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ABSTRACT OF DISSERTATION  

 

Estimation of Urban Scale Network-Wide Emissions  

Based on Fundamental Properties of the Network 

 

By ROOHOLAMIN SHABIHKHANI 

 

Dissertation Director 

Dr. Eric Gonzales 

 

One of the main criteria for evaluating traffic control systems, especially in large 

urban networks, is vehicular emissions, since it is the major contributor of urban air 

pollution. Decision makers in the cities want to minimize fuel consumption and emission 

of pollutants from traffic in addition to managing average speed and delay in the network. 

In order to optimize these parameters, a consistent estimation of the network-wide 

parameters is essential. Since existing macroscopic emission models based on average 

speed cannot provide accurate estimates for large-scale networks, there is a need for 

reliable emissions estimation based on the traffic features of a network.  

In the first part of this study, in order to have a more reliable, network-wide 

emissions estimation, the Integrated Traffic Emissions Model (ITEM) has been 

introduced to integrate macroscopic traffic parameters that have a major influence on 
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emissions with microscopically calculated emission factors. This mesoscopic emission 

model takes three aggregated traffic parameters, which include: number of vehicle stops, 

duration of time spent cruising, and the time spend idling, all expressed per Vehicle Mile 

Traveled (VMT), and multiply them with corresponding emission factors to estimate 

overall emissions of the network.  

In the next step of this study, the macroscopic connection between three 

aggregated traffic parameters needed for ITEM and the average density on an idealized 

ring shape model has been investigated. The Macroscopic Fundamental Diagram (MFD) 

is used to understand the existence of a robust relationship between the average flow with 

the average number of vehicles circulating on the network. An analytical approach has 

been proposed to estimate the macroscopic traffic parameters based only on fundamental 

properties of the network. 

In the final step, the proposed model and analytical approach have been tested on 

a more realistic grid network with heterogeneous traffic states across links of the network 

caused by turning movements. The results show that there is not only a robust and 

reproducible relationship between the aggregated traffic parameters and resulting total 

emissions with the average density on the network, but also the comparison of the 

analytical estimates with detailed calculations shows that the errors are in an acceptable 

range, especially for not completely jammed traffic conditions. 
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Chapter 1 :  

Introduction to the Study 

 

Road transportation plays a vital role in socioeconomic development. However, it 

causes several significant issues, including: congestion, incidents, noise, and air 

pollution. Transportation also is one of the main sources of energy consumption and 

greenhouse gas emissions (WBCSD, 2001). According to the US Treasury Department, 

traffic congestion wastes 1.9 billion gallons of gasoline per year, and it costs over $100 

billion per year due to fuel consumption and delays (U.S. Department of the Treasury, 

2012).In large urban networks, traffic emissions have drawn significant attention in 

addition to energy and time wasted in congestion, especially between the urban policy 

makers. Population growth and increases in car ownership have resulted in higher 

dependency on private vehicles and longer average hours traveled, which directly 

deteriorate the city’s air quality. 

The United States Environmental Protection Agency (US EPA) estimated that the 

road transportation sector accounts for 29 percent of hydrocarbon (HC) pollution, 31 

percent of nitrogen oxides (NOx) emissions and 60 percent of carbon monoxide (CO) 

emissions in the United States (US EPA, 2000). These emissions also contribute to urban 
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smog through a photochemical reaction of nitrogen oxides (NOx) and hydrocarbons (HC), 

which produces ground level ozone (US EPA, 2008). Overall, vehicles on the road are 

the source of over half of all dangerous air pollutants, and around 30 percent of total 

carbon dioxide (CO2) emissions in the United States. This makes traffic one of the main 

contributors of greenhouse gases (GHGs), which are associated with the world-wide 

phenomena called “Global Warming” (US EPA, 2013). 

These emissions have major health and environmental impacts on humans and 

other species. Air pollution becomes a more problematic issue at some times and 

locations, such as peak commuting hours in large and dense urban areas. Therefore, 

minimization of air pollution is an important objective for policy making and network 

planning in large metropolitans. However, in order to take the air pollution into the 

account for the evaluation of any transportation development, it is necessary to quantify 

traffic emissions in large-scale networks. This requires methods to estimate network-wide 

emissions easily and reliably. 

1.1 Problem Statement 

There are two major approaches to quantify traffic emissions. The microscopic 

approach, which requires second-by-second trajectories of each individual vehicle 

traveling in the network, is too data intensive and costly to be applied for large-scale 

network-wide emission evaluation. On the other hand, existing macroscopic emission 

models that are being used to evaluate total emissions in large networks only consider the 

average speed of vehicles traveling on the network using pre-defined driving cycles and 
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several other assumptions. This is problematic, because two very different traffic states 

may have the same average speed on the network. 

In order to evaluate aggregated traffic emissions at the urban-level, we need to 

take the traffic conditions and driving cycles into account. This means that different 

acceleration/deceleration patterns can have a significant effect on the generation of 

emissions. Additionally, the level of congestion on the network can result in different 

numbers of vehicle stops and duration of idling per unit distance traveled, which can have 

a direct impact on total emission production. This issue will be explained in detail in the 

following chapters.  

1.2 Research Objective 

The main objective of this study is to evaluate urban-level network-wide traffic 

emissions based on fundamental properties of the network and driving cycles. To achieve 

this objective, two major steps have been taken. In the first step, the robust relationship 

that exists between average vehicle density and average vehicle flow, known as a 

Macroscopic Fundamental Diagram, MFD (Daganzo, 2005.a), is used to estimate the 

important elements of the driving cycle that have the major influence on total emissions. 

The consistent relationship between the number of vehicles circulating within the 

network and the traffic conditions in a network is shown to be related to other useful 

measures of traffic performance. These include the elements of a typical driving cycle, 

which are closely related to pollutant emissions from vehicles: the time spent cruising at 

free-flow speed, the time spent idling, and the number of times that vehicles stop per 

distance traveled. 
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In the second step, the Integrated Traffic Emission Model (ITEM) is proposed to 

link the analytically estimated traffic parameters with corresponding emission factors. 

The emission factors are computed with a microscopic emission model (in this study, 

MOVES) by using a sample of detailed trajectories of vehicles driving through the 

network. The required sample size of the vehicle trajectories depends on various 

considerations such as the scope of the network and the level of desired accuracy. The 

result is an estimate of the aggregated network-wide emissions from traffic, which is 

sensitive to the traffic conditions across the network. 

1.3 Novelty and Contribution of the Study 

In recent years, several efforts have been made to evaluate network-wide 

emissions considering traffic conditions in a network. None of these studies has used the 

analytical approach and macroscopic properties of the network to estimate aggregated 

traffic parameters. In this study, the fundamental property of the network and the 

relationship between vehicle density in the network and other traffic parameters provides 

a simple and easily available insight to traffic conditions without the need for extensive 

microsimulation modeling. In this approach, as long as driving behavior is not changed 

and the basic properties of the network remain constant, the same emission factors 

(calibrated with microscopic emission model) can be utilized. Therefore, the variation of 

traffic flow or signal timings does not require a repeated data collection or 

microsimulation modeling. 
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Finally, whereas it has been proven that there is a robust and reproducible 

relationship between the number of circulating vehicles (or density) and the 

neighborhood’s average speed of vehicles (or flow) known as the MFD, a new 

relationship between the number of vehicles in the network and approximate number of 

stops and time spent in idling and cruising can be constructed. Although, this might 

depend on several factors, it can be very useful for emission evaluation of any alternative 

scenario affecting the flow and density of vehicles in the network. 

1.4 Organization of This Dissertation 

The remainder of this dissertation is organized as follows. Chapter 2 presents the 

literature review for traffic emissions and its standards and regulations. Different 

approaches to estimate traffic emissions and example models for each group are 

introduced in this chapter. Chapter 3 explains the proposed Integrated Traffic Emissions 

Model (ITEM) and the components that are needed to estimate total emissions. In chapter 

4, the implementation of the proposed ITEM approach on an isolated signalized 

intersection has been evaluated. Chapter 5 provides detailed explanation of the analytical 

approach to estimate aggregated traffic components. Then, using ITEM total emissions in 

an idealized ring-shaped model has been evaluated. Additionally, by implementing the 

mathematical methods to approximate MFD in the idealized network, network-wide total 

emissions are evaluated based on completely analytical calculations. In the last part of 

chapter 5, the effect of changing network characteristics on total emissions is evaluated. 

In chapter 6, by simulation of a simple grid network with some limited level of 

heterogeneity, the proposed analytical approach has been validated by comparing the 
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analytical estimates with microscopically computed total emissions. Finally, the model 

error analysis is provided at the end of this chapter. In Chapter 7, in addition to a brief 

conclusion, the application and usefulness of the model are provided. The explanation of 

current technologies to collect real-time data and future work of this study are the other 

parts of this chapter.   
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Chapter 2 :  

Literature Review 

 

In this section, the background of the study is presented, including the main 

vehicular emissions and current regulations and standards. In addition, the existing 

approaches to model traffic flow in a network and evaluate vehicular emissions with a 

few examples of current traffic and emission models in each category are explained. 

2.1 Main Tailpipe Vehicular Emissions 

Vehicular emissions are generated by combustion in the engine of vehicles, 

evaporation of fuel at different stages, and brake and tire wear. Although a few models 

are able to estimate the emissions associated with all of these sources, tailpipe emissions 

draw the most attention in emissions evaluation studies, because the exhaust emissions 

cause the main portion of traffic emissions. 

One of the main factors that affects emissions during the combustion process is 

the “air-to-fuel” mass ratio. It is estimated that a stoichiometric ratio of approximately 

14.5 mass units of air is needed to completely burn a unit mass of fuel. However, this 

ratio changes according to the required power. During acceleration, hill climbing, or any 

other high load condition, a rich fuel mixture with low air-to-fuel ratio, known as 
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enrichment, is used, while a lean mixture is utilized during deceleration, when no power 

is needed. This condition is known as enleanment (Cappiello, 2002). 

Depending on the vehicle type, engine technology, and fuel type, a variety of 

pollutants may be generated during the combustion process. Four major pollutants are 

commonly emitted by all vehicle types: hydrocarbons (HC), carbon monoxide (CO), 

nitrogen oxides (NOx), and particulate matters (PM). Ground level ozone (O3) caused by 

post reaction of vehicular emissions, sulfur dioxide (SO2), and lead (Pb) from some fuel 

additives are secondary air pollutants from vehicles. Finally, carbon dioxide (CO2) is the 

main product of complete combustion, and it is one of the main greenhouse gases 

contributing to global warming. These emissions have different causes and can be 

generated at various processes (e.g. incomplete combustion, fuel evaporation and 

leaking). Following is the brief explanation of the causes and process of generation of 

each of these pollutants.  

Unburned HCs are emitted to the atmosphere by incomplete combustion of fuel in 

the engine and evaporation of fuel in various conditions. The main causes of incomplete 

combustion are the low temperature of the engine during long idling or deceleration, and 

insufficient oxygen during enrichment and high power conditions (An, et al., 1998). The 

evaporation of fuel occurs during the hot-soak period (after the end of the trip when the 

engine is off but it is still hot), when temperature and pressure are high in a running 

engine, or during refueling or leaking from a defective fuel system (Cappiello, 2002). It is 

estimated that 29% of total HC emissions in the US are generated by on-road mobile 

sources (Rao, et al., 2013). 
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Another byproduct of incomplete combustion is CO, which is generated due to 

insufficient oxygen. Especially during the high power conditions and low air-to-fuel 

ratio, partial oxidation of the fuel is more likely, and the production of carbon monoxide 

is much greater than the production of carbon dioxide (Cappiello, 2002). According to 

US EPA evaluation, vehicular emissions are responsible for 60% of total CO in the 

United States (Rao, et al., 2013). 

Nitrogen oxides are generated during the combustion of the fuel under high 

temperature and pressure circumstances in the engine. In this case, the nitrogen as well as 

the oxygen of the atmosphere react and may produce different forms of NOx. Although, 

most NOx are colorless, the reddish-brown plume over many urban regions is caused by 

NO2 (Kirchstetter, et al., 1999). US EPA estimates that 31% of total NOx in the United 

States is generated by the mobile sources on the roads (Rao, et al., 2013). 

Particulate matter, which are evaluated based on the diameter of particles in 

micrometers are known as PM10 and PM2.5. These are very fine suspended particles 

which can be smog, road dust, and droplets. These tiny particles, especially those that are 

smaller than 2.5 microns are known to cause respiratory problems, including lung cancer, 

in addition to the harms to the environment, structures, and visibility (Kirchstetter, et al., 

1999). It is estimated that vehicular emissions cause 4% of total PM2.5, a considerable 

portion of which originates from diesel vehicles (Rao, et al., 2013). 

In addition to these four major vehicular emissions, ground level ozone is a 

secondary pollutant that can be generated in the atmosphere through photochemical 

reactions. NOx and HC, in the presence of sunlight, react with the oxygen in the 

atmosphere and generate O3. Although upper level ozone can protect the earth from 



 

 

10 

ultraviolet radiation, ground level ozone damages human health and the environmental 

(Cappiello, 2002). 

Carbon dioxide is the main product of fuel combustion in an engine. Therefore, 

we cannot prevent the production of CO2, but it can be reduced by minimizing the fuel 

consumption through increasing the efficiency of the vehicles’ engines or the efficiency 

of vehicles’ movements in the network (e.g., reducing the number of stops and time spent 

idling). Although CO2 is not considered as a pollutant, it is the main greenhouse gas 

(80% of total GHGs), and increasing of CO2 has been shown to cause global warming. 

According to the US EPA, on-road mobile sources are responsible for over 30% of the 

total CO2 emissions in the U.S. (US EPA, 2013). Therefore, because carbon dioxide is 

the most important world-wide air quality impact of transportation, and correlated to the 

volume and efficiency of the mobility in the network, in this project, only CO2 is 

evaluated in different scenarios. However, based on the capability of the microscopic 

emissions model used to estimate the emission factors, the same method can be 

implemented to evaluate other pollutants.  

2.2 Regulations and Standards for Air Quality and Emissions 

The Clean Air Act of 1963 was the first step of a national program to regulate air 

pollution. However, the first enforcement procedures for vehicular emissions caused by 

interstate transportation were not authorized until 1967. Finally, the Clean Air Act of 

1970 established the national emissions standards to control motor vehicle emissions. In 

following twenty years, despite numerous advancements in technologies and 

improvements in vehicular emissions, deterioration of air quality in large cities continued 
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due to the growing number of cars. Stricter air quality control was needed, and Clean Air 

Act Amendments of 1990 were passed.  

The Clean Air Act Amendments of 1990 established maximum allowable 

concentrations for six criteria air pollutants, including: ozone (O3), sulfur dioxide (SO2), 

carbon monoxide (CO), nitrogen dioxide (NO2), lead (Pb), and particulate matter with an 

aerodynamic diameter less than 10 microns (PM10) mandated in all the regions in the 

United States (National Research Council, 1995). These thresholds are expressed as the 

concentration of the pollutants in various temporal aggregations. The concentrations of 

ground level ozone and carbon monoxide, which may have a short-term health impacts, 

are defined as the accumulation of the pollutants in 24 hours or less. However, the other 

four air pollutants have the thresholds in the form of the annual average of the 

concentration.  

In addition, the Clean Air Act categorizes the National Ambient Air Quality 

Standards (NAAQS) into two general groups based on the purpose of the standard and 

the objective groups. The primary standards are defined for the protection of public 

health, considering the most sensitive groups in society, including: children, the elderly, 

and asthmatics. The secondary standards, on the other hand, are defined to improve the 

public welfare, including preventing from reduced visibility and harms to animals, crops, 

vegetation, and buildings (US EPA, 2014.a). Table 1 shows selected primary and 

secondary standards for the main six air pollutants in various aggregation periods. Except 

lead and sulfur dioxide, which are mainly emitted by stationary industrial processes (in 

the past, gasoline and diesel were the considerable sources of Pb and SO2 respectively), 

transportation is a significant contributor of four other pollutants. 
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Table 1. Primary and Secondary standard concentration of pollutant 

 

Note: From US EPA (2014) National Ambient Air Quality Standards (NAAQS). Retrieved 

from US Environmental Protection Agency Website: http://www.epa.gov/air/criteria.html 

 

The growing role of transportation in the deterioration of air quality in cities is a 

result of increasing car ownership and more vehicles miles traveled, so, the standards and 

regulations are getting more stringent. The Clean Fuel Vehicle Exhaust Emissions 

Standards and Tier 1-3 have emerged to limit vehicular emissions (US EPA, 2012.a). In 

this set of regulations, the tailpipe emissions are measured by considering the type of 

vehicle and total miles traveled. The pollutants considered in this standard include total 

hydrocarbons (THC), volatile hydrocarbons (VHC), non-methane hydrocarbons 

(NMHC), carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM). 

These pollutants are expressed as the maximum permitted tailpipe emissions measured by 

chassis dynamometer testing and expressed in the form of grams per mile, according to 

specific driving cycles called the Federal Test Procedure-FTP (Cappiello, 2002). Table 2 

shows the emissions standards of Tier 1 for light-duty vehicles. 
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Table 2. Tier 1 emission standards (grams/mile) for light-duty vehicles 

 

Notes: THC denotes total hydrocarbons; NMHC denotes non-methane hydrocarbons; 

NOx diesel denotes NOx for diesel vehicles; NOx gasoline denotes NOx for gasoline 

vehicles. LLDT denotes light light-duty trucks; HLDT denotes heavy light-duty trucks; 

LVW denotes loaded vehicle weight (unloaded weight + 300 lbs.); ALVW denotes 

adjusted LVW, equal to (gross vehicle weight + loaded weight)/2. From US EPA 

Website (2012).Light-Duty Truck -- Tier 0, Tier 1, and Clean Fuel Vehicle Exhaust 

Emissions Standards. Retrieved from U.S. Environmental Protection Agency, Office of 

Transportation and Air Quality (OTAQ): http://www.epa.gov/otaq/standards/light-

duty/tiers0-1-mdvstds.htm 

 

It should be noted that although these standards are enforced across the United 

States, the State of California has more stringent regulations. Due to severe air pollution 

of Los Angeles before federal standards were established, the State of California has 

issued its own automobile emissions standards. Moreover, in the last decade 14 more 

states have decided to adopt the California standards which are defined by the California 

Air Resources Board (CARB). Finally the US EPA and the National Highway Traffic 

Safety Administration (NHTSA) have started to upgrade the regulations in order to 

reduce GHG emissions and improve fuel consumption by on-road vehicles with the 
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cooperation of a broad range of stakeholders, including the State of California and major 

automobile and truck manufacturers. They decided to extend the standards to light-duty 

vehicles for model years 2017-2025 (US EPA, 2012.b). 

2.3 Vehicular Emissions Modeling Methods 

In order to have accurate estimates of emissions from on-road vehicles, it is 

important to consider the parameters that influence emissions. These parameters can be 

categorized as follows (Hassounah & Miller, 1994):  

 Vehicle characteristics, which include vehicle design and manufacturing 

technology, such as vehicle weight and its aerodynamic features, engine type 

and technology, control systems, exhaust treatment systems, current vehicle 

status and mechanical condition based on the vehicle age, mileage, and 

maintenance (Faiz, et al., 1996). Any malfunctioning of the vehicle should be 

considered in this category.  

 Vehicle operating conditions, which are significantly affected by driving 

behaviors. These parameters include vehicle kinematic variables, such as 

vehicle average speed and the rates of acceleration and deceleration (also 

known as speed fluctuation) and the engine conditions, such as the 

temperature of the engine and air-to-fuel mass ratio based on required power 

(Joumard, et al., 2000) and (Hansen, et al., 1995). Other parameters in this 

part may include the transmission gear and use of air conditioning.  

 External parameters, which include road type and conditions, such as the 

road grade, curvature, and pavement quality, and meteorological conditions, 
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such as temperature, pressure, and humidity. Additionally, other factors may 

affect the dispersions of emissions in the atmosphere (Flagan & Seinfeld, 

2012). 

 

A wide range of parameters influence the vehicle emissions and may cause 

various inaccuracies in the results. Therefore, in order to have a more reliable estimate of 

traffic emissions the second-by-second movement of all individual vehicles should be 

considered based on instantaneous operating condition of the vehicle. However, this 

approach may not be applicable for the large networks. In general, the operating 

conditions of vehicles, which can be represented by the vehicle speed and acceleration or 

the engine load, are the primary input of the emission models, while the external 

parameters such as road and weather conditions are the secondary input of the model.  

During the last decade, several approaches have been proposed in order to 

estimate vehicle emissions; however, based on the resolution of the simulation, all of 

these approaches can be classified into three major groups, namely, the microscopic, 

mesoscopic, and macroscopic emission models. In this section, in addition to explaining 

the main approaches in each group and provide a few examples, the strengths and 

weakness of each approach are discussed.  

2.3.1 Microscopic emission models 

Microscopic emission models provide instantaneous emissions estimation based 

on concurrent operating conditions of a vehicle. These models are typically calibrated 

based on the dynamometer tests, which continuously measures the tailpipe emissions of 
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various vehicle types during standard driving cycles. Using this continuous measurement 

of emissions enables us to relate the influential parameters, such as second-by-second 

speed and acceleration or required engine power as independent variables, to the resultant 

emissions as the dependent variable. A more comprehensive model may consider the 

concurrent quantities of all contributing factors expressed in the previous section.  

