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ABSTRACT OF THE DISSERTATION

MULTISCALE MODELING AND VALIDATION OF

PARTICULATE PROCESSES

by MAITRAYE SEN

Dissertation Director: Dr. Rohit Ramachandran

Since solid handling and processing have a wide application in many chemical and

pharmaceutical industries, it is important to understand the powder dynamics. The

objective of this work is to build multiscale models (with the aid of different modeling

techniques; PBM (population balance model), DEM (discrete element model) and CFD

(computational fluid dynamics) for various solid/powder handling operations and design

an integrated flowsheet model connecting the continuous API (active pharmaceutical

ingredient) purification/processing and downstream tablet manufacturing operations

(as applicable in case of pharmaceutical industries). At present there is no existing

link between the API processing and purification and downstream tablet manufactur-

ing operation. However it has been seen that the physical properties of API (size,

shape etc.) have considerable effect on the critical quality attributes (CQAs) of the

product obtained from the downstream tablet manufacturing operations. Therefore,

such a flowsheet will allow a detailed study of the effect of upstream (API purification

and processing) process parameters on the downstream (tablet manufacturing) product

attributes.

A multiscale modeling approach has been adapted in order to develop a novel PBM

for powder mixing (an important unit operation in tablet manufacturing framework),
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which can track various CQAs such as RTD (residence time distribution), RSD (relative

standard deviation) and composition of the final blended product. The model demon-

strated good prediction when validated against experimental results. The mixing model

has been used for developing a multiscale, continuous, integrated flowsheet model. In

this flowsheet model, the mixing unit has been integrated with the API separation and

purification steps (i.e. crystallization, filtration and drying). The crystallization model

has been developed based on population balance methodology and experimentally vali-

dated. The flowsheet model has been further used to perform optimization studies and

design an efficient hybrid MPC-PID control system.

A multiscale CFD-DEM-PBM model has been developed for a fluid bed granulation

process as well, which is an important operation present in the downstream tablet

manufacturing framework (often present after the mixing operation). This model can

be used to study the dynamics of the process and determine the CQAs of the granulated

product. The multiscale model thus developed can be used to develop a reduced order

model (ROM) which can be integrated with the flowsheet model.

This work will make a significant contribution towards understanding the process dy-

namics, process design and optimization in order to enhance the efficiency of the phar-

maceutical manufacturing processes.
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Chapter 1

Introduction

The solid handling or processing industries have to deal with the inherent variability

of powders which is the main hindrance towards effective operation and control of the

manufacturing framework. Since particulate materials have a wide range of application

in many chemical industries (e.g. food, agrochemical, paint, catalyst manufacturing,

pharmaceutical etc.), it is important to be able to understand and overcome the various

challenges associated with powder flow. It is difficult to explain powder flow on the

basis of first-principles unlike fluid flow since each solid particle is a discrete entity which

can interact in several ways with each other as well as with the equipment boundary.

Flowability of powders may be erratic due to the segregation effect caused by the

presence of fines, particle size distribution and presence of moisture which renders the

powder cohesive etc. This work discusses the development of mathematical models in

order to study and improve various manufacturing processes, as applicable in case of

pharmaceutical industries. Many manufacturing processes in pharmaceutical industries

are currently carried out in batch mode. Though batch processes are favored under

certain processing conditions, continuous processing also has several advantages [1],

such as it permits the same equipment to be used for small and large scale operations

thereby minimizing the need for scale-up studies [2]. As the continuous process can be

performed in a smaller area, it reduces plant footprint and is an environmental friendlier

option than running batch-wise processes. It is also an energy and labor efficient process

and gives more yield in principle [3]. A transition from batch to continuous mode of

operation could require process re-designing and regulatory approval. The high cost

of research and development required for developing new processes has always been an

obstacle when implementing new manufacturing practices. In some cases, a batch mode



2

of operation may have certain shortcomings (e.g. inconsistency between batches, high

cost) [4, 2, 5], which may be overcome by following a continuous processing strategy.

Making use of model based approaches and continuous mode of production have the

potential to reduce costs and improve the product quality [4, 5, 6, 7, 8, 9]. Modeling

and simulation tools can aid the transition from batch to continous processing. A

well developed, tuned, calibrated and validated model can be an effective tool in order

to study the process dynamics or perform design, optimization and control studies.

For instance, mathematical models can be developed that capture the dynamics of

powder/solid processing operations, allowing for virtual experimentation and validation

of new methodologies prior to implementation in the real plant. Design or optimization

based studies require several trials; hence a model can be easily used for this purpose

instead of conducting several experiments, which will also help to save resources.

In this work, some solid processing unit operations have been studied and implementa-

tion of continuous manufacturing framework in case of pharmaceutical industries has

been discussed. The pharmaceutical industries have proven that it is innovative in the

field of drug discovery and development by bringing novel drugs to market, however the

area of improving the established manufacturing processes or introducing more efficient

ones requires more focused attention [10]. In case of the pharmaceutical industries, the

stringent regulatory requirements and the high cost of developing and understanding

new processing techniques have made the transition difficult. The composition, purity,

overall quality and effectiveness of the API being manufactured is of utmost importance.

The high cost of drugs and the need for more efficient manufacturing methods makes it

necessary to look towards more efficient production strategies that can meet these re-

quirements and reduce the cost of healthcare without diminishing the quality [11]. The

FDA (Food and Drug Administration, USA) mandates that all manufacturing stages

meet the required GMP (Good Manufacturing Practices) in order to ensure good end

product quality. Since it is necessary to closely monitor the product quality at ev-

ery step in powder handling processes, the FDA has introduced the principles of QbD

(Quality by design) and PAT (Process analytical technology). These guidelines allow

consistent building of product quality at every step of the manufacturing framework
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and help reduce production of inferior quality products. As the pharmaceutical indus-

tries are transitioning towards implementation of QbD and PAT guidelines, in order to

improve the processing efficiency, there is a need to develop more science-based models

which can be used to capture detailed process dynamics. Such a process model can

be used for virtual experimentation and optimization, prior to testing in the actual

plant. A mechanistic model developed from the first-principles can be more efficient in

capturing the dynamics of a process compared to empirical or statistical models [12].

The pharmaceutical industries have two distinct upstream and downstream sets of op-

erations. The upstream operation includes producing the drug molecule (API) followed

by its purification and separation (i,e, reaction, separation, crystallization, filtration,

drying etc.) [13]. The purified API crystals are further sent to the downstream pro-

cessing framework where it is mixed with two or more excipient and the mixed product

goes through several other unit operations (granulation, milling etc.) till the final tablet

dosage forms are obtained [14]. The physical properties of the API crystal has a con-

siderable effect on the downstream product quality. At present there is no connection

between the upstream and downstream processes, therefore an important objective of

this work is to establish such a connection in form of an continuously connected, inte-

grated flowsheet model which can be used as an effective tool.

1.1 Summary of key results

It should be noted that the models which have been developed in this work are multiscale

in nature. A multiscale model is able to store information from different scales or

levels [15]. For example, a powder system consists of particles which can be treated as

discrete entities. The powder particles interact with each other as well as the equipment

wall/boundary in different manner. A process model developed based on population

balance methodology alone is not able to track each and every individual particle.

But it considers a particle population lumped based on certain characteristic (say size,

shape, spatial location etc.). Therefore, PBMs are often referred to as meso-scale

models. On the other hand, DEM is capable of simulating individual particles and thus

store particle level information (on a particle scale). Similarly, continuum models (as
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applicable in case of CFD) are associated with macro scale simulation. In this work,

coupled PBM-DEM or CFD-DEM-PBM models have been developed for the different

unit operations.

A novel PBM framework that can qualitatively capture the dynamics of a continuous

powder mixing process has been developed. The PBM accounts for key design and

process parameters such as mixer RPM, processing angle in terms of powder velocities,

along with the effect of number of axial and radial compartments. Via this approach,

results clearly show the qualitative validity of the PBM as a tool to capture the dy-

namics of the process that affect API composition, RSD and RTD. The model also

demonstrates the use of the PBM as an overall multiscale modeling tool to combine

particle-level models such as DEM in a multiscale framework. PBM interacts with

DEM via one-way coupling which forms a basic framework for the multiscale model-

ing. The results thus obtained have been compared against a full DEM simulation

which is a more fundamental particle-level model that elucidates the dynamics of the

mixing process. Due to the relative computational simplicity of solving the PBM (as

compared to DEM), the developed model can be used effectively in control and opti-

mization of the mixing process. The developed PBM has been quantitatively validated

by fitting experimentally obtained values of the above mentioned CQAs for different

operating conditions. The model is dynamic and computationally tractable compared

to traditional DEM descriptions of mixing processes. This lends credence to the use of

the model as an effective tool in control and optimization of blending process and can

have future implementation in designing a PAT system which will allow considerable

improvements on the current manufacturing framework.

The mixer model has been connected with the API purification processes in form of an

integrated flowsheet model which connects four unit operations, namely crystallization,

filtration and drying followed by mixing. Crystallization, filtration and drying are

the API separation and purification stages whereas mixing the purified API crystals

with one or more desired excipient is a downstream pharmaceutical unit operation for

tablet manufacturing. Since crystallization is an important separation step for the

active ingredient, a parametric study on the crystallization model has been conducted
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as well, by validating the model with experimental data. This particular flowsheet

model has been optimized so that optimal operating conditions can be determined and

the CQAs of the final product are satisfied. A multiscale MPC-PID control system

has been designed for this particular flowsheet model. This will improve the process

performance and maximize efficiency of the integrated process and also reduce the

chance of producing rejects. The developed flowsheet process model can also be used

as a modeling tool to implement control and optimization strategies in-silico.

A multiscale CFD-DEM-PBM model has been developed for a fluid bed granulation

process, where both fluid and solid phases are present. In a fluid bed granulation

process, the granules are formed by spraying the binder on the fluidized powder bed.

The flow field can be solved by implementing CFD principles and the behavior of the

solid particles can be modeled using DEM techniques. Presence of a link will help to

understand how each phase interact with the other during the process.

The highlights of this work is to develop and validate a multiscale PBM for mixing

process, integrating the mixing model with upstream API purification stages (crystal-

lization, filtration and drying) in form of a continuous flowsheet model and presenting a

multiscale framework to study the multiphase flow in fluid bed granulator (granulation

being an important operation in the downstream tablet manufacturing framework and

comes after the mixing operation). The overall objective is to establish a connection be-

tween the API purification/processing steps and the downstream tablet manufacturing

operation which can be used to study the effect of the upstream process parameters on

the downstream product quality and also provide control over the upstream parameters

which can be manipulated in order to obtain the desired downstream product qualities.

1.2 Specific aims

This section lists the specific aims and the resulting publications for each aim.

Specific Aim I: Development of a multi-dimensional population balance model ap-

proach to continuous powder mixing process.

• M. Sen, R. Ramachandran, 2013. A multi-dimensional population balance model
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approach to continuous powder mixing processes, Advanced Powder Technology,

24, 51-59.

Specific Aim II: Experimental validation of the population balance model, mathemat-

ical development and comparison of a multiscale PBM-DEM description of continuous

powder mixing process.

• M. Sen, R. Singh, A. Vanarase, J. John, R. Ramachandran, 2012. Multi dimen-

sional population balance modeling and experimental validation of continuous

powder mixing processes, Chemical Engineering Science, 80, 349-360.

• M. Sen, A. Dubey, R. Singh, R. Ramachandran, 2013. Mathematical Develop-

ment and Comparison of a Hybrid PBM-DEM description of a Continuous Powder

Mixing Process, Journal of Powder Technology, DOI 10.1155/2013/843784

Specific Aim III: Multiscale model development, optimization and control of a con-

tinuous API purification/processing-downstream tablet manufacturing operation

• M. Sen, A. Chaudhury, R. Singh, R. Ramachandran, 2014. Two-dimensional

population balance development and validation of a pharmaceutical crystallization

process. American Journal of Modern Chemical Engineering, 1, 13-29.

• M. Sen, A. Chaudhury, R. Singh, J. John, R. Ramachandran, 2013. Multi-

scale flowsheet simulation of an integrated continuous purification-downstream

pharmaceutical manufacturing process, International Journal of Pharmaceutics,

445, 29-38.

• M. Sen, A. Rogers, R. Singh, A. Chaudhury, J. John, M. G. Ierapetritou,

R. Ramachandran, 2013. Flowsheet optimization of an integrated continuous

purification-processing pharmaceutical manufacturing operation, Chemical Engi-

neering Science, 102, 56-66.

• M. Sen, R. Singh, R. Ramachandran, 2014. Simulation-based design of an ef-

ficient control system for the continuous purification and processing of active

pharmaceutical ingredients, Journal of Pharmaceutical Innovation, 9, 65-81.
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• M. Sen, R. Singh, R. Ramachandran, 2014. A hybrid MPC-PID control system

design for the continuous purification and processing of active pharmaceutical

ingredients, Processes, 2, 392-418

Specific Aim IV: Development of a multiscale CFD-DEM-PBM description of a con-

tinuous fluid bed granulation process.

• M. Sen, D. Barrasso, R. Singh, R. Ramachandran, 2014. A multiscale hybrid

CFD-DEM-PBM description of a fluid bed granulation process, Processes, 2, 89-

111.
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Chapter 2

Development of a multi-dimensional population balance

model approach to continuous powder mixing process

• M. Sen, R. Ramachandran, 2013. A multi-dimensional population balance model

approach to continuous powder mixing processes, Advanced Powder Technology,

24, 51-59.

The objective of this specific aim is to develop a novel PBM of a continuous mixing

process which is able to qualitatively capture the dynamics of a typical powder mixing

process. The effects of important process parameters and mixing performance (i.e,

RSD, RTD, composition) have been investigated. The developed PBM can then be

used as a multiscale tool (i.e., in combination with particle level models such as DEM)

or for further model reduction (i.e., to obtain control relevant models for control and

optimization).

A typical powder handling process will involve various unit operations, of which the

most common are powder feeding, mixing, granulation etc. Considering the case-specific

variability in the way in which the above processes are implemented, flexibility requires

that any characterization be, to a large extent, modular (i.e., enabling multi-processing

capabilities in a single manufacturing line) and this requires the modeling and charac-

terization of a variety of different unit operations. This study focuses on continuous

powder mixing which is an important unit operation and is almost always present no

matter which route of processing is adapted.

Powder mixing is the act of bringing distinct bulk material particles into intimate con-

tact in order to produce a mixture of consistent quality. Mixing of bulk solids occurs

because of diffusive and convective velocity gradients within a given mixer. Segrega-

tion can also occur within the mixer, whereby the separation of distinct particles is
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induced. Typically in pharmaceutical powder mixing processes that deal with fine co-

hesive powders, aggregation and segregation can occur whereby smaller particles can

form agglomerates under the presence of cohesive forces triggering segregation due to

differences in aggregation mobility (i.e., larger aggregation with greater mobility) [16].

Several experimental [17, 18, 19] and modeling approaches exist in the literature for

powder mixing processes. The current modeling approaches can be categorized into

Monte-Carlo methods [20], continuum and constitutive models [21], data-driven statis-

tical models [22, 23, 24], compartment models [25, 26], RTD modeling approaches [27,

28, 29], multiscale-models [30, 31] and DEM based models [32, 33, 34, 35]. DEM

models are typically very computationally intensive and require weeks/months of sim-

ulation which render it impractical for control and optimization. The other modeling

approaches whilst having the advantage of being fast to solve, may often not contain de-

tailed particle-level physics which experimental characterization and DEM simulations

typically contain. A detailed review on the DEM method can be found in Dubey et

al. [34]. The multiscale approach presented by Portillo et al. [30] presents an interesting

use of combining a DEM plus statistical modeling approach to mixing processes and

their results showed for a specific case study, mixing performance could be predicted

reasonably accurately with huge savings in computational time. multiscale models have

the potential to incorporate multiscale information from the particle level to the unit-

operation level which is the motivating factor in this study, to consider an alternative

approach (based on PBMs) to develop a multiscale framework to model continuous

mixing processes.

2.1 Population Balance Model Methodology

Population balance models (PBMs) have been utilized substantially to model particu-

late processes such as crystallization [36, 37, 38, 39] and granulation [40, 41, 42, 43, 44]

to name a few but till date have not been used to describe mixing processes.
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2.1.1 Population Balance Equation

In its most general form, the population balance equation (PBE) is written as shown

in Equation (2.1) [45]:

∂F

∂t
(x, z, t) +

∂

∂x

[

F
dx

dt

]

(x, z, t) +
∂

∂z

[

F
dz

dt

]

(x, z, t) =

<formation(x, z, t) −<depletion(x, z, t) + Inflow−Outflow (2.1)

Here x is the vector of internal coordinates used to characterize the internal distribution,

z is the vector of external coordinates and F (x, z, t) is the population distribution func-

tion. In particulate processes, a single state variable, size, is often employed; and the

resulting distribution is called the particle size distribution. The term ∂
∂x

[

F dx
dt

]

(x, z, t)

accounts for the evolution of the population distribution due to continuous growth.

The term ∂
∂z

[

F dz
dt

]

(x, z, t) accounts for the evolution of the population distribution

with respect to spatial position. <formation(x, z, t) in Equation (2.2) accounts for for-

mation of particles due to discrete phenomena such as aggregation and breakage, and

<depletion(x, z, t) in Equation (2.3) accounts for depletion of particles by the same phe-

nomena. Inflow and Outflow are the inlet and outlet flowrates respectively, in case of

a continuous operation

Rformation = 0.5

∫ r−rmin

rmin

β(r′, r − r′)F (z, r′, t)F (z, r − r′, t)dr′

+

∫ rmax

r
Γ(r′)F (z, r′, t) (2.2)

Rdepletion = β(r, r′)F (z, r, t)F (z, r′ , t)dr′ + Γ(r) + φ(r)F (z, r, t) (2.3)

Here β(r, r′) and Γ(r) are the aggregation and breakage kernels respectively. φ(r) signi-

fies a death-like phenomena. The first term in Equation (2.2) stands for the formation

of particles of size r due to aggregation of two smaller particles. When two smaller

particles combine, one larger particle is formed. Similarly the second term in Equation

(2) represent formation of new particles due to breakage. rmin stands for the minimum
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possible size of particles. In Equation (2.2) the first term stands for depletion of parti-

cles due to formation of new ones and the second term stands for depletion of particles

due to breakage and death phenomena. See Ramachandran and Barton [44] for more

details.

2.1.2 Multi-dimensional population balance model formulation

One-dimensional models have been well studied in particulate processes for model-based

analysis [39, 46, 47]. They are often adequate for processes where the effect of key

mechanisms (such as nucleation, aggregation and breakage) on the process dynamics

can be accounted for through the consideration of a single particle characteristic. The

modeling of continuous mixing processes requires the consideration of both internal and

external coordinates and hence a multi-dimensional formulation of the PBE is required

as shown in Equation (2.4) which represents a n three-dimensional formulation where

n=2 to represent the the API and excipient components.

∂

∂t
F (n, x, y, r, t) +

∂

∂x

[

F (n, x, y, r, t)
dx

dt

]

+
∂

∂y

[

F (n, x, y, r, t)
dy

dt

]

+
∂

∂r

[

F (n, x, y, r, t)
dr

dt

]

= <formation(n, x, y, r, t) −<depletion(n, x, y, r, t)

+Inflow−Outflow (2.4)

Here, x is the spatial co-ordinate in the axial direction, y is the spatial co-ordinate

in radial direction, r is the internal co-ordinate which is particle size. The terms dx
dt

and dy
dt represent the particle velocities in axial and radial directions respectively. The

velocities act as an input to the PBM. The particle velocities can be obtained either

experimentally or from a previously run simulation.

2.1.3 Aggregation Model

In this study, it has been assumed that no breakage of particles is taking place. Hence

the breakage terms have been neglected although they can be incorporated into the
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overall framework easily. The rationale is that particle cohesion leading to aggregation

has been studied both experimentally [17] and via DEM simulations [16] as opposed to

particle breakage. The aggregation rate process is defined in Equations (2.5) to (2.7)

<aggregation = <formation −<depletion (2.5)

where

Rformation = 0.5

∫ r−rmin

rmin

β(n, x, y, r′, r − r′)F (n, x, y, r′, t)F (n, x, y, r − r′, t)dr (2.6)

Rdepletion = β(n, x, y, r, r′)F (n, x, y, r, t)F (n, x, y, r′, t)dr (2.7)

β(n, x, y, r, r′) is the aggregation kernel and defined in Equation (2.8). The aggregation

kernel is based on the kinetic theory of granular flow (KTGF) [48].

β(n, x, y, r, r′) = K

√

3θ

ρ
(r + r′)2

√

1

r3
+

1

r′3
(2.8)

Here K is a constant, ρ is the particle density and θ is a pseudo temperature termed

as granular temperature (Equation (2.9)). v by definition is the random fluctuation

velocity within a continuous granular medium but in this study is assumed to be the

actual particle velocity for the purpose of establishing a baseline and can be used as

a measure of its magnitude [49]. This assumption was deemed valid since it is the

relative differences in the aggregation model that are important as opposed to the

absolute differences. Although breakage of particles has not been considered in this

study, it can be easily incorporated via previous work of Ramachandran et al. [43],

which models particle breakage in a PBM framework.

