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Dissertation Director:

Professor Andrew N. Norris

Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays

of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance

and index mismatch of typical engineering materials with water. A new type of acoustic

metamaterial element is proposed that can be tuned to match the acoustic properties of

water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell

fitted with an optimized internal substructure consisting of a central mass supported by

an axisymmetric distribution of elastic stiffeners, which dictate the shell’s effective bulk

modulus and density. The derived closed form scattering solution for this system shows

that the subsonic flexural waves excited in the shell by the attachment of stiffeners are

suppressed by including a sufficiently large number of such stiffeners. As an example of

refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying

the bulk modulus in the array according to the conformal mapping of a unit circle to a

square.

Elastic shells provide rich scattering properties, mainly due to their ability to sup-

port highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells

yields an analytical expression for the width of a flexural resonance, which is then used
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with the theory of multiple scattering to accurately predict the splitting of the reso-

nance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect

in a periodic wave medium. This effect redirects an incident acoustic wave by 90◦ in an

otherwise acoustically transparent sonic crystal. An unresponsive “deaf” antisymmet-

ric mode locked to band gap boundaries is unlocked by matching Bragg scattering with

a quadrupole flexural resonance of the shell. The dynamic effect causes normal uni-

directional wave motion to strongly couple to perpendicular motion, analogous to the

quasi-static Poisson effect in solids. The Poisson-like effect is demonstrated using the

first flexural resonance of an acrylic shell. This represent a new type of material which

cannot be accurately described as an effective acoustic medium. The study concludes

with an analysis of a non-zero shear modulus in a pentamode cloak via the two-scale

method with the shear modulus as the perturbation parameter.
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Chapter 1

Introduction to acoustic metamaterials

1.1 Acoustic metamaterials background

Metamaterials are man-made macroscopic composites with optimized periodic struc-

ture, designed to have properties not found in nature. The unit cell, or the fundamen-

tal element, dictates the response of the bulk material through it properties. These

properties can either be static or dynamic and might be affected by the surrounding

cells within an array which can further complicate the analysis. In acoustic metama-

terials, the effective density ρ and bulk modulus K (or alternatively, the sound speed

c2 = K/ρ and impedance Z = ρc) of the unit cell are the design parameters. By mas-

terfully tailoring these properties, such metamaterials exhibit extraordinary effects such

as cloaking, negative refraction, hyper-lensing, negative or zero mass/stiffness. Hiding

an object from acoustic detection is a particularly interesting topic and consequently

the field has exploded in the last decade. As a result, the literature has seen an upsurge

of new ideas for acoustic metamaterials.

The review article by Hussein et al. [42] presents a thorough history of acoustic

metamaterials. They describe how the field grew from layered composites, to embedded

spheres, to sonic crystals, to perforated plates, which then lead to defect engineering

in crystals. Based on the physics, acoustic metamaterials can be categorized into three

fundamental groups: sonic crystals, phononic crystals, and active metamaterials. The

characteristics of each type of acoustic metamaterials is described next.

Sonic crystals (SCs) are the primary topic of this Dissertation. These are periodic

arrays of scatterers (inclusions) in an acoustic medium. A wave incident onto such an

array can either be transmitted through, reflected back, refractively steered or even

redirected to a perpendicular direction. For this material, the fundamental element



2

is the scatterer which can be rigid, fluid or elastic. If the scatterers are rigid, the

the scattering properties are dictated by their filling fraction and distribution. Such

SCs typically have low transmission, because of the impedance mismatch with the

surrounding fluid. Sometimes it is desirable to filter out certain frequencies. This can be

done via Bragg scattering, by tuning the lattice spacing to coincide with the wavelength.

A different example is magnifying hyper lensing, which has been demonstrated by a rigid

one dimensional radial SC with a central dual-source. Another example is an effectively

anisotropic medium made from perforated plates, which can take on extraordinary

effective acoustic properties such as full transmission at certain angles of incidence. SC

based on rigid inclusion are governed by the constructive and destructive interference

of scattered waves only. On the other hand, if the fundamental element in the SC is

elastic, the elasticity plays a dominant role. The unit cell can be homogenized in the

long wavelength limit yielding effective acoustic properties. Moreover, by introducing

a gradient of acoustic properties, a SC is capable of “steering” an incident wave. Such

SCs are refereed to as gradient index materials. One can appreciate the difference from

classical optics where the shape of the lens is key and not a distribution of the refractive

index. In this work, an elastic shell is selected as the scatter. Phononic crystals (PCs)

differ from SCs in that the scatterers as well as the matrix are elastic (although this

distinction between PCs and SCs is not universally adopted). Consequently, a PC

can support propagating shear waves. It is nearly impossible to match the acoustic

properties of water with an elastic material without introducing voids. One example of

such a cellular material is an elastic foam. It has been demonstrated that an aluminum

foam slab can be nearly acoustically transparent. That same slab also exhibits negative

refraction at higher frequencies. The downside is the drop in transmission due to the

ever-present shear waves. It should be noted that the lack of shear waves in SCs is a

most useful attribute. It is also possible to control the response of PCs and SCs actively,

which is a field in its own right.
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1.2 Outline of Dissertation accomplishments

This Dissertation is outlined as follows. Elasticity in SCs and PCs is the dominant

topic of this Dissertation. Chapter 2 introduces the elastic shell as an effective acous-

tic medium. The axisymmetric substructure used to tune the shells is also described

and analyzed. Chapter 3 solves the problem of acoustic scattering from such shells.

Chapter 4 describes methods for using tuned shells to design refraction-based acoustic

lenses. A closer look at the interference of flexural-borne waves on neighbouring shells

is presented in Chapter 5. These results are then used to design a new type of effective

medium based on the quadrupolar resonance of a shell in Chapter 6. Chapter 7 presents

a solution of the equations of elasticity with a perturbation in shear. This result is used

to show the effect of shear in a pentamode-type acoustic cloak. In this Dissertation the

term shell will be used throughout to describe hollow cylinders which are can also be

referred to as tubes or pipes in other contexts.

Several noteworthy accomplishments of this work follow. A sub-wavelength acousti-

cally transparent cylinder has been designed. The elegant problem of acoustic scattering

from an elastic shell with axisymmetrically distributed springs has been solved in closed

form. A high transmission acoustic lens has been created from an array of elastic shells

which demonstrates wave steering. Analytical expressions for the bandwidth of a flex-

ural resonance and the frequency splitting of two nearby shells have been derived. A

novel method for redirecting an incident acoustic wave to a normal direction has been

discovered. It is referred to as the acoustic Poisson-like effect due to its similarities with

the elastodynamic Poisson effect.
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Chapter 2

Elastic shell as an effective acoustic medium

A solid elastic cylinder typically cannot be acoustically transparent in the quasi-static

regime. That is to say the there are no elastic materials that can simultaneously and

exactly match the density and bulk modulus of water. This is because most engineering

materials are too stiff and dense. A solution is to introduce a central void to decrease

the effective properties. The result is an elastic hollow cylinder or a shell. Of particular

interest is an elastic cylindrical shell with a circular cross section because it is axisym-

metric. The shell’s thickness becomes a design parameter which dictates the response

of the shell. Perhaps it is hard to believe at this point, but even a metal shell can

behave acoustically as water through an appropriate choice of this parameter. This

Chapter will derive and analyze the effective quasi-static properties of empty shells as

well as shells with an internal substructure.

2.1 Empty elastic shell

In this section, the effective quasi-static acoustic properties of an empty elastic shell

will be determined. Consider an infinitely long elastic shell of outer radius a and

a

h

ρs, Es

r

θ

Figure 2.1: Empty elastic shell of outer radius a and thickness h.



5

thickness h as pictured in Figure 2.1. The density, elastic modulus, and Poisson’s ratio

are (ρs, Es, νs), respectively. The displacement variables are (w, v, u) in the (r, θ, z)

cylindrical coordinate system. To obtain the plane strain bulk modulus of the shell,

the problem of hydrostatic compression must be solved. Two assumptions are made

in the present analysis: i) the loading is axisymmetric (hydrostatic), thus there is no

variation with azimuth yielding v = 0, ∂()
∂θ = 0 and ii) the cylinder undergoes plane

strain which implies (εzz, u) = 0. There is no shear stress within the shell since the

loading is axisymmetric. The general strain-displacement relations simplify to

εrr =
∂w

∂r
→ dw

dr
, (2.1a)

εθθ =
1

r

(
∂v

∂θ
+
w

r

)
→ w

r
, (2.1b)

εrθ =
1

2

(
1

r

∂w

∂θ
+
∂v

∂r
− v

r

)
→ 0. (2.1c)

From Hooke’s Law, the hybrid constitutive relations for plane strain are

σrr =
Es

1− ν2s
(εrr + νsεθθ) +

νs
1− νs

σzz, (2.2a)

σθθ =
E

1− ν2s
(εθθ + νsεrr) +

νs
1− νs

σzz, (2.2b)

σzz = νs(σrr + σθθ), (2.2c)

where σij are the stress tensor components. For plane strain, the longitudinal stress σzz

is assumed to be constant. The equation of static equilibrium in the radial direction is

dσrr
dr

+
σrr + σθθ

r
= 0. (2.3)

The θ-equation of motion is identically satisfied by virtue of the stated assumptions.

Substituting equations (2.1) into (2.2) and then into (2.3) yields r2w′′+rw′+w = 0 after

rearranging. This homogeneous Euler’s equation has two independent solutions [97]

w(r) =
C0

r
+ C1r, (2.4)

where C0 and C1 are integration constants to be determined by applying boundary

conditions. To do so the strains are expressed in terms of these constants as

εrr = −C0

r2
+ C1, εθθ =

C0

r2
+ C1. (2.5)
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Substituting (2.5) into (2.2) yields

σrr =
Es

1− ν2s

(
− (1− νs)

r2
C0 + (1 + νs)C1

)
+

νs
1− νs

σzz, (2.6a)

σθθ =
Es

1− ν2s

(
(1− νs)

r2
C0 + (1 + νs)C1

)
+

νs
1− νs

σzz, (2.6b)

σzz =
2νsEs

1− νs − 2ν2s
C1. (2.6c)

Note that σzz is indeed independent of r. Eliminating σzz from σrr and σθθ in equations

(2.6) and applying the boundary conditions σrr(a−h) = 0 and σrr(a) = −p0, where p0
is the applied pressure, yields

C0 =
(1 + νs)p0a

2

Es

(
(1− (h/a))2

(1− (h/a))2 − 1

)
, (2.7a)

C1 =
(1− νs − 2ν2s )p0

Es

(
1

(1− (h/a))2 − 1

)
. (2.7b)

Assuming small displacement w ≪ a, the decrease in the volume of the shell is

∆V

V
=

(a− w(a))2 − a2

a2
≈ −2

w(a)

a
= −2

(
C0

a2
+ C1

)
. (2.8)

The effective bulk modulus is defined as Keff = p0
∆V/V and simplifies to

Keff =
Es

2(1 + νs)

(2− h
a)

h
a

2(1 − νs)− (2− h
a)

h
a

. (2.9)

In the limit as h/a→ 1, Keff approaches the plane strain bulk modulus of the material

itself, which is

Kps =
Es

2(1 + νs)(1− 2νs)
(2.10)

Equation (2.9) can also be written in the following useful form

Keff =

(
1 +

(1 + νs − h
a )

h
a

2(1 − νs)− 2ha +
(
h
a

)2

)
Kthin
eff , (2.11)

which exposes the dependence on the effective bulk modulus for thin shells

Kthin
eff =

Es
2(1 − ν2s )

h

a
=
ρsc

2
p

2

h

a
, (2.12)

where cp =
√

Es
ρs(1−ν2s )

is the extensional wave speed. Equation (2.12) is identical to

the effective bulk modulus in equation (2.56) on page 38 of Ref. [44]. An alternative

derivation of the effective bulk modulus for a thin shell can be found in Section II of
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Ref. [102]. The last equality suggests that for a thin shell with h/a ≪ 1, the bulk

modulus is linear with h/a. For thicker shells, a better approximation is Keff =

(1 + h
a )K

thin
eff . Figure 2.2 shows the normalized effective bulk modulus Keff/Kps of

several materials versus the thickness to radius ratio h/a. Note that as h/a → 1,

the shell becomes a rod and Keff asymptotically approaches the value of Kps. For

the acrylic shell in plot (b), Kthin
eff is accurate up to h/a = 0.1, while the expression

(1+ h
a )K

thin
eff more closely approximates the effective bulk modulus to about h/a = 0.3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

h/a

(a)

 

 

Acrylic

Lead

Aluminum

Steel

K
eff

 /K
ps

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

h/a

(b)

K
eff

/K
ps

(1+h/a)K
eff
thin/K

ps

K
eff
thin/K

ps

Figure 2.2: Effective bulk modulus of the shell normalized by the plane strain bulk
modulus Keff/Kps as a function of thickness to radius ratio h/a. Plot (a) shows
Keff/Kps for several common materials. Plot (b) presents the effective bulk modulus
for an acrylic shell/rod as well as several approximate functions.

The second parameter which determines the quasi-static response of an elastic shell

is the effective density. It is defined as the mass of the shell per the displaced volume.

ρeff = ρs

(
2− h

a

)
h

a
. (2.13)

The effective bulk modulus (2.9) and density (2.13) define the compressional and inertial

properties of the shell, respectively.
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2.1.1 Material selection for tuning to water

Acoustic scattering from an object much smaller than the wavelength is described as

quasi-static. This simply implies that the loading is gradual enough that the higher

order inertial effects can be ignored. For a shell, the amount of scattering depends on

its effective static properties. Thus even a metal shell can be acoustically transparent

at sub-wavelength frequencies if its effective bulk modulus and density are matched to

water. The bulk modulus and density of water are taken as K = 2.25 GPa and ρ = 1000

kg/m3, respectively. From equations (2.9) and (2.13), the shell is acoustically tuned to

water when the thickness to radius ratio satisfies

Es
2(1 + νs)

(2− h
a )

h
a

2(1 − νs)− (2− h
a)

h
a

= K, (2.14a)

ρs

(
2− h

a

)h
a
= ρ (2.14b)

Solving equations (2.14) simultaneously yields a relationship between the extensional

and acoustic wave speeds

c2p
4c2

= 1− ρ

2(1 − νs)ρs
, or

4

c2p
=

1

c2
+

1

c2T

ρ

ρs
, (2.15)

where the longitudinal and shear speeds of the bulk material follow from Ref. [51] as

c2L =
Es(1− νs)

ρs(1 + νs)(1− 2νs)
, c2T =

µs
ρs
, (2.16)

with the shear modulus µs = Es/(2(1 + νs)).

Equations (2.14) suggest that for a given shell with properties (Es, ρs, νs), there

may exist a thickness to radius ratio h/a which satisfies both conditions making the

shell acoustically transparent in water. Figure 2.3 plots the normalized effective bulk

modulus Keff/K versus the normalized density ρeff/ρ as h/a is increased from 0 to

1 for several materials. The thickness increases from lower left to upper right. The

maxima for each curve correspond to the normalized bulk density and plane strain bulk

modulus of the material. The black circles indicate the shell thickness ratio of h/a = 0.5

on each curve. The dashed lines represent matched impedance Keffρeff/(Kρ) = 1 and

matched sound speed Keffρ/(Kρeff ) = 1. Table 2.1 shows the shell thickness for each
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Figure 2.3: Log-log plot of Keff/K versus ρeff/ρ as h/a is varied for several materials.
The dashed black lines represent matched impedance and sound speed to water. The
circular dots indicate the shell thickness ratio of h/a = 0.5. Shell thickness increases
from lower left to upper right.

material when the density is matched to water ρeff/ρ = 1 and when the bulk modulus

is matched Keff/K = 1, which typically differ.

To have the effective acoustic properties of water, the two values of shell thick-

ness should match. There are several exceptional materials which can accomplish this.

They are summarized in the following Table 2.2. Table 2.2 also shows the extensional,

longitudinal and transverse speed for each of these materials. Generally, there is no

condition on sound speed for the material to be tuned to water, it is simply due to a

perfect balance of inertial and stiffness properties. However, for thin shells the necessary

condition is

cp = 2c ⇐





ρsc
2
ph/(2a) = K

2ρsh/a = ρ

, (2.17)

which is apparently satisfied for the thin platinum shell of thickness h/a = 0.025.

Comparing equation (2.17) and (2.15) implies that the contribution of shear in thin
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Material ρs Es νs cp
h
a (ρ)

h
a(K)

Aluminum Oxide 3920 370 0.22 9959 0.137 0.012
Molybdenum 10300 276 0.32 5463 0.050 0.015
Aluminum 3003-H18 2730 69 0.33 5326 0.204 0.055
Steel AISI 4340 7850 205 0.28 5323 0.066 0.020
Titanium beta-31S 4940 105 0.33 4884 0.107 0.037
Copper 8700 110 0.35 3796 0.060 0.035
Concrete 2300 25 0.33 3493 0.248 0.139
Brick 2000 17 0.3 3056 0.293 0.199
Platinum 21450 147 0.39 2842 0.024 0.025
Silver 10500 72.4 0.37 2827 0.049 0.051
Acrylic 1190 3.2 0.35 1751 0.600 0.615
ABS 1040 2.3 0.35 1588 0.804 0.761
Lead 11340 13.87 0.42 1215 0.045 0.204

Table 2.1: The required shell thickness ratio to match the density of water h/a (ρeff =
ρ) and to match the bulk modulus h/a (Keff = K) for different materials. Units of
density are kg/m3, elastic modulus GPa, speed m/s.

h/a cp cL cT
Acrylic 0.62 1751 2078 998
Silver 0.51 2827 3492 1586
Platinum 0.025 2843 3697 1570

Table 2.2: Materials capable of matching the properties of water at a particular shell
thickness h/a (corresponding to point (1, 1) in Figure 2.3). The extensional, longitudi-
nal and transverse speed for each material are shown.

shells is negligible. For engineering applications, materials such as silver and platinum,

are not practical. As a result, other methods of tuning an elastic shell have to be

developed. Later, the acoustically transparent acrylic shell of thickness h/a = 0.62 will

be used to demonstrate the novel acoustic Poisson-like effect in Chapter 6.

2.2 Multi-layer shells

Rather than trying to find a material which will have the properties of water, a mul-

tilayer shell can be constructed instead. The simplest example is a bilayer shell as

pictured in Figure 2.4. The external radius remains a and the thicknesses of the outer
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and inner cylinders are h1 and h2, respectively. The subscripts indicate the cylinder

throughout. The radial displacements and stresses in each cylinder will differ as

a

h2

h1

ρ2, E2

ρ1, E1

Figure 2.4: Schematic of a bilayer shell.

w1 =
C0

r
+ C1r, w2 =

D0

r
+D1r

1

E1
σ1 = − C0

(1 + ν1)r2
+

C1

(1− ν1 − 2ν21)
,

1

E2
σ2 = − D0

(1 + ν2)r2
+

D1

(1− ν2 − 2ν22 )
.

(2.18)

where C0, C1,D0,D1 are the constants of integration. Applying the boundary condi-

tions yields

σ1(a) =
−p0
E1

→ − C0

(1 + ν1)a2
+

C1

(1− ν1 − 2ν21)
=

−p0
E1

,

w1(a− h1) = w2(a− h1) → C0

(a− h1)
+ C1(a− h1) =

D0

(a− h1)
+D1(a− h1),

σ1(a− h1) = σ2(a− h1) → − C0

(1 + ν1)(a− h1)2
+

C1

(1− ν1 − 2ν21 )
=

− D0

(1 + ν2)(a− h1)2
+

D1

(1− ν2 − 2ν22 )
,

σ2(a− h1 − h2) = 0 → − D0

(1 + ν2)(a− h1 − h2)2
+

D1

(1− ν2 − 2ν22 )
= 0.

(2.19)
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Solving the system of equations and substituting back into the displacements (2.18)

gives the effective bulk modulus

Keff =
p0a

−2w1(a)
,

=
E1

2(1− ν21)

h1
a

+
E2

2(1 − ν22)

h2
a

+
1

2

(
E1

2(1 − ν21 )

(
h1
a

)2

+
E2

2(1 − ν22)

(
h2
a

)2

+
E2

(1− ν22)

(1 + ν1)

(1− ν1)

(
h1
a

)(
h2
a

))

+O(h31, h
3
2).

(2.20)

In the case of a thin shell h≪ a, the effective bulk modulus is

Keff ≈ E1

2(1− ν21)

h1
a

+
E2

2(1 − ν22)

h2
a

=
ρ1c

2
1

2

h1
a

+
ρ2c

2
2

2

h2
a
, (2.21)

where c1 and c2 are the extensional wave speeds. Note that this is a parallel summation

of the effective moduli of each shell. Similar to a single shell, the effective density of

the bilayer shell is given by

ρeff =
1

πa2
(
ρ1π((a− h2)

2 − (a− h1 − h2)
2) + ρ2π(a

2 − (a− h2)
2)
)
,

≈ 2ρ1
h1
a

+ 2ρ2
h2
a
, (h1, h2) ≪ a.

(2.22)

The effective bulk modulus (2.21) and density (2.22) can be solved for the thicknesses

of the two shells yielding

h1
a

=
ρeff
2ρ1

(
(2ceff )

2 − c22
c21 − c22

)
, (2.23a)

h2
a

=
ρeff
2ρ2

(
c21 − (2ceff )

2

c21 − c22

)
, (2.23b)

where the effective wave speed is defined as c2eff = Keff/ρeff . Equations (2.23) presents

a necessary condition on the extensional wave speeds of the shell c1 > 2ceff > c2, that

one shell must be faster and the other slower than twice the effective wave speed 2ceff .

As an example, Table 2.3 demonstrates how an outer layer of lead can be applied to

common shells tuning them to the properties of water ceff → c. The idea of layering

materials can certainly be extended to more layers. The procedure in essence combines

the mass and stiffness properties of the individual shells to create a composite with

desired properties. If one is unable to coat a copper shell with lead as suggested, the

shell can be tuned with an internal substructure.
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Bilayer shell h1/a h2/a c1 c2 ceff
Lead on Aluminum 3003-H18 0.0318 0.0512 1216 5326 1500
Lead on Copper 0.0184 0.0334 1216 3796 1500
Lead on Steel AISI 4340 0.0317 0.0178 1216 5323 1500

Table 2.3: Three bilayer shells tuned to water where the outer shell is made of lead.
The extensional wave speeds in each material are compared to the effective speed of
the composite. Subscript ()1 is used for the lead shell.

2.3 Shell with an axisymmetric substructure

An internal substructure can be used to stiffen and add mass to a otherwise empty

shell. Consider a substructure consisting of a central mass m attached to the shell

by an axisymmetric distribution of J springs of stiffness κ as shown in Figure 2.5. A

structural realization of this substructure is shown in Figure 2.7 and consist of a central

rod supported by lengthwise ribs. The two parameters κ,m make the substructure an

oscillator and facilitate the tuning of a shell to have stiffer and denser properties than

if left empty. The aim here is to determine how the effective bulk modulus and density

vary with these parameters. In doing so, it is sufficient to consider a thin shell as done

in Ref. [101].

2.3.1 Springs-mass model

Σfx

f2

σhoop

σhoop p0

2a f1

f8

f3

f7

h

m

κ

Figure 2.5: External and internal forces acting on the shell with J = 8 springs of
stiffness κ supporting a central mass m.

Applying a hydrostatic pressure p0 on the outside of the infinitely long cylindrical

shell results in a decrease of the radius a → a − w(a). The quasi-static effective bulk
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modulus is defined as Keff = −p0/(∆V/V ), where the volume change is ∆V
V = ∆A

A ≈

−2w(a)a since the elastic deformation is plane strain. The radial and azimuthal strain

in the shell are both approximately equal to εhoop = w(a)
a , so that the effective bulk

modulus is

Keff ≈ p0
2εhoop

. (2.24)

The axial stress is σa = νsσhoop, and consequently the hoop strain and stress are related

by ρsc
2
p =

Es
1−ν2s

as

εhoop =
1

Es
(σhoop − νsσa) =

σhoop
ρsc2p

. (2.25)

An imaginary bisecting cut exposes the internal forces as shown in Figure 2.5. The

static equilibrium condition is then

2hσhoop − 2a p0 + F = 0, (2.26)

where F is the horizontal resultant per unit length of the forces exerted by the springs

on the half shell. At the same time, the spring forces are proportional to w(a), say

F = keff w(a). (2.27)

Equations (2.24) - (2.27) imply that

Keff =
h

2a
ρsc

2
p +

keff
4
, (2.28)

where the effective stiffness keff remains to be determined. Hence, referring to Fig-

ure 2.5,

F ≡
∑

fx = κw(a) ×





J/4∑
j=−J/4

cos θj for even J,

(J−1)/2∑
j=0

sin θj for odd J.

(2.29)

Performing the sums and using (2.27) gives

keff = κ×





cot
(
π
J

)
for even J,

1
2 cot

(
π
2J

)
for odd J.

(2.30)

Consider even J , in which case equations (2.28) and (2.30) imply that the effective bulk

modulus is

Keff =
h

a
Ksh +Ksp, where Ksh =

ρsc
2
p

2
and Ksp =

κ

4
cot
(π
J

)
. (2.31)
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The effective bulk modulus is greater than that of the bare shell and the increase, Ksp,

is proportional to the spring stiffness. The effective density is the ratio of total mass to

volume, ρeff = (ms +m)/(πa2), where ms = ρsπ(a
2 − (a − h)2) is the mass per unit

length of the shell. Hence, since h≪ a by assumption,

ρeff = ρm + ρs

(
2
h

a
−
(
h

a

)2)
(2.32a)

≈ ρm + 2
h

a
ρs, (2.32b)

where ρm = m
πa2

is the added density.

For instance, consider an aluminum shell of thickness to radius ratio h/a = 0.03. Per

Table 2.1, this shell is less stiff and less dense than water and thus can accommodate an

internal substructure. The normalized effective properties of this shell are ρeff/ρ = 0.16

and Keff/K = 0.53. To obtain the properties of water, 84 percent mass ρm = 0.84ρ

and 47 percent stiffness Ksp = 0.47K have to be added. This procedure is graphically

demonstrated in Figure 2.6.

2.3.2 Ribs-rod model

A more physical model of the substructure is a central rod with lengthwise ribs support-

ing it as shown in Figure 2.7(a). The one-component substructure in Figure 2.7(a) has

J = 16 elastic stiffeners (ribs) of thickness t and a central mass (rod) of radius r1 made

of the same material. The elastic modulus and density of the internal mechanism are

E1 and ρ1, respectively. Assuming that the stiffeners only deform radially, the effective

stiffness (per unit axial length) is κ = E1t/(a−h−r1). This first order approximation for

additional stiffness κ will prove sufficient for low frequency tuning. The second param-

eter of interest is the mass of the internal mechanism, m1 = ρ1
(
Jt(a− h− r1) + πr21

)
.

The two variables which define the geometry of the internal mechanism, t and r1,

determine the effective bulk modulus and density of the shell-substructure system.

From equation (2.31), the contribution of the internal oscillator to the bulk modulus of

the shell-stiffener-mass system is Ksp =
1
4cot(π/J)E1t/(a− h− r1). Thus the effective
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0 0.5 1 1.5 2
0

0.5

1

1.5

2
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eff

/ρ

K
eff

/K 

 

 

h/a=0.03

h/a=0.06

Z
eff

=Z

c
eff

=c

h/a

h/a=0.09

47% added
stiffness

Aluminum 3003−H18

84% added mass

Figure 2.6: Linear plot of Keff/K versus ρeff/ρ as h/a is varied for an aluminum
shell. A shell of thickness h/a = 0.3 is tuned to water by adding mass and stiffness.
The dashed black lines indicate the matched impedance and sound speed.

properties of the combined system become (see equations (2.31) and (2.32))

Keff = Ksh
h

a
+

cot(π/J)E1t

4(a− h− r1)
, (2.33a)

ρeff = ρs
h

a

(
2− h

a

)
+ ρ1

(J
π

t

a

(
1− h

a
− r1
a

)
+
(r1
a

)2)
, (2.33b)

where the O((h/a)2) term in the shell volume is retained for improved accuracy. To

get the effective properties, the density of the shell has to be increased by ρm = ρeff −

ρs
(
2ha − (ha )

2
)
.