A variety of efforts have been made to estimate instantaneous vehicle emissions. 

Velocity-acceleration lookup tables (also known as emissions maps), regression-based 

models, and power-demand-based models are the most common approaches to estimate 

vehicle emissions microscopically. Following are a few examples of microscopic 

emission models.  

2.3.1.1 MODEM 

MODEM is an early-generation microscopic emission model, which was 

developed as a part of the DRIVE II research program by the European Commission 

(Jost, et al., 1994). The speed-acceleration lookup tables have been produced based on 

the emissions measurements of 150 vehicles sampled from the vehicle population of 

different European Union countries. The vehicle emissions of HC, CO, CO2, and NOx  

are measured during various operation conditions represented by 14 driving cycles.  

2.3.1.2 VT-Micro 

The Virginia Tech microscopic energy and emissions model (VT-Micro model) is 

a regression-based microscopic emissions model (Ahn, et al., 1999; Rakha, et al., 2000; 

Ahn, et al., 2002).This model estimates instantaneous emissions based on a combination 

of linear, quadratic, and cubic terms of speed and acceleration as independent variables. 

The chassis dynamometer test was utilized for this model at Oak Ridge National 
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Laboratory. To construct the model six light duty vehicles (LDV) and three light duty 

trucks (LDT) have been tested, and 1300 to 1600 individual emissions measurements 

have been collected from each vehicle. These continuous measurements covered various 

driving conditions, which in some other models are based on a few driving cycles. In the 

regression model of VT-Micro, the various arrangements of speed and acceleration have 

been used as the explanatory variables in order to obtain the best fit. The general format 

of the regression model to estimate the instantaneous emissions is given as equation (1): 

𝑀𝑂𝐸𝑒 =

{
 
 

 
 
∑∑ exp(𝑘𝑖,𝑗

𝑒 . 𝑣𝑖. 𝑎𝑗)

3

𝑗=0

3

𝑖=0

                𝑓𝑜𝑟  𝑎 ≥ 0

∑∑ exp(𝑙𝑖,𝑗
𝑒 . 𝑣𝑖. 𝑎𝑗)

3

𝑗=0

3

𝑖=0

                 𝑓𝑜𝑟  𝑎 < 0

 

 
 
(1) 

 

Where:  

𝑀𝑂𝐸𝑒is the instantaneous fuel consumption or emissions rate in L/s or mg/s, 

𝑎is the instantaneous acceleration of vehicle in km/h/s, 

𝑣 is the instantaneous speed of vehicle in km/h, 

𝑘𝑖,𝑗
𝑒  is the vehicle-specific acceleration regression coefficients for MOEe, and 

𝑙𝑖,𝑗
𝑒  is the vehicle-specific deceleration regression coefficients for MOEe. 

In the model, different coefficients for acceleration and deceleration have been 

considered and the natural logarithms have been used in order to avoid the negative fuel 

consumption or emissions rate. The model shows a good fit for a wide range of speeds 

and accelerations, and the estimated fuel consumption by the model are within 2.5 

percent of the actual value of the consumption measured in the field (US EPA, 2012.c).  
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2.3.1.3 POLY 

POLY is another regression-based microscopic emissions model, which was 

developed by the researchers at the Polytechnic University of New York and the Texas 

Southern University (Teng, et al., 2002). In this model, the road grade and past 

acceleration are also considered in addition to concurrent speed and acceleration. The 

general format of the regression model, which is estimated by ordinary least squares is 

shown in equation (2): 

𝑒(𝑐, 𝑡) =∑𝛽𝑖. 𝑣
𝑖(𝑡)

3

𝑖=0

+ 𝛽𝑇′ . 𝑇
′(𝑡) + 𝛽𝑇′′ . 𝑇

′′(𝑡) +∑𝛽𝐴𝑡−𝑗 . 𝐴(𝑡 − 𝑗)

9

𝑗=0

+ 𝛽𝑊.𝑊(𝑡) 
 

(2) 

where:  

𝑒(𝑐, 𝑡) is the emissions rate of the vehicle category c at time t,  

𝛽s are the parameters calibrated for each vehicle category c, 

𝑣(𝑡) is the speed of the vehicle at time t, 

𝑇′(𝑡) is the duration of acceleration since its inception up to the current time t, 

𝑇′′(𝑡) is the duration of deceleration since its inception up to the current time t,  

𝐴(𝑡 − 𝑡̅) is the combined acceleration or deceleration at time 𝑡 − 𝑡̅ (𝑡 = 0,…,9) 

calculated from the acceleration 𝑎(𝑡) and the grade 𝑔(𝑡) (in %) as follows in equation 

(3):  

𝐴(𝑡 − 𝑡̅) = 𝑎(𝑡 − 𝑡̅) + 9.81. (
𝑔(𝑡 − 𝑡̅)

√1 + 𝑔(𝑡 − 𝑡)̅
) 

(3) 

and finally,𝑊(𝑡) is the product of 𝑣(𝑡) and 𝐴(𝑡). 

 



 

 

19 

In this model the vehicle emissions database of the National Cooperative 

Highway Research Program (NCHRP) developed at UC Riverside has been used. This 

model has been calibrated and validated by the emissions data from the standard driving 

cycles including FTP data. In addition, the emission results of the model for a few 

specific vehicles have been compared with the emissions estimations from VT-Micro and 

CMEM.  

Statistical microscopic emission models are developed based on various 

combinations of explanatory variables, including speed and acceleration, and may 

provide a good fit regression model with reasonable results. However, they may over-fit 

the data due to a large number of explanatory variables. Therefore, situations that are not 

covered in the calibration process may lead to estimated emissions with some undesirable 

results. Additionally, the regression-based models do not provide a clear understanding of 

the influence of physical processes on emissions generation, while power-demand models 

consider the physical and chemical phenomena that cause emissions to be generated.  

2.3.1.4 CMEM 

The Comprehensive Modal Emissions Model (CMEM) is a power-demand-based 

model, also known as load-based model. This model is developed at the University of 

California at Riverside and the University of Michigan (Barth, et al., 2000; Scora & 

Barth, 2006). This model estimates emissions based on physical processes which are 

decomposed into six modules, including (1) power demand, (2) engine speed, (3) air/fuel 

ratio, (4) fuel rate, (5) engine-out emissions, and (6) catalyst pass fraction. All modules 

are depicted in square boxes in Figure 1. As shown in the figure, the operating conditions 

directly affect the fuel-to-air ratio, engine-out emissions, and catalyst pass fractions.  
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CMEM has been developed based on extensive data collection of both engine-out 

and tailpipe emissions from the chassis dynamometer test of over 300 vehicles, including 

more than 30 high emitters. The data collection consists of second-by-second speed 

profile and emission rates of CO2, CO, HC, and NOx before and after the catalytic 

converter system. In order to develop the database, three driving cycles have been used, 

including: the FTP cycle, the US06 cycle, and an engineered cycle, called Modal 

Emissions Cycle (MEC01). 

 

 

Figure 1. The structure of modal emissions model of CMEM (Barth, et al., 2000) 

As the input data, both the vehicle operation variables (e.g., speed, acceleration, 

and road grade) and the model calibrated parameters (e.g., cold start coefficients, engine 

friction factor, and the enrichment/enleanment conditions) have been considered in the 

model. In order to utilize the model, based on a number of parameters, 28 categories have 

been constructed to estimate emissions for different vehicle in various conditions. These 
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parameters include: vehicle type and the technology of engine, fuel system, and 

emissions control system, accumulated mileage, power-to-weight ratio, emissions 

certification level (tier0 and tier1), and emitter level category (high and normal emitter). 

As a comprehensive model, CMEM considers the most influential factors on 

estimation of emissions under different conditions that make physically sense. However, 

this kind of microscopic model can be very data intensive and complicated to use.  

2.3.1.5 MOVES (Project Level) 

MOtor Vehicle Emissions Simulator, MOVES, is a software package developed 

by the US EPA, which is the next generation of the MOBILE series of emissions models 

(US EPA, 2012.c; US EPA, 2001). The MOBILE model and county/national level 

modules of MOVES are average-based emission models, which are discussed in the 

macroscopic emission models section. The Project Level of MOVES is a load-based 

emissions model. Similar to other microscopic emission models, this module of MOVES 

can be used to estimate instantaneous emissions associated with second-by-second 

movements of each individual vehicle. MOVES has been developed based on several 

emissions databases collected by US EPA, CARB, automobile manufacturers, and the 

inspection and maintenance (I/M) tests from several states. The additional driving cycle 

(supplemental FTP cycle) that has been used in the dynamometer test to enable the model 

to cover a wide range of speeds and accelerations, including aggressive driving with air 

conditioning operating (Bai, et al., 2009; Koupal, et al., 2010). 

The MOVES model consists of four major functions, which include the activity 

generator, the operating mode distribution generator, the source bin distribution 

generator, and the emissions calculator (Bai, et al., 2009; Beardsley, 2004). As shown in 
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Figure 2, the emissions functions take the input data consisting of vehicle activities, fleet 

composition, meteorological conditions, and fuel formulation to estimate the emissions. 

The resulting emissions are delivered as the emission factors or emissions inventories 

generated over a desired geographic span (national, county, and project level) as well as 

temporal resolution (year, day, and hour)  

 

 

Figure 2. The structure of the MOVES model (Beardsley, 2004) 

The model implements a set of correction factors to the initial emission rates, to 

take other influencing parameters into account. These parameters include the air 

temperature and humidity, the vehicle age and deterioration, and Inspection/Maintenance 

(I/M) programs. MOVES also can consider the impact of ramp, which is the off network 

extended idling, to estimate several air pollutants for a list predefined vehicle types, fuel 
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types, and engine technologies. There is a feature to define a different fuel formulation 

and an Alternate Vehicle Fuels & Technologies (AVFT). 

MOVES is a modal emissions model, which uses the variation of vehicle 

performance in different driving modes to estimate on-road vehicle emissions. There are 

two methods to provide the vehicle performance as the input into the model. By using the 

Operation Mode Distribution module, the distribution of the vehicle(s) activity on a link 

is entered into the model as the fraction of time spent in each mode of vehicle operation. 

Operating modes have been broken down into different bins representing various 

activities and emission processes, including running exhaust, start exhaust, hot soak, 

evaporation loss, brake ware, and tire wear. For instance, the running exhaust bins are 

defined by the speed and Vehicle Specific Power (VSP), which is the instantaneous 

power demand of the vehicle divided by its mass. The main advantage of using VSP is 

that several physical parameters contributing to emissions generation and fuel 

consumption can be combined into a single factor showing the overall required power 

(normalized by the vehicle weight) to overcome different forces and resistances. These 

influencing parameters include: vehicle speed, acceleration, road grade, and road load 

factors such as aerodynamic drag and rolling resistance.  

On the other hand, the Project-Level of MOVES can simply take the vehicle 

trajectories to estimate the emissions. The Link Drive Schedule uses the second-by-

second speed and grade profile of the vehicle to calculate instantaneous required power. 

MOVES utilizes an internal algorithm to calculate an Operating Mode Distribution and 

subsequent emission factors from the Link Drive Schedule (US EPA, 2012.c).  
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The US EPA mandated that the MOVES emissions model be implemented as the 

only approved emissions model for project-level analyses and conformity determinations 

in all states. The only exception is the State of California, which must use the approved 

emissions model of EMFAC (US EPA, 2014.b). 

2.3.1.6 EMIT 

Emissions from Traffic, EMIT, is also a statistical emissions model, which is 

developed at the Massachusetts Institute of Technology (Cappiello, 2002; Cappiello, et 

al., 2002). Although this model is a regression-based model, it is also based on simplified 

physical processes in the engine that contribute in the generation of emissions; therefore, 

this model can be considered a combination of regression-based and load-based 

approaches. In this model, the explanatory variables have been derived from the load-

based approach in order to the instantaneous vehicle emissions and fuel consumption of 

light-duty vehicles. Similar to many other microscopic emission models, second-by-

second speed and acceleration are the main input of the model.  

2.3.1.7 Summary of microscopic emission models 

Microscopic emission models may have a sophisticated and complex structure, 

which makes the model capable of detailed emissions estimation under a wide range of 

circumstances. However, this complex model requires intensive data collection. This also 

may cause an extensive computation, which is time consuming and costly. On the other 

hand, the simplified and regression-based models may provide instantaneous emission 

estimates based on a second-by-second speed profile; however, these models can be over-

fitted due to a large number of explanatory variables, or cannot be calibrated for some 

conditions. 
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In addition to these weaknesses, in general, the microscopic emission models 

cannot be utilized for large urban networks, since second-by-second movements of 

vehicles cannot be tracked. Not only is it not an easy task to collect detailed trajectories 

of numerous vehicles with corresponding vehicle information, storing and processing this 

massive information is impossible even with existing super computers. Finally, even if a 

microscopic simulation of a large urban region were conducted, the detailed information 

resulting by the microscopic model may not be very helpful for urban planners and policy 

makers. In large-scale urban decision making aggregated data and overall evaluation are 

often more useful. Therefore, for large-scale evaluation of traffic emissions as well as 

traffic management, macroscopic traffic modeling can be more beneficial. In the next 

section, the main approaches of macroscopic emission models, with a few examples are 

discussed.  

2.3.2 Macroscopic emissions models 

While microscopic simulations consider instantaneous movements of all 

individual vehicles and evaluate second-by-second emissions of small-scale networks 

(project level), macroscopic emission models utilize the aggregated traffic parameters to 

evaluate network-wide emissions usually on a large-scale network (urban level). In most 

cases, the average speed of vehicles is used as the higher level traffic parameter 

representing the traffic conditions. In general, the total emissions of a species in a given 

area during a given period of time can be predicted by estimation of average speed along 

the given time and space span. Equation 4 is one of the general formats of average-speed-

based model:  
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𝐸𝑖 =∑∑𝑉𝐾𝑇𝑙. 𝑓𝑐. 𝐵𝐸𝑅𝑖(𝑠�̅�, 𝑐)
𝑙𝑐

 
 
(4) 

Where:  

𝐸𝑖 is the total emission of the species 𝑖,  

𝑐 is the vehicle category of interest,  

𝑙 is the sub-region of interest where the average speed of vehicles is 𝑠�̅�,  

𝑉𝐾𝑇 is the vehicle-kilometers-traveled in a given network and period of time, 

𝑓𝑐 is the fraction of vehicles of category c to total number of vehicles, 

𝐵𝐸𝑅𝑖(𝑠�̅�, 𝑐) is the Base Emissions Rate per distance (kilometer or mile) for the 

emissions species 𝑖, associated with vehicle category c and average speed of 𝑠�̅� in the sub-

region 𝑙. 

The network-wide average speeds and the dependent emission factors are usually 

computed based on the standard driving cycles for different vehicle categories. A 

correction factor can also be applied to the model to take the other relevant factors into 

account. Since this type of model takes the network-wide average speed of vehicles as the 

main input of the emissions model, it can estimate the emissions more accurately when 

the conditions are near steady state. The best application of these models is the analysis 

of large networks with uniform flow and average speed, such as the uninterrupted flow in 

highways. The following are a few examples of macroscopic emission models.  

2.3.2.1 Elemental Model 

The Elemental Model is a one of the earliest macroscopic emission models (Evans 

& Herman, 1978; Chang & Herman, 1981). This model simply relates the fuel 

consumption and emissions linearly to the average travel time per unit distance, which is 
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the reciprocal of average speed on the network. The general format of the Elemental 

Model is shown in equation 5: 

∅ = 𝐾1 + 𝐾2𝑇          𝑤ℎ𝑒𝑛 ∶ 𝑉 < 55𝑘𝑚/ℎ (5) 

where:  

∅ is the fuel consumption per unit distance,  

𝑇 is the average travel time per unit distance,  

𝑉 (=
1

𝑇
) is the average speed of vehicles on the network,  

𝐾1, 𝐾2 are the calibration parameters in the model. 𝐾1(in mL fuel/km) represents 

the fuel consumption associated with the mass of the vehicle mass. 𝐾2 (also in mL/sec) is 

the fuel consumption factor associated with the average speed of the vehicle. 

In order to avoid the impact of aerodynamic drag resistance at high speeds, most 

of the average-speed-based models are a function of travel time, travel distance at a low 

average speed. Therefore, these models can only be implemented for the average speeds 

of less than 50 km/h (Evans, et al., 1976; Akcelik, 1985). 

2.3.2.2 Watson Model 

This also another average-speed-based model, developed to estimate overall fuel 

consumption (Watson, et al., 1979). In this model, as shown in equation (6), the variation 

of the kinetic energy during acceleration has been considered in addition to the average 

speed. 

𝐹 = 𝐾1 +
𝐾2
𝑉𝑠
+ 𝐾3𝑉𝑠 +𝐾4𝑃𝐾𝐸 

(6) 

where:  

𝐹 is the fuel consumption in L/km, 
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Vs is the space mean speed in km/hr,  

𝐾1, 𝐾2, 𝐾3, and 𝐾4 are the calibration parameters in the model, and 

PKE is the sum of the positive kinetic energy changes during acceleration in m/s
2
, 

and is calculated as follows in equation (7): 

𝑃𝐾𝐸 =∑(𝑉𝑓
2 − 𝑉𝑖

2)/(12.96𝑋𝑠) (7) 

where:  

V𝑓 is the final speed at the end of acceleration in km/hr,  

V𝑖 is the initial speed before the acceleration in km/hr, and 

X𝑠 is the total length of the segment in km. 

In this model, the average speed should be less than 55 km/hr to prevent the 

impact of drag force by the aerodynamic effects (Evans, et al., 1976; Akcelik, 1985). The 

early generation average-speed-based emission models considered the average speed of 

the trips to evaluate general emissions generated by the individual vehicles. However, the 

same method could be implemented to estimate overall emissions in the network.  

In the last decade, a few macroscopic emission models have been developed and 

utilized, which are specifically proposed to evaluate the vehicular air pollution in the 

large networks. MOVES, EMFAC, and COPERT are the most well-known and widely-

used tools in this category, which will be discussed in the following sections.  

2.3.2.3 EMFAC 

The EMFAC (Emission factors) model is an average-speed-based model, 

developed by the California Air Resources Board (CARB, 2011). The EMFAC model is 

one of the two officially approved models for the regulatory purposes, and it is widely 

used in the United States (beside the MOVES model). EMFAC is commonly being used 
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in the State of California to evaluate network-wide traffic emissions and fuel 

consumption (US EPA, 2014.b).  

The model estimates aggregated emissions based on the emission rates database 

collected by the chassis dynamometer tests on different vehicle classes with various 

driving cycles. These emission rates are generated based on the fixed Vehicle Specific 

Power (VSP) distribution embedded in the underlying driving cycles. The model uses a 

set of correction factors to take a variety of influential parameters into account (Bai, et 

al., 2009).  

The EMFAC model takes the vehicle miles traveled (VMT), and breaks it down 

into bins with a speed interval of 5 MPH as the activity data, and uses the local-specific 

emission rates and combines them internally to generate hourly or daily total emissions 

for various geographic areas in California. EMFAC can estimate a set of vehicle air 

pollutants, including: hydrocarbons (TOG, ROG, THC and CH4), carbon monoxide (CO), 

oxides of nitrogen (NOx), carbon dioxide (CO2), particulate matter (PM30, PM10, and 

PM2.5), oxides of sulfur (SOx), lead (Pb), and fuel consumption in different emission 

processes such as: running exhaust, start exhaust, idle exhaust, diurnal, hot soak, resting 

and running loss, and tire and brake wear.  

2.3.2.4 MOBILE/MOVES 

In addition to the microscopic simulator provided at the project level of MOVES, 

the model is capable of estimating the emissions based on the average speed of vehicles 

in different domains of national, county, and project levels (US EPA, 2012.c). The initial 

macroscopic emissions model that was developed in the United States for regulatory 

purposes was MOBILE, which has been replaced by the MOVES model in 2010 by the 
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US EPA. Since then, the model has started to officially be adopted for evaluation of on-

road emission estimates for the state implementation plans (SIPs) and regional or project-

level transportation conformity analyses in all states other than California (in the State of 

California, the EMFAC model must be used for this type of project) (US EPA, 2014.b). 

In the national and county domains, the network-wide average speed of vehicles 

distributed into speed bins from 2.5 to over 75 mph with 5 mph interval, according to 

source type, road type, and hour-day. One the differences between MOVES and EMFAC 

is that the EMFAC model uses the average speed distribution defined as miles traveled 

(fraction of distance), and the MOVES model is based on the vehicle operating time 

(SHO – Source Hours Operating) defined to provide the vehicle performance data to the 

model (Bai, et al., 2009). Similarly, for the project level, a link-wide average speed of 

different vehicle types can be used to simulate a network at project level macroscopically.  

In addition to the activity data (speed/VSP), the model requires some more inputs, 

including temporal and spatial span, fleet composition and its age distribution, network 

configuration and proportion of the vehicles activities on the network, fuel formulation, 

meteorological data, inspection and maintenance (I/M). However, for the nationwide 

emissions modeling, national default vehicle fleet and VMT distributions, national 

default driving schedules, meteorological data, and some other default data are provided. 