θ =
1

3
< v.v > (2.9)
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2.1.4 Numerical technique

In this study, a finite volume scheme has been used whereby the population distribu-

tion is first discretised into sub-populations and the population balance is formulated

for each of these semi-lumped sub-populations. This is obtained by the integration

of the population balance equation (see Equation (2.4)) over the domain of the sub-

populations and re-casting the population into finite volumes. Thus, by this technique,

the integro partial-differential equation as represented by the population balance equa-

tion, is reduced to a system of ordinary differential equations in terms of its rates.

The ordinary differential equations are then integrated via a first order explicit Eu-

ler method. Stability conditions (e.g. CFL condition) have been checked similar to

previous work in Ramachandran and Barton [44].

2.1.5 Mixer model development

The mixer is divided into multiple compartments both in the axial and radial direction.

Mixing occurs in both directions via convective transfer. Dispersion is neglected since

it is generally << than convection [26]. Particles are treated as discrete entities and

their exchange between any two compartments is simulated dynamically to evaluate

mixing performance defined by several metrics namely, API composition (yAPI), RSD,

average particle diameter (d30) and the RTD, which are described in Equations (2.10)

to (2.13). All of the above, represent CQAs which are required to be tightly monitored

and controlled. It is crucial to maintain API composition within the blend since blend

output is utilized in downstream processing such as granulation and tableting whereby

the final granule/tablet composition must be within specification. RSD indicates the

variability in API composition and typically quality control requires this variability to be

between ±6%. RTD is a measure of the mixing performance of the mixer and monitoring

the RTD can lead to improvements in the formulation and processing conditions to

further optimize mixing performance.

yAPI =

∑ymax

y=1 F (API, xmax, y, t)
∑nmax

n=1

∑ymax

y=1 F (n, xmax, y, t)
(2.10)
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In the above equation, the numerator stands for the total number of API particles which

come out of the last compartments at any point of time. The denominator represents

total number of both API and excipient particles coming out of the last compartments

at any point of time. Since there are only two components involved, hence the value

of nmax is 2. xmax and ymax stand for the maximum number of grids in the axial and

radial direction respectively.

RSD =

√

∑ (yi−yavg)2

n−1

yavg
(2.11)

d30 =

[

(6r)

π

](1/3)

(2.12)

E(t) =
yAPI(t)

∫∞

0 yAPI(t)dt
(2.13)

2.2 Simulation Results

The model simulations have been performed in MATLABTM (MathWorks) on a 8 GB

RAM, 2.94 GHz desktop. The total discretized domain of the simulation comprised of

10, 10 and 10 finite volumes (bins) along the axial, radial and particle size coordinate

axes. The width of the bin along the axial, radial and size coordinate was 4.4E−4 mm,

1.0E−4 mm, and 1E−5m3 respectively.

2.2.1 Powder velocities

Powder velocities (i.e., the axial and radial velocities) need to be suitably described

and incorporated into the PBM for effective dynamic simulation of the mixing process.

In other work, the powder velocities have been determined experimentally along the

axial length of the experimental vessel and constant velocities have been used [30] with

the assumption that radial velocities are negligible and hence not considered. In this

study, the assumption is relaxed and the powder velocities are determined firstly via

a DEM simulation. The DEM simulation has been performed using EDEMTM (DEM
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Solutions) on a commercial mixer (Gericke GCM250TM ) at the actual scale with axial

and radial dimensions of 330mm and 100mm respectively. The DEM simulation has

been discussed in detail in specific aim 2.

Via post-processing of the data, axial and radial velocities can be determined at any

point of time. However, in this study it has been obtained at t = 180 s once the steady

state is reached. The purpose is to preserve the initial DEM velocities after which

negligible change is observed and incorporate them into the PBM. Simulating the full

DEM to obtain velocities would negate the utility of computationally cheaper model

such as the PBM.

To illustrate the utility of the PBM to simulate the dynamics of the mixing process,

a base case has been considered. Utilizing powder velocity information obtained from

DEM simulation (mixer revolutions per minute set at 250 RPM), the PBM is simulated

for a 10 by 10 grid for 1000 seconds. The base case represents a scenario of free-flowing

particles which is generally considered in most works that utilize DEM based methods.

Currently no work reports utilizing non DEM based methods on non free-flowing par-

ticles (i.e, cohesive particles). In this study, cohesive particles will be considered and

addressed later in the section. API flowrate is fixed at one-fifth of the excipient flowrate

(indicating a theoretical and desired yAPI of 0.167). Total flowrate is 14.5 kg/h. An

illustrative example (case 1) is presented whereby the powder velocities (obtained from

the DEM simulation) are fed into the PBM to simulate the dynamics of the mixing

process. In another example (case 2) constant powder velocities (as per the simulation

in Portillo et al. [26]) have been considered to highlight the efficacy of the PBM as a

tool to simulate mixing processes.

2.2.2 Case 1: Powder velocities from DEM simulation

Figure 2.1a illustrates the RSD (i.e, variability in the API composition) versus axial

length at time end point(t=1000s). The axial length is represented in terms of the

compartment number (1 to 10) in the axial direction. It can be seen that there is an

overall decrease in the RSD over the length of the mixer as per what is typically observed

from experimental data [26] and full DEM simulations [34]. It is interesting to note,
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that in compartments 3 and 5, there is a spike in the RSD. This can be attributed to the

high back-mixing (i.e, high proportion of negative powder velocities) and poorer radial

mixing. Figure 2.1b depicts the RSD versus time profile taken at the mixer outlet. It

can be seen that the variability decreases over time indicating that from a very initially

segregated mixture (hence the extremely high RSDs), over time the mixing in the radial

direction results in smoothening of the variability ( 0.35 at end-point). It can be noted

that an RSD of < 0.06 is required for quality control in the pharmaceutical industry.
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Figure 2.1: Plot of (a) RSD versus axial length at end time and (b) RSD versus time
at mixer outlet for 0:40s and 40:1000s

Figure 2.2a shows the total mass flowrate at the inlet and outlet and confirms that

the mass balance is satisfied. The time lag observed in the outlet flowrate can be

attributed to the residence time in the mixer. Figure 2.2b indicates that the theoretical

API composition is achieved at steady-state. This is a requirement of the total mass

balance. Deviation from the composition can occur if there is a bias in the actual mixer

(e.g. material stuck to the walls of the mixer due to cohesion). Figure 2.3 depicts

the RTD of the API in the mixer upon injecting a pulse of API at t = 100 s. The

RTD curve indicates how long the API spends in the mixer and correlates to mixing

performance. The width of the RTD curve can be set as a metric to optimize process

performance as a function of formulation properties and processing conditions. Future

sections will address the effect of certain processing parameters on RTD. Overall, the
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PBM combined with the powder velocities obtained from DEM demonstrated that this

integrated model can be a very useful tool in understanding the dynamics of the powder

mixing process. Future sections will further address the effect of processing parameters

on the earlier described CQAs.
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Figure 2.2: Plot of (a) Evolution of inlet and outlet mass flowrate and (b) evolution of
API composition

2.2.3 Case 2: Constant powder velocities

The multiscale approach of combining PBM with DEM for powder mixing processes

is a novel approach that has hitherto not been studied. It requires a detailed effort to

understand each modeling tool well and more importantly the interface between them.

The above section provides an illustrative example to demonstrate the utility and po-

tential of this multiscale modeling approach as a robust modeling tool. In the next

few sections, the DEM is decoupled from the PBM and only the PBM is considered.

Constant values for the powder velocities are assumed (as opposed to obtaining them

from DEM simulations) to investigate the robustness of the PBM by itself to qualita-

tively predict the trends of the CQAs as observed experimentally and in silico in the

literature.
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Figure 2.3: RTD of API upon injection of pulse at t=100s.

Effect of axial and radial mixing

Mixer RPM affects the degree of axial and radial mixing. To simulate impact of RPM,

the axial and radial velocities are varied. Figure 2.5a illustrates the RSD versus axial

length for differing axial powder velocities. It can be seen that as the axial powder

velocities increases, the RSD increases, indicating de-mixing in the mixer. This can be

attributed to powder moving faster through the mixer, thus spending reduced time in

the mixer. This is also seen in Figure 2.5b whereby the RSD versus time at the mixer

outlet is seen. Results show that as the axial powder velocities increase, the RSD as a

function of time increases. Figures 2.4a and 2.4b show the effect of varying the radial

powder velocities on the RSD versus axial length and RSD versus time. Results confirm

that as radial mixing increases, the powder is more well-mixed and the RSD decreases.

In Figure 2.6, the RTD for the different axial velocities can be seen confirming that for

the larger axial velocities, the residence time of the powder in the mixer is reduced. .
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Figure 2.4: Plot of (a) RSD versus axial length at end time for different radial velocities
and (b) RSD versus time at mixer outlet for different radial velocities

Effect of processing angle

Processing angle is an important design parameter in the operation of continuous mix-

ing processes as it directly impacts both the mixing rates and the RTD of the powder.

Conventional powder mixing design is to operate the mixer horizontally, but the mixer

can also be upwardly or downwardly angled to affect mixing rates and RTD. To simu-

late varying processing angles, a range of axial and radial powder velocities have been

considered. Note that varying the angle of the mixer changes both the axial and radial

velocities proportionately (via component velocities derived from the linear velocity).

Figure 2.7 depict the RSD versus axial length. It is interesting to note that there is an

optimum achieved (lowest RSD value) at an intermediate axial and radial velocity. This

qualitatively highlights that increased radial velocities promotes mixing but increased

axial velocities promotes de-mixing, hence an optimum is achieved.

Effect of mixer dimensions

Mixer dimension is also an important design parameter that affects mixing performance.

It is imperative that the minimal axial and radial dimensions are specified to ensure

that the desired RSD is met. It should be noted that the mixer length and diameter

in this work has been denoted in terms of number of axial and radial compartments
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Figure 2.5: Plot of (a) RSD versus axial length at end time for different axial velocities
and (b) RSD versus time at mixer outlet for different axial velocities

respectively. Figures 2.8a and 2.8b depict the RSD versus axial length and time re-

spectively when the number of axial compartments is varied. It can be seen that as the

number of compartments increases, RSD decreases. This is attributed to better mixing

as the residence time of the powder in the mixer is increased. Figures 2.9a and 2.9b

illustrate the effect of the number of radial compartments on RSD. It can be seen that

as the number of radial compartments increases, RSD increases and this is attributed to

poor mixing caused by increased segregation of the powders at t=0 (API and excipient

are introduced into the mixer further apart).

Effect of cohesion

The effect of cohesion for powder mixing has been previously studied using DEM sim-

ulations [33, 50]. The conclusion is that cohesion plays a big role in the mixing and

homogeneity of the blend. Cohesion typically leads to aggregation of particles. For

instance API particles which are typically more cohesive tend to form larger agglomer-

ates. As a result, this leads to a particle size differential which results in segregation of

the larger particles and smaller particles in the mixer which in turn affects the mixing

rates. Therefore, it is important to track the effect of cohesion on particle size via a
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Figure 2.6: RTD of API upon injection of pulse at t=100s).

non DEM based approach such as the PBM utilized in this study. Figure 2.10 de-

picts the evolution of average diameter of the API and excipient as a result of cohesion

which results in aggregation. The trend describes the qualitative effects of cohesion

and illustrates the utility of the PBM to track size changes of particles which is also

an important attribute to monitor. Detailed effects of cohesion can be studied via in-

tegrating DEM simulations with PBM in a multiscale manner. This is to account for

changing velocity velocities (which can be calculated via DEM) as a result of cohesion-

aggregation-segregation which lead to de-mixing. Nevertheless, the current PBM model

demonstrates the coupling of an aggregation/cohesion kernel with the PBM framework

to track size distributions.

2.3 Chapter Conclusions

A multi-dimensional PBM has been formulated to elucidate the dynamics of a contin-

uous powder mixing process. The potential for a multiscale approach whereby DEM
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and PBM have been highlighted via an illustrative example with powder velocities ob-

tained via DEM and used as inputs in the PBM to track key properties such as API

composition and RSD. Focusing on the utility of the PBM as a robust model to de-

scribe mixing processes. This particular model can be used as an effective tool to study

the effect of other processing and design parameters (i.e., mixer dimensions, processing

angle, effect of mixer RPM). The effect of cohesion has been studied showcasing the

ability of the PBM to incorporate monitoring of particle size (note: current non-DEM

based models do not account for potential size enlargement of particles due to cohe-

sion). Overall, results gives very good qualitative agreement with trends reported in

the literature [30, 26] thus confirming the use of PBM along with other well established

modeling tools (e.g. DEM) to describe the dynamics of the mixing process.
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Chapter 3

Experimental validation of the population balance model,

mathematical development and comparison of a multiscale

PBM-DEM description of continuous powder mixing

process

• M. Sen, R. Singh, A. Vanarase, J. John, R. Ramachandran, 2012. Multi dimen-

sional population balance modeling and experimental validation of continuous

powder mixing processes, Chemical Engineering Science, 80, 349-360.

• M. Sen, A. Dubey, R. Singh, R. Ramachandran, 2013. Mathematical Develop-

ment and Comparison of a Hybrid PBM-DEM description of a Continuous Powder

Mixing Process, Powder Technology, DOI 10.1155/2013/843784

In this specific aim, one of the objectives is to quantitatively validate the multi-

dimensional PBM of the continuous mixing model (developed in specific aim 1) with

lab-scale experimental data. The optimization framework has been formulated using

GAMSTM (General Algebraic Modeling System). The velocity ratios between any two

compartments have been estimated by optimizing the CQAs (RSD, Blend composition

and RTD). The validated model can then be successfully used for design, analysis,

control and optimization.

The other objective is to develop a dynamic one way coupled PBM-DEM model for

continuous mixing process. This specific aim builds upon the previous study conducted

in specific aim 1, which followed a steady state approach to develop a PBM to describe

the dynamics of the mixing process. This dynamic and novel multiscale mixing model

which combines DEM with PBM has been compared with the data from a full DEM

simulation run on EDEM TM . The output of DEM has been post processed in order to

extract the CQAs. As mentioned earlier, due to high computational time requirement,
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DEM is not an effective tool for control and optimization. Hence in this work an

offline coupling between DEM and PBM has been considered. DEM simulation can

give information regarding particle properties (particle velocity) which are on particle

level. These particle level information can be fed to the PBM from which the process-

level variables (RSD, RTD, blend composition etc.) affecting the entire unit operation

(mixing) can be extracted. In this way the model incorporates multiscale information

and illustrates one way coupling where DEM provides the velocity information and is

combined with the PBM which simulates key blend attributes as a function of time and

thus applies the microscopic properties from particle level in order to capture process-

level variables which characterize the mixing performance of the entire mixer.

The unpredictability of the powder blending operation is attributed to the uniqueness

of the product formulation, which presents the challenge that no two mixing processes

can ever be identical. The randomness in the process urged engineers to try to describe

the process in quantitative terms and not empirically such that the accuracy of the

predictive model is increased. The pharmaceutical industry is tightly regulated wherein

all the production must comply with the good manufacturing practices (GMP) and

the quality requirements are to be strictly satisfied [11]. It is due to inefficient control

strategies [51, 52] and the non-predictive effects of process models that the final products

obtained are often found to exhibit non-uniformity with a high degree of variability and

do not meet the required specifications.

Since behavior of the powder processing units is still not well predicted, most phar-

maceutical manufacturers employ a univariate trial and error strategy in their process

development. Significant strides have been made to improve the process understanding

by coupling science and a holistic risk-based assessment of both the product and the

process by employing the QbD approach and PAT tools [53, 54, 55, 56, 57, 58].

In chemical-based product manufacturing, as in pharmaceutical, food and agrochemical

industries, efficient and consistent process monitoring and analysis systems (PAT sys-

tems) have a very important role. These PAT systems ensure that the chemical based

product is manufactured with the specified end product qualities [59]. The United
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States FDA defines PAT as a mechanism to design, analyze, and control pharmaceuti-

cal manufacturing processes. It measures the Critical Process Parameters (CPP) which

affects the CQAs of the final product. PAT aims at improving process understanding

by defining their CPPs, and accordingly monitoring them in a timely manner (either

on-line or in-line). This increases testing efficiency and also aids in time saving by avoid-

ing unnecessary processing step, ensuring product consistency and reducing number of

rejects [59, 60]. Hence it is important to have a well formulated and validated model of

the unit operation so that there is significant reduction of time and expenses towards

design of an efficient PAT system. Therefore, in this work an experimental validation

of the mixing PBM has been carried out in order to show the ability of the model to

capture or track experimental trends, followed by suggesting a multiscale framework

which can capture the detailed process dynamics.

3.1 Multiscale modeling

PBM can incorporate the important design and process conditions and determine their

effect on the various process variables on unit operation level. However the physics of

any solid handling process is based on microscopic events which occur at particle level

due to particle-particle and particle-wall interactions. The various particle character-

istics (e.g. particle size distribution, particle shape, particle mass etc.) will govern the

particle behavior. The gravitational and contact forces acting on the particles will have

pronounced effect on the flow patterns [61, 62]. These particle-level phenomena will

affect the path followed by the particles through different zones of the processing equip-

ment [63]. A multiscale model for granulation has been reported in literature [64, 65],

where a DEM has been used to determine the coalescence kernel and aggregation rate

kernels in advance of solving a PBM. Abbas et al. [66] have reported a multiscale

framework in case of crystallization where at the microscale, a PBM has been solved

for predicting the crystal properties affected by fluid heat transfer on mesoscale and

flow/temperature control on macroscale.

In multiscale modeling, the microscopic model is linked to the macroscopic model in

a way such that the particle level information is used to track the CQAs of the final
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product. A detailed summary on analysis and derivation of heterogeneous multiscale

framework has been provided by Weinan et al. [67]. Although a model needs to be

solved on macroscale but information is not always available. On the other hand, a

model on microscale is available, but it is computationally intensive. Multiscale models

can have two types of coupling (e.g. serial coupling and concurrent coupling) [68]. In

serial coupling the microscopic model is solved beforehand and in concurrent coupling

both the models (microscopic and macroscopic) are solved simultaneously.

DEM already exist in literature [32, 34, 69, 70] which are highly predictive in evaluation

of particle-level physics. A PBM has been developed for the mixing process, as detailed

in specific aim I. The coupling is serial in nature where the DEM simulation is run prior

to simulating the PBM.

3.2 Discrete element model

Discrete element models treat each particle present in the granular flow as discrete

entity unlike the continuum models which simulate the bulk behavior of the flow [34, 70].

The contact forces acting on the particles are calculated from Newton’s second law of

motion. The velocity and position of each particle are determined by integrating the

particle’s acceleration which is found from the contact force models. The particles are

treated as spheres or collection of spheres and the distance between any two particles

is computed as the distance between their centers. The distance between any two

particles and the distance of any particle from the equipment boundary are computed

at every time step. A particle-particle contact is detected if the distance between

the centers of the particles is less than the sum of the particle radii and a particle-

boundary contact is detected if the distance between the particle center and boundary

is less than the particle’s radius. A significantly small value for overlap is allowed

in normal and tangential directions. Different types of contact models are available

for DEM simulation [71, 72, 73]. Few of these models include continuous potential-

based contact force models [74] and non-continuous contact force models [75, 76, 77].

DEM studies on different process equipments (e.g. hopper [78, 79], mixer [32, 34, 70],

granulator [80, 81], crystallizer [82] etc.) are available in literature. DEM simulations
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on the entire mixer has been performed by Dubey et al. [34]. These simulations are

computationally expensive, hence a more economical approach of simulating a periodic

slice of the mixer has also been suggested [32, 33].

3.3 Multiscale mixer model

The space is discretized into several compartments and it is assumed that homogenous

mixing occurs in each of the compartments. Particles move from compartment to

compartment in both axial and radial directions and this is governed by the axial and

radial velocities. The exchange of mass between the compartments has been represented

as number density of particles. Particles can either move forward to the compartment

ahead of it or backward to the compartment behind it. On other hand, radial mixing

conserves the total number of particles at a fixed axial location at any given point of

time. Hence the mass balance of a single component can be simplified according to

Equation (3.1):

∂F (n, x, y, t)

∂t
=
Vf [Fn,x−1,y,t − Fn,x,y,t]

∆x
+
Vb[Fn,x+1,y,t − Fn,x,y,t]

∆x

+Vr
[Fn,x,y+1,t + Fn,x,y−1,t − 2Fn,x,y,t]

∆y
+ Inflow −Outflow (3.1)

The above equation can be written for component A and B (two components are being

mixed). Component A can be treated as API and component B can be treated as the

excipient. Here, Vf refers to the forward velocity in the axial direction, Vb refers to back-

ward velocity in the axial direction and Vr refers to the radial velocity. Inflow is the rate

at which the components are fed to the mixer. It is a constant value over time. If there

are m×m compartments then outflow can be represented as
∑2

n=1

∑m
y=1 F (n,m, y, t)Vf ,

where Vf is the forward flux.