Next define the ratio of required additional stiffness in each stiffener to the elastic

modulus of the internal material

K̂ =
4J

πE1

(
K −Ksh

h

a

)
tan

(π
J

)
. (2.34)

Solving the stiffness condition (2.33a) for t yields

t = J−1πK̂(a− h− r1). (2.35)
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th

r1
a

ρs, Ksh

ρ1, K1

th

a
r1

r2

(a) (b)

ρs, Ksh ρ2, K2

ρ1, K1

Figure 2.7: Schematic of the tuned shell. Plot (a): a one-component internal mechanism
consists of J = 16 stiffeners (ribs) with thickness t and a central rod of radius r1. Plot
(b) shows the same internal mechanism, but with an added internal rod of radius r2.

Substituting into the density condition in (2.33b) yields a quadratic equation for r1/a,

(r1
a

)2
+ K̂

(
1− h

a
− r1
a

)2
− ρm
ρ1

= 0. (2.36)

Equations (2.36) and (2.35) provide the geometry of the substructure. Note that since

the formulation is in terms of area, there are two solution for r1 in equation (2.36).

There is no guarantee that both solutions will be physically realizable. For h/a ≪ 1,

the roots are approximately r1/a = (K̂ + 1)−1
(
K̂ ±

√
(ρm/ρ1)(K̂ + 1)− K̂

)
.

It can happen that the density of the internal mechanism material is so low, as in

some plastics used in rapid prototyping, that it becomes difficult to match both the

density and bulk modulus. In that case, a heavy central rod of radius r2 can be added

as shown in Figure 2.7(b). This rod has practically no effect of the effective stiffness,

but does offset the density. The effective bulk modulus for this system is the same as

in equation (2.33a), and the effective density changes as follows

ρeff = ρs
h

a

(
2− h

a

)
+ ρ1

(J
π

t

a

(
1− h

a
− r1
a

)
+
(r1
a

)2)
+ (ρ2 − ρ1)

(r2
a

)2
, (2.37)

where ρ2 and K2 are the density and bulk modulus of the central rod. Three parameters

now define the geometry of the internal mechanism: t, r1 and r2. Since there are two

conditions, (2.33a) and (2.37), the radius of the internal oscillator is determined after

selecting the fraction of density added by the rod fρ ≤ ρm/ρ2, which yields r2/a =
√
fρ

Recalling equation (2.35) for t, and using the definition of ρm, equation (2.37) can be
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rearranged as

(r1
a

)2
+ K̂

(
1− h

a
− r1
a

)2
+
(ρ2
ρ1

− 1
)(r2

a

)2
− ρm
ρ1

= 0. (2.38)

It is clear if ρ2 = ρ1, equation (2.38) gives the solution for a one-component oscillator,

i.e. equation (2.36). For a very thin shell with h/a ≪ 1, the roots are approximately

r1/a = (K̂ + 1)−1
(
K̂ ±

√
(ρ̂/ρ1)(K̂ + 1)− K̂

)
, where ρ̂ = ρm − fρ(ρ2 − ρ1). The

discriminant goes to zero if we select fρ such that ρm
ρ1

− fρ(
ρ2
ρ1

− 1) = K̂
K̂+1

giving the

single solution r1
a = K̂

K̂+1
which corresponds to the largest possible central rod.

2.3.3 Water-like aluminum shell with an acrylic substructure

Consider tuning to water the aluminum shell of thickness h/a = 0.3 described in Sec-

tion 2.3.1 with an acrylic substructure with properties (ρ1 = 1190 kg/m3, E1 = 3.2

GPa, ν1 = 0.35). For reasons to be discussed later, J = 16 stiffeners are to be used in

attaching the central rod to the shell. First, equation (2.36) is solved for (r1/a) and

then equation (2.35) is used to get the thickness. The two solutions for the oscillator’s

parameters are (r1/a, t/a) = (0.821, 0.040) and (0.303, 0.180). The lower limit on the

internal mass radius r1 is geometrically constrained by the thickness of each stiffener.

The intersection of stiffeners gives a lower bound of roughly r1 > Jt/(2π). In the second

solution the radius r1 is below this bound. This implies that the density is not matched

to water, and consequently, only the first solution is retained.

Although the present representation of the added stiffness is a good approximation,

it is not exact. The first solution was optimized in COMSOL yielding the exact bulk

modulus of water. The geometry of the oscillator was found to be

(r1/a, t/a) = (0.796, 0.081), (2.39)

corresponding to (ρeff ,Keff ) = (1000.8 kg/m3, 2.251GPa).

The radius ratio r1/a of the inner rod is rather large. It can be made smaller

while still matching the effective properties to water by inserting a central steel rod

(ρ2 = 7944 kg/m3, E2 = 200GPa, ν2 = 0.28). Solving equation (2.38) and using (2.35)

yields (r1/a, r2/a, t/a) = (0.560, 0.167, 0.110), which were optimized in COMSOL to
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give

(r1/a, r2/a, t/a) = (0.560, 0.129, 0.143). (2.40)

Figure 2.8 shows the two substructure designs in equations (2.39) and (2.40).

Figure 2.8: Aluminum shell of thickness h/a = 0.03 tuned to water with an acrylic sub-
structure. Plot (a) shows the one-component substructure described by equation (2.39).
Plot (b) shows the two-component substructure from equation (2.40).

2.3.4 Manufacturability

The oscillator designs in Figure 2.8 are well suited for rapid prototyping. However, that

process takes a very long time and the bulk properties of the resulting substructure can

be affected by porosity. A faster and more cost effective way to manufacture the acrylic

inserts is to machine down acrylic rods. Typical milling bits have rectangular cross

sections and thus the design has to be altered so the ribs rather that the voids have

a trapezoidal profile. Figure (2.9b) shows the aluminum shell of thickness h/a = 0.03

tuned to water with the machined oscillator. It is non-trivial to derive the effective bulk

modulus of this system as a function of the tool depth ratio t/a. Therefore, Keff was

obtained numerically in COMSOL. Figure (2.9b) shows the effective bulk modulus as

a function of the tool depth t. The curve in Figure 2.9 was obtained by matching the

density via the tool diameter d for a given tool depth t. The curve is quadratic with a

maximum around t/a = 0.08.
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Figure 2.9: Machined acrylic insert tuning an aluminum shell of thickness h/a = 0.03
to water. Plot (a) shows the effective bulk modulus as a function of the normalized tool
depth t/a with density matched by the tool diameter d. Plot (b) shows one geometry
which gives the parameters of water.
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Chapter 3

Scattering from an elastic shell with internal substructure

The dynamic response of an elastic shell in an acoustic medium was analysed in the

original work of Bleich and Baron [6] and many other in the years since. Historically,

acoustic scattering form cylindrical elastic shells has received much attention from the

Naval research community. Primarily because many underwater vehicles and weaponry

has the iconic cylindrical structure. The interested reader is referred to the text by

Junger and Feit [44] for an in-depth look at fluid-structure interaction. What makes

the study of scattering from elastic shells in water particularly interesting and important

is that the inertial and stiffness properties of the shell and water are comparable, unlike

in airborne sound. Thus a strong coupling exist between the vibration of the shell and

the acoustic radiation shed into the surrounding fluid.

The chapter is organized as follows. Acoustic scattering from an empty thin elastic

shell is described in § 3.1. This is then used to compare the frequency dependent

scattering from the empty tuned shells described in Chapter 2. In § 3.2, the more

complicated problem of a shell with an internal substructure is solved. Properties

of the general solution are discussed in § 3.3. It is shown that the scattered field

decomposes into J distinct parts, and that the additional portion of the T-matrix

due to the internal springs-mass system can be expressed by J products of vectors,

convenient for implementation. Numerical examples are given in § 3.4 along with a

discussion of the backscatter and total scattering cross section for plane wave incidence

and various spring distributions. Approximate but useful expressions are derived for

the effective resonance frequencies of the shell-springs-mass system. An acoustically

transparent aluminum shell is described in § 3.5.
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3.1 Fluid loaded empty shell

Consider in-plane acoustic wave scattering from a thin cylindrical shell immersed in

water. The thin shell has outer radius a, thickness h (≪ a), volumetric mass density

ρs, with elastic properties characterized by Young’s modulus Es and Poisson’s ratio νs

(see Figure 2.1). We assume time dependence e−iωt, which is henceforth omitted but

understood. The total acoustic pressure on the shell p satisfies the Helmholtz equation

∇2p+ k2p = 0, (3.1)

where k = ω/c is the acoustic wavenumber. The pressure can be decomposed into two

parts, the incident and scattered fields, pi and ps respectively, each a separate solution

of Helmholtz’s equation. Here we consider in-plane or 2D motion with plane wave

incidence, requiring only the planar modes. Thus,

p = pi + ps, pi =

∞∑

n=−∞
AnJn(kr)e

inθ, ps =

∞∑

n=−∞
BnH

(1)
n (kr)einθ, r ≥ a (3.2)

with An the incident field coefficients, Bn the scattering coefficients, Jn the Bessel

function of the first kind of order n and H
(1)
n the Hankel function of the first kind of

order n. The objective is to get a relation between the incident amplitudes An and the

scattering amplitudes Bn. The solution is embodied in the infinite T-matrix defined

by [64]

B = TA, (3.3)

where A and B are vectors of infinite length comprised of the elements An and Bn

at position n ∈ Z, respectively. The next step is to solve the equation governing

wave propagation in the shell. The Donnel-Mushtari thin shell theory is the least

complicated of the shell theories and will be used herein. The equations of motion for

a thin cylindrical shell in the r and θ directions, respectively, are [44]

1

a2
∂v

∂θ
+
w

a2
+
β2

a2
∂4w

∂θ4
+
ẅ

c2p
=
σ(θ, t)

ρsc2ph
, (3.4a)

1

a2
∂2v

∂θ2
+

1

a2
∂w

∂θ
− v̈

c2p
= 0, (3.4b)
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where w and v are the radial and azimuthal displacement, respectively, σ is the normal

stress acting in the radial direction and β = h/(
√
12a). The displacements and the

normal stress are expanded in normal modes

(w, v, σ) =

∞∑

n=−∞

(
Wn, Vn, σn

)
einθ. (3.5)

Substituting equations (3.5) into (3.4) gives the modal equations as

(−Ω2 + 1 + β2n4)Wn + inVn =
a2σn
ρsc2ph

,

inWn + (Ω2 − n2)Vn = 0,

(3.6)

where the non-dimensional frequency is

Ω =
ωa

cp

(
=

c

cp
ka
)
. (3.7)

The characteristic equation of the free-vibration solution with σn = 0 yields the natural

frequencies for the radial modes Ωr and circumferential modes Ωc, respectively

Ω2
r,c =

1

2

(
(1 + n2 + β2n4)∓

√
(1 + n2)2 + 2β2n4(1− n2)

)

= (βn2, n), β ≪ 1.

(3.8)

In the presence of forcing σn, such as an incident wave, the modal equations (3.6) are

solved for the displacement Wn in terms on σn. The resulting expression is written in

terms of a shell impedance Zshn as

σn = −iωZshn Wn, (3.9a)

Zshn = −iρscp
h

a

[
Ω− β2n4

Ω
−
(
Ω− n2

Ω

)−1]
. (3.9b)

Note that the shell impedance Zshn is either mass or stiffness-like, depending on the

frequency. The natural frequencies of the shell (3.8) correspond to the existence of

nontrivial solutions in the absence of loading, and hence are defined as the roots of

Zshn (Ω) = 0.

Continuity between the radial shell velocity and the radial particle velocity in the

fluid, combined with the momentum equation in the fluid implies, using equation (3.2),

that ẅ = −ρ−1∂p/∂r on r = a, hence

ρcωWn = AnJ
′
n(ka)+BnH

(1)′
n (ka) ⇒ Bn =

1

H
(1)′
n (ka)

[ρcωWn−AnJ ′
n(ka)]. (3.10)
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Expanding the surface pressure as p(a, θ) =
∞∑
−∞

Pne
inθ and substituting together with

Bn from equation (3.10) into equation (3.2) yields the modal pressure

Pn = −iωZnWn + i
2

πka

An

H
(1)′
n (ka)

, (3.11)

where Zn is the acoustic impedance defined as

Zn = iρc
H

(1)
n (ka)

H
(1)′
n (ka)

. (3.12)

The Wronskian identity Jn(x)H
(1)′
n (x) − J ′

n(x)H
(1)
n (x) = 2i

πx was used to get equa-

tion (3.11).

The radial stress on the shell is balanced by the acoustic pressure σn = −Pn, which

can be expressed in terms of the dimensionless frequency Ω = ωa/cp as

a2

ρsc2ph
σn = − a2

ρsc2ph
Pn

= − ρc

ρscp

Ω

h/a

H
(1)
n (ka)

H
(1)′
n (ka)

Wn − i
2a

πρsc2ph/a

An

kaH
(1)′
n (ka)

, (3.13)

where ρsc
2
ph/2a = Kshh/a is the effective quasi-static bulk modulus of the shell (see

equation (2.31)). The scattering coefficients are obtained by solving (3.6) for radial

modal displacement Wn

Wn =
2

πωka

An
ζn
, ζn = (Zshn + Zn)H

(1)′
n (ka). (3.14)

The term ζn contains the total impedance (Zshn + Zn), which highlights the parallel

summation of the shell and acoustic impedances. Substituting equation (3.14) into

equation (3.10) and rearranging yields the sought T-matrix, which relates the incident

and scattered pressure fields as (∗ denotes the complex conjugate)

B = diag(Tn)A, Tn =
1

2

(ζ∗n
ζn

− 1
)
. (3.15)

The associated elements of the diagonal ”S-matrix” are

Sn = 1 + 2Tn =⇒ Sn = e−i2φn , Tn = −ie−iφn sinφn, with φn = arg ζn, (3.16)

implying that |Sn| = 1, |Tn| ≤ 1, in conformity with the fact that no dissipation is

assumed.
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3.1.1 Far-field

The acoustic far-field begins when the pressure amplitude exhibits cylindrical spreading

and the pressure is independent of the azimuthal angle θ. As a result the spatial depen-

dence of the pressure field in the far-field is simplified. Using the large argument ap-

proximation of the Hankel function H
(1)
n (kr) =

√
2/(πkr)ei(kr−nπ/2−π/4)+O((kr)−3/2)

for kr ≫ 1, the far-field scattered pressure field is

ps =

√
a

2r
eikrg(θ) +O

(
(kr)−3/2

)
, kr ≫ 1, (3.17)

where the form function g follows from equation (3.2)

g(θ) =

∞∑

n=−∞
gne

inθ, gn =
2e−i

π
4√

πka
(−i)nBn. (3.18)

Forward scatter is defined as g(0), whereas g(π) defines the backscattered pressure.

Forward and backward scatter are useful indicators of the scattered field at a given

point, but do not provide information about the total scattered power directly.

The total scattering cross section (TSCS or σtot), which is a measure of the power

scattered in all directions due to an incident wave, will be used throughout to compare

scattering from various shells. Integrating the scattered pressure in the far-field, the

TSCS is defined as

σtot =
r

a

2π∫

0

psp
∗
sdθ =

1

2

2π∫

0

|g(θ)|2dθ = 4

ka

∞∑

n=−∞
|Bn|2. (3.19)

The TSCS has been calculated for the special tuned shells of Table 2.2 and the com-

posite shells of Table 2.3. An appropriate baseline for comparing different shell designs

is scattering from a rigid cylinder. The sound-hard boundary condition ∂w/∂r|r=a = 0

yields the scattering coefficients Bn = −J ′
n(ka)/H

(1)′
n (ka).

It is clear that the tuned shells are nearly transparent at low frequencies as compared

to a rigid cylinder of the same size. For the lead-aluminum and lead-copper bi-layer

shells, the TSCS remains low up to about ka = 2.5. For the acrylic shell, the TSCS is

zero up to about ka = 0.7 where there is an n = 2 flexural resonance. The total and

absolute pressure fields for the lead-aluminum shell and the rigid cylinder are compared

in Figure 3.2 at ka = 2.5. There is very little scattering from the lead-aluminum shell



26

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

 ka

σ
tot

      

 

 

rigid

platinum
silver

Pb/Cu
Pb/Al

acrylic

n=2 n=3

Figure 3.1: Total scattering cross section for acoustically transparent single layer and
bi-layer shells. The dashed line represents the TSCS for a rigid cylinder of the same
size. The shell thicknesses are given in Table 2.2 and 2.3. The n = 2 and n = 3 flexural
resonances of the thick acrylic shell are labelled.

of radius a = 1 cm even when the wavelength is just slightly less then the diameter.

This proves that the elastic shell is indeed behaving almost as an acoustic medium at

sub-wavelength frequencies. On the other hand, there is much scattering from the rigid

cylinder.

3.1.2 Consequence of matching density and bulk modulus

The idea thus far has been to tune elastic shells to behave as an acoustic medium in

the quasi-static regime. To see the consequence of doing so, expand the T-matrix in

equation (3.15) for low ka yielding

T0 =
iπ

4

(
K

Keff
− 1

)
(ka)2 +O((ka)4), (3.20a)

T1 =
iπ

4

(
ρeff − ρ

ρeff + ρ

)
(ka)2 +O((ka)4), (3.20b)

T2 =
iπ

32
(ka)4 +O((ka)6), (3.20c)

for modes n = 0, 1, 2, respectively. Thus it is clear that the leading term in T0 depends

on bulk modulus and the leading term in T1 is inertial. By tuning the effective density
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Figure 3.2: Top: Total and absolute pressure fields for the lead-aluminum shell in
Figure 3.1 at ka = 2.5. Bottom: Same pressure plots but for the rigid cylinder. The
radii are a = 1 cm and incidence is at 45◦

and bulk modulus of the shell to water guarantees Tn = O((ka)4), leaving a large low-

frequency region of no scattering as seen in Figure 3.2. In other words, the monopolar

and dipolar response is no longer dominant at low ka. The quadrupolar response T2

cannot be diminished. Moreover, from equation 3.19, the TSCS is proportional to

σtot = O((ka)7) (see Figure 3.1).

3.2 Shell with an internal springs-mass system

The scattering of acoustic waves from an elastic cylindrical shell with an internal struc-

ture is quite distinct from the response of a simple shell. Excitation of waves on shells
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arises from two general mechanisms: (i) phase matching to supersonic membrane-type

waves [91, 88, 74], or (ii) excitation at structural discontinuities. The latter can excite

both supersonic longitudinal waves which then re-radiate into the fluid, and subsonic

flexural waves which can persist for long times and over large propagation paths on

the structure. Flexural waves are an important source of structural energy transfer,

but they are not usually excited on a smooth metallic shell in contact with an exte-

rior acoustic medium such as water because of their subsonic phase speed. The effect

of structural discontinuities or constraints can be modeled as effective forces on an

otherwise smooth shell, analyzed in the original work of Bleich and Baron [6].

Structural constraints can be separated into three fundamental types: concentrated,

linear circumferential, and linear lengthwise. Attachment of a spring-mass system or

a beam to the interior surface of the shell constitutes a concentrated constraint. The

constraint inhibits or enhances the vibration of the shell through reflection/conversion

of structural waves as well as through the resonant behavior of the substructure itself.

Undersea vehicles are sometimes modeled as a shell with many spring-mass oscillators

attached to the interior. Analysis of such ”fuzzy structures” indicates possible wave

localization due to structural irregularity, which in turn suggests methods for controlling

vibration/scattering [80, 40, 99, 77, 10, 79].

The other type of constraint, circumferential discontinuities, include examples such

as rigid discs [92], plates, rings [20], ribs, bulkheads [16, 35, 5, 78, 19, 18, 62, 106, 107],

and any other frames thin in the axial direction. Bloch-Floquet waves and Bragg

scattering effects appear for oblique incidence if the internals are placed periodically

along the axis of the shell, [106, 107]. Analysis of oblique incidence onto shells with

several bulkheads show that constructive interference between the scattered pressure

due to each bulkhead produces a dipole-like radiation pattern and scattered pressure

associated with bending moments yields a quadrupole-like radiation pattern [19, 18].

This Section is concerned with the two dimensional (2D) modeling of lengthwise

sheet springs supporting an internal mass as explored in [2, 33, 39], which can be

viewed as lengthwise discontinuities. More sophisticated and certainly more realistic

models such as deck-type plates [4, 47, 34, 36, 3] and lengthwise elastic ribs [47, 46] also
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fall into the category of lengthwise discontinuities. These internal structures provide

more mechanisms for coupling to and mixing of the structure-borne waves producing

a very complex response. With normal wave incidence and a sufficiently long shell,

lengthwise constraints can be analyzed in two dimensions as will be done herein.

Understanding of cause and effect can be obtained through detailed analysis of

simple models for internal structure. The simplest model for internal structure is a

single mass attached by a single spring to the shell. The structural analogue of this

system is a long internal rod attached to the shell by a lengthwise rib. Although springs

cannot support the passage of waves, this is a rich and relatively complex system as

compared to the bare shell, and it displays many of the dynamic properties of much

more complex substructures. The first such analysis by Achenbach et al. [2] considered

the 2D problem of a shell with an internal mass supported by a single spring and loaded

by an external point force. Via an energy formulation the interaction force between the

spring-mass system and the shell was determined and its affect on the acoustic scattering

studied, especially in the vicinity of the spring-mass resonance. The presence of the

substructure generates acoustic radiation which can be greater or lesser than that of

the standalone shell based on the frequency of the harmonic excitation relative to the

resonance of the oscillator (spring-mass system).

The problem becomes more complicated when the mass is supported by more than

one spring. Guo [33] formulated the scattering solution for a shell with an internal mass

attached by a diametrical pair of springs (structural analogue being a rod supported

by a diametric pair of lengthwise ribs). He demonstrated that there are two distinct

solutions, for even and odd azimuthal modes, which superimpose to produce the over-

all response of the shell-springs-mass system. This simple model clearly reveals the

rich and complex set of resonances resulting from flexural waves excited by the spring

attachments. This stiffener-borne wave generation mechanism was investigated earlier

by Klauson and Metsaveer [47]. Guo showed that the addition of a dissipative mech-

anism into the springs-mass system did little to the scattered field. Later, Gaunaurd

[27] expanded the analysis by considering a neutrally buoyant spherical shell with a

double spring-mass system. Spectral theory was used by Ho [39] to obtain the acoustic
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response for a shell with the mass supported by a non-diametrical pair of springs.

The current work reconsiders acoustic scattering at low to mid-frequencies, ka ≤

20, from a shell with simpler internal structural models, focusing on a distribution

of an arbitrary number of J springs supporting a central internal mass. This is an

approximate 2D model of a central rod supported by an equally spaced distribution of

J lengthwise ribs. The shell-spring-mass system is particularly interesting because of

how differently it responds to an incident wave when compared to fluid filled shells or

solid cylinders. Primary reasons for studying such systems include understanding: 1)

the acoustic scattering from a shell with a finite number of coupled point forces along the

circumference, 2) the propagation of flexural-borne waves into the far-field for different

number of springs, 3) the shift in resonance frequencies of the flexural waves due to

the added stiffness, 4) low-frequency transparency with large number of springs and 5)

the effect of the angle of incidence on scattering. Furthermore, the acoustic response

of the shell changes by selecting different spring stiffness and added mass. This ability

to tune the shell expands the range of possible acoustic properties for shells presented

in Martin et al. [65] and thus makes it a perfect element in graded index sonic crystals

as introduced in § 2.3. Here we concentrate on deriving and quantifying the model for

arbitrary number of internal springs.

The model considered expands the existing results [2, 33] for masses attached by

one or two springs, to the more general case of J attachment springs, where J ≥ 1

is arbitrary. For an axisymmetric distribution of such springs, teh symmetry of the

problem is used to simplify the interaction force, which is later used to determine the

T-matrix of the combined system. The results are presented successively for J = 1,

J = 2, and finally J ≥ 3 springs. The T-matrix is expressed in terms of physical

quantities: acoustic, shell and spring impedance. These combine in a non-trivial way

by virtue of the problem formulation to give the total impedance of the combined

system. This total impedance governs the system’s resonant behavior.
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3.2.1 Summary of the main results

A single mass per unit axial length m is attached to the inner surface of the shell by a

set of J ≥ 1 springs each of stiffness κ (with units of force per unit area) oriented at

angles θj with respect to the horizontal, where j = 1, . . . , J . The springs are assumed

equally distributed, so that θj+1 = θj + 2π/J . The mass is of finite size and free to

rotate, as shown in the schematic in Figure 3.3. Our main result is that the T-matrix

has the following form

T = T(0) +
J∑

j=1

bjb
T
j , (3.21)

where (∗ denotes the complex conjugate)

T(0) = diag(Tn), Tn =
1

2

(
ζ∗n
ζn

− 1

)
, ζn = (Zshn + Zn)H

(1)′
n (ka), (3.22a)

bj,n =
i

ζn

(
2ρcZtotn
πka

)1/2

if n = jmodJ, otherwise 0, (3.22b)

and the impedances associated with azimuthal mode n relate the radial stress to radial

velocity as (see (3.7) for Ω)

Zn = iρc
H

(1)
n (ka)

H
(1)′
n (ka)

, Ẑn = iρc
Jn(ka)

J ′
n(ka)

, (3.23a)

Zshn = −iρscp
h

a

[
Ω− β2n4

Ω
−
(
Ω− n2

Ω

)−1]
, (3.23b)

Zspn (J) =
iJκ

2πaω
×





1

1−HJ
ω2
sp

ω2

, n = ±1modJ,

1, otherwise,

, HJ =





J, J = 1, 2,

J
2 , J ≥ 3,

(3.23c)

and

ω2
sp =

κ

m
, (3.24)

is the natural frequency of the internal springs-mass system (see Figure 3.3). Different

azimuthal modes are affected differently by the spring-mass system (see Zspn ) where the

function n = ±1mod J is used here to mean

n = ±1mod J ⇐⇒ n = ±1 +mJ, where m = 0,±1,±2,±3, ... (3.25)

such that J is the modulus of the congruence. The various impedances can be inter-

preted as follows: Zn is a radial acoustic impedance associated with radiating wave
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functions, as compared with Ẑn for regular wave functions; Zshn is the shell impedance;

and Zspn is a generalized spring impedance. The expression for Zshn is based on the

Donnell-Mushtari thin shell model, see §3.1, which is sufficient for the range of frequen-

cies considered (ka ≤ 20), although other expressions could be used, including the exact

result from elastodynamics. Regardless of the specific shell model, the results in equa-

tions (3.26) and (3.21) retain their analytic structure. The total equivalent impedance

Ztotn is defined by the series/parallel combination of the above impedances as

1

Ztotn
=

1

Zspn
+

∞∑

p=−∞

1

Zshn+pJ + Zn+pJ
. (3.26)

These results are derived next.

3.2.2 Problem formulation

v(θ1),w(θ1)

ɸ

θ1
θ

r

θa

b
(x,y)

y

mass

shell

x

Figure 3.3: Displaced shell and internal mass (shown with solid lines) connected by a
single spring initially oriented radially at an angle θ1 from the x-axis.

Consider now the mass per unit length, m, attached to the shell as shown in Fig-

ure 3.3 by J ≥ 1 springs each of stiffness per unit area, κ, oriented at angles θj, where

j = 1, . . . , J . The springs are assumed equally distributed, so that θj+1 = θj + 2π/J .

