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by ALEXEY S. TITOVICH

Dissertation Director:

Professor Andrew N. Norris

Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays
of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance
and index mismatch of typical engineering materials with water. A new type of acoustic
metamaterial element is proposed that can be tuned to match the acoustic properties of
water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell
fitted with an optimized internal substructure consisting of a central mass supported by
an axisymmetric distribution of elastic stiffeners, which dictate the shell’s effective bulk
modulus and density. The derived closed form scattering solution for this system shows
that the subsonic flexural waves excited in the shell by the attachment of stiffeners are
suppressed by including a sufficiently large number of such stiffeners. As an example of
refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying
the bulk modulus in the array according to the conformal mapping of a unit circle to a
square.

Elastic shells provide rich scattering properties, mainly due to their ability to sup-
port highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells

yields an analytical expression for the width of a flexural resonance, which is then used

ii



with the theory of multiple scattering to accurately predict the splitting of the reso-
nance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect
in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an
otherwise acoustically transparent sonic crystal. An unresponsive “deaf” antisymmet-
ric mode locked to band gap boundaries is unlocked by matching Bragg scattering with
a quadrupole flexural resonance of the shell. The dynamic effect causes normal uni-
directional wave motion to strongly couple to perpendicular motion, analogous to the
quasi-static Poisson effect in solids. The Poisson-like effect is demonstrated using the
first flexural resonance of an acrylic shell. This represent a new type of material which
cannot be accurately described as an effective acoustic medium. The study concludes
with an analysis of a non-zero shear modulus in a pentamode cloak via the two-scale

method with the shear modulus as the perturbation parameter.
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Chapter 1

Introduction to acoustic metamaterials

1.1 Acoustic metamaterials background

Metamaterials are man-made macroscopic composites with optimized periodic struc-
ture, designed to have properties not found in nature. The unit cell, or the fundamen-
tal element, dictates the response of the bulk material through it properties. These
properties can either be static or dynamic and might be affected by the surrounding
cells within an array which can further complicate the analysis. In acoustic metama-
terials, the effective density p and bulk modulus K (or alternatively, the sound speed
c? = K/p and impedance Z = pc) of the unit cell are the design parameters. By mas-
terfully tailoring these properties, such metamaterials exhibit extraordinary effects such
as cloaking, negative refraction, hyper-lensing, negative or zero mass/stiffness. Hiding
an object from acoustic detection is a particularly interesting topic and consequently
the field has exploded in the last decade. As a result, the literature has seen an upsurge
of new ideas for acoustic metamaterials.

The review article by Hussein et al. [42] presents a thorough history of acoustic
metamaterials. They describe how the field grew from layered composites, to embedded
spheres, to sonic crystals, to perforated plates, which then lead to defect engineering
in crystals. Based on the physics, acoustic metamaterials can be categorized into three
fundamental groups: sonic crystals, phononic crystals, and active metamaterials. The
characteristics of each type of acoustic metamaterials is described next.

Sonic crystals (SCs) are the primary topic of this Dissertation. These are periodic
arrays of scatterers (inclusions) in an acoustic medium. A wave incident onto such an
array can either be transmitted through, reflected back, refractively steered or even

redirected to a perpendicular direction. For this material, the fundamental element



is the scatterer which can be rigid, fluid or elastic. If the scatterers are rigid, the
the scattering properties are dictated by their filling fraction and distribution. Such
SCs typically have low transmission, because of the impedance mismatch with the
surrounding fluid. Sometimes it is desirable to filter out certain frequencies. This can be
done via Bragg scattering, by tuning the lattice spacing to coincide with the wavelength.
A different example is magnifying hyper lensing, which has been demonstrated by a rigid
one dimensional radial SC with a central dual-source. Another example is an effectively
anisotropic medium made from perforated plates, which can take on extraordinary
effective acoustic properties such as full transmission at certain angles of incidence. SC
based on rigid inclusion are governed by the constructive and destructive interference
of scattered waves only. On the other hand, if the fundamental element in the SC is
elastic, the elasticity plays a dominant role. The unit cell can be homogenized in the
long wavelength limit yielding effective acoustic properties. Moreover, by introducing
a gradient of acoustic properties, a SC is capable of “steering” an incident wave. Such
SCs are refereed to as gradient index materials. One can appreciate the difference from
classical optics where the shape of the lens is key and not a distribution of the refractive
index. In this work, an elastic shell is selected as the scatter. Phononic crystals (PCs)
differ from SCs in that the scatterers as well as the matrix are elastic (although this
distinction between PCs and SCs is not universally adopted). Consequently, a PC
can support propagating shear waves. It is nearly impossible to match the acoustic
properties of water with an elastic material without introducing voids. One example of
such a cellular material is an elastic foam. It has been demonstrated that an aluminum
foam slab can be nearly acoustically transparent. That same slab also exhibits negative
refraction at higher frequencies. The downside is the drop in transmission due to the
ever-present shear waves. It should be noted that the lack of shear waves in SCs is a
most useful attribute. It is also possible to control the response of PCs and SCs actively,

which is a field in its own right.



1.2 Outline of Dissertation accomplishments

This Dissertation is outlined as follows. Elasticity in SCs and PCs is the dominant
topic of this Dissertation. Chapter 2 introduces the elastic shell as an effective acous-
tic medium. The axisymmetric substructure used to tune the shells is also described
and analyzed. Chapter 3 solves the problem of acoustic scattering from such shells.
Chapter 4 describes methods for using tuned shells to design refraction-based acoustic
lenses. A closer look at the interference of flexural-borne waves on neighbouring shells
is presented in Chapter 5. These results are then used to design a new type of effective
medium based on the quadrupolar resonance of a shell in Chapter 6. Chapter 7 presents
a solution of the equations of elasticity with a perturbation in shear. This result is used
to show the effect of shear in a pentamode-type acoustic cloak. In this Dissertation the
term shell will be used throughout to describe hollow cylinders which are can also be
referred to as tubes or pipes in other contexts.

Several noteworthy accomplishments of this work follow. A sub-wavelength acousti-
cally transparent cylinder has been designed. The elegant problem of acoustic scattering
from an elastic shell with axisymmetrically distributed springs has been solved in closed
form. A high transmission acoustic lens has been created from an array of elastic shells
which demonstrates wave steering. Analytical expressions for the bandwidth of a flex-
ural resonance and the frequency splitting of two nearby shells have been derived. A
novel method for redirecting an incident acoustic wave to a normal direction has been
discovered. It is referred to as the acoustic Poisson-like effect due to its similarities with

the elastodynamic Poisson effect.



Chapter 2

Elastic shell as an effective acoustic medium

A solid elastic cylinder typically cannot be acoustically transparent in the quasi-static
regime. That is to say the there are no elastic materials that can simultaneously and
exactly match the density and bulk modulus of water. This is because most engineering
materials are too stiff and dense. A solution is to introduce a central void to decrease
the effective properties. The result is an elastic hollow cylinder or a shell. Of particular
interest is an elastic cylindrical shell with a circular cross section because it is axisym-
metric. The shell’s thickness becomes a design parameter which dictates the response
of the shell. Perhaps it is hard to believe at this point, but even a metal shell can
behave acoustically as water through an appropriate choice of this parameter. This
Chapter will derive and analyze the effective quasi-static properties of empty shells as

well as shells with an internal substructure.

2.1 Empty elastic shell

In this section, the effective quasi-static acoustic properties of an empty elastic shell

will be determined. Consider an infinitely long elastic shell of outer radius a and

Figure 2.1: Empty elastic shell of outer radius a and thickness h.



thickness h as pictured in Figure 2.1. The density, elastic modulus, and Poisson’s ratio
are (ps, Es,vs), respectively. The displacement variables are (w,v,u) in the (r,6,z)
cylindrical coordinate system. To obtain the plane strain bulk modulus of the shell,
the problem of hydrostatic compression must be solved. Two assumptions are made
in the present analysis: i) the loading is axisymmetric (hydrostatic), thus there is no
variation with azimuth yielding v = 0, %—9 = 0 and ii) the cylinder undergoes plane

strain which implies (e,,,u) = 0. There is no shear stress within the shell since the

loading is axisymmetric. The general strain-displacement relations simplify to

ow dw

Err = or — E, (2.1&)
1 /0v w w
1 /10w 0Ov w

Erg = 5 <;% + E — ;) — 0. (210)

From Hooke’s Law, the hybrid constitutive relations for plane strain are

E v
Opy = 1_—5]/3(67«7« + vsegp) + T _SVS Oz, (2.2a)
E v
g9 = 1— V? (590 + 7/557‘7‘) + 1——SVSO-ZZ’ (22b)
Ozz = Vs(arr + 090), (220)

where o0;; are the stress tensor components. For plane strain, the longitudinal stress o
is assumed to be constant. The equation of static equilibrium in the radial direction is

do, + Orr + 099
dr r

= 0. (2.3)

The #-equation of motion is identically satisfied by virtue of the stated assumptions.
Substituting equations (2.1) into (2.2) and then into (2.3) yields r?w” 4+rw’4+w = 0 after

rearranging. This homogeneous Euler’s equation has two independent solutions [97]
C
w(r) = => + Cyr, (2.4)
r

where Cy and (' are integration constants to be determined by applying boundary
conditions. To do so the strains are expressed in terms of these constants as

Co Co
Err:—r—2+C1, Epp = ﬁ—i-cl. (2.5)



Substituting (2.5) into (2.2) yields

E; (1 —wy) Vs
Orr = 77 ” ( R Co+ (1+ 1/3)01> +t1 sazz, (2.6a)
E; ((1—vws) Vs
o0 = T 2 ( 3 Co+(1+ 1/8)01> +i 022 (2.6b)
2usE
o z C1. (2.6¢)

T 1o — 202
Note that o, is indeed independent of r. Eliminating o, from o, and ogy in equations

(2.6) and applying the boundary conditions o,,(a —h) = 0 and o0,.(a) = —pg, where pg

is the applied pressure, yields

(1 +vs)poa® [ (1= (h/a))?
Cy = 2.7
= E \G-war-1) (270)
(1 —vs —202)po 1
= . 2.7b
“ ) (=) 1 (27)
Assuming small displacement w < a, the decrease in the volume of the shell is
AV (a—w(a))? — a? w(a) Co
= ~ —2 =2 — . 2.
v 2 . 2 +C (2.8)
The effective bulk modulus is defined as K.y = ﬁo/v and simplifies to
Es (2 - %)%
Kepr = (2.9)

2(1+v) 2(1 —vg) — (2 )27
In the limit as h/a — 1, K.¢s approaches the plane strain bulk modulus of the material

itself, which is

Es
K,. = 2.10
P2 21 + ) (1 — 20) (2.10)
Equation (2.9) can also be written in the following useful form
14y, — )l thi
Keff =11+ a’a K fi‘nv (2.11)
( 200 -w)—22+ (1))
which exposes the dependence on the effective bulk modulus for thin shells
: E, h pscih
Khin = g =% (2.12)

20—v2a 2 a

where ¢, = is the extensional wave speed. Equation (2.12) is identical to

Es
ps(1-v2)

the effective bulk modulus in equation (2.56) on page 38 of Ref. [44]. An alternative

derivation of the effective bulk modulus for a thin shell can be found in Section II of



Ref. [102]. The last equality suggests that for a thin shell with h/a < 1, the bulk
modulus is linear with h/a. For thicker shells, a better approximation is K.fr =
1+ %)Ké%c” Figure 2.2 shows the normalized effective bulk modulus K.rs/K,s of
several materials versus the thickness to radius ratio h/a. Note that as h/a — 1,
the shell becomes a rod and K.y; asymptotically approaches the value of K,,. For
the acrylic shell in plot (b), Ké%e” is accurate up to h/a = 0.1, while the expression

(1+ %)Kﬁ%” more closely approximates the effective bulk modulus to about h/a = 0.3.
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Figure 2.2: Effective bulk modulus of the shell normalized by the plane strain bulk
modulus K.f¢/Kp,s as a function of thickness to radius ratio h/a. Plot (a) shows
K.f¢/Kps for several common materials. Plot (b) presents the effective bulk modulus
for an acrylic shell/rod as well as several approximate functions.

The second parameter which determines the quasi-static response of an elastic shell

is the effective density. It is defined as the mass of the shell per the displaced volume.

h\ b
Peff = Ps (2 - —> —~ (2.13)

a)a
The effective bulk modulus (2.9) and density (2.13) define the compressional and inertial

properties of the shell, respectively.



2.1.1 Material selection for tuning to water

Acoustic scattering from an object much smaller than the wavelength is described as
quasi-static. This simply implies that the loading is gradual enough that the higher
order inertial effects can be ignored. For a shell, the amount of scattering depends on
its effective static properties. Thus even a metal shell can be acoustically transparent
at sub-wavelength frequencies if its effective bulk modulus and density are matched to
water. The bulk modulus and density of water are taken as K = 2.25 GPa and p = 1000
kg/m?, respectively. From equations (2.9) and (2.13), the shell is acoustically tuned to

water when the thickness to radius ratio satisfies

B by
2(1+vs) 2(1 — ve) — (2 — 2)E = K, (2.14a)
Ps (2 - %)% =p (2.14b)

Solving equations (2.14) simultaneously yields a relationship between the extensional

and acoustic wave speeds

2
cp 0 4 1 1 p
:1_77 or —=—5+—5—, 2.15
4c? 2(1 — vs)ps 2 % ps (2.15)

where the longitudinal and shear speeds of the bulk material follow from Ref. [51] as

Es(1 —vs)

2 s s 2
_ -y 2.16
‘L ps(1+vs)(1 — 2vy) T Ps ( )

with the shear modulus ps = Es/(2(1 + vg)).