Also, for the county level modeling, built-in allocation factors can be used to estimate 

county level default data. 

A wide range of pollutants can be evaluated by the MOVES model, including 

total hydrocarbons (THC), methane (CH4), oxides of nitrogen (NOx), nitrous oxide 

(N2O), carbon monoxide (CO), atmospheric carbon dioxide (CO2), CO2 equivalent, sulfur 
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dioxide (SO2), ammonia (NH3), particulate matter (PM10 and PM2.5), toxic air pollutants, 

and energy consumption. These pollutants can be estimated from different emission 

process, such as running exhaust, start exhaust, extended idling, off-gassing (well-to-

pump), evaporative fuel permeation, evaporative fuel vapor venting, evaporative fuel 

leaking, brake wear, and tire wear. Estimated emissions can be generated in the form of a 

rate of grams pollutant per distance, per profile, or per vehicle, or it can be estimated as a 

total weight of the emissions or as inventory (Vallamsundar & Lin, 2011).  

2.3.2.5 COPERT 

COPERT 4 (COmputer Program to calculate Emissions from Road Transport) is a 

well-known tool for mobile source emissions inventories in Europe. It is an application to 

calculate air pollutant and greenhouse gas emissions from the road-transport sector 

developed with the support of the European Environment Agency (EEA) and European 

Commission (Gkatzoflias, et al., 2007; Ntziachristos & Samaras, 2013). COPERT is an 

average-speed-based model, which is designed to macroscopically estimate the vehicle 

fleet emissions at the country level. In addition to European countries, this model is used 

officially world-wide in other countries and some of the United Nations’ projects, 

including the submission of national road transport inventories to satisfy the requirements 

of the Convention on Long Range Trans-boundary Air Pollution (CLRTAP) and the UN 

Framework Convention on Climate Change (UNFCCC) (EEA, 2011). 

In order to develop the database, the Euro series emissions standards have been 

considered and emission factors for 241 individual vehicle types from all European 

countries have been measured. However, since detailed information for all the vehicle 

types were not available in all countries, in several cases a number of parameters are 
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required to be assessed. The model estimates the regional fuel consumption and wide 

range of pollutants, including CO, CO2, NOx, NM-VOC, CH4, N2O, NH3, PM2.5, PM10, 

SO2, Pb, Cd, Cr, Cu, Ni, Se, Zn in different processes, namely the thermal stabilized 

engine operation (hot emissions), the warming-up phase (cold start emissions), and non-

exhaust emissions (fuel evaporation, tire and brake wear emissions) (Smit & 

Ntziachristos, 2013).  

2.3.2.6 Summary of macroscopic emission models 

Although, macroscopic emission models are currently in use for evaluation of 

emissions and fuel consumption in the county, state, and national levels, microscopic 

emission models are only suitable to be used to evaluate overall vehicular emissions in 

smaller scale networks. Additionally, macroscopic emission models are usually based on 

the network-wide average speed of different vehicle classes on various road types, and 

they do not have the capability to accurately estimate emissions in various traffic 

conditions. Therefore, in recent years, some efforts have been made to estimate network-

wide emissions, considering different parameters by developing mesoscopic emission 

models which will be explained in the next section. 

2.3.3 Mesoscopic emission models 

Mesoscopic emission models require more disaggregate inputs than macroscopic 

models, therefore, they can predict emissions more accurately than the macroscopic 

models. Moreover, the mesoscopic models do not need detailed input like the 

instantaneous movements of all individual vehicles as it is required in the microscopic 

model; therefore,they are not as complex and data intensive as the microscopic models.  
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2.3.3.1 Akcelik Model 

The model which was developed by Akcelik et al. estimates fuel consumption 

based on the averaged parameters on different driving modes (Richardson & Akcelik, 

1981). The model is composed of three components of cruising, idling, and deceleration-

acceleration. In the two first terms, the fuel consumption rate is defined as the rate per 

distance traveled with the cruising speed time and rate per time spent in stop position, and 

for the deceleration-acceleration mode, the rate is defined per stop. The general format of 

the model is presented in equation (8) 

𝐹 = 𝑓1𝑋𝑠 + 𝑓2𝑑𝑠 + 𝑓3ℎ (8) 
 

where:  

F is the average fuel consumption in mL, 

𝑋𝑠 is the length of the section in km, 

𝑑𝑠 is the average duration of idling per vehicle in sec, 

ℎ is the average number of stops per vehicle, 

𝑓1is the fuel consumption rate in cruising mode in mL/km, 

𝑓2 is the fuel consumption rate in idling mode in mL/sec, 

𝑓3 is the fuel consumption rate per vehicle stop in mL. 

2.3.3.2 MEASURE Model 

The Mobile Emissions Assessment System for Urban and Regional Evaluation 

(MEASURE) is a GIS-based modal emissions model originally developed by researchers 

at the Georgia Institute of Technology in cooperation with the U.S. Environmental 

Protection Agency (Bachman, et al., 1996; Bachman, et al., 2000). The model was 
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initially introduced for the metropolitan region of Atlanta, Georgia to evaluate trip-based 

traffic activity and its corresponding fuel consumption and emissions. 

The model uses a hierarchical tree-based regression technique to select 

explanatory variables among modal variables (such as average speed and percentage of 

cycle exceeding a specific level of acceleration, power, etc.) and a few dummy variables 

representing the vehicle characteristics (such as fuel injection system, emissions control 

system, mileage, high or normal emitter, etc.). The model estimates HC, CO, and NOx in 

different processes using two major modules, including a start emissions module and an 

on-road emissions module. For the start emissions module, start characteristics of the 

fleet are obtained using available vehicle registration data. For the on-road emissions 

module, the operating mode distribution is estimated based on traffic conditions (traffic 

flow and network saturation ratio), average travel speed, and the road conditions. These 

vehicle activity data can be obtained from real-world data or traffic simulations.  

The MEASURE model is calibrated based on a large database constructed by 

tailpipe emissions tests on more than 13,000 vehicles from various classes and age 

distributions, and especially adjusted to represent the fleet composition of Atlanta. In 

fact, this is the main weakness of the model, which is that it is a place-specific model and 

calibrated for Atlanta. In order to adapt the model to another urban network, several 

variables have to be calculated based on the distribution of vehicle type, age, and 

technology of the region of interest.  

2.3.3.3 VT-Meso 

The VT-Meso is a recently developed mesoscopic emission model developed at 

the Virginia Polytechnic Institute and State University (Yue, 2008). This is a kind of 



 

 

35 

modal emissions model, which has been built on the VT-Micro model (discussed in the 

microscopic emission models section) (Rakha, et al., 2011; Ahn, et al., 2002). In other 

words, the VT-Meso model is sensitive to the different vehicle operation modes, 

however, the second-by-second trajectories of vehicles are not required for the modeling.  

The proposed model utilizes the link-by-link average speeds, number of vehicle 

stops, and stopped delay as the aggregated traffic parameters. Using this traffic 

information, the model synthesizes a typical driving cycle and estimates the average link 

fuel consumption and emission rates by utilizing the microscopic emissions model. Total 

link-based fuel consumption and emissions are then computed by multiplying the 

estimated average fuel consumption and emission rates by its corresponding vehicle 

kilometers traveled. Finally, the network-wide emissions and fuel consumption are 

computed by aggregating all values of emissions from all links of the network.  

Similar to VT-Micro, this model estimates HC, CO, CO2, and NOx in addition to 

fuel consumption, in various modes of operation. However, since the model is built on 

VT-Micro, the model estimates the emissions only under normal operation of LDVs and 

LDTs (hot-stabilized conditions), and it cannot estimate emissions associated with the 

cold starts and air conditioning usage.  

2.3.3.4 Gori’s Model 

In 2012, Gori et al. proposed another mesoscopic emission model, which uses a 

dynamic traffic assignment model to estimate the aggregated traffic parameters (Gori, et 

al., 2012). These traffic parameters include: distance traveled at free-flow speed, the 

average speed of vehicles in queues, and the length of the queues, and are used to 

consider the within-day variations of traffic conditions in a wide urban network. The 
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model is developed to consider different states of vehicles and driving behavior under 

congested and uncongested conditions. 

2.3.3.5 Zegeye’s Model 

In another approach, Zegeye et al. proposed a general framework to integrate 

macroscopic traffic flow models with microscopic emission and fuel consumption 

models, in order to estimate total emissions, and fuel consumption for traffic control 

purposes (Zegeye, et al., 2013). To illustrate the approach, they integrated the 

macroscopic traffic flow model METANET used to generate macroscopic traffic 

parameters with the microscopic emission and fuel consumption model VT-micro to 

estimate total emissions  

2.3.3.6 Summary of mesoscopic emission models 

Although in the mesoscopic emission model the aggregated modal-based traffic 

parameters are usually used to evaluate overall emissions, the relationship of these kind 

of parameters and fundamental properties of the network, especially the Macroscopic 

Fundamental Diagram (MFD) has not been investigated explicitly. These relationships 

can be a valuable tool to introduce a reproducible diagram of emissions under certain 

assumption, which can be very helpful to predict network-wide emissions corresponding 

to real-time traffic conditions (flow and density) in the network. In the next chapters 

these relationships between the network features and traffic parameters and emissions 

will be investigated at different levels. 
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2.4 Traffic Modeling and Real World Traffic Data 

In order to evaluate traffic emissions, a good understanding of traffic flow in the 

network, and reliable estimation of traffic parameters is necessary. Traffic parameters can 

either be obtained based on field data collection using various methods of traffic data 

measurements, or they can be estimated by different types of traffic modeling and 

simulation. In this section a brief introduction to different traffic models is provided. In 

addition, the required input data for various types of traffic models and their interface to 

the emission models are discussed. 

2.4.1 Transportation planning models 

These models, also known as Strategic Planning Models (SPMs), are used to 

estimate the current and future travel demand and evaluate the performance and 

efficiency of a metropolitan road network. These models are usually useful to evaluate 

the impact of new policies or planning within the network, such as any development and 

expansion infrastructure. They are proposed to estimate aggregated traffic parameters in 

small to very large networks over a short or long period of time. Transportation planning 

models can be in the form of land-use models, trip-based transportation models, and 

activity-based transportation models, which may refer to travel demand models, urban 

transport models, and strategic network models. CUBE, UTPS, EMME2, TRANSTEP, 

MINUTP, and TRIPS are a few examples of transportation planning models (Brindle, et 

al., 2000). 

The network in planning models is divided into zones which cover different parts 

of the urban area with a centroid representing the average features of the zone and the 
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origin and destination of trips associated to the zone. The network is constituted by the 

links and nodes which represent the road specifications such as the road type, number of 

lanes, road capacity, free flow speed or the speed limit of each link. Utilizing the traffic 

assignment function, these models can generate the aggregated outputs, including traffic 

volume, mean travel time and speed. The results of this type of models may be used in 

macroscopic emission models; however, the emissions estimation based on the average 

speed is based on several assumptions which may affect the accuracy of estimation 

(Helali & Hutchinson, 1994; Grant, et al., 2000). 

2.4.2 Traffic flow propagation models 

In contrast to the previous type of models, which describes high level traffic 

parameters for planning purposes, traffic flow models, also known as traffic performance 

models, explicitly describe the physical propagation of traffic flows and clearly illustrate 

the traffic streams in the network. However, the models can be classified based on 

whether they operate in continuous or discrete time, whether they are purely deterministic 

or stochastic, or depending on the level of detail. Therefore, based on the level of 

aggregation, the models are categorized as macroscopic, mesoscopic, and microscopic 

traffic models (Maerivoet & De Moor, 2008) 

2.4.2.1 Macroscopic traffic flow models 

The macroscopic models are the highest level of traffic flow modeling, which are 

introduced based on kinematic wave model (KWM) which is also known as the 

Lighthill–Whitham–Richards (LWR) Model. In this approach, using the concept of the 

continuity in fluid dynamic, traffic can be considered as an inviscid but compressible 
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fluid. Therefore, the continuous variables of traffic densities, mean speeds, and flows can 

be defined at each point in time and space. Based on this concept, the Macroscopic 

Fundamental Diagram (MFD) has been introduced which relates these three variables 

together at the aggregate network-wide level. This method provides the analytical and 

numerical solutions for the network-wide traffic parameters based on the LWR model. In 

Chapter 5, the macroscopic traffic flow modeling will be used to derive the analytical 

model to estimate aggregated traffic parameters macroscopically. Due to the importance 

of the macroscopic traffic model, and use of the concept of the MFD in the rest of this 

study, the Macroscopic Fundamental Diagram (MFD) will be explained further in the 

following section. 

A finer resolution model is the Cell Transmission Model (Daganzo, 1994; Wai 

Yuen, 2008), which is a discretized implementation of the kinematic wave model. The 

model represents macroscopic traffic dynamics in smaller cells in a way that is consistent 

with the MFD of the road section. In this approach, the highway segment is partitioned 

into smaller units known as cells, and the number of vehicles in each cells is estimated 

during short time intervals. In order to keep track of the cell contents, the numbers of 

vehicles that cross the boundary separating each pair of adjoining cells are evaluated 

during the corresponding clock interval. Although this model represents dynamics of 

queuing and delay that are consistent with finer kinematic wave models, the approach 

treats traffic in each cell as an aggregate quantity, so individual trajectories are not 

directly constructed. 
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2.4.2.2 Mesoscopic traffic flow models 

Similar to macroscopic traffic flow models, the mesoscopic models also describe 

traffic streams at an aggregated level; however, these models incorporate microscopic 

characteristics of traffic flow such as driving behavior. The three most popular 

approaches in this part are: the cluster models, the headway distribution models, and gas-

kinetic models.  

2.4.2.3 Microscopic traffic flow models 

Microscopic traffic flow models, that consider the detail interactions between 

individual vehicles are based on car following and lane changing models. These models 

consider a wide range of parameters, such as vehicle lengths, speeds, accelerations, and 

time and space headways, vehicle and engine capability, as well as some rudimentary 

human characteristics that describe the driving behavior. In this type of model second-by-

second movements of all individual vehicles are estimated. Additionally, in order to 

reflect the stochastic nature of traffic flow and human behavior, random variables with 

different distributions can be utilized in different parts of modeling. Since microscopic 

traffic flow modeling requires complex and intensive computation, this type of modeling 

is usually carried out by powerful computers. Therefore, several software packages have 

been developed to simulate traffic networks microscopically. AIMSUN, PARAMICS, 

VISSIM, CORSIM, and ARTEMIS are a few examples of microscopic traffic simulators.  

2.4.3 Macroscopic Fundamental Diagram (MFD) 

A macroscopic relationship between the vehicle density in a network (number of 

vehicles per distance) and the average flow (number of vehicles per time) has been shown 
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to exist in many networks. This relationship which is known as the Macroscopic 

Fundamental Diagram or MFD, and it is a property of a network. Well-defined MFDs are 

expected to exist in multi-block, signal-controlled street network with homogeneous 

distribution of vehicles across the links (Daganzo, 2005.a; Daganzo, 2005.b). Figure 3(a) 

shows a schematic concave MFD which can be simplified to the triangular format shown 

in Figure 3(b) 

 

 
(a)                                                                                            (b) 

Figure 3. Macroscopic Fundamental Diagram, a) schematic concave MFD, b) simplified 

triangular MFD 

This graph, in addition to pairs of flow and density, can express the average speed 

in the network (v = q/k), which is the slope of connecting line from the origin to the point 

representing the traffic state of interest. The left branch of the curve refers to the under-

saturated conditions where the number of vehicles is less than the capacity of the 

network, and driving cycles consist of cruising with free flow speed (maximum allowed 

speed) and minimum possible number of stops and duration of idling due to traffic 

signals. Therefore, the total emissions corresponding to the number of vehicles is 

expected to be the minimum possible volume. The right branch of the curve reflects the 

over-saturated conditions, where the number of vehicles’ stops and duration of idling are 
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more than the values caused by the signals. They are increased due to congestion and 

stop-and-go movements caused by over-saturated intersections. In this situation, more 

traffic emissions are generated by the accelerations, decelerations, and idling modes, and 

the emission increases exponentially without any additional traveled distance due to 

congestion. 

The main assumption of this relationship is that the network should be 

homogeneous, well-connected, and unaffected by turning movements, where the vehicles 

are distributed uniformly over the network (Daganzo, 2007; Geroliminis & Daganzo, 

2008). However, the networks that violate this assumption also appear to have a 

consistent relationship up to a point below the upper bound of MFD (Daganzo & 

Geroliminis, 2008). Heterogeneous networks also can be divided into sub-networks with 

homogeneous features. 

2.4.4 Real world traffic data 

Although, instantaneous field traffic data at the microscopic level may not be 

readily available and it can be quite expensive to acquire, real-world traffic data can 

provide more accurate traffic parameters as required inputs for emission models. Based 

on current technology several aggregated traffic parameters can be collected which can 

be useful for estimation of total emissions; however, collecting second-by-second 

movements of all individual vehicles is costly and inapplicable for many projects. The 

link-based average flow and density can be collected using the loop detectors, and the 

aggregation of this data can provide the network’s MFD. Figure 4 shows the real-world 

example of MFD recoded from the road network in Yokohama, Japan (Geroliminis & 
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Daganzo, 2008). As depicted in the graph, in real-world MFD, we may not observe a 

complete MFD. This is because, in the urban networks, it is not desired to experience the 

completely congested conditions. 

 

Figure 4. Macroscopic Fundamental Diagram of the city of Yokohama recorded at 

different locations (Geroliminis & Daganzo, 2008) 

Global Positioning System (GPS), smartphone applications for data collection, 

and image processing of recorded traffic video (e.g. Next Generation Simulation-

NGSIM) are examples of technologies that can be used to collect detailed traffic data. 

Furthermore, other traffic parameters like traffic counts, delay, space mean speed, mean 

travel time, etc. can provide the aggregated traffic parameters as the input for 

macroscopic emission models.  

 

2.5 Summary 

In this chapter, in addition to explanation of major tailpipe emissions and 

corresponding emission standards and regulations, different types of traffic and emission 
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models have been discussed. While current average speed-based macroscopic emission 

models cannot provide an accurate estimation of network-wide emissions, 

implementation of the microscopic emission models for evaluation of overall emissions 

of a large urban network is costly and time consuming. Although microscopic emission 

models consider the detailed movements of all vehicles, and as a result, they are able to 

estimate total emissions more accurately, this method is data intensive and impractical for 

use on a large network. Therefore, mesoscopic emission models have been introduced to 

cover the shortages of macroscopic emission models and still estimate the overall 

emissions in aggregated level by considering traffic conditions, and operational modes of 

vehicles, in any large urban network.  

Traffic data can be provided from different sources with various resolutions. Fine 

resolution field recorded traffic data is one source; however, this type of data is not 

usually available for the microscopic emissions modeling for many networks. The results 

of transportation planning models also provide the aggregated traffic data. Finally, traffic 

flow models can be classified as microscopic, mesoscopic, and macroscopic levels based 

on level of aggregation and detail analysis. In this study, in addition to the utilization of 

the microscopic traffic simulator of AIMSUN to generate detailed traffic data, the 

macroscopic traffic flow modeling approach is used to derive analytical models for 

different cases. Table 3 shows the comparison of microscopic and macroscopic traffic 

and emission models. 
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Table 3. Comparison of different approaches in traffic and emissions modeling 

Modeling 

Tools 
Traffic Emissions 

Microscopic 

Detailed analysis of all individual vehicles 

at each moment provides an accurate 

traffic, but it can time consuming and 

costly for a large network, e.g. Aimsun, 

Paramics, CORSIM, INTEGRATION 

Detailed emission estimates based on the 

second-by-second speed profiles of all 

individual vehicles for a limited network, but it 

is computationally intensive for a large network, 

e.g. CMEM, VT-Micro, MOVES (project level) 

Mesoscopic 

Describes traffic streams at an aggregated 

level, however, considers the microscopic 

characteristics of traffic flow, such as 

driving behavior e.g. Cube/Avenue, 

DYNASMART, TRANSIMS 

Utilizes aggregated traffic inputs, however, 

traffic conditions and congestions as well as 

typical driving behavior can be considered 

using driving modes, e.g. VT-Meso,Gori’s 

model, Zegeye models, and ITEM (this study) 

Macroscopic 

Aggregated models reduce data required 

to estimate traffic features at a facility. 

They can be in a form of planning models 

(Cube/Voyager, EMME/2, TRANPLAN) 

or analytical model based on KWT 

Uses aggregated traffic data to estimate 

network-wide emissions, typically average 

speed, especially for large networks, but over-

simplifies the effect of speed fluctuations, e.g. 

EMFAC, MOVES (county level), COPERT 

 

In general, in the last decade, a few efforts have been made to introduce integrated 

traffic emission models as a mesoscopic approach to estimate aggregated emissions in 

large-scale traffic networks. These methods use various traffic parameters to consider 

traffic conditions on the network; however, none of them has made use of macroscopic 

traffic models to estimate physically realistic drive cycles as a function of network 

characteristics and network-wide density of vehicles on the network. The MFD provides 

a way to define traffic states in networks in terms of the fewest number of variables. 

