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ABSTRACT OF THE DISSERTATION

On Mapping Problems in Several Complex Variables

by Ming Xiao
Dissertation Director: Xiaojun Huang

The thesis consists of two parts. In the first part, we study a regularity problem for CR mappings
between CR manifolds. More precisely, we establish various versions of the Schwarz reflection prin-
ciple in several complex variables. In particular, as a consequence of the main results, we confirm a
conjecture of X. Huang in [Hu2] and provide a solution to a question raised by Forstneric [Frl] (See
Corollaries 2.1.11 and 2.1.12). It is a joint work with Shiferaw Berhanu ([BX1], [BX2]). In the second
part, we study the embeddability problem from compact real algebraic strongly pseudoconvex hyper-
surfaces into a sphere. In a joint work with Xiaojun Huang and Xiaoshan Li ([HLX]), we prove that
for any integer IV, there is a family of compact real algebraic strongly pseudoconvex hypersurfaces in
C2, none of which can be locally holomorphically embedded into the unit sphere in CV. This shows
that the Whitney (or Remmert, respectively) type embedding theorem in differential topology (or in

the Stein space theory, respectively) does not hold in the setting above.
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Chapter 1

Introduction

In this chapter, we state preliminary notions and results that will be applied in Chapter 2 and 3.

1.1 Preliminaries on CR geometry

In this section, we recall basic notions from CR geometry. We introduce formally integrable and
integrable structures on differential manifolds. Abstract CR manifolds are a special case of these
structures. The Levi form and Levi map of an abstract CR manifold are also recalled. For more
details on this material, we refer to the book [BER].

Definition 1.1.1. Let M be a smooth manifold, and V be a subbundle of CT M. We will say that V
is formally integrable (or involutive) if the space of smooth sections C*°(M,V) of V is closed under

commutators, i.e., [V, V] C V. We will refer to (M,V) as a formally integrable structure.

An important subclass of the formally integrable subbundles are the integrable ones.

Definition 1.1.2. A subbundle V of CT M of dimension n is integrable if for any p € M there exist
m = dimgM —n smooth complex-valued functions Zy, ..., Zy, defined in an open neighborhood Q0 C M
of p with C—linearly independent differentials dZ:,...,dZy, such that LZ; = 0 for all L € T'(M,V)
and j = 1,..m. For pg € M fized, any such set of functions Zj, vanishing at po, will be called a

family of basic solutions in €.
Proposition 1.1.3. If V is integrable, then (M,V) is a formally integrable structure.
Now we recall the notion of CR structures.

Definition 1.1.4. A formally integrable structure (M,V) is called a formally CR structure if for all
p € M,V,NV, ={0}. We shall refer to a formal CR structure as an abstract CR manifold, to V as
its CR bundle. If a formal CR structure (M,V) is furthermore integrable, we shall refer to it as an
integrable CR structure or a locally embedded CR manifold.

Moreover, recall that a smooth section of V will be called a CR vector field on M. A function
(resp. distribution) on M is a CR function (resp. CR distribution) if it is annihilated by all the
CR vector fields on M. The number n = dimcV), for any p will be called the CR dimension of M. If
dimrM = m + n, then d = m — n will be called the CR codimension of M. In particular if d = 1,
the CR structure is said to be of hypersurface type.



Let M be a real submanifold of CV. For p € M, we denote by V), the space of antiholomorphic
vectors tangent to M at p, that is,

VY, = TONCN N CT,M.
Then (M, V) defines an integrable CR structure if dimcV), is constant for p € M. We will then
call M a CR submanifold of CV.

Definition 1.1.5. Let (M, V), (M',V') be abstract CR manifolds. A CR mapping of class C*(k >
DEF : (M,V) — (M',V') is a C* mapping F : M — M’ such that for all p € M, F.(V,) C V},(p),
where Fy denotes the usual tangent map Fy : T,M — TF(p)M’ induced by F.

Let M’ be CR submanifolds of CV in the definition above, and write a C*¥ map F : M — M’ as
F = (F1,...,Fn). Then F' is a CR mapping if and only if each component Fj,j = 1,..., N, is a CR
function.

Let (M,V) be an abstract CR manifold, where V is the CR bundle of M. For p € M, we denote

by m, the natural quotient map
mp : CT,M — CT,M/(V, ® V).

Definition 1.1.6. The Levi map at p € M is the Hermitian vector valued form
Ly :Vp x Vp = CTLM/(V, ® V),

s X 10,

where X and Y are CR vector fields on M extending the CR vectors X, and Y.

