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ABSTRACT OF THE DISSERTATION

On Mapping Problems in Several Complex Variables

by Ming Xiao

Dissertation Director: Xiaojun Huang

The thesis consists of two parts. In the first part, we study a regularity problem for CR mappings
between CR manifolds. More precisely, we establish various versions of the Schwarz reflection prin-
ciple in several complex variables. In particular, as a consequence of the main results, we confirm a
conjecture of X. Huang in [Hu2] and provide a solution to a question raised by Forstneric [Fr1] (See
Corollaries 2.1.11 and 2.1.12). It is a joint work with Shiferaw Berhanu ([BX1], [BX2]). In the second
part, we study the embeddability problem from compact real algebraic strongly pseudoconvex hyper-
surfaces into a sphere. In a joint work with Xiaojun Huang and Xiaoshan Li ([HLX]), we prove that
for any integer N, there is a family of compact real algebraic strongly pseudoconvex hypersurfaces in
C2, none of which can be locally holomorphically embedded into the unit sphere in CN . This shows
that the Whitney (or Remmert, respectively) type embedding theorem in differential topology (or in
the Stein space theory, respectively) does not hold in the setting above.

ii



Acknowledgements

My sincere gratitude first goes to my advisor Professor Xiaojun Huang. He has influenced my life
more than anyone else outside my family. Without his patient guidance and training, constant
encouragement and support, I would hardly grow up in my academic life. The insight, inspiration,
and taste in mathematics he has shared with me are the most valuable treasures for my future
career. He also made my life in U.S. much more pleasant. The warm hospitality of his family on
every Thanksgiving day is one of the most unforgettable times in my life abroad.

I would also like to thank Professor Shiferaw Berhanu, whom I always regard as my second
advisor, for his constant help and strong support during my graduate study. It was one of my most
fruitful and enjoyable working experiences to collaborate with him. I benefit not only in mathematics
but also in academic writing. I am also indebted to him for his kind hospitality every time I visited
Temple University.

I wish also to thank my thesis committee members, Professors Sugan Chanillo, Jian Song, for
their encouragement and precious comments. My appreciation also goes to Professors John D’Angelo,
Peter Ebenfelt, Siqi Fu, Xianghong Gong, Song-ying Li, Nordine Mir, Ilya Kossovskiy for many
valuable discussions in mathematics and their support.

I would like to thank all the staff and faculty in the department of Mathematics for their assistance
and making a stimulating environment for my study. Many thanks particularly go to Professors
Terence Bulter, Avy Soffer, and Richard Wheeden for their help during my early years at Rutgers.

I thank Xiaoshan Li, Wanke Yin, Yuan Yuan, Yuan Zhang, Bo Yang, Hanlong Fang and Suichung
Ng for numerous discussions. I also thank my friends Liming Sun, Bin Guo, Jinwei Yang, Hui
Wang, Simao Herdade, Justin Gilmer, Edward Chien, Zahra Aminzare, Shashank Kanade, Moulik
Balasubramanian and many others for making my life at Rutgers more enjoyable.

Finally I would like to express my gratitude to my parents for loving me and creating an educa-
tional enviroment that allowed me to develop my own interests. My special thanks go to my wife
Bing Liu for her love, care and understanding.

iii



Dedication

To my parents Bendi Xiao, and Mengying Wang.
To my wife Bing Liu.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Preliminaries on CR geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Preliminaries on microlocal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Some algebraic lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Reflection principle problems in several complex variables . . . . . . . . . . . . . . 10

2.1. CR mappings into a strongly pseudoconvex hypersurface . . . . . . . . . . . . . . . . . 10

2.1.1. Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2. Proof of Theorem 2.1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3. Proof of Theorem 2.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.4. Proof of Theorem 2.1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2. CR mappings into a Levi-nondegenerate hypersurface . . . . . . . . . . . . . . . . . . 33

2.2.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2. Proof of Theorem 2.2.1 and 2.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3. Remarks on reflection principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3. An embeddability problem in CR geometry . . . . . . . . . . . . . . . . . . . . . . . 45

3.1. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2. Proof of Theorem 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

v



1

Chapter 1

Introduction

In this chapter, we state preliminary notions and results that will be applied in Chapter 2 and 3.

1.1 Preliminaries on CR geometry

In this section, we recall basic notions from CR geometry. We introduce formally integrable and
integrable structures on differential manifolds. Abstract CR manifolds are a special case of these
structures. The Levi form and Levi map of an abstract CR manifold are also recalled. For more
details on this material, we refer to the book [BER].

Definition 1.1.1. Let M be a smooth manifold, and V be a subbundle of CTM. We will say that V
is formally integrable (or involutive) if the space of smooth sections C∞(M,V) of V is closed under
commutators, i.e., [V,V] ⊂ V. We will refer to (M,V) as a formally integrable structure.

An important subclass of the formally integrable subbundles are the integrable ones.

Definition 1.1.2. A subbundle V of CTM of dimension n is integrable if for any p ∈M there exist
m = dimRM−n smooth complex-valued functions Z1, ..., Zm defined in an open neighborhood Ω ⊂M

of p with C−linearly independent differentials dZ1, ..., dZm such that LZj = 0 for all L ∈ Γ(M,V)
and j = 1, ...m. For p0 ∈ M fixed, any such set of functions Zj , vanishing at p0, will be called a
family of basic solutions in Ω.

Proposition 1.1.3. If V is integrable, then (M,V) is a formally integrable structure.

Now we recall the notion of CR structures.

Definition 1.1.4. A formally integrable structure (M,V) is called a formally CR structure if for all
p ∈M,Vp ∩ Vp = {0}. We shall refer to a formal CR structure as an abstract CR manifold, to V as
its CR bundle. If a formal CR structure (M,V) is furthermore integrable, we shall refer to it as an
integrable CR structure or a locally embedded CR manifold.

Moreover, recall that a smooth section of V will be called a CR vector field on M. A function
(resp. distribution) on M is a CR function (resp. CR distribution) if it is annihilated by all the
CR vector fields on M. The number n = dimCVp for any p will be called the CR dimension of M. If
dimRM = m + n, then d = m − n will be called the CR codimension of M. In particular if d = 1,
the CR structure is said to be of hypersurface type.
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Let M be a real submanifold of CN . For p ∈ M, we denote by Vp the space of antiholomorphic
vectors tangent to M at p, that is,

Vp := T (0,1)
p CN ∩ CTpM.

Then (M,V) defines an integrable CR structure if dimCVp is constant for p ∈ M. We will then
call M a CR submanifold of CN .

Definition 1.1.5. Let (M,V), (M ′,V ′) be abstract CR manifolds. A CR mapping of class Ck(k ≥
1)F : (M,V) → (M ′,V ′) is a Ck mapping F : M → M ′ such that for all p ∈ M,F∗(Vp) ⊂ V ′

F (p),

where F∗ denotes the usual tangent map F∗ : TpM → TF (p)M
′ induced by F.

Let M ′ be CR submanifolds of CN in the definition above, and write a Ck map F : M → M ′ as
F = (F1, ..., FN ). Then F is a CR mapping if and only if each component Fj , j = 1, ..., N, is a CR
function.

Let (M,V) be an abstract CR manifold, where V is the CR bundle of M. For p ∈ M, we denote
by πp the natural quotient map

πp : CTpM → CTpM/(Vp ⊕ Vp).

Definition 1.1.6. The Levi map at p ∈M is the Hermitian vector valued form

Lp : Vp × Vp → CTpM/(Vp ⊕ Vp),

Lp(Xp, Yp) :=
1

2
√
−1

πp([X,Y ](p)),

where X and Y are CR vector fields on M extending the CR vectors Xp and Yp.

Let Levi map Lp is called nondegenerate if Lp(Xp, Yp) = 0 for all Yp ∈ Vp implies Xp = 0. If
(M,V) is of hypersurface type, then the Levi map at p is a Hermitian form on Vp, called the Levi
form. In this case, we say that (M,V) is Levi nondegenerate at p if the Levi form is nondegenerate.
Furthermore, a CR manifold of hypersurface type, (M,V), is called pseudoconvex at p0 if the Levi
form is positive definite (or negative definite) at all p in an open neighborhood of p0. Similarly, (M,V)
is said to be strictly pseudoconvex at p0 ∈ M if the Levi form is positive (or negative) definite at
p0 ∈M.

Proposition 1.1.7. Let M ⊂ CN be a smooth hypersurface with p0 ∈ M, and let ρ(Z,Z) be a local
defining function for M near p0. Then, M is pseudoconvex at p0 if and only if, for all p in an open
neighborhood of p0 in M, either

N∑
j,k=1

∂2ρ

∂Zj∂Zk

(p, p)ajak ≤ 0

for all a = (a1, ..., aN ) with
∑N

j=1
∂ρ
∂Zj

(p, p)aj = 0, or

N∑
j,k=1

∂2ρ

∂Zj∂Zk

(p, p)ajak ≥ 0

for all a = (a1, ..., aN ) with
∑N

j=1
∂ρ
∂Zj

(p, p)aj = 0.
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1.2 Preliminaries on microlocal analysis

In this subsection, we present some preliminaries on microlocal analysis from standard literature
without providing proofs. Most theorems and their detailed proofs can be found in [BCH]. First we
recall the FBI transform which is a nonlinear Fourier transform which characterizes analyticity and
regularity. In the following context, we let D′ be the space of distributions (topological dual of C∞

0 ),
and let E ′ be the space of distributions with compact support (topological dual of C∞).

Definition 1.2.1. Let u ∈ E ′(Rm). Define the FBI transform of u by

Fu(x, ξ) =
∫
e
√
−1(x−y)·ξ−|ξ|(x−y)2u(y)dy (1.2.1)

for (x, ξ) ∈ Rm × Rm. where

(x− y) · ξ =
m∑

i=1

(xi − yi)ξi.

The integral is to be understood in the duality sense.

The following characterization of analyticity by means of an exponential decay of the FBI trans-
form may be viewed as an analogue of the Paley-Wiener Theorem.

Theorem 1.2.2. Let u ∈ E ′(Rm). The following are equivalent:

(i) u is real-analytic at x0 ∈ Rm.

(ii) There exists a neighborhood V of x0 in Rm and constants c1, c2 > 0 such that

|Fu(x, ξ)| ≤ c1e
−c2|ξ|

for (x, ξ) ∈ V × Rm.

We consider now the boundary values of holomorphic functions defined on wedges with flat edges.
that is, edges that are open subsets of Rm. Let Γ ⊂ Rm \ {0} be an open convex cone with vertex at
the origin, V ⊂ Rm open. For δ > 0, let

Γδ = Γ ∩ {v : |v| < δ}.

Definition 1.2.3. A holomorphic function f ∈ H(V +
√
−1Γδ) is said to be of tempered growth if

there is an integer k and a constant c such that

|f(x+
√
−1y)| ≤ c

|y|k
.

We can define the boundary value of f if it is of tempered growth:

Theorem 1.2.4. Suppose f ∈ H(V +
√
−1Γδ) is of tempered growth and k is as in definition above.

Set
< fv, φ >=

∫
f(x+

√
−1v)φ(x)dx

for φ ∈ C∞
0 (V ) and v ∈ Γ. Then
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bf = lim
v→0,v∈Γ′⊂⊂Γ

fv

exists in D′(V ) and is of order k + 1.

Distributions which are boundary values of holomorphic functions of tempered growth arise quite
naturally. Indeed, we have:

Theorem 1.2.5. Any u ∈ E(Rm) can be expressed as a finite sum
∑n

j=1 bfj where each fj ∈ H(Rm+
√
−1Γ′

j) for some cones Γ′
j where each fj ∈ H(Rm +

√
−1Γ′

j) for some cones Γ′
j ⊂ Rm, and the fj

are of tempered growth.

Definition 1.2.6. Let u ∈ D′(Rm), x0 ∈ Rm, ξ0 ∈ Rm \ {0}. We say that u is microlocally analytic
at (x0, ξ

0) if there exist a neighborhood V of x0, cones Γ1, ...,ΓN in Rm \ {0}, and holomorphic
functions fj ∈ H(V +

√
−1Γj

δ) (for some δ > 0) of tempred growth such that u =
∑N

j=1 bfj near x0

and ξ0 · Γj < 0 ∀j.

Now recall the definition of wave front set (See [BCH], [H], for instance),

Definition 1.2.7. The analytic wave front set of a distribution u, denoted WFa(u), is defined by,

WFa(u) = {(x, ξ) : u is not microlocally analytic at (x, ξ)}.

It can be easily seen that the analytic wave front set is invariant under an analytic diffeomorphism,
and hence microlocal analyticity can be defined on any real-analytic manifold. We recall the following
theorem which will provide a useful criterion for microlocal analyticity in terms of FBI transform:

Theorem 1.2.8. Let u ∈ D′(Rm), x0 ∈ Rm, ξ0 ∈ Rm \ {0}. Then (x0, ξ
0) /∈ WFa(u) if and only if

there is a neighborhood V of x0 in Rm, an open cone Γ ⊂ Rm \ {0}, ξ ∈ Γ and constants c1, c2 > 0
such that

|Fu(x, ξ)| ≤ c1e
−c2|ξ| ∀(x, ξ) ∈ V × Γ.

We also mention some corollaries will be applied in our work later.

Corollary 1.2.9. A distribution u is analytic near x0 if and only if for every ξ0 ∈ Rm\{0}, (x0, ξ
0) /∈

WFa(u).

Corollary 1.2.10. (The edge-of-the-wedge theorem) Let V ⊂ Rm be a neighborhood of the point p,
and Γ+,Γ− be cones such that Γ− = −Γ+. Suppose for some δ > 0, f+ ∈ H(V +

√
−1Γδ+), f− ∈

H(V +
√
−1Γ−

δ ) are both of tempered growth and bf+ = bf−. Then there exists a holomorphic function
f defined in a neighborhood of p that extends both f+ and f−. In particular, bf+ is analytic at p.

We also have analogue in the smooth category. We first recall Paley-Wiener’s Theorem:

Theorem 1.2.11. A distribution u with support in the ball {x ∈ Rm : |x| ≤ R} is C∞ if and only if
û(ζ) is entire on Cm and for each positive integer k there is Ck such that

|û(ζ)| ≤ Ck
eR|Imζ|

(1 + |ζ|)k
∀ζ ∈ Cm.
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We now recall the definition of microlocal smoothness.

Definition 1.2.12. Let u ∈ D′(Ω),Ω ⊂ Rm open, x0 ∈ Ω, and ξ0 ∈ Rm\{0}. We say u is microlocally
smooth at (x0, ξ0) if there exists φ ∈ C∞

0 (Ω), φ ≡ 1 near x0 and a conic neighborhood Γ ⊂ Rm \ {0}
of ξ0 such that for all k = 1, 2... and for all ζ ∈ Γ,

|φ̂u(ζ)| ≤ Ck

(1 + |ξ|)k
on Γ.

Definition 1.2.13. The C∞ wave front set of a distribution u denoted WF (u) is defined by

WF (u) = {(x, ξ) : u is not microlocally smooth at (x, ξ)}.

It is easy to see that a distribution u is C∞ if and only if WF (u) = ∅. When a distribution u

is a solution of a linear partial differential equation with smooth coefficients, its wave front set is
constrained.

Theorem 1.2.14. Let P =
∑

|α|≤k aα(x)Dα be a smooth linear differential operator on an open set
Ω ⊂ Rm and suppose u ∈ D′(Ω). Then

WF (u) ⊂ charP ∪WF (Pu),

where the characteristic set

charP = {(x, ξ) ∈ Ω × Rm \ {0} :
∑
|α|=k

aαξ
α = 0}.

We recall the notion of almost analytic extension.

Definition 1.2.15. Let f ∈ C∞(Ω),Ω ⊂ Rm open, and suppose Ω̃ is a neighborhood of Ω in Cm.

A function f̃(x, y) ∈ C∞(Ω̃) is called an almost analytic extension of f(x) if f̃(x, 0) = f(x) ∀x ∈ Ω
and for each j=1,...,m,

∂f̃

∂zj
(x, y) = O(|y|k) for k = 1, 2, ...

The following theorem characterizes microlocal smoothness in terms of almost analytic extend-
ability in certain wedge.

Theorem 1.2.16. Let u ∈ D′(Rm). Then (x0, ξ0) /∈WF (u) if and only if there exist a neighborhood
V of x0, open acute cones Γ1, ...,ΓN in Rm \{0}, and almost analytic functions fj on V +

√
−1Γj

δ(for
some δ) of tempered growth such that u =

∑N
1 bfj near x0 and ξ0 · Γj < 0 for all j.
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1.3 Some algebraic lemmas

In this section, we will prove some algebraic lemmas that will be applied in Chapter 2.

Lemma 1.3.1. For a general n× n matrix

B =



b11 b12 . . . b1n

b21 b22 . . . b2n

. . . . . .

. . . . . .

. . . . . .

bn1 bn2 . . . bnn


,

where bij ∈ C for all 1 ≤ i, j ≤ n, n ≥ 3, we have,∣∣∣∣∣∣∣∣∣∣
B(

1 2 . . . n− 2 n− 1
1 2 . . . n− 2 n− 1

) B(
1 2 . . . n− 2 n− 1
j1 j2 . . . jn−2 n

)

B(
i1 i2 . . . in−2 n

1 2 . . . n− 2 n− 1
) B(

i1 i2 . . . in−2 n

j1 j2 . . . jn−2 n
)

∣∣∣∣∣∣∣∣∣∣
(∗)

= B(
i1 i2 . . . in−2

j1 j2 . . . jn−2

)|B|, for any 1 ≤ i1 < i2 < · · · < in−2 ≤ n − 1, 1 ≤ j1 < j2 < · · · <

jn−2 ≤ n− 1. In particular, if |B| = 0, then (∗) equals 0. Here we have used the notation

B(
i1 i2 . . . ip

j1 j2 . . . jp
) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bi1j1 bi1j2 . . . bi1jp

bi2j1 bi2j2 . . . bi2jp

. . . . . .

. . . . . .

. . . . . .

bipj1 bipj2 . . . bipjp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for 1 ≤ p ≤ n.

To prove Lemma 1.3.1, we need the following Lemmas.

Lemma 1.3.2. Assume p ≥ 3, C is a p× p matrix,

C =

 c11 · · · c1p

· · · · · · · · ·
cp1 · · · cpp

 ,

where cij ∈ C for all 1 ≤ i, j ≤ p. Then

c11
p−2|C| = |C̃|, (1.3.1)

where C̃ is a (p− 1) × (p− 1) matrix given by
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C̃ =



∣∣∣∣∣ c11 c12

c21 c22

∣∣∣∣∣ · · ·

∣∣∣∣∣ c11 c1p

c21 c2p

∣∣∣∣∣
· · · · · · · · ·∣∣∣∣∣ c11 c12

cp1 cp2

∣∣∣∣∣ · · ·

∣∣∣∣∣ c11 c1p

cp1 cpp

∣∣∣∣∣

 .

That is, C̃ = (c̃ij)1≤i≤(p−1),1≤j≤(p−1), with c̃ij =

∣∣∣∣∣ c11 c1(j+1)

c(i+1)1 c(i+1)(j+1)

∣∣∣∣∣ .
Proof. When c11 = 0, (1.3.1) holds since both sides equal 0. Now assume c11 6= 0. By eliminating
c21, · · · , cp1, we get,

|C| =

∣∣∣∣∣∣∣∣∣∣
c11 c12 · · · c1p

0 c22 − c12
c21
c11

· · · c2p − c1p
c21
c11

· · · · · · · · · · · ·
0 cp2 − c12

cp1

c11
· · · cpp − c1p

cp1

c11

∣∣∣∣∣∣∣∣∣∣
= c11

−(p−2)|C̃|.