Therefore, in this study, we use the macroscopic approach and the MFD to construct 

driving cycles that recognize the effect of traffic conditions on stopping and idling. The 

proposed approach provides reliable and reproducible emission curves for different levels 

of congestion, and the result of the model can be used to estimate overall emissions 

without a need for extensive data collection or repeating the simulation.  
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Chapter 3 :  

The Integrated Traffic Emissions Model (ITEM) 

 

In the last few decades, several approaches to evaluate traffic emissions have been 

proposed. Microscopic traffic emission models provide the most detailed emission 

estimation for small and limited networks, while for the large-scale urban networks, 

macroscopic vehicle fuel consumption and emission models are more feasible for 

estimating overall emissions. For macroscopic models, the aggregated traffic parameters 

such as average speed, number of vehicles, and vehicle miles traveled should be provided 

to the model. These aggregated traffic parameters may be based on a summary of 

recorded real data, estimates from a traffic simulation, or the results of a macroscopic 

transportation planning model (Rakha, et al., 2003). 

It is common that microscopic fuel consumption and emission models are utilized 

based on the results of a microscopic traffic simulation, where the detailed traffic 

characteristics of the network and instantaneous movements of vehicles are produced by 

the traffic model and are directly used as inputs by the emissions model. For regional 

planning purposes, aggregated traffic parameters are often estimated by macroscopic 

traffic models in order to be fed into the macroscopic fuel consumption and emission 

models. However, existing macroscopic emission model use oversimplified 
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representations of traffic at the aggregated state, which do not recognize the effect of 

traffic conditions on the driving cycles of vehicles in the network. 

3.1 The Need for Better Emission Models at the Aggregated Level 

The current state-of-practice is that several emission models are currently in use 

to evaluate the network-wide emissions generation. However, there are several 

weaknesses in these models. Although the microscopic fuel consumption and emission 

models enable us to precisely assess the air pollution generated by vehicles in different 

scenarios, this type of model requires massive detailed information, which usually is not 

accessible in a large urban network. Moreover, the computation time for the modeling of 

a large network can be prohibitive for analyzing and comparing the effectiveness of many 

potential traffic management strategies. Finally, the output of a microscopic traffic 

model, which is the input for a microscopic emission model, consists of second-by-

second trajectories for every single vehicle. This generates huge datasets that make the 

microscopic emissions modeling impractical for a large metropolitan network. 

3.1.1 The main shortcomings of macroscopic emission models 

Macroscopic emission modelling is the main approach to evaluate overall 

emissions in large urban networks. The current implementation of these models does not 

provide accurate and dependable estimates, because there is no consideration for the 

driving behavior of the vehicles. In addition, many assumptions are made for 

macroscopic traffic modeling, for example that all vehicles travel with a predefined 

driving cycle without considering the variation of acceleration and deceleration pattern 
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under different conditions. Furthermore, the emission rates applied in the model have 

been generated under specific circumstances in a laboratory which may be different than 

estimating them from sample of trajectories traveling on the real network. Finally, 

another set of assumptions should be made in macroscopic traffic-emission models, 

which is the negligible effect of variation of external conditions on the emission rates. 

The external conditions include temperature and humidity, (weather conditions), vehicle 

load and the variety of engine technologies (vehicle features) and geometry of the links 

(road conditions).However, in the mesoscopic approach it is possible to consider any of 

these conditions proportionally by selecting the trajectories or running the probe vehicle 

under those conditions of interest.  

The most critical assumption, which directly reflects the impact of traffic 

conditions and congestions on emissions, is the usage of an average speed instead of the 

speed profiles of vehicles in typical macroscopic emissions models. Although the 

assumption of constant speed may have a negligible impact on the emission results for 

highway traffic, the stop and go traffic due to signals and the long idling caused by 

congestion constitute the main part of traffic flowing cities. Therefore, using the average 

speed of vehicles oversimplifies the fluctuation of speeds and underestimates the 

emissions. The number of times that vehicles stop and the proportion of time spent in 

acceleration, deceleration, and idling should be taken into account in some way by 

considering the vehicle trajectories. 
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3.1.2 Effect of number of stop and average speed-based models 

In order to investigate the impact of the number of vehicle stops as one of the 

influential factors on overall emissions, the following example has been constructed. 

Artificial trajectories for 7 cases have been generated with the same average speed of 40 

mph and cruising speed of 60 mph, on a segment of a road that us 5.15 miles long. A 

unique acceleration and deceleration has been used for each trajectory. As shown in 

Figure 5, the only differences between these trajectories are the number of stops and 

duration of idling. The other factors of trajectories are kept the same. Using the 

microscopic emissions model of MOVES (US EPA, 2012.c), the equivalent CO2 

emissions corresponding to each trajectory have been computed. These values are 

compared with the equivalent CO2 emissions estimated using the average-speed-based 

module of MOVES. 

 

 

Figure 5. Time-space diagram of similar trajectories with different number of stops 
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As shown in Figure 6, the increase in the number of vehicle stops increases the 

total emissions dramatically. Additionally, the comparison of the average-speed-based 

emissions (the first column in the graph), which is estimated by the macroscopic module 

of the model, with the emissions of the other scenarios shows that using the macroscopic 

emissions model may cause significant error in the results. 

 

Figure 6. Variation of CO2emissions for trajectories with various numbers of stops 

Table 4 shows the variation of different pollutants caused by each trajectory. 

These pollutants include: total gaseous hydrocarbons (HC), carbon monoxide (CO), 

oxides of nitrogen (NOx), particulate matter (PM10), and total energy consumption for 

each scenario. In this investigation, only the effect of the number of vehicle stops has 

been evaluated, however, other traffic factors such as the magnitude and duration of 

acceleration and deceleration may also have a significant impact on total emissions. 
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Table 4. Variation of pollutants caused by different trajectories with a same average 

speed 

No. of 
Stops 

HC 
(gr) 

CO 
(gr) 

NOx 
(gr) 

Equ. CO2 
(gr) 

PM10 

(gr) 
Total Energy 

Consumption (J) 

Using Avg. 
Speed 

0.31 10.10 1.65 1664 0.03 2.32E+07 

0 0.23 7.60 0.92 1253 0.01 1.74E+07 

1 0.29 9.89 2.03 1699 0.03 2.36E+07 

3 0.37 16.79 2.35 1880 0.06 2.62E+07 

6 0.50 27.14 2.80 2148 0.10 3E+07 

9 0.63 37.52 3.23 2422 0.14 3.37E+07 

12 0.75 47.88 3.63 2691 0.17 3.74E+07 

14 0.84 54.80 3.89 2872 0.20 4.00E+07 

 

As a brief conclusion for this simple analysis, it can be expressed that in order to 

evaluate total emissions in any large-scale traffic network, it is very important that the 

traffic conditions are taken into account. On the other hand, due to the size of large 

networks, a method with reasonable computational requirements should be taken that 

considers the effect of congestion but does not require an extensive microscopic 

modeling. 

In recent years, mesoscopic emission models have been introduced based on the 

movement of vehicles in different traffic conditions. In this approach, aggregated traffic 

parameters such as average cruising speed, the number of vehicle stops, and average stop 

duration (idling), and average characteristics of acceleration and deceleration are 

estimated in order to capture the effect of traffic conditions and the impact of congestion 

(Rakha, et al., 2011; Zegeye, et al., 2013). The major difference between mesoscopic 
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modeling and macroscopic modeling is that mesoscopic emission models utilize the 

driving cycle components (or similar macroscopic traffic inputs) to take the traffic 

conditions into account, whereas macroscopic emission models are based on the average 

speed and total miles travel. Therefore, having the duration of idling and cruising and 

number and intensity of the acceleration/deceleration, the total emissions can be 

computed in a way that considers the traffic conditions. 

Although this approach has more advantages than macroscopic traffic emission 

models, there are several disadvantages, especially for estimating the driving-mode-based 

average traffic parameters. This issue becomes more important in large urban networks, 

where the number of vehicle stops, and duration of cruising and idling need to be 

measured or predicted by a microscopic traffic model. 

3.2 Proposed Integrated Modeling Approach 

To address the issues with recent mesoscopic emission models, in this study two 

objectives have been followed in parallel. As the first objective, in order to estimate the 

aggregated driving cycle components, the relationship between the fundamental 

properties of a network and modal-based aggregated traffic parameters has been 

investigated. Three main traffic parameters that represent driving cycles and provide the 

insight to the network-wide traffic conditions include: number of vehicle stops and 

duration of time spent in cruising and idling modes. In the first step of this phase, an 

analytical model is used to determine traffic conditions at a single isolated signalized 

intersection. Therefore, using the kinematic wave theory, the macroscopic connection of 

the three parameters with the physical characteristics of the intersection is explored. In 
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the second step, microscopic traffic simulation of a simplified arterial represented by a 

ring network is used to evaluate the similar relationship between the three traffic 

parameters (number of stops, duration of idling, and duration of cruising) and the 

fundamental properties of the network. These parameters provide an insight to traffic 

conditions, and using them for modeling emissions takes into account the impact of stop-

and-go traffic in cities. 

The second and the main objective of this dissertation is developing the Integrated 

Traffic Emissions Model (ITEM) in order to provide a tool for regional evaluation of 

emissions based on mesoscopic connection of modal-based aggregated traffic parameters 

to the microscopically computed emission rates. This model can assess vehicular 

emissions in any large-scale urban network by considering concurrent traffic situations 

without the need for extensive data collection and complex microscopic simulation. In 

order to show this relationship at this level, an idealized homogeneous, infinite length 

arterial is considered, which is modeled by a ring network with a single intersection. In 

the third and last phase of the study, a more realistic grid network is studied, and a similar 

relationship (between the number of vehicles circulating in the network and the 

corresponding total emissions) has been evaluated.  

3.2.1 The integrated modeling tools 

In order to implement the proposed modeling framework, a microscopic traffic 

simulator and a microscopic emissions model are required. For the traffic simulation, the 

microscopic traffic model of AIMSUN (Barceló, 2013) has been used; however, this 

model can be replaced by any other microscopic simulator or even fine resolution real-
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world data. Three microscopic emission models have been considered as the possible 

emission models, including: the Comprehensive Modal Emissions Model (CMEM) 

(Scora & Barth, 2006), MOtor Vehicle Emissions Simulator (MOVES) (US EPA, 

2012.c), and Virginia Tech Microscopic energy and emissions mode (VT-Micro) (Ahn, et 

al., 2002). Since there is no major difference in the methodology and results of these 

models and MOVES is widely used and mandated to be used for wide range of projects 

in all states other than California, MOVES will be utilized for microscopic computation 

of emissions in the rest of this study. 

Depending on the selected emissions model and its ability to estimate different air 

pollutants, various emissions can be evaluated with the same method. Due to the 

importance of the contribution of road transportation to the generation of CO2 emissions 

and the impact of CO2 on climate change and global warming, the amount of CO2 

equivalent has been selected for the evaluation of emissions. Equivalent CO2 is a good 

representative of different pollutants which are considered greenhouse gases by using the 

index of global warming potential (GWP). However, by using the same method, any 

other pollutant of interest can be evaluated by the proposed Integrated Traffic Emissions 

Model (ITEM). 

3.2.2 The model’s traffic components and emission factors 

In the first step of developing the traffic emissions model, the most influential 

parameters that contribute to the generation of vehicle emissions are investigated. Then, 

according to them, the general format of the model is derived. Although, a number of 

factors affect the vehicle emissions, in this study only traffic parameters, known as 
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operating parameters (e.g. speed and acceleration), are considered in the proposed model. 

It is assumed that the other factors, including average vehicle characteristics and external 

conditions remain the same across the scenarios that are evaluated. This would be a 

reasonable assumption for assessing the effect of traffic control policies on emissions. 

Idling in a queue as a result of congestion and acceleration and deceleration, 

mainly caused by stop-and-go traffic, are the major influencing parameters on total 

emissions. Driving behavior, which is generally known as the pattern of driver 

acceleration or deceleration, the magnitude and duration of acceleration and the 

frequency of speed fluctuations are other important factors that affect total emissions. In 

this section, using simulated trajectories generated by the Aimsun traffic micro-

simulation software, the components of driving cycles have been extracted. A complete 

driving cycle may include cruising and idling and a complete cycle of deceleration and 

acceleration associated with a complete stop. A complete acceleration and deceleration is 

defined when a speed profile changes between zero and free flow speed using predefined 

thresholds for speed and acceleration (will be explained in the next section). In order to 

analyze drive cycles, an algorithm has been used (written in a Matlab code) which will be 

explained in the next section. Then, by using MOVES, the emissions for each cycle of 

acceleration and deceleration have been calculated, and the resulting greenhouse gas 

emission estimates show the distribution and average emissions per vehicle stop. In the 

same way, emission factors per unit time spent in idling and cruising have been 

estimated. 

The main objective of this study is to investigate the impact of traffic control on 

network-wide emissions. So, simplified analytical models have been derived in the next 
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two chapters to estimate the number of stops and proportion of time spent in cruising and 

idling modes. However, simulated trajectories have been used only to obtain the average 

values for driving behavior as well as to validate the proposed method. 

3.2.3 Extracting characteristics of driving modes 

In order to extract the characteristic of driving modes, including the typical 

pattern of acceleration and deceleration, and the average free flow speed, a vehicle’s 

trajectory must be divided into four driving modes of acceleration, deceleration, cruising 

and idling. Depending on the origin of data (real-world or simulated data) a screening and 

selection of trajectories may be needed. For example, if real trajectories acquired by 

video processing or similar methods are used, some screening and preprocessing of 

trajectories may be needed due to noise and errors involved with data recording and 

processing. Furthermore, if the analysis is used in a larger metropolitan network with 

numerous vehicles, instead of the whole population of trajectories a sample of them 

should be selected that represents typical characteristics of the driving modes. In 

screening the trajectories, improper vehicle trajectories (like noisy data, very short 

trajectories, and vehicles that leave the section before the intersection) should be 

eliminated. In some cases, the noise and errors caused during image-processing can be 

removed, by a procedure called smoothing of the trajectories. 

3.2.3.1 Selection of Trajectories 

In this project, Aimsun has been used to generate simulated data within a single 

isolated signalized intersection, a ring network, and a simple grid network. In each of 

these models, hundreds of trajectories have been generated in various traffic conditions. 
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All model parameters are considered to be random variables with specified distributions. 

Various traffic conditions, including free flow and saturated conditions have been tested 

and vehicles’ trajectories have been recorded with one second resolution. 

Since in this simple isolated intersection, it is assumed to have no turns at the 

intersection(s), all vehicle trajectories can be used for extracting driving mode 

characteristics. However, for the case of over-saturated condition with numerous 

vehicles, a number of trajectories are randomly selected. Next, we present how to divide 

the trajectories to driving modes. 

3.2.3.2 Selection of Acceleration/Deceleration Event 

In order to relate the emissions of greenhouse gases to the number of vehicle stops 

in traffic, we need to look at the complete driving cycle of a stop, which is composed of 

one deceleration from free flow speed to stop and one acceleration from stop to free flow 

speed. For some trajectories there may be more than one pair of acceleration and 

deceleration events and for other trajectories there may be only a partial stop or no stop at 

all depending on the relative signal timings. An algorithm has been developed to extract 

only complete acceleration and deceleration cycles and filter those which do not begin or 

end at the stop or free flow speed. 

The algorithm, which has been developed in Matlab, uses threshold values to 

filter the vehicle trajectory and only select those cycles that have a continuous trend of 

speed change with minimal interruptions. These thresholds are: 

 Speed Threshold (ST=1 mph): the vehicle moving slower than this speed 

is assumed to be stopped. 
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 Acceleration Threshold (AT=0.2 mph/s): when the absolute value of 

acceleration is less than this threshold, the speed is assumed to be constant. 

 Speed Fluctuation (SF=5 mph): the vehicle is assumed to be accelerating 

(or decelerating) as long as no deceleration (or acceleration) is observed 

for more than this range of speed variation. 

 Maximum Duration of Reverse Acceleration (MDRA=1 sec): the vehicle is 

assumed to be accelerating (or decelerating) as long as no deceleration (or 

acceleration) is observed for longer than this period.  

 Maximum Duration of Low Acceleration (MDLA=3 sec): a single 

acceleration event is assumed to end if acceleration below AT is observed 

for more than this duration. 

 Minimum Duration of Acceleration (MDA=2 sec):a single acceleration 

event is neglected if it is shorter than this duration. 

The screening algorithm that selects the relevant acceleration and deceleration 

events takes the following steps: 

1. Reading Trajectory: For each trajectory, the code parses the lines of the 

dataset to extract complete acceleration and deceleration events. When the 

end of a trajectory is reached, the next trajectory in the data set is parsed. 

2. Finding the start of acceleration / deceleration: An acceleration or 

deceleration event is recorded starting at the first time when |𝑎(𝑡)| > 𝐴𝑇. 

We denote this start time as 𝑡𝑠. 

3. Recording the main event: The event is recorded until an interruption 

happens that indicates a possible end of the acceleration/deceleration 
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event. The time of the potential end of the event is designated 𝑡𝑒, so the 

conditions at time 𝑡 = 𝑡𝑠 + 𝑑𝑡 are: 

 the acceleration has changed direction, 𝑎(𝑡) × 𝑎(𝑡𝑒) < 0; 

 the acceleration drops below the threshold, |𝑎(𝑡)| < 𝐴𝑇; or 

 the speed drops below the threshold, 𝑣(𝑡) < 𝑆𝑇. 

When the end of the trajectory is reached, the algorithm proceeds directly 

to step 5. 

4. Temporary recording: When a potential end of an acceleration or 

deceleration event is identified, the algorithm begins temporarily 

recording until either: 

a) the sequence of data meets at least one of the criteria to end the event: 

 𝑣(𝑡) < 𝑆𝑇; 

 𝑣(𝑡) − 𝑣(𝑡𝑒) > 𝑆𝐹 and 𝑎(𝑡). 𝑎(𝑡𝑒) < 0; 

 𝑡 − 𝑡𝑒 > 𝑀𝐷𝑅𝐴 and 𝑎(𝑡). 𝑎(𝑡𝑒) < 0; or 

 𝑡 − 𝑡𝑒 > 𝑀𝐷𝐿𝐴 and |𝑎(𝑡)| < 𝐴𝑇. 

or b) none of the criteria are violated, so the temporary recording is added 

to the main event and the recording of the main acceleration/deceleration 

event continues (return to step 3). 

5. Decision making for the event: If recording of the main event is 

interrupted for any reason, it should be decided whether or not this 

recorded data is good to keep as an acceleration cycle or if it should be 

discarded. If the end of the trajectory is not reached, the algorithm 

proceeds to step 2 to identify the next event, otherwise the algorithm 
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proceeds to step 1 to process the next vehicle trajectory. The conditions to 

keep the event are: 

 𝑡𝑒 − 𝑡𝑠 > 𝑀𝐼𝐷𝐴; 

 𝑣(𝑡𝑠) < 𝑆𝑇 and 𝑣(𝑡𝑒) > 𝑣𝑓 − 𝑆𝑇; or 

 𝑣(𝑡𝑠) > 𝑣𝑓 − 𝑆𝑇 and 𝑣(𝑡𝑒) < 𝑆𝑇. 

Using this algorithm to select complete acceleration and deceleration cycles, the 

trajectories are divided into four driving modes of acceleration, deceleration, cruising, 

and idling. Figure 7(a) shows a sample trajectory of vehicle in a time-space diagram and 

Figure 7(b) shows the speed profile of the vehicle that is divided into four driving cycle 

components. 

 

Figure 7. Time-Space Diagram and Speed Profile of a Sample Trajectory Divided into 

Driving Modes 

3.2.4 Calculation of emission factors  

After preprocessing the data and extracting the driving modes, we have numerous 
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emission values by using the microscopic emissions model. In order to run the Project 

Level of EPA-MOVES as the emissions model, in addition to the vehicle speeds, the 

model requires some non-traffic information (e.g., time and spatial span, meteorological 

data, road and vehicle type, etc.), which have an effect on the total magnitude of 

emissions. Since we are interested in comparing the effect of different traffic conditions 

on emissions, all other non-traffic inputs of MOVES are held fixed for the analysis. 

Therefore, the model isolates the effect of traffic volumes and signal timings on 

emissions. The Link Drive Schedule method is used in MOVES to calculate emissions by 

converting second-by-second trajectory data into operating mode distributions that 

MOVES uses to calculate detailed emission estimates. Thus, an emission rate for each 

acceleration and deceleration event is calculated from the second-by-second list of speeds 

extracted using the algorithm described in the preceding section. 

As mentioned before, this method can be applied to evaluate various vehicular 

emissions depending on the capability of the microscopic emission model used at this 

stage, however, due to the importance of CO2, the focus of this study is on estimating the 

CO2 equivalent (CO2e) as a representation of GHGs generated by the vehicles. 

By aggregating the results, we can have the average characteristics of 

accelerations and decelerations. According to the simulation results, the average 

acceleration takes 13.2 seconds, which causes approximately 34.54 g CO2e (grams of 

CO2 equivalent) and the average deceleration takes 8.8 seconds with corresponding 

emissions of 14.33 g CO2e. A combination of one complete deceleration and one 

complete acceleration results in average emissions associated with a single complete stop 

of 48.88 g CO2e. On the other hand, using the same method and the microscopic 
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emissions model the emissions rate for cruising and idling can be computed. Based on the 

simulated trajectories, the average free flow speed of vehicles is 23.7 mph and the 

corresponding emissions rate is 2.187 g CO2e/sec while cruising. Similarly, the emissions 

rate of idling is 0.881 g CO2e/sec.  

