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Enterprise-wide optimization (EWO) has gain lot of interest in recent years as the globalization 

trends of past few decades have significantly increased the scale and complexity of modern 

process industry and increasing economic pressures to remain competitive in global marketplace. 

EWO entails optimization of supply, manufacturing, and distribution activities to reduce costs 

and inventories through an integrated and coordinated decision-making among various functions 

in the industry (vendors, production facilities, and distribution). One of the major challenges in 

achieving EWO is mathematical tools for planning and scheduling for manufacturing facilities.  

 Main objective of this dissertation is to develop mathematical methodologies to assist in 

achieving EWO goals for chemical process industry. Specially, mathematical formulation for 

planning and scheduling decisions and decomposition strategies will be developed in order to 

bridge the gap between concepts and industrial application. In this work, planning and scheduling 

of multisite, multiproduct batch production and distribution faculties is addressed via dual 

decomposition based approach, which aims to reduce computational complexity through parallel 

computation. In the area of continuous production facilities, lack of efficient scheduling models 

prevents us from developing coordinated planning and scheduling tools. To address this issue, 



iii 

mathematical formulations for scheduling of refinery operations is developed and novel heuristics 

and mathematical decomposition strategies for large scale complex mixed integer linear 

programming models are proposed. Throughout this dissertation, case studies will be used to 

demonstrate the applicability of proposed decomposition approaches.  
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Chapter 1  

1. Introduction 

1.1. Enterprise Wide Optimization 

The process industry is a key sector in the global economy, converting raw materials such as 

crude oil, water, and natural resources into thousands of products. According to the American 

Chemistry Council, over 96% of all manufactured goods are dependent on chemical industry and 

U.S. produces over 15% of world‟s chemical output, amounting to US$812 billion in (2014). In 

particular, the petroleum refining industry is the largest source of energy products in the world 

and is supplying about 39% of total U.S. energy demand and 97% of transportation fuels. Process 

industry has grown increasingly complex in the last 20 years as a result of tighter competition, 

stricter environmental regulations, uncertainty in the prices of energy, raw materials, and 

products, and lower-margin profits. Globalization trends of past few decades have significantly 

increased the scale and complexity of the modern enterprise by transforming them into global 

network consisting of multiple business units and functions. Today process industries involve 

multipurpose, multisite production facilities producing hundreds of products, located in different 

regions and countries and servicing international market. (Wassick, 2009) In last decades, 

enterprises are realizing the importance of enterprise wide optimization in reducing the overall 

costs and remaining competitive in a dynamic global marketplace.  

Enterprise-wide optimization involves coordinated optimization of the operations of 

supply, manufacturing, and distribution; and integration of the information and decisions-making 

among the various functions that comprise the supply chain of the company. (I. Grossmann, 

2005; I. E. Grossmann, 2014)  The concept of enterprise-wide optimization (EWO) lies at the 

interface of the process system engineering, operations research and supply chain optimization 

and these concepts are suitably positioned to provide decisions making models and algorithms for 
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optimization of an integrated manufacturing and distribution complexes. Supply chain 

optimization can be considered an equivalent term for describing the enterprise-wide optimization 

although supply chain optimization places more emphasis on logistics and distribution, whereas 

enterprise-wide optimization is aimed at manufacturing facilities optimization. (Shapiro, 2001) 

The process industry supply chains vary from the petroleum supply chain (N. K. Shah et al., 

2011) to pharmaceutical industry supply chain (Nilay Shah, 2004); however they all include 

manufacturing as a major component according to I. E. Grossmann (2014); Wassick (2009). The 

main goal of EWO is to maximize profits while minimizing costs, inventories and to this ends, 

major operational activities of EWO is planning, scheduling and real-time optimization and 

control (Figure 1.1).  

 

Figure 1.1 Major elements of enterprise-wide optimization. 

In the field of enterprise-wide optimization, planning and scheduling are the most 

important operational decisions. Objectives of the planning and scheduling problems is to 

determine the allocation of available resources over time to perform a set of tasks required to 

manufacture one or more products as to satisfy global demand. The long to medium term 

planning covers a time horizon of between few months to a year and is concerned with decisions 

such as production, inventory, and distribution profiles. Short-term scheduling decision deals with 

issues such as assignment of tasks to units and sequencing of tasks in each unit and typically 

covers time horizon of between days to a few weeks. Typically, much of the decision-making in a 
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supply chain is focused across solving sub-problems as an entity, but from the enterprise-wide 

performance viewpoint, local improvements at any sublevel do not necessary lead to an overall 

improvement and to realize full potential of EWO, integrated approach is necessary. Amongst the 

challenge involve in EWO in process industry, the chief challenge is coordinated decision-

making across different functions in industry (procurement, manufacturing, distributions), 

between various geographically distributed manufacturing sites, and across three levels of 

decisions-making process. (Shapiro, 2001) While the first challenge relates to spatial integration 

and the third challenge involves temporal integration across different timescales. Coordinated 

decision making between geographically distributed integrated manufacturing sites deals with not 

only spatial integration but also with temporal integrations.  

Several of the aforementioned issues can be addressed in part through integration of planning and 

scheduling decision-making for multi-product, multi-site production and distribution facilities.  

1.1.1. Problems and Challenges 

I. Grossmann (2005) discussed four major challenges in application of EWO: (a) Mathematical 

modeling, (b) multiscale optimization, (c) optimization under uncertainty, and (d) algorithmic and 

computational challenge. The first challenge involves development of production and scheduling 

models that can effectively capture the complexity of various operations but can also be solved in 

reasonable time frame. Second challenge involves difficulty associated with coordination 

between different time scale and over different geographically located sites. Uncertainty is 

inherent in supply chain (e.g. prices, demand, equipment breakdown) and effectively addressing it 

can effect industry profits. However, before addressing uncertainties, computationally effective 

deterministic models should be developed. Various models developed in previous three points, 

are large scale complex MILP or MINLP models and they require the application of various 

decomposition techniques. Comprehensive reviews of challenges faced in EWO of process 

industry are presented by I. E. Grossmann (2014); Nilay Shah (2004, 2005).  



4 

 

 

Scheduling models in process industry address continuous, batch, and semi-continuous 

production systems and complexity involved modeling these three different production system 

vary. In continuous production units, there is a simultaneous inlet and outlet streams, where as in 

batch process, simultaneous inlet and outlet streams are not allowed. Large varieties of products 

are produced using batch processes and food, beverages, pharmaceutical products, paint, 

fertilizer, and cement are a few of the categories of products produced using batch processes. Oil 

refinery is one of the prominent systems with continuous production process. In last ten years, 

great progress has been in short-term batch scheduling process, few of these works are Burkard et 

al. (2002); Pedro M. Castro et al. (2009); P. M. Castro et al. (2011); He and Hui (2007); 

Ierapetritou and Floudas (1998 ); Janak et al. (2006); Janak et al. (2004); Kondili et al. (1993); 

Maravelias and Grossmann (2003); Moniz et al. (2014). The challenge in batch process industry 

lies in developing effective solution methodology for integrating existing scheduling models with 

planning level model and integrating decisions making across multisite production and 

distribution facilities. Whereas, the main challenge in continuous process industry lies in 

developing general purpose scheduling models. Every continuous process industry has its own 

unique problems and arriving at one scheduling model for different types of continuous process 

operations is difficult and thus focus is on development of general scheduling models for specific 

industry. (I. Grossmann, 2005) In petroleum industry, different operations in refinery have their 

own scheduling model instead of an integrated scheduling model for overall refinery operations. 

Before tackling planning and scheduling integration in refinery, efficient and effective scheduling 

model for overall efficient refinery operations need to be developed. Furthermore, refinery 

process is very complex and their scheduling models are large scale complex mixed integer 

models that require novel decomposition strategies.(Kelly & Zyngier, 2008; Shaik & Floudas, 

2007)    
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1.2. Planning and Scheduling in Process Industry 

In the recent years, the area of integrated planning and scheduling has received much attention for 

single-site batch production facilities. However, the current manufacturing environment for 

process industry has changed from a traditional single-site production plant to a more integrated 

global production serving the emerging market. (Wassick, 2009) Modern process industries 

operate as a large integrated complex that involve multi-product, multi-purpose, and multi-site 

facilities serving a global market. The process industries supply chain can be defined to be 

composed of production facilities and distribution centers, where final products produced at 

production facilities are transported to distribution center to satisfy the customers demand. In 

current global market, spatially distributed production facilities across various geographical 

locations can no longer be regarded as isolated from each other and interactions between the 

production facilities and the distribution centers should be taken into account when making 

decisions. In this context, the issues of enterprise planning and coordination across production 

plants and distribution facilities are important for robust response to global demand and to 

maintain business competiveness, sustainability, and growth. (Papageorgiou, 2009) As the 

pressure to reduce the costs and inventories increases, centralized approaches have become the 

main policies to address supply chain optimization. (Grossmann, 2005) The integrated planning 

and scheduling model for multi-site facilities is important to ensure the consistency between 

planning and scheduling level decisions and to optimize production and transportation costs.   

Wassick (2009) proposed a planning and scheduling model based on resource task network 

for an integrated chemical complex. He considered the enterprise-wide optimization of the liquid 

waste treatment network with their model. Kreipl and Pinedo (2004) discussed issues present in 

modeling the planning and scheduling decisions for supply chain management. For a multisite 

facilities, the size and level of interdependences between these sites present unique challenges to 

the integrated tactical production planning and day-to-day scheduling problem and these 
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challenges are highlighted by Kallrath (2002b). For further elucidation of various aspects of 

planning, reader is directed to the work of Timpe and Kallrath (2000) and Kallrath (2002a). 

 

1.3. Refinery Operations Scheduling 

The continuous process plants scheduling have drawn less consideration in the literature 

compared to that of batch plants even though continuous plants are prevalent in the chemical 

process industries. Of the continuous process industries, the oil refinery production operation is 

one of the most complex chemical industries, which involves many different and complicated 

processes with various connections. Instead of tackling a comprehensive large-scale refinery 

operations optimization problem, decomposition approaches are generally exploited. Oil refinery 

manufacturing operations can be decomposed into three problems: (1) crude-oil unloading, 

mixing, and inventory control, (2) scheduling of production units, and (3) finish products 

blending and distribution. (Jia & Ierapetritou, 2004) The goal of EWO is to optimized overall 

refinery operations in a coordinated fashioned. Depending on the problem characteristics as well 

as the required flexibility in the solution, scheduling models can be based on either a discrete, a 

continuous, or hybrid time domain representation. (Iiro Harjunkoski et al., 2014; J. Li & Karimi, 

2011; Mouret et al., 2010; Neiro et al., 2014) Real-life features such as multipurpose production 

units, multipurpose product tanks, parallel non-identical blenders, minimum run lengths, 

sequence dependent changeovers, product giveaway, piecewise constant profiles for blend 

component qualities and feed rates, etc. introduces in more operational constraints and many 

combinatorial decisions, that renders this large scale mixed integer problem difficult to solve 

without decomposition solution strategies. (Kelly, 2006; Kelly & Zyngier, 2008; Shaik & 

Floudas, 2007; Shaik et al., 2009)  
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1.4. Motivation: development and implementation of decomposition tools for 

planning and scheduling in process industry 

Despite the many of the potential benefits in coordinated decisions making in EWO, 

aforementioned challenges in coordinated decisions making in planning and scheduling for 

multiproduct, multisite product and distribution facilities and scheduling of overall refinery 

operations, concepts of enterprise-wide optimization are underutilized. This is due to the 

difficulties associated with building effective mathematical formulation that captures real world 

complexity without becoming incomprehensive to solve and for efficient models to be utilized for 

real world application, the challenge lies in developing decomposition approaches for large scale 

mixed integer models.(I. E. Grossmann, 2014)  

First objective of this dissertation is to develop mathematical formulation for multisite 

batch-process production and distribution facility planning and propose decomposition approach 

to address multi-scale optimization problem arising from integration of planning and scheduling 

decisions level. Second objective of this dissertation is to propose scheduling models for large 

scale refinery operations, to develop efficient decomposition based methodology to address large 

scale optimization problems and demonstrate applicability of decomposition methodologies. The 

methodologies to tackle large scale optimization models include, valid inequalities, heuristic 

algorithm, Lagrangian relaxation decomposition, and augmented Lagrangian optimization. Each 

of these decomposition methods will be discussed in the context of refinery operations scheduling 

and demonstrated using case studies related to real refinery complex.  

1.5. Outline of dissertation 

Each of the six main chapters in this dissertation will emphasize a specific concept or tool for 

enterprise-wide optimization. Chapter 2 will present decomposition based methodology to solve 

full space integrated planning and scheduling problem for multisite, multiproduct batch 

production plants and multisite distribution facilities. Chapter 3 will present spatial 
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decomposition strategy for refinery operations where centralized and decentralized decision 

making process is compared and conditions during which decentralized approach gives global 

optimal solution are discussed. A unified comprehensive refinery operation scheduling model that 

incorporates many of the real world operational and logistics rules is presented in Chapter 4. The 

resulting model is large scale mixed integer linear programming model (MILP) and valid 

inequalities are developed to reduce complexity of the model by reducing the total number of 

nodes and iterations in branch and bound framework. Refinery operations scheduling model 

incorporating many logistics rules is difficult to solve to optimality in reasonable computational 

time even after inclusion of valid inequalities. For refinery without any blend component tanks, 

Chapter 5 tackles complexity of large scale scheduling model by developing mathematical 

decomposition, Lagrangian relaxation, while Chapter 6 focuses on efficient heuristic 

decomposition algorithm. In Chapter 7, a general augmented Lagrangian decomposition for 

different refinery operations configuration (rundown streams, blend component tanks, or both) is 

introduced and applied to number of case studies to illustrate its effectiveness.  
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Chapter 2  

2. Planning and scheduling of multisite batch production and distribution facilities 

The current manufacturing environment for process industry has changed from a traditional 

single-site, single market to a more integrated global production mode where multiple sites are 

serving a global market. In this chapter, the integrated planning and scheduling problem for the 

multisite, multiproduct batch plants is considered. The major challenge for addressing this 

problem is that the corresponding optimization problem becomes computationally intractable as 

the number of production sites, markets, and products increases in the supply chain network. To 

effectively deal with the increasing complexity, the block angular structure of the constraints 

matrix is exploited by relaxing the inventory constraints between adjoining time periods using the 

augmented Lagrangian decomposition method. To resolve the issues of non-separable cross-

product terms in the augmented Lagrangian function, diagonal approximation method is applied. 

Several examples have been studied to demonstrate that the proposed approach yields significant 

computational savings compared to the full-scale integrated model.   

2.1. Introduction 

Modern process industries operate as a large integrated complex that involve multiproduct, 

multipurpose, and multisite production facilities serving a global market. The process industries 

supply chain is composed of production facilities and distribution centers, where the final 

products are transported from the production facilities to distribution centers and then to retailers 

to satisfy the customers demand. In current global market, spatially distributed production 

facilities across various geographical locations can no longer be regarded as independent from 

each other and interactions between the manufacturing sites and the distribution centers should be 

taken into account when making decisions. In this context, the issues of enterprise planning and 

coordination across production plants and distribution facilities are important for robust response 

to global demand and to maintain business competiveness, sustainability, and growth.  
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(Papageorgiou, 2009) As the pressure to reduce the costs and inventories increases, centralized 

approaches have become the main policies to address supply chain optimization. An excellent 

overview of the enterprise-wide optimization (EWO) and the challenges related to process 

industry supply chain is highlighted by I. Grossmann (2005). Varma et al. (2007) described the 

main concepts of EWO and presented the potential research opportunities in addressing the 

problem of EWO models and solution approaches.  

 Supply chain optimization can be considered an equivalent term for describing the 

enterprise-wide optimization according to Shapiro (2001) although supply chain optimization 

places more emphasis on logistics and distribution, whereas enterprise-wide optimization is 

aimed at manufacturing facilities optimization. Key issues and challenges faced by process 

industry supply chain are highlighted by Nilay Shah (2004, 2005). Traditional supply chain 

management planning decisions can be divided into three levels: strategic (long-term), tactical 

(medium-term), and operational (short-term). The long-term planning determines the 

infrastructure (e.g. facility location, transportation network). The medium-term planning covers a 

time horizon between few months to a year and is concerned with decisions such as production, 

inventory, and distribution profiles. Finally, short-term planning decision deals with issues such 

as assignment of tasks to units and sequencing of tasks in each unit. The short-term planning level 

covers time horizon between days to a few weeks and at production level, is typically refer to as 

scheduling. Wassick (2009) proposed a planning and scheduling model based on resource task 

network for an integrated chemical complex. He considered the enterprise-wide optimization of 

the liquid waste treatment network with their model. Kreipl and Pinedo (2004) discussed issues 

present in modeling the planning and scheduling decisions for supply chain management. For a 

multisite facilities, the size and level of interdependences between these sites present unique 

challenges to the integrated tactical production planning and day-to-day scheduling problem and 
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these challenges are highlighted by Kallrath (2002b). For further elucidation of various aspects of 

planning, the reader is directed to the work of Timpe and Kallrath (2000) and Kallrath (2002a). 

 A simple network featuring the multisite facilities is given in Figure 2.1, where multiple 

products may be produced in individual process plants at different locations spread across 

geographic region and then transported to distribution centers to satisfy customers demand. These 

multisite plants produce a number of products driven by market demand under operating 

conditions such as sequence dependent switchovers and resource constraints. Each plant within 

the enterprise may have different production capacity and costs, different product recipes, and 

different transportation costs to the markets according to the location of the plants. To maintain 

economic competitiveness in a global market, interdependences between the different plants, 

including intermediate products and shared resources need be taken into consideration when 

making planning decisions. Furthermore, the planning model should take into account not only 

individual production facilities constraints but also transportation constraints because in addition 

to minimizing the production cost, it‟s important to minimize the costs of products transportation 

from production facilities to the distribution center. Thus, simultaneous planning of all activities 

from production to distribution stage is important in a multisite process industry supply chain.  

(N. Shah, 1998) 

 

Figure 2.1 Multisite production and distribution network 
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Wilkinson et al. (1996) proposed an aggregated planning model based on the resource task 

network framework developed by Pantelides (1994). Their proposed planning model considers 

integration of production, inventory, and distribution in multisite facilities. Lin and Chen (2007) 

developed a multistage, multisite planning model that deals with routings of manufactured 

products demand among different production plants. They simultaneously combine two different 

time scales (i.e. monthly and daily) in their formulation by considering varying time buckets. 

Verderame and Floudas (2009) developed an operational planning model which captures the 

interactions between production facilities and distribution centers in multisite production facilities 

network. Their proposed multisite planning with product aggregation model (Multisite-PPDM) 

incorporates a tight upper bound on the production capacity and transportation cost between 

production facilities and customers distribution centers in the supply chain network under 

consideration. A multisite production planning and distribution model is proposed by Jackson and 

Grossmann (2003) where they utilized nonlinear process models to represent production facilities. 

They have exploited two different decomposition schemes to solve the large-scale nonlinear 

model using Lagrangian decomposition. In temporal decomposition, the inventory constraints 

between adjoining time periods are dualized in order to optimize the entire network for each 

planning time period. In spatial decomposition technique, interconnection constraints between the 

sites and markets are dualized in order to optimize each facility individually. They conclude that 

temporal decomposition technique performs far better than spatial decomposition technique.  

 The traditional strategy to address planning and scheduling level decisions is to follow a 

hierarchical approach in which planning decisions are made first and then scheduling decisions 

are made using planning demand targets. However, this approach does not consider any 

interactions between the two decision making levels and thus the planning decisions may result in 

suboptimal or even infeasible scheduling problems. Due to significant interactions between 

planning and scheduling decisions levels in order to determine the global optimal solution it is 
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necessary to consider the simultaneous optimization of the planning and scheduling decisions. 

However, this simultaneous optimization problem leads to a large problem size and the model 

becomes intractable when typical planning horizon is considered. For an overview of issues, 

challenges and optimization opportunities present in production planning and scheduling 

problem, the reader is referred to the work of Maravelias and Sung (2009).  

In recent years, the area of integrated planning and scheduling for single site has received much 

attention. Different decomposition strategies are developed to effectively deal with a large scale 

integrated model. One of the existing approaches follows a hierarchical decomposition method, 

where the upper level planning problem provides a set of decisions such as production and 

inventory targets to the lower level problem to determine the detailed schedule. If the solution of 

lower level problem is infeasible, an iterative framework is used to obtain a feasible solution. 

(Bassett et al., 1996) To further improve this approach, tight upper bounds on production capacity 

are implemented in upper level problem in presence of an approximate scheduling model or 

aggregated capacity constraints. (Nilay Shah, 2005; Shapiro, 2001) Another related idea is the 

one that follows a hierarchical decomposition within a rolling horizon framework. In this model 

detailed scheduling models are used for a few early periods and aggregated models are used for 

later periods. (Dimitriadis et al., 1997; Z. Li & Ierapetritou, 2010b; Verderame & Floudas, 2008; 

Wu & Ierapetritou, 2007) A different decomposition strategy is based on the special structure of 

the large-scale mathematical programming model. The integrated planning and scheduling model 

has a block angular structure which arises when a single scheduling problem is used over multiple 

planning periods. The constraints matrix of the integrated problem has complicating variables that 

appear in multiple constraints. By making copies of the complicating variables, the complicating 

variables are transformed into complicating constraints (linking constraints) and these 

complicating constraints can be relaxed using the Lagrangian relaxation method. One major 

drawback of the Lagrangian relaxation (LR) is that there is duality gap between the solution of 
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the Lagrangian relaxation method and original problem and to resolve this issue, augmented 

Lagrangian relaxation (ALR) method should be used Y. Li et al. (2008); Tosserams et al. (2006); 

Tosserams et al. (2008). Z. Li and Ierapetritou (2010a) applied augmented Lagrangian 

optimization method to integrated planning and scheduling problem for single site plants. One 

disadvantage of ALR method is the non-separability of the relaxed problem which arises due to 

the quadratic penalty terms present in the objective function. To resolve the issue of the non-

separability, Z. Li and Ierapetritou (2010a) studied two different approaches.  The first approach 

is based on linearization the cross-product terms using diagonal quadratic approximation (DQA). 

(Y. Li et al., 2008) However, in this approach, an approximation of the relaxation problem is 

solved and it may not lead to a global optimal solution of the original problem. In the second 

approach, Z. Li and Ierapetritou (2010a) proposed a two-level optimization method which solves 

an exact relaxation problem. However, the proposed two-level optimization strategy requires a 

non-smooth quadratic problem to be optimized at every iteration. They conclude that DQA-ALO 

method is more effective than the two-level optimization method for the integrated planning and 

scheduling problems.   

Even though most companies operate in a multisite production manner, very limited 

attention has been paid on integrating planning and scheduling decisions for multisite facilities. 

The integrated planning and scheduling model for multisite facilities is important to ensure the 

consistency between planning and scheduling level decisions and to optimize production and 

transportation costs. Since the production planning and scheduling level deals with different time 

scales, the major challenge for the integration using mathematical programming methods lies in 

addressing large scale optimization models. The full-scale integrated planning and scheduling 

optimization model spans the entire planning horizon of interest and includes decisions regarding 

all the production sites and distribution centers. When typical planning horizon is considered, the 
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integrated full-scale problem becomes intractable and a mathematical decomposition solution 

approach is necessary.  

In this work, augmented Lagrangian relaxation method is applied to solve the multisite 

production and distribution optimization problem. The chapter is organized as follow. The 

problem statement is given in Section 2.2, whereas Section 2.3 presents the problem formulation. 

The general augmented Lagrangian method and its application to multisite facility is given in 

Section 2.4. The results of examples studied are shown in section 2.5 and the chapter concludes 

with summary in section 2.6.  

2.2. Problem Statement 

 The supply chain network (Figure 2.1) under investigation contains multiple batch 

production facilities which supply products to multiple distribution centers. Every production site 

may supply all distribution centers but all the products may not be produced at every production 

site. In the proposed model, it is assumed that one cannot sell more products to a market than the 

market forecasted demand. Thus the requested demand acts as an upper bound on finished 

product sales. The proposed model tries to satisfy the market demands; however it allows for 

unsatisfied demand to be carried over to the next planning period (backorder) and also allows for 

partial order fulfillment. The unsatisfied demand and backorders are penalized on a daily basis in 

order to maximize the degree of customer demand order fulfillment.  Following assumptions are 

made:  unlimited supply of raw materials is available and fixed and variable production, storage, 

and backorder costs are known for the planning horizon under consideration. The transportation 

costs are also assumed to be known. It is further assumed that there are no shipping delays in the 

network and the length of time of the planning horizon is such that the effects of transportation 

delays are neglected.  

 Given the daily demand profiles for each distribution center, the goals of the integrated 

planning and scheduling problem is to ascertain the daily production target profiles for each 
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production facilities and product shipment profiles from production facilities to distribution 

centers so that demand is satisfied over the planning horizon under considerations (several 

months up to a year). The objective of the integrated problem is to minimize inventory, 

backorder, transportation, and production costs.  

2.3. Mathematical formulation 

The multisite model includes production site constraints and distribution center (market) 

constraints. The set of products s ∈ PR are to be produced at various production sites (p ∈ PS) 

and are to be distributed to a global market (m ∈ M) over planning horizon (t ∈ T). To formulate 

the integrated planning and scheduling model, an integrated modeling approach is proposed in 

which planning and scheduling decisions level constraints are incorporated. The planning horizon 

is discretized into fixed time length (daily production periods) and for each planning period, a 

detailed scheduling model for each batch production facilities is considered. The detailed 

scheduling model is based on continuous time representation and notion of event points. 

(Ierapetritou & Floudas, 1998 ) The planning and scheduling decisions levels are inter-connected 

via production and inventory constraints. The integrated planning and scheduling model for a 

single-site proposed by Z. Li and Ierapetritou (2010a) is extended to accommodate multisite 

production facilities serving multiple markets. The extended integrated multisite model is as 

follows.  
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 The objective function shown in equation (1a) minimizes the total costs of the integrated 

model, which includes variable inventory costs, backorder costs, transportation costs, and 

production costs and fixed production costs. The planning level is modeled by constraints (1b-

1c). Equation 1b predicts the production targets (
,p t

s
P ), inventory targets (

,p t

sInv ), and shipping 

targets (
, ,p m t

sD ) for each product. The constraint describing each distribution center (market) is 

given in equation (1c). As shown in equation (1c), the backorder balance is performed for each 

customer market by considering the demand forecast (
,m t

s
Dem ) of that market and the sales all the 

shipments of the product from one or combination of all production sites to that market (
, ,p m t

sD ). 

Constraints (1d) assign production targets (
,p t

sP ) of planning level solutions to scheduling level 

problem for each product to each production facility for different planning periods. Equation (1e) 

represents the connection between the inventory level requirements for the scheduling problems 

to that of the different planning periods for each product. In addition to constraints (1a-1e), the 

model also includes detailed scheduling constraints (1f-1r) for each production site (p ∈ PS) and 

for each planning period (t ∈ T). These scheduling level constraints are allocation constraints (1f), 

production capacity constraints (1g), storage capacity constraints (1h), material balance 

constraints (1i) and (1j), and sequence constraints (1k-1r). Equations (1a-1r) comprise the 

complete multisite batch production facilities and multisite distribution centers considering 

planning and scheduling decisions. 

2.4. Solution Method 

The full-scale integrated model gives rise to a large scale optimization problem which requires 

the use of decomposition methods to be solved effectively. The appropriate mathematical 

decomposition approach is decided by analyzing the constraints matrix of the full-scale model. If 

the planning decision variables (
, , , , ,, , ,p t p t p m t m t

s s s sInv P D U ) are denoted as 
,t pX and scheduling 

decision variables as 
,t pY , then the structure of the integrated model can be illustrated as shown in 



19 

 

 

a constraints matrix (Figure 2.2). As it is seen in the Figure 2.2, the matrix has a block angular 

structure and these blocks are linked through the planning decisions variables, inventory and 

production targets for each production facilities (
, ,,p t p t

s sInv P ). These complicating variables can be 

handled using augmented Lagrangian relaxation method described in the next section to obtain a 

decomposable structure.  

 

Figure 2.2 Constraints matrix structure of an integrated multisite model 

2.4.1. Augmented Lagrangian Decomposition  

In order to obtain a decomposable structure, the complicating variables need to be transformed 

into complicating constraints and then, the model can be relaxed by eliminating complicating 

constraints from the total constraints set. The first step in obtaining the relaxation problem is to 

duplicate the planning inventory and production targets variables, using different variables in 

planning and scheduling problems and incorporate the coupling constraints (2f-2g) into the full-

scale model. The production and inventory scheduling targets constraints are rewritten as (2q-2r). 
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This transforms the constraints matrix (Figure 2.2) into the matrix with complicating constraints 

shown in Figure 2.3.  

 

Figure 2.3 Constraints matrix structure of a reformulated model 
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The complicating constraints (2f-2g) link the planning level constraints with the scheduling level 

constraints. The constraints (2h) express a compact representation of the scheduling level 

constraints (1f-1r) for each production site and planning period.  

 The reformulated model (2) is still not decomposable since the planning and scheduling 

problems are interconnected via coupling constraints thus the Augmented Lagrangian relaxation 

method is applied by dualizing the complicating constraints in equations (2f-2g), which involves 

removing them from the reformulated model constraints set and adding them to the objective 

function multiplied by the Lagrange multipliers (
, ,,p t p t

s s  ) and quadratic penalty parameters (σ) 

as shown in equation (3a). Constraints (3a-3h) correspond to the augmented Lagrangian 

relaxation problem. 
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(3h) 

To improve the convergence to the feasible solution and to avoid duality gap that may result with 

just the Lagrangian terms (  , , ,-p t

s

p t p t

s sP PP and  , , ,-p t p t p t
s s sInv II ), the quadratic penalty term (

    2 2
, , , ,- -p t p t p t p t

s s s sP PP Inv II  ) is applied to the relaxation formulation as given in (3a).   

However, the quadratic penalty term in the objective function of the relaxation problem has non-

separable bilinear terms , ,p t p t
s sP PP and

, ,p t p t
s sInv II . To resolve the non-separabilility issue, the 

diagonal quadratic approximation (DQA) method is applied to linearize the cross-product terms 

around the tentative solution
, , , ,

, , ,
p t p t p t p t
s s ssP PP Inv II  as shown in the following equations ((Y. Li et al., 

2008)).  
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2 2 22 , , , ,, , , ,p t p t p t p tp t p t p t p t
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The objective function (3a) can be thus be rewritten in decomposable form given by equation 

(4a‟). 
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where, the plf  represents the objective function of the planning problem (4a, 4b, 4c).  
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where
,p t

scf  represents the objective function of the scheduling sub-problems (5a, 5b-5d). The 

scheduling sub-problem is defined at each production site and for each planning period.  
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These quadratic problems are solved using a general augmented Lagrangian optimization and 

diagonal quadratic approximation (ALO-DQA) algorithm which is outlined in Figure 2.4.  

 The ALO-DQA algorithm can provide an optimal solution if the objective functions and 

constraints function are convex, feasible region is bounded and closed, and the step size is 

sufficiently small. The algorithm has the following parameters: the initial Lagrange multipliers (

, ,0 , ,0,p t p t
s s  ) which are chosen to be zero, the initial penalty parameter ( 0 1  ), and the iteration 

counter k which is set to 1. The convergence tolerance ( 0  ) for the coupling constraints is 1 and 

the parameters (0,1)   (e.g., 0.4) and 1  . 

 The augmented Lagrangian multipliers are updated at every iteration as shown in Figure 

2.4 while the quadratic penalty parameters are updated only if the improvement of the current 



24 

 

 

iteration is not large enough. The ALO-DQA method alternates between solving an optimization 

planning problem (4) and solving optimization scheduling sub-problems (5). The solution of each 

problem is used to linearize the non-separable terms and the algorithm terminates when the 

consistency constraints (g) have met the pre-defined tolerance or when the given iteration limit is 

reached. In the next section, three numerical examples are solved using the ALO-DQA method. 
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Figure 2.4 Augmented Lagrangian-DQA decomposition algorithm  

2.5. Numerical Examples 

The proposed multiproduct and multisite production facility model is applied to the two examples 

of supply chain with a planning horizon of 3 months (90 days) and scheduling horizon of 1 

production shift (8 hours). The full-scale integrated planning and scheduling problem corresponds 

to a mixed integer linear programming (MILP) problem while in the ALO-DQA method, the 

planning problem is quadratic programming (QP) problem and scheduling sub-problems are 

mixed integer quadratic programming (MIQP) problem. The multisite models were implemented 

using GAMS 23.6 (2010) and solved using CPLEX 12.2 on 2.53 GHz Precision T7500 Tower 

Workstation with 6 GB RAM. The scheduling sub-problems (MIQP) in the ALO-DQA method 

are solved in parallel for each planning period and each production site thus improving the 

efficiency of the algorithm. In all the examples studied in our work, limited storage capacity for 

final products and intermediate materials is considered. 

Example 1: A small example that has 3 production sites serving 3 markets is studied. Each 

production site contains a multiproduct, multitask batch process plant that produces two products, 

P1 and P2. (Kondili et al., 1993) The state and task representation (STN) of the production plant 

is given in Figure 2.5 and the data for the example are given in Appendix Chapter 2. The process 

parameters, production and inventory costs, and shipping and backorder costs are given in Table 

A2-1, Table A2-2, and Table A2-3, respectively. Continuous time scheduling problem is solved 

using 6 event points and 8 hour time horizon. The daily demand data for the example 1 is given in 

Figure A2-1 for planning horizon of 90 days.   
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Figure 2.5 Production facility state and task network (STN) representation (Example 1) 

 

Table 2.1 Model statistics of full-space integrated problem 

Period 

(T) 

Example 1 Example 2 Example 3 

Binary 

var. 

Cont. 

var. 

Const. 

Binary 

var. 

Cont. 

var. 

Const. 

Binary 

var. 

Cont. 

var. 

Const. 

5 720 4006 10465 720 5011 10654 1440 8851 21178 

10 1440 8011 20935 1440 10021 21319 2880 17701 42373 

15 2160 12016 31405 2160 15031 31984 4320 26551 63568 

30 4320 24031 62815 4320 30061 63979 8640 53101 127153 

45 6480 36046 94225 6480 45091 95974 12960 79651 190738 

60 8640 48061 125635 8640 60121 127969 17280 106201 254323 

90 12960 72091 188455 12960 90181 191959 25920 159301 381493 

The full-scale model statistics for example 1 is shown in Table 2.1 and results are given in Table 

2.2 for time periods 5 to 90. As the time periods increases, the problem becomes difficult to solve 

to optimality as observed by the optimality gap (%) in Table 2.2 for the full-space model. The 

performance and quality of the full-scale model to that of the ALO-DQA is compared in Table 
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2.2. From the Figure 2.6, it can be observed that the augmented Lagrangian algorithm converges 

to a feasible solution of the original problem as the norm value of the coupling constraints (||g||) 

converges to zero. The quality of the feasible solution (f*) obtained using the ALO-DQA method 

may be inferior to the full-scale model since the ALO-DQA strategy solves an approximation 

version of the relaxation problem. The key information that the integrated model solution 

provides is production, shipping, sales, inventory, and backorder profiles. The profiles for 

example 1 obtained using the ALO-DQA method are shown in Figure 2.7 to Figure 2.10 for 30 

planning periods. The production profiles for production sites (S1, S2, and S3) are shown in 

Figure 2.7. The transportation profile of products (P1 and P2) from production site (S1, S2, and 

S3) to market place (M1, M2, and M3) is given in Figure 2.8, Figure 2.9, and Figure 2.10.  Note 

that as shown in Figure 2.8, Figure 2.9, and Figure 2.10, the production sites 1, 2, and 3 mainly 

satisfy the demand of markets 1, 2, and 3, respectively. These transportation profiles are expected 

based on the shipping cost. The total sale of products (P1 and P2) at markets (M1, M2, and M3) is 

given in Figure 2.11. The variable inventory holding cost is highest at production site 2 and 

lowest at site 3 and the model solution gives an inventory profiles (Figure 2.12) that has highest 

holdup at site 3 and lowest holdup at site 2. As expected, the advantage of the proposed 

decomposition approach is shown for bigger problems. So for larger number of time periods 

(T=90 periods), better solutions were obtained using the ALO-DQA method than by the full-scale 

model.  

Table 2.2 Computational results for example 1 

T 

Full-space model 

ALO-DQA method 

0 1.0, 2.0    

CPU 

sec 

f* Gap (%) 

Iter. 

k 

CPU 

sec 

f* λg + σ||g||
2 

||g|| 

5 3600 58073 0.63 10 34.68 59500 0.62 0.22 
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10 3600 119227 1.91 9 53.53 122903 34.80 0.66 

15 3600 194567 2.07 12 101.97 199983 -157.42 0.89 

30 3600 390528 2.27 12 183.21 403208 -17.96 0.85 

45 3600 592649 2.44 12 292.25 608059 -166.23 0.76 

60 7200 791399 3.28 13 436.03 803867 -128.27 0.59 

90 7200 1225376 6.93 15 760.50 1203194 -324.10 0.92 

 

 

Figure 2.6 Solution procedure of the ALO-DQA method (Example 1 and 90 planning periods) 
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Figure 2.7 Production profiles of products (P1 and P2) at production sites (S1, S2, and S3) obtained 

using the ALO-DQA method (Example 1 and 30 planning periods) 
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Figure 2.8 Shipment profiles of products (P1 and P2) for production site 1 to markets (M1, M2, and 

M3) obtained using the ALO-DQA method (Example 1 and 30 planning periods) 

 

Figure 2.9 Shipment profiles of products (P1 and P2) for production site 2 to markets (M1, M2, and 

M3) obtained using the ALO-DQA method (Example 1 and 30 planning periods) 
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Figure 2.10 Shipment profiles of products (P1 and P2) for production site 3 to markets (M1, M2, and 

M3) obtained using the ALO-DQA method (Example 1 and 30 planning periods) 

 

Figure 2.11 Sales profiles of products (P1 and P2) for markets (M1, M2, and M3) obtained using the 

ALO-DQA method (Example 1 and 30 planning periods) 
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Figure 2.12 Inventory profiles of products (P1 and P2) at production sites (S1, S2, and S3) obtained 

using the ALO-DQA method (Example 1 and 30 planning periods) 

Example 2. In example 2, we consider a network of 3 production sites producing 4 different 

products (P3-P6) and serving 3 global markets. All 3 production sites have batch facilities whose 

STN network is shown in Figure 2.13. (Kondili, 1987) This batch facility produces 4 products 

(P3, P4, P5, and P6) through 8 tasks from three feeds and there are 6 intermediates state in the 

system. The full-scale model statistics for this example are shown in Table 2.1 and results are 

shown in Table 2.3. The full-scale problem is much easier to solve compared with example 1, 

even though this example is bigger than example 1. Thus, the production recipe, and the 

parameters relating to production, capacity, demand, and costs have significant effect on the 

performance of the full-scale model. To further improve the integrated model performance, we 

applied the ALO-DQA method and the results are shown in Table 2.3. The solution convergence 
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profile for planning period 90 is shown in Figure 2.14. The performance of the ALO-DQA 

method depends on the choice of the initial values of Lagrange multipliers, penalty parameters, 

and other algorithm parameters. By selecting appropriate values of these parameters, we can 

improve on the quality of the feasible solution obtained by the ALO-DQA. The results with set of 

parameters 
0 0 00, 0, 0.20, 1.2, 0.4          are shown in the Table 2.3. Significant CPU 

time savings is reported when the ALO-DQA method is used compared to the integrated full-

scale model.  

 

Figure 2.13 Production facility state and task network (STN) representation (Example 2) 

 

Table 2.3 Computational results for example 2 

T 

Full-space model 

ALO-DQA method 

0 0.2, 1.2    

CPU 

sec 

f* 

Gap 

(%) 

Iter 

k 

CPU sec f* 

λg + 

σ||g||
2 

||g|| 



34 

 

 

5 52.15 249097 0.00 36 49.37 250052 99.31 0.56 

10 3600 502983 0.07 36 66.85 504687 14.18 0.65 

15 3600 756527 0.25 40 112.49 762006 -211.75 0.89 

30 3600 1381017 0.50 40 209.29 1390602 -216.91 0.95 

45 3600 1964466 1.05 40 262.49 1968542 -234.33 0.98 

60 3600 2594945 0.75 41 499.90 2608491 -1.59 0.70 

90 3600 4009291 1.04 41 709.48 4024795 24.81 0.75 

 

 

Figure 2.14 Solution procedure of the ALO-DQA method (Example 2, T = 90 periods) 

Example 3. In example 3, we consider a network of 6 production sites producing 6 different 

products (P1-P6) and serving 9 global markets. Of the 6 production sites, 3 batch production 

facilities have the network shown in Figure 2.5 and produce 2 products (P1 and P2) and 3 
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production sites have the batch facilities whose STN network is shown in Figure 2.13 and 

produce 4 products (P3, P4, P5, and P6) through multipurpose units. 

Table 2.4 Computational results for example 3 

T 

Full-space model 

ALO-DQA method 

 

CPU 

sec 

f* Gap (%) 

Iter 

k 

CPU 

sec 

f* λg + σ||g||
2 

||g|| 

5 3600 141129 4.11 11 71.11 151551 24.28 0.99 

10 3600 276230 4.40 13 144.97 295756 609.56 0.88 

15 3600 408436 4.97 12 192.53 435078 200.49 0.58 

30 3600 784535 6.05 13 378.51 822924 -31.96 0.91 

45 3600 1259638 12.97 16 749.96 1233187 -905.25 0.80 

60 3600 8123074 82.11 16 984.92 1629968 -718.61 0.76 

90 3600 8445397 74.11 15 1263.73 2437213 -1271.17 0.85 

 

0 1.0, 2.0  
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Figure 2.15 Solution procedure of the ALO-DQA method (Example 3, T = 90 periods) 

The model statistics of example 3 are shown in Table 2.1. As expected, the complexity of the 

integrated full-scale model increases as the planning horizon increases and this is reflected in the 

solution time and relative gap (%) given in Table 2.4. The progress of the solution procedure of 

the ALO-DQA method for 90 time periods is shown in Figure 2.15. Table 2.4 shows the solutions 

of the integrated full-scale problem and the ALO-DQA decomposition method. Similar to results 

of examples 1 and 2, significant computational savings are observed when decomposition is 

applied compared to the full-scale model. Furthermore, for example 3, the ALO-DQA method is 

able to provide a better solution than the one reported by the full-scale model for planning periods 

of T=45, 60, and 90.  
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2.6. Summary 

 This work addresses the problem of integrated planning and scheduling for multisite, 

multiproduct and multipurpose batch plants using the augmented Lagrangian method. The 

integrated multisite model is proposed by extending single site formulation of(Z. Li & 

Ierapetritou, 2010a). The shipping costs from the production sites to distribution markets are 

taken into account explicitly in the integrated problem. Given the fixed demand forecast the 

model optimizes the production, inventory, transportation, and backorder costs. Temporal 

decomposition scheme was developed to address the large scale model resulting from multiperiod 

planning and scheduling problem. The augmented Lagrangian relaxation with diagonal 

approximation method allowed solution of the scheduling optimization problems into parallel. 

Three example problems solved to illustrate the advantages of applying the augmented 

Lagrangian decomposition scheme. With the proposed decomposition method, faster solution 

times were realized.  

Nomenclature 

Indices  

i task 

j units 

m distribution market 

n event point 

p production site 

s material state 

t planning period 

Sets  

I tasks 
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 task that can be performed at site p 

 tasks that can be performed in unit j at site p 

J units 

 units that are located at site p 

 units that can perform task i at site p 

M distribution markets 

N event points 

 sites that can produced final product s 

PS production sites 

S material states 

 products that can be sold at market m 

 products that can be produced at site p 

T planning periods 

Parameters  

  unit transport cost of material s from site p to market m 

 demand of product s at market m for period t 

 fixed production cost of task i at site p 

 holding cost of product s at production site p 

 available maximum storage capacity for state s at site p 

 
backorder cost of product s at distribution market m 

,  minimum and maximum capacity of unit j when processing task i at site p 

 unit variable cost of task i at site p 

pI

p
jI

pJ

p
iJ

sP

m
fS

p
fS

,p m
sd

,m t

s
Dem

p
iFixCost

p

s
h

p
sstcap

m
su

min
, ,i j pv max

, ,i j pv

p
iVarCost
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,  constant, variable term of processing time of task i in unit j at site p 

,  proportion of state s consumed, produced by task i respectively at site p 

Variables  

 
amount of material processed by task i in unit j at event point n at site p during 

period t 

 transportation of product s from site p to market m at period t 

 inventory level of state s at the end of the planning period t for site p 

 initial inventory for state s in planning period t 

 finish time of task i in unit j at event point n in site p during period t 

 start time of task i in unit j at event point n in site p during period t 

 backorder of product s at market m in planning period t 

 binary variable, task i active in unit j at event point n at site s during period t 

 

 

  

  

,
p

i j ,
p

i j

,
,

c p
s i ,

,
p p
s i

,
, ,
p t

i j nb

, ,p m t
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,p t

s
Inv

,p t
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p t

i j nTf
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p t
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Chapter 3  

3. Centralized – decentralized optimization for refinery scheduling 

This chapter presents a novel decomposition strategy for solving large scale refinery scheduling 

problems. Instead of formulating one huge and unsolvable MILP or MINLP for centralized 

problem, we propose a general decomposition scheme that generates smaller sub-systems that can 

be solved to global optimality. The original problem is decomposed at intermediate storage tanks 

such that inlet and outlet stream of the tank belong to the different sub-systems. Following the 

decomposition, each decentralized problem is solved to optimality and the solution to the original 

problem is obtained by integrating the optimal schedule of each sub-systems. Different case 

studies of refinery scheduling are presented to illustrate the applicability and effectiveness of the 

decentralized strategy. The conditions under which these two types of optimization strategies 

(centralized and decentralized) give the same optimal result are discussed. 

3.1. Introduction 

Production scheduling defines which products should be produced and which products should be 

consumed in each time instant over a given small time horizon; hence, it defines which run-mode 

to use and when to perform changeovers in order to meet the market needs and satisfy the 

demand. Large-scale scheduling problems arise frequently in oil refineries where the main 

objective is to assign sequence of tasks to processing units within certain time frame such that 

demand of each product is satisfied before its due date. As the scale of the production problem 

increases, the mathematical complexity of the corresponding scheduling problem increases 

exponentially. Decomposition of the initial system into subsystems which are easier to be solved, 

is a natural way to deal with this type of optimization problems. 

There are relatively few papers that have addressed planning and scheduling problems 

using centralized and decentralized optimization strategies providing a comparison of these two 

approaches. (Kelly & Zyngier, 2008)presented a procedure to find a suitable way to decompose 
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large decision-making problems and compared different decentralized approaches using 

hierarchical decomposition heuristics. The focus of their work was to find globally feasible 

solutions to large decentralized and distributed decision-making problems when a centralized 

approach is not possible. (G. K. Saharidis et al., 2006; G. K. D. Saharidis, Kouikoglou, et al., 

2009)studied the problem of production planning in deterministic and stochastic environments 

and compared centralized and decentralized optimization for an enterprise consisting of two 

production plants in series producing many different outputs with subcontracting options. (Chen 

& Chen, 2005)studied a joint replenishment arrangement with a two-echelon supply chain with 

one supplier and one buyer, facing a deterministic demand and selling a number of products in 

the marketplace. They proposed both centralized and decentralized decision policies to analyze 

the interplay and investigated the joint effects of two-echelon coordination and multi-product 

replenishment on the reduction of total costs. The cost differences between these policies show 

that the centralized policy significantly outperforms the decentralized policy. (Gnoni et al., 

2003)present a case study from the automotive industry dealing with the lot sizing and scheduling 

decisions in a multi-site manufacturing system. They use a hybrid approach which combines 

mixed-integer linear programming model and simulation to test local and global production 

strategies. Their results show that local optimization strategy allows a cost reduction of about 

19% compared to the reference actual annual production plan, whereas the global strategy leads 

to a further cost reduction of 3.5% and a better overall economic performance.(I. Harjunkoski & 

Grossmann, 2001)  presented a decomposition scheme for solving large scheduling problems for 

steel production which splits the original problem into sub-systems using the special features of 

steel making. Their proposed approach cannot guarantee global optimality, but comparison with 

theoretical estimates indicates that the method produces solutions within 1-3% of the global 

optimum. (Bassett et al., 1996)presented resource decomposition method to reduce problem 

complexity by dividing the scheduling problem into subsections based on its process recipes. 

They showed that the overall solution time using resource decomposition is significantly lower 
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than the time needed to solve the global problem. However, their proposed resource 

decomposition method did not involve any feedback mechanism to incorporate “raw material” 

availability between sub sections.        

In this work, the problem of refinery scheduling optimization is addressed with 

centralized and decentralized decision making process. The chapter is organized as follows. 

Section 3.2 describes the type of problem studied in this chapter and presents a real case study 

provided by Honeywell Hi-Spec Solutions. Section 3.3 defines the mathematical formulation of 

the problem, whereas the decomposition approach is presented in section 3.4. Section 3.5 presents 

comparative results for centralized and decentralized optimization of the system. Finally section 

3.6 draws conclusions.        

3.2. Problem Definition 

In general there are two decision levels in refinery process operations - the planning and the 

scheduling level. The planning level determines the volume of raw materials needed for the 

upcoming months (typically 12 months), and the type of final products and the estimated 

quantities to be ordered, depending on demand forecasts. After determining the yearly plan in the 

second level we have to determine the optimal production scheduling.  The scheduling level 

determines the detailed schedule of each production unit and CDU for a shorter period (typically 

10 days) by taking into account the operational constraints of the system under study. Once the 

plan is known (the quantities and the types of final products ordered as well as the arrival of raw 

materials), managers must schedule the production of any unit based on the objective which 

usually is minimization of the overall makespan or maximization of the total profit.  