Lemma 1.3.3. If the determinant of a 3 × 3 matrix∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ = 0,

where aij ∈ C for all 1 ≤ i, j ≤ 3. Then∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
∣∣∣∣∣ a11 a13

a21 a23

∣∣∣∣∣
∣∣∣∣∣ a11 a12

a31 a32

∣∣∣∣∣
∣∣∣∣∣ a11 a13

a31 a33

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
∣∣∣∣∣ a12 a13

a22 a23

∣∣∣∣∣
∣∣∣∣∣ a11 a12

a31 a32

∣∣∣∣∣
∣∣∣∣∣ a12 a13

a32 a33

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
∣∣∣∣∣ a11 a13

a21 a23

∣∣∣∣∣
∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣
∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
∣∣∣∣∣ a12 a13

a22 a23

∣∣∣∣∣
∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣
∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Proof. Using Lemma 1.3.2,∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
∣∣∣∣∣ a11 a13

a21 a23

∣∣∣∣∣
∣∣∣∣∣ a11 a12

a31 a32

∣∣∣∣∣
∣∣∣∣∣ a11 a13

a31 a33

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ ,
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∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
∣∣∣∣∣ a12 a13

a22 a23

∣∣∣∣∣
∣∣∣∣∣ a11 a12

a31 a32

∣∣∣∣∣
∣∣∣∣∣ a12 a13

a32 a33

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
= a12

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
∣∣∣∣∣ a11 a13

a21 a23

∣∣∣∣∣
∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣
∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
= a21

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
∣∣∣∣∣ a12 a13

a22 a23

∣∣∣∣∣
∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣
∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
= a22

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ .

Proof of Lemma 1.3.1 : We proceed by induction on the dimension of B. From Lemma 1.3.3,
we know Lemma 1.3.1 holds for n = 3. Now assume that it holds when the dimension of B is less
than or equal to n−1. To prove it when the dimension is n, it is enough to show it for the case when
i1 = 1, i2 = 2, · · · , in−2 = n− 2 and j1 = 1, j2 = 2, · · · , jn−2 = n− 2. Namely, we show that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 b12 . . . b1n−1

b21 b22 . . . b2n−1

. . . . . .

. . . . . .

. . . . . .

bn−11 bn−12 . . . bn−1n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 . . . b1n−2 b1n

b21 . . . b2n−2 b2n

. . . . . .

. . . . . .

. . . . . .

bn−11 . . . bn−1n−2 bn−1n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 b12 . . . b1n−1

. . . . . .

. . . . . .

. . . . . .

bn−21 bn−22 . . . bn−2n−1

bn1 bn2 . . . bnn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 . . . b1n−2 b1n

. . . . . .

. . . . . .

. . . . . .

bn−21 . . . bn−2n−2 bn−2n

bn1 . . . bnn−2 bnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= B(

1 2 · · · n− 2
1 2 · · · n− 2

)|B|, and the other cases are similar.



9

Now we view all terms here as rational functions in b11, · · · , bnn. By Lemma 1.3.2,

|B| = b11
−(n−2)

∣∣∣∣∣∣∣∣∣∣∣∣

B(
1 2
1 2

) · · · B(
1 2
1 n

)

· · · · · · · · ·

B(
1 n

1 2
) · · · B(

1 n

1 n
)

∣∣∣∣∣∣∣∣∣∣∣∣
(1.3.2)

By applying Lemma 1.3.2 and the induction hypothesis, it follows that

∣∣∣∣∣∣∣∣∣∣∣∣

B(
1 2
1 2

) · · · B(
1 2
1 n

)

· · · · · · · · ·

B(
1 n

1 2
) · · · B(

1 n

1 n
)

∣∣∣∣∣∣∣∣∣∣∣∣
=

(
B(

1 2
1 2

)

)−(n−3)

b11
n−2

∣∣∣∣∣∣∣∣∣∣∣∣

B(
1 2 3
1 2 3

) · · · B(
1 2 3
1 2 n

)

· · · · · · · · ·

B(
1 2 n

1 2 3
) · · · B(

1 2 n

1 2 n
)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Combining it with (1.3.2), we obtain

|B| =

(
B(

1 2
1 2

)

)−(n−3)

∣∣∣∣∣∣∣∣∣∣∣∣

B(
1 2 3
1 2 3

) · · · B(
1 2 3
1 2 n

)

· · · · · · · · ·

B(
1 2 n

1 2 3
) · · · B(

1 2 n

1 2 n
)

∣∣∣∣∣∣∣∣∣∣∣∣
.

By further applications of Lemma 1.3.2 and the induction hypothesis as above, we arrive at the
conclusion.

Finally we state the following simple lemma:

Lemma 1.3.4. Let b1, · · · ,bn and a be n-dimensional column vectors with elements in C, and let
B = (b1, · · · ,bn) denote the n×n matrix. Assume that detB 6= 0, and that det(bi1 ,bi2 , · · · ,bin−1 ,a) =
0 for any 1 ≤ i1 < i2 < · · · < in−1 ≤ n. Then a = 0, where 0 is the n-dimensional zero column
vector.

Proof. Note that {b1, · · · ,bn} is a linearly independent set in Cn.Write a =
∑n

j=1 λjbj for some λj ∈
C, 1 ≤ j ≤ n. It is easy to see that all the λj = 0 by using the assumption that det(bi1 ,bi2 , · · · ,bin−1 ,a) =
0, ∀1 ≤ i1 < i2 < · · · < in−1 ≤ n.
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Chapter 2

Reflection principle problems in several complex variables

In one complex variable, the classical Schwarz reflection principle can be formulated as follows. Let
M and M ′ be two real analytic (resp. smooth) curves in C and F a holomorphic function defined
on one side of M. Assume that F extends continuously to M, and maps M to M ′. Then F has
a holomorphic (resp. smooth) extension across M. The situation is much more subtle in several
complex variables, and the analogous statement fails in general as shown by easy examples. For
decades, finding conditions under which a reflection principle holds in higher dimensions has attracted
considerable attention by numerous researchers. More precisely, the question can be formulated as
follows.

Question 2.0.5. Let M ⊂ Cn,M ′ ⊂ CN be two germs of real analytic (resp. smooth ) CR subman-
ifolds. Let W be a wedge in Cn with edge M, and F : W → CN a holomorphic map, which extends
continuously to M. Assume that F maps M to M ′. Find conditions that imply that the reflection
principle holds.

Notice that a CR function on a CR submanifold M ⊂ Cn can be holomorphically extended to
a wedge with edge M, under a certain geometric condition on M (See [Tr], [Tu1], for instance).
Question 1.1 has its natural CR version as follows.

Question 2.0.6. Let M ⊂ Cn,M ′ ⊂ CN be two germs of real analytic (resp. smooth ) CR sub-
manifolds and F : M → M ′ a CR mapping. Find conditions such that F is real analytic (resp.
smooth).

In this chapter we study along this line of the regularity problem for CR mappings between CR
manifolds where the CR dimension of the source manifold is less than or equal to that of the target
manifold based on the joint work with Shiferaw Berhanu ([BX1], [BX2]). A particular case of interest
is when M and M ′ are both strongly pseudoconvex CR manifolds of hypersurface type, as indicated
in Section 2.1. We also consider in Section 2.2 the more general case when the target is merely
assumed to be Levi-nondegenerate.

2.1 CR mappings into a strongly pseudoconvex hypersurface

2.1.1 Main Results

Our results in this section imply a positive answer to a conjecture of X. Huang in [Hu2] and provide a
solution to a question raised in [Fr1] (see Corollaries 2.1.11 and 2.1.12). One of our theorems can be
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viewed as a smooth version of the analyticity theorems of Forstneric ([Fr1]) and Huang [Hu1-2] for CR
mappings between CR manifolds of differing dimensions. The chapter is devoted to results along the
line of research on establishing the smooth version of the Schwarz reflection principle for holomorphic
maps in several variables. Results of this type were first proved in the 70’s starting with the work
of Fefferman [Fe], Lewy [Le] and Pinchuk [Pi]. The seminal work [BJT] has influenced a lot of work
on the subject. For extensive surveys and many references on this research, the reader may consult
the articles by Bedford [Be], Forstneric [Fr2], and Bell-Narasimhan [BN]. Among the many related
papers we mention here [CKS], [CGS], [CS], [DW], [EH], [EL], [Fr1], [Fr3], [Hu1], [Hu2], [KP], [K],
[La1], [La2], [La3], [M], [NWY], [Tu], and [W]. In [Fr3] Forstneric generalized Fefferman’s theorem
to CR homeomorphisms f : M → M ′ where f−1 is CR, M and M ′ are generic CR submanifolds of
Cn with the same CR dimension. The book [BER] by Baouendi, Ebenfelt, and Rothschild contains
a detailed account and references related to the study when the manifolds are real analytic or real
algebraic.

We prove results on the smoothness of CR maps where the source manifold M is assumed to be
an abstract (not necessarily embeddable) CR manifold. We mention that the results are new even
when M is embeddable. Our first main result, Theorem 2.1.3, generalizes to abstract CR manifolds
a theorem of Lamel in [La1] proved for generic CR manifolds embedded in complex spaces. The
second main result, Theorem 2.1.5, establishes the smoothness on a dense open subset of a Ck CR
mapping F : (M,V) → (M ′,V ′) where (M,V) is an abstract CR manifold of CR dimension n and
M ′ ⊂ Cn+k is a hypersurface that is strongly pseudoconvex. A condition on the Levi form of (M,V)
is assumed in Theorem 2.1.5.

Our approach is based on the framework established by Roberts [GR] in his thesis and a later
paper by Lamel in [La1]. The notion of k0−nondegeneracy of a CR mapping (Definition 2.1.1)
and the “almost holomorphic” implicit function theorem of Lamel in [La1] and [La2] play crucial
roles in the proofs and formulations of our results. The proof is also motivated by the study of the
real analyticity for CR maps between real analytic strongly pseudoconvex hypersurfaces of different
dimensions in Forstneric [Fr1] and Huang [Hu1]. We mention that in [Fr1], Forstneric conjectured
that F must be real analytic when M1 ⊂ Cn+1 and M2 ⊂ Cn+k (k ≥ 2, n ≥ 1) are real analytic
hypersurfaces with M1 of finite type, M2 strongly pseudoconvex, and he proved that this is indeed
the case on a dense open set when F is smooth. The conjecture of Forstneric was settled by Huang
([Hu1]) who obtained the analyticity of F on a dense open subset assuming only that F ∈ Ck. The
analyticity of F , when both M1 and M2 are as [Fr1] and when F is only Ck-smooth also follows from
Theorem 2.1.5 in this chapter and Forstneric’s analyticity result when F is smooth.

Let M be an abstract CR manifold with CR bundle V. Recall that a smooth section of V is called
a CR vector field and a function (or distribution) is called CR if Lf = 0 for any CR vector field L.

The CR manifold (M,V) is called locally embeddable if for any p0 ∈M, there exist m complex-valued
C∞ functions Z1, · · · , Zm defined near p0 with m = dimRM − n, such that the Zj are CR functions
near p0, and the differentials dZ1, · · · , dZm are C−linearly independent. In this case, the mapping

p 7→ Z(p) = (Z1(p), · · · , Zm(p)) ∈ Cm = Cn+d
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is an immersion near p0. Thus, if U is a small neighborhood of p0, then Z(U) is an embedded
submanifold of Cm and is a generic CR submanifold of Cm whose induced CR bundle agrees with
the push forward Z∗(V) (see [BER] and [J] for more details).

Let (M ′,V ′) be another abstract CR manifold with CR dimension n′ and CR codimension
d′. When (M ′,V ′) is a generic CR submanifold of CN ′

(N ′ = n′ + d′), then a Ck mapping H =
(H1, · · · ,HN ′) : M →M ′ is a CR mapping if and only if each Hj is a CR function. One of our main
results generalizes to an abstract CR manifold (M,V) a regularity theorem of Lamel ([La1]) for CR
mappings of embedded CR manifolds. We need to recall from [La1] the notion of nondegenerate CR
mappings. Let M̃ ⊂ CN and M̃ ′ ⊂ CN ′

be two generic CR submanifolds of CN and CN ′
respectively.

If d and d′ denote the real codimensions of M̃ and M̃ ′, then n = N − d and n′ = N ′ − d′ are the CR
dimensions of M̃ and M̃ ′ respectively. Let H : M̃ → M̃ ′ be a CR mapping of class Ck.

Definition 2.1.1. ([La1]) Let M̃, M̃ ′ and H be as above and p0 ∈ M̃. Let ρ = (ρ1, · · · , ρd′) be local
defining functions for M̃ ′ near H(p0), and choose a basis L1, · · · , Ln of CR vector fields for M̃ near
p0. If α = (α1, · · · , αn) is a multiindex, write Lα = Lα1

1 · · ·Lαn
n . Define the increasing sequence of

subspaces El(p0)(0 ≤ l ≤ k) of CN ′
by

El(p0) = SpanC{Lαρµ,Z′(H(Z), H(Z))|Z=p0 : 0 ≤ |α| ≤ l, 1 ≤ µ ≤ d′}.

Here ρµ,Z′ = (∂ρµ

∂z′1
, · · · , ∂ρµ

∂z′
N′

), and Z ′ = (z′1, · · · , z′N ′) are the coordinates in CN ′
. We say that H is

k0−nondegenerate at p0 (0 ≤ k0 ≤ k) if

Ek0−1(p0) 6= Ek0(p0) = CN ′
.

The dimension of El(p) over C will be called the lth geometric rank of F at p and it will be
denoted by rankl(F, p).

For the invariance of this definition under the choice of the defining functions ρµ, the basis of
CR vector fields and the choice of holomorphic coordinates in CN ′

, the reader is referred to [La2].
An intrinsic definition was presented in the paper [EL]. If M is a manifold for which the identity
map is k0−nondegenerate, then the manifold is called k0−nondegenerate. This latter notion was
introduced for embedded hypersurfaces in [BHR] and it is shown in [E] that it can be formulated
for an abstract CR manifold. The reader is referred to these two references for a detailed treatment
of this concept and its connection with holomorphic nondegeneracy in the sense of Stanton ([S]).
In particular, in [BHR] and [E] it is shown that Levi-nondegeneracy of a CR manifold is equivalent
to 1−nondegeneracy. Thus the notion of k0−nondegeneracy of a CR manifold can be viewed as a
generalization of Levi nondegeneracy.

The main result in [La1] is as follows:

Theorem 2.1.2. Let M ⊂ CN ,M ′ ⊂ CN ′
be smooth generic submanifolds of CN and CN ′

respec-
tively, p0 ∈ M,H = (H1, · · · ,HN ′) : M → M ′ a Ck0 CR map which is k0−nondegenerate at p0 and
extends continuously to a holomorphic map in a wedge W with edge M. Then H is smooth in some
neighborhood of p0.
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Here recall that if p0 ∈M , d = the CR codimension of M , and U ⊂ CN is a neighborhood of p0,

a wedge W with edge M centered at p0 is defined to be an open set of the form:

W = {Z ∈ U : r(Z,Z) ∈ Γ},

where Γ ⊂ Rd is an open convex cone, and r = (r1, · · · , rd) are defining functions for M near p0. We
will prove the following generalization of Theorem 2.1.2.

Theorem 2.1.3. Let (M,V) be an abstract CR manifold and M ′ ⊂ CN ′
a generic CR submanifold

of CN ′
. Let H = (H1, · · · ,HN ′) : M →M ′ be a CR mapping of class Ck0 which is k0−nondegenerate

at p0 and assume that for some open convex cone Γ ⊂ Rd,

WF(Hj)|p0 ⊂ Γ, j = 1, · · · , N ′

where d is the CR codimension of M. Then H is C∞ in some neighborhood of p0.

Remark 2.1.4. In Theorem 2.1.2, the assumption that H is the boundary value of a holomorphic
function in a wedge implies the much weaker condition that WF(Hj)|p0 ⊂ Γ for some Γ as in Theorem
2.1.3. Indeed, in the embedded case as in Theorem 2.1.2, a CR function h on M is the boundary
value of a holomorphic function in a wedge if and only if its hypo-analytic wave front set is contained
in an acute cone which means that the FBI transform of h decays exponentially. Our assumption in
Theorem 2.1.3 only requires the FBI transform to decay rapidly.

In what follows, given a CR manifold (M,V), T 0 will denote its characteristic bundle, that is,
T 0 = {σ ∈ T ∗M : 〈σ, L〉 = 0 for every smooth section L of V}.

Theorem 2.1.5. Let (M,V) be an abstract CR manifold with CR dimension n ≥ 1 such that the Levi
form at every covector σ ∈ T 0 has a nonzero eigenvalue. Suppose M ′ ⊂ Cn+k is a hypersurface that
is strongly pseudoconvex (k ≥ 1) and let V ′ denote the CR bundle of M ′. Let F = (F1, · · · , Fn+k) :
M → M ′ be a CR mapping of class Ck whose differential dF : Vp → V ′

F (p) is injective at every
p ∈M . Then F is C∞ on a dense open subset of M .

We note that the preceding theorem allows a weakening of the smoothness assumption in Theorem
1.2 of [EL] on finite jet determination. The theorem also implies that some of the results in [BR]
hold under a weaker smoothness assumption on the CR maps involved. If M ⊂ CN ,M ′ ⊂ CN ′

are
hypersurfaces, with M Levi non degenerate at p ∈ M and F : M → M ′ is a CR mapping which is
transversal at p, that is, dF (CTpM) is not contained in V ′

F (p) + V ′
F (p), then F is a local embedding

(see section 3.4 in [EL]). Many other situations where (M,V) and (M ′,V ′) are as in Theorem 2.1.5
and dF is injective can be found in the work [BR].

Let M,M ′, F be as in Theorem 2.1.5.

One will see from Lemma 2.1.17 that rank1(F, p) = n + 1. It allows us to give the following
definition, which has appeared in [EL] for the embedded case.



14

Definition 2.1.6. If F : M →M ′ is a Ck CR mapping, M of CR dimension n and p ∈M is a point
for which there is a neighborhood O and integers 1 ≤ l, k0 ≤ k such that rankk0(F, q) = rankk(F, q) =
n + l and rankk0−1(F, q) < n + l for all q ∈ O, we will say that F is of constant geometric rank
(k0, n+ l) at p (or simply say F is of constant geometric rank n+ l at p).

Remark 2.1.7. We have the following properties of Definition 2.1.6.

• Definition 2.1.6 are both independent of the choices of the defining function, the basis of CR
vector fields and the choice of holomorphic coordinates in Cn+k.

• It is easy to show that(see [EL], for instance), if F be of constant geometric rank n + l at p,
then k0 ≤ l, i.e., rankl(F, q) = n+ l.

Lemma 2.1.8. There exists a dense open set M0 of M such that for each point p ∈ Ω, F is of
constant geometric rank at p.

Proof. We will leave it to the readers. See also in [EL], for instance.

Theorem 2.1.5 will be implied by the following,

Theorem 2.1.9. Let M,M ′, F be as above and p ∈ M. Assume F is of constant geometric rank
n+ l at p, then F is smooth near p. As a consequence, F is smooth in M0, where M0 be as in Lemma
2.1.8.

Theorem 2.1.9 will follow from Theorem 2.1.3 for the nondegenerate case (in the sense of Definition
2.1.1) and follow from Theorem 2.1.20 in the degenerate case.

Before we present the proofs of Theorem 2.1.3 and Theorem 2.1.5, we will prove the following
result which supplies a class of examples to which Theorem 2.1.3 applies. This theorem will also be
used in the proof of Theorem 2.1.5. The result may be viewed as the smooth version of Hans Lewy’s
extendability theorem in the embedded case.

Theorem 2.1.10. Let (M,V) be an abstract CR manifold, σ ∈ T 0
p , with the property that the Levi

form at σ has a negative eigenvalue. Then if u is a CR function (or distribution) near p, σ 6∈ WF(u).
In particular, if the Levi form at every covector η ∈ T 0

p has a nonzero eigenvalue, then there is an
open convex cone Γ ⊂ Rd(d = the CR codimension of M) such that for every CR function u near p,
WF(u)|p ⊂ Γ.

Theorem 2.1.5 implies the following corollary which settles Huang’s conjecture in [Hu2]:

Corollary 2.1.11. Let M ⊂ Cn+1, M ′ ⊂ Cn+k be smooth strongly pseudoconvex real hypersurfaces
with n ≥ 1, k ≥ 1. Let F : M → M ′ be a CR mapping of class Ck. Then F ∈ C∞(Ω) on a dense
open subset Ω ⊂M .
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Theorem 2.1.5 also provides a solution to a question of Forstneric in [Fr1] using methods different
from the ones employed by Huang in the solution that he gave in [Hu1]:

Corollary 2.1.12. Let M ⊂ CN , M ′ ⊂ CN ′
be real analytic hypersurfaces (1 < N < N ′) M of finite

type (in D’Angelo’s sense) and M ′ strongly pseudoconvex. If F : M →M ′ is a CR mapping of class
CN ′−N+1, then F extends to a holomorphic map on a neighborhood of an open, dense subset of M .