Equations (2.14) suggest that for a given shell with properties (Es, ps,vs), there
may exist a thickness to radius ratio h/a which satisfies both conditions making the
shell acoustically transparent in water. Figure 2.3 plots the normalized effective bulk
modulus K.f¢/K versus the normalized density pers/p as h/a is increased from 0 to
1 for several materials. The thickness increases from lower left to upper right. The
maxima for each curve correspond to the normalized bulk density and plane strain bulk
modulus of the material. The black circles indicate the shell thickness ratio of h/a = 0.5
on each curve. The dashed lines represent matched impedance Kcrrpesr/(Kp) =1 and
matched sound speed K ¢rp/(Kpess) = 1. Table 2.1 shows the shell thickness for each
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Figure 2.3: Log-log plot of K.¢s/K versus pcss/p as h/a is varied for several materials.
The dashed black lines represent matched impedance and sound speed to water. The
circular dots indicate the shell thickness ratio of h/a = 0.5. Shell thickness increases
from lower left to upper right.

material when the density is matched to water p.fs/p = 1 and when the bulk modulus
is matched K.f¢/K =1, which typically differ.

To have the effective acoustic properties of water, the two values of shell thick-
ness should match. There are several exceptional materials which can accomplish this.
They are summarized in the following Table 2.2. Table 2.2 also shows the extensional,
longitudinal and transverse speed for each of these materials. Generally, there is no
condition on sound speed for the material to be tuned to water, it is simply due to a
perfect balance of inertial and stiffness properties. However, for thin shells the necessary

condition is

pscah/(2a) = K
cp = 2¢ = , (2.17)

2psh/a=p
which is apparently satisfied for the thin platinum shell of thickness h/a = 0.025.

Comparing equation (2.17) and (2.15) implies that the contribution of shear in thin
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Material Ps E; Vs cp % (p) % (K)
Aluminum Oxide 3920 370  0.22 9959 0.137 0.012
Molybdenum 10300 276  0.32 5463 0.050 0.015
Aluminum 3003-H18 2730 69 0.33 5326 0.204 0.055
Steel AISI 4340 7850 205 0.28 5323 0.066 0.020
Titanium beta-31S 4940 105 0.33 4884 0.107 0.037
Copper 8700 110 0.35 3796 0.060 0.035
Concrete 2300 25 0.33 3493 0.248 0.139
Brick 2000 17 0.3 3056 0.293 0.199
Platinum 21450 147 0.39 2842 0.024 0.025
Silver 10500 724 0.37 2827 0.049 0.051
Acrylic 1190 3.2 035 1751 0.600 0.615
ABS 1040 2.3 0.35 1588 0.804 0.761
Lead 11340 13.87 0.42 1215 0.045 0.204

Table 2.1: The required shell thickness ratio to match the density of water h/a (pefs =
p) and to match the bulk modulus h/a (K.r; = K) for different materials. Units of
density are kg/m3, elastic modulus GPa, speed m/s.

h/a Cp cL cr
Acrylic 0.62 1751 2078 998
Silver 0.51 2827 3492 1586

Platinum 0.025 2843 3697 1570

Table 2.2: Materials capable of matching the properties of water at a particular shell
thickness h/a (corresponding to point (1, 1) in Figure 2.3). The extensional, longitudi-
nal and transverse speed for each material are shown.

shells is negligible. For engineering applications, materials such as silver and platinum,
are not practical. As a result, other methods of tuning an elastic shell have to be
developed. Later, the acoustically transparent acrylic shell of thickness h/a = 0.62 will

be used to demonstrate the novel acoustic Poisson-like effect in Chapter 6.

2.2 Multi-layer shells

Rather than trying to find a material which will have the properties of water, a mul-
tilayer shell can be constructed instead. The simplest example is a bilayer shell as

pictured in Figure 2.4. The external radius remains a and the thicknesses of the outer
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and inner cylinders are h; and ho, respectively. The subscripts indicate the cylinder

throughout. The radial displacements and stresses in each cylinder will differ as

Figure 2.4: Schematic of a bilayer shell.

C D
w1:70+017”, w2:70+D17"

1 Co 4 1 Dy 4 D1

—01 = — — 02 = — .

BT A+ Q- -2 By Y (4wm)r? | (- - 22)

(2.18)
where Cy, C1, Dy, D1 are the constants of integration. Applying the boundary condi-

tions yields

_ —Po Gy G _ —Po
Ul(a) a E1 - (1 + V1)a2 + (1 — V1 — QV%) N El ’
C
wl(a—hl):wg(a—hl) — ﬁ—k@(a—hl):
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———— + Di(a— hy),
(a—hy @M
aa=h)=ofa=h) = =GN Ty T A T
_ Do i Dy
(14 w)(a—h1)?2 (1 —vy—202)
0'2((1—]11 —hg) =0 - - Do + Di =0.

(14 w)(a—h1 —hg)? (1 —ve—2v2)
(2.19)
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Solving the system of equations and substituting back into the displacements (2.18)

gives the effective bulk modulus

Poa
—2w1(a)’
20—v¥) a 2(1-12)a

e () () () )

+ O(h3, h3).

Kegp =

(2.20)
In the case of a thin shell h < a, the effective bulk modulus is

Ey M Ey  hy Plc%ﬂ 0265@

Kopm——t M, 22 2
ST e T2l a2 a @ 2

(2.21)

where ¢; and co are the extensional wave speeds. Note that this is a parallel summation
of the effective moduli of each shell. Similar to a single shell, the effective density of

the bilayer shell is given by

1
pesf = — (pim((a — h2)® = (a — h1 — h2)?) + pam(a® — (a — h2)?))
Ta h h (2.22)
%2p1—1+2p2—2, (hl,h2)<<a.
a a
The effective bulk modulus (2.21) and density (2.22) can be solved for the thicknesses

of the two shells yielding

ﬁ — peff (26@ff)2 - C% (2 23&)
a 201 ?—c3 ’ )
hy _ pesr (¢ — (2cepy)? (2.23b)
a 2p2 d—c3 ’ ’

where the effective wave speed is defined as c? rr = Keps /pest- Equations (2.23) presents
a necessary condition on the extensional wave speeds of the shell ¢; > 2¢c.rs > ca, that
one shell must be faster and the other slower than twice the effective wave speed 2c.;.
As an example, Table 2.3 demonstrates how an outer layer of lead can be applied to
common shells tuning them to the properties of water c.;y — c. The idea of layering
materials can certainly be extended to more layers. The procedure in essence combines
the mass and stiffness properties of the individual shells to create a composite with
desired properties. If one is unable to coat a copper shell with lead as suggested, the

shell can be tuned with an internal substructure.
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Bilayer shell hi/a he/a c1 ca Ceff
Lead on Aluminum 3003-H18 | 0.0318 0.0512 1216 5326 1500
Lead on Copper 0.0184 0.0334 1216 3796 1500
Lead on Steel AISI 4340 0.0317 0.0178 1216 5323 1500

Table 2.3: Three bilayer shells tuned to water where the outer shell is made of lead.
The extensional wave speeds in each material are compared to the effective speed of
the composite. Subscript (); is used for the lead shell.

2.3 Shell with an axisymmetric substructure

An internal substructure can be used to stiffen and add mass to a otherwise empty
shell. Consider a substructure consisting of a central mass m attached to the shell
by an axisymmetric distribution of J springs of stiffness x as shown in Figure 2.5. A
structural realization of this substructure is shown in Figure 2.7 and consist of a central
rod supported by lengthwise ribs. The two parameters x,m make the substructure an
oscillator and facilitate the tuning of a shell to have stiffer and denser properties than
if left empty. The aim here is to determine how the effective bulk modulus and density
vary with these parameters. In doing so, it is sufficient to consider a thin shell as done

in Ref. [101].

2.3.1 Springs-mass model

Figure 2.5: External and internal forces acting on the shell with J = 8 springs of
stiffness x supporting a central mass m.

Applying a hydrostatic pressure pg on the outside of the infinitely long cylindrical

shell results in a decrease of the radius a — a — w(a). The quasi-static effective bulk
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modulus is defined as K.rf = —po/(AV/V'), where the volume change is % = % R~

—2@ since the elastic deformation is plane strain. The radial and azimuthal strain

in the shell are both approximately equal to cxo0p = w@) oo that the effective bulk

a )

modulus is

(2.24)

The axial stress is 0, = Vs0h00p, and consequently the hoop strain and stress are related
2_ _E
by psc;, = Tz as

. 1 __ Ohoop
€hoop = fs (Jhoop - 7/30'[1) = p302 .
P

(2.25)

An imaginary bisecting cut exposes the internal forces as shown in Figure 2.5. The

static equilibrium condition is then
2h Opoop — 2apy + F =0, (2.26)

where F' is the horizontal resultant per unit length of the forces exerted by the springs

on the half shell. At the same time, the spring forces are proportional to w(a), say
F = keff w(a). (2.27)
Equations (2.24) - (2.27) imply that
ho o Kerr
Keff = %pscp + T, (228)

where the effective stiffness k.;y remains to be determined. Hence, referring to Fig-

ure 2.5,
J/4
> cosf; for even J,
_ j=—J/4
F=Y"fo=rw(a) x ZH)% (2.29)
>, sinf; for odd J.
5=0
Performing the sums and using (2.27) gives
cot (%) for even J,
kepp = Kk X (2.30)
%cot (%) for odd J.
Consider even J, in which case equations (2.28) and (2.30) imply that the effective bulk
modulus is
h pscf, K T
Kepr = EKSh + K, where K, = and K, = 1 cot (j) (2.31)
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The effective bulk modulus is greater than that of the bare shell and the increase, K,
is proportional to the spring stiffness. The effective density is the ratio of total mass to
volume, pesr = (ms +m)/(wa?), where ms = psm(a? — (a — h)?) is the mass per unit
length of the shell. Hence, since h < a by assumption,
ho (Rh\?
Peff = Pm + Ps <2g - <E> ) (2.32&)

h
R pm + 25,08, (2.32b)

where p;,, = 75 is the added density.

For instance, consider an aluminum shell of thickness to radius ratio h/a = 0.03. Per
Table 2.1, this shell is less stiff and less dense than water and thus can accommodate an
internal substructure. The normalized effective properties of this shell are p.s¢/p = 0.16
and K.rr/K = 0.53. To obtain the properties of water, 84 percent mass p,, = 0.84p
and 47 percent stiffness K, = 0.47K have to be added. This procedure is graphically

demonstrated in Figure 2.6.

2.3.2 Ribs-rod model

A more physical model of the substructure is a central rod with lengthwise ribs support-
ing it as shown in Figure 2.7(a). The one-component substructure in Figure 2.7(a) has
J = 16 elastic stiffeners (ribs) of thickness ¢ and a central mass (rod) of radius r; made
of the same material. The elastic modulus and density of the internal mechanism are
FE4 and pq, respectively. Assuming that the stiffeners only deform radially, the effective
stiffness (per unit axial length) is K = Eqt/(a—h—r1). This first order approximation for
additional stiffness k will prove sufficient for low frequency tuning. The second param-
eter of interest is the mass of the internal mechanism, m; = p; (Jt(a —h—ry)+ 7774%).

The two variables which define the geometry of the internal mechanism, ¢ and rq,
determine the effective bulk modulus and density of the shell-substructure system:.
From equation (2.31), the contribution of the internal oscillator to the bulk modulus of

the shell-stiffener-mass system is K, = tcot(r/J)Eit/(a — h — r1). Thus the effective
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Figure 2.6: Linear plot of K.rr/K versus pefs/p as h/a is varied for an aluminum

shell. A shell of thickness h/a = 0.3 is tuned to water by adding mass and stiffness.
The dashed black lines indicate the matched impedance and sound speed.

properties of the combined system become (see equations (2.31) and (2.32))

h  cot(n/J)Eqt

Kepp= Ksha + m, (2.33a)
. h h Jt h n T1.\2
pas =g (2= g) (G0 5=+ Q) eam

where the O((h/a)?) term in the shell volume is retained for improved accuracy. To
get the effective properties, the density of the shell has to be increased by pp, = pesr —
ps (25 — (2)?):

Next define the ratio of required additional stiffness in each stiffener to the elastic

modulus of the internal material

- 4J h 7r

Solving the stiffness condition (2.33a) for ¢ yields

t=JnK(a—h—r). (2.35)
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(@) (b)

Figure 2.7: Schematic of the tuned shell. Plot (a): a one-component internal mechanism
consists of J = 16 stiffeners (ribs) with thickness ¢ and a central rod of radius r;. Plot
(b) shows the same internal mechanism, but with an added internal rod of radius ;.

Substituting into the density condition in (2.33b) yields a quadratic equation for r/a,
2 h 2

(B) +&k(1-2-2) -Lr—q (2.36)

a P1

Equations (2.36) and (2.35) provide the geometry of the substructure. Note that since

the formulation is in terms of area, there are two solution for i in equation (2.36).

There is no guarantee that both solutions will be physically realizable. For h/a < 1,

the roots are approximately r1/a = (K +1)~! (K + \/(pm/pl)(f( +1)— K)

It can happen that the density of the internal mechanism material is so low, as in
some plastics used in rapid prototyping, that it becomes difficult to match both the
density and bulk modulus. In that case, a heavy central rod of radius 75 can be added
as shown in Figure 2.7(b). This rod has practically no effect of the effective stiffness,
but does offset the density. The effective bulk modulus for this system is the same as
in equation (2.33a), and the effective density changes as follows

s =p (2= 0) (500D + () +e-en(2) e

where ps and K are the density and bulk modulus of the central rod. Three parameters
now define the geometry of the internal mechanism: ¢, r; and ro. Since there are two
conditions, (2.33a) and (2.37), the radius of the internal oscillator is determined after
selecting the fraction of density added by the rod f, < p,,/p2, which yields 5 /a = \/f_p

Recalling equation (2.35) for ¢, and using the definition of p,,, equation (2.37) can be
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rearranged as

(7“_1>2+R~<1_ﬁ_7“_1)2+(ﬂ_l)(rﬁ)Q_p_m:o. (2.38)

a a a £1 a 1

It is clear if po = p1, equation (2.38) gives the solution for a one-component oscillator,
i.e. equation (2.36). For a very thin shell with h/a < 1, the roots are approximately
rifa = (K +1)7H(K + \/(ﬁ/ﬁl)(K+ 1) - K), where p = ppm — fo(p2 — p1). The

discriminant goes to zero if we select f, such that pp—“; — fp(Z—f —-1) = KLH giving the

single solution =L = KLH which corresponds to the largest possible central rod.