['p(vaYp) =

Let Levi map L, is called nondegenerate if £,(X,,Y,) = 0 for all Y}, € V, implies X,, = 0. If
(M, V) is of hypersurface type, then the Levi map at p is a Hermitian form on V,, called the Levi
form. In this case, we say that (M, V) is Levi nondegenerate at p if the Levi form is nondegenerate.
Furthermore, a CR manifold of hypersurface type, (M,V), is called pseudoconvex at pg if the Levi
form is positive definite (or negative definite) at all p in an open neighborhood of py. Similarly, (M, V)
is said to be strictly pseudoconvex at pg € M if the Levi form is positive (or negative) definite at
po € M.

Proposition 1.1.7. Let M C CV be a smooth hypersurface with po € M, and let p(Z,Z) be a local
defining function for M mear pg. Then, M is pseudoconvex at pg if and only if, for all p in an open
neighborhood of py in M, either

for all a = (ay,...,an) with ZJ 1 az L-(p,p)aj =0, or

for all a = (aq,...,an) with Z] 1 8Z L (p,p)aj = 0.



1.2 Preliminaries on microlocal analysis

In this subsection, we present some preliminaries on microlocal analysis from standard literature
without providing proofs. Most theorems and their detailed proofs can be found in [BCH]. First we
recall the FBI transform which is a nonlinear Fourier transform which characterizes analyticity and
regularity. In the following context, we let D' be the space of distributions (topological dual of C§°),
and let £ be the space of distributions with compact support (topological dual of C'*).

Definition 1.2.1. Let u € £'(R™). Define the FBI transform of u by
Fy(x,&) = /eﬁ(z—y)f—lﬁl(w—y)Qu(y)dy (1.2.1)

for (z,€) € R™ x R™. where

The integral is to be understood in the duality sense.
The following characterization of analyticity by means of an exponential decay of the FBI trans-

form may be viewed as an analogue of the Paley-Wiener Theorem.

Theorem 1.2.2. Let u € &'(R™). The following are equivalent:
(i) w is real-analytic at xy € R™.

(ii) There exists a neighborhood V' of xg in R™ and constants c1,co > 0 such that
|[Fu(a, )] < erem 2k
for (z,€) € V x R™.

We consider now the boundary values of holomorphic functions defined on wedges with flat edges.
that is, edges that are open subsets of R™. Let I' C R™ \ {0} be an open convex cone with vertex at
the origin, V' C R™ open. For ¢ > 0, let

Is=TnA{v:|v| <}

Definition 1.2.3. A holomorphic function f € H(V ++/—1Ls) is said to be of tempered growth if

there is an integer k and a constant ¢ such that
c
|[f(z+v-1y)| < W

We can define the boundary value of f if it is of tempered growth:

Theorem 1.2.4. Suppose f € H(V ++/—1L's) is of tempered growth and k is as in definition above.
Set
< fo,  >= /f(rv + V-lv)(z)de

for ¢ € C3°(V) and v € I'. Then



bf = lim Jo

v—0,vel”CCl
exists in D' (V') and is of order k + 1.

Distributions which are boundary values of holomorphic functions of tempered growth arise quite

naturally. Indeed, we have:

Theorem 1.2.5. Any u € E(R™) can be expressed as a finite sum Z?Zl bf; where each f; € H(R™+
V=1I"}) for some cones I'; where each f; € H(R™ + +/—1I"}) for some cones I'; C R™, and the f;

are of tempered growth.

Definition 1.2.6. Let u € D'(R™), 29 € R™, £ € R™\ {0}. We say that u is microlocally analytic
at (x0,£0) if there exist a neighborhood V of xg, cones T'',....TN in R™ \ {0}, and holomorphic
functions f; € H(V + \/TH%) (for some 6 > 0) of tempred growth such that u = Z;VZI bf; near xg
and £°-TJ < 0 Vj.

Now recall the definition of wave front set (See [BCH], [H], for instance),

Definition 1.2.7. The analytic wave front set of a distribution u, denoted W Fy(u), is defined by,
WEF,(u) = {(z,€) : u is not microlocally analytic at (x,§)}.

It can be easily seen that the analytic wave front set is invariant under an analytic diffeomorphism,
and hence microlocal analyticity can be defined on any real-analytic manifold. We recall the following

theorem which will provide a useful criterion for microlocal analyticity in terms of FBI transform:

Theorem 1.2.8. Let u € D'(R™), 9 € R™, &% € R™\ {0}. Then (20,&°) ¢ WF,(u) if and only if
there is a neighborhood V' of x¢ in R™, an open cone T' C R™ \ {0},£ € T' and constants c¢1,co > 0
such that

|Fy(,6)] < cre™2lél y(a,6) e V x T,

We also mention some corollaries will be applied in our work later.