Refinery system considered here is composed of pipelines, a series of tanks to store the 

crude oil (and prepare the different mixtures), production units and tanks to store the raw 

materials and the intermediate and final products (see Figure 1). All the crude distillation units are 

considered continuous processes and it is assumed that unlimited supply of the raw material is 
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available to system. The crude distillation unit produces different products according to the 

recipes. There are two types of operating scenario for the storage tanks: scenario 1 where material 

cannot flow out of the tank when material is flowing into the tank at any time interval, that is 

loading and unloading cannot happen simultaneously (due to security reasons) or scenario 2 

where loading and unloading can happen simultaneously.   

Figure 3.1 represents the system under study which corresponds to a really case of 

Honeywell Hi-Spec problem.  In this system the production starts from cracking units and 

proceed to diesel blender unit to produce home heating oil (Red Dye diesel) and automotive 

diesel (Carb diesel and EPA diesel). Cracking unit, 4CU, processes Alaskan North Slope (ANS) 

crude oil which is stored in raw material storage tanks ANS1 and ANS2, whereas cracking unit 2 

(2CU) processes San Joaquin Valley (SJV) crude oil. SJV crude oil is supplied to 2CU via 

pipeline.  

 

Figure 3.1 State and unit representation of Honeywell Hi-Spec problem 

The products of cracking units are then processed further downstream by vacuum distillation 

tower unit and diesel high pressure desulfurization (HDS) unit. The coker unit converts vacuum 

resid into light and heavy gasoil and produces coke as residual product. The fluid catalyzed high 

pressure desulfurization (FCC HDS) unit, FCC, Isomax unit produce products that are needed for 

diesel blender unit. The FCC unit also produces by- product FCC gas. The diesel blender blends 

HDS diesel, hydro diesel, and light cycle oil (LCO) to produce three different final products. The 

diesel blender sends final products to final product storage tanks. The byproduct FCC gas and 
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residual product Coke is not stored but supplied to the market via pipeline. The system employs 

four storage tanks to store intermediate products, vacuum resid, diesel, light gasoil, and heavy 

gasoil. 

In the system studied in this chapter, the long term plan is assumed to be given and the 

objective is to define the optimal production scheduling. In such a case the key information 

available for the managers is firstly the proportion of material produced or consumed at each 

production units. These recipes are assumed fixed to maintain the model‟s linearity. The 

managers also know the minimum and maximum flow-rates for each production unit and the 

minimum and maximum inventory capacities for each storage tank. The different types of 

material that can be stored in each storage tank are known as well as the demand of final products 

at the end of time horizon. The objective is to determine the minimum total makespan of 

production defining the optimal values of the following variables:  

1) Starting and finishing times of task taking place at each production unit;  

2)  Amount and type of material being produced or consumed at each time in a production unit; 

3) Amount and type of material stored at each time in each tank.  

There are seven groups of constraints which guarantee the operational conditions of the system. 

These are allocation constraints, production and storage capacity constraints, material balance 

constraints for units and storage tanks, demand constraints, and time sequence constraints. The 

mathematical formulation for the scheduling problem is presented in the following section.  

3.3. Mathematical Formulation 

In this section a mathematical model is presented for the scheduling of the refinery system 

presented in section 3.2 where the objective is to minimize the overall makespan.  The developed 

mathematical formulation uses continuous time representation since this leads to reduced number 

of decision variables and constraints compared to the discrete time representation and also since 

due to the continuous operating mode, continuous time representation can provide more accurate 
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results. (Ierapetritou et al., 1999; Jia et al., 2003) The mathematical formulation proposed in this 

chapter has the following main assumptions: 1) the change over time between different tasks at 

each unit is negligible; and 2) the processes are running at steady state. The proposed model 

presented in this section minimizes the overall makespan of the refinery production and involves 

allocation, capacity, storage, material balance, demand, and time sequence constraints. The 

integer and continuous decision variables used in the developed model give rise to a mixed 

integer linear programming (MILP) problem.  

 For the minimization of the makespan, four main operating rules have to be followed. 

The first one is to satisfy the constraint that at most one task can take place in one production unit 

at one time interval and  that at most one material can be stored in one storage tank at one time 

interval (constraint 1). The second one is to satisfy the material balance constraints (constraints 7-

10). The third one guarantees the demand satisfaction (constraint 11). Finally the forth one 

guarantees the correct time sequence of the tasks given that a continuous time representation is 

used (constraints 12-35).  

Allocation Constraints: 

Constraints (1) express that if a task (i) starts at event point (n), then it must be performed in one 

of the suitable units (j). It also satisfies the rule that a unit can physically perform only one task at 

any given time. 

( )

( , , ) 1, ,
i I j

wv i j n j J n N


      (1) 

Capacity Constraints:  

Constraints (2) enforce the requirement that material processed by unit (j) performing task (i) at 

any point (n) is bounded by the maximum and minimum rates of production. The maximum and 

minimum production rates multiply by the duration of task (i) performed at unit (j) give the 

maximum and minimum material being processed by unit (j) correspondingly.  
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 (2)  

Storage Constraints: 

Variable ( , , )in j jst n  is equal to 1 if there is flow of material from production unit (j) to storage 

tank (jst) at event point (n); otherwise it is equal to 0. Variable ( , , )out jst j n  is equal to 1 if 

material is flowing from storage (jst) to unit (j) at event point (n), otherwise it is equal to 0. 

Equations (3) and (4) are capacity constraints for storage tank. Constraints (3) state that if there is 

material inflow to tank (jst) at interval (n) then total amount of material inflow to the tank should 

not exceed the maximum storage capacity limit. Similarly, constraints (4) state that if there is 

outflow from tank (jst) at interval (n) then the total amount of material flowing out of tank should 

not exceed the storage limit at event point (n). 

max( , , ) ( ) ( , , ),    ,  ( ),  infow j jst n V jst in j jst n j J jst JSTprodst j n N       (3) 

max( , , ) ( ) ( , , ),    ,  ( ),  outflow jst j n V jst out jst j n j J jst JSTstprod j n N       (4) 

Constraints (5) and (6) represent the requirement that the material in tank (jst) should not exceed 

the capacity limit max ( )V jst  of this storage tank at any event point (n).  

max

( )

( , 1) inf ( , , ) flow1( , ) ( ),   ( ),  
j Jprodst jst

st jst n low j jst n in jst n V jst jst Jst s n N


        (5) 

max

( )

( ) flow( , , ) flow1( , ) ( ),   ( ),  0
j Jprodst jst

stin jst in j jst n in jst n V jst jst Jst s n


       (6) 

Material Balance Constraints for Operating Unit:  

Constraints (7) represent the requirement that the production of a unit should be equal to the sum 

of the amount of flows entering its subsequent storage tanks and reactors, and the delivery to the 

market. 

( ) ( ) ( ) ( ) ( )

( , ) ( , , ) flow( , , ) ( , , , )

2( , , ),     ,  ,  

p

i I j jst JSTprodst j Jst s j Jseq j Junitc s

s i b i j n in j jst n unitflow s j j n

outflow s j n s S j J n N


    

  

    

  
 (7) 

   min max( , ) ( , , ) - ( , , ) ( , , ) ( , , ) - ( , , ) ,    , ( ),ijR i j Tf i j n Ts i j n b i j n R Tf i j n Ts i j n i I j J i n N      
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Similarly, constraints (8) represent that the consumption at a unit is equal to the sum of the 

amount of streams coming from preceding storage tanks, previous units, and stream coming from 

supply.   

( ) ( ) ( )

'

( , ) ( , , ) flow2( , , ) ( , , )

( , , , ),     ,  ,  
j s

C

st

i I j jst JSTstprod j Jst s

j Jseq Junitp

s i b i j n in s j n outflow j j n

unitflow s j j n j J s S n N


  

 

  

    

 


  (8) 

Material Balance Constraints for Storage Tank: 

Similar to material balance constraints for units, the material balance constraints (9) and (10) for 

the storage tanks state that the inventory of a storage tank at one event point is equal to that at 

previous event point adjusted by the input and output stream amount. 

( )

( )

( , ) ( , 1) flow( , , ) in flow1( , )

( , , ) 1( , ),    ,  

j Jprodst jst

j Jstprod jst

St jst n St jst n in j jst n jst n

outflow jst j n outflow jst n jst Jst n N





   

    




 (9) 

( )

( )

( , ) ( ) flow( , , ) flow1( , )

( , , ) 1( , ), ,  

j Jprodst jst

j Jstprod jst

St jst n Stin jst in j jst n in jst n

outflow jst j n outflow jst n jst Jst n N





  

    




 (10) 

Demand Constraints: 

Demand for each final product d(s) must be satisfied in centralized problem and also in 

decentralized problem. Constraints (11) state that production units must at least produce enough 

material to satisfy the demand by the end of the time horizon.   

( , ) ( , )

1( , ) 2( , , ) ( ), ( ), , ,
jst n j n

outflow jst n outflow s j n d s jst Jst s j J n N s S       
 

(11) 

Duration Constraints: 

Time Sequence Constraints for Each Unit: Constraints (12) to (14) express that if task (i) starts at 

event point (n+1), then it must start after the end of the same task happening at event point (n) in 

the same unit (j). If task (i) takes place at unit (j) at event point (n) then wv(i,j,n)=1, and 

Ts(i,j,n+1) must be greater than or equal to Ts(i,j,n). If wv(i,j,n)=0 then the constraint in equation  

(12) is relaxed and constraints in equations (13) and (14) enforce the sequencing of tasks.  
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( , , 1) ( , , ) (1 ( , , )),     ,  ( ),Ts i j n Tf i j n UH wv i j n i I j J i n N         (12) 

( , , 1) ( , , ),      ,  ( ),  Ts i j n Ts i j n i I j J i n N       (13) 

( , , 1) ( , , ),      ,  ( ),  Tf i j n Tf i j n i I j J i n N       (14) 

Constraints (15) represent the rule that if task (i
’
)

 
should happen at event point (n) in unit (j) then 

task (i) must start at event point (n+1) after the end of task (i
’
) at event point (n).      

( , , 1) ( , , ) (1 ( , , )),     ( ), ( ), ( ), ,Ts i j n Tf i j n UH wv i j n j J i i I j i I j i i n N              
           (15) 

Constraints (16) to (19) represent that two consecutive productions, where unit (j) consumes the 

material produce by unit (j’), with no storage in between, happen at the same time. If wv(i,j,n)=1 

and wv(i’,j
’
,n)=1 then Ts(i,j,n)=Ts(i’,j

’
,n) and Tf(i,j,n)=Tf(i’,j

’
,n). If either wv(i,j,n)=0 or 

wv(i’,j
’
,n)=0, then the constraints are relaxed.  

( , , ) ( , , ) (2 ( , , ) ( , , )),

    ,  ( ),  ( ),  ( ),   

Ts i j n Ts i j n UH wv i j n wv i j n

j J j Jseq j i I j i I j n N

      

        
 (16) 

( , , ) ( , , ) (2 ( , , ) ( , , )),

,  ( ),  ( ),  ( ),   

Ts i j n Ts i j n UH wv i j n wv i j n

j J j Jseq j i I j i I j n N

      

        
 (17) 

( , , ) ( , , ) (2 ( , , ) ( , , )),     

                                                      ,  ( ),  ( ),  ( ),   

Tf i j n Tf i j n UH wv i j n wv i j n

j J j Jseq j i I j i I j n N

      

        
 (18) 

( , , ) ( , , ) (2 ( , , ) ( , , )),     

                                                     ,  ( ),  ( ),  ( ),   

Tf i j n Tf i j n UH wv i j n wv i j n

j J j Jseq j i I j i I j n N

      

        
 (19) 

Time Sequence Constraints Connecting Unit and Storage Tank: Constraints (20) to (23) state that 

production and storage occur at the same time. If unit (j) produces the material that is stored in 

tank (jst) then start and finishing time of production task at unit (j) and inflow to the storage tank 

must be same. 

( , , ) ( , , ) (2 ( , , ) ( , , )),    

                                                      ,  ( ),  ( ),  

Ts i j n Tss j jst n UH wv i j n in j jst n

jst Jst j Jprodst jst i I j n N

   

    
 (20) 

( , , ) ( , , ) (2 ( , , ) ( , , )),    

                                                     ,  ( ),  ( ),  

stTs i j n Tss j jst n UH wv i j n in j j n

jst Jst j Jprodst jst i I j n N

   

    
 (21) 
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( , , ) ( , , ) (2 ( , , ) ( , , )),    

                                                      ,  ( ),  ( ),  

Tf i j n Tsf j jst n UH wv i j n in j jst n

jst Jst j Jprodst jst i I j n N

   

    
 (22) 

( , , ) ( , , ) (2 ( , , ) ( , , )),    

                                                      ,  ( ),  ( ),  

Tf i j n Tsf j jst n UH wv i j n in j jst n

jst Jst j Jprodst jst i I j n N

   

    
 (23) 

Constraints are given by Equations (24) to (27) state that storage and production happen at the 

same time. If tank (jst) stores the material that is consumed in the unit (j), then outflow from 

storage tank and production take place at the same time. 

( , , ) ( , , ) (2 ( , , ) ( , , )),     

                                                      ,  ( ),  ( ),  

stTs i j n Tss jst j n UH wv i j n out j j n

jst Jst j Jstprod jst i I j n N

   

    
 (24) 

( , , ) ( , , ) (2 ( , , ) ( , , )),    

                                                      ,  ( ),  ( ),  

stTs i j n Tss jst j n UH wv i j n out j j n

jst Jst j Jstprod jst i I j n N

   

    
 (25) 

( , , ) ( , , ) (2 ( , , ) ( , , )),    

                                                      ,  ( ),  ( ),  

Tf i j n Tsf jst j n UH wv i j n out jst j n

jst Jst j Jstprod jst i I j n N

   

    
 (26) 

( , , ) ( , , ) (2 ( , , ) ( , , )),     

                                                      ,  ( ),  ( ),  

stTf i j n Tsf jst j n UH wv i j n out j j n

jst Jst j Jstprod jst i I j n N

   

    
 (27) 

Sequence Constraints for Storage Tank: Constraints are given in Eqns. (28) to (35) connect input 

and output flow happening at event (n) to the next event point (n+1) for storage tanks. Input starts 

at event point (n+1) after output finishes at event point (n) and output flow happens at event point 

(n+1) after the end of input flow happening at event point (n). Binary variable in(j,jst,n) equal to 

1 when material is flowing into the tank (jst) from unit (j) at event point (n), otherwise its zero. 

Similarly out(jst,j,n) equal to 1 when material is flowing from the tank to the unit at event point 

(n), otherwise its zero.   

 Constraints (28), (31), (34), and (35) are active when the binary variables are equal to 1, 

whereas when the binary variables are equal to 0, the sequence constraints are enforced by Eqns. 

(29) , (30), (32), and (33).    

( , , 1) ( , , ) (1 ( , , )),     ,  ( ),   Tss j jst n Tsf j jst n UH in j jst n jst Jst j Jprodst jst n N         (28) 

( , , 1) ( , , ),     ,  ( ),   Tss j jst n Tss j jst n jst Jst j Jprodst jst n N       (29) 
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( , , 1) ( , , ),     ,  ( ),   Tsf j jst n Tsf j jst n jst Jst j Jprodst jst n N       (30) 

( , , 1) ( , , ) (1 ( , , )),     ,  ( ),   Tss jst j n Tsf jst j n UH out jst j n jst Jst j Jstprod jst n N         (31) 

( , , 1) ( , , ),     ,  ( ),   Tss jst j n Tss jst j n jst Jst j Jstprod jst n N       (32) 

( , , 1) ( , , ),     ,  ( ),   Tss jst j n Tsf jst j n jst Jst j Jstprod jst n N       (33) 

( , , 1) ( , , ) (1 ( , , )),     

                                                      ,  ( ), ( ),   

Tss j jst n Tsf jst j n UH out jst j n

jst Jst j Jstprod jst j Jprodst jst n N

    

    
 (34) 

( , , 1) ( , , ) (1 ( , , )),     

                                                      ,  ( ),  ( ),   

Tss jst j n Tsf j jst n UH in j jst n

jst Jst j Jstprod jst j Jprodst jst n N

    

    
 (35) 

As we mentioned in section 3.2, there are two types of operating scenario for storage tanks and 

for each one of them, we have the following additional constraints.  

Scenario 1: Simultaneous Loading and Unloading Not Allowed  

Scenario 1 represents that material cannot flow in and out of the storage tank at the same time at 

any event point (n). This operation rule is used in many refineries for security reasons. 

Constraints (36) represent that output flow from storage tank (jst) starts after input ends at any 

event point (n). 

( , , ) (1 ( , , )) ( , , ) (1 ( , , )),     

                                                      ,  ( ),  ( ),  

Tsf j jst n UH in j jst n Tss jst j n UH out jst j n

jst Jst j Jprodst jst j Jstprod jst n N

     

    
 (36) 

Scenario 2: Simultaneous Loading and Unloading Allowed  

The operation rule for scenario 2 is that material can flow in and out of tank at the same time at 

any time interval (n). This assumption is very common in many refineries for intermediate 

storage tanks.  

 Constrains (37) to (40) are enforced when both variables in(j,jst,n) and out(jst,j,n) are 

equal to 1. When the constraints are enforced, the starting and finishing times of loading and 

unloading events are equal. When either in(j,jst,n) or out(jst,j,n) is equal to zero, the constraints 

are relaxed. 
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( , , ) (1 ( , , )) ( , , ) (1 ( , , )),  

                                                      ,  ( ),  ( ),  

Tss j jst n UH in j jst n Tss jst j n UH out jst j n

jst Jst j Jprodst jst j Jstprod jst n N

     

    
 (37) 

( , , ) (1 ( , , )) ( , , ) (1 ( , , )),

                                                      ,  ( ),  ( ),  

Tss j jst n UH in j jst n Tss jst j n UH out jst j n

jst Jst j Jprodst jst j Jstprod jst n N

     

    
 (38) 

( , , ) (1 ( , , )) ( , , ) (1 ( , , )),

                                                      ,  ( ),  ( ),  

Tsf j jst n UH in j jst n Tsf jst j n UH out jst j n

jst Jst j Jprodst jst j Jstprod jst n N

     

    
 (39) 

( , , ) (1 ( , , )) ( , , ) (1 ( , , )),

                                                      ,  ( ),  ( ),  

Tsf j jst n UH in j jst n Tsf jst j n UH out jst j n

jst Jst j Jprodst jst j Jstprod jst n N

     

    
 (40) 

Makespan Constraints: 

Constraints (41) to (46) state that starting and finishing time of any task is always less than equal 

to the makespan (H). 

( , , ) ,      ,  ( ),  Ts i j n H i I j J i n N      (41) 

( , , ) ,      ,  ( ),  Tf i j n H i I j J i n N      (42) 

( , , ) ,      ,  ( ),  Tss j jst n H jst Jst j Jprodst jst n N      (43) 

( , , ) ,      ,  ( ),  Tsf j jst n H jst Jst j Jprodst jst n N      (44) 

( , , ) ,      ,  ( ),  Tss jst j n H jst Jst j Jstprod jst n N      (45) 

( , , ) ,      ,  ( ),  Tsf jst j n H jst Jst j Jstprod jst n N      (46) 

Objective Function: 

Finally, equation (47) defines the objective function of the problem which is the minimization of 

makespan. The most common motivation for optimizing the process using minimization of 

makespan as objective function is to improve customer services by accurately predicting order 

delivery dates.  

min( )z H  (47) 

3.4. Solution Approach 

The CPU time for the solution of the overall model presented in the previous section is usually 

high due to model size. In order to reduce the CPU resolution time we developed a structural 
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decomposition strategy which decomposes the problem into a number of smaller and thus easier 

to solve subsystems. The developed structural decomposition approach and the additional 

constraints presented in this section guarantee that the solution obtained by the decentralized 

optimization will be feasible for the centralized system and is exactly the same.   

Structural Decomposition Approach      

Generally scheduling problems are large scale problems and are difficult to be solved to 

optimality. As the scale of the production increases, the mathematical complexity of the 

developed model increases, and the CPU time that is required for the solution of the 

corresponding problem increases too. Decomposition is a natural way to dealing with large scale 

problems. There are two types of decomposition: the structural decomposition of the system 

under study and the mathematical decomposition such as Benders decomposition (Benders, 

1962), Lagrangian relaxation (Minoux, 1986) etc. Note that mathematical decomposition can be 

applied after the application of the structural decomposition if it is applicable. 

The decomposition strategy proposed here decomposes the refinery scheduling problem 

presented in section 3.2 spatially. To obtain the optimal solution in decentralized optimization 

approach, each sub-system is solved to optimality and these optimal results are used to obtain the 

optimal solution for the entire problem. In our proposed decomposition rule, we split the system 

in such a way so that a minimum amount of information is shared between the sub-problems. 

This means splitting the problem at intermediate storage tanks such that the inflow and outflow 

streams of the tank belong to different sub-systems. The decomposition starts with the final 

products or product storage tanks, and continues to include the reactors/units that are connected to 

them and stops when the storage tanks are reached. The products, intermediate products, units 

and storage tanks are part of the sub-system 1. Then following the input stream of each storage 

tank, the same procedure is used to determine the next sub-system. If input and output stream of 

the tank are included at the same local problem then the storage tank also belongs to that local 

problem.  



53 

 

 

 

Figure 3.2 Intermediate storage tank connecting two sub-systems 

When the problem is decomposed at intermediate storage tanks, storage tanks become a 

connecting point between two sub-systems. The amount and type of material flowing out of the 

connecting intermediate storage tank at any time interval (n) becomes demand for the preceding 

sub-system (k+1) at corresponding time interval (see Figure 3.2).  

After decomposing the centralized system, the individual sub-systems are treated as 

independent scheduling problems and solved to optimality using the mathematical formulation 

described in section 3.3. It should be also noticed that the operating rules for the decentralized 

system are the same as those required for the centralized problem. In general the local 

optimization of sub-system k gives minimum information to the sub-system k+1 which optimizes 

its schedule with the restrictions regarding the demand of the intermediates obtained by sub-

system k. In Figure 3.3 we present the decomposition of the system under study after the 

application of the developed decomposition rule. The system is split in two sub-systems where 

sub-system 1 produces all of the final products and one by-product. The sub-system 1 includes 5 

production unit, 7 final product storage tanks, and 3 raw material tanks, Raw material tanks in 

sub-system 1 are defined as intermediate tanks in centralized system. The sub-system 2 includes 4 

production units, 1 intermediate tank, 2 raw material tanks and it produces 4 final products. 

Except Coke, all other final products in sub-system 2 are defined as intermediate products in 

centralized system.  
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Figure 3.3 Decomposition of the refinery problem under consideration 

In the following section we present all the additional constraints used in the decentralized 

approach in order to guarantee that the obtained solution by the sub-system 1 could be realized by 

the sub-system 2. 

Feasibility Constraints for Decentralized Model 

The sub-systems obtained using the decomposition rule presented in the previous section, have all 

the constraints presented in the basic model but in addition to that the k+1 sub-system has to 

satisfy the demand of final products produced by this sub-system and also the demand of 

intermediate products needed by sub-system k. The demand constraints for intermediate final 

products for sub-system k+1 are given by equation (48).  

2( , , ) ( , ),    , ( , 1),
j

outflow s j n r s n s S j Junitp s k n N       (48) 

Scenario 1: Simultaneous Loading and Unloading Not Allowed 

When production units in sub-system k+1 supply material to storage tanks located in sub-system 

k, in order to obtain globally feasible solution, the following capacity constraints are added to 

sub-system k+1. Constraint in equation (49) is for time interval n=0; sum of the material supplied 

to storage tank (jst) in sub-system k and initial amount present in the storage tank must be within 

tank capacity limit. Whereas equations (50) and (51) represents capacity constraints for event 

point n=1 and n=2 respectively.  
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max2( , , ) ( ) ( ),    ,  ( , ),  ( , 1), 0
j

outflow s j n stin jst V jst s S jst Jst s k j Junitp s k n         (49) 

1
max

0

2( , , ) ( ) (0) ( ),

, ( , ),  ( , 1),

s

j n

outflow s j n stin jst r V jst

s S jst Jst s k j Junitp s k n N



  

     


 (50) 

2 1
max

0 0

2( , , ) ( ) r(s,n) ( ),

, ( , ),  ( , 1),

j n n

outflow s j n stin jst V jst

s S jst Jst s k j Junitp s k n N

 

  

     

 
 (51) 

Constraints (52) and (53) represent lot sizing constraints for sub-system k+1. The demand of 

intermediate final product s at event point n is adjusted by the amount present in the storage tank 

after the demand is satisfied at previous event point (n-1). This adjusted demand is then used in 

demand constraints for intermediate final products.  

( ,1) 2( , ,0) ( ) ( ,0) ( ,1),     

                                                                , ( , 1), ( , )

j

r s outflow s j stin jst r s r s

s S j Junitp s k jst Jst s k

 
    

 

    


 (52) 

1 1

0 0

( ,2) 2( , , ) ( ) ( , ) ( ,2),    

                                                            , ( , 1), ( , ),

j n n

r s outflow s j n stin jst r s n r s

s S j Junitp s k jst Jst s k n N

 

 
    

 

     

 
 (53) 

 The optimal time horizon of global problem is obtained by combining the optimal 

schedules of sub-systems at each point (n) such that the material balance constraints are satisfied 

for connecting intermediate storage tanks. Since sub-system k+1 satisfies the demand of sub-

system k, sub-system k+1 will happen before the sub-system k.  

Scenario 2: Simultaneous Loading and Unloading Allowed 

To implement the constraint of simultaneous loading and unloading to intermediate connecting 

storage tanks between any two sub-systems k and k+1, the following constraints are added to sub-

system k. 

 flow1( , ) ( ) ( , , ) ( , , ) ,    ,  ( , ), ( ),in jst n s Tsf jst j n Tss jst j n s S jst Jst s k j Junitc s n N         (54) 

1 1

max max max( ) ( ) ( ) ( ),k k ks P s if P s C s s S       (55) 
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k k k+1

max max maxβ(s) C (s) if C (s) P (s), s S     (56) 

where 1

max ( )kP s  is the maximum rate of production of intermediate final product (s) in sub-system 

k+1 and 
max ( )kC s  is the maximum rate of consumption of (s) in sub-system k. 1

max ( )kP s  and 
max ( )kC s  

can be calculated before the start of the optimization process based on the configuration of sub-

systems. β(s) takes the value of either the maximum rate of production or maximum rate of 

consumption as given by constraints (55) and (56). Constraint (54) determines the value of 

material inflow to the storage tank at event point (n). When β(s) takes the value of maximum rate 

of consumption, constraint (57) is added to the sub-system k+1.  

2( , , ) ( ) ( ( , , ) ( , , )), , ( , 1), ( ),
j

outflow s j n s Tf i j n Ts i j n s S j Junitp s k i I j n N          (57) 

Constraints (57) state that the total amount of material (s) which is an intermediate final product, 

produced in sub-system k+1 is equal to the maximum rate of consumption in sub-system k  times 

duration of production in sub-system k+1.   

flow1( , ) 2( , , ),    ,  ( , ), ( , 1),
j

in jst n iter outflow s j n s S jst Jst s k j Junitp s k n N         (58) 

where iter is a binary variable. After solving sub-systems k and k+1 to optimality respectively, if 

the optimal makespan results in a time horizon of sub-system k+1 to be greater than sub-system 

k, then iter = 1. When iter = 1, we resolve sub-system k to optimality with constraint (58) active 

in the model. Eq. (58) specifies the amount of material flowing into the connecting intermediate 

storage tank from sub-system k+1 at each event point (n).  

 Since, loading and unloading can happen at the same time, the time horizon of each sub-

system will be the same and the global optimal solution can be obtained by combining the 

optimal schedule of each sub-system.  

3.5. Numerical Results 

The refinery production scheduling case study presented here is based on realistic data provided 

by Honeywell Hi-Spec Solutions. The data for the problem studied here are presented in 
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Appendix Chapter 3. Different demand cases for final products, Carb diesel, EPA diesel, and Red 

Dye diesel; and residual products, Coke and FCC gas, are studied. The actual values of the 

products‟ demands are given in Table A3-1. For all computations in this chapter GAMS/CPLEX 

7.0 is used to solve the resulting MILP formulations. The optimal solution is obtained with 1e-6 

integrality gap using a Pentium(R) 4 processor at 3.40Hz and with 1.99GB memory. The two 

scenarios presented in section 3.3, with and without the assumption of simultaneously loading 

and unloading of tank are examined. Centralized and decentralized optimization is applied using 

the decomposition approach presented in section 3.4. In the following tables four different 

examples are presented in order to illustrate the advantage of decentralized optimization using the 

decomposition approaches. Four examples represent lower to high demands for the system that 

need to be satisfied within available time horizon of 240 hours.    

Following the mathematical model presented is section 3.3, the 1
st
 sub-system as shown 

in Figure 3.3 is solved to minimize the makespan and meet the demand for the final products. 

Based on the optimal solution of sub-system 1, sub-system 2 is solved to optimality such that it 

satisfies the demand required by sub-system 1.  In the end the solutions of the two sub-systems 

are combined to obtain the solution of the entire problem.  

As shown in Table 3.1 and Table 3.2, after the application of the decomposition strategy 

the size of subsystems is significantly reduced (ex. scenario 1 from 1081 to 749) giving rise to a 

small increase in the number of constraints. This happens because the decision variables 

associated with connecting the two sub-systems in centralized problem become demand data in 

decentralized approach resulting to additional constraint to the first sub-system.  

Table 3.1 Characteristics of mathematical formulation using Scenario 1 

 
Continuous 

Variables 

Binary 

Variables 

Total 

number of 

variables 

Constraints 

Total number 

of constraints 
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Centralized 985 96 1081 1425 1425 

Sub System 1 484 54 

749 

921 

1686 

Sub System 2 187 24 765 

 

Table 3.2 Characteristics of mathematical formulation using Scenario 2 

 

Continuous 

Variables 

Binary 

Variables 

Total 

number of 

variables 

Constraints 

Total number 

of constraints 

Centralized 985 96 1081 1488 1425 

Sub System 1 484 54 

743 

930 

1485 

Sub System 2 181 24 555 

 

To obtain the global optimal solution for scenario 1, the optimal schedules of each sub-

system are combined at each event point n such that the material balance and storage capacity 

constraints for intermediate connecting tanks are satisfied, whereas the global optimal schedule in 

scenario 2 is obtained by superimposing the optimal solution of each sub-system. As shown in 

Table 3.3 and Table 3.4 for both scenarios, the centralized and decentralized optimizations give 

exactly the same optimal makespan for all examples. As explained in the following section, sub-

system 1 has exactly the same solution in centralized and decentralized optimization which gives 

rise to the same optimal solution (centralized and decentralized) for sub-system 2.   

The objective function in centralized and decentralized strategy is minimization of 

makespan. In order to spend minimum time producing material (s), it is required to operate all the 

units in the system in such a way that they will produce all materials needed at a maximum 

production rate that is feasible for that particular system. The maximum possible production rate (

max ( )P s ) for each product (s) can be determined based on the data given in Table A3-2, Table 
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A3-3. Storage tank capacity data are given in Table A3-4. In sub-system 2, only one unit (j) 

produces the specific material (s), which means that 
max ( )P s  is defined only by the highest 

feasible production rate of the unit (j). This highest feasible production rate of unit (j) is 

calculated by taking under consideration the units that come before and after unit (j) (without any 

storage in between). Thus, the highest feasible production rate for unit (j) depends only on the 

parameters and the configuration of the system therefore, it is constant in both centralized and 

decentralized approach for all event points (n). We can then conclude that the total time spent in 

order to produce (s) is the same in centralized and decentralized system and this gives rise to 

identical makespan for sub-system 1.  Subsequently, given that the makespan for sub-system 1 is 

the same in centralized and decentralized system, the sub-system 2 takes the same demand in 

centralized and decentralized optimization because the final product demand requirements are the 

same in both optimization approaches. Since, sub-system 2 has the same configuration, same 

data, and same constraints in centralized and decentralized system, then sub-system 2 has the 

same optimal solution (may be with different task assignments) concerning the makespan in both 

optimization approaches.  

As shown in Table 3.3 and Table 3.4, the CPU time required to find the optimal 

makespan is reduced significantly in decentralized approach compared to centralized approach. 

This is mainly due to the reduction in size and complexity of the system going from centralized 

system to sub-systems.  

Table 3.3 Scenario 1 Centralized vs. Decentralized 

Ex. 

Centralized System Decentralized System 

CPU  

Time (s) 

Objective 

Value (hr) 

 

CPU-

Time(s) 

Total 

CPU-

time(s) 

Local 

Objective 

value(hr) 

Global 

Objective(hr) 
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1 318.672 235.890 

Sub 1 

Sub 2 

0.969 

2.313 

3.282 

97.000 

138.89 

235.890 

2 256.187 163.352 

Sub 1 

Sub 2 

1.141 

2.921 

4.062 

72.00 

91.352 

163.352 

3 2192.515 79.328 

Sub 1 

Sub 2 

1.063 

2.984 

4.047 

36.960 

42.368 

79.328 

4 589.984 26.149 

Sub 1 

Sub 2 

1.093 

2.218 

3.311 

10.272 

15.878 

26.149 

 

Table 3.4 Scenario 2 Centralized vs. Decentralized 

Ex. 

Centralized System Decentralized System 

CPU 

Time (s) 

Objective 

Value (hr) 

 

CPU-

Time(s) 

Total 

CPU-

time(s) 

Local 

Objective 

value(hr) 

Global 

Objective(hr) 

1 4.125 235.000 

Sub 1 

Sub 2 

1.031 

0.641 

1.672 

235.000 

235.000 

235.000 

2 5.844 215.000 

Sub 1 

Sub 2 

1.047 

0.766 

1.813 

215.000 

215.000 

215.000 

3 5.562 191.000 

Sub 1 

Sub 2 

1.031 

1.312 

2.343 191.000 191.000 

4 7.562 97.000 

Sub 1 

Sub 2 

1.359 

1.188 

2.547 

97.000 

97.000 

97.000 
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Figure 3.4 Gantt chart of the operation schedule for example 1, centralized system, scenario 1. 

For scenario 1, the CPU time needed to solve the centralized system is in the order of 100 

seconds whereas the decentralized system is solved within 5 CPU seconds. In scenario 2, 

decentralized solution approach also show improvement compared to centralized system. The 

CPU time needed to solve the problem is cut by half in decentralized system compared to 

centralized system. For scenario 1, the production schedule obtained by decentralized approach is 

different than that obtained by centralized approach as shown in Figure 3.4 and Figure 3.5 for 

example 1. This difference in production schedule is obtained because in decentralized system, an 

optimal solution is obtained by integrating the schedules of each sub-system at each event point. 

Gantt charts for storage tanks are given in Figure A3-1 to Figure A3-10 for centralized and 

decentralized systems and for scenario 2.  
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Figure 3.5 Gantt chart of the operation schedule for Case 4, decentralized system, scenario 1. 

3.6. Summary  

In this chapter, a structure decomposition strategy and formulation is presented for short-term 

scheduling of refinery operations. It is shown that the decentralized system model results in fewer 

constraints and fewer continuous and binary variables compared to centralized system. The 

chapter presents a problem where both optimization strategies result in the same optimal 

makespan with the advantage of having significant reduction in the computational time for 

decentralized system compared to that of centralized system. For decisions making process in 

refinery where demands always need to be satisfy and determination of the makespan is the main 

concern, proposed approach provides a decomposition scheme that provides global optimal 

solution in decentralized system. Furthermore, the proposed decomposition approach is suitable 

for scheduling of production unit operations because they need to satisfy blend components 

demand required by blend scheduling operations in time.   

Nomenclature  

Indices  

j  Production units 

jst  Storage tanks 



63 

 

 

i  Tasks 

n  Event points 

s  States 

k  k
th
 sub-system in decentralized system 

Sets  

J  Production units 

Jst  Storage tanks 

S  States 

N  Event point within the time horizon 

( )J i  Units which are suitable for performing task i 

( )I j  Tasks which can be performed in unit j 

( )Iseq i  i  produces state s that will be consumed by task i 

( )Jstprod jst  Units that consume material s stored in tank jst 

( )Jprodst jst  Units that produce material s stored in tank jst 

( )Junitp s  Units that can produce material s 

( , )Junitp s k  Units in sub-system k that can produce material s 

( )Junitc s  Units that consume material s 

( , )Junitc s k  Units in sub-system k that can consume material s 

( )Jseq j  Units that follow unit j (no storage in between) 

( )Jst s  Tanks that can store material s  

( , )Jst s k  Tanks in sub-system k that can store material s  

( )JSTprodst j  Tanks that follow unit j 

( )JSTstprod j  Tanks that are followed by unit j  

Parameters  
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min ( , )R i j  Minimum rate of material processed by task i required to start 

production unit j 

max ( , )R i j  Maximum rate of material processed by task i in unit j 

max ( )P s  The possible maximum rate of production of material (s)  

max ( )kP s   The maximum rate of production of intermediate final product s in 

sub-system k 

max ( )kC s  The maximum rate of consumption of intermediate final product s 

in sub-system k 

max ( )V jst  Maximum available storage capacity of storage tank jst 

( , )p s i  Proportion of state s produced by task i, ( , ) 0p s i   

( , )c s i  Proportion of state s consumed by task i, ( , ) 0c s i   

( )d s  Demand of the final product s at the end of the time horizon 

( , )r s n  Demand of intermediate state s at event point n  

( , )r s n  Adjusted demand of intermediate state s at event point n  

( )stin jst  Amount of state s that is present at the beginning of the time 

horizon 

UH  Available time horizon 

 Variables  

( , , )wv i j n  Binary variable that assign the starting of task i in unit j at event 

point n 

iter  Binary variable that assign the number of iterations between sub-

systems 

( , , )b i j n  Amount of material undertaking task i in unit j at event point n 

( , )st jst n  Amount of state s present in storage tank jst at event point n 
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flow1( , )in jst n  Flow of raw material to storage tank jst event point n 

1( , )outflow jst n  Flow of final product from storage tank jst at event point n 

flow2( , , )in s j n  Flow of raw material s to production unit j at point n 

2( , , )outflow s j n  flow of product material s from unit j at point n 

flow( , , )in j jst n  Flow of material from unit j to storage tank jst event point n 

( , , )outflow jst j n  Flow of material from storage tank jst to unit j at point n 

( , , )in j jst n  Binary variable that assign the starting of material flow into storage 

tank jst  from unit j at point n 

( , , )out jst j n  Binary variable that assign the starting of material flow out of 

storage tank  jst to unit j at point n 

( , , , )unitflow s j j n  Flow of state s from unit j to consecutive unit j’ for consumption at 

point n 

( , )st jst n  Amount of material in tank jst at event point n 

( , , )Ts i j n  Time that task i starts in unit j at event point n 

( , , )Tf i j n  Time that task i finishes in unit j at event point n 

( , , )Tss j jst n  Time that material starts to flow from unit j to storage tank jst  

( , , )Tsf j jst n  Time that material finishes to flow from unit j to tank jst  at event 

point n 

( , , )Tss jst j n  Time that material starts to flow from tank jst  to unit j at event 

point n 

( , , )Tsf jst j n  Time that material finishes to flow from tank jst  to unit j at event 

point n 

H  Time horizon 
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Chapter 4  

4. Scheduling of a large-scale oil-refinery operations 

Refineries are increasingly concerned with improving the scheduling of their operations in order 

to achieve better economic performances by minimizing quality, quantity, and logistics give 

away. In this chapter, we present a comprehensive integrated optimization model based on 

continuous-time formulation for the scheduling problem of production units and end-product 

blending problem. The model incorporates quantity, quality, and logistics decisions related to 

real-life refinery operations. These involve minimum run-length requirements, fill-draw-delay, 

one-flow out of blender, sequence dependent switchovers, maximum heel quantity, and 

downgrading of better quality product to lower quality. The logistics giveaways in our work are 

associated with obtaining a feasible solution while minimizing violations of sequence dependent 

switchovers and maximum heel quantity restrictions. A set of valid inequalities are proposed that 

improves the computational performance of the model significantly. The formulation is used to 

address realistic case studies where feasible solutions are obtained in reasonable computational 

time. 

4.1. Introduction 

The oil-refinery production operation is one of the most complex chemical industries, which 

involves many different and complicated processes with various connections. Over the last 20 

years, it has grown increasingly more complex due to tighter competition, stricter environment 

regulations, and lower margin profits. Main objective of the oil-refineries is to transform crude-

oil into gasoline, diesel, jet fuel, and other middle distillate hydrocarbon products that can be used 

as either feedstock or energy source in chemical process industry. The short-term scheduling is a 

critical aspect in this large and complex production process. The refinery operations scheduling 

problem involves decisions that are related to quantity, quality and logistics. Quantity decisions 
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include lot-sizes for raw material, intermediate and product tanks inventories, amount of material 

moving between production units and storage tanks, etc, while quality decisions deal with 

obtaining finished products that meet specific quality requirements. Logistics constraints include 

policies and procedures for production operations which deal with allocating resources to 

operations, sequencing or ordering of different modes of operations, and determining the 

durations of operations. To remain competitive in dynamic global marketplace, the oil-refineries 

are increasingly concerned with improving the scheduling of their operations in order to achieve 

better economic performance by minimizing product quality violations, incidence of high quality 

product giveaway, and logistics giveaway. Oil-refinery operations can be classified into three 

sub-operations based on the structure of the refinery configuration as shown in Figure 4.1. (Jia et 

al., 2003) These sub-operations are (1) crude-oil unloading and mixing, (2) production unit 

operations, and (3) finished products blending and distribution. Sub-operation 1 involves the 

crude-oil unloading, blending, and inventory control, Sub-operation 2 includes production unit 

scheduling, and Sub-operation 3 consists of finished product blending and lifting. Typically, sub-

operations scheduling optimization problems are addressed separately since centralized 

optimization approach gives rise to an incomprehensive large scale mixed integer non-linear 

programming (MINLP) models. Review of refinery scheduling problem has been presented in 

work of N. K. Shah et al. (2011).  

The crude-oil unloading and mixing scheduling problem has been studied by Pedro M. 

Castro and Grossmann (2014), Lee et al. (1996), Jia et al. (2003) , Kolodziej et al. (2013), Reddy 

et al. (2004a), Reddy et al. (2004b), G. K. D. Saharidis, Minoux, et al. (2009), and G. K. D. 

Saharidis et al. (2010). The complex crude-oil blend scheduling optimization problem is 

decomposed into logistics and quality sub-problems by Kelly and Mann (2003a, 2003b). They 

utilized successive linear programming (SLP) to solve the quality sub-problem. Once the crude 

prepared mixture is prepared by crude oil loading and unloading operations, it is charged to 

CDUs for distillation. The distillation cuts from CDU are then sent to other production units for 
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fractionation and reaction to produce blend components for finished products. The most common 

refinery includes catalytic, hydro, and thermal cracking units to convert heavy hydrocarbons into 

light hydrocarbons. They also include other process units like continuous catalytic reforming, 

hydro treating, and hydro desulfurization units. The production unit operations scheduling 

problem is characterized by continuous processes, intermediate component storage, and recycle 

stream.  

 

Figure 4.1 Graphic overview of a standard refinery system 

The production units scheduling problem based on continuous time representation is 

proposed by Joly et al. (2002) and Jia and Ierapetritou (2004) where they applied spatial 

decomposition to solve the scheduling problem. Gary et al. (2007) is a comprehensive reference 

for refinery production unit operations. The finished products blend scheduling has received 

significant attention in the literature. The purpose of blend scheduling optimization problem is to 

find the best way of mixing different semi-finished products that have been rectified during 

various refinery processes with some additives so as to produce final products that meet quality 

specifications and demand while minimizing cost. The gasoline blending operation is highly non-

linear and gives rise to a mixed integer non-linear programing scheduling model. Blend recipe 

optimization problems considering nonlinear properties relations have been studied extensively. 
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(Castillo & Mahalec, 2014a, 2014b; Cuiwen et al., 2013; Glismann & Gruhn, 2001; J. Li & 

Karimi, 2011; J. Li et al., 2010; Mendez et al., 2006; Zhao et al., 2008) Glismann and Gruhn 

(2001) proposed a decomposition technique based on first solving the nonlinear (NLP) quality 

optimization model and then solving a MILP model to optimize temporal and resource decisions. 

J. Li and Karimi (2011) developed a slot-based MILP formulation for an integrated treatment of 

recipe, specifications, blending, and storage considering real-life features such as multipurpose 

product tanks, parallel nonidentical blenders, minimum run lengths, changeovers, piecewise 

constant profiles for blend component qualities and feed rates, etc. To reduce the computational 

complexity that arises from non-linear model, many have used constant component properties. 

(Jia & Ierapetritou, 2003; Joly et al., 2002) Kelly (2006) emphasized the importance of logistics 

details in refinery blending and delivery problem and proposed a decomposition of the blend 

scheduling problem into two sub-problems, logistics and quality. The logistics sub-problem 

considers only the quantity and logistics related variables and the problem constraints whereas the 

quality sub-problem considers product specifications, quantity constraints and bounds. Their 

work is based on discrete time representation and their formulation includes many logistics 

details such as minimum run-length, sequence dependent changeovers, and fill-draw-delay. They 

observed that incorporating logistics details into scheduling problem can yield substantial 

improvements in efficiency and productivity. A MILP optimization model based on continuous 

time representation, using unit specific event points, and fixed blend recipe was developed by Jia 

and Ierapetritou (2003). They modeled multipurpose product tanks, but they do not include 

certain features such as sequence dependent switchovers constraints, fill-draw-delay at product 

tank, and one flow out of blender. An iterative procedure is proposed by Mendez et al. (2006) to 

deal with variable recipe and nonlinear properties for different grades of products by replacing 

MINLP with sequential MILP formulations. They enforced prepared blend recipe whenever it is 

possible. In their model formulation they did not consider multipurpose product tanks, fill-draw-

delay, and minimum run-length requirement. There is extensive literature on the refinery blending 
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problem using nonlinear optimization tools. (Adhya et al., 1999; Audet et al., 2004; Gounaris et 

al., 2009) 

 With more product grades, stricter specifications, new government regulations, and fewer 

feasible blends, refineries face increasing challenges to maintain, let alone increase, profitability. 

What is needed is a comprehensive model for the entire refinery scheduling problem and for 

various refinery configurations that addresses quality, quantity, and logistics issues in a unified, 

yet flexible approach. The comprehensive model is complex, hard to build and solve and there is 

sparse work in literature in this area. Moro et al. (1998) proposed a planning model for refinery 

diesel production where the emphasis is on blending relations. Pinto et al. (2000) proposed a 

planning and scheduling model for refinery production and distribution operations. Their 

formulation is based on discretization of time and the model includes features such as sequence 

dependent transition cost of products within oil pipeline. C. Luo and Rong ; Chunpeng Luo and 

Rong (2007) developed a two-tiered decision-making hierarchical scheduling model for overall 

refinery. The upper level optimization model is based on discrete time formulation and it is used 

to determine sequencing and timing of operations modes and to decide the quantities of materials 

produced/consumed at each operations mode. The upper decisions level uses aggregated tanks 

storage capacity whereas the lower level uses heuristics to obtain a detailed schedule. They 

consider multipurpose product tanks via an iterative procedure that allows to readjust aggregated 

tank capacity at the lower level by changing multipurpose tank service mode and then to 

recalculate corresponding optimal solution at the upper level. The logistics details are ensured 

through heuristics at the lower level. There are also several commercial tools available for 

refinery scheduling such as Aspen Petroleum Scheduler, Aspen Refinery Multi-Blend Optimizer, 

Honeywell‟s Production Scheduler, and Honeywell‟s Blend. Honeywell‟s Production Scheduler 

has a logistics solver to optimize logistics and quantity problems and a quality solver to solve 

quantity and quality problems. Most of the models utilized in these commercial tools are based on 

discrete time formulation.  
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In this work, we present a comprehensive integrated optimization model for the 

production units and end-product blend scheduling problem that incorporates quantity, quality 

and logistics decisions related to real-life refinery operations. The model is driven by the 

shipment plan and accounts for the tradeoffs between costs of keeping inventory and changing 

run-modes. The goals of refinery operations scheduling are to maximize the profit and 

performance while minimizing the penalties subject to quantity, quality, and logistics giveaways 

and nonattainment. (Kelly, 2003a) The outline of the chapter is as follow. Section 4.2 presents the 

problem definition, section 4.3 presents the mathematical formulation which is applied to a 

realistic case study example to illustrate the applicability of proposed model to large scale model 

in section 4.4, and the chapter concludes with section 4.5.  

4.2. Problem Definition 

The production scheduling determines the detailed schedule of each production unit and each 

demand order unloading for a short time period (typically 10 days - 1 month) by taking into 

account the operational constraints of the plant. The schedule defines which products should be 

produced and which materials should be consumed in each time interval over a given small time 

horizon; hence, it defines which run-mode to use and when to perform changeovers in order to 

meet the market needs satisfying the demand and product specifications. Large-scale scheduling 

problems arise frequently in oil refineries where the main objective is to assign sequence of tasks 

to processing units within certain time frame such that the demand of each product is satisfied 

before its due date while minimizing the cost or maximizing the total profit.   

The refinery production system considered here is composed of raw material storage 

tanks, production units, blending units, intermediate tanks, and final product tanks. Each 

production unit is defined as a continuous processing element that transforms the input streams 

into several products according to the variable production recipe. For reasons of operating 

flexibility and cost effectiveness, refinery unit operations can generate a range of intermediate 
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streams which are blended into finished products. For simplicity, we separate the final products 

into two groups: a) products that are stored in tanks and b) products that are not stored in tanks 

but are supplied to the market directly from production units.  In this work, we limit the use of 

term “demand order” only for the first group of products and each demand order corresponds to 

only one kind of product since each multiproduct order can be decomposed into several single 

product orders. The characteristics of the problem considered in this chapter are given in detail in 

the next subsection.  