2.3.3 Water-like aluminum shell with an acrylic substructure

Consider tuning to water the aluminum shell of thickness h/a = 0.3 described in Sec-
tion 2.3.1 with an acrylic substructure with properties (p; = 1190 kg/m?, E; = 3.2
GPa, 11 = 0.35). For reasons to be discussed later, J = 16 stiffeners are to be used in
attaching the central rod to the shell. First, equation (2.36) is solved for (r1/a) and
then equation (2.35) is used to get the thickness. The two solutions for the oscillator’s
parameters are (r1/a,t/a) = (0.821,0.040) and (0.303,0.180). The lower limit on the
internal mass radius r; is geometrically constrained by the thickness of each stiffener.
The intersection of stiffeners gives a lower bound of roughly 7, > Jt/(27). In the second
solution the radius r1 is below this bound. This implies that the density is not matched
to water, and consequently, only the first solution is retained.

Although the present representation of the added stiffness is a good approximation,
it is not exact. The first solution was optimized in COMSOL yielding the exact bulk

modulus of water. The geometry of the oscillator was found to be
(ri/a,t/a) = (0.796,0.081), (2.39)

corresponding to (pesy, Kepr) = (1000.8 kg/m?, 2.251 GPa).

The radius ratio r1/a of the inner rod is rather large. It can be made smaller
while still matching the effective properties to water by inserting a central steel rod
(p2 = 7944 kg/m>, Ey = 200 GPa, v, = 0.28). Solving equation (2.38) and using (2.35)
yields (r1/a,r2/a,t/a) = (0.560,0.167,0.110), which were optimized in COMSOL to
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give

(r1/a,ra/a,t/a) = (0.560,0.129,0.143). (2.40)

Figure 2.8 shows the two substructure designs in equations (2.39) and (2.40).

Figure 2.8: Aluminum shell of thickness h/a = 0.03 tuned to water with an acrylic sub-
structure. Plot (a) shows the one-component substructure described by equation (2.39).
Plot (b) shows the two-component substructure from equation (2.40).

2.3.4 Manufacturability

The oscillator designs in Figure 2.8 are well suited for rapid prototyping. However, that
process takes a very long time and the bulk properties of the resulting substructure can
be affected by porosity. A faster and more cost effective way to manufacture the acrylic
inserts is to machine down acrylic rods. Typical milling bits have rectangular cross
sections and thus the design has to be altered so the ribs rather that the voids have
a trapezoidal profile. Figure (2.9b) shows the aluminum shell of thickness h/a = 0.03
tuned to water with the machined oscillator. It is non-trivial to derive the effective bulk
modulus of this system as a function of the tool depth ratio t/a. Therefore, K ¢; was
obtained numerically in COMSOL. Figure (2.9b) shows the effective bulk modulus as
a function of the tool depth ¢. The curve in Figure 2.9 was obtained by matching the
density via the tool diameter d for a given tool depth ¢. The curve is quadratic with a

maximum around ¢/a = 0.08.
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Figure 2.9: Machined acrylic insert tuning an aluminum shell of thickness h/a = 0.03
to water. Plot (a) shows the effective bulk modulus as a function of the normalized tool
depth t/a with density matched by the tool diameter d. Plot (b) shows one geometry
which gives the parameters of water.
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Chapter 3

Scattering from an elastic shell with internal substructure

The dynamic response of an elastic shell in an acoustic medium was analysed in the
original work of Bleich and Baron [6] and many other in the years since. Historically,
acoustic scattering form cylindrical elastic shells has received much attention from the
Naval research community. Primarily because many underwater vehicles and weaponry
has the iconic cylindrical structure. The interested reader is referred to the text by
Junger and Feit [44] for an in-depth look at fluid-structure interaction. What makes
the study of scattering from elastic shells in water particularly interesting and important
is that the inertial and stiffness properties of the shell and water are comparable, unlike
in airborne sound. Thus a strong coupling exist between the vibration of the shell and
the acoustic radiation shed into the surrounding fluid.

The chapter is organized as follows. Acoustic scattering from an empty thin elastic
shell is described in § 3.1. This is then used to compare the frequency dependent
scattering from the empty tuned shells described in Chapter 2. In § 3.2, the more
complicated problem of a shell with an internal substructure is solved. Properties
of the general solution are discussed in § 3.3. It is shown that the scattered field
decomposes into J distinct parts, and that the additional portion of the T-matrix
due to the internal springs-mass system can be expressed by J products of vectors,
convenient for implementation. Numerical examples are given in § 3.4 along with a
discussion of the backscatter and total scattering cross section for plane wave incidence
and various spring distributions. Approximate but useful expressions are derived for
the effective resonance frequencies of the shell-springs-mass system. An acoustically

transparent aluminum shell is described in § 3.5.



22

3.1 Fluid loaded empty shell

Consider in-plane acoustic wave scattering from a thin cylindrical shell immersed in
water. The thin shell has outer radius a, thickness h (< a), volumetric mass density
ps, with elastic properties characterized by Young’s modulus Es and Poisson’s ratio v
(see Figure 2.1). We assume time dependence e~ which is henceforth omitted but

understood. The total acoustic pressure on the shell p satisfies the Helmholtz equation
Vi + E*p =0, (3.1)

where k = w/c is the acoustic wavenumber. The pressure can be decomposed into two
parts, the incident and scattered fields, p; and ps respectively, each a separate solution
of Helmholtz’s equation. Here we consider in-plane or 2D motion with plane wave
incidence, requiring only the planar modes. Thus,
oo oo
P=pi+ps, pi= Y Anu(kr)e™, p,= Y B.HV(Er)e™, r>a (32)
n=—00 n=—00
with A, the incident field coefficients, B, the scattering coefficients, .J,, the Bessel
function of the first kind of order n and H,(Ll) the Hankel function of the first kind of
order n. The objective is to get a relation between the incident amplitudes A,, and the
scattering amplitudes B,. The solution is embodied in the infinite T-matrix defined
by [64]
B =TA, (3.3)

where A and B are vectors of infinite length comprised of the elements A, and B,
at position n € Z, respectively. = The next step is to solve the equation governing
wave propagation in the shell. The Donnel-Mushtari thin shell theory is the least
complicated of the shell theories and will be used herein. The equations of motion for

a thin cylindrical shell in the r and 6 directions, respectively, are [44]

Lov  w  p20w o  o(,t)

_ v pow w_d%Y 4
a2d0  a® a2 064 + 2 pscih’ (34a)
10% 10w
il i 4
a2 062 * a2 00 2 0 (34b)
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where w and v are the radial and azimuthal displacement, respectively, o is the normal
stress acting in the radial direction and 8 = h/(v/12a). The displacements and the

normal stress are expanded in normal modes

o

(w’ v, 0) = Z (Wna Vi, Un) eme‘ (3.5)

n=—oo

Substituting equations (3.5) into (3.4) gives the modal equations as

a’o,

(-2 + 1+ B2nHh W, +inV, = —2,
pscph (3.6)
inW, + (9% —n?)V,, =0,

where the non-dimensional frequency is

wa c

0= ( - —k‘a). (3.7)
Cp Cp

The characteristic equation of the free-vibration solution with o,, = 0 yields the natural

frequencies for the radial modes €2, and circumferential modes €., respectively

1

2

= (Bn?,n), B<1

0. = ((1 +n?+ 620t T /(1 +n2)2 +282n4(1 — n2)>

(3.8)

In the presence of forcing o, such as an incident wave, the modal equations (3.6) are
solved for the displacement W,, in terms on o,,. The resulting expression is written in

terms of a shell impedance Z5" as
On = —iwZ"W,, (3.92)

Z5h = —ipscp% [Q - - (Q - —)_1] (3.9b)

Note that the shell impedance Z5" is either mass or stiffness-like, depending on the
frequency. The natural frequencies of the shell (3.8) correspond to the existence of
nontrivial solutions in the absence of loading, and hence are defined as the roots of
Zsh(Q) = 0.

Continuity between the radial shell velocity and the radial particle velocity in the
fluid, combined with the momentum equation in the fluid implies, using equation (3.2),
that 1w = —p~'dp/dr on r = a, hence

1

pcwW,, = Anjé(/m)—anH,(Ll)/(k‘a) = Dn= PG
Hy” (ka)

[pecwW,, — A, J! (ka)]. (3.10)
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0 .
Expanding the surface pressure as p(a,f) = . P,e"™ and substituting together with
—0o0

B, from equation (3.10) into equation (3.2) yields the modal pressure

2 A,
P, =—iwZ Wy, +i—————, (3.11)
mka Hy(Ll)/(ka)
where Z, is the acoustic impedance defined as
7 (k
7y = ipetn_(ka) (3.12)
Hy(Ll), ( k )
The Wronskian identity Jn(x)Hr(Ll)/(a:) - J,’l(a;)Hy(Ll)(a:) = 2L was used to get equa-
tion (3.11).
The radial stress on the shell is balanced by the acoustic pressure o,, = —F,,, which
can be expressed in terms of the dimensionless frequency Q = wa/c, as
a? a?
psc%han - _psc%h "
Q HY 2 A
- (ka) a (3.13)

e 2 W, — i n_
pscp h/a Y (ka) mpscph/a kaHSY (ka)
where psc?,h/ 2a = Kgph/a is the effective quasi-static bulk modulus of the shell (see
equation (2.31)). The scattering coefficients are obtained by solving (3.6) for radial

modal displacement W,

2 A _ (osh (1)
W= —= 2 Go= (24 Z)HY (o). (3.14)

The term ¢, contains the total impedance (Z:* + Z,), which highlights the parallel
summation of the shell and acoustic impedances. Substituting equation (3.14) into
equation (3.10) and rearranging yields the sought T-matrix, which relates the incident

and scattered pressure fields as (* denotes the complex conjugate)

1 *
B = diag(T,)A, Tn =3 <§_Z - 1). (3.15)

The associated elements of the diagonal ”S-matrix” are
S, =1+2T, = S, =e 2% T, =—ie " ging,, with ¢, = arg(n, (3.16)

implying that |S,| = 1, |T,,] < 1, in conformity with the fact that no dissipation is

assumed.
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3.1.1 Far-field

The acoustic far-field begins when the pressure amplitude exhibits cylindrical spreading
and the pressure is independent of the azimuthal angle . As a result the spatial depen-
dence of the pressure field in the far-field is simplified. Using the large argument ap-
proximation of the Hankel function Hr(Ll)(kr) = /2/(wkr)eltbr=nm/2=m/4) £ O((kr)~=3/2)

for kr > 1, the far-field scattered pressure field is

_ @ ik —3/2
bs = 27,6 9(0) + O((k’?") >7 kr > 17 (317)

where the form function g follows from equation (3.2)

Forward scatter is defined as ¢(0), whereas g(m) defines the backscattered pressure.
Forward and backward scatter are useful indicators of the scattered field at a given
point, but do not provide information about the total scattered power directly.

The total scattering cross section (TSCS or o44), which is a measure of the power
scattered in all directions due to an incident wave, will be used throughout to compare

scattering from various shells. Integrating the scattered pressure in the far-field, the

TSCS is defined as
27 27

A . 2~ 2 S (g2
it = a/pspsde— 2/\9(9)1 = 3 1B (3.19)
0 0 n=-

The TSCS has been calculated for the special tuned shells of Table 2.2 and the com-
posite shells of Table 2.3. An appropriate baseline for comparing different shell designs
is scattering from a rigid cylinder. The sound-hard boundary condition dw/dr|,—, = 0
yields the scattering coefficients B,, = —J,’L(ka)/Hf(Ll)/(k:a).

It is clear that the tuned shells are nearly transparent at low frequencies as compared
to a rigid cylinder of the same size. For the lead-aluminum and lead-copper bi-layer
shells, the T'SCS remains low up to about ka = 2.5. For the acrylic shell, the TSCS is
zero up to about ka = 0.7 where there is an n = 2 flexural resonance. The total and
absolute pressure fields for the lead-aluminum shell and the rigid cylinder are compared

in Figure 3.2 at ka = 2.5. There is very little scattering from the lead-aluminum shell
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Figure 3.1: Total scattering cross section for acoustically transparent single layer and
bi-layer shells. The dashed line represents the TSCS for a rigid cylinder of the same
size. The shell thicknesses are given in Table 2.2 and 2.3. The n = 2 and n = 3 flexural
resonances of the thick acrylic shell are labelled.

of radius @ = 1 cm even when the wavelength is just slightly less then the diameter.
This proves that the elastic shell is indeed behaving almost as an acoustic medium at
sub-wavelength frequencies. On the other hand, there is much scattering from the rigid

cylinder.

3.1.2 Consequence of matching density and bulk modulus

The idea thus far has been to tune elastic shells to behave as an acoustic medium in
the quasi-static regime. To see the consequence of doing so, expand the T-matrix in

equation (3.15) for low ka yielding

Ty = %T <KK;f — 1> (ka)? + O((ka)b), (3.20a)
_ T (Peff TP (a2 o)

T = i <peff+p> (ka)? + O((ka)*), (3.20D)

Ty = %(k:a)‘l + O((ka)®), (3.20¢)

for modes n = 0, 1, 2, respectively. Thus it is clear that the leading term in 7 depends

on bulk modulus and the leading term in 77 is inertial. By tuning the effective density
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Figure 3.2: Top: Total and absolute pressure fields for the lead-aluminum shell in
Figure 3.1 at ka = 2.5. Bottom: Same pressure plots but for the rigid cylinder. The
radii are @ = 1 cm and incidence is at 45°

and bulk modulus of the shell to water guarantees T,, = O((ka)*), leaving a large low-
frequency region of no scattering as seen in Figure 3.2. In other words, the monopolar
and dipolar response is no longer dominant at low ka. The quadrupolar response Tb
cannot be diminished. Moreover, from equation 3.19, the TSCS is proportional to

oot = O((ka)7) (see Figure 3.1).