There is an alternative way to calculate the emission factors based on the recorded 

traffic data. In this method instead of physically dividing the trajectories into driving 

modes, we can use the linear regression analysis to relate total emissions of each 

trajectory, calculated directly by the microscopic emissions model as the dependent 

variable, to its corresponding traffic parameters including number of vehicle stops and 

duration of time spent in cruising and idling as independent variables. The fitted model 

provides the emission factors per stop and time spent cruising and idling, which are 

51.498 g CO2e per stop, 2.037g CO2e per second of cruising with an average speed of 

23.7 mph, and 0.685g CO2e per second of idling.  

Having the estimated emission factors for each driving mode, the overall network-

wide emissions can be calculated by the Integrated Traffic-Emissions Model (ITEM). As 

shown in equation (9), the total emissions are the sum of aggregated traffic parameters 

multiplied by the emission factors obtained from the typical characteristics of each 

driving mode: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑠𝐸𝑠 + 𝑇𝑖𝑑𝐸𝑖𝑑 + 𝑇𝑐𝑟𝐸𝑐𝑟 
(9) 

where: 

𝑁𝑠 is the total number of vehicles’ stops; 

𝐸𝑠 is the corresponding emissions factor per stop (gram/stop); 

𝑇𝑖𝑑 is the total time spent in idling mode (sec) 
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𝐸𝑖𝑑 is the idling emissions factor (gram/sec of idling) 

𝑇𝑐𝑟 is the total time spent in cruising mode (sec) 

𝐸𝑐𝑟 is the cruising emissions factor (gram/sec of cruising) 

Comparing estimated total emissions using emission factors obtained from 

different methods, the emission factors for different driving modes can be evaluated. In 

order to compare the two sets of results, total emissions of each trajectory estimated by 

using each set of emission factors are plotted versus total emissions of the trajectory 

directly calculated by the microscopic emissions model. Figure 8 and Figure 9 show the 

comparison of both estimates using the physically calculated and mathematically 

regressed emission factors with the emission factors directly computed by the 

microscopic emissions model (MOVES). 

 

Figure 8. Comparison of emissions calculated physically with the emissions directly 

computed by MOVES 
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As shown in the figures, both sets of emission factors provide reliable estimates, 

however, comparison results show that the slope of the line of the calculated emission 

factors is negligibly higher than 1 (y = 1.008x) which means slight overestimation while 

the regressed emission factors has a slope of less than 1 (y = 0.963x) which causes 

underestimation. In addition, the calculated emission factors provide an acceptable R 

squared value (R
2
) of 0.988. Therefore, in the rest of this study, we used the emission 

factors derived from the extracted characteristics of the driving modes. 

 

Figure 9. Comparison of emissions estimation based on regression with the emissions 

directly computed by MOVES 
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emission factors are 36.02 grams CO2 per stop, 1.78 grams CO2 per second cruising with 

an average speed of 23.7 mph, and 1.02 grams CO2 per second idling. The results show a 

consistency between the estimates and exact emission values computed by the emissions 

model. Figure 10 shows the comparison of the results from CMEM and MOVES. 

Although there is a general difference between the estimates from these two models, the 

estimated emissions by ITEM and those using the emission factors computed by a 

microscopic emissions model (e.g., MOVES or CMEM) are consistent with the emission 

results computed directly from the same model. Furthermore, the errors caused by using 

ITEM (i.e., using the emission factors and average traffic parameters) are less than the 

difference between the magnitudes of estimates by the models. 

 

 

 

Figure 10. Comparison of the Emission results Estimated by the Integrated Model 

(ITEM) with the Emissions Computed Directly by MOVES and CMEM.  
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Chapter 4 :  

Application of ITEM in a Signalized Intersection 

 

The proposed Integrated Traffic-Emissions Model (ITEM) can be used with 

aggregated traffic data originated from field data collection, simulation, or analytical 

modeling. In the first part of this chapter, an analytical traffic model is derived for a 

single isolated signalized intersection. Then, the aggregated characteristics of driving 

modes are fed to the ITEM to estimate total emissions under various conditions. Several 

scenarios are defined to evaluate the effect of traffic volume and signal timing on 

vehicular emissions. In order to calculate CO2emissions, the emission factors estimated 

by MOVES associated with each driving mode are utilized to estimate total emissions. 

4.1 Analytical Traffic Model 

In this section, the traffic states at an intersection approach are modeled 

analytically based on kinematic wave theory (Lighthill & Whitham, 1955; Richards, 

1956). In the past decades, numerous efforts have been made to estimate queue length, 

number of stops, and delay at an isolated signalized intersection for either under-saturated 

or over-saturated conditions (Webster & Cobbe, 1966; Cronje, 1983). Some other studies 

have been conducted to estimate these macroscopic traffic parameters based on kinematic 

wave theory (Zheng & van Zuylen, 2010; Cheng, et al., 2011). Finally, in other research 
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the number of stops has been estimated based on speed profiles (Rakha, et al., 2001), and 

then the impact of vehicle stops on fuel consumption and emissions is investigated 

(Rakha & Ding, 2003).  

In this study, the kinematic wave theory is used to estimate three traffic 

parameters that represent driving cycle components, and have a major influence on 

vehicular emissions. These parameters include total number of stops, total time spent in 

cruising and total time spent in idling. In the isolated intersection, it is assumed that the 

approach is a homogeneous road section exhibiting a triangular fundamental diagram 

characterized by free flow speed (𝑣), saturation flow (𝑠), and jam density (𝑘𝑗). It is 

assumed that vehicles arrive at a flow 𝑞 < 𝑠. In this section, in order to keep the 

calculations simple, it is assumed that the arrivals are uniform; however, in the next 

section, for the ring-shape network, this assumption is not necessary since the arrivals are 

controlled by the upstream intersection, which in the ring model is represented by the 

platoon arriving from the previous signal cycle. In the case of networks (either ring shape 

or grid), the stochasticity in driving behavior and vehicles’ speed and acceleration, causes 

non-uniform arrivals to the downstream intersections. Non-uniform arrivals do not 

change the proposed equations significantly; however, it adds a random variable to the 

model that accounts for the probability of the arrival flow. In this case, the intersection 

may experience over-saturated conditions in some signal cycles and under-saturated 

conditions in other cycles.  

The traffic approaches a signal that is timed with cycle length 𝐶, which is 

composed of effective red time, 𝑅, and effective green time, 𝐺, such that 𝐶 = 𝑅 + 𝐺. 

Additionally, in order to consider possible over-saturated conditions, there may be a 
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residual queue of 𝑛𝑟 vehicles that were not served in the previous cycle. A time-space 

diagram of the traffic states in the road segment upstream and immediately downstream 

of the intersection are shown in Figure 11. If the vehicles accelerate and decelerate 

infinitely fast, then the vehicles will instantaneously change speed on the interface 

between the vehicles idling in the queue and the vehicles traveling at the cruising speed 

as shown in Figure 11(a) and (b). 

 
 

 

Figure 11. Schematic of time-space diagram for (a) Under-saturated conditions, (b) over-

saturated conditions 
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If the vehicles accelerate and decelerate infinitely fast, then the interface between 

the vehicles idling in the queue and the vehicles traveling at the cruising speed is straight 

(dashed) line as shown in the Figure 12. However, in reality, the vehicles at an 

intersection require some time to decelerate from cruising speed to a stop and to 

accelerate from a stop up cruising speed. If the vehicle speed changes at a constant rate 

for the duration of acceleration, then the curvature of the more realistic trajectory is 

parabolic as shown by solid line in Figure 12. Half of the vehicle hours traveled while 

accelerating is displaced from the idling state and the other half is displaced from the 

cruising state. So, the calculation of the idling and cruising times is straightforward it can 

be calculated by using the simple shockwave model. These calculations depend on the 

average duration of acceleration, 𝑡𝑎𝑐𝑐, and the average duration of deceleration, 𝑡𝑑𝑒𝑐. 

 

 

Figure 12. Schematic trajectory with constant acceleration rates (solid) and a simplified 

piecewise linear trajectory (dashed) 
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Based on the length of the queue, including the vehicles in the residual queue, it is 

straightforward to estimate the number of vehicles that stop during the cycle, 𝑁𝑠. This 

follows from the geometry of the triangular queued state in Figure 11: 

𝑁𝑠 = 𝑁𝑟 +
𝑅𝑠𝑞

𝑠 − 𝑞
 

(10) 

This expression can also be obtained from queuing theory. In order to make fair 

comparisons between the emissions that result from different traffic conditions, we want 

to ensure that we analyze a long enough road segment 𝐿 to contain the entire queue of 

vehicles that may develop during a signal cycle of interest. Therefore, the analysis section 

should extend 𝐿 ≥ 𝑁𝑠/𝑘𝑗 upstream of the intersection and also 𝐿′ = 𝑡𝑎𝑐𝑐𝑣𝑓/2 

downstream in order to account for the cruising distance that is lost due to acceleration. 

The total vehicle time spent idling, 𝑇𝑖𝑑, is calculated by adding the time that 

vehicles in the residual queue spend idling to the time that vehicles arriving at the back of 

the queue spend idling. Without accounting for the effects of acceleration and 

deceleration, these times would be based on 𝑅. Accounting for acceleration and 

deceleration time, the longest time spent completely idling is 𝑅 − (𝑡𝑎𝑐𝑐 + 𝑡𝑑𝑒𝑐)/2. Thus, 

the total time spent idling per signal cycle is: 

𝑇𝑖𝑑 = 𝑁𝑟 (𝑅 −
𝑡𝑎𝑐𝑐 + 𝑡𝑑𝑒𝑐

2
) +

𝑠𝑞

2(𝑠 − 𝑞)
(𝑅 −

𝑡𝑎𝑐𝑐 + 𝑡𝑑𝑒𝑐
2

)
2

 
(11) 

Finally, in order to capture all of the driving states that are associated with 

vehicular emissions, we must account for the total vehicle time spent traveling at the free 

flow speed, 𝑇𝑐𝑟. We considered the elements of the expression for cruising time 

associated with under-saturated traffic conditions and then we used an adjustment factor 
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to account for over-saturated conditions. Making use of the fact that in the simple 

shockwave model with infinite acceleration vehicles are either stopped or traveling at the 

free flow speed, the cruising time is simply the total vehicle distance traveled divided by 

the free flow speed. In under-saturated conditions, each vehicle that arrives at the 

intersection is served within one cycle, and travels the full distance of the analysis 

segment 𝐿 + 𝑡𝑎𝑐𝑐𝑣𝑓/2. Each vehicle from the residual queue travels on average half of 

the length of the residual queue and the downstream segment 𝑁𝑟/2𝑘𝑗 + 𝑡𝑎𝑐𝑐𝑣𝑓/2. From 

this total time, half of the acceleration and deceleration time attributed to the number of 

vehicle stops must be subtracted. Thus, the total vehicle time spent traveling at the free 

flow speed is: 

𝑇𝑐𝑟 = (
𝑁𝑟

2

2𝑘𝑗𝑣𝑓
+
𝑁𝑟𝑡𝑎𝑐𝑐
2

) + 𝑞𝐶 (
𝐿

𝑣𝑓
+
𝑡𝑎𝑐𝑐
2
) −

𝑅𝑠𝑞

𝑠 − 𝑞

𝑡𝑎𝑐𝑐 + 𝑡𝑑𝑒𝑐
2

− 𝜓 
(12) 

where, 𝜓 is the cruising time lost when the signal is over-saturated, and the number of 

vehicles must stop before they are served is 𝑁𝑟,𝑛𝑒𝑥𝑡 = 𝑁𝑠 − 𝑠𝐺. Since the first three terms 

of (12) are derived assuming that all vehicles are served, the distance (and vehicle time) 

not traveled by the 𝑁𝑟,𝑛𝑒𝑥𝑡 vehicles must be accounted for. Therefore, 

𝜓 = {

𝑁𝑟,𝑛𝑒𝑥𝑡
2

2𝑘𝑗𝑣𝑓
+
𝑁𝑟,𝑛𝑒𝑥𝑡𝑡𝑎𝑐𝑐

2
if𝑁𝑟 + 𝑞𝐶 > 𝑠𝐺

0 if𝑁𝑟 + 𝑞𝐶 ≤ 𝑠𝐺

 
(13) 

where, the condition determining whether the signal is over-saturated or under-saturated 

based on the residual queue, arriving demand, and effective green time. 
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4.2 Validating the Analytical Traffic Model 

The number of stops, the time spent idling, and the time spent cruising at free 

flow speed are the components of the driving cycle for vehicles approaching an 

intersection. The analytical expressions presented in the previous section enable us to 

estimate each of these values based on traffic volume and signal characteristics such as 

the cycle length, effective green and red times, and the saturation flow when a queue is 

served. In order to validate the results estimated by the analytical traffic model, the 

estimated results are compared with results computed by Aimsun for various traffic 

conditions and signal timings. We used 6 different scenarios with two signal cycles (𝐶) 

of 1 and 2 minutes, and three green ratios, i.e. green to signal cycle length, (𝐺/𝐶) of 

0.25, 0.50, and 0.75. 

Figure 13 shows the variation of the number of vehicle stops calculated by the 

analytical model and the simulation for various arrival flows relative to the intersection 

capacity (degrees of saturation). The number of stops estimated by the analytical model is 

presented by the magenta line which provides a continuous and smooth estimation for 

various traffic conditions, while each blue dot represents a simulation run with specific 

arrival rate. Comparison of different conditions shows that for a very low capacity of the 

intersection there is only a limited time for a few cars to pass and the intersection is very 

vulnerable to becoming saturated with any fluctuation in arrival flow. Therefore, the 

analytical model’s estimation is not matched very well with the simulated scenarios; 

however, it shows the increasing trend of the number of stops as the demand approaches 

the capacity of the intersection. When the capacity of the intersection is increased by 

increasing the signal cycle length or G/C ratio, the analytical model easily predicts the 
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number of stops that may occur in reality. It should be noted that except for the scenarios 

with very low capacity, the mean of simulated results agrees with the one from the 

analytical model; therefore, there is no systematic bias. However, the variance of the 

results depends on the time interval for aggregation, and large variation may be seen due 

to a short aggregation period. 

  
(a) Signal Cycle = 1min, G/C = 0.25 (b) Signal Cycle = 2min , G/C = 0.25 

  
(c) Signal Cycle = 1min , G/C = 0.50 (d) Signal Cycle = 2min , G/C = 0.50 

  
(e) Signal Cycle = 1min , G/C = 0.75 (f) Signal Cycle = 2min , G/C = 0.75 

Figure 13. Variation of number of stops for various degrees of saturation 

Similarly, the time spent cruising and idling can be predicted by the analytical 

model at different traffic conditions. Figure 14 shows the variation of the time spent in 
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cruising and idling states estimated by the analytical model versus degree of saturation 

(the ratio of demand to capacity of the intersection), and they are validated by the 

simulated results under different scenarios. 
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 (a) Signal Cycle = 1min, G/C = 0.25 (b) Signal Cycle = 2min , G/C = 0.25 
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 (c) Signal Cycle = 1min , G/C = 0.50 (d) Signal Cycle = 2min , G/C = 0.50 
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 (e) Signal Cycle = 1min , G/C = 0.75  (f) Signal Cycle = 2min , G/C = 0.75 

 Figure 14. Variation of number of stops for various degrees of saturation 

Similar to the number of stops, by reducing the capacity of the intersection though 

signal timings, the chance of over-saturated intersection increases and it may cause more 

outliers in the simulation results. In other words, because of the stochasticity in the 
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simulation and the inclusion of some over-saturated phases in the averages over a specific 

period of time, the results of the simulation do not present a perfectly smooth trend. At 

the same time, because of the deterministic nature of the analytical model, the results will 

always be under-saturated. This results to underestimation of the time spent in idling as 

well as the number of stops and overestimation of the time spent in cruising. It is 

basically because an over-saturated cycle will result in more stops in the simulation than 

predicted. It can be seen that the longer signal cycles and higher green ratio, the trend of 

variation becomes more similar in both the analytical and microsimulation results. 

In these graphs, the duration of the cruising state depends on the length of the 

links. If these links are too long, the effect of cruising will dominate and may affect the 

other states. In this case, a 0.4-mile link is used upstream of the intersection, and a 0.1-

mile link is used downstream of the intersection. Having estimates for the number of 

stops and cruising and idling durations, and implementing the emission factors, total 

emissions for each traffic state can be estimated. 

4.3 Emission Estimates by ITEM 

Similar to the evaluation of the number of stops and time spent in each driving 

mode for different levels of arrival flow and degrees of saturation, the variation of 

emissions caused by these factors can be quantified. As explained before, typical 

emission factors corresponding to each driving state have been calculated using MOVES. 

For example, to estimate emissions corresponding to the number of stops, the average 

emissions value for a complete cycle of acceleration and deceleration is used as the 

emissions factor per stop; 𝐸𝑠 = 4.88 g CO2eq per stop. In addition, as described in the 
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previous section, to calculate the emission factors for the idling and cruising states, the 

MOVES model is used and two simple vehicle trajectories are considered: zero speed and 

free flow speed (24 mph). The emission rates estimated from MOVES for these constant 

speed trajectories are 𝐸𝑖𝑑 = 0.881 g CO2eq per second of idling and 𝐸𝑐𝑟 = 2.187 g 

CO2eq per second of cruising with the speed of 24 mph. 

As explained in the previous chapter, total emissions can be calculated by the 

integrated model presented in equation (9). Even simple inspection of the equation is 

useful for understanding the relative impact of idling time (delay) and the number of 

vehicle stops on total emissions. Figure 15 shows the contribution of each of these 

components to the total emissions at different degrees of saturation. It is clear from the 

figure that as arriving traffic demand growths, total emissions increase, even though the 

emissions from cruising vehicles decline due to spending more time in acceleration, 

deceleration, and idling. 

 

 

Figure 15. Contribution of each driving state in total emissions (based on VHT) at 

different traffic states using the base case scenario (C = 60 sec, and G/C = 0.5) 
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It is also clear from the figure that the emissions associated with the vehicle stops 

(summation of acceleration and deceleration) are significantly more than the emissions 

caused by the vehicle delay which is associated with the idling mode. Furthermore, the 

comparison of each driving mode’s emission contribution shows that the higher the 

capacity of the intersection, the less the percentage of emissions caused by stopping and 

idling and the higher the contribution from cruising. Finally, and importantly, as shown in 

Figure 16, the average emissions per vehicle miles traveled increases dramatically once 

the intersection becomes over-saturated. 

 

Figure 16. Total network-wide emissions per Vehicle Miles Traveled (VMT) at various 

saturation conditions 

It should be noted that in Figure 15, in order to show the contribution of idling in 

total emissions, the graphs are plotted based on emissions per time traveled (VHT) which 
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is not very useful as emissions per distance (VMT) for the evaluation emissions 

generation of trips, since the main purpose of a trip is traveling for a specific distance. In 

general, it is best to compare total emissions per vehicle-mile traveled, because the 

increased congestion changes the amount of time that vehicles spend on the road, but at 

least in the short run it does not change the distance of their trips. Although estimating 

total vehicular emissions is commonly the goal of modeling traffic and performing 

emissions analyses, the total value does not tell the whole story. Increasing the degree of 

saturation increases the mobility of the system only until the intersection becomes over-

saturated. Then, additional traffic just adds to stopping and delays and vehicle hours of 

travel without adding vehicle miles traveled. In other words, in congested conditions, 

emissions volume increases while the distance traveled is reduced, implying that the 

system becomes rapidly less efficient. Figure 16 illustrates the emissions per VMT as the 

degree of saturation varies, and the results show the dramatic increase in pollutants 

associated with traveling in traffic congestion. 

4.4 Validating the Integrated Emissions Model (ITEM) 

In this section, having the emission factors of each driving mode and total number 

of vehicle stops and time spent in cruising and idling, and using the ITEM presented in 

equation (9), the total emissions for each scenario can be estimated. Figure 17 compares 

the estimated total emissions using the integrated emissions model with the total 

emissions directly computed by the microscopic emissions model. Since the emissions 

calculated by the integrated traffic emission model use the macroscopic estimates of 

traffic parameters, a smooth and continuous function for emissions estimation will be 
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available that can be used in various scenarios and different levels of saturation without 

the need for modeling repetition, despite the fact that the total emissions computed by the 

microscopic emissions model (presented by green dots in the graphs) need a run for each 

scenario. This is not only data intensive and time consuming, but also because of the 

stochasticity in the results generated by the simulation, possible error caused by the 

analytical model and probable over-saturated conditions in the simulation when the 

arrival flow is approaching capacity, the estimated total emissions using the simulation 

may not show a smooth and predictable trend. 

  
(a) Signal Cycle = 1min, G/C = 0.25 (b) Signal Cycle = 2min , G/C = 0.25 

  
(c) Signal Cycle = 1min , G/C = 0.50 (d) Signal Cycle = 2min , G/C = 0.50 

  
(e) Signal Cycle = 1min , G/C = 0.75 (f) Signal Cycle = 2min , G/C = 0.75 

 

Figure 17. Variation of total emissions for various degrees of saturation 
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As it can be seen in the graphs in Figure 17 as the capacity of the intersection 

increases, the sparseness of the simulation results decreases and the trend of them 

becomes more similar to the trend of the continuous emission estimates by the integrated 

model. As expected approaching to the capacity of the intersection the emissions per 

vehicle-mile-traveled increases dramatically. 