The multiscale model does not require any of the particle properties (such as diameter,

density, geometry etc.) or equipment geometry information as input, provided the

velocities can be measured either experimentally or from detailed numerical simulations

such as DEM. Once velocity parameters are selected, the simulation can be used to
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provide information about the dynamics and the outcome of the process. It can be

used to predict mixing performance in terms of a RSD of sample along the axial length

at end time point, RSD at discharge as a function of time, API composition at discharge

and RTD.

It can be noted that DEM will capture the particle properties and the effect of the

equipment geometry in the velocity values. So if the particle size distribution is changed

the velocity distribution is also going to change, which in turn will change the response

of the PBM. Similarly, if the particle properties or mixer geometry are varied, the

behavior of the output variables obtained from PBM will change accordingly.

3.4 Experimental validation of mixing model

Once a mathematical model is developed, it is an important task to validate the model

with the help of experimental values in order to check if the model is able to track

the experimentally determined trend. In this section the validation of the continuous

mixer model has been discussed. The mixer has been divided into several compart-

ments and the powder flow among these compartments has been expressed in terms of

material balance equations. The model is dynamic in nature. Once the mathematical

equations are formulated, the model parameters to be estimated need to be identified.

The parameters in this case have been defined as the velocity ratios. Velocity ratios

can be defined as the ratio of velocities (Vf ,Vb,Vr as given in Equation (3.1)) of any

two compartment between which particle transfer is taking place. Velocity ratios can

take any value between -1 and 1. Forward axial velocity ratios are positive whereas

backward axial velocity ratios are negative. Radial velocity ratios are always positive.

In other words velocity ratios can be related to the relative number of particles being

interchanged between any two compartments. These velocity ratios have been esti-

mated at each point of time. The variables used to evaluate the mixing process are the

RSD, API composition at the outlet and RTD. Several experiments have been carried

out in order to obtain data sets of the above mentioned variables as a function of time.

The objective is to fit the experimental data to the model following an optimization
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algorithm which will minimize the sum of errors between the model predicted and ex-

perimental values. Since the problem is multi-dimensional and dynamic, time required

to run the optimization program becomes an important factor. Hence the optimization

framework has been solved on GAMSTM using its built-in solver. The model has been

validated for many experimental data sets and shown to be able to track these data

with considerable accuracy. Figure 3.1 is a schematic of the steps followed.
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Figure 3.1: Problem formulation framework

The experimental data for RSD, API composition and RTD have been obtained from

the work of Vanarase et al. [17, 83].

3.4.1 Parameter Estimation and Optimization

The optimization problem has been solved in GAMSTM . Since RTD validation is from

a different set of experiment, the RTD data has been fitted separately. The mixer

optimization model is non-linear with 10101 number of constraints and 22561 number

of variables. The Hessian of the Lagrangian has 5800 elements on the diagonal, 37256

elements below the diagonal and 19660 nonlinear variables. There are three families

of solvers ( CONOPT, MINOS and SNOPT) for nonlinear programming algorithms

available on GAMSTM . Each of these solvers behaves differently for a model. In this

case CONOPT has been seen to be able to handle the model more effectively compared
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to the rest. So the solver chosen is CONOPT. The non-linear programming algorithm

is based on a generic GRG (Generalized reduced gradient) algorithm. The details of

this algorithm has been explained by A. Drud [84, 85]. Since the model is likely to have

multiple solutions, hence initial guesses have been provided so that the solution can be

obtained in an appropriate region. This also reduces the time involved in finding the

feasible solution. The mixer has been divided into a 5 × 5 compartment system with a

total of 25 compartments. The simulation has been run for 100 seconds. There are two

types of particles (Component A and component B) being mixed. The velocity ratios

are a function of time, spatial position and particle type. The velocity ratios have been

classified into three categories(e.g forward velocity ratios, backward velocity ratios and

radial velocity ratios). Hence there are a total of 15000 velocity ratios which need to

be estimated.

Parameter Estimation

The dynamic PBM after discretization can be represented functionally as given in

Equations (3.2) and (3.3) [86]:

ẏ(t,p) = f(y(t,p),p),∀t ∈ (0, tf ] (3.2)

y(0,p) = yo (3.3)

where y is the population distribution function and p are the model parameters. The

model parameters in this case are the forward, backward and radial velocity ratios

between any two compartment.

Least square fitting has been used for parameter estimation. The objective is to decrease

the squared error between the model predicted xpredicted and the experimental data

xexperimental. The data are usually the RSD and API composition values measured at

different time points. It can be obtained by algebraic manipulations of the states such

that x(t,p) = g(y(t,p)). The objective function to be minimized can be formulated as

shown in Equation (3.4):
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Ω(p) =

nz
∑

z=1

‖xpredicted(tz,p) − xexperimental(tz)‖
2 (3.4)

where n is the total number of data points.

Gradient based optimization techniques are used to minimize Ω. The model sensitivities

∂yj

∂pk
are integrated along with the model states y over the time domain, which are given

as shown in Equations (3.5) and (3.6):

∂ẏ

∂p
(t,p) =

∂f

∂y
(t,p)

∂y

∂p
(t,p) +

∂f

∂y
(t,p),∀t ∈ (0, tf ] (3.5)

∂y

∂p
(0,p) = 0 (3.6)

Equation (3.7) below shows the sensitivity ODEs combined with the chain rule to obtain

∂Ω
∂p

:

∂Ω

∂p
(p) =

nz
∑

z=1

nm
∑

m=1

2(gm(y(tz,p)) − xexperimental,m(tz))
∂gm

∂y
(tz,p)

∂y

∂p
(tz,p) (3.7)

Objective function formulation

The RSD and API composition data were obtained from the experiments. The RSD

and API composition have values of different orders. Hence the objective function

for RSD has been multiplied by a constant (k) to fascilitate convergence. Individual

objective functions can be formulated for each of the CQAs as shown in Equations (3.8)

and (3.9).

ΩAPIComposition(p) =

n
∑

i=1

‖yAPI,predicted(ti,p) − yAPI,experimental(ti)‖
2 (3.8)
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ΩRSD(p) =

n
∑

i=1

k‖RSDpredicted(ti,p) −RSDexperimental(ti)‖
2 (3.9)

The overall objective function can then be formulated as shown in Equation (3.10):

ΩTotal(p) = ΩRSD(p) + ΩAPIComposition(p) (3.10)

Since RTD measurement is a completely different set of experiment, hence the objec-

tive function has been formulated and optimized separately as shown below in Equa-

tion (3.11):

ΩRTD(p) =
n
∑

i=1

‖Epredicted(ti,p) − Eexperimental(ti)‖
2 (3.11)

Statistical Analysis

In order to test the robustness of the model, statistical tests have been conducted. A

brief discussion on the various statistics which we considered in order to understand

how effectively the model can fit the experimental data have been provided in this

section.

The pearson correlation coefficient (R): The correlation coefficient measures the

strength of a linear relationship or the degree of association between the model predicted

(x) and experimental data (y). It can take any value between -1 and +1. A value of

+1 will indicate a straight line between the experimental and predicted data.

R =

∑n
i=1 (xi − x)(yi − y)

∑n
i=1 (xi − x)2

∑n
i=1 (yi − y)2

(3.12)

Error sum of squares (SSE): It is a measure of the accuracy of predictions from

model. Lower the value, better the model.

SSE =
∑

(yi − xi)
2 (3.13)

Regression Sum of Squares (SSR): It is again another measure for predicting the
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accuracy of the model.

SSR =
∑

(xi − y)2 (3.14)

where y =
∑n

i=1 yi/n. y is also known as the mean value of the experimental data.

Coefficient of correlation (R2) and adjusted R2: It gives the extent of variance

or fluctuation of the predictable variable. It is a measure of the certainty with which

predictions can be made from the model. It can take any value between 0 and 1. If

R2 is equal to 1, it will indicate that regression line perfectly fits the data. However a

large value of R2 does not always imply that the model is a good one. For example,

adding a variable to the model will always increase the value of R2 regardless of whether

the additional variable is statistically significant or not. To overcome this drawback,

adjusted R2 is often used. Its value is not affected by addition of any new variable to

the model. Adjusted R2 has the same significance as the R2.

R2 = 1 −
SSE

SST
(3.15)

where SST =
∑

(yi − y)2. SST is the total error.

3.5 Mixer model validation results

Several experimental data sets have been collected by varying the mixer speed (RPM)

and feed rate. As demonstrated previously, mixer rpm is an important deciding factor

as far as the blend quality is concerned. It affects the degree of axial and radial mix-

ing. RTD model has been formulated and validated separately. RTD decreases with

increase in mixer RPM. Experimental data points are highly scattered over time. This

is because of the noisy and missing data which is caused by the measurement error of

the sensor [23]. The flow of solid particles cannot be explained by first principle which

is otherwise applicable in case of fluid flow. Hence a polynomial function has been first

fitted to the data points. The main aim is to consider a mean of the scattered values

so that a smooth curve can be obtained. The model has been validated for the fitted
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trend line. The model optimization has been performed on an 8GB RAM, 2.94 GHz,

64-bit, 8-cored, Dell desktop. The optimization takes several minutes to run.

3.5.1 RSD and API composition

The model has been validated with four different experimental data sets [87]. Each

experimental set provides with data for RSD and API Composition. A linearity test has

also been conducted for each case by plotting model predicted data versus experimental

data. Validation for the first two cases are being reported in this section.

Experiment 1

This data set has been obtained for a feedrate of 20 kg/hr and mixer speed of 200

RPM. API concentration in the mixture fed to the mixer inlet is 25%. Figure 3.2a

and Figure 3.2b represent the comparision for API composition and RSD respectively.

Figure 3.3a and Figure 3.3b show the linearity relationship for API composition and

RSD respectively. Table 3.1 gives the value of the statistical parameters. As shown in

Figure 3.2a, the predicted API composition is matching exactly with the experimental

data (trendline) with very minor error. This can be further verified with the linearity

plot as shown in Figure 3.3a, where a straight line between predicted API composition

and experimental data can be seen. It is reflected in statistical analysis (see Table 3.1)

as well. The R value is found to be 0.999805 which means that predicted API compo-

sition has a very strong linear relationship (straight line) with the experimental API

composition. High value of R2 (0.999388) and adjusted R2 (0.99382) indicates a very

high certainty in prediction of API composition. A very low value of SSE (0.000176)

and SSR (0.001341) further verifies the accuracy of the model. Figure 3.2b as well

as statistical analysis (see Table 3.1) show that the model is tracking the experimen-

tal RSD data (trendline) very well. Furthermore, figure 3.3b as well as the statistical

analysis indicates that the predicted RSD and experimental RSD has a strong linear

relationship (R=0.999411). Value of R2 (0.998497) and adjusted R2 (0.998482) are very

high which means that through this model RSD could be predicted with high certainty.

In this case the change in the initial and final values of RSD and API composition over

the entire time period are 18.05% and 30.5% respectively.
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Figure 3.2: (a) Fractional API Composition versus time at mixer outlet for experiment
1 and (b) RSD versus time at mixer outlet for experiment 1

Experiment 2

Another experimental trial has been repeated for the same mixer speed of 200 RPM

maintaining the feedrate at 20 kg/hr but with API concentration of 5% at the mixer in-

let. Figure 3.4a is a comparision of the experimental and model predicted data for API

composition whereas Figure 3.4b is the plot for RSD. Figure 3.5a and Figure 3.5b are

the plots of linearity relationship for API composition and RSD respectively. Table 3.2

gives the value of the statistical parameters. Figure 3.4a shows a very good agreement
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Figure 3.3: (a) Linearity plot for API Composition for experiment 1 and (b) Linearity
plot for RSD for experiment 1

between the predicted and experimental (trendline) API composition. A strong lin-

ear relationship can be seen in Figure 3.5a. Statistical results as given in Table 3.2

further verify the accuracy of the model. As desired for a good model, the values of

R (0.999366), R2 (0.997179) and adjusted R2 (0.997151) are very close to unity while

the values of SSR (0.003026) and SSE (0.000897) are very close to zero. Similarly,

predicted RSD and experimental RSD (trendline) has a good agreement as shown in

Figure 3.4b. Figure 3.5b shows a good linear relationship between predicted and exper-

imental RSD. Statistical analysis further verifies strong linearity (R=0.999346), good
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API Composition

Correlation 0.999805
R2 0.999388
Adjusted R2 0.99382
SSR 0.001341
SSE 0.000176

Relative Standard Deviation (RSD)

Correlation 0.999411
R2 0.998497
Adjusted R2 0.998482
SSR 0.000607
SSE 3.61E − 05

Table 3.1: Statistics for experiment 1

RSD prediction certainty (R2=0.998425, adjusted R2=0.998409) and a good model

fitting (SSR=0.003148, SSE=0.000971). In this case the change in the initial and fi-

nal values of RSD and API values over the entire time period are 44.4% and 41.43%

respectively.

Experiment 3

This data set has been obtained for a feedrate of 20 kg/hr and mixer speed of 40

RPM. API concentration in the mixture fed to the mixer inlet is 10%. Figure 3.6a

and Figure 3.6b show the comparision between the experimental and model predicted

values of API composition and RSD respectively. As seen in Figure 3.6a, the model

predicted API composition matches very well with the experimental data (trendline).

Table 3.3 gives the value of the statistical parameters. Very high values of R (0.998423),

R2 (0.996064) and adjusted R2 (0.996024) and very low values of SSR (0.001232), SSE

(0.000149) shows a good fit of the mathematical model as well as high certainty in

prediction of API composition. The match of predicted RSD with the experimental data

can be seen in Figure 3.6b where a small deviation from the trendline has been observed.

The statistical analysis (see Table 3.3) also reflects this. Values of R2 (0.656826) and

adjusted R2 (0.653324) indicates an average certainty in prediction of RSD. Figure 3.7a

represents the linearity relationship between the experimental and model predicted data

for API composition. Figure 3.7b represents the linearity relationship between the two

data sets for RSD. In this case the change in the initial and final values RSD and API
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Figure 3.4: (a) Fractional API Composition versus time at mixer outlet for experiment
2 and (b) RSD versus time at mixer outlet for experiment 2

values over the entire time period are 0.00046% and 0.36% respectively. Since several

data points are repeated over time, hence an average of the values have been taken to

represent the linearity relationship.

Experiment 4

This data set has been obtained for a feedrate of 20 kg/hr and mixer speed of 320

RPM. API concentration in the mixture fed to the mixer inlet is 10%. Figure 3.8a

and Figure 3.8b are the plots for API composition and RSD as obtained experimen-

tally and predicted from the model. Figure 3.9a and Figure 3.9b show the linearity
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Figure 3.5: (a) Linearity plot for API Composition for experiment 2 and (b) Linearity
plot for RSD for experiment 2

relationship for API composition and RSD respectively. Table 3.4 gives the value of

the statistical parameters. As shown in Figure 3.8a, the predicted API composition

approaches the experimental data with minor deviation. However, the statistical anal-

ysis (see Table 3.4) shows that the error is very less (SSR=0.007651, SSE=0.005737)

and can be accepted. Furthermore, the predicted API composition shows a good lin-

ear relationship (R=0.987291) with the experimental data and the model can be used

for the prediction of API composition with average certainty (R2=0.973382, adjusted
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API Composition

Correlation 0.999366
R2 0.997179
Adjusted R2 0.997151
SSR 0.003026
SSE 0.000897

Relative Standard Deviation (RSD)

Correlation 0.999346
R2 0.998425
Adjusted R2 0.998409
SSR 0.003148
SSE 0.000971

Table 3.2: Statistics for experiment 2

API Composition

Correlation 0.998423
R2 0.996064
Adjusted R2 0.996024
SSR 0.001232
SSE 0.000149

Relative Standard Deviation (RSD)

Correlation 0.996931
R2 0.656826
Adjusted R2 0.653324
SSR 0.15131
SSE 0.022438

Table 3.3: Statistics for experiment 3

R2=0.973111). Similarly from Figure 3.8b predicted RSD is also approaching the ex-

perimental data with some minor error (SSR=0.007651, SSE=0.005737) that can be

accepted. Measure of linearity (R=0.974142) and prediction certainty (R2=0.940338,

adjusted R2=0.939729) is also acceptable. In this case the change in the initial and

final values of RSD and API values over the entire time period are 19.5% and 0.85%

respectively. Several data points are repeated over time, hence an average of the values

have been taken to represent the linearity relationship.

3.5.2 Residence Time Distribution

RTD study has been conducted for mixer speed of 254 RPM at two different feed

rates [87]. Validation result for one case is being reported here.
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Figure 3.6: (a) Fractional API Composition versus time at mixer outlet for experiment
3 and (b) RSD versus time at mixer outlet for experiment 3

Run 1

The feed rate is maintained at 30 kg/hr. Figure 3.10 gives the comparison between

the experimental and predicted data. Figure 3.11 is the linearity plot. Table 3.5 gives

the statistics of the model. The nature of predicted RTD curve has a good agreement

with the experimentally obtained RTD curve as shown in Figure 3.10. However, quan-

titatively a very small deviation has been observed. The predicted and experimental

RTD also have a good linear relationship as shown in Figure 3.11. Furthermore, the

statistical analysis (see Table 3.5) verifies quantitatively an average model fitting and
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Figure 3.7: (a) Linearity plot for API Composition for experiment 3 and (b) Linearity
plot for RSD for experiment 3

linearity.

Run 2

The feed rate is increased to 45 kg/hr. Figure 3.12 gives the comparison between the

experimental and predicted data. Figure 3.13 is the linearity plot. Table 3.6 gives the

statistics of the model. In this case also, the nature of predicted RTD curve shows a

good agreement with the experimentally obtained RTD curve (see Figure 3.12). A small

deviation has been also observed. However, the statistical analysis shows that this error

is minor (SSE=0.005493, SSR=0.028012) and could be acceptable. The predicted RTD
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Figure 3.8: (a) Fractional API Composition versus time at mixer outlet for experiment
4 and (b) RSD versus time at mixer outlet for experiment 4

has a good linear relationship with the experimental RTD as shown in Figure 3.13 and

further verified through statistical analysis (see Table 3.6).

3.6 Multiscale DEM-PBM model results

3.6.1 DEM Simulation (in collaboration with Dr. Atul Dubey)

In EDEMTM , a commercial mixer (Gericke GCM250 TM ) with impeller blades in al-

ternating forward and backward orientation has been simulated. The details regarding

the mixer blade geometry has been elaborated by Dubey et al [70]. Figure 3.14 gives
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Figure 3.9: (a) Linearity plot for API Composition for experiment 4 and (b) Linearity
plot for RSD for experiment 4

a snapshot of the mixer on EDEMTM . The length and diameter of the mixer are 330

mm and 100 mm respectively. Equal number of partictles each of component A and

B (or API and excipient as the system may be) are introduced into the mixer using

two feeders discharging particles on either side of the inlet. The two components are

completely segregated in the beginning. Table 3.7 gives the details about the parti-

cle properties, particle-particle, particle-blade and particle-wall interaction parameters

used in the simulation. A feed rate of 1990 particles per second and an impeller speed of

250 rpm have been maintained. Normal particle size distribution with a mean radius of
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API Composition

Correlation 0.987291
R2 0.973382
Adjusted R2 0.973111
SSR 0.00369
SSE 0.001355

Relative Standard Deviation (RSD)

Correlation 0.974142
R2 0.940338
Adjusted R2 0.939729
SSR 0.007651
SSE 0.005737

Table 3.4: Statistics for experiment 4

RTD

Correlation 0.815995
R2 0.540216
Adjusted R2 0.494238
SSR 0.058952
SSE 0.034753

Table 3.5: Statistics for RTD-run 1

1mm with 5 % standard deviation has been used. The simulation runs for 260 seconds.

The simulation is post-processed to obtain the axial velocities, radial velocities and

particle IDs. In a DEM simulation, each particle is assigned a unique number known

as the particle ID. These data are then used to obtain the RSD as a function of mixer

length and time, rate of outflow, blend composition at discharge and RTD.
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Figure 3.10: RTD vs Time for feedrate of 30 kg/hr (run 1)

RTD

Correlation 0.831781
R2 0.625658
Adjusted R2 0.57218
SSR 0.028012
SSE 0.005493

Table 3.6: Statistics for RTD-run 2
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Figure 3.11: Linearity Plot for RTD at a feedrate of 30 kg/hr (run 1)
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Figure 3.12: Linearity Plot for RTD at a feedrate of 45 kg/hr (run 2)
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Figure 3.13: Linearity Plot for RTD at a feedrate of 45 kg/hr (run 2)

Figure 3.14: DEM snapshot of the mixer
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Particle properties

Shear modulus 2E6Nm−2

Young’s modulus 6.06E6Nm−2

Poisson’s ratio 0.33
Density 1500kgm−3

Diameter 2mm
Normal size distribution with SD 0.2

Particle-particle interactions

Coefficient of restitution 0.1
Coefficient of static friction 0.5
Coefficient of rolling friction 0.01

mixer walls

Material Steel
Shear modulus 7.93E10Nm−2

Young’s modulus 2.403E11Nm−2

Poisson’s ratio 0.33
Density 8000kgm−3

Blades

Material Steel
Shear modulus 7.93E10Nm−2

Young’s modulus 2.403E11Nm−2

Poisson’s ratio 0.33
Density 8000kgm−3

Particle-blade interactions

Coefficient of restitution 0.1
Coefficient of static friction 0.4
Coefficient of rolling friction 0.01

Particle-wall interactions

Coefficient of restitution 0.1
Coefficient of static friction 0.4
Coefficient of rolling friction 0.01

Table 3.7: DEM simulation parameters



52

In order to calculate the net outflow, a bin is formed at the discharge. The IDs of the

particles present in this bin are obtained at each time step for one time frame. Few

particle IDs may get repeated between any two consecutive time step because some

particles stay in the bin for more than one time step. A code has been written to

find the outflow in terms of total number of particles being discharged per time step.