Proof. Let p ∈ M . If every neighborhood of p contains a point where the Levi form has a positive
and a negative eigenvalue, then p is in the closure of the set where F is smooth. We may therefore
assume that a neighborhood D of p is pseudoconvex. Note next that since M doesn’t contain a
complex variety of positive dimension, it can not be Levi flat in any neighborhood of p. We can
therefore assume that p is in the closure of the set of strictly pseudoconvex points in M . This latter
assertion can be seen by using the arguments in Lemma 6.2 in [BHR]. In that paper, M was assumed
algebraic but the reasoning in the Lemma is valid for M as in this corollary. The corollary now
follows from Theorem 2.1.5 and the analyticity theorem in [Fr1].

Example 2.1.13. Let M = {(z1, z2) ∈ C2 : Im z2 = |z1|2m} where m is a positive integer and let
M ′ = {(z1, z2) ∈ C2 : Im z2 = |z1|2}. Then the map H(z1, z2) = (zm

1 , z2) is 1−nondegenerate at
the points where z1 6= 0, and m−nondegenerate at all the other points. When m > 1, M itself is
1−nondegenerate at the points where z1 6= 0 while when z1 = 0, it is not l−nondegenerate for any
l ≥ 0. (The case m = 1 appeared in [La1]. See also [K]).

Example 2.1.14. Let M = {(z1, z2) ∈ C2 : Im z2 = |z1|2} and M ′ = {(w1, w2, w3, w4) ∈ C4 :
Imw4 = |w1|2 + |w2|2 − |w3|2}. For any odd positive integer m ≥ 3, define Hm(z1, z2) : M → M by
Hm(z1, z2) = (z1, z

m
2

2 , z
m
2

2 , z2) where we have used a branch of the square root. Hm is a CR mapping
and it is the boundary value of a holomorphic map defined on a side of M . Hm is a diffeomorphism.
Hm is not smooth and so for each positive integer k, there is m such that Hm is in Ck but it is not
k−nondegenerate.

Example 2.1.15. Let M = {(z1, z2) ∈ C2 : Im z2 = |z1|2} and M ′ = {(w1, w2) ∈ C3 : Imw3 =
|w1|2 − |w2|2}. For any positive integer m, let f : M → C be a CR function of class Cm which is not
smooth on any open subset of M (see Section 2.2 for an example of such). Define Hm : M →M ′ by
Hm(z1, z2) = (f(z1), f(z2), 0). Hm is a CR mapping of class Cm which is not smooth on any open
subset of M . Note that Hm is not k−nondegenerate for any k.
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2.1.2 Proof of Theorem 2.1.9

We now present the proof of Theorem 2.1.9.

Proof. Recall that the Levi form of (M,V) at the characteristic covector σ ∈ T 0
p is the hermitian

form on V defined by

Lσ(v, w) =
1

2
√
−1

〈σ, [L,L′]p〉,

where L and L′ are smooth sections of V defined near p with L(p) = v, L′(p) = w. When this form
has a negative eigenvalue, there is a CR vector L near p such that

1
2
√
−1

〈σ, [L,L]p〉 < 0.

We may therefore assume that we are in coordinates (x, t) ∈ Rn0 × R that vanish at p,

L =
∂

∂t
+

√
−1

n0∑
j=1

bj(x, t)
∂

∂xj
,

where the bj are C∞ and real-valued functions near (0, 0), σ = (0, 0, ξ0, 0) satisfies b(0, 0) ·ξ0 = 0, (b =
(b1, · · · , bn0)) and 〈

(ξ0, 0),
[L,L]0
2
√
−1

〉
= −∂b

∂t
(0) · ξ0 < 0. (2.1.1)

Assume that Lu = 0 near (0, 0). We wish to show that σ 6∈ WF(u).

We introduce an additional variable s ∈ R and define

L1 =
∂

∂s
+
√
−1L =

∂

∂s
+

√
−1

∂

∂t
−

n0∑
j=1

bj(x, t)
∂

∂xj
.

Let Zi(x, t, s) (1 ≤ i ≤ n0) be C∞ functions near the origin satisfying

L1Zi(x, t, s) = O(sl), as s→ 0, ∀ l ≥ 1, l ∈ N, and Zi(x, t, 0) = xi.

Set Zn0+1(x, t, s) = t−
√
−1s. For 1 ≤ i ≤ n0, we can write Zi(x, t, s) = xi + sψi(x, t, s) for some C∞

functions ψi. We have, for any l ≥ 1, 1 ≤ i ≤ n0,

s
∂ψi

∂s
(x, t, s) + ψi(x, t, s) +

√
−1s

∂ψi

∂t
(x, t, s) −

n0∑
j=1

bj(x, t)
(
δij + s

ψi

∂xj
(x, t, s)

)
= O(sl). (2.1.2)

It follows that

ψi(x, t, 0) = bi(x, t), 1 ≤ i ≤ n0. (2.1.3)

Differentiating equation (2.1.2) with respect to s leads to,

s
∂2ψi

∂s2
+ 2

ψi

∂s
+

√
−1

ψi

∂t
+

√
−1s

∂2ψi

∂s∂t
−

n0∑
j=1

bj
∂ψi

∂xj
− s

n0∑
j=1

bj
∂2ψi

∂s∂xj
= O(sl), ∀ l ≥ 1.
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Evaluating the latter at s = 0, we get, for any 1 ≤ i ≤ n0,

2
∂ψi

∂s
(x, t, 0) +

√
−1

∂ψi

∂t
(x, t, 0) −

n0∑
j=1

bj(x, t)
∂ψi

∂xj
(x, t, 0) = 0,

which together with equation (2.1.3) leads to:

Imψi(x, t, 0) = 0 and
∂

∂s
Imψi(x, t, 0) = −1

2
∂bi
∂t

(x, t), ∀ 1 ≤ i ≤ n0. (2.1.4)

We will use the FBI transform in (x, t) space. For the solution u = u(x, t), at level s = s′, we
write,

F(x, t, ξ, τ, s′) =
∫

Rn0+1
eQ(x,t,x′,t′,ξ,τ,s′)η(x′, t′)u(x′, t′)dZ1(x′, t′, s′) ∧ · · · ∧ dZn0+1(x′, t′, s′),

where (ξ, τ) ∈ Rn0 ×R, η ∈ C∞
0 (Rn0+1), η(x, t) ≡ 1 for |x|2 + t2 ≤ r2, η(x, t) ≡ 0 when |x|2 + t2 ≥ 2r2

for some r > 0 to be fixed. Here

Q(x, t, x′, t′, ξ, τ, s′) =
√
−1〈(ξ, τ), (x− Z(x′, t′, s′), t− Zn0+1(x′, t′, s′))〉

−K|(ξ, τ)|((x− Z(x′, t′, s′))2 + (t− Zn0+1(x′, t′, s′))2),

where Z = (Z1, · · · , Zn0), (x− Z(x′, t′, s′))2 =
∑n0

j=1(xj − Zj(x′, t′, s′))2, and K is a positive number
which will be determined.

Let Mi =
∑n0

j=1 aij(x, t, s) ∂
∂xj

, 1 ≤ i ≤ n0 and Mn0+1 = ∂
∂t +

∑n0
j=1 cj(x, t, s)

∂
∂xj

be C∞ vector
fields near the origin in (x, t, s) space that satisfy

MiZj = δij , 1 ≤ i, j ≤ n0 + 1.

For any C1 function h = h(x, t, s),

dh =
n0+1∑
i=1

Mi(h)dZi +

L1h−
n0+1∑
j=1

Mj(h)L1(Zj)

 ds (2.1.5)

which can be verified by applying both sides of the equation to the basis of vector fields {L1,M1, · · · ,Mn0+1}
of CT (Rn0+2). Equation (2.1.5) implies that

d(hdZ1 ∧ · · · ∧ dZn0+1) =

L1h−
n0+1∑
j=1

Mj(h)L1(Zj)

 ds ∧ dZ1 ∧ · · · ∧ dZn0+1. (2.1.6)

Let q(x, t, x′, t′, ξ, τ, s′) = η(x′, t′)u(x′, t′)eQ(x,t,x′,t′,ξ,τ,s′). Denoting dZ1∧· · ·∧dZn0+1 by dZ and using
equation (2.1.6), we have,

d(qdZ) =

L1(ηu) + ηuL1(Q) −
n0+1∑
j=1

(Mj(ηu) + ηuMj(Q))L1Zj

 eQds ∧ dZ. (2.1.7)
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By Stokes theorem, for |s0| small, we have,∫
Rn0+1

q(x, t, x′, t′, ξ, τ, 0)dx′dt′ =
∫

Rn0+1
q(x, t, x′, t′, ξ, τ, s0)dZ(x′, t′, s0)+

∫ s0

0

∫
Rn0+1

d(qdZ) (2.1.8)

We will estimate the two integrals on the right in equation (2.1.8) for (x, t) near (0, 0) in Rn0+1

and (ξ, τ) in a conic neighborhood Γ of (ξ0, 0) in Rn0+1. Observe that if ψ = (ψ1, · · · , ψn0),

Re Q(x, t, x′, t′, ξ, τ, s′) =s′〈ξ, Imψ(x′, t′, s′)〉 − τs′

−K|(ξ, τ)|(|x− x′ − s′Reψ(x′, t′, s′)|2 + |t− t′|2 − s′2)
(2.1.9)

Using equation (2.1.4), we can write

Imψ(x, t, s) = − 1
2
∂b

∂t
(x, t)s+O(s2)

= − 1
2
∂b

∂t
(0, 0)s+O(|xs| + |ts| + s2)

(2.1.10)

and so plugging this into equation (2.1.9) yields

ReQ(x, t, x′, t′, ξ, τ, s′) = − 1
2
〈ξ, ∂b

∂t
(0, 0)〉s′2 − τs′

−K|(ξ, τ)|(|x− x′ − s′Reψ(x′, t′, s′)|2 + |t− t′|2 − s′2)

+ |ξ|O(|x′|s′2 + |t′|s′2 + |s′|3)

(2.1.11)

Since 〈ξ0, ∂b
∂t (0, 0)〉 > 0, given 0 < δ < 1, we can get M > 0 and a conic neighborhood Γ of (ξ0, 0) in

Rn0+1 such that
〈ξ, ∂b

∂t
(0, 0)〉 ≥M |ξ| and |τ | < δ|ξ|, when (ξ, τ) ∈ Γ. (2.1.12)

Our interest is in estimating the integral on the left hand side of equation (2.1.8) for (x, t) near
(0, 0) and (ξ, τ) ∈ Γ. When τ > 0, we take s0 > 0 in (2.1.8) while when τ < 0, we use s0 < 0. This
together with (2.1.12) allows us to deduce the following inequality from (2.1.11):

ReQ(x, t, x′, t′, ξ, τ, s′) ≤− M

2
s′2|ξ| −K|(ξ, τ)|(|x− x′ − s′Reψ(x′, t′, s′)|2

+ |t− t′|2 − s′2) + |ξ|O(|x′|s′2 + |t′|s′2 + |s′|3)

≤(−M
2

+ (1 + δ)K)s′2|ξ| −K|ξ|(|x− x′ − s′Reψ(x′, t′, s′)|2

+ |t− t′|2) + |ξ|O(|x′|s′2 + |t′|s′2 + |s′|3)

(2.1.13)

Choose K = M
4(1+δ) . Then (2.1.13) becomes

ReQ(x, t, x′, t′, ξ, τ, s′) ≤− M

4
s′2|ξ| − M

4(1 + δ)
|ξ|(|x− x′ − s′Reψ(x′, t′, s′)|2

+ |t− t′|2) + |ξ|O(|x′|s′2 + |t′|s′2 + |s′|3).
(2.1.14)

We choose r and |s0| small enough so that when (x′, t′) ∈ supp(η) and |s′| ≤ |s0|, (ξ, τ) ∈ Γ, (2.1.14)
will yield,
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ReQ(x, t, x′, t′, ξ, τ, s′) ≤ −M
8
s′2|ξ| − M

4(1 + δ)
|ξ|(|x− x′ − s′Reψ(x′, t′, s′)|2 + |t− t′|2). (2.1.15)

From (2.1.15), it follows that the first integral on the right in (2.1.8) (at level s′ = s0) decays
exponentially in ξ and hence there are constants C1, C2 > 0 such that for (ξ, τ) ∈ Γ,∣∣∣∣∫

Rn0+1
q(x, t, x′, t′, ξ, τ, s0)dZ(x′, t′, s0)

∣∣∣∣ ≤ C1e
−C2|(ξ,τ)| (2.1.16)

Consider next the second integral on the right in (2.1.8). To estimate it, we use equation (2.1.7)
which is a sum of two kinds of terms. The first kind consists of terms involving L1(Zj), L1(Q) and
L1u(recall that L1u = Lu = 0) and these terms can be bounded by constant multiples of

|ξ||s′|meRe Q(x,t,x′,t′,ξ,τ,s′),∀m ≥ 1,

and so using (2.1.15) which implies that

ReQ(x, t, x′, t′, ξ, τ, s′) ≤ −M
8
s′2|ξ|,

the integrals of such terms decay rapidly for (ξ, τ) ∈ Γ. The second type of terms involve derivatives of
η(x, t) and hence |x′|2 + t′2 ≥ r2 in the domains of integration. Therefore, if we choose 0 < |s0| << r,

we can get λ > 0 such that for (x, t) near (0, 0) and (ξ, τ) ∈ Γ, (2.1.15) will lead to,

ReQ(x, t, x′, t′, ξ, τ, s′) ≤ −λ|ξ|, when |x′|2 + t′2 ≥ r2.

The latter leads to an exponential decay in (ξ, τ) ∈ Γ for (x, t) near (0, 0) for the corresponding
integrals. We conclude that there exists a neighborhood W of (0, 0) in (x, t) space and an open conic
neighborhood Γ of (ξ0, 0) in Rn0+1 such that for ∀(x, t) ∈ W, (ξ, τ) ∈ Γ,∀m = 1, 2, · · · , there exists
Cm > 0 satisfying∣∣∣∣∫

Rn0+1
e
√
−1[ξ(x−x′)+τ(t−t′)]−K|(ξ,τ)|(|x−x′|2+|t−t′|2)η(x′, t′)u(x′, t′)dx′dt′

∣∣∣∣
=
∣∣∣∣∫

Rn0+1
q(x, t, x′, t′, ξ, 0)dx′dt′

∣∣∣∣ ≤ Cm

(1 + |ξ| + |τ |)m
.

By Theorem 2.1 in [BH] (see also [T] and the proof of Lemma V.5.2 in [BCH]), we conclude that

(ξ0, 0) 6∈WF (u)|0.

Suppose now the Levi form Lσ at every σ ∈ T 0
p has a nonzero eigenvalue. Define

S = {σ ∈ T 0
p : Lσ(v) ≥ 0, ∀v ∈ Vp}.

The set S is conic, closed and convex. If ξ ∈ S, and ξ 6= 0, then by hypothesis Lξ has at least
one positive eigenvalue and hence −ξ 6∈ S. Since ξ 6∈ WF (u), whenever Lξ has at least one negative
eigenvalue, it follows that WF (u) ⊂ S, for every CR function near the point p.
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2.1.3 Proof of Theorem 2.1.3

We begin by recalling the following “almost holomorphic” version of the implicit function theorem
from [La1]:

Theorem 2.1.16. Let U ⊂ CN be open, 0 ∈ U, A ∈ Cp, and Z = (Z1, · · · , ZN ) be the coordinates
in CN , W the coordinates in Cp. Let F : U × Cp → CN be smooth in the first N variables and a
polynomial in the last variables. Assume that F (0, A) = 0 and FZ(0, A) is invertible. Then there
exists a neighborhood U ′ × V ′ of (0, A) and a smooth map ψ = (ψ1, · · · , ψN ) : U ′ × V ′ → CN

with ψ(0, A) = 0, such that if F (Z,Z,W ) = 0 for some (Z,W ) ∈ U ′ × V ′, then Z = ψ(Z,Z,W ).
Furthermore, for every multiindex α, and each j, 1 ≤ j ≤ N,

Dα∂ψj

∂Zi
(Z,Z,W ) = 0, 1 ≤ i ≤ N, (2.1.17)

if Z = ψ(Z,Z,W ), and ψ is holomorphic in W. Here Dα denotes the derivative in all real variables.

Given the abstract CR manifold (M,V) of CR dimension n and CR codimension d, we will use
local coordinates (x, y, s) ∈ Rn × Rn × Rd that vanish at p0 ∈ M. We will write z = (z1, · · · , zn)
where zj = xj +

√
−1 yj for j = 1, · · · , n. In a neighborhood W of 0, we may assume that a basis of

V is given by {L1, · · · , Ln} where

Li =
∂

∂zi
+

n∑
j=1

aij(x, y, s)
∂

∂zj
+

d∑
l=1

bil(x, y, s)
∂

∂sl
, 1 ≤ i ≤ n,

the aij and bil are smooth and aij(0) = 0 = bil(0),∀i, j, l (see for example [BCH]). In these coordinates,
at the origin, the characteristic set

T 0
0 = {(ξ, η, σ) ∈ Rn × Rn × Rd : ξ = η = 0}.

By assumption, there is an acute open convex cone Γ ⊂ Rd such that

WF (Hj)|0 ⊂ {(0, 0, σ) : σ ∈ Γ},∀j = 1, · · · , N ′.

Let φ ∈ C∞
0 (W ) whose support is sufficiently small and φ ≡ 1 in a neighborhood of the origin.

For each j = 1, · · · , N ′, by Fourier’s inversion formula,

φ(x, y, s)Hj(x, y, s) =
∫

R2n+d

e2π
√
−1(x·ξ+y·η+s·σ)φ̂Hj(ξ, η, σ)dσdηdξ

=
∫

A
e2π

√
−1(x·ξ+y·η+s·σ)φ̂Hj(ξ, η, σ)dσdηdξ

+
∫

R2n+d\A
e2π

√
−1(x·ξ+y·η+s·σ)φ̂Hj(ξ, η, σ)dσdηdξ

=Ij(x, y, s) + J j(x, y, s)

(2.1.18)

where A = {(ξ, η, σ) ∈ Rn × Rn × Rd : σ 6∈ Γ}.
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Since WF (Hj)|0 ⊂ {(0, 0, σ) : σ ∈ Γ}, if the support of φ is sufficiently small, for every m =
1, 2, · · · , there exists a constant Cm > 0 such that

|φ̂Hj(ξ, η, σ)| ≤ Cm

(1 + |ξ| + |η| + |σ|)m
, ∀(ξ, η, σ) ∈ A.

It follows that Ij(x, y, s) is C∞ on R2n+d. Write

J j(x, y, s) =
∫

B1

e2π
√
−1(x·ξ+y·η+s·σ)φ̂Hj(ξ, η, σ)dσdηdξ +

∫
B2

e2π
√
−1(x·ξ+y·η+s·σ)φ̂Hj(ξ, η, σ)dσdηdξ

where
B1 = {(ξ, η, σ) : |ξ|2 + |η|2 ≤ 1, σ ∈ Γ},

B2 = {(ξ, η, σ) : |ξ|2 + |η|2 ≥ 1, σ ∈ Γ}.

Observe that since T 0
0 ∩ B2 = ∅, for any CR function u near the origin, WF (u)|0 ∩ B2 = ∅.

Moreover,
B2 ∩ {(ξ, η, σ) : |ξ|2 + |η|2 + |σ|2 = 1}

is a compact set. It follows that for each m = 1, 2, · · · , we can get C ′
m > 0 such that

|φ̂Hj(ξ, η, σ)| ≤ C ′
m

(1 + |ξ| + |η| + |σ|)m
, ∀(ξ, η, σ) ∈ B2 (2.1.19)

It follows that
F j

2 (x, y, s) =
∫

B2

e2π
√
−1(x·ξ+y·η+s·σ)φ̂Hj(ξ, η, σ)dσdηdξ

is C∞ on R2n+d.

Since Γ is an acute cone, there is σ0 ∈ Rd such that σ0 · σ > 0,∀σ ∈ Γ. We may assume that for
some conic neighborhood Γ1 of σ and C0 > 0,

v · σ ≥ C0|v||σ|, ∀v ∈ Γ1, σ ∈ Γ. (2.1.20)

For t ∈ Γ1, we define

F j
1 (x, y, s, t) =

∫
B1

e2π
√
−1(x·ξ+y·η+(s+

√
−1t)·σ)φ̂Hj(ξ, η, σ)dσdηdξ.