The horizontal and vertical displacements of the mass are denoted by x and y, respec-

tively. The derivation of the linearized equations of motion for the internal mass and

the resulting radial force on the shell are in Appendix A. In summary, the displacement
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of the finite sized mass associated with its rotation is of second order and not retained

in the linearized equations. Moreover, the angular motion of the mass is not excited by

the acoustic incidence. Only the translating degrees of freedom of the mass contribute

to the radial force on the shell. Introduce the force distribution per unit area of the shell

surface, f(θ), defined such that fdA is the force acting on an element dA = adθ dz. It

follows from the Appendix that in the case of one, two, and J ≥ 3 springs, respectively,

f(θ) =− κ

a

(
τ2

τ2 − 1

)
w(θ1)δ(θ − θ1), one spring, (3.27a)

f(θ) =− κ

a

(
1

τ2 − 2

)[(
(τ2 − 1)w(θ1)− w(θ2)

)
δ(θ − θ1)

+
(
(τ2 − 1)w(θ2)− w(θ1)

)
δ(θ − θ2)

]
, two springs, (θ2 = θ1 + π) (3.27b)

f(θ) =− κ

a

(
1

τ2 − J
2

)
J∑

j=1

[ J∑

n=1

w(θn) cos(θj − θn) +
(
τ2 − J

2

)
w(θj)

]
δ(θ − θj),

(3.27c)

where δ(θ) is the Dirac delta function and (see equation (3.7))

τ2 =
ω2

ω2
sp

(
=
mω2

κ

)
. (3.28)

Expanding the radial force distribution of equation (3.27) in azimuthal modes as

f(θ) =
∞∑

n=−∞
fne

inθ, (3.29)

and using the identity δ(θ − θj) =
1
2π

∞∑
n=−∞

ein(θ−θj) gives the modal force on the shell
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for the cases of one, two, and J ≥ 3 springs as

fn = − κ

2πa

( τ2

τ2 − 1

)
w(θ1)e

−inθ1 , J = 1, (3.30a)

fn = − κ

2πa

(τ2 − 1− e−inπ

τ2 − 2

)(
w(θ1) + w(θ1 + π)e−inπ

)
e−inθ1 ,

= − κ

2πa

2∑

j=1

w(θj)e
−inθj ×





τ2

τ2−2
, for odd n,

1, for even n,

J = 2, (3.30b)

fn = − κ

2πa

( 1

τ2 − J
2

) J∑

j=1

[ J∑

m=1

w(θm) cos(θj − θm) +
(
τ2 − J

2

)
w(θj)

]
e−inθj ,

= − κ

2πa

J∑

j=1

w(θj)e
−inθj ×





τ2

τ2−J
2

, n = ±1mod J,

1, otherwise,

J ≥ 3, (3.30c)

where the results (A.19) and (A.22) were used for J ≥ 3 axisymmetrically distributed

springs with θm+1 = θm + 2π/J and the notation n = ±1modJ is defined in equa-

tion (3.25). The modal force for J springs is of only two types. The solution with

the coefficient τ2/(τ2 − J
2 ) is the same as for the single spring. The dependence on τ2

(i.e. the mass m) implies that the displacement of the internal mass contributes to the

net modal force for modes n = ±1mod J . The second solution is independent of m,

suggesting that although the mass does displace as seen in (A.10), there is no net force

on the shell due to this displacement.

Equations (3.30) indicate that the set of force coefficients {fn} depend upon J

linearly independent combinations of the the radial displacements {w(θj)}. Thus, for

J = 1 we have w(θ1) only; for J = 2 it is w(θ1)+w(θ2) and w(θ1)−w(θ2); for J = 3 we

have w(θ1)+w(θ2)+w(θ3), w(θ1)e
−iθ1 +w(θ2)eiθ1 +w(θ3), and w(θ1)eiθ1 +w(θ2)e−iθ1 +

w(θ3); etc. These independent combination of {w(θj)} can also be represented in terms

of the infinite series of Fourier coefficients {Wm}, see equation (3.5). Assuming the

springs are fixed to the shell at θj = j2π/J , j = 1, . . . , J , it follows from equations (3.30)
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and (A.22) that the force coefficients can be succinctly expressed

fn = − Jκ

2πa
w(J)
n ×





τ2

τ2−1
, J = 1,




τ2

τ2−2 , n odd,

1, n even,

J = 2,





τ2

τ2−J
2

, n = ±1mod J,

1, otherwise,

J ≥ 3,

(3.31)

where

w(J)
n ≡

∞∑

p=−∞
Wn+Jp. (3.32)

Note that w
(J)
n = w

(J)
m if m = nmod J . Also, note that for a diametrical pair of springs,

J = 2, the summation in (3.30) contains the term (1 + ei(m−n)π), which is zero unless

n and m are both even or both odd, resulting in 1 + ei(m−n)π = 2. The representation

(3.31) for fn will prove to be crucial for relating the internal dynamics with the external

scattering.

3.2.3 The forcing coefficients

Now that we have an expression for the modal force on the shell in terms of the modal

displacement we can substitute it into the equation of motion (3.4a) with the replace-

ment σ = f − p, and hence σn → fn − Pn. The definition of the shell impedance (3.9)

gives fn−Pn = −iωZshn Wn. Combined with the continuity equation in the form (3.11),

this yields (see (3.14) for ζn)

Wn =
2An

πωkaζn
− fn
iω(Zshn + Zn)

. (3.33)

The scattered field is again given by equations (3.10) which involves the displacement

coefficients Wn. It remains to find Wn as a function of the incident wave amplitudes

An.

As shown in the previous section, there are J distinct forms of the modal force fn,

each dependent upon the J−cyclic parameters w
(J)
n of (3.32). These may be determined
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by taking appropriate summations of (3.33). Define the J−cyclic parameters

1

Z
(J)
n

=

∞∑

p=−∞

1

Zshn+pJ + Zn+pJ
, p(J)n =

i2Z
(J)
n

πka

∞∑

p=−∞

An+pJ
ζn+pJ

, (3.34)

then (3.33) implies

w(J)
n =

fn − p
(J)
n

−iωZ(J)
n

. (3.35)

Equations (3.31) and (3.35) now provide a pair of equations for w
(J)
n and fn. We next

consider the solutions for J = 1, J = 2 and J ≥ 3 separately.

A single spring (J = 1)

In this case there is only one modal displacement coefficient w(1) = w
(1)
n independent

of n, as are the force coefficients fn:

fn = iωZspw(1) with w(1) =

∞∑

n=−∞
Wn =

(iω)−1p(1)

Z(1) + Zsp
(3.36)

where p(1) = p
(1)
n , Z(1) = Z

(1)
n and Zsp are

p(1) =
i2Z(1)

πka

∞∑

n=−∞

An
ζn
,

1

Z(1)
=

∞∑

n=−∞

1

Zshn + Zn
, Zsp =

iκ

2πaω

τ2

τ2 − 1
. (3.37)

See equation (3.23b) for Zshn and equation (3.23a) for Zn. The effective spring impedance

is denoted by Zsp with a resonance frequency ω2 = ω2
sp, see (3.28).

Diametrical pair of springs (J = 2)

Now consider the internal mass being supported by a diametrical pair of springs. The

modal force is given by equation (3.31). Unlike the single spring scenario, here, due

to symmetry of the spring positions, odd and even modes engage the internal mass

differently. This gives rise to the two solutions, for even and odd n, as

fn = iωZspe
o
w

(2)
e
o

with w
(2)
e
o

=
∑

n even/odd

Wn =
(iω)−1p

(2)
e
o

Z
(2)
e
o

+ Zspe
o

(3.38)
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where

p
(2)
e
o

=
i2Z

(2)
e
o

πka

∑

n even/odd

An
ζn
,

1

Z
(2)
e
o

=
∑

n even/odd

1

Zshn + Zn
, (3.39a)

Zspe
o

=
iκ

πaω
×





τ2

τ2−2
, n odd,

1, n even.

(3.39b)

Similar expressions were derived by Guo in [33]. Note, for a diametrical pair of springs,

the resonance frequency is ω2 = 2ω2
sp, see (3.28)1.

Axisymmetric distribution of three or more springs (J ≥ 3)

The solution for J ≥ 3 axisymmetrically distributed springs is essentially the same as

for two springs, namely,

fn = iωZspn w
(J)
n where w(J)

n =

∞∑

p=−∞
Wn+pJ =

(iω)−1p
(J)
n

Z
(J)
n + Zspn

, (3.40)

with

p(J)n =
i2Z

(J)
n

πka

∞∑

p=−∞

An+pJ
ζn+pJ

,
1

Z
(J)
n

=

∞∑

p=−∞

1

Zshn+pJ + Zn+pJ
, (3.41)

and

Zspn =
iJκ

2πaω
×





τ2

τ2−J
2

, n = ±1mod J,

1, otherwise.

(3.42)

The summation in (3.40) is J-cyclic, w
(J)
n = w

(J)
nmod J . Thus, there are J unique solutions

that need to be determined {w(J)
0 , w

(J)
1 , w

(J)
2 , . . . , w

(J)
J−1}, where the spring impedance

for w
(J)
1 and w

(J)
J−1 differs from other solutions as seen in equation (3.42).

3.2.4 Scattering solution

Write the scattering coefficients from equation (3.10) as

Bn = B(0)
n +B(1)

n , (3.43)

where B
(0)
n are the values for system with no internal spring-mass system. Thus, using

equations (3.15) and (3.33),

B(0)
n =

1

2

(
ζ∗n
ζn

− 1

)
An, B(1)

n = iρc
fn
ζn
. (3.44)
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Substituting the forcing coefficient of equation (3.40) into equation (3.44)2, the contri-

bution of the internal spring-mass system to the scattering coefficient is

B(1)
n = iρc

Ztotn p
(J)
n

Z
(J)
n ζn

,
1

Ztotn
=

1

Z
(J)
n

+
1

Zspn
, (3.45)

where Ztotn is the equivalent total impedance of the shell-spring-mass system.In the

following subsections, the scattering coefficients and the T-matrices are determined

separately for J = 1, J = 2, and J ≥ 3 springs.

Scattering coefficients, J = 1

For a single spring, the scattering coefficient is

B(1)
n = −2ρcZtot

πkaζn

∞∑

m=−∞

Am
ζm

. (3.46)

Equation (3.46) can be rewritten compactly by defining the infinite vector b with ele-

ments bn as

B(1) = bbTA with bn =
i

ζn

(
2ρcZtot

πka

)1/2

. (3.47)

Hence, referring to equation (3.3) where, after truncating the series at N , the vectors

B and A are

B(2N+1)×1 =




B−N

B−N+1

...

BN




, A(2N+1)×1 =




A−N

A−N+1

...

AN




(3.48)

and the T-matrix is

T = T(0) + bbT , (3.49)

where T(0) is the diagonal matrix with elements Tn on the diagonal, see (3.15). The

additional non-diagonal matrix in (3.49) is caused by the spring-mass system.

Scattering coefficients, J = 2

Recall that for a diametrical pair of springs there are two solutions for even and odd

modes, see (3.38). The scattering coefficient for even and odd modes, respectively, is
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(see (3.39))

(B(1)
n )e

o
= −

2ρcZtote
o

πkaζn

∑

m even/odd

Am
ζm

,
1

Ztote
o

=
1

Z
(J)
e
o

+
1

Zspe
o

. (3.50)

In order to express the scattering coefficient vector in the succinct form

B(1) = beb
T
e A+ bob

T
oA (3.51)

define the (infinite) vectors be and bo

be =




...

b−2

0

b0

0

b2
...




, bo =




...

0

b−1

0

b1

0

...




, (bn)eo =
i

ζn

(
2ρcZtote

o

πka

)1/2

. (3.52)

Thus the T-matrix becomes

T = T(0) + beb
T
e + bob

T
o . (3.53)

The structure of the T-matrix in (3.53) is very interesting. It means that the additional

scattering above and beyond that of the shell without the spring-mass is of only two

types, proportional to be or bo. The amplitude of each type of scattered field depends

on how the incident wave couples to it, and this is given by the inner products bTe A

and bToA.

We note that the influence of the spring-mass enters through the two frequency

dependent impedances Zspe and Zspo . They couple to the shell and the radiating wave

impedances, Zshn and Zn in series via the expressions in (3.39).

Scattering coefficients, J ≥ 3

In the general case of J ≥ 3 springs, the scattering coefficient is (see (3.41) and (3.42))

B(1)
n = −2ρcZtotn

πkaζn

∞∑

p=−∞

An+pJ
ζn+pJ

,
1

Ztotn
=

1

Z
(J)
n

+
1

Zspn
. (3.54)
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Conveniently, the vector of scattering coefficients can be written as

B(1) = b1b
T
1 A+ b2b

T
2 A+ . . .+ bJb

T
JA, (3.55)

where

bj =




...

bj,j−J

0(J−1)×1

bj,j

0(J−1)×1

bj,j+J

0(J−1)×1

...




bj,n =





i
ζn

(
2ρcZtot

n
πka

)1/2
, n = jmodJ,

0, otherwise.

(3.56)

The full T-matrix then takes the form

T = T(0) +
J∑

j=1

bjb
T
j . (3.57)

3.3 Discussion of the general solution for the shell with substructure

The structure of the derived results is well suited for numerical implementation. The

contribution of the spring-mass system to the to the T-matrix of the empty shell is

expressed via vectors, thereby removing the need for matrix multiplication. Also, the

J sub-solutions only need to be added to produce the final response.

3.3.1 Spectral properties of the T-matrix

Let λ be an eigenvalue of the T-matrix with associated eigenvector u, i.e.

Tu = λu. (3.58)

We note that the equation for λ, det (T − λI) = 0, can be expressed

bTj
(
λI−T(0)

)−1
bj = 1, j = 1, . . . , J. (3.59)

In order to see this, first use (3.57) to rewrite (3.58) as

u =

J∑

j=1

(bTj u)
(
λI−T(0)

)−1
bj. (3.60)
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Taking the inner product with bi yields

J∑

j=1

bTi
(
λI−T(0)

)−1
bj (b

T
j u) = bTi u. (3.61)

This simplifies by virtue of the facts that λI−T(0) is diagonal, and that, for any diagonal

matrix D, bTi Dbj = δij b
T
j Dbj, where δij is the Kronecker delta and from which (3.59)

follows.

Equation (3.59) implies that the eigenvalues of the T-matrix form J distinct sets, and

that the eigenvectors, which follow form (3.60), are likewise separated into J families.

Hence, T can be partitioned into J distinct T-matrices:

T =
J∑

j=1

T(j) where T(j) = T(0)I(j) + bjb
T
j ,

I =

J∑

j=1

I(j), I(j) = diag
(
. . . 1, 0(J−1)×1, 1, 0(J−1)×1 . . .

)
.

(3.62)

Conservation of energy is ensured in each subset of modes according to

S(j)+S(j) = S(j)S(j)+ = I(j) where S(j) = I(j) + 2T(j), j = 1, . . . , J. (3.63)

The structure of these matrices is illustrated in Figure 3.4. For instance, when

J = 2, Figure 3.4a shows that one half of the elements of the infinite matrix are zero.

The matrix is full for the case J = 1, and the number of zero elements increases as

J becomes larger. The examples in Figure 3.4 show schematically how the fraction

of non-zero elements decreases as J increases: there are always elements on the main

diagonal, with the other non-zero elements becoming further separated from the main

diagonal as J increases.

3.3.2 Far-field response

The far-field scattered pressure field is given in equation (3.17), where the form function

g now has the form

g(θ) = g(0)(θ) + g(1)(θ) =

∞∑

n=−∞
gne

inθ, gn =
2e−i

π
4

√
πka

(−i)nBn. (3.64)
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Figure 3.4: Structure of the matrices S(j). Matrix elements indicated by white spaces
are zero, and the other colors indicate non-zero elements of the J matrices S(j) for
j = 1, . . . , J .

The form function g(0) is for the shell without the substructure in equation (3.18).

For a plane wave incident on the shell at an angle θ0, the scattering coefficient is

Bn =
∑∞

m=−∞ TnmAm where Am = (−i)me−imθ0 . This allows us to write the far-field

form function as (see (3.15) for Tn)

gn =
2e−i

π
4√

πka

∞∑

m=−∞
(−i)n+me−imθ0 ×





(
δnmTm + bnbm

)
, J = 1,

(
δnmTm + b

(e)
n b

(e)
m + b

(o)
n b

(o)
m

)
, J = 2,

(
δnmTm +

J∑
j=1

bj,nbj,m
)
, J≥3,

(3.65)

where δnm is the Kronecker delta.

The total scattering cross section (TSCS) σtot is defined as

σtot =
1

2

2π∫

0

|g(θ)|2dθ = 4

ka

∞∑

n=−∞
|Bn|2, and σ

(0)
tot =

4

ka

∞∑

n=−∞
|B(0)

n |2, (3.66)
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where σ
(0)
tot is TSCS for the empty shell as in equation (3.19).

3.4 Numerical example 1: steel shell with an internal substructure

Consider a steel shell (ρs = 7810 kg/m3, cp = 5505 m/s) immersed in water (ρ = 1000

kg/m3, c = 1484 m/s). Shell thickness to radius ratio is h
a = 1

100 . We define the internal

mass to shell mass ratio as m
2πρsha

= 3. The spring stiffness is assumed to be such that

the resonance frequency of the oscillator satisfies (see (3.23) for HJ)

κ

m

a2

c2
=

1

HJ
=⇒ κ =

m

a2
c2

HJ
, (3.67)

which gives kspa ≡
√
HJ

ωspa
c = 1 ∀J .

Figures 3.5, 3.6, and 3.7 show the backscatter g(θ0), total impedance |Ztot| and its

phase for J = 1, 2, 3, respectively. The angle of incidence is taken to be θ0 = 0 and the

truncation limit is N = 100.
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Figure 3.5: Backscatter and total impedance as a function of ka for J = 1 and incident
angle θ0 = 0. The dashed line in plot (a) is the backscatter for the empty shell. In
plot (b), the backscatter due to the presence of the spring-mass system g(1) has the
same resonances as the total impedance Ztot. The small numbers over the resonances
indicate the flexural mode.

With a single spring attaching the internal mass to the shell (Figure 3.5) the

backscatter is close to that of the empty shell but with many resonances. We show

in §3.4.1 that the resonance peaks are associated with flexural modes on the shell ex-

cited by the structural discontinuity caused by the spring attachments. The backscatter
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Figure 3.6: Backscatter, total impedance and its phase as a function of ka for J = 2,
θ0 = 0. The dashed line in plot (a) is the backscatter for the empty shell. The
backscatter due to the even and odd solutions are plotted separately in plots (b) and
(c), respectively. The phase of the total impedance is shown in figure (d). The small
numbers over the resonances indicate the flexural mode.

becomes more complex as the number of springs increases. For J = 2 springs, the sub-

solutions of the form function are plotted below the total response in Figure 3.6. It

is evident that half of the resonance peaks come from the even solution and the other

half from the odd. At each resonance, the magnitude of the total impedance |Ztote
o

| is

at a maximum and its phase is zero. This implies that the position and spacing of the

resonances can be determined from the total impedance Ztot, which is explored further

below in §3.4.1. The backscatter from the shell with J = 2 springs in Figure 3.6(a),

which was obtained using the general solution (equations (3.18) and (3.65)), is identical

to Figure 3(a) in Ref. [33].

The case of J = 3 springs in Figure 3.7 displays a new feature not previously
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Figure 3.7: Backscatter as a function of ka for J = 3, θ0 = 0. The dashed line in the plot
(a) is the backscatter for the empty shell. Plots (b), (c), and (d) show the backscatter for
the three subsolutions. The red diamond on the horizontal axis indicates the resonance
frequency of the spring-mass system kspa = 1. The black stars are the resonances of
the shell-spring-mass system as predicted by equation (3.73). The small numbers over
the resonances indicate the flexural mode.

evident for J = 1 and J = 2: viz. the 1mod 3 solution and the 2mod 3 solution are

identical. The repetition is a consequence of (i) the symmetries of the four impedances

of equation (3.23) under the interchange n→ −n, and (ii) the fact that the integer sets

1mod 3 and 2mod 3 are identical under a change of sign, i.e. {. . . − 5,−2, 1, 4, . . .} ↔

{. . .− 4,−1, 2, 5, . . .}. These properties together ensure that the impedance Ztotn is also

unchanged under n→ −n, and hence cause the repetition seen in Figure 3.7. It follows

that for any J ≥ 1 the J parts of the T−matrix actually reduce to 1 + ⌊J2 ⌋ distinct

parts, where ⌊·⌋ is the floor function.
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3.4.1 Resonant behavior of the shell-spring-mass system

As noted above for the cases with J = 1, J = 2 and J = 3 springs, the resonant

behavior of shell-spring-mass system in Figures 3.5-3.7 arise from singularities of Ztot

lying close to the real ka-axis. Thus, at resonance, from equation (3.26),

1

Zspn
+

∞∑

p=−∞

1

Zshn+pJ + Zn+pJ
= ǫ, |ǫ| ≪ 1. (3.68)

We consider the spring-mass systems of the above numerical examples, for which the

resonances are in the range ka ≫ 1, and in particular, above the spring resonance

frequency. The spring impedance is then (see 3.42)

Zspn ≈ i

(ka)

Jκ

2πc
, ka≫ 1. (3.69)

This is independent of n, and it’s inverse is large, O(ka). We therefore assume that

the condition (3.68) is satisfied by one of the terms in the infinite series becoming large

relative to all others, in which case the condition reduces to

Zspn + Zshn + Zn ≈ 0, (3.70)

for some n and a related frequency ka. The resonances of the combined system are

determined by approximating the individual impedances in (3.70). To get an expression

for the effective resonance frequencies of the combined system, the acoustic impedance

is approximated as

Zn ≈ −iρcka
n
, n≫ ka, n 6= 0. (3.71)

The roots of the shell impedance Zshn of (3.23b), which correspond to the natural

frequencies of the shell, are Ω2
r,c = ((1 + n2 + β2n4) ∓

√
(1 + n2 + β2n4)2 − 4β2n6)/2

associated with flexural and circumferential modes, respectively (an equivalent form

of equation (3.8)). The thin shell approximation implies β ≪ 1, consequently the

resonance frequencies are (Ωr,Ωc) ≈ (βn3/
√
n2 + 1,

√
n2 + 1) while βn < 1. Since

Ωc ≈ n, the shell impedance behaves as

Zshn ≈ −iρscp
h

a

(
Ω− Ω2

r

Ω

)
where Ωr ≈ βn2 (3.72)

is the flexural natural frequency.
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The condition of resonance given by (3.70), combined with equations (3.69), (3.71)

and (3.72), now results in a quadratic equation for the resonance frequencies kresa =

cp
c Ωres. Solving the equation yields

Ω2
res =

β2n4 + Jκ
2πρsc2p

a
h

1 + 1
n
ρ
ρs
a
h

, kspa < kresa≪ n. (3.73)

The resonance can therefore be interpreted as, to leading order, the flexural resonance

at Ω = Ωr (see (3.72)) modified by an added mass term in the denominator which

accounts for the fluid mass-loading (the same factor is present in equation 9.4 on page

282 of the text by Junger & Feit [44] for a fluid-loaded spherical shell), and by an

additional stiffness term in the numerator associated with the stiffness of the springs.

Note that the flexural resonances are not excited by the smooth shell (see Figure 3.5)

because they are sub-sonic and hence do not couple with the incident field. The coupling

to the quasi-flexural waves occurs directly because of the introduction of structural

discontinuities at the spring-shell attachment points. These act as sources for the

flexural waves which, in turn, radiate to the exterior fluid via the same discontinuities.
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Figure 3.8: Comparison of impedances for mode n=36. This corresponds to the reso-
nance near ka = 12 of Figure 3.7. The solid lines are the exact impedances while the
dashed lines are approximations.
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The various approximations leading to the expression for the resonance frequency are

verified in Figure 3.8 which shows the approximate impedances plotted along with the

exact impedances. The curves are very close as long as n ≫ ka. At larger frequencies

this condition is violated and the expression for the effective frequencies, equation (3.73)

is no longer accurate. However, the spring impedance Zspn ∼ O(1/(ka)) and hence its

effect at larger frequencies is negligible. The effective resonances are plotted on the

horizontal axis for the J = 3 case in Figure 3.7. Although, the values are close to the

resonances of the combined system they are not exact. This is primarily because we

only take a single term from the summation of Ztotn when formulating the condition of

resonance (see equation (3.68) and equation (3.70)).

3.4.2 Large J limit

As the number of springs J increases, the loading on the shell transitions from discrete

point forces to an effective pressure at the frequencies of interest ka ≤ 20. However,

unlike a fluid filled shell where there is also a pressure distribution over the inner

surface, in this idealized model the internal structure has an infinite wave velocity since

the transfer of energy from one contact point on the shell to the other is instantaneous.

Figure 3.9 plots the total scattering cross section for the same shell but with increasing

number of springs J = 2, 4, 8, 16, 32 at the angle of incidence θ0 = 0. Since the resonance

frequency of the oscillator is kept constant (see equation (3.67)), the stiffness of each

spring has to decrease with increasing J . This allows us to investigate solely the affect

of increasing the number of contact points.

In general, Figure 3.9 shows that increasing the number of contact points results in a

decrease in the number of flexural resonances propagating into the far-field. This is due

to the presence of forces at anti-nodes of flexural modes which inhibit their vibration.

Only the response for even numbers of springs is plotted and hence the odd modes

are prominent as J increases. For J = 16 and J = 32, large intervals appear without

flexural resonances, however, the TSCS is slightly increased over the empty shell (shown

by the dashed line) due to the added stiffness and mass. The low frequency TSCS is

asymptotically zero for these two cases because the effective quasi-static properties of
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the shell-spring-mass system are water-like. For the case with J = 32 springs there are

only a few large resonances near the resonance frequency of the oscillator kspa = 1, the

n = 9 and n = 11 flexural modes.

As J approaches infinity no flexural modes will be visible in the far-field with the

exception of the closest ones to the springs-mass resonance. The mechanically equivalent

system as J → ∞ is one of a highly anisotropic medium, with zero azimuthal stiffness

and infinite wave speed in the radial direction. The latter is a result of ignoring the

spring mass; this could be included but is beyond the goals of the present analysis which

is aimed at the low to moderate frequency regime.

3.4.3 Angle of incidence

The discrete number of attachment points on the shell produces symmetries which cou-

ple to the angle of incidence. The J springs are distributed axisymmetrically, therefore

only angles of incidence in the range θ0 = [0, π/J ] produce unique results for even J .

Figure 3.10 presents the total scattering cross section (TSCS) for several distributions

of springs. The dashed line represents the TSCS of the empty shell.

For the J = 2 case in plot (a) we observe a decrease in the amplitude and the number

of peaks as the angle of incidence goes from 0 to π/2. This is because only the even

flexural modes are unconstrained by the springs when the plane wave is perpendicular

to the pair as described by [33]. Analysing larger numbers of springs, it has been

determined that such clear separation of response also occurs for J = 4 springs in

plot (c). Furthermore, for J = 2 springs, as the angle of incidence is changed from 0

to π/4, the asymmetric profile of the flexural resonances flips due to a relative phase

between the shell-spring-mass system and the surrounding water. In the new results

with J = 3 springs all flexural modes propagate into the far-field regardless of the angle

of incidence. The TSCS for θ0 = 0 is identical to that of θ0 = π/3 because both coincide

with the orientation of exactly one of the springs.

The TSCS for J = 4 springs is shown in plot (c) of Figure 3.10. Again, the total

number of peaks is halved as compared to the J = 2 case due to the fact that the 4

springs exactly coincide with the anti-nodes of the even flexural modes. Thus the shell
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stiffened with J = 4 springs vibrates mostly with odd modes. Because different modes

are affected differently by the substructure, certain even modes fall near an excited

odd mode and are consequently enhanced. The resulting resonance is no longer sharp,

but has a plateau-like form as seen at ka = 7.7 and ka = 8.7 for the n = 28, 29 and

n = 30, 31 mode pairs, respectively. For J = 8 springs we see that the low frequency

flexural modes are unaffected by the angle of incidence, but the higher modes are

affected. For example the n = 26 flexural mode at ka = 6.28 is not exited with θ0 = 0

but is clearly visible at θ0 = π/16 and π/8.

3.5 Numerical example 2: acoustically transparent aluminum shell

Consider a thin shell made of aluminum 3003-H18 (ρs = 2730 kg/m3, cp = 5326 m/s).

Matching the effective properties of the shell-springs-mass system to water implies

Keff = K and ρeff = ρ. The resonance frequency of the internal spring-mass sys-

tem ωsp can be expressed in terms of the density and bulk modulus of the effective

medium as

ω2
sp = HJ tan

(π
J

) 4

πa2

(
Keff − h

aKsh

ρeff − 2haρs

)
. (3.74)

In the case of odd J , tan(π/J) should be replaced by 2 tan(π/(2J)) which has the same

limit for large J , as expected. A necessary condition for low frequency transparency

is that this internal resonance lie above the low-frequency range, here considered as

roughly 0 < ka < 0.5. Figure 3.11 plots the non-dimensional resonance wavenumber

kspa = ωsp/c as a function of shell thickness ratio for several numbers of distributed

springs J . As the shell thickness decreases, the resonance frequency of the internal

oscillator increases at a diminishing rate. Equivalently, as the shell becomes thinner

the added stiffness must increase faster than the mass. Also note that the resonance

frequency drops as the number of springs, J , increases. This is due to the factor

HJ tan(π/J) in equation (3.74).