Although the existence of any error in the estimated number of stops, and duration 

of idling and cruising can directly affect the resulted emission estimations, the 

comparison of the estimated line and calculated dots (true values of emissions averaged 

over a specific time period of simulation) verifies the results of ITEM for the simulated 

single isolated signalized intersection. As shown in Table 5, a level of biased results is 

observed for a single isolated intersection due to a specific combination of the 

intersection specifications, arrival flow and signal timing; however, as shown in the next 

chapters, the application of ITEM in networks (ring and grid networks) do not show this 

kind of biased error due to averaging out the random error that causes biased results. 

Additionally, approaching the saturated density increases the number of over-saturated 

cases that are averaged with others and increases the level of over-estimation. 

 

Table 5. Percent error of emission estimates from the analytical emission model relative 

to the microscopic simulation model  

Signal Timing  Degree of saturation 

G/C C (sec)  0.2 0.4 0.6 0.8 1.0 

0.25 60  3.6% 4.2% 7.7% 10.3% 11.9% 

0.50 60  -2.1% -3.4% -2.8% 0.9% 3.8% 

0.75 60  3.4% -1.8% -0.9% 3.2% 6.1% 

0.50 120  -7.3% -3.1% -0.5% 4.4% 9.2% 

0.50 120  -6.9% -5.2% 2.7% -0.6% 9.3% 

0.50 120  -10.9% -8.1% -5.7% -0.9% 7.1% 
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This integrated traffic-emissions model is useful not just for estimating the total 

emission values, but also for connecting the characteristics of the traffic and signal 

timings with the emission estimates in a way that allows for systematic comparisons and 

making comparative decisions between different traffic control strategies or intersection 

improvements. This provides a valuable tool for designers, for example, in order to 

optimize the signal timings. Although it is common for the objective of a signal timing 

plan to minimize the delays or number of vehicle stops, equation (9) can be used to 

determine the best balance of those objectives to minimize vehicular emissions. 

Furthermore, this analytical model can serve as a building block for more systematic 

analysis of more complicated systems such as networks as an alternative to more costly 

and time-consuming simulation studies. In fact, the great value of this method is that it is 

based on aggregated traffic characteristics to provide aggregated emission estimates. We 

don’t typically care about the emissions from each individual vehicle. It is more 

important that we design streets and intersections to perform well as a system. Therefore, 

this model is a step towards improving our ability to assess total emissions associated 

with traffic in street networks. 

4.5 Summary 

The main objective of this chapter is to implement and validate the Integrated 

Traffic-Emissions Model (ITEM) by using it to estimate vehicular emissions given traffic 

signal timings and traffic volumes at an isolated signalized intersection. An analytical 

model has been developed based on fundamental traffic flow theory in order to compute 

the number of stops, and time spent in cruising and idling states. On the other hand, in 
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order to account for realistic characteristics of vehicle acceleration and deceleration in a 

signalized intersection, simulated vehicle trajectories generated by the microscopic traffic 

model of AIMSUN have been used to obtain the characteristics of the speed profile for a 

complete stop. The first is the average duration of acceleration and deceleration between 

free flow speed and the stop, which is used to calculate time spent in each driving mode. 

The second is a second-by-second speed profile of the vehicles during their accelerations 

and decelerations, which are used in MOVES to provide an average emissions factor per 

stop. Similarly, MOVES is used to estimate emission factors per unit time of cruising and 

idling modes. Finally, an integrated model has been used to calculate total emissions and 

emissions per VMT. 

In the second part of this chapter, the traffic estimates from the analytical model 

and emission results from the ITEM are validated by comparing the results with the 

values directly calculated from the microscopic traffic and emission models. Aggregation 

of microscopic traffic data shows a similar pattern as the estimations of traffic parameters 

by the analytical model. Also, evaluation of the results of the emissions model shows that 

by increasing the arriving flow of vehicles, total emissions increase and this is caused 

primarily by the contribution of emissions associated with vehicle stops. This shows the 

importance of minimizing the number of vehicle stops in comparison with reducing 

delays, in order to minimize emissions. Interestingly, when a residual queue exists, the 

total emissions per VMT may decrease with lower arrival flows because the growth of 

the VMT exceeds the increase in emissions. However, when the signal approaches 

saturated conditions, the emissions per VMT increase dramatically regardless of the size 

of the residual queue. The main value of this model is that it is possible to relate changes 
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in emissions to various contributing factors such as arriving vehicle flow and residual 

queue length with direct analytical relationships, as illustrated in this chapter. Insights 

about how changes in an intersection are likely to affect emissions can be quickly and 

easily quantified with this modeling approach. 

In the next chapter, using a sample network and the macroscopic fundamental 

diagram information, the number of stops and duration of idling and cruising will be 

estimated within a network for different flows and densities. By establishing this 

relationship, a reliable and reproducible macroscopic emission curve can be derived 

based on fundamental properties of a network. 
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Chapter 5 :  

Estimating Network-Wide Traffic Emissions 

by ITEM in an Idealized Ring Network 

 

This chapter is the second step to estimate the network-wide traffic emissions 

based on the fundamental properties of the network and to find the relationship between 

total vehicular emissions and the average density of vehicles in the network. In this 

chapter, the main goal is to analytically investigate the macroscopic relationship between 

traffic parameters and emissions using the concept of the macroscopic fundamental 

diagram (MFD) in a simple infinite arterial simulated by a ring model with a single 

intersection that represents infinite similar intersections. In addition to the macroscopic 

relationship of average flow-density, we look at some network-wide connections between 

other traffic parameters such as the number of vehicle stops, total time spent in cruising, 

and total time spent in idling. In order to validate the analytical model, we show that a 

relationship exists between these parameters and fundamental diagram properties by 

using different scenarios in the microscopic traffic simulation using Aimsun. Then, by 

using the integrated traffic-emissions model (ITEM) presented in Chapter 3, the 

macroscopic relationship of the network-wide vehicular emissions with average density 

(or flow) in the networks is evaluated. Finally, as part of the application of the proposed 
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model, the effect of a few network properties (e.g. signal timing and block length) on 

total emissions generated within the network has been evaluated. 

5.1 Framework for ITEM with Analytical Macroscopic Traffic Data 

Based on the required information for ITEM, it is necessary to provide the 

aggregated traffic parameters to the model, in addition to the emission factors. These 

parameters, which include total number of vehicle stops and total time spent in cruising 

and idling modes, can be estimated using different methods. In this section, using the 

macroscopic relationship between the average density and flow within the network, 

known as Macroscopic Fundamental Diagram (MFD) and the kinematic wave theory, 

these aggregated traffic parameters have been estimated. 

Existing macroscopic models for network-wide traffic conditions relate the 

average network flow, q, to the average network density, k. These two variables imply the 

average speed of vehicles in the network, v, by the well-known relation: 

𝑣 =
𝑞

𝑘
 

(14) 

These variables alone provide a lot of useful traffic information about the capacity 

of a network and the delays that drivers in the network experience. Ongoing research is 

being conducted to better understand the behavior of the macroscopic flow-density 

relation for different types of realistic networks. For the proposed model, we suppose that 

the MFD for a network is known or has been measured, and we use it to provide an 

analytical approximation for the idling time, cruising time, and number of stops for 

vehicles in the network. The goal is to develop a model with sufficient detail to estimate 
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aggregated emissions in the network without the need to track the details of each 

vehicle’s movements. 

As presented in previous chapter, the complexities of a second-by-second vehicle 

trajectory can be simplified into three key parts of the driving cycle that are related to 

emissions: time spent moving at cruising speed per vehicle-distance, 𝑇𝑐𝑟; time spent 

idling per vehicle-distance, 𝑇𝑖𝑑; and the number of times that vehicles stop per vehicle-

distance traveled, 𝑛. We will first consider how 𝑇𝑐𝑟 and 𝑇𝑖𝑑 can be estimated if 𝑛 is 

known. Then we will consider how the number of stops per distance can be estimated as 

well. 

Suppose that traffic on a homogeneous network has a triangular fundamental 

diagram with free-flow speed of 𝑣𝑓. If we ignore for the moment the range of speeds that 

are associated with acceleration and deceleration, vehicles will have piecewise linear 

trajectories with speed 𝑣𝑓 while moving (i.e., cruising) or stopped while idling. All travel 

time for vehicles can be classified as effectively cruising or effectively idling. The 

kinematic waves associated with these idealized trajectories are the same as the 

aggregated dynamics of traffic with more realistic acceleration and deceleration patterns 

(Lighthill & Whitham, 1955; Richards, 1956). 

Every vehicle that stops must decelerate from 𝑣𝑓 to 0 and then accelerate from 0 

back to 𝑣𝑓. The duration of the deceleration is 𝑡𝑑𝑒𝑐 and the duration of the acceleration is 

𝑡𝑎𝑐𝑐, and these values depend on the behavior of drivers in a particular network. If the 

deceleration and acceleration are at constant rates, then half of 𝑡𝑎𝑐𝑐 and 𝑡𝑑𝑒𝑐 is effectively 

cruising time and the other half is effectively idling time. Figure 12 in Chapter 4 shows 

how a more realistic trajectory with constant rates of deceleration and acceleration is 
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simplified to a piecewise linear trajectory. For simplicity, we will consider a single time 

associated with the cycle of deceleration and acceleration for each vehicle stop 𝑡𝑠 =

𝑡𝑎𝑐𝑐 + 𝑡𝑑𝑒𝑐. Therefore, each stop reduces the actual time spent cruising by 𝑡𝑠/2 and the 

actual time spent idling by 𝑡𝑠/2. It is important to account for 𝑡𝑠 when modeling traffic 

emissions, because the emission rates for cruising and idling should be multiplied by the 

actual cruising and idling times rather than the effective times. 

The effective cruising time per unit distance is simply the inverse of the free-flow 

cruising speed, because no distance is traversed while idling. The actual cruising time per 

unit distance is then calculated by reducing the effective cruising time by half of 

deceleration and acceleration time for each stop: 

𝑇𝑐𝑟 =
1

𝑣𝑓
−
𝑡𝑠
2
𝑛 (15) 

where n is the number of times a vehicle stops per unit distance traveled. 

 

The effective idling time is the difference between the total travel time per unit 

distance, which is the inverse of the average traffic speed, and the effective cruising time. 

The actual idling time per unit distance is again calculated by reducing the effective 

idling time by the other half of the deceleration and acceleration time per stop: 

𝑇𝑖𝑑 =
1

𝑣
−
1

𝑣𝑓
−
𝑡𝑠
2
𝑛 (16) 

In many cases, it may be possible to measure 𝑛 from the same data source used to 

obtain the estimated macroscopic traffic state 𝑘 and 𝑞 (i.e., traffic data from probe 

vehicles could provide an indication of this value). In the absence of direct 
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measurements, it is useful to be able to express the number of stops analytically. 

Although an individual vehicle makes a discrete number of stops per distance traveled, 

this could vary across vehicles or road segments. Therefore, it is useful to be able to have 

an analytical approximation for the average 𝑛. 

The simplest approximation is simply to suppose that on average vehicles are 

stopped once per cycle. The average distance traveled during a signal cycle of length 𝐶 is 

𝑣𝐶, so,the number of stops per distance is given by: 

𝑛 =
1

𝑣𝐶
 

(17) 

This approximation is appropriate when the signal offset is 0 and when the 

duration of the red signal exceeds the time required to travel the length of a block at free-

flow speed: 𝐶 − 𝐺 ≥ ℓ
𝑣𝑓⁄ , where 𝐺 is the effective length of the green phase and ℓ is the 

length of the block. In this case, the red phase is sufficiently long that a vehicle will 

always have to stop once per cycle when caught at a red signal. It should be noted that 

when block lengths are long enough or red phases are short enough that 𝐶 − 𝐺 < ℓ
𝑣𝑓⁄ , it 

is possible for some vehicles to traverse the network without stopping during every cycle. 

This may become a source of error, although the condition does not occur for any of the 

examples in this research.  

A complication occurs in urban networks because the platoon of vehicles being 

served by an upstream signal may reach the back of a queue at a downstream signal 

before it has completely dissipated causing every vehicle to stop a second time. This 

condition can be identified by tracking whether the front of the platoon moving at free 
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flow speed 𝑣𝑓 reaches the interface at the front of the dissipating queue moving backward 

at speed 𝑤 illustrated by point A in Figure 18. If the queue exceeds length 𝑑, the platoon 

gets blocked and each vehicle stops a second time. 

 

Figure 18. Time space diagram of two consecutive signals and the condition that the 

platoon moving forward meets the back of queue at point A 

Mathematically, the condition that the platoon gets blocked occurs if the number 

of vehicles queued on the link exceeds the number that would be in a queue of length 𝑑. 

The number of vehicles in a queue of length 𝑑 is 𝑘𝑗𝑑 and the number of vehicles on the 

link may be defined as 𝑘ℓ, so,the blockage of the platoon is implied by the following 

condition: 

𝑘ℓ > 𝑘𝑗𝑑 (18) 

From the geometry of Figure 18, it follows that 𝑑 =  𝑤𝑡 and ℓ =  𝑤𝑡 + 𝑣𝑓𝑡. By 

substituting these expressions into (18), cancelling t from all terms, and using this as the 
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condition to determine if the average vehicle stops once or twice per cycle, (17) can be 

re-written as: 

𝑛 = {

1
𝑣𝐶⁄        𝑖𝑓   𝑘(𝑤 + 𝑣𝑓) ≤ 𝑘𝑗𝑤

2
𝑣𝐶⁄                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(19) 

 

5.2 Microsimulation of an Idealized Network 

In this section, a microscopic simulation of an idealized ring-shaped model has 

been used to illustrate the macroscopic relationship of aggregated traffic parameters of 

the number of stops, cruising time, and idling time with the total number of vehicles in 

the network (average density). Since one of the initial assumptions of the analytical 

model based on the MFD is that the traffic on the network is homogeneous, this specific 

ring-shaped network has been used for simulation, which is explained in the next section. 

5.2.1 Construction of the microscopic simulation 

 In order to construct the idealized homogeneous network, a street with fixed 

number of lanes, constant spatial speed limit, constant capacity, and any number of 

intersections should be considered. To have an evenly distributed flow in the network, the 

upstream flow into the section should be matched to the flow at the downstream end of 

the section. In this situation, the number of vehicles in the network is fixed which creates 

a constant density over the period of simulation (Daganzo & Geroliminis, 2008). 

Although it is assumed that the vehicles are evenly distributed in the network, the number 

of vehicles (density) on the link(s) is constant. As stated in previous section, there is no 
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need for the arrival flow to the intersections to be uniform at the network level. The 

arrival flow at each intersection is controlled by the platoons coming from the upstream 

intersection. The random variation of the speed of vehicles and platoon dispersion causes 

a non-uniform arrival at the intersection. Since, in this section the analytical model is 

constructed based on the aggregated traffic counts and macroscopic fundamental 

diagram, the non-uniform arrivals do not affect the proposed model. 

In order to simulate this network, we can put an infinite number of identical street 

segments end-to-end of each other, similar to Figure 19(a), in which the outflow of each 

segment is the inflow of the next one. However, running this plan in a traffic simulation 

and keeping the number of vehicles in the network fixed may not be possible. Another 

way to model this homogeneous network with constant density is with a ring-shaped 

road, as shown in Figure 19(b), in which the beginning and end of the section meet at a 

signalized intersection. During the feeding period of the simulation, a controlled number 

of cars enters the link, and then during the simulation period, no cars are added to the 

network. This feeding process is repeated from zero density to jam density to cover all 

levels of saturation. Therefore, the single ring network with a signalized intersection can 

work as an idealized homogeneous network with no turning movements, where vehicle 

density is homogeneous during the simulation period and flows are perfectly correlated 

across all links. 
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  (a)                                                                                                                        (b) 

Figure 19. Idealized homogeneous network, a) infinite arterial with identical links and 

intersections, b) ring shaped arterial 

5.2.2 Macroscopic traffic and emission values measured from microsimulation 

In this model, different scenarios are defined, and in each of them the number of 

vehicles is increased during the feeding period and the model rerun for the new density. 

This adding procedure continues until the link becomes fully congested (gridlock) and 

there is no movement in the network. This is the jam density of the section. During each 

level of density, traffic parameters, including average flow of the link and flow at 

different locations, average density, the number of circulating vehicles, the number of 

vehicles’ stops, total duration of cruising, total duration of idling, and the second-by-

second trajectories of the vehicles are recorded. Figure 20 shows the relationship between 

average flow and average density (i.e., the MFD) recorded in simulation of the base case 

scenario. It should be noted here that the analytical models and microsimulation of an 

idealized and homogeneous network can be used to record the complete MFD covering 

all densities from 0 to jam density. In reality however, it is not only undesirable, but it is 
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also not possible to observe the completely congested conditions on the network, as 

shown in the MFD of Yokohama in Figure 4. Therefore, in the graphs provided for the 

modeling in the networks (both ring-shape and grid network) the traffic states after 

saturated conditions are demonstrated by a lighter color, indicating an unrealistic traffic 

state. 

 

Figure 20. Relationship between average flow and average density, MFD, recorded in the 

micro-simulated idealized network 

In addition to data recorded by the model, all parameters are computed from the 

recorded trajectories by using an algorithmic Matlab code explained in Chapter 3. Using 

this code and some predefined and calibrated thresholds, all trajectories are divided into 

four driving modes of acceleration, deceleration, cruising, and idling. In addition to 

counting the number of vehicle stops, the aggregation of a typical (average) acceleration 

and deceleration and the corresponding features (e.g., duration and magnitude) of a 
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vehicle stop can be defined. Also, by averaging over cruising states, the average speed of 

cruising is computed. In an ideal situation, it is assumed that the average cruising speed is 

the same as the free flow speed; however, due to reduction of speed in saturated traffic 

conditions, the cruising speed might not reach free flow speed in the real-word and in 

simulation, which can cause some errors due to incomplete accelerations and 

decelerations cycles. Figure 21 shows the macroscopic relationship between a) the total 

number of vehicle stops, b) time spent in idling, and c) time spent in cruising and the 

average density of vehicles on the network. In the rest of this study the macroscopic 

parameters are evaluated per vehicle kilometer traveled (VKT). 

 

 

  

 

  

Figure 21. Network-wide relationship between number of vehicle stops with average 

density of vehicles on the network. 

a) b) 

c) d) 
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Based on calculated macroscopic traffic parameters, which are the aggregated 

driving cycle components, and using ITEM, the total emissions from the network can be 

calculated. The model multiplies the macroscopic traffic parameters and microscopically 

computed emission factors. Figure 21.d shows the network-wide aggregated traffic 

emissions calculated based on measured macroscopic traffic parameters from 

microsimulation. 

5.3 Analytical Estimation of Emissions from Measured MFD 

In Section 5.2, the macroscopic traffic parameters and total emissions are 

calculated based on recorded trajectories in microsimulation. However, as explained in 

Section 5.1, macroscopic traffic parameters can be estimated using the analytical 

approach, based on the measured MFD. In this section, analytical estimates of traffic 

parameters and resulting emissions are compared with simulation measurements.  

5.3.1 Comparison of driving cycle components 

Based on the measured MFD shown in Figure 20 and equation (19), the total 

number of stops in the network for different densities can be analytically estimated. 

Figure 22 shows the comparison of the analytically estimated number of stops and 

measured values from microsimulation. As shown in the graph there is a close match 

between the estimated results and measured values, especially for lower densities. 

However, the analytical estimates rise significantly, since the analytical approach counts 

all low speed stop-and-go movements. In reality and simulation, the speed variations in 

congested conditions do not pass the threshold to be considered as a stop.  
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Figure 22. Comparison of analytically estimated number of stops and measured values 

from microsimulation 

Similarly, network-wide total time spent in cruising and idling modes are 

analytically estimated for the base case scenario using equations (15) and (16). Figure 23 

shows the analytically estimated a) total cruising time and b) total idling time, and the 

comparison of them with measured values from microsimulation.  

As shown in Figure 23(b), there is a close match between analytical estimates and 

measured values of idling time, but some inconsistency in estimation of cruising time can 

be observed in Figure 23(a). However, since cruising time has a low contribution in total 

emissions and the underestimation error caused by cruising time is being canceled out 

with overestimation of the idling time and the number of stops, the observed errors in 

cruising time not only do not have a negative impact on the estimation of total emissions, 

but they also reduce the amount of total emissions overestimated by the analytical model. 
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Figure 23. Comparison of analytically estimated total time spent in a) cruising mode, and 

b) idling mode with the measured values from the microsimulation as a function of the 

network density 

a) 

b) 
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5.3.2 Comparison of total emission 

Using the analytically estimated macroscopic traffic parameters shown in the 

previous section and microscopically computed emission factors explained in Chapter 3, 

the network-wide total emissions can be calculated using ITEM. In order to evaluate the 

consistency of the analytically estimated total emissions, the estimated values of total 

emissions are compared with the microscopically computed total emission using the 

second-by-second trajectories of all individual vehicles on the network, as shown in 

Figure 24. 