3.2 Shell with an internal springs-mass system

The scattering of acoustic waves from an elastic cylindrical shell with an internal struc-

ture is quite distinct from the response of a simple shell. Excitation of waves on shells
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arises from two general mechanisms: (i) phase matching to supersonic membrane-type
waves [91, 88, 74], or (ii) excitation at structural discontinuities. The latter can excite
both supersonic longitudinal waves which then re-radiate into the fluid, and subsonic
flexural waves which can persist for long times and over large propagation paths on
the structure. Flexural waves are an important source of structural energy transfer,
but they are not usually excited on a smooth metallic shell in contact with an exte-
rior acoustic medium such as water because of their subsonic phase speed. The effect
of structural discontinuities or constraints can be modeled as effective forces on an
otherwise smooth shell, analyzed in the original work of Bleich and Baron [6].

Structural constraints can be separated into three fundamental types: concentrated,
linear circumferential, and linear lengthwise. Attachment of a spring-mass system or
a beam to the interior surface of the shell constitutes a concentrated constraint. The
constraint inhibits or enhances the vibration of the shell through reflection/conversion
of structural waves as well as through the resonant behavior of the substructure itself.
Undersea vehicles are sometimes modeled as a shell with many spring-mass oscillators
attached to the interior. Analysis of such ”fuzzy structures” indicates possible wave
localization due to structural irregularity, which in turn suggests methods for controlling
vibration/scattering [80, 40, 99, 77, 10, 79].

The other type of constraint, circumferential discontinuities, include examples such
as rigid discs [92], plates, rings [20], ribs, bulkheads [16, 35, 5, 78, 19, 18, 62, 106, 107],
and any other frames thin in the axial direction. Bloch-Floquet waves and Bragg
scattering effects appear for oblique incidence if the internals are placed periodically
along the axis of the shell, [106, 107]. Analysis of oblique incidence onto shells with
several bulkheads show that constructive interference between the scattered pressure
due to each bulkhead produces a dipole-like radiation pattern and scattered pressure
associated with bending moments yields a quadrupole-like radiation pattern [19, 18].

This Section is concerned with the two dimensional (2D) modeling of lengthwise
sheet springs supporting an internal mass as explored in [2, 33, 39], which can be
viewed as lengthwise discontinuities. More sophisticated and certainly more realistic

models such as deck-type plates [4, 47, 34, 36, 3] and lengthwise elastic ribs [47, 46] also
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fall into the category of lengthwise discontinuities. These internal structures provide
more mechanisms for coupling to and mixing of the structure-borne waves producing
a very complex response. With normal wave incidence and a sufficiently long shell,
lengthwise constraints can be analyzed in two dimensions as will be done herein.

Understanding of cause and effect can be obtained through detailed analysis of
simple models for internal structure. The simplest model for internal structure is a
single mass attached by a single spring to the shell. The structural analogue of this
system is a long internal rod attached to the shell by a lengthwise rib. Although springs
cannot support the passage of waves, this is a rich and relatively complex system as
compared to the bare shell, and it displays many of the dynamic properties of much
more complex substructures. The first such analysis by Achenbach et al. [2] considered
the 2D problem of a shell with an internal mass supported by a single spring and loaded
by an external point force. Via an energy formulation the interaction force between the
spring-mass system and the shell was determined and its affect on the acoustic scattering
studied, especially in the vicinity of the spring-mass resonance. The presence of the
substructure generates acoustic radiation which can be greater or lesser than that of
the standalone shell based on the frequency of the harmonic excitation relative to the
resonance of the oscillator (spring-mass system).

The problem becomes more complicated when the mass is supported by more than
one spring. Guo [33] formulated the scattering solution for a shell with an internal mass
attached by a diametrical pair of springs (structural analogue being a rod supported
by a diametric pair of lengthwise ribs). He demonstrated that there are two distinct
solutions, for even and odd azimuthal modes, which superimpose to produce the over-
all response of the shell-springs-mass system. This simple model clearly reveals the
rich and complex set of resonances resulting from flexural waves excited by the spring
attachments. This stiffener-borne wave generation mechanism was investigated earlier
by Klauson and Metsaveer [47]. Guo showed that the addition of a dissipative mech-
anism into the springs-mass system did little to the scattered field. Later, Gaunaurd
[27] expanded the analysis by considering a neutrally buoyant spherical shell with a

double spring-mass system. Spectral theory was used by Ho [39] to obtain the acoustic
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response for a shell with the mass supported by a non-diametrical pair of springs.

The current work reconsiders acoustic scattering at low to mid-frequencies, ka <
20, from a shell with simpler internal structural models, focusing on a distribution
of an arbitrary number of J springs supporting a central internal mass. This is an
approximate 2D model of a central rod supported by an equally spaced distribution of
J lengthwise ribs. The shell-spring-mass system is particularly interesting because of
how differently it responds to an incident wave when compared to fluid filled shells or
solid cylinders. Primary reasons for studying such systems include understanding: 1)
the acoustic scattering from a shell with a finite number of coupled point forces along the
circumference, 2) the propagation of flexural-borne waves into the far-field for different
number of springs, 3) the shift in resonance frequencies of the flexural waves due to
the added stiffness, 4) low-frequency transparency with large number of springs and 5)
the effect of the angle of incidence on scattering. Furthermore, the acoustic response
of the shell changes by selecting different spring stiffness and added mass. This ability
to tune the shell expands the range of possible acoustic properties for shells presented
in Martin et al. [65] and thus makes it a perfect element in graded index sonic crystals
as introduced in § 2.3. Here we concentrate on deriving and quantifying the model for
arbitrary number of internal springs.

The model considered expands the existing results [2, 33] for masses attached by
one or two springs, to the more general case of J attachment springs, where J > 1
is arbitrary. For an axisymmetric distribution of such springs, teh symmetry of the
problem is used to simplify the interaction force, which is later used to determine the
T-matrix of the combined system. The results are presented successively for J = 1,
J = 2, and finally J > 3 springs. The T-matrix is expressed in terms of physical
quantities: acoustic, shell and spring impedance. These combine in a non-trivial way
by virtue of the problem formulation to give the total impedance of the combined

system. This total impedance governs the system’s resonant behavior.
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3.2.1 Summary of the main results

A single mass per unit axial length m is attached to the inner surface of the shell by a
set of J > 1 springs each of stiffness x (with units of force per unit area) oriented at
angles 0; with respect to the horizontal, where j = 1,...,.J. The springs are assumed
equally distributed, so that 641 = 6; + 27/J. The mass is of finite size and free to
rotate, as shown in the schematic in Figure 3.3. Our main result is that the T-matrix

has the following form

J
T=T"+) b;b], (3.21)
j=1

where (* denotes the complex conjugate)

TO = diag(T,)), T = % (2_ - > v G = (23" + Za)HY (ka), (3.22a)
; 2 Ztot 1/2
bjn= CL ( p;k; > if n = jmod J, otherwise 0, (3.22b)

and the impedances associated with azimuthal mode n relate the radial stress to radial

velocity as (see (3.7) for )

(1)
Hy'(k . Jn(k
Zy = ipclia), Zn =ipc ( a), (3.23a)
HY (ka) T (ka)
h 52714 n2 -1
sh _ . w . _ v
Z = sty [Q O (Q Q) }, (3.23b)
x| Ty m=Elmedd, J, J=12,
Z5P(J) = 1-Hs 73 , Hy= (3.23c)
2maw J
1, otherwise, 5, J 23,
and
K
w2, = —, (3.24)

is the natural frequency of the internal springs-mass system (see Figure 3.3). Different
azimuthal modes are affected differently by the spring-mass system (see Z,) where the

function n = £1mod J is used here to mean
n=+4lmodJ <= n=+14+mJ, where m=0,+1,+2 +3, ... (3.25)

such that J is the modulus of the congruence. The various impedances can be inter-

preted as follows: Z, is a radial acoustic impedance associated with radiating wave
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functions, as compared with 2n for regular wave functions; Zflh is the shell impedance;
and Z;? is a generalized spring impedance. The expression for Z:" is based on the
Donnell-Mushtari thin shell model, see §3.1, which is sufficient for the range of frequen-
cies considered (ka < 20), although other expressions could be used, including the exact
result from elastodynamics. Regardless of the specific shell model, the results in equa-
tions (3.26) and (3.21) retain their analytic structure. The total equivalent impedance

Ztt is defined by the series/parallel combination of the above impedances as

1
o+ Znips
+pJ n+pJ

1 1 >
Zitot 75P + Z 75 (3.26)

p=—00 n

These results are derived next.