The code compares the particle IDs of every two consecutive time step, eliminates the

particle IDs encountered in the previous time step and increases the particle count

by one whenever a new particle ID appeares. Thus the total rate of particle flow at

the outlet is calculated. In the next step, the particle IDs are obtained separately for

each particle of component A and B at the discharge so that the individual flowrates

can be calculated. From this information, component A composition and RSD can be

calculated for every time step with the help of Equations 2.10 and 2.11 respectively. In

order to determine the variation of RSD with the mixer length, the mixer is divided

into 10 × 10 bins both axially and radially. The individual numbers of particles for

components A and B in each bin are obtained at the last time step. RSD values

averaged over the mixer length are calculated using equation 2.11.

In order to calculate RTD, the mixer run has been simulated until the mass hold-up

in the mixer reached a near-constant value, indicating that a steady state has been

achieved. The hold-up starts at zero at the beginning of the simulation and will rise

quasi-linearly in the beginning as the particles collect inside the mixer. Once the par-

ticles start exiting the mixer, the curve will flatten and it turns into a horizontal line

when steady state is reached. At this point the number of particles entering the mixer is

about the same as those exiting. In the DEM simulation with the parameters shown in

table 3.7, steady state has been typically achieved at around 50s. After the steady state

has been achieved, the particles that are fed to the mixer within a 1-second window are

tagged. These particles are tracked until they cross the weir at the outlet of the mixer.

The time taken by each tagged particle to cross the weir is recorded as the residence

time of the particle. The simulations are run at steady state for time intervals long

enough so that at least 95 percent of the tagged particles are retrieved at the outlet. A

histogram is created using 1-sec time bins and the number of particles in each time bin
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is plotted against time. The RTD, E(t), has been calculated by normalizing the area

under the concentration-time curve.

3.6.2 Multiscale DEM-PBM model

The multiscale model has been simulated with gPROMSTM (Process Systems Enter-

prise) as the platform. The mixer domain has been discretised into 10 bins each in

axial and radial coordinate axes. The width of the bin along the axial and radial coor-

dinates are 33 mm and 10 mm respectively. It is important to determine and suitably

incorporate the velocity values (i.e., the axial and radial velocities) into the PBM. Each

compartment has its own radial and axial velocity values. The DEM output values (ax-

ial and radial particle velocity) have been extracted after every 5 seconds (starting from

t = 0 till the final time point t = 260s) as excel sheets and then imported in the PBM

(written in gPROMSTM ) as foreign object. The velocity values (Vf ,Vb,Vr) have been

updated every 5 seconds in the PBM for a total time of 260 seconds. It should be noted

that a more frequent update of velocities can be implemented, given that in DEM the

velocities are calculated each time in the order of micro-seconds. However, the focus of

this study is on the computational efficiency of the model without compromising on too

much accuracy of results. Equal number of components A and B particles have been

introduced in the mixer. Equations 2.11-2.13 are used to determine the CQAs. In order

to determine the RTD, first component B stream has been allowed to run through the

mixer. A pulse input of component A particles has been introduced at t=50 seconds

after the steady state is reached.

Combining DEM with PBM requires detailed understanding of both the models and

the establishment of a well defined interface between them. The model generated CQAs

as explained earlier depend on the input parameter space. In the following sections,

the robustness of the multiscale model has been tested by varying few of the input

parameters (i.e. dimensions of the mixer and introduction of noise in the feed rate).
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Effect of the mixer dimensions

Knowledge of minimum mixer length and diameter required to fulfill the CQA require-

ments is essential from an equipment design point of view. Figure 3.15a and 3.15b

represent the RSD versus time (at the mixer outlet) and axial length (at the end time

point) respectively for change in mixer length while diameter is kept constant. The

RSD decreases with time as well as over the axial length of the mixer. The axial length

has been represented in terms of compartment number (1 to 10). It can be seen from

the graphs that RSD decreases with increase in the mixer length. This is because as

length increases, mixture is retained within the mixer for a longer time thus giving it

more time to get mixed. And the final product obtained is more uniform with reduced

variability. Similarly figures 3.16a and 3.16b show how RSD varies with change in di-

ameter of the mixer when the length is fixed. It is seen that the mixture variability

increases with increase in the diameter.

Effect of Noise

This section investigates how a mixer will respond to a possible perturbation in input

flowrates. The usual source of disturbance at the inlet of the mixture is refilling of the

feeder [88]. The flowrate fluctuations at the mixer inlet should be minimized so that

the properties of the output stream from the mixer are not affected. It has been shown

that a continuous mixer can dampen out variability from the feeder [29]. Noise has

been added by adding a variance term to flowrate of the inlet stream which selects a

value over a normal distribution. The standard deviation of the normal distribution has

been varied in order to get an idea of the maximum allowable perturbation such that

the output stream properties are not changed. Figure 3.17 shows how the fractional

composition of component A varies at the outlet with time as the degree of perturbation

changes. It can be seen that all the cases except the one where the standard deviation

is 0.3 almost overlap. Figures 3.18a and 3.18b represent how the RSD changes with

change in degree of perturbation. From figure 3.18a, it can be seen that the RSD

deviates slightly for standard deviation of 0.3 whereas the rest overlap. Change in RSD
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Figure 3.15: (a) RSD versus time at mixer outlet for change in mixer length and (b)
RSD versus axial length at the time end-point for change in mixer length

with respect to time is not very evident as degree of perturbation changes because RSD

approaches zero from a high initial value for all the cases.

This means that the developed model is robust and the mixer can eliminate any distur-

bance of small magnitude present in the inlet stream provided the degree of perturbation

is within range.

The multiscale PBM-DEM model demonstrated good qualitative agreement with ex-

perimental studies as well as full featured DEM simulations [89, 17, 90].
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Comparison of multiscale PBM-DEM with Full DEM Simulation

The model outputs (i.e., RSD, API composition and RTD) have been obtained from the

multiscale model and compared with that obtained by post-processing the full DEM

simulation. The values obtained from the two models have been normalized and then

compared against each other. It should be noted that the legend “gPROMS” used in the

plots stands for the multiscale DEM-PBM model written in gPROMSTM . Figure 3.19

depicts the RTDs obtained from the DEM and gPROMsTM model. The plot shows

that there is good qualitative agreement between the methods. Residence time can

be increased by increasing the length and decreasing the mixer speed. Increasing the

length or decreasing the mixer speed will have considerable effect on other CQAs and

cost. Hence it is crucial to optimize the mixer performance as a function of processing

conditions and formulation properties. An RTD study may be helpful in such type of

process optimization.

Figure 3.20a and 3.20b show how the RSD varies with mixer length and time respec-

tively. The overall RSD decreases over the mixer length for both DEM simulations and

the multiscale model (gPROMSTM ) simulation. It can be noted that in DEM there are

spikes occurring in RSD for compartments 2,4,7 and 8. On the other hand the decrease

in RSD in case of multiscale model is smooth. The RSD at discharge decreases over

time for both the models as the system turns two segregated streams of components

into more uniform blend. This shows that there is qualitative agreement between the

two models as far as the mixing dynamics is concerned. Both the plots show that the

DEM results are very noisy and this is an inherent property of the simulation which

assumes large sized particles due to which relatively small number of particles reside in

the mixer or exit the mixer at any moment of time. On the other hand the multiscale

PBM-DEM model shows very gradual variation of the properties. Figure 3.21 repre-

sents the component A concentration of the mixture at the outlet as a function of time.

The steady state value is 0.5 since same amount of both the components have been

taken at the inlet. The fractional composition values for DEM again seem to highly

fluctuate about the steady state whereas they change gradually in case of the multiscale
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PBM-DEM model.

Figure 3.22 represents how the particle flowrate at the discharge vary with time. Both

the multiscale model and DEM results fluctuate. This is because powder flow cannot

be explained on the basis of first principles unlike fluid flow. In a continuum phase

such as a fluid, a perfect steady-state is possible because the inlet and outlet flowrates

can match exactly, which is not possible with discrete particles. Hence the concept of

perfect steady state is not realised in powder system. There are several ways in which

any two particles can interact with each other as well as with the mixer wall. As a result

the particle-particle interactions and particle-wall interactions will have a pronounced

effect on the powder flow. But the fluctuations seem to reduce over time. Overall, it

can be seen that within acceptable error due to numerical noise, the multiscale is able

to qualitatively capture the dynamics of the mixing process as demonstrated by a full

DEM simulation. Moreover the multiscale PBM-DEM model is less noisy and more

gradual while reporting the values of the CQAs.

Comparison of simulation time between DEM and PBM

All simulations have been performed using a desktop computer with a 2.94 GHz Intel

(Core i7) processor with 8 GB RAM. The PBM-DEM model has been simulated for the

same time interval as the DEM simulation. The full DEM took 6.5 days running on a 4

core and 2 threads/core processor with a total of 8 workers. The PBM simulation on the

other hand took 30 minutes running on a single core processor using 1 worker. Moreover,

the memory occupancy of the DEM is significantly more, taking up to 90% of available

RAM compared to the PBM which uses up 50% RAM. This clearly demonstrates the

efficacy of using the PBM for control and optimization as opposed to the full DEM

simulation which is not amenable to provide signal feedback given the time (of the

order of days) it takes to perform a simulation. DEM simulation can be run only once

in order to extract the particle level data (particle velocity), which can be fed to the

PBM. Then the PBM can be modified and run as many times as required to extract the

required macroscopic scale variables which affect the overall unit operation and thus

make control and optimization easier because of its lesser time requirement.
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It should be noted that the current PBM simulation takes 30 min in a serial simulation.

Parallel simulation of PBMs using multi-core CPU computing has shown to be efficient

in further reducing the computational time of simulating a PBM thus enhancing its

utility in control and optimization [91, 92].

3.7 Chapter Conclusions

The developed multi-dimensional PBM for the continuous mixing process has been val-

idated. The model is shown to be able to track several experimental runs taken by

varying the process parameters. The statistical analysis shows that the model pre-

dicted data matched very well with the experimental data and the proposed model has

high prediction certainty. A multiscale framework of the multi-dimensional PBM and

DEM has been developed. PBM coupled with DEM forms a basis of one-way coupling.

Variation in several design and process parameters such as mixer dimension and pres-

ence of disturbance or noise in the inlet streams have been considered in order to test

the robustness of the multiscale model. The results thus obtained from the multiscale

framework have been compared with the full DEM simulation. It gives a good qualita-

tive agreement with the trends as seen in DEM. The multiscale model has been shown

to be faster compared to the DEM which is computationally intensive. Therefore, the

multiscale model can be used more effeciently for design and optimization related stud-

ies since the simulation speed is faster and it is also able to store information from both

particle and process levels.
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Figure 3.16: (a) RSD versus time at mixer outlet for change in diameter of the mixer
and (b) RSD versus axial length at the time end-point for change in diameter of the
mixer
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Figure 3.17: Evolution of fractional composition of component A
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Figure 3.18: (a) RSD versus axial length at time end-point for noise addition and (b)
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Figure 3.21: Comparison of evolution of fractional composition of component A
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Figure 3.22: Comparison of evolution of outlet mass flowrate
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Chapter 4

Multiscale model development, optimization and control

of a continuous API purification/processing-downstream

tablet manufacturing operation

• M. Sen, A. Chaudhury, R. Singh, R. Ramachandran, 2014. Two-dimensional

population balance development and validation of a pharmaceutical crystallization

process. American Journal of Modern Chemical Engineering, 1, 13-29.
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445, 29-38.

• M. Sen, A. Rogers, R. Singh, A. Chaudhury, J. John, M. G. Ierapetritou,

R. Ramachandran, 2013. Flowsheet optimization of an integrated continuous

purification-processing pharmaceutical manufacturing operation, Chemical Engi-

neering Science, 102, 56-66.

• M. Sen, R. Singh, R. Ramachandran, 2014. Simulation-based design of an ef-

ficient control system for the continuous purification and processing of active

pharmaceutical ingredients, Journal of Pharmaceutical Innovation, 9, 65-81.

• M. Sen, R. Singh, R. Ramachandran, 2014. A hybrid MPC-PID control system

design for the continuous purification and processing of active pharmaceutical

ingredients, Processes, 2, 392-418

The objectives of this specific aim are to develop an optimized integrated model (in

form of a continuous flowsheet model) which connects four unit operations, namely
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crystallization, filtration and drying followed by mixing (multiscale model developed

in specific aim II) and design an efficient hybrid MPC-PID control strategy for the

same. Crystallization, filtration and drying are the API separation and purification

stages whereas mixing the purified API crystals with one or more desired excipient is

a downstream pharmaceutical unit operation for tablet manufacturing. This partic-

ular flowsheet model will be optimized so that optimal operating conditions can be

determined and the CQAs of the final product are satisfied. This will improve the

process performance and maximize efficiency of the integrated process and also reduce

the chance of producing rejects.

Several recent studies on flowsheet modeling for solid handling processes have been

conducted and reported in the literature [10, 14, 93, 94]. For example a continuous

flowsheet model has been reported by Boukouvala et al [10, 14], which integrates down-

stream tablet manufacturing unit operations (such as powder mixing, roller compaction,

wet granulation, milling and compaction). Such integrated flowsheet models are very

efficient and useful for product quality control and process understanding. However

the pharmaceutical industry needs to fulfill the good manufacturing practices (GMP)

such that the CQAs of the final product are satisfied [11]. It has been seen that the

physical properties of the API crystals (size, shape, purity etc.) has considerable effect

on the product quality of the downstream tablet manufacturing processes. Hence, it is

also necessary to have control over the starting material (API) properties. Since the

physical properties of the API crystal depends on the upstream processing parameters,

care should be taken to ensure that the desired API properties and purity are achieved

by adapting effective separation and purification steps [51]. Since in reality there is

no direct connection between the API purification and downstream processing steps

at present, in this work a continuous process flowsheet integrating API purification,

separation and downstream processing has been developed in order to study the effect

of the upstream process parameters on the downstream product attributes. The devel-

opment of such a model will prevent loss of data between each unit operation and also

lead to better control and optimization of the process as the pharmaceutical industry

transitions to a continuous upstream and downstream operation [95].
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Flowsheet modeling is the latest tool for developing multiscale simulation models de-

picting continuous pharmaceutical unit operations and has proven to have a high level

of accuracy and is cost efficient [10, 14]. There are some of the modeling techniques

which can be used to develop these integrated multiscale models. Black box modeling

is a cost efficient modeling tool whereas a modeling tool based on the first principles is

often found to be more computationally expensive [96]. Optimization of a model based

on a flowsheet simulation has several advantages as it can help to avoid production of

rejects. Both the flow behavior of the particles and the complex interactions between

particles should be accounted for in order to obtain an accurate and predictive model.

There exists prior work on API purification [97, 98] and API/excipient processing [29,

99] but there is a need to study the integration of these unit operations and determine

the effect of upstream API properties on the process variables of the downstream pro-

cessing steps. Establishing a connection between the two will allow the operator to

perform in silico studies to manipulate the upstream process parameters in such a way

that the desired CQAs of the final product obtained from downstream processing steps

can be achieved.

The concept of continuous manufacturing of API has been also evaluated from a techno-

economic perspective to evaluate its economic feasibility [1]. A continuous design frame-

work consisting of synthesis and separation of API has been suggested [100] and a plant-

wide control model describing continuous synthesis and processing of API [95, 101] has

been reported. However there is no work reported on mechanistic model-based analysis

and flowsheet optimization of the proposed continuous manufacturing strategy.

In dealing with a continuous operation that consists of several unit operations connected

with one another, there is a need for real-time process control and monitoring to mini-

mize production of rejects due to faulty machinery or raw materials. This is where PAT

tools are extremely beneficial [102, 103]. Most of the studies on pharmaceutical process

control to date have been focussed on a batch mode of operation, without considering

the connection of upstream and downstream unit operations or the recycle and bypass

streams and their heat interactions. Although there is a need to develop complex mod-

els considering all of these elements, it can increase the overall complexity of the process
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and result in poor control [5, 104]. At present laboratory scale tests are performed for

optimization of solid handling processes, which are very expensive and time consum-

ing [14]. By the application of various modeling tools and databases, several such tests

can be performed incorporating various possible alternatives. Though there are numer-

ous advantages of shifting production, purification and processing stages from batch to

continuous mode, there are several bottlenecks such as process complexity, especially

in solid flow process, that still need to be addressed. Monitoring and control strategies

in place must be effective and timely otherwise the product could fail to conform to

CQAs [2]. Therefore, an effective process control scheme has been suggested for the

flowsheet model as well.

The typical challenges associated with industrial process control are the presence of

multi-variable process interactions between manipulated and controlled variables, mea-

sured and unmeasured disturbances, process delays and several constraints on the input

and output variables [105]. Therefore, the MPC module has been widely used in several

process industries (i.e. petroleum refineries, petrochemicals, bulk chemical production

etc.) as an advanced process control strategy [106]. Some of the advantages of MPC

over conventional regulatory controllers are that it can be easily adjusted to handle the

complex process dynamics; it can efficiently handle the strong interaction among the

process variables; it can easily compensate for large process dead time; it can handle

non-square systems and is easier to tune [107, 108]. However, MPC requires an accurate

process model and a robust optimization scheme which may be computationally expen-

sive. On the other hand, a PID controller is relatively simpler to design and implement

and can be used to control the variables which are comparatively less interactive with

the entire process and which result in a lesser process dead time. Therefore, an op-

timum control strategy is highly desired in which the advantages of both the control

strategies (i.e. both MPC and PID) can be integrated. A hybrid MPC-PID design will

help to optimize the control loop performance, usage of resources and time. Therefore,

a hybrid MPC-PID control loop has been designed and presented in this chapter.

Several researchers have reported a model based control and design for continuous

processing frameworks. Ramachandran et al. [109] have performed an assessment of
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control loop performance for a continuous tablet manufacturing framework via direct

compaction using a simple PID control strategy. Singh et al. [108] have proposed an

advanced control scheme using a MPC-PID hybrid approach for the same. A design of

control system for the continuous tablet manufacturing framework via roller compaction

route [93] and wet granulation route [110] have been reported as well. The study of

various control strategies on downstream tablet manufacturing process is well docu-

mented [111]. Hybrid control strategies have been suggested as a promising scheme for

plant-wide control [112], but it is yet to be applied in pharmaceutical industries. There-

fore, this work presents a scenario where the control loops have been designed with an

advanced control system (MPC) or simple PID control depending on the complexity of

the dynamics.

4.1 Integrated Process

There are several steps involved in the purification and downstream processing of a

chemical compound. These steps can be enumerated as: separation of insolubles, prod-

uct isolation followed by product purification and product polishing [113]. The first two

steps namely separation of insolubles and product isolation mainly aim at capturing the

product in a liquid solvent which is free of particulates and any form of insoluble impu-

rities. Once this is done product needs to be purified. There are several steps available

for product purification and polishing depending on the properties of the product. If

the product is solid and present in the solution in considerable quantities and is not

highly heat sensitive, then crystallization can be chosen followed by filtration and spray

drying.

Assuming that the above steps are applicable in the processing of most pharmaceutical

APIs, the integrated model discussed in this section has been developed. It comprises

of purification and polishing of API followed by its mixing with excipient to get the

final pharmaceutical blend.

In the integrated process, crystallization, filtration, drying and mixing have been con-

nected with each other in the given order. Crystallization will decide the CSD (crystal
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size distribution) primarily and liquid content of the API crystals. Output of the crys-

tallizer (slurry of API crystals in the mother liquor) is connected to the input of the

filter. During filtration the crystals will be removed from the mother liquor. The crys-

tals will be retained in form of cake on the filter medium. The solid cake when dislodged

from the filter medium will enter the dryer. The stream entering the dryer has crystals

with definite size and considerable liquid content as decided during the crystallization

step. In the dryer, wet crystals are dried by removal of the liquid. The liquid content

of the crystals is also brought down to a much lower and acceptable value. Once the

API crystals are separated, purified and dried, they are sent to the mixer where these

are mixed with an excipient to obtain the final pharmaceutical blend. Figure 4.1 below

gives a pictorial representation of the integrated process. Although there is some size

change associated with the drying process, the assumption is that it is minimal and

hence neglected. So the CSD has been decided based on the crystallization process. The

development of first-principle model for each unit operations involved in the integrated

flowsheet model is described in the section below.