Problem Characteristics 

The key information available for the refinery include the following:  

1) Maximum and minimum proportion of material produced or consumed at each production 

unit 

2) Maximum and minimum production flow-rates for each production unit 

3) Maximum and minimum inventory capacities for each storage tank, identity of material type 

that each  tank can service, and initial holdup in each tanks  

4) Upper limit on the flows out of finished product tanks 

5) Demand orders for group A  products and their  delivery time windows 

6) Total demand for group B products  

7) Maximum allowable heel quantity for multipurpose product tanks  

8) Minimum run-length for units and maintenance time for multipurpose tanks between run-

modes  

9) Quality specifications limit on blend product properties 

10) Available scheduling time horizon of 10 days  

The goal of optimization is to determine: 
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1) The sequencing of tasks for production units 

2) Each product pool that satisfies demand orders 

3) Durations of tasks at production units and duration of unloading tasks from product pools 

4) The inventory levels in component and product pools 

5) Production rates for units and unloading rate for product pools 

6) Composition of material produced and consumed 

The problem is also restricted by a series of logistics details as follows:  

1) At any given time, only one task can take place at production unit  

2) Minimum run-length constraint for production units  

3) Non-contiguous product order fulfillment for product in group A 

4) Blend unit can send product to multiple pool sequentially, not simultaneously    

5) Product tanks cannot distribute and receive material at the same time 

6) Fill-draw-delay restriction for product pools enforces certain amount of downtime on tanks 

after product loading event has taken place 

7) Multipurpose tanks can store different types of materials over time, but only one type of 

material at any given time  

8) Sequence dependent switch over for multipurpose tanks where higher quality product is 

stored before lower grade products 

9)  Maximum heel requirement restriction does not allow product heel to exceed specified 

maximum heel quantity when the multipurpose tank is switched to a different mode       

10) Downgrading of the higher grade product to lower grade product if necessary 

Although a realistic case study is modeled the following assumptions had to be made:  
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1) Unlimited supply of raw materials  

2) Fixed recipe for crude distillation units (CDUs)  

3) Constant blend components properties  

4) Perfect mixing in the blender 

5) Product tank cannot satisfy multiple demand orders simultaneously 

6) Each demand order involves only one product 

7) For production units, the amount of time required for run-modes change is neglected 

8) Changeover times in multipurpose tanks from higher to lower grade product are negligible 

Before presenting the mathematical model, a case study with realistic data provided by 

Honeywell Process Solutions (HPS) is presented in the next section. The refinery produces diesel 

fuels, jet fuel, and components for gasoline production. This case study will be used to illustrate 

the applicability of the proposed model in section 4.3.   

4.2.1. Case study description 

The production process at Honeywell refinery consists of 2 blender units, 13 other processing 

units, and 2 non-identical parallel crude distillation units (CDUs) that process two different type 

of crude oils. The schematic of production system is shown in Figure 4.2.  There are two charging 

tanks for one CDU and a charging pipeline for another CDU. The CDUs concurrently transform 

crude oil into several distillation cuts. These distillation cuts from the CDUs are then sent to other 

production units for fractionation and reaction to produce blend components for finished 

products. The oil-refinery under case study has following production units: Vacuum Tower, 

Coker conversion unit, Continuous catalytic reforming (CCR) process unit, Isomax, Fluid 

catalytic cracking (FCC) unit, Penex, De-C5, and Alkylation process unit. Current regulatory 

requirements to produce ultra-low-sulfur fuels require the use of hydrotreating technology. Thus, 
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the refinery also includes three hydrodesulfurization (HDS) units: Naphtha HDS, Diesel HDS, 

fluid catalytic cracking HDS (FCC HDS).  

 

Figure 4.2 Schematic of the refinery production plant for reference example 

Honeywell refinery utilizes Jet blender and Diesel blender units to blend components 

produced by other production units to produce final products. Jet blender unit blends straight run 

jet, coker jet, and isomax jet streams to produce jet fuel which can be stored in 2 product tanks. 

Diesel blender unit produces three different grades of fuel: CARB diesel, EPA diesel, and Red-

dye diesel. Light cycle oil, HDS diesel, and hydrocracked diesel are blended to produce these 

three grades of diesel products using three different run-modes. There are two dedicated tanks for 

each grade of diesel products and one multipurpose tank that can service CARB and EPA diesel.      

There is 6 hours of cleaning or maintenance downtime when the multipurpose tank 

service switches from lower grade of diesel product to higher grade of product. This cleaning 

downtime is essential to remove any sulfur contamination present in the tank before low sulfur 
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product is sent for storage. The product tank has 4 hours of down time called fill-draw-delay for 

certificate of analysis preparation and to let the product settle down and mix before is shipped to 

the market.  

4.3. Mathematical Formulation 

In this section we present the mathematical formulation for the refinery production scheduling 

problem based on continuous time representation and the idea of unit specific event points.(M. G. 

Ierapetritou & C. A. Floudas, 1998; M.G. Ierapetritou & C.A. Floudas, 1998; Ierapetritou et al., 

1999) A state-task network (STN) representation introduced by Kondili et al. (1993) is used to 

describe the refinery operations. The model involves material balance constraints, capacity 

constraints, demand constraints, quality constraints, logistics constraints, and setup constraints. 

Material balance constraints connect the amount of material at one event point to next event 

point, storage and production capacity limit is enforced by capacity constraints, and demand 

constraints ensure that all the products demand is satisfied while quality constraints ensure 

product quality specifications. Logistics constraints include all the logistics details presented in 

the previous section. If a feasible solution that satisfies all the quantity, quality, and logistics 

constraints cannot be obtained, then it is essential to produce a schedule that can still be 

implemented in real-life refinery sacrificing model feasibility. In this case we introduced artificial 

variables to treat any infeasibility present and these variables are subsequently penalized in the 

objective function to obtain an optimal solution that satisfies as many as possible from the 

quantity, logistics, and quality constraints by minimizing giveaways. A detailed description of the 

each variable and parameter used in the model can be found in the nomenclature section.  

Variable recipe constraints: 

Upper and lower bounds are forced on the individual components volumetric flow rates processed 

at each production units. Here 
, ,i j nB is a total amount of material processed at unit j performing 
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task i at event point n . Constraint (1a) enforces the bound for the amount produced, whereas 

constraint (1b) ensures that the amount consumed is restricted by the imposed recipe.  

,min ,max

, , , , , , , , , , , , ,p p P

s i i j n s i j n s i i j n s iB bp B s S i I j J n N         (1a) 

,min ,max

, , , , , , , , , , , , ,c c C

s i i j n s i j n s i i j n s iB bc B s S i I j J n N       

 

(1b) 

Furthermore, the amount of material processed is equal to the total amount of material consumed 

or produced. Therefore, constraints (1a-1b) can be replaced by (2a-2c) and we can eliminate 

variable
, ,i j nB . Constraint (2c) satisfies material balance at each production unit j , which states 

that the total amount of material consumed is equal to the total amount of material produced.   

,min ,max

, , , , , , , , , , , , , , ,
p p

i i

p p P

s i s i j n s i j n s i s i j n s i

s S s S

bp bp bp s S i I j J n N  

  

         
(2a) 

,min ,max

, , , , , , , , , , , , , , ,
c c
i i

c c C

s i s i j n s i j n s i s i j n s i

s S s S

bc bc bc s S i I j J n N  

  

       
 

(2b) 

, , , , , , , , ,
p c

ii

s i j n s i j n j

s Ss S

bp bc j J i I n N


     
 

(2c) 

In our work we assume that the crude distillation units have the same lower and upper bounds 

which means that the distillation cuts are assumed to be known.  

Material balance constraints for production units: 

Constraints (3a) connect the material produced at production units to subsequent storage tanks, 

production units, and end product delivery to market. Constraints (3b) represents that the 

consumption at a production unit is equal to the amount of material coming from preceding 

storage tanks, previous units, and raw material supply.  

, , , , , , , , , , , , , ,
pk seq c

j s sj j

p

s i j n s j k n s j j n s j n s

i I k K K j J J

bp Kif JJf Uof s S j J n N

    

          
(3a) 

, , , , , , , , , , , , , ,
kp seq p

j s sj j

c

s i j n s k j n s j j n s j n s

i I k K K j J J

bc Kof JJf Uif s S j J n N

    

        
 

(3b) 

Material balance constraints for storage tanks: 

The material balance constraints for storage tanks are given by equations (4a-4b). The equations 

state that the inventory of a tank at one event point is equal to that of previous event point 
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adjusted by the input and output streams amount and by taking into account the downgraded 

products amount.  

, , , , , , , , , , , , ,

, , , , , , , , , 1

pk kp
sk k

k k

s k n s k s j k n s k n s j k n k o n

o Oj J j J

s s k n s s k n s

s S s S

st sto Kif Rif Kof Lf

std std s S k K n

 

 

  

    

     

  

 
 (4a) 

, , , , 1 , , , , , , , , , ,

, , , , , , , , ,1

pk kp
sk k

k k

s k n s k n s j k n s k n s j k n k o n

o Oj J j J

s s k n s s k n s

s S s S

st st Kif Rif Kof Lf

std std s S k K n N



 

 

  

    

      

  

 
 

(4b) 

The variable , , ,s s k nstd  is defined as the tank heel of material s present at the end of event point 

1n that is downgraded to material s during event point n .  

, , ,

0 if product '  is downgraded to in tank  at event point 

0 otherwise  
s s k n

s s k n
std 


 


 

When there is a changeover from higher grade product to lower grade, the tank heel present in the 

tank would be transformed into lower grade product without violating any product property 

specifications of lower grade product.   

Capacity constraints for production units: 

Constraint (5) enforces that the material processed by unit j  performing task i  is bounded by the 

maximum and minimum rate of production. Constraint (6) gives an upper bound on total amount 

of material processed at unit j  over the entire time horizon.  

   min max

, , , , , , , , , , , , , , , ,
p

i

i j i j n i j n s i j n i j i j n i j n i

s S

R Tf Ts bp R Tf Ts i I j J n N



        (5) 

max

, , , , , , , , ,
p

i

s i j n i j i j n i

s S

bp UH R wv i I j J n N



      
 

(6) 

Capacity constraints for storage tanks: 

Constraints (7a-7c) are capacity constraints for storage tanks and they define the binary variables 

associated with flow in and out of the tanks.  
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max

, , , , , , , , ,pk

s j k n k s j k n jKif V in j J k K n N     

  

(7a) 

max

, , , , , , , , ,kp

s j k n k s j k n jKof V out j J k K n N     
 

(7b) 

max

, , , , , , , , ,s k o n k k o n s sLf V l s S k K o O n N        (7c) 

Constraints (8a-8c) represent that the material present in the tank should not exceed maximum 

storage capacity. The multipurpose tanks can store different grades of products and if the higher 

grade product is present in the tank when it is being serviced for lower grade product, then the 

high quality product will be downgraded into lower quality. The downgraded products are taken 

into consideration for storage capacity limit in constraints (8a-8b).  

max

, , , , , , , , , , , , , , , , , 1
pk

k kk

s k s j k n s k n s s k n s s k n k s k n s

s S s Sj J

sto Kif Rif std std V y s S k K n 

  

          
 (8a) 

max

, , 1 , , , , , , , , , , , , , , , ,1
pk

k kk

s k n s j k n s k n s s k n s s k n k s k n s

s S s Sj J

st Kif Rif std std V y s S k K n N 
  

           
 (8b) 

max

, , , , , , , , , ,
kp

sk

s k j n k o n k s k n s

o Oj J

Kof Lf V y s S k K n N


      

 

(8c) 

The maximum and minimum unloading (lift) rate for product storage tanks must be bounded as 

specified by constraint (9).  

   min max

, , , , , , , , , , , , ,k k o n k o n k o n k k o n k o n pRU Tof Tos Lf RU Tof Tos k K o O n N         (9) 

Quality constraints: 

The final products produced by the blenders should satisfy the quality specifications. These 

product qualities are assumed to be computed by volumetric average to maintain model linearity. 

Since the blend components properties are assumed to be constant, linearity of the model is 

preserved. Constraint (10) guarantees that final product leaving the outlet port of the blender 

satisfies set product quality range. Here, min

,s pP and max

,s pP are the upper and lower limit of property p 

for final blend product s.  
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min max

, , , , , , , , , , , , , , , ,

,

, , ,
p p c p
s s i s

l u p

s p s i j n s p n s p s i j n s p s i j n s p n b s

i I i I s S i I

P bp pg P bc P bp pg s S j J n N 

   

           
(10) 

When the final products produced by the blenders cannot meet the quality specifications at event 

point n, we introduced positive slack variables 
, ,

l

s p npg  and
, ,

u

s p npg which are penalized in objective 

function to minimize giveaways.  

Demand constraints: 

Demand of each finished product must be satisfied during the entire scheduling horizon. 

Constraint (11) guarantees that sufficient amount of product will be available to meet the demand.  

, , , , , ,

, ,

, ,l u

o s s o s k o n s j n o s o b s f

k n j n

D r dg rg Lf Uof D dg s S o O s S              
 

(11) 

Due to production capacity limitation, sometimes the demand order of finished product cannot be 

satisfied during the entire scheduling horizon. A feasible solution can be obtained by introducing 

the positive artificial variables l

odg , u

odg  and 
srg in the demand constraint which are penalized in 

the objective function to minimize quantity giveaway. 

Logistics Constraints: 

Allocation constraints: Constraint (12) expresses that if a task i  starts at event point n , then it 

must be performed in one of the suitable units j . It also satisfies the operating detail that a unit 

can physically perform only one task at any given time. 

, , 1, ,
j

i j n

i I

wv j J n N


   
 

(12) 

The requirement that multipurpose storage tanks can store only one type of products at any time 

is enforced by equation (13).  

, , 1, ,
s

m

s k n

s K

y k K n N


   
 

(13) 

Minimum run-lengths: The minimum run-length for each task is enforced by constraint (14). Here 

the minimum run-length (
iRL ) is 15 hours.  
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 , , , , , , , ,1 , , ,i j n i j n i i j n i j n jTf Ts RL wv UH wv i I j I n N       

 

(14) 

Similar to minimum run-length constraint, maximum run-length restriction can be imposed if 

necessary.  

Loading and unloading constraints: Product tanks cannot load and unload material at the same 

time and this restriction is enforced by equations (15). Furthermore, we restrict that product tanks 

can only satisfy one demand order at any given time.  

, , , , , 1, , ,
k

pk

s j k n k o n k

s S o O

in l k K j J n N
 

      
 

(15) 

A one-flow-out restriction for blender unit: A one-flow-out restriction given by equation (16) is 

required for all operation tasks on a blender to ensure that the product output from the blend unit 

can only go to one product tank. This restriction is imposed because the refinery has a blend 

property online controller that is set up to fill a specific product tank by taking into account the 

tank heel properties. If a blend unit does not comply with this restriction and send the output from 

the blender to multiple tanks simultaneously and not sequentially, then this miss-operation can 

result in a significant off-specification of product stocks.   

, , , 1, , ,
pk

s j

p

s j k n b s

k K K

in s S j J n N
 

    
 

(16) 

Set-up constraints: To model tank set-up, we use the binary variables ,k n  which are defined by 

constraints (17a-17b).  

,

1 if storage tank  becomes active at event point  for first time

0 otherwise
k n

k n



 


 

, , , , , ,

,

, , , 0
k k

h

k n s k n s k n s k

s S s S n n s

y y k K n N yo 

  

       
 

(17a) 

, , , , , ,

,

, , , 0
k k

h

k n s k n s k n s k

s S s S n n s

y y k K n N yo  

   

       
 

(17b) 
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Similarly for production unit, the setup variables are 
,j n  and constraints (18a-18b) represent the 

utilization of unit at event n for the very first time during the production time horizon. 

,

1 if unit  becomes active at event point  for first time

0 otherwise
j n

j n



 


 

, , , , ,

,

, ,
i i

h

j n i j n i j n

i J i J n n

wv wv j J n N 

  

     
 

(18a) 

, , , , ,

,

, ,
i i

h

j n i j n i j n

i J i J n n

wv wv j J n N


 

   

     
 

(18b) 

Since, the refinery operates in a continuous mode; we only define the setup variables for identical 

parallel production units and tanks. Setup variables are penalized in the objective function to 

minimize the total number of units and storage tanks that are utilized during refinery operation.  

Changeovers constraints: Different mode of production and storage tasks are specified by 

different types of product being produced or stored. Changeovers between modes of operations 

cause disturbances and additional costs. Thus, few changeovers (long sequences of the same 

mode of operations) are desired. Continuous variables , , ,i i j n   and , , ,s s k n   denote changeover of 

task at production unit j and changeover of service mode at product pool k, respectively.  

, , ,

1 if mode changes from '  at event point  to  at later event point

0 otherwise
i i j n

i n i
 


 


 

, , ,

1 if mode changes from '  at event point  to  at later event point

0 otherwise
s s k n

s n s
 


 


 

Changeover constraints proposed by Shaik et al. (2009) are used in this work. Constraints (19-

20c) are thus used to force the changeover variables to 1 if there is a change in operations mode 

from event point n to any later event point.  

, , , , , , , , , ,m

i i j n i j n j jwv j J i I i I i i n N  
       

 
(19a) 
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, , , , , , , , ,

,

1 ,

, , , , ,

j j

i i j n i j n i j n i j n

i I i I n n n n

m

j j

wv wv wv

j J i I i I i i n N n n N

      

        

   

         

 
 (19b) 

, , , , , , , , ,

,

1 , , , , , , ,
j

m

i i j n i j n i j n i j n j j

i I n n n

wv wv wv j J i I i I i i n N n n N     

    

               
(19c) 

, , , , , , , , , ,m

s s k n s k n k ky k K s S s S s s n N  
       

 
(20a) 

, , , , , , , , ,

,

1 ,

, , , , ,

k k

s s k n s k n s k n s k n

s S s S n n n n

m

k k

y y y

k K s S s S s s n N n n N

      

        

   

         

 
 (20b) 

, , , , , , , , ,

,

1 , , , , , , ,
k

m

s s k n s k n s k n s k n k k

s S n n n

y y y k K s S s S s s n N n n N     

    

               
(20c) 

The changeover variable 
, ,s s ko  in equation (20d) is active if there is material s’ present in the 

tank at the beginning of the time horizon and then service is changed over to new material s at 

event point n=1. 

, , , , , ,1, , , , , 1m

s k s k n s s k k k s kyo y o k K s S s S s s yo 
         

 
(20d) 

 

Changeovers variables , , ,i i j n  , , ,s s ko  and , , ,s s k n   are penalized in the objective function to 

minimize the changeovers.  

Heel requirement: When changeover occurs from higher to lower quality product, the holdup in 

the tank must be less than equal to the maximum heel quantity specified. The maximum heel 

requirement can be enforced on , , ,s s k nstd   as soft constraint using equations (21a-21b) and positive 

slack variable , ,s k nmh . The artificial variable , ,s k nmh  is penalized in the objective function to 

minimize the heel. 

 max

, , , , , , ,1 , , , , , 1heel

s s k n s k n k k s s k s s s sstd mh V V o k K s K s K n    
           (21a) 

 max

, , , 1 , , 1 , , ,1 , , , , ,heel

s s k n s k n k k s s k n s s s sstd mh V V k K s K s K n N     
           (21b) 
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Product downgrading: The downgrading of product happens, 1) there is a changeover of service 

at used multipurpose tanks or 2) it is required to meet lower quality product lifting demand order 

due to production capacity limitation. The downgrading of product is captured by equations (22a-

22e). The variable associated with downgrading 
, , ,s s k nstd   is zero when the switchover occurs from 

lower to higher quality product. 

, , , 0, , , , ,m

s s k n s s s sstd k K s K s K n N  
      

 
(22a) 

max

, , , , , , , , , , 1m

s s k n k s s k s s s sstd V o k K s K s K n    
          (22b) 

max

, , , 1 , , , , , , , ,m

s s k n k s s k n s s s sstd V k K s K s K n N    
        (22c) 

   max max

, , , , , , , , , , ,1 1 ,

, , , , 1

s s k n k s s k s k s s k n k s s k

m

s s s s

std V o sto std V o

k K s K s K n

 

 

   



     

     
 

(22d) 

   max max

, , , 1 , , , , , , , , 1 , , ,1 1 ,

, , , ,

s s k n k s s k n s k n s s k n k s s k n

m

s s s s

std V st std V

k K s K s K n N

 

 

    



     

       
(22e) 

Timing Constraints: 

Sequence Constraints for production units: Finishing time of any task must be greater than the 

starting time of that task, as represented by constraint (23a). Constraint (23b) expresses that if 

task i  starts at event point 1n , then it must start after the end of the same task happening at 

event point n  while equation (23c) enforces the time sequence constraint for different tasks 

happening in the same unit. 

, , , , , , ,i j n i j n iTf Ts i I j J n N      (23a) 

, , 1 , , , , , ,i j n i j n iTs Tf i I j J n N n N      

 

(23b) 

 , , 1 , , , ,1 , , , , , ,i j n i j n i j n j jTs Tf UH wv j J i I i I i i n N n N 
          

 

(23c) 



85 

 

 

Constraints (24a-24d) represent that two consecutive productions
 
with no storage in between, 

happen at the same time because production units operate as continuous processes. Here, unit j

consumes the material produced by unit j .    

 , , , , , , , ,2 , , , , ,seq

i j n i j n i j n i j n j j jTs Ts UH wv wv j J j J i I i I n N     
            (24a) 

 , , , , , , , ,2 , , , , ,seq

i j n i j n i j n i j n j j jTs Ts UH wv wv j J j J i I i I n N     
          

 

(24b) 

 , , , , , , , ,2 , , , , ,seq

i j n i j n i j n i j n j j jTf Tf UH wv wv j J j J i I i I n N     
          

 

(24c) 

 , , , , , , , ,2 , , , , ,seq

i j n i j n i j n i j n j j jTf Tf UH wv wv j J j J i I i I n N     
          

 
(24d) 

Sequence Constraints for storage tanks: Finishing time of the inlet, outlet transfer service has to 

be greater than or equal to the start time of that service. Constraints (25-27) enforce the sequence 

time requirement for movement transfer task from one event point to next event point for same 

unit-tank connection.  

, , , , , , ,pk

j k n j k n kTsf Tss k K j J n N      (25a) 

, , 1 , , , , , ,pk

j k n j k n kTss Tsf k K j J n N n N      

 

(25b) 

, , , , , , ,kp

k j n k j n kTsf Tss k K j J n N      (26a) 

, , 1 , , , , , ,kp

k j n k j n kTss Tsf k K j J n N n N      

 

(26b) 

, , , , , , ,k o n k o n pTof Tos k K o O n N      (27a) 

, , 1 , , , , , ,k o n k o n pTos Tof k K o O n N n N      

 

(27b) 

Start time sequence constraints for tanks receiving/sending material from/to multiple production 

units is given by constraints (28a) and (28b). Whereas constraints enforcing time sequence 

requirement for different type of demand orders satisfied by the tank is given equation (28c).  
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 , , 1 , , , , ,1 , , , , , ,pk pk

j k n j k n s j k n k kTss Tsf UH in k K j J j J j j n N n N 
          

 

(28a) 

 , , 1 , , , ,1 , , , , , ,kp kp

k j n k j n k j n k kTss Tsf UH out k K j J j J j j n N n N 
          

 

(28b) 

 , , 1 , , , ,1 , , , , , ,k o n k o n k o n pTos Tof UH l k K o O o O o O n N n N 
          

 

(28c) 

Sequence constraint for material transfer in and out of intermediate tanks happening at the same 

event point is enforced by equations (29a-29d).   

   , , , , , , , , , ,1 1 , , , ,pk kp

j k n s j k n k j n s k j n k kTss UH in Tss UH out k K j J j J n N 
           (29a) 

   , , , , , , , , , ,1 1 , , , ,pk kp

j k n s j k n k j n s k j n k kTss UH in Tss UH out k K j J j J n N 
         

 

(29b) 

   , , , , , , , , , ,1 1 , , , ,pk kp

j k n s j k n k j n s k j n k kTsf UH in Tsf UH out k K j J j J n N 
           (29c) 

   , , , , , , , , , ,1 1 , , , ,pk kp

j k n s j k n k j n s k j n k kTsf UH in Tsf UH out k K j J j J n N 
         

 

(29d) 

Constraints (30a-30b) connect material transfer from one event point to next event point. Product 

tanks cannot simultaneously load and unload material and this restriction is enforced by equations 

(31a-31b). Variable 
kta is a fill-draw-delay parameter for tank k . The tank unloading happens 

anytime after the material flow into the tank is over and fill-draw-delay downtime has elapsed. 

Product flow into the tank starts after the end of the product unloading.  

 , , 1 , , , , ,1 , , , , ,pk kp

j k n k j n s k j n k kTss Tss UH out k K j J j J n N n N 
          (30a) 

 , , 1 , , , , ,1 , , , ,pk kp

k j n j k n s j k n k kTss Tss UH in k K j J j J n N 
         (30b) 

 , , 1 , , , , , , , ,1 , , , , ,pk

k o n j k n s j k n k s j k n s k sTos Tsf UH in ta in s S k K j J o O n N            (31a) 

 , , 1 , , , ,1 , , , ,pk

j k n k o n k o n kTss Tof UH l k K j J o O n N          (31b) 

The tank needs to go through cleaning maintenance to store higher grade product after servicing 

lower grade product. This maintenance downtime requirement is captured by constraints (31c). 
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Constraints are relaxed if the there is no switchover in the service from lower grade to higher 

grade product type. 

 , , 1 , , , , ,2 1 , , , , , , ,pk

j k n k o n k s s k n k s s s k sTss Tof tclean k K s S s S j J o O n N    
            (31c) 

Sequence Constraints for production units and storage tanks: Upstream production and material 

flow into storage tank happens at the same time, which is imposed by constraints (32a-32d).  

 , , , , , , , , ,2 , , , , ,pk

i j n j k n i j n s j k n s k jTs Tss UH wv in s S k K j J i I n N           (32a) 

 , , , , , , , , ,2 , , , , ,pk

i j n j k n i j n s j k n s k jTs Tss UH wv in s S k K j J i I n N           (32b) 

 , , , , , , , , ,2 , , , , ,pk

i j n j k n i j n s j k n s k jTf Tsf UH wv in s S k K j J i I n N           (32c) 

 , , , , , , , , ,2 , , , , ,pk

i j n j k n i j n s j k n s k jTf Tsf UH wv in s S k K j J i I n N           (32d) 

For intermediate storage tanks, downstream production and material flow out of feed tank occur 

simultaneously. This constraint is imposed by equations (33a-33d). 

 , , , , , , , , ,2 , , , , ,kp

i j n k j n i j n s k j n s k jTs Tss UH wv out s S k K j J i I n N           (33a) 

 , , , , , , , , ,2 , , , , ,kp

i j n k j n i j n s k j n s k jTs Tss UH wv out s S k K j J i I n N         

 

(33b) 

 , , , , , , , , ,2 , , , , ,kp

i j n k j n i j n s k j n s k jTf Tsf UH wv out s S k K j J i I n N         

 

(33c) 

 , , , , , , , , ,2 , , , , ,kp

i j n k j n i j n s k j n s k jTf Tsf UH wv out s S k K j J i I n N         
 

(33d) 

All tasks should start and finish before the end of the scheduling time horizon as stated in (34a-

34d).  

, , , ,, , , ,i j n i j n iTs H Tf H i I j J n N       (34a) 

, , , ,, , , ,pk

j k n j k n jTss H Tsf H j J k K n N       (34b) 
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, , , ,, , , ,kp

k j n k j n jTss H Tsf H j J k K n N       (34c) 

, , , ,, , , ,k o n k o n pTos H Tof H o O k K n N       (34d) 

Intermediate due dates: Intermediate due dates for group A products, which are stored in product 

pools, are given by constraints (35a-35b). Orders can start unloading anytime after the vessel 

arrival time and finish unloading anytime before vessel departure time. The due date requirements 

are enforced as inequality constraints to consider demurrage by using slack variables 
oTearly  and 

oTlate  which are penalized in the objective function.  

 , , , ,1 , , ,k o n k o n o o pTos UH l times Tearly o O k K n N         (35a) 

 , , , ,1 , , ,k o n k o n o o pTof UH l timef Tlate o O k K n N         (35b) 

4.3.1. Valid Inequities  

Valid inequalities are added in the proposed model to improve the computational efficiency of the 

proposed model. Constraints (36a-36b) enforce that if the material s is flowing into the tank at 

event point n , then the binary variable , ,s k ny is 1 and similarly, if the material is flowing out of the 

tank, then the binary variable is also 1.  

, , , , , , , ,
pk pk
k k

s j k n s k n k

j J j J

in y k K s S n N
 

       
(36a) 

, , , , , , , ,
kp kp
k k

s j k n s k n k

j J j J

out y k K s S n N
 

       
(36b) 

If the tank is sending or receiving the material from a production unit, then that unit is active and 

these requirements are represented by equations (37a-37b).  

, , , , , , , ,
pk pk p

j sj j

p

s j k n i j n j

i I Ik K k K

in wv j J s S n N
  

        
(37a) 

, , , , , , , ,
kp kp c

j sj j

c

s k j n i j n j

i I Ik K k K

out wv j J s S n N
  

        
(37b) 
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Since loading and unloading cannot happen at the same event point, if the material is unloaded at 

event point 1n then tank is not empty at previous event point n .This is feature of model is 

captured by equation (38).  

, , 1 , , , , ,
k

k o n s k n

o s S

l y k K n N n N



       
(38) 

If two units are consecutive without any storage tank between them, then constraint (39) impose 

the simultaneous operation of these units due to the continuous operation mode. However, this 

constraint is not imposed on parallel production units that can produce the same type of products.  

, , , ,

/ , / ,

, , ,
seq seqh h

j jj j

h

i j n i j n

j J J i I j J J i I

wv wv j J j J n N



 

     

       
(39) 

Constraint (40) enforces the material balance constraint in addition to the constraint presented in 

equation (2c).  

, , , , , , , ,

, , , , , , , , , ,

kp seq p
s sj j

pk seq c
s sj j

s k j n s j j n s j n

k K K j J J

s j k n s j j n s j n

k K K j J J

Kof JJf Uif

Kif JJf Uof j J n N



   



   

  

    

 

 
 (40) 

Objective Function: 

The objective function (41) is used to maximize the performance and profit of total production. 

The refinery performance is represented by the minimization of utilization of units and tanks, all 

the connection between production units and tanks, start up set-ups, changeovers, and production 

downgrading. The blending task is significantly improved by reducing the quantities of 

downgraded products. Logistics and quality give-aways, under and over production, and 

demurrage are penalized. Profit term includes the costs of feeds and revenue of products. The 

penalty weights are assigned arbitrary to each term depending on its importance in schedule. The 

deviation from intermediate due dates is heavily penalized, quality give-aways are penalized the 

second most, while connection between unit and tank is least heavily penalized. It is favorable 

that the multipurpose product tanks store different grade products only in a certain order that is 
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allowed by the sequence dependent switchovers constraint. The favorable switchovers are from 

higher grade of product to lower grade and unfavorable switchovers are from lower grade to 

higher grade product. Due to contamination issues, unfavorable switchovers are more heavily 

penalized than favorable. Similar to multipurpose tanks, there is a sequence dependent switchover 

restriction for multipurpose blend units. The switchover from the run mode that produces better 

quality product to lower quality product is least penalized than vice versa.  

1 2 3 4

, , , , , , , , , , ,

, , , , , , , , ,

4 5 6 7

, , , , , , , , , ,

, , , , , , , , ,

8

,

p
i s p sj

c h h m
j s j j

i j i j n k s k n k k o n j k s j k n

i j J n s k K n k K o n j s S k K n

k j s k j n j j n k k n i i i i j n

j s S k K n j J n k K n j J i I i I i i n

s s

z c wv c y c l c in

c out c c c

c o

  



    

 

        



   

   



   

   

8 9

, , , , , , , ,

, ,, , , , , , ,

10 11 12

, , , , , , , , ,

, ,, , , , , ,

13

, , ,

, ,

m m
sk k k k

m

m m
bk k k

b

s s k s s s s k n k s k n

s k K nk K s S s S s s k K s S s S s s n

l

s s k n s k s k n s p s p nk K
s S p nk K s S s S s s n k K s S n

u

s p s p n

s S p

c c st

c std c mh c pg

c pg

  

          


      



 

  



  

  

14 15 16 17

18 19 19 20

, , , , , ,

, , , , , ,

21

, , ,

, , ,

f

c p
k s f s

b s s

l u

o o o o s s o o

n o O o O s S o O

o o s s k n s s j n s s j n

o O k s S n s j n s S j n

s s k o n

s S k K o O n

c dg c dg c rg c Tearly

c Tlate c Rif c Uif c Uof

c Lf

   

  

  

   

   



    

   



 (41) 

Note that the different penalty parameters have significant effect on the computational time 

required to obtain an optimal solution.  

4.4. Results on the Case Studies 

In this section two problems based on the realistic case study presented in section 4.2.1 are solved 

to optimality and analyzed to show the effectiveness of the proposed model. Each case study 

includes different set of examples that differ in either demands, intermediate due dates, or initial 

hold up in the tank. All the problems are solved on a Dell Precision (Intel
R
 Xeon

TM
 with CPU 

3.20 GHz and 2 GB memory) running on Windows XP using CPLEX 12.1.0/GAMS 23.2. Raw 

materials and finished product prices are given in Table 4.1 and the penalties parameter used in 

the objective function are given in Table 4.2.  

Table 4.1 Price of raw materials and final products 
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Material Price Material Price Material Price 

ANS crude oil 25 Jet Fuel 70 Pentane 40 

SJV crude oil 20 Refinery Gases 50 NC4 40 

Carb Diesel 80 Isomerate 60 Alkylate 60 

EPA Diesel 60 Reformate 60 FCC Gas 45 

Red Dye Diesel 50 Isomax Gasoline 65 Coke 30 

 

Table 4.2 Penalty parameters in objective function 

Penalty Parameter Value Penalty Parameter Value 

1

,carbnormal dieselblenderC  125 
11

,s kC  10 

1

,EPAnormal dieselblenderC  105 
12

,s pC  1000 

1

Re ,d dyenormal dieselblenderC  85 
13

,s pC  1300 

2

kC  1 
14

oC  1150 

3

kC  1 
15

oC  500 

4

,j kC  4 (multipurpose tank: 6) 
16

sC  1100 

5

jC  1 
17

oC  1400 

6

kC  150 
18

oC  1250 

7

,i iC   40 (Unfavorable: 50) 
19

sC  
1( ) ( )price s e q    

8

,s sC   60 (unfavorable: 70) 
20

sC  
1( )price s e  

9

kC   
1

max

kV


 
21

sC  
1( )price s q  

10

kC   
1

heel

kV


   

Where, 3 s

s

e r  and ,

,

2 o s

o s

q order  . 
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4.4.1. Case study 1 

The first case study is obtained by deleting three diesel product tanks to reduce the model size 

and to obtain medium scale case study. The medium scale refinery has only one dedicated tank 

for each three diesel product and one multipurpose tank that can service CARB and EPA diesel. 

For this problem, there are no product tanks receiving material from more than one blender unit 

and no raw material tank supplying material to multiple CDUs. Thus we exclude constraints (28a) 

and (28b) from the model because the time sequence requirements for intermediate tanks are 

satisfied by other sequence constraints present in the formulation. Data for different set of 

examples is given in Table 4.3 and Table 4.4 and results are shown in Table 4.5 and Table 4.6. 

The initial hold up in Table 4.4 is stated for multipurpose tanks. Demand of group B products has 

to be met before the end of the scheduling time horizon. In this case study, the scheduling horizon 

is 72 hours (3 days). The products P1, P2, P3, and P4 correspond to Red dye diesel, EPA diesel, 

CARB diesel and Jet fuel, respectively. In this case study, we have included 4 product qualities 

requirements for blend products. The rule of thumb for the smallest number of event points 

needed to obtain an optimal solution is (d+1) where d represents the total number of diesel 

products in the demand orders. For example, if only CARB and EPA diesel products are required, 

then 3 event points should be considered first.   

 For the examples addressed in the case study 1, the aforementioned valid inequalities 

allowed us to compute medium scale scheduling problems with significantly less computational 

effort. The first integer solution is obtained within 15 seconds for all the examples studied. The 

computational performance without and with valid inequalities is presented in Table 4.5 and 

Table 4.6, respectively. When the valid inequalities are included in the model, the number of 

variables remains the same, but the number of constraints and nonzero elements increase. Valid 

inequalities have no effect on quality of the optimal solution; rather their effect is concentrated in 

significantly reducing the computational effort needed to find the optimal solution. The CPU time 

required to reach optimal solution is reduced by 90% when the valid inequalities are present 
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versus when they are not included in the model. When example 3 is solved without valid 

inequalities, the optimal solution is not obtained even after 28 hours, whereas, when it is solved 

with valid inequalities, the optimal solution is obtained within 1 hour. The size of the model 

increases as the event point increases and time to obtain optimal solution also increases as 

observed for examples 4. In example 1, in order to satisfy the demand of order 2 (O2) within its 

delivery window, higher quality product P1 is downgraded to lower quality product P2. 

Multipurpose tank inventory data for example 1 is shown in Table 4.7.  Product degradation is 

observed in optimal solution of example 3 in order to satisfy the product demand of order 2.  

Table 4.3 Group A products demand order data for case study 1 

Ex. 

Orders (Product type, amount(kbbl), delivery window, delivery rate(kbbl/h)) 

O1 O2 O3 O4 O5 O6 O7 

1 

P3 

[10,100] 

[58,71] 

3 

P2 

[50,150] 

[10,20] 

10 

P1 

[50,175] 

[28.5,46.5] 

10 

P4 

[10,150] 

[40,70] 

3 

   

2 

P3 

[37,100] 

[65,72] 

10 

P2 

[55,150] 

[55,68] 

10 

P1 

[98,175] 

[30,43] 

10 

P4 

[112,150] 

[38,50] 

10 

P4 

[50,100] 

[59.6,71.5] 

10 

  

3 

P3 

[5,15] 

[10,23] 

10 

P2 

[5,21] 

[23,30] 

10 

P1 

[15,50] 

[36,48] 

10 

P1 

[10,75] 

[54,65] 

10 

P4 

[50,150] 

[25,38] 

10 

P4 

[25,75] 

[55,72] 

10 

P2 

[10,38] 

[63,72] 

10 

4 

P3 

[5,15] 

[10,23] 

P2 

[5,21] 

[23,30] 

P1 

[15,50] 

[36,48] 

P1 

[10,75] 

[54,65] 

P4 

[50,150] 

[25,38] 

P4 

[25,75] 

[55,72] 

P2 

[10,38] 

[63,72] 
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10 10 10 10 10 10 10 

 

Table 4.4 Group B products demands data for case study 1 

Ex. 

Initial holdup 

(product, kbbl) 

Group B products demand (kbbl) 

P5 P6 P7 P8 P9 P10 P11 P12 P13 

1 P1 - 10 5 20 20 20 5 0 5 5 0 

2 - 5 24 65 13 5 0 5 5 0 

3 P1 - 7 5 20 15 8 5 3 5 4 9 

4 P2 - 7 5 20 15 8 5 3 5 4 9 

 

Table 4.5 Computational performance of case study 1 (without valid inequalities) 

Ex. n 

0-1 

Var. 

Cont. 

Var. 

Const. 

Nonzero 

Elements 

Nodes Iterations 

CPU 

Time (s) 

Obj.  

Value 

% gap 

1 4 260 1683 4200 14841 167899 24414456 12504.70 1125.98 0.00 

2 4 268 1719 4311 15245 379243 58903042 35273.88 1643.92 0.00 

3 4 284 1793 4542 16024 1000000 161530640 102634.73 1234.92 3.75* 

4 4 284 1794 4541 16021 1000000 204485505 121729.67 1193.73 5.01* 

4 5 355 2242 5743 20702 564000 218078428 169094.88 1065.40 16.30** 

*Nodes limit reached, ** out of memory 

 

Table 4.6 Computational performance of case study 1 (with valid inequalities) 

Ex

. 

n 

0-1 

Var. 

Cont. 

Var. 

Const. 

Nonzero 

Elem 

Nodes Iterations 

CPU 

Time (s) 

Obj.  

Value 

% 

gap 

1 4 260 1683 4474 15675 10552 1487406 713.28 1125.98 0.00 

2 4 268 1719 4585 16085 20085 2684973 1309.78 1643.92 0.00 

3 4 284 1793 4816 16876 56424 7003479 3473.47 1234.24 0.00 
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4 4 284 1794 4815 16873 14922 1810327 983.47 1193.54 0.00 

4 5 355 2242 6087 21772 78318 17482935 11616.69 1055.45 0.00 

 

Table 4.7 Material flow in and out of multipurpose tank for case study 1, example 1 

Initial Hold Up 

(product/amount, kbbl) 

Flow Direction 

Event Points 

n1 n2 

P1/10 

loading P2 (40 kbbl)  

unloading  P2 (50 kbbl) 

 

4.4.2. Case Study 2 

In this section the proposed model is applied to Honeywell Hi-Spec refinery problem 

presented in section 4.2.1. We exclude constraints (28a) and (28b) because of the reasons 

mentioned in the previous case study. The time horizon considered in this case study is 10 days 

(240hrs) and there are four different quality restrictions placed on the blend products. The data for 

different demand orders are shown in Table 4.8 and Table 4.9 and results for these data are shown 

in Table 4.10. All the examples reach the first integer solution within 20 seconds. In many 

instances, the optimal solution is reached fast and the rest of the time is spent proving the global 

optimality which is a typical behavior of mixed integer programming models. In example 1, the 

optimal solution is obtained with product P4 sulfur limit violations and due date violation 

(demurrage) of demand order 1. When only 4 event points are used for example 3, the optimal 

solution of 3866.22 is obtained that does not fully satisfy demand order 7 (O7). However, when 5 

event points are used, the optimal solution of 1562.13 is obtained that satisfies all the demand 

orders within their due dates. In the case of example 5 with 5 event points, the first integer 

solution of 286630.74 and 99.78% gap is reached within 10 seconds and the first integer solution 

that does not violate any demand requirements and due date restrictions is obtained within 1600 
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seconds with an objective value of 1741.81 and gap of 58.89 %. Example 6 obtains the first 

integer solution with objective value of 287161.44 and 99.91% gap in 15 seconds. The solution 

without any quantity, quality, and demurrage violations is reached within 450 seconds with 

objective value of 1728.68 and 82.08% gap. A solution without product downgrading is obtained 

for example 6 when 6 event points are used. As the demand order increases, the event points 

needed to reach best solution also increases, thus size of the model increases too.  

Table 4.8 Group A products demand order data for case study 2 

Orders 

Product type, amount(kbbl), delivery window, delivery rate (10 kbbl/h) 

Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 

O1 

P3 

[50,100] 

[28.5,46.5] 

P3 

[75,100] 

[110,140] 

P3 

[15,50] 

[36,54] 

P3 

[15,50] 

[36,54] 

P1 

[15,50] 

[36,54] 

P1 

[15,50] 

[24,50] 

O2 

P2 

[50,150] 

[65,89] 

P2 

[50,100] 

[63,89] 

P2 

[32,50] 

[63,92] 

P2 

[32,50] 

[63,92] 

P2 

[32,50] 

[63,92] 

P1 

[10,50] 

[63.73] 

O3 

P1 

[50,200] 

[105,130] 

P1 

[75,125] 

[26.5,60] 

P1 

[45,70] 

[103,119] 

P1 

[45,70] 

[103,119] 

P3 

[45,70] 

[103,119] 

P2 

[5,70] 

[85,109] 

O4 

P1 

[50,175] 

[216.5,235.5] 

P1 

[100,175] 

[215,235.5] 

P1 

[63,98] 

[135,148.5] 

P1 

[63,98] 

[135,148.5] 

P1 

[63,98] 

[135,148.5] 

P3 

[13,98] 

[125,138.5] 

O5 

P4 

[75,200] 

[90,120] 

P4 

[100,200] 

[90,120] 

P4 

[50,150] 

[100,135] 

P4 

[50,150] 

[100,135] 

P4 

[50,150] 

[100,135] 

P4 

[20,150] 

[100,125] 

O6 

P4 

[50,250] 

[174,200] 

P4 

[75,250] 

[204,230] 

P4 

[15,130] 

[200,236.5] 

P4 

[15,130] 

[200,236.5] 

P4 

[15,130] 

[200,236.5] 

P4 

[25,130] 

[200,236.5] 



97 

 

 

O7 

P2 

[50,100] 

[166,211.5] 

P2 

[50,100] 

[166,191.5] 

P2 

[10,48] 

[166,199.5] 

P2 

[10,48] 

[166,199.5] 

P2 

[10,48] 

[166,205] 

P1 

[10,48] 

[145,175] 

O8   

P3 

[10,35] 

[226,240] 

P3 

[10,35] 

[226,240] 

P1 

[10,35] 

[226,240] 

P2 

[10,35] 

[195,220] 

O9      

P3 

[10,35] 

[230,240] 

O10      

P4 

[25,150] 

[225,240] 

 

Table 4.9 Group B products demands data for case study 2 

Ex. 

Initial holdup 

(product, kbbl) 

Group B products demand (kbbl) 

P5 P6 P7 P8 P9 P10 P11 P12 P13 

1 - 10 50 50 50 10 10 15 15 0 

2 - 5 50 200 50 50 10 40 10 50 

3 P2-8 7 43 172 53 40 11 44 15 30 

4 - 7 43 172 53 40 11 44 15 30 

5 - 7 43 172 53 40 11 44 15 30 

6 P1-10 2 13 72 30 10 5 22 5 0 

 

Table 4.10 Computational results for case study 2 (with valid inequalities) 

Ex. 

Event 

Points 

Var. 

Int./Cont. 

(Constraints) 

Last Integer Solution Optimal Solution 

Nodes/ 

Iterations 

Obj. 

Value 

CPU 

Time 

Gap 

(%) 

Nodes/ 

Iterations 

Obj. 

Value 

CPU 

Time (s) 
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Nonzero 

Elem. 

(s) 

1 4 

328/1956 

(5333) 

18614 

103384/ 

9312323 

34638.64 5000 0.45 

249153/ 

14282981 

34638.64 7910.20 

2 4 

328/1957 

(5333) 

18622 

20760/ 

3626885 

1671.86 1800 6.57 

35489/ 

4741152 

1671.86 2449.83 

3 4 

336/1994 

(5431) 

18947 

79969/ 

15494045 

3866.22 8300 3.64 

207687/ 

23440793 

3866.22 12762.77 

3 5 

420/2490 

(6872) 

24466 

419747/ 

119257871 

1562.13 100700 1.96 

872647/ 

133443528 

1562.13 112879.86 

4 4 

336/1993 

(5438) 

18992 

43412/ 

8367727 

1743.87 4650 6.70 

59005/ 

9238856 

1743.87 5150.23 

5 4 

340/2009 

(5518) 

19244 

22787/ 

4473417 

1649.75 2650 3.16 

55538/ 

6353433 

1649.75 3787.66 

5 5 

425/2510 

(6976) 

24793 

97379/ 

30910982 

1511.44 21500 44.30 

509585/ 

178283024 

1511.44 136811.42* 

6 5 

445/2597 

(7246) 

25694 

428485/ 

160549580 

1137.57 132500 38.10 

916986/ 

281680876 

1137.57 234163.58** 

6 6 

534/3114 

(8778) 

31779 

120720/ 

52056975 

997.25 54800 40.71 

375832/ 

150550479 

997.25 161182.4*** 

* Out of memory. Optimal solution obtain with 33.13% gap 

** Out of memory. Optimal solution obtain with 12.62% gap 
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*** Out of memory. Optimal solution obtain with 30.59% gap 

 

4.5. Summary 

In this chapter, a short-term scheduling model is developed based on continuous time 

representation for large-scale refineries. The model features logistics decisions such as start-up, 

minimum run-length, fill-draw-delay, one-flow out of blender, sequence dependent changeovers, 

maximum heel quantity, and downgrading of product. A set of valid inequalities are proposed that 

reduces the CPU resolution time by a significant factor for large scale refinery problems. The 

model with valid inequalities is applied to different examples and was observed that valid 

inequalities result in up to 90% reduction in CPU performance time compared to model without 

inequalities. The model is applied to two case studies to illustrate the applicability of the proposed 

formulations to large scale refinery operations. However, even with inclusion of the valid 

inequalities in the scheduling model, computational expense required to reach an optimal solution 

is still considerably high for the real-life oil-refinery applications. Hence, there is a need to 

employ different decomposition approaches such as mathematical, heuristics, or combination of 

both heuristics and mathematical decomposition to enable the solution of large-scale problems in 

a reasonable timeframe and bridge the gap between theory and industrial applicability.  