Corollary 1.2.9. A distribution u is analytic near xo if and only if for every €0 € R™\ {0}, (zo,£°) ¢
W F,(u).

Corollary 1.2.10. (The edge-of-the-wedge theorem) Let V' C R™ be a neighborhood of the point p,
and TT, T~ be cones such that T~ = —I'". Suppose for some § > 0, f+ € H(V +/—1Ts4), f~ €
H(V++/=1T) are both of tempered growth and bft = bf~. Then there exists a holomorphic function
f defined in a neighborhood of p that extends both f+ and f~. In particular, bfT is analytic at p.

We also have analogue in the smooth category. We first recall Paley-Wiener’s Theorem:

Theorem 1.2.11. A distribution u with support in the ball {x € R™ : |z| < R} is C*° if and only if
u(Q) is entire on C™ and for each positive integer k there is Cy such that

Rl

V¢ e C™.



We now recall the definition of microlocal smoothness.

Definition 1.2.12. Letu € D'(Q2),Q C R™ open, ¢ € 2, and £° € R™\{0}. We say u is microlocally
smooth at (xo,&o) if there exists ¢ € C§° (), ¢ = 1 near xy and a conic neighborhood I' C R™ \ {0}
of €0 such that for all k =1,2... and for all { €T,

Ck
N

Definition 1.2.13. The C* wave front set of a distribution u denoted W F(u) is defined by

pu(¢)] <

WF(u) = {(z,€) : u is not microlocally smooth at (x,&)}.

It is easy to see that a distribution u is C*° if and only if WF(u) = (). When a distribution u
is a solution of a linear partial differential equation with smooth coefficients, its wave front set is

constrained.

Theorem 1.2.14. Let P =}, <1 aa(®)D® be a smooth linear differential operator on an open set
Q C R™ and suppose u € D'(Y). Then

W F(u) C charP U W F(Pu),

where the characteristic set

charP = {(2,£) € A x R™\ {0} : > aaf® =0}

la|=k
We recall the notion of almost analytic extension.

Definition 1.2.15. Let f € C*°(Q2),Q C R™ open, and suppose Q is a neighborhood of 0 in C™.
A function f(z,y) € C®(Q) is called an almost analytic extension of f(x) if f(x,0) = f(z) Yz € Q
and for each j=1,...,m, )

of

- k =1,2....
oz (z,y) = O(|y|") for k=1,2,

The following theorem characterizes microlocal smoothness in terms of almost analytic extend-

ability in certain wedge.

Theorem 1.2.16. Let u € D'(R™). Then (xg, &) ¢ WF(u) if and only if there exist a neighborhood
V' of zg, open acute cones T, ..., TN in R™\ {0}, and almost analytic functions f; on V + \/—1I‘§ (for
some §) of tempered growth such that u = Zjlv bf; near zo and £ -T9 < 0 for all j.



1.3 Some algebraic lemmas

In this section, we will prove some algebraic lemmas that will be applied in Chapter 2.

Lemma 1.3.1. For a general n X n matriz

bi1 b2 bin
ba1  b22 ban
B= ,
bnl bn2 bnn
where b;; € C for all 1 <1i,5 <n,n > 3, we have,
1 2 . . . n—-2 n-1 1 2 n—2 n—1
B( ) B( . . )
1 2 .. . n—-2 n-1 J1 92 . In—2 n (%)
*
B( 1 2 . . . In—2 n ) B( Z.1 2.2 'L.n_Q n )
1 2 .. . n=-2 n-—1 J1 J2 Jn—2 N
R
= B( ‘1 ‘2 " 2 ) B, for any 1 < i3 <idg < -+ < idpo <n—1,1<j; <jo< -
Ju oJ2 - - - Jn—2
Jn—2 <n—1. In particular, if |B| = 0, then (x) equals 0. Here we have used the notation
biljl biljz . - . biljp
bizjl bizjz S bisz
B(© P = Jor1<p<n.
no g2 - .. ]p
bipjl biij . . . bipjp

To prove Lemma 1.3.1, we need the following Lemmas.

