 

22. grass3 47. wetpavement2

 

23. graycarpet 48. whitetile 

 

24. ice 49. whitetile2 

 

25. pineneedles 50. wood 

 
 

  Table D.1: List of all collected samples and labels
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