From Figure 3.11 as well as Table 2.1 we see that the upper bound on shell thickness

is h/a = 0.055. Since aluminum is relatively light there is a substantial mass deficiency

ρm = 0.68ρ at that thickness. In order to tune the shell to water, a central mass is added.
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However, the mass has to be supported by springs, therefore the shell must be thinner

than the upper bound to accommodate the additional stiffness, namely h/a = 0.03.

From equations (2.31) and (2.32), the added stiffness must be Ksp = 0.52K and the

added density ρm = 0.84ρ.

3.5.1 Flexural resonances

The scattering response of the tuned shell is analyzed for plane wave incidence. Fig-

ure 3.12a shows the TSCS of equation (3.19) as a function of ka for the three cases in

Figure 3.11 at the thickness ratio h/a = 0.03. The star on the horizontal axis indicates

the resonance frequency of the springs-mass system, which per previous discussion de-

creases with J . For J = 4 and J = 8 springs the tuning is only effective at extremely

low frequencies, because of the presence of several flexural resonances. However with

J = 16 springs the TSCS is close to zero at frequencies up to ka = 0.8, where the

magnified view is shown in Figure 3.12b. By further increasing the number of springs,

the transparent region increases only slightly, because it is bounded by the resonance

frequency of the oscillator which for large J is at about kspa = ωspa/c = 0.95 (see

equation (3.74)).

The shell thickness of h/a = 0.03 is the optimal shell thickness, because it maximizes

the range of frequencies of low TSCS. At the optimal thickness the lowest resonance

of the combined acoustic and shell impedances
( ∞∑
p=−∞

1/(Zshn+pJ +Zn+pJ)
)−1

coincides

with the resonance frequency of the oscillator Zspn . The result is that there is a large

region free from flexural resonances but still close enough to the oscillator resonance

for it to be effective.

The reason for the decrease in the number of flexural resonances with increasing

J can be understood by considering the radial displacement of the shell w(θ) at each

resonance. These are plotted in Figure 3.13, where indeed each resonance corresponds

to a certain flexural mode. The red radial lines indicate the positions of the springs.

From these we can conclude that as the number of springs J increases more flexural

modes are constrained by the springs. The modes that do appear are either modes

where the spring attachments coincide with the anti-nodes of the radial displacement
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or if the mode is odd, the displacement is anti-symmetric.

Note that although we can attribute each resonance peak to a flexural mode, the

position of the peak is difficult to predict in the low frequency range, see Ref. [102] for

further details.

3.5.2 Acrylic substructure

The analytical model demonstrates the theoretical possibility of tuning elastic shells.

Next, the two physical oscillator designs in Figure 2.8 will be considered. The TSCS is

determined in COMSOL by simulating plane wave incidence onto the tuned shell and

integrating the far-field scattered pressure over a closed contour (see equation (3.19)).

The mesh is selected such that the largest elements do not exceed one sixths of the

shortest wavelength, the shear wave in acrylic (see Table 2.1 for the shear speed). To

prevent artificial scattering from domain boundaries a cylindrical radiation condition

is used.

Figure 3.14 shows the TSCS for the two oscillator designs described by equations 2.39

and 2.40 (see Figure 2.8) as well as the analytical springs-mass solution of Figure 3.12b

and that for the empty shell. The presence of the oscillator significantly decreases

the scattered power at low frequencies. The TSCS is effectively zero at frequencies

below ka = 0.6 making the shell transparent in water. The acrylic substructure with

the central rod gives the broadest region of negligible scattering. The accuracy of the

analytical springs-mass solution versus the finite element results of an acrylic oscillator

is quite remarkable.

Aside from being acoustically transparent, the internal spring-mass system can be

used to purposely introduce a strong local resonance in an array of such shells. This

resonance could also be spatially varying by appropriately selecting the number of

stiffeners J .
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Figure 3.9: Total scattering cross section as defined in equation (3.66) for J =
2, 4, 8, 16, 32 springs at the angle of incidence θ0 = 0 in plots (a), (b), (c), (d), (e),
respectively. The dashed line in all plots is the TSCS for the empty shell. The red dia-
monds on the horizontal axis indicate the constant resonance frequency of the spring-
mass system kspa = 1. The small numbers over the resonances indicate the flexural
mode.
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Figure 3.10: Total scattering cross section as defined in equation (3.66) for J = 2, 3, 4, 8
as a function of the plane wave angle of incidence, θ0. The dashed curve is the total
scattering cross section of the empty shell. The spring orientations relative to the
incoming wave are shown in figure (e). The spring resonance frequency is kspa = 1 in
all cases. The small numbers over the resonances indicate the flexural mode.
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Figure 3.12: Plot (a) shows the total scattering cross section for an aluminium shell of
thickness h/a = 0.03 with J = 4, 8, 16 springs supporting a central mass. The dashed
line is the TSCS of the empty shell. Plot (b) is a close up of plot (a) showing the
achieved decrease in the scattering cross section from an empty shell to a tuned shell
with J = 16 springs.



57

(a) J=4, n=3 (b) J=4, n=5 (c) J=4, n=6 (d) J=4, n=7

(e) J=8, n=5 (f) J=8, n=6 (g) J=8, n=7 (h) J=16, n=15

Figure 3.13: Radial displacement w(θ) for the J = 4 case at resonance frequencies:
ka = 0.081, 0.303, 0.338, 0.74 in (a), (b), (c) and (d), respectively. Plots (e), (f) and
(g) show the radial displacement w(θ) for the case with J = 8 springs at resonance
frequencies: ka = 0.273, 0.321, 0.434, respectively. Plot (h) is the radial displacement
for J = 16 springs at the resonance frequency of ka = 0.945. The radial lines depict
the internal springs. The thickness of the aluminum shell is h/a = 0.03. Displacement
has been arbitrarily scaled for clear depiction of the mode shape.
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Chapter 4

Tuned shells as elements in acoustic metamaterials

Transformation based design of materials for wave steering originated in electromag-

netics. Using singular transformations and the invariance of Maxwell’s equations under

such transformations the possibility of wave steering was demonstrated [75]. The idea

of cloaking is to steer an incident wave in a finite region surrounding the object such

that there is no scattering. Although the theory is frequency independent, only cloaking

of objects at microwave frequencies has been achieved experimentally [90]. Cloaking

objects at frequencies of visible light is theoretically possible using conformal mapping

as shown by Leonhardt [55], but is experimentally unconfirmed. Other applications of

transformation optics include beam shifters and splitters [69] and carpet cloaks [57] .

By natural progression the ideas found applications in acoustics. Cummer et al. [17]

showed the equivalent invariance under coordinate transformations between Maxwell’s

and Helmholtz’ equations. Using singular transformations they designed a 2D acoustic

cloak with anisotropic density and bulk modulus. Simulations showed that the cloak

could steer waves around the annulus. Chen and Chan [12] applied the same con-

cept to the design of a 3D acoustic cloak. Cloaking of elastodynamic waves was also

investigated [66].

One way to achieve the anisotropic density required for inertial cloaking is by use

of layered fluids [105, 73]. However, such cloaking devices are not viable because the

density requirement results in an infinitely massive cloak [70]. Urzhumov et al. [108]

attempted to improve cloaks based on layering fluids to include solids. They concluded

that the added shear waves in the solid layers do not alter the cloaking effect for nearly

incompressible materials, with Poisson’s ratio ν > 0.49, such as rubber. There has also

been interest in designing acoustically cloaked sensors via elastic shells [32, 37, 31].
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An analogous problem to hiding an object surrounded by a wave medium is to do so

on a surface. The resulting carpet cloak as it is called transforms a finite region between

the object and the external medium to one that would yield the same scattering as from

the back surface. Carpet cloaks were initially investigated for electromagnetic waves [57,

109]. There have also been several experimental studies of acoustic carpet cloaks [82,

81, 114]. The acoustic carpet cloak in air was achieved with layered perforated plastic

plates which gave the necessary anisotropic properties.

A sonic crystal (SC) is capable of filtering, guiding and/or steering an incident

wave based on a gradient of effective properties [13, 68, 11, 58, 60, 15, 86, 59]. SCs

originated as the acoustic analog of the early photonic crystals of Yablonovitch [111]

and John [43] which exhibited opaqueness at certain frequencies. The scatter is the

fundamental element of the SC and is responsible for the behaviour of the complete

array, which may present a compounding effect of the individual elements. For an

air-based SC, the scatterer can be modelled as rigid [89, 103, 86]. Therefore, for a

two dimensional air-based SC the design parameters are the scatterers’ size, geometry,

spacing and lattice structure. For water-based SC the elasticity of the scatter is not

only non-negligible, but essential in the modelling of such structures.

The transformation acoustics example which will be discussed here is the cylindrical-

to-plane wave lens as designed by Layman et al. [53]. It works by steering waves, due

to a monopole source at the center, from the corners to the faces of the lens. The SC

of Ref. [53] is based on constructive multiple scattering from finite embedded elastic

materials in a fluid matrix, something previously investigated by Torrent and Sanchez-

Dehesa [104]. This Chapter expands the possibilities in Ref. [104] by increasing the

range of achievable properties over those presented by Martin et al. [65].

This Chapter is organized as follows. The conformal mapping which yields the

required distribution of properties for a cylindrical-to-plane wave lens is formulated in

§ 4.1.1. A realization of this lens design with internally tuned shells is presented in

§ 4.1.2. An alternative design is presented in § 4.1.3, which uses readily available empty

shells. An active control mechanism for tuning the effective properties of the shell is

presented in § 4.2 an applied to an active radial array.
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4.1 Cylindrical-to-plane wave lens

Refraction based wave steering lenses are an efficient way of steering an incident wave.

Snell’s Law dictates that if a wave enters an isotropic medium with a different sound

speed, then the wave will be refracted according to

sin θ1
sin θ2

=
c1
c2
, (4.1)

where θ1, θ2 are the incident and refracted wave angles, respectively, and c1, c2 are the

respective wave speeds. Full control of incident sound can be achieved with a two

dimensional distribution of effective properties. However, the resulting medium must

also have a high transmittance in order to be useful. An efficient cylindrical-to-plane

wave lens depends on the accurate distribution of the properties via the conformal map

described next.

4.1.1 Distribution of properties

The wave equation for an acoustic medium is invariant under coordinate transforma-

tions. Moreover, if the transformation γ = x+ iy → s = x′+ iy′ is conformal, s = s(γ),

then the mapped density ρ′ and bulk modulusK ′ in the transformed coordinates are [72]

ρ′ = ρ, K ′ = K|ds/dγ|. (4.2)

Consider the conformal transformation of a unit γ circle to a unit s square. The

circle is first mapped to the upper half plane through a bilinear transformation; the

subsequent polygon mapping takes the upper half plane to the unit square in s. The

resulting unit square to unit circle inverse mapping is

γ =
1− χ

1 + χ
e−iπ/4, (4.3a)

χ = i cn2
(
1

2
K

(
1√
2

)
(s+ 1 + i)

)
, (4.3b)

where K() is the complete elliptic integral of the first kind and cn(u) is the Jacobi

elliptic function. The bulk modulus distribution in the transformed space is

K ′ =
2K

K( 1√
2
)
√
γ4 + 1

. (4.4)
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It should be noted the elliptic integral is singular at the corners of the square region.

The distribution (4.4) is used to design a cylindrical-to-plane wave lens. The com-

plex variable defining the square is {s(x + iy)|x, y : −L/2, L/2}. Substituting s into

(4.3) and then the obtained γ into (4.4) gives the continuous function of the bulk

modulus distribution. In order for the distribution to be applicable to an array of sub-

wavelength scatterers it has to be discretized. This is done by averaging the value of

the bulk modulus over a square unit cell of the array. Having used the notation Keff

for the effective bulk modulus of the shell, denote the bulk modulus of a unit cell as

Keq. As an example, the normalized bulk modulus distribution is discretized into 7 by

7 cells as in Figure 4.1b.
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Figure 4.1: Plot (a) shows the continuous bulk modulus distribution Keq/K. Plot (b)
show the same function discretized into 7x7 cells.

4.1.2 Realization with internally tuned shells

The unit cell of the square array, shown in Figure 4.2a, consists of a shell with an

internal acrylic substructure surrounded by a square region of water. The shell volume

fraction in the unit cell is fs = πa2/b2, where b is the cylinder spacing as well as the

side length of the unit cell. The equivalent density and bulk modulus, ρeq,Keq, of the
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Figure 4.2: Left: A square unit cell of a fluid saturated array of shells. Right: Equivalent
bulk modulus of the unit cell Keq as a function of the effective bulk modulus of the
tuned shell Keff for several filling fractions.

unit cell depend on the surrounding fluid as

ρeq
ρ

= 1 + fs

(ρeff
ρ

− 1
)

⇒ ρeff
ρ

= 1 +
1

fs

(ρeq
ρ

− 1
)
, (4.5a)

Keq

K
=

1

1 + fs(
K

Keff
− 1)

⇒ Keff

K
=

1

1 + 1
fs
( K
Keq

− 1)
. (4.5b)

The equivalent density and bulk modulus of the unit cell are significantly affected by

the surrounding fluid. For shells of radius a = 1 cm with a relatively tight packing of

b = 2.2a yields a filling fraction of fs = 0.65. In this case, in order to have the effective

quasi-static bulk modulus of the unit cell Keq = 2K, the effective bulk modulus of the

shell-springs-mass system must be Keff = 4.33K (see Figure 4.2b).

The effective impedance of each shell relative to water (acoustic impedance Zeff =
√
ρK) is determined by

ρeffKeff

ρK
=
ρeqKeq

ρK

( 1− (1− fs)ρ/ρeq
1− (1− fs)Keq/K

)
. (4.6)

The proposed array contains 7 by 7 unit cells of size b = 2.2a with cylinders of

radius a = 1 cm giving a filling fraction fs = 0.65 and the side length of the lens

L = 15.4 cm. Using this required equivalent stiffness of each unit cellKeq in Figure 4.1a,

the properties of the shell-springs-mass system are obtained from equation (4.5) as

Keff

K = (1 + 1.54( K
Keq

− 1))−1. Consequently the effective properties of the shells must
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be more extreme as shown in Figure 4.3a. The effective density of each shell-springs-

mass system is tuned to water, see (4.2).

Each shell-spring-mass system is designed by the method outlined in § 2.3.2. The

thickness of the aluminum shells has to vary form 0.03 to 0.12 to achieve this inhomo-

geneity of bulk modulus from
Keff

K = 0.93 to 3.21. Appropriate geometry of acrylic

internal oscillator with J = 16 stiffeners tunes the shell to the required acoustic prop-

erties. The slow shells with
Keff

K ranging from 0.62 to 0.86 are made of acrylic with

h
a = 0.3 and tuned with an acrylic oscillator. The central shell is removed to give room

for a monopole source.

The total pressure field was obtained by simulating the lens made of elastic shells

in COMSOL. A symmetric quarter of the pressure field at monopole source frequencies

of 10 kHz (ka = 0.42, λ/a = 15) and 15 kHz (ka = 0.63, λ/a = 10) is shown at same

scales in Figures 4.3c and 4.3d, respectively. Also, Figure 4.3b shows the pressure ratio

along the quarter circular arcs in Figures 4.3c and 4.3d between the field with the lens

(shown) and source only (not shown).

At low frequencies the wavelength is much larger than the shell size λ/a = 15 and

the lens is essentially transparent. However, at 15 kHz when λ/a = 10 each tuned shell

behaves as an effective acoustic medium steering the wave from the corner to the faces.

The wave travels across only 3 rows of shells and the maximum amplitude is magnified

by a factor of 7 as seen in Figure 4.3b. The increase in the pressure amplitude from

the faces and its decrease from the corner demonstrates wave steering.

A larger array of shells will increase the effectiveness of the lens. In the design of

each shell, it is important to understand that this is a model with three parameters:

shell thickness, oscillator stiffness and mass. The effectiveness of the internal oscillator

changes with shell thickness. The following procedure will guarantee a successful design

of this type of acoustic lens:

• Select the thickness of each shell to optimize the range of frequencies for it to

behave as an effective medium.

• Design each oscillator so as to suppress all low frequency flexural waves of the
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shell and maximize its natural frequency.

4.1.3 Realization with empty shells

In practice, it is difficult to produce the acrylic internal oscillators necessary to tune

the shell as described in the previous section. As an alternative, it is possible to use

quasi-statically tuned empty shells. This complicates the acoustic response as flexural

resonances could be introduced. The three primary design criteria are that: 1) the

shells are readily available, 2) the effective density of each shell matches water and 3)

the effect is apparent near 20 kHz, which is the designated frequency of interest. The

shells must be sub-wavelength, so the common outer diameter of 0.5 inches is selected.

Fixing this outer dimension leaves two parameters: the shell thickness h/a, and the

material of the shell. Table 4.1 summarizes several common shells which have nearly

the same density as water, but varying effective bulk moduli.

Material OD (in) h (in) h/a ρeff Keff ceff Zeff denoted

PVC 0.54 0.088 0.33 0.71 0.36 0.71 0.51 1
ABS 0.5 0.125 0.5 0.98 0.52 0.73 0.71 2
Acrylic 0.5 0.125 0.5 0.89 0.68 0.88 0.78 3
Polycarbonate 0.5 0.125 0.5 0.90 0.77 0.93 0.83 4
Brass 0.5 0.14 0.056 0.93 1.63 1.32 1.23 5
Brass 0.5 0.02 0.08 1.31 2.38 1.35 1.77 6
Copper 0.625 0.028 0.09 1.50 2.74 1.35 2.03 7
Aluminum 0.5 0.035 0.14 0.71 2.78 1.98 1.41 8
Aluminum 0.5 0.049 0.20 0.97 4.13 2.07 2.00 9
Aluminum 0.5 0.065 0.26 1.24 5.88 2.18 2.69 10

Table 4.1: Readily available shells (i.e. tubes and pipes) that have the effective density
of water but different effective bulk moduli. All properties are normalized to water.

Clearly, it is extremely difficult to find shells that have the effective density of water

while at the same time provide the necessary effective bulk modulus per Figure 4.1a.

Instead, a near perfectly mapped lens is created, see Figure 4.4. The shell spacing is

selected to be b=2.2 cm, hence the side length of the lens is 15.4 cm.

The simulation of the lens was carried out in COMSOL and is shown in Figure 4.4.



66

The frequency of the monopole source in the center of the lens is 22 kHz. For com-

parison, the lens with the unit cells replaced by the effective acoustic medium is shown

and the pressure field due to the monopole source. The simulations indicate that the

cylindrical-to-plane wave lens made from empty shells performs very well as compared

the optimal case of each unit cell having the prescribed effective acoustic properties

directly from the conformal mapping. It is also evident that the transmission is high.

The downside to using empty shells is the possibility of exciting flexural resonances,

which is not an issue with internally tuned shells. Since the shells are of different thick-

ness and materials these flexural resonances are spread over many frequencies. If a

shell resonates in a flexural mode, the effectiveness of the lens will drop or altogether

disappear. The interaction of flexural waves on neighbouring shells will be analyzed

closely in Chapter 5.

4.2 Active control of the effective properties

Aside form passive control of the effective acoustic properties via tuned shells, active

control is also theoretically possible. To achieve this, the density and/or bulk modulus

have to be changed dynamically. Although possible, it would be rather difficult to

add or remove mass from a cylinder. Instead the stiffness could be changed. There are

many springs which can dynamically change the stiffness, particularly from the robotics

industry. One such example is a variable stiffness robot leg [25] which is essentially a

curved beam with variable length. A schematic of the device applied to tuning an

elastic shell is shown in Figure 4.6

This proposed mechanism consists of J = 4 variable stiffeners attached to a central

rod. The rod serves as the added mass. The stiffness of the four open shells is controlled

by their effective length. As the central rod is rotated relative to the shell, the length

of the stiffener changes thereby changing the stiffness. The process of changing the

stiffness can be almost instant. As a result, the cylinder can take on a range of effective

acoustic properties. One application would be to detect and actively steer and incident

wave.
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Since this variable stiffness cylinder would be difficult to manufacture, a more ap-

propriate first experiment would involve a binary type control. The shell could be either

turned on, in which case the internal substructure makes it acoustically transparent, or

turned off, in which case there would be much scattering. To promote the feasibility of

such devices Figure 4.7 presents a circular array which is two shells in thickness in the

radial direction. The array is insonified with a point source which is on top and out of

the plotting window. Pink circles represent the tuned shells (turned on) and the white

circles represent the empty shells (turned off). The absolute pressure field at ka = 0.2

is shown for three cases: (a) all shell are on and are acoustically transparent, (b) one

radial row of shells is turned off and (c) three radial rows of shells are switched off.

These simulations were done with a multiple scattering code developed in the acoustics

group at Rutgers University which uses the T-matrix (3.21) for the tuned shells. The

aluminum shells are those from § 3.5. The pressure distribution in plot (a) shows very

little scattering proving that the shells are almost completely transparent by design.

In plot (b) and more so in plot (c) the double ring of shells behaves as a Helmholtz

resonator. The column of water in the throat oscillates projecting a beam in a direction

normal to the incident wave.

One could also envision tuned shells as a mechanism for harvesting and converting

incident acoustic energy. If the lengthwise ribs of the internal substructure are replaced

by an appropriate piezoelectric material, a deformation will produce charge. This elec-

trical energy can be gathered from many such shells and stored for later use. Such an

idea is particularly suitable for underwater applications since all of the electronics could

be stored safely inside of the shell.
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Figure 4.3: Cylindrical-to-plane wave lens. Plot (a) shows the bulk modulus distribution
in the 7x7 array of tuned shell. Plots (c) and (d) show the pressure field around the
lens at 10 kHz and 15 kHz, respectively. Plot (b) is the pressure normalized by the
monopole source pressure without the lens along the quarter circular arcs in (c) and
(d).
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empty shells. The numbers correspond to the index of each shell shown in Table 4.1.
Note the varying thicknesses.
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Figure 4.6: Mechanical tuning of an elastic shell by a variable stiffness mechanism
leading to active control of the effective properties.
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Chapter 5

Interference of flexural-borne waves on closely spaced thin

shells

Flexural waves are not present in sonic crystals of internally tuned elastic shells. This

is because the proposed internal substructure couples the displacement of the shell at

many points thereby stiffening the flexural modes (see § 3.5). As a result, the resonance

frequency of these modes increases leaving a large low-frequency region where the sys-

tem behaves as an acoustic medium. At higher frequencies, flexural waves diminish the

performance by inhibiting wave steering and transmission.

For empty thin shells the flexural modal density is high (see equation (3.8)). Thus

it is difficult to design broadband acoustic metamaterials with such elements. Although

gratings of elastic shells in a fluid have seen application in acoustic metamaterials [48,

49, 63], the interaction of scattered fields from flexural waves on neighbouring shells is

not well understood. Being subsonic, these waves do not couple to the incident field,

but behave as a local resonance in the SC. These locally resonant inclusions in a wave

medium produce narrow bands in the frequency spectrum, which can interfere with the

propagating mode resulting in asymmetric pseudogaps in the frequency response. When

the flexural resonance is out of phase with the surrounding medium, the array takes on

negative effective properties (a resonant effect). On the contrary, full transmission has

been observed within the Bragg band gap if the flexural resonance lies thereat, a region

in which incident plane waves typically cannot propagate. Here we investigate the local

interaction of neighbouring resonators, elastic cylindrical shells, and the resulting effect

on the far-field response.

Liu et al. [61] point out that if an inclusion in an elastic matrix has a resonance

frequency ω0, the transmission coefficient is proportional to 1/(ω2
0 − ω2) yielding an
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asymmetric profile. They present experimental and theoretical work on an 8x8x8 cubic

array of rubber coated lead spheres in a hard epoxy matrix. The asymmetric shape

of the transmission coefficient near the resonance is discussed and correlated with the

band diagram where the dip in the transmission corresponds to the lower edge of the

pseudogap and the peak, the upper edge. A very important point made is that the sonic

attenuation is a consequence of the local resonant behaviour and would be apparent

even for a monolayer, as opposed to Bragg scattering which requires many periodic

layers to abate an incident wave.

The study was extended to square arrays of circular cylinders by Goffaux et al. [29].

It was noted that the asymmetric profile of the transmission spectrum near the reso-

nance frequency of the cylinder resembled the Fano [21] resonance due to the interference

of a discrete autoionized state with a continuum. Goffaux et al. proposed a 1D spring-

mass model to describe the interference between the elastic cylinder and surrounding

matrix. Later, Goffaux and Sanchez-Dehesa [28] formulated a variational method for

efficient calculation of the band structure of such phononic crystals. Furthermore, they

improved the 1D model used to describe the interference with the resonant inclusion

and validated it by comparing the predicted width of the pseudogap as a function of

the lattice constant to simulated results.

The effect of flexural waves on elastic shells in a sonic crystal was first investigated

by Khelif et al. [45], although the distinction that these are flexural waves was not made.

They studied steel shells in water with thickness to radius ratio between h/a = 0.4−0.45

and a lattice parameter to radius ratio of b/a = 2.5. By tuning the shell’s flexural

resonance to lie in the Bragg band gap, they were able to achieve full transmission at

a single frequency and no transmission elsewhere in the band gap. This was shown

to be a suitable approach for filtering a single frequency from an input signal. The

work was further expanded by Pennec et al. [76] by introducing shells of alternating

thickness in a row along the direction of propagation. This lead to the transmission

of two distinct frequencies in the effective guide. This system can also be used for

separating or merging signals of different frequencies.

Kosevich et al. [48] studied transmission through a periodic array of thin elastic
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cylindrical shells in air (artificial shells with ρs = 50ρair = 50kg/m3, Cts = 2000m/s,

Cls = 4000m/s). Analogous to previous structures, the flexural resonances are re-

sponsible for the asymmetric profile of the transmission spectrum. It was shown that

an enhancement of the width of the Bragg band gap occurs when the lowest flexural

resonance of the shell (n = 2) lies in the band gap associated with Bragg scattering.

Before the interest in acoustic metamaterials, Heckl and Mulholland [38] studied

wave propagation through a grating of elastic shells in the context of heat exchangers.

Lethuillier et al. [56] analyzed the resonant interaction of the Scholte-Stoneley waves on

neighboring shells. More recently, low frequency breathing modes of soft rubber shells

in air also have been shown to produce pseudogaps below the Bragg frequency [49], but

flexural vibrations are quite different due to their azimuthal directionality. It has also

been shown that the A-wave interaction on neighbouring shells results in a significant

increase in the far-field scattered pressure at resonance [96].

This Chapter investigates the interaction of the flexural-borne waves from neigh-

bouring shells in water and whether any enhancement of the far-field scattering is

possible. The aim is to accurately predict the resonance frequency, bandwidth and

decay rate of a flexural resonance. This will be achieved through asymptotic analysis

of a higher order shell theory with multiple scattering theory.

5.1 Evanescence

Consider a wave incident onto a cylindrical shell with wavenumber k = ω/c. Some

incident energy will be transferred to the flexural vibrations of the shell and the rest

will scatter back into the fluid. Define the normal and tangential wavenumbers as kn

and kt, respectively. The wavelength of the nth flexural wave is λ = 2πa/n, thus the

tangential wavenumber can be expressed as kt = n/a. From the Helmholtz equation,

the wavenumber of the scattered wave is k2n = k2 − k2t = ω2

c2 − n2

a2 . Thus at flexural

resonance

(kna)
2 =

c2p
c2
Ω2
r − n2, (5.1)
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which implies that the scattered wave is evanescent while
cp
c Ωr < n. In § 5.2.2, the

expression for the low order resonance frequency of flexural modes on thin shells is

derived, which is Ω2
r = β2(n2 − 1)2/(1 + ρ/(

√
12βnρs)). Figure 5.1 shows the normal

component of the wavenumber scattered from a flexural resonance for an aluminum

shell with thickness ratio h/a = 0.03.

a

k(kn,kt)

λ

n=8

1 2 3 4 5
−25

−20

−15

−10

−5

0

n

(k
n
a)2  

Figure 5.1: Left: Scattering from the n=8 flexural mode of a thin shell. Right: Normal
component of the scattered wavenumber squared (kna)

2 for several low order flexural
modes of an aluminum shell of thickness ratio h/a = 0.03.