Blender

Crystallizer

Filter

Dryer

Feed

Blender

Excipient
API

Final pharmaceutical blend

Figure 4.1: Schematic of the continuous process



71

4.2 Flowsheet Model Development

In this section the mathematical models of the crystallization, filtration and drying

have been discussed. The mathematical model for mixing has been presented earlier in

specific aim I amd II.

4.2.1 Crystallizer

The crystallization model has been adapted from the work of Chaudhury et al. [114].

The crystallization model has been developed based on PBM. In order to model the

crystallization process, the external coordinates have been neglected since the main

phenomenon during crystallization is the change in crystal size [38]. The population

distribution function has been presented as a function of time and internal coordinates

only, assuming homogeneity with respect to the flow.

In this study, a 2-D PBM considering growth in two directions has been implemented,

as shown in Equation (4.1).

∂F (L1, L2, t)

∂t
+
∂(G1(L1, t)F (L1, L2, t))

∂L1
+
∂(G2(L2, t)F (L1, L2, t))

∂L2

= B0(C, t)δ(L1)δ(L2) + Inflow −Outflow (4.1)

Here, the number density, F is a function of the two length directions (L1 and L2).

L1 and L2 represent the internal coordinates to track the change in crystal size. G1

and G2 represent the growth terms in the L1 and the L2 directions respectively and

B0 represents the primary nucleation term. The delta dirac function indicates that the

nucleation is taking place at the smallest grid of the length scale. The growth and the

nucleation terms in Equation (4.1) can be written as shown in Equations (4.2), (4.3)

and (4.4):

G1 = kg1

(

C −Csat

Csat

)g1

(4.2)
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G2 = kg2

(

C −Csat

Csat

)g2

(4.3)

B0 = kb

(

C − Csat

Csat

)b

(4.4)

Here, C is the concentration of solute in the solution, Csat is the solubility of the

solute at the particular thermodynamic conditions (room temperature and pressure),

kg1, kg2, kb, g1, g2, b are the various empirical parameters used to represent growth and

nucleation in the form of a power law expression. Secondary nucleation, dissolution,

aggregation and breakage of crystals are neglected but can be incorporated into the

overall model if needed. The empirical parameters have been determined by aligning

the model with realistic experimental conditions [114]. The crystallization model has

been validated against experimental data from Bristol-Myers Squibb Co., NJ.

Another internal coordinate is added to the PBE which tracks the amount of liquid

present in the crystals. From the works of Miki et al. [115], we have adapted the

calculations for the mother liquor inclusion in a KDP crystal. The size coordinate

considered in the paper is uni-dimensional, whereas in our work we have considered

two length dimensions. In our case an averaged equivalent length has been obtained by

calculating the diameter of a sphere with an equal amount of volume as the cuboidal

crystal. Considering the width of the crystal to be L1, the equivalent length of the

crystal can be expressed as shown in Equation (4.5).

Leq(L1, L2) = (
6

π
× L2

1L2)
1

3 (4.5)

The curve representing a residence time of 0.75 hr in figure 6 (refer to Miki et al. [115]),

which is a plot of liquid inclusion rate versus crystal size, has been considered for our

study. The expression shown in Equation (4.6) has been obtained after fitting the data

using a linear regression.

Liq(Leq) = 2 × 10−5L2
eq − 3 × 10−9Leq + 10−13 (4.6)

From Equation (4.1), it can be seen that the number density of particles is dependant
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on the solute concentration thus indicating the need for a mass balance equation for

updating the solute concentration in the solution over time. The mass balance equation

can be written as shown in Equation (4.7) [38].

dC

dt
= −ρc

∫ ∞

0

∫ ∞

0
F (L1, L2, t)(2G1(L1L2 − L12) +G2L12)dL1dL2 (4.7)

where, ρc is the density of the crystal. The solubility of the solute in the solution is also

a function of the temperature of the crystals. Hence, an energy balance equation is also

needed to quantify the change in the temperature, T over time. Since this is a case of

cooling crystallization, the temperature profile (cooling schedule) is an important factor

in determining the efficiency of the process. The cooling schedule can be expressed as

a function of time. Figure 4.2 presents the three different temperature profiles.
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Figure 4.2: Cooling schedule for crytallization

Csat has been expressed as a function of temperature as shown in Equation (4.8). The

expression has been obtained by fitting experimental data as obtained from Bristol-

Myers Squibb Co., NJ [114].
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Csat = 2.7357T − 40.925 (4.8)

The output variables of interest from crystallization are population distribution function

F , particle diameter Dp and porosity of crystals ε. These output variables become the

inputs for the filtration process.

4.2.2 Filter and dryer

The filtration and drying model have been adapted from McCabe et al. [116] and

Mezhericher et al. [117] respectively. Both the models have been described in detail in

the work of Sen et al. [118]

4.2.3 Filter

Main design equations of cake filter can be given as in Equation (4.9)(adapted from [116]:

dV (L1, L2, L3, t)

dt
=

A2∆P

µ(α(L1, L2, L3, t)cV (L1, L2, L3, t) +RmA)
(4.9)

Here L1 and L2 are the two solid length directions and L3 is the counter for liquid length

which gets occluded into the solid crystals. V (L1, L2, L3, t) is filtrate volume, A is the

fliter surface area, ∆P is pressure drop across the filtering medium, µ is viscosity of the

fluid being sucked in through the septum, α is specific cake resistance, c is the mass

of particles deposited in the filter per unit volume of filtrate and Rm is filter medium

resistance.

c and α can be found as given in Equations (4.10) and (4.11):

c =
CF

1 − (mF

mc
− 1)CF /ρs

(4.10)

where CF is concentration of solids in the slurry and ρs is density of solid. mF and mc

are mass of wet and dry cake respectively.

α(L1, L2, L3, t) =
150(1 − ε(L1, L2, L3, t))

dp(L1, L2, L3, t)ε(L1, L2, L3, t)3ρs
(4.11)
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where ε is porosity of the cake (an input from crystallization) and dp is the crystal

diameter (an input from crystallization).

Assuming that there are no solid particles present in the filtrate, mass of wet cake

deposited on the septum can be calculated as shown in Equation (4.12):

mF (L1, L2, L3, t) = F (L1, L2, L3, t)Vp(L1, L2, L3, t)ρsNa (4.12)

where F is the population density function (an input from crystallization), Vp is particle

volume and Na is avogadro number. The output of filtration will be connected to dryer.

Since there is no size change associated in filtration hence population density function

F and crystal diameter dp will remain same as obtained from crystallization. mF , F

and dp become inputs for the dryer.

4.2.4 Dryer

For drying a model has been developed where the liquid is being evaporated from the

solid surface (adapted from Mezhericher et. al. [117])

The change in particle diameter with time is given by Equation (4.13):

ddp(L1, L2, L3, t)

dt
= −

mv(L1, L2, L3, t)

ρl2Πdp(L1, L2, L3, t)2
(4.13)

where mv is evaporation rate and ρl is liquid density. The initial condition for diameter

dp is an input from filtration model.

Temperature profile of particle can be given as in Equation (4.14):

hfgmv(L1, L2, L3, t) + cpsρavg(L1, L2, L3, t)Vp(L1, L2, L3, t)
dTp(L1, L2, L3, t)

dt

= h(Tg − Tp(L1, L2, L3, t))2Πdp(L1, L2, L3, t)
2 (4.14)

where hfg is speacific heat of evaporation, ρavg is average density of wet particle, Vp is

particle volume , h is heat transfer coefficient, cps and Tp are specific heat capacity and

temperature of particle respectively.
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Evaporation rate is given as shown in Equation (4.15):

mv(L1, L2, L3, t) = k(L1, L2, L3, t)(xp − xeql)2Πdp(L1, L2, L3, t)
2 (4.15)

where k is mass transfer coefficient, xp is liquid content of solid particle (an input from

filtration) and xeql = φ ∗ Abosolute humidity such that φ is relative humidity.

The heat and mass transfer coefficients are given as shown below in Equations (4.16)

and (4.17):

h(L1, L2, L3, t) =
Nu(L1, L2, L3, t)kg

dp(L1, L2, L3, t)
(4.16)

k(L1, L2, L3, t) =
Sh(L1, L2, L3, t)Dv

dp(L1, L2, L3, t)
(4.17)

such that Nusselts number is given by Equation (4.18):

Nu(L1, L2, L3, t) = (2+0.6Re(L1, L2, L3, t)
1

2Pr
1

3 )(1+(Cpv ∗(Tg−Tp)/hfg))
−0.7 (4.18)

and Sherwood number is given by Equation (4.19):

Sh(L1, L2, L3, t) = (2+0.6Re(L1, L2, L3, t)
1

2Sc
1

3 )(1+(Cpv∗(Tg−Tp)/hfg))
−0.7 (4.19)

kg is the conductivity coefficient of drying gas, Cpv is the specific heat coefficient of

vapour and Reynolds number Re(L1, L2, L3, t) = ρlUdp(L1, L2, L3, t)/µ with U being

the superficial velocity of the drying gas, Sc is Schimdt number and Pr is Prandtl

number.

The outflow from dryer is given as shown below in Equation (4.20):
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Massout(L1, L2, L3, t) = mF (L1, L2, L3, t) −mv(L1, L2, L3, t) ∗ F (L1, L2, L3, t) ∗Na

(4.20)

mF is obtained from filtration. The output of dryer is connected to the input of mixer.

Massout becomes the initial population density function for the mixer.

4.2.5 Numerical Technique

The PBM which is a multi-dimensional hyperbolic partial differential equation (PDE)

has been discretized using a central finite difference scheme of order 6 followed by

integration using an implicit backward differential formula (BDF) technique. Both

the discretization and integration have been performed using gPROMSTM built-in

functions, that ensure stability of the overall system and minimal numerical errors and

numerical diffusion.

4.2.6 Input and Output Variables

Since the framework is continuous, hence all the input and output variables of each unit

operation have been summarised in table 4.1. Inputs to crystallizer are seed rate and

cooling schedule or cooling temperature profile (T). Outputs from crystallizer are crystal

size distribution (CSD), average mean diameter (d50) and liquid content of the crystals

(x). All the output variables from crystallizer become the input for filter. The output

from filter is the mass of wet cake (mF ) which becomes the input mass flowrate for dryer.

Output mass flowrate from the dryer (massout) becomes the input mass flowrate of

API crystals to the mixer. Outputs of the mixer are RSD and API composition which

are two CQAs to decide the uniformity of the blend. The seed particles fed to the

crystallizer are of uniform size, each having a surface area of 0.0225 µm2. Table 4.2

lists the parameters used for crystallization. The usage of these empirical parameters

has been justified by Chaudhury et. al [114].
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Crystallizer

Input Variables Seed rate, T

Output Variables CSD, D50, x

Filter

Input Variables All output variables of crystallizer

Output Variables mF

Dryer

Input Variables Output of Filter

Output Variables massout

Mixer

Input Variables massout from dryer

Output Variables RSD, API composition

Table 4.1: Input and output variables

Parameter Value Units

kg1 9.4 × 10−6 m/s
kg2 7.8 × 10−6 m/s
kb 7.4 × 10−6 particles/m3/s
b 1.14 Dimensionless
g1 1.3 Dimensionless
g2 1.84 Dimensionless

Table 4.2: Kinetic parameters for crystallization

4.3 Multiscale coupling of DEM with PBM

The flowsheet model that has been developed can store multiscale information (i.e.

both from DEM and PBM). CSD is primarily decided during the crystallization process.

Therefore the PBM for crystallization has been run first. It is seen that the CSD does

not change much beyond 250 seconds. The mean and standard deviation of the CSD

as obtained from the crystallization process at time t = 250 seconds has been used to

create the particle factory in the DEM simulation of the mixer. The details on the DEM

simulation has been provided in specific aim II. Once the DEM simulation of the mixer

is complete, it has been post-processed to obtain the axial and radial velocities. The

axial and radial velocity values have been obtained every 25 seconds and imported into

the PBM model of the mixer in gPROMSTM as a foreign object. In other words the

velocity values for the mixer gets updated every 25 seconds. More frequent updating

to improve accuracy can be performed at the expense of computational time. The

schematic below figure 4.3 shows how DEM interacts with the PBM.
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Figure 4.3: Coupling of DEM with PBM

4.4 Performance of the flowsheet model

4.4.1 Crystallization

The variables of interest from crystallization are average crystal diameter and CSD. The

graph below as seen in figure 4.4 gives the average diameter of the crystals. The average

crystal diameter increases with time as the crystal growth is taking place. Similarly

figure 4.5 shows the CSD obtained. The mean size reported is 71.8 µ m. It is always

desired to obtain a narrow CSD or uniform size distribution for a uniform quality blend.

A uniform size distribution can be achieved by controlling the cooling profile of any given

crystallization system. Figure 4.6a and 4.6b represent the crystal growth rate and rate

of nucleation respectively. It can be seen that the crystal growth rate and the rate of

nucleation increases with time initially, reaches a maxima and then starts decreasing

as the solute saturation concentration decreases. Secondary nucleation (although not

explicitly modeled) is not favored because it typically widens the range of CSD. Hence

in an optimization framework, it is generally desired to maximize the crystal growth

rate and minimize nucleation. Therefore, the model provides useful information about

the respective growth and nucleation rates which can be utilized in an optimization

framework.
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Figure 4.4: Average Diameter of crystal versus Time

Once the crystals are formed they are sent to the filter for separation of the crystals

from the mother liquor.

4.4.2 Filtration and Drying

Filter pressure gradient is an important factor to decide the efficiency of the filtration

process. By controlling the pressure gradient, one can optimize the filtration rate.

Figure 4.7 represents the volume of filtrate obtained versus time. The graph gives a

qualitative representation as how the total filtrate volume collected increases with time

as the crystals are separated from mother liquor.

Once the crystals are separated from mother liquor they are sent to the dryer for removal

of the occluded liquid. Temperature of the drying medium is one of the factors which

is important for deciding the performance of the dryer. During drying the crystals are

sprayed on a hot medium due to which the crystals will gain heat. The solvent consid-

ered for crystallization is ethylene glycol which has a boiling point of 470.3 K [119]. The

particle surface temperature will increase and the occluded liquid will get evaporated
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Figure 4.5: Crystal size distribution

as it gains the latent heat of vaporization. Figure 4.8 gives the temperature profile of

the crystals. The graph gives a qualitative representation of increase in temperature

with time.

Once the crystals are dried, they are sent to mixer to be mixed with the excipient.

4.4.3 Mixing

The CQAs associated with mixing which decide the blend uniformity are RSD and API

composition of the final product blend. The lower the RSD, better is the uniformity of

the blend. Figure 4.9a shows how RSD varies with time at the mixer outlet. Figure 4.9b

shows how RSD varies with mixer length at the end time point. It can be seen that

the RSD decreases over time as well as mixer length. This shows that the product gets

well mixed with time. One of the important process parameters for mixing is mixer

RPM. The axial and radial velocity values depends on the RPM value as well as the

CSD. By controlling the mixer RPM, one can optimize the RSD and API composition.

Figure 4.10 shows how the API composition (as a fraction) varies with time. The
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Figure 4.6: (a) Crystal growth rate and (b) Rate of nucleation

fractional API composition in the inlet stream is 0.4 and the mixer RPM has been

maintained at 250. It can be seen that the outlet API fraction approaches the expected

value (0.4) with time, which confirms the validity of the overall model.

4.4.4 Effect of different temperature cooling profiles

As previously highlighted, three kinds of temperature cooling profiles have been con-

sidered (Refer to Figure 4.2). As the cooling schedule changes, crystal size distribution

will also change. Figure 4.11 presents the different CSD for each cooling schedule. Se-

lecting the right cooling schedule for a particular process is very important and can be
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Figure 4.7: Total volume of filtrate collected versus Time

an interesting optimization study. The CSD information obtained from each cooling

schedule has been used to run a DEM simulation of the mixer, for that particular case

in order to obtain the particle velocities which are then fed to the mixing PBM. It is

desired to design a process which will reduce the RSD (increase uniformity) of the final

pharmaceutical blend. Figure 4.12 shows how the RSD varies along the mixer length.

Although RSD decreases over the mixer length, the final RSD value of the linear cool-

ing schedule is the least among three. Figure 4.13 shows how the API composition at

the mixer outlet changes with change in the cooling schedule. The API composition

approaches the expected value with time for all the cases. It can be seen from the plot

that the linear profile reaches the expected value before the convex and concave profile.

As the end time point approaches, all the three cases coincide with each other. How-

ever since the linear profile reaches the expected value faster than the other two profiles,

hence in our system the linear profile is expected to give the optimized result. This

fact is also supported by Figure 4.12 which shows that final RSD is the least for linear

profile. However this will vary from one system to another and a detailed optimization
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Figure 4.8: Particle temperature versus Time

study is necessary before deciding on the cooling schedule.

4.5 Flowsheet optimization

The flowsheet optimization has been performed with the help of built-in optimization

solver of gPROMSTM . The developed model consists of 11991 variables, of which

11978 are unknown (Algebraic: 11040 and differential: 938) and 13 are known. The

number of equations is 12916, of which there are 938 initial conditions and 11978 are

model equations. The gPROMSTM solver which has been used to solve this problem

is known as CVP SS (gPROMSTM terminology). This solver decides the duration of

each control interval and values of the control variables over it. The dynamic model is

then solved over the entire time horizon such that the time-variation of all variables in

the system is calculated. The time variant values of the variables are used to determine

the objective function value. The solver revises its choice at every step and the same

procedure is repeated till convergence to the optimum is achieved. In this optimization

framework all the decision variables are continuous, hence the SRQPD solver has been
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Figure 4.9: (a) RSD versus time at mixer outlet and (b) RSD versus axial length at
final time point

chosen. The solver produces locally optimal values of the control variables. The basic

algorithm followed by the gPROMSTM solver SRQPD is sequential quadratic pro-

gramming (SQP). gPROMSTM follows a gradient based optimization schedule where

the solver performs a sensitivity analysis to determine the direction of steepest descent

along a line search. A step is taken along the line search trajectory and the values of

objective function and constraints are evaluated. If there is a reduction in the value of

the objective function then the step is accepted. A new iteration is started after one

successful step from the newly accepted point, a new search direction is determined

and the procedure is repeated. If there is an increase in the value of the objective
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Figure 4.10: Fractional composition of API at outlet versus Time

function, then the step length is reduced and a new point of evaluation is located by

maintaining the direction of search. The process of step reduction is repeated until the

solver can determine an improved point of evaluation so that a new iteration can be

started. The scaling options are built-in within the solver. Appropriate scaling to be

applied to the optimization decision variables, control variables and length of the time

horizon is chosen. The convergence criterion is improved estimate based which can be

explained based on Equation (4.21) [120].

a+
b

|f | + 1
≤ εo (4.21)

a and b in Equation (4.21) can be given as shown in Equations (4.22)-(4.23)

a =

meq
∑

i=1

|ci| +
m
∑

i=meq+1

max(0,−ci) +
n
∑

j=1

max(0, (xL
j − xj)(xj − xU

j )) (4.22)
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Figure 4.11: Comparison of crystal size distribution for different cooling schedule

b = |∇xf
Td| +

m
∑

i=1

|λici| +
n
∑

i=1

|µi|max(0, (x
L
j − xj)(xj − xU

j )) (4.23)

In Equations (4.21)-(4.23) εo is the optimization tolerance, f is the objective function,

c is the constraint vector, meq is the number of equality constraints, m is the total

number of constraints, n is the size of the variable vector x (number of variables), xL
j

and xU
j are the lower and upper bounds of variable xj, λj is the Lagrangian multiplier

corresponding to the equality constraint imposed on variable xj , µj is the Lagrangian

multiplier corresponding to the bound constraints imposed on variable xj and d is the

vector of corrections to x (i.e. the change in x during the current step). The value of

εo is 1E-12. Maximum and minimum line search step length values are 1.0 and 1E-5

respectively. The maximum number of line search step is 20.

The simulation has been run for 400 seconds. The optimization took 11 iterations to

converge and a total of 721 seconds to run with a total CPU time of 715.452 seconds

running on a 4 core and 2 threads/core processor with a total of 8 workers.

The dynamic PBM after discretization can be represented functionally as given in
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Figure 4.12: Comparison of RSD versus axial length at final time point for different
cooling schedule

Equations (4.24) and (4.25) [86]:

ẏ(t,p) = f(y(t,p),p),∀t ∈ (0, tf ] (4.24)

y(0,p) = yo (4.25)

where y is the population distribution function and p are the model parameters. The

process parameters in this case have been chosen to be cooling schedule during crys-

tallization (T), pressure difference during filtration (∆P ), temperature of the drying

medium (Tg) during drying and mixer rpm during mixing.