3.2.2 Problem formulation

" §,
.......... ey
Prlde -..~.~
~~~~
§~~
s,
\\
S
a IbaSS N 0
AN
N ”
e o ¢ LY
4 (At .
\ 3
CAVIY INSE R v(0),w(0))
1 b " N
i 0 ~7p,}
H X
H
.
\
\
‘\

L
S

-

. .
~ -
........

Figure 3.3: Displaced shell and internal mass (shown with solid lines) connected by a
single spring initially oriented radially at an angle 6#; from the x-axis.

Consider now the mass per unit length, m, attached to the shell as shown in Fig-
ure 3.3 by J > 1 springs each of stiffness per unit area, , oriented at angles 6;, where
j=1,...,J. The springs are assumed equally distributed, so that 6;,1 = 6; + 27/J.
The horizontal and vertical displacements of the mass are denoted by = and ¥, respec-
tively. The derivation of the linearized equations of motion for the internal mass and

the resulting radial force on the shell are in Appendix A. In summary, the displacement
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of the finite sized mass associated with its rotation is of second order and not retained
in the linearized equations. Moreover, the angular motion of the mass is not excited by
the acoustic incidence. Only the translating degrees of freedom of the mass contribute
to the radial force on the shell. Introduce the force distribution per unit area of the shell
surface, f(0), defined such that fdA is the force acting on an element dA = adf dz. It

follows from the Appendix that in the case of one, two, and J > 3 springs, respectively,

(01)06(6 — 61), one spring, (3.27a)

J
K 1 J
fO)=-+ <72 7 Z; [lewn)cos(ej 0+ (7" - §)w<0j>} 50 = 0;),
j=1 “n=
(3.27¢)
where §(0) is the Dirac delta function and (see equation (3.7))

2 2

, W mw
T w?, < K > (3.28)

Expanding the radial force distribution of equation (3.27) in azimuthal modes as

FO)= > fae™, (3.29)

and using the identity 6(6 — 6;) = o= > e™?=%) gives the modal force on the shell

2
n=—o00
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for the cases of one, two, and J > 3 springs as

fo= —% (Ti 1)w(&)e‘”*’l, J =1, (3.30a)
fn=— 27/; (T2 _Té : z_im> (w(61) + w(b; + ﬂ)e_i"“)e_inel,

_ K : w(f;)e" M x . foroddnm, J=2 (3.30b)
2ma J=1 ’ 1, for even n, |

fn = —%< ! l) ZJ: [ZJ: w(0y,) cos(0; — Op,) + (7’2 - %)w(ﬁj)} e~ n0i
2

J 72 _
= S w(@y)e i x {7 n=+lmod/,

J=1 1, otherwise,

3
Il

where the results (A.19) and (A.22) were used for J > 3 axisymmetrically distributed
springs with 60,11 = 6,,, + 27/J and the notation n = +£1mod J is defined in equa-

tion (3.25). The modal force for J springs is of only two types. The solution with

the coefficient 72/(72 — %) is the same as for the single spring. The dependence on 7

2

(i.e. the mass m) implies that the displacement of the internal mass contributes to the
net modal force for modes n = +1mod J. The second solution is independent of m,
suggesting that although the mass does displace as seen in (A.10), there is no net force
on the shell due to this displacement.

Equations (3.30) indicate that the set of force coefficients {f,} depend upon J
linearly independent combinations of the the radial displacements {w(¢;)}. Thus, for
J =1 we have w(6;) only; for J = 2 it is w(#;) +w(f2) and w(61) —w(b2); for J = 3 we
have w(0;) +w(02) +w(03), w(f)e ™ +w(h)e™ +w(f3), and w(f;)e? +w(hy)e 1 +
w(f3); etc. These independent combination of {w(#;)} can also be represented in terms
of the infinite series of Fourier coefficients {W,,}, see equation (3.5). Assuming the

springs are fixed to the shell at 8; = j2n/J, j =1,...,J, it follows from equations (3.30)
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and (A.22) that the force coefficients can be succinctly expressed

7
2

= J=1,
2
=3, nodd,
I T J =2,
In = T oma wy(ij) X 1, n even, (3.31)
QTZJ, n = £1mod J,
Tz J >3,
1, otherwise,
where
o
w) = " Wy (3.32)
p=—00

Note that wﬁ{l) = wﬁ,‘@] ) if m = nmod J. Also, note that for a diametrical pair of springs,
J = 2, the summation in (3.30) contains the term (1 + ¢*(™~™7) which is zero unless
n and m are both even or both odd, resulting in 1 + ¢lm=n)m — 9 The representation
(3.31) for f,, will prove to be crucial for relating the internal dynamics with the external

scattering.

3.2.3 The forcing coefficients

Now that we have an expression for the modal force on the shell in terms of the modal
displacement we can substitute it into the equation of motion (3.4a) with the replace-
ment o = f — p, and hence o, — f,, — P,. The definition of the shell impedance (3.9)
gives f, — P, = —iwZ:"W,. Combined with the continuity equation in the form (3.11),
this yields (see (3.14) for (,)

24n Jn
W, = — - . 3.33
rwkaC, iw(Zsh+ Z,) (3:33)

The scattered field is again given by equations (3.10) which involves the displacement
coefficients W,,. It remains to find W,, as a function of the incident wave amplitudes
A

As shown in the previous section, there are J distinct forms of the modal force fy,

each dependent upon the J—cyclic parameters wg‘]) of (3.32). These may be determined
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by taking appropriate summations of (3.33). Define the J—cyclic parameters

1 . 1 2z & A
R J) _ n n+pJ
- 9 pn - 9 334
1({]) pzz_:oo Zyiﬁ/_pJ + Zntpg rka p;oo CntpJ ( )
then (3.33) implies

)]

W) = =P (3.35)
—iwzt

Equations (3.31) and (3.35) now provide a pair of equations for wﬁl and f,. We next

consider the solutions for J =1, J = 2 and J > 3 separately.

A single spring (J =1)

(1)

In this case there is only one modal displacement coefficient w(!) = w,,” independent

of n, as are the force coefficients f,:

' (1
fo = iwZPw® with w Z W, = % (3.36)
where p1) = pg), ZW = ZT(LI) and Z°P are
o0 = 271 & B = 1 sp IR 72
= 7Tk,’a Z Cn Z(l) - n;oo erlh + Zn’ Z — Imaw 7_2 _ 1 (337)

See equation (3.23b) for Z5" and equation (3.23a) for Z,,. The effective spring impedance

is denoted by Z*P with a resonance frequency w? = w?

5> See (3.28).

Diametrical pair of springs (J = 2)

Now consider the internal mass being supported by a diametrical pair of springs. The
modal force is given by equation (3.31). Unlike the single spring scenario, here, due
to symmetry of the spring positions, odd and even modes engage the internal mass
differently. This gives rise to the two solutions, for even and odd n, as

1,.(2)
(2) _ (ZOJ) pe

fo = iwZPw? with w] W,
o o o Z 2(2) —I—ZSP

neven/odd

(3.38)
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where
0 7(2)
127
(2) e An 1 1
) _ L - 3.39
po wka Z Cn Z(2) Z Zﬁh +7Z, ( a)
neven/odd s neven/odd

2
; - dd
K 292> n o )
ZFP=—x

o Taw

(3.39b)

1, n even.

Similar expressions were derived by Guo in [33]. Note, for a diametrical pair of springs,

2 =202, see (3.28).

the resonance frequency is w 5p

Axisymmetric distribution of three or more springs (J > 3)

The solution for J > 3 axisymmetrically distributed springs is essentially the same as

for two springs, namely,

J (iw)” p% )
fro = iwZPw() where w(’/ Z Wigps = R - (3.40)
o A
with
o o
) 22Zn n+pJ r 1
p — = , (3.41)
n mka Z Coips 7 p;oo Zh o+ Znips
and
7_2
] -7, n==xlmodJ,
P b (3.42)
1, otherwise.
The summation in (3.40) is J-cyclic, wi) = wgr)l od- Thus, there are J unique solutions
that need to be determined {wéj),ng),wé‘]),. w g 1} where the spring impedance

for wg‘]) and wS‘Ql differs from other solutions as seen in equation (3.42).

3.2.4 Scattering solution
Write the scattering coefficients from equation (3.10) as
B, =B + BV, (3.43)

where BT(LO) are the values for system with no internal spring-mass system. Thus, using

equations (3.15) and (3.33),

By = % <§_ - 1> Ay B =ipedn, (3.44)
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Substituting the forcing coefficient of equation (3.40) into equation (3.44)9, the contri-

bution of the internal spring-mass system to the scattering coefficient is

Ztot (J) 1 1
(1) — o Zn_Pn - —_
b= o zm gt (3.45)

where Z!°! is the equivalent total impedance of the shell-spring-mass system.In the
following subsections, the scattering coefficients and the T-matrices are determined

separately for J =1, J =2, and J > 3 springs.

Scattering coefficients, J =1

For a single spring, the scattering coefficient is

B(l) o _2pCZtOt > Am

" wkaln = Cm

(3.46)

Equation (3.46) can be rewritten compactly by defining the infinite vector b with ele-

ments b,, as

; 2 Ztot 1/2
B® = bbTA  with b, = CL < pcka > . (3.47)
n ™

Hence, referring to equation (3.3) where, after truncating the series at N, the vectors

B and A are
B_n A_N
B_niy1 A_Ni1
Boniix1 = , ApNtnxl = (3.48)
BN AN
and the T-matrix is
T =T 4+ bbT, (3.49)

where T() is the diagonal matrix with elements 7}, on the diagonal, see (3.15). The
additional non-diagonal matrix in (3.49) is caused by the spring-mass system.
Scattering coefficients, J = 2

Recall that for a diametrical pair of springs there are two solutions for even and odd

modes, see (3.38). The scattering coefficient for even and odd modes, respectively, is
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(see (3.39))

202 A 1 11
BV, =%y Am L L .
( n )O Wk?a{n Cm Y Zgot Z(J) + pr (3 50)

meven/odd s

In order to express the scattering coefficient vector in the succinct form
BY = b,b’A +b,bl A (3.51)

define the (infinite) vectors b, and b,

b_s 0
0 b_
1 ; 2pCZ§Ot 1/2
be= 1|t [, Po=| 0 [, (ba)g= e ) (3.52)
0 by
by 0
Thus the T-matrix becomes
T =T 4+ b,b? +b,b!. (3.53)

The structure of the T-matrix in (3.53) is very interesting. It means that the additional
scattering above and beyond that of the shell without the spring-mass is of only two
types, proportional to be or b,. The amplitude of each type of scattered field depends
on how the incident wave couples to it, and this is given by the inner products b A
and b A.

We note that the influence of the spring-mass enters through the two frequency
dependent impedances Z:¥ and Z,;°. They couple to the shell and the radiating wave

impedances, Z5" and Z,, in series via the expressions in (3.39).

Scattering coefficients, J > 3

In the general case of J > 3 springs, the scattering coefficient is (see (3.41) and (3.42))

B _ 2027 N Anipg L 11
" Wkagn p Cn-i—pJ’ Zﬁot Z(J) Zfzp‘

=—00 n

(3.54)



40

Conveniently, the vector of scattering coefficients can be written as

B" = b b7A +bybl A+ ... +bbTA, (3.55)
where

bjj—7

O0(—1)x1
, tot\ 1/2
bj.; CLn (%) , n=jmodJ,
b, = bjm = (3.56)

O0—1)x1 0, otherwise.

bjj+J
0(J—1)><1

The full T-matrix then takes the form

J
T=T"+) b;bl. (3.57)
j=1

3.3 Discussion of the general solution for the shell with substructure

The structure of the derived results is well suited for numerical implementation. The
contribution of the spring-mass system to the to the T-matrix of the empty shell is
expressed via vectors, thereby removing the need for matrix multiplication. Also, the

J sub-solutions only need to be added to produce the final response.
3.3.1 Spectral properties of the T-matrix
Let A be an eigenvalue of the T-matrix with associated eigenvector u, i.e.
Tu = A\u. (3.58)
We note that the equation for A, det (T — AI) = 0, can be expressed
bI(AL-TO) by =1, j=1,...,J (3.59)
In order to see this, first use (3.57) to rewrite (3.58) as

J
u=> (blu) (AL-T®) b, (3.60)

J=1
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Taking the inner product with b; yields

J
S bl (A= T®)'b; (bT'u) = bl u. (3.61)
j=1

This simplifies by virtue of the facts that A\I—T( is diagonal, and that, for any diagonal
matrix D, b/ Db, = §;; b?Dbj, where 6;; is the Kronecker delta and from which (3.59)
follows.

Equation (3.59) implies that the eigenvalues of the T-matrix form J distinct sets, and
that the eigenvectors, which follow form (3.60), are likewise separated into J families.

Hence, T can be partitioned into J distinct T-matrices:

Mu

T=) TY where TV = TO10) 4 p;bT,
o (3.62)
I=> 19, 19 =diag(...1, 0(y_1)x1, L, Os_1)x1 - - ).
j=1
Conservation of energy is ensured in each subset of modes according to
S8 = §SU ™ =10 where SU) =10) +2T@, j=1,...,J. (3.63)

The structure of these matrices is illustrated in Figure 3.4. For instance, when
J = 2, Figure 3.4a shows that one half of the elements of the infinite matrix are zero.
The matrix is full for the case J = 1, and the number of zero elements increases as
J becomes larger. The examples in Figure 3.4 show schematically how the fraction
of non-zero elements decreases as .J increases: there are always elements on the main
diagonal, with the other non-zero elements becoming further separated from the main

diagonal as J increases.

3.3.2 Far-field response

The far-field scattered pressure field is given in equation (3.17), where the form function

g now has the form
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Figure 3.4: Structure of the matrices S). Matrix elements indicated by white spaces
are zero, and the other colors indicate non-zero elements of the J matrices S\ for

j=1,...,J.

The form function ¢(®) is for the shell without the substructure in equation (3.18).

For a plane wave incident on the shell at an angle 6y, the scattering coefficient is

B,=>Y TmAm where A, = (—i)™e~%_ This allows us to write the far-field

m=—0oQ

form function as (see (3.15) for T,,)

where 6, is the Kronecker delta.

\

(S T + B0+ 56),

J
(5anm + ‘Zl bj7nbj7m)7
]:

The total scattering cross section (T'SCS) o4 is defined as

2w

0 n=-—00

n=—oo

J=1,
J=2,
J>3,

1 I 2 0 _ 4 R0
st =5 [ l9OPa =1 > (B, and o) = S BOP

(3.65)

(3.66)
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where 0’1522 is TSCS for the empty shell as in equation (3.19).

3.4 Numerical example 1: steel shell with an internal substructure

Consider a steel shell (ps = 7810 kg/m?, ¢, = 5505 m/s) immersed in water (p = 1000
kg/m?, ¢ = 1484 m/s). Shell thickness to radius ratio is % = ﬁ. We define the internal
mass to shell mass ratio as %p% = 3. The spring stiffness is assumed to be such that

the resonance frequency of the oscillator satisfies (see (3.23) for H)

K a2 1 m ¢

_— = — — K= ——
mcz2 Hy a2 H;’

2
(3.67)

which gives kg,a = \/HJ% =1VJ.
Figures 3.5, 3.6, and 3.7 show the backscatter g(fy), total impedance |Z%!| and its
phase for J = 1,2, 3, respectively. The angle of incidence is taken to be 6y = 0 and the

truncation limit is N = 100.

22 23 '24 25

26| = = —1g° lg+g)
A1 Vé\/ 7
28 g 30" af, 32
7 8 9 10
1 T T T T
lg® —*— 1Z°/(pc)
(b)O.S I I 1
AL A
old a8 A /8 /2 /A /R /8 /A A AV AV AV AV AN AN AN AN AN A
0 1 2 3 4 ab 6 7 8 9 10

Figure 3.5: Backscatter and total impedance as a function of ka for J = 1 and incident
angle 6y = 0. The dashed line in plot (a) is the backscatter for the empty shell. In
plot (b), the backscatter due to the presence of the spring-mass system g(l) has the
same resonances as the total impedance Z%. The small numbers over the resonances
indicate the flexural mode.

With a single spring attaching the internal mass to the shell (Figure 3.5) the
backscatter is close to that of the empty shell but with many resonances. We show
in §3.4.1 that the resonance peaks are associated with flexural modes on the shell ex-

cited by the structural discontinuity caused by the spring attachments. The backscatter
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(1)|

Figure 3.6: Backscatter, total impedance and its phase as a function of ka for J = 2,
6p = 0. The dashed line in plot (a) is the backscatter for the empty shell. The
backscatter due to the even and odd solutions are plotted separately in plots (b) and
(c), respectively. The phase of the total impedance is shown in figure (d). The small
numbers over the resonances indicate the flexural mode.

becomes more complex as the number of springs increases. For J = 2 springs, the sub-
solutions of the form function are plotted below the total response in Figure 3.6. It
is evident that half of the resonance peaks come from the even solution and the other
half from the odd. At each resonance, the magnitude of the total impedance \Zé"t] is
at a maximum and its phase is zero. This implies that the position and spacing of the
resonances can be determined from the total impedance Z!°!, which is explored further
below in §3.4.1. The backscatter from the shell with J = 2 springs in Figure 3.6(a),
which was obtained using the general solution (equations (3.18) and (3.65)), is identical
to Figure 3(a) in Ref. [33].

The case of J = 3 springs in Figure 3.7 displays a new feature not previously
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lg%+g®)
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Figure 3.7: Backscatter as a function of ka for J = 3, #y = 0. The dashed line in the plot
(a) is the backscatter for the empty shell. Plots (b), (c), and (d) show the backscatter for