Nomenclature 

Indices  

i  Tasks 

j  Production units 

k  Storage tanks 

n  Event points 

o  Product order 

p  Properties 
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s  States 

Sets  

jI  Tasks which can be performed in unit j 

p

sI  Tasks which can produce material s 

c

sI  Tasks which can consume material s 

J  Production units 

c

sJ  Units that consume material s 

iJ  Units which are suitable for performing task i 

hJ
 

Units that can produce all the same products as some other unit in the refinery  

mJ
 

Units which are suitable for performing multiple tasks 

kp

kJ  Units that consume material s stored in tank k 

pk

kJ  Units that produce material s stored in tank k 

p

sJ  Units that can produce material s 

seq

jJ 
 Units that follow unit j (no storage in between) 

K  Storage tanks 

hK
 

tanks that can store the same products as some other tank in the refinery  

kp

jK  Tanks that store material consumed by unit j  

mK  Multipurpose tanks that can store multiple materials  

pK
 

Tanks that can store final products  

pk

jK  Tanks that store material produced by unit j 

sK  Tanks that can store material s  

N  Event point within the time horizon 

O  Orders for products that are stored in tanks 

P  Product Properties 
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S  States 

bS
 

Group A final products,  produced by blenders and stored in tanks 

fS
 

Group B final products, products that are not stored in tanks 

kS
 

Materials that can be stored  in tank k 

c

iS
 

Materials that can be consumed by task i 

c

jS
 

Materials that can be consumed by unit j 

p

iS
 

Materials that can be produced by task i 

p

jS
 

Materials that can be produced by unit j 

Parameters  

, ,,o s o sD D   Demand limit requirement for order o and product s that is stored in tank   

sr  Demand of the final product s at the end of the time horizon 

min max

, ,/i j i jR R  Minimum/ maximum  rate of material be processed by task i in unit j 

iRL
 

Minimum run length for task i   

min max/k kRU RU  Minimum/maximum  rate of product unloading at tank k 

,s ksto  Amount of state s that is present at the beginning of the time horizon in k 

kta
 

Fill draw delay for product tank k 

UH  Available time horizon 

max

kV  Maximum available storage capacity of storage tank k 

heel

kV
 

Maximum heel available for storage tank k 

,s kyo  1 if the material s is present at the beginning of the time horizon in k 

min max

, ,/s i s i   Proportion of state s produced/consumed  by task i,  

 Variables  

Binary Variables 
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, ,i j nwv  Assignment of task i in unit j at event point n 

, , ,s j k nin  Assigns the material flow of s into storage tank k  from unit j at point n 

, ,k o nl
 

Assigns the starting of product flow out of product tank  k to satisfy order o at event point 

n 

, , ,s k j nout  Assigns the material flow of s out of storage tank  k into unit j at point n 

, ,s k ny
 Denotes that material s is stored in tank k at event point n 

Positive variables 

, , ,s i j nbp  Amount of material s produced task i in unit j at event point n 

, , ,s i j nbc  Amount of material s undertaking task i in unit j at event point n 

l

odg
 

Minimum demand quantity give-away term for order o 

u

odg
 

Maximum demand quantity give-away term for order o 

H  Total time horizon used for production tasks 

, , ,s j j nJJf   Flow of state s from unit j to consecutive unit j’ for consumption at point n 

, , ,s j k nKif  Flow of material s from unit j to storage tank k event point n 

, , ,s k j nKof  Flow of material s from storage tank k to unit j at point n 

, ,o k nLf  Flow of final product for order o from storage tank k at event point n 

, ,s k nmh
 Maximum heel give-away term for product tanks 

, ,

l

s p npg
 Lower limit giveaway of product quality p 

, ,

u

s p npg
 Upper limit giveaway of quality p for product s 

srg
 Minimum demand quantity give-away term for Group B product s  

, ,s k nRif  Flow of raw material to storage tank k event point n 

, ,s k nst  Amount of state s present in storage tank k at event point n 

, , ,s s k nstd   Amount of state s that is downgraded to state s‟ in storage tank k at event point n 
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oTearly
 Early fulfillment of order o than required 

, ,i j nTf  Time that task i finishes in unit j at event point n 

oTlate
 Late fulfillment of order o than required 

, ,k o nTos
 Time that material starts to flow from tank k for order o at event point n 

, ,k o nTof
 Time that material finishes to flow from tank k for order o at event point n 

, ,i j nTs  Time that task i starts in unit j at event point n 

, ,j k nTsf  Time that material finishes to flow from unit j to tank k  at event point n 

, ,k j nTsf  Time that material finishes to flow from tank k to unit j at event point n 

, ,j k nTss  Time that material starts to flow from unit j to storage tank k  

, ,k j nTss  Time that material starts to flow from tank k  to unit j at event point n 

, ,s j nUif  Flow of raw material s to production unit j at point n 

, ,s j nUof  Flow of product material s from unit j at point n 

,j n
 

For unit j, 1 if the unit becomes active for very first time at event point n 

,k n
 

For tank k, 1 if the tank becomes active for very first time at event point n 

, , ,s s k n   

Continuous 0-1 variable, 1 if material in tank k switchover service from s at event point n 

to s‟ at later event point 

, ,s s ko   
Continuous 0-1 variable, 1 if material in tank k switchover service from s to s‟ 

, , ,i i j n   

Continuous 0-1 variable, 1 if task at unit j changes from i at event point n to i’at later 

event point. 
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Chapter 5  

5. Lagrangian Decomposition Approach for Refinery Operations Scheduling 

In this chapter, mathematical decomposition based on Lagrangian relaxation is proposed for the 

scheduling of refinery operations from crude oil processing to the blending and dispatch of 

finished products. A new algorithm for Lagrangian decomposition (LD) is proposed and applied 

to realistic large scale refinery scheduling problem to evaluate its efficiency. A novel strategy is 

presented to formulate restricted relaxed sub-problems based on the solution of the Lagrangian 

relaxed sub-problems that take into consideration the continuous process characteristic of the 

refinery. This new restricted algorithm provides tighter lower bound compared to classical 

Lagrangian decomposition approach. Furthermore, proposed heuristic rules leads to faster 

improvement in upper bounds. The goal of the mathematical decomposition is to produce better 

solutions for those integrated scheduling problems that cannot be solved in reasonable 

computation times. The application of the proposed algorithm results in substantial reduction in 

CPU solution time, duality gap, and the total number of iterations compared to classical LD.   

5.1. Introduction  

Lagrangian relaxation is often used for NP-hard problems where it is observed that many 

problems can be considered easy problems made difficult because of presence of complicating 

constraints. Lagrangian decomposition creates relaxed problem that is relatively easy to solve 

than original problem by relaxing these complicating constraints and dualizing them in the 

objective function with multipliers. Lagrangian relaxation provides a lower bound on the global 

optimal for minimization problem. Relaxed Lagrangian problems can be decomposed into easy to 

solve sub-problems by fixing Lagrangian multipliers. These multipliers are then typically updated 

iteratively using a subgradient method (Fisher, 1985) based on the upper bound. Upper bound is 

usually obtained using heuristics at every iteration and iterations proceeds until duality gap lies 
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within predefined tolerance. The use of Lagrangian relaxation was popularized in the early 1970s 

(Cornuejols et al., 1977; Fisher, 1973, 1981; Held & Karp, 1971; Held & Karp, 1970) and this 

approach has wide ranging application such as scheduling (Adhya et al., 1999; Ghaddar et al., 

2014; Luh & Hoitomt, 1993; Wu & Ierapetritou, 2003), planning (Graves, 1982; Gupta & 

Maranas, 1999; Tang & Jiang, 2009), and integrated planning and scheduling (Calfa et al., 2013; 

Z. Li & Ierapetritou, 2010a; Mouret et al., 2011). Lagrangian relaxation is also used to calculate 

lower bound in outer approximation algorithm for crude oil scheduling by Karuppiah et al. (2008) 

and in branch and bound approach by Holmberg and Hellstrand (1998); Holmberg and Yuan 

(2000).   

Refinery operations involve crude oil unloading and blending, production unit operations, 

and finished product blending and delivery as mention in previous chapter. The model proposed 

in previous chapter is an integrated unified model for production unit operations and blending 

operations scheduling that can be applied to different type of refinery configurations. These 

refinery configurations differ based on blending modes. Traditionally, blending is carried out 

from blend component tanks, normally used for gasoline, while “rundown blending” is normally 

used for diesel, jet fuel, and kerosene. In rundown blending many, if not all component streams 

come directly from a process unit with no component storage. Many refineries are forgoing the 

use component tanks due to economic pressure for reducing on-site storage inventory and safety 

concerns for reducing inventory of volatile materials. In many instances when blend scheduling 

optimization problem is investigated, traditional blending operations with components storage 

tanks are considered. (Castillo & Mahalec, 2014a, 2014b; Cuiwen et al., 2013; Glismann & 

Gruhn, 2001; J. Li & Karimi, 2011; J. Li et al., 2010; Mendez et al., 2006; Zhao et al., 2008) 

However, scant attention has been paid to rundown blending operations optimization problem in 

refinery. These traditional blending scheduling models are not designed to optimize blending 

operations without component storage tanks. In recent years, a long term swing in demand for 



106 

 

 

diesel is expected to increase by 75% from 2010 to 2040 due to higher fuel efficiency of diesel 

engines and preferential tax treatment of diesel "The Outlook for Energy: A View to 2040" 2013). 

Furthermore, demand for jet fuel is projected to grow close to 75% and increase availability of 

natural gas has similar long term shift away from heating oil. Refineries that can shift production 

to maximize diesel and jet fuel are best positioned to serve their markets. (Polasek & Mann, 

2013) Compared to gasoline blending operations, blending of diesel, jet fuel, and other middle 

distillate products has been neglected since they are blended without component tanks. Many 

refineries in APAC and Europe have blend operations without component tanks and use excel 

with trial and error to obtain feasible solution. (Varvarezos) 

Usually, the refinery operations scheduling problem has been tackled by addressing the 

optimization of the three sub-operations, defined in previous chapter, independently of each 

other. This decentralized approach for scheduling optimization is not suitable for refineries where 

one or more component streams is directly blended without intermediate storage. Rundown 

blending optimization is challenging since many process units feed into the blender and 

fluctuations in the incoming flow rate and property has significant impact on finished product 

blend qualities and quantity. Additionally, rundown header is responsible for all the material that 

is transferred to it from the upstream process as seen in Figure 5.1.  In a blending scenario with 

no intermediate tanks, the number of classic degrees of freedom is limited to the component 

rundown flow rate or the component qualities as manipulated variables. Thus if any changes 

happen in the blend recipe to meet finished product properties specifications, it would have a 

direct impact on the production unit operations. These interdependences of the blending 

operations and production unit operations require an integrated approach to scheduling. 
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Figure 5.1 Graphic overview of a standard refinery system: includes no blend components storage 

tanks. 

 It is imperative to model an integrated production unit operations and finished product 

blending-delivery problem to address the issue of rundown blending. The resulting 

comprehensive model is complex, hard to build and solve, and has received sparse attention in the 

literature. Moro et al. (1998) proposed a planning model for refinery diesel production where the 

emphasis is on blend relations. Pinto et al. (2000) proposed a planning and scheduling model for 

refinery operations. They presented the formulation based on discretization of time for production 

and distribution scheduling and their model included the features such as sequence dependent 

transition cost of products within oil pipeline.(C. Luo & Rong); Chunpeng Luo and Rong (2007) 

developed a two decisions levels scheduling model for overall refinery. The upper level 

optimization model is based on discrete time formulation and it is used to determine sequencing 

and timing of operations modes and to decide the quantities of materials produced/consumed at 

each operations mode. The upper level decisions level uses aggregated tanks storage capacity 

whereas the lower level uses heuristics to obtain a detailed schedule. They consider multi-purpose 

product tanks via an iterative procedure that allows to readjust aggregated tank capacity at lower 
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level by changing multi-purpose tank service mode and then to recalculate corresponding optimal 

solution at upper level. The logistics details are ensured through heuristics at the lower level.  

In previous chapter we have proposed a MILP model based on continuous-time 

representation for the simultaneous scheduling of production unit operations and end-product 

blending and delivery operations. The model incorporates quantity, quality, and logistics 

decisions related to real-life refinery operations. These logistics details involve minimum run-

length requirements, fill-draw-delay, one-flow out of blender, sequence dependent switchovers, 

maximum heel quantity, and downgrading of the better quality product to the lower quality. 

Incorporating these logistics details in blend operations can yield significant improvement in 

productivity and efficiency. (Kelly, 2006) We proposed a set of valid inequalities that improves 

the computational performance of the model significantly in section 4.3.1. However, even with 

valid inequalities present, the scheduling model is still computationally prohibitive. It is 

imperative to develop global optimization strategy for an integrated production unit and finished 

product blending-delivery scheduling problem to address the issue of online blend units.  

The chapter is organized in the following way. Section 5.2 describes the integrated refinery 

operations problem. Section 5.3 presents solution strategy for the integrated problem, whereas 

section 5.4 defines relaxed sub-problems and presents methodology to construct novel heuristic 

approach to construct restricted Lagrangian sub-problems and feasible solution. Steps for 

obtaining tighter lower bounds are described in section 5.5 and detailed algorithm steps are 

presented in section 5.6. Section 5.7 provides results, and the chapter concludes with section 5.8. 

5.2. Refinery Operations Scheduling 

 The refinery operations scheduling MILP model proposed in Chapter 4 is used in this 

work to serve as a benchmark for the proposed decomposition algorithm. The formulation for the 

refinery operations scheduling problem is based on the continuous time representation and an 

idea of unit-specific event-points first introduced by M. G. Ierapetritou and C. A. Floudas (1998); 
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M.G. Ierapetritou and C.A. Floudas (1998); Ierapetritou et al. (1999). State-task network 

representation introduced by Kondili et al. (1993) is used in formulating the problem. Continuous 

time representation is preferable because it leads to lower number of binaries and constraints 

compared to discrete time representation and accurate start and finish timing of tasks. Discrete 

formulation requires the time horizon to be divided into smaller grids to acquire an acceptable 

approximation of timings which leads to increasing number of binaries. (Stefansson et al., 2011) 

In contrasts, continuous time formulation has more complicated structure where task can start and 

finish at any time point. (Floudas & Lin, 2004) 

The goal of the refinery operations scheduling is to maximize the production performance 

while minimizing the penalties subject to quantity, quality, and logistics giveaways and 

nonattainment. (Kelly, 2003a) The optimum values of the following variables in the system are 

driven by the shipment plan and accounts for the tradeoffs between costs of keeping inventory 

and changing run-modes: (i) sequencing of tasks for production units; (ii) each product pool that 

satisfies demand orders; (iii) duration of tasks at production units and duration of unloading tasks 

from product pools; (iv)  inventory levels in component and product pools; (v) production rates 

for units and unloading rate for product pools; (vi) composition of material produced and 

consumed.   

5.3. Solution Strategy 

 The integrated refinery scheduling model (IP) presented in previous chapter gives rise to a large 

scale complex MILPs problem that requires specialized solution algorithms. We apply a 

Lagrangian decomposition (LD) algorithm to solve the integrated scheduling problem (IP) using 

an iterative procedure. The LD algorithm involves relaxing complicating constraints to the 

objective function by introducing Lagrange multipliers to form a relaxed version of a primal 

problem. In LD algorithm, we obtain lower bound and upper bound of the optimal value of (IP) at 

each iteration.  
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Figure 5.2 Spatial decomposition of a refinery operations network 

In this work, the integrated full-scale scheduling problem is decomposed into production 

unit scheduling problem (PSP) and blend scheduling problem (BSP) using spatial decomposition, 

as shown in Figure 5.2. Here, the network is split into two independent sub-problems; 

furthermore, each sub-problem can be further decomposed into smaller independent sub-

problems. The variables pertaining to the blend  components flows amount, and start and finish 

times of these flows are also split alongside the connections (pipelines) in the network. Thus, two 

sets of linking variables, one set that belongs to the production unit scheduling sub-problem 

(PSP) and another set that belongs to the blend scheduling sub-problem (BSP), are present. To 

achieve this decomposition, coupling constraints are introduced to the integrated model (IP). 

Coupling constraints equate the split variables (flow amount, start and end time variables) of the 

blend components pipelines. Based on this spatial decomposition of the refinery structure, the 

main goal of the production unit scheduling sub-problem is to satisfy the demand requirement of 

final products that belong to set 
 
and demand of the blend components required by the sub-

problem. Similarly, the goal of the blend scheduling sub-problem is to satisfy the demand of the 
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finished blend products belonging to set  by mixing the raw materials, supplied by (PSP), 

following the blending recipe and product property specifications.  

5.4. Lagrangian Relaxation Framework and Sub-problems 

Lagrangian relaxation provides an efficient way for obtaining lower bounds for large 

scale MILPs. These problems are characterized by a set of complicating constraints whose 

removal to objective function using Lagrangian multipliers yields a relaxed problem that can be 

decomposed into smaller independent sub-problems that are easier to solve. In classical LD, 

lower bound is obtained from the solution of the relaxed problem and upper bound is obtained by 

constructing a feasible solution based on a solution to the relaxed problem. Then the multipliers 

are updated along a sub-gradient direction.  

The general framework of the classical Lagrangian decomposition (LD) algorithm is 

given in Figure 5.3. Here m is used to account for the algorithm iterations,  
m

LZ is lower bound, 

and  
m

UZ  is upper bound.  
( )

,

m
Ts

j tu ,  
( )

,

m
Tf

j tu , and  
( )

, ,

m
Cf

s j tu  are the Lagrange multipliers at the m
th
 

iteration.  
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Figure 5.3 Framework of classical Lagrangian Decomposition Algorithm 

In our work we develop a modified LD algorithm to suit the application to refinery continuous 

production processes, especially for refinery that have a blend header receiving at least one blend 

component stream directly from upstream processes without component storage. We formulate 

restricted relaxed sub-problems using the solution of Lagrangian relaxed sub-problems to obtain 

tighter lower and upper bounds. The details of each step in Lagrangian algorithm are given in the 

following subsections.  

5.4.1. Relaxed Problem 

The connections between production units and blend units are cut off by splitting the 

pipelines between them since the refinery network does not contain blend component tanks. Thus, 

the variables  , , ,s j j nJJf  , , , ,p PU c BU

bc s ss S j J J j J J n N        pertaining to the blend 

component flow are replaced with , , , ,,P B

s j n s j nCfn Cfn  , , ,BU c

bc ss S j J J n N     . Here, BUJ is a 

set of blend units and PUJ is a set of units present in (PSP). Furthermore, the time sequence 
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constraints which enforce that the start and finish time of the production units which produce 

blend component ( s ) should be same as the blend unit which consumes the blend component ( s ) 

are eliminated from the relaxed problem. In place of these sequence constraints, we introduce 

variables , ,,j n j nTsn Tfn , ,BUj J n N    for start and finish time of flow from production unit 

scheduling problem to a blend unit b .  

The variables pertaining to the blend component flow and start/end times of flow for all split 

connections between production unit operations and blend units are duplicated.  The model has 

two sets of linking variables, one set that belongs to the production unit scheduling sub-problem

 , , , ,, ,P P P

s j n j n j nCfn Tsn Tfn  and another set that belongs to the blend scheduling sub-problem

 , , , ,, ,B B B

s j n j n j nCfn Tsn Tfn . All other variables in model (IP) are called non-linking variables since they 

are separate for both sub-problems.  

 Coupling constraints (1)-(3) are introduced to equate the split variables (flow amount, start 

and end time variables) for every event-point n .  

, , , ,P B BU

j n j nTsn Tsn j J n N     (1) 

, , , ,P B BU

j n j nTfn Tfn j J n N     (2) 

, , , , , , ,P B BU c

s j n s j n jCfn Cfn j J s S n N      (3) 

To obtain the Lagrangian relaxation of the original problem, the complicating constraints 

(1-3) are relaxed using Lagrange multipliers ( u ) and considered in the objective function as 

shown in equation (4).  

       , , , , , , , , , , , ,

, , , ,BU BU BU c
j

n Tsn B P Tfn B P Cfn B P

j n j n j n j n j n j n s j n s j n s j n

j J n j J n j J s S n

L u z u Tsn Tsn u Tfn Tfn u Cfn Cfn
   

          
(4) 

The objective function (4) of the relaxed problem is decomposable into smaller sub-problems 

corresponding to the production unit operations and the finished product blending and delivery 

operations, which are relatively easier to solve. The model (P1-n) includes objective function (

BnL ) and all the constraints and variables pertaining to the finished product blending and delivery 
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operations, whereas, the model (P2-n) includes objective function ( PnL ) and all the equations and 

variables pertaining to the production unit operations.   

  , , , , , , , ,

, , , ,

minimize
BU BU BU c

j

Bn Tsn B Tfn B Cfn B

j n j n j n j n s j n s j n

j J n j J n j J s S n

L u z u Tsn u Tfn u Cfn
   

  
    

  
     

                s.t. constraints corresponding to finished product blending and delivery operations

 

(P1-n) 

  

  , , , , , , , ,

, , , ,

minimize
BU BU BU c

j

Pn Tsn P Tfn P Cfn P

j n j n j n j n s j n s j n

j J n j J n j J s S n

L u z u Tsn u Tfn u Cfn
   

  
    

  
  

 

 

                s.t. constraints corresponding to production units scheduling operations

 

(P2-n) 

The models (P1-n) and (P2-n) are independent and can be solved in parallel. Their solutions will 

provide a feasible solution to the original problem when the coupling constraints (1-3) are 

satisfied for all event-points. Figure 5.4 shows a typical solution obtained by solving (P1-n) and 

(P2-n) for problem that has one blend unit, say b1. Gantt chart shows the flow amount and 

start/end times of one of the blend component ( 1s ) for blend unit b1. As you can see, blend 

components are being supplied from production units to the blend header and consumed by the 

blend header at the same time. However, if one were to look at Gantt chart closely, the event-

points for the component streams are not the same. The complicating constraints (1)-(3) are not 

satisfied for event-points 2n   and 3n  . 
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Figure 5.4 Gantt chart for a blender receiving component s. 

This kind of situation arises frequently when comparing solutions of (P1-n) and (P2-n) 

across event points due to the nature of unit specific event points and continuous time 

representation used in the model. To meditate this kind effect, we introduce a time-point t  that 

has one-to-one correspondence with an active event-point n  and cardinality of set T  is equal to 

the cardinality of set N . To eliminate the occurrence of non-active time-points before active 

time-points, additional constraints are included to enforce that active time-points always occur 

before non-active time-points.  

To compare material flow between production operations and blend operations at each 

time points, a new set of variables  , , , ,, ,s j t j t j tCf Ts Tf  are introduced. The coupling constraints 

presented in equation (1)-(3) are replaced by (1b)-(3b). 

, , , ,P B BU

j t j tTs Ts j J t T     (1b) 

, , , ,P B BU

j t j tTf Tf j J t T     (2b) 

, , , , , , ,P B BU c

s j t s j t jCf Cf j J s S t T      (3b) 

The Lagrangian relaxation objective function ( )nL u  given in equation (4) is updated to 

( )L u  given in equation (4b),  

       , , , , , , , , , , , ,

, , , ,BU BU BU c
j

Ts B P Tf B P Cf B P

j t j t j t j t j t j t s j t s j t s j t

j J t j J t j J s S t

L u z u Ts Ts u Tf Tf u Cf Cf
   

          
(4b) 

Where the variables  , , , ,, ,s j n j n j nCfn Tsn Tfn are replaced with variables  , , , ,, ,s j t j t j tCf Ts Tf .  

The relaxed sub-problems (P1-t) and (P2-t) are obtained by decomposing ( )L u .  

  , , , , , , , ,

, , , ,

minimize
BU BU BU c

j

B Ts B Tf B Cf B

j t j t j t j t s j t s j t

j J t j J t j J s S t

L u z u Ts u Tf u Cf
   

  
    

  
     

                s.t. constraints corresponding to finished product blending and delivery operations

 

(P1-t) 
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  , , , , , , , ,

, , , ,

minimize
BU BU BU c

j

P Ts P Tf P Cf P

j t j t j t j t s j t s j t

j J t j J t j J s S t

L u z u Ts u Tf u Cf
   

  
    

  
  

 

 

                s.t. constraints corresponding to production units scheduling operations

 

(P2-t) 

 

5.4.1.1. Relaxed Blend Scheduling Problem 

Relaxed blend scheduling problem includes all the constraints and variables of the 

relaxed sub-problem (P1-t) and in addition to those constraints and variables; we introduce a new 

continuous 0-1 variable 
, ,

B

j n tx  to connect the time-points t  and event-points n .  

, , , , , , , ,
j

B BU

j n t i j n

i I

x wv j J n N t T n t


       
(5) 

, , , ,

,

1 , , , ,B B BU

j n t j n t

t t t n

x x j J n N t T n t

  

      
 

(6) 

, , , ,

,

1 , , , ,B B BU

j n t j n t

n n n t

x x j J n N t T n t

  

      
 

(7) 

, , , , , , , ,

, ,

, , , ,
j

B B B BU

j n t i j n j n t j n t

i I t t t n n n n t

x wv x x j J n N t T n t 

       

         
 

(8) 

, , , , , , , ,B B BU

j n t j n t

n t n t

x x j J t T t T t t

 

       
 

(9) 

, , , , 1, , , , , , , , , , ,B B BU

j n t j n tx x j J n N n N n n t T t T t t n t n t n t n t 
                    

 

(10) 

, , 0, , , ,B BU

j n tx j J n N t T n t     

 

(11) 

 

Constraint (5) states that variable 
, ,

B

j n tx  
 
is non-zero at time-point t only if a blend unit j  is active 

at event-point n. Here . .i j nwv  is a binary assignment variable, 1 if task i is active in unit j at event-

point n, and 0 otherwise. Constraints (6) and (7) enforce that each blend unit j has one-to-one 

correspondence between a time-point and an event-point. Equation (8) states that if the blend unit 

is active at event-point n then it must correspond to some time-point t. Constraint (9) restrict that 

time-point t t   should be assign an event-point before time-point t. Similar to constraint (10), 
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n n   should be assigned to a time-point t t   before assigning n to t. Since, we want to restrict 

inactive time-points (
, , 0B

j n tx  ) to happen after active time-points (
, , 1B

j n tx  ), we add equation (11). 

The decoupled flow and time variables at each time-point are defined as follow:  

 , , , , , , ,2 , , , , ,B B BU

j t i j n i j n j n t jTs Ts UH wv x j J i I n N t T n t           (12a) 

 , , , , , , ,2 , , , , ,B B BU

j t i j n i j n j n t jTs Ts UH wv x j J i I n N t T n t         

 

(12b) 

 , , , , , , ,2 , , , , ,B B BU

j t i j n i j n j n t jTf Tf UH wv x j J i I n N t T n t         

 

(12c) 

 , , , , , , ,2 , , , , ,B B BU

j t i j n i j n j n t jTf Tf UH wv x j J i I n N t T n t         

 

(12d) 

 , , , , , ,1 , , , , ,B B BU c

s j t s j n j n t jCf Uif M x j J s S n N t T n t        

 

(13a) 

 , , , , , ,1 , , , , ,B B BU c

s j t s j n j n t jCf Uif M x j J s S n N t T n t        

 

(13b) 

, , , , ,B B BU

j t j n t

n t

Ts UH x j J t T


   
 

(14a) 

, , , , ,B B BU

j t j n t

n t

Tf UH x j J t T


   
 

(14b) 

, , , , , , ,B B BU c

s j t j n t j

n t

Cf M x j J s S t T


    
 

(15) 

Constraints (12a)-(12d) assign start and end times to time-point t using the corresponding event-

point n. Similarly, blend components flow amount is assigned to time-point t using equation (13a) 

and (13b), where M is a big M term. If a time-point is not active then the variables pertaining to 

blend components flows are equal to zero as defined by equations (14a), (14b) and (15). If 

refinery under study contains multiple blend units, then the relaxed blend scheduling problem 

may be decomposed into multiple independent blend scheduling problems. Each of these 

independent blend scheduling problems must blend different components, more specifically, any 

two independent scheduling problems must not share a common blend component.   

, , 1, ,B BU

j n t

n t

x j J t T


   
 

(16) 
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, , , , , ,
j

B BU

j n t i j n

t n i I

x wv j J n N
 

    
 

(17) 

To improve the computational performance of the decomposed problems, valid inequalities (16) 

and (17) are added to the blend scheduling models. Inequality (16) states that for a given time-

point t, continuous 0-1 variable 
, ,

B

j n tx   can only correspond to one event-point and equality (17) 

states that if blend unit is active at given event-point n then there must be a time-point t 

corresponding to n. 

5.4.1.2. Relaxed Production Unit Scheduling Problem 

Continuous 0-1 variables 
, ,

P

j n tx  and 
,j na   are introduced to define split variables belonging to 

production unit scheduling problem in terms of time-point t instead of event-point n. To this goal, 

we first introduce equations (18a) and (18b).  

, , ,

, ,

, ,
pPU c

j j i

BU

j n i j n

j J i I S S

a wv j J n N





   

     
(18a) 

, , ,

, ,

, , , ,
pc

j j i

BU PU seq

i j n j n j

i I S S

wv a j J j J j J n N

 

 

  

     
 

(18b) 

Binary variable ,j na  takes the value of 1 if at least one production task produces a blend 

component at event-point n that can be consumed by blend unit j as stated by constraint (18a). 

Equation (18b) restricts ,j na   to 0 if production operations are not producing blend components at 

event- point n for blend unit j.  

Similarly to blend scheduling problem, production unit scheduling problem has equations (19)-

(25) to define 0-1 continuous variable
, ,

P

j n tx . 

 
, , , , , , ,P BU

j n t j nx a j J n N t T n t       (19) 

, , , ,

,

1 , , , ,P P BU

j n t j n t

t t t n

x x j J n N t T n t

  

      
 

(20) 

, , , ,

,

1 , , , ,P P BU

j n t j n t

n n n t

x x j J n N t T n t

  

      
 

(21) 
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, , , , , , ,

, ,

, , , ,P P P BU

j n t j n j n t j n t

t t t n n n n t

x a x x j J n N t T n t 

      

        
 

(22) 

, , , , , , , ,P P BU

j n t j n t

n t n t

x x j J t T t T t t

 

       
 

(23) 

, , , , 1, , , , , , , , , , ,P P BU

j n t j n tx x j J n N n N n n t T t T t t n t n t n t n t 
                    

 

(24) 

, , 0, , , ,P BU

j n tx j J n N t T n t     

 

(25) 

Constraint (19) states that variable 
, ,

P

j n tx is non-zero at time-point t only if there is at least one 

production unit operational at event-point n that can produce a blend component necessary for 

blend unit j. Constraints (20) and (21) enforce that there is one to one relationship between a 

time-point and an event-point for a every connections between production unit scheduling 

problem and blend unit j. Equation (22) ensures that if there is a blend component production 

happening event-point n then it must correspond to some time-point t. Constraint (23)-(25) are 

same as constraints (9)-(11) present in the blend scheduling problem. 

, , ,

,

, , ,
PU p p

s j s

BU c

i j n j n j

j J J i I I

wv a j J s S n N





   

      
(26) 

Since there are no blend component tanks present, blend unit must receive all blend components 

from production scheduling problem at the same time for inline continuous blending. Constraint 

(26) requires that if at least one blend component is produced at event-point n for a blend unit j 

then all other blend components for the blend unit must be produced at event-point n. This 

requirement is valid because in a typical refinery, a blend unit produces multiple products by 

mixing a fixed set of blend components using different blend recipes. That is, ,BU

jj J I I   , the 

blend components that can be consumed by different tasks at blend unit j gives us c c

j iS S  . 

The goals of the production unit scheduling problem is to produce hydrocarbon products 

(
BS ) that are not stored in tanks but are supplied straight to the market and to produce blend 

components that are needed by blend units to produce finished blend products. Since there are no 

tanks available to store blend components, these products (blend components) are supplied 
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straight to the market (here market is blend unit). Thus, the product set (
BS ) includes the blend 

components and other hydrocarbon products that will be used as feedstock in chemical industry. 

Constraints relating the split variables (flow, start and end times) of the production scheduling 

problem to time-points are given below.  

, , , , ,P P BU

j t j n t

n t

Ts UH x j J t T


   
 

(27a) 

, , , , ,P P BU

j t j n t

n t

Tf UH x j J t T


   
 

(27b) 

 , , , , , , ,2 ,

, , , , , , ,

P P

j t i j n i j n j n t

PU BU seq p c

j j i j

Ts Ts UH wv x

j J j J j J i I n N t T n t S S

 



   

           
 (28a) 

 , , , , , , ,2 ,

, , , , , , ,

P P

j t i j n i j n j n t

PU BU seq p c

j j i j

Ts Ts UH wv x

j J j J j J i I n N t T n t S S

 



   

           
 

(28b) 

 , , , , , , ,2 ,

, , , , , , ,

P P

j t i j n i j n j n t

PU BU seq p c

j j i j

Tf Tf UH wv x

j J j J j J i I n N t T n t S S

 



   

           
 (28c) 

 , , , , , , ,2 ,

, , , , , , ,

P P

j t i j n i j n j n t

PU BU seq p c

j j i j

Tf Tf UH wv x

j J j J j J i I n N t T n t S S

 



   

           
 

(28d) 

Constraints (27a) and (27b) states that start and end times are zero if material is not flowing to a 

blend unit j’ at time-point t. If production unit operations are producing blend components at 

time-point t, then equations (28a)-(28d) are used to assign start and end times to blend component 

flow to a blend unit j’.  

All production and blend units in the refinery are continuous processes and since there is no 

storage between the production unit scheduling operations and the blend units, material produced 

by the production unit scheduling problem is directly consumed. Thus production capacity of 

blend units and blend recipes of each blend component should also be taken into consideration 

when the components are supplied by production unit operations. Parameters max

jRB  and min

jRB  are 

maximum and minimum blend rate of a blend unit j, respectively and are calculated using 
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equations (29a) and (29b). The maximum and minimum blend recipe of component s in blend 

unit j, max

,s jb  and min

,s jb  respectively, are determined from Equations (30a) and (30b).   

 max max

,max ,
j

BU

j i j
i I

RB R j J


  

 
(29a) 

 min min

,min ,
j

BU

j i j
i I

RB R j J


  

 
(29b) 

 max max

, ,max ,
j

BU

s j s i
i I

b j J 


  

 
(30a) 

 min min

, ,min ,
j

BU

s j s i
i I

b j J 


  

 
(30b) 

The blend component production is set to zero by equation (31a) if there is no production 

happening at time-point t for blend component s. Constraints (31b) and (31c) determines the 

individual component flow amount from the production unit scheduling problem to a blend unit j 

at time-point t.  

max max

, , , , , , , ,P P BU c

s j t s j j j n t j

n t

Cf b RB UH x j J s S t T


    
 

(31a) 

 max max

, , , , , , ,1 , , , , ,
p
s

P P BU c

s j t s j n s j j j n t j

j J

Cf Uof b RB UH x j J s S n N t T n t



        
 

(31b) 

 max max

, , , , , , ,1 , , , , ,
p
s

P P BU c

s j t s j n s j j j n t j

j j

Cf Uof b RB UH x j J s S n N t T n t



        
 

(31c) 

 max max

, , , , , ,1 , ,
c
j

P P P P BU

s j t j j t j t j j n t

n ts S

Cf RB Tf Ts RB UH x j J t T


 
       

 
 

 

(32a) 

 min min

, , , , , ,1 , ,
c
j

P P P P BU

s j t j j t j t j j n t

n ts S

Cf RB Tf Ts RB UH x j J t T


 
       

 
 

 

(32b) 

 max max max max

, , , , , , , ,1 , , ,P P P P BU c

s j t s j j j t j t s j j j n t j

n t

Cf b RB Tf Ts b RB UH x j J s S t T 


 
        

 


 

(32c) 

 min min min min

, , , , , , , ,1 , , ,P P P P BU c

s j t s j j j t j t s j j j n t j

n t

Cf b RB Tf Ts b RB UH x j J s S t T 


 
        

 


 

(32d) 
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Constraints (32a) and (32b) enforce that total amount of material supplied to a blend unit j at 

time-point t is bounded by maximum and minimum production rate of corresponding blend unit 

and production of each blend component is bounded by equations (32c) and (32d). 

Similar to valid inequalities (16) and (17) included in blend scheduling sub-problem, we 

introduce constraints (33) and (34) to production unit scheduling problem. Inequality (33) states 

that for a given time-point t, continuous 0-1 variable 
, ,

P

j n tx  can only correspond to one event-point. 

If at event-point n production unit operations are producing materials for blend unit j, then there 

must be at least one time-point t corresponding to n as stated by equality (34).  

, , 1, ,P BU

j n t

n t

x j J t T


   
 

(33) 

, , , , ,P BU

j n t j n

t n

x a j J n N


   
  

(34) 

5.4.2. Construction of a Feasible Schedule 

Traditionally an upper bound for the Lagrangian decomposition is obtained by fixing certain 

binary variables of the original full-scale integrated MILP problem (IP) based upon the solution 

of the relaxed sub-problems. However the solution derived by solving relaxed sub-problems ((P1-

t) and (P2-t)) are usually infeasible in each iteration because the complicating constraints are are 

violated. Therefore, a heuristics procedure or some other methods for generating feasible solution 

is necessary. In this work, feasible solution at each iteration is obtained by fixing some of the 

binary variables to 1 and to decide which binaries to fix, we propose using solution of the relaxed 

sub-problems to build new restricted relaxed sub-problems. These restricted relaxed sub-

problems‟ solution will always provide feasible fullspace solution unlike relaxed sub-problems.  

In proposed decomposition strategy, complicated variables are expressed in terms of event-

point and not event-point n , thus the schedule obtained solving relaxed problem (P1-t) and (P2-

t) would lead to an infeasible solution of the (IP). In most instances the infeasibility in full-scale 

model occurs because the fundamental operational rule of the refinery is violated because 

material balance constraints are not satisfied for blend units or production units that produce 

t



123 

 

 

blend components. The refinery system under study doesn‟t contain blend component tanks thus 

blend operations and corresponding production unit operations must operate concurrently to 

satisfy mass balance constraints of rundown streams. Relaxed sub-problems (P1-t) and (P2-t) 

defined in previous section are solved independent of each other and their solutions are compared 

at time-point t . Thus at some iteration m , the production operations scheduling model (P2-t) 

may produce a solution where blend components are supplied to a blend unit j during event-

points 2n   and 4n   , that is 
,2,1 1P

jx   and 
,4,2 1P

jx  , while relaxed blend scheduling model (P1-t) 

solution has the blend unit j is receiving components during event-points 1n   and 3n  , that is 

,1,1 1B

jx   and 
,3,2 1B

jx  . Hence at if the binary variables  , ,i j nwv , ,i j n  in the original integrated 

model (IP) are fixed based upon the solution of relaxed sub-problems, it would lead to an 

infeasible solution. Infeasibility would occur because in the refinery, for two sequential units 

without storage any between them must operate at the same event-point. Hence sub-problems 

must provide a solution where a blend unit BUj J  is receiving and blending components at the 

same event-points. That is, both 
, ,

P

j n tx  and 
, ,

B

j n tx  have to be nonzero at event point n  to provide 

feasible solution of full space problem.  

Before the steps to build restricted relaxed sub-problems are presented, we first state 

assumptions behind proposed method to derive restricted relaxed sub-problems.  

We assume that no parallel blend units are present in the refinery and no two blend units 

share a particular blend component. These assumptions are valid because, in this work, the 

refinery does not have any blend component tanks present. The mathematical representation of 

these assumptions is given below as: 

, , ,c c pk pk BU BU

j j j jS S K K j J j J j j 
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Thus, blend scheduling problems (BSP) can be decomposed into sub-problems containing 

only one blend unit. Here each (BSP) sub-problem defined as 
BCj JBSP    has its own set of blend 

components, materials, and tanks corresponding a blend unit BCj J .  

Now we analyze the structure of the (PSP), particular for a refinery that has more than one 

blend unit and the (BSP) can be decomposed into independent sub-problems. We check if the 

production units that supply components to different (BSP) sub-problems are connected or not. 

Production units are said to be “connected” if they all have to be operational at the same time 

which corresponds to being active at same event-points so that the continuous process operational 

rule is not violated for the (PSP). We assume in our work that all the production units which 

produce blend components for different blend units are connected. Based upon this assumption, 

all independent sub-problems of the (BSP) must also be active at the same event-point to obtain a 

feasible solution to the integrated model (IP). 

A two steps approach is developed to determine an upper bound for the algorithm which is 

obtained from a feasible solution to the original full-scale model. In step 1 a restricted relaxed 

problem is solved to obtain a solution that has production units active at the same event-points as 

the blend units. Using the solution of step 1, in step 2 a feasible solution to (IP) is realized. 

5.4.2.1. Restricted Relaxed Problem 

 Upon solving relaxed sub-problems presented in section 5.4.1, we obtain schedule for blending 

operations and production unit operations, respectively. To build a restricted relaxed problem 

using the optimal solution of relaxed problem, the following steps are proposed: 

Step 1: From the optimal relaxed sub-problems solution, determine over the scheduling 

horizon which tasks, units, and storage tanks are active for at least one event-point.  

Step 2: Pick a primary sub-problem from    ,j BUPSP BSP j J    by analyzing solution of 

the corresponding relaxed sub-problems. Determine active event-points during which the primary 

sub-problem is either supplying or receiving blend components. 
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Step 3: Obtain restricted relaxed problem by fixing some of the binary variables in 

corresponding relaxed problem to 1 at active event-points. 

Step 1: Determine parameters from an optimal solution of relaxed sub-problems. Using equations 

(35a)-(35d), we can calculate active task for units (
,

a

i jwv ), the flow in and out of tanks (
, ,

a

s j kin  and 

, ,

a

s k jout ), and the changeovers from task i  to i  at unit j , respectively over the scheduling 

horizon. Parameter 
, ,

a

i i j 
 is calculated using equation (35e) which gives the total number of time a 

task i  is change to a task i  at unit j . 

, ,

,

, ,

1 0

,
0 0

i j n

na

i j j

i j n

n

if wv

wv j J i I
if wv

 


   







 

(35a) 

, , .

, ,

, , ,

1 0

, ,
0 0

s j k n

na pk

s j k s k

s j k n

n

if in

in s S k K j J
if in

 


    







 (35b) 

, , ,

, ,

, , ,

1 0

, ,
0 0

s k j n

na kp

s k j s k

s k j n

n

if out

out s S k K j J
if out

 


    







 (35c) 

, , ,

, ,

, , ,

1 0

, ,
0 0

i i j n

na

i i j j j

i i j n

n

if

j J i I i I
if












 


    







 (35d) 

, , , , , , ,a

i i j i i j n j j

n

j J i I i I  
      (35e) 

Step 2: From the solution of relaxed sub-problems, the total number of active time-points for 

each Lagrangian decomposed problem are calculated as: 

, ,

,

Tat , BU

j j n t

t n t

x j J


     

Since we assume that the production units which produce blend components for different blend 

units are connected, for (PSP),  

Tat =Tat Tat , , ,P P P BU BU

j j j J j J j j
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The total numbers of active-points for each sub-problem jBSP  containing blend unit j are given 

as TatB

j
 . The maximum number of active time-points is determined by finding maximum among 

(BSP) and (PSP) as: 

   max Tat Tat ,P B BU

jMat j J    
 

  

If there is more than one sub-problem that has the total active time-points equal to Mat , then the 

following rules are used to determine the primary problem: 

Rule 1: If TatB

j Mat  and sub-problem jBSP includes multipurpose blend unit j then   the 

primary problem is (  jPP BSP ). 

Rule 2: If TatB

j Mat   and sub-problem jBSP doesn‟t include multipurpose blend unit j then 

the blend scheduling sub-problem is chosen as the primary problem (  jPP BSP ). 

Rule 3: If  TatB

j Mat   and TatP Mat  then (PSP) is selected as the primary problem (

 PP PSP ). 

When determining the primary problem, priority is given to a problem that satisfy rule 1; 

however if rule 1 is not satisfy then we check rule 2 and subsequently rule 3.  

The solution of primary problem is used to determine parameter 
nAe  which represents 

active event-point.  

, ,

, ,

1 0

, ,
0 0

j

j

i j n

i I BC j

n

i j n

i I

if wv

Ae j J BSP PP
if wv





 


   







 

(36a) 

, ,

, , ,

, ,

, , ,

1 0

, ,
0 0

seq pPU c
j j ij

seq pPU c
j j ij

i j n

j J j J i I S S
BC

n

i j n

j J j J i I S S

if wv

Ae j J PSP PP
if wv







    



    

 


   







 

 

(36b) 

Parameter 
nAe  is determined by equation (36a) if the primary problem is a sub-problem 

jBSP  otherwise it is determined by equation (36b).  
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Step 3: Using parameters 
,

a

i jwv , 
, ,

a

s j kin , 
, ,

a

s k jout  , 
, ,

a

i i j 
 , 

, ,

a

i i j 
 and 

nAe  we restrict the solution 

space of the relaxed sub-problems so that a solution of the restricted problem have production 

operations producing blend components at the same event-point as the blend units are mixing.. 

We fix binary variables {
, ,i j nwv , 

, , ,s j k nin , 
, , ,s k j nout  , 

, , ,i i j n  } as shown equations (37a)-(37h). 

, , , , , , ,a m

i j n i j n jwv wv Ae j J j J i I n N     

 

(37a) 

   , , ,0, , , , 0 0m a

i j n j n i jwv j J i I n N Ae wv       

 

(37b) 

,

, ,

, 0

, , , 0
a

j i j

m

i j n n n

i I wv

wv Ae j J n N Ae
 

    

 

(37c) 

, , , , , ,

, 0 ,

, , , 0, 0
n

a m a a

i j n i j j i j i i j

n Ae i i

wv wv j J i I wv   

 

      

 

(37d) 

   , , , , ,0, , , , , 0 0a

i i j n j j n i i jj J i I i I n N Ae  
          (37e) 

, , , , , , ,

, 0

, , , , , , 0
n

a a

i i j n i i j j j i i j

n Ae

j J i I i I i i n N    



        

 

(37f) 

, , , , , , , , , , , , ,a m pk m

s j k n s j k n p k j kin in Ae k K k K k K j J j J i I s S n N         

 

(37g) 

, , , , , , , , , , , , ,a m kp m

s k k n s k j n p k j kout out Ae k K k K k K j J j J i I s S n N         

 

(37h) 

Equation (37a) fixes binary assignment variable for all units except for multipurpose 

units. For multipurpose units, equations (37b)-(37f) are used, where equation (37b) fixes 

assignment variable , ,i j nwv   
 
to zero if the task i  has not been active in relaxed problem or if the 

event-point n  is not active in primary problem. Constraint (37c) forces unit to be active when 

1nAe   and constraint (37d) enforces that task i   needs be active in unit j   if 
, 1a

i jwv   
 
and no 

tasks changeovers are happening , ,

,

0a

i i j

i i

  

 

  over the time horizon. Equation (37e) fixes 

continuous 0-1 variable , , ,i i j n   
 
to be zero at event-point n  if 0nAe   and the total number times 

the changeover from task i to i can happen in unit j  is fixed to 
, ,

a

i i j   in constraint (37f). Binary 

variables , , ,s j k nin  and , , ,s k j nout   are fixed in restricted relaxed problem as shown in equations (37g)-

(37h) for all units and tanks that do not perform multipurpose tasks and store final product tanks. 
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Since the blend products demand is to be satisfied before its due date, we do not fix any variables 

associated with the product tanks as not to restrict solution space of the restricted relaxed problem 

too much that product demands do not get satisfied. This situation can occur because in refinery 

under study, the products tanks can‟t load and unload products simultaneously. Thus, if we fix the 

binary variable associated with loading and unloading of product tanks based upon the solution of 

the relaxed problem, it may cause infeasibility in the restricted relaxed problem. 

Restricted relaxed problem is built and solved for every sub-problem except for the sub-

problem that is chosen as the primary problem. Solution of the restricted relaxed problem gives us 

consistent solution across (BSP) and (PSP) in terms of event-points so that the continuous process 

material balance is not violated.  

5.4.2.2. Upper Bounding Problem 

We fix many of the binary variables { , ,i j nwv , , , ,s j k nin , , , ,s k j nout  , , ,k o nl } in problem (IP) to the values 

of the corresponding binary variables obtained from the solution of restricted relaxed sub-

problems and obtain a MILP model (IP-U). The solution of the restricted relaxed problem is {

, ,

r

i j nwv , 
, , ,

r

s j k nin , 
, , ,

r

s k j nout  , 
, ,

r

k o nl } and based on non-zero values of these binaries, corresponding 

variables in (IP) are fixed. Only certain binary variables in problem (IP) are fixed to 1 and no 

binaries are fixed to 0 so that a better upper bound can be attained in earliest iterations in the LD 

algorithm. Equations (38a)-(38d) show how the variables are fixed in the problem (IP) to obtain a 

MILP model (IP-U). 

, , , ,1, , , , 0r

i j n j i j nw j J i I n N wv     

 

(38a) 

, , , , ,1, , , , , , 0pk r

s j k n k j k s j kin k K j J i I s S n N in       

 

(38b) 

, , , , ,1, , , , , , 0kp r

s k k n k j k s k jout k K j J i I s S n N out       

 

(38c) 

, , , ,1, , , , , , 0pk r

k o n p k j k k o nl k K j J i I s S n N l       

 

(38d) 

Solving model (IP-U) yields an upper bound on the solution of (IP). The model (IP-U) is always 

feasible because the model includes demand, due-dates, and blend logistics giveaways.  
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5.5. Strengthening the Lagrangian Relaxation     

There are several constraints, redundant or unnecessary in (IP) that can be added to the relaxed 

problem and the restricted relaxed problem to strengthen the performance of the Lagrangian 

algorithm. To improve the lower bound, we propose a pre-processing step before the Lagrangian 

algorithm and add constraints related to product demands to the decomposed problems in the 

algorithm. A common feature of the preprocessing steps and constraints strengthening lower 

bound is that they in some sense recreate what has been relaxed, namely the network structure of 

the refinery, but without destroying the separability of the Lagrangian sub-problems. 

Furthermore, using the solution of the best upper bound, in the decomposed problems, penalty 

variables relating violations of demands, due dates, and blend logistics can be fixed to zero.  

5.5.1. Preprocessing Step 

Because the refinery is decomposed into (BSP) and (PSP), production capacity limitation 

for the blend components in (PSP) is not taken into consideration while solving (BSP). Therefore, 

we present a preprocessing step that determines the maximum production rate for each blend 

component s and maximum production capacity for a set of blend components that can be mixed 

by a blend unit.  

, ,

, ,

minimize 100 ,
PU p

s

PP

s s j n bc

j J j J n N

z Uof s S
  

  
    

  
  (39) 

, ,

, ,

minimize 100 ,
pPU c

j j

PP BU

j s j n

j J s S S n N

z Uof j J


   

  
    

  


 

(40) 

The preprocessing problem (PC-s) and (PC-j) are based upon the relaxed sub-problem 

corresponding to production unit operations (PSP). The model (PC-s) is obtained by replacing 

objective function of relaxed problem with that given in equation (71) to determine maximum 

production rate of each blend component. Another preprocessing problem (PC-j) is presented to 

calculate the maximum rate at which production units can supply materials to each blend unit. 
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The objective function for (PC-j) is presented in equation (72).  Problem (PC-s) is solved for each 

blend component and problem (PC-j) for each blend unit before the Lagrangian algorithm begins. 