4.5.1 Objective function formulation

The objective can be formulated separately for each unit operation. The aim of the

crystallization process is to obtain crystals with uniform size which can be achieved by

minimizing rate of secondary nucleation and maximizing crystal growth rate [121]. This
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Figure 4.13: Comparison of API Composition versus time for different cooling schedule

can be achieved by manipulating the cooling schedule. In case of filtration, the rate of

filtration should be maximized. This is possible by manupulating the pressure gradient

across filter medium. During drying, the rate of evaporation should be maximized which

can be achieved by manipulating the temperature of drying medium. The RSD and

API composition of the final blend obtained from the mixer are the two most important

CQAs of the final blend. Minimal RSD is desired and the API composition should be

equal to the expected value (as desired in the final pharmaceutical formulation). The

most important parameter which will affect the CQAs is mixer rpm (speed). Hence in

case of mixer, RSD and the difference between API composition in final blend and the

expected API composition in the final pharmaceutical formulation, should be minimized

by manipulating the mixer rpm. The overall objective function can be written as shown

in Equation (4.26).
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ΩTotal(p) =
Rate− 0.5(Ratemax +Ratemin)

0.5(Ratemax −Ratemin)
+

1
V̇
− 0.5( 1

V̇

max
+ 1

V̇

min
)

0.5( 1
V̇

max
− 1

V̇

min
)

+
1

ṁv
− 0.5( 1

ṁv

max
+ 1

ṁv

min
)

0.5( 1
ṁv

max
− 1

ṁv

min
)

+
RSD − 0.5(RSDmax +RSDmin)

0.5(RSDmax −RSDmin)
+
Cdiff − 0.5(Cmax

diff + Cmin
diff )

0.5(Cmax
diff − Cmin

diff )
(4.26)

In Equation (4.26), Rate =
Rsecondary nucleation

Rgrowth
and Cdiff = abs(API composition at mixer outlet−

Expected API composition)

Rsecondary nucleation is rate of secondary nucleation, Rgrowth is rate of crystal growth, V̇

is rate of filtration and mv is rate of drying/evaporation. The overall objective function

as given in Equation (4.26) should be minimized. Expected API composition is the

desired amount of API in the final pharmaceutical blend. In this case the expected

API composition is 0.4.

4.5.2 Principal Component Analysis based Reduced Order Model

(in collaboration with Amanda Rogers)

This discrete-element-reduced order model (DE-ROM) has been developed by Bouk-

ouvala et al. [122]. The DE-ROM has been applied for predicting the velocity values

for the flowsheet model. The DEM simulations Have been used previously in order to

obtain the velocity information for the mixer PBM. However, they are computationally

very expensive and are therefore not readily integrated into flowsheets for process sim-

ulation and optimization. It is possible to take advantage of the information obtained

from DEM simulations for process simulation purposes through the use of reduced or-

der models (ROM). In the optimization study, a ROM based on principal component

analysis (PCA) has been implemented in order to estimate the particle velocities within

the mixer. This section will provide a brief overview of PCA based ROM as it pertains

to the current work. Interested readers are referred to Boukouvala et al. and Lang

et al. [122, 123, 124] for a detailed theoretical development and discussion of reduced

order models based on PCA.

Principal component analysis (PCA) is a statistical tool that can be used to reduce



91

the dimensionlity of a dataset through orthogonal transformation resulting in a set

of principal components that are orthogonal to one another. The components are

arranged in order of decreasing percent variance explained (PVE) such that the first

principal component explains the most variability in the original dataset and the last

principal component explains the least. The number of components to use in a PCA

model is selected such that the desired cumulative PVE is obtained. The dataset to be

transformed using PCA is denoted as a matrix X consisting of n observations (rows)

and m variables (columns). The results of PCA can be expressed in terms of scores,

the transformed variables, and loadings, the weights by which the original data can

be multiplied in order to obtain the corresponding scores. For a PCA model with a

components, the scores matrix is denoted as T and is of size n by a. The loadings

matrix is denoted as P and is of size m by a. Thus the original data matrix, X, can

be reconstructed from the scores and loadings as shown in Equation (4.27), where E is

an error term.

X = TP ′ + E (4.27)

The objective of PCA based ROM is to develop a mapping between a vector or matrix

of inputs U and the scores of the PCA model. U is of size n by k where k is the

number of input variables under consideration and n is the number of observations for

which data has been obtained. The form of this U → T mapping is determined by

the modeler. Lang et. al [124] have described the use of Neural Networks, but other

methods such as Kriging or multivariate regression may also be used provided a good

fit can be obtained [123]. The mapping can be generalized as shown in Equation (4.28),

where β is a matrix containing a rows of mapping coefficients and ui is a specific instance

of input variables u1i, u2i...., uki.

ti = βui (4.28)

Once the input to scores mapping has been developed, it is possible to predict the score

vector ti corresponding to a new set of inputs using Equation (4.28). From the score
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vector, the corresponding data vector xi can be obtained through multiplication of the

score vector with the loadings matrix P as shown in Equation (4.27).

In the mixer case study of interest, the data matrix X consists of velocity information

obtained from DEM simulation. The input matrix U contains two variables, u1 = rpm

and u2 = time. A PCA model with six principal components was sufficient to achieve

95 percent variance explained and multivariate regression was used to map the inputs

to the PCA scores.

4.5.3 Sensitivity analysis

A continuous system is highly interactive, therefore each of these parameters (chosen

to be estimated from each unit operation) will have different sensitivity towards the

final objective of the overall system. A dynamic sensitivity analysis has been con-

ducted on the different parameters, which have been estimated in order to determine

the order of sensitivity of each of the entire unit operation. A perturbation has been

introduced within these parameters and its effect on the final objective function has

been determined. The sensitive parameters will have more effect on the process. Since

the sensitivity analysis is dynamic in nature, the effect of the parameters on the process

variables can be analyzed over the entire time period. The process variables consid-

ered for optimization are CSD, rate of filtration (V̇ ), rate of drying(mv), RSD and

API composition at mixer outlet. The parameters which have been chosen from each

unit operation have been perturbed from +6% to −6% with a step size of 2 and the

absolute percentage changes in the process variables have been analyzed as given in

Equation (4.29) [93]:

Absolute percentage change in ΩTotal = 100
abs(Y j

o (t) − Y j
i (t))

Y j
o (t)

(4.29)

where Y j
o (t) is value of the objective function at base value of the jth parameter and

Y j
i (t) is the value of the objective function in ith perturbation of the jth parameter.

Figure 4.14 presents a 2D visualization for the effect of perturbation of different pa-

rameters on the objective function at the final time point. Figure 4.15 gives a 3D
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visualization of the same at different time points. It can be seen from both the figures

that mixer rpm is the most sensitive parameter. Cooling schedule for crystallization is

the second most sensitive followed by filter pressure and drying gas temperature. This

observation is consistent with the fact that quality of the final product (pharmaceutical

formulation) is decided by the RSD and API composition at the mixer outlet. RSD

dictates the uniformity of the blend and API composition dictates the content of the

active ingredient in the product. These two CQAs depend on how efficient the mixing

process is. One of the important process parameters for mixing is the mixer rotational

speed (rpm). This should be optimized in order to attain maximum productivity where

product quality is ensured. CSD of the API crystals is also important since it will

influence the physical properties (size of crystals) of API which in turn will affect the

mixing efficiency. Hence it is necessary to choose the optimum cooling schedule during

crystallization so that the desired CSD can be obtained.
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Figure 4.14: 2D visualization of sensitivity analysis
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Figure 4.15: 3D visualization of sensitivity analysis

4.5.4 Optimization results

The objective function has been minimized and the parameter values have been esti-

mated for effective operation of the process. Figure 4.16 gives the value of the objective

function over time. It can be seen from the graph that the objective function value

drops from a very high initial value (100461.2) to a very small final value (0.551003).

Table 4.3 lists the optimized value of each parameter along with their initial guesses

and upper and lower bounds. In order to maintain an optimal process performance, the

mixer RPM should be kept at 215, the temperature of the drying gas should be 398K

and the filter pressure should be 0.11kPa. For the crystallization operation, a cooling

crystallization routine has been adopted. The temperature of the solution is reduced

as crystallization takes place. Figure 4.17 presents the optimum cooling schedule. As

can be seen from the figure, the cooling profile has steep slopes. This is because the

simulation could not be run for longer time due to computational intensive nature of the

DEM simulations. As a result smaller time interval has been used in the optimization

framework formulated on gPROMSTM for demonstration of the concept. However
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for practical implementation, one can run the DEM simulation for longer time using

increased computational power and larger time steps can be used in the optimization

framework to reduce the steepness of the cooling profile.

Conventionally a heuristic/empirical approach is typically used in pharmaceutical in-

dustries and therefore this optimization approach will provide better method to identify

the optimum operating parameters of the process that will lead to the desired product

quality. The optimization study demonstrates that this modeling tool can be used for

extraction of optimum processing conditions in a continuous processing plant and can

be implemented in real plant for an effective operation and improved product quality.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12
x 10

4

Time [s]

S
um

 o
f s

qu
ar

ed
 e

rr
or

 [−
]

Figure 4.16: Objective function vs time

4.5.5 Comparison of the optimized operating condition with other

operating condition

In this section an operating condition with linear cooling schedule has been considered

during crystallization and the mixer rpm has been maintained at 250. In this case

the velocity values at 250 rpm have been obtained from DEM. A DEM simulation has
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Parameter Final Value Initial Guess Lower Bound Upper Bound

RPM 215 200 195 240

Drying gas temperature 398K 400K 300K 1000K

Filter Pressure 0.11kPa 0.08kPa 0.05kPa 0.15kPa

Table 4.3: Optimized Values
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Figure 4.17: Cooling schedule for crystallization

been run for mixer at 250 rpm and the model has been post processed to obtain the

velocity values which are fed into the PBM as inputs. Figure 4.3 gives a schematic

of how DEM and PBM can be coupled. The crystallization model will give the CSD

of the API crystals which is an input to the DEM model. Once the DEM simulation

is run, the particle velocity values are extracted and fed to the mixer model in order

to obtain the final CQAs (RSD and API composition). In a linear cooling schedule,

the temperature is reduced linearly with time as opposed to the optimized profile. A

linear cooling profile has been studied previously and information regarding this exist

in literature [125, 126]. Figure 4.18 gives a comparison between the two temperature

cooling schedules. This particular operating condition has been compared against the

optimized operational schedule as proposed in this work.
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The CSD of the crystals obtained from crystallizer and CQAs (e.g. RSD and API

composition) of the final product from the mixer at this operating condition have been

studied and compared with the optimized operating condition. Figures 4.19a and 4.19b

present RSD variation with time and mixer length respectively. It can be seen that the

optimized RSD is lower for both cases. This implies that the product obtained under

optimal condition is more uniform and well mixed. Figure 4.20 presents comparison of

the CSDs. The optimized CSD profile has a mean diameter of 45.43 µm and standard

deviation of 23.15 whereas the linear profile has a mean of 42.25 µm and standard

deviation of 24.27. This implies that the optimized profile is comparatively narrower.

A narrow CSD profile implies more uniformity in the crystal size. Figure 4.21 gives

the variation in API composition with time. The desired API composition in the

pharmaceutical blend is 0.4. Hence it is desired that at steady state, the API content

of the product obtained from the mixer is 40%. It can be seen that the optimized

profile approaches the expected value gradually and finally reaches steady state. The

API composition for the linear operating condition also approaches the expected value

but it fluctuates and is noisy in nature. It does not reach the steady state.
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Figure 4.18: Temperature Profiles
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Figure 4.19: (a) RSD vs Time at mixer outlet and (b) RSD vs mixer length at time
end-point

4.6 A hybrid MPC-PID control system design

noindent Hybrid control strategies have been suggested as a promising scheme for plant-

wide control [112, 127, 128], but it is yet to be applied in pharmaceutical industries.

Therefore, this work presents a scenario where the control loops have been designed with

an advanced control system (MPC) or simple PID control depending on the complexity

of the dynamics. It has been already shown by Singh et al. [108] (for a downstream

tablet manufacturing framework) that a combined MPC-PID approach results in an

improved control loop performance when compared to a PID only or MPC only control
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Figure 4.20: Comparison of CSDs

scheme. The hybrid scheme has been demonstrated with the aid of a MPC-PID cascade

arrangement where the MPC acts in a supervisory mode and PID is the regulatory

slave controller (secondary controller). In a cascade controller set-up, the output of the

supervisory controller is used to obtain the set point of the secondary controller, which

in turn manipulates the final actuator. For example, in the MPC-PID cascade system,

the manipulated variables of the MPC become the set points of the underlying PID

controllers, executed in a distributed control system (DCS). A cascade control system

often proves efficient for pharmaceutical processes [108].

4.6.1 Design strategy of the control system

This section provides the details on the selection of the control variables and pairing

with the suitable actuators and the design of the MPC and PID controllers.
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Figure 4.21: Comparison of API composition

Selection of the control variables and pairing with suitable actuators

As mentioned earlier, any flowsheet model is a highly interactive system. In such a

system, most of the process variables may have an effect on each other. However,

it may not be possible to control each and every one of them. Therefore, only those

variables have been selected which have shown considerable effect on the overall process

performance. The control variables have been decided based on the sensitivity study

conducted previously. Table 4.4 lists the control variables and the chosen actuators for

each unit operation.

The cooling temperature schedule is the critical process variable in case of crystal-

lization operation. Solubility (or saturation concentration) of a solute depends on the

operating temperature and it reduces with decrease in temperature. Therefore a cas-

cade control scheme (consisting of a slave and master controller) has been considered

for crystallization. The saturation concentration has been controlled with the help of

a master controller. The actuator of the master controller is the operating tempera-

ture which has been controlled by the slave controller. Therefore the output of the
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Process Control Variable Actuators (Manipulating Variable)

Crytallization Temperature cooling schedule Coolant temperature
Saturation concentration

Drying Drying gas temperature Super-heated steam temperature

Blending API composition Excipient flowrate
Holdup Weir height

Table 4.4: List of control and manipulated variables for each unit operation

master controller provides the set point to the slave controller. The actuator for the

slave controller is cooling water temperature (passed through the coolant jacket around

the crystallizer). The cascade loop has been demonstrated with the aid of a hybrid

MPC-PID design, where MPC is the supervisory controller and used to control the

saturation concentration. PID is the secondary controller used to control the operating

temperature. A cascade control loop has been shown to have an enhanced performance

over single loop control in many instances [93]. For example under certain scenarios

(e.g., when a large dead time is involved; or when a disturbance affects an intermediate

variable which has a considerable influence on the main control variable; or the gain of

the secondary process and the actuator is nonlinear), it is difficult to control the main

control variable efficiently without controlling the intermediate variables. It is possible

to control the intermediate variables as well with the help of the cascade control loop,

which indicates that the overall performance will be better than a single loop control

system.

No control loop has been shown for filtration because an ideal controller (where the

desired set point has been achieved perfectly) has been assumed. In practice, a pressure

gauge can be used to measure the pressure gradient across the filtration medium and the

flow of air/exhaust can be adjusted to attain the required pressure gradient [129, 130].

The control variable in case of drying is the drying gas temperature. Air has been

considered as the drying gas in this case. Air at atmospheric temperature can be heated

upto a desired temperature in a heat exchanger using super-heated steam and then sent

to the dryer. The actuator in case of drying is the super-heated steam temperature.

There are two control variables of interest in case of the mixer (i.e. fractional API
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composition of the final pharmaceutical blend and holdup). Mixer holdup is an impor-

tant control variable as it has been known to have considerable effect on the product

RSD, which is used to quantify the uniformity of the final mixed product) [131]. It

has been seen that both cooling temperature schedule (of the crystallization operation)

and excipient flowrate has a considerable effect on the API composition. The cool-

ing temperature schedule affects the API composition as it governs the crystal growth

rate which in turn changes the outlet flowrate of the crystals. The holdup has been

controlled by manipulating the weir length. It should be noted that the effect of the

weir length on the holdup has been determined by running DEM simulations of the

mixing operation. Several DEM simulations of the mixer have been run by varying the

weir length (i.e. 10 mm, 30 mm and 50 mm). In EDEMTM , a commercial mixer Ger-

icke GCM250TM with impeller blades in alternating forward and backward orientation

has been simulated. The length and diameter of the mixer are 330 mm and 100 mm,

respectively. A feed rate of 0.018 kg/s and an impeller speed of 250 rpm have been

maintained. Normal particle size distribution with a mean radius of 1 mm with 5%

standard deviation has been used. Each simulation has been run for 50 seconds. The

DEM simulations have been post processed to obtain the mean residence time of the

particles within the mixer. The holdup has been calculated from the input flowrate and

the mean residence time. A transfer function has been fitted to relate the holdup with

the weir length.

The actual flowsheet model developd in gPROMSTM has been used as a virtual plant

and transfer function models have been obtained from the same in order to relate the

control variables with the manipulated variables. A step change has been given to the

manipulated variables in order to obtain the dynamic response of the control variables.

A control relevant transfer function model has been fitted to relate the control and

manipulated variables. The control loops have been designed using the SimulinkTM

feature of MATLABTM with the help of built-in PID and MPC controller algorithms.

The software computes a linear MPC plant model from the actual SimulinkTM model

for designing an initial controller.
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4.6.2 Design of controller

PID is most commonly used controller in the manufacturing industry because of its

simplicity (ease of implementation and use). There are 3 important tuning parameters

for PID controller (i.e. gain (Kc), reset time/integral time (τI) and rate/derivative

term (τD)). The difference between the set point and measured control variable at

any time point is the error (ε(t)). The controller parameters have been tuned using

Ziegler-Nichols tuning technique, which is a heuristic approach [132].

An advanced MPC consisting of four inputs and four outputs has been designed for

the API separation and purification process using MPC toolbox of MATLABTM . The

MPC is based on optimization of an objective function within a moving horizon there-

fore it is also called receding horizon scheme. The formulated MPC objective function

is given in appendix which consists of weighted square sum of control variable devia-

tions, weighted squared sum of controller adjustments, and weighted squared sum of

manipulated variable deviations. As required for MPC, a linear time invariant (LTI)

model has been first developed in Simulink using detailed process model and then this

model has been imported to MPC toolbox for MPC configuration and design. MPC

uses the developed linear model to generate the future process response within a predic-

tion horizon and through optimization it generates the actuator signal within a control

horizon. The prediction horizon (P ) and control horizon (M) has been decided such

that its difference is significantly greater than the ratio of the maximum process delay

(tdmax) and control interval (t) (P −M >> tdmax/t) as suggested in scientific litera-

ture [108]. The MPC performance depends significantly on its tuning parameters which

are output weights, input weights and rate weights. The output weight decides, which

control variable needs to be given more weightage over the others, the input weights

help to maintain the actuator at nominal value for consistent performance and rate

weights decide the step size of the control action. Increasing the rate weight leads to

smaller steps of controller action and therefore better process performance but at the

expense of higher computational power and optimization time. The MPC tuning pa-

rameters have been tuned using the optimization based method (Integral time averaged
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error (ITAE) [132]) available within the optimization toolbox of MATLABTM . After

MPC configuration, the closed-loop performance has been assessed for set point track-

ing and disturbance rejection before importing the designed MPC to the SimulinkTM

based process flowsheet model which conceptually represents the virtual manufacturing

plant where the PID based slave controller is already implemented. The performance of

the hybrid MPC-PID scheme is then evaluated for set point tracking and disturbance

rejection. After satisfactory performance, the inputs and outputs of the process model

can be easily switched with the plant inputs and outputs through MATLABTM OPC

toolbox, as shown by Singh et al. [110].

The control limit has been considered to be 2% more or less than the set point (as

suggested in scientific literature [93]). The results have been reported for 2000 seconds

(approximately 33 minutes). It should be noted that the measurement noise has been

taken into consideration while studying the set point tracking ability of the controller.

The controller performance has been quantified by calculating the ITAE using Equa-

tion (4.30). While evaluating the performance of a controller, it is important to know

the absolute error over the entire period of control action (in order to know how the

controller behavior is over time). Absolute error is the magnitude of the exact difference

between the set point and the measured value. The integral time square error (ITSE)

can also be considered, however it is less sensitive compared to ITAE. Similarly, integral

of the absolute error (IAE) or the integral square error (ISE) can also be used. However,

ITAE produces smaller oscillations compared to IAE and ISE and it also includes the

‘time‘ term [133]. Therefore, ITAE has been chosen as the criterion of comparison.