This simple analysis demonstrates that low order flexural waves of thin shells are

evanescent, decaying with radial distance. As an example, the amplitude of the wave

scattered form the n = 2 flexural wave on the aluminum shell in Figure 5.1 decays by

63% (e−1) in a distance r/a = 0.5. Therefore, scattered flexural waves from thin shells

do not propagate into the far-field (see the dashed line in Figure 3.12b for the empty

shell of thickness h/a = 0.03). Of all of the low order flexural waves, the n = 2 flexural

resonance is the least evanescent.

5.2 Higher order shell theories

For most engineering applications, the Donnel-Mushtari (D-M) thin shell theory is

sufficient. However, it will be demonstrated that in order to accurately predict the
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lowest flexural resonances, a higher order shell theory is required, such as the Love-

Timoshenko (L-T) or Flügge-Byrne-Lur’ye (F-B-L) theories.

5.2.1 Free vibration

Loosely adopting the notation from Leissa’s text [54], the shell’s equations of motion

can be written as [L]{ui} = {σ̄i} where the matrix [L] operates on the displacement

vector u = {w, v, u} in the (r, θ, z) cylindrical coordinates. The dimensionless traction

vector is σ̄ = { a2

ρsc2ph
σ(θ, t), 0, 0}, where we only include the radial component of the

stress σ(θ, t). For in-plane vibrations the operator takes the form

[L] =



1 + β2 ∂4

∂θ4
+ a2

c2p

∂2

∂t2
∂
∂θ

∂
∂θ

∂2

∂θ2
− a2

c2p

∂2

∂t2




D −M

+β2





 0 − ∂3

∂θ3

− ∂3

∂θ3
∂2

∂θ2




L− T

OR


1− 2 ∂2

∂θ2 0

0 0




F −B − L




(5.2)

where β = h/(
√
12a) is a small bending parameter. Note the second term, which is

the improvement over the Donnel-Mushtari equations. The differences in shell theo-

ries arise form different definitions of the change in curvature and twist of the mid-

dle surface. Expanding the in-plane displacements and stresses in azimuthal modes

(w, v, σ) =
∞∑

n=−∞
(Wn, Vn, σn)e

inθe−iωt and substituting into the equations of motions

yields 
d1 d2

d3 d4




Wn

Vn


 =




a2

ρsc2ph
σn

0


 , (5.3)

where the elements d1−4 depend on the shell theory used


d1 d2

d3 d4


 =


(−Ω2 + 1 + β2n4) in

in (Ω2 − n2)




D −M

+β2





 0 in3

in3 −n2




L− T

OR


1− 2n2 0

0 0




F −B − L



.

(5.4)

Define the shell impedance Zshn , which relates the applied pressure to the resulting

velocity, as

σn = −iωZshn Wn, Zshn = −iρscp
h

a

(−d1d4 + d2d3
Ωd1

)
. (5.5)
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The determinant of the coefficient matrix (5.4), explicitly visible in the shell impedance (5.5),

governs the natural frequencies Ωr,c = ωr,ca/cp for radial (flexural or in-plane bending)

and circumferential modes of vibration, respectively, which are for n 6= 0 [24, 54] The ex-

Theory Ω2
r,c

lim
β→0

Ωr

w/IPI w/o IPI

D-M
1
2{(1 + n2 + β2n4) βn3

√
1+n2

βn2∓
√
(1 + n2 + β2n4)2 − 4β2n6}

L-T
1
2{(1 + n2)(1 + β2n2) βn(n2−1)√

1+n2
β(n2 − 1)∓

√
(1 + n2)2(1 + β2n2)2 − 4β2n2(n2 − 1)2}

F-B-L
1
2{(1 + n2 + β2(n2 − 1)2) βn(n2−1)√

1+n2
β(n2 − 1)∓

√
(1 + n2 + β2(n2 − 1)2)2 − 4β2n2(n2 − 1)2}

membrane (0, 1 + n2) - -

Table 5.1: Comparison of the resonance frequencies of a shell’s radial and circumferen-
tial modes using several shell theories. Asymptotic forms are shown with and without
the inclusion of in-plane inertia (IPI) in the equations of motion.

pressions for Ω2
r,c in Table 5.1 are complete and differ slightly from Table 2.1 of Leissa’s

text [54] where terms of order β2 were omitted. The natural frequencies for n = 0 are

Ω2
r,c = (1, 0) from both the D-M and L-T theories and Ω2

r,c = (1+β2, 0) from the F-B-L

theory. The asymptotic radial frequencies as β → 0 are presented with and without the

in-plane inertia (IPI) term a2

c2p

∂2v
∂t2

in equation (5.2), which is often omitted to simplify

the expression. At this stage it is clear that both the L-T and F-B-L theories yield

the same natural frequencies for thin shells. The D-M shell theory predicts a higher

flexural resonance frequency for a given mode n and as Forsberg [24] points out, the

maximum error is for the n = 2 flexural mode.

5.2.2 Fluid loaded shell

Of interest is the in-plane acoustic wave scattering from a thin cylindrical shell im-

mersed in an acoustic medium of density ρ and sound speed c. The external pressure

field satisfies the Helmholtz equation (3.1) leading to expressions for the scattering co-

efficients (3.10) and modal pressure (3.11). The radial stress on the shell is balanced by

the acoustic pressure σn = −Pn as in (3.13). Substituting equations (3.13) into (5.2)
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yields the equation of motion as




(
d1 +

ρc
ρscp

Ω
h/a

H
(1)
n (ka)

H
(1)′
n (ka)

)
d2

d3 d4





Wn

Vn


 =



−i 2a

πρsc2ph/a
An

kaH
(1)′
n (ka)

0


 , (5.6)

The scattering coefficients are obtained by solving (5.6) for radial modal displacement

Wn (3.14) and leading to the T-matrix definition (3.15). The difference now is that the

shell impedance in the term ζn (3.14) will differ depending on the shell theory.

In order to obtain insight about the structure of the T-matrix, we first apply the

small argument approximation as in Ref. [2] to the Halkel functions seen in the acoustic

impedance Zn (3.12)

H
(1)
n (ka)

H
(1)′
n (ka)

≈ −ka
n

− i
4π(ka/2)2n+1

(n!)2
, ka≪ n, n 6= 0. (5.7)

This assumption is valid near the nth flexural resonance since Ωr = βn2 ≪ n for thin

shells. Substituting equation (5.7) into equation (3.12) yields the asymptotic form of

the acoustic impedance

Zn = −iρscp
h

a

[α
n
Ω+ iαγnΩ

(2n+1)
]
, (5.8)

where γn ≡ 2π
(n!)2

( cp
2c

)2n
and the parameter α relates the mass of the shell to that of the

displaced fluid as

α ≡ ρ

ρsh/a
. (5.9)

The total impedance takes the form

Zshn + Zn = −iρscp
h

a

[
((α/n)Ω2 − d1)d4 + d2d3

Ωd1
+ iαγnΩ

(2n+1)

]

= −iρscp
h

a

[
(1 + α/n)F (Ω)

Ωd1
+ iαγnΩ

(2n+1)

]
, (5.10)

where the real and imaginary portions have been grouped. The coefficients d1−4 depend

on the shell theory used and are given in (5.4). The characteristic equation F (Ω) for
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each shell theory is given by

F (Ω) = (Ω2)2

−





((1 + β2n4)(1 + α/n)−1 + n2)Ω2 + β2n6(1 + α/n)−1, D-M,

((1 + β2n4)(1 + α/n)−1 + (1 + β2)n2)Ω2 + β2n2(n2 − 1)2(1 + α/n)−1, L-T,

((1 + β2(n2 − 1)2)(1 + α/n)−1 + n2)Ω2 + β2n2(n2 − 1)2(1 + α/n)−1, F-B-L.

(5.11)

If α = 0, the two roots of equations (5.11) yield the natural frequencies of free vibration

in Table 5.1. Otherwise, the two roots correspond to the damped resonance frequencies

of the radial and circumferential modes of vibration Ω1 and Ω2, respectively (previously

denoted by Ωr and Ωc for the free vibration case). The fluid loading on the shell

lowers the flexural resonance frequencies only, not the circumferential resonances. The

asymptotic flexural frequencies are Ω2
1 = Ω2

r(1 + α/n)−1. The factor α, defined in

equation (5.9), governs the radiation damping through the ratio of shell’s mass to the

mass of the displaced water.

Figure 5.2 plots the first five flexural resonance frequencies for a thin aluminum

shell (ρs = 2730 kg/m3, Es = 69e9 GPa, νs = 0.33, cp = 5326 m/s) of thickness

h/a = 0.01 and 0.05 yielding α = 36.6 and 7.3, respectively. The theoretical frequencies

are compared to finite element (FEM) eigenfrequency simulations. All of the theories

are based on the thin shell assumption, thus the results for the thicker shell with

h/a = 0.05 are not as well predicted. However, for the very thin shell with h/a = 0.01,

the flexural resonance frequency is almost exactly predicted by the asymptotic form

without in-plane inertia from L-T or F-B-L theories. Therefore, from here on the

following approximate radial and circumferential resonance frequencies will be used

Ω1 =
β(n2 − 1)√
1 + α/n

, Ω2 = n. (5.12)

Note that for the lowest order modes, the radial resonance frequency is nonlinear Ω2
1 =

O(β3/2, n5/2, α1/2).

Since the two frequencies Ω1 and Ω2 are roots of F (Ω) = (Ω2 − Ω2
1)(Ω

2 − Ω2
2) the
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total impedance can be rewritten in a more compact form

Zshn + Zn = −iρscp
h

a

[
(1 + α/n)(Ω2 − Ω2

1)(Ω
2 − Ω2

2)

Ωd1
+ iαγnΩ

(2n+1)

]
. (5.13)

The definition of d1 in equation (5.4) for the L-T theory is d1 = Ω2−n2(1+β2), which

for thin shells is approximately d1 = Ω2 − n2. Substituting this d1 into (5.13) yields

Zshn + Zn = −iρscp
h

a

[
(1 + α/n)(Ω2 − Ω2

1)(Ω
2 − Ω2

2)

Ω(Ω2 − n2)
+ iαγnΩ

(2n+1)

]
. (5.14)

5.3 Width of flexural resonances

Near a flexural resonance Ω1, the total impedance behaves linearly as

Zshn + Zn = −iρscp
h

a

[
cn(Ω− Ω1) + iαγnΩ

(2n+1)
1

]
, (5.15)

where cn = 2(1 + α/n)(Ω2
1 − Ω2

2)(Ω
2
1 − n2)−1. Using (5.15) and the definition of ζn in

(3.14), the T-matrix (3.15) becomes

Tn = −1

2

[(
Ω1 − Ω+ iǫn
Ω1 − Ω− iǫn

)
H

(2)′
n (ka)

H
(1)′
n (ka)

+ 1

]
, (5.16)

where

ǫn ≡ αγnΩ
(2n+1)
1 /cn =

πα

(1 + α/n)(n!)2
(Ω2

1 − n2)

(Ω2
1 − Ω2

2)

( cp
2c

)2n
Ω
(2n+1)
1 . (5.17)

Using the asymptotic frequencies in equation (5.12), the nondimensional half-width of

the flexural resonance becomes

ǫn =
πα(n2 − 1)(2n+1)

(1 + α/n)(n+3/2)(n!)2

( cp
2c

)2n
β(2n+1). (5.18)

The asymmetric profile of the T-matrix is now clearly visible. The width of the flexural

resonance is 2ǫn and remains small because ǫn ∝ (h/a)(3n+3/2) while α > n. For

example, for the n = 2 flexural mode ǫn ∝ (h/a)7.5. The quality factor for the nth

flexural resonance of a thin shell is thus very large

Q ≡ Ω1

ǫn
=

(n!)2

π(n2 − 1)2n

(
2c

cp

)2n (1 + α/n)(n+1)

αβ2n
. (5.19)

Although the asymmetric response is narrowband, it has an interesting structure

with four distinct modes of coupling to the incident wave: at the maximum, at the

resonance, at the minimum and far from the resonance and are summarized in Table 5.3.
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Ω Tn analogue

Far from Ω1 |Ω/Ω1| ≫ 1 − J ′

n

H
(1)′
n

sound hard

Maximum Ω1 − ǫn − iJ ′

n

H
(1)′
n

− 1−i
2 eiπ/2 out of phase

At resonance Ω1
J ′

n

H
(1)′
n

− 1 eiπ out of phase

Minimum Ω1 + ǫn
iJ ′

n

H
(1)′
n

− 1+i
2 e−iπ/2 out of phase

A special case occurs when the effective density of the thin empty shell is tuned to

water such that 2ρsh/a = ρ giving α = 2 and the extensional wave speed is cp = 2c.

The half-width of the flexural resonance becomes ǫn = 2π
(

(n2−1)(2n+1)

(1+2/n)(n+3/2)(n!)2

)
β(2n+1),

which will never be zero for n ≥ 2.

Figure 5.3 compares the exact T-matrix for the n = 2 flexural mode from equa-

tion (3.15) with the linearized T-matrix in equation (5.16). Although there is a very

small frequency shift, this figure demonstrates that the approximation (5.7) is accurate

at frequencies near the lower flexural resonances of a thin shell. Thus, the following

conclusions can be made about the present analysis: i) equation (5.12) accurately pre-

dicts the flexural resonance frequencies of a thin shell ii) equation (5.17) accurately

describes the width of the flexural resonance.

5.4 Multiple scattering of several shells

Multiple scattering of acoustic waves from two or more elastic shells at a flexural res-

onance is now investigated. The cylinders are laying on a line separated by a distance

b. In order to relate the scattered field from one scatterer to the other, Graf’s addition

theorem is necessary. It states that the Hankel function at the jth cylinder can be

transformed to the coordinates of the ith cylinder as

H(1)
n (krj)e

inθj =

∞∑

m=−∞
Jm(kri)e

imθi ×





H
(1)
m−n(kb), rj < ri,

H
(1)
n−m(kb), rj > ri.

(5.20)
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5.4.1 Two scatterers

Consider two shells: one at the origin and the other at a distance b on the posi-

tive x-axis. The shells are described by the respective polar coordinates (r1, θ1) and

(r2, θ2), respectively. An incident wave p
(j)
i =

∞∑
n=−∞

A
(j)
n Jn(krj)e

inθj will scatter from

the pair giving rise to two scattered waves p
(1)
s =

∞∑
n=−∞

B
(1)
n H

(1)
n (kr1)e

inθ1 and p
(2)
s =

∞∑
n=−∞

B
(2)
n H

(1)
n (kr2)e

inθ2 . The resulting total pressure field p = pi + p
(1)
s + p

(2)
s can be

expressed in terms of the coordinates of the individual shell as [64]

p(1) =

∞∑

n=−∞

(
A(1)
n Jn(kr1)e

inθ1 +B(1)
n H(1)

n (kr1)e
inθ1 +B(2)

n H(1)
n (kr2)e

inθ2
)
, (5.21a)

p(2) =

∞∑

n=−∞

(
A(2)
n Jn(kr2)e

inθ2 +B(1)
n H(1)

n (kr1)e
inθ1 +B(2)

n H(1)
n (kr2)e

inθ2
)
, (5.21b)

where the superscript on p indicates from where the pressure is observed. Using Graf’s

addition theorem, the radial coordinate of the second scattered wave is transformed to

the radial coordinate of the first via

H(1)
n (kr2)e

inθ2 =

∞∑

m=−∞
H

(1)
m−n(kb)Jm(kr1)e

imθ1 , r2 < r1 (5.22a)

H(1)
n (kr1)e

inθ1 =

∞∑

m=−∞
H

(1)
n−m(kb)Jm(kr2)e

imθ2 , r1 > r2. (5.22b)

Substituting (5.22) into (5.21) yields the total pressure field

p(1) =

∞∑

n=−∞
einθ1

(
A(1)
n Jn(kr1) +B(1)

n H(1)
n (kr1) + Jn(kr1)

∞∑

m=−∞
B(2)
m H

(1)
n−m(kb)

)
,

(5.23a)

p(2) =

∞∑

n=−∞
einθ2

(
A(2)
n Jn(kr2) +B(2)

n H(1)
n (kr2) + Jn(kr2)

∞∑

m=−∞
B(1)
m H

(1)
m−n(kb)

)
,

(5.23b)

The total incident wave onto each shell is the sum of the incident wave and the scattered

wave from the neighbouring shell, i.e. the total incident wave onto the first shell is

p
(1)
i =

∞∑
n=−∞

[
A

(1)
n +

∞∑
m=−∞

B
(2)
m H

(1)
m−n(kb)

]
Jn(kr1)e

inθ1 . The scattered pressure field
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from each shell is obtained by using the general definition of the T-matrix

p(1)s =
∞∑

n=−∞
T (1)
n

(
A(1)
n +

∞∑

m=−∞
B(2)
m H

(1)
n−m(kb)

)
H(1)
n (kr1)e

inθ1 , (5.24a)

p(2)s =

∞∑

n=−∞
T (2)
n

(
A(2)
n +

∞∑

m=−∞
B(1)
m H

(1)
m−n(kb)

)
H(1)
n (kr2)e

inθ2 , (5.24b)

where the T-matrix retains its definition in equation (3.15) and relates the incident and

scattered coefficients as

B(1)
n = T (1)

n

(
A(1)
n +

∞∑

m=−∞
B(2)
m H

(1)
n−m(kb)

)
, (5.25a)

B(2)
n = T (2)

n

(
A(2)
n +

∞∑

m=−∞
B(1)
m H

(1)
m−n(kb)

)
. (5.25b)

Generally, after truncating the series, the linear system of equations (5.25) can be solved

in matrix form for the scattered coefficients B
(1,2)
n via




I 0

0 I


−


diag(T

(1)
n ) 0

0 diag(T
(2)
n )




 0 [H

(1)
n−m(kb)]

[H
(1)
m−n(kb)] 0






[B

(1)
n ]

[B
(2)
n ]




=


diag(T

(1)
n ) 0

0 diag(T
(2)
n )




[A

(1)
n ]

[A
(2)
n ]


 . (5.26)

5.4.2 Frequency splitting

For a shell excited by a monochromatic incident wave at frequencies near the nth flex-

ural mode, the nth coefficient will be by far the largest. Thus equation (5.25) can be

approximated by

B(1)
n = T (1)

n

[
A(1)
n +B(2)

n H
(1)
0 (kb) +B

(2)
−nH

(1)
2n (kb)

]
, (5.27a)

B
(1)
−n = T

(1)
−n
[
A

(1)
−n +B(2)

n H
(1)
−2n(kb) +B

(2)
−nH

(1)
0 (kb)

]
, (5.27b)

B(2)
n = T (2)

n

[
A(2)
n +B(1)

n H
(1)
0 (kb) +B

(1)
−nH

(1)
−2n(kb)

]
, (5.27c)

B
(2)
−n = T

(2)
−n
[
A

(2)
−n +B(1)

n H
(1)
2n (kb) +B

(1)
−nH

(1)
0 (kb)

]
. (5.27d)

Since the scatterers are identical, T
(1)
±n = T

(2)
±n = T±n, and from equation (3.15) it is

clear that Tn = T−n. Also, the Hankel functions are related as H
(1)
−2n(kb) = H

(1)
2n (kb).
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Equations (5.27) can then be expressed in matrix form

Mb = a where

M =




1/Tn 0 H
(1)
0 (kb) H

(1)
2n (kb)

0 1/Tn H
(1)
2n (kb) H

(1)
0 (kb)

H
(1)
0 (kb) H

(1)
2n (kb) 1/Tn 0

H
(1)
2n (kb) H

(1)
0 (kb) 0 1/Tn




, b =




B
(1)
n

B
(1)
−n

B
(2)
n

B
(2)
−n




, a =




A
(1)
n

A
(1)
−n

A
(2)
n

A
(2)
−n




.

(5.28)

Note that for plane wave incidence A
(1)
±n = A

(2)
±n = A±n = i∓ne−inθ0 . The system of

equations (5.28) can be solved as

b =

4∑

j=1

λ−1
j eje

T
j a (5.29)

since M =
∑4

j=1 λj eje
T
j where

λ1 = T−1
n +H

(1)
0 (kb) +H

(1)
2n (kb),

λ2 = T−1
n −H

(1)
0 (kb)−H

(1)
2n (kb),

λ3 = T−1
n +H

(1)
0 (kb)−H

(1)
2n (kb),

λ4 = T−1
n −H

(1)
0 (kb) +H

(1)
2n (kb),

e1 =
1

2




1

1

1

1




, e2 =
1

2




1

1

−1

−1




, e3 =
1

2




1

−1

1

−1




, e4 =
1

2




1

−1

−1

1




.

(5.30)

The explicit solution (5.29) shows the form of the resonance near a zero of λj , j =

1, 2, 3, 4. Hence, if λj ≈ 0 then b ∝ ej . The eigenvectors ej show that the shells either

vibrate in phase or π out phase.

At low frequencies where ka ≪ n, the Hankel functions can be approximated by

equations 9.1.8 and 9.1.9 in Ref. [1]

H
(1)
0 (ka) = −H(2)

0 (ka) ≈ 1 +
2i

π
ln(ka), (5.31a)

H(1)
n (ka) = −H(2)

n (ka) ≈ −iΓ(n)
π

(
ka

2

)−n
, (5.31b)
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where Γ(n) is the gamma function. From equation (5.31), it is clear that H
(2)′
n (ka)

H
(1)′
n (ka)

= −1,

thus the linearized T-matrix in equation (5.16) simplifies to

Tn =
iǫn

Ω1 − Ω− iǫn
. (5.32)

Since H
(1)
0 (ka) ≪ H

(1)
n (ka) while ka ≪ 1, the eigenvalues demonstrate the frequency

shift Φ1 of the shells’ flexural resonance as λj = [(Ω1 + Φ1)− Ω − iǫn]/iǫn for j = 1, 4

and λj = [(Ω1 − Φ1) − Ω − iǫn]/iǫn for j = 2, 3, where Φ1 = iǫnH
(1)
2n (ka). Using

definition (5.17) and (5.31) the frequency shift is

Φ1 =
α

1 + α/n

(
(2n− 1)!

(n!)2

)(a
b

)2n
Ω1, (5.33)

where Γ(2n) = (2n − 1)! was applied since n is positive (see also (5.17) for ǫn). Note

that Φ1 in equation (5.33) satisfies the necessary limit lim
(b/a)→∞

Φ1 = 0. The equation

for the frequency split due to two nearby identical scatterers is valid for any scatterer

near a local resonance of width ǫn. For two nearby thin elastic shells with a flexural

resonance width ǫn, the shift is large Φ1 ≫ ǫn.

The following Figure 5.4 compares the n = 2 and n = 3 flexural resonance split

Φ1 for two thin aluminum shells (h/a = 0.01, α = 36.6) in water using COMSOL

eigenfrequency analysis and equation (5.33). The frequency split is nearly identical

between theory and finite element simulations for all spacings b. However, the finite

element frequencies are shifted up slightly. In general, when the scatterers are close, the

frequency split is profound. On the other hand, when they are far from each other, they

behave as individual scatterers with the same frequency and the split disappears. The

same analysis has been carried out for platinum shells with equally accurate results,

implying that the dependence on α in equation (5.33) must be correct. These important

results demonstrate that now it is possible to accurately predict the position, width and

interaction of flexural resonances on neighbouring thin shells.

5.4.3 Effect on the far-field

Solving equation (5.28) for the scattering coefficients yields

B(j)
n =

iǫnAn
(Ω1 ± Φ1)− Ω− iǫn

(5.34)
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for even and odd flexural modes n, respectively. Thus the TSCS of equation (3.19)

becomes

σtot =
r

a

2π∫

0

psp
∗
sdθ =

4

ka

∞∑

n=−∞
|Bn|2 =

4

ka
(|B(j)

n +B
(j)
−n|2). (5.35)

Figure 5.5 shows the TSCS for an aluminum shell with another shell at a close distance

b = 2.2a. The angle of incidence with respect to the line through the centers of the shells

is varied. Firstly, note that the n = 2 flexural resonance of the stand alone shell does

not appear because it is very narrow. The TSCS does, however, show split resonances

of the two shells. From equations (5.30), it is evident that the higher n = 2 resonance

corresponds to the shells vibrating in phase, while at the n = 2 lower resonance they are

π out of phase. As a result, Figure 5.5 shows that when a plane wave is incident along

the line joining the shell centers, θ = 0◦, only the in-phase (upper) resonance propagates

into the far-field. At θ0 = 45◦, both resonances are apparent and at θ0 = 90◦ only the

out of phase (lower) resonance propagates into the far-field.

In conclusion, it is apparent that due to the interaction of two neighbouring shells,

typically evanescent flexural-borne waves can propagate into the far-field. Moreover,

it is the angle of incidence which in part determines the magnitude and width of the

resonance peaks. The wavelength for this n = 2 resonance is very long, implying λ≫ b.

One could imagine that if a particular shell had an n = 2 flexural resonance at higher

frequencies so that two shells could be spaced on the order of the wavelength, coherent

scattering is expected. This notion is investigated in the following Chapter.
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Figure 5.2: Resonance frequencies of the first five flexural modes of vibration for fluid-
loaded aluminum shells of thickness to radius ratios h/a = 0.01 and h/a = 0.05 in
plots (a) and (b), respectively. The empty square, circle and triangle markers are the
solutions of equations (5.11) for D-M, L-T and F-B-L theories, respectively. The various
lines depict the approximate flexural resonance frequencies Ω2

1 = Ω2
r(1+α/n)

−1, where
the frequencies Ωr are shown in Table 5.1.
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Chapter 6

Acoustic Poisson-like effect

Wave propagation in a SC is characterized by Bloch waves, which, by virtue of the

structural periodicity, can be folded in the wavenumber domain into the smallest indi-

visible portion of the unit cell, the irreducible Brillouin zone [9]. The resulting band

diagrams completely describe the frequency response of the SC, including band gaps

(BGs) formed by Bragg scattering when the incident wavelength is close to the lattice

constant. Consequently, incident waves of frequency inside a BG cannot propagate

through the SC, but decay exponentially, implying that BGs may be interpreted as

bands of frequencies associated with a single Bloch wavelength [8]. A complete BG ex-

ists when a plane wave at any angle of incidence cannot propagate. Many studies have

been conducted to understand the formation of complete BGs and discover ways to in-

crease their bandwidth. These methods involve changing the filling fraction [93, 59, 50],

shape [112], lattice [26], orientation [30, 95, 86] and the relative impedance and or den-

sity of the scatterer [13, 48]. Miyashita [68] compiled a great review article on the

topic.

It has been demonstrated that if the scatterer is a circular metal shell, there exists a

unique thickness at which it matches the impedance and index of water [65], maximizing

transmission through an array of scatterers. The reason [101] is that although the metal

has both stiffness and density greater than water, the effective stiffness and density of

the shell are proportional to the thickness-to-radius ratio h
a < 1 and therefore a unique

value of h
a exists at which the product of stiffness and density equals the square of

the acoustic impedance of water. By varying h
a it is also possible to tune either the

quasi-static bulk modulus of the shell or its effective density to those of water, but it is

rarely possible to match both simultaneously, with some material exceptions [101]. In
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particular, the effective sound speed of the shell is almost independent of h
a . However,

it is possible to match both the density and bulk modulus by inserting an axisymmetric

elastic substructure into the shell [101, 102]. Matching the bulk modulus to water

removes the monopolar response, while the matched density eliminates dipole radiation,

dramatically reducing the scattering at sub-wavelength frequencies. Such control of the

quasi-static shell properties facilitates the design of refraction-based lenses [101, 65].

Elastic shells provide rich scattering properties, mainly due to their ability to sup-

port highly dispersive flexural waves as described in the previous chapter. Waves scat-

tered from flexural resonances in a SC interact with the propagating Bloch waves form-

ing what are called quasi-band gaps in the band diagram [48]. These asymetric quasi-

band gaps can occur at sub-wavelength frequencies. If the flexural resonance frequency

is tuned to fall inside the first BG, narrow transmission peaks appear due to coherent

scattering. These narrow transmission bands within the BG were used by Khelif et

al. [45] to create a narrow pass band filter and later by Pennec et al. [76] for demul-

tiplexing an incident wave. Also, Kosevich et al. [48] observed that the asymmetric

profile of the transmission spectrum near the flexural resonance resembles the Fano [21]

resonance due to the interference of a discrete autoionized state with a continuum. Ko-

sevich et al. [48] concluded that the BG bandwidth increases when a flexural resonance

falls within it.