Furthermore these problems are independent of each other and can be solved in parallel. 

Upon solving the pre-processing problems, we obtain values of variables  , , , , , ,, , ,P P P P

s j t j t j t j n tCf Ts Tf x

, , ,s j n t from the optimal solution.  

, , , ,
max

, ,

max , ,

P P

s j t j n t
BU cn

s jP Pt
j t j t

Cf x

RP j J s S
Tf Ts

 
 

    
 

 



 

(41a) 

, , , ,

max

, ,

max ,
c
j

P P

s j t j n t

ns S BU

j P Pt
j t j t

Cf x

RP j J
Tf Ts



 
 

   
 

 

 

 

(41b) 

The maximum rate of production of component s is determined by equation (41a) using the 

optimal solution obtained upon solving corresponding preprocessing problem (PC-s). Similarly, 

the maximum rate for set of blend components supplied to blend unit j  is determined by 

equation (41b) using the optimal solution values of corresponding preprocessing problem (PC-j).    

5.5.2. Strengthening Lower Bound 

To strengthen the Lagrangian decomposition algorithm, the information obtained in pre-

processing step is applied to update the blend component production rate upper bounds in 

equations (13a), (13b), and (15) for relaxed and restricted relaxed blend scheduling problems. 

Computationally inefficient  big M  term is replaced with tighter bound upper max

sRP  as shown in 

equations (42a)-(42c).  

 max

, , , , , ,1 , , , , ,B B BU c

s j t s j n s j n t jCf Uif RP x j J s S n N t T n t        

 

(42a) 

 max

, , , , , ,1 , , , , ,B B BU c

s j t s j n s j n t jCf Uif RP x j J s S n N t T n t        

 

(42b) 

max

, , , , , , ,B B BU c

s j t s j n t j

n t

Cf RP x j J s S t T


    
 (42c) 
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 max max

, , , , , ,1 , , ,B B B B BU c

s j t s j t j t s j n t j

n t

Cf RP Tf Ts RP UH x j J s S t T


 
        

 


 
(42d) 

 max max

, , , , , ,1 , ,
c
j

B B B B BU

s j t j j t j t j j n t

n ts S

Cf RP Tf Ts RP UH x j J t T


 
       

 
 

 
(42e) 

The amount of blend component processed by blend unit j at time-point t is bounded by the 

maximum production rate of the component and blend unit‟s process time as enforced by 

constraint (42d). Similarly, constraint (42e) states that the total bending rate is bounded by the 

maximum rate at which material is supplied to a blend unit j.  

min

, ,

, ,

1, , 0
p
s i

i j n A B

i I j J n

wv s S S Amt
 

    
 (43) 

, , ,

, , , , ,

1 1,
p p

j j s jj

M BU

i i j n

i I i I i i n s S i I i I

j J J 

      

      
 (44) 

Here parameter min

, ,

, ,A s A s

o s s k

s S o O s S k K

Amt D sto

   

   . Constraint (43) enforces that tasks that produce 

product s must be active at least once over the scheduling time horizon and constraint (44) 

enforces minimum number of changeover of tasks at multipurpose blend units. Constraint (43) is 

added to both (PSP) and (BSP); however, equation (44) is only present in (BSP). 

min

, ,

, ,p
bc s

s j n

s S j J n N

Uof Amt pen
  

   
 (45) 

  11

, , , , , , , ,

, , , ,

minimize
BU BU BU c

j

Pm Ts P Tf P Cf P

j t j t j t j t s j t s j t

j J t j J t j J s S t

L u z C pen u Ts u Tf u Cf
   

  
     

  
    

 
(46) 

Constraint (45) enforces that (PSP) must produce at least minimum amount of blend 

components required for (BSP) so that demand of blend products can be satisfied. If due to 

production capacity limitation, (PSP) cannot produce enough blend components, then we add 

positive penalty variable pen  in equation (45) which is penalized in the objective function as 

shown in equation (46). The objective function of relaxed and restricted relaxed problems is now 

replaced by the one given in equation (46).  
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5.5.3. Construction of lower bound from the best upper bound 

Due to production capacity limitation, the refinery might not be able to satisfy the demand of the 

products on time, might not respect all the blend logistics requirements, and may not be able to 

meet product quality specifications. To obtain a feasible schedule that can be implemented in the 

refinery, we have included, demand, due dates, and blend logistics giveaways in all scheduling 

models. These violations are heavily penalized in the objective function. Equation (47a) gives the 

demand and due violations cost and equation (47b) gives total violation cost by including the 

product downgrading and minimum heel violation penalty to the demand violation cost. We also 

obtain the cost of task changeovers for multipurpose blend units from feasible solution as given in 

equation (47c).  

11 12 13 14 15

B

l u

dem o o o o s s o o o o

o O o O s S o O o O

violatn c dg c dg c rg c Tearly c Tlate
    

        
 

(47a) 

9 10

, , , , , ,

, , , , , ,

m

m m
k k k

total dem s s k n s k s k nk K
k K s S s S s s n k K s S n

violatn violatn c std c mh
      

   
 

(47b) 

6

, , , ,

, , , ,m
j j

i i i i j n

j J i I i I i i n

chgovr c  

    

 
 

(47c) 

For a minimization problem, L opt UZ Z Z   thus, if the best upper bound obtained at the current 

iteration provides a solution without any violations, then the optimal schedule of the original 

integrated problem will not have any violations. Furthermore, in refinery, an optimal solution 

with lowest task changeovers cost is desired if there are no demand and due-date violations. The 

desired changeovers at multipurpose blend units are from task producing high quality blend 

product to tasks producing low quality products so that the products produced during changeover 

transition are not discarded. Thus, we can conclude that opt Uchgovr chgovr , if 0U

totalviolatn  .  

 , , , , 0, 0l u U

o o s o o demdg dg rg Tearly Tlate if violatn 

 
(48a) 

 , , , , ,, , , , , , 0, 0l u U

o o s o o s s k n s k n totaldg dg rg Tearly Tlate std mh if violatn  

 

(48b) 
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U U

i i i i j n total
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c chgovr if violatn 

    

 
 

(48c) 

We can produce tighter lower bound by considering value of parameter U

totalviolatn

obtained from the best upper bound solution for a given set of Lagrangian multipliers. If best 

upper bound obtained satisfies finished products demand and their due-dates, 0U

demviolatn  , then 

we fixed variables associated with demands and due-dates to zero as given by equation (48a). 

Similarly, in constraint (48b), variables associated with demand and blend logistics violations are 

fixed to zero if the best upper bound solution where 0U

totalviolatn  . Furthermore, total changeover 

cost for multipurpose blend units is bounded by the total changeover cost ( Uchgovr ) using 

equation (48c).   

5.6. Lagrangian Decomposition Algorithm  

In this section, proposed Lagrangian decomposition algorithm is presented in detail. This 

algorithm differs from classical Lagrangian decomposition in the way that the lower bound and 

Lagrange multipliers are obtained. In classical Lagrangian decomposition (classical-LD), the 

lower bound is always obtained from the Lagrangian relaxed problem where as in the proposed 

restricted Lagrangian decomposition (restricted-LD) the tighter lower bound is chosen among the 

relaxed problem and the restricted relaxed problem.  

Before presenting the details of the algorithm, the scheduling models used in the algorithm 

are defined first.  The relaxed blend scheduling model (P1) consists of tasks, units, materials, 

tanks relating to (BSP) and is defined as below:   

  , , , , , , , ,

, , , ,

minimize

                  s.t. constraints (5-11),(12a-12d),(14a-14b),(16-17),(42a-42e),(43-44),(48a-48c),

      

BU BU BU c
j

B Ts B Tf B Cf B

j t j t j t j t s j t s j t

j J t j J t j J s S t

L u z u Ts u Tf u Cf
   

  
    

  
  

            and all the constraints corresponding to finished product blending 

                  and delivery operations in model (IP)

 

 

 

 

(P1) 
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The relaxed production unit scheduling model (P2) consists of tasks, units, materials, tanks 

relating to (PSP) and is defined as below: 

  11

, , , , , , , ,

, , , ,

minimize

                   s.t. constraints (18a-18b),(19-26),(27a-27b),(28a-28d),(31a-31c),(32a-32d),

  

BU BU BU c
j

Pm Ts P Tf P Cf P

j t j t j t j t s j t s j t

j J t j J t j J s S t

L u z C pen u Ts u Tf u Cf
   

  
     

  
  

                                         (33-34),(43),(45),(48a-48c),

                   and all the constraints corresponding to production units scheduling 

                   operations in model (IP)

 

 

 

 

 

 

(P2) 

The restricted relaxed models (P1-R) and (P2-R) are constructed by fixing binary variables using 

equations (37a)-(37h) in models (P1) and (P2), respectively. Infeasible restricted relaxed model is 

obtained by removing equations (48a)-(48c) from models (P1-R) and (P2-R). The upper bounding 

problem (IP-U) is obtained by fixing values of certain variables using equations (38a)-(38d) in 

full-scale model (IP) presented in chapter 4. The models (PC-s) and (PC-j) are obtained from (P2) 

by replacing its objective function by (39) and (40), respectively.   

5.6.1. Updating the Multipliers 

The subgradient method first proposed by Fisher (1981) is commonly used method to update 

Lagrangian multipliers used in solving Lagrangian relaxation problems. It requires solving all 

sub-problems at each iteration to find a subgradient of the relaxed problem to compose a search 

direction to update the multipliers. The elements of subgradient to the relaxed problems are as 

follows: 

, ,, , ,
B P

Ts BU
j t j tj tg Ts Ts j J t T    

 
 

, , , , ,
B P

Tf BU

j t j t j tg Tf Tf j J t T    
 

 

, , , , , , , , ,
B P

Cf BU c

s j t js j t s j tg Cf Cf j J s S t T     
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Where  ,, , ,
, ,

B B B

j ts j t j t
Cf Ts Tf and  ,, , ,

, ,
P P P

j ts j t j t
Cf Ts Tf are the values of the duplicating variables, 

obtained from the solution of the blend scheduling problem and production scheduling problem, 

respectively.  

The multiplier is updated for the next iteration according to 

( 1) ( ) ( ) ( )m m m mu u s d  

 

 

Here, ( )mu denotes the multiplier values, ( )ms is the step size, and ( )md is the search direction in 

iteration m. The search direction is usually set to the subgradient, but it is more efficient to use 

modified formula that takes into consideration pervious iteration direction. Search direction is 

defined as recursive formula as suggested in Gaivoronski (1988), where (1) (1)d g : 

 ( ) ( 1)

( ) , 1
1

m m

m
g d

d m





  


 

 

Where  determines how much consideration is given to the previous direction, 0 being no 

consideration to previous direction and 1 being an average of current and previous search 

direction. The step size ( )ms is given by a widely used formula: 

 ( )

( ) ( )

2
( )

( )U m

m m

m

Z L u
s

g





 

 

Here UZ is the upper bound of (IP) ,  ( )mL u is the solution of the relaxed problem at ( )mu , and 

( )m should be assigned a value in the interval ( ,2  ), where 0  to ensure convergence. If 

there is no improvement in the lower bound in K successive iterations, we set ( ) ( 1)0.5m m   . 

( )m is reset back to (0) whenever an improved upper bound or lower bound. 

5.6.2. Stopping Criteria 

In this section, we present the stopping criteria used to terminate the Lagrangian algorithm.  

- Stop if the feasible solution is found at lower bound, which happens when ( ) 0mg  ; but 

this rarely occurs for large problems. 
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- Stop if the lower bound from the Lagrangian relaxation exceeds the best known upper 

bound, i.e., if L UZ Z . 

- Stop if the duality gap is less than or equal to 1%. 

U L

L

Z Z
duality gap

Z

 
  
 

 

- Stop if ( )md  , ( )ms  , or U LZ Z   . 

In practice we do not wait till above mentioned stopping criteria is met, so we impose the number 

of iteration as the stopping criterion, i.e., stop after a limited number of iterations. 

5.6.3. Algorithm 

Here using ( )mu at m
th
 iteration, the objective value of the relaxed problem and restricted 

relaxed problem is calculated from equation in (4b) and given as  ( )m

RZ u and  ( )m

RRZ u  

respectively. ( )mZ is the objective value of the feasible solution through constructed heuristic at 

the m
th
 iteration.   

The procedure for the restricted-LD algorithm: 

Step 1: Solve pre-processing problems (PC-j) and (PC-s) as described in section 5.5.1 

Step 2: Initialize m=0;      
(0) (0) (0)

(0)

, , , ,; ; 0; 0; 0; ;U L Ts Tf Cf

j t j t s j tZ Z u u u          

Step 3: Solve relaxed problem by decomposition that is solve independent problems (P1) and 

(P2). 

Obtain  , ,
, , ,

B
R

R totals j t
R

Z Cf violatn and 
Rchgovr .  

Step 4: Construct a restricted relaxed problem as described in section 5.4.2. Solve the 

restricted sub-problems (P1-R) and (P2-R). 

If infeasible, then solve corresponding infeasible sub-problem using model (P1-RI) or (P2-

RI).  
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Obtain  , ,
, , ,

B
RR

RR totals j t
RR

Z Cf violatn and 
RRchgovr . 

Step 5: If RR R

total totalviolatn violatn  and  ( )m L

RRZ u Z , then  ( )L m

RRZ Z u .  

Otherwise, if RR R

total totalviolatn violatn  and  ( )m L

RZ u Z , then  ( )L m

RZ Z u . 

Step 6: Construct a feasible solution to the original problem as described in section 5.4.2.2.  

If m UZ Z , then U mZ Z  and obtain parameters , ,U U

dem totalviolatn violatn  and Uchgovr  for 

constraints described in section 5.5.3. 

Step 7: Update Lagrangian multipliers by using the sub-gradient method presented in section 

5.6.1.  

Step 8: Terminate the algorithm if the current solution satisfies at least one “stopping 

criteria” listed in section 5.6.2. is met. Otherwise, set 1m m   and return to step 3. 

In step 7, the Lagrangian multipliers are calculated using restricted relaxed problem solution 

unless RR R

total totalviolatn violatn . Problems in step 1 are independent and can be solved in parallel. 

Similarly, optimization models (P1) and (P2) in step 3 and models (P1-R) and (P2-R) in step 4 are 

independent of each other and can be solve in parallel to reduce computational time. The 

flowchart of the framework for the algorithm is given Figure 5.5.  
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Figure 5.5. Algorithm for the proposed restricted-Lagrangian decomposition (restricted-LD) 
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5.7. Computational results 

The computational results are obtained on Dell Precision (IntelR XeonTM with CPU 3.20 

GHz, 3.19 GHz, and 2 GB memory) running on Linux using CPLEX 12.3.0/GAMS 23.7.2 to 

demonstrate their effectiveness in solving oil-refinery scheduling problems using 6 different 

examples, where each example differs in either demands values, intermediate due dates, and 

initial hold up in the tank. The Lagrangian algorithm is set up in MATLAB and interfaces with 

GAMS to solve scheduling problems. The algorithm is evaluated with three performance 

measures: duality gap, number of iterations, and computational time (seconds). The maximum 

solution time of 28,800 CPU seconds is used for full-scale problem and for the decomposed 

problem maximum solution time of 3,600 CPU seconds is used. Optimality tolerance of 1e-6 is 

used as termination criteria for all examples solved using CPLEX. For the algorithm, the 

maximum number of iteration is set to 100, 61  , and K = 2.  

Table 5.1 Model statistics for preprocessing problems 

 (PC-s) 

(PC-j) 

Diesel Blender Jet Blender 

Event pt. 

Int./Cont. var. 

(Constraints) 

Nonzero Elem. 

3 

120/924 

(2425) 

7753 

3 

120/980 

(2425) 

7813 

3 

120/978 

(2425) 

7813 

 

The preprocessing problems for each blend components and blend units are solved before 

Lagrangian algorithm is implemented. The model statistics for preprocessing models are 

presented in Table 5.1 and these models are solved in less than 1 CPU seconds. The model 

statistics for full-scale integrated model and relaxed sub-problems for 6 different examples are 

shown in Table 5.2. Total number variables in restricted relaxed sub-problems, (P1-R) and (P2-
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R), are same as that of corresponding relaxed models because (P1-R) and (P2-R) are obtained by 

restricting solution space by including additional constraints and fixing values of certain 

binaries/continuous 0-1 variables in corresponding relaxed models, (P1) and (P2).  

Table 5.2 Model statistics 

Ex

. 

# 

Orders 

Full Scale 

Model 

Event pt. 

Int./Cont. var. 

(Constraints) 

Nonzero Elem. 

Blend scheduling model (P1) 

Event pt. 

Int./Cont. variables 

(Constraints) 

Nonzero Elem. 

Production scheduling 

model (P2) 

Event pt. 

Int./Cont. var. 

(Constraints) 

Nonzero Elem. 
Diesel 

Blender 

Jet Blender 

1 4 

5 

360/2663 

(6387) 

22633 

5 

127/958 

(2489) 

9819 

5 

33/247 

(717) 

2323 

5 

200/1526 

(4649) 

15394 

2 4 

5 

360/2663 

(6379) 

22569 

5 

127/958 

(2481) 

9760 

5 

33/247 

(717) 

2329 

5 

200/1526 

(4649) 

15405 

3 4 

5 

360/2663 

(6379) 

22569 

5 

127/958 

(2480) 

9725 

5 

33/247 

(717) 

2324 

5 

200/1526 

(4649) 

15395 

4 6 

5 

380/2771 

5 

139/1022 

5 

41/291 

5 

200/1526 
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(6741) 

24018 

(2695) 

10598 

(847) 

2794 

(4648) 

15399 

5 8 

6 

484/3453 

(8644) 

31765 

6 

184/1309 

(3649) 

14956 

6 

60/402 

(1272) 

4384 

6 

240/1835 

(5794) 

19442 

6 13 

7 

736/5005 

(13394) 

53145 

7 

277/1829 

(5585) 

23804 

7 

83/530 

(1833) 

6643 

7 

280/2146 

(7027) 

23903 

 

The computational results for full-scale model and Lagrangian algorithm are shown in 

Table 5.3. Proposed restricted-Lagrangian decomposition algorithm is quite effective for these 

refinery scheduling problems and we obtain good solutions to the scheduling problem. Figure 5.6 

to Figure 5.11 shows the convergence of upper and lower bound using the classical LD and 

restricted LD algorithms in examples 1-6, respectively. The proposed restricted-LD algorithm 

outperforms classical Lagrangian decomposition in terms of quality of the solution, duality gap, 

number of iterations, and computational time. In classical approach, the lower bound is obtained 

solely from relaxed problem‟s solution, whereas proposed restricted-LD picks the best lower 

bound between the solution of relaxed problem and restricted relaxed problem. Thus, restricted-

LD lower bounds take into consideration the continuous process characteristic of the refinery 

units and gives better lower bound as observed in Figure 5.6 to Figure 5.11.  

In most cases, both algorithms provide an upper bound closer to the optimal solution of 

original problem in first iteration because feasible problem is constructed using restricted relaxed 

problem solutions and has flexibility of obtaining a better solution because only the certain 

binaries are fixed to 1 and none are fixed to 0. In situation where first iteration doesn‟t provide an 
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upper bound closer to optimal solution, the upper bound improves vastly early on and ultimately 

provides a better solution. In example 5, the first iteration provides an upper bound that is very far 

from an optimal solution, however, it improves greatly in second iteration, and by fifth iterations 

it‟s almost closed to the optimal value. After finding the best upper bound early on, both 

algorithms spend rest of the computational time proving optimality. 

Table 5.3 Computational Results 

E

x 

Full Scale Model 

Classical LD 

 

Restricted LD 

 

z 

Gap 

(%) 

CPU 

sec 

z 

Gap 

(%) 

CPU 

sec 

Total 

Iter 

z 

Gap 

(%) 

CPU 

sec 

Total 

Iter 

1 450.77 0.00 342 450.77 29.34 652 43 450.77 -0.21 113 11 

2 598.64 0.00 367 598.64 5.92 2133 57 622.91 0.15 251 9 

3 6222.54 0.00 8952 6222.54 1.49 15304 71 6222.54 0.79 3245 14 

4 592.81 0.00 1535 602.33 25.22 1048 26 592.81 0.95 1225 40 

5 503.19 0.00 6458 504.25 12.62 1234 22 503.86 7.72 2652 20 

6 749.35 72.8 28800 552.50 18.04 36865 20 512.65 -0.86 20490 15 

 

The performance (duality gap) of restricted-LD algorithm is better than that of classical 

approach because restricted-LD is able to improve lower bound faster than classical LD. 

Proposed restricted-LD provides better duality gap than classical LD and restricted-LD is 

terminated in almost all cases when gap is less than 1% as shown in Table 5.3. In case of classical 

decomposition approach, the algorithm was terminated for all examples when the step size meets 

the predefined tolerance of 1e
-6

. The step size reaches the tolerance faster because we cut the step 

size parameter  ( )m  by half if the lower bound does not improve after 2 iterations. Even when the 

duality gap is high, the upper bound is closer to the original problem optimal solution in both 

algorithms.  

1.50, 0.8   1.20, 0.7  
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Table 5.4 Time spent (%) in each step compared to the total solution time of Lagrangian 

decomposition algorithms 

 Problems Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 

Classical 

LD 

Relaxed 77.32 91.47 98.28 90.78 94.16 93.31 

Restricted  relaxed 11.48 4.40 0.96 4.17 2.80 2.95 

Feasible 11.20 4.13 0.75 5.05 3.04 3.74 

Restricted 

LD 

Relaxed 68.12 87.92 98.76 89.61 97.48 91.96 

Restricted  relaxed 13.26 4.94 0.49 4.19 1.31 7.96 

Feasible 18.63 7.14 0.75 6.19 1.21 0.076 

 

Table 5.4 compares the computational effort exerted to solve relaxed problem, restricted 

relaxed problem, and feasible upper bounding problem. As expected, majority of the time is spent 

in solving relaxed problem. Classical LD takes 652 CPU seconds to solve example 1 and spends 

77.32% of the total time on solving for relaxed problem and only 11.48% on solving restricted 

relaxed problem. Similarly for restricted-LD, example 1 takes 68.12% of the total computational 

time on solving relaxed problem, 13.26% on solving restricted relaxed problem, and 18.63% on 

solving upper bounding problem MILP problem. Even for the large scale complex problem given 

in example 6, the upper bounding MILP problem can be easily solved. Computational time can be 

further improved by solving relaxed sub-problems in parallel and similarly restricted relaxed 

problems can be solved in parallel.  
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Figure 5.6 Convergence of upper and lower bound of Lagrangian decomposition for example 1. 
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Figure 5.7 Convergence of upper and lower bound of Lagrangian decomposition for example 2. 
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Figure 5.8 Convergence of upper and lower bound of Lagrangian decomposition for example 3. 
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Figure 5.9 Convergence of upper and lower bound of Lagrangian decomposition for example 4. 
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Figure 5.10 Convergence of upper and lower bound of Lagrangian decomposition for example 5. 
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Figure 5.11 Convergence of upper and lower bound of Lagrangian decomposition for example 6. 

 

5.8. Summary 

This chapter introduces a Lagrangian decomposition framework, restricted Lagrangian 

relaxation problems for integrated production unit scheduling and finished product blending and 

delivery scheduling problems. The algorithm is built based on the mathematical formulation 

given in Chapter 4. A restricted relaxed Lagrangian problem is constructed to facilitate generation 

of tighter upper bound in each iteration. Restricted relaxed sub-problems are based upon the 

solution of Lagrangian relaxed sub-problems and solution of restricted relaxed problem takes into 

consideration the continuous process characteristic of rundown streams. To improve the 

performance of the algorithm, a preprocessing step, constraints for decomposed sub-problems, 

and inclusion of the best upper bound‟s solution in lower bounding problems are proposed. The 
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proposed restricted relaxed sub-problems produce better lower bounds and better upper bounds. 

Computational results of a real case study show that the proposed algorithm is very effective and 

provide better solutions in reasonable times.   

 

Nomenclature 

Indices  

i  Tasks 

j  Production units 

k  Storage tanks 

n  Event-points 

m  Lagrangian algorithm iteration counter 

o  Product order 

p  Properties 

s  States 

t  Continuous time-points similar to event-points 

Sets  

jI  Tasks which can be performed in unit j 

/c p

s sI I  Tasks which can consume/produce material s 

J  All Production units 

BUJ  Blend units 

PUJ  Production units that belong to production unit operations 

/c p

s sJ J  Units that consume/produce material s 

iJ  Units which are suitable for performing task i 

hJ
 

Units that can produce all the same products as some other unit in the 
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refinery  

mJ
 

Units which are suitable for performing multiple tasks 

seq

jJ  Units that follow unit j (no storage in between) 

/kp pk

k kJ J  Units that consume/produce material s stored in tank k 

PJ  Units that produce products 

K  Storage tanks 

hK
 

tanks that can store the same products as some other tank in the refinery  

/kp pk

j jK K  Tanks that store material consumed/produce by unit j  

mK  Multipurpose tanks that can store multiple materials  

pK
 

Tanks that can store final products  

sK  Tanks that can store material s  

N  Event-point within the time horizon 

O  Orders for products that are stored in tanks 

sO  Orders for finished product s  

P  Product Properties 

S  States 

AS
 

Group A products,  stored in tanks 

BS
 

Group B products, not stored in tanks 

bcS  States that are blended by blend-units 

kS
 

States that can be stored  in tank k 

/c p

i iS S
 

States that can be consumed/produced by task i 

/c p

j jS S
 

States that can be consumed/produced by unit j 

Parameters  



152 

 

 

, ,,o s o sD D   Demand limit requirement for order o and product s that is stored in tank   

smax_rate  Maximum rate of production of material s 

,o iot  1 if task i is performed when order o of PUSP is processed by BSP. 

sr  Demand of the final product s at the end of the time horizon 

min max/j jRB RB  minimum and maximum production rate of a blend unit j 

max

jRP  Maximum rate material is supplied by (PSP) to blend unit j 

max

sRP
 

Maximum rate blend component s is supplied by (PSP) to blend unit j 

min max

, ,/i j i jR R  Minimum/ maximum  rate of material be processed by task i in unit j 

iRL
 

Minimum run length for task i   

min max/k kRU RU  Minimum/maximum  rate of product unloading at tank k 

,s ksto  Amount of state s that is present at the beginning of the time horizon in k 

kta
 

Fill draw delay for product tank k 

UH  Available time horizon 

max

kV  Maximum available storage capacity of storage tank k 

heel

kV  Maximum heel available for storage tank k 

,s kyo  1 if the material s is present at the beginning of the time horizon in k 

min max

, ,/s i s i   Proportion of state s produced/consumed  by task i  

min max

, ,/s j s jb b   
Minimum/maximum proportion of blend component s consumed by blend 

unit j  

 Variables  

Binary Variables 

, ,i j nwv  Assignment of task i in unit j at event-point n 

, , ,s j k nin  Assigns the material flow of s into storage tank k  from unit j at point n 
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, ,k o nl  

Assigns the starting of product flow out of product tank  k to satisfy order o 

at event-point n 

, , ,s k j nout  Assigns the material flow of s out of storage tank  k into unit j at point n 

, ,s k ny  Denotes that material s is stored in tank k at event-point n 

0-1 continuous variables 

,j n
 

For unit j, 1 if the unit becomes active for very first time at event-point n 

,k n
 

For tank k, 1 if the tank becomes active for very first time at event-point n 

, , ,s s k n   

1 if material in tank k switchover service from s at event-point n to s‟ at later 

event-point 

, ,s s ko   1 if material in tank k switchover service from s to s‟ 

, , ,i i j n   1 if task at unit j changes from i at event-point n to i’at later event-point. 

,j na
 

Assigns the materials flow to blend unit j at event-point n 

, ,j n tx
 

Denotes that blend unit j is active at event-point n and time-point t 

Positive variables 

, , ,s i j nbp  Amount of material s produced task i in unit j at event-point n 

, , ,s i j nbc  Amount of material s undertaking task i in unit j at event-point n 

, , , ,/B P

s j t s j tCf Cf  

Amount of blend component s consumed/supplied at blend unit j at time-

point t 

l

odg  Minimum demand quantity give-away term for order o 

u

odg  Maximum demand quantity give-away term for order o 

H  Total time horizon used for production tasks 

, , ,s j j nJJf   Flow of state s from unit j to consecutive unit j’ for consumption at point n 

, , ,s j k nKif  Flow of material s from unit j to storage tank k event-point n 
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, , ,s k j nKof  Flow of material s from storage tank k to unit j at point n 

, ,o k nLf  Flow of final product for order o from storage tank k at event-point n 

, ,s k nmh  Maximum heel give-away term for product tanks 

srg  Minimum demand quantity give-away term for Group B product s  

, ,s k nRif  Flow of raw material to storage tank k event-point n 

, ,s k nst  Amount of state s present in storage tank k at event-point n 

, , ,s s k nstd   

Amount of state s that is downgraded to state s‟ in storage tank k at event-

point n 

oTearly  Early fulfillment of order o than required 

, ,i j nTf  Time that task i finishes in unit j at event-point n 

, ,/B P

j t j tTf Tf  Finish time for materials consumption/supply at blend unit j at time-point t 

oTlate  Late fulfillment of order o than required 

, ,k o nTos  Time that material starts to flow from tank k for order o at event-point n 

, ,k o nTof  Time that material finishes to flow from tank k for order o at event-point n 

, ,i j nTs  Time that task i starts in unit j at event-point n 

, ,/B P

j t j tTs Ts  Start time for materials consumption/supply at blend unit j at time-point t 

, ,j k nTsf  Time that material finishes to flow from unit j to tank k  at event-point n 

, ,k j nTsf  Time that material finishes to flow from tank k to unit j at event-point n 

, ,j k nTss  Time that material starts to flow from unit j to storage tank k  

, ,k j nTss  Time that material starts to flow from tank k  to unit j at event-point n 

, ,s j nUif  Flow of raw material s to production unit j at point n 

, ,s j nUof  Flow of product material s from unit j at point n 

, , ,j s v nUUf
 

Amount of state s received by unit j at period v is processed at event n 
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Objective value of full-scale integrated model 

 

 



156 

 

 

Chapter 6  

6. Efficient Decomposition Approach for Large Scale Refinery Scheduling 

This chapter proposes a heuristic algorithm for integrated scheduling of refinery production unit 

operations and finished product blending and delivery operations. This work addresses the 

interdependences of the production unit operations and finished product blending and delivery 

operations in the refinery that has components streams coming directly from process units to 

blend headers with no components storage options available. To apply the proposed iterative 

algorithm, the integrated oil-refinery scheduling problem is decomposed into production unit 

scheduling problem and into finished product blending and delivery scheduling problem. The 

goal of the algorithm is to obtain a feasible solution that satisfies products demands commitments 

with minimum demurrage violations while minimizing inventory cost and penalties subject to 

product and logistics giveaways. The applicability of the algorithm is illustrated by a realistic 

large-scale refinery case study producing diesel and jet fuel. Significant savings are realized in 

the computational effort.  

6.1. Introduction 

Even with inclusion of valid inequalities the refinery operations scheduling model is still 

computationally prohibitive. The mathematical decomposition approach presented in previous 

chapter can lead to global optimal solution, however for practical application where the need for 

feasible solution is greater than obtaining the best solution possible, the solution times of 

mathematical decomposition is undesirable. For this situation, heuristics approach exploiting 

inherent structure of the problem alongside insight into the makeup of a feasible solution provides 

an alternative to massive full-scale optimization problem or over mathematical decomposition. 

Furthermore, heuristics approach can be used as preprocessing step for mathematical 

decomposition solution strategy to reduce complexity of the original model (i.e. reduce feasible 
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solution space). (Amaldi et al., 2008; Arief et al., 2007; Cornillier et al., 2008; Karuppiah et al., 

2010; Kelly, 2003b; Roslof et al., 2002) 

Usually blend component tanks are present when the blending and delivery sub-problem is 

addressed without simultaneously addressing production unit scheduling problem. However, 

when blend components tanks are not available, blend units are directly connected to the 

upstream production units. In order to comply with the finished blend product properties 

specifications, blend recipe needs be determined by considering the production constraints of 

upstream processes so that the blend components production and consumption rate is consistent 

across two scheduling decision levels. These interdependences of the blending operations and 

production unit scheduling operations require an integrated approach to the refinery scheduling.  

 In this work, we decomposed the large-scale integrated problem into a production unit 

scheduling problem and a finished product blending and delivery problem. A heuristic algorithm 

is proposed based on the decomposed network to obtain a good solution of the original integrated 

problem in reasonable computational times. The algorithm is built upon the mathematical 

formulation developed given in Chapter 4. The proposed decomposition approach focuses on 

effectively solving the decomposed problem to obtain a feasible solution that satisfies demands 

while minimizing due date violations, product giveaway, task changeovers at multipurpose blend 

units and tanks, and inventory costs.  

 The outline of the chapter is as follows.  Section 6.2 presents additional valid inequalities, 

section 6.3 presents proposed solution approach and the heuristic algorithm is discussed in section 

6.4. A realistic case study presented in section 4.2.1 is used to illustrate the applicability of the 

proposed algorithm to a large-scale model in section 6.6.  

6.2. Mathematical Formulations 

Mathematical formulations proposed earlier for the oil-refinery operations scheduling problem is 

based on the continuous time representation and an idea of unit-specific event points. (M. G. 
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Ierapetritou & C. A. Floudas, 1998; M.G. Ierapetritou & C.A. Floudas, 1998; Ierapetritou et al., 

1999) State-task network (STN) representation introduced by Kondili et al. (1993) is used in 

formulating the problem. Event based formulation enables the representation of time in a 

continuous manner without unnecessary time slots or intervals. Although the location of the event 

points is unknown, the number of event points has to be considered initially. It is not 

straightforward to know the minimum number of event points needed to achieve the global 

optimum solution. Choosing a large number of event points makes it more likely to achieve the 

global optimum solution but it also results in larger solution times. A number of advances of the 

original methodology have been proposed in the literature to improve the scheduling formulation. 

(Janak et al., 2004; Mouret et al., 2011) The model involves material balance constraints, capacity 

constraints, demand constraints, quality constraints, logistics constraints, and setup constraints. 

The demand constraints ensure that all the products demand are satisfied while the quality 

constraints ensures that product quality specifications are met. To preserve the linearity of the 

formulation, linear blending rules are considered. The logistics constraints include all the 

operational rules presented in the previous section and the setup constraints models the activation 

of parallel production units and parallel storage tanks during the scheduling horizon. Due to 

production capacity limitation, downgrading of a higher quality product to a lower quality 

product may be necessary to satisfy demand on time and constraints are added in the model to 

formulate product downgrading in multipurpose storage tanks. If a feasible solution that satisfies 

all the quantity and logistics constraints cannot be obtained, then it is essential to produce a 

schedule that can still be implemented in real-life oil-refinery sacrificing model feasibility. In this 

case, we introduced artificial variables to treat any infeasibility present and these variables are 

subsequently penalized in the objective function to obtain an optimal solution that satisfies as 

many as possible from the quantity logistics constraints by minimizing giveaways.  

 The objective function (1) is used to maximize the performance, minimize inventory 

costs and product demands and intermediate due-dates violations.  
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 (1) 

The oil-refinery performance is represented by longer run-modes (
, ,i j nwv , 

, ,k o nl ) and minimization 

of inventory (
, ,s k nst ), start up set-ups (

, ,,j n k n  ), changeovers (
, , , , , , , ,, ,i i j n s s k s s k no     ), maximum 

heel violations (
, ,s k nmh ) and production downgrading (

, , ,s s k nstd  ). Logistics giveaways, under and 

over production, and demurrage are penalized. The penalty weights are assigned arbitrarily to 

each term depending on its importance in schedule. The deviation from intermediate due dates (

,o oTearly Tlate ) and under/over production of finished products ( , ,l u

o o sdg dg rg ) are heavily 

penalized. It is favorable that the multipurpose product tanks store different grade products only 

in a certain order that is allowed by the sequence dependent switchovers constraint. The favorable 

switchovers are from higher grade of product to lower grade and unfavorable switchovers are 

from lower grade to higher grade product. Due to contamination issues, unfavorable switchovers 

are more heavily penalized than favorable. Similar to multipurpose tanks, there is a sequence 

dependent switchover restriction for multipurpose blend units. Note that the different penalty 

parameters have significant effect on the computational time required to obtain an optimal 

solution.  

 All these constraints and objective function give rise to a large scale, incomprehensible 

mixed integer linear programming (MILP) model that becomes computationally expensive to 

solve using standard optimization software to optimality.  

Valid Inequalities 
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 To improve the computational efficiency, valid inequalities for the refinery scheduling 

model are introduced in previous chapter. These valid inequalities are based on certain logistics 

and operational rules and material balance. These inequalities are redundant to the original model 

because the optimizer will eventually discards infeasible solution and arrive at a feasible solution. 

Thus, these inequalities do not cut feasible solutions space but rather eliminate the region of 

infeasible solution explicitly instead of waiting for optimizer to reach that conclusion. 

Application of valid inequalities in scheduling model to speed up convergence to optimal solution 

can be found in work of Velez et al. (2013), G. K. D. Saharidis and Ierapetritou (2009), and Khor 

et al. (2012). 

 The valid inequalities that are included in the full-scale integrated model used in this 

work are as follows: 

Constraint (1a) connects total amount of material consumed and produced at unit j and event 

point n in a form of inequality since material balance constraints present in the fullscale model 

uphold material balance requirements.   

, , , , , , , ,

, , , , , , , , , ,

kp seq p
s sj j

pk seq c
s sj j

s k j n s j j n s j n

k K K j J J

s j k n s j j n s j n

k K K j J J

Kof JJf Uif

Kif JJf Uof j J n N



   



   

  

    

 

 
 (1a) 

Constraints (1b-1d) reaffirms binary variable 
, ,s k ny  to be 1 if there is material s flowing in and out 

of the storage tanks k at given event point n.  

, , , , , , , ,
pk pk
k k

s j k n s k n k

j J j J

in y k K s S n N
 

       
(1b) 

, , , , , , , ,
kp kp
k k

s j k n s k n k

j J j J

out y k K s S n N
 

       
(1c) 
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, , , , , , ,
s

k o n s k n bp k

o O

l y k K s S n N


    
 

(1d) 

If the tank is sending or receiving material s from a production unit j at event point n, then that 

unit will be active at event point n and these allocation requirements are represented by equations 

(1e-1f).  

, , , , , , , ,
pk pk p

j ss sj j

pk p

s j k n i j n j

i I Ik K K k K K

in wv j J s S n N
    

        
(1e) 

, , , , , , , ,
kp kp c

j ss sj j

kp c

s k j n i j n j

i I Ik K K k K K

out wv j J s S n N
    

        
(1f) 

Constraints (1g-1h) asserts material s flow in/out of tanks to be active at event point n if the unit j 

is processing the material at that event point. 

, , , , , , , ,
pk p

j ssj

pk p

s j k n i j n j

i I Ik K K

in wv j J s S n N
  

       
(1g) 

, , , , , , , ,
kp c

j ssj

kp c

s k j n i j n j

i I Ik K K

out wv j J s S n N
  

       
(1h) 

 In addition to the valid inequalities proposed in our earlier work, we propose here some 

new valid inequalities to further improve the computational performance.  

If two units are consecutive without any storage tank between them, then constraint (1i) affirms 

the simultaneous operation of these units due to the continuous operation mode. However, this 

constraint is not imposed on parallel production units that can produce the same type of products. 

For units that follow or are followed by parallel units, valid inequalities (1j-1l) are included.  

, , , , , / , / , , ,
j j

h h seq

i j n i j n j

i I i I

wv wv j J J j J J j j j J n N




 

         
 (1i) 
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wv wv j J n N and j J j J



 

   

       
 (1j) 

, , , ,

, ,

, / , , ,
seqh

j jj

h h seq

i j n i j n j

i I j J j J i I

wv wv j J J n N and j J j J



 

   

       
 (1k) 

, , , ,

,

, / , ,
seqh

j jj

h seq h

i j n i j n j

i I j J J i I

wv wv j J J n N J J





   

       
 (1l) 

As mentioned earlier, the demand order set O is arranged according to the ascending due date 

start time. That is, , , ,o otimes times o o o o o
     . Operational requirement for the finished 

blend product tank is that loading and unloading cannot happen at the same time, thus if the 

material is unloaded at tank k at event point n+1 then the tank should not be empty at previous 

event point n . This is condition is captured by equation (1m).  

, , 1 , , , , ,
k

k o n s k n bp

o s S

l y k K n N n N



       
(1m) 

 The demand order set O  is arranged in chronologically ascending order based on intermediate 

due-dates. We apply inequality (1n) to require that the demand order o  to be satisfied by product 

tank k earlier than order o o  . Furthermore, if the initial inventory of the products is less than 

the required total minimum demand orders, then the production should take place before the 

demand is fulfilled. This requirement is upheld by constraint (1o) where , ,

s s

s o s s k

o O k K

pr D sto

 

   .  

, , , ,

,

, , , , , ,
s

k o n k o n bp k s s

k K n n

l l k K s S o O o O o o n N  

  

          
(1n) 

, , , ,

, ,

, , , , 0, , 1
p
s i

k o n i j n A bp s s s

i I j J n n

l wv s S S k K o O pr n N n

  

          
(1o) 

The mathematical formulation presented in presented in last chapter, inequalities (1a-1o), and 

objective function (1) comprise the large-scale MILP model for an integrated scheduling 

problem.  
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6.3. Solution Strategy 

In this section, we propose a heuristics-based algorithm for solving full-scale integrated 

problem within reasonable computational times. The algorithm involves solving independent sub-

problems in an iterative fashion until a feasible solution is found. Spatial decomposition is 

applied to refinery system under study as shown in Figure 6.1, to obtain smaller sub-problems 

that are easier to solve than full-scale integrated problem. (Jia & Ierapetritou, 2003; Karuppiah et 

al., 2008) The refinery system under study involves rundown blending operations, thus overall 

refinery structure is decoupled by splitting the blend components stream originating from process 

units operations and supplying directly to blend headers. This decoupling produces two 

scheduling sub-problems relating to the production unit operations and blending and delivery 

operations of finished products, respectively. The complicating variables associated with split 

pipelines are defined differently in decomposed scheduling sub-problems than are in the 

integrated problem. Production unit scheduling problem defines variables associated with 

component streams as demand variables whereas blend scheduling operations defines the 

component flow variables as raw materials variables, as seen in Figure 6.1. Hence, the main goal 

of the production unit scheduling sub problem (PSP) is to satisfy the demand requirement of final 

products that belong to set and demand of the blend components required by the blend 

scheduling sub problem. Similarly, the purpose of the blend scheduling sub problem (BSP) is to 

satisfy the demand of the finished blend products by mixing the raw materials (blend 

components), supplied by PSP, following the blend recipe and product property specifications.  

BS
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Figure 6.1 Decomposition of an oil-refinery operations network by splitting blend components 

pipelines 

 

 

Figure 6.2 Illustration of scheduling sub-problems obtained by splitting component flow streams 

connecting process units directly to blend headers 

In refinery system under study, blend components flow from process units to blend headers 

happen simultaneously with blending operations. Thus, in decomposed system, production unit 
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scheduling problem needs to satisfy demand of blend components within certain time frame. We 

introduce dummy tanks for blend components in PSP as seen in Figure 6.2 for ease of imposing 

strict intermediate due-dates for components demand. These dummy tanks acts as product storage 

tanks in PSP but have different operational rules than finished blend product tanks. These 

operational rules as follow: 

- Each dummy tank are dedicated to a blend component  

- Simultaneous loading and unloading of blend components 

- No accumulation of component at the end of an event-point 

- Dummy tanks can supply components to multiple blend headers at same time 

- Multiple tanks supplying directly to the same blend header must do so at the same time 

Constraints relating to these rules are presented in detail later, but first, a general outline of the 

proposed iterative algorithm is presented in Figure 6.3. The algorithm solves BSP, PSP and 

restricted BSP in iterative fashioned until a global feasible solution that satisfies the final products 

demand requirements while minimizing demurrage. Here, the restricted blend scheduling problem 

(RBSP) is derived by limiting the feasible solution space of BSP based on solutions of PSP and 

BSP. 

 

Blend Scheduling Problem (BSP) 

Production Unit Problem (PSP) 

Restricted Blend Scheduling 

Problem (RBSP) 

Demand targets for 

Blend components  

Supply of Blend 

components  

Integer Cuts 
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Figure 6.3 Proposed solution approach. 

The details of BSP, PSP, and RBSP are presented in the following sub-sections. These 

problems include all the constraints present in the full-scale model and some additional 

constraints that are necessary to facilitate the convergence to a global feasible solution at the end 

of iteration. The demand constraint is given in equation (2) and a feasible global solution of the 

heuristic algorithm must satisfy the minimum demand requirements hence demand give-away 

variables and  in equation (2). 

, , , , , ,

, ,

, ,l u

o s s o s k o n s j n o s o b s f

k n j n

D r dg rg Lf Uof D dg s S o O s S                (2) 

6.3.1. Blend Scheduling Problem 

 Blend scheduling problem (BSP) involves blend headers, finished blend products storage 

tanks, delivery of these products according to intermediate due-dates and raw materials being 

supplied directly to blend headers. Refinery may include more than one blend headers producing 

multiple blend products. In the event that refinery has more than one blend header, we can further 

decompose BSP into smaller scheduling sub-problems depending upon the interactions between 

blend headers. The blend scheduling sub-problems must not share common blend components 

and finished product tanks and should produce different types of finished blend products. Hence, 

blenders using shared components must be jointly optimized. Decomposed independent blend 

scheduling sub-problems can be solved in parallel. 

The mathematical model for BSP contains all the constraints that are present in the 

original model presented in chapter 4 and some additional constraints. To obtain a solution that 

provides minimum amount of blend component necessary for satisfying finished product 

demands, we fix the maximum finished blend-product demand to the minimum demand 

0l

odg  0srg 
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requirement, that is,
, ,o s o sD D  . Furthermore, the demand give-away variables are fixed to zero, 

0, 0l u

o odg dg  . Thus, the demand constraint is rewritten as follow for BSP:  

, , ,

,

, ,
s

k o n o s A s

k K n

Lf D s S o O



     
(3a) 

Where, parameter 
,o sD .is a minimum demand of product s and order o and variable 

, ,k o nLf

is the flow of product from product tank k to satisfy to order o at event-point n. Furthermore, 

instead of having amount of product satisfied by tank k to be bounded by minimum and 

maximum unloading rate, min

kRU  and max

kRU , as is in full-scale model; for BSP, unloading rate is 

fixed to the maximum and the capacity constraints given in original model can be restated as 

follow: 

 max

, , , , , , , , ,k o n k k o n k o n pLf RU Tof Tos k K o O n N     
 

(3b) 

To consider the production capacity of the process units producing blend components, 

maximum blend components flow rate constraint (3c) is included. The maximum blend 

components flow rate ( max_rates
) parameter is determined a priori using the maximum 

production recipe and maximum production capacity of the process units.  

   , , s , , , , , ,max_rate 1 , , , ,b c

s j n i j n i j n i j n j iUif Tf Ts UH wv j J i I s S n N          (3c) 

Furthermore, we can reduce the feasible solution space by not allowing the production to 

take place at the very last event point since the blend scheduling problem must respect the loading 

and unloading restrictions of product tanks, which means that material produced at the last event 

would not contribute to satisfying the demand and would just accumulate.  

, , 0, , , ,b

i j n jwv j J i I n N n N       (3d) 
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Restriction given in equation (3d) reduces the computational cost involve solving BSP 

without sacrificing an optimal solution of BSP. 

6.3.1.1. Acquiring Parameters for PSP and RBSP from Solution of BSP 

The optimal solution of the BSP provides the information regarding the amount (
, ,s j nUif ) of blend 

component s flowing into each blend header j at event point n to produce blend product s using 

task i. The start and finish time (
, , , ,i j n i j nTs and Tf ) of the blend component flow into the unit is also 

available. Based on this information, we derive demand, due dates, and other parameters for the 

production unit scheduling problem.  

 Each blend header gives rise to 
j j

bcS n  demand orders jo O  that needs to be satisfied by 

PSP. Here, j c

bc j bcS S S  and 
j

bcS  is the cardinality of the set j

bcS , , ,

,

j

i j n

i n

n wv  ,
 
 and jO  is a set 

of demand orders comprising of blend components consumed by blend unit j. Parameter 

 max 1j

j
MN n  . The parameter 

,o iot  is 1 if task i is performed by a blend header j when order o 

is processed. A parameter 1oat   for the demand orders determined using the solution of BSP. 

The active event points of each blend unit j are used to assign values to demand orders as:

, , ,o s s j nD Uf  ,
, , ,o s s j nD Uf  ,

, ,o i j ntimes Ts , 
, ,o i j ntimef Tf , and 

, , ,o i i j not wv . That is, if a given blend 

header is active for 3 event points and can blend 3 components, a total of 9 active demand orders 

correspond to the blend header, as seen in Figure 6.4.  

In order to take into consideration the interactions of the production units in PSP and to allow 

flexibility for over production, 
j

bcS  additional demand orders are included to the set jO . These 

additional demand orders are also necessary to satisfy group B product demands and to meet 

blend component due-dates without causing infeasibility in PSP. These demand orders have 

values of 
, 0o sD  ,

,o sD M  , 0otimes  ,
otimef UH . Parameter

,o iot  for these additional demand 
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orders is equal to the task mode of the last active event point ( jn ) so that the task changeovers 

cost is minimized. Each demand order only corresponds to one blend component, thus the 

cardinality of the order set O for PSP is  1
B

j j

bc

j J

S n


  . Demand orders greater than j j

bcS n  do 

not need to be satisfied by PSP and are called non-active demand orders and 0oat  . In Figure 6.4, 

demand orders o10, o11, and o12 are non-active demand orders. 