Since φ̂Hj has a polynomial growth, for some C1,M > 0,

|φ̂Hj(ξ, η, σ)| ≤ C1(1 + |σ|)M , ∀(ξ, η, σ) ∈ B1. (2.1.21)

Therefore, using (2.1.20) and (2.1.21), we get,

|F j
1 (x, y, s, t)| ≤ C ′

1

∫
Rd

e−C0|t||σ|(1 + |σ|)Mdσ ≤ C2

|t|M+d+1
, t ∈ Γ1, for some C ′

1, C2 > 0. (2.1.22)

Moreover, for all multiindices α, β ∈ Nn, γ ∈ Nd,

|∂α
x ∂

β
y ∂

γ
sF

j
1 (x, y, s, t)| ≤ C

|t|M+d+1+|γ| , (2.1.23)
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for some C > 0 when t ∈ Γ1.

When t ∈ Γ1,

∂wνF
j
1 (x, y, s, t) = 0, for 1 ≤ ν ≤ d, (2.1.24)

where ∂wν = 1
2( ∂

∂sν
+

√
−1 ∂

∂tν
).

Define
F j

2 (x, y, s, t) =
∫

B2

e2π
√
−1(x·ξ+y·η+(s+

√
−1t)·σ)φ̂Hj(ξ, η, σ)dξdηdσ,

for t ∈ Γ1. By (2.1.19), F j
2 is C∞ up to t = 0, and

∂wνF
j
2 (x, y, s, t) = 0, for 1 ≤ ν ≤ d, t ∈ Γ1. (2.1.25)

Since Ij(x, y, s) is C∞ and bounded, we can find a bounded C∞ function F j
0 (x, y, s, t) (|t| small)

such that

F j
0 (x, y, s, 0) = Ij(x, y, s), and ∂wνF

j
0 (x, y, s, t) = O(|t|l), ∀ν = 1, · · · , d, ∀l = 1, 2, 3, . . . (2.1.26)

Let ϕ(x, y, s) ∈ C∞
0 (W ) such that its support is contained in a neighborhood of the origin where

φ ≡ 1. By Parseval’s formula,

lim
t→0,t∈Γ1

∫
R2n+d

F j
0 (x, y, s, t)ϕ(x, y, s)dxdyds =

∫
R2n+d

Ij(x, y, s)ϕ(x, y, s)dxdyds

=
∫

R2n+d

Îj(ξ, η, σ)ϕ̂(−ξ,−η,−σ)dξdηdσ

=
∫

A
φ̂Hj(ξ, η, σ)ϕ̂(−ξ,−η,−σ)dξdηdσ

(2.1.27)

Likewise, since F j
2 is C∞ and bounded,∫

R2n+d

F j
2 (x, y, s)ϕ(x, y, s)dxdyds =

∫
B2

φ̂Hj(ξ, η, σ)ϕ̂(−ξ,−η,−σ)dξdηdσ. (2.1.28)

For t ∈ Γ1, using (3.2.4), we have,∫
R2n+d

F j
1 (x, y, s, t)ϕ(x, y, s)dxdyds

=
∫

B1

(
∫

R2n+d

e2π
√
−1(x·ξ+y·η+s·σ)ϕ(x, y, s)dxdyds)e−t·σφ̂Hj(ξ, η, σ)dξdηdσ

=
∫

B1

ϕ̂(−ξ,−η,−σ)e−t·σφ̂Hj(ξ, η, σ)dξdηdσ,

(2.1.29)

and hence

lim
t→0, t∈Γ1

∫
R2n+d

F j
1 (x, y, s, t)φ(x, y, s)dxdyds =

∫
B1

ϕ̂(−ξ,−η,−σ)φ̂Hj(ξ, η, σ)dξdηdσ (2.1.30)

Let F j(x, y, s, t) = F j
0 (x, y, s, t) + F j

1 (x, y, s, t) + F j
2 (x, y, s, t) for t ∈ Γ1. From (2.1.27),(2.1.28)

and (2.1.30),

lim
t→0, t∈Γ1

∫
R2n+d

F j(x, y, s, t)ϕ(x, y, s)dxdyds =
∫

R2n+d

ϕ̂(−ξ,−η,−σ)φ̂Hj(ξ, η, σ)dξdηdσ

=
∫

R2n+d

φ(x, y, s)Hj(x, y, s)ϕ(x, y, s)dxdyds.
(2.1.31)
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Therefore, in a neighborhood of the origin, in the distribution sense,

lim
t→0, t∈Γ1

F j(x, y, s, t) = Hj(x, y, s). (2.1.32)

For t ∈ Γ1 small, from (2.1.23)-(2.1.26), we have: for (x, y, s) near 0, given α, β, γ, there exists C1 > 0
such that for some λ > 0,

|∂α
x ∂

β
y ∂

γ
sF

j(x, y, s, t)| ≤ C1

|t|λ
, and (2.1.33)

∂α
x ∂

β
y ∂

γ
s ∂wνF

j(x, y, s, t) = O(|t|l), ∀l ≥ 1, ∀ν = 1, · · · , d. (2.1.34)

For the rest of the proof, we follow the argument of claim 3 in [La1]. We may assume that
H(0) = 0 ∈ M ′. Let ρ = (ρ1, · · · , ρd′) be defining functions for M ′ near 0. For α ∈ Nn a multiindex,
recall that Lα = Lα1

1 · · ·Lαn
n .

Set F (x, y, s, t) = (F 1(x, y, s, t), · · · , FN ′
(x, y, s, t)), t ∈ Γ1. As in [La1], there are smooth functions

Ψµ,α(Z ′, Z ′,W ) for |α| ≤ k0, 1 ≤ µ ≤ d′, defined in a neighborhood of {0} × CK(k0) in CN ′ × CK(k0),

polynomial in W, such that

Lαρµ(H(z, s), H(z, s)) = Ψµ,α(H(z, s),H(z, s), (LβH(z, s))|β|≤k0
), (2.1.35)

and
Lαρµ,Z′(H,H)|0 = Ψµ,α,Z′(0, 0, (LβH(0, 0))|β|≤k0

). (2.1.36)

Here K(k0) = N ′|{β : |β| ≤ k0}|. Equation (2.1.36) and the k0−nondegeneracy assumption on the
map H allows us to get (α1, · · · , αN ′

), (µ1, · · · , µN ′) ∈ NN ′
and a smooth function ψ(Z ′, Z ′,W ) =

(ψ1, · · · , ψN ′), which is holomorphic in W, such that with

Ψ = (Ψµ1,α1 , · · · ,ΨµN′ ,αN′ ),

if Ψ(Z ′, Z ′,W ) = 0, then Z ′ = ψ(Z ′, Z ′,W ). Moreover, with Z ′ = (z′1, · · · , z′N ′), we have,

Dα∂ψj

∂z′i
(Z ′, Z ′,W ) = 0, ∀i = 1, · · · , N ′, j = 1, · · · , N ′, (2.1.37)

whenever Z ′ = ψ(Z ′, Z ′,W ). In particular, since Ψl,α(H(z, s), H(z, s), (LβH(z, s))|β|≤k0
) = 0, we

have,

Hj(z, s) = ψj(F (z, s, 0), F (z, s, 0), (LβF (z, s, 0))|β|≤k0
),∀j = 1, · · · , N ′. (2.1.38)

Recall that for i = 1, · · · , n,

Li =
∂

∂zi
+

n∑
j=1

aij(x, y, s)
∂

∂zj
+

d∑
l=1

bil(x, y, s)
∂

∂sl
.

Let

Mi =
∂

∂zi
+

n∑
j=1

Aij(x, y, s, t)
∂

∂zj
+

d∑
l=1

Bil(x, y, s, t)
∂

∂sl
, 1 ≤ i ≤ n,
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where the Aij and Bil are smooth extensions of the aij and bil satisfying

∂wνAij(x, y, s, t), ∂wνBil(x, y, s, t) = O(|t|m), ∀ν = 1, · · · , d, ∀m = 1, 2, · · · . (2.1.39)

Now define
gj(z, s, t) = ψj(F (z, s,−t), F (z, s,−t), (MβF (z, s,−t))|β|≤k0

),

for j = 1, · · · , N ′ and for t ∈ −Γ1, |t| small. Using (2.1.34), (2.1.37) and (2.2.19), we conclude that,
when (z, s) is near the origin in Cn × Rd and t ∈ −Γ1 (|t| small), for any α, β, γ multiindices, there
is C > 0 such that

|Dα
xD

β
yD

γ
s gj(z, s, t)| ≤

C

|t|λ
for someλ > 0. (2.1.40)

and
Dα

xD
β
yD

γ
s∂wνgj(z, s, t) = O(|t|m),∀m = 1, 2, · · · , ν = 1, · · · , d. (2.1.41)

From (2.1.38), we know that,

Hj(z, s) = lim
t→0, t∈−Γ1

gj(z, s, t),∀j = 1, · · · , N ′. (2.1.42)

By Theorem V.3.7 in [BCH], it follows that WF(Hj)|0 ∩Γ = ∅. Since by assumption WF (Hj)|0 ⊂ Γ,
we conclude that H is C∞ near the origin.

2.1.4 Proof of Theorem 2.1.5

Fix any p ∈ M, and assume p′ = F (p) = 0. Since M ′ is strictly pseudoconvex, we may assume that
there is a neighborhood G of 0 in Cn+k, and a local defining function ρ of M ′ in G such that

M ′ ∩G = {Z ′ ∈ G : ρ(Z ′, Z ′) = 0},

where ρ(Z ′, Z ′) = −v′ +
∑n+k−1

j=1 |z′j |2 + φ∗(Z ′, Z ′). Here Z ′ = (z′1, · · · , z′n+k) are the coordinates of
Cn+k, z′n+k = u′ +

√
−1v′ and φ∗(Z ′, Z ′) = O(|Z ′|3) is a real-valued smooth function on G. Note

that rankl(F, p) is a lower semi-continuous integer-valued function on M for each 1 ≤ l ≤ k. For any
p ∈M,

rank0(F, p) ≤ rank1(F, p) ≤ · · · ≤ rankk(F, p).

We next recall some basic properties of the rank of F. Write F = (F1, · · · , Fn+k). Since F (M) ⊂
M ′, we have

ρ(F, F ) = −Fn+k − Fn+k

2
√
−1

+ F1F1 + · · · + Fn+k−1Fn+k−1 + φ∗(F, F ) = 0, (2.1.43)

on M near p. Applying L1, · · · , Ln to the above equation, we get

LjFn+k

2
√
−1

+ F1LjF1 + · · · + Fn+k−1LjFn+k−1 + Ljφ
∗(F, F ) = 0, 1 ≤ j ≤ n, (2.1.44)
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LαFn+k

2
√
−1

+ F1L
αF1 + · · · + Fn+k−1L

αFn+k−1 + Lαφ∗(F, F ) = 0, (2.1.45)

on M near p for any multiindex 1 ≤ |α| ≤ k. Therefore, on M near p,

ρZ′(F, F ) = (F1 + φ∗z′1
(F, F ), · · · , Fn+k−1 + φ∗z′n+k−1

(F, F ),
√
−1
2

+ φ∗z′n+k
(F, F )), (2.1.46)

and for any multiindex 1 ≤ |α| ≤ k,

LαρZ′(F, F ) = (Lα(F1 + φ∗z′1
), · · · , Lα(Fn+k−1 + φ∗z′n+k−1

), Lαφ∗z′n+k
). (2.1.47)

Lemma 2.1.17. With the assumption of Theorem 2.1.5, for any p ∈ M, we have rank0(F, p) =
1, rank1(F, p) = n+ 1, and thus rankl(F, p) ≥ n+ 1, for 1 ≤ l ≤ k.

Proof. Assume that F (p) = 0. Note that φ∗z′i(F, F )|p = 0, for all 1 ≤ i ≤ n+ k. Equation (4.4) shows

that rank0(F, p) = 1. By assumption, dF : Vp → T
(0,1)
0 M ′ is injective. By plugging Z = p in equation

(4.2), we get LiFn+k(p) = 0 for each 1 ≤ i ≤ n. Since {L1, L2, · · · , Ln} is a local basis of V near p,
we conclude that the rank of the matrix (LiF l)1≤i≤n,1≤l≤n+k−1 is n. Without loss of generality, we
assume that, ∣∣∣∣∣∣∣∣∣∣∣∣

L1F 1 . . . L1Fn

. . . . .

. . . . .

. . . . .

LnF 1 . . . LnFn

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0 at p.

Notice that φ∗z′1 |p = φ∗z′2
|p = · · · = φ∗z′n+k

|p = 0, Ljφ
∗
z′1
|p = Ljφ

∗
z′2
|p = · · · = Ljφ

∗
z′n+k

|p = 0, for all
1 ≤ j ≤ n. Thus rank1(F, p) = n + 1. Consequently, rankl(F, p) ≥ n + 1, for 1 ≤ l ≤ k for any
p ∈M .

To simplify the notations, let

ai(Z,Z) = F i + φ∗z′i
(F, F ), 1 ≤ i ≤ n+ k − 1,

an+k(Z,Z) =
√
−1
2

+ φ∗z′n+k
(F, F ),

a(Z,Z) = (a1, · · · , an+k).

Then
ρZ′(F, F ) = a = (a1, · · · , an+k−1, an+k),

LαρZ′(F, F ) = Lαa = (Lαa1, · · · , Lαan+k−1, L
αan+k)

for any multiindex 0 ≤ |α| ≤ k. Recall that

rankl(F, p) = dimC(SpanC{Lαa(Z,Z)|p : 0 ≤ |α| ≤ l}).

The following normalization will be applied later in this section.
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Lemma 2.1.18. Let M,M ′, F be as in Theorem 2.5. Assume rankl(F, p) = N0, for some 1 ≤ l ≤
k, n + 1 ≤ N0 ≤ n + k. Then there exist multiindices {βn+1, · · · , βN0−1} with 1 < |βi| ≤ l for all
i, such that after a linear biholomorphic change of coordinates in Cn+k : Z̃ = Z ′A−1, where A is a
unitary (n+ k) × (n+ k) matrix, and Z̃ denotes the new coordinates, the following hold:

ã|p = (0, · · · , 0,
√
−1
2

),



L1ã|p
· · ·

Lnã|p
Lβn+1 ã|p

· · ·
LβN0−1 ã|p


=
(

BN0−1 0 b
)
. (2.1.48)

Here we write ã = ρ̃
eZ
(Z̃(F ), Z̃(F )), and ρ̃ is a local defining function of M ′ near 0 in the new

coordinates. Moreover, BN0−1 is an invertible (N0−1)×(N0−1) matrix, 0 is an (N0−1)×(n+k−N0)
zero matrix, and b is an (N0 − 1)−dimensional column vector.

Proof. It follows from Lemma 2.1.17 that

{a, L1a, · · · , Lna}|p

is linearly independent. Extend it to a basis of El(p), which has dimension N0 by assumption. That
is, we choose multiindices {βn+1, · · · , βN0−1} with 1 < |βi| ≤ l for each i, such that

{a, L1a, · · · , Lna, Lβn+1a, · · · , LβN0−1a}|p

is linearly independent over C. We write â := (a1, · · · , an+k−1), that is, the first n+k−1 components
of a. Notice that a(p) = (0, · · · , 0,

√
−1
2 ). Consequently,

{L1â, · · · , Lnâ, Lβn+1 â, · · · , LβN0−1 â}|p

is linearly independent in Cn+k−1. Let S be the (N0 − 1)−dimensional vector space spanned by
them and let {T1, · · · , TN0−1} be an orthonormal basis of S. Extend it to an orthonormal basis of
Cn+k−1 : {T1, · · · , TN0−1, TN0 , · · · , Tn+k−1} and set

T =

 T1

· · ·
Tn+k−1


t

, A =

(
T 0t

n+k−1

0n+k−1 1

)
.

Here 0n+k−1 is an (n+ k − 1)−dimensional zero row vector. Next we make the following change of
coordinates: Z ′ = Z̃A, or Z̃ = Z ′A−1. The function ρ̃(Z̃, Z̃) = ρ(Z̃A, Z̃A) is a defining function of
M ′ near 0 with respect to the new coordinates Z̃. By the chain rule,

ρ̃
eZ
(Z̃(F ), Z̃(F )) = ρZ′(F, F )A. (2.1.49)

For any multiindex α,
Lαρ̃

eZ
(Z̃(F ), Z̃(F )) = LαρZ′(F, F )A. (2.1.50)
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In particular, at p, we get:

ã|p = a|pA,



L1ã|p
· · ·

Lnã|p
Lβn+1 ã|p

· · ·
LβN0−1 ã|p


=



L1a|p
· · ·

Lna|p
Lβn+1a|p

· · ·
LβN0−1a|p


A. (2.1.51)

Furthermore from the definition of A, in the new coordinates, equation (2.1.48) holds and BN0−1 is
invertible.

Remark 2.1.19. From the construction of A in the proof of Lemma 2.1.18, one can see that, in the
new coordinates Z̃, the following continues to hold: There is a neighborhood G of p′ = 0 in Cn+k,

and a smooth real-valued function ρ̃ in G, such that,

M ′ ∩G = {Z̃ ∈ G : ρ̃(Z̃, Z̃) = 0}.

Moreover, ρ̃(Z̃, Z̃) = −ṽ+
∑n+k−1

j=1 |z̃j |2 + φ̃∗(Z̃, Z̃), where Z̃ = (z̃1, · · · , z̃n+k), z̃n+k = ũ+
√
−1ṽ and

φ̃∗(Z̃, Z̃) = O(|Z̃|3) is a real-valued smooth function in G. We will write the new coordinates as Z
instead of Z̃.

Theorem 2.1.9 will follow from the following in the degenerate case:

Theorem 2.1.20. Let M,M ′, F be as in Theorem 2.1.5 and p ∈ M. Assume that F is of constant
geometric rank n+ l at p with l ≤ k − 1. Then F is smooth near p.

Proof. By Remark 2.1.7, there exists a neighborhood O of p such that rankl(F, q) = rankl+1(F, q) =
n + l for all q ∈ O. Applying Lemma 2.1.18, after a suitable holomorphic change of coordinates in
Cn+k, there exist multiindices {βn+1, · · · , βn+l−1} with 1 < |βi| ≤ l for all n ≤ i ≤ n+ l−1 satisfying

a|p = (0, · · · , 0,
√
−1
2

),



L1a|p
· · ·

Lna|p
Lβn+1a|p

· · ·
Lβn+l−1a|p


=
(

Bn+l−1 0 b
)
. (2.1.52)

Here Bn+l−1 is an invertible (n+ l− 1)× (n+ l− 1) matrix, 0 is an (n+ l− 1)× (k− l) zero matrix,
b is an (n+ l − 1)−dimensional column vector. From equation (2.1.52), we know that
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 · · · an+l−1 an+k

L1a1 · · · L1an+l−1 L1an+k

· · · · · · · · · · · ·
Lna1 · · · Lnan+l−1 Lnan+k

Lβn+1a1 · · · Lβn+1an+l−1 Lβn+1an+k

· · · · · · · · · · · ·
Lβn+l−1a1 · · · Lβn+l−1an+l−1 Lβn+l−1an+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0 at p. (2.1.53)

To simplify the notation, we denote the n−dimensional multiindices by β0 = (0, · · · , 0), and βµ =
(0, · · · , 0, 1, 0, · · · , 0), for µ = 1, · · · , n, where 1 is at the µth position. That is, Lβµ = Lµ, µ = 1, · · · , n.
Then inequality (2.1.53) can be written as∣∣∣∣∣∣∣

Lβ0a1 · · · Lβ0an+l−1 Lβ0an+k

· · · · · · · · · · · ·
Lβn+l−1a1 · · · Lβn+l−1an+l−1 Lβn+l−1an+k

∣∣∣∣∣∣∣ 6= 0 at p. (2.1.54)

By shrinking O if necessary, it is nonzero everywhere in O. Since rankl+1(F, q) = n+ l in O, we have

dimC(El+1(q)) = dimC(SpanC{(Lαa1, · · · , Lαan+k)|q : 0 ≤ |α| ≤ l + 1}) = n+ l

everywhere in O. Hence for any multiindex β̃ with 0 ≤ |β̃| ≤ l + 1, and any n + l ≤ j ≤ n + k − 1,
we have, in O, ∣∣∣∣∣∣∣∣∣∣

Lβ0a1 · · · Lβ0an+l−1 Lβ0an+k Lβ0aj

· · · · · · · · · · · · · · ·
Lβn+l−1a1 · · · Lβn+l−1an+l−1 Lβn+l−1an+k Lβn+l−1aj

L
eβa1 · · · L

eβan+l−1 L
eβan+k L

eβaj

∣∣∣∣∣∣∣∣∣∣
≡ 0. (2.1.55)

Furthermore, we will prove the following claim.