the three subsolutions. The red diamond on the horizontal axis indicates the resonance
frequency of the spring-mass system kspa = 1. The black stars are the resonances of
the shell-spring-mass system as predicted by equation (3.73). The small numbers over
the resonances indicate the flexural mode.

evident for J = 1 and J = 2: viz. the 1 mod 3 solution and the 2mod 3 solution are
identical. The repetition is a consequence of (i) the symmetries of the four impedances
of equation (3.23) under the interchange n — —n, and (ii) the fact that the integer sets
1mod 3 and 2mod 3 are identical under a change of sign, i.e. {... —5,-2,1,4,...} <
{...—4,-1,2,5,...}. These properties together ensure that the impedance Z' is also
unchanged under n — —n, and hence cause the repetition seen in Figure 3.7. It follows
that for any J > 1 the J parts of the T'—matrix actually reduce to 1 + L%J distinct

parts, where |-] is the floor function.
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3.4.1 Resonant behavior of the shell-spring-mass system

As noted above for the cases with J = 1, J = 2 and J = 3 springs, the resonant
behavior of shell-spring-mass system in Figures 3.5-3.7 arise from singularities of Z*

lying close to the real ka-axis. Thus, at resonance, from equation (3.26),

1 > 1
+ =€ | <1 (3.68)
Zflp p:z_:oo erz}j-pJ + Zn-l-pJ

We consider the spring-mass systems of the above numerical examples, for which the
resonances are in the range ka > 1, and in particular, above the spring resonance

frequency. The spring impedance is then (see 3.42)

i JK
I ———— k 1. 3.69
" (ka) 2w’ @> (3.69)
This is independent of n, and it’s inverse is large, O(ka). We therefore assume that

the condition (3.68) is satisfied by one of the terms in the infinite series becoming large

relative to all others, in which case the condition reduces to
Z¥+ 75+ 7, ~ 0, (3.70)

for some n and a related frequency ka. The resonances of the combined system are
determined by approximating the individual impedances in (3.70). To get an expression
for the effective resonance frequencies of the combined system, the acoustic impedance
is approximated as

k
I & —z’pc?a, n > ka, n#D0. (3.71)

The roots of the shell impedance Z5" of (3.23b), which correspond to the natural

frequencies of the shell, are Q2. = ((1 + n? + 8*n*) F /(1 + n? + ?n*)? — 482nf) /2
associated with flexural and circumferential modes, respectively (an equivalent form

of equation (3.8)). The thin shell approximation implies 5 < 1, consequently the

resonance frequencies are (,,Q.) ~ (Bn3/vn?+1,v/n?+1) while fn < 1. Since

Q. =~ n, the shell impedance behaves as

sh . h Q% 2
Z3 —ipscp 0 - a where Q, ~ fn (3.72)

is the flexural natural frequency.
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The condition of resonance given by (3.70), combined with equations (3.69), (3.71)

and (3.72), now results in a quadratic equation for the resonance frequencies kyesa =

C

2LQes. Solving the equation yields

[

Q%es = fpa kspa < kpesa K n. (373)

The resonance can therefore be interpreted as, to leading order, the flexural resonance
at Q@ = Q, (see (3.72)) modified by an added mass term in the denominator which
accounts for the fluid mass-loading (the same factor is present in equation 9.4 on page
282 of the text by Junger & Feit [44] for a fluid-loaded spherical shell), and by an
additional stiffness term in the numerator associated with the stiffness of the springs.
Note that the flexural resonances are not excited by the smooth shell (see Figure 3.5)
because they are sub-sonic and hence do not couple with the incident field. The coupling
to the quasi-flexural waves occurs directly because of the introduction of structural
discontinuities at the spring-shell attachment points. These act as sources for the

flexural waves which, in turn, radiate to the exterior fluid via the same discontinuities.

2 T
1.8 1
16} 1
1.4F sh -
1Z;¢l/(pC)
1.2k -
|Z,l/(PC) I
1K sp -
|Z;¢/(pc)
0.8F tot a
|Z,4l/(pC)
o6Ff N\ A A -7 | |Z§2|/(pc) approx. [
04f 2 [P |Z,l/(pc) approx. H
02k = = = |Z5(pc) approx. |1
0 L 1 K 0 0
0 5 10 15 20 25 30 35 40

ka

Figure 3.8: Comparison of impedances for mode n=36. This corresponds to the reso-
nance near ka = 12 of Figure 3.7. The solid lines are the exact impedances while the
dashed lines are approximations.
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The various approximations leading to the expression for the resonance frequency are
verified in Figure 3.8 which shows the approximate impedances plotted along with the
exact impedances. The curves are very close as long as n > ka. At larger frequencies
this condition is violated and the expression for the effective frequencies, equation (3.73)
is no longer accurate. However, the spring impedance Z," ~ O(1/(ka)) and hence its
effect at larger frequencies is negligible. The effective resonances are plotted on the
horizontal axis for the J = 3 case in Figure 3.7. Although, the values are close to the
resonances of the combined system they are not exact. This is primarily because we
only take a single term from the summation of Z!°* when formulating the condition of

resonance (see equation (3.68) and equation (3.70)).

3.4.2 Large J limit

As the number of springs J increases, the loading on the shell transitions from discrete
point forces to an effective pressure at the frequencies of interest ka < 20. However,
unlike a fluid filled shell where there is also a pressure distribution over the inner
surface, in this idealized model the internal structure has an infinite wave velocity since
the transfer of energy from one contact point on the shell to the other is instantaneous.
Figure 3.9 plots the total scattering cross section for the same shell but with increasing
number of springs J = 2,4, 8,16, 32 at the angle of incidence 6y = 0. Since the resonance
frequency of the oscillator is kept constant (see equation (3.67)), the stiffness of each
spring has to decrease with increasing J. This allows us to investigate solely the affect
of increasing the number of contact points.

In general, Figure 3.9 shows that increasing the number of contact points results in a
decrease in the number of flexural resonances propagating into the far-field. This is due
to the presence of forces at anti-nodes of flexural modes which inhibit their vibration.
Only the response for even numbers of springs is plotted and hence the odd modes
are prominent as J increases. For J = 16 and J = 32, large intervals appear without
flexural resonances, however, the TSCS is slightly increased over the empty shell (shown
by the dashed line) due to the added stiffness and mass. The low frequency TSCS is

asymptotically zero for these two cases because the effective quasi-static properties of
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the shell-spring-mass system are water-like. For the case with J = 32 springs there are
only a few large resonances near the resonance frequency of the oscillator kg,a = 1, the
n =9 and n = 11 flexural modes.

As J approaches infinity no flexural modes will be visible in the far-field with the
exception of the closest ones to the springs-mass resonance. The mechanically equivalent
system as J — oo is one of a highly anisotropic medium, with zero azimuthal stiffness
and infinite wave speed in the radial direction. The latter is a result of ignoring the
spring mass; this could be included but is beyond the goals of the present analysis which

is aimed at the low to moderate frequency regime.

3.4.3 Angle of incidence

The discrete number of attachment points on the shell produces symmetries which cou-
ple to the angle of incidence. The J springs are distributed axisymmetrically, therefore
only angles of incidence in the range 6y = [0,7/J] produce unique results for even J.
Figure 3.10 presents the total scattering cross section (TSCS) for several distributions
of springs. The dashed line represents the TSCS of the empty shell.

For the J = 2 case in plot (a) we observe a decrease in the amplitude and the number
of peaks as the angle of incidence goes from 0 to m/2. This is because only the even
flexural modes are unconstrained by the springs when the plane wave is perpendicular
to the pair as described by [33]. Analysing larger numbers of springs, it has been
determined that such clear separation of response also occurs for J = 4 springs in
plot (c¢). Furthermore, for J = 2 springs, as the angle of incidence is changed from 0
to m/4, the asymmetric profile of the flexural resonances flips due to a relative phase
between the shell-spring-mass system and the surrounding water. In the new results
with J = 3 springs all flexural modes propagate into the far-field regardless of the angle
of incidence. The TSCS for 6y = 0 is identical to that of §y = 7/3 because both coincide
with the orientation of exactly one of the springs.

The TSCS for J = 4 springs is shown in plot (c) of Figure 3.10. Again, the total
number of peaks is halved as compared to the J = 2 case due to the fact that the 4

springs exactly coincide with the anti-nodes of the even flexural modes. Thus the shell
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stiffened with J = 4 springs vibrates mostly with odd modes. Because different modes
are affected differently by the substructure, certain even modes fall near an excited
odd mode and are consequently enhanced. The resulting resonance is no longer sharp,
but has a plateau-like form as seen at ka = 7.7 and ka = 8.7 for the n = 28,29 and
n = 30,31 mode pairs, respectively. For J = 8 springs we see that the low frequency
flexural modes are unaffected by the angle of incidence, but the higher modes are
affected. For example the n = 26 flexural mode at ka = 6.28 is not exited with g = 0

but is clearly visible at 6y = 7/16 and /8.

3.5 Numerical example 2: acoustically transparent aluminum shell

Consider a thin shell made of aluminum 3003-H18 (ps = 2730 kg/m?, ¢, = 5326 m/s).
Matching the effective properties of the shell-springs-mass system to water implies
K.ty = K and peyr = p. The resonance frequency of the internal spring-mass sys-
tem wy, can be expressed in terms of the density and bulk modulus of the effective

medium as

4 (K- 2K
wgp = Hjtan (E) — <eff—“h8h> (3.74)
J/ ma Peff — 26/)5

In the case of odd J, tan(w/J) should be replaced by 2 tan(w/(2J)) which has the same
limit for large J, as expected. A necessary condition for low frequency transparency
is that this internal resonance lie above the low-frequency range, here considered as
roughly 0 < ka < 0.5. Figure 3.11 plots the non-dimensional resonance wavenumber
kspa = wgp/c as a function of shell thickness ratio for several numbers of distributed
springs J. As the shell thickness decreases, the resonance frequency of the internal
oscillator increases at a diminishing rate. Equivalently, as the shell becomes thinner
the added stiffness must increase faster than the mass. Also note that the resonance
frequency drops as the number of springs, J, increases. This is due to the factor
Hjtan(mw/J) in equation (3.74).

From Figure 3.11 as well as Table 2.1 we see that the upper bound on shell thickness
is h/a = 0.055. Since aluminum is relatively light there is a substantial mass deficiency

pm = 0.68p at that thickness. In order to tune the shell to water, a central mass is added.
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However, the mass has to be supported by springs, therefore the shell must be thinner
than the upper bound to accommodate the additional stiffness, namely h/a = 0.03.
From equations (2.31) and (2.32), the added stiffness must be K, = 0.52K and the
added density p,, = 0.84p.

3.5.1 Flexural resonances

The scattering response of the tuned shell is analyzed for plane wave incidence. Fig-
ure 3.12a shows the TSCS of equation (3.19) as a function of ka for the three cases in
Figure 3.11 at the thickness ratio h/a = 0.03. The star on the horizontal axis indicates
the resonance frequency of the springs-mass system, which per previous discussion de-
creases with J. For J = 4 and J = 8 springs the tuning is only effective at extremely
low frequencies, because of the presence of several flexural resonances. However with
J = 16 springs the TSCS is close to zero at frequencies up to ka = 0.8, where the
magnified view is shown in Figure 3.12b. By further increasing the number of springs,
the transparent region increases only slightly, because it is bounded by the resonance
frequency of the oscillator which for large J is at about kspa = wspa/c = 0.95 (see
equation (3.74)).

The shell thickness of h/a = 0.03 is the optimal shell thickness, because it maximizes
the range of frequencies of low TSCS. At the optimal thickness the lowest resonance
of the combined acoustic and shell impedances ( § 1/ (foj_p gt Zntp J))_l coincides
with the resonance frequency of the oscillator Zg; ._O”J?he result is that there is a large
region free from flexural resonances but still close enough to the oscillator resonance
for it to be effective.

The reason for the decrease in the number of flexural resonances with increasing
J can be understood by considering the radial displacement of the shell w(f) at each
resonance. These are plotted in Figure 3.13, where indeed each resonance corresponds
to a certain flexural mode. The red radial lines indicate the positions of the springs.
From these we can conclude that as the number of springs J increases more flexural
modes are constrained by the springs. The modes that do appear are either modes

where the spring attachments coincide with the anti-nodes of the radial displacement
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or if the mode is odd, the displacement is anti-symmetric.
Note that although we can attribute each resonance peak to a flexural mode, the
position of the peak is difficult to predict in the low frequency range, see Ref. [102] for

further details.

3.5.2 Acrylic substructure

The analytical model demonstrates the theoretical possibility of tuning elastic shells.
Next, the two physical oscillator designs in Figure 2.8 will be considered. The TSCS is
determined in COMSOL by simulating plane wave incidence onto the tuned shell and
integrating the far-field scattered pressure over a closed contour (see equation (3.19)).
The mesh is selected such that the largest elements do not exceed one sixths of the
shortest wavelength, the shear wave in acrylic (see Table 2.1 for the shear speed). To
prevent artificial scattering from domain boundaries a cylindrical radiation condition
is used.

Figure 3.14 shows the TSCS for the two oscillator designs described by equations 2.39
and 2.40 (see Figure 2.8) as well as the analytical springs-mass solution of Figure 3.12b
and that for the empty shell. The presence of the oscillator significantly decreases
the scattered power at low frequencies. The TSCS is effectively zero at frequencies
below ka = 0.6 making the shell transparent in water. The acrylic substructure with
the central rod gives the broadest region of negligible scattering. The accuracy of the
analytical springs-mass solution versus the finite element results of an acrylic oscillator
is quite remarkable.

Aside from being acoustically transparent, the internal spring-mass system can be
used to purposely introduce a strong local resonance in an array of such shells. This
resonance could also be spatially varying by appropriately selecting the number of

stiffeners J.
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Figure 3.9: Total scattering cross section as defined in equation (3.66) for J =
2,4,8,16,32 springs at the angle of incidence 6y = 0 in plots (a), (b), (c), (d), (e),
respectively. The dashed line in all plots is the TSCS for the empty shell. The red dia-
monds on the horizontal axis indicate the constant resonance frequency of the spring-
mass system kg,a = 1. The small numbers over the resonances indicate the flexural
mode.
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Figure 3.10: Total scattering cross section as defined in equation (3.66) for J = 2,3, 4,8
as a function of the plane wave angle of incidence, 6. The dashed curve is the total
scattering cross section of the empty shell. The spring orientations relative to the
incoming wave are shown in figure (e). The spring resonance frequency is kspa = 1 in
all cases. The small numbers over the resonances indicate the flexural mode.
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Figure 3.11: Non-dimensional resonance wavenumber kgpa = wgpa/c of the internal