Lemma 1.3.2. Assume p > 3, C is a p X p matrizx,

11 Clp
C= ,
Cpl Cpp
where c;; € C for all 1 <i,j <p. Then
cn??|Cl = |C,

where C is a (p— 1) x (p — 1) matriz given by

<

(1.3.1)



C11

C21

C11

Cpl

C12

C22

C12

Cpg

That is, C' = (i) 1<i<(p—1).1<j<(p1)» With &j =

Proof. When ¢1; = 0, (1.3.1) holds since both sides equal 0. Now assume ¢1; # 0. By eliminating

€21, ,Cpl, We get,

C11 C12

ICl =

0 c¢p2—ci2

a2l
0 c2—c2

Cpl
c11

C2p

Clp

€21

pen

Cpl

Cpp =~ Clpg

C11 Cip
C21 C2p
C11 Cip
Cpl  Cpp
C11 C1(j+1)
Ca+11 CE+1)(G+1)

= 611_(p_2)‘5|.

Lemma 1.3.3. If the determinant of a 3 X 3 matriz

where a;; € C for all 1 <1i,5 < 3. Then

a1l

a21

a1l

a31

a1

a21

a21

as1

a12

a2

a12

a32

a12

a22

a22

a32

Proof. Using Lemma 1.3.2,

ai

a21

ai

a31

a12

a22

a12

a32

ai

a21

ai

a31

ai

a21

a21

a31

ail a2
az1 a2
as1 as2
a3
a23
a3
as3
a13
a3
a23
as3
a1l a13
ag1 @23
a1l a13
asr ass

ai3

az3 | =

a33

a1l

a21

a1l

a3l

an

a21

a21

as1

= an

0,

a12

a2

a2

a32
a2

a22

a22

as2

ai

a21

aszi

a2

a2

a2

a32

a12

a22

a22

a32

a12
a22

az2

a3

a3

ai13

ass

ais

a23

a3

ass

ais
a3

as3




ai

a21

ai

a31

ail

a1

a21

asi

ai

a1

a21

a31

a2

a22

a12

a32

a12

a22

a22

asz2

a12

a22

a22

a32

a12

a2

a12

as2

a1

a1

a21

a31

a12

a22

a2

as2

a13

a23

a13
as3

a13

a23

a3

a33

ai3

a23

a23

ass

= a12

= az1

= a22

ai
a21

a31

ai
a21

aszi

ai
a21

aszi

a12
a2

a32

a12
a22

a32

a12
a2

az2

ai13
a3

ass

ais
a23
ass

ais
a3

as3

O

Proof of Lemma 1.3.1 : We proceed by induction on the dimension of B. From Lemma 1.3.3,

we know Lemma 1.3.1 holds for n = 3. Now assume that it holds when the dimension of B is less

than or equal to n — 1. To prove it when the dimension is n, it is enough to show it for the case when

i1=1ia=2,

b11

bo1

bn—11

n —

2

b12
bao

bn—12

b12

bp—22
bn2

)|B], and the other cases are similar.

bin—1
bon—1

bnflnfl

bin—1

,in,21:71—-2 and»jlzzlaj2::2a'“

b11
ba1

bn—11

bp—21
bnl

bnflan

bnf2n72

, jn—2 = n — 2. Namely, we show that

bin—2
ban—2

bin—2

bnn—2




Now we view all terms here as rational functions in b1y, - - , by,. By Lemma 1.3.2,
1 2 1 2

B B

( L 9 ) ( - )
|B| = by; ("2 (1.3.2)
n 1

B . B

( L 9 ) ( Lo )

1 1 1 3
B ) By ~(n-3) Bl ) By W)
= (B( )) by
BO, 0y BT BO, owy e B

Combining it with (1.3.2), we obtain

1 2 12 3
—(n-3) BOy g g) o BOL )

13|:: j}( 12 ) - o -
| L2 Bl2n Bl2n
(12 3) (Lo )

By further applications of Lemma 1.3.2 and the induction hypothesis as above, we arrive at the

conclusion.

Finally we state the following simple lemma:

Lemma 1.3.4. Let by, -+, b, and a be n-dimensional column vectors with elements in C, and let
B = (by,---,by,) denote the nxn matriz. Assume that detB # 0, and that det(b;,,bj,, -+ ,b; _,,a) =
0 foranyl < i3 <ig < -+ < ip_1 <n. Then a = 0, where 0 is the n-dimensional zero column
vector.

Proof. Note that {by,---,b,} is a linearly independent set in C". Write a = Z?:l Ajb; for some \; €
C,1 < j < n.lItis easy tosee that all the A\; = 0 by using the assumption that det(b;,, bs,, -+ ,b;,_,,a) =
0,Vi<ig <ig <+ <ip_1<n. O
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Chapter 2

Reflection principle problems in several complex variables

In one complex variable, the classical Schwarz reflection principle can be formulated as follows. Let
M and M’ be two real analytic (resp. smooth) curves in C and F a holomorphic function defined
on one side of M. Assume that F extends continuously to M, and maps M to M’. Then F has
a holomorphic (resp. smooth) extension across M. The situation is much more subtle in several
complex variables, and the analogous statement fails in general as shown by easy examples. For
decades, finding conditions under which a reflection principle holds in higher dimensions has attracted
considerable attention by numerous researchers. More precisely, the question can be formulated as

follows.