 

Figure 24. Comparison of analytically estimated network-wide total emissions and 

microscopically computed total emissions using the second-by-second trajectories as a 

function of the network density 
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5.4 Analytical Estimation of MFD 

In previous sections the macroscopic traffic parameters and also total emissions 

were estimated analytically, and in order to implement this analytical approach, the 

fundamental properties of the network including the network’s MFD need to be given 

from measurements. In the simulation or real-world network, the MFD can be measured 

by intelligent transportation system (ITS) technologies. However, if the network is 

homogeneous, similar to the ring model, the MFD of the network can also be estimated 

analytically. This approach can be useful in some cases where the network can be divided 

into multiple homogeneous sub-regions.  

5.4.1 Theoretical approximation of MFD 

A complete explanation of the analytical approximation of MFD is beyond the 

scope of this study, it has been the topic of several research projects in the last few years 

such as (Daganzo, 2005.b; Daganzo & Geroliminis, 2008). However, in this section, a 

simple conceptual description of the method is provided. In order to offer a recipe to 

approximate the MFD, it is first proven that an exact, unique, concave MFD exists for 

any homogeneous network that can be described as a multi-block, signal-controlled street 

network without significant turning movements. In this approach, a moving observer 

method has been used to identify the capacity of the street. 

Using variational theory, the maximum rate that a moving observer can be passed 

by vehicles in the network can be formulated as a shortest path problem. The solution 

gives several linear cuts that define the upper bound of feasible flow-density points that 

can be observed in the network. The lower envelope of these cuts defines a concave 
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MFD, which is the theoretical upper bound for the flows that the network can serve at 

each vehicle density in the network. This upper bound will be tight if the network is 

homogeneous and well-connected, as in the ring model or a grid network with uniform 

traffic density (Daganzo & Geroliminis, 2008). 

In the next step, it is shown that this upper bound is the maximum total flow on an 

idealized network for any given number of circulating vehicles. However, heterogeneity 

in the network, which is introduced in the form of non-uniform distribution of vehicles 

across the network, reduces the average flow on the network for a given density. This 

means a point below the MFD curve, and the magnitude of flow can be changed. In the 

next section the idealized ring model has been used to estimate the MFD of the network, 

because homogeneity of traffic conditions is always maintained in this network.  

5.4.2 Calculation of MFD from the network features 

In this section, the analytical approximation approach has been used to estimate 

the MFD of the base case scenario. Similar to the ring model used in microsimulation, the 

network used for the analytical approximation of MFDs consists of a 2-lane road with the 

base case features as follows: the block length 𝑙 = 300 m, capacity of 𝑠 = 1900 veh/hr, 

jam density of 𝑘𝑗 = 400 veh/km, signal cycle of 𝐶 = 60 sec, and green ratio of 𝐺/𝐶 = 0.5. 

Figure 25 shows the comparison between the MFD estimated by the analytical approach 

with the MFD measured from the microsimulation. 
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Figure 25. Comparison of the analytically Approximated MFD with the MFD measured 

from microsimulation 

Additionally, several scenarios have been defined to show the analytical 

approximation of MFD for different characteristics of the network. Figure 26 shows the 

estimated MFD of a ring-shaped network under different scenarios. Three network 

variables of green ratio (𝐺/𝐶), cycle length (𝐶), and block length (𝑙) are used to show 

how network features are reflected on the approximation of the MFDs.  
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Figure 26. Approximated MFD of the idealized network with different given network 

features 

Utilizing the estimated MFDs, the macroscopic traffic parameters required for 

ITEM can be estimated. Therefore, using the ITEM method and analytical approximation 

method of MFD, the network-wide total emissions on an idealized network can be 

estimated using only analytical methods; no simulation is needed at all. This approach 

can be more helpful for providing a rough estimate of total emissions in a relatively 

homogeneous network. In the next section, the effect of changing network characteristics 

on the driving cycle components and the resulting total emissions are evaluated.  

a) b) 

c) 
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5.5 Effect of Changing Network Characteristics 

The value of an analytical model for emissions from the vehicles in urban 

networks is that the effect of changing the network and demand characteristics can be 

quantified quickly. Whereas the conventional simulation and microscopic emission 

modeling approach require that the network be reconstructed and recalculated for each 

scenario considered, the analytical approach allows for systematic comparisons of 

network performance based on evaluation of mathematical functions. This makes the 

analytical model especially useful for large-scale analysis of the effects that 

transportation policies are likely to have on the performance of the traffic network, 

including the emissions from vehicles. Unlike existing macroscopic emission models, this 

analytical approach explicitly accounts for the physical interactions of vehicles in the 

network; therefore, the effect that changes in signal timings and vehicle densities have on 

the driving cycles and resulting emissions from vehicles is captured. 

5.5.1 Effect of changing the green ratio (G/C) 

One characteristic of a network that can be changed relatively easily is the ratio of 

the cycle time that is effectively green for each approach, 𝐺/𝐶. Using all of the same 

network parameters as in the base case presented in the previous section, an evaluation of 

the effect of changing the green ratio is conducted. Figure 26(a) shows the analytical 

MFD for each of the green ratios 𝐺/𝐶 ∈ {0.25; 0.5; 0.75}. The green ratio of 0.5 is the 

same as the base case presented in the previous section. The green ratio for through 

traffic in a network may be reduced if signals are timed to include dedicated turning 

phases, and one effect of reduced green time is the obvious reduction in the maximum 
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flow that can progress through the network. Reduced green times also reduce the speed 

that vehicles can traverse the network at lower densities as indicated by the lower slopes 

on the left side of the MFDs for lower values of 𝐺/𝐶 in Figure 26(a). 

The analytical approach to estimate driving cycle components is used, and the 

macroscopic traffic parameters needed for ITEM are calculated. Figure 27 shows a) the 

analytical estimated total number of stops, b) total time spent in idling, c) total time spent 

in cruising, and d) the estimated total emissions. As shown in the graph, the smaller the 

green ratio causes the higher the number of stops and idling time. Similar to the traffic 

parameters, the results indicate that the more restricted green ratios are associated with 

greater emissions per vehicle distance traveled. Although this qualitative effect may be 

expected, the analytical model allows us to quantify the effect over the full range of 

vehicle densities. The effect on emissions per distance traveled increases dramatically as 

the green ratio is restricted. A reduction of G/C from 0.75 to 0.5 results in a modest 

increase in the emissions per vehicle distance traveled compared to a further reduction to 

0.25. Emissions do not differ much at the lowest densities, when traffic is freely flowing, 

and at the highest densities, when conditions are nearly gridlocked. 
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Figure 27. Macroscopic traffic parameters and network-wide total emissions for scenarios 

with various green ratios 

5.5.2 Effect of changing signal cycle length 

Another characteristic of the network that can be changed as part of a traffic 

control plan is the length of the signal cycle, 𝐶. Figure 26(b) shows the analytical MFD 

for cycle lengths 𝐶 ∈{30, 60, 120} seconds with the green ratio held constant at 𝐺/𝐶 = 

0.5. It should be noted that in practice, a longer cycle usually allows a higher green ratio 

to be achieved, because the lost time due to switching signals makes up a smaller portion 

of the whole cycle. We ignore this effect here to focus our attention on the effect of 

changing only one parameter on the resulting emissions. 



 

 

106 

Changing the cycle length has little effect on the MFD, especially in free flowing 

conditions. In fact the MFD for C = 30 seconds is almost identical to the MFD for C = 60 

seconds. Although the MFD is similar, the driving cycle components and total emissions 

results vary as shown in Figure 28. Total number of stops, total time spent in cruising and 

idling are respectively presented in Figure 28(a), (b), and (c). 

 

  

  

Figure 28. Macroscopic traffic parameters and network-wide total emissions for scenarios 

with various signal cycle length 

Figure 28 shows the total emissions estimated by ITEM using the aggregated 

traffic cycle components and emission factors. As shown in the graph, the higher cycle 
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length causes more emissions due to a larger number of vehicle stops in the driving cycle 

and the average speed of traffic as given by (19). For the same flow and density, a longer 

cycle length results in fewer stops per distance traveled, and this translates to reduced 

emissions. However, the cycle length of 𝐶 = 120 seconds is associated with a longer red 

phase, which causes additional queueing that constrains flows on the congested branch of 

the MFD. The reduced speeds in congested conditions result in greater emission per 

distance traveled. Evidently, the detailed effects of the cycle length on the driving cycle 

matter for the resulting emissions, and the analytical model accounts for these effects. 

5.5.3 Effect of different block length 

A third characteristic of the network that can be compared is the effect of the 

block length on emission rates. As a policy, it is difficult to change the length of city 

blocks once the street network has been built, but when new neighborhoods are 

developed there is an opportunity to choose the size of city blocks and to consider the 

effect that this will have on traffic flows and emissions. Figure 26(c) shows the 

comparison of analytical MFDs for ℓ ∈ {150, 300, 600} meters.  

In free flowing conditions, the block length does not make much difference, but in 

congested conditions, the length of blocks determines the storage space for queues of 

vehicles and the likelihood of a queue spillback. The effect of block length on the total 

number of stops, time spent in cruising, and time spent in idling are shown respectively in 

Figure 29(a), (b) and (c). As shown in the graphs, the results of block length of 150 m are 

almost identical with the base case scenario with 𝑙 = 300 m and higher than the ones for 

the block length of 600 m. 
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Figure 29. Macroscopic traffic parameters and network-wide total emissions for scenarios 

with various block length 

The effect of this network characteristic on emissions is shown in Figure 29(d). 

For the lowest densities (i.e., free-flowing conditions), the traffic states and emissions do 

not vary. From a flow and emissions perspective, there is a benefit to increasing block 

lengths, but in practice this is only necessary up to a point. From ℓ = 300 m to 600 m, the 

emissions are only improved in the most congested conditions, which an efficient traffic 

management program should seek to avoid anyway. 
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The analytical model for emissions based on the MFD is flexible for many 

analyses, but it does have limitations. All of the cases presented are associated with the 

same free-flow speed, 𝑣𝑓, so, the set of the emission factors (𝑒𝑐, 𝑒𝑖, and 𝑒𝑠) and the 

duration of each acceleration and deceleration cycle (𝑡𝑠) remains the same as for the base 

case. If the free-flow speed in the network were to change, these factors would have to be 

re-estimated because the acceleration and deceleration associated with each stop would 

span a different variation of speeds. In practice this may not be a big problem, because 

free-flow speeds on city streets tend to be stable, and the effect of traffic policies for 

urban networks tend to be more geared toward signal control and demand management 

strategies, which the MFD is appropriate for addressing. 

5.6 The model error evaluation 

In this section in order to assess the consistency of the total emissions analytically 

estimated by ITEM, the analytical estimates are compared with microscopically 

computed total emissions using the second-by-second trajectories. As explained in 

section 5.3, the analytical emission values are calculated based on analytically estimated 

macroscopic traffic parameters based on the measured MFD and microscopically 

computed emission factors. 

To quantify and evaluate the errors, the percent error of each analytically 

calculated emission value relative to the microscopically simulated one is calculated. 

Starting from the base case presented in the previous section with 𝐺/𝐶 = 0.50,  𝐶 = 60 

sec, and ℓ = 0.30 km, a systematic error analysis is conducted in the ring model for each 

of the following variations in isolation: the green ratio, 𝐺/𝐶 ∈ {0.25, 0.50, 0.75}; the 
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signal cycle length, 𝐶 ∈{30, 60, 120} sec; and the block length, ℓ ∈{0.15, 0.30, 0.60} 

km. For each case a separate ring simulation was constructed to generate the MFD for the 

analytical approximation and to generate the detailed vehicle trajectories for the 

conventional microscopic analysis. The percent error of the proposed analytical approach 

relative to the conventional microscopic simulation approach is summarized in Table 6. 

 

Table 6. Percent error of emission estimates from the aggregated analytical emission 

model relative to the microscopic simulation model (Base case: G/C=0.5; C=60sec; 

ℓ=0.30km) 

 
G/C 

 
C (sec) 

 
ℓ (km) 

 
 

 
25 

 
50 

 
100 

 
150 

 
200 

Variation of the Green Ratio 

0.25 60 0.30  2.1% 4.9% 0.9% 1.7% 15.9% 

0.50 60 0.30  -7.7% 1.3% 10.5% -7.6% 19.5% 

0.75 60 0.30  -8.4% -5.1% -7.2% -17.4 22.4% 

Variation of the Signal Cycle Length 

0.50 30 0.30  9.3% 10.1% 5.5% 0.4% 49.7% 

0.50 60 0.30  -7.7% 1.3% 10.5% -7.6% 19.5% 

0.50 120 0.30  -11.0% -10.0% 0.2% -1.8% 1.1% 

Variation of the Block Length 

0.50 60 0.15  -5.0% 8.5% 6.7% -1.2% 22.6% 

0.50 60 0.30  -7.7% 1.3% 10.5% -7.6% 19.5% 

0.50 60 0.60  -10.3 -7.5% 1.4% 0.2% 22.4% 

 

The network scenarios are clustered into three groups, each group showing the 

results of varying one of the network variables. The center row of each cluster is the base 

case so that the effect on the percent error from increasing and decreasing each variable 

can be compared one at a time. In almost all cases when the network is not completely 

jammed (𝑘< 200 veh/lane-km), the model is within 11% of the simulated value. These 

Network Properties                                                       Network Density, k (veh/lane-km) 
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errors do not appear to have a systematic bias and the magnitudes are small relative to the 

variation in emission rates for different values of k as shown in Figure 24. Therefore, the 

proposed analytical model provides a good approximation for the detailed microscopic 

estimates. 

Only at jam density (𝑘 = 200 veh/lane-km), the errors are very large and 

consistently positive. These large errors occur when the network is near a state of 

complete gridlock, because the model predicts a large number of stops but the traffic 

moves so little with each cycle that the vehicle trajectories in the simulation never move 

faster than a slow crawl. 

5.7 Summary 

In order to find a macroscopic connection between network-wide traffic emissions 

and fundamental properties of a network, including the MFD of the network, this chapter 

first investigated the relationship of three aggregated traffic parameters that reliably 

represent traffic conditions in the network and can be used to estimate overall emissions 

in the network. These three parameters include the number of vehicle stops, the total time 

spent in idling (in queue), and the total time spent in cruising (at free-flow speed) per 

vehicle distance traveled.  

The Aimsun traffic microscopic simulation has been utilized to generate and 

record second-by-second trajectories of all individual vehicles on the network to compare 

the estimated traffic parameters with microsimulation results. Using the driving cycle 

components and emission factors, total emissions are also analytically estimated and 

compared with microscopically computed emission values using the detailed trajectories. 
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In order to evaluate the effect of the network characteristics on macroscopic traffic 

parameters and total emissions, three comparative scenarios are generated. The effect of 

duration of the signal cycle, green ratio (𝐺/𝐶), and the link length, on the network’s 

fundamental diagram and other macroscopic traffic parameters in the network are 

assessed.  

The results of aggregation of the number of stops and cruising and idling time 

show the existence of a robust relationship between these parameters and the network’s 

properties and MFD. Additionally, aggregated emissions for different scenarios from the 

microscopic emissions model MOVES show a strong connection between network-wide 

traffic emissions per Vehicle Kilometer Traveled (VKT) and the average density in the 

network. 
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Chapter 6 :  

Validation of ITEM in a Grid Network 

  

In order to validate the analytical approach to estimate aggregated traffic 

parameters and the proposed Integrated Traffic Emission Model (ITEM), this chapter 

presents results from the microsimulation of a grid network with heterogeneity of vehicle 

densities caused by turning movements at the intersections. Two comparisons are made. 

First, the second-by-second trajectories of all individual vehicles obtained from 

simulation have been utilized to calculate the aggregated traffic parameters, which 

include total number of vehicles, total time spent in cruising at free-flow speed, and total 

time spent in idling mode. These aggregated traffic parameters are compared with 

analytically computed traffic estimates. Second, the trajectories have been directly used 

in the microscopic module of the emission model MOVES to estimate the total emissions 

generated in the network. The resulting emissions from the microsimulation are 

compared with the total network-wide emissions estimated with ITEM to validate the 

proposed model. 

An error analysis has been performed to compare the estimated traffic parameters 

and emissions from the analytical model with the results of a detailed simulation and 

microscopic emission model. This analysis includes assessment of the consistency and 

robustness of the results generated by the analytical approach and proposed ITEM model 
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by comparing them with much more detailed microscopically calculated results derived 

from the second-by-second vehicle trajectories. The different sources of errors and their 

impacts on the results are investigated.  

6.1 Grid Network Modeling 

In order to perform a microsimulation in a grid network a simple grid model was 

constructed with several one-way links of length ℓ = 150 m, as shown Figure 30. For the 

base case scenario, an identical number of vehicles are loaded onto each line and there 

are no turning movements at the intersections; therefore, the numbers of vehicles on each 

link remain constant over time. Therefore, the traffic conditions on the network in the 

base case remain homogeneous, and the simulation also represents an idealized network. 

 

Figure 30. Simplified grid network used for simulation 

During each time interval of the simulation, the model runs with a certain number 

of vehicles to recreate traffic operations at a specific vehicle density. Then, more vehicles 

are fed onto each link of the network, and simulation resumes to represent traffic at an 
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increased density. The procedure of feeding and running continue to cover all densities 

from free flow to jam density (𝑘𝑗= 200 veh/km). Other properties of the grid network that 

are used to illustrate the performance of the proposed analytical model for the base case 

scenario include: free-flow speed, 𝑣𝑓= 53 km/hr; saturation flow, 𝑠 = 1900 veh/lane-hr; 

green ratio (length of green phase divided by signal cycle length), 𝐺/𝐶 = 0.50; signal 

cycle length, 𝐶 = 60 sec; block length, ℓ = 150 m; and no signal offset. Running the 

simulation for a range of densities between 0 and 𝑘𝑗, the average network flow 𝑞 is 

plotted for each density 𝑘 in Figure 31. 

 

Figure 31. Network flow-density relation (MFD) measured from the simulation for 

different turning movement ratios 

In order to relax the assumption that vehicle density is homogeneous across links, 

two scenarios with 20% and 40% random turning movements at each intersections have 

been evaluated. As shown in Figure 31, the average network flow drops at higher average 
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densities in networks with turning. This is due to the blockage of some links while some 

other parts the network are not fully utilized. The turning movement has less impact on 

the free-flow branch of the MFDs, because variability in vehicle density does not affect 

the network’s average flow if there are no queue spillbacks. The reduction in vehicle flow 

at higher densities is associated with dynamically changing traffic conditions. In Figure 

31, scenarios that exhibit multiple dots at a certain density show that even while the total 

number of vehicles on the network is constant, the longer the model runs, the more 

uneven the distribution of vehicles becomes, which causes decreases in the average flow 

in the network. 

6.1.1 Validation of analytically estimated traffic parameters. 

Using the definition of the MFD and the relationship between the average flow, 

average density and average speed on the network presented in equation (14) the average 

network speed at each density is: 𝑣(𝑘)  =  𝑄(𝑘)/𝑘. Having the average speed as a 

function of density and other required input for the equation (19) the number of vehicles 

stops can be estimated as a function of density. As explained in Chapter 5, based on the 

average network density (number of vehicles in queue), vehicles may stop either one or 

two times per signal cycle. By aggregating the total number of stops over each density, a 

consistent relationship between the average density and total number of stops appears. 

The analytical approach provides a corresponding number of stops for each pair of flow 

and density on the MFD. The longer the run continues with the presence of turning 

movements, the more heterogeneous the network becomes, and the average flow 
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decreases. As shown in Figure 32, the reduced flow cases are reflected on the higher 

number of stops. 

 

 

Figure 32. Variation of total number of stops vs. average densities corresponding to each 

pair of flow-density 

To validate the analytically estimated number of stops, the estimated values are 

compared with the simulated results. The longest run in the network with turning 

movements shows the highest level of heterogeneity on the network. Figure 33 shows the 

comparison of the analytically estimated number of vehicle stops (solid lines) with the 

total number of stops measured from the simulated vehicle trajectories (points). 

As shown in Figure 33, the analytically estimated number of stops follows a 

similar trend as the simulated values. At the highest densities (𝑘> 150 veh/lane-km), 

where traffic is nearly completely jammed, the estimated number of stops per distance 

soars while the observed number of stops actually declines. This is due to the fact that in 
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extremely congested conditions, vehicles move so little during each cycle that the 

trajectories do not trigger the necessary thresholds for the stops to get counted. 

 

Figure 33. Variation of total number of stops vs. average densities for the analytical 

estimates and simulated results after a run of 10 minutes 

The analytically computed values for the number of stops are then used along 

with the measured values of 𝑣(𝑘) to estimate the time per distance spent cruising using 

equation (15) and the time per distance spent idling using equation (16). Figure 34 shows 

the analytically estimated cruising and idling times (solid lines) and the cruising and 

idling times measured from the simulated vehicle trajectories (points). 