springs-mass system as a function of shell thickness (see equation (3.74)). The alu-
minum shell is tuned to water.
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Figure 3.12: Plot (a) shows the total scattering cross section for an aluminium shell of
thickness h/a = 0.03 with J = 4,8, 16 springs supporting a central mass. The dashed
line is the TSCS of the empty shell. Plot (b) is a close up of plot (a) showing the
achieved decrease in the scattering cross section from an empty shell to a tuned shell
with J = 16 springs.
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(e) J=8, n=5 (f) J=8, n=6 (g) J=8, n=7 (h) J=16, n=15

Figure 3.13: Radial displacement w(f) for the J = 4 case at resonance frequencies:
ka = 0.081,0.303,0.338,0.74 in (a), (b), (c) and (d), respectively. Plots (e), (f) and
(g) show the radial displacement w(f) for the case with J = 8 springs at resonance
frequencies: ka = 0.273,0.321,0.434, respectively. Plot (h) is the radial displacement
for J = 16 springs at the resonance frequency of ka = 0.945. The radial lines depict
the internal springs. The thickness of the aluminum shell is h/a = 0.03. Displacement
has been arbitrarily scaled for clear depiction of the mode shape.
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Figure 3.14: Total scattering cross section of the two acoustically transparent aluminum
shells with an internal acrylic oscillator shown in Figure 3.14.
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Chapter 4

Tuned shells as elements in acoustic metamaterials

Transformation based design of materials for wave steering originated in electromag-
netics. Using singular transformations and the invariance of Maxwell’s equations under
such transformations the possibility of wave steering was demonstrated [75]. The idea
of cloaking is to steer an incident wave in a finite region surrounding the object such
that there is no scattering. Although the theory is frequency independent, only cloaking
of objects at microwave frequencies has been achieved experimentally [90]. Cloaking
objects at frequencies of visible light is theoretically possible using conformal mapping
as shown by Leonhardt [55], but is experimentally unconfirmed. Other applications of
transformation optics include beam shifters and splitters [69] and carpet cloaks [57] .

By natural progression the ideas found applications in acoustics. Cummer et al. [17]
showed the equivalent invariance under coordinate transformations between Maxwell’s
and Helmholtz” equations. Using singular transformations they designed a 2D acoustic
cloak with anisotropic density and bulk modulus. Simulations showed that the cloak
could steer waves around the annulus. Chen and Chan [12] applied the same con-
cept to the design of a 3D acoustic cloak. Cloaking of elastodynamic waves was also
investigated [66].

One way to achieve the anisotropic density required for inertial cloaking is by use
of layered fluids [105, 73]. However, such cloaking devices are not viable because the
density requirement results in an infinitely massive cloak [70]. Urzhumov et al. [108]
attempted to improve cloaks based on layering fluids to include solids. They concluded
that the added shear waves in the solid layers do not alter the cloaking effect for nearly
incompressible materials, with Poisson’s ratio v > 0.49, such as rubber. There has also

been interest in designing acoustically cloaked sensors via elastic shells [32, 37, 31].



60

An analogous problem to hiding an object surrounded by a wave medium is to do so
on a surface. The resulting carpet cloak as it is called transforms a finite region between
the object and the external medium to one that would yield the same scattering as from
the back surface. Carpet cloaks were initially investigated for electromagnetic waves [57,
109]. There have also been several experimental studies of acoustic carpet cloaks [82,
81, 114]. The acoustic carpet cloak in air was achieved with layered perforated plastic
plates which gave the necessary anisotropic properties.

A sonic crystal (SC) is capable of filtering, guiding and/or steering an incident
wave based on a gradient of effective properties [13, 68, 11, 58, 60, 15, 86, 59]. SCs
originated as the acoustic analog of the early photonic crystals of Yablonovitch [111]
and John [43] which exhibited opaqueness at certain frequencies. The scatter is the
fundamental element of the SC and is responsible for the behaviour of the complete
array, which may present a compounding effect of the individual elements. For an
air-based SC, the scatterer can be modelled as rigid [89, 103, 86]. Therefore, for a
two dimensional air-based SC the design parameters are the scatterers’ size, geometry,
spacing and lattice structure. For water-based SC the elasticity of the scatter is not
only non-negligible, but essential in the modelling of such structures.

The transformation acoustics example which will be discussed here is the cylindrical-
to-plane wave lens as designed by Layman et al. [53]. It works by steering waves, due
to a monopole source at the center, from the corners to the faces of the lens. The SC
of Ref. [53] is based on constructive multiple scattering from finite embedded elastic
materials in a fluid matrix, something previously investigated by Torrent and Sanchez-
Dehesa [104]. This Chapter expands the possibilities in Ref. [104] by increasing the
range of achievable properties over those presented by Martin et al. [65].

This Chapter is organized as follows. The conformal mapping which yields the
required distribution of properties for a cylindrical-to-plane wave lens is formulated in
§ 4.1.1. A realization of this lens design with internally tuned shells is presented in
§ 4.1.2. An alternative design is presented in § 4.1.3, which uses readily available empty
shells. An active control mechanism for tuning the effective properties of the shell is

presented in § 4.2 an applied to an active radial array.
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4.1 Cylindrical-to-plane wave lens

Refraction based wave steering lenses are an efficient way of steering an incident wave.
Snell’s Law dictates that if a wave enters an isotropic medium with a different sound

speed, then the wave will be refracted according to

sinf; ¢

sinfy ¢’ (4.1)
where 61,60 are the incident and refracted wave angles, respectively, and ¢y, co are the
respective wave speeds. Full control of incident sound can be achieved with a two
dimensional distribution of effective properties. However, the resulting medium must
also have a high transmittance in order to be useful. An efficient cylindrical-to-plane

wave lens depends on the accurate distribution of the properties via the conformal map

described next.

4.1.1 Distribution of properties

The wave equation for an acoustic medium is invariant under coordinate transforma-
tions. Moreover, if the transformation v = x 4+ iy — s = 2/ 4+ 4y’ is conformal, s = s(7),

then the mapped density p’ and bulk modulus K’ in the transformed coordinates are [72]

p'=p, K =Klds/dyl (4.2)

Consider the conformal transformation of a unit v circle to a unit s square. The
circle is first mapped to the upper half plane through a bilinear transformation; the
subsequent polygon mapping takes the upper half plane to the unit square in s. The

resulting unit square to unit circle inverse mapping is

M (4.3a)
x = icn? (%K <%> (s+1+ i)) , (4.3b)

where K() is the complete elliptic integral of the first kind and cn(u) is the Jacobi

elliptic function. The bulk modulus distribution in the transformed space is

2K
K' = (4.4)

K(G Vi1
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It should be noted the elliptic integral is singular at the corners of the square region.
The distribution (4.4) is used to design a cylindrical-to-plane wave lens. The com-
plex variable defining the square is {s(z + iy)|z,y : —L/2,L/2}. Substituting s into
(4.3) and then the obtained ~ into (4.4) gives the continuous function of the bulk
modulus distribution. In order for the distribution to be applicable to an array of sub-
wavelength scatterers it has to be discretized. This is done by averaging the value of
the bulk modulus over a square unit cell of the array. Having used the notation K.;s
for the effective bulk modulus of the shell, denote the bulk modulus of a unit cell as
K.q. As an example, the normalized bulk modulus distribution is discretized into 7 by

7 cells as in Figure 4.1b.

(b)
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Figure 4.1: Plot (a) shows the continuous bulk modulus distribution K.,/K. Plot (b)
show the same function discretized into 7x7 cells.

4.1.2 Realization with internally tuned shells

The unit cell of the square array, shown in Figure 4.2a, consists of a shell with an
internal acrylic substructure surrounded by a square region of water. The shell volume
fraction in the unit cell is f, = ma?/b?, where b is the cylinder spacing as well as the

side length of the unit cell. The equivalent density and bulk modulus, peq, Keq, of the
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Figure 4.2: Left: A square unit cell of a fluid saturated array of shells. Right: Equivalent
bulk modulus of the unit cell K, as a function of the effective bulk modulus of the
tuned shell K.y, for several filling fractions.

unit cell depend on the surrounding fluid as

1
@:1+fs(peff—1) = Pels :1+f—(@— ) (4.5a)
p p p s\ p

Keq 1 Keff 1

K 1+ f(&; - 1) K 14++(E -

The equivalent density and bulk modulus of the unit cell are significantly affected by
the surrounding fluid. For shells of radius a = 1 ¢m with a relatively tight packing of
b = 2.2a yields a filling fraction of fs = 0.65. In this case, in order to have the effective
quasi-static bulk modulus of the unit cell K., = 2K, the effective bulk modulus of the
shell-springs-mass system must be K.¢; = 4.33K (see Figure 4.2b).

The effective impedance of each shell relative to water (acoustic impedance Z ¢ =

VpK) is determined by

PeffBerf _ PeqBeq ( 1— (1= f5)p/peq ) (4.6)

pK pK \1— (1= fo)Keq/ K

The proposed array contains 7 by 7 unit cells of size b = 2.2a with cylinders of
radius ¢ = 1 cm giving a filling fraction fs = 0.65 and the side length of the lens
L = 15.4 cm. Using this required equivalent stiffness of each unit cell K., in Figure 4.1a,

the properties of the shell-springs-mass system are obtained from equation (4.5) as

K;(f L= (1+ 1.54( K%q —1))~!. Consequently the effective properties of the shells must
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be more extreme as shown in Figure 4.3a. The effective density of each shell-springs-
mass system is tuned to water, see (4.2).

Each shell-spring-mass system is designed by the method outlined in § 2.3.2. The
thickness of the aluminum shells has to vary form 0.03 to 0.12 to achieve this inhomo-
geneity of bulk modulus from % = 0.93 to 3.21. Appropriate geometry of acrylic
internal oscillator with J = 16 stiffeners tunes the shell to the required acoustic prop-
erties. The slow shells with % ranging from 0.62 to 0.86 are made of acrylic with
g = 0.3 and tuned with an acrylic oscillator. The central shell is removed to give room
for a monopole source.

The total pressure field was obtained by simulating the lens made of elastic shells
in COMSOL. A symmetric quarter of the pressure field at monopole source frequencies
of 10 kHz (ka = 0.42,\/a = 15) and 15 kHz (ka = 0.63, A\/a = 10) is shown at same
scales in Figures 4.3c and 4.3d, respectively. Also, Figure 4.3b shows the pressure ratio
along the quarter circular arcs in Figures 4.3c and 4.3d between the field with the lens
(shown) and source only (not shown).

At low frequencies the wavelength is much larger than the shell size A\/a = 15 and
the lens is essentially transparent. However, at 15 kHz when \/a = 10 each tuned shell
behaves as an effective acoustic medium steering the wave from the corner to the faces.
The wave travels across only 3 rows of shells and the maximum amplitude is magnified
by a factor of 7 as seen in Figure 4.3b. The increase in the pressure amplitude from
the faces and its decrease from the corner demonstrates wave steering.

A larger array of shells will increase the effectiveness of the lens. In the design of
each shell, it is important to understand that this is a model with three parameters:
shell thickness, oscillator stiffness and mass. The effectiveness of the internal oscillator
changes with shell thickness. The following procedure will guarantee a successful design

of this type of acoustic lens:

e Select the thickness of each shell to optimize the range of frequencies for it to

behave as an effective medium.

e Design each oscillator so as to suppress all low frequency flexural waves of the
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shell and maximize its natural frequency.

4.1.3 Realization with empty shells

In practice, it is difficult to produce the acrylic internal oscillators necessary to tune
the shell as described in the previous section. As an alternative, it is possible to use
quasi-statically tuned empty shells. This complicates the acoustic response as flexural
resonances could be introduced. The three primary design criteria are that: 1) the
shells are readily available, 2) the effective density of each shell matches water and 3)
the effect is apparent near 20 kHz, which is the designated frequency of interest. The
shells must be sub-wavelength, so the common outer diameter of 0.5 inches is selected.
Fixing this outer dimension leaves two parameters: the shell thickness h/a, and the
material of the shell. Table 4.1 summarizes several common shells which have nearly

the same density as water, but varying effective bulk moduli.

Material OD (in) h (in) h/a peff Kepr cefp  Zeys denoted
PVC 0.54 0.088 0.33 0.71 0.36 0.71 0.51 1
ABS 0.5 0.125 0.5 098 0.52 0.73 0.71 2
Acrylic 0.5 0.125 0.5 0.89 0.68 0.88 0.78 3
Polycarbonate 0.5 0.125 0.5 090 0.77 093 0.83 4
Brass 0.5 0.14 0.056 0.93 1.63 132 1.23 5
Brass 0.5 0.02 0.08 131 238 135 1.77 6
Copper 0.625 0.028 0.09 150 274 135 2.03 7
Aluminum 0.5 0.035 0.14 0.71 2.78 198 1.41 8
Aluminum 0.5 0.049 020 097 4.13 2.07 2.00 9
Aluminum 0.5 0.065 0.26 1.24 588 2.18 2.69 10

Table 4.1: Readily available shells (i.e. tubes and pipes) that have the effective density
of water but different effective bulk moduli. All properties are normalized to water.

Clearly, it is extremely difficult to find shells that have the effective density of water
while at the same time provide the necessary effective bulk modulus per Figure 4.1a.
Instead, a near perfectly mapped lens is created, see Figure 4.4. The shell spacing is

selected to be b=2.2 cm, hence the side length of the lens is 15.4 cm.

The simulation of the lens was carried out in COMSOL and is shown in Figure 4.4.
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The frequency of the monopole source in the center of the lens is 22 kHz. For com-
parison, the lens with the unit cells replaced by the effective acoustic medium is shown
and the pressure field due to the monopole source. The simulations indicate that the
cylindrical-to-plane wave lens made from empty shells performs very well as compared
the optimal case of each unit cell having the prescribed effective acoustic properties
directly from the conformal mapping. It is also evident that the transmission is high.
The downside to using empty shells is the possibility of exciting flexural resonances,
which is not an issue with internally tuned shells. Since the shells are of different thick-
ness and materials these flexural resonances are spread over many frequencies. If a
shell resonates in a flexural mode, the effectiveness of the lens will drop or altogether
disappear. The interaction of flexural waves on neighbouring shells will be analyzed

closely in Chapter 5.

4.2 Active control of the effective properties

Aside form passive control of the effective acoustic properties via tuned shells, active
control is also theoretically possible. To achieve this, the density and/or bulk modulus
have to be changed dynamically. Although possible, it would be rather difficult to
add or remove mass from a cylinder. Instead the stiffness could be changed. There are
many springs which can dynamically change the stiffness, particularly from the robotics
industry. One such example is a variable stiffness robot leg [25] which is essentially a
curved beam with variable length. A schematic of the device applied to tuning an
elastic shell is shown in Figure 4.6