Question 2.0.5. Let M C C*, M’ C CN be two germs of real analytic (resp. smooth ) CR subman-
ifolds. Let W be a wedge in C™ with edge M, and F : W — CV a holomorphic map, which extends
continuously to M. Assume that F maps M to M'. Find conditions that imply that the reflection
principle holds.

Notice that a CR function on a CR submanifold M C C™ can be holomorphically extended to
a wedge with edge M, under a certain geometric condition on M (See [Tr], [Tul], for instance).

Question 1.1 has its natural CR version as follows.

Question 2.0.6. Let M C C",M' C CV be two germs of real analytic (resp. smooth ) CR sub-
manifolds and F : M — M' a CR mapping. Find conditions such that F is real analytic (resp.
smooth).

In this chapter we study along this line of the regularity problem for CR mappings between CR
manifolds where the CR dimension of the source manifold is less than or equal to that of the target
manifold based on the joint work with Shiferaw Berhanu ([BX1], [BX2]). A particular case of interest
is when M and M’ are both strongly pseudoconvex CR manifolds of hypersurface type, as indicated
in Section 2.1. We also consider in Section 2.2 the more general case when the target is merely

assumed to be Levi-nondegenerate.

2.1 CR mappings into a strongly pseudoconvex hypersurface

2.1.1 Main Results

Our results in this section imply a positive answer to a conjecture of X. Huang in [Hu2] and provide a

solution to a question raised in [Frl] (see Corollaries 2.1.11 and 2.1.12). One of our theorems can be
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viewed as a smooth version of the analyticity theorems of Forstneric ([Frl]) and Huang [Hul-2] for CR
mappings between CR manifolds of differing dimensions. The chapter is devoted to results along the
line of research on establishing the smooth version of the Schwarz reflection principle for holomorphic
maps in several variables. Results of this type were first proved in the 70’s starting with the work
of Fefferman [Fe|, Lewy [Le] and Pinchuk [Pi]. The seminal work [BJT] has influenced a lot of work
on the subject. For extensive surveys and many references on this research, the reader may consult
the articles by Bedford [Be], Forstneric [Fr2], and Bell-Narasimhan [BN]. Among the many related
papers we mention here [CKS], [CGS], [CS], [DW], [EH], [EL], [Fr1], [Fr3], [Hul], [Hu2|, [KP], [K],
[Lal], [La2], [La3], [M], [NWY], [Tu], and [W]. In [Fr3] Forstneric generalized Fefferman’s theorem
to CR homeomorphisms f : M — M’ where f~' is CR, M and M’ are generic CR submanifolds of
C™ with the same CR dimension. The book [BER] by Baouendi, Ebenfelt, and Rothschild contains
a detailed account and references related to the study when the manifolds are real analytic or real
algebraic.

We prove results on the smoothness of CR maps where the source manifold M is assumed to be
an abstract (not necessarily embeddable) CR manifold. We mention that the results are new even
when M is embeddable. Our first main result, Theorem 2.1.3, generalizes to abstract CR manifolds
a theorem of Lamel in [Lal] proved for generic CR manifolds embedded in complex spaces. The
second main result, Theorem 2.1.5, establishes the smoothness on a dense open subset of a C* CR
mapping F : (M,V) — (M’',V') where (M,V) is an abstract CR manifold of CR dimension n and
M’ C C"*F is a hypersurface that is strongly pseudoconvex. A condition on the Levi form of (M, V)
is assumed in Theorem 2.1.5.

Our approach is based on the framework established by Roberts [GR] in his thesis and a later
paper by Lamel in [Lal]. The notion of kyg—nondegeneracy of a CR mapping (Definition 2.1.1)
and the “almost holomorphic” implicit function theorem of Lamel in [Lal] and [La2] play crucial
roles in the proofs and formulations of our results. The proof is also motivated by the study of the
real analyticity for CR maps between real analytic strongly pseudoconvex hypersurfaces of different
dimensions in Forstneric [Frl] and Huang [Hul]. We mention that in [Frl], Forstneric conjectured
that F' must be real analytic when M; C C"*' and My c C"** (k > 2,n > 1) are real analytic
hypersurfaces with M of finite type, Ms strongly pseudoconvex, and he proved that this is indeed
the case on a dense open set when F' is smooth. The conjecture of Forstneric was settled by Huang
([Hul]) who obtained the analyticity of F on a dense open subset assuming only that F' € C*. The
analyticity of F', when both M; and M, are as [Fr1] and when F is only C*-smooth also follows from
Theorem 2.1.5 in this chapter and Forstneric’s analyticity result when F' is smooth.