Claim: For any 1 ≤ ν ≤ n, n+l ≤ j ≤ n+k−1, and i1 < i2 < · · · < in+l−1 with {i1, · · · , in+l−1} ⊂
{1, · · · , n+ l − 1, n+ k}, the following holds in O :

Lν



∣∣∣∣∣∣∣∣∣∣
Lβ0ai1 · · · Lβ0ain+l−1

Lβ0aj

Lβ1ai1 · · · Lβ1ain+l−1
Lβ1aj

· · · · · · · · · · · ·
Lβn+l−1ai1 · · · Lβn+l−1ain+l−1

Lβn+l−1aj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Lβ0a1 · · · Lβ0an+l−1 Lβ0an+k

· · · · · · · · · · · ·
Lβn+l−1a1 · · · Lβn+l−1an+l−1 Lβn+l−1an+k

∣∣∣∣∣∣∣


≡ 0. (2.1.56)
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Proof. By the quotient rule,

the numerator of


Lν



∣∣∣∣∣∣∣∣∣∣
Lβ0ai1 · · · Lβ0ain+l−1

Lβ0aj

Lβ1ai1 · · · Lβ1ain+l−1
Lβ1aj

· · · · · · · · · · · ·
Lβn+l−1ai1 · · · Lβn+l−1ain+l−1

Lβn+l−1aj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Lβ0a1 · · · Lβ0an+l−1 Lβ0an+k

· · · · · · · · · · · ·
Lβn+l−1a1 · · · Lβn+l−1an+l−1 Lβn+l−1an+k

∣∣∣∣∣∣∣




=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
Lβ0a1 · · · Lβ0an+l−1 Lβ0an+k

· · · · · · · · · · · ·
Lβn+l−1a1 · · · Lβn+l−1an+l−1 L

βn+l−1an+k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
Lβ0ai1 · · · Lβ0ain+l−1

Lβ0aj

Lβ1ai1 · · · Lβ1ain+l−1
Lβ1aj

· · · · · · · · · · · ·
Lβn+l−1ai1 · · · Lβn+l−1ain+l−1

Lβn+l−1aj

∣∣∣∣∣∣∣∣∣∣
Lν

∣∣∣∣∣∣∣
Lβ0a1 · · · Lβ0an+l−1 Lβ0an+k

· · · · · · · · · · · ·
Lβn+l−1a1 · · · Lβn+l−1an+l−1 L

βn+l−1an+k

∣∣∣∣∣∣∣ Lν

∣∣∣∣∣∣∣∣∣∣
Lβ0ai1 · · · Lβ0ain+l−1

Lβ0aj

Lβ1ai1 · · · Lβ1ain+l−1
Lβ1aj

· · · · · · · · · · · ·
Lβn+l−1ai1 · · · Lβn+l−1ain+l−1

Lβn+l−1aj

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
Lβ0a1 · · · Lβ0an+l−1 Lβ0an+k

· · · · · · · · · · · ·
Lβn+l−1a1 · · · Lβn+l−1an+l−1 L

βn+l−1an+k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
Lβ0ai1 · · · Lβ0ain+l−1

Lβ0aj

Lβ1ai1 · · · Lβ1ain+l−1
Lβ1aj

· · · · · · · · · · · ·
Lβn+l−1ai1 · · · Lβn+l−1ain+l−1

Lβn+l−1aj

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
LνL

β0a1 · · · LνL
β0an+l−1 LνL

β0an+k

Lβ1a1 · · · Lβ1an+l−1 Lβ1an+k

· · · · · · · · · · · ·
Lβn+l−1a1 · · · Lβn+l−1an+l−1 L

βn+l−1an+k

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
LνL

β0ai1 · · · LνL
β0ain+l−1

LνL
β0aj

Lβ1ai1 · · · Lβ1ain+l−1
Lβ1aj

· · · · · · · · · · · ·
Lβn+l−1ai1 · · · Lβn+l−1ain+l−1

Lβn+l−1aj

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+· · ·+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
Lβ0a1 · · · Lβ0an+l−1 Lβ0an+k

· · · · · · · · · · · ·
Lβn+l−1a1 · · · Lβn+l−1an+l−1 L

βn+l−1an+k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
Lβ0ai1 · · · Lβ0ain+l−1

Lβ0aj

Lβ1ai1 · · · Lβ1ain+l−1
Lβ1aj

· · · · · · · · · · · ·
Lβn+l−1ai1 · · · Lβn+l−1ain+l−1

Lβn+l−1aj

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

Lβ0a1 · · · Lβ0an+l−1 Lβ0an+k

· · · · · · · · · · · ·
Lβn+l−2a1 · · · Lβn+l−2an+l−1 Lβn+l−2an+k

LνL
βn+l−1a1 · · · LνL

βn+l−1an+l−1 LνL
βn+l−1an+k

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
Lβ0ai1 · · · Lβ0ain+l−1

Lβ0aj

· · · · · · · · · · · ·
Lβn+l−2ai1 · · · Lβn+l−2ain+l−1

Lβn+l−2aj

LνL
βn+l−1ai1 · · · LνL

βn+l−1ain+l−1
LνL

βn+l−1aj

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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From equation (2.1.55) and Lemma 1.3.1, we know each term on the right-hand side of the
equation above equals 0. Hence equation (2.1.56) holds. This completes the proof of the claim.

Thus the fraction in the parentheses in equation (2.1.56) equals a Ck−l CR function in O.
It follows that for any fixed n + l ≤ j ≤ n + k − 1, there exist Ck−l−smooth CR functions
Gj

1, G
j
2, · · · , G

j
n+l−1, G

j
n+k in O, such that, if i1 < i2 < · · · < in+l−1 and (i1, i2, · · · , in+l−1) =

(1, 2, · · · , î0, · · · , n+l−1, n+k), i0 ∈ {1, 2, · · · , n+l−1, n+k}, where (1, 2, · · · , î0, · · · , n+l−1, n+k)
means (1, 2, · · · , n+ l − 1, n+ k) with the component “i0” missing, then in O,∣∣∣∣∣∣∣∣∣∣

Lβ0ai1 · · · Lβ0ain+l−1
Lβ0aj

Lβ1ai1 · · · Lβ1ain+l−1
Lβ1aj

· · · · · · · · · · · ·
Lβn+l−1ai1 · · · Lβn+l−1ain+l−1

Lβn+l−1aj

∣∣∣∣∣∣∣∣∣∣
= Gj

i0

∣∣∣∣∣∣∣∣∣∣
Lβ0ai1 · · · Lβ0ain+l−1

Lβ0ai0

Lβ1ai1 · · · Lβ1ain+l−1
Lβ1ai0

· · · · · · · · · · · ·
Lβn+l−1ai1 · · · Lβn+l−1ain+l−1

Lβn+l−1ai0

∣∣∣∣∣∣∣∣∣∣
.

That is, ∣∣∣∣∣∣∣∣∣∣
Lβ0ai1 · · · Lβ0ain+l−1

Lβ0(aj −Gj
i0
ai0)

Lβ1ai1 · · · Lβ1ain+l−1
Lβ1(aj −Gj

i0
ai0)

· · · · · · · · · · · ·
Lβn+l−1ai1 · · · Lβn+l−1ain+l−1

Lβn+l−1(aj −Gj
i0
ai0)

∣∣∣∣∣∣∣∣∣∣
≡ 0. (2.1.57)

We further assert:

Claim: In O, we have,

∣∣∣∣∣∣∣∣∣∣
Lβ0as1 · · · Lβ0asn+l−1

Lβ0(aj −
∑n+l−1

i=1 Gj
iai −Gj

n+kan+k)
Lβ1as1 · · · Lβ1asn+l−1

Lβ1(aj −
∑n+l−1

i=1 Gj
iai −Gj

n+kan+k)
· · · · · · · · · · · ·

Lβn+l−1as1 · · · Lβn+l−1asn+l−1
Lβn+l−1(aj −

∑n+l−1
i=1 Gj

iai −Gj
n+kan+k)

∣∣∣∣∣∣∣∣∣∣
≡ 0 (2.1.58)

for all s1 < s2 < · · · < sn+l−1 with {s1, · · · , sn+l−1} ⊂ {1, · · · , n+ l − 1, n+ k} and any n+ l ≤ j ≤
n+ k − 1.

Proof. Assume that (s1, · · · , sn+l−1) = (1, · · · , ŝ0, · · · , n+ l − 1, n+ k). Notice that for any n+ l ≤
j ≤ n+ k − 1, i 6= s0 and i ∈ {1, · · · , n+ l − 2, n+ k},∣∣∣∣∣∣∣∣∣∣

Lβ0as1 · · · Lβ0asn+l−1
Lβ0(Gj

iai)
Lβ1as1 · · · Lβ1asn+l−1

Lβ1(Gj
iai)

· · · · · · · · · · · ·
Lβn+l−1as1 · · · Lβn+l−1asn+l−1

Lβn+l−1(Gj
iai)

∣∣∣∣∣∣∣∣∣∣
≡ 0. (2.1.59)
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Combining this with equation (2.1.57), one can check that equation (2.1.58) holds.

By Lemma 1.3.4, equation (2.1.54), and (2.1.58), we immediately obtain that in O,

Lβt(aj −
n+l−1∑

i=1

Gj
iai −Gj

n+kan+k) = 0,∀ 1 ≤ t ≤ n+ l − 1, n+ l ≤ j ≤ n+ k − 1.

In particular, when t = 0, we have:

aj −
n+l−1∑

i=1

Gj
iai −Gj

n+kan+k = 0, n+ l ≤ j ≤ n+ k − 1. (2.1.60)

That is in O,

Fj + φ∗
z′j
−

n+l−1∑
i=1

Gj
i (Fi + φ∗

z′i
) −Gj

n+k(
1

2
√
−1

+ φ∗
z′n+k

) = 0. (2.1.61)

Recall that we have, by shrinking O if necessary, in O,

−Fn+k − Fn+k

2
√
−1

+ F1F1 + · · · + Fn+k−1Fn+k−1 + φ∗(F, F ) = 0, (2.1.62)

LjFn+k

2
√
−1

+ F1LjF1 + · · · + Fn+k−1LjFn+k−1 + Ljφ
∗(F, F ) = 0, 1 ≤ j ≤ n, (2.1.63)

LβtFn+k

2
√
−1

+ F1L
βtF1 + · · · + Fn+k−1L

βtFn+k−1 + Lβtφ∗(F, F ) = 0, n+ 1 ≤ t ≤ n+ l − 1. (2.1.64)

We introduce local coordinates (x, y, s) ∈ Rn × Rn × Rd that vanish at the central ponit p ∈
M . By Theorem 2.1.9, Gj

i , G
j
n+k, F1, · · · , Fn+k extend to almost analytic functions into a wedge

{(x, y, s + it) ∈ U × V × Γ1 : (x, y, s) ∈ U × V, t ∈ Γ1}, with edge M near p = 0 for all 1 ≤ i ≤
n+l−1, n+l ≤ j ≤ n+k−1. Here U×V is a neighborhood of the origin in Cn×Rd and Γ1 is an acute
convex cone in Rd in t−space. We still denote the extended functions by Gj

i , G
j
n+k, F1, · · · , Fn+k.

Arguments similar to those used in the proof of Theorem 2.1.3 imply that the Gj
i and Gj

n+k satisfy
the estimates:∣∣∣Dα

xD
β
yD

γ
sG

j
i (z, s, t)

∣∣∣ ≤ C

|t|λ
,
∣∣∣Dα

xD
β
yD

γ
sG

j
n+k(z, s, t)

∣∣∣ ≤ C

|t|λ
, for some C, λ > 0

and
Dα

xD
β
yD

γ
s∂wνG

j
i (z, s, t) = O(|t|m), Dα

xD
β
yD

γ
s∂wνG

j
n+k(z, s, t) = O(|t|m),

for all 1 ≤ i ≤ n+ l − 1, n+ l ≤ j ≤ n+ k − 1, 1 ≤ ν ≤ d,m ≥ 1. And similarly for F1, · · · , Fn+k.

We now use equations (2.1.61), (2.1.62), (2.1.63) and (2.1.64) to get a smooth map Ψ(Z ′, Z ′,W ) =
(Ψ1, · · · ,Ψn+k) defined in a neighborhood of {0}×Cq in Cn+k×Cq, smooth in the first n+k variables
and polynomial in last q variables for some integer q, such that,

Ψ(F, F , (LαF )1≤|α|≤l, G
n+l
1 , · · · , Gn+l

n+l−1, G
n+l
n+k, · · · , G

n+k−1
1 , · · · , Gn+k−1

n+l−1 , G
n+k−1
n+k ) = 0
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at (z, s, 0) with (z, s) ∈ U × V. Write

G = (Gn+l
1 , · · · , Gn+l

n+l−1, G
n+l
n+k, · · · , G

n+k−1
1 , · · · , Gn+k−1

n+l−1 , G
n+k−1
n+k ).

Observe that

ΨZ′ |(p,(LαF )1≤|α|≤l(p),G(p)) =

 0n+l−1 0k−l

√
−1
2

Bn+l−1 0 b
C Ik−l 0t

k−l

 ,

where 0N is an N−dimensional zero row vector, C is a (k − l) × (n + l − 1) matrix, Ik−l is the
(k − l) × (k − l) identity matrix and we recall that Bn+l−1 is an invertible (n+ l − 1) × (n+ l − 1)
matrix, 0 is an (n+ l − 1) × (k − l) zero matrix, b is an (n+ l − 1)−dimensional column vector.

The matrix ΨZ′ |(p,(LαF )1≤|α|≤l(p),G(p)) is invertible. By applying Theorem 2.1.16, we get a solution
ψ = (ψ1, · · · , ψn+k) satisfying (2.1.17) and for each 1 ≤ j ≤ n+ k,

Fj = ψj(F, F , (LαF )1≤|α|≤l, G)

at (z, s, 0) with (z, s) ∈ U × V. Recall that in Section 2.1.3, for each i = 1, · · · , n, we denote by Mi

the smooth extension of Li to U × V × Rd satisfying (2.1.39). For each 1 ≤ j ≤ n+ k, set

hj(z, s, t) = ψj(F (z, s,−t), F (z, s,−t), (MαF )1≤|α|≤l(z, s,−t), G(z, s,−t))

and shrink U and V and choose δ in such a way that hj is well defined and continuous in Ω− where
Ω− = {(x, y, s + it) : (x, y, s) ∈ U × V, t ∈ −Γ1, |t| ≤ δ}. The same proof as before leads to the
estimates:

∣∣∣Dα
xD

β
yD

γ
shj(z, s, t)

∣∣∣ ≤ C

|t|λ
, for some C, λ > 0

and
Dα

xD
β
yD

γ
s∂wνhj(z, s, t) = O(|t|m), ∀ν = 1, · · · , d, m = 1, 2, . . .

for t ∈ −Γ1, 1 ≤ j ≤ n+ k.

Notice that the Fj satisfy similar estimates in Γ1, and b+Fj = b−hj for each 1 ≤ j ≤ n + k.

Applying Theorem V.3.7 in [BCH] as before, we conclude that F is smooth near p. This establishes
Theorem 2.1.20.

Proof of Theorem 2.1.9 and Theorem 2.1.5: Theorem 2.1.9 follows easily from Theorem
2.1.3 in the nondegenerate case (l = k) and from Theorem 2.1.20 in the degenerate case (l ≤ k − 1).
We thus establish Theorem 2.1.9 and hence Theorem 2.1.5.

As a consequence of Theorem 2.1.20, we immediately have

Corollary 2.1.21. Let M ⊂ Cn+1, M ′ ⊂ Cn+k be two smooth strongly pseudoconvex real hypersur-
faces (n ≥ 1, k ≥ 1), F : M → M ′ be a C2−smooth CR map. Assume that rank2(F, p) ≤ n + 1
everywhere in M. Then F is smooth.
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Proof. We may assume that F is nonconstant. By a result of Pinchuk ([Pi]), dF : T (1,0)
p M → T

(1,0)
F (p)M

′

is injective for every p ∈ M. Note that rank1(F, p) = n + 1 for all p ∈ M by Lemma 2.1.17. By
Theorem 2.1.20 (note that in this case, the proof showed that we did not need F to be Ck), we arrive
at the conclusion.

Since a CR diffeomorphism of class Ck of a k−nondegenerate manifold is k−nondegenerate,
Theorem 2.1.3 implies the following:

Corollary 2.1.22. Let M ⊂ CN be a generic CR manifold that is k0−nondegenerate. Suppose
H = (H1, · · · ,HN ) : M → M is a CR diffeomorphism of class Ck0 such that for some p0 ∈ M and
an open convex cone Γ ⊂ Rd,

WF(Hj)|p0 ⊂ Γ, j = 1, · · · , N

where d is the CR codimension of M. Then H is C∞ in some neighborhood of p0.

2.2 CR mappings into a Levi-nondegenerate hypersurface

2.2.1 Main results

Let M and M ′ be CR manifolds with CR bundles V and V ′ respectively. Recall that a differentiable
CR mapping F : M → M ′ , is called CR transversal at p ∈ M if dF (CTpM) is not contained in
V ′

F (p) + V ′
F (p).

The main result of this section is as follows:

Theorem 2.2.1. Let M be a smooth abstract CR manifold of hypersurface type of CR dimension n

and M ′ ⊂ CN+1, (n ≥ 1, n < N ≤ 2n) be a smooth real hypersurface. Assume that M and M ′ are
Levi-nondegenerate and M ′ has signature (l, N − l), l > 0 the number of positive eigenvalues of the
Levi form. Let F = (F1, · · · , FN+1) : M → M ′ be a CR-transversal CR mapping of class CN−n+1.

Assume that l ≤ n and N − l ≤ n. Then F is smooth on a dense open subset of M.

We remark that if l > n or N − l > n, Example 2.2.5 will show that the Theorem will not hold.
This explains the assumption N ≤ 2n in Theorem 2.2.1. Note that the case l = 0 (and therefore
also l = N) was treated in Section 2.1, and therefore, we may always assume that 0 < l < N . Since
CR functions are C∞ whenever the Levi form has a positive and a negative eigenvalue, we may also
assume that M is strongly pseudoconvex. Our methods also lead to the following analyticity result:

Theorem 2.2.2. Let M ⊂ Cn+1 and M ′ ⊂ CN+1, (n ≥ 1, n < N ≤ 2n) be real analytic hypersurfaces.
Assume that M and M ′ are Levi-nondegenerate and M ′ has signature (l, N − l), l > 0 the number
of positive eigenvalues of the Levi form. Let F = (F1, · · · , FN+1) : M →M ′ be a CR-transversal CR
mapping of class CN−n+1. Assume that l ≤ n and N − l ≤ n. Then F is real analytic on a dense
open subset of M.

It is well known that in Theorem 2.2.2, if M1 ⊂M denotes the dense subset where F is real ana-
lytic, then F extends as a holomorphic map in a neighborhood of each point of M1. As a consequence
of Theorem 2.2.1, Theorem 2.2.2 and the main result in Section 2.1, we have the following:
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Corollary 2.2.3. Let M ⊂ Cn and M ′ ⊂ Cn+1(n ≥ 2) be real analytic (resp. smooth) hypersurfaces.
Assume that M and M ′ are Levi-nondegenerate and F : M → M ′ is a CR-transversal CR mapping
of class C2. Then F is real analytic (resp. smooth) on a dense open subset of M.

When F is assumed to be C∞, Corollary 2.2.3 in the real analytic case was proved in [EL].
Corollary 2.2.3 implies that a result on finite jet determination proved in [EL] (see Corollary 1.3 in
[EL]) holds under a milder smoothness assumption:

Corollary 2.2.4. Let M ⊂ Cn and M ′ ⊂ Cn+1(n ≥ 2) be smooth connected hypersurfaces which are
Levi-nondegenerate, and f : M → M ′ and g : M → M ′ transversal CR mappings of class C2. If for
any p in some dense open subset of M , the jets at p of f and g satisfy j4pf = j4pg, then f = g.