 

Figure 6.4 Determining parameters for PSP using a solution of a blend header j 

 

 

Figure 6.5 Determining parameter 
otup  for PSP using the corresponding blend header j 

The in-line blender mixes multiple components at the same time to produce final 

products, thus we introduce a parameter 
,j obo   to capture the relation between different demand 

orders for a blend unit j. As mentioned before, each blend unit has  1j j

bcS n  demand orders 

belonging to set jO . We assign the value of 1 to the first set of demand orders that are processed 

at the same time by the blend unit j. For the last set of demand orders, 
, 1j

j obo n  . Note that the 

n1, i2 n2, i3 n4, i1 

 

   

o1 o2 o3 o4 o5 o6 o7 o8 o9 o12 o10 o11 

 

Flow out of 

a tank k 

Flow into a 

product tank k  

 

 

  

  

x y 
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set jO  is arranged in an ascending chronological order based on due-date. Figure 6.4 shows how 

active demand orders are assigned and how parameter 
,j obo  is determined.  

To minimize demurrage violations for finished blend-products in the optimal solution of 

RBSP, a feasible solution of PSP should satisfy blend components demand within certain time 

frame. For this purpose, a parameter 
otup  is determined from the optimal solution of BSP. A 

product tank k receives finished product produced by blend unit j to satisfy finished product 

demand within the due date window. From the optimal solution of BSP, we know which tank 

receives the product produced by the blend unit when processing PSP blend component demand 

order o and we can determine the very first finished product demand order o that is satisfied by 

the product tank. We use the end time (
, ,j k nTsf ) of the material flow into the tank k, start time (

, ,k o nTos ), finish time (
, ,k o nTof ) and a due date (

otimes - 
otimef ) of the first demand order o satisfied 

by the tank k  to determine
otup   as shown in Figure 6.5. Here, parameter

kta  is fill-draw-delay for  

the product tank and 
otup    is the maximum demurrage violation that can be incurred by blend 

component demand order o  that is satisfied by PSP without demurrage violation of finished 

product due date in RBSP. Another parameter that is determined from the optimal solution of 

BSP is
, ,j i i  . Parameter 

, ,j i i   is 1 if the changeover of service from task i to i' at blend unit j 

happens at any time during the scheduling horizon,

 

, , , 0i i j n

n

    , otherwise it is 0. The 

parameters 
,o sD ,

,o sD ,
otimes ,

otimef ,
,o iot , 

,j obo , 
oat ,

otup , and 
, ,j i i   are obtained from the optimal 

solution of BSP and are used in formulating the production unit scheduling problem and at least 

 1MN   event points are needed to solve the PSP in order to obtain a feasible solution. 

6.3.2. Production Unit Scheduling Problem  

 Goal of production unit scheduling (PSP) is to satisfy demands of intermediate products (

BS ) and blend components. To this end, PSP is solved using the parameters determined from the 
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optimal solution of BSP. Formulation for PSP follows the original model expect that few new 

constraints are added and some existing constraints are eliminated to obtain a feasible solution 

that satisfy group B products demand ( 0srg  ). The oil-refinery system under study in this work 

does not possess blend components storage tanks. However, to model the intermediate due dates 

for blend components, we have introduced 
bcS dedicated storage tanks for blend component 

products. These artificial product tanks have zero accumulation at the end of each event-point as 

given by equation (4a). Thus, material balance constraint for tanks present in Chapter 4 is 

rewritten as equation (4a‟) for blend components tanks.  

, , 0, , ,s k n bc sst s S k K n N      

 

(4a) 

, , , , , , , , , ,
pk

sk

s k n s j k n k o n bc s

o Oj J

st Kif Lf s S k K n N


        (4a‟) 

In the full-scale model, the finished blend product tanks have the restriction of not 

loading material out of a tank when there is a material flowing into the tank. For PSP, to satisfy 

material balance of the blend component tanks, it is imperative to have simultaneous flow of 

material into and out of these tanks. Furthermore, since material flow in and out of these tanks 

should happen at the same time, we introduce (4b-4e) sequence constraints to align the start and 

finish time of flow in and out of the blend component tank.   

 , , , , , , , , ,2 , , , , ,pk

j k n k o n k o n s j k n bc s s kTss Tos UH l in s S k K o O j J n N           (4b) 

 , , , , , , , , ,2 , , , , ,pk

j k n k o n k o n s j k n bc s s kTss Tos UH l in s S k K o O j J n N           (4c) 

 , , , , , , , , ,2 , , , , ,pk

j k n k o n k o n s j k n bc s s kTsf Tof UH l in s S k K o O j J n N           (4d) 

 , , , , , , , , ,2 , , , , ,pk

j k n k o n k o n s j k n bc s s kTsf Tof UH l in s S k K o O j J n N           (4e) 
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During rundown blending operations, blend unit must receive all the blend components at the 

same time and this requirement is captured by equations (4f-4h). Constraints (4g-4h) are included 

because demurrage violation variables Tlateo and Tearlyo are not be penalized in the objective 

function but a positive variable lateo defined in the equation (4i) is penalized. 

, , , , , ,, , , , , ,
p p

b J J

k o n k o n j o j o

k K k K

l l j J o O o O o o bo bo n N 

 

         
 

 
(4f) 

, ,, , , , ,b J J

o o j o j oTlate Tlate j J o O o O o o bo bo 
       

 

 (4g) 

, ,, , , , ,b J J

o o j o j oTearly Tearly j J o O o O o o bo bo 
       

 

 (4h) 

, , 1o o o oTlate tup late o O at      (4i) 

 If multiple blend headers share common blend component, then at any given time, blend 

component can supply material to multiple blend units.  However, a product tank cannot supply 

multiple demand orders to the same blend unit at the same time. This restriction is captured by 

constraint (4j).  

,

, ,

, 0

1, , , ,
s j o

c b

k o n p bc k s

o O bo

l k K s S S j J J n N
 

       
 

 
(4j) 

 Demand violations ( 0, 0l u

o odg dg  ) for blend components are not subject to penalty in 

the PSP objective function. However constraint (4k) ensures that the total demand for a given 

blend unit is satisfied for rundown blending operation at time period v. 

, ,

, , ,

, , , 1, , , 1,

, , {1,2,..., }
j j

bc s s o j o bc s o j o

b

k o n o s

s S o O O k K at bo v s S o O O at bo v

Lf D j J v MN

          

    
 

 
(4k) 

Constraint (4l) takes maximum production capacity of a blend unit into consideration by limiting 

total flow of blend components to the blender. 
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,

max

, , , , , , , , ,

, ,

, ,

1 ,

, , , , , 1, 1,2,..., , ,

p j o

k o n i j k o n k o n k o n

o O k K bo v

b c

j s s j o i j o

Lf R Tof Tos UH l

j J s S o O k K i I ot v MN bo v n N





  

   

         



 

 (4l) 

To obtain a feasible solution at the end of iteration, we introduce consumption recipe constraint 

(4m) for blend components and finished blend-product quality constraint (4n) based on linear 

blending rules to maintain model linearity.  

 

, ,

,min ,max

, , , , , , , ,

, , , ,

, ,

,

, , , , 0, 1,2,..., , ,

p j o p p j o

c c

s i k o n k o n s i k o n

o O k K bo v k K o O k K bo v

b c

j s j o i j o

Lf Lf Lf

j J s S o O i I ot v MN bo v n N

 
 

 

       

 

        

  

 

 (4m) 

 

 

, , , ,

, ,

min

, , , , , ,

, , 1, , , 1,

max

, , ,

, , 1,

, , , , 1,2,..., ,

p o i j o p o i j o

p o i j o

s p k o n s p k o n

o O k K ot bo v o O k K ot bo v

b p

s p k o n j i

o O k K ot bo v

p Lf p Lf

p Lf j J i I s S v MN n N

       

   



      

 

  

 (4n) 

 To restrict the solution space of the model, certain variables relating to blend components 

outflow from the artificial tanks are fixed to be zero as shown in equation (4o). The PSP must 

satisfy all the active demand orders ( 1oat  ) and at least  1MN   event points are needed to 

solve the PSP in order to obtain a feasible solution. We add constraints (4p-4q) in the model to 

facilitate longer run modes with constant blending rate in blending operations. In equation (4p), 

PSP is force to fulfill demand order within 3 event-points however this limit can be set higher if 

needed. 

, , , , ,, 0, , , , ,b j

k o n k o n p j oLf l j J o O k K n N n bo      

 

 (4o) 

, ,

,

3, , 0
p

k o n o

k K n N

l o O at
 

   
 

 
(4p) 

, ,

,

, , 0
p

k o n o

k K n N

l MN o O at
 

   
 

 
(4q) 
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Valid inequalities for PSP are given in (4r-4v). Similar to inequality (1n), constraint (4r) 

reinforces that if material is flowing out of blend component tank, then it must be being produced 

by process units at the same event-point. Based on nature of the blend component dummy tanks, 

we introduce cuts (4s)-(4t) in the formulation of PSP.  

, , , ,

,

, , , ,
p
s i

k o n i j n p bc k s

i I j J

l wv k K s S S o O n N
 

      
 

(4r) 

, , , , , , , ,
pk

s s k

k o n s j k n bc s

o O o O j J

l in s S k K n N
  

      
 

(4s) 

, , , , , , , ,
pk pk

sk k

k o n s j k n bc s

o Oj J j J

l in s S k K n N
 

      
 

(4t) 

Note that the demand order set pertaining to each blend header is arranged in chronologically 

ascending order. When 
, , ' 0j o j obo bo  , constraint (4u) states that blend component tanks cannot 

satisfy demand order o before order o' and equation (4v) restates that if demand order o is 

satisfied at event-point n then order o' must have been satisfied at earlier even-points. 

, , , ', , ,1, , , , , , ,b

k o n k o n p j o j ol l k K j J o O o O bo bo n n n N 
          

 

 (4u) 

, , , ,

, ,

, ,

,

, , , , , , ,

s

k o n k o n

k K n N n n

b

p bc k s s j o j o

l l

k K s S S o O o O o o j J b b n N

  

    





          



 

 (4v) 

The objective function of the PSP is given in (4w). The second term in the objective 

function takes into account desire for constant blend rate and the two last terms are necessary to 

take into consideration the cost incurred if finished blend product demands are not met on time 

and the cost of storage of finished products in blend scheduling problem. The parameter 

,

,A bp s

o s

s S S o O

tdm D

  

   is an upper bound on the total amount of finished blend product that can be 

supplied to the market. 
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(4w) 

For the purpose of global solution and the algorithm, we report value 
PZ  calculated from 

equation (4) using optimal solution of PSP.  

1 3 4 5

, , , , , , ,

, , , , , ,

6 7 8

, , , , , , , , , , ,

, , , , , , , , , , ,

h h
i s

m m m
j j k k k k

PSP

i j i j n k s k n j j n k k n

i j J n s k K n j J n k K n

i i i i j n s s s s k s s s s k n

j J i I i I i i n k K s S s S s s k K s S s S s s n

Z c wv c st c c

c c o c

 

  

   

     

                

   

  

   

  
 

(4) 

6.3.2.1. Acquiring Parameters for RBSP from the Solution of PSP 

To solve the restricted blend scheduling problem (RBSP), we determined certain parameters from 

the optimal solution of the PSP. A new set is defined as  1, 2,...,j jT pn  where parameter 
jpn   

represents the total number of time periods in which blend components flow into the blend unit j 

from PSP and 
  ,

, ,

1,2,..., , , ,j
j o p

k o n

j j
v MN o O bo v k K n N

l
pn

bc    

   
   

   
   . 

A simple algorithm is used to determine blend components flows into blend units as shown 

below: 

For bj J   

   Initialize 0t    

   For n N  
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     If 
,

, ,

, , 0

1
P j o

k o n

o O k K b

l
  

  

      1t t    

         For 
,, , 0,c

j s j o ss S o O bo and k K     

               If 
, , 1k o nl   

               
, , , , , , , , , , , , , , ,, , ,j s t k o n j s t k o n j s t k o n j i t o iUifx Lf Tsx Tos Tfx Tof tx ot   

 
 

End Procedure 

From the optimal solution of PSP, the information regarding the blend components flow amount (

, ,j s tUifx ) to blend unit j, start and finish time (
, , , ,,j s t j s tTsx Tfx ) of these flows, and the task that 

should be performed (
, ,j i ttx ) when blend unit j is processing these blend components is obtained.  

Set 
jT  and parameters 

, , , , , ,, ,j s t j s t j s tUifx Tsx Tfx   and 
, ,j i ttx  are obtained from the optimal solution of 

PSP and will be used alongside with parameters obtained from BSP in formulating the restricted 

blend scheduling problem. Formula max j
j

T can be used as a starting point in determining number 

of event-points needed to obtain a feasible solution of RBSP. If blend scheduling problem can be 

decomposed into smaller problem than event point is determined separately for each blend 

scheduling sub-problem. Minimum numbers of event-points for a sub-problem are determined by 

finding max j
j

T  for all blend headers that belong to the sub-problem. 

6.3.3. Restricted Blend Scheduling Problem  

 The restricted blend scheduling problem (RBSP) model incorporates all the constraints of 

the full-scale model and some additional constraints that are necessary to incorporate the 

solutions of BSP and PSP. RBSP restricts feasible solution space of BSP by fixing allowable task 

changeovers for multipurpose blend headers. However unlike BSP, where production in the last 
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event point is not allowed (equation (3d)), RBSP allows blending operations to happen at the last 

event point to provide flexibility in blending all the material supplied by upstream process units. 

The operating mode changeovers at multipurpose blend headers are restricted to those of BSP (

, ,j i i  ) as shown in equation (5a).  

, ,

, , ,

, ,

1 0
, , , , ,

0 0

j i i

i i j n j j

j i i

if
j i I i I i i n N

if












 
     

 
 

(5a) 

 We introduce a binary variable 
, , ,j i t nx  to capture the relationship between supply of blend 

components to a blend header at time period t by PSP and blending of these components at some 

event point n by the blend header. Variable 
, , ,j i t nx  is 1 if event point n allocates to time period t 

given 
, ,j i ttx is 1.  

 Constraint (5b) requires that each time period t must correspond to at least one event 

point n. Equation (5c) ensures that event point n can correspond to at most one time period t and 

equation (5d) forces binary variable 
, ,i j nwv to be 1 if binary variable 

, , ,j i t nx  is 1. However, if the 

event point n does not correspond to any time-period t then variable 
, ,i j nwv is forced to be zero by 

constraint (5e). 

, , , , ,

,

1, , , , 1j i t n j j j i t

n N n t

x j J i I t T tx
 

     
 

(5b) 

, ,

, , ,

, , 1

1, , ,
j j i t

j i t n j

t T n t tx

x j J i I n N
  

    
 

(5c) 

, , , , , , ,, , , , , , 1j i t n i j n j j j i tx wv j J i I n N t T n t tx       

 

(5d) 

, ,

, , , , ,

, , 1

, , ,
j j i t

i j n j i t n j

t T n t tx

wv x j J i I n N
  

    
 

(5e) 
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An assignment constraint (5f) connects fixed amount of material flowing into a blend unit j and 

time period t to an event point n. Continuous variable 
, , ,j s t nUUf  represents amount of component s 

supplied by PSP at time period t is consumed by a blend header j at event point n. Constraint (5g) 

ensures that all of the material supplied to blend header j by PSP is blended over scheduling 

horizon and equation (5h) determines amount of blend component s processed by blend unit j at 

event point n.  

, , , , , , , , , ,, , , , , , , 1b c

j s t n j s t j i t n j i j j i tUUf Uifx x j J i I s S n N t T n t tx        

 

(5f) 

, , , , , , ,

,

, , , , , 1b c

j s t n j s t j i j j i t

n N n t

UUf Uifx j J i I s S t T tx
  

      
 

(5g) 

, ,

, , , , ,

, , 1

, , ,

j j i t

i I j

b c

s j n j s t n j

t T n t tx

Uif UUf j J s S n N



  

    




 
(5h) 

Equation (5i) sets binary variable 
, , ,j i t nx  to zero if flow of materials into blend header j at time 

period t is not intended for blending run-mode i, that is .
, , 0j i ttx 

.
. Constraint (5j) fixes amount of 

material that received and blended by blend header j to zero if at given time period t, process 

units are not supplying blend components.  

, , , , ,0 0, , , , , ,b

j i t n j i t j j jx if tx j i I i I i i n N t T        

 

(5i) 

, , , , ,0 0, , , ,
j

b c

j s t n j i t j j

i I

UUf if tx j s S n N t T


     
 

(5j) 

Constraints (5k-5l) determines the duration of each task being performed at unit j at event 

point n using component flow rate into blend header at corresponding time period t.  Equations 

(5m-5n) bound the start and finish time of each task happening at event point n to the start and 

finish time of the corresponding time period t.  
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c
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Uifx
Uif Tf Ts M wv x
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(5k) 

   , ,

, , , , , , , , , , ,

, , , ,

, ,

2 ,

, , , , , , 1

j s t

s j n i j n i j n i j n j i t n

j s t j s t

c

j i j j i t

Uifx
Uif Tf Ts M wv x

Tfx Tsx

j J i I s S n N t T n t tx

 
     
  

         

(5l) 

 , , , , , , , , , , ,2 , , , , , , 1i j n i j n j i t n j s t j j j i tTs UH wv x Tsx j J i I n N n t t T tx          

 

(5m) 

 , , , , , , , , , , ,2 , , , , , , 1i j n i j n j i t n j s t j j j i tTf UH wv x Tfx j J i I n N t T n t tx          

 

(5n) 

Constraint (5o) restricts that a time period corresponds to at most three event points similar to 

constraint (4p) in PSP.   

, , , , ,

,

3, , , , 1j i t n j j j i t

n N n t

x j J i I t T tx
 

     
 

(5o) 

To improve the performance of the model, constraint (5p) is added to restrict the feasible space of 

the model. Constraint (5p) results from the requirement that the scheduling problem must blend 

components received from PSP.  RBSP must satisfy the finished blend product demands hence 

demand give-away variable 0l

odg   and over supply of demand, 0u

odg  , is penalized. Demand 

demurrages violations are allowed to meet minimum finished blend product demand requirement 

and these violation are heavily penalized. At least  max j
j

T  event points are necessary to obtain a 

feasible solution of the RBSP.  

, , , , , , , ,0, 0, , , , 1, , ,c

j i t n j s t n j i j i t jx UUf j J i I s S tx n N t T n t         

 

 (5p) 

The RBSP model has the same objective function as the original full-scale model.   
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6.3.4. Integer Cuts  

If RBSP provides an optimal solution with due-date violations, integer cuts are generated 

so that they can be added to the BSP in the next iteration. These integer cuts exclude current task 

changeover sequence for blend headers from future blend scheduling problems. The cuts are 

produced by deriving alternative combinations of production task assignment to different event 

points such that the current production task changeover sequence 
, ,i i j   is maintained. These 

alternative assignment sequences are feasible solutions of RBSP because RBSP optimizes blend 

scheduling problem by keeping current task changeover sequence fixed. Table 6.1 shows how 

alternative combinations of task allocation for blend header are obtained. For example, a BSP that 

has one multipurpose blend header that can perform 3 tasks to produce 3 different blend products. 

In the next iteration BSP is to be solved using 5 event-points and current iteration has task 

changeover sequence for blender (j = 1) obtained from section 6.3.1.1 using BSP solution is 

3,1,1 2,3,1,  . Possible alternative solutions of task allocation variable 
, ,i j nwv  are provided in Table 

6.1 along with the original solution obtained in current iteration. The last event-point has no 

production taking place because we restrict solution space of BSP as mention in section 6.3.1 by 

fixing allocation variable
, , 0i j Nwv  . For the given changeover sequence, 6 alternative solutions 

can be possible and the total of 7 integer cuts are generated as shown in Table 6.1 

Hence, multiple cuts can be generated every iteration so that the current changeover 

sequence is excluded from feasible solution space of BSP in the subsequent iterations of the 

algorithm. The cuts are only added to those sub-problems that include multi-purpose blend units. 

Multiple integer cuts of the form (6) are added to the BSP cut-pool for the subsequent iterations.  

   

 , , , ,

, , , ,

1, 1,2,...
tsc tsc

tsc

i j n i j n

i j n Q i j n NQ

wv wv Q tsc TSC
 

     
 

(6) 
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Here, is the total number of solutions that have been obtained to exclude task 

changeover sequences obtained by current and previous iterations. Set tscQ  includes assignments 

where 
, , 1i j nwv   and set tscNQ  includes assignments where 

, , 0i j nwv  . The blend scheduling 

problem can be decomposed into small independent sub-problems and these independent sub-

problems do not share common blend components, products, and product tanks. For instances 

where more than one sub-problem report due-date violations, cuts are added to one of the sub-

problems' cut pool. It is important to note that if BSP, PSP, or RBSP are not globally optimized in 

steps 1, 2, and 3, adding these integer cuts to the BSP in the next iteration could potentially cut 

off a better global solution with lower objective value.   

Table 6.1 Possible task assignment solutions based on current iteration task changeovers parameter 

 

BSP solution for 

multipurpose blend unit 

 

 

 

 

2,1, 1

2,1, 2

3,1, 3

1,1, 4

wv n

wv n

wv n

wv n

 

Task changeover 

sequence: 

2,3,1

3,1,1




 

Possible solutions 

 

 

 

2,1, 1

3,1, 2

1,1, 3

wv n

wv n

wv n

 

 

 

 

2,1, 1

3,1, 3

1,1, 4

wv n

wv n

wv n

 

 

 

 

2,1, 1

3,1, 2

1,1, 4

wv n

wv n

wv n

 

 

 

 

2,1, 2

3,1, 3

1,1, 4

wv n

wv n

wv n

 

 

 

 

 

2,1, 1

3,1, 2

3,1, 3

1,1, 4

wv n

wv n

wv n

wv n

 

 

 

 

 

2,1, 1

3,1, 2

1,1, 3

1,1, 4

wv n

wv n

wv n

wv n

 

 

6.4. Proposed Heuristic Algorithm 

Detailed framework of the algorithm is as follows. The procedure for the algorithm has 

six steps. We define Zd  in equation (7) to be the cost of due-date violations. h

BZ  and h

PZ  are 

TSC

, ,i i j 
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calculated using the optimal objective values of the RBSP and PSP, respectively at the thh  

iteration.  

14 15d o o o o

o O o O

Z c Tearly c Tlate
 

    
(7) 

Step 1: Solve the blend scheduling problem (BSP). 

Obtain parameters 
, , , ,, , , , , , , ,o s o s o o o i j o o oD D times timef ot bo at tup   and 

, ,j i i  .If infeasible, go to step 6.  

Step 2: Based on the requirement of blend components, solve the production unit scheduling 

problem (PSP) so that the components demand is met with minimum due date violations. The 

solution of PSP is h PSP

PZ Z .  

Obtained Set 
jT and parameters 

, , , , , ,, ,j s t j s t j s tUifx Tsx Tfx  and 
, ,j i ttx .  

Step 3: Restricted BSP (RBSP) is solved using the task changeovers sequence obtained by the 

solution of BSP for blend units and information about blend components flow into blend units 

obtained by the solution of PSP. The solution of RBSP is h RBSP

BZ Z .  

Step 4: The global feasible solution is h h h

B PZ Z Z  . 

If the optimal solution of RBSP satisfies the finished blend products demand without any 

intermediate due-date violations, stop the algorithm and hZ Z .  

If an optimal solution has demurrage violations ( 0RBSPZd  ), go to step 5. If infeasible, go to step 

6.  

Step 5: Develop integer cuts based on the task changeover sequence (
, ,j i i  ) of the BSP solution. 

Add these cuts to BSP in the next iteration. 

 1h h   and go to step 1.  
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Step 6: If an optimal solution of RBSP cannot be obtained without demurrage violations or BSP 

is infeasible, pick the best feasible solution.  min h

h
Z Z  and exit the algorithm.  

 

Initialize , Integer Cut Pool, 

  

Done 

 

No 

Add Integer Cuts 

Feasible 

No 

Done 

 

Solve PSP 

 

Solve RBSP 

,  

 

 

 

emurrage 

Yes 

Yes 

 

Solve BSP 

 

Yes 
Done 

 

No 
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Figure 6.6 Proposed heuristic algorithm  

 

6.4.1. Termination Criterion  

The algorithm iterates between solving models BSP, PSP, and RBSP until a global feasible 

solution with minimum due-date violations and minimum total cost is obtained as presented in 

Figure 6.6. The optimal schedules of PSP and RBSP provide a feasible solution of the overall 

refinery problem.  

 We initialized our BSP model with an empty integer cut-pool. If RBSP reports a solution 

that respects intermediate demand due dates, then the algorithm terminates and the current 

solution is kept. If RBSP provides an optimal solution with due-date violations at h
th 

iteration, 

then corresponding BSP changeover solution (
, ,

h

i i j 
) is used to generate integer cuts for cut pool. 

RBSP can never provide a better solution than BSP. Thus, if BSP reports worse solution than the 

best obtained so far by RBSP, that is  min h

BSP RBSP
h

Zd Zd , then the algorithm is terminated and 

best global solution obtained so far is kept. BSP can report an infeasible solution when all 

feasible schedules from its solution space are eliminated due to the addition of integer cuts. In the 

case of BSP infeasibility, the algorithm terminates and the best solution from previous iterations 

is reported as a global solution. 

At the end of each iteration, the heuristic algorithm provides a feasible solution however 

the algorithm cannot guarantee a global optimal solution since it terminates when there is no 

demurrage and not when the overall objective is minimal. 

6.4.2. Evaluation of scheduling horizon 

The evaluation of BSP, PSP and RBSP problems‟ scheduling horizon is shown in Figure 

6.7. In the Figure 6.7, BSP and RBSP show schedule of a blend unit j and PSP shows schedule of 

materials being supplied to the blend unit ( , ,j i ttx >0) by process units at event point n. A feasible 
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solution of PSP satisfies blend components demands requested by BSP and intermediate products 

demands (
BS ). However due to the production capacity limitation, PSP may not able to meet 

intermediate due dates of blend components unless PSP utilizes inactive demand orders ( 0oat  ). 

In Figure 6.7, the BSP is active only for a total of 4 event points whereas, PSP supplies material 

to blend unit for 5 event points. The schedule of RBSP is based upon the solution of BSP and 

PSP; however to meet the due dates of the finished blend products, the time period have 

flexibility to split. In Figure 6.7, the optimal schedule of RBSP shows that the event point n3 of 

PSP is split in two event points, n3 and n4 and blend header is performing task with constant 

blend rate for these event points.  

 

Figure 6.7 Schedule evaluation of BSP, PSP, and RBSP. Here i represents index for blend task.  

Both PSP and RBSP provide schedules that can be implemented without any further 

manipulations after algorithm is terminated.   

6.5. Case Study 

A case study with realistic data provided by Honeywell Process Solutions (HPS) is used to 

illustrate the effectiveness of the proposed heuristic algorithm. The refinery produces diesel fuels, 

jet fuel, and other middle distillate products. The production process at Honeywell refinery 

consists of 2 blender headers, 13 other processing units, and 2 non-identical parallel crude 

distillation units (CDUs) that process two different types of crude oils. The schematic of 

production system is shown in Figure 4.2 and details are provided in 4.2.1. Honeywell refinery 

utilizes rundown blending operations at Jet blender and Diesel blender units to blend components 

n1, i2 n2, i2 n3, i3 

n1, i2 n2, i2 n3, i3 

n1, i2 n3, i3 

n4, i1 n5, i1 

n4, i1 

n2, i2 n4, i3 n5, i1 n6, i1 

BSP 

PSP 

RBSP 
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supplied directly from other process units to produce final products. Jet blender unit blends three 

blend component streams to produce jet fuel that can be stored in 2 product tanks. Diesel blender 

unit can produces three different grades of fuel: CARB diesel, EPA diesel, and Red-dye diesel by 

blending three different components in different proportions using three different run-modes 

called CARB normal, EPA normal, and Red-dye normal, respectively. There are two dedicated 

tanks for each grade of diesel products and one multipurpose tank that can service CARB and 

EPA diesel. In addition to Diesel blender, FCC is also a multipurpose unit that has two modes, 

max distillate mode and max gasoline mode.  

To apply the proposed heuristic algorithm, we decompose the case study problem into production 

unit scheduling and blend scheduling problem. The blend scheduling problem consists of Diesel 

and Jet blender units and finished product storage tanks associated with these two blenders. The 

production unit scheduling problem involves all other units and raw material and intermediate 

storage tanks. The Diesel blender does not consume the same type of blend components as the Jet 

blender unit and the products produced by these two blenders are serviced by different product 

tanks, hence, we can decompose the blend scheduling problem (BSP) into two sub-problems, the 

diesel blend scheduling problem (D-BSP) and the jet blend scheduling problem (J-BSP).  

There is a 6 hours of cleaning or maintenance downtime when the multipurpose tank service 

switches from lower grade of diesel product to higher grade of product. This cleaning downtime 

is essential to remove any sulfur contamination present in the tank before low sulfur product is 

sent for storage. The product tank has 4 hours of down time called fill-draw-delay for certificate 

of analysis preparation and to let the product settle down and mix before is shipped to the market. 

A minimum run-length restriction of 6 hours is imposed on all production units. The data for this 

case study for provided in Appendix Chapter 6. Table A6-1 provides maximum and minimum 

production rate for units, variable production and consumption recipe data for the production 

units is presented in Table A6-2, and the maximum storage capacity and what material can be 

stored in each tanks is given in Table A6-3.  
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6.6. Computational Results 

The effectiveness of the proposed heuristic algorithm in solving refinery scheduling 

problems is demonstrated using ten different examples for the case study presented. Each 

example differs in either demands, due dates, or initial hold up in the tank. All the examples are 

solved on a Dell
®
 Optiplex 9020 computer with 2.90 GHz Quad Core Intel

®
 Processor i5-4570S, 

CPU 2.90GHz, and 16.0 GB memory using CPLEX 12.3.0/GAMS 23.7.1. The heuristic 

algorithm is implemented in MATLAB R2014a and interfaces with GAMS to solve optimization 

problems. The maximum solution time of 8 hours and optimality tolerance of 1e-6 are used as 

termination criteria for all examples. The number of blend product demand orders range from 4 to 

22 and with different intermediate due-dates and amount. The scheduling horizon for these 

problems is 240 hours (10 days). Table 6.2 provides penalty parameters used in objective function 

and Table A6-4 give demand data for finished blend product with intermediate due-date window. 

Products CARB diesel, EPA diesel, Red-dye diesel, and Jet fuel are referred to as product P1, P2, 

P3 and P4, respectively. Intermediate demands are bound by maximum and minimum amount 

and can be delivered anytime during the delivery window. Maximum delivery rate, product 

unloading rate to satisfy demand, is 10 (kbbl/h). Demand for distillate product for different 

examples is given in Table A6-5.  

Table 6.2 Penalty parameters in objective function 

Penalty Parameter Value 

Penalty 

Parameter 

Value 

1

CarbNormal,DieselBlenderC  10 
7

,s sC   40 (Unfavorable: 60) 

1

EPANormal,DieselBlenderC  7 
8

,s sC   40 (unfavorable: 60) 

1

ReddyeNormal,DieselBlenderC  4 
9

kC  5 

1

JetNormal,Jet BlenderC  5 
10

,s kC  5 
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2

kC  1 (Swing tank: 3) 11

oC  1150 

3

kC   
1

max50 kV


  
12

oC  800 

4

jC  50 13

sC  1100 

5

kC
 

10 (Swing tank: 40) 14

oC  5400 

6

,i iC   
100 (Unfavorable: 250) 15

oC  3250 

 

Model statistics for the proposed algorithm sub-problems and full-scale problems are 

reported in Table 6.3. For every iteration, the minimum number of event points necessary for 

optimal solutions are not known prior and need to be determined by trial and error for sub-

problems. BSP model is solved using same number of event points during each iteration in the 

algorithm, as seen in Table 6.3 for examples 3 and 6. Starting point in determining the minimum 

number of event points for PSP is given in section 6.3.1.1 and the event points for RBSP are 

determined from optimal solution of PSP as mention in section 6.3.2.1. If PSP optimal solution 

reports due-date violations for blend component demand orders, then the number of event points 

necessary for obtaining optimal solution of RBSP may be higher than for corresponding PSP.   

Table 6.3 Model statistics 

Ex. 

# 

Orders 

Full Scale 

Model 

Event pt. 

Int./Cont. 

var. 

(Constraints) 

Nonzero 

Elem. 

Heuristic Algorithm 

BSP model 

Event pt. 

Int./Cont. variables 

(Constraints) 

Nonzero Elem. 

PSP model 

Event pt. 

Int./Cont. 

var. 

(Constraints) 

Nonzero 

Elem. 

RBSP model 

Event pt. 

Int./Cont. vairables 

(Constraints) 

Nonzero Elem. 

D-BSP J-BSP D-RBSP J-RBSP 
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1 4 

5 

360/2663 

(6387) 

22633 

4 

97/658 

(1698) 

6068 

2 

12/86 

(181) 

546 

4 

263/1599 

(5412) 

17336 

5 

141/878 

(2319) 

8536 

4 

36/382 

(663) 

1798 

2 4 

5 

360/2663 

(6379) 

22569 

4 

97/658 

(1692) 

6026 

2 

12/86 

(181) 

546 

4 

263/1599 

(5412) 

17344 

4 

110/698 

(1794) 

6324 

5 

47/482 

(844) 

2349 

3 

 

4 

5 

360/2663 

(6379) 

22569 

5 

124/822 

(2169) 

8020 

2 

12/86 

(181) 

546 

5 

337/2049 

(7381) 

23843 

5 

142/882 

(2327) 

8526 

5 

48/486 

(861) 

2403 

5 

124/822 

(2170) 

8035 

2 

12/86 

(181) 

546 

5 

337/2049 

(7381) 

23853 

5 

141/878 

(2311) 

8472 

4 

36/382 

(663) 

1798 

5 

124/822 

(2171) 

8050 

2 

12/86 

(181) 

546 

5 

337/2049 

(7381) 

23853 

5 

141/878 

(2309) 

8472 

4 

36/382 

(663) 

1798 

5 

124/822 

(2178) 

8155 

2 

12/86 

(181) 

546 

5 

337/2049 

(7381) 

23843 

5 

142/882 

(2326) 

8526 

5 

48/486 

(861) 

2403 

5 2 5 5 4 
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124/822 

(2185) 

8260 

12/86 

(181) 

546 

337/2049 

(7381) 

23853 

141/878 

(2311) 

8472 

36/382 

(663) 

1798 

5 

124/822 

(2186) 

8275 

2 

12/86 

(181) 

546 

- - - 

4 6 

5 

380/2771 

(6741) 

24018 

5 

136/886 

(2399) 

8916 

4 

32/202 

(481) 

1516 

4 

269/1662 

(5819) 

18733 

5 

153/942 

(2525) 

9310 

4 

42/426 

(765) 

2160 

5 8 

6 

484/3453 

(8644) 

31765 

6 

181/1138 

(3227) 

12507 

4 

38/238 

(611) 

1978 

6 

426/2610 

(10364) 

33812 

9 

322/1858 

(5464) 

24234 

7 

98/850 

(1686) 

5369 

6 10 

8 

680/4737 

(12260) 

47983 

7 

226/1386 

(4038) 

16326 

4 

44/274 

(761) 

2524 

7 

518/3120 

(13029) 

42828 

8 

299/1722 

(5011) 

21059 

8 

131/1070 

(2284) 

7794 

7 

226/1386 

(4087) 

17355 

4 

44/274 

(761) 

2524 

7 

518/3120 

(13029) 

42842 

9 

341/1946 

(5750) 

25360 

8 

131/1070 

(2284) 

7794 

7 13 

7 

640/4383 

7 

274/1622 

4 

44/274 

7 

509/3120 

8 

355/1990 

8 

131/1118 
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(11628) 

44759 

(5057) 

20588 

(761) 

2524 

(13349) 

43662 

(6116) 

25900 

(2284) 

7842 

8 16 

7 

682/4591 

(12669) 

49601 

6 

256/1522 

(4898) 

19356 

4 

50/310 

(931) 

3154 

6 

417/2436 

(8739) 

28529 

7 

332/1870 

(5916) 

24332 

7 

120/1046 

(2219) 

7739 

9 19 

8 

841/5509 

(16222) 

67119 

7 

328/1886 

(6512) 

27371 

6 

100/558 

(2061) 

7790 

7 

518/3120 

(13029) 

42856 

8 

418/2290 

(7722) 

33814 

9 

199/1548 

(3929) 

15617 

10 22 

10 

1117/7125 

(22251) 

100257 

7 

340/1946 

(6801) 

28643 

8 

166/870 

(3823) 

16250 

7 

512/3021 

(12027) 

39592 

9 

493/2658 

(9183) 

42180 

10 

261/1914 

(5672) 

24780 

 

Table 6.4 Computational results 

Ex. 

Objective ( ) 

Full Scale Heuristic Algorithm 

PSP D-BSP J-BSP Total PSP D-RBSP J-RBSP Total 

1 109.67 276.21 64.90 450.78 110.88 276.22 60.74 447.84 

2 105.16 412.48 81.00 598.64 129.57 421.55 101.46 652.58 

3 116.28 14530.12 57.59 14704.00 119.49 15751.44 58.28 15929.21 

4 117.66 416.50 58.65 592.81 115.20 427.25 61.11 603.56 

5 144.74 294.00 65.46 503.19 150.53 318.00 81.84 550.37 

Z
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6 154.27 692.85 69.52 916.64 155.67 576.43 80.82 812.92 

7 150.54 303.00 59.07 512.61 149.89 309.36 69.26 528.51 

8 140.37 446.00 51.00 637.37 156.40 461.15 58.21 675.76 

9 165.39 562.46 67.50 795.34 162.48 567.92 71.58 801.99 

10 150.69 868.78 79.17 1098.64 166.92 462.31 74.62 703.85 

The objective of the proposed algorithm is to obtain a global feasible solution that 

satisfies minimum demand requirements while minimizing product shipment commitments 

violations, inventory costs, product giveaway, product tank heel quantity, and undesired mode 

changeovers at multipurpose blend headers and product tanks. Table 6.4 gives the objective 

function of full-scale model and heuristic approach. The minimum demand violations are allowed 

and not fixed to zero in full-scale problem in order to find the optimal solution. To compare 

quality solution obtained by integrated approach versus decomposition approach, the optimal 

solution of the integrated problem is used to calculated objective value for each sub-problems. 

The computational performance results of the full-scale model and the proposed algorithm are 

shown in Table 6.6. The proposed algorithm is able to obtain a solution at significantly less 

computational expense than the full-scale model and in some instances full scale model failed to 

find optimal solutions after 8 hours. For the largest examples with 22 intermediate demand 

orders, the full-scale has optimality gap of 82.82% after 8 hours whereas the heuristic approach is 

able to obtain a solution after 865 seconds. For examples 3 and 6, heuristic approach takes more 

than one iterations before the algorithm terminates and the progress of the algorithm is shown in 

detail in Table 6.7. Majority of computational effort in the algorithm is spent solving for BSP 

while RBSP consume less computational time compared to both BSP and PSP. In our work, 

blend scheduling sub-problems are not solved in parallel however to reduce computational time, 

they can be solved in parallel. Of two blend scheduling sub-problem, Diesel blend scheduling 
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sub-problem is more complicated due to presence of multipurpose blend header, hence is much 

harder to solve than Jet blend scheduling sub-problem.  

The objective function results obtained using decentralized approach are comparable to 

that of centralized approach for all examples as shown in Table 6.4. However, for example 1, an 

optimal solution of integrated full-scale model is higher than that of heuristic approach solution. 

This happens because our objective function includes a term . Thus, the objective 

value of sub-problems is highly dependent on the number of event points used to solve 

scheduling model. This term is included in objective function as to minimize number of different 

run modes hence to maintain constant blend rate for longer length of time. In example 1, the full-

scale model is solved using 5 event points and diesel and jet blenders are active for all 5 event 

points, where as in heuristic approach, only diesel blender is active for 5 event points and jet 

blender for 4 event points since only D-RBSP is solved using 5 points. 

2 3 4 5

cost , , , , , ,
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6 7 8
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(8) 

To effectively compare the quality of the solution between full-scale and heuristic 

approach, we calculate value 
costZ  given equation (8) using optimal solution. Here, 

costZ  is almost 

same as optimization problem objective function but the term 1

, , ,

, ,i

i j i j n

i j J n

c wv


  is not considered.  

When 
costZ value is compared for heuristic and full-scale approach, as expected, the full-

scale model optimal solution gives lower cost (
costZ ) than the proposed algorithm as seen in Table 

6.5. Proposed algorithm is successful in obtaining a feasible solution that satisfies minimum and 

1

, , ,

, ,i

i j i j n

i j J n

c wv
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maximum demand requirement while meeting intermediate due-dates for every example for 

which such a feasible solution exists. Furthermore, heuristic approach is able to provide solution 

without product giveaway or demand violations for all examples except example 3. For example 

3, the full-scale problem reports an optimal solution is with due-date violations and product 

giveaway. Product giveaway occurs when premium quality product must be given away for the 

regular product price to meet the regular product demands shipment commitment. The largest 

example with 22 intermediate demand orders, heuristic provides feasible solution that satisfy 

demand and intermediate due-dates while minimizing unfavorable blend mode changeovers and 

product giveaway whereas the full-scale model provides feasible solution with product giveaway 

and higher unfavorable blend mode changeovers at multipurpose blender.  

Table 6.5 Computational results 

E

x 

Objective (
costZ ) 

Full Scale Heuristic Algorithm 

PSP D-BSP J-BSP Total PSP D-RBSP J-RBSP Total 

1 109.67 247.21 39.90 396.78 110.88 247.22 40.74 398.85 

2 105.16 384.48 61.00 550.64 129.57 390.55 76.46 596.58 

3 116.28 14502.00 37.59 14656.00 119.49 15723.44 38.28 15881.22 

4 117.66 388.50 38.65 544.81 115.20 399.25 41.11 555.56 

5 144.74 256.00 40.46 440.19 150.23 256.00 46.84 453.37 

6 154.27 647.85 39.52 841.64 155.67 519.43 40.82 715.91 

7 150.54 261.00 29.07 440.61 149.89 263.36 29.26 442.51 

8 140.37 411.00 26.00 577.37 156.40 416.15 28.21 600.76 

9 165.39 504.46 32.50 702.34 162.48 509.92 31.58 703.99 

10 150.69 809.78 39.17 999.64 166.92 414.31 34.62 615.85 
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Except for examples 3 and 6, the heuristic algorithm is able to obtain a feasible solution 

without demurrage in first iteration. The algorithm takes 2 iterations to obtain a global feasible 

without demurrage in case of the example 6. Even for example 6, heuristic algorithm is able to 

find a solution in about 564 seconds while full-scale model is not even able to find an optimal 

solution after 8 hours.  

Table 6.6 Computational performance results 

Ex. 

Full Scale Model 

Heuristic Algorithm 

CPU time (seconds) 

CPU 

time (s) 

Gap 

(%) 

D-BSP J-BSP PSP D-RBSP J-RBSP Total 

1 108.59 0.00 0.44 0.06 2.53 0.20 0.06 3.29 

2 249.85 0.00 0.50 1.01 2.76 0.08 0.20 4.56 

3 1939.09 0.00 

19.11 

12.25 

12.86 

15.38 

8.33 

11.25 

0.047 

0.047 

0.063 

0.062 

0.032 

0.093 

5.32 

6.24 

6.55 

13.10 

4.87 

- 

0.125 

0.327 

0.250 

0.203 

0.343 

- 

0.046 

0.031 

0.062 

0.047 

0.062 

- 

117.09 

4 457.27 0.00 1.23 0.047 5.73 0.16 0.031 7.192 

5 14716.62 0.00 2.26 0.11 18.31 11.89 0.39 32.96 

6 28800 77.98 

246.56 

141.63 

0.047 

0.047 

90.71 

27.32 

14.77 

40.42 

1.72 

1.23 

564.46 

7 28800 9.05 56.52 0.063 28.64 1.37 0.86 87.46 

8 28800 69.92 16.51 0.078 33.06 14.62 2.34 66.44 

9 28800 74.71 296.73 0.250 37.25 88.41 8.00 430.64 
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10 28800 82.82 232.10 1.030 51.56 444.87 135.85 865.40 

 

Evolution of the algorithm for example 6 is shown in Table 6.7. In the first iteration, 

Diesel RBSP obtains optimal solution with intermediate due-date violations. Since only Diesel 

blend scheduling sub-problem has multi-purpose blender, we produce integer cuts for next 

iteration using the current iteration task changeover sequence of diesel blender. Diesel blender 

can perform three tasks (i1, i2, and i3) to produce three different grades of diesel blend products. 

Changeover sequence (
, ,i i j  ) in first iteration is (i3, i1), (i1, i2) and (i2, i3) and Diesel-BSP sub 

problem in next iteration is solved using 7 event-points. Total of 49 alternative solutions are 

obtain from the changeover sequence as described in section 6.3.4 and thus 49 integer cuts are 

added to D-BSP in 2
nd

 iteration. The algorithm is terminated after 2
nd

 iteration when a global 

feasible solution without demurrage costs is obtained. 

 Table 6.7 Algorithm progress and termination 

Ex. Iter. 

Objective( ) 

Demurrage Cost ( ) 

Integer 

Cuts 

Generated D-BSP J-BSP PSP D-RBSP J-RBSP Total 

3 

1 

2120.64 

886.36 

16.00 

0 

107.01 

0 

16497.52 

15247.44 

63.97 

0 

16668.50 

15247.44 

1 

2 

2120.64 

886 

16.00 

0 

119.51 

0 

16481.71 

15247.44 

55.83 

0 

16657.05 

15247.44 

1 

3 

5467.63 

4963.64 

16.00 

0 

119.49 

0 

15751.44 

15247.44 

58.28 

0 

15929.21 

15247.44 

7 

4 

5467.64 

4963.64 

16.00 

0 

107.00 

0 

15767.25 

15247.44 

62.86 

0 

15937.11 

15247.44 

7 

Z

Zd
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5 

8207.00 

7150.00 

16.00 

0 

119.50 

0 

20440.81 

19383.81 

55.83 

0 

20616.14 

19383.81 

1 

6 

24006.24 

22750.00 

16.00 

0 

- - - - - 

6 

1 

518.00 

0 

39.00 

0 

154.89 

0 

24852.47 

24248.63 

79.81 

0 

25087.17 

24248.63 

49 

2 

518.00 

0 

39.00 

0 

155.67 

0 

576.43 

0 

80.82 

0 

812.92 

0 

- 

The heuristic algorithm progress for example 3 is reported in Table 6.7 and the algorithm 

terminates during 6
th
 iteration and the best solution found so far is kept. For example 3, in the first 

iteration, D-RBSP sub-problem reports a solution with due date violations thus integer cuts are 

produced to eliminate the current changeover sequence  and are added onto the D-BSP integer 

cut-pool. In 6
th
 iteration the objective of D-BSP is 24006 and demurrage cost is 22750 which is 

worse than the best objective of 15929 and demurrage 15247 obtained in 3
rd

 iteration. Thus, the 

algorithm terminates during 6
th

 iteration because the current D-BSP optimal solution is worse 

than the best D-RBSP solution obtained so far and RBSP can never do better than its 

corresponding BSP. The solution obtained by 3
rd

 iteration is reported as the final solution since it 

has the lowest overall cost of all 5 iterations and lowest demurrage cost. Total of 17 integer cuts 

are generated at the end of 5
th
 iterations and it takes only about 120 seconds for algorithm to 

terminate compared to 1939 seconds for full-scale model. For example 3, the full-scale integrated 

optimal solution reports demurrage violation for a blend product demand order to be 4.32 hours 

whereas the proposed heuristic approach solution gives violation to be 4.69 hours. Furthermore, 

the solution obtained using the heuristic algorithm has the same product giveaway cost as full-

scale optimal solution. 
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The performance of our heuristic algorithm is significantly better than that of full-scale model 

and decomposed problems are able to produce schedules that are similar to that of full-scale 

model. Figure 6.8 and Figure 6.9 shows Gantt chart for production schedule for example 5 obtain 

using integrated full-scale model and heuristic model, respectively. The decomposition approach 

provides similar schedule as integrated approach. Since the refinery under study has blend 

headers that receive blend components straight from upstream process units, blend headers must 

always be active when process units are sending materials. This continuous process characteristic 

of rundown blending is clearly observed in the Gantt charts. It is preferable for blend headers to 

blend material at constant blend rate. In our heuristic approach, constant blend rate is achieved 

when material being sent by upstream processes at given time-period is processed during 

different event-points when restricted blend scheduling problem is solved using production unit 

scheduling problem results. In Figure 6.9, for the last two event points when Jet blender is using 

constant blend rate of 0.4826 when blending 106.8 kbbl and 44.5 kbbl amount of jet fuel. 

Similarly, even though diesel blender has two smaller run modes, blend rate is kept constant 

between 73.98 to 99.21 hour, and 99.21 to 132.45 hour.  
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Figure 6.8 Gantt chart for Example 5 obtained using integrated full-scale model 
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Figure 6.9 Gantt chart for Example 5 obtained from the heuristic algorithm 

The work in this chapter is based upon the linear blending rules for finished products and 

this approach does not reflect the non-linearity of the mixing rules. When the non-linear mixing 

rules are considered, the scheduling model becomes MINLP instead of MILP which is much 

harder in terms of computational complexity. The approach proposed here can be utilized as a 
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preprocessing step before tackling complicated MINLP problem. To reduce the complexity of the 

MINLP scheduling problem, solution space of the non-linear model can be restricted based upon 

the solution of the pre-processing step. In pre-processing step, the corresponding MILP model of 

MINLP will be first solved using the heuristic algorithm presented in this work. The obtained 

feasible solution will provide information on the blend mode changeover sequences for multi-

purpose blend headers necessary for meeting minimum demand requirements and intermediate 

due-dates. By using this information, MINLP feasible solution can be restricted to allow tasks 

changeovers that are only present in the corresponding MILP. To further reduce complexity of 

MINLP, other binary and allocation variables can be fixed to the solution obtained from the 

heuristic algorithm. Proposed algorithm can also be extended to refineries that have blend 

component storage tanks by making minor changes in PSP model.   