Let M be an abstract CR manifold with CR bundle V. Recall that a smooth section of V is called
a CR vector field and a function (or distribution) is called CR if Lf = 0 for any CR vector field L.
The CR manifold (M, V) is called locally embeddable if for any py € M, there exist m complex-valued
C*° functions Z1, - -+ , Z,, defined near pg with m = dimgM — n, such that the Z; are CR functions
near pg, and the differentials dZ1, - - - ,dZ,, are C—linearly independent. In this case, the mapping

p Z(p) = (Z1(p), -+, Zm(p)) € C™ = C" T
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is an immersion near pg. Thus, if U is a small neighborhood of pg, then Z(U) is an embedded
submanifold of C™ and is a generic CR submanifold of C™ whose induced CR bundle agrees with
the push forward Z.(V) (see [BER] and [J] for more details).

Let (M',V') be another abstract CR manifold with CR dimension n’ and CR codimension
d'. When (M’,V') is a generic CR submanifold of CN' (N’ = n’ 4+ d'), then a C* mapping H =
(Hi,--- ,Hy') : M — M' is a CR mapping if and only if each H; is a CR function. One of our main
results generalizes to an abstract CR manifold (M, V) a regularity theorem of Lamel ([Lal]) for CR
mappings of embedded CR manifolds. We need to recall from [Lal] the notion of nondegenerate CR
mappings. Let M c CN and M’ ¢ CV' be two generic CR submanifolds of CN and CV’ respectively.
If d and d’ denote the real codimensions of M and M’, then n = N —d and n/ = N’ — d’ are the CR,
dimensions of M and M’ respectively. Let H : M — M’ be a CR mapping of class CF.

Definition 2.1.1. (/Lal]) Let M, M’ and H be as above and po € M. Let p = (p1,--- , pa) be local
defining functions for M’ near H(py), and choose a basis Ly, - , Ly of CR vector fields for M near
po- If o = (a1, , ) is a multiindex, write L = L' --- L%". Define the increasing sequence of
subspaces Fy(po)(0 <1< k) of CN' by

Ey(po) = Spanc{L®puz/ (H(Z), H(Z))|z=p, : 0 < |a| L, 1 < p<d'}.

Here p, 71 = (g’;‘/,--- ,%), and Z' = (z},--- ,2%\.) are the coordinates in CN'. We say that H is
1 N/

ko—mnondegenerate at py (0 < ko < k) if

Ery—1(po) # Eny(po) = CV'.

The dimension of Ej(p) over C will be called the I'' geometric rank of F' at p and it will be
denoted by rank;(F,p).

For the invariance of this definition under the choice of the defining functions p,, the basis of
CR vector fields and the choice of holomorphic coordinates in CV', the reader is referred to [La2].
An intrinsic definition was presented in the paper [EL]. If M is a manifold for which the identity
map is kp—nondegenerate, then the manifold is called kg—mnondegenerate. This latter notion was
introduced for embedded hypersurfaces in [BHR] and it is shown in [E] that it can be formulated
for an abstract CR manifold. The reader is referred to these two references for a detailed treatment
of this concept and its connection with holomorphic nondegeneracy in the sense of Stanton ([S]).
In particular, in [BHR] and [E] it is shown that Levi-nondegeneracy of a CR manifold is equivalent
to 1—nondegeneracy. Thus the notion of ky—nondegeneracy of a CR manifold can be viewed as a

generalization of Levi nondegeneracy.

The main result in [Lal] is as follows:

Theorem 2.1.2. Let M ¢ CN, M’ ¢ CV' be smooth generic submanifolds of CN and CN' respec-
tively, po € M,H = (Hy,--- ,Hyx/) : M — M’ a C* CR map which is ko—nondegenerate at py and
extends continuously to a holomorphic map in a wedge W with edge M. Then H is smooth in some

neighborhood of py.
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Here recall that if pg € M, d = the CR codimension of M, and U c C¥ is a neighborhood of py,
a wedge W with edge M centered at pg is defined to be an open set of the form:

W={ZecU:r(22) eT},

where I' € R? is an open convex cone, and 7 = (rq,-- - ,74) are defining functions for M near pg. We

will prove the following generalization of Theorem 2.1.2.