This proposed mechanism consists of J = 4 variable stiffeners attached to a central
rod. The rod serves as the added mass. The stiffness of the four open shells is controlled
by their effective length. As the central rod is rotated relative to the shell, the length
of the stiffener changes thereby changing the stiffness. The process of changing the
stiffness can be almost instant. As a result, the cylinder can take on a range of effective
acoustic properties. One application would be to detect and actively steer and incident

wave.
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Since this variable stiffness cylinder would be difficult to manufacture, a more ap-
propriate first experiment would involve a binary type control. The shell could be either
turned on, in which case the internal substructure makes it acoustically transparent, or
turned off, in which case there would be much scattering. To promote the feasibility of
such devices Figure 4.7 presents a circular array which is two shells in thickness in the
radial direction. The array is insonified with a point source which is on top and out of
the plotting window. Pink circles represent the tuned shells (turned on) and the white
circles represent the empty shells (turned off). The absolute pressure field at ka = 0.2
is shown for three cases: (a) all shell are on and are acoustically transparent, (b) one
radial row of shells is turned off and (c) three radial rows of shells are switched off.
These simulations were done with a multiple scattering code developed in the acoustics
group at Rutgers University which uses the T-matrix (3.21) for the tuned shells. The
aluminum shells are those from § 3.5. The pressure distribution in plot (a) shows very
little scattering proving that the shells are almost completely transparent by design.
In plot (b) and more so in plot (c) the double ring of shells behaves as a Helmholtz
resonator. The column of water in the throat oscillates projecting a beam in a direction
normal to the incident wave.

One could also envision tuned shells as a mechanism for harvesting and converting
incident acoustic energy. If the lengthwise ribs of the internal substructure are replaced
by an appropriate piezoelectric material, a deformation will produce charge. This elec-
trical energy can be gathered from many such shells and stored for later use. Such an
idea is particularly suitable for underwater applications since all of the electronics could

be stored safely inside of the shell.
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Figure 4.3: Cylindrical-to-plane wave lens. Plot (a) shows the bulk modulus distribution
in the 7x7 array of tuned shell. Plots (c¢) and (d) show the pressure field around the
lens at 10 kHz and 15 kHz, respectively. Plot (b) is the pressure normalized by the
monopole source pressure without the lens along the quarter circular arcs in (¢) and

(d).
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2.2 cm

Figure 4.4: A cylindrical-to-plane wave lens constructed from a 7x7 array of various
empty shells. The numbers correspond to the index of each shell shown in Table 4.1.
Note the varying thicknesses.
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Figure 4.5: Left, middle and right columns are the simulated pressure fields for the lens
of Figure 4.4, the effective acoustic medium in Figure 4.1 (the optimal case) and the

source without the lens, respectively. Top row shows the total pressure field and the
bottom row shows the absolute pressure field at 22 kHz.
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Figure 4.6: Mechanical tuning of an elastic shell by a variable stiffness mechanism
leading to active control of the effective properties.
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Figure 4.7: Absolute pressure field around a double ring of shells which can either be
transparent (pink) or scattering (white). The point source which is on top and outside
of the plot window at a frequency of ka = 0.2. The split ring in plots (b) and (c) the
resembles a Helmholtz resonator.
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Chapter 5

Interference of flexural-borne waves on closely spaced thin
shells

Flexural waves are not present in sonic crystals of internally tuned elastic shells. This
is because the proposed internal substructure couples the displacement of the shell at
many points thereby stiffening the flexural modes (see § 3.5). As a result, the resonance
frequency of these modes increases leaving a large low-frequency region where the sys-
tem behaves as an acoustic medium. At higher frequencies, flexural waves diminish the
performance by inhibiting wave steering and transmission.

For empty thin shells the flexural modal density is high (see equation (3.8)). Thus
it is difficult to design broadband acoustic metamaterials with such elements. Although
gratings of elastic shells in a fluid have seen application in acoustic metamaterials [48,
49, 63], the interaction of scattered fields from flexural waves on neighbouring shells is
not well understood. Being subsonic, these waves do not couple to the incident field,
but behave as a local resonance in the SC. These locally resonant inclusions in a wave
medium produce narrow bands in the frequency spectrum, which can interfere with the
propagating mode resulting in asymmetric pseudogaps in the frequency response. When
the flexural resonance is out of phase with the surrounding medium, the array takes on
negative effective properties (a resonant effect). On the contrary, full transmission has
been observed within the Bragg band gap if the flexural resonance lies thereat, a region
in which incident plane waves typically cannot propagate. Here we investigate the local
interaction of neighbouring resonators, elastic cylindrical shells, and the resulting effect
on the far-field response.

Liu et al. [61] point out that if an inclusion in an elastic matrix has a resonance

frequency wy, the transmission coefficient is proportional to 1/ (w% — w?) yielding an
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asymmetric profile. They present experimental and theoretical work on an 8x8x8 cubic
array of rubber coated lead spheres in a hard epoxy matrix. The asymmetric shape
of the transmission coefficient near the resonance is discussed and correlated with the
band diagram where the dip in the transmission corresponds to the lower edge of the
pseudogap and the peak, the upper edge. A very important point made is that the sonic
attenuation is a consequence of the local resonant behaviour and would be apparent
even for a monolayer, as opposed to Bragg scattering which requires many periodic
layers to abate an incident wave.

The study was extended to square arrays of circular cylinders by Goffaux et al. [29].
It was noted that the asymmetric profile of the transmission spectrum near the reso-
nance frequency of the cylinder resembled the Fano [21] resonance due to the interference
of a discrete autoionized state with a continuum. Goffaux et al. proposed a 1D spring-
mass model to describe the interference between the elastic cylinder and surrounding
matrix. Later, Goffaux and Sanchez-Dehesa [28] formulated a variational method for
efficient calculation of the band structure of such phononic crystals. Furthermore, they
improved the 1D model used to describe the interference with the resonant inclusion
and validated it by comparing the predicted width of the pseudogap as a function of
the lattice constant to simulated results.

The effect of flexural waves on elastic shells in a sonic crystal was first investigated
by Khelif et al. [45], although the distinction that these are flexural waves was not made.
They studied steel shells in water with thickness to radius ratio between h/a = 0.4—0.45
and a lattice parameter to radius ratio of b/a = 2.5. By tuning the shell’s flexural
resonance to lie in the Bragg band gap, they were able to achieve full transmission at
a single frequency and no transmission elsewhere in the band gap. This was shown
to be a suitable approach for filtering a single frequency from an input signal. The
work was further expanded by Pennec et al. [76] by introducing shells of alternating
thickness in a row along the direction of propagation. This lead to the transmission
of two distinct frequencies in the effective guide. This system can also be used for
separating or merging signals of different frequencies.

Kosevich et al. [48] studied transmission through a periodic array of thin elastic
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cylindrical shells in air (artificial shells with ps; = 50p4; = 50kg/m3, Cis = 2000m/s,
Cis = 4000m/s). Analogous to previous structures, the flexural resonances are re-
sponsible for the asymmetric profile of the transmission spectrum. It was shown that
an enhancement of the width of the Bragg band gap occurs when the lowest flexural
resonance of the shell (n = 2) lies in the band gap associated with Bragg scattering.

Before the interest in acoustic metamaterials, Heckl and Mulholland [38] studied
wave propagation through a grating of elastic shells in the context of heat exchangers.
Lethuillier et al. [56] analyzed the resonant interaction of the Scholte-Stoneley waves on
neighboring shells. More recently, low frequency breathing modes of soft rubber shells
in air also have been shown to produce pseudogaps below the Bragg frequency [49], but
flexural vibrations are quite different due to their azimuthal directionality. It has also
been shown that the A-wave interaction on neighbouring shells results in a significant
increase in the far-field scattered pressure at resonance [96].

This Chapter investigates the interaction of the flexural-borne waves from neigh-
bouring shells in water and whether any enhancement of the far-field scattering is
possible. The aim is to accurately predict the resonance frequency, bandwidth and
decay rate of a flexural resonance. This will be achieved through asymptotic analysis

of a higher order shell theory with multiple scattering theory.

5.1 Evanescence

Consider a wave incident onto a cylindrical shell with wavenumber k = w/c. Some
incident energy will be transferred to the flexural vibrations of the shell and the rest
will scatter back into the fluid. Define the normal and tangential wavenumbers as kj
and k;, respectively. The wavelength of the n'" flexural wave is A = 27a/n, thus the
tangential wavenumber can be expressed as ky = n/a. From the Helmholtz equation,

2 2

the wavenumber of the scattered wave is k2 = k* — k7 = % — Z;. Thus at flexural

resonarmnce

2 _ Cz2> 2 2
(kna)® = 6—297, —n”, (5.1)
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which implies that the scattered wave is evanescent while %”Qr < n. In § 5.2.2, the
expression for the low order resonance frequency of flexural modes on thin shells is
derived, which is Q2 = 82(n? — 1)2/(1 + p/(v/128np;)). Figure 5.1 shows the normal
component of the wavenumber scattered from a flexural resonance for an aluminum

shell with thickness ratio h/a = 0.03.

k'
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Figure 5.1: Left: Scattering from the n==8 flexural mode of a thin shell. Right: Normal
component of the scattered wavenumber squared (k,a)? for several low order flexural
modes of an aluminum shell of thickness ratio h/a = 0.03.

This simple analysis demonstrates that low order flexural waves of thin shells are
evanescent, decaying with radial distance. As an example, the amplitude of the wave
scattered form the n = 2 flexural wave on the aluminum shell in Figure 5.1 decays by
63% (e~ !) in a distance r/a = 0.5. Therefore, scattered flexural waves from thin shells
do not propagate into the far-field (see the dashed line in Figure 3.12b for the empty
shell of thickness h/a = 0.03). Of all of the low order flexural waves, the n = 2 flexural

resonance is the least evanescent.

5.2 Higher order shell theories

For most engineering applications, the Donnel-Mushtari (D-M) thin shell theory is

sufficient. However, it will be demonstrated that in order to accurately predict the
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lowest flexural resonances, a higher order shell theory is required, such as the Love-

Timoshenko (L-T) or Fliigge-Byrne-Lur’ye (F-B-L) theories.

5.2.1 Free vibration

Loosely adopting the notation from Leissa’s text [54], the shell’s equations of motion
can be written as [L]{u;} = {7;} where the matrix [£] operates on the displacement
vector u = {w,v,u} in the (r, 0, z) cylindrical coordinates. The dimensionless traction
vector is o = {@a(@,t),0,0}, where we only include the radial component of the

stress o(6,t). For in-plane vibrations the operator takes the form

Y Y wa e
] = + 0% + G oe 20 P 0 0| op |t 20 Y
el 82 a® 92 98 5?2 0 0
70 W o o o
- M L-T F-B-L

(5.2)
where 8 = h/(v/12a) is a small bending parameter. Note the second term, which is
the improvement over the Donnel-Mushtari equations. The differences in shell theo-
ries arise form different definitions of the change in curvature and twist of the mid-

dle surface. Expanding the in-plane displacements and stresses in azimuthal modes

S . .
(w,v,0) = > (Wp, Vi, 0n)e™e ™t and substituting into the equations of motions
n=-—00
yields
di da| [Wa|  |5%50m
= | (5.3)
ds da| | Vy 0
where the elements d;_4 depend on the shell theory used
d d -2+ 1+ pnt in 0 in? 1-2n% 0
- : +5? OR
ds dy in (02 —n?) in® —n? 0 0
D—-M L-T F-B-1L
(5.4)

Define the shell impedance Z5", which relates the applied pressure to the resulting
velocity, as

h <—d1d4 + d2d3> (5 5)

On = —iwZ"W,, zZ:h = —ipscp 0
1
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The determinant of the coefficient matrix (5.4), explicitly visible in the shell impedance (5.5),
governs the natural frequencies Q, . = w, ca/c, for radial (flexural or in-plane bending)

and circumferential modes of vibration, respectively, which are for n # 0 [24, 54] The ex-

Theory 02, él—% Q,
w/IPI  w/o IPI
T T 324 ,

- 5{(1-1-71 + B*n®) Bn3 9

D-M /(1 +nZ + BZnA)2 — 43%n5} T2 pn
s {1 +n?)(1 + 4%n?) 2

_ 2 Bn(n®-1) 2

LT S G I Ryzere) e oy S
1 2 322 2

_B- 5{(1 tn +B (TL — 1) ) Bn(n?—1) 2
L T+ Py — i =17y v P
membrane 0,1+ n?) - ,

Table 5.1: Comparison of the resonance frequencies of a shell’s radial and circumferen-
tial modes using several shell theories. Asymptotic forms are shown with and without
the inclusion of in-plane inertia (IPI) in the equations of motion.

pressions for Q%,c in Table 5.1 are complete and differ slightly from Table 2.1 of Leissa’s
text [54] where terms of order 32 were omitted. The natural frequencies for n = 0 are
Q2 . = (1,0) from both the D-M and L-T theories and Q2 . = (1+?,0) from the F-B-L

theory. The asymptotic radial frequencies as 8 — 0 are presented with and without the

a? 9%
c2 ot?

the expression. At this stage it is clear that both the L-T and F-B-L theories yield

in-plane inertia (IPI) term in equation (5.2), which is often omitted to simplify
the same natural frequencies for thin shells. The D-M shell theory predicts a higher
flexural resonance frequency for a given mode n and as Forsberg [24] points out, the

maximum error is for the n = 2 flexural mode.

5.2.2 Fluid loaded shell

Of interest is the in-plane acoustic wave scattering from a thin cylindrical shell im-
mersed in an acoustic medium of density p and sound speed c. The external pressure
field satisfies the Helmholtz equation (3.1) leading to expressions for the scattering co-
efficients (3.10) and modal pressure (3.11). The radial stress on the shell is balanced by

the acoustic pressure o,, = —PF, as in (3.13). Substituting equations (3.13) into (5.2)
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yields the equation of motion as

pe_ 0 H(ka) —i—2 a2
<d1 + PsCp h/a H»,(ll)’(ka)> d2 WTL = Zﬂpsc%h/a k:aHle),(kll) (56)
ds dy| LV ’

The scattering coefficients are obtained by solving (5.6) for radial modal displacement
Wy, (3.14) and leading to the T-matrix definition (3.15). The difference now is that the
shell impedance in the term ¢, (3.14) will differ depending on the shell theory.

In order to obtain insight about the structure of the T-matrix, we first apply the
small argument approximation as in Ref. [2] to the Halkel functions seen in the acoustic

impedance Z,, (3.12)

(1) 2n+1

This assumption is valid near the n'® flexural resonance since €, = n? < n for thin

shells. Substituting equation (5.7) into equation (3.12) yields the asymptotic form of

the acoustic impedan