ITAE =

∫ t

0
t |(setpoint−measured variable)|dt (4.30)

4.6.3 Control system design

In this section a pictorial representation of the developed control system is presented. A

hybrid MPC-PID cascade control loop has been proposed for crystallization. The other

control variables (i.e. drying gas temperature, API composition and holdup) have been

controlled via MPC only. Figure 4.22 is the integrated process along with the control
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loops. The control loop for the crystallization step is a cascade arrangement. Csat

is measured and fed to the MPC block which generates the set point for the cooling

schedule (T(setpoint)) for the PID (controller 001). The slave controller controls the

temperature cooling schedule (T) by manipulating the temperature of the cooling water

(Tc) flowing through the cooling jacket. The drying gas temperature (Tgas) is measured

and fed to the MPC block which generates the control signal by manipulating the super

heated steam temperature (Ts) which heats the air in a heat exchanger. The hot air

is then sent to the dryer. The API composition at the mixer outlet is measured and

fed to the MPC block which manipulates the excipient flowrate to maintain the API

composition at a desired set point. The holdup has been controlled by the MPC block

by manipulating the weir length. Table 4.5 lists the controller tuning parameters. In

case of PID (controller 001), a high value of the reset time signifies a low value of

the integral term. Therefore, only the proportional and derivative terms are the most

effective in this case. It can be seen that the output weights (MPC parameter) of all

the control variables is 1, which means that same weightage has been given to all the

control variables. The value of rate weight for every control variable is 0.1. It should

be noted that in case of the MPC, the control interval is 1s, prediction horizon is 10s

and control horizon is 2s.

In the case of the crystallization process, saturation concentration is the control variable

for the master controller. The output of the master controller (temperature cooling

schedule) provides the set point to the slave controller, which controls the cooling

temperature schedule by manipulating the coolant temperature (passed through the

coolant jacket around the crystallizer). The slave controller has been retained as a

simple regulatory PID (which controls the temperature cooling schedule) and MPC

acts as the master controller (which controls the saturation concentration). Therefore,

the output of MPC (temperature cooling schedule) acts as the set point for the slave

controller. In the case of the cooling crystallization, the operating temperature of the

system is decreased so that the saturation concentration or the solubility decreases and

the solute precipitates out of the solution to form crystals. Therefore the set point

for saturation concentration has been decreased over time following a linear function.
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PID parameters

Control Gain Reset Time Rate
loop (Kc) (τI) (τD)

Crystallization -0.166 (K −ml/mg) 2.95E4s 1.09E4s
(slave loop)

MPC parameters

Control Input Rate Output
loop Weight Weight Weight

Crystallization 0 0.1 1
(Master loop)

Drying 0 0.1 1

Mixing 0 0.1 1
(API composition)

Mixing 0 0.1 1
(Holdup)

Table 4.5: List of controller Tuning Parameters

Figure 4.23 illustrates the saturation concentration. It can be seen from the plot that

the controller is able to maintain the variable at the specified set point within the

specified control limits. ITAE calculated for saturation concentration is 1.995E5.

In the case of the drying operation, the drying gas temperature is the control variable

and the superheated steam temperature is the manipulating variable. The set point

has been specified as 500K. It can be seen from figure 4.24 that the controller is able to

maintain the drying gas temperature at the desired set point, within the control limits.

ITAE calculated for drying gas temperature is 2.86E6.

In the case of the mixing process, two control variables have been considered (API

composition and holdup). It has been mentioned before that the temperature cooling

schedule affects the API composition of the final mixed product. The manipulating

variables for API composition are excipient flowrate and crystallization operating tem-

perature. In the case of holdup, the weir length is the manipulating variable. The set

points for API composition and holdup are 0.15 and 6 kg respectively. Figure 4.25a

and 4.25b present the controller performance for API composition and holdup respec-

tively. It can be seen from the plots that the controller performance is satisfactory.

ITAE calculated for the API composition and holdup are 1.195E3 and 4.3E4 respec-

tively.
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Figure 4.22: Pictorial representation of the closed loop continuous process

4.7 Chapter Conclusions

For the first time, a DEM-PBM multiscale integrated flowsheet model for continuous

downstream processing of APIs has been developed. This model connects the purifi-

cation processes of API production with a downstream pharmaceutical manufacturing

process (mixing). With this model it will be easier for the pharmaceutical processing

industries to understand the propagation of upstream process parameters and mate-

rial properties on the downstream product attributes. The flowsheet model has been

shown to generate results which qualitatively track the trend of the different variables

of interest for each unit operation and CQAs (e.g. RSD and API composition). The

model has been optimized and the optimal values of the important process parameters

have been suggested. This optimized operational schedule has been compared with
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Figure 4.23: Hybrid MPC-PID performance of saturation concentration
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Figure 4.24: Hybrid MPC-PID performance of drying gas temperature

another schedule with different process conditions. It is seen that the optimized sched-

ule gives better performance. An advanced hybrid MPC-PID control system has been

developed. A cascade loop has been demonstrated for the control of the crystallization

operation. The designed control system is able to track the step change in set points

and reject unknown disturbances. This flowsheet can be extended further by adding

other operations for downstream processing (e.g. granulation, roller compaction, tablet

compaction and tablet dissolution) for a complete quantitative analysis of continuous

purification and downstream processing of solid dosage forms.
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Figure 4.25: Hybrid MPC-PID performance of mixing process
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Chapter 5

Development of a multiscale CFD-DEM-PBM description

of a continuous fluidized bed wet granulation process

• M. Sen, D. Barrasso, R. Singh, R. Ramachandran, 2014. A multiscale hybrid

CFD-DEM-PBM description of a fluid bed granulation process, Processes, 2, 89-

111.

The purpose of this aim is to develop a multiscale CFD-DEM-PBM model for fluid bed

granulation process using a dynamic two-way coupling and incorporating multiscale

information such that the model can be used to study the detailed process dynamics.

The model can be used effectively to study the different flow regimes and determine the

evolution of important process variables (i.e. average particle diameter, particle size

distribution and particle liquid content.

Granulation is widely applicable in industries which deal with powder handling pro-

cesses (e.g. food, pharmaceutical, catalyst, fertilizer industries etc.). In pharmaceutical

industries gramulation is often used as a unit operation present in the tablet manufac-

turing framework, and comes after the mixing operation. During granulation process,

fine powder particles form agglomerates which are granules of larger size with improved

properties (e.g. flowability, uniform composition etc.). In pharmaceutical industries,

wet granulation is an important unit operation in the downstream tablet manufacturing

process, since it has a significant effect on the mechanical properties of the tabletting

material (e.g. hardness, dissolution rate). As a result, the understanding of the process

dynamics of this particular unit operation is critical. An inefficient operation of the

granulation process leads to high batch rejection rates (if operated in batch mode) or

high recycle ratio (if operated in continuous mode) [134]. Since fluid bed granulation

process consists of both solid and fluid phases, it is desired to model both the phases
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individually and understand how they interact with each other. The fluid phase can be

treated as a continuum and the flow dynamics can be described with the help of conti-

nuity equation and equation of motion. On the other hand, solid particles are discrete

entities which will require the implementation of DEM techniques in order to capture

their flow dynamics. Such types of flow which include both fluid and solid phases can

be simulated efficiently with the help of CFD-DEM coupling. CFD will account for

fluid flow whereas the same can be done for the solid phase using DEM. Establishing

a connection between the flow field of the fluidizing medium and the contact pattern

of the particles which in turn will dictate the aggregation rate will provide a detailed

process dynamics of the fluid bed granulation process. A multiscale modeling scheme

in this case is required.

The CFD model has been solved using FluentTM (version 14.5.0) (ANSYS), DEM has

been solved using EDEMTM (version 2.5.1) and in order to link the PBM with DEM, a

user-defined library model has been built using the application programming interface

within EDEMTM .

In order to facilitate agglomeration during granulation process, a liquid binder is added

and granulation takes place as a result of three rate processes (1.wetting and nucleation,

2. consolidation and aggregation and 3. breakage and attrition) [62]. Based on these

rate processes, a granule can be classified by three internal properties (e.g. size, liquid

content and porosity). In a FBG (fluid bed granulator), the particles are fluidized in

order to ensure maximum contact between the liquid and the powder particles. At

first the particles are rendered wet when they come in contact with the liquid binder

and form granule nuclei. As the wet particles collide with one another, they form

liquid bridges resulting in aggregation of small sized particles to form a larger sized

particle. Similarly, particle breakage occurs because of the presence of shear stresses,

compressive and tensile forces within the granulator due to particle-particle interaction

or particle-wall (vessel interior wall) interaction, which can break a particle into smaller

fragments.

The particle wetting rates in a FBG is highly dependent on the particle flow pattern

which in turn is affected by the flow field of the fluidizing gas [135]. The flow behavior
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of the powder within the granulator also depends on the geometry of the vessel. Several

attempts are being made to understand the granular flow pattern but many aspects of

it (i.e. a more detailed study of the vessel geometry, fluid flow field, collision frequencies

etc.) using sophisticated modeling tools and techniques are yet to be developed [136].

The physical properties of the granules that are important in deciding the compactibility

of the granules and which also affect the mechanical strength of the tablets, are particle

liquid content, particle size, particle surface area and pore diameter. Porosity relates to

the void spaces present in the particle and it is an important particle property because

the surface liquid content of a particle will depend on its porosity and the surface liquid

content will further decide the particle’s aggregation rate. Porous particles can easily

deform during compaction to create new bonding surfaces, thus affecting the tablet

hardness [137]. Hardness of the tablet also depends on the granule surface area [138].

An appropriate design and operation of the granulation process can help to control the

PSD and also help to achieve the desired flow characteristics of the particles. Improved

granule characteristics will lead to efficient operation of the other unit operations present

in the tablet manufacturing framework [14] and also help to achieve better product

quality.

PBMs have been used extensively in order to model granulation process [139]. PBMs

are used to calculate the rate processes (e.g. aggregation, consolidation and breakage)

during granulation, but certain information, used in calculation of mechanistic aggre-

gation and breakage kernels (i.e. effect of particle properties, spatial effect, collision

frequency, particle velocity etc.) cannot be determined from a PBM alone. A DEM on

the other hand is able to determine these entities. Such a PBM-DEM coupled model

for particle aggregation has been reported [68].

Since a CFD-DEM approach has been used to study several complex particle-fluid flow

systems [140, 141, 142], it is an effective tool to model fluid bed granulation. Interested

readers are referred to the review presented by [143] on the discrete particle modeling of

fluid beds. A combined CFD-DEM approach was first presented by [144] for simulating

plug flow through horizontal pipes. Since then, there have been several works reported

in scientific literature [145, 146, 147]. Liquid-solid interactions have been studied in case
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of gas bubble formation in a gas-liquid-solid system [148, 149, 150]. Similar studies have

been reported in case of gas and liquid fluidized beds in the bubbling regimes where a

rigorous two way coupling framework has been introduced to explain the fluid-particle

interaction [151, 152]. Fernandez et al. used CFD-DEM coupling in case of centrifugal

separation systems [153]. Previous studies have been carried out in CFD-DEM coupling

in case of granulation and are well documented [135, 154]. A direct numerical simulation

model for a three phase flow in case of wet granulation, consisting of solid, liquid and

gas has been developed by [15]. The liquid-gas flow has been solved using one of the

CFD multi-phase solvers, and a solid particle flow is solved by DEM.

A CFD-PBM framework has been already implemented in order to model size change

taking place in a particle-fluid system [155, 156] and a PBM derived from kinetic theory

of granular flow (KTGF) has been developed by [157] for fluidized melt granulation.

Hydrodynamic modeling of wet granulation process in a FBG using CFD principles has

been reported by [158]. However there is a major scope still open to study a CFD-DEM-

PBM coupled framework, which will capture a detailed interaction between the phases

and quantify the size change. Such a multiscale model formulation has been reported

by [159] for agglomerate breakage in fluid bed. The present work aims at capturing

the particle aggregation during a granulation process in a FBG. The framework can be

further developed in future by adding particle breakage along with the aggregation.

5.1 Multiscale model development

This section illustrates the mathematical equations and modeling techniques of each

domain of the coupled framework. The CFD model calculates the fluid flow-field and

the DEM adds it to the force-field calculation for each particle. The PBM obtains the

various information required to calculate the rate processes from DEM to quantify the

size change and update the PSD.
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5.1.1 CFD model for the fluidizing medium

The fluid phase has been simulated using FLUENTTM . The flow model chosen is that

of a laminar viscous flow. The governing equations for incompressible flow are given in

Equations (5.1)- (5.2) [135, 160]:

Navier-Stokes Equation

∂εu

∂t
+ ∇.(εuu) = −

1

ρ
ε∇p−

µ

ρ
∇2.(εu) + g − Sp (5.1)

and Equation of continuity

∇.(εu) = 0 (5.2)

where ε is the solid volume fraction, u is the fluid velocity, ρ is the fluid density, p is

flow pressure, µ is the viscosity, Sp is the source term and g is gravity. The fluidizing

medium in this case has been considered to be air and the fluid velocity at the inlet

has been kept constant at 30 m/s. The fluid velocity at the inlet has been scaled as

a function of the particle size in DEM to simulate observed experimental fluidization

in a granulator. The inlet velocity has been determined by running several simulation

trials such that the particles are fluidized and the effect of gravity can be nullified.

In real granulation process, the particle size is in microns. But in the simulation, the

initial particle size is in millimeters (i.e. 2mm diameter), which is much higher than

the initial particle size used in real granulation process. As the simulation bed weighs

more, therefore a higher air velocity is required to counter the effect of gravity. The

solution methods used for calculating the momentum and particle volume fraction is

first order upwind [161]. A first order Implicit scheme has been selected for the transient

formulation. The boundary conditions have been set as follows:

• Flow near wall is laminar and the velocity varies linearly with the distance from

wall.

• A no slip boundary condition has been set at the wall.
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• A velocity inlet boundary condition has been used for the air entering the geom-

etry.

• An outlet-vent boundary condition has been used at the geometry exit.

5.1.2 Discrete element model

DEM essentially uses Newton’s laws of motion (as shown in Equation (5.3) and (5.4))

to simulate the particle force fields (namely contact forces and body forces [34]). The

contact forces are due to particle-particle or particle-boundary (vessel internal wall)

contacts whereas the body forces are any external force fields (i.e. gravity or fluid flow

field in case of fluid bed granulation) acting on the particles. The net force Ftotal is

calculated for each particle at a time interval which is approximately in the order of

10−5 or 10−6 seconds and the new particle state is calculated by numerically solving

Newton’s law and Euler’s equations of rotational motion. The simulation uses a damped

Hertzian normal contact model with Mindlin-Deresiewicz/Coulomb friction tangential

force model. A detailed discussion on the contact models along with the governing

equations have been provided by [34].

mi
dvi

dt
= Ftotal (5.3)

Ftotal =
∑

Fcontact +
∑

Fbody (5.4)

The DEM has been simulated using EDEMTM . The geometry of the FBG has been

imported within EDEMTM and the initial PSD has been created. The initial PSD is

uniform such that all particles are of fixed size (1 mm in radius). A virtual particle

factory plate has been introduced within the geometry in the lower half and the particles

are created at a generation rate of 50,000 particles per second. The liquid addition has

been captured in EDEMTM . The liquid droplets have been modeled as solid particles

with similar properties as the initial powder particles. Liquid particles have been created

continuously at a rate of 50,000 particles per second from a virtual plate placed in the
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upper half of the granulator. It should be noted that the liquid addition has been

started at time equal to 0.2s in order to let the particles fluidize first. The feed rate and

the number of particles have been set in a way such that the simulation speed is fast

and a reasonable granulation is achieved within the simulation time (when compared

qualitatively with the experimental results [162, 163]). In a FLUENTTM -EDEMTM

coupled simulation, it is important that the particle size is comparable with the mesh

size (i.e. the particle size shouldn’t be very large compared to the mesh size) [164]. For

example in this work the primary particle diameter is 2mm and the mesh size is 4mm.

These parameters have been fixed by running several trial simulations.

The change in particle size and new PSD is calculated using the PBM in the subsequent

time steps as will be explained later. Whenever a liquid particle collides with a powder

particle, it is deleted from the system and the liquid content of the particle increases

by the liquid particle volume. If two liquid particles collide with each other, a single

droplet with volume equal to the total volume of the two particles is formed. It should

be noted that as the liquid particles are deleted from the system immediately upon

contact, therefore EDEMTM does not consider the contact forces due to these particles

in the simulation. The EDEMTM tracks the collisions occurring in between different

particles and the information is stored in form of an array, which is made use by

the PBM for calculating the new population distribution function at every population

balance time step. Table 5.1 gives the material properties and the other parameters for

particle-particle and particle-wall interaction.

The density of the powder material is 1030 kg/m3 (which is similar to that of a phar-

maceutical active ingredient (S)-Ibuprofen [165, 166]). Detailed information on the

exact range of parameter values (particle-particle and particle-wall interaction param-

eters of EDEMTM ) for S-Ibuprofen is not available in literature, hence the values have

been adapted from [34], who simulated fines in a continuous mixer, and from the work

of [167].
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Particle properties

Shear modulus 1E6Nm−2

Poisson’s ratio 0.25
Density 1030kgm−3

Particle-particle interactions

Coefficient of restitution 0.2
Coefficient of static friction 0.5
Coefficient of rolling friction 0.01

Granulator walls

Material Steel
Shear modulus 7.6E8Nm−2

Poisson’s ratio 0.29
Density 7800kgm−3

Particle-wall interactions

Coefficient of restitution 0.2
Coefficient of static friction 0.5
Coefficient of rolling friction 0.01

Table 5.1: DEM simulation parameters

5.1.3 Population balance model for FBG

The present study considers the particle size change only, therefore the internal coor-

dinates (represented using solid and liquid volume) have been retained and the spatial

coordinates have been dropped from the PBE. At present only the particle aggrega-

tion has been accounted for and breakage has been neglected. Equation (2.1) has been

modified accordingly to obtain Equation (5.5) as shown below:

∂

∂t
F (s, l, t) +

∂

∂l

[

F (s, l, t)
dl

dt

]

= <aggregation (5.5)

The first and second terms of the equation represent evolution of the particle distribu-

tion function with respect to time and rate of liquid addition respectively. s and l are

the volumes of solid and liquid (per particle), respectively and dl
dt is the liquid addition

rate. The liquid addition has been captured implicitly in EDEMTM . Therefore the liq-

uid addition term has been omitted from Equation (5.5) and the PBE has been further

modified as shown in Equation (5.6):
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∂

∂t
F (s, l, t) = <aggregation (5.6)

The aggregation rate process is defined in Equations (5.7) to (5.9)

<aggregation = <formation −<depletion (5.7)

where

Rformation =
1

2

∫ s

0

∫ l

0
β(s− s′, l − l′, s′, l′, t)F (s− s′, l − l′, t)F (s′, l′, t)dl′ds′ (5.8)

Rdepletion =

∫ ∞

0

∫ ∞

0
β(s, l, s′, l′, t)F (s′, l′, t)F (s, l, t)dl′ds′ (5.9)

β(s, l, s′, l′, t) is the aggregation kernel, as given in Equation (5.10). The aggregation

kernel has been defined as a function of the collision frequency (C) and collision effi-

ciency ψ. The collision frequency (which is a function of particle size [64]) is calculated

based on the number of collisions occurring between the particle groups which can be

obtained from EDEMTM based on the particle properties.

β(s, l, s′, l′, t) = C(s, l, s′, l′, t)ψ(s, l, s′, l′) (5.10)

The collision frequency is an important parameter. As previously mentioned, it is

already known to be a function of particle size [64], but a study has been conducted

by the authors showing collision frequency as a function of the PSD as well. The

effect of the particle size is captured in the collision frequency which in turn controls

the aggregation rate. Therefore, the aggregation rate kernel of this model depends

on the PSD at any point of time. Collision frequency can be calculated as shown in

Equation (5.11) [64]:



119

C(s, l, s′, l′, t) =
Ncoll(s, l, s

′, l′, t)

F (s, l, t)F (s′, l′, t)∆t
(5.11)

In the above equation, Ncoll is the total number of collision between two particle types

represented by solid and liquid bins (F (s, l, t) and F (s′, l′, t)) during the time interval

∆t.

A simple expression (as shown in Equation (5.12)) has been adapted for collision effi-

ciency based on the works of Biggs et al. [168]:

ψ(s, l, s′, l′) =















ψ0, LC(s, l) ≥ LCminorLC(s′, l′) ≥ LCmin

0, LC(s, l) < LCminorLC(s′, l′) < LCmin

(5.12)

Here LC stands for liquid content of the particles and LCmin is the minimum liquid

content required for the particle coalescence. The above expression essentially means

that if the liquid content of any two particles is greater than or equal to the minimum

value (specified as 0.2 in this case), then the particles may aggregate to form a new

particle upon collision depending on the value of the collision efficiency (which has been

kept at a constant value of 0.01 in this study). The liquid content and collision efficiency

values have been chosen such that the process variables show qualitative similarity in

trend when compared to experimental results [163].

The PBM has been implemented by creating a custom contact model and custom

factory for particle aggregation and liquid addition within the EDEMTM simulation.

The initial particles (both liquid and solid) which are created within EDEMTM has a

uniform solid and liquid volume respectively. Since a particle consists of both solid and

liquid part, therefore the internal coordinate has been discretized linearly based on the

particle’s solid and liquid volume (also referred to as ‘bins‘).

5.1.4 Information exchange in the coupling framework

The information exchanged over the coupled network along with the model assumptions

have been summarized in this section. The model assumptions have been listed below:
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• The PBM considers aggregation only, breakage and consolidation has not been

incorporated since FBG processes are low shear processes with reduced consoli-

dation and breakage (similar approach has been followed by [169]).