Theorem 2.1.3. Let (M,V) be an abstract CR manifold and M' C CY' a4 generic CR submanifold
of CN'. Let H = (Hy, - ,Hy') : M — M’ be a CR mapping of class C*0 which is kg—nondegenerate

at po and assume that for some open convex cone I' C RY,
WE(Hj)|p CT,j=1,---,N'
where d is the CR codimension of M. Then H is C'*° in some neighborhood of pg.

Remark 2.1.4. In Theorem 2.1.2, the assumption that H is the boundary value of a holomorphic
function in a wedge implies the much weaker condition that WF(Hj)|p, C T' for some I' as in Theorem
2.1.8. Indeed, in the embedded case as in Theorem 2.1.2, a CR function h on M is the boundary
value of a holomorphic function in a wedge if and only if its hypo-analytic wave front set is contained
in an acute cone which means that the FBI transform of h decays exponentially. Our assumption in

Theorem 2.1.3 only requires the FBI transform to decay rapidly.

In what follows, given a CR manifold (M,V), T will denote its characteristic bundle, that is,
T = {0 € T*M : (0, L) = 0 for every smooth section L of V}.

Theorem 2.1.5. Let (M,V) be an abstract CR manifold with CR dimension n > 1 such that the Levi
form at every covector o € T° has a nonzero eigenvalue. Suppose M' C C"* is a hypersurface that
is strongly pseudoconvex (k > 1) and let V' denote the CR bundle of M'. Let F = (Fy, -+, Fpip) :
M — M’ be a CR mapping of class C* whose differential dF : Vp — Vl’p(p) s injective at every
p € M. Then F is C°° on a dense open subset of M.

We note that the preceding theorem allows a weakening of the smoothness assumption in Theorem
1.2 of [EL] on finite jet determination. The theorem also implies that some of the results in [BR]
hold under a weaker smoothness assumption on the CR maps involved. If M ¢ CN, M’ ¢ CN are
hypersurfaces, with M Levi non degenerate at p € M and F : M — M’ is a CR mapping which is
transversal at p, that is, dF'(CT,M) is not contained in V}(p) + %, then F' is a local embedding
(see section 3.4 in [EL]). Many other situations where (M,)) and (M’,)V’) are as in Theorem 2.1.5

and dF is injective can be found in the work [BR].

Let M, M’, F be as in Theorem 2.1.5.
One will see from Lemma 2.1.17 that rank;(F,p) = n + 1. It allows us to give the following
definition, which has appeared in [EL] for the embedded case.
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Definition 2.1.6. If F : M — M’ is a C* CR mapping, M of CR dimension n and p € M is a point
for which there is a neighborhood O and integers 1 <1, ko < k such that ranky, (F, q) = rank(F, q) =
n+ 1 and ranky,_1(F,q) < n+1 for all ¢ € O, we will say that F is of constant geometric rank
(ko,n +1) at p (or simply say F is of constant geometric rank n+1 at p).

Remark 2.1.7. We have the following properties of Definition 2.1.6.

o Definition 2.1.6 are both independent of the choices of the defining function, the basis of CR

vector fields and the choice of holomorphic coordinates in C*TF.

o [t is easy to show that(see [EL], for instance), if F be of constant geometric rank n + 1 at p,
then ko <1, i.e., rank;(F,q) = n + .

Lemma 2.1.8. There exists a dense open set My of M such that for each point p € Q, F is of

constant geometric rank at p.
Proof. We will leave it to the readers. See also in [EL], for instance. O]
Theorem 2.1.5 will be implied by the following,

Theorem 2.1.9. Let M, M',F be as above and p € M. Assume F is of constant geometric rank
n—+1 at p, then F is smooth near p. As a consequence, F' is smooth in My, where My be as in Lemma
2.1.8.

Theorem 2.1.9 will follow from Theorem 2.1.3 for the nondegenerate case (in the sense of Definition

2.1.1) and follow from Theorem 2.1.20 in the degenerate case.

Before we present the proofs of Theorem 2.1.3 and Theorem 2.1.5, we will prove the following
result which supplies a class of examples to which Theorem 2.1.3 applies. This theorem will also be
used in the proof of Theorem 2.1.5. The result may be viewed as the smooth version of Hans Lewy’s

extendability theorem in the embedded case.