Another important characteristic of the band diagram for SCs is the presence of

antisymmetric (AS) bands. As the name suggests, these modes are polarized in the di-

rection perpendicular to the incident wave. Modes oriented along the incident direction

are referred to as symmetric (S) modes. Sanchez-Perez et al. [89] denoted antisym-

metric modes in a symmetrically insonified (normal incidence) square array as deaf.

This term arose from the fact that their experiment was carried out in air at audible

frequencies. The experimental transmission data was compared to the band diagram,

obtained with the plane wave expansion method, to show that an axisymmetric mode is

not excited by a normal plane wave onto an array of effectively rigid scatterers. Later,

Hsiao et al. [41] compared the band structure of steel circular cylinders in water, which

was obtained using the periodic-boundary finite element method, to the transmission



92

simulations as a way of separating out the deaf modes.

In order to fully understand any band structure of a SC one needs to consider not

only the propagating, but also the evanescent waves. One way to obtain the evanes-

cent component of the bands is using the extended plane wave expansion method.

Romero-Garcia et al. [85] formulated the extended plane wave expansion method and

introduced the supercell approximation for SCs with defects as a way to study wave

localization. Laude et al. [52] analyzed the band structure of symmetric (circular) and

semi-symmetric (semi-circular) inclusions in square and hexagonal arrays. They used

generalized Fresnel formulas to argue that antisymmetric modes cannot be excited if

the symmetry of the array is preserved. In a thorough analysis of the connection be-

tween propagating and evanescent bands, Romero-Garcia et al. [87] point out that the

transfer of symmetry from one band to the other is via an evanescent mode. Similarly,

repelled bands are connected by an evanescent band. In all of these references it is

clear that the deaf modes are coupled to the propagating mode at the boundaries of

the band gap, either in real or evanescent regions. However, Botey et al. [7] recently

showed for photonic crystals that one can ”unlock” evanescent modes from the band

gap boundaries resulting in evanescent beams escaping the photonic crystal. The beam

forming is caused by the negative group velocity of the unlocked mode constituting neg-

ative diffraction. The idea of unlocking evanescent modes is here extended to acoustics

where the flexural mode of an elastic shell is the proposed mechanism to unlock an AS

mode from the BG boundaries and exhibit perpendicular propagation.

6.1 Quadrupole local resonance in a sonic crystal

The n = 2 flexural mode is a constant volume mode (top left of Figure 6.1) that when

excited by an incident wave transfers acoustic energy to a normal direction via the

quadrupole scattering pattern. The displacement of this mode resembles the Poisson

effect in solids, with conceptually similar repercussions, and is here referred to as the

acoustic Poisson-like effect. As shown in Chapter 5, low order flexural modes are

subsonic, scattering an evanescent wave that does not propagate into the far-field.

However, in SCs where the lattice constant is on the order of the decay length of the
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Figure 6.1: The square unit cells marked by dashed lines consist of a shell in water. The
first six irreducible Brillouin zones have perimeters ΓXM. The k-vector shown extends
into the second Brillouin zone and its projections onto the first and second ΓM axes
are labeled S1 and AS1, respectively. The n = 2 flexural mode of an elastic shell is also
illustrated.

evanescent mode, there is significant interaction between the incident wave and the

flexural waves on adjacent shells. The orientation of the scattered quadrupole depends

on the direction of incidence. In particular, a perpendicular wave front can emerge

if the shells are spaced so that all scattered quadrupoles are in phase (i.e. when the

spacing is close to the wavelength) at normal incidence. This is the central idea of the

acoustic Poisson-like effect lens.

Consider a SC with a square unit cell of side length b containing a circular elastic

shell of outer radius a, thickness h, density ρs, shear modulus µs, Poisson’s ratio νs, in

water (ρ = 1000 kg/m3, K = 2.25 GPa) shown in Figure 6.1. The material, radius and

thickness of the shell are selected such that

• the effective bulk modulus of the shell is equal to that of water Keff = K, which

eliminates the monopolar response,

• the effective density is matched to water ρeff = ρ, removing the sub-wavelength

dipolar response and making the SC neutrally buoyant,
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• the n = 2 flexural resonance is near 20kHz, the designated frequency of interest.

The shell’s effective density (see equation (2.13)) has been found to be ρeff = ρs(2h/a−

(h/a)2) and the effective bulk modulus follows from plane strain elasticity as Keff =

µs
(
2(1 − νs)

ρs
ρeff

− 1
)−1

(see equation (2.9)).

A thick acrylic shell (a = 1 cm, h = 0.62 cm) with density, Young’s modulus and

Poisson’s ratio ρs = 1190 kg/m3, Es = 2(1+ νs)µs = 3.2 GPa, νs = 0.35, satisfies these

three criteria (see Table 2.2) and has the n = 2 flexural resonance at 15678 Hz. The

scattered wave from this flexural resonance propagates into the far-field as shown in

Figure 3.1 around ka = 0.7. Because this acrylic shell is very thick, the bandwidth of

the resonance is large. Therefore, this shell introduces a “strong” quadrupole resonance

in the SC.

The coherent scattering postulated earlier is expected to occur near the first ΓM

BG, but also in the second ΓX BG which will not be considered here. The lattice

constant b = 4.78 cm is selected so that the n = 2 resonance coincides with the first

BG in the ΓM direction (see Figure 6.1). The wavelength associated with this BG is

λ =
√
2b with a frequency f = c/(

√
2b) = 22172Hz. This shell spacing corresponds to

a low filling fraction of fs = 0.14. This value of b is chosen as a balance between

• minimizing the distance from the n = 2 resonance to the first ΓM BG,

• minimizing the spacing between shells so as to increase the interaction of scattered

waves.

A consequence of having such a low filling fraction is that the transmission through the

array is high even in the BG.

6.2 Band diagram

It is important to understand the band structure of a typical SC with inelastic (rigid)

scatterers before analyzing the more complicated case of elastic shells. Consider the

same square array as described in Section 6.1, but with rigid cylinders of radius a = 1

cm and spacing b = 4.78 cm in water. The band diagram for this array in Figure 6.2
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was obtained using the periodic boundary finite element method in COMSOL. The
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Figure 6.2: Band diagram for a unit cell with a rigid cylinder in water along ΓM
direction.

horizontal axis represents the reduced wave vector k̂ = kb ∈ [0,
√
2π] along the ΓM

direction and the eigenfrequencies are plotted on the vertical axis in kHz. The origin

of each band follows from Figure 6.1, which shows three adjacent unit cells as well

as the first six irreducible Brillouin Zones (BZs) of the square array. Also shown in

that schematic are the first three symmetric BZ boundaries in red (labeled S1, S2, S3)

corresponding to propagation in the (1,1) direction and the first two antisymmetric BZ

boundaries (labeled AS1, AS2) corresponding to projected wave vectors in the (1,-1)

direction.

Plotted over the rigid cylinder bands (shown with dots) in Figure 6.2 are the bands

for the water-only unit cell (shown with dashed lines). It is important to include a

homogeneous square unit cell of water with artificial periodic boundary conditions to

understand the structure of AS modes. These water-only bands can be thought of as

the fundamental or ”starting” bands for any SC and can be easily expressed via the

geometry of Figure 6.1. Bands S1 and S2 are linear following f = c
2πb k̂, whereas the

AS1 band is f = c
2πb

(
2π2 + (

√
2π− k̂)2

)1/2
, the AS2 band is f = c

2πb

(
8π2 + k̂2

)1/2
, the

S3 band is f = c
2πb

(
2π2+(

√
2π+ k̂)2

)1/2
. It is now clear, that the nonlinearity of some
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bands is due to the artificial discretization of space by the triangular irreducible BZ

and the projection of the wave vector onto the boundary of an opposing BZ (see green

k vector in Figure 6.1).

Even at a filling fraction of fs = 0.014, the rigid cylinder completely changes the

band diagram as compared to the water-only case. The S1 and S2 bands at point M

split due to Bragg scattering forming a large BG. The two bands inside of the BG

(20 to 30 kHz) are the two AS1 modes which differ in phase. One of the AS modes

remains locked to the lower BG boundary. These AS modes are not excited in arrays of

axisymmetric scatterers. In order to excite the AS mode, the scatterer has to be non-

axisymmetric [52], which breaks the geometrical symmetry of the unit cell. Another

way to break the unit cell symmetry is with a non-axisymmetrically vibrating scatterer

such as the n = 2 flexural mode of a shell shown in Figure 6.1.

Also shown on the right of Figure 6.2 are the evanescent bands (in red) which are

plotted by fixing the real value of k̂ →
√
2π+ik̂. Each evanescent band approaches zero

with increasing wavenumber. More importantly, these bands present a know feature

that the deaf AS modes are always locked to the BG boundaries, either directly or by

an evanescent band. This is apparent at point M in Figure 6.2 around 20 kHz.

Figure 6.3a shows the band diagram for the same unit cell but with a thick acrylic

shell instead. Although this band diagram looks complicated, the bands for the shell-

water cell are nearly identical to the basis bands for the water-only cell (dashed lines)

with the addition of the n = 2 and n = 3 flexural bands of the shell. This similarity is

due to the tuning of the shell to have the quasi-static properties of water, making the

SC acoustically transparent. The shell’s matched impedance and index also decreases

the bandwidth of the first ΓM BG around 22 kHz. The two n = 2 flexural modes near

16 kHz differ in their orientation, one is oriented with the corners and the other with

the faces of the square unit cell shown in plots (c) and (d) of Figure 6.3, respectively.

The former mode interferes with the S1 symmetric mode resulting in the veering of the

bands. The flexural mode oriented with the faces is not directly excited, but rather

couples to one of the AS1 modes via an evanescent band (pointed out with a pair of

arrows). The flexural mode represents a local resonance and is thus independent of the
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periodicity of the host medium. The coupling of a flexural mode to the AS1 band is

what unlocks this band from the BG boundaries transferring the incident wave energy

to a perpendicular direction. A magnified view of the BG is shown in Figure 6.3b,

where the unlocked AS1 band is displayed with a thick line and the other AS1 band

remains locked to the lower BG boundary by another evanescent band.

6.3 Redirection of incident energy by 90
◦

A simulation of a Gaussian beam incident onto the bottom of the array 8 cells deep

by 41 cell wide with a frequency of 22350 Hz is shown in Figure 6.4(a). The absolute

pressure field shows very strong beams projecting symmetrically from the sides of the

array. There is a pressure magnification at the sides of the array as compared to the

incident wave, but this can be attributed to the aspect ratio of the array. Also shown

in Figure 6.4(b) is the same simulation but at a higher frequency of 27000 Hz, where

the beam passes unabated through the array due to the tuning described earlier.

On the right of Figure 6.3b is the energy balance for this array. The transmission and

reflection coefficients are obtained by integrating the intensity I over the four sides of the

array yielding energy E =
∫
I ·n dL and leading to definitions of the transmission from

the side Tside = Eleft/Einc, transmission from the back T = Etop/Einc and reflection

from the front R = 1 − T − 2Tside. The sideways transmission Tside is centered about

the BG since it depends on the coherent scattering of shell-borne flexural waves which

occurs when the wavelength is on the order of the lattice constant. Therefore this

acoustic Poisson-like effect is evident even for a mono-layer of shells, but strengthens

with multiple layers. The peak sideways transmission for this array is 46 percent at

22350 Hz.

6.4 Discussion of the results

For comparison purposes Figure 6.5 presents the ΓX band diagram for the shell-water

unit cell. By the same arguments as for the first ΓM BG, the n = 2 flexural mode
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couples to the AS1 band in the second ΓX BG near 30 kHz at k̂ = 0, but this coupling

is so weak that it is only visible at very large imaginary values of the wavenumber.

This coupling can be strengthened by increasing the lattice constant, thus lowering the

second BG closer to the n = 2 band.

Also, the distinction between this acoustic Poisson-like effect and near-zero-index

material (NZIM) has to be made. As the name suggests, acoustic NZIM are materials

in which either the frequency-dependent density or compressibility go to zero, or both.

Chen et al. [14] point out that a NZIM depends on the accidental degeneracy of modes

at the center of the BZ (Γ point) where linear dispersion is key. There is evidence that

an acoustic NZIM can bend waves when confined in a waveguide [22, 113], but not in

the free field as shown here. These materials have also seen cloaking applications [23,

83, 110, 113, 14] because conceptually they stretch the wavelength to infinity making

an enclosed object appear small to an incident wave. On the contrary, the acoustic

Poisson-like effect is based on an unlocked mode within the BG. Therefore it is not

based on refraction, but diffraction and cannot be accurately modelled as an effective

acoustic medium, such as a NZIM, precisely due to the field demonstrated in Figure 6.4.

As for the acoustic Poisson-like effect, it is conceivable that 100 percent transmis-

sion from the sides of the array can be achieved by increasing the filling fraction and

further decreasing the spacing between the first ΓM BG and the flexural mode. This

Poisson-like effect is to be present in many other crystals which can support similar

n = 2 vibrations such as hollow/solid cylinders/spheres embedded in fluid or elastic

materials or even non-axisymmetric scatterers on plates for flexural waves. One could

even envision this effect for electromagnetic waves in carbon nanotube (CNT) forests,

since CNTs do exhibit an n = 2 vibrational mode [84].



99

f 
(kHz)

Γ M π
0

10

20

30

40

50

BG

AS2

S3

AS1 S2

S1

coupling
n=2

n=3

(a)

Im(k)Re(k)

  f   
(Hz)

M 1 0 0.5 1

21656

22350

22917

S1

to n=2

energy balance

2T
side

T

AS1 S2

(b)

Im(k)Re(k)

R
λ/2a=3.36
  λ/b=1.41

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6.3: (a) Band diagram for unit cell with an acrylic shell along ΓM direction; the
dashed lines are the bands for a water-only unit cell. (b) Magnified view of the first BG.
The thick curve (blue) is the AS mode which is unlocked from the BG boundaries and
locks to the n = 2 band. The three adjacent curves on the right show the fraction of the
incident energy that goes out of the sides of a finite array Tside, the back of the array T
and the reflected energy R. The array is 8 shells deep in the direction of incidence and
41 shells wide. (c)-(h) First six modes along the line M in Figure 6.3a, corresponding
to k̂ =

√
2π in the (1,1) direction. The total pressure and displacement of the shell are

shown, emphasizing the mode shapes. The frequencies in plots (c)-(h) are 15123, 16046,
21656, 22275, 22275 and 22917 Hz, respectively. The thick band (blue) in Figure 6.3b
at point M is mode (g), which locks to flexural mode (d).
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Figure 6.4: Absolute pressure field for a Gaussian beam incident upon an 8×41 array
of acrylic shells in water. Plots (a) and (b) are at 22350 Hz and 27000 Hz, respectively.
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101

Chapter 7

Effect of shear on an acoustic cloak of the pentamode type

This chapter analyzes the effect of a non-zero shear modulus on the performance of an

acoustic cloak of the pentamode type (PM). It begins by describing a perfect pentamode

material with an example of a cylindrical PM cloak. However, a structural material for

underwater applications must be able to support itself, therefore the shear modulus will

not be zero. It is shown how the inclusion of the shear modulus µ alters the constitutive

relations. The aim is to explicitly show µ in the general equilibrium equations which

can vary throughout the domain of the cloak.

The two scale method [94] will be employed to obtain the desired form of the gov-

erning equations. To facilitate this, a second, fast scale ξ will be defined. The change of

variables will be performed to yield the equations in terms of X and ξ. To observe the

behaviour of the cloak for small values of µ, the shear modulus will be formulated in

terms of a perturbation parameter ε. After asymptomatically expanding the displace-

ment vector u, the same order terms in ε will be grouped together as they must satisfy

the equilibrium equations for all ε. The result is a progressive set of equations to solve

for the u(i), where the superscript (i) indicates the order of ε. As an example, the effect

of shear on the performance of a 2D rectalinear PM cloak will be investigated.

7.1 An elastic pentamode material mimics water

If an acoustic cloak is to serve its purpose it must mimic the background fluid thereby

rendering the cloaked object “invisible”. Following the discussion in [71], the properties

of the cloak must satisfy three fundamental conditions

• matched impedances at the interface with the background fluid such that there

is no reflection,
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• equal travel times,

• satisfy Snell-Descartes’ Law of refraction.

In order to satisfy these three conditions one must have three degrees of freedom in the

design of the cloak. The hardship is that for an isotropic fluid one can only specify the

density ρ and the bulk modulus K. Therefore to add another degree of freedom, the

isotropic condition needs to be relaxed on either the mass or the stiffness properties of

the cloaking fluid. Using anisotropic mass is referred to as inertial cloaking [73], while

anisotropic stiffness is facilitated by PM materials.

The general stress-strain relation for a PM material has the form

σ = K(Q : ε)Q, with ∇ ·Q = 0. (7.1)

where Q is a second order tensor yet to be specified and K is the bulk modulus. In

mathematical terms, a PM material is a material for which the 6 by 6 elasticity matrix

(Voigt notation) has five zero eigenvalues [70]. Aside from isotropic fluids, it has been

shown that such materials can be created from solids with specific micro structures [67].

Following the standard recipe for determining the properties of the cloak, the gov-

erning equations will be transformed from a PM solid to an acoustic fluid. This will

yield the effective density and stiffness of the cloak. The transformation relates the

undeformed variable X ∈ Ω with the deformed variable x ∈ ω by the deformation

gradient defined as

F =
∂x(X)

∂X
= V R, (7.2)

where V is the left stretch tensor and R is the rotation. The components of the

deformation gradient F are

Fij =
∂xi
∂Xj

(7.3)

and its determinant, which is the volume change, will be denoted as

Λ = det (F ) =
dv

dV
. (7.4)

The scalar and transformed wave equations are

p̈− K0

ρ0
∇2

Xp = 0, X ∈ Ω,

p̈−K∇x · (ρ−1∇xp) = 0, x ∈ ω.

(7.5)



103

Comparing the two equations yields the following relationships for the properties of the

cloak.

K = K0Λ and ρ = ρ0ΛV
−2. (7.6)

Similarly, for a PM material with properties dictated by the tensor Q, the relationship

between densities and bulk moduli can be shown to be

K = K0Λ and ρ = ρ0ΛQV −2Q. (7.7)

It is now obvious that

the standard a

coustic equations correspond to Q = I. It is also possible to design PM cloaks from

other PM materials, in which case the properties of the cloak become

K = K0Λ and ρ = ΛQF−TQ−1
0

ρ0Q
−1
0

F−1Q, (7.8)

where Q0 is the tensor characterizing the elasticity tensor of the initial PM material

and ρ0 is its density tensor.

To completely define the transformation for a pentamode material, both the defor-

mation gradient F and the material tensor Q must be specified. This way of transform-

ing the equations of motion can be generalized by the gauge transformation U = GTu

relating the displacement in the undeformed configuration U ∈ Ω to that in the de-

formed configuration u ∈ ω. The essential property is that the Lagrangian is invariant

under a gauge transformation. It has been shown [71] that the tensor G is related to

the tensor Q by

GT = ΛF−1Q. (7.9)

For the transformation to be fully defined one needs to specify at least two out of the

three tensors F , Q, and G. The following table summarizes the possible scenarios.

Consider a PM material for which the tensor Q is defined as

Q = Λ−1V . (7.10)
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Known Unknown

F (x),Q(x) G(x)
F (x),G(x) Q(x)

Table 7.1: Combinations of tensors required for transformation (7.9).

Since the rotation tensor is equal to R = I, from equation (7.2) the left stretch tensor

is V = F and Q becomes

Q = Λ−1F . (7.11)

The gauge transformation corresponding to this choice of F and Q is obtained by

substituting (7.11) into equation (7.9).

GT = I. (7.12)

This result suggests that the transformed displacements, u, will equal the physical

displacements, U . The particular form of equation (7.10) is chosen because it simplifies

equations (7.7). Substituting equation (7.10) into (7.7) yields

K = K0Λ and ρ = ρ0Λ
−1I. (7.13)

7.1.1 Example: A cylindrical PM cloak

In this subsection, the required properties of a cylindrical PM cloak are determined.

The polar coordinates in the undeformed configuration are (r, θ) with unit vectors

(~er, ~eθ). The radial position of a point in the undeformed and deformed configurations,

respectively, is given by the vectors

~X = R~er and ~x = r ~er. (7.14)

Note that the radial direction is kept the same. We will denote the derivative of r as

dr
dR = r′. Using this notation, the deformation gradient, as derived in Appendix B, is

given by

F = r′ ~er ~er +
r

R
~eθ ~eθ, or in matrix form

[
F

]
=


r

′ 0

0 r
R


 , (7.15)
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and its determinant is equal to

det (F ) = Λ =
rr′

R
. (7.16)

Substituting the value of Λ from equation (7.16) into equation (7.13)

K = K0
rr′

R
and ρr = ρθ = ρ0

R

rr′
. (7.17)

We can now determine the elasticity tensor, C, for this material. The general form

of C is

C = KQ⊗Q. (7.18)

Substituting Q = Λ−1F into equation (7.18), C becomes

C = K0Λ
−1F ⊗ F . (7.19)

Using equations (7.15) and (7.16), we can write equation (7.19) as

C =
K0

rr′

R

[(
r′
)2
~er ~er ~er ~er +

( r
R

) (
r′
)
~er ~er ~eθ ~eθ +

( r
R

) (
r′
)
~eθ ~eθ ~er ~er +

( r
R

)2
~eθ ~eθ ~eθ ~eθ

]

= K0

[(
Rr′

r

)
~er ~er ~er ~er + ~er ~er ~eθ ~eθ + ~eθ ~eθ ~er ~er +

( r

Rr′

)
~eθ ~eθ ~eθ ~eθ

]
.

(7.20)

Voigt notation is used to express the components of the elasticity tensor in matrix form.

The indices of the elasticity tensor are redefined such that ij → I and kl → J . This

change in notation is illustrated below.

ij =

⇓

I =

11 22 33 23, 32 13, 31 12, 21

⇓ ⇓ ⇓ ⇓ ⇓ ⇓

1 2 3 4 5 6

(7.21)

This matrix becomes

[
C

]
=




C11 C12 0 0 0 0

C12 C22 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 2C66




= K0




Rr′

r 1 0 0 0 0

1 r
Rr′ 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




. (7.22)
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There is no shear in a perfect PM material, thus the 2C66 term vanishes. As a matter

of fact, only one of the six eigenvalues of [C] is non-zero. The eigenvalues, C0
i , of the

elasticity matrix for this pentamode material are

C0
i =





K0

(
Rr′

r + r
Rr′

)
i = 1

0 i = 2, 3, 4, 5, 6.
(7.23)

The aim is to specify the material properties so that a rigid cylinder of radius a in

water covered by a PM layer of outer radius b looks like a smaller cylinder of radius a′

surrounded by a layer of water of thickness b− a′. This can be achieved with a linear

transformation is R→ r = AR−B, where the constants are

A =
b− a′

b− a
, B = b

a− a′

b− a
. (7.24)

Substituting into matrix (7.22) yields

C11 = C−1
22 =

AR

AR−B
=

r

r +B
. (7.25)

7.2 General equations with shear

Consider the general equilibrium equations with shear present. The equation is simi-

lar to Navier’s equation of elastodynamics except that the shear modulus will not be

assumed a constant. The components of the elasticity tensor are given by

Cijkl = KQijQkl + µ(δikδjl + δilδjk), (7.26)

where K is the position dependent bulk modulus of the PM cloak at zero shear and µ

is the shear modulus. An important point to make is that K behaves like Lame’s first

constant λ, but since the shear modulus affects the bulk modulus, µ must be added

to the diagonal elements of the elasticity matrix as is done in (7.26). The equilibrium

equations are

(Cijkluk,l),j + ρω2ui = 0. (7.27)

Substituting (7.26) into above yields

(
CPMijkl uk,l

)
,j
+ ρω2ui + (µ (ui,j + uj,i)),j = 0. (7.28)
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We know that without shear, the PM cloak “works” (recovers the scalar wave equa-

tion when transformed back to physical coordinates), so lets investigate how the last

term contributes to its performance. Distributing the derivative on the last term gives

(µ (ui,j + uj,i)),j = µ

(
∂2ui
∂xj∂xj

+
∂2uj
∂xi∂xj

)
+
∂µ

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
. (7.29)

Equation (7.29) is written in terms of the transformed space coordinates, xi . Instead,

we would like to rewrite it in terms of the physical coordinates X (the slow scale) as

well as the fast scale coordinates ξ, where ξ is defined as

ξ =
x

ε
, (7.30)

and ε is the perturbation parameter, yet to be defined. We can now apply equation

(7.30) to transform the shear term (7.28) from x to X and ξ coordinates. Note that

∂ξi
∂xj

= 1
ε δij and

∂Xk
∂xj

= F−1
kj . The first derivative is related as

∂

∂xj
= F−1

kj

∂

∂Xk
+

1

ε

∂

∂ξj
, (7.31)

and with some work it can be shown that the second derivative is

∂2

∂xi∂xj
=F−1

ni

∂(F−1
kj )

∂Xn

∂

∂Xk
+ F−1

ni F
−1
kj

∂2

∂Xn∂Xk
+

1

ε
F−1
ni

∂2

∂Xn∂ξj

+
1

ε

∂(F−1
kj )

∂ξi

∂

∂Xk
+

1

ε
F−1
kj

∂2

∂ξi∂Xk
+

1

ε2
∂2

∂ξi∂ξj

=
1

ε2
∂2

∂ξi∂ξj
+

1

ε

(
F−1
ni

∂2

∂Xn∂ξj
+ F−1

kj

∂2

∂ξi∂Xk
+
∂(F−1

kj )

∂ξi

∂

∂Xk

)

+ F−1
ni

(
∂(F−1

kj )

∂Xn

∂

∂Xk
+ F−1

kj

∂2

∂Xn∂Xk

)
.

(7.32)

and since the deformation gradient (Jacobian of the transformation function) varies on

the scale of X,
∂Fij

∂ξi
= 0, and we get

∂2

∂xi∂xj
=

1

ε2
∂2

∂ξi∂ξj
+

1

ε

(
F−1
ni

∂2

∂Xn∂ξj
+ F−1

kj

∂2

∂ξi∂Xk

)

+ F−1
ni

(
∂(F−1

kj )

∂Xn

∂

∂Xk
+ F−1

kj

∂2

∂Xn∂Xk

)
.

(7.33)
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Applying the derivative relations (7.31) and (7.33) to the shear term in (7.29) yields

(µ (ui,j + uj,i)),j =

µ

ε2

(
∂2ui
∂ξj∂ξj

+
∂2uj
∂ξi∂ξj

)
+
µ

ε

(
2F−1

kj

∂2ui
∂Xk∂ξj

+ F−1
ni

∂2uj
∂Xn∂ξj

+ F−1
kj

∂2uj
∂Xk∂ξi

)

+ µ

(
F−1
nj

∂(F−1
kj )

∂Xn

∂ui
∂Xk

+ F−1
ni

∂(F−1
kj )

∂Xn

∂uj
∂Xk

+ F−1
nj F

−1
kj

∂2ui
∂Xn∂Xk

+ F−1
ni F

−1
kj

∂2uj
∂Xn∂Xk

)

+
1

ε

(
∂µ

∂xj

)(
∂ui
∂ξj

+
∂uj
∂ξi

)
+

(
∂µ

∂xj

)(
F−1
kj

∂ui
∂Xk

+ F−1
ki

∂uj
∂Xk

)
.

(7.34)

Note that the shear modulus µ is a physical property of the cloak and is therefore

a function of the physical coordinates X. Since we are interested in analysing the

equilibrium equations for small values of µ, let us define it as follows

µ = ε2µ̄(X), (7.35)

where ε is the perturbation parameter such that ε≪ 1. We can now relate the derivative

of µ, ∂µ
∂xj

, as follows

∂µ

∂xj
= F−1

kj

∂µ

∂Xk
= ε2F−1

kj

∂µ̄(X)

∂Xk
. (7.36)

Substituting equation (7.36) into equation (7.34) yields the shear term as

(µ (ui,j + uj,i)),j =

µ̄

(
∂2ui
∂ξj∂ξj

+
∂2uj
∂ξi∂ξj

)
+ εµ̄

(
2F−1

kj

∂2ui
∂Xk∂ξj

+ F−1
ni

∂2uj
∂Xn∂ξj

+ F−1
kj

∂2uj
∂Xk∂ξi

)

+ ε2µ̄

(
F−1
nj

∂(F−1
kj )

∂Xn

∂ui
∂Xk

+ F−1
ni

∂(F−1
kj )

∂Xn

∂uj
∂Xk

+ F−1
nj F

−1
kj

∂2ui
∂Xn∂Xk

+ F−1
ni F

−1
kj

∂2uj
∂Xn∂Xk

)

+ ε

(
F−1
kj

∂µ̄

∂Xk

)(
∂ui
∂ξj

+
∂uj
∂ξi

)
+ ε2

(
F−1
mj

∂µ̄

∂Xm

)(
F−1
kj

∂ui
∂Xk

+ F−1
ki

∂uj
∂Xk

)
.