• A simple aggregation kernel has been formulated based on collision frequency and

collision efficiency (adapted from [64]).

• The collision efficiency in the aggregation kernel is size independent, non-mechanistic

and conditional based on the liquid content of the powder particles (adapted

from [168]).

• Liquid addition has been captured in EDEMTM by creating particles which get

deleted from the system upon contact.

Figure 5.1 shows a schematic of the main CFD-DEM-PBM coupling framework and the

DEM-PBM framework has been magnified to show the ongoing steps within it. The

CFD-DEM framework has been developed by coupling EDEMTM and FLUENTTM

through the commercially available coupling interface between them. CFD simulates the

flow-field of the fluidizing air. When the solution converges, the fluid flow-field is passed

to the CFD-DEM coupling interface which then calculates the drag force acting on each

particle. The calculated drag force is then transferred to the DEM solver which updates

the particle flow-field to obtain the new particle positions (or state). It should be noted

that the PBM has been coded within EDEMTM using the Application programming

interface. The PBM time step is greater than the DEM time step. Therefore as the

DEM solver performs the iteration, PBM waits till the PBM time step is reached. The

number of collisions between each pair of solid and liquid bins over the time interval

is recorded within the DEM simulation. This information is transferred to the PBM

when the PBM time step is reached. The PBM uses this information to calculate the

aggregation kernel as given by Equations (5.7)- (5.12). Each time the PBM is solved, a

new PSD is calculated. This new PSD is then implemented within the DEM simulation

for the subsequent DEM time step until the next PBM step is encountered. The DEM

solver iterates until the CFD time step ends. The CFD-DEM coupling interface then
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takes the information of the new particle position (or state) from the DEM solver,

updates the solid volume fraction in each fluid cell and passes the information to the

CFD solver. The CFD solver again iterates over the next time step until the solution

converges and the same steps are repeated. The EDEMTM time step should be always

less than the FLUENTTM time step and it is suggested that the EDEMTM time step is

kept between (1/10)th to (1/100)th of the FLUENTTM time step for stability [164]. In

this case, the CFD time step is 2E-3 seconds and the DEM time step is 3.25E-5 seconds.

It means that the DEM solver iterates approximately 61 times within one CFD time

step. The PBM time step is 0.25 seconds (i.e. PBM is solved every 0.25 seconds). The

framework has been simulated for 2 seconds. Therefore the PBM has been solved 8

times in this simulation time. The PBM time step is an important factor and has been

decided after running a few simulation trials. It is important to choose the time-step

in a way such that:

1. A reasonable number of collisions occur among the particles between any two

subsequent time steps.

2. The PBM is solved a reasonable number of times such that there is a more con-

sistent distribution of the particle size (as seen in Figure 5.10)

If the PBM time step is too low, then the model will not be able to capture enough

number of collisions which results in difficulty of computational tractability of PBM.

A resolution study of the PBM time step and its effect on PSD has been carried out

(details have been provided in the results and discussion section (section 4.3)).

The coupled framework has been run for a time period of 2 seconds which took approx-

imately 6 hours of CPU time, running on an Intel Core i7-2600 CPU processor (3.4

GHz) with 16 GB of RAM.

5.1.5 Model outputs

This section presents a brief description of the model outputs which are PSD, average

fractional liquid content and average diameter.
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Figure 5.1: Schematic of the coupled multiscale framework

The PSD has been obtained by post-processing the simulation data. The diameter of

each particle present in the system at any particular time point can be obtained from

EDEMTM . Several size classes are defined by ranges of the diameter and each bin

from the PBM are grouped in these size classes. The total mass of particles in each

of these size classes is determined individually and each of them is further normalized

by dividing with the overall mass of particles to obtain a mass frequency as seen in

equation (5.13). The mass frequency can be plotted with respect to the size classes in

order to obtain the PSD.

µm(t) =
∑

Lm≤Dij<Lm+1

(

F (si, lj , t)
∑ns

i=1

∑nl
j=1 F (si, lj , t)

)

ρVm
∑nm

m=1 ρVm
(5.13)

where µm is the mass frequency of mth size class (which is a function of particle diam-

eter), ρ is the density, ns is the number of solid bins, nl is the number of liquid bins,

Vm is the particle volume in m th size class, nm is the number of size classes and Dij

is the particle diameter corresponding to the ith solid bin and jth liquid bin.

Similarly the average diameter (Davg) can be calculated as shown in equation (5.14):
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Davg(t) =

∑ns
i=1

∑nl
j=1 F (si, lj , t)(6(si + lj)/π)1/3

∑ns
i=1

∑nl
j=1 F (si, lj , t)

(5.14)

The average fractional liquid content (xavg) can be calculated as shown in equation (5.15):

xavg(t) =

∑ns
i=1

∑nl
j=1 F (si, lj , t)(lj/(si + lj)

∑ns
i=1

∑nl
j=1 F (si, lj , t)

(5.15)

5.2 Results and discussion

This section includes the discussion on the model geometry and the results obtained

from the coupled framework. The simulation steps have been highlighted briefly as

shown below.

5.2.1 Simulation procedure

This section lists the procedure followed while setting up the coupled simulation, in a

nutshell.

1. The geometry has been made using ANSYS Design ModelerTM .

2. The geometry has been meshed using ICEM-CFDTM .

3. The mesh file has been imported within FLUENTTM .

4. The mesh has been converted into Polyhedra domain.

5. The gravity is defined in the correct direction and a transient simulation is se-

lected.

6. The flow model has been selected to be viscous laminar.

7. The coupling server has been started.

8. The FLUENTTM is coupled with EDEMTM for the desired fluid domain by se-

lecting the Eulerian-Eulerian option.
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9. The coupling server will automatically import the geometry with the specified

direction of gravity in EDEMTM and set the source terms in x-momentum, y-

momentum and z-momentum calculation. The value of the simulation parameters

of the coupling interface has been set as follows:

• Sample points: The number of points used by FLUENTTM to calculate the

volume fraction of the fluid cell. This value has been set at 10, which means

that a large particle can transfer its volume between 10 cells. This particular

parameter decides the stability and speed of the simulation. A higher value

of sample point may increase the stability but decrease the simulation speed.

• Relaxation factor: The relaxation factors again help with stability and con-

vergence of the solution. Reducing the value helps to increase stability and

achieve convergence. Both momentum-MTM-under-relaxation factor and

volume under-relaxation factor have been set at 0.7.

10. The inlet fluid velocity has been defined as 30 m/s.

11. The custom contact model and custom factory (for PBM calculation) have been

imported within EDEMTM .

12. The material properties, particle-particle and particle-wall interaction parameters

as given in table 5.1 have been set in EDEMTM .

13. The initial PSD has been created in EDEMTM .

14. The liquid particles have been created in EDEMTM (the liquid addition starts at

0.2s).

15. Once the EDEMTM simulation is set up, initialize the solution in FLUENTTM .

16. Run the calculation.

5.2.2 Model geometry

The measurement details of the model geometry has been given in figure 5.2. Figure 5.2

also presents the mesh, which has been done in ICEM-CFDTM . The geometry has been
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meshed using the tetra/mixed meshing tools with a grid size of 4mm. The mesh has

been converted into polyhedra domain after importing it in FLUENTTM . As shown

in figure 5.2, the geometry has been divided into five fluid domains or cell zones (inlet

domain, fluid inlet domain, main fluid domain, fluid outlet domain and outlet domain).

The CFD-DEM coupling has been performed for the cell zone (main fluid domain).

Every time the simulation leaves FluentTM and enters EDEMTM , all the relevant data

in the linked zones are passed to EDEMTM . Reducing the number of linked zones will

reduce the amount of data transferred between the two softwares and thus increase the

simulation speed. Therefore the simulation has been linked for the ‘main fluid domain‘

only. Although the coupling has been done for the ‘main fluid domain‘, the particles are

free to move around throughout the geometry, but only the data from the ‘main fluid

domain‘ are passed to EDEMTM . The results/plots reported in the manuscript are for

the ’main fluid domain’ only. It should be noted that the spatial co-ordinates have not

been considered in the PBM. The main idea is to present a CFD-DEM-PBM framework

which is able to capture the granulation dynamics. Therefore the assumption is that

the ‘main fluid domain‘ is representative of the whole geometry.
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Figure 5.2: Model Geometry and mesh of the FBG
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5.2.3 Multiscale model results

The multiscale model has been simulated to obtain the average diameter and liquid

content of the particles as a function of time. This model can be also used to study the

distribution of particle velocity and particle liquid content, which will help to under-

stand the flow pattern and liquid content of the solid particles. Since the aggregation

rate depends on the liquid content of the particles, therefore it is important to study

these aspects. It will also help in understanding the impacts of the equipment design

and improve it for a better operational efficiency.

In order to analyze the particle flow pattern and liquid distribution, the ‘main fluid

domain‘ has been divided equally into two sections (upper half and lower half). Each

half has been divided into several compartments and the DEM simulation has been

post processed to obtain the particle velocity in each of these compartments. As shown

in figure 5.2, the geometry has been divided into 30 grids in both x and z direction and

1 grid in y direction, such that there are 30× 1× 30 compartments in total. Figure 5.2

gives an illustration of the compartments in 2D as seen from the top view. Figure 5.3

shows the contour plots of the particle velocities (i.e. the resultant velocity of the

three components vx, vy and vz) averaged over different time intervals. Figure 5.3a and

figure 5.3b present the particle velocities for both lower and upper halves, averaged over

time 0s-0.5s and 0.5s-1s respectively. It can be seen that the velocity of the particles

increases with time. However the lower section shows a more uniform distribution of

velocity compared to the upper section. The plot for upper section in figure 5.3a shows

a non-uniform distribution with high velocity present sporadically in few locations and

the velocity values in most of the compartments are closer to zero. This is because the

particles are being injected into the system from a virtual plate placed in the lower half

and it takes about 0.4 seconds for the bed to be fully fluidized. Similarly figures 5.3c

and 5.3d present the particle velocity distribution in both the halves averaged over

time 1s-1.5s and 1.5s-2s respectively. These plots also show that the particle velocity

increases with time as the bed gets fully fluidized and presents a more uniform velocity

distribution in the upper half. It can be also noted that an absolute steady state in the
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particle velocity is not being realized. This is due to the mechanics of the granulation

process (as the partcles interact with each other and the boundary in numerous ways,

it is difficult to obtain an absolute steady state).

Figure 5.4a and 5.4b show the particle liquid content distribution averaged over 0s-0.5s

(initial time of simulation) and 1.5s-2s (final time of simulation). Figure 5.4a shows

a non-uniform distribution over a higher range for the upper part, with the values in

most of the compartments lying close to zero (similar observation has been made in

the velocity distribution as well). The distribution becomes comparatively uniform

with time as seen in figure 5.4b. The liquid content of the particles in the upper

part is more than the liquid content of the particles present in the lower part. This

is because the liquid droplets are being injected into the system from a virtual plate

located near the upper half of the granulator, hence only a few of them are able to

penetrate through the void space and reach the lower half. This shows that the binder

liquid distribution is highly dependant on the particle flow pattern, which in turn also

affects the aggregation rate (particle liquid content is an important factor in deciding

the granulation rate processes).

Figures 5.5 and 5.7 present snapshots of the particles within the granulator taken at

different time points based on their liquid content and relative diameter respectively.

As previously mentioned, the amount of liquid present in the particles is an important

attribute as it controls the rate process, which in turn will decide the increase in particle

size. The snapshots (figure 5.5) of the liquid content have been taken at 1s and 2s. The

particles have been colour coded based on its fractional liquid content. It can be seen

that more particles are getting wet with time. This is because the particle velocity

increases with time and a more uniform velocity distribution is obtained throughout

the granulator (also seen from the contour plots) resulting in more contacts between the

liquid and solid particles. So the average liquid fraction (i.e. the ratio of liquid volume

to the total volume of a particle, where total volume is equal to the summation of liquid

volume and solid volume of a particle) increases with time and levels off gradually as

can be seen in figure 5.6 (plot of particle liquid content versus time). Since the particles

are free to move around (in all domains), therefore there are particles exiting the ‘main
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fluid domain‘. Initially there is a steep increase in the liquid content because the bed

takes some time to be fully fluidized. As a result the number of particles in the ‘main

fluid domain‘ is still increasing and more particles are getting wet with time. But as

the bed is fully fluidized, an approximate steady state is being realized in the ‘main

fluid domain‘. It should be noted that in this model, the liquid droplets which have

been created are of comparable size to the solid particles. Therefore an assumption

has been made that one liquid particle can wet only one solid particle. Under certain

circumstances, where the powder particles are much smaller than the liquid particles,

it is possible that one liquid droplet wets more than one powder particle (depending on

the liquid to solid volume ratio). This feature can be included in the coupled framework

in future.

Figure 5.7 presents the snapshot of the relative particle diameter taken at 1s and 2s.

It can be seen that the number of large sized particles increase with time. This can be

again explained on the basis of the particle movement pattern. With time, the velocity

distribution becomes more uniform and the contact between the particles increases

which results in aggregation. Figure 5.8 is a plot for the average diameter as a function of

time. It is seen that the average diameter of the particles increase with time. Figure 5.9

is a plot for the PSD taken at different time points. It can be seen that a gradual

progression towards larger sized particles is being realized during granulation.

The trends observed in this study are qualitatively consistent with experimental re-

sults [162, 163]. The studies show that the granulation is being achieved as the particle

liquid content increases. They present bimodal particle size distributions that broaden

over time by starting with finer primary particles.

In order to show the effect of PBM time step, two more simulatons have been run with

PBM time step equal to 0.2s (PBM has been solved 10 times) and 0.4s (PBM has been

solved 5 times) and compared with the base case (PBM time step equal to 0.25s, where

PBM has been solved 8 times). Figure 5.10 presents the PSDs obtained at the final

time point (time=2s) from each simulation. It can be seen that the PSD for the largest

PBM time step (0.4s) has a lower frequency of very large particles (due to the presence

of the highest peak). This is because the PBM has been solved only 5 times during the
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simulation thus limiting the opportunities for large particles to collide and aggregate

with each other. On the other hand, PSDs with smaller PBM time step (0.2s and 0.25s)

show a more consistent distribution suggesting more accuracy. Therefore it is essential

to perform a comparative analysis of the model predicted data obtained by running the

simulation with different PBM time step, with experimental data.

5.3 Chapter Conclusions

This work presents a multiscale model for granulation, using information from different

scales of CFD, DEM and PBM techniques. Granulation has been extensively modeled

following a PBM approach, which groups a lump of particles in different classes (based

on size, porosity etc.), but this particular framework tracks the flow-field of each particle

with the help of DEM. The CFD aspect helps to add in the drag force acting on the

particles due to the flow field of the fluidizing medium. The aggregation kernel is a

function of the collision efficiency and collision frequency, which in turn depends on the

particle size distribution. An empirical expression, based on the liquid content has been

used to determine the collision efficiency. Future effort will be to introduce a mechanistic

approach in determining the collision efficiency based on relative velocity of the colliding

particles, particle mass and liquid content. The PBM which has been implemented is

two-dimensional which can track the change in particle size as well as liquid content

of the particles. The liquid addition has been captured implicitly in the DEM and the

aggregation kernel has been decided based on the information provided by the DEM on

collision frequency and particle liquid content. PBM calculates the new PSD at every

PBM time step, which has been implemented in the DEM by removing old particles

and creating new ones. The model can be used effectively to study the material flow

pattern, different flow regimes (usually encountered in dense granular systems), binder

distribution pattern, the effect of equipment geometry (see if dead zones are present)

and key performance criteria (i.e. average diameter and liquid content). This model can

be used to study the effect of material properties as well, which can be an interesting

future investigation. This coupled model is detailed as it is able to store information

from different scales and can be used as an effective tool to understand the process
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dynamics of a fluid bed granulation process.

It should be noted that this coupled multiscale model is computationally intensive and

therefore can not be integrated into the flowsheet model (as developed in specific aim

III) efficiently in the present form. However, this multiscale model can be used to build

a ROM for the CFD-DEM bit, which can then be incorporated into the PBM. The

coupled ROM-PBM can be effectively integrated into the flowsheet model.
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(a) Particle liquid content at time=1s

(b) Particle liquid content at time=2s

Figure 5.5: EDEMTM snapshots of liquid content
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(a) Particle diameter at time=1s

(b) Particle diameter at time=2s

Figure 5.7: EDEMTM snapshots of particle diameter
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Chapter 6

Thesis conclusions and future directions

This dissertation is aimed at utilizing different modeling techniques (i.e. CFD, DEM

and PBM) in order to develop a detailed integrated and multiscale model for a continu-

ous manufacturing framework that can be implemented towards efficient pharmaceuti-

cal manufacturing processes. This work introduces mechanistic models developed from

first-principles which has been shown capable of capturing detailed dynamics of the pro-

cess. The multiscale frameworks which have been demonstrated are capable of storing

information from various scales (micro, meso and macro). These multiscale frameworks

are highly efficient for modeling powder systems, since a bulk powder flow consists

of discrete particles which behave or interact with other neighboring particles or the

equipment geometry in different manner. The multiscale models thus developed have

been integrated in a continuous manner in order to demonstrate a continuous processing

framework that can be implemented in pharmaceutical industries. This work presents

an integrated flowsheet model which establishes a connection between the upstream

API purification/processing steps and downstream tablet manufacturing process. This

flowsheet can be used to study the effect, the upstream process parameters have on the

downstream product attributes. It is a well known fact that PAT and QbD tools can

be easily implemented in case of continuous processing schemes which will enhance the

product quality and also reduce the production of rejects. As the continuous process-

ing is being implemented in the pharmaceutical industries, this flowsheet model can

be used as a tool for virtual experimentation for performing design, optimization and

control related studies. Since design and optimization related studies require several

runs or trials, therefore such a virtual platform will save time and resources which is
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otherwise not possible with real experimentation. The flowsheet model consists of crys-

tallization, filtration, drying and mixing, where crystallization, filtration and drying are

upstream API purification operations and mixing is a downstream tablet manufacturing

operation.

A PBM has been developed for a continuous mixing process (detailed in specific aim I),

which has been experimentally validated and a multiscale one-way DEM-PBM coupled

model has been suggested for the same (detailed in specific aim II). The PBM can be

used for process or equipment design as has been demonstrated in specific aim I. The

output variables (mixed product CQAs) from PBM has been shown to demonstrate

quantitative agreement with the experimental trends and give a high prediction cer-

tainty. The results from the multiscale framework has been shown to give excellent

qualitative agreement when compared with the results of a full DEM simulation as well

as experimental trends. Therefore the mixing model is highly effective in capturing the

detailed physics of the operation. This mixing model has been further integrated in a

continuous flowsheet model as discussed in specific aim III. A two-dimensional PBM has

been written for the crystallization operation, which is able to capture crystal growth

in two directions. The crystallization model has been validated experimentally in order

to determine the kinetic parameters. As described in specific aim III, the flowsheet

model is multiscale in nature as well, since it incorporates particle level information

into the PBM. The usage of the flowsheet model has been demonstrated by perform-

ing an optimization and design related study (detailed in specific aim III). An efficient

control strategy has been suggested for the same by implementing a hybrid MPC-PID

platform. The flowsheet can be further extended by including a granulation operation

after mixing. Granulation is often present in the downstream tablet manufacturing

framework and is used for size enlargement of the fine particles in order to improve

their flowability and physical properties. A dynamic concurrent coupled CFD-DEM-

PBM multiscale modeling framework as been developed for a fluid bed wet granulation

process (as detailed in specific aim IV). This model is able to capture the detailed inter-

action between the fluid and solid phases and able to simulate the particle size change
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with the help of PBM. The FBG model has been shown to be able to capture the dif-

ferent flow regimes within the granultor and product quality attributes (PSD, average

particle diameter, liquid content. A ROM can be developed from the multiscale model

developed for the fluid bed granulation process. The ROM can be further incorporated

in the flowsheet model.

The FDA has introduced QbD and PAT principles, which mandate that the prod-

uct quality should be built by design at every manufacturing stage. This approach

is a promising alternative when compared to the traditional trial-and-error approach,

where the quality of the final product is matched with the regulatory guidelines. The

application of the required GMP ensures good end product quality. QbD and PAT

principles help reduce the overall time-to-market and cost of health-care. Therefore

products that conform to quality in accordance to the regulatory guidelines (as dic-

tated by the QbD and PAT principles) can be produced via an efficiently designed and

controlled continuous processing framework. An overall idea of this work is to present

different modeling tools and techniques which can be used to enhance the design of

the manufaturing processes used in the pharmaceutical industries and can be used to

aid in the smooth transition of these industires from a batch to continious processing

schemes.

6.1 Future directions

The present flowsheet model can be further extended by adding the other relevant

unit operations which include chemical synthesis of the API followed by its separation,

purification, after which the API crystals are sent to the formulation and tabletting

stages. This will give a full fledged continuous framework, which can be further used for

performing optimization study and for designing an efficient control system as demon-

strated in specific aim III. At present the flowsheet includes only the API separation,

purification and pharmaceutical blend formulation stages. However it forms the basis

for further extension.
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