The following examples show that in Theorems 2.2.1 and 2.2.2, neither the hypothesis on the
signature of M ′ nor the transversality assumption on F can be dropped.

Example 2.2.5. Let M ⊂ Cn+1(n ≥ 1) be the hypersurface given by {(z1, . . . , zn, w) ∈ Cn+1 :
Imw =

∑n
i=1 |zi|2}. Let M ′ ⊂ CN+1 (N ≥ n + 2) be defined as {(z1, · · · , zN , w) ∈ CN+1 : Imw =∑n+1

i=1 |zi|2 +
∑N−1

j=n+2 εj |zj |2−|zN |2}, where each εj ∈ {1,−1}. Let f be a CN−n+1 CR function on M
which not smooth on any nonempty open subset of M (see Theorem 2.7 below for an example of such).
Then F (z1, . . . , zn, w) = (z1, . . . , zn, f(z1, . . . , zn, w), 0, . . . 0, f(z1, . . . , zn, w), w) is a CR-transversal
map of class CN−n+1 from M to M ′. Clearly F is not smooth on any nonempty open subset of M
and, hence, since we may assume in Theorem 2.2.1 that M ′ is not strongly pseudoconvex and that
therefore when l > n, N ≥ n + 2, Theorem 2.1 does not hold. Likewise, the theorem does not hold
when N − l > n. It follows that for the theorem to hold, we need to assume that l ≤ n, N − l ≤ n

and hence N ≤ 2n.

Example 2.2.6. Let M ⊂ Cn (n ≥ 2) be given by {(z1, · · · , zn−1, w) ∈ Cn : Imw =
∑n−1

i=1 |zi|2}
and define M ′ ⊂ Cn+1 by M ′ = {(z1, · · · , zn, w) ∈ Cn+1 : Imw =

∑n−1
i=1 |zi|2 − |zn|2}. Then F =

(0, · · · , 0, f, f, 0) is a C2 CR map from M to M ′, where f is a C2 CR function on M which is not
smooth on any nonempty open subset of M. Note that F is not transversal at any point on M, and
is not smooth on any nonempty open subset of M.

In order to make the preceding two examples meaningful, we will next show the existence of a Ck

CR function on a strongly pseudoconvex hypersurface which is not smooth on any nonempty open
subset.

Theorem 2.2.7. Let D ⊂ Cn be a bounded domain with a smooth boundary M which is strongly
pseudoconvex. Let k ≥ 1 be a positive integer. Then there exists a CR function f on M of class Ck

which is not C∞ on any nonempty open subset of M .

Proof. First fix p ∈ M and let g ∈ C∞(D) that is holomorphic on D and peaks at p, say, |g(z)| <
g(p) = 1 for z ∈ D \ p. By Hopf’s Lemma, the normal derivative of g at p is nonzero and hence
there is a smooth vector field X tangent to M near p such that Xg(p) 6= 0. It follows that for any
positive integer m, with a choice of a branch of logarithm, the function gm(z) = (1 − g(z))m+ 1

2 is a
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CR function of class Cm on M but which is not of class Cm+1 at p. Let {pi}∞i=0 ⊂ M be a dense
subset of M. We choose a sequence of Ck CR functions {fi}∞i=0 on M with the following properties:
For each i ≥ 0, fi ∈ Ck+i(M) ∩ C∞(M \ {pi}), and fi is not Ck+i+1 at pi. Then there exists a
sequence of positive numbers {bi}∞i=0 such that, for any sequence of complex numbers {ci}∞i=0 with
|ci| ≤ bi, i ≥ 0,

∑∞
i=0 cifi converges uniformly to a Ck CR function on M.

We fix a local chart (Ui, x) for each pi, i ≥ 0 on M, where Ui is a neighborhood of pi. Choose
Ωi ⊂⊂ Ui, i ≥ 0 to be a sufficiently small neighborhood of pi with the following properties:

(1). For each i ≥ 1, p0, · · · , pi−1 6∈ Ωi.

(2). There exists a sequence of positive numbers {M j
i }i>j such that for any j ≥ 0, |Dαfi(x)| ≤M j

i

for all |α| ≤ k + j + 1, i > j, and for all x ∈ Ωj . Here α is a multiindex, and Dα denotes derivatives
with respect to all real variables. The existence of such {M j

i }i>j is ensured by the fact that fi is
Ck+j+1−smooth for all i > j.

Next choose a sequence of positive numbers {ai}∞i=0 as follows: a0 < b0, and

ai < min{bi,
1

2iM0
i

, · · · , 1
2iM i−1

i

}, for i ≥ 1.

Let f =
∑∞

i=0 aifi. Then f is a Ck CR function on M. Moreover, from the choice of ai, i ≥ 1, one
can see that

∑∞
i=1 aiD

αfi converges uniformly in Ω0, for any |α| ≤ k + 1. Consequently,
∑∞

i=1 aifi

converges to a Ck+1 function in Ω0. Thus f is not Ck+1 at p0 since f0 is not. Similarly, one can check
that f is not Ck+i+1 at pi, for all i ≥ 0. Hence, by the density of the sequence {pi}∞i=0, f is a Ck CR
function which is not smooth on any nonempty open subset of M .

Remark 2.2.8. As a consequence of Theorem 2.2.7, we see that for any k ≥ 1, there exists a CR
function f of class Ck on the hypersurface M = {(z1, · · · , zn, w) ∈ Cn+1 : Imw =

∑n
i=1 |zi|2}(n ≥ 1)

which is not smooth on any nonempty open subset, since M is biholomorphically equivalent to the
unit sphere ∂Bn+1 = {(z1, · · · , zn) ∈ Cn+1 : |z1|2 + · · · + |zn+1|2 = 1} minus the point (0, . . . , 0, 1).

2.2.2 Proof of Theorem 2.2.1 and 2.2.2

Let M,M ′, F be as in Theorem 2.2.1. We work near a point p ∈M which we fix. If the Levi form of
M at p has a positive and a negative eigenvalue, then the smoothness of F follows trivially and so we
may assume that M is strongly pseudoconvex at p. Let V denote the CR bundle of M . By Theorem
IV.1.3 in [T], there is an integrable CR structure on M near p with CR bundle V̂ that agrees with V
to infinite order at p. In particular, (M, V̂) is strongly pseudoconvex at p and hence we can find local
coordinates x1, y1, . . . , xn, yn and s vanishing at p and first integrals Zj = xj+

√
−1yj = zj , 1 ≤ j ≤ n,

Zn+1 = s+
√
−1ψ(z, z, s) where z = (z1, . . . , zn) and ψ is a real-valued smooth function satisfying

ψ(z, z, s) = |z|2 +O(s2) +O(|z|3).
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In these coordinates, near the origin, the bundle V has a basis of the form

Lj =
∂

∂zj
+Aj(z, z, s)

∂

∂s
+

n∑
k=1

Bjk(z, z, s)
∂

∂zk
1 ≤ j ≤ n

where each

Aj(z, z, s) =
−
√
−1ψzj (z, z, s)

1 +
√
−1ψs(z, z, s)

to infinite order at 0

and the Bjk vanish to infinite order at 0. We may assume 0 ∈ M ′, F (0) = 0 and that we have
coordinates Z ′ = (z′1, . . . , z

′
N+1) in CN+1 so that near 0, M ′ is defined by

−
z′N+1 − z′N+1

2
√
−1

+
l∑

j=1

|z′j |2 −
N∑

i=l+1

|z′j |2 + φ∗(Z ′, Z ′) = 0 (2.2.1)

where φ∗(Z ′, Z ′) = O(|Z ′|3) is a real-valued smooth function.

In the following, for two m-tuples x = (x1. · · · , xm), y = (y1, · · · , ym) of complex numbers, we
write 〈x, y〉l =

∑m
j=1 δj,lxjyj and |x|2l = 〈x, x〉l =

∑m
j=1 δj,l|xj |2, where we denote by δj,l the symbol

which takes value 1 when 1 ≤ j ≤ l and −1 otherwise. Let z̃′ = (z′1, · · · , z′N ). Then M ′ is locally
defined by

ρ(Z ′, Z ′) = −
z′N+1 − z′N+1

2
√
−1

+ |z̃′|2l + φ∗(Z ′, Z ′) = 0.

If we write F = (F1, . . . , FN+1) = (F̃ , FN+1), then F satisfies:

−FN+1 − FN+1

2
√
−1

+ |F̃ |2l + φ∗(F, F ) = 0. (2.2.2)

Let V ′ denote the CR bundle of M ′. Since F is CR-transversal, and the fibers V0 and V ′
0 are spanned

by ∂
∂zj
, 1 ≤ j ≤ n and ∂

∂z′k
, 1 ≤ k ≤ N , we get λ := ∂FN+1

∂s (0) 6= 0. Moreover, equation (2.2.2) shows
that the imaginary part of FN+1 vanishes to second order at the origin, and so the number λ is
real. We claim that we can assume that λ > 0. Indeed, when λ < 0, by considering M̃ ′ defined by
ρ(τ(Z), τ(Z)) instead of M ′, and considering F̃ = τ ◦ F instead of F, we get λ > 0. Here τ is the
change of coordinates in CN+1 : τ(z1, · · · , zN , w) = (z1, · · · , zN ,−w). By applying Lj , LjLk, LjLk to
equation (2.2.2), and evaluating at 0, we get

∂FN+1

∂zi
(0) = 0, 1 ≤ i ≤ n,

and
∂FN+1

∂zk∂zj
(0) =

∂FN+1

∂zk∂zj
= 0, 1 ≤ k, j ≤ n.

We next apply LjLk to FN+1 and evaluate at 0 to get

∂FN+1

∂zj∂zk
(0) =

√
−1δjkλ,
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where δjk is the Kronecker delta. Hence we are able to write,

FN+1(z, z, s) = λs+
√
−1λ|z|2 +O(|z||s| + s2) + o(|z|2), (2.2.3)

For 1 ≤ j ≤ N , using LkFj(0) = 0, we have:

Fj = bjs+
n∑

i=1

aijzi +O(|z|2 + s2). (2.2.4)

for some bj ∈ C, aij ∈ C, 1 ≤ i ≤ n, 1 ≤ j ≤ N, or equivalently,

(F1, · · · , FN ) = s(b1, · · · , bN ) + (z1, · · · , zn)A+ (F̂1, · · · , F̂N ) (2.2.5)

where A = (aij)n×N is an n × N matrix, and F̂j = O(|z|2 + s2), 1 ≤ j ≤ N. Plugging (2.2.3) and
(2.2.4) into equation (2.2.2), we get

λ|z|2 +O(|z||s| + s2) + o(|z|2) = 〈zA, zA〉l +O(|z||s| + s2) + o(|z|2).

When s = 0 the latter equation leads to

λ|z|2 + o(|z|2) = 〈zA, zA〉l + o(|z|2).

It follows that
λIn = AE(l, N)A∗, (2.2.6)

where A∗ = At. Here In denotes the n by n identity matrix and E(k,m) denotes the m×m diagonal
matrix with its first k diagonal elements 1 and the rest −1. Note from equation (2.2.6) that the
matrix A has rank n. Moreover, since λ > 0, we get l ≥ n from equation (2.2.6) using elementary
linear algebra. Since l ≤ n, it follows that l = n. Thus M ′ is locally defined by

ρ(Z ′, Z ′) = −
z′N+1 − z′N+1

2
√
−1

+ |z̃′|2n + φ∗(Z ′, Z ′) = 0, (2.2.7)

and we have
λIn = AE(n,N)A∗. (2.2.8)

A direct computation shows that

LiF j(0) = aij , 1 ≤ i ≤ n, 1 ≤ j ≤ N.

Since A = (aij)1≤i≤n,1≤j≤N is of rank n, we conclude that dF : T (0,1)
0 M → T

(0,1)
0 M ′ is injective. Now

let us introduce some notations. Set

aj(Z,Z) = ρz′j
(F (Z), F (Z)) = δj,nF j + φ∗z′j

(F, F ), 1 ≤ j ≤ N,

aN+1(Z,Z) = ρz′N+1
(F (Z), F (Z)) =

√
−1
2

+ φ∗z′N+1
(F, F ).
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and
a = (a1, · · · , aN+1).

We have:
LαρZ′(F, F ) = Lαa = (Lαa1, · · · , LαaN , L

αaN+1),

for any multiindex 0 ≤ |α| ≤ N − n+ 1. Recall that for any 0 ≤ i ≤ N − n+ 1,

ranki(F, p) = dimC(SpanC{Lαa(Z,Z)|p : 0 ≤ |α| ≤ i}).

Recall the notions of k0−nondegeneracy and rankl(F, p) from Section 2.1. From the injectivity of
dF, we get

Lemma 2.2.9. Let M,M ′, F be as in Theorem 2.2.1. Then for any p ∈M, rank0(F, p) = 1, rank1(F, p) =
n+ 1. Consequently, ranki(F, p) ≥ n+ 1, for any i ≥ 1.

We next prove a normalization lemma which will be used later.

Lemma 2.2.10. Let M,M ′, F be as in Theorem 2.2.1. Assume rankl(F, p) = m+ 1, for some l >
1,m ≥ n. Then there exist multiindices {βn+1, · · · , βm} with 1 < |βi| ≤ l for all i, such that after a lin-
ear biholomorphic change of coordinates in CN+1 : Z̃ = (z̃1, · · · , z̃N , z̃N+1) = ((z′1, · · · , z′N )V, z′N+1),
where Z̃ denotes the new coordinates in CN+1, and V is an N ×N matrix satisfying V E(n,N)V ∗ =
E(n,N), the following hold:

ã|p = (0, · · · , 0,
√
−1
2

),

 L1ã|p
· · ·

Lnã|p

 =
( √

λIn 0n×(N−n) 0t
n

)
, (2.2.9)

 Lβn+1 ã|p
· · ·

Lβm ã|p

 =
(

C Mm−n 0(m−n)×(N−m) d
)
. (2.2.10)

Here we write ã = ρ̃
eZ
(Z̃(F ), Z̃(F )), and ρ̃ is a local defining function of M ′ near 0 in the new

coordinates. Moreover, In is the n×n identity matrix, 0n×(N−n) is an n×(N−n) zero matrix, and 0t
n

is an n−dimensional zero column vector. C is an (m−n)×n matrix, Mm−n is an (m−n)× (m−n)
invertible matrix, 0(m−n)×(N−m) is an (m−n)×(N−m) zero matrix, and d is an (m−n)−dimensional
column vector.

Proof. Assume that p = 0. Note that Liaj(0) = δj,nLiF j(0) = δj,naij . Thus we have,
a|0
L1a|0
· · ·
Lna|0

 =

(
0N−n

√
−1
2

AE(n,N) 0t
n

)
,



39

where A = (aij)1≤i≤n,1≤j≤N is as mentioned above, 0N−n is an (N − n)− dimensional zero row
vector, 0t

n is an n−dimensional zero column vector. Let B = E(n,N)At. Then by equation (2.2.8),
we know that AB = λIn, and B∗E(n,N)B = λIn. By a result in [BHu] (see page 386 in [BHu] for
more details on this), we can find an N ×N matrix U whose first n rows are rows of B∗, such that,
UE(n,N)U∗ = λE(n,N). Consequently, U∗E(n,N)U = λE(n,N),WE(n,N)W ∗ = E(n,N), where
W = 1√

λ
U∗.

We next make the following change of coordinates in CN+1: Z̃ = Z ′D−1 where

D =

(
E(n,N)W 0t

N

0N 1

)
,

and 0N is N−dimensional zero row vector. Then the function ρ̃(Z̃, Z̃) = ρ(Z̃D, Z̃D) is a defining
function for M ′ near 0 with respect to the new coordinates Z̃. By the chain rule,

ρ̃
eZ
(F̃ (Z), F̃ (Z)) = ρZ′(F (Z), F (Z))D, where F̃ (Z) = F (Z)D−1.

For any multiindex α,
Lαρ̃

eZ
(F̃ (Z), F̃ (Z)) = LαρZ′(F (Z), F (Z))D.

In particular, at p = 0, we have,
ã|0
L1ã|0
· · ·
Lnã|0

 =

(
0N

√
−1
2

AE(n,N) 0t
n

)
D =

(
0N

√
−1
2

AW 0t
n

)
,

where ã(Z,Z) = ρ̃
eZ
(F̃ (Z), F̃ (Z)). Since A = B∗E(n,N),

AW =
1√
λ
B∗E(n,N)U∗ =

( √
λIn 0

)
.

Thus equation (2.2.9) holds with respect to the new coordinates Z̃. In the following, we will still
write Z ′ instead of Z̃,a instead of ã. Since {a, L1a, · · · , Lna}|0 is linearly independent, extend it to a
basis of El(0), which has dimension m+1 by assumption. That is, pick multiindices {βn+1, · · · , βm}
with 1 < |βi| ≤ l for each i, such that,

{a, L1a, · · · , Lna, Lβn+1a, · · · , Lβma}|0

is linearly independent over C. Write â = (an+1, · · · , aN ), i.e., the (n + 1)th to N th components
of a. Note that {a, L1a, · · · , Lna}|0 is of the form (2.2.9). The set {Lβn+1 â, · · · , Lβm â}|0 is lin-
early independent in CN−n. Let S be the (m − n)−dimensional vector space spanned by it and let
{T1, · · · , Tm−n} be an orthonormal basis of S. Extend it to an orthonormal basis {T1, · · · , Tm−n,

Tm−n+1, · · · , TN−n} of CN−n and set T to be the following (N − n) × (N − n) unitary matrix:

T =

 T1

· · ·
TN−n


∗

.
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We next make the following change of coordinates:

Z̃ = (z̃1, · · · , z̃N , z̃N+1) = (z′1, · · · , z′n, (z′n+1, · · · , z′N )T−1, z′N+1).

One can check that equation (2.2.10) holds in the new coordinates Z̃.

Remark 2.2.11. From the construction of V in the proof of Lemma 2.2.10, one can see that, in
the new coordinates Z̃, the following continues to hold: M ′ is locally defined near 0 by

ρ̃(Z̃, Z̃) = − z̃N+1 − z̃N+1

2
√
−1

+
n∑

i=1

|z̃i|2 −
N∑

i=n+1

|z̃i|2 + φ̃∗(Z̃, Z̃) = 0,

where Z̃ = (z̃1, · · · , z̃N , z̃N+1), and φ̃∗(Z̃, Z̃) = O(|Z̃|3) is a real-valued smooth function near 0. In
what follows, we will write the new coordinates as Z ′ instead of Z̃, drop the tilde from ρ̃ and set
a(Z,Z) = ρZ′(F (Z), F (Z)).

Remark 2.2.12. In Lemma 2.2.10, equations (2.2.9), (2.2.10) can be rewritten as follows:

ã|0 = (0, · · · , 0,
√
−1
2

),



L1a|0
· · ·

Lna|0
Lβn+1a|0

· · ·
Lβma|0


=
(

Bm 0 b
)
, (2.2.11)

where Bm is an m×m invertible matrix, 0 is an m× (N −m) zero matrix, b is an m−dimensional
column vector. We note that Lemma 2.2.10 plays the same role as Lemma 2.1.18 in Section 2.1.

The remaining argument will be essentially the same as in Section 2.1. First we need the following
regularity theorem.

Theorem 2.2.13. Let M,M ′, F be as in Theorem 2.2.1 (resp. as in Theorem 2.2.2). Let p ∈ M

and O be a neighborhood of p in M. Assume that for some 1 ≤ l ≤ N − n, rankl(F, p) = n+ l, and
rankl+1(F, q) = n+ l for all q ∈ O. Then F is smooth (resp. real analytic) near p.