(7.37)

At this point we can expand the displacements as a series in ε leading to

ui(X, ξ) = u
(0)
i (X, ξ) + εu

(1)
i (X, ξ) + ε2u

(2)
i (X, ξ) + . . . (7.38)

as well as the shear contribution

(µ (ui,j + uj,i)),j = s(0) + εs(1) + ε2s(2) + . . . (7.39)
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Substituting expansion (7.38) into the shear term (7.37) yields the zeroth order term

s(0) as

s(0) = µ̄

(
∂2u

(0)
i

∂ξj∂ξj
+
∂2u

(0)
j

∂ξi∂ξj

)
, (7.40)

the first order term s(1) as

s(1) = µ̄

(
∂2u

(1)
i

∂ξj∂ξj
+
∂2u

(1)
j

∂ξi∂ξj

)
+ F−1

kj

∂µ̄

∂Xk

(
∂u

(0)
i

∂ξj
+
∂u

(0)
j

∂ξi

)

+ µ̄

(
2F−1

kj

∂2u
(0)
i

∂Xk∂ξj
+ F−1

ni

∂2u
(0)
j

∂Xn∂ξj
+ F−1

kj

∂2u
(0)
j

∂Xk∂ξi

)
,

(7.41)

and the second order term s(2) as

s(2) = µ̄

(
∂2u

(2)
i

∂ξj∂ξj
+
∂2u

(2)
j

∂ξi∂ξj

)
+ F−1

kj

∂µ̄

∂Xk

(
∂u

(1)
i

∂ξj
+
∂u

(1)
j

∂ξi

)

+ µ̄

(
2F−1

kj

∂2u
(1)
i

∂Xk∂ξj
+ F−1

ni

∂2u
(1)
j

∂Xn∂ξj
+ F−1

kj

∂2u
(1)
j

∂Xk∂ξi

)

+ µ̄

(
F−1
nj

∂(F−1
kj )

∂Xn

∂u
(0)
i

∂Xk
+ F−1

ni

∂(F−1
kj )

∂Xn

∂u
(0)
j

∂Xk

+ F−1
nj F

−1
kj

∂2u
(0)
i

∂Xn∂Xk
+ F−1

ni F
−1
kj

∂2u
(0)
j

∂Xn∂Xk

)

+ F−1
mj

∂µ̄

∂Xm

(
F−1
kj

∂u
(0)
i

∂Xk
+ F−1

ki

∂u
(0)
j

∂Xk

)
.

(7.42)

7.3 Helmholtz’s decomposition

According to Helmholtz’s theory, a vector field can be decomposed into the sum of a

curl free vector field φ and a divergence free vector field ψ if it is smooth and decays

fast. This allows us to express the displacements u(0) as

u(0)(X, ξ) = u(0L)(X) + u(0T )(ξ), (7.43)

where the longitudinal and transverse components are defined as

u(0L) = ∇Xφ(X) and u(0T ) = ∇ξ ∧ ψ(ξ). (7.44)

Consequently, the components of the displacement vector are

u
(0)
i =

∂φ(X)

∂Xi
+ eij3

∂ψ(ξ)

∂ξj
, (7.45)
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which in 2D gives

u
(0)
1 =

∂φ(X)

∂X1
+
∂ψ(ξ)

∂ξ2
and u

(0)
2 =

∂φ(X)

∂X2
− ∂ψ(ξ)

∂ξ1
. (7.46)

7.3.1 Zeroth order equation

Substituting the displacement (7.45) into the zeroth order shear contribution (7.40)

yields

s(0) = µ̄

(
ein3

∂3ψ

∂ξn∂ξj∂ξj
+ ejk3

∂3ψ

∂ξk∂ξi∂ξj

)
. (7.47)

In 2D Cartesian coordinates the above equation becomes

s(0) = µ̄

(
∂

∂ξ2
∇2
ξ(ψ)~e1 −

∂

∂ξ1
∇2
ξ(ψ)~e2

)
. (7.48)

Substituting back into equation (7.28) yields the O (1) equilibrium equation as

(
F−1
jn

∂

∂Xn

(
CPMijkl F

−1
jm

∂2φ

∂Xm∂Xk

)
+ ρω2 ∂φ

∂Xi

)
~ei

+
∂

∂ξ2

(
µ̄∇2

ξ(ψ) + ρω2ψ
)
~e1 −

∂

∂ξ1

(
µ̄∇2

ξ(ψ) + ρω2ψ
)
~e2 = 0, (7.49)

where we have assumed that µ and ρ are not functions of ξ. For a pentamode material

without shear the equilibrium equation in the physical coordinates simplifies to the

scalar acoustic wave equation, therefore equation (7.49) will take on the following form

∂

∂Xi

(
K0∇2

X(φ) + ρ0ω
2φ
)
~ei

+
∂

∂ξ2

(
µ0∇2

ξ(ψ) + ρ0ω
2ψ
)
~e1 −

∂

∂ξ1

(
µ0∇2

ξ(ψ) + ρ0ω
2ψ
)
~e2 = 0, (7.50)

where µ0 = ρ−1ρ0µ̄ =, ρ0 is the density of the background fluid, and K0 is its bulk

modulus. This yields the equations for the longitudinal and transverse displacement

potentials, respectively, as

K0∇2
X(φ) + ρ0ω

2φ = constant,

µ0∇2
ξ(ψ) + ρ0ω

2ψ = constant.

(7.51)
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7.3.2 First order equation

We can also decompose the second term in the expansion (7.38), by defining two new

potential functions, φ(1) and ψ(1) as

u
(1)
i =

∂φ(1)(X)

∂Xi
+ eij3

∂ψ(1)(ξ)

∂ξj
(7.52)

Substituting equations (7.45) and (7.52) into the first order equation (7.41) yields

s(1) = µ̄

[
∂

∂ξ2
∇2
ξ(ψ

(1))~e1 −
∂

∂ξ1
∇2
ξ(ψ

(1))~e2

]

+ F−1
kj

∂µ̄

∂Xk

[(
∂2ψ(0)

∂ξj∂ξ2
− ∂2ψ(0)

∂ξ21
δj2 +

∂2ψ(0)

∂ξ1∂ξ2
δj1

)
~e1

+

(
− ∂2ψ(0)

∂ξj∂ξ1
− ∂2ψ(0)

∂ξ1∂ξ2
δj2 +

∂2ψ(0)

∂ξ22
δj1

)
~e2

]
,

(7.53)

where all of the cross derivatives disappear since both φ and ψ depend only on one of the

variables. If we assume that the shear modulus is µ = µ(X1) and that the deformation

gradient is diagonal, Fij = 0 ∀ i 6= j, then equation (7.53) simplifies to

s(1) =

[
µ̄
∂

∂ξ2
∇2
ξ(ψ

(1)) + 2F−1
11

∂µ̄

∂X1

∂2ψ(0)

∂ξ1∂ξ2

]
~e1

+

[
−µ̄ ∂

∂ξ1
∇2
ξ(ψ

(1)) + F−1
11

∂µ̄

∂X1

(
−∂

2ψ(0)

∂ξ21
+
∂2ψ(0)

∂ξ22

)]
~e2.

(7.54)

Substituting the above result back into equation (7.28) yields

∂

∂Xi

[
K0∇2

X(φ
(1)) + ρ0ω

2φ(1)
]
~ei

+

[
∂

∂ξ2

(
µ0∇2

ξ(ψ
(1)) + ρ0ω

2ψ(1)
)
+ 2ρ−1ρ0F

−1
11

∂µ̄

∂X1

∂2ψ(0)

∂ξ1∂ξ2

]
~e1

−
[
∂

∂ξ1

(
µ0∇2

ξ(ψ
(1)) + ρ0ω

2ψ(1)
)
+ ρ−1ρ0F

−1
11

∂µ̄

∂X1

(
∂2ψ(0)

∂ξ21
− ∂2ψ(0)

∂ξ22

)]
~e2 = 0,

(7.55)

which gives the following three equations to be solved for the functions φ(1) and ψ(1).

K0∇2
X(φ

(1)) + ρ0ω
2φ(1) = constant,

∂

∂ξ2

(
µ0∇2

ξ(ψ
(1)) + ρ0ω

2ψ(1)
)
= −2ρ−1ρ0F

−1
11

∂µ̄

∂X1

∂2ψ(0)

∂ξ1∂ξ2
,

∂

∂ξ1

(
µ0∇2

ξ(ψ
(1)) + ρ0ω

2ψ(1)
)
= −ρ−1ρ0F

−1
11

∂µ̄

∂X1

(
∂2ψ(0)

∂ξ21
− ∂2ψ(0)

∂ξ22

)
.

(7.56)
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Note that the functions φ(0) and ψ(0) are solutions of equation (7.51). Furthermore, if

∂
∂x2

= ∂
∂X2

→ ∂
∂ξ2

= 0, then equations (7.56) simplify to

K0∇2
X(φ

(1)) + ρ0ω
2φ(1) = constant,

µ0∇2
ξ(ψ

(1)) + ρ0ω
2ψ(1) = −ρ−1ρ0F

−1
11

∂µ̄

∂X1

∂ψ(0)

∂ξ1
+ constant.

(7.57)

7.3.3 Second order equation

It can be shown that the equilibrium equation of order ε2 takes the following form

∂

∂Xi

[
K0∇2

X(φ
(2)) + ρ0ω

2φ(2)
]
~ei

+

[
∂

∂ξ2

(
µ0∇2

ξ(ψ
(2)) + ρ0ω

2ψ(2)
)
+ 2ρ−1ρ0F

−1
11

∂µ̄

∂X1

∂2ψ(1)

∂ξ1∂ξ2

]
~e1

−
[
∂

∂ξ1

(
µ0∇2

ξ(ψ
(2)) + ρ0ω

2ψ(2)
)
+ ρ−1ρ0F

−1
11

∂µ̄

∂X1

(
∂2ψ(1)

∂ξ21
− ∂2ψ(1)

∂ξ22

)]
~e2

+ µ0

(
F−1
nj

∂(F−1
kj )

∂Xn

∂2φ(0)

∂Xk∂Xi
+ F−1

ni

∂(F−1
kj )

∂Xn

∂2φ(0)

∂Xk∂Xj

+ F−1
nj F

−1
kj

∂3φ(0)

∂Xn∂Xk∂Xi
+ F−1

ni F
−1
kj

∂3φ(0)

∂Xn∂Xk∂Xj

)
~ei

+ ρ−1ρ0F
−1
mj

∂µ̄

∂Xm

(
F−1
kj

∂2φ(0)

∂Xk∂Xi
+ F−1

ki

∂2φ(0)

∂Xk∂Xj

)
~ei

(7.58)

The above is satisfied if

∂

∂Xi

(
K0∇2

X(φ
(2)) + ρ0ω

2φ(2)
)
= fi(X)

∂

∂ξ2

(
µ0∇2

ξ(ψ
(2)) + ρ0ω

2ψ(2)
)
= g(X, ξ)

∂

∂ξ1

(
µ0∇2

ξ(ψ
(2)) + ρ0ω

2ψ(2)
)
= h(X, ξ)

(7.59)
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where

fi(X) = −µ0
(
F−1
nj

∂(F−1
kj )

∂Xn

∂2φ(0)

∂Xk∂Xi
+ F−1

ni

∂(F−1
kj )

∂Xn

∂2φ(0)

∂Xk∂Xj

+ F−1
nj F

−1
kj

∂3φ(0)

∂Xn∂Xk∂Xi
+ F−1

ni F
−1
kj

∂3φ(0)

∂Xn∂Xk∂Xj

)

− ρ−1ρ0F
−1
mj

∂µ̄

∂Xm

(
F−1
kj

∂2φ(0)

∂Xk∂Xi
+ F−1

ki

∂2φ(0)

∂Xk∂Xj

)
,

g(X, ξ) = −2ρ−1ρ0F
−1
11

∂µ̄

∂X1

∂2ψ(1)

∂ξ1∂ξ2
,

h(X, ξ) = −ρ−1ρ0F
−1
11

∂µ̄

∂X1

(
∂2ψ(1)

∂ξ21
− ∂2ψ(1)

∂ξ22

)
.

(7.60)

As a result, equations (7.51), (7.56) and (7.59) form a set to be solved for the

six potentials φ(0), φ(1), φ(2), ψ(0), ψ(1), ψ(2) illuminating the contribution of shear up to

order ε2.

7.4 Effect of shear on a 2D rectilinear PM cloak

x1

x2

b

a

ρ,K,μ

ρ0,K0

θ

Figure 7.1: 2D PM cloak with a non-zero shear modulus.

Consider the PM slab of thickness b at a distance (a − b) from a rigid surface as

shown in Figure 7.1. The transformation to necessary to cloak the region below the

slab yields the deformation gradient

F =


x

′ 0

0 1


 , (7.61)

where x′ = dx1
dX1

= b
a for this example and the (x1, x2) and (X1,X2) coordinate sys-

tems are coincident. Using equation (7.19), the elasticity tensor is defined as CPM =
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K0Λ
−1F ⊗ F , where the non-zero components are

CPM11 = K0x
′ + 2µ,

CPM12 = CPM21 = K0,

CPM22 = K0
1

x′
+ 2µ.

(7.62)

Note that a shear modulus has been included in the diagonal terms. The required

isotropic density follows from equation (7.13)

ρx1 = ρx2 = ρ =
ρ0
x′
. (7.63)

In order to solve equations (7.51), (7.56) and (7.59) for this example, the boundary

conditions need to be specified. To apply the boundary conditions, the normal and

shear stresses need to be expressed in terms of the potential functions φ and ψ in the

(x1,x2) coordinates.

7.4.1 Perturbed normal stress

Using (7.62), the normal stress in the x1 direction at a point x0 is given by

σ11

∣∣∣∣
x=x0

= CPM11

∂u1
∂x1

+ CPM12

∂u2
∂x2

+ 2µ
∂u1
∂x1

∣∣∣∣
x=x0

,

= K0x
′∂u1
∂x1

+K0
∂u2
∂x2

+ 2µ
∂u1
∂x1

∣∣∣∣
x=x0

.

(7.64)

Substituting the shear expression (7.35) into above as well as changing variables ac-

cording to (7.31) yields

σ11

∣∣∣∣
x=x0

=
1

ε

(
K0x

′∂u1
∂ξ1

+K0
∂u2
∂ξ2

)
+

(
K0x

′F−1
1k

∂u1
∂Xk

+K0F
−1
2m

∂u2
∂Xm

)

+ ε

(
2µ̄
∂u1
∂ξ1

)
+ ε2

(
2µ̄F−1

1n

∂u1
∂Xn

) ∣∣∣∣
x=x0

. (7.65)

At this stage, to simplify the analysis assume the following dependence on the transverse

variables.

∂()

∂X2
= ik2(),

∂()

∂ξ2
= iεk2(), (7.66)
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where k2 is the wavevector in the x2 direction. Then, decomposing the displacements

in terms of the potential functions φ(X1,X2) and ψ(ξ1, ξ2) yields

u
(i)
1 =

∂φ(i)

∂X1
+
∂ψ(i)

∂ξ2
=
∂φ(i)

∂X1
+ iεk2ψ

(i),

u
(i)
2 =

∂φ(i)

∂X2
− ∂ψ(i)

∂ξ1
= ik2φ

(i) − ∂ψ(i)

∂ξ1
,

(7.67)

where the superscript (i) denotes the order of ε from expansion (7.38). Substituting

equations (7.67) into equation (7.65) and combining terms of the same order of ε yields

the components of the normal stress as

O (1) →K0(x
′ − 1)ik2

∂ψ(0)

∂ξ1
+ k0

(
∂2φ(0)

∂X1
2 − k22φ

(0)

)∣∣∣∣
x=x0

,

O(ε) →K0(x
′ − 1)ik2

∂ψ(1)

∂ξ1
+ k0

(
∂2φ(1)

∂X1
2 − k22φ

(1)

)∣∣∣∣
x=x0

,

O(ε2) →K0(x
′ − 1)ik2

∂ψ(2)

∂ξ1
+ k0

(
∂2φ(2)

∂X1
2 − k22φ

(2)

)

+ 2µ̄

(
ik2

∂ψ(0)

∂ξ1
+ F−1

11

∂2φ(0)

∂X1
2

)∣∣∣∣
x=x0

.

(7.68)

7.4.2 Perturbed shear stress

Now using (7.62), the shear stress at some point x0 within the cloak is given by

σ12

∣∣∣∣
x=x0

= 2C66ε12

∣∣∣∣
x=x0

= µ

(
∂u2
∂x1

+
∂u1
∂x2

) ∣∣∣∣
x=x0

. (7.69)

Changing variables according to (7.31) and using definition (7.35) yields

σ12

∣∣∣∣
x=x0

= εµ̄

(
∂u2
∂ξ1

+
∂u1
∂ξ2

)
+ ε2µ̄

(
F−1
1k

∂u2
∂Xk

+ F−1
2k

∂u1
∂Xk

) ∣∣∣∣
x=x0

. (7.70)

If we now decompose the displacements as was done in the previous section (equation

(7.67)), we get the following expressions for the shear stress expansion in ε

O(ε) → −µ̄∂
2ψ(0)

∂ξ1
2

∣∣∣∣
x=x0

,

O(ε2) → −µ̄∂
2ψ(1)

∂ξ1
2 + µ̄

(
F−1
11 + 1

)
ik2

∂φ(0)

∂X1

∣∣∣∣
x=x0

,

O(ε3) → −µ̄∂
2ψ(2)

∂ξ1
2 + µ̄

(
F−1
11 + 1

)
ik2

∂φ(1)

∂X1
− µ̄k22ψ

(0)

∣∣∣∣
x=x0

.

(7.71)

There is no shear stress term of order O(1), which is expected.
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7.4.3 Boundary conditions and potentials

In this section the potential functions that satisfy equations (7.51) in the domain of

Figure 7.1 will be determined. The incident plane wave, which is defined by the angle

θ, has the following potential function

φi(x1, x2) = A0e
ik(−x1 sin(θ)+x2 cos(θ))

= A0e
i(−k1x1+k2x2), x1 > 0, −∞ < x2 <∞,

(7.72)

where k1 = k cos(θ), k2 = k sin(θ), k = ω
c0
, and c0 =

√
K0
ρ0

. Similarly the reflected wave

is defined by

φs(x1, x2) = Rei(k1x1+k2x2), x1 > 0, −∞ < x2 <∞, (7.73)

where R is a yet to be determined constant. Therefore the potential above the cloaked

region is given as the sum of incident and reflected wave potentials.

φ = φi + φs, x1 > 0. (7.74)

The pressure distribution above the cloak is given by

pi + ps = K0∇
2
x (φi + φs) , x1 > 0,

= −K0k
2 (φi + φs) , x1 > 0.

(7.75)

We are interested in determining the potential field inside the cloak. To do so let

us assume that the potential functions in 2D Cartesian coordinates have the following

form

φ(X1,X2) =
(
A1e

iγ1X1 +A2e
−iγ1X1

)
eik2X2 , 0 < X1 < −a, −∞ < X2 <∞,

ψ(ξ1, ξ2) =
(
B1e

iβ1ξ1 +B2e
−iβ1ξ1

)
eik2εξ2 , 0 < εξ1 < −b, −∞ < εξ2 <∞.

(7.76)

Therefore the variation of ψ with ξ2,
∂ψ
∂ξ2

= iεk2ψ, is of higher order ε than its variation

with ξ1. Consequently, the zeroth order equilibrium equations (7.51) have the form

K0∇2
X(φ) + ρ0ω

2φ = constant,

µ0
∂2ψ

∂ξ1
2 + ρ0ω

2ψ = constant.
(7.77)
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The wave numbers are determined by substituting expressions (7.76) back into equa-

tions (7.77), which gives

K0(−γ21 − k22) + ρ0ω
2 = 0 =⇒ γ1 =

√
ρ0ω2

K0
− k22 =⇒ γ1 = k cos(θ) = k1,

µ0(−β21) + ρ0ω
2 = 0 =⇒ β1 =

√
ρ0ω2

µ0
=⇒ β1 = k

√
K0

µ0
.

(7.78)

From equations (7.73) and (7.75), wee see that this problem has five unknown constants:

A1, A2, B1, B2, and R. Therefore we need at least five boundary conditions to solve

for them. At x1,X1 = 0, the boundary conditions are

σ11

∣∣∣∣
x1=0

= −(pi + ps)

∣∣∣∣
x1=0

,

σ12

∣∣∣∣
x1=0

= 0,

u1

∣∣∣∣
x1=0−

= u1

∣∣∣∣
x1=0+

.

(7.79)

The bottom surface of the slab at x1 = −b,X1 = −a will be taken as rigid, this yields

the following boundary conditions

u1

∣∣∣∣
x1=−b

= 0,

u2

∣∣∣∣
x1=−b

= 0.

(7.80)

Lets take a closer look a the first boundary condition on σ11. Expanding the right

hand side in terms of ε yields

σ11 = −(pi + ps) + 0 · ε+ 0 · ε2 + ..., (7.81)

where pi+ps = −K0k
2 (φi + φs). Comparing equation (7.81) with equation (7.68) gives
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the following boundary conditions

K0

(
b

a
− 1

)
ik2

∂ψ(0)

∂ξ1
+K0

(
∂2φ(0)

∂X1
2 − k22φ

(0)

)∣∣∣∣
ξ1=0,X1=0

= −K0k
2
(
φ
(0)
i + φ(0)s

) ∣∣∣∣
x1=0

,

K0

(
b

a
− 1

)
ik2

∂ψ(1)

∂ξ1
+K0

(
∂2φ(1)

∂X1
2 − k22φ

(1)

)∣∣∣∣
ξ1=0,X1=0

= −K0k
2φ(1)s

∣∣∣∣
x1=0

,

K0

(
b

a
− 1

)
ik2

∂ψ(2)

∂ξ1
+K0

(
∂2φ(2)

∂X1
2 − k22φ

(2)

)

+ 2µ̄

(
ik2

∂ψ(0)

∂ξ1
+ F−1

11

∂2φ(0)

∂X1
2

) ∣∣∣∣
ξ1=0,X1=0

= −K0k
2φ(2)s

∣∣∣∣
x1=0

,

(7.82)

where x′ = b
a has been used. Applying the same procedure to σ12 gives us

− µ̄
∂2ψ(0)

∂ξ1
2

∣∣∣∣
ξ1=0

= 0,

− µ̄
∂2ψ(1)

∂ξ1
2 + µ̄

(a
b
+ 1
)
ik2

∂φ(0)

∂X1

∣∣∣∣
ξ1=0,X1=0

= 0,

− µ̄
∂2ψ(2)

∂ξ1
2 + µ̄

(a
b
+ 1
)
ik2

∂φ(1)

∂X1
− µ̄k22ψ

(0)

∣∣∣∣
ξ1=0,X1=0

= 0,

(7.83)

The three boundary conditions on the displacements must also be decomposed in

orders of ε. The condition u1

∣∣∣∣
x1=0−

= u1

∣∣∣∣
x1=0+

becomes

∂φ(0)

∂X1

∣∣∣∣
X1=0

=
∂

∂x1

(
φ
(0)
i + φ(0)s

) ∣∣∣∣
x1=0

,

∂φ(1)

∂X1
+ ik2ψ

(0)

∣∣∣∣
ξ1=0,X1=0

=
∂φ

(1)
s

∂x1

∣∣∣∣
x1=0

,

∂φ(2)

∂X1
+ ik2ψ

(1)

∣∣∣∣
ξ1=0,X1=0

=
∂φ

(2)
s

∂x1

∣∣∣∣
x1=0

,

(7.84)

The boundary condition u1

∣∣∣∣
ξ1=−b/ε,X1=−a

= 0 takes the form

∂φ(0)

∂X1

∣∣∣∣
X1=−a

= 0,

∂φ(1)

∂X1
+ ik2ψ

(0)

∣∣∣∣
ξ1=−b/ε,X1=−a

= 0,

∂φ(2)

∂X1
+ ik2ψ

(1)

∣∣∣∣
ξ1=−b/ε,X1=−a

= 0,

(7.85)
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Lastly, the condition u2

∣∣∣∣
ξ1=−b/ε,X1=−a

= 0

ik2φ
(0) − ∂ψ(0)

∂ξ1

∣∣∣∣
ξ1=−b/ε,X1=−a

= 0,

ik2φ
(1) − ∂ψ(1)

∂ξ1

∣∣∣∣
ξ1=−b/ε,X1=−a

= 0,

ik2φ
(2) − ∂ψ(2)

∂ξ1

∣∣∣∣
ξ1=−b/ε,X1=−a

= 0,

(7.86)

7.4.4 Zeroth order solution in ε

Substituting equations (7.76) into equation (7.82), (7.83), (7.84), (7.85), and (7.86)

yields the following five equations.

−K0

(
b

a
− 1

)
k2β1(B1 −B2)e

iεk2ξ2 −K0

(
γ21 + k22

)
(A1 +A2)e

ik2X2 = −K0k
2 (A0 +R) eik2x2 ,

µ̄β21(B1 +B2)e
ik2εξ2 = 0,

iγ1(A1 −A2)e
ik2X2 = ik1(−A0 +R)eik2x2 ,

iγ1(A1e
−iγ1a −A2e

iγ1a)eik2X2 = 0,

ik2(A1e
−iγ1a +A2e

iγ1a)eik2X2 − iβ1(B1e
−iβ1 b

ε −B2e
iβ1

b
ε )eik2εξ2 = 0,

(7.87)

However, from the deformation gradient (7.61) and definition (7.30) we see that

X2 = x2 = εξ2, (7.88)

which allows us to cancel the exponential terms in equations (7.87). Also note that

γ21 + k22 = k2 and γ1 = k1. After some simplification, the resulting set of equations is

−k2(A1 +A2)−
(
b

a
− 1

)
k2β1(B1 −B2) + k2R = −k2A0,

B1 +B2 = 0,

A1 −A2 −R = −A0,

A1e
−iγ1a −A2e

iγ1a = 0,

k2(A1e
−iγ1a +A2e

iγ1a)− β1(B1e
−iβ1 b

ε −B2e
iβ1

b
ε ) = 0,

(7.89)
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Putting the above equations in matrix form yields




−k2 −k2 −
(
b
a − 1

)
k2β1

(
b
a − 1

)
k2β1 k2

0 0 1 1 0

1 −1 0 0 −1

e−iγ1a −eiγ1a 0 0 0

k2e
−iγ1a k2e

iγ1a −β1e−iβ1
b
ε β1e

iβ1
b
ε 0







A1

A2

B1

B2

R




= A0




−k2

0

−1

0

0




,

[D][a] = [b],

(7.90)

where the determinant of the matrix of coefficients is

det[D] = 4β1

(
cos(β1

b

ε
)e−ik1a +

(
b

a
− 1

)
sin2(θ)

)
. (7.91)

We can see that the matrix of coefficients looses rank if the following equations are

simultaneously satisfied

cos

(
β1
b

ε

)
+

(
b

a
− 1

)
sin2(θ) cos(k1a) = 0,

sin(k1a) = 0.

(7.92)

From the second equation in (7.92) we have that k1a = nπ ∀n = 0, 1, 2.... Substituting

this into the first equation in (7.92) gives

ε =
β1b

arccos
((
1− b

a

)
sin2(θ)

)
+ 2πn

∀n = 0, 1, 2... (7.93)

where we have only allowed positive values for ε. If, for example, a = 2b = 1 and the

incident wave is at a 45 degree angle, then condition (7.93) becomes

ε = β1

(
1

2
arccos

(
1

4

)
+ 2πn

)−1

≈ β1
2.6362 + 2πn

, (7.94)
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Solving matrix equation (7.90) gives the coefficients as

A1

A0
=

cos(β1
b
ε)e

ik12a

cos(β1
b
ε) +

(
b
a − 1

)
sin2(θ)eik1a

,

A2

A0
=

cos(β1
b
ε)

cos(β1
b
ε) +

(
b
a − 1

)
sin2(θ)eik1a

,

B1

A0
=

√
µ0
K0

sin(θ)eik1a

cos(β1
b
ε) +

(
b
a − 1

)
sin2(θ)eik1a

,

B2

A0
=

−
√

µ0
K0

sin(θ)eik1a

cos(β1
b
ε) +

(
b
a − 1

)
sin2(θ)eik1a

,

R

A0
=

cos(β1
b
ε)e

ik12a +
(
b
a − 1

)
sin2(θ)eik1a

cos(β1
b
ε) +

(
b
a − 1

)
sin2(θ)eik1a

.