6.7. Summary 

In this chapter, we present valid inequalities for the large-scale oil-refinery scheduling 

problems that improve the computational expense necessary to obtain optimal solution. An 

integrated refinery problem is decomposed into production unit scheduling problem and finished 

product blending and delivery problem via splitting blend components streams. A heuristic 

algorithm is proposed based on the decomposed network to obtain a feasible solution of the 

original problem that satisfies minimum demand requirements while minimizing due-date 

violations and maximizing performance. It is demonstrated on realistic diesel refinery case study 

that the proposed algorithm provides feasible solutions that are closer to the optimal solution with 

significantly less computational effort than that required by the full-scale model.  

 

Nomenclature 

Indices  



202 

 

 

i  Tasks 

j  Production units 

k  Storage tanks 

n  Event points 

o  Product order 

p  Properties 

s  States 

t  
Periods relating to blend components flow into a unit (calculated from 

optimal solution of BSP) 

v 

Periods relating to blend components flow into a unit ( calculated from 

optimal solution of PSP) 

Sets  

jI  Tasks which can be performed in unit j 

/c p

s sI I  Tasks which can consume/produce material s 

J  Production units 

bJ  Blend units 

/c p

s sJ J  Units that consume/produce material s 

iJ  Units which are suitable for performing task i 

hJ
 

Units that can produce all the same products as some other unit in the 

refinery  

mJ
 

Units which are suitable for performing multiple tasks 

/kp pk

k kJ J  Units that consume/produce material s stored in tank k 

seq

jJ   Units that follow unit j (no storage in between) 

K  Storage tanks 
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hK
 

tanks that can store the same products as some other tank in the refinery  

/kp pk

j jK K  Tanks that store material consumed/produce by unit j  

mK  Multipurpose tanks that can store multiple materials  

bpK
 

Tanks that can store finished blend products  

pK
 

Tanks that can store products  

sK  Tanks that can store material s  

N  Event point within the time horizon 

O  Orders for products that are stored in tanks 

P  Product Properties 

S  States 

AS
 

Group A products,  stored in tanks 

BS
 

Group B products, not stored in tanks 

bpS
 

finished blend products, stored in tanks 

kS
 

Materials that can be stored  in tank k 

bcS
 

Blend components 

j

bcS
 

Blend components that can be consumed by blend header j 

/c p

i iS S
 

Materials that can be consumed/produced by task i 

/c p

j jS S
 

Materials that can be consumed/produced by unit j 

jV
 

Time periods within RBSP during which blend unit j receives component 

flow 

Parameters  

oat  1 if the order o of PSP has to be satisfied by PSP.  

,j obo
 

Order o of PSP is needed by blend unit j 
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, ,,o s o sD D   Demand limit requirement for order o and product s that is stored in tank   

smax_rate  Maximum production rate of material s 

jn
 

Number of total event points used by blend unit j in BSP model solution 

,o iot  1 if task i is performed when order o of PSP is processed by BSP.  

,s pP
 

Property p of blend component s 

min max

, ,/s p s pP P
 

Minimum/maximum specification of property p of blend product s 

jpn
 

Total number of time period in which blend components flow into the blend 

unit j from PSP 

sr  Demand of the final product s at the end of the time horizon 

min max

, ,/i j i jR R  Minimum/ maximum  rate of material be processed by task i in unit j 

iRL
 

Minimum run length for task i   

min max/k kRU RU  Minimum/maximum  rate of product unloading at tank k 

,s ksto  Amount of state s that is present at the beginning of the time horizon in k 

kta
 

Fill draw delay for product tank k 

, , , ,/j s t j s tTsx Tfx
 

Start and finish time of blend component s flow to blend unit j at time 

period t 

otup  Allowable due-date violations of order o without any penalty in PSP 

, ,j i vtx
 

At time period v, blend unit j is performing task i 

UH  Available time horizon 

, ,j s vUifx  

Amount of blend component s received by blend unit j from PSP at time 

period v  

max

kV  Maximum available storage capacity of storage tank k 

heel

kV  Maximum heel available for storage tank k 
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,s kyo  1 if the material s is present at the beginning of the time horizon in k 

, ,j i i   
1 if changeover of task happen from i to i’ at blend unit j in BSP 

min max

, ,/s i s i   Proportion of state s produced/consumed  by task i,  

 Variables  

Binary Variables  

, ,i j nwv  Assignment of task i in unit j at event point n 

, , ,s j k nin  Assigns the material flow of s into storage tank k  from unit j at point n 

, ,k o nl  

Assigns the starting of product flow out of product tank  k to satisfy order o 

at event point n 

, , ,s k j nout  Assigns the material flow of s out of storage tank  k into unit j at point n 

, , ,j i v nx
 

Denotes that process material received by blend unit j at period v is 

processed by task i at event point n 

, ,s k ny
 Denotes that material s is stored in tank k at event point n 

Positive variables 

, , ,s i j nbp  Amount of material s produced task i in unit j at event point n 

, , ,s i j nbc  Amount of material s undertaking task i in unit j at event point n 

l

odg  Minimum demand quantity give-away term for order o 

u

odg  Maximum demand quantity give-away term for order o 

H  Total time horizon used for production tasks 

, , ,s j j nJJf   Flow of state s from unit j to consecutive unit j’ for consumption at point n 

, , ,s j k nKif  Flow of material s from unit j to storage tank k event point n 

, , ,s k j nKof  Flow of material s from storage tank k to unit j at point n 

olate  In PSP, due date violation of blend component demand order o 
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, ,o k nLf  Flow of final product for order o from storage tank k at event point n 

, ,s k nmh  Maximum heel give-away term for product tanks 

srg  Minimum demand quantity give-away term for Group B product s  

, ,s k nRif  Flow of raw material to storage tank k event point n 

, ,s k nst  Amount of state s present in storage tank k at event point n 

, , ,s s k nstd   

Amount of state s that is downgraded to state s‟ in storage tank k at event 

point n 

oTearly  Early fulfillment of order o than required 

, ,i j nTf  Time that task i finishes in unit j at event point n 

oTlate  Late fulfillment of order o than required 

, ,k o nTos  Time that material starts to flow from tank k for order o at event point n 

, ,k o nTof  Time that material finishes to flow from tank k for order o at event point n 

, ,i j nTs  Time that task i starts in unit j at event point n 

, ,j k nTsf  Time that material finishes to flow from unit j to tank k  at event point n 

, ,k j nTsf  Time that material finishes to flow from tank k to unit j at event point n 

, ,j k nTss  Time that material starts to flow from unit j to storage tank k  

, ,k j nTss  Time that material starts to flow from tank k  to unit j at event point n 

, ,s j nUif  Flow of raw material s to production unit j at point n 

, ,s j nUof  Flow of product material s from unit j at point n 

, , ,j s t nUUf
 

Amount of state s received by unit j at period v is processed at event n 

,j n
 

For unit j, 1 if the unit becomes active for very first time at event point n 

,k n
 

For tank k, 1 if the tank becomes active for very first time at event point n 



207 

 

 

, , ,s s k n   

Continuous 0-1 variable, 1 if material in tank k switchover service from s at 

event point n to s‟ at later event point 

, ,s s ko   

Continuous 0-1 variable, 1 if material in tank k switchover service from s to 

s‟ 

, , ,i i j n   

Continuous 0-1 variable, 1 if task at unit j changes from i at event point n to 

i’at later event point. 
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Chapter 7  

7. Augmented Lagrangian Relaxation Approach for Refinery Scheduling 

To improve quality of the decision making in the refinery operations, coordination between front-

end of a refinery to end-products blending is necessary. Finished product blending and delivery 

operations and production unit operations present unique challenges each and lead to a complex 

scheduling model. In this work, we present a unified framework for decomposition via 

augmented Lagrangian relaxation. The coupling constraints of two operations system are relaxed 

using augmented Lagrangian relaxation technique and the full-space model is decomposed into 

production unit scheduling relaxed sub-problem and finished product blending and delivery 

scheduling relaxed sub-problem. The non-separability terms introduced by augmented penalty are 

resolved using diagonal quadratic approximation method. A general decomposition algorithm that 

addresses real-world features such as parallel blend headers, multipurpose product tanks, product 

giveaway, and blending operations with/without components storage. Applicability of proposed 

approach is presented on by addressing four different refinery network configurations: no blend 

component tanks, parallel blend units and no component tanks, component tanks present and no 

direct flow to blend unit, and direct flow to blend unit and components storage options.  

7.1. Introduction 

Lagrangian decomposition (LD) method developed in previous chapter addresses scheduling of 

refinery operations with rundown blending (no blend component tanks) and proposed restricted 

LD is effective addressing large scale problems. In this chapter, a unified decomposition strategy 

based on Augmented Lagrangian relaxation method is developed that can address different 

refinery configurations effectively. In ordinary Lagrangian decomposition, duality gap exists 

between solution of dual problem and the solution original problem in presence of integer 

variables or other non-convexities. Thus, heuristic procedures are needed to obtain feasible 
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solution at the end of each iteration. To overcome this problem, an augmented Lagrangian 

relaxation (ALR) method is adopted. ALR method has been used in several applications 

(Andreani et al., 2008; Fortin & Glowinski, 1983; Gupta et al., 2001; Z. Li & Ierapetritou, 2010a; 

Nishi et al., 2008; Tosserams et al., 2006; Tosserams et al., 2008) and strong convergence 

property of ALR algorithm is proved by (Andreani et al., 2008). One of the drawbacks of ALR 

method is introduction quadratic term by the augmented penalty term.  This nonseparability can 

be resolved using Diagonal Quadratic Approximation (DQA) method  (Ruszczynski, 1995), the 

Block Coordinate Decent (BCD) method (Bertsekas, 1995; Bertsimas & Sim, 2003), and the 

Alternating Direction Method (Bertsekas & Tsitsiklis, 1989).  

In this chapter, we apply augmented Lagrangian optimization algorithm to decompose 

refinery operations scheduling problem into production unit scheduling sub-problem and finished 

product blending and delivery scheduling sub-problem. This chapter is organized as follows. 

Section 7.2 presents solution strategy, section 7.3 proposes detailed Augmented Lagrangian 

decomposition (LD) algorithm, and strengthening of decomposition algorithm is presented in 

section 7.4. Detailed algorithm steps for augmented Lagrangian relaxation are given in section 

7.5. Computational results for several different refinery configurations on which algorithm was 

applied are given in section 7.6 and the chapter concludes with summary in section 7.7.  

7.2. Solution Strategy  

7.2.1. Augmented Lagrangian method 

Augmented Lagrangian relaxation is an appropriate decomposition approach when the 

problem under study has complicating constraints that upon relaxation leads to smaller sub-

problems that are easier to solve. This approach is suitable for integrating two independent 

scheduling models without needing to obtain full-scale model or using heuristics to find feasible 

solution. We briefly present a general augmented Lagrangian optimization algorithm for a 

following linear problem: 
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Initial Problem (IP)

. . 0

0

,n q

z Min cx dy

s t Hx b

Ax By

x y 

 

 

 

 

 

Where, , ,n q mc d b   , A and B  are m n  and m q  matrices, respectively. To decompose 

the model (IP) into sub-problems, we introduce duplicating variables xx  and coupling constraints

0x xx  .  

. . 0

0

0

, ,n n q

z Min cx dy

s t Hxx b

Ax By

x xx

x xx y  

 

 

 

 

  

 

 When coupling constraint are relaxed and incorporated into the objective function. In 

addition to Lagrangian term, augmented penalty terms are introduced to reduced duality gap.  

   
2

Relaxed Problem (RP)

. . 0

0

, ,

T

R

n n q

z Min cx dy x xx x xx

s t Hxx b

Ax By

x xx y

 

  

     

 

 

  

 

Where,   represents Lagrangian multipliers and   is a positive penalty parameters. The 

augmented penalty term cannot be decomposed as it contains an inseparable cross penalty terms (

x xx ). To resolve the non-separability issue, diagonal quadratic approximation (DQA) method is 

used to linearize the cross-product quadratic term around the tentative solution. (Y. Li et al., 

2008) 

 ( x , xx ).        
2 2 22

x xx x xx x xx x xx        

Thus with above substitution for the non-separable term, the relaxed problem (RP) can be 

decomposed into sub-problem (RP1) and sub-problem (RP2). 



211 

 

 

 
2

1

Subproblem Problem (RP1)

. . 0

,

T

R

n q

Z Min cx dy x x xx

s t Ax By

x y

 

 

    

 

 

    
    

2 2

2

Subproblem Problem (RP2)

. . 0

T

P

n

z Min xx x xx x xx

s t Hxx b

xx

 



     

 



 

Resulting decomposed models (RP1) and (RP2) are quadratic optimization problems due to 

quadratic terms in the objective function. 

The procedure for augmented Lagrangian optimization is as follows: 

Step1. Initiate the Lagrangian multiplier  (0)  and penalty parameter (0) 0   , 0m    

Step 2. For given ( ) ( ), ,m m xx   , solve sub-problem (RP1). Update x x . 

Step 3. Solve sub-problem (RP2) based on ( ) ( ),m m  and x . Update xx xx . 

Step 4. Update the Lagrangian multipliers using multiplier method  ( 1) ( ) mm m m x xx      .  

Step 5. If 
1m m

g g


 , update 1m m   . Here, (0,1)  . For convex objective function, 1   

is strictly necessary and for fast convergence, 2 3   range is recommended. (Tosserams et al., 

2006) 

Step 6. If g  , the feasible solution is calculated. Here, 0    Otherwise, 1m m  . 

Step 7. If iteration number m  is larger than the pre-specified number, terminate. Otherwise, go to 

step 2. 

Here, g x xx  , is a coupling constraint violation matrix. Penalty parameter ( ) is updated 

when the constraint violation is not decreased by a factor  . Algorithm is terminated when the 

tolerance is met for constraints violations and feasible solution is found or predefined maximum 

iteration limit is reached. The augmented Lagrangian optimization algorithm always converges to 

a feasible solution for   . 

7.2.2. Decomposition Strategy 

Large scale MILPs such as problem (P) proposed in Chapter 4, require specialized 

solution algorithms that can take into account unique characteristics of unit specific event – points 
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in presence of multi-purpose blend units, and intermediate due-dates. We apply augmented 

Lagrangian optimization algorithm for solving model (P) and propose modified sub-problems that 

helps algorithm to converge to an optimal or near optimal solutions. To obtain sub-problems, 

refinery network is decoupled following the concept of spatial decomposition (e.g. (Karuppiah et 

al., 2008)). The network is split into two sub-networks, one belonging to production unit 

operations and other belonging to finished product blending and delivery operations.  

 

Figure 7.1 Spatial decomposition of a refinery network  

To picture physical split, imagine cutting pipelines transferring blend components from 

production units to blend units or blend component tanks. The variables corresponding to the split 

pipelines correspond to complicating variables in full-scale model and these variables are amount 

of material flow and start and finish time of the flow between production operations sub-structure 

(PN) and blending operations sub-structure (BN). In original model (P), flow of blend component 

s  from production unit j  to blend unit j  at event point n  (
, , ,s j j nJJf  ), flow of component s  

from production unit j  to blend component storage tank k  at event point n  (
, , ,s j k nKif , 

, , ,s j k nin  ), 

and start and finish timing variables for flow of material between unit and component tanks (

, ,j k nTss  , 
, ,j k nTsf  ), are complicating variables. Other variables in model (P) are called non-linking 

,

, ,,

P

s t

P P

s t s t

kCf

kCTf kCTs

, ,

, ,,

P

s j t

P P

j t j t

Cf

CTf CTs

,

, ,,

B

s t

B B

s t s t

kCf

kCTf kCTs

, ,

, ,,

B

s j t

B B

j t j t

Cf

CTf CTs

Production Unit Operations Blending and delivery Operations 

Production 

units Component 

tanks 

Blenders 
PN BN 
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variables since they are separate for both sub-structures PN and BN. Using the approach 

presented in section 7.2.1, the complicating variables are duplicated, coupling constraints are 

introduced to model (P) and then these coupling constraints are relaxed in Augmented Lagrangian 

fashioned using diagonal quadratic approximation method to eliminate non-separable terms. This 

allows us to decompose the relaxed model (RP) shown below into two models corresponding to 

sub-networks PN and BN.  

   

   

, , , , , , , , , , , , , , , , , ,

, , , , , ,

, , , , , , , , , , , ,

, , , ,

, ,

min ( , , )
bc bc

bc bc

B P B P

s j j n s j j n s j j n s j k n s j k n s j k n

s S j j n s S j k n

B P B P

j k n j k n j k n j k n j k n j k n

j k K n j k K n

s j j

L z JJf JJf Kif Kif

Tss Tss Tsf Tsf

JJf
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2 2 2
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, , ,
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P B B P
B P

n s j j ns j j n s j j n s j j n s j j n

s S j j n

P B B P
B P

s j k n s j k ns j k n s j k n s j k n s j k n

s S j k n

JJf JJf JJf JJf JJf
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j k n j k n j k n j k nj k n j k n

j k K n
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j k n j k nj k n j k n j k n j k n

j k K n

Tss Tss Tss Tss Tss Tss

Tsf Tsf Tsf Tsf Tsf Tsf





    

 

    

 

  
     

  

  
      

  





 

s.t. constraints corresponding and variables in (P) proposed in Chapter 4 (RP) 

 

However, to avoid introducing large set of complicating variables (
, , ,s j j nJJf  ,

, , ,s j k nKif ,

, , ,s j k nin  , 
, ,j k nTss  , 

, ,j k nTsf  ), we aggregate the blend component s streams from multiple production 

units supplying BN into one stream supplying BN as seen in Figure 7.1. Similarly, multiple inlet 

streams for a blend component s  that has storage option available, is aggregated into one inlet 

stream which is then split into multiple stream connecting different component tanks (Figure 7.1). 

New the complicating variables are reduced to (
, ,s j nCf , 

,s nKCf , 
,s nKCTs , 

,s nKCTf ). Here, 
, ,s j nCf  is 

flow of component s  from sub-structure PN into blend unit j  in BN an event-point n . For blend 

component that can be stored in component tanks, 
,s nKCfn  is flow of component s  from PN to 

BN at event-point n , and 
,s nKCTs /

,s nKCTf  is start/finish time of flow of component s  from PN 

to BN at event-point n .  
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Complicating variables are in terms of continuous time representation and notion of unit 

specific event points. When augmented Lagrangian algorithm is implemented, this types of model 

leads to sub-optimal solutions and oscillations in objective function in the beginning of the 

algorithm, especially for a refinery configuration that has no blend component storage options 

and multipurpose blend units. To eliminate this behavior, we introduce a new transfer event-point 

t  that is only active if there is flow of material between production unit operations and blending 

operations and the complicating variables can we replaced with (
, ,s j tCf , 

,s tKCf , 
,s tKCTs , 

,s tKCTf ). 

The detail information regarding new transfer event-point t  and its relationship with event-point 

n  is provided in detail in section 7.3. Furthermore, the start and finish time of component s  flow 

between PN and a blend unit  are not defined explicitly in full-scale model and therefore these 

complicating variables (
,j tCTs , 

,j tCTf ) need to be defined in decomposed models. The timing 

variables for a component  flow between PN and a blend unit  at transfer event- point t  is 

defined as 
,j tCTs  and 

,j tCTf  instead of 
, ,s j tCTs  and

, ,s j tCTf  because all components that are 

supplied directly to the blend unit must have same start and finish times due to continuous 

production.  

Using the updated set of complicating variables (
, ,s j tCf , 

,s tKCf , 
,j tCTs , 

,j tCTf , 
,s tKCTs , 

,s tKCTf ), we obtain a new relaxed problem (LRP) where old complicating variables (
, , ,s j j nJJf  ,

, , ,s j k nKif ,
, , ,s j k nin  , 

, ,j k nTss  , 
, ,j k nTsf  ) connecting two sub-structures and related constraints are 

eliminated from model (RP).  

j

s j



215 

 

 

      

      

 

, , , , , , , , , , , ,

, , ,

, , , , , , , , ,

,

2

, , , , , ,

min
BU BU

bc

bc

B P B P B P

s j t s j t s j t j t j t j t j t j t j t

s S j J t T j J t

B P B P B P

s t s t s t s t s t s t s t s t s t

s S t

P B
B

s j t ss j t s j t

f z Cf Cf CTs CTs CTf CTf

KCf KCf KCTs KCTs KCTf KCTf

Cf Cf Cf Cf

  

  



   



       

     

   

 



   

     

     

 

2 2

, , , , , ,

, ,

2 2 2

, , , ,, ,

2 2 2
,

, ,, , , ,

2

, , ,

BU
bc

BU

B P
P

j t s j t s j t

s S j J t

P B B P
B P

j t j t j t j tj t j t

P B B P
B Pj J t

j t j tj t j t j t j t

P B
B

s t s t s t

Cf Cf

CTs CTs CTs CTs CTs CTs

CTf CTf CTf CTf CTf CTf

KCf KCf KCf KCf





 



 
  

 

 
      

  
      
  

  







   

     

     

2 2

, , ,

2 2 2

, , , ,, ,

,

2 2 2

, ,, , , ,

bc

B P
P

s t s t s t

P B B P
B P

s t s t s t s ts t s t

s S t

P B B P
B P

s t s ts t s t s t s t

KCf KCf

KCTs KCTs KCTs KCTs KCTs KCTs

KCTf KCTf KCTf KCTf KCTf KCTf



 
  

 
 
      
 
 
      
 



 

s.t. constraints corresponding to non-linking variables in (P) (LRP) 

 

Following the augmented Lagrangian decomposition approach presented in section 7.2.1, 

model (LRP) can be decomposed into two relaxed sub-problems (LBSP) and (LPSP) such that 

model (LBSP) includes equations and variables pertaining to sub-network BN, while model 

(LPSP) includes equations and variables corresponding to the structure PN. The bounds of non-

linking variables in both the both sub-problems are same as original full-space model (P) whereas 

the original linking variables are eliminated from the original full-space problem (P) and will be 

replaced with new variables that will be defined in section 7.3. The two models (LBSP) and 

(LPSP) are as follows: 
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s.t. constraints corresponding to units and connections in PN (LPSP) 

 

Here, 
, ,s j t , 

, ,s j t , 
, ,s j t , 

,s t , 
,s t , and 

,s t  represent Lagrangian multipliers and   is the 

corresponds to augmented Lagrangian penalty term. The scheduling model (LBSP) and (LPSP) 

can be solved using different number of event points, min

PNep and min

BNep  corresponds to the minimum 

number of event-points ( n ) required to obtain optimal solution of (LPSP) and (LBSP), 

respectively. The cardinality of transfer event-point set is equal to min

PNep , that is set 

 min1, 2, , PNT ep .  

7.3. Decomposed Models  

In addition to non-linking variables and constraints present in (P), decomposed models 

(LBSP) and (LPSP) includes additional constraints and variables to define complicating variables 

in terms of new transfer event-point t . We first present finished product blending and delivery 

scheduling problem (LBSP) and then relaxed production unit scheduling model (LPSP).   
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7.3.1. Relaxed Blend Scheduling Problem 

 

Figure 7.2 Spatial decomposition of blend sub-network structure (BN) 

Finished product blending and delivery operations correspond to sub-structure BN shown 

in Figure 7.2 in detail. In this problem we assume that all blend component tanks are dedicated 

tank and blend components are either supplied directly to a blend unit or are supplied to 

component tanks. Blending operations features parallel blend units, multiple non-identical blend 

units producing different products, multipurpose blend units, and multipurpose product tanks. BN 

can be decomposed into smaller sub-structures using following rule: sub-structures do not have 

common blend components, products, units, and tanks. Spatial decomposition using this rule is 

carried out in Figure 7.2 and we obtain two sub-structures BN1 and BN2. Based on this 

decomposition, problem (LBSP) can be decompose into two independent problems (LBSP1) and 

(LBSP2), where model (LBSP1) contain all the variables and equations relating to sub-network 

BN1 and problem (LBSP2) includes all the variables and equations relating to sub-network BN2. 

For a given refinery network, additional decomposition of BN can be carried out to obtain more 
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than 2 sub-networks and corresponding decomposed scheduling models if possible and set BN  

includes all the decomposed sub-network of BN, e.g.  1, 2BN BN BN . These independent 

decomposed scheduling models can be solved using different number of event-points and 

parameter min

bnep  gives minimum number of event-points needed to solve scheduling problem 

corresponding to sub-network bn to optimality.    

Since original complicating variables (
, , ,s j j nJJf  ,

, , ,s j k nKif ,
, , ,s j k nin  , 

, ,j k nTss  , 
, ,j k nTsf  ) are 

eliminated from (LBSP), we make following changes: 

- If a blend component is supplied directly to unit without storage options, then the blend 

component is treated as a raw material for blend unit and flow of component s  to blend 

unit j  at event-point n  is given by 
, ,s j nUif  

- A unit is added set J  for BN to represent a dummy production unit 

- For blend component that can be stored into tanks, variable 
, , ,s j k nKif  represent flow of 

component s into tank k  from dummy production unit j  at event-point n  

The start and finish time (
, ,j k nTss , 

, ,j k nTsf ) for flow into the component tank at event-point n  is 

define by Eq. (1).  

   , , , , , , , , , ,1 , , , ,s j k n j k n j k n s j k n bc s dmyKif M Tsf Tss M in s S k K j J n N        

 

(1) 

Here, the binary variable 
, , ,s j k nin  is defined by equation (7a) in Chapter 4 and is equal to 1 if the 

blend component is flowing into tank at event-point n . If component is supplied to the tank from 

a dummy production unit j  at event-point n , then total amount is bounded by product of big-M 

and duration of flow into the tank.  

To represent complicating variables in terms of transfer event-point t  instead of event-

point n , we introduce 0-1 continuous variables 
, ,j n tx  and 

, ,s n txk . These variables are 1 if a transfer 

event-point t  to corresponds to an active event-point n , otherwise 0.  
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(2a) 

 
(2b) 

 
(2c) 

 
(2d) 

 
(2e) 

 

(2f) 

 

(2g) 

Constraints (2a)-(2g) are for a blend unit that receives at least one blend component 

directly from production unit operations. Binary assignment variable 
, ,i j nwv  is 1 if task i  is active 

at event-point n  for unit j . For a blend unit j  that is performing some task at event-point n , 

Eqs. (2a)-(2d) only one event-point t  to the event-point n . Eqs. (2e) enforce that event-point 

t t  should be assign an active event-point n before event-point t . More ever, for any two active 

event-points n n  , n  must be assigned to an event-point t before assigning n  to an event-point 

t , where t t  . Constraints (2a)-(2e) eliminates an occurrence of a situation where 
, , 1j n tx  and 

, , 0j n tx    for t t  . Since there is one to one correspondence between an active event-point n  and 

event-point t  for a unit j , we introduce Eq. (2g) to fix variable 
, , 0j n tx   whenever n t . 

Similar to constraints (2a)-(2g) for blend unit that receive components directly from 

production unit operations, we present Eqs. (3a)-(3g) for blend component tanks as follows: 

 
(3a) 

 
(3b) 
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(3c) 

 
(3d) 

 
(3e) 

 

(3f) 

 

(3g) 

Complicating variables (
, ,s j tCf , 

,s tKCf , 
, ,s j tCTs , 

, ,s j tCTf , 
,s tKCTs , 

,s tKCTf ) expressed through 

transfer event-point t  are defined below:  

 

(4a) 

 

(4b) 

 
(4c) 

 

(5a) 

 

(5b) 

 

(5c) 

 

(5d) 

 
(5e) 

 
(5f) 

Flow of component s  from sub-network PN to blend unit j  at transfer event-point t  is 

equal to raw material flow into the blend unit at event-point n  if , ,j n tx  equal to 1 as stated by Eqs. 

(4a)-(4b). Eq. (50c) forces , ,s j tCf  to be zero if at transfer event point t , no flow exists between 

PN and a blend unit in BN.  As given in Eqs. (5a)-(5d), timing variables for component flows at 

event-point t  into a blend unit j  are determined by start and finish time of blend run-mode at 
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corresponding event point n . Eqs. (5e)-(5f) force start and finish time to be zero at event-point t  

if the event-point t  is not assigned to any event-point n . Similarly, he complicating variables 

associated with blend component tanks are determined by Eqs. (6a)-(7f) as shown below. 

Aggregated component s  stream connecting PN and BN sub-networks is split into multiple 

streams connecting suitable component tanks as expressed by Eqs. (6a)-(6b).  

 
(6a) 

 
(6b) 

 
(6c) 

 

(7a) 

 

(7b) 

 

(7c) 

 

(7d) 

 
(7e) 

 
(7f) 

If no transfer of flow exists between BN and PN for component  that can be stored in tanks at 

transfer event-point , then the corresponding transfer variables are fixed to zero as enforced by 

Eqs. (6c), (7e) and (7f).  

7.3.2. Relaxed Production Unit Scheduling Problem 

In production unit operations, more than one production unit can produce a blend component  

and these blend component can be either directly supplied to a blend unit or can be sent 

to a blend component tanks but not both. Original complicating variables ( , ,

, , ) are eliminated in model (LPSP) and blend components are defined as 
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products instead of intermediates in  PN (Figure 7.3). Depending on if the blend component can 

be stored in tank or not in BN, following changes are made:    

- For blend component  supplied directly to a blend unit  without storage options and 

produced by production unit  at event-point , the flow is represented by .  

- For blend component  that can be stored into tanks and produced by production unit  

at event-point , the flow is given by . 

 

Figure 7.3 Production unit operations network 

The material balance constraints (3a) in section 4.3  for blend component s  and for production 

unit  and valid inequality (42) are updated as to define blend components as raw material for 

PN as follows: 
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(42‟) 

To determine if transfer happening between production unit  and blend unit  at event-point , 

a binary variable  is introduced. This variable is needed because refinery might have 
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multiple blend units that can consume blend component s . According to Eq. (8), if production 

unit  is supplying a component to a blend unit  at event-point  then binary variable  is 

equal to 1. 

 (8) 

 Here,  is maximum blend recipe component  and  is maximum blending 

rate for blend unit  and they are determined using the available information about blending 

operations. Eqs. (9a)-(9d) determines maximum/minimum blend recipe for components and 

maximum/minimum production rate for each blend units, respectively.  

 (9a) 

 (9b) 

 (9c) 

 (9d) 

The flow of a component into sub-network BN is bounded by total storage capacity in BN at any 

given time as stated by Eq. (10). 

 
(10) 

To obtain the complicating variables in terms of transfer event-point , constraints similar to 

(2a)-(2g) are added to production scheduling problem. For a blend unit that receives at least one 

blend component directly from PN, Eqs. (11a)-(11g) are used and for a blend component that has 

storage options available in BN, Eqs. (12a)-(12g) are used to determine active transfer flow at 

event-point . Here, variables  and  are continuous 0-1 variables.  
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(11b) 

 
(11c) 

 
(11d) 

 
(11e) 

 

(11f) 

 

(11g) 

 
(12a) 

 
(12b) 

 
(12c) 

 
(12d) 

 
(12e) 

 

(12f) 

 

(12g) 

Similar to Eqs. (4a)-(7f) used to determine flow amounts and duration of components flow into 

BN,  Eqs. (13a)-(16f) are used to determine the complicating variables associated with transfer 

event as follows: 
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(14a) 

 

(14b) 

 

(14c) 
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(15a) 

 
(15b) 

 
(15c) 

 

(16a) 
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(16d) 

 
(16e) 

 
(16f) 

As mention before, the multiple streams for a blend component are aggregated into one stream to 

reduce complicating variables in augmented Lagrangian decomposition algorithm. Thus, the flow 

of component  between PN and BN at transfer event-point  is determined in Eqs. (13a), (13b), 

(15a), and (15b) by adding component  flow from multiple production units.  More ever, flow 

of component  to a blend-unit  is bounded by maximum consumption rate ( ) 
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and flow to storage tanks is limited by maximum available storage capacity ( ). Duration 

of a transfer event between PN and a blend unit  is determined by the start and finish time of 

run-modes of production units that are supplying material to the blend unit (i.e. = 1). In 

addition to determine the timing variables for a direct flow of components between a production 

unit and a blend unit at transfer event-point , Eqs. (14a)-(14d) enforces that same start and finish 

time for flow of all components that can be consumed by the blend unit. Similarly, the (16a)-

(16d) assigns start and finish time for flow of components that can be stored in tanks. If no flow 

transfer between PN and BN at event-point , then corresponding linking variables are zero as 

enforced by Eqs. (13c),(14e),(14f), (15c), (16e), and (16f).  

7.4. Strengthening the Augmented Lagrangian Decomposition     

When refinery operations network is decomposed, information regarding the operational 

and logistics rules that govern flow of components between PN and BN is lost. To incorporate 

many of these rules without destroying separability, additional constraints are included in (LBSP) 

and (LPSP) and presented in section 7.4.2. These constraints speed up convergence to a feasible 

solution in augmented Lagrangian optimization algorithm and in most instances push feasible 

solution closer to a global optimal solution. To further improve performance of augmented 

Lagrangian optimization, valid inequalities can be added to improve computational efficiency of 

decomposed models and they are presented in Appendix Chapter 7 for model (LBSP) and 

(LPSP). 

To improve integration between PN and BN, production capacity limitation of production 

unit operations should be obtained before start of the optimization algorithm.  

7.4.1. Preprocessing Step 

When refiner network is decomposed into (BN) and (PN), the resulting decomposed 

scheduling problem (LBSP) does not take into consideration the production capacity limitation of 

max
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production unit operations. Therefore, a pre-processing step before the start of the algorithm is 

needed to determine maximum and minimum production rate of each blend component.  

Relaxed production unit operation scheduling model (LPSP) is optimized for one of the 

following objective function to obtain maximum and minimum production rate for a blend 

component .  

 

(17a) 

 

(17b) 

Objective function (17a) is maximized to determine the maximum production flow rate of a 

component s to a blend unit   and Eq. (17b) is used to obtain the maximum production rate for 

components that have storage options available. The minimum flow rate would always be zero 

unless constraint (18a)-(18b) is added to the model to require flow to happen.  

 
(18a) 

 
(18b) 

Eq. (18a) requires the flow of component  from PN to a blend unit at transfer event-point  and 

for component that can be stored in tanks, Eq. (18b) enforces flow to happen at event-point . 

For blend units that receive all the components directly from production unit operations without 

any storage, the maximum and minimum total flow rate into a blend unit is determined using 

objective function given in Eq. (19).  
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Upon solving the pre-processing problems, we obtain values of variables {  , , , 

, , , , } from the optimal solution.  
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(20b) 

 

(20c) 

Flow rate for a component from PN to a blend unit is calculated using Eq. (20a), total flow rate 

into the blend unit is determined using Eq. (20c) and Eq. (20b) is used for components that are 

stored in tanks.  

7.4.2. Strengthening Decomposed Problems 

Many constraints that are unnecessary or redundant in full-scale model (P) are needed in 

decomposed model to obtain a solution that is much more align with a feasible solution of full-

scale problem and to speed up convergence to a feasible solution in augmented Lagrangian 

algorithm. In this section, we propose constraints that improve performance of the decomposition 

algorithm.  

7.4.2.1. Relaxed Blend Scheduling Problem 

Lower bound on the duration of the component flow from PN to BN is determined by 

minimum run-length ( ) requirement for production units in PN. Thus, constraints (21b) similar 

to Eq. (14) of original model in section 4.3 is included in relaxed problem.  

  
(21b) 

For a case when more than one blend component can be stored in component tanks in BN 

and if these blend components are produced by production units in PN that are interconnected, 

that is these production units must operate at the same time, then components produced by these 

units would be supplied to BN at the same time. 
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 (23) 

Here, parameter 
,s scont  is equal to 1 if components s  and s  are produced by units in PN that are 

interconnected. Eqs. (22)-(23) states that if a blend unit s is being supplied to a component tank at 

event-point n then component  must also be supplied to at least one suitable component tank at 

event-point n. Timing constraints for these connected blend components are given in Eqs. (24a)-

(24d) which enforce same start and finish time for component flow at event-point n. 
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(24d) 

Furthermore, if multiple tanks are available to store a blend component, then following sequence 

constraint (25) are needed as it captures what happens in during production unit operations in PN.  

 

(25) 

Set  includes all blend units that receive at least one blend component directly from 

production unit operations without any storage. If all the components consumed by blend unit  

are supplied directly without storage, then that blend unit belongs to set . 

The production capacity of blend components determined in pre-processing step is 

incorporated into relaxed blend scheduling by removing the big-M term from model. 
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(4b‟) 

 
(4c‟) 

 
(6a‟) 

 
(6b‟) 

Eqs. (1), (4a), (4b), (4c), (6a), and (6b) are replaced with updated constraints (1‟), (4a‟), (4b‟), 

(4c‟), (6a‟), and (6b‟). Upper and lower limit on flow into BN from PN at transfer event-point  

is given by Eqs. (26a)-(28b).  
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(28b) 

Flow of component  to blend unit  is bounded by product of duration of flow and 

maximum/minimum production rate ( / ) as limited by Eqs. (26a) and (26b), 

respectively. If no flow exists between PN and a blend unit (i.e. ) then inequality in 

(26a)-(26b) is relaxed. For a blend component that can be stored in tanks, if no flow exists 

between PN and BN for a (i.e. ) then inequalities (27a)-(27b) are relaxed. Similarly, 
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for blend units that receive all their components directly from production unit operations, the total 

flow amount is bounded by upper and lower limits as enforced by Eqs. (28a)-(28b).  

A lower bound of (LBSP) is obtained, when the model (LBSP) is solved to optimality with all the 

Lagrangian and augmented penalty parameter fixed to zero. Thus, solution  at 

algorithm count  gives the best lower bound of (LBSP) and Eq. (29) is added to model.  

 

(29) 

For a refinery that has multiple dedicated tanks for blend component storage, Eq. (30) is added to 

model when algorithm iteration count is . 

 
(30) 

The blend scheduling problem become difficult to solve as the additional flexibility of a parallel 

blend component tanks is introduced. To reduce this complexity, Eq. (30) is added for parallel 

blend component tanks.  

In our work, since we do not maintain minimum inventory levels for components or 

blend products, following constraints can be added to simplify the blend scheduling problem.  

If one were to require either minimum inventory level for blend components but not finished 

blend product, then constraint (31) can be added to the model without compromising the optimal 

solution. Finished product blend tanks cannot have simultaneous loading and unloading 

operations for security reasons and to allow time for mixing and product specification certificate 

analysis.  For this reason, if a blend unit is receiving all of its blend components from storage 

tanks, then this blend unit would not be active during last event point  because the product 

produce will not contribute to demand orders fulfillment and there is no minimum inventory 

requirement for products. We add Eqs. (31) to (LBSP) to fix blend unit allocation 
, ,i j Nwv to zero.  
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Furthermore, linking variables are compared for transfer event-point  and not event-point , the 

scheduling problem corresponding to sub-network PN can be solved using less number of event-

points n  ( min

PNep ) than scheduling problem corresponding to sub-network BN. When min min

PN bnep ep , 

then following variables are zero at last event-point in (LBSP) when no minimum inventory level 

requirement for components and blend products. 

 

(32a) 

 

(32b) 

 

(32c) 

 

(32d) 

 

(32e) 

Cardinality of set   and transfer event-point  only corresponds to an event-point n t . 

When min min

PN bnep ep , flow of components into the BN happens only to satisfy finished product 

demand, and Eqs. (32a)-(32e) fixes some binary and 0-1 continuous variables to zero for n N . 

If one were to require minimum inventory level for products and components, then these 

constraints should not be included in the model. 

7.4.2.2. Relaxed Production unit Scheduling Problem 

To insure that demand commitments for finished blend product are met and excess 

inventory is minimized in BN, Eqs. (33a) –(33b) are included when parameter is  not zero. The 

parameter  is different than algorithm iteration count  and will be defined in section 7.5.  
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(33b) 

Each independent sub-networks of BN has their own set of finished blend product demand orders 

and initial storage inventory. Eq. (33a) requires production unit operation to produce at least 

minimum amount of total components to satisfy demand for each blending operations sub-

network. More ever, if the total demand cannot be met, then a positive slack variable  is 

added to facilitate feasible solution.  Eq. (33b) limits the total production of blend components as 

it is bounded by maximum demand for finished blend products. For cases where production 

exceeds, a positive slack variable  is introduced and is later penalized in objective function. 

 To ensure that demand is met on time and to improve performance of model, constraints 

(34a) and (35c) are added to the model when parameter is . 
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Constraints (34a)-(34b) and (35a)-(35b) encourage the start and finish time of flow to be near the 

corresponding timing variables‟ solution obtain solving (LBSP). Here 
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slekP  are positive slack variables which are penalized in objective function.  

Constraint (36) requires the objective function to be bounded by , similar to Eq. (73) in 

(LBSP).  
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(36) 

 

(37a) 

 

(37b) 

Since PN is producing blend components for BN, we add following requirement (37a)-(37b) in 

model (LBSP) when flow variables are nonzero in BN for transfer event-point .  

The slack variables (
, ,, , , , ,bn bn j t j s t sDmP Invt esP leP eskP lekP ) are penalized and the updated objective 

function for the model (LPSP) is given below: 
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Objective function PSPff  includes original objective function, augmented Lagrangian terms and 

additional  terms that tries to take into consideration the cost that will be incurred in blending 
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operations by minimizing excess inventory for blend components, under production of blend 

components and component flow start and finish time violations based on solution of LBSP. This 

transfer time violation is not penalized heavily as it would be the goal of augmented Lagrangian 

optimization algorithm to eliminate this violation in order to obtain feasible solution of global 

problem. The last three terms in the objective function is for parallel blend units. If the material 

flow is happening to at least one parallel blend unit in BN (
, , 0

B

s j t

s

Cf  ) at event-point t  then the 

rest of the parallel units that have no flow happening (
, , 0

B

s j t

s

Cf  ) at that event-point are 

penalized less heavily than if no flow was happening at any parallel blend unit ( , ,

,

0
B

s j t

s j

Cf  ) at 

event-point t . Cost coefficients 16 17 18 19, , , ,c c c c  and 20c  need to be determined along with 

Lagrangian multipliers and augmented penalty parameters. The coefficients 20c  should be 

20 10.50 c c   and parameters 16 17 18 19, , ,c c c c should be within [0,1].  

7.5. Augmented Lagrangian Optimization Algorithm 

Before proposed augmented Lagrangian optimization algorithm is presented, models under for 

the algorithm are as follows: 
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  s.t. constraints corresponding to units and connections in PN 

                              

and valid inequalities in Appendix Chapter 7 

(LPSP) 

 

The Model (LBSP) includes equations, objective function and variables present in model (LRP) 

corresponding to units and connection in sub-network BN and constraints presented in section 

7.3.1, section 7.4.2.1. If sub-network BN can be decomposed into smaller structures, then the 

model (LBSP) will be decomposed such that model (LBSP1) would only include constraints 

regarding units and connections present in sub-structure BN1, and so on. Meanwhile, the model 

(LPSP) includes constraints and variables present in (LRP) pertaining to sub-network PN, 

constraints proposed in sections 7.3.2 and 7.4.2.2, and objective function . Due to quadratic 

terms in the objective function, models (LBSP) and (LPSP) are mixed integer quadratic 

programming (MIQP) problems. 

PSPff
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                       s.t. constraints corresponding to units and connections in PN (PCs-1) 

 

 

                       s.t. constraints and variables corresponding model (LPSP) and 

equation (18a) 

(PCs-2) 

  

Models (PCs-1) and (PCs-2) is used to determine maximum and minimum production rate of 

blend component  to blend unit , respectively.  

 

                       s.t. constraints and variables corresponding model (LPSP) (PKs-1) 

 

 

                       s.t. constraints and variables corresponding model (LPSP) and 

equation (18b) 

(PKs-2) 

 

The upper and lower limit of production rate for blend components that are stored is obtained 

solving models (PKs-1) and (PKs-2), respectively, and these problems are optimized for each 

blend component.  

 

                       s.t. constraints and variables corresponding model (LPSP) (PJ-1) 
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                 s.t. constraints and variables corresponding model (LPSP) and equation (18a) (PJ-2) 

 

Maximum and minimum production rate limits for a blend unit that receives all of its components 

straight from production units is determined using models (PJ-1) and (PJ-2), respectively. All the 

pre-processing MILP models are independent and can be solved in parallel.  

Proposed Augmented Lagrangian optimization algorithm is shown in Figure 7.4 and the 

detailed steps and termination criteria are as follows: 

Step 1: Solve preprocessing models (PJ-1), (PJ-2), (PCs-1), (PCs-2), (PKs-1), and (PKs-2) in 

parallel. Calculate , , , , , and .     

Step 2:  Set , . Initialize Lagrangian multipliers , , , , 

,  and penalty parameters , , , , , . Pick algorithm 

parameters , , , and maximum algorithm count . 

Step 3: For , solve model (LBSP) and (LPSP) in parallel and obtain lower bounds 

 , , and update .   

 Otherwise if , solve (LBSP).  

 Obtain .  

Step 4: Solve (LPSP) and obtain . 

Step 5: Check if violation matrix norm ( )  meets tolerance . Where,  

  , , , ,min ,
bc

BU ads

j s j T j T j T

s S

z Cf CTf CTs j J J


     

max

,s jRPu min

,s jRPu max

sRPk min

sRPk
max

jRP min

jRP

0m  0r  (0)

, , 0s j t  (0)

, , 0s j t  (0)

, , 0s j t  (0)

, 0s t 

(0)

, 0s t 
(0)

, 0s t  (0)

Cf (0)

CTs
(0)

CTf (0)

KCf (0)

KCTs
(0)

KCTf

  1  M

0r 

 
( 0)m

BSPf


 
( 0)r

PSPf


1r r 

1r 

,, , ,
, ,

B B B

j ts j t j t
Cf CTs CTf ,, ,

, , ,
B B B

s ts t s t
KCf KCTs KCTf

,, , ,
, ,

P P P

j ts j t j t
Cf CTs CTf ,, ,

, , ,
P P P

s ts t s t
KCf KCTs KCTf

g 



239 

 

 

 

If , set . Update multipliers using equation . 

If , update  and go to step 3.  

Step 7: If , a feasible solution is found and the objective function for refinery operation is 

calculated as follows: 

 

Minimization of time horizon is included in (LPSP) and (LBSP) objective function thus 

makespan  is subtracted from solution of (LBSP).  

Step 8: if , terminate the algorithm as the maximum iterations limit is reached. Otherwise, 

go to step 3. 
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Figure 7.4. Augmented Lagrangian optimization algorithm 

 

7.6. Examples 

Three different refinery configurations are used to demonstrate the effectiveness of the 

proposed algorithm in solving scheduling problems. These refinery configurations are: (1) no 
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blend component tanks, (2) storage options for all blend components, and (3) component tanks 

for some blend unit.  

A real case study provided by Honeywell Process Solution (HPS) presented in Chapter 4 

is used to obtain four different examples. The original Honeywell refinery network includes two 

non-identical blend unit, parallel crude distillation units (CDUs), 13 other production units, 5 

intermediate tanks, 9 product tanks, and 2 charging tanks for one of the CDU while other CDU 

receives crude oil mixture from pipeline. The refinery produces middle distillate products using 8 

production units and four finished blend products using two non-identical blend units. A 

multipurpose Diesel blender produces three different grades of diesel while jet fuel is blended by 

jet blender. For each blend products, 2 dedicated product tanks are available. In addition to these 

tanks, a multipurpose product tank is present that services two different grades of diesel product. 

A minimum of 6 hours maintenance downtime is required when swing tank switches from 

servicing lower grade product to high grade. This downtime is essential to remove any sulfur or 

other contamination from swing tank before low sulfur grade product is serviced. Fill-draw-delay 

for finished blend product tanks is set to 4 hours to let product to settle down and mix properly 

for certificate analysis. For all production and blend units, minimum of 6 hours uptime (minimum 

run-length) is required and total available scheduling horizon is 240 hours. Data for the case study 

is given in Appendix Chapter 3.   

Example 1. No component tanks 

The case study provided by Honeywell is used.  

Example 2. No component tanks and parallel blend units 

The original case study (Figure 4.2) is modified by adding a second diesel blend unit alongside 

the original diesel blender. This new diesel blender produces same three grade products as the 

original blender and 7 product tanks are available to service diesel blend products produced by 

both diesel blenders. Table A7-1 gives production rate capacity information about parallel diesel 

blender.  
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Example 3. Storage tanks for all blend components 

The case study presented in Figure 4.2 is modified by severing connections between production 

units and blend units (diesel and jet blenders) adding dedicated storage tanks for 6 different blend 

components and storage capacity data are provided in Table A7-2.  

Example 4. Blend component storage and direct flow of component to blend unit  

In this example, the refinery has both component storage options and direct flow of 

component from production units to a blend unit. We include 3 dedicated component tanks for the 

diesel blender and no blend component storage options for the jet blend unit.  

Decomposition: 

We decompose the refinery network presented in Figure 4.2 into sub-networks PN and 

BN by splitting pipeline that transports components from a production unit to a blend unit or 

component storage tank. Thus, sub-network PN contains charging tanks, CDUs, production units, 

intermediate tanks and produces blend components, intermediates and intermediate distillate 

products that are supplied directly to market without storage options whereas sub-network BN 

includes diesel and jet blenders, component tanks (if any), product tanks, and produces finished 

blend products diesel and jet fuel. These two different blend products are not stored in same tanks 

neither do diesel and jet blenders share a common blend component. Thus, we can further 

decompose sub-network BN into two sub-networks, BN1 and BN2. Network BN1 containing 

diesel blender, tanks for components blended in diesel blender (if any), and product tanks that 

service diesel products and corresponding model is (LBSP1). Whereas, sub-network BN2 

includes jet blender, components tanks and jet fuel product tanks and relaxed model is (LBSP2). 