Proof. We first prove Theorem 2.2.13 in the smooth case. Although M ′ is different from the one in
Section 2.1, the proof of theorem 2.1.20 applies to establish Theorem 2.2.13 which involves applica-
tions of Lemma 2.2.10 above and Theorem V.3.7 in [BCH]. Assume p = 0. From Lemma 2.2.10 and
the assumption, after a suitable biholomorphic change of coordinates, we conclude that there exist
multiindices {βn+1, . . . , βn+l−1} with 1 < |βi| ≤ l, such that

ã|0 = (0, · · · , 0,
√
−1
2

),



L1a|0
· · ·

Lna|0
Lβn+1a|0

· · ·
Lβn+l−1a|0


=
(

Bn+l−1 0 b
)
. (2.2.12)
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Indeed, the form (2.2.12) is all that is needed to use the proof of Theorem 2.1.20 to arrive at the
following:

There are CR functions Gj
i of smoothness class CN+1−n−l defined in a neighborhood O of 0 in

M such that :

aj −
n+l−1∑

i=1

Gj
iai −Gj

N+1aN+1 = 0, n+ l ≤ j ≤ N. (2.2.13)

That is, in O,

δj,nFj + φ∗
z′j
−

n+l−1∑
i=1

Gj
i (δi,nFi + φ∗

z′i
) −Gj

N+1(
1

2
√
−1

+ φ∗
z′N+1

) = 0. (2.2.14)

We also have,

−FN+1 − FN+1

2
√
−1

+ F1F1 + · · · + FnFn − Fn+1Fn+1 − · · · − FNFN + φ∗(F, F ) = 0; (2.2.15)

for 1 ≤ j ≤ n,

LjFN+1

2
√
−1

+ F1LjF1 + · · · + FnLjFn − Fn+1LjFn+1 − · · · − FNLjFN + Ljφ
∗(F, F ) = 0; (2.2.16)

and for n+ 1 ≤ t ≤ n+ l − 1,

LβtFN+1

2
√
−1

+ F1L
βtF1 + · · ·+ FnL

βtFn − Fn+1L
βtFn+1 − · · · − FNL

βtFN +Lβtφ∗(F, F ) = 0. (2.2.17)

We recall the local coordinates (x, y, s) ∈ Rn × Rn × R that vanish at the central ponit p ∈ M .
As in the proof of Theorem 2.1.3, Gj

i , G
j
N+1, F1, · · · , FN+1 extend to almost analytic functions into

a half-space {(x, y, s + it) ∈ U × V × Γ : (x, y, s) ∈ U × V, t ∈ Γ}, with edge M near p = 0 for all
1 ≤ i ≤ n+ l − 1, n+ l ≤ j ≤ N. Here U × V is a neighborhood of the origin in Cn × R and Γ is an
interval (0, r) in t−space. We still denote the extended functions by Gj

i , G
j
N+1, F1, · · · , FN+1.

Equations (2.2.14), (2.2.15), (2.2.16) and (2.2.17) can be used to get a smooth map
Ψ(Z ′, Z ′,W ) = (Ψ1, · · · ,ΨN+1) defined in a neighborhood of {0} × Cq in CN+1 × Cq, smooth in the
first N + 1 variables and polynomial in the last q variables for some integer q, such that,

Ψ(F, F , (LαF )1≤|α|≤l, G
n+l
1 , · · · , Gn+l

n+l−1, G
n+l
N+1, · · · , GN

1 , · · · , GN
n+l−1, G

N
N+1) = 0

at (z, s, 0) with (z, s) ∈ U × V. Write

G = (Gn+l
1 , · · · , Gn+l

n+l−1, G
n+l
N+1, · · · , GN

1 , · · · , GN
n+l−1, G

N
N+1). (2.2.18)

Observe that

ΨZ′ |(F (0),F (0),(LαF )1≤|α|≤l(0),G(0)) =

 0n+l−1 0N−n−l+1

√
−1
2

Bn+l−1 0 b
C −IN−n−l+1 0t

N−n−l+1

 ,
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where 0m is an m−dimensional zero row vector, C is a (N − n − l + 1) × (n + l − 1) matrix,
IN−n−l+1 is the (N − n − l + 1) × (N − n − l + 1) identity matrix and we recall that Bn+l−1 is an
invertible (n+ l − 1) × (n+ l − 1) matrix, 0 is an (n+ l − 1) × (N − n− l + 1) zero matrix, b is an
(n+ l − 1)−dimensional column vector.

The matrix ΨZ′ |
(F (0),F (0),(LαF )1≤|α|≤l(0),G(0))

is invertible. By applying the “almost holomorphic”

implicit function theorem in [La1], we get a solution ψ = (ψ1, · · · , ψN+1) from CN+1 × Cq to CN+1

satisfying for each multiindex α, and each j,

Dα∂ψj

∂Z ′
i

(Z ′, Z ′,W ) = 0, if Z ′ = ψ(Z ′, Z ′,W )

and for each 1 ≤ j ≤ N + 1,

Fj = ψj(F, F , (LαF )1≤|α|≤l, G)

at (z, s, 0) with (z, s) ∈ U × V. The map ψ is smooth in all variables and holomorphic in W . For
each j = 1, · · · , n, we denote by Mj smooth extensions of Lj to U × V × R given by

Mj =
∂

∂zj
+A(x, y, s, t)

∂

∂s
+

n∑
k=1

Bjk(x, y, s, t)
∂

∂zk

where the Bjk and A are smooth extensions of the corresponding coefficients of the Lj satisfying

∂wA(x, y, s, t), ∂wBjk(x, y, s, t) = O(|t|m), ∀m = 1, 2, · · · . (2.2.19)

For each 1 ≤ j ≤ N + 1, set

hj(z, s, t) = ψj(F (z, s,−t), F (z, s,−t), (MαF )1≤|α|≤l(z, s,−t), G(z, s,−t))

and shrink U and V and choose δ in such a way that each hj is defined and continuous in Ω− where
Ω− = {(x, y, s + it) : (x, y, s) ∈ U × V, t ∈ −Γ, |t| ≤ δ}. The arguments in Section 2.1 showed the
estimates:

∣∣∣Dα
xD

β
yD

γ
shj(z, s, t)

∣∣∣ ≤ C

|t|λ
, for some C, λ > 0

and
Dα

xD
β
yD

γ
s∂whj(z, s, t) = O(|t|m), ∀m = 1, 2, . . .

for t ∈ −Γ, 1 ≤ j ≤ N + 1.

Notice that the Fj satisfy similar estimates for t ∈ Γ, and b+Fj = b−hj for each 1 ≤ j ≤ N + 1.
Applying Theorem V.3.7 in [BCH], we conclude that F is smooth near p. This establishes Theorem
2.2.13 in the smooth case.

The proof of Theorem 2.2.13 in the real analytic case is similar and so we will only briefly indicate
the modifications that are needed. With M,M ′, F as in Theorem 2.2.2, we will show that the map
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F is real analytic at p which we assume is the origin. Since φ∗ and the Lj are real analytic now,
equations (2.2.14) − (2.2.17) imply that there is a real analytic map
Ψ(Z ′, Z ′,W ) = (Ψ1, · · · ,ΨN+1) defined in a neighborhood of {0} × Cq in CN+1 × Cq, polynomial in
the last q variables for some integer q, such that,

Ψ(F, F , (LαF )1≤|α|≤l, G
n+l
1 , · · · , Gn+l

n+l−1, G
n+l
N+1, · · · , GN

1 , · · · , GN
n+l−1, G

N
N+1) = 0

at (z, s, 0) with (z, s) ∈ U × V . Since the matrix ΨZ is invertible at the central point, by the
holomorphic version of the implicit function theorem, we get a holomorphic map ψ = (ψ1, . . . , ψN+1)
such that near the origin,

Fj = ψj(F , (LαF )1≤|α|≤l, G), 1 ≤ j ≤ N + 1,

where G is as in equation (2.2.18). We may assume that near the origin, M is given by {(z, w) ∈
Cn × C : Imw = ϕ(z, z, s)}, where ϕ is a real-valued, real analytic function with ϕ(0) = 0, and
dϕ(0) = 0. In the local coordinates (z, s) ∈ Cn × R, we may assume that

Lj =
∂

∂zj
− i

ϕzj (z, z, s)
1 + iϕs(z, z, s)

∂

∂s
, 1 ≤ j ≤ n.

Since ϕ is real analytic, we can complexify in the s variable and write

Mj =
∂

∂zj
− i

ϕzj (z, z, s+ it)
1 + iϕs(z, z, s+ it)

∂

∂s
, 1 ≤ j ≤ n

which are holomorphic in s+ it and extend the vector fields Lj . For each 1 ≤ j ≤ N + 1, set

hj(z, s, t) = ψj(F (z, s,−t), (MαF )1≤|α|≤l(z, s,−t), G(z, s,−t)).

Since M is strongly pseudo convex, the CR functions Fj and Gi all extend as holomorphic functions in
s+it to the side t > 0. Hence the conjugates F j(z, z, s,−t) and Gi(z, z, s,−t) extend holomorphically
to the side t < 0. It now follows that the Fj extend as holomorphic functions to a full neighborhood
of the origin (see Lemma 9.2.9 in [BER]). This establishes Theorem 2.2.13 in the real analytic case.

End of the proof of Theorem 2.2.1: Let

Ω1 = {p ∈M : rankN−n+1(F, p) = N + 1},

Ω2 = {p ∈M : rankN−n+1(F, q) ≤ N for all q in a neighborhood of p},

Ω = {p ∈M : F is smooth in a neighborhood of p}

Let p ∈ Ω1. Since rank1(F, p) = n+ 1 < N + 1, there is a minimum m, 1 < m ≤ N − n+ 1 such
that rankm(F, p) = N + 1. By Theorem 2.1.3, it follows that F is smooth near p, for any p ∈ Ω1,
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i.e., Ω1 ⊂ Ω. If p ∈ Ω2 there is a neighborhood Õ of p, an integer 2 ≤ d ≤ N − n+ 1, and a sequence
{pi}∞i=0 ⊂ Õ converging to p such that the following hold: rankd(F, q) ≤ n+ d− 1 for all q ∈ Õ, and
rankd−1(F, pi) = n+ d− 1, for all i ≥ 0. By applying Theorem 3.5, F is smooth near each pi. Thus
Ω is dense in Ω1 ∪ Ω2 and therefore dense in M. This establishes Theorem 2.2.1.

Proof of Theorem 2.2.2: Let Ω1,Ω2 be as in the proof of Theorem 2.2.1 Note that at a point
p ∈ Ω1, that is, at a point where the map F is non-degenerate, Theorem 2 of [La2] shows that F is
real analytic. Thus as in the proof of Theorem 2.2.1, by applying Theorem 2.2.13 in the real analytic
case, we establish that F is real analytic on a dense open subset of M .

2.3 Remarks on reflection principle

To end this section, we mention the stronger versions of conjectures of Forstneric ([Fr1]) and Huang
([Hu2]).

Conjecture 2.3.1. (Forstneric) Let F : M → M ′ be a Ck+1 smooth CR map, where M ⊂ Cn, and
M ′ ⊂ Cn+k, (k ≥ 1, n ≥ 2) are real analytic, strongly pseudoconvex hypersurfaces. Then F is real
analytic.

Conjecture 2.3.2. (Huang) Let M ⊂ Cn, M ′ ⊂ Cn+k be smooth strongly pseudoconvex real hyper-
surfaces with n ≥ 2, k ≥ 1. Let F : M → M ′ be a CR mapping of class Ck+1. Then F ∈ C∞(Ω) on
a dense open subset Ω ⊂M.

Note in a work of Pinchuk and Sukhov ([PS]), they confirmed Conjecture 2.3.1 in low codimen-
sions. More precisely, They obtained the analyticity of F everywhere on M when the codimension k
is less than n (in the setting of Conjecture 2.3.1) with the assumption that F is C∞. The argument
in [PS] is based on the fact that F has a priori extension to a neighborhood of a dense open subset of
M , by the result of Forstneric. Motivated by this fact and Theorem 2.2.2, we have some hope that
the following is true:

Conjecture 2.3.3. Let M ⊂ Cn+1 be a real analytic strongly pseudoconvex hypersurface,and M ′ ⊂
CN+1 (1 ≤ n < N ≤ 2n) be a real analytic Levi-nondegenerate with signature (l, N − l). Let F : M →
M ′ be a C∞ CR map. Assume l ≤ n,N − l ≤ n, then F is real analytic along M.
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Chapter 3

An embeddability problem in CR geometry

3.1 Main results

In this chapter, as in a joint work with Xiaojun Huang and Xiaoshan Li([HLX]), we work along the
line of the following embeddability problem in several complex variables.

Question 3.1.1. Given a real hypersurface M in a complex manifold X, when can it be holomorphi-
cally embedded into a more special real hypersurface M ′ in a complex manifold X ′ of possibly larger
dimension?

Compact CR manifolds of hypersurface type play an important role in the subject of Complex
Analysis of Several Variables. For instance, these manifolds include the small link of all isolated
complex singularities and, in particular, all exotic spheres of Milnor. In a more geometric aspect,
spheres are the model of strongly pseudo-convex hypersurfaces. Motivated by various embedding
theorems in differential topology, Stein space theory, etc, it has been a natural question in Several
Complex Variables to determine when a real hypersurface M ⊂ Cn can be holomorphically embedded
into the sphere: S2N−1 := {

∑N
j=1 |zj |2 = 1} ⊂ CN for a sufficiently large N .

By a holomorphic embedding of M ⊂ Cn into M ′ ⊂ CN , we mean a holomorphic embedding
of an open neighborhood X of M into a neighborhood X ′ of M ′, sending M into M ′. It follows
easily that a hypersurface holomorphically embeddable into a sphere S2N−1 := {

∑
j |zj |2 = 1} ⊂ CN

is necessarily strongly pseudoconvex and real-analytic. However, not every strongly pseudoconvex
real-analytic hypersurface can be embedded into a sphere of any dimension, as shown by Forstneric
[For] and Faran [Fa] in the mid 1980s based on a Baire category argument. Explicit examples of
non-embeddable strongly pseudoconvex real-analytic hypersurfaces were given much later by Zaitsev
in [Zat] along with explicit invariants serving as obstructions to the embeddability.

A recent observation in [HZ] further shows that if a germ M of a strongly pseudoconvex algebraic
hypersurface extends to a germ of algebraic hypersurface with strongly pseudoconcave points or with
Levi nondegenerate points of positive signature, then M can not be holomorphically embedded into
any sphere.

However, much less is known about the holomorphic embeddability of an open piece of a compact
strongly pseudoconvex hypersurface into a sphere. In [HZ], using the local construction in [Zat], the
authors gave a compact real analytic strongly pseudoconvex hypersurface, an open piece of which
can not embedded into a sphere. Also, in [HZ], it was shown that there are many compact real
algebraic pseudoconvex hypersurfaces with just one weakly pseudoconvex point, any open piece of
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which can not be holomorphically embedded into any compact real algebraic strongly pseudoconvex
hypersurface which, in particular, includes the spheres. For a related work on this, the reader may
also consult Ebenfelt and Son [ES]. Here, we should mention a celebrated result of Fornaess [Forn]
which states that any compact smooth strongly pseudoconvex hypersurface in a complex Euclidean
space can be embedded into a compact strongly convex hypersurface in CN for a sufficiently large
N . Though much attention has been paid to the understanding of the embeddability problem as
discussed above, the following remains a longstanding open question:

Open Question: Is any compact strongly pseudoconvex real algebraic hypersurface in Cn (n ≥ 2)
holomorphically embeddable into a sphere of a sufficiently large dimension?

Here recall that a smooth real hypersurface in an open subset U of Cn is called real algebraic, if
it has a real-valued polynomial defining function.

In this chapter, we carry out a study along the lines of the above open question. First, write

Mε = {(z, w) ∈ C2 : ρ = ε0(|z|8 + cRe|z|2z6) + |w|2 + |z|10 + ε|z|2 − 1 = 0}. (3.1.1)

Here, 2 < c < 16
7 , ε0 > 0 is a sufficiently small number such that Mε is smooth for all 0 ≤ ε < 1.

An easy computation shows that, for any 0 < ε < 1, Mε is strongly pseudoconvex. Also, it is easy to
see that Mε is compact. Mε is a small algebraic deformation of the famous Kohn-Nirenberg domain
[KN]. Write Dε for the domain bounded by Mε. We prove the following result in this chapter:

Theorem 3.1.2. For any positive integer N , there is a number ε(N) with 0 < ε(N) < 1 such that
for any ε with 0 < ε < ε(N), the compact algebraic strongly pseudoconvex hypersurface Mε can not
be locally holomorphically embedded into S2N−1. More precisely, for any open piece Uε of Mε, any
holomorphic map sending Uε into S2N−1 must be a constant map.

Theorem 3.1.2 does not give yet a negative answer to the above Open Question. However, it
shows at least that the Whitney (or Remmert ) type embedding theorem in differential topology
(or in the Stein space theory, respectively) does not hold in the setting considered in this Open
Question. We notice that Mε can always be embedded into a generalized sphere with one negative
Levi eigenvalue. Indeed, this embedding property is a special case of a general result of Webster [We]
which concerns the holomorphic embeddability of an algebraic strongly pseudo-convex hypersurface
into a generalized sphere with one negative Levi eigenvalue. Since the Segre families of generalized
spheres with the same dimension are biholomorphic to each other, we see that the Segre family of Mε

can be holomorphically Segre-embedded into the Segre family of the sphere in C6. We will explain
this in more detail in Remark 3.2.12.

Our proof is based on the algebraicity theorem in [Hu1] and the work in Huang-Zaitsev [HZ],
where it was shown that Mε can not be embedded into any sphere when ε = 0. Unfortunately, the
compact smooth algebraic hypersurface Mε with ε = 0 has Kohn-Nirenberg points [KN] which are
weakly pseudo-convex points. Our family of compact strongly pseudoconvex hypersurfaces are small
algebraic perturbation of the Kohn-Nirenberg type domain M0. Other main ideas in the chapter
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include the Segre variety technique developed in [HZ] to show the rationality for a certain class of
algebraic maps.

3.2 Proof of Theorem 3.1.1

We divide the proof into many small lemmas for clarity of the exposition.

We first fix needed notations. Let M ⊂ U(⊂ Cn) be a closed real-analytic subset defined by a
family of real-valued real analytic functions {ρα(Z,Z)}, where Z is the coordinates of Cn. Assume
that the complexification ρα(Z,W ) of ρα(Z,Z) is holomorphic over U × conj(U) with

conj(U) := {W : W ∈ U}

for each α. Then the complexification M of M is the complex-analytic subset in U ×conj(U) defined
by ρα(Z,W ) = 0 for each α. Then for W ∈ Cn, the Segre variety of M associated with the point W
is defined by QW := {Z : (Z,W ) ∈ M}. In what follows, we will write Mε for the complexification
of Mε and write M′ for the complexification of ∂BN . Similarly, we will write Qε

p for the Segre variety
of Mε associated with the point p, and write Q′

q for the Segre variety of ∂BN associated with the
point q. For any p ∈ C2, write p = (zp, wp) or p = (ξp, ηp). The following lemma proved in [HZ] will
be used in this chapter:

Lemma 3.2.1. Let U ⊂ Cn be a simply connected open subset and S ⊂ U be a closed complex
analytic subset of codimension one. Then for p ∈ U \ S, the fundamental group π1(U \ S, p) is
generated by loops obtained by concatenating (Jordan) paths γ1, γ2, γ3, where γ1 connects p with a
point arbitrarily close to a smooth point q0 ∈ S, γ2 is a loop around S near q0 and γ3 is γ1 reversed.

Making use of the above lemma, we next prove the following lemma: (Notice that a local but a
general version of this result played an important role in the paper [HZ].)

Lemma 3.2.2. Let Mε be defined as in (3.1.1) with p0 in Mε. Let S be a complex analytic hyper-
variety in C2 not containing p0. Let γ ∈ π1(C2 \ S, p0) be obtained by concatenation of γ1, γ2, γ3

as described in Lemma 3.2.1, where γ2 is a small loop around S near a smooth point q0 ∈ S with
wq0 6= 0. Then γ can be slightly and homopotically perturbed to a loop γ̃ ∈ π1(C2 \ S, p0) such that
there exists a null-homotopic loop λ ∈ π1(C2 \S, p0) with (λ, γ̃) contained in the complexification Mε

of Mε. Similarly, for an element γ̂ ∈ π1(C2\S, p0) obtained by concatenation of γ̂1, γ̂2, γ̂3 as described
in Lemma 3.2.1, where γ̂2 is a small loop around S near a smooth point q̂0 ∈ S with wq̂0 6= 0, after a
small perturbation to γ̂ if needed, we can find a null-homotopic loop in λ̂ ∈ π1(C2 \ S, p0) such that
(γ̂, λ̂) ⊂ Mε.