(7.95)

Note that the denominator of the coefficients is the determinant of the coefficient matrix

and therefore has singular values.

In order to check the validity of equations (7.95) we need to show that the coefficients

approach the shear-free solution as ε tends to zero. If no shear is present, we only need

to solve for the constants A1, A2, andR so that the second and fifth boundary conditions

will not be used. The resulting matrix equation is




−1 −1 1

1 −1 −1

e−iγ1a −eiγ1a 0







A1

A2

R



= A0




−1

−1

0



. (7.96)

The shear-free solution becomes
A1

A0
= eiγ12a,

A2

A0
= 1,

R

A0
= eiγ12a.

(7.97)



122

7.4.5 First order solution in ε

The first order equilibrium equation has the form

x1 → ∂

∂X1

(
∇2
X(φ

(1)) + ρ0ω
2φ(1)

)
+ ik2

(
µ0
∂2ψ(0)

∂ξ1
2 + ρ0ω

2ψ(0)

)
= 0,

x2 → ∂

∂X2

(
∇2
X(φ

(1)) + ρ0ω
2φ(1)

)
− ∂

∂ξ1

(
µ0
∂2ψ(1)

∂ξ1
2 + ρ0ω

2ψ(1)

)

− F−1
11

∂µ̄

∂X1
ρ0ρ

−1∂
2ψ(0)

∂ξ1
2 = 0.

(7.98)

Note that the shear term in the x1 equation is already satisfied by the zeroth order

solution. Therefore the equations for φ(1) and ψ(1) are

K0∇2
X(φ

(1)) + ρ0ω
2φ(1) = 0,

∂

∂ξ1

(
µ0
∂2ψ(1)

∂ξ1
2 + ρ0ω

2ψ(1)

)
= − ∂

∂ξ1

(
F−1
11

∂µ̄

∂X1
ρ0ρ

−1 ∂ψ
(0)

∂ξ1

)
.

(7.99)

The solution for φ(1) is

φ(1)(X1,X2) =
(
A

(1)
1 eiγ1X1 +A

(1)
2 e−iγ1X1

)
eik2X2 , γ1 = k1. (7.100)

As we have done before, the following dependence on ξ2 will be assumed, ψ(i) =

ψ̄(i)(ξ1)e
iεk2ξ2 . This allows us to rewrite the equilibrium equation for ψ(1) as

d2ψ̄(1)

dξ1
2 + β21 ψ̄

(1) = −
(
a

b

1

µ̄

∂µ̄

∂X1

)
iβ1

(
B

(0)
1 eiβ1ξ1 −B

(0)
2 e−iβ1ξ1

)
+ constant, (7.101)

where β1 =
√

ρ0ω2

µ0
, µ0 = ρ−1ρ0µ̄, F

−1
11 = a

b , and ψ(0) is given by equation (7.76).

Taking the constant as zero, the solution for ψ(1) is the sum of the homogeneous and

particular solutions as

ψ(1)(ξ1, ξ2) =
(
B

(1)
1 eiβ1ξ1 +B

(1)
2 e−iβ1ξ1

)
eiεk2ξ2

+ q(X1)
(
D1(ξ1)e

iβ1ξ1 +D2(ξ1)e
−iβ1ξ1

)
eiεk2ξ2 .

(7.102)

with

q(X1) =
1

4iβ1

a

b

1

µ̄

∂µ̄

∂X1
,

D1(ξ1) =
(
B

(0)
1 −B

(0)
2 − 2iβ1B

(0)
1 ξ1

)
,

D2(ξ1) =
(
B

(0)
1 −B

(0)
2 − 2iβ1B

(0)
2 ξ1

)
.

(7.103)
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Let us also expand the reflection coefficient in powers of ε as

R = R(0) + εR(1) + ε2R(2) + ... (7.104)

which gives the reflected wave of order ε as

φ(1)s (x1, x2) = R(1)ei(k1x1+k2x2), x1 > 0, −∞ < x2 <∞, (7.105)

Once again, the problem is to determine the five constant coefficients, which are:

A
(1)
1 , A

(1)
2 , B

(1)
1 , B

(1)
2 , and R(1). The five boundary conditions on the solution of order

ε are

K0

(
b

a
− 1

)
ik2

∂ψ(1)

∂ξ1
+K0

(
∂2φ(1)

∂X1
2 − k22φ

(1)

) ∣∣∣∣
ξ1=0,X1=0

= −K0k
2φ(1)s

∣∣∣∣
x1=0

,

−µ̄∂
2ψ(1)

∂ξ1
2 + µ̄

(a
b
+ 1
)
ik2

∂φ(0)

∂X1

∣∣∣∣
ξ1=0,X1=0

= 0,

∂φ(1)

∂X1
+ ik2ψ

(0)

∣∣∣∣
ξ1=0,X1=0

=
∂φ

(1)
s

∂x1

∣∣∣∣
x1=0

,

∂φ(1)

∂X1
+ ik2ψ

(0)

∣∣∣∣
ξ1=−b/ε,X1=−a

= 0,

ik2φ
(1) − ∂ψ(1)

∂ξ1

∣∣∣∣
ξ1=−b/ε,X1=−a

= 0,

(7.106)

Substituting equations (7.76), (7.100), (7.102), (7.105) into above and simplifying yields

(
b

a
− 1

)
ik2

(
iβ1

(
B

(1)
1 +B

(1)
2

)
− 2q(0)iβ1

(
B

(0)
1 +B

(0)
2

))

−k2
(
A

(1)
1 +A

(1)
2

)
= −k2R(1),

β21

(
B

(1)
1 +B

(1)
2

)
+ 2q(0)β21

(
−B(0)

1 +B
(0)
2

)
−
(a
b
+ 1
)
k1k2

(
A

(0)
1 −A

(0)
2

)
= 0,

ik1

(
A

(1)
1 −A

(1)
2

)
+ ik2

(
B

(0)
1 +B

(0)
2

)
= ik1R

(1),

ik1

(
A

(1)
1 e−ik1a −A

(1)
2 eik1a

)
+ ik2

(
B

(0)
1 e−iβ1

b
ε +B

(0)
2 eiβ1

b
ε

)
= 0,

ik2

(
A

(1)
1 e−ik1a +A

(1)
2 eik1a

)
− iβ1

(
B

(1)
1 e−iβ1

b
ε −B

(1)
2 eiβ1

b
ε

)

−q(−a)iβ1
[(

−B(0)
1 −B

(0)
2 + 2iβ1B

(0)
1

b

ε

)
e−iβ1

b
ε

+

(
−B(0)

1 −B
(0)
2 − 2iβ1B

(0)
2

b

ε

)
eiβ1

b
ε

]
= 0,

(7.107)
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Rearranging the above equations yields

−k2A(1)
1 − k2A

(1)
2 −

(
b

a
− 1

)
β1k2B

(1)
1 −

(
b

a
− 1

)
β1k2B

(1)
2 + k2R(1) =

−2

(
b

a
− 1

)
q(0)β1k2

(
B

(0)
1 +B

(0)
2

)
,

β21B
(1)
1 + β21B

(1)
2 =

(a
b
+ 1
)
k1k2

(
A

(0)
1 −A

(0)
2

)
+ 2q(0)β21

(
B

(0)
1 −B

(0)
2

)
,

k1A
(1)
1 − k1A

(1)
2 − k1R

(1) =

−k2
(
B

(0)
1 +B

(0)
2

)
,

k1e
−ik1aA(1)

1 − k1e
ik1aA

(1)
2 =

−k2
(
B

(0)
1 e−iβ1

b
ε +B

(0)
2 eiβ1

b
ε

)
,

k2e
−ik1aA(1)

1 + k2e
ik1aA

(1)
2 − β1e

−iβ1 b
εB

(1)
1 + β1e

iβ1
b
εB

(1)
2 =

q(−a)β1
[(

−B(0)
1 −B

(0)
2 + 2iβ1B

(0)
1

b

ε

)
e−iβ1

b
ε +

(
−B(0)

1 −B
(0)
2 − 2iβ1B

(0)
2

b

ε

)
eiβ1

b
ε

]
,

(7.108)

Putting equation (7.108) in matrix form yields




−k2 −k2 −
(
b
a − 1

)
k2β1

(
b
a − 1

)
k2β1 k2

0 0 β21 β21 0

k1 −k1 0 0 −k1
k1e

−ik1a −k1eik1a 0 0 0

k2e
−iγ1a k2e

iγ1a −β1e−iβ1
b
ε β1e

iβ1
b
ε 0







A
(1)
1

A
(1)
2

B
(1)
1

B
(1)
2

R(1)




=




0 0 −2
(
b
a − 1

)
q(0)k2β1 −2

(
b
a − 1

)
q(0)k2β1 0

(
a
b + 1

)
k1k2 −

(
a
b + 1

)
k1k2 2q(0)β21 −2q(0)β21 0

0 0 −k2 −k2 0

0 0 −k2e−iβ1
b
ε −k2eiβ1

b
ε 0

0 0 q(−a)β1η1 q(−a)β1η2 0







A
(0)
1

A
(0)
2

B
(0)
1

B
(0)
2

R(0)




,

(7.109)

where η1 =
(
−1 + 2iβ1

b
ε

)
e−iβ1

b
ε − eiβ1

b
ε , η2 = −e−iβ1

b
ε −

(
1 + 2iβ1

b
ε

)
eiβ1

b
ε , q(0) =

1
4iβ1

a
b

(
1
µ̄
∂µ̄
∂X1

) ∣∣∣∣
X1=0

, and q(−a) = 1
4iβ1

a
b

(
1
µ̄
∂µ̄
∂X1

) ∣∣∣∣
X1=−a

. If the shear modulus does not

vary with X1, matrices (7.109) simplify to
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−k2 −k2 −
(
b
a − 1

)
k2β1

(
b
a − 1

)
k2β1 k2

0 0 β21 β21 0

k1 −k1 0 0 −k1
k1e

−ik1a −k1eik1a 0 0 0

k2e
−iγ1a k2e

iγ1a −β1e−iβ1
b
ε β1e

iβ1
b
ε 0







A
(1)
1

A
(1)
2

B
(1)
1

B
(1)
2

R(1)




=




0 0 0 0 0
(
a
b + 1

)
k1k2 −

(
a
b + 1

)
k1k2 0 0 0

0 0 −k2 −k2 0

0 0 −k2e−iβ1
b
ε −k2eiβ1

b
ε 0

0 0 0 0 0







A
(0)
1

A
(0)
2

B
(0)
1

B
(0)
2

R(0)




,

(7.110)

7.5 Discussion of the results

As an example, consider a slab of thickness b/a = 0.5. The background fluid is water

with density ρ0 = 1000 kg/m3 and bulk modulus K0 = 2.25 GPa. A plane wave is

incident onto the slab at an angle θ = 45◦. Figure 7.2 shows the amplitude and phase

of the complex valued reflection coefficient R(0) as a function of ε.

The amplitude of the reflection coefficient is |R(0)| = 1, which is consistent with

scattering from a rigid surface. However, the added shear affects the phase of the

reflected wave. Furthermore, this phase frequently oscillates because of the slow shear

wave contribution via terms such as eiβ1b/ǫ in equation (7.90).

The first order contribution to the reflection coefficient εR(1) is shown in Figure 7.3

as a function of increasing shear modulus ε. At first glance, the magnitude |R(1)| > 0

seems to violate energy conservation. However, this is only the second term in the

expansion R = R(0) + εR(1) + . . . and thus the second order term |R(2)| < 0 of same

order. By this argument, we conclude that the reflection coefficient is

R = 1 +O(ε2). (7.111)

The phase of R(1) oscillates rapidly. This suggests that such a PM surface cloak will

not perform as designed because the incident and scattered waves will not be in phase.
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Figure 7.2: The zeroth order reflection coefficient R(0) as a function of increasing shear
modulus.
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Figure 7.3: The first order reflection coefficient R(1) as a function of increasing shear
modulus.
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Chapter 8

Conclusions

8.1 Summary of accomplishments

This Dissertation presents the following developments

1. Acoustically transparent elastic shells at quasi-static frequencies,

2. A closed form solution to an elastic shell loaded by an axisymmetric distribution

of internal springs,

3. A high transmission acoustic lens based on a varying index of refraction,

4. An analytical expression for the width of the flexural resonance of an elastic shell,

5. An analytical expression for split of the flexural resonance of due to two nearby

elastic shells,

6. The novel acoustic Poisson-like effect.

It has been shown that an elastic shell can be tuned through its geometric and con-

stitutive parameters to exhibit prescribed effective acoustic properties. Another method

for acoustically tuning shells is with an internal substructure. A closed form solution

has been developed for scattering from an elastic shell with an internal axisymmetric

distribution of point spring forces coupled by a central mass. The solution is unique

in that it separates into as many sub-solutions as there are loading points. Further-

more, the subsonic flexural waves excited in the shell by the attachment of stiffeners are

suppressed by including a sufficiently large number of such stiffeners. One application

of this is an acoustically transparent shell with the possibility of housing an internal
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payload. Another application is refraction-based wave steering as demonstrated by the

cylindrical-to-plane wave lens. Two different designs of this lens are outlined.

The second half of the Dissertation investigates the interaction of flexural-borne

waves on nearby shells. An asymptotic expression for the width of the flexural reso-

nance of a thin shell is derived from first principle. This is then used with the theory

of multiple scattering to derive an analytical expression for the shift of this frequency

when two shells are nearby. This shift is remarkably accurate when compared with

finite element simulations. Postulating coherent scattering of waves from the lowest

flexural resonance in an array leads to the discovery of the acoustic Poisson-like ef-

fect. This effect redirects an incident acoustic wave by 90◦ in an otherwise acoustically

transparent sonic crystal. An unresponsive “deaf” antisymmetric mode locked to band

gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural

resonance of the shell. The dynamic effect causes normal unidirectional wave motion

to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect

in solids. The Poisson-like effect is demonstrated using the first flexural resonance of

an acrylic shell. This represent a new type of material which cannot be accurately

described as an effective acoustic medium. The study concludes with an analysis of a

non-zero shear modulus in a pentamode cloak via the two-scale method with the shear

modulus as the perturbation parameter.

8.2 Testing and future work

Preliminary experiments confirm the decrease in scattering from an aluminum shell

with an acrylic insert in water as compared to the empty shell. Figure 8.1a shows the

acrylic with a steel central rod which was manufactured with rapid prototyping as a

proof of concept. The shell that was tested contains a machined acrylic rod as shown

in Figure 8.1b. During the initial testing phase it was discovered that a low-viscosity

adhesive has to be used to bond the shell to the insert so that there is no rattling.

However, because tuned shells have to be tested at low frequencies the goal of future

experiments would be to minimize noise.
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(a) (b)

Figure 8.1: Acoustically transparent aluminum shells from different manufacturing
methods. Plot (a) shows the ABS substructure via rapid prototyping with an inserted
steel rod. Plot (b) shows the substructure machined from an acrylic rod (courtesy
Michael Haberman of UT Austin).

The cylindrical-to-plane wave lens of empty elastic shells is also currently being

constructed at The University of Texas at Austin ARL. A source which can perform

well at the operating frequency of 22 kHz is far too large to fit in the designed lens. As

a result, the positions of source and hydrophone will be switched, which should yield

the same results via reciprocity. Those results will be presented in forthcoming paper.

Much work could be done on extending the design possibilities of the metamaterials

described herein. The possibility of azimuthally varying the stiffness of the internally

tuned shell is particularly interesting. An array of such shells would theoretically behave

as an anisotropic fluid. The utility of the resonance of the internal substructure deserves

considerable attention as well.

The acoustic Poisson-like effect could also be extended to include other wave media

such as phononic crystals and plates. The effect is based on the natural cohesion

of a quadruple resonance in a square array. The intriguing question is whether a

hexapole local resonance in a hexagonal array would yield similarly exciting results.

Furthermore, a particular local resonance can be introduced through the design of an

internal substructure to be placed in the shells.
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On a different note, non-linear acoustic lenses have been shown to produce sonic

bullets [98]. The non-linearity is a consequence of wave propagation through rows of

spheres in contact. The simulation of the contact could be simplified by such numerical

techniques as described in Ref. [100]. There, a compact form for the Green’s function

for symmetric loading of an elastic sphere is derived. As an extension, the contact of

spherical elastic shells could also yield unique results.
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Appendix A

3DOF model of a finite sized internal mass

One spring

We use Lagrange’s equations for the Lagrangian L = L(x, y, φ, ẋ, ẏ, φ̇) ≡ T − V , where

T = 1
2m(ẋ2 + ẏ2) + 1

2Iφ̇
2 is the kinetic energy, and assuming that the spring is linear,

V = κ
2 (l− l0)2, where l, l0 are the stretched and un-stretched lengths of the spring. For

a spring oriented at angle θ1 with respect to the positive x-axis (refer to Figure 3.3),

the spring length is given by

l2 =
∣∣a(cos θ1, sin θ1) + (w cos θ1 − v sin θ1, w sin θ1 + v cos θ1)

− (x, y)− b(cos(θ1 + φ), sin(θ1 + φ))
∣∣2. (A.1)

The Euler-Lagrange equation for x, ∂L∂x − d
dt
∂L
∂ẋ = 0, is fully nonlinear and can be cast

in the following form

mẍ = −κ(l − l0)
∂l

∂x
⇒ mẍ = −κ (l2 − l20)

2l(l + l0)

∂l2

∂x
, (A.2)

where ∂l2/∂x follows from (A.1). Similar equations for ÿ and φ̈ can be found from the

respective Euler-Lagrange equations.

Linearization

Equations for ẍ, ÿ and φ̈ such as equation (A.2) form a set of coupled nonlinear ordinary

differential equations. In order to get the linear equations we need only the terms linear

in x, y, φ and w, v, or equivalently, linear in l2 − l20. Hence,

mẍ ≈ −κ
4l20

∂l2

∂x

∣∣∣∣
0

(l2 − l20), mÿ ≈ −κ
4l20

∂l2

∂y

∣∣∣∣
0

(l2 − l20), Iφ̈ ≈ −κ
4l20

∂l2

∂φ

∣∣∣∣
0

(l2 − l20), (A.3)
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where |0 indicates the unstretched value (x = y = φ = 0, w = v = 0). Equation (A.1)

implies

l0 = a− b,
∂l2

∂x

∣∣∣∣
0

= −2l0 cos θ1,
∂l2

∂y

∣∣∣∣
0

= −2l0 sin θ1,
∂l2

∂φ

∣∣∣∣
0

= 0 (A.4)

and

l2 − l20 ≈ ∂l2

∂x

∣∣∣∣
0

x+
∂l2

∂y

∣∣∣∣
0

y +
∂l2

∂φ

∣∣∣∣
0

φ+
∂l2

∂w

∣∣∣∣
0

w +
∂l2

∂v

∣∣∣∣
0

v

= −2l0(x cos θ1 + y sin θ1) + 2l0w.

The linearized equations are therefore

m
(
ẍ, ÿ

)
= −κ(x cos θ1 + y sin θ1 − w)

(
cos θ1, sin θ1

)
,

Iφ̈ = 0.

(A.5)

The contribution of the rotation angle φ of the internal mass to the spring force is

nonlinear and does not appear in this linear formulation. As an aside, this will be

demostrated by determining the equation of rotational motion of the mass Iφ̈ = r × F

with all other displacements constrained: x = 0, y = 0, v = 0 and w = 0. For

small displacements φ≪ 1, the vector r, which defines the position of the force vector

F = κ |l|−|l0|
|l| l, is r = (b, bφ). The deformed spring length vector is l = (a − b,−bφ)

yielding a spring extension of |l| − |l0| = (a− b)
√

1 + b2φ2/(a− b)2 − (a− b). Using the

binomial theorem for the square root, we get (|l|− |l0|)/|l| ≈ 1
2b

2φ2/(a− b)2. Lastly, the

cross product is r× l = −abφ giving a moment on the mass r×F = −1
2κa(bφ)

3/(a−b)2.

This demonstrates that due to the geometry of this problem, the contribution of the

rotation angle φ to the spring force is proportional to φ2 and the contribution to the

moment is proportional to φ3. Thus, in the linearized equations (A.5), we obtain φ = 0.

J springs

The equations of motion in the presence of J springs are

m
(
ẍ, ÿ

)
= −κ

J∑

j=1

(x cos θj + y sin θj − w(θj))
(
cos θj, sin θj

)
,

Iφ̈ = 0.

(A.6)
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Again, φ = 0. For time harmonic motion (x → xe−iωt, . . .) the equations for x and y

follow from (A.6) as


2τ2 − J − C −S

−S 2τ2 − J + C




x

y


 = −2

J∑

j=1

w(θj)


cos θj

sin θj


 , (A.7)

where (see (3.28)) τ2 = mω2

κ and

C + iS =
J∑

j=1

ei2θj . (A.8)

Solving for x and y,

x

y


 =

−2

(2τ2 − J)2 − C2 − S2

J∑

j=1

w(θj)


2τ2 − J + C S

S 2τ2 − J − C




cos θj

sin θj


 .

(A.9)

For J > 1 we assume that the angles {θj} are uniformly distributed, i.e. θj+1 =

θj + 2π/J . Hence C + iS = 0 for all values of J except J = 1, 2, in which cases

C + iS = Jei2θ1 . Solving (A.9) for the displacements then yields


x

y


 =

−1

τ2 −HJ

J∑

j=1

w(θj)


cos θj

sin θj


 , HJ =





J, J = 1, 2,

J
2 , J ≥ 3.

(A.10)

Radial force

The radial component of the force per unit area on the shell is

f(θ) =
κ

a

J∑

j=1

(x cos θj + y sin θj − w(θj))δ(θ − θj), (A.11)

where δ(θ) is the Dirac delta function. The azimuthal component of the force is negli-

gible. Substituting (A.10) into (A.11) yields

f(θ) = −κ
a

( 1

τ2 −HJ

) J∑

j=1

[ J∑

m=1

w(θm) cos(θj − θm) +
(
τ2 −HJ

)
w(θj)

]
δ(θ − θj),

(A.12)

where HJ is defined in (A.10). The specific form of the radial force per unit length on

the shell due to a single spring, a diametrical pair of springs, and for J ≥ 3 uniformly

distributed springs are given in equation (3.27).
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Net force

Expanding the radial force in equation (A.12) in azimuthal modes (see (3.29)) for a

single spring (J = 1) at angle θ1 yields the modal force

fn = − κ

2πa

(
τ2

τ2 − 1

)
w(θ1)e

−inθ1 . (A.13)

Similarly, for J = 2 springs oriented at θ1 and θ2 = θ1+π the modal force has the form

fn = − κ

2πa

2∑

j=1

w(θj)e
−inθj ×





τ2

τ2−2
for odd n,

1 for even n,

(A.14a)

= − κ

2πa
e−inθ1 ×





τ2

τ2−2 (w(θ1)− w(θ1 + π)) for odd n,

w(θ1) + w(θ1 + π) for even n,

(A.14b)

Now consider the case J ≥ 3, equation (A.12) with HJ = J/2. In order to express the

radial force as a Fourier series, first rewrite it as

f(θ) = − κ

2πa

( 1

τ2 − J
2

) ∞∑

n=−∞

J∑

j=1

w(θj)e
in(θ−θj)

[
τ2 − J

2
+

J∑

m=1

cos(θj − θm)e
in(θj−θm)

]
.

(A.15)

Hence, referring to (3.29),

fn = − κ

2πa

( 1

τ2 − J
2

) J∑

j=1

w(θj)e
−inθj

[
τ2 − J

2
+

J∑

m=1

cos(θm − θj)e
−in(θm−θj)

]
. (A.16)

Consider first the term

J∑

j=1

w(θj)e
inθj =

∞∑

m=−∞
Wm

J∑

j=1

ei(m−n)θj =
∞∑

m=−∞
WmŜm−n, (A.17)

where

Ŝp =

J∑

j=1

eipθj =

J∑

j=1

eijθp. (A.18)

For p = 0modJ , p ∈ Z, we have eiθp = 1 and hence Ŝp = J . Otherwise eiθp 6= 1 and

therefore Ŝp = (eiJθp − 1)/(1 − e−iθp) = 0. In conclusion,

J∑

j=1

w(θj)e
−inθj = J

∞∑

m=−∞
Wn+mJ . (A.19)
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The modal force in (A.15) contains the summation

2

J∑

m=1

cos(θm − θj)e
−in(θm−θj) = 2

J∑

m=1

cos θme
−inθm = Ŝ1−n + Ŝ1+n, (A.20)

see (A.18). Thus

J∑

m=1

cos(θm − θj)e
−in(θm−θj) =





J
2 , n = ±1mod J,

0, otherwise,

(A.21)

where the notation n = ±1mod J is defined in equation (3.25).

Substituting results (A.19) and (A.21) into equation (A.15) yields the modal force

on the shell for J ≥ 3 springs as

fn = − Jκ

2πa

∞∑

m=−∞
Wn+mJ ×





τ2

τ2−J
2

, n = ±1modJ,

1, otherwise.

(A.22)
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Appendix B

Deformation gradient F in cylindrical coordinates

The radial position of a particle in the deformed and undeformed coordinate systems

is, respectively,

~X = R~er,

~x = r ~er.

(B.1)

The angular position variable, θ, remains the same in magnitude and direction as seen

from both frames of reference. Solving the above equations for ~er and combining yields

~x =
r

R
~X. (B.2)

The deformation gradient is defined as F = ∂x
∂X = ∂xi

∂Xj
~ei ~ej . Applying to equation (B.2)

yields

∂xi
∂Xj

=
r

R
δij +Xi

∂( rR )

∂Xj
. (B.3)

Using the chain rule the last term can be rewritten as

Xi
∂( rR )

∂Xj
= Xi

∂R

∂Xj

1

R

(
∂r

∂R
− r

R

)
. (B.4)

To determine ∂R
∂Xj

we can simply differentiate the inner product of ~X with itself.

~X · ~X = XjXj = R2,

∂

∂Xj
( ~X · ~X) = 2Xj = 2R

∂R

∂Xj
,

∂R

∂Xj
=

1

R
Xj.

(B.5)

Substituting this result into equation (B.3) gives

Fij =
r

R
δij +XiXj

1

R2

(
∂r

∂R
− r

R

)
. (B.6)
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Here we need to note that the components of Xi are

Xi =





R i = 1

0 i = else.
(B.7)

and therefore the deformation tensor F becomes

F =
∂r

∂R
~er ~er +

r

R
~eθ ~eθ. (B.8)
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[3] A. Baillard, J.-M. Conoir, D. Décultot, G. Maze, A. Klauson, and J. Metsaveer.
Acoustic scattering from fluid-loaded stiffened cylindrical shell: Analysis using
elasticity theory. J. Acoust. Soc. Am., 107(6):3208–3216, 2000.

[4] J. Bjarnason, J. D. Achenbach, and T. Igusa. Acoustic radiation from a cylindrical
shell with an internal plate. Wave Motion, 15:23–41, 1992.

[5] J. Bjarnason, T. Igusa, S.-H. Choi, and J. D. Achenbach. The effect of sub-
structures on the acoustic radiation from axisymmetric shells of finite length. J.

Acoust. Soc. Am., 96(1):246–255, 1994.

[6] H. H. Bleich and M. L. Baron. Free and forced vibration of an infinitely long
cylindrical shell in an infinite acoustic medium. ASME J. of Appl. Mech., 21:167–
177, 1954.

[7] M. Botey, Y.-C. Cheng, V. Romero-Garcia, R. Picó, R. Herrero, V. Sánchez-
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[31] M. D. Guild, A. Alù, and M. R. Haberman. Cloaking of an acoustic sensor using
scattering cancellation. Appl. Phys. Lett., 105(2):023510+, July 2014.

[32] M. D. Guild, M. R. Haberman, and A. Alù. Plasmonic-type acoustic cloak made
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