For example 2, two parallel diesel blenders would be present in one network because two parallel 

blenders share blend components and produce diesel fuels that are stored in same product tanks.  
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7.6.1. Computational Results 

In this section, we investigate the performance of the proposed augmented Lagrangian 

optimization algorithm. The algorithm is evaluated with three performance measures: number of 

iterations, and computational time (seconds), and quality of the solution.  Data for cost 

coefficients parameters for objective function is given in Table 7.1. Table A7-3 gives demand for 

intermediate distillate products. Table A7-4 provides demand for finished blend products, 

products CARB diesel, EPA diesel, Red-dye diesel, and Jet fuel are referred to as product P1, P2, 

P3 and P4, respectively. Intermediate demand orders are bound by maximum and minimum 

amount and can be delivered anytime during the delivery window. Maximum delivery rate, 

product unloading rate to satisfy demand, is 10 (kbbl/h). All the optimization models are 

formulated using GAMS, decomposition algorithm implemented in MATLAB R2014a and 

solved on a Dell
®
 Optiplex 9020 computer with 2.90 GHz Quad Core Intel

®
 Processor i5-4570S, 

CPU 2.90GHz, and 16.0 GB memory.  CPLEX 12.3.0/GAMS 23.7.1 solver is used to solve both 

MILP and MIQP problems. Optimality tolerance of % is used for full-scale and pre-

processing step models, while for (LBSP) and (LPSP), optimality tolerance of 1% is used and for 

the algorithm, maximum number of iteration is set to 100.  

Table 7.1 Parameters in objective function 

Parameter Value*100 Parameter Value*100 

 10 
 40 (Unfavorable: 

60) 

 7 
 40 (unfavorable: 

60) 

 4  5 

 5  5 

61e

1
CarbNormal,DieselBlenderC

7
,s sC 

1
EPANormal,DieselBlenderC

8
,s s

C 

1
ReddyeNormal,DieselBlenderC 9

k
C

1
JetNormal,JetBlenderC 10

,s kC
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 0.51 (Swing tank: 1.5)  1150 

   800 

 50  1100 

 
10 (Swing tank: 40)  5400 

 
100 (Unfavorable: 250)  3250 

 

Example 1.  

 This example involves no blend component tanks, 1 multipurpose diesel blender 

producing three different grades of diesel products that can be stored in 7 different product tanks 

and 1 jet blender producing jet fuel that can be stored in 2 tanks. One of the diesel product tanks 

is a swing tank that can store two different type of diesel fuel. For this case study, we select 

parameters as  
116 2c UH e

   and  
118 1c UH e

  . These set of parameters drives solution of 

model (LPSP) for iteration 0m   to that has linking timing variables values much closer to that 

obtain by (LBSP). This Model sizes for different set of demand examples are shown in Table 7.2. 

As the number of demand order increase, size of the model increase too and decomposed models 

have significant less numbers of variables and constraints compared to full-scale model. 

Furthermore, the complicating variables are expressed in terms of transfer event points, we are 

able to solve decomposed model with different set of event-points. Full scale model of problem 1 

requires minimum of 6 event points to obtain optimal solution while using proposed approach, we 

are able to solve relaxed diesel blend scheduling model (LBSP1) is solved using 5 event points, 

relaxed jet blend scheduling model (LBSP2) using 6, and production unit scheduling model 

(LPSP) using 5 event points.  The total numbers of transfer event-points are always equal to the 

number of event-points  used to solve (LPSP).  In Table 7.3, we compare solutions of full space 

2
kC 11

oC

3
k

C  
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max50 kV
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model and proposed decomposition approach for problems of varying demand requirements. In 

Table 7.3, column „
2

g g  ‟ represents the value of the augmented and penalty term in the 

augmented Lagrangian function, „ g ‟ represents norm of the consistency constraints.  

 The computational time to obtain optimal solution increases as the complexity of the 

model increases and for problem 7, optimality gap is still at 12.91% even after 8 hours. The 

performance of the algorithm in terms of solution and the quality of the solution is shown in 

Table 7.3. For all the problems, proposed algorithm provides feasible solution that is closer to the 

optimal solution reported by full-scale model. For full-scale model that are computationally 

expensive, proposed algorithm is able to obtain solution in less time. For problem 5, proposed 

approach is able to report feasible solution of 68717 in 2755 seconds while optimal solution of  

67286 is obtained by full scale model in 5115 seconds. The solution procedure for problem 5 is 

shown in Figure 7.5. The solution time for algorithm is driven by relaxed blend scheduling 

problem (LBSP). More specially, relaxed diesel blending (LBSP1) is the most difficult to solve 

due to presence of multipurpose blend unit and multipurpose product tanks.  

Table 7.2 Model statistics for Example 1 

Ex. 

# 

Demand 

Orders 

Full Scale Model 

Event pt. 

Int./Cont. var. 

(Constraints) 

Nonzero Elem. 

Augmented Lagrangian Algorithm 

LBSP model 

Event pt.   

Int./Cont. variables 

(Constraints) 

Nonzero Elem. 

LPSP model 

Event pt.   

Int./Cont. var. 

(Constraints) 

Nonzero Elem. 
LBSP1 LBSP2 

1 4 

6 

434/3197 

(7748) 

5 

127/742 

(2594) 

6 

37/243 

(985) 

5 

235/1610 

(4859) 

n

n
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28085 9794 3556 17498 

2 4 

5 

360/2663 

(6392) 

22608 

5 

116/736 

(2545) 

9584 

5 

30/200 

(752) 

2571 

4 

188/1288 

(3727) 

13045 

3 4 

4 

286/2129 

(5050) 

17461 

4 

100/592 

(1967) 

7096 

4 

26/164 

(587) 

1926 

4 

188/1286 

(3719) 

13022 

4 6 

4 

301/2217 

(5339) 

18547 

4 

109/644 

(2134) 

7718 

4 

32/200 

(689) 

2284 

4 

188/1286 

(3721) 

13021 

5 8 

6 

484/3453 

(8653) 

31676 

6 

173/1039 

(3739) 

14750 

6 

57/347 

(1335) 

4888 

5 

235/1611 

(4862) 

17508 

6 8 

6 

484/3453 

(8643) 

31586 

6 

173/1039 

(3729) 

14661 

6 

57/347 

(1335) 

4888 

5 

235/1611 

(4862) 

17508 

7 13 

7 

640/4383 

(11642) 

44572 

7 

266/1511 

(5718) 

23720 

7 

80/467 

(1930) 

7518 

6 

282/1936 

(6092) 

22632 
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Table 7.3 Numerical results for Example 1 

Ex 

Full Scale model 

Augmented Lagrangian Algorithm 

, , , ,   

CPU(sec) 

Objective

  

Gap 

(%) 

Iter. 

  
Time (sec)     

  

1 608.73 501.89 0.00 10 368.02 502.35 11.90 0.70 

2 73.29 428.25 0.00 12 525.29 428.19 541.73 0.87 

3 16.35 788.98 0.00 9 138.95 791.77 -16.23 0.40 

4 36.12 735.16 0.00 15 195.30 747.36 -2.98 0.34 

5 5114.95 672.86 0.00 14 2755.25 687.17 1693.37 0.86 

6 23085.76 866.43 0.00 8 3001.96 869.75 37.65 0.76 

7 28800 695.79 12.91 10 14720.16 695.62 122.12 0.90 

 

(0) 0.2Cf  (0) 0.3CTs 
(0) 0.2CTf  0.37  2.15 

 2z e m

2f e
2

g g 

g
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Figure 7.5 Solution procedure for Example 1, problem 5. 

Example 2.  

 Refinery configuration with parallel blend unit and no component flow is examined to 

check efficacy of the proposed decomposition approach. Parameters for model (LPSP) objective 

function are chosen to be  
116 2c UH e

   ,  
118 1c UH e

  , and 20 10.75 jc c . Parallel diesel 

blenders that can produce three different grade of diesel product are present thus compared to 

Example 1, this refinery configuration require less number of event points for blend scheduling 

model (LBSP) to obtain optimal solution that satisfy demand orders for finished blend products. 

Decomposition provides smaller scheduling problem than full scale scheduling problem as shown 

in Table 7.4. Proposed decomposition algorithm is able to provide a good feasible solution and in 

reasonable solution time, as reported in Table 7.5. Solution procedure for problem 5 is shown in 
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Figure 7.6.  The solution time in ALO-DQA algorithm is mainly spent solving relaxed problem 

corresponding to multipurpose diesel blend units.  

Table 7.4 Model statistics for Example 2 

Ex. 

# 

Orders 

Full Scale Model 

Event pt. 

Int./Cont. var. 

(Constraints) 

Nonzero Elem. 

Augmented Lagrangian Algorithm 

LBSP model 

Event pt. 

Int./Cont. variables 

(Constraints) 

Nonzero Elem. 

LPSP model 

Event pt. 

Int./Cont. var. 

(Constraints) 

Nonzero Elem. 
LBSP1 LBSP2 

1 4 

4 

330/2425 

(6319) 

22522 

4 

122/882 

(3465) 

12906 

4 

23/159 

(550) 

1788 

3 

150/1010 

(2928) 

10218 

2 4 

4 

330/2425 

(6319) 

22522 

4 

122/882 

(3465) 

12906 

4 

23/159 

(550) 

1788 

3 

150/1010 

(2928) 

10218 

3 4 

3 

245/1817 

(4655) 

16274 

3 

106/668 

(2512) 

9059 

3 

19/124 

(408) 

1280 

3 

150/1007 

(2929) 

10205 

4 6 

3 

255/1885 

(4883) 

3 

112/708 

(2647) 

3 

23/152 

(483) 

3 

150/1007 

(2929) 



250 

 

 

17107 9558 1539 10202 

5 8 

5 

455/3249 

(8821) 

32386 

5 

184/1238 

(5084) 

19672 

5 

46/289 

(1040) 

3636 

4 

200/1347 

(4139) 

14870 

6 8 

4 

360/2601 

(6953) 

24884 

4 

140/986 

(3835) 

14237 

4 

35/231 

(776) 

2598 

3 

150/1010 

(2936) 

10230 

7 13 

5 

503/3509 

(9941) 

36900 

5 

224/1454 

(5975) 

23174 

5 

54/333 

(1223) 

4345 

4 

200/1347 

(4139) 

14870 

 

Table 7.5 Numerical results for Example 2 

Ex 

Full Scale model 

Augmented Lagrangian Algorithm 

, , , ,  

CPU(sec) 

Objective

  

Gap 

(%) 

Iter. 

  
Time (sec)     

  

1 559.25 464.88 0.00 8 446.08 474.23 -7.65 0.379 

2 82.62 382.35 0.00 10 539.03 413.51 92.67 0.568 

3 39.58 629.05 0.00 9 263.35 630.02 -2.50 0.794 

4 16.30 579.62 0.00 11 576.03 584.46 -14.43 0.278 

5 19466.87 661.53 0.00 16 9700.18 705.76 10580.87 0.971 

(0) 0.3Cf  (0) 0.3CTs 
(0) 0.3CTf  0.30  2.20 

 2z e m

2f e
2

g g 

g
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6 12872.25 756.43 0.00 7 2251.59 767.34 -2.49 0.252 

7 28800 683.57 13.24 7 13300.39 692.36 -15.76 0.659 

 

 

Figure 7.6 Solution procedure for Example 2, problem 5 

Example 3.  

Refinery configuration with dedicated component tanks is studied in this example. We 

include 1 storage tank for each blend component and eliminate all direct streams from production 

units to blenders. For all problems, parameters value are set at 17 0.01c   , 19 0.5c  . Model 

statistics for this example is shown in Table 7.6 and computational results are given in Table 7.7. 

Augmented Lagrangian algorithm converges to a feasible solution for each problem within 20 

iterations and proposed multipliers and penalty parameters gives a solution that is closer to 

original full-scale model optimal solution. However, for problem 1, the solution obtain using 
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decomposition algorithm is far worse than optimal solution, and this is due to the augmented 

Lagrangian parameters and penalty. For problem 1, the algorithm converges to a solution that has 

high task changeovers cost. Convergence profile for problem 5 is given in Figure 7.7. Similar to 

other example, relaxed diesel blend scheduling (LBSP1) is most difficult to solve and other two 

problems take only few seconds. 

Table 7.6 Model statistics for Example 3 

Ex. 

# 

Orders 

Full Scale Model 

Event pt. 

Int./Cont. var. 

(Constraints) 

Nonzero Elem. 

Augmented Lagrangian Algorithm 

LBSP model 

Event pt. 

Int./Cont. variables 

(Constraints) 

Nonzero Elem. 

LPSP model 

Event pt. 

Int./Cont. var. 

(Constraints) 

Nonzero Elem. 
LBSP1 LBSP2 

1 4 

5 

455/2978 

(7230) 

24793 

5 

169/927 

(3464) 

12582 

5 

23/159 

(550) 

1788 

5 

150/1010 

(2928) 

10218 

2 4 

5 

455/2978 

(7230) 

24793 

5 

122/882 

(3465) 

12906 

4 

23/159 

(550) 

1788 

4 

150/1010 

(2928) 

10218 

3 4 

4 

362/2381 

(5715) 

19193 

4 

106/668 

(2512) 

9059 

4 

19/124 

(408) 

1280 

4 

150/1007 

(2929) 

10205 
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4 6 

4 

377/2469 

(6004) 

20279 

4 

112/708 

(2647) 

9558 

4 

23/152 

(483) 

1539 

4 

150/1007 

(2929) 

10202 

5 8 

6 

598/3831 

(9664) 

34314 

6 

184/1238 

(5084) 

19672 

6 

46/289 

(1040) 

3636 

6 

200/1347 

(4139) 

14870 

6 8 

6 

598/3831 

(9654) 

34224 

6 

140/986 

(3835) 

14237 

6 

35/231 

(776) 

2598 

5 

150/1010 

(2936) 

10230 

 

Table 7.7 Numerical results for Example 3 

Ex 

Full Scale model 

Augmented Lagrangian Algorithm 

, , , ,  

CPU(sec) 

Objective

  

Gap 

(%) 

Iter. 

  
Time (sec)     

  

1 266.31 475.54 0.00 8 1063.97 1743.94 7.96 0.109 

2 254.30 421.41 0.00 11 464.76 565.70 -296.52 0.428 

3 56.71 730.47 0.00 9 154.27 738.25 0.09 0.202 

4 147.78 711.69 0.00 13 239.89 726.78 82.14 0.454 

5 28800 654.61 1.06 16 3766.46 658.51 1199.03 0.952 

6 28800 866.43 25.18 7 21496.02 871.84 -29.66 0.956 

 

(0) 0.05KCf  (0) 0.05KCTs 
(0) 0.05KCTf  0.25  2.20 

 2z e m

2f e
2

g g 

g
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Figure 7.7 Solution procedure for Example 3, problem 5. 

Example 4.  

 In this example, we test the proposed algorithm for a refinery that has blend component 

tanks and direct flow to blend units. Model statistics and computational results are shown in 

Table 7.8 and Table 7.9 for problem 5.  

Table 7.8 Model statistics for Example 5 

 

Full scale 

Model 

Augmented Lagrangian Optimization Approach 

LBSP1 LBSP2 LPSP 

Event points 6 6 6 5 

Binary 

variables 

538 232 57 220 

Continuous 3633 1315 347 1664 
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Variables 

Constraints 9097 4863 1335 5021 

Nonzero 

Elements 

32774 18599 4888 17791 

 

Table 7.9 Numerical results for Example 5 

 Full scale Model Augmented Lagrangian Optimization Approach 

CPU time (Sec) 28800 1556 

Objective 66895 69938 

Gap (%) 10.67  

Iterations ( )  8 

  359.97 

  0.862 

 

Full-scale model is not able to obtain an optimal solution even after 8 hours, whereas proposed 

approach provides a feasible solution in 1556 seconds. Parameters present in model (LPSP) 

objective function has value of  
116 2c UH e

   , 17 0.01c  ,  
118 1c UH e

  ,  and 19 0.5c  . 

Solution procedure for problem 5 is shown in Figure 7.8.  

m

2
g g 

g
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Figure 7.8 Solution procedure for Example 4, problem 5. 

 From above results for all four examples, it can be observed that the augmented 

Lagrangian algorithm converges to a feasible solution of the full-scale problem because the 

linking variables error norm value always convergences to zero as augmented penalty term 

. Quality of the feasible solution obtain and solution time is not only affected by 

augmented Lagrangian optimization parameters but also by parameters 16 17 18 19, , , ,c c c c  and 20c in 

some extant.  

7.7. Summary 

We have applied Augmented Lagrangian approach to refinery operations scheduling problem 

by decomposing the problem into production unit operations and finished blend product and 

delivery operations. Continuous time formulation based on event-points is used in this work and 
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complicating variables and coupling constraints for decomposed problems are expressed in terms 

of novel transfer event-points. To improve the performance of the algorithm, a preprocessing step 

and constraints to incorporate information lost during decomposition are proposed. Proposed 

approach is shown to effectively address four different refinery network configurations.  

Main advantages of the proposed decomposition approach are: (a) decomposed problems can 

be solved using different set of event-points n  because complicating variables and coupling 

variables are expressed in terms of transfer event-points t ; (b) when blending operations network 

can be decomposed further, this method allows for parallel implementation of  blend scheduling 

problems; (c) the convergence of the algorithm to a feasible solution is guaranteed. Furthermore, 

this approach can be extended to include crude-oil loading and unloading operations so entire 

refinery operations scheduling problem can be integrated. 

 

Nomenclature 

Indices  

bn  Blending operations sub-network 

i  Tasks 

j  Production units 

k  Storage units 

n  Event-points 

m  Lagrangian algorithm iteration counter 

o  Product order 

p  Properties 

s  States 

t  Transfer event-points 

Sets  
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BN  All decomposed sub-networks belonging to blending operations 

jI  Tasks which can be performed in unit j 

/c p

s sI I  Tasks which can consume/produce material s 

J  All Production units 

adsJ  Blend units that receive at least all components directly from production units 

BUJ  Blend units 

contJ  

All production units and blend units that receive at least one component 

directly from production unit operations 

dsJ  Blend units that receive at least one component directly from production units 

PUJ  Production units that belong to production unit operations 

/c p

s sJ J  Units that consume/produce material s 

iJ  Units which are suitable for performing task i 

hJ
 

Units that can produce all the same products as some other unit in the refinery  

mJ
 

Units which are suitable for performing multiple tasks 

seq

jJ  Units that follow unit j (no storage in between) 

/kp pk

k kJ J  Units that consume/produce material s stored in tank k 

PJ  Units that produce products 

K  Storage units 

hK
 

tanks that can store the same products as some other tank in the refinery  

/kp pk

j jK K  Tanks that store material consumed/produce by unit j  

mK  Multipurpose tanks that can store multiple materials  

pK
 

Tanks that can store final products  

sK  Tanks that can store material s  
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N  Event-point within the time horizon 

sO  Orders for finished blend product s that is stored in tanks 

P  Product Properties 

S  States 

AS
 

Group A products,  stored in tanks 

BS
 

Group B products, not stored in tanks 

bcS  Blend components states 

bnS
 

States that belong to sub-network bn  

kS
 

States that can be stored  in tank k 

/c p

i iS S
 

States that can be consumed/produced by task i 

/c p

j jS S
 

States that can be consumed/produced by unit j 

Parameters  

,s scont    1 if components s  and s  are produced by units in PN that are interconnected 

, ,,o s o sD D   Demand limit requirement for order o and product s that is stored in tank   

smax_rate  Maximum rate of production of material s 

,o iot  1 if task i is performed when order o of PUSP is processed by BSP.  

sr  Demand of the final product s at the end of the time horizon 

min max/j jRB RB  minimum and maximum production rate of a blend unit j 

max

jRP  Maximum rate material is supplied by (PSP) to blend unit j 

max

sRP
 

Maximum rate blend component s is supplied by (PSP) to blend unit j 

min max

, ,/i j i jR R  Minimum/ maximum  rate of material be processed by task i in unit j 

iRL
 

Minimum run length for task i   

min max/k kRU RU  Minimum/maximum  rate of product unloading at tank k 
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,s ksto  Amount of state s that is present at the beginning of the time horizon in k 

kta
 

Fill draw delay for product tank k 

UH  Available time horizon 

max

kV  Maximum available storage capacity of storage tank k 

heel

kV  Maximum heel available for storage tank k 

,s kyo  1 if the material s is present at the beginning of the time horizon in k 

min max

, ,/s i s i   Proportion of state s produced/consumed  by task i  

min max

, ,/s j s jb b   
Minimum/maximum proportion of blend component s consumed by blend unit 

j  

s  Quality index for finished blend product, higher index means better quality 

 Variables  

Binary Variables 

, ,j j na   
Assigns the materials flow to blend unit j from unit j  at event-point n 

, ,i j nwv  Assignment of task i in unit j at event-point n 

, , ,s j k nin  Assigns the material flow of s into storage tank k  from unit j at point n 

, ,k o nl  

Assigns the starting of product flow out of product tank  k to satisfy order o at 

event-point n 

, , ,s k j nout  Assigns the material flow of s out of storage tank  k into unit j at point n 

, ,s k ny  Denotes that material s is stored in tank k at event-point n 

0-1 continuous variables 

,j n
 

For unit j, 1 if the unit becomes active for very first time at event-point n 

,k n
 

For tank k, 1 if the tank becomes active for very first time at event-point n 

, , ,s s k n   Continuous 0-1 variable, 1 if material in tank k switchover service from s at 
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event-point n to s‟ at later event-point 

, ,s s ko   Continuous 0-1 variable, 1 if material in tank k switchover service from s to s‟ 

, , ,i i j n   

Continuous 0-1 variable, 1 if task at unit j changes from i at event-point n to 

i’at later event-point. 

, , , ,/j n t s n tx xk
 

Cont. 0-1 variable denotes transfer event-point t  corresponds to event-point n 

Positive variables 

, , ,s i j nbp  Amount of material s produced task i in unit j at event-point n 

, , ,s i j nbc  Amount of material s undertaking task i in unit j at event-point n 

, , ,/s j t s tCf KCf  Amount of blend component s transferred between BN and PN at event-point t 

l

odg  Minimum demand quantity give-away term for order o 

u

odg  Maximum demand quantity give-away term for order o 

H  time horizon used for production tasks 

, , ,s j j nJJf   Flow of state s from unit j to consecutive unit j’ for consumption at point n 

, , ,s j k nKif  Flow of material s from unit j to storage tank k event-point n 

, , ,s k j nKof  Flow of material s from storage tank k to unit j at point n 

, ,o k nLf  Flow of final product for order o from storage tank k at event-point n 

, ,s k nmh  Maximum heel give-away term for product tanks 

srg  Minimum demand quantity give-away term for Group B product s  

, ,s k nRif  Flow of raw material to storage tank k event-point n 

, ,s k nst  Amount of state s present in storage tank k at event-point n 

, , ,s s k nstd   

Amount of state s that is downgraded to state s‟ in storage tank k at event-point 

n 

oTearly  Early fulfillment of order o than required 
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, ,i j nTf  Time that task i finishes in unit j at event-point n 

, ,/j t s tCTf KCTf  Finish time for components transfer between BN and PN at time-point t 

oTlate  Late fulfillment of order o than required 

, ,k o nTos  Time that material starts to flow from tank k for order o at event-point n 

, ,k o nTof  Time that material finishes to flow from tank k for order o at event-point n 

, ,i j nTs  Time that task i starts in unit j at event-point n 

, ,/j t s tCTs KCTs  Start time for components transfer at time-point t 

, ,j k nTsf  Time that material finishes to flow from unit j to tank k  at event-point n 

, ,k j nTsf  Time that material finishes to flow from tank k to unit j at event-point n 

, ,j k nTss  Time that material starts to flow from unit j to storage tank k  

, ,k j nTss  Time that material starts to flow from tank k  to unit j at event-point n 

, ,s j nUif  Flow of raw material s to production unit j at point n 

, , ,s j j nUofb   Flow of component s from production unit j to blend unit j  at point n 

, ,s j nUof  Flow of product material s from unit j at point n 

, , ,j s v nUUf
 

Amount of state s received by unit j at period v is processed at event n 

z
 

Objective value of full-scale integrated model 
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Appendix 

Appendix Chapter 2   

Table A2-1 Example 1: Process data for production sites 

Production 

Site 

Unit Capacity Suitability Processing Time 

S1 

Heater 100 Heating 1.0 

Reactor 1 50 Reactions 1,2,3 2.0,2.0,1.0 

Reactor 2 80 Reactions 1,2,3 2.0,2.0,1.0 

Sill 200 Separation 

1 for Product 2 

2 for IntAB 

S2 

Heater 150 Heating 1.0 

Reactor 1 100 Reactions 1,2,3 2.0,2.0,1.0 

Reactor 2 80 Reactions 1,2,3 2.0,2.0,1.0 

Sill 300 Separation 

1 for Product 2 

2 for IntAB 

S3 

Heater 100 Heating 1.0 

Reactor 1 75 Reactions 1,2,3 2.0,2.0,1.0 

Reactor 2 100 Reactions 1,2,3 2.0,2.0,1.0 

Sill 150 Separation 

1 for Product 2 

2 for IntAB 

Production 

Site 

State  

Storage 

Capacity 

Initial Amount 

S1 

Feed A  100000 100000 

Feed B  100000 100000 
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Feed C  100000 100000 

Hot A  100 0.0 

Int AB  200 0.0 

Int BC  150 0.0 

Impure  200 0.0 

Product 1  400 0.0 

Product 2  375 0.0 

S2 

Feed A  100000 100000 

Feed B  100000 100000 

Feed C  100000 100000 

Hot A  130 0.0 

Int AB  250 0.0 

Int BC  150 0.0 

Impure  300 0.0 

Product 1  300 0.0 

Product 2  425 0.0 

S3 

Feed A  100000 100000 

Feed B  100000 100000 

Feed C  100000 100000 

Hot A  115 0.0 

Int AB  250 0.0 

Int BC  150 0.0 

Impure  300 0.0 

Product 1  350 0.0 

Product 2  400 0.0 
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Table A2-2 Production and Inventory cost data 

Production Sites  Fixed Cost Variable Costs  Inventory Cost 

S1 

Heating 150 1.0 

P1 

P2 

10 

10 

Reactions 

1,2,3 

100 0.5 

Separation 150 1.0 

S2 

Heating 175 1.5 

P1 

P2 

15 

15 

Reactions 

1,2,3 

125 0.75 

Separation 175 1.5 

S3 Heating 100 0.8 

P1 

P2 

8 

8 

 

Table A2-3 Transportation and Backorder cost data 

Market  Transportation Cost  Backorder Cost 

M1 

S1 5 

P1 

P2 

100 

100 

S2 8 

S3 10 

M2 

S1 10 

P1 

P2 

150 

150 

S2 5 

S3 8 

M3 

S1 8 

P1 

P2 

75 

75 

S2 10 

S3 8 
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Figure A2-1 Demand data for Example 1 
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Appendix Chapter 3  

Table A3-1 Demand in Thousand barrels 

Final 

Products 

Scenario 1 Scenario 2 

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 

FCC gas 10 50 35 75 75 150 200 200 

Coke 10 35 10 75 75 75 100 150 

Carb diesel 10 100 50 100 100 300 350 500 

EPA diesel 10 100 50 150 150 250 250 250 

Red dye 

diesel 

10 100 50 150 150 250 300 250 

 

Table A3-2 Production rates in thousand barrels/hour 

Unit Task R
min

 R
max

 

4CU 4CU Normal 0.1 7.292 

2CU 2CU Normal 0.1 4.167 

Vacuum Tower Vacuum Normal 0.1 5.708 

Coker Coker  Normal 0.1 2.75 

FCC HDS FCCHDS Normal 0.1 3.00 

FCC Maxdistillation Mode 0.1 2.708 

FCC Maxgasoline Mode 0.1 2.708 
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Diesel Diesel Normal 0.1 2.5 

Isomax Isomax Normal 0.1 2.042 

Diesel Blemder Carb Diesel 0.1 54.167 

Diesel Blender EPA Diesel 0.1 54.167 

Diesel Blender RedDye Diesel 0.1 54.167 

 

Table A3-3 Recipe data 

Task State Produced ρ
P 

State 

Consumed 

ρ
c
 

4 CU 

Normal 

Diesel 

Resid 

0.691 

0.309 

ANS1 1 

2 CU 

Normal 

Diesel 

Resid 

0.284 

0.716 

SJV Crude 1 

Vacuum Tower 

Normal 

Vacuum Resid 

Heavy Gasoil 

Light Gasoil 

0.334 

0.333 

0.333 

Resid 1 

Coker 

Normal 

Coke 

Heavy Gasoil 

Light Gasoil 

0.640 

0.180 

0.180 

Vacuum Resid 1 

FCC HDS 

Normal 

FCC HDS 1 Heavy Gasoil 1 

Maxdistillation 

Mode 

FCC Gas 

LCO 

0.50 

0.50 

FCC HDS 1 
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Maxgosoline 

Mode 

FCC Gas 

LCO 

0.50 

0.50 

FCC HDS 1 

Diesel 

Normal 

HDS Diesel 1 Diesel 1 

Isomax Normal Hydro Diesel 1 Light Gasoil 1 

Carb Diesel 

Normal 

Carb Diesel 1 

HDS Diesel 

Hydro Diesel 

LCO 

0.20 

0.25 

0.55 

EPA Diesel 

Normal 

EPA Diesel 1 

HDS Diesel 

Hydro Diesel 

LCO 

0.25 

0.15 

0.60 

Red Dye Diesel 

Normal 

Red Dye Diesel 1 

HDS Diesel 

Hydro Diesel 

LCO 

0.23 

0.12 

0.65 

 

Table A3-4 Storage tank capacity data in thousand barrels 

Storage Tank Material Stored Capacity Initial Amount 

ANS Feed Tank 1 ANS 750 10 

ANS Feed Tank 2 ANS 750 10 

Coker Feed Tank Vacuum Resid 500 0 

FCC HDS Feed Tank Heavy Gasoil 500 0 

Diesel HDS Feed Tank Diesel 500 0 
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Isomax Feed Tank Light Gasoil 500 0 

Carb Diesel Tank 1 Carb Diesel 200 0 

Carb Diesel Tank 2 Carb Diesel 200 0 

Diesel Swing Tank Carb Diesel 200 0 

EPA Diesel Tank 1 EPA Diesel 125 0 

EPA Diesel Tank 2 EPA Diesel 125 0 

RedDye Diesel Tank1 RedDye Diesel 150 0 

RedDye Diesel Tank 2 RedDye Diesel 150 0 

 

 

Figure A3-1 Gantt chart of tank loading schedule for example 1, Centralized system, scenario 1 
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Figure A3-2 Gantt chart of the tank unloading schedule for example 1, Centralized system, scenario 

1 

 

 

Figure A3-3 Gantt chart of tank loading schedule for example 1, Decentralized system, scenario 1 
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Figure A3-4 Gantt chart of the tank unloading schedule for example 1, Decentralized system, 

scenario 1 

 

 

Figure A3-5 Gantt chart of the operation schedule for example 1, Centralized system, scenario 2 
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Figure A3-6 Gantt chart of the operation schedule for example 1, Decentralized system, scenario 2 

 

 

Figure A3-7 Gantt chart of tank loading schedule for example 1, Centralized system, scenario 2 
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Figure A3-8 Gantt chart of tank unloading schedule for example 1, Centralized system, scenario 2 

 

 

Figure A3-9 Gantt chart of tank loading schedule for example 1, Centralized system, scenario 2 
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Figure A3-10 Gantt chart of tank unloading schedule for example 1, Centralized system, scenario 2 
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Appendix Chapter 6  

Table A6-1 Production rates in thousand barrels/hour 

Unit Task R
min

 R
max

 

Diesel Blender Carb Diesel 0.1 54.167 

Diesel Blender EPA Diesel 0.1 54.167 

Diesel Blender RedDye Diesel 0.1 54.167 

Penex Penex Normal 0.1 0.792 

De-C5 De-C5 Normal 0.1 1.042 

Alky Unit Alky Normal 0.1 0.875 

Jet Blender Jet Normal 0.1 3.125 

CCR CCR Normal 0.1 1.75 

Isomax Isomax Normal 0.1 2.042 

Naphtha Pre-fractionator Fractionator Normal 0.1 4.167 

FCC MaxDistillation Mode 0.1 2.708 

FCC MaxGasoline Mode 0.1 2.708 

Diesel HDS Diesel Normal 0.1 2.5 

Naphtha HDS Naphtha Normal 0.1 3.229 

FCC HDS FCCHDS Normal 0.1 3.0 

Coker Coker  Normal 0.1 2.75 

Vacuum Tower Vacuum Normal 0.1 5.708 
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Gas Plant Gas Normal 0.1 4.167 

2Crude Distillation Unit 2CU Normal 0.1 4.167 

4Crude Distillation Unit 4CU Normal 0.1 7.292 

 

Table A6-2 Minimum/maximum recipe data 

Task State Produced  State Consumed   

Carb Diesel Carb Diesel 1/1 

FCC LCO 

HDS Diesel 

HydrocrackedDiesel 

0.01/0.25 

0.5/0.75 

0.05/0.25 

EPA Diesel EPA Diesel 1/1 

FCC LCO 

HDS Diesel 

HydrocrackedDiesel 

0.05/0.3 

0.55/0.8 

0.01/0.2 

RedDye Diesel Red Dye Diesel 1/1 

FCC LCO 

HDS Diesel 

HydrocrackedDiesel 

0.05/0.3 

0.6/0.85 

0.01/0.2 

Penex Normal Isomerate 1/1 

Light Naphtha 

Light Ends 

Butane 

0.001/1 

0.001/1 

0.001/1 

De-C5 Normal 

Isomax Gasoline 

Pentane 

0.5/1 

0.5/1 

Light Gasoline 1/1 

Alky Normal 

Pentane 

NC4 

Alkylate 

0.167/0.167 

0.167/0.167 

0.1/1 

Olefins 

Iso Butanes 

0.8/1.125 

0.2/0.225 

,min ,max

, ,/p p

s i s i 
,min ,max

, ,/c c

s i s i 
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Jet Normal Jet Fuel 1/1 

Isomax Jet 

Coker Jet 

SR Jet 

0.001/1 

0.001/1 

0.001/1 

CCR Normal 

Light Ends 

Reformate 

0.06/0.077 

0.7/1 

Heavy Naphtha 1/1 

Isomax Normal 

HydrocrackedDiesel 

Isomax Jet 

Heavy Naphtha 

Light Gasoline 

Olefins 

0.05/1 

0.05/1 

0.05/1 

0.05/1 

0.05/1 

Light Gasoil 1/1 

Fractionator 

Normal 

Heavy Naphtha 

Light Naphtha 

0.001/1 

0.001/1 

Naphtha HDS 1/1 

MaxDistillation 

Mode 

FCC HCO 

Olefins 

FCC LCO 

FCC Gas 

0.05/1 

0.05/1 

0.05/1 

0.05/1 

FCC HDS 1/1 

MaxGasoline Mode 

FCC HCO 

Olefins 

FCC LCO 

FCC Gas 

0.05/1 

0.05/1 

0.05/1 

0.05/1 

FCC HDS 1/1 

Diesel Normal HDS Diesel 1/1 Diesel 1/1 

Naphtha Normal Naphtha HDS 1/1 Naphtha 1/1 

FCCHDS Normal FCC HDS 1/1 Heavy Gasoil 1/1 

Coker  Normal 

Coke 

Heavy Gasoil 

0.28/0.28 

0.1/1 

Vacuum Resid 1/1 
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Light Gasoil 

Coker Jet 

Naphtha 

0.1/1 

0.1/1 

0.1/1 

Vacuum Normal 

Vacuum Resid 

Heavy Gasoil 

Light Gasoil 

0.1/1 

0.1/1 

0.1/1 

Resid 1/1 

Gas Normal 

Iso-Butane 

Butane 

Gases 

0.001/1 

0.001/1 

0.001/1 

Light Gas 1/1 

2CU Normal 

Resid 

Diesel 

SR Jet 

Naphtha 

Light Gas 

0.53/0.53 

0.21/0.21 

0.11/0.11 

0.12/0.12 

0.03/0.03 

SJV crude 1/1 

4CU Normal 

Resid 

Diesel 

SR Jet 

Naphtha 

Light Gas 

0.47/0.47 

0.21/0.21 

0.145/0.145 

0.14/0.14 

0.035/0.035 

Crude oil 1/1 

 

Table A6-3 Storage tank capacity data in thousand barrels 

Storage Tank Material Stored Capacity Initial Amount 

ANS Feed Tank 1 ANS 750 10 

ANS Feed Tank 2 ANS 750 10 
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Coker Feed Tank Vacuum Resid 500 0 

FCC HDS Feed Tank Heavy Gasoil 500 0 

Diesel HDS Feed Tank Diesel 500 0 

Isomax Feed Tank Light Gasoil 500 0 

Carb Diesel Tank 1 Carb Diesel 200 0 

Carb Diesel Tank 2 Carb Diesel 200 0 

Diesel Swing Tank EPA Diesel 200 - 

Diesel Swing Tank Carb Diesel 200 - 

EPA Diesel Tank 1 EPA Diesel 125 0 

EPA Diesel Tank 2 EPA Diesel 125 0 

RedDye Diesel Tank1 RedDye Diesel 150 0 

RedDye Diesel Tank 2 RedDye Diesel 150 0 

Naphtha HDS Feed Tank Naphtha 500 0 

Jet Product Tank 1 Jet Fuel 200 0 

Jet Product Tank 2 Jet Fuel 200 0 
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Table A6-4 Group A products demand order data for the case study 

Orders 

Orders (Product type, amount(kbbl), delivery window, delivery rate(kbbl/h)) 

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10 

1 

P3 

[60,80] 

[30,50] 

P3 

[50,70] 

[20,35] 

P2 

[100,120] 

[15,25] 

P3 

[90,100] 

[50,75] 

P1 

[120,125] 

[40,75] 

P3 

[60,75] 

[28.5,46.5] 

P1 

[25,30] 

[12,30] 

P3 

[15,25] 

[30,50] 

P1 

[40,50] 

[30,40] 

P2 

[20,55] 

20,35] 

2 

P2 

[50,70] 

[60,90] 

P4 

[50,90] 

[45,80] 

P4 

[50,90] 

[45,80] 

P4 

[140,150] 

[60,90] 

P2 

[100,110] 

[90,115] 

P2 

[90,100] 

[65,89] 

P1 

[50,65] 

[50,70] 

P2 

[40,50] 

[45,75] 

P2 

[40,55] 

[45,58] 

P2 

[35,50] 

[40,55] 

3 

P4 

[50,80] 

[75,100] 

P2 

[50,75] 

[60,80] 

P3 

[50,75] 

[60,80] 

P1 

[100,115] 

[100,120] 

P1 

[150,175] 

[135,150] 

P4 

[140,150] 

[75,91] 

P2 

[45,50] 

[90,105] 

P4 

[50,75] 

[75,110] 

P1 

[45,53] 

[70,85] 

P1 

[40,50] 

[60,75] 

4 

P1 

[50,75] 

[75,110] 

P1 

[50,80] 

[70,90] 

P1 

[50,80] 

[70,90] 

P4 

[100,120] 

[125,150] 

P2 

[90,120] 

[168,185] 

P1 

[90,115] 

[102,116] 

P4 

[90,110] 

[98,128] 

P2 

[20,30] 

[75,95] 

P3 

[40,44] 

[92,105] 

P3 

[15,60] 

[80,100] 

5    

P2 

[110,125] 

[130,150] 

P3 

[105,125] 

[200,220] 

P4 

[100,150] 

[105,130] 

P3 

[50,65] 

[125,141] 

P3 

[10,20] 

[90,125] 

P2 

[30,60] 

[110,125] 

P2 

[30,50] 

[105,115] 
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6    

P1 

[50,60] 

[160,175] 

P4 

[120,150] 

[50,75] 

P1 

[100,115] 

[125,153] 

P2 

[35,40] 

[160,180] 

P1 

[15,30] 

[100,115] 

P3 

[35,50] 

[120,140] 

P3 

[40,45] 

[110,125] 

7     

P4 

[100,120] 

[120,146] 

P4 

[100,165] 

[155,170] 

P4 

[100,115] 

[160,193] 

P1 

[55,60] 

[115,145] 

P1 

[35,40] 

[145,160] 

P1 

[30,65] 

[130,145] 

8     

P4 

[160,170] 

[175,205] 

P2 

[75,100] 

[179,203] 

P3 

[45,65] 

[175,205] 

P4 

[75,100] 

[115,145] 

P3 

[30,75] 

[175,190] 

P1 

[25,50] 

[150,165] 

9      

P4 

[120,125] 

[195,210] 

P4 

[85,100] 

[200,219] 

P4 

[80,100] 

[150,175] 

P2 

[40,40] 

[195,210] 

P2 

[30,45] 

[170,185] 

10      

P3 

[75,100] 

[200,215] 

P1 

[70,90] 

[210,227] 

P2 

[50,65] 

[155,170] 

P1 

[55,75] 

[205,220] 

P3 

[25,55] 

[170,190] 

11       

P2 

[50,65] 

[220,240] 

P3 

[10,15] 

[160,180] 

P2 

[40,45] 

[205,225] 

P1 

[20,55] 

[200,220] 
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12       

P4 

[120,140] 

[223,240] 

P3 

[35,40] 

[180,200] 

P1 

[50,60] 

[220,240] 

P1 

[25,45] 

[215,235] 

13       

P3 

[60,80] 

[228,240] 

P2 

[10,15] 

[200,220] 

P4 

[50,75] 

[50,75] 

P3 

[30,40] 

[220,240] 

14        

P4 

[100,115] 

[200,230] 

P4 

[75,115] 

[100,120] 

P4 

[40,60] 

[30,65] 

15        

P1 

[30,45] 

[210,235] 

P4 

[60,110] 

[125,150] 

P4 

[55,95] 

[55,75] 

16        

P4 

[75,100] 

[220,240] 

P4 

[55,120] 

[140,165] 

P4 

[50,65] 

[95,110] 

17         

P4 

[85,125] 

[175,200] 

P4 

[30,105] 

[115,125] 
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18         

P4 

[100,125] 

[205,225] 

P4 

[60,125] 

[130,155] 

19         

P4 

[78,100] 

[220,240] 

P4 

[75,105] 

[160,180] 

20          

P4 

[85,115] 

[180,205] 

21          

P4 

[100,120] 

[200,225] 

22          

P4 

[110,130] 

[215,240] 

 

Table A6-5 Group B products demands data for the case study 

Ex. Initial holdup in swing Group B products demand (kbbl) 
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tank (product, kbbl) P5 P6 P7 P8 P9 P10 P11 P12 P13 

1 - 5 5 10 10 10 5 4 5 5 

2 P1 - 10 10 5 10 15 10 10 5 15 10 

3 P1 - 10 5 10 15 10 5 5 10 25 5 

4 - 10 25 25 20 5 10 10 15 0 

5 - 15 30 25 25 15 13 10 50 10 

6 - 13 25 30 10 20 15 17 75 5 

7 P1 - 10 10 20 30 25 30 15 10 60 15 

8 - 20 15 25 20 25 10 15 95 20 

9 P1 - 10 15 35 35 20 20 15 20 70 10 

10 - 10 25 35 25 15 16 10 80 10 
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Appendix Chapter 7  

Valid Inequalities  

There are several constraints, redundant in the model but including them improves 

computational time. We propose following inequalities for decomposed models: 

 
(1a) 

 
(1b) 

 
(1c) 

 
(1d) 

Eqs. (1a)-(1d) restates that transfer event-point should be assigned an active event-point  

before   and  should be assigned a transfer event-point before . These inequalities are 

added to both (LBSP) and (LPSP).  

Relaxed Blend Scheduling Problem: 

 (2a) 

 (2b) 

Inequalities (2a)-(2b) states that if material is stored in tank at event point  then it either be hold 

up from previous event-point or flow of the material in to the tank at the same event-point. Above 

constraint is only included for blend components and finished blend products that can be stored in 

multipurpose (swing) product tanks ( ).  

 
(3a) 

 
(3b) 
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 (3c) 

 
(3d) 

We restrict a feasible solution of decomposed scheduling problem by always requiring the 

production to take place during first event-point using Eqs. (3a) and (3b) and these inequalities do 

not eliminate optimal solution. For blend unit that receive at least one blend components straight 

from production unit operations without any storage, the blend unit would be operational only 

when it is receiving component from PN. Thus, the total run-modes for the blend unit are 

bounded by total transfer event-points as stated by Eq. (3c). Similarly, inequality (3d) stresses the 

flow of component into a tank also bounded.  

 (4a) 

 
(4b) 

 
(4c) 

 
(4d) 

 
(4e) 

 
(4f) 

 
(4g) 

If flow is happening between PN and BN at event-point  then it must corresponds to at most 

one transfer event-point  as restated by Eqs. (4a) and (4b). If there is flow at event point  then 

it must correspond to some event-point  and this is reinforced by Eqs. (4c)-(4g).    

 

Relaxed Production Unit Scheduling Problem: 
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(5) 

Valid inequality (5) limits the feasible solution space by requiring production to take place during 

first event-point ( ) for production units that supply components directly to a blend unit. 

 
(6a) 

 
(6b) 

If a blend component that has no storage option is being produced by a production unit, then the 

production unit will be sending this blend component to suitable blend unit and this material 

balance relation is restated in valid inequalities (6a) and (6b).  

 
(7a) 

 
(7b) 

 
(7c) 

 
(7d) 

 (7e) 

 (7f) 

 
(7g) 

 
(7h) 

 
(7i) 

Valid inequalities (7a)-(7f) restates the relationship between production units that supply 

components directly to blend units and transfer event-point  and production event-point . Eqs. 

1n 
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(7g)-(7i) emphasis relationship between production units that supply components to BN for 

storage at event-point  and to transfer event-point . These inequalities speed up convergence 

to optimal solution by decreasing the number of iterations and nodes in branch and bound tree in 

solver CPLEX.  

When the optimization model is written in GAMS environment, where the variables and 

equations are declared have significant impact on the solution time (GAMS TUTIORIAL). In our 

work, we have added all the inequalities presented in this section to our relaxed models (LBSP) 

and (LPSP). However, depending upon how the model is written in GAMS, one or more of these 

inequalities might not be necessary.   

Table A7-1 Production rates (thousand barrels/hour) for a second diesel blend unit 

Diesel Blender2 Carb Diesel 0.1 34.613 

Diesel Blender2 EPA Diesel 0.1 34.613 

Diesel Blender2 RedDye Diesel 0.1 34.613 

 

Table A7-2 Storage tank capacity data for blend component tanks 

Storage Tank Material Stored Capacity Initial Amount 

FCC LCO Tank FCC LCO 300 0 

HDS Diesel Tank HDS Diesel 500 0 

HydrocrackedDiesel Tank HydrocrackedDiesel 350 0 

Isomax Jet Tank Isomax Jet 500 0 

Coker Jet Tank Coker Jet 500 0 

SR Jet Tank SR Jet 500 0 

n t
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Table A7-3 Group B products demands data for the case study 

Ex. 

Initial holdup 

in swing tank 

(product, kbbl) 

Group B products demand (kbbl) 

P5 P6 P7 P8 P9 P10 P11 P12 P13 

1 - 5 5 10 10 10 5 4 5 5 

2 - 2 14 30 2 4 3 6 4 30 

3 P1 - 10 10 5 10 15 10 10 5 15 10 

4 - 10 25 25 20 5 10 10 15 0 

5 - 15 30 25 25 15 13 10 50 10 

6 P1-10 12 25 25 15 15 12 10 45 10 

7 P1 - 10 10 20 30 25 30 15 10 60 15 
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Table A7-4 Group A products demand order data for the case study 

Orders 

Orders (Product type, amount(kbbl), delivery window, delivery rate(kbbl/h)) 

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 

1 

P3 

[60,80] 

[30,50] 

P3 

[60,80] 

[30,50] 

P3 

[50,70] 

[20,35] 

P3 

[90,100] 

[50,75] 

P1 

[120,125] 

[40,75] 

P3 

[100,115] 

[40,70] 

P1 

[25,30] 

[12,30] 

2 

P2 

[50,70] 

[60,90] 

P2 

[50,70] 

[60,90] 

P4 

[50,90] 

[45,80] 

P4 

[140,150] 

[60,90] 

P2 

[100,110] 

[90,115] 

P2 

[100,110] 

[70,100] 

P1 

[50,65] 

[50,70] 

3 

P4 

[50,80] 

[75,100] 

P4 

[50,80] 

[75,100] 

P2 

[50,75] 

[60,80] 

P1 

[100,115] 

[100,120] 

P1 

[150,175] 

[135,150] 

P1 

[150,175] 

[115,145] 

P2 

[45,50] 

[90,105] 

4 

P1 

[50,75] 

[75,110] 

P1 

[50,75] 

[75,110] 

P1 

[50,80] 

[70,90] 

P4 

[100,120] 

[125,150] 

P2 

[90,120] 

[168,185] 

P2 

[90,120] 

[180,215] 

P4 

[90,110] 

[98,128] 

5    

P2 

[110,125] 

[130,150] 

P3 

[105,125] 

[200,220] 

P1 

[100,115] 

[200,225] 

P3 

[50,65] 

[125,141] 
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6    

P1 

[50,60] 

[160,175] 

P4 

[120,150] 

[50,75] 

P4 

[110,130] 

[60,98] 

P2 

[35,40] 

[160,180] 

7     

P4 

[100,120] 

[120,146] 

P4 

[120,140] 

[124,155] 

P4 

[100,115] 

[160,193] 

8     

P4 

[160,170] 

[175,205] 

P4 

[160,170] 

[195,235] 

P3 

[45,65] 

[175,205] 

9       

P4 

[85,100] 

[200,219] 

10       

P1 

[70,90] 

[210,227] 

11       

P2 

[50,65] 

[220,240] 
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12       

P4 

[120,140] 

[223,240] 

13       

P3 

[60,80] 

[228,240] 
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