As shown in Figure 34(b), the analytical approximation of idling time closely 

matches the simulated values. However, analytical estimates of cruising time shown in 

Figure 34(a) include some level of error. This underestimation can be caused by the 

variation of free-flow speed and the approximation of the acceleration/deceleration speed 
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profile, but the error is not significant enough to affect total emissions estimation, 

because cruising time is a small portion of the total travel time, especially at higher 

densities. Additionally, the underestimation of cruising time and the resulting emissions 

are counterbalanced by the overestimation of time spent idling and number of stops. In 

the error analysis section, this issue has been addressed more clearly. 

 

 

Figure 34. Comparison of total time spent in a) cruising and b) idling vs. average 

densities estimated analytically with the simulated results after a run of 10 minutes 

a) 

b) 
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6.1.2 Validation of analytically estimated total emissions (ITEM) 

The total greenhouse gas emissions per vehicle distance traveled are calculated by 

multiplying each of the estimated driving cycle components by the associated emission 

factors as shown in equation (9). As explained earlier, by using the analytical approach 

for each pair of flow and density in MFD (shown in Figure 31), a corresponding total 

emissions can be estimated. Figure 35 shows the variation of network-wide total 

emissions under various traffic conditions. Reduced average flows in the network due to 

longer runs under heterogeneous conditions are reflected in the higher total emissions. 

 

Figure 35. Variation of analytically estimated total network-wide emissions versus 

average network densities for different percent turning scenarios 

These analytically estimated emissions can be validated by comparing them with 

the outcome of a conventional microscopic emissions analysis using the detailed second-

by-second simulated vehicle trajectories. In order to make the comparison graphs more 
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clear and understandable, the comparison results of only two cases are depicted in Figure 

36. The analytically estimated emissions presented by solid lines and the aggregated 

simulation outputs are shown by points. Figure 36(a) shows the comparison of the 

scenarios after 2 minutes of microsimulation, when traffic conditions are still relatively 

homogeneous. Figure 36(b) shows the results after 10 minutes of microsimulation. The 

longer run causes more heterogeneous conditions on the network. 

The analytical estimation of total emissions based on the measured MFD and 

associated estimates of the driving cycle components has a robust trend, and it is very 

close to the measured emissions from simulation. Except for very high densities, which 

are almost completely jam conditions, in most cases the analytically estimated emissions 

are within 10% of the measured values. Model errors, such as error in estimating the 

number of stops and error in averaging the emission factors, will be discussed in detail in 

the error analysis section. The close agreement between the analytical macroscopic model 

and the detailed simulation model occurs because aggregating the emissions from all 

vehicle trajectories together has the effect of averaging out variations from vehicle to 

vehicle. 
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Figure 36. Comparison of the analytically estimated emissions (solid lines) and the 

aggregated simulation outputs (points) after a) 2 minutes of simulation run and b) after 10 

minutes of simulation run 

a) 

b) 
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6.2 Model Errors 

In order to assess the consistency and robustness of the proposed analytical 

model, an error analysis has been performed to compare the estimated emissions from the 

analytical model with the results of a detailed simulation and microscopic emission 

analysis. Similarly, analytical estimates of traffic parameters can be compared with 

measured values from the simulation. In the following sections, the consistency of 

analytical estimates is evaluated by comparing with the values computed by 

microsimulation. 

6.2.1 Errors in estimation of total emission  

In order to evaluate the usefulness the proposed model of ITEM, the final 

estimates of network-wide emissions estimated by the analytical traffic calculation are 

compared with the emissions obtained by directly feeding the second-by-second 

trajectories of vehicles into the microscopic emission model, MOVES. Figure 37 shows 

the comparison of analytically estimated total emission by ITEM, and microscopically 

computed total emissions by MOVES. There is a close relationship between analytical 

estimates and microscopic emission values. For the most part, ITEM overestimates total 

emissions by less than 10% in comparison with the microscopic results. However, at 

higher emission values, while the traffic conditions tend to be completely congested, the 

errors may exceed 10%. The main reason for larger overestimation at higher densities is 

that the analytical model tends to overestimate the number of stops in congested traffic 

conditions. In reality and simulation, the vehicle speeds in congested conditions may not 

pass the threshold to register as a measured stop in the trajectory processing algorithm, 
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but the analytical approach accounts for every stop-and-go movement even at very low 

speeds as one stop. 

 

 

Figure 37. Comparison of the analytically estimated total emissions by ITEM with 

microscopically computed emissions by MOVES 

6.2.2 Errors in estimation of the ITEM’s components 

The main sources of errors that contribute to all three traffic parameters (number 

of stops and time spent cruising and idling) are those that are affecting the analytical 

calculation of the total number of stops. Not only does the total number of stops have the 

highest contribution to total emission, but it is also used to compute the two other driving 
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components, which are the total time spent in cruising and idling. Errors in the number of 

stops can be caused by two major sources. The first source of error is the threshold 

density at which the upstream vehicles hit the back of the queue and cause the second 

stop on each link. It becomes more complicated when vehicles are unevenly distributed 

and on some links the second stop is observed, while other links are in free flow 

conditions and only one stop per signal cycle is counted. This threshold is defined in 

equation (19). However, due to level of heterogeneity in the network, it can be a source 

of error in estimating the number of stops. The impact of spatial variation of density on 

the threshold can be estimated using the cumulative distribution function of the density 

on each link based on the mean and spatial variance of the densities. Investigation of the 

effect of spatial variance of densities on the MFD and the resulting number of stops is 

beyond the scope of this study, and in this study, it is assumed that these values are given 

or measured by ITS devices. 

Another source of errors in the estimation of total emissions by ITEM is the 

emission factor (𝑒𝑠) and duration (𝑡𝑠) associated with each stop. This type of error is 

caused by variation of speed profiles (acceleration/deceleration patterns), which can be 

observed due to various traffic conditions or driving behaviors. As explained before, the 

emission factor for a single stop is calculated by adding the emissions that result from a 

complete deceleration from free flow speed to stop and a complete acceleration from stop 

to free flow speed. However, when density increases and the network approaches the 

saturated conditions, vehicles accelerate more slowly, and one complete stop (𝑡𝑎𝑐𝑐 +

𝑡𝑑𝑒𝑐) takes longer time. Longer stops (𝑡𝑠) not only affect the analytical estimates of the 

traffic parameters, but they also cause higher emission rates associated with each stop. 
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This is because more cruising and idling time is replaced by the deceleration and 

acceleration modes. The variation of duration (𝑡𝑠) and emission factor (𝑒𝑠) associated 

with each stop versus average densities is shown in Table 7. In order to resolve this issue, 

different emission factors (𝑒𝑠) and stop times (𝑡𝑠) can be used for different traffic 

conditions (e.g. one for free flow conditions, one for capacity conditions, and one for jam 

density). 

 

Table 7. Variation of duration (𝑡𝑠) and emission factor (𝑒𝑠) associated with each stop 

versus average densities 

Avg. Density 

(veh/km) 

Stop Duration 

ts (sec) 

Emissions per stop 

es (gr/veh-stop) 

13.33 7.58 22.23 

26.67 8.97 24.58 

40 10.68 26.68 

53.33 12.13 28.67 

66.67 12.05 29.36 

80 12.97 30.14 

93.33 13.90 28.67 

106.67 13.66 27.61 

120 11.63 23.07 

133.33 11.86 23.29 

146.67 11.31 21.39 

160 9.79 18.37 

 

Finally, averaging across various driving behaviors and different vehicles 

emission generation can be another source of error in estimating emission factors using 

the real-world data. By increasing the number of samples (e.g. probe vehicles), this kind 

of error can be minimized. A greater number of sampled trajectories can reduce the errors 

caused by the heterogeneity. The sample size depends on the scope of the network, the 



 

 

127 

level of desired accuracy, the level of variations in the network (e.g. special variation of 

densities caused by various capacities in different parts of the network, variation of 

driving behavior, distribution of vehicle types, technology and age, etc.) and available 

resources. One easy method to make a decision about the sample size that allows us to 

achieve a desired confidence interval is that an initial sample of vehicles can be selected, 

and based on the standard deviation of the resulting emission factors the size of the 

selected vehicles can be increased. 

To deal with the heterogeneity, the network can be divided into multiple 

homogeneous sub-regions, or multiple emission factors can be used for different 

influencing conditions (e.g. various degrees of congestion, various vehicle type, age, and 

technology, etc.). For example, in a network with a fleet with considerable buses which 

might have different driving cycles, numbers of stops, and emission generation rates, 

equation (9) can be divided into the fleet-specific components as follows: 

𝐸𝑡𝑜𝑡𝑎𝑙 = (𝑁𝑠𝐸𝑠 + 𝑇𝑖𝑑𝐸𝑖𝑑 + 𝑇𝑐𝑟𝐸𝑐𝑟)𝑣𝑒ℎ + (𝑁𝑠𝐸𝑠 + 𝑇𝑖𝑑𝐸𝑖𝑑 + 𝑇𝑐𝑟𝐸𝑐𝑟)𝑏𝑢𝑠 
(20) 

 

6.2.3 Sensitivity Analysis 

In order to evaluate the sensitivity of the estimated network-wide total emissions 

to different network characteristics and comparison of the involving errors, the estimated 

total emissions under various scenarios are computed and the results of the model are 

compared with simulated values. Table 8 shows the variation of errors for changing the 

density for under-saturated and over saturated conditions.  
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Table 8. Sensitivity of estimated total emission to variation of densities  

Density, k 
(veh/km) 

Total Emissions 
 (gr/veh-km) 

 

Simulated Modeled Error 

25 299.74 276.81 -8% 

50 319.34 323.37 1% 

change 7% 17% 
 

75 369.49 409.70 10.9% 

100 469.37 518.73 10.5% 

change 27% 27% 
 

 

The results show that the error in analytically estimated total emissions is much 

less than the variation of total emissions due to changes in density. This variation even 

more increase at higher densities. Similarly, the variation of error in the estimated total 

emissions due to change of other network’s features are shown in Table 9.  

 

Table 9. Sensitivity of estimated total emissions to variation of network’s features 

    k = 25 veh/lane-km k = 100 veh/lane-km 

Variable Simulated Modeled Error Simulated Modeled Error 

  0.25 327.70 334.44 2% 901.57 910.07 1% 

G/C 0.50 299.74 276.81 -8% 469.37 518.73 11% 

  change -9% -17%   -48% -43%   

  30 218.81 239.09 9% 582.16 613.96 5% 

C 60 299.74 276.81 -8% 469.37 518.73 11% 

  change 37% 16%   -19% -16%   

  150 335.27 300.68 -10% 694.98 704.85 1% 

L 300 299.74 276.81 -8% 469.37 518.73 11% 

  change -11% -8%   -32% -26%   

 

 The errors are evaluated for both under- (k = 25 veh/lane-km) and over-saturated 

(k = 100 veh/lane-km) conditions. As shown in Table 9, the error in estimated total 
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emissions by the proposed ITEM model is less than the variation of total emissions due to 

the change in network characteristics. Also, the trend of variation of the estimated results 

is always similar to the trend of variation of the simulated values. Finally, while the 

model results are more sensitive at higher densities, the error observed in the estimated 

results is not increased significantly.  

6.3 Summary 

In this chapter, a grid network has been simulated to record microscopic vehicles’ 

trajectories and macroscopic traffic parameters. In addition to the base case scenario, 

which is an idealized network with homogeneous traffic conditions across all links, two 

additional scenarios have been introduced to evaluate the effect of heterogeneity on the 

network. By allowing 20% and 40% random turning movements at all intersections, 

traffic that is uniformly loaded onto the network eventually gets clustered in more 

congested parts of the network, leaving other links with fewer vehicles.  

The initial results show a robust relationship between average flow and average 

density, known as MFD, for all scenarios; however, by increasing the percentage of 

turning movements, the capacity of the network decreases and the observed flow 

deteriorates the longer the simulation runs. The reason for the flow reduction in these 

scenarios is that the random turns cause uneven distribution of vehicles in the network, 

which may result is congestion and spillbacks in some parts of the network, while other 

parts are underutilized.  

A comparison of the analytically estimated driving cycle components (i.e., idling 

time, and number of stops, but not cruising time) with measured values from the 
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simulated vehicle trajectories shows a close match. A level of inconsistency was 

observed in the analytical estimations of cruising time. The low contribution of cruising 

emissions in the grid network, and the neutralization of the error in cruising time by the 

errors of time spent idling and number of stops cause the observed cruising time error not 

to have a negative impact on the total emissions estimation. The close match between 

analytical estimates and measured values is an indication of robust relationship between 

fundamental properties of the network and these macroscopic traffic parameters and 

resulting total emissions. The estimated traffic components and their corresponding 

emission factors have been used by ITEM to estimate network-wide total emissions. 

Comparison of this analytically calculated result with microscopically computed 

emissions shows that the proposed analytical model provides an approximation of total 

emissions within 11% of the estimates from conventional microscopic analysis for all but 

the most congested traffic states.  

Further error analysis for various scenarios shows that in almost all cases while 

the network traffic conditions are not completely jammed, there is no systematic error in 

the estimated results, and the maximum observed errors are always lower than 11%; 

however, at jam densities, while the network is completely congested, the model results 

show a dramatic overestimation of total emissions. The main reason for this large error is 

the difference between the number of stops estimated analytically and the simulated 

values. While the analytical approach records extremely high number of stops due to 

stop-and-go traffic, the simulation does not record considerable number of stops when 

they occur at very low vehicle speeds. Fortunately, widespread jammed conditions are 
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rare in real cities, and the model performs well for a wide range of uncongested traffic 

conditions and a wide range of network characteristics. 
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Chapter 7 :  

Conclusion 

 

This research has been conducted to investigate existing network-wide emission 

models and propose a new method to estimate vehicular emissions at the network level. 

The proposed approach utilizes the macroscopic relationship between average flow and 

density known as the MFD. As shown in this study, a robust relationship exists between 

the components of the driving cycle that are associated with vehicular emissions and the 

fundamental properties of the network, just as a robust flow-density relation exists for 

many urban street networks. The components of the driving cycle per vehicle distance 

traveled (i.e., cruising time, idling time, and number of stops) are estimated based on the 

aggregated flow-density relation (MFD), the free-flow speed in the network, the duration 

of a typical acceleration and deceleration associated with a vehicle stop, and the signal 

cycle length. These components are then multiplied by emission factors that are 

developed using a detailed microscopic emission model, such as the project level of 

MOVES. 

Although the average vehicle speeds in the network and the length of a signal 

cycle play a large role in determining the average emission rates from vehicles in a 

network, it is important to account for the effects of network characteristics such as the 

block length and signal timings on the driving cycles for each vehicle. Whereas existing 
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macroscopic models tend to use a set of pre-defined driving cycles to derive emission 

rates based on average speeds, we know that real vehicle trajectories are more complex. 

Changes in network characteristics may change the frequency of acceleration and 

deceleration cycles associated with stops without affecting the overall flow or average 

speed in the network. There remains a role for microscopic emissions modeling in finding 

ways to optimize individual driving behavior or to quantify localized impacts for 

pollutants that must be monitored at individual facilities. The proposed model provides 

new value, because it provides a less data-intensive way for estimating aggregated 

network emissions, which is especially important for tracking pollutants like greenhouse 

gases that have a global impact. 

7.1 Applicability and Usefulness of the Model 

The conventional approaches to estimate traffic emissions have serious 

shortcomings, especially for evaluating total emissions in large-scale networks. The 

proposed Integrated Traffic Emission Model (ITEM) provides reliable emission 

estimation at the aggregated level. Unlike the microscopic emission models, ITEM does 

not require vehicles in street networks to be tracked in exact detail in order to make 

reliable estimates of the network-wide emissions. Therefore, the model is less data 

intensive and costly than microscopic emission models, which are only applicable for 

limited project level simulations.  

On the other hand, the benefits of the MFD are useful for traffic analysis, because 

knowledge of a small number of network parameters and the average density of vehicles 

in the network provides sufficient information to predict the average flows, speeds, and 
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delays in the network. The use of network-level traffic information in estimation of 

network-wide traffic emission makes the proposed model more reliable than existing 

macroscopic emission models, which mainly base their emissions estimation on the 

network-wide average speed of vehicles. In other words, ITEM estimates network-wide 

total emissions while considering driving cycles and traffic conditions based on the same 

aggregated quantities that are used to characterize the MFD for a network. 

The proposed model can be applied for a wide range of emission evaluation 

purposes. In fact, this simple analytical tool lowers the barrier for quantifying emissions 

and including consideration of environmental impacts in analysis of area-wide policies 

related to traffic control and demand management, such as adaptive signal control or 

congestion pricing strategies. The model can also be used to compare different 

alternatives of transportation development projects based on their resulting traffic 

conditions. 

7.2 Real-World Data Collection and Use of ITS 

Although the proposed model does not require intensive data collection of 

second-by-second trajectories of all vehicles in the network, this approach needs data for 

two different purposes. The model needs a sample of microscopic trajectories for 

estimation of driving behavior and establishing the appropriate emission factors. Also, 

real-time macroscopic network-wide traffic information is required in order to consider 

the real-time traffic state and associated driving cycle components for estimating total 

emissions in real-time. 
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7.2.1 Microscopic data collection 

As expressed earlier, the microscopic trajectories of selected vehicles are used to 

extract the speed profiles of typical acceleration and deceleration, as well as, average free 

flow speed of vehicles. These values are used to compute corresponding emission factors 

in addition to calculating other parameters, such as duration of a typical stop (i.e., 

summation of one acceleration and one deceleration). The required number of sampled 

trajectories depends on the scope of the network, the level of desired accuracy, the level 

of variations in the network (e.g., driving behavior, spatial distribution of vehicles, 

vehicle types, age, etc.) and available resources.  

Due to recent advancements, there are several methods to record fine resolution 

vehicles trajectories. In addition to microscopic simulation, which is used in this study, 

image processing of video-taped moving vehicles, GPS data, smartphone data, and using 

a sample of probe vehicles are other available technologies that can be implemented to 

collect microscopic trajectory data. Additionally, equipped vehicles with real-time 

emission measurement instruments can be used to directly measure emission factors 

associated with driving cycle components. However, the distribution of vehicles’ ages 

and technologies should be carefully considered as part of the sample size decision 

making process, in order to accurately represent the network fleet. 

7.2.2 Macroscopic data collection 

The main contribution of this model is that it can estimate real-time network-wide 

emissions based on instantaneous traffic conditions. Therefore, macroscopic traffic data 

associated with networks play an important role in this model. These data include the 
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network MFD, real-time average flow, and average density to make rough estimations of 

real-time emissions. Network features such as block length, signal timing, spatial 

variation of vehicle distribution are especially important during congested conditions.  

Various ITS technologies can be utilized to record this type of required data. In 

particular, loop detectors and similar vehicle detectors can be used not only to estimate 

the flow within the network, but also the level of heterogeneity of vehicle accumulations 

across links in the network. For example, vehicle detectors can be used to detect the back 

of the queue to determine if it has passed the threshold that causes a second stop per cycle 

on each individual link.  

7.3 Future Work and Fields Tests 

This study is an initial investigation of this new proposed analytical approach that 

considers macroscopic traffic conditions and the network’s MFD in estimating network-

wide emissions. In this study, a simplified grid network with some level of heterogeneity 

caused by turning movements has been evaluated. However, additional work is needed to 

consider the effect of some other important network characteristics on aggregated 

emissions. For example, the signal offset between adjacent traffic signals plays a very 

important role in how smoothly traffic progresses along an arterial corridor. There are 

methods to analytically approximate the MFD for a network with signal offsets 

(Geroliminis & Daganzo, 2008), and accounting for this effect on the number of stops 

requires making some adjustments to equation (19).  

Another important difference between the simulations of idealized networks 

presented in this study and traffic in real cities is that the vehicles are often not uniformly 
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distributed across the network. This can be caused by heterogeneous link capacities in 

different parts of the network, or an uneven distribution of demand in the network. This 

means that in real networks it is more likely that some links will incur queue spillbacks 

while other streets are underutilized. This reduces the average flows sustained on the 

network. Although preliminary findings suggest that if the realized flow on a network can 

be obtained by measurement or estimation, the model continues to provide a close 

approximation of the emissions calculated through extensive analysis of second-by-

second vehicle trajectories. However, the application of this model in real-world 

networks and in particular, the use of real-world trajectories will provide better feedback 

calibrating and improving the model. Furthermore, several other issues that can affect the 

MFD and other macroscopic traffic parameters (such as network spatial characteristics, 

various type of heterogeneities in the network and traffic dynamics) are currently topics 

of research in the field of traffic flow theory. All of these issues can similarly impact the 

macroscopic relationship between the average density and total emissions. 

Potential future work includes calibrating the model of total emissions aggregated 

over a network with fixed emission detectors, considering dispersion and other similar 

affecting parameters. However, this kind of study might become more complicated, 

because in addition to wind and other dispersion parameters, other local and regional air 

pollution sources need to be considered.  

Despite the additional complexities of real-world traffic that need to be evaluated 

in future studies, the value of the proposed model has been demonstrated in this study is 

the capability of evaluation of network-wide total emissions by considering traffic 

conditions and driving cycles in the network. This is the first proposed analytical 
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approach that connects the fundamental properties of the network, including the 

network’s MFD with total traffic emissions. The model provides an easy tool to estimate 

real-time aggregated emissions given the current density on the network, by using the 

robust and reproducible relationship between the average density of vehicles on the 

network and the total emissions generated by vehicles.  
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