Proof. First notice the fact that Qε
p is smooth when wp 6= 0 defined by η = ϕ(p, ξ) with ξ ∈ C2,

where ϕ is as in (3.2.1) below:

ϕ(p, ξ) = ϕ(zp, wp, ξ) = −
ε0(ξ4z4

p + c
2(ξ7zp + ξz7

p)) + ξ5z5
p + εξzp − 1

wp
, (3.2.1)
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Moreover, for any q1 6= q2 ∈ C2 with wq1 6= 0, wq2 6= 0 and for any U ⊂ C2, Qε
q1

6≡ Qε
q2

in U

unless they both are empty subset. After slightly perturbing p0 in Mε, if some needed, we can assume
without loss of generality that wp0 6= 0.

Now for any ξ ∈ C, we define a map Rξ(z, w) = (ξ, ϕ(z, w, ξ)) from C2 \ {w 6= 0} into C2, which
is anti-holomorphic in (z, w) for w 6= 0 and is real analytic in all variables away from w = 0. Also, if
we write p0 = (ξp0 , ηp0), then (ξp0 , ϕ(p0, ξp0)) = p0 and thus Rξp0

(p0) = p0. From the defintion, we
see that Rξ sends (z, w) to Qε

(z,w).

We claim that, possibly away from a certain nowhere dense closed subset in C for ξ, for a generic
smooth point q in the irreducible branch of S containing q0 as in the lemma, there is a sufficiently
small ball Ωq centered at q (whose size may depend on q) such that Rξ maps Ωq into a small open
ball Bq with Bq ∩ S = ∅. Suppose not. Then we have a smooth piece E from the branch described
above of S such that Rξ(E) is contained in S for any ξ in a certain open subset first and then for
all ξ by the uniqueness of analytic functions. Letting ξ = 0, we see that the branch containing all
these images must be defined by z = 0 unless E is defined by w = constant. However, if the branch
containing E is defined by w = constant, by making ξ 6= 0, we easily see that the union of Rξ(E) as
ξ varies occupies an open subset of C2. This is a contradiction again.

Now, we fix a ξ0 as in the above claim and also assume without loss of generality that ξ0 is the
first coordinate ξp0 of p0 (for we are certainly always allowed to perturb p0 inside Mε to achieve
this). Back to our loop γ, we now deform γ1, γ2, γ3 to γ̃1, γ̃2, γ̃3 respectively. Here γ̃1 connects p0

with a point q∗ in a small ball Ω centered at a certain smooth point q ∈ S ≈ q∗, γ̃2 is a loop
based at q∗ around S inside Ω and sufficiently close to q, and γ̃3 is γ̃1 reserved such that the loop
γ̃ obtained by concatenation of γ̃1, γ̃2, γ̃3 is the same as γ as elements in π1(C2 \ S, p0). Moreover,
Rξ(Ω) is contained in a ball not cutting S. Also, we assume that the w-coordinate of points in
γ̃(t) never vanishes. Now define λ2 = Rξ0(γ̃2). We choose a suitable path {ξ(t) : 0 ≤ t ≤ 1} in C
with ξ(0) = ξ(1) = ξ0 such that if we define λ1 = Rξ(t)(γ̃1), then λ1 avoids S(with possibly a slight
perturbation of γ̃1 fixing endpoints). Furthermore, if we define λ3 to be the reverse of λ1, and λ

to be the concatenation of λ1, λ2, λ3, then λ is a null-homotopic loop in π1(C2 \ S, p0). Moreover,
(λ(t), γ̃(t)) is in the complexification Mε of Mε by the way it was constructed. The last statement
in the lemma follows from the symmetric property of Segre variety and what we just proved.

Proposition 3.2.3. For an ε with 0 < ε < 1, assume that F is non-constant holomorphic map from
an open piece of Mε into ∂BN (N ∈ N). Then F extends to a proper rational map from Dε into BN ,
holomorphic over Dε.

Proof. By a theorem of the first author in [Hu1], F is complex algebraic (possibly multi-valued). In
particular, any branch of F can be holomorphically continued along a path not cutting a certain
proper complex algebraic subset S ⊂ C2. We need only to prove the proposition assuming that S is
a hyper-complex analytic variety. Seeking a contradiction, suppose not. Then we can find a point
p0 ∈ U ⊂ Mε, p0 = (z0, w0) with w0 6= 0, a loop γ ∈ π1(C2 \ S, p0) obtained by concatenation of
γ1, γ2, γ3 as in Lemma 2.1, where γ2 is a small loop around S near a smooth point q0 ∈ S, such
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that when we holomorphically continue F from a neighborhood of p0 along γ one round, we will
obtain another branch F2( 6= F ) of F near p0. Obviously, we can assume q0 is a smooth point of some
branching hypervariety S ′ ⊂ S of F. We next proceed in two steps:

Case I: If we can find a loop γ as above such that the corresponding S ′ 6= {w = 0}, by perturbing
γ if necessary, we can make wq0 6= 0. By Lemma 3.2.2, after slightly perturbing γ if necessary, there
exists a null-homotopic loop λ in π1(C2 \ S, p0) with (γ, λ) contained in the complexification Mε of
Mε. We know that (F, F ) := (F (·), F (·)) sends a neighborhood of (p0, p0) in Mε into M′. Applying
the analytic continuation along the loop (γ, λ) in Mε for ρ(F, F ), one concludes by the uniqueness of
analytic functions that (F2, F ) also sends a neighborhood of (p0, p0) in Mε into M′. Consequently,
we get F2(Qp) ⊂ Q′

F (p) for p ∈Mε near p0. In particular, we have the following:

F2(p) ∈ Q′
F (p),∀p ∈Mε, p ≈ p0. (3.2.2)

Now applying the holomorphic continuation along the loop (λ, γ) in Mε for ρ(F2, F ), we get by
uniqueness of analytic functions that (F2, F2) sends a neighborhood of (p0, p0) in Mε into M′. Hence,
we also have

F2(p) ∈ Q′
F2(p),∀p ∈Mε, p ≈ p0. (3.2.3)

In particular, F2(p) ∈ ∂BN . Combining this with equation (3.2.2), and noting that for any q ∈
∂BN , ∂BN ∩ Q′

q = q, we get F2(p) = F (p) for any p ∈ Mε near p0. Thus F2 ≡ F in a neighborhood
of p0 in C2, which is a contradiction.

Case II: Now, suppose W := {w = 0} is the only branching locus of the algebraic extension of
F . Since W is smooth and π1(C2 \W ) = Z, we get the cyclic branching property for F . Now, we
notice that W cuts Mε transversally at a certain point p∗ =: (z0, 0). When we will continue along
loops inside T (1,0)

p∗ Mε near p∗, we recover all branches of F (z, w). Since any loop inside T (1,0)
p∗ Mε

near p∗ can be easily homotopically deformed into loops in Mε near p∗, we conclude that we recover
all branches of F near p∗ by continuing any branch of F near p∗ along loops inside Mε \W near
p∗. Hence, we are now reduced to the local situation as encountered in Proposition 3.10 of [HZ].
Hence, by Proposition 3.10 of [HZ], for Z(6=) ≈ p∗ and two branches F1 and F2 of F near Z, we have
F1(Z), F2(Z) ∈ Q′

F1(Z) ∩Q
′
F2(Z). As above, we see that F1(Z) = F2(Z). We thus conclude that F is

single-valued.

Since F is algebraic, it is rational. Once we know that F is a rational map from Mε into the
sphere, by a theorem of Chiappari [Ch], we know that F extends to a holomorphic map from a
neighborhood of Dε and properly maps Dε into the ball. This completes the proof of Proposition
3.2.3.

Next we recall the following definition.

Definition 3.2.4. Let F be a rational map from Cn into Cm. We write

F =
(P1, · · · , Pm)

R
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where Pj , j = 1, · · · ,m and R are holomorphic polynomials, their greatest common divisor (P1, · · · , Pm, R) =
1. The degree of F, denoted by degF, is defined to be

degF := max{deg(Pj), j = 1, · · · ,m,degR}.

To emphasize the dependence on the parameter ε, in what follows, we write F ε for a holomorphic
map from a certain open piece of Mε into ∂BN . By what we did above, F ε extends to holomorphic
map over a neighborhood of Dε. The purpose of the next three lemmas is to show the uniform
boundedness of the degree of F ε. We mention a related article of Meylan in [Mey] for the uniform
estimate of degree for proper rational maps between balls.

Lemma 3.2.5. Let F ε be a proper rational map from Dε into BN holomorphic over Dε. Then there
is an open piece U of Mε such that for any p ∈ U with wp 6= 0 and we have degF ε|Qp ≤ d, where
d = 7N(N+1)

2 . Here we set F ε|Qp := F ε(ξ, φ(zp, wp, ξ)) with φ(zp, wp, ξ) as in (3.2.1), which is a
holomorphic polynomial function in ξ.

Proof. Let p0 = (z0, w0) ∈Mε with wp0 6= 0. For any (ξ, η) ∈ Qp0 , we have

F ε
1(z, w)F ε

1(ξ, η) + · · · + F ε
N (z, w)F ε

N (ξ, η) = 1, (z, w) ∈ Q(ξ,η). (3.2.4)

Here we write F ε = (F ε
1 , · · · , F ε

N ). Recall Q(ξ,η) is given by ε0(z4ξ
4 + c

2(ξz7 + zξ
7)) +wη+ z5ξ

5 +
εzξ − 1 = 0. Write

L = (4ε0ξ
4
z3 +

7cε0
2
ξz6 +

cε0
2
ξ
7 + 5ξ5z4 + εξ)

∂

∂w
− η

∂

∂z
. (3.2.5)

Then L forms a basis for the holomorphic tangent vector fields of Q(ξ,η) near (z, w) ∈ Q(ξ,η). When
(ξ, η) = (z, w) and moves along U ⊂ Mε, L reduces to the CR vector field along U ⊂ Mε. Applying
Lα, |α| > 0, to (3.2.4) and evaluating at p0, one gets

LαF ε
1(z0, w0)F ε

1(ξ, η) + · · · + LαF ε
N (z0, w0)F ε

N (ξ, η) = 0, |α| > 0. (3.2.6)

Write
V ε

α(ξ, η) = (LαF ε
1(z0, w0), · · · ,LαF ε

N (z0, w0)). (3.2.7)

Choose U ⊂ Mε such that {V ε
α(z0, w0)}∞α>0 has a constant rank k ≤ N for (z0, w0) ∈ U . Then,

after shrinking U if needed, by a calculus computation (see [La2], for instance) we conclude that
{V ε

α(z0, w0)}k
α>0 must be a basis of {V ε

α(z0, w0)}∞α>0. Making use of the Taylor expansion, we see
that the linear span of {V ε

α(z0, w0)}k
α>0 is the smallest subspace containing F ε(Q(z0,w0))−F ε(z0, w0).

• If k = N − 1 in U , we can solve for F ε(ξ, η) for (ξ, η) ∈ Q(z0,w0) from Equation (3.2.4) and
(3.2.6) by the Cramer rule. Notice that η = φ(p0, ξ) is solved as a polynomial function of ξ of
degree 7. Therefore, as a rational function in ξ, we get

degF ε|Q(z0,w0)
≤ d

for (z0, w0) ∈ U .
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• If k < N − 1, then one can find constant vectors V1, · · · ,VN−k in CN such that

Span{V1, · · · ,VN−k}
⊕

Span{V ε
α(z0, w0)}1≤α≤k = CN−1

and Vi · (F ε(ξ, η) − F ε(z0, w0)) = 0 on Q(z0,w0), 1 ≤ i ≤ N − k. One can still apply Cramer’s
rule to solve for F ε(ξ, η) with (ξ, η) ∈ Q(z0,w0) to show, as a rational function of ξ, that

degF ε|Q(z0,w0)
< d. (3.2.8)

This completes the proof of the lemma.

Remark: The above argument can be used to show directly that F is rational (as a function in
ξ) when restricted to a Segre variety. However this type of information is not enough, in general,
to conclude the rationality of F : Let M ⊂ C2 be a strongly pseudoconvex hypersurface defined
by |w|2 = (1 + |z|2)2 and g =

√
w. The Segre variety Q(z,w) of M for each (z, w) is defined by

wη = (1 + zξ)2. g|Q(z,w)
= ±1+zξ√

w
, which is a polynomial as a function in ξ for w 6= 0.

The following lemma is motivated by Lemma 5.4 in [HJ]:

Lemma 3.2.6. Let H = (P1,··· ,PN )
R with R(0, 0) 6= 0 be a rational map from C2 \ {R = 0} into

CN , where Pj , j = 1, · · · , N,R are holomorphic polynomials and their greatest common divisor
(P1, · · · , PN , R) = 1. Assume that there is an open subset U of Mε such that for each p ∈ U with
wp 6= 0 and, as a rational function in ξ, deg(H|Qp) ≤ k with k > 0 a fixed integer. Then deg(H) ≤ k.

Proof. Set
A = {(ξ, η) ∈ C2 : P1(ξ, η) = · · · = PN (ξ, η) = R(ξ, η) = 0}. (3.2.9)

Then A has at most finitely many points. It is easy to see that if Qp does not pass through any
point of A, then as a rational function in ξ, the degree of H|Qp is the same as the degree of H as a
rational function in all variables. Thus it only remains to show the existence of (z0, w0) ∈ U such
that Q(z0,w0) ∩A = ∅. Indeed, fix (ξ0, η0) ∈ A, then ξ0 6= 0 or η0 6= 0. (ξ0, η0) ∈ Q(z0,w0) if and only if

ε0ξ
4
0z

4
0 +

c

2
ε0(ξ0z

7
0 + zξ

7
0) + w0η0 + z5

0ξ
5
0 + εz0ξ0 = 1. (3.2.10)

The collection of such pairs {(z0, w0)} is a complex subvariety of complex dimension 1. Thus {(z, w) ∈
C2 : Q(z,w) ∩ A 6= ∅} is a finite union of complex subvarieties of complex dimension 1. But U ⊂ Mε

is of real dimension 3. Thus there exists (z0, w0) ∈ U such that Q(z0,w0) ∩A = ∅.

Notice that our F ε is holomorphic in Dε and thus at 0. As a consequence of Lemma 3.2.5 and
Lemma 3.2.6, we have the following:

Lemma 3.2.7. Let F ε, d be as in Lemma 3.2.5. Then degF ε ≤ d.

The following three lemmas will show the uniform boundedness of the coefficients of F ε.
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Lemma 3.2.8. Let p(z) =
m∑

i=1
aiz

i + 1 be a holomorphic polynomial in C. Assume that p(z) 6= 0 in

∆, where ∆ is the unit disk centered at 0 in C. Then |ai| ≤ Cm for all 1 ≤ i ≤ m, where Cm is a
constant depending only on m. Consequently, |p(z)| ≤ mCm + 1 in ∆.

Proof. We write p(z) = akΠk
i=1(z − zi), where 1 ≤ k ≤ m is the largest number l such that al 6= 0,

and {zi}k
i=1 are the roots of p(z) in C. Notice that p(0) = 1 and p(z) 6= 0 in ∆, we get |zi| ≥ 1 for all

1 ≤ i ≤ k, and |akΠk
i=1zi| = 1. Thus |ak| ≤ 1. Moreover, by applying Vieta’s formula, we have for

each 1 ≤ j ≤ k − 1,

|ak−j | = |
∑

l1<···<lj
zl1 · · · zlj

Πk
i=1zi

| ≤ Cm

for a certain constant Cm depending only on m.

Lemma 3.2.9. Let p(z) =
∑m

|α|=1 aαz
α +1 be a holomorphic polynomial in CN , N ≥ 1. Assume that

p(z) 6= 0 in BN . Then |aα| ≤ C̃m for all 1 ≤ |α| ≤ m, where C̃m is a positive constant depending
only on m.

Proof. Fix z ∈ ∂BN . Set p̃(ξ) = p(ξz), ξ ∈ ∆, which is a holomorphic polynomial in C. Noting that
p̃(ξ) 6= 0 in ∆, by Lemma 3.2.8, |p̃(ξ)| ≤ mCm + 1, where Cm is as in Lemma 3.2.8. Consequently,
|p(z)| ≤ mCm + 1,∀z ∈ BN . By the Cauchy estimate, we conclude that there exists some constant
C̃m such that |aα| ≤ C̃m for all 1 ≤ |α| ≤ m.

Lemma 3.2.10. Let F ε, d be as in Lemma 3.2.5 and assume that F ε(0) = 0. Write F ε(z, w) =
P ε(z,w)
Qε(z,w) , where P ε(z, w) =

∑
1≤i+j≤d

aε
ijz

iwj , Qε(z, w) =
∑

1≤i+j≤d

bεijz
iwj + 1. Moreover (P ε, Qε) = 1.

Then |aε
ij | ≤ C, |bεij | ≤ C for some constant C depending only on N .

Proof. Notice that there exists r > 0 independent of 0 < ε < 1 such that B(0, r) ⊂ Dε and Qε(z, w) 6=
0 in B(0, r). As an application of Lemma 3.2.9, one can show the uniform boundedness of |bεij | by
considering Q̃ε(z, w) = Qε(

√
rz,

√
rw). Consequently, P ε is uniformly bounded in B(0, r) for all ε.

And the uniform boundedness of aε
ij follows from the Cauchy estimate.

Set M0 = {(z, w) ∈ C2 : ρ = ε0(|z|8 + cRe|z|2z6) + |w|2 + |z|10 − 1 = 0}. Notice that M0 has the
Kohn-Nirenberg property at the point (0, 1). Here recall that (see [HZ]) a real hypersurface M ⊂ Cn

is said to satisfy the Kohn-Nirenberg property at p ∈ M, if for any holomorphic function h 6≡ 0 in
any neighborhood U of p in Cn with h(p) = 0, the zero set Z of h intersects M transversally at some
smooth point of Z near p. As an immediate application of Theorem 3.6 in [HZ], one has the following
lemma,

Lemma 3.2.11. Let M0 be as above. Then any holomorphic map sending an open piece of M0 into
∂BN is a constant.

We are now ready to prove our main theorem.
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Proof of Theorem 3.1.2. Seeking a contradiction, suppose the statement in the main theorem
does not hold. Then for a certain positive integer N and for a certain sequence 1 > εk → 0+, Mεk

are locally holomorphically embeddable into S2N−1 for any εk. For each of such εk, write a local
holomorphic embedding as F εk . Then, by Lemma 3.2.3, F εk extends to a rational and holomorphic
map over Dε. After composing with an automorphism of BN , we can assume that F εk(0) = 0.

By Lemma 3.2.7 and Lemma 3.2.10, we can write

F εk(z, w) =

d∑
i+j=1

aεk
ij z

iwj

d∑
i+j=1

bεk
ij z

iwj + 1
, (3.2.11)

where d = 7N(N+1)
2 and |aεk

ij | ≤ C, |bεk
ij | ≤ C for all i, j with C a constant as in Lemma 3.2.10. Hence

after passing to a subsequence if necessary, we can assume that aεk
ij → aij , b

εk
ij → bij as k → ∞

for some aij ∈ C, bij ∈ C for all i, j. Set F (z, w) = P (z,w)
Q(z,w) , where P (z, w) =

d∑
i+j=1

aijz
iwj and

Q(z, w) =
∑d

i+j=1 bijz
iwj + 1. Let V = {(z, w) ∈ C2 : Q(z, w) = 0} be the variety defined by the

zeros of Q(z, w) in C2. It is easy to see that for any open subset K ⊂⊂ C2 \V , we have F εk converges
to F uniformly in K. Pick p0 ∈M \V and a neighborhood U of p0 with U ⊂⊂ C2 \V . F εk converges
to F uniformly in U . Notice that for any p ∈ U ∩M , there exists pk ∈ Mεk

such that pk → p as
k → ∞. Then ‖F (p)‖ = limk→∞ ‖F εk(pk)‖ = 1. By Lemma 3.2.11, F is a constant map from Dε∩M
into the sphere. This is a contradiction, for we know that F (0) = 0. The proof of Theorem 3.1.2 is
complete.

Remark 3.2.12. It is clear that with the same proof, we can construct a lot of more similar examples
as in Theorem 3.1.2.

Next, to see that Mε can be holomorphically embedded into the generalized sphere in C6 with
one negative Levi eigenvalue, we observe that Re(|z|2z6) = 1

4(|z7 + z|2 − |z7 − z|2). Thus the map

F (z, w) = (
√
ε0z

4,
1
2
√
ε0c(z7 + z), w, z5,

√
εz,

1
2
√
ε0c(z7 − z))

holomorphically embeds Mε into the generalized sphere in C6 defined by S11 = {(Z1, · · · , Z6) ∈ C6 :∑5
j=1 |Zj |2 − |Z6|2 = 1}.
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