Theorem 2.1.10. Let (M,V) be an abstract CR manifold, o € TS, with the property that the Levi
form at o has a negative eigenvalue. Then if u is a CR function (or distribution) near p,o ¢ WF(u).
In particular, if the Levi form at every covector n € Tg has a nonzero eigenvalue, then there is an

open conver cone I' C R%(d = the CR codimension of M) such that for every CR function u near p,
WF (u)|, C T.

Theorem 2.1.5 implies the following corollary which settles Huang’s conjecture in [Hu2]:

Corollary 2.1.11. Let M C C**, M’ c C"* be smooth strongly pseudoconvex real hypersurfaces
withn > 1,k > 1. Let F : M — M’ be a CR mapping of class C*. Then F € C*®(Q) on a dense
open subset 0 C M.
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Theorem 2.1.5 also provides a solution to a question of Forstneric in [Frl] using methods different

from the ones employed by Huang in the solution that he gave in [Hul]:

Corollary 2.1.12. Let M c CN, M’ ¢ CV' be real analytic hypersurfaces (1< N < N') M of finite
type (in D’Angelo’s sense) and M' strongly pseudoconvez. If F: M — M’ is a CR mapping of class
CN'=N+1_ then F extends to a holomorphic map on a neighborhood of an open, dense subset of M.

Proof. Let p € M. If every neighborhood of p contains a point where the Levi form has a positive
and a negative eigenvalue, then p is in the closure of the set where F' is smooth. We may therefore
assume that a neighborhood D of p is pseudoconvex. Note next that since M doesn’t contain a
complex variety of positive dimension, it can not be Levi flat in any neighborhood of p. We can
therefore assume that p is in the closure of the set of strictly pseudoconvex points in M. This latter
assertion can be seen by using the arguments in Lemma 6.2 in [BHR]. In that paper, M was assumed
algebraic but the reasoning in the Lemma is valid for M as in this corollary. The corollary now

follows from Theorem 2.1.5 and the analyticity theorem in [Fr1]. O

Example 2.1.13. Let M = {(z1,22) € C? : Imzy = |21|*™} where m is a positive integer and let
M' = {(21,22) € C? : Imzy = |z1|*}. Then the map H(z1,22) = (27", 22) is 1—nondegenerate at
the points where z1 # 0, and m—nondegenerate at all the other points. When m > 1, M itself is
1—nondegenerate at the points where z1 # 0 while when z1 = 0, it is not l[—nondegenerate for any
1 >0. (The case m =1 appeared in [Lal]. See also [K]).

Example 2.1.14. Let M = {(21,22) € C? : Imzy = |z1|*} and M’ = {(wy,ws, w3, ws) € C* :
Imwy = |w1]? + |wa|? — |w3|?}. For any odd positive integer m > 3, define Hy,(z1,22) : M — M by
Hy, (21, 29) = (21, 22%,22%, z9) where we have used a branch of the square root. Hy, is a CR mapping
and it is the boundary value of a holomorphic map defined on a side of M. H,, is a diffeomorphism.
H,, is not smooth and so for each positive integer k, there is m such that H,, is in C* but it is not

k—nondegenerate.

Example 2.1.15. Let M = {(z1,22) € C? : Imz = |z1|*} and M' = {(wi,ws) € C* : Imws =
lwy |2 — |ws|?}. For any positive integer m, let f : M — C be a CR function of class C™ which is not
smooth on any open subset of M (see Section 2.2 for an example of such). Define Hy, : M — M’ by
Hp,(z1,22) = (f(21), f(22),0). Hy,, is a CR mapping of class C™ which is not smooth on any open
subset of M. Note that H,, is not k—nondegenerate for any k.
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2.1.2 Proof of Theorem 2.1.9

We now present the proof of Theorem 2.1.9.

Proof. Recall that the Levi form of (M,V) at the characteristic covector o € T, 19 is the hermitian
form on V defined by

Lo (v,w) = (0, [L, L),

1
2y/—1
where L and L’ are smooth sections of V defined near p with L(p) = v, L'(p) = w. When this form

has a negative eigenvalue, there is a CR vector L near p such that

We may therefore assume that we are in coordinates (x,t) € R™ x R that vanish at p,

—Q—I-\/—lib‘(x t)i
ot s AR

where the b; are C°° and real-valued functions near (0,0), 0 = (0,0,£°,0) satisfies b(0,0)-£° =0, (b =

(br, -+ ,bn,)) and B
<(£0,0), [QL\/fif> = gi( 0)-¢° <0, (2.1.1)

Assume that Lu = 0 near (0,0). We wish to show that o € WF(u).

We introduce an additional variable s € R and define

ng 9

Let Z;(x,t,s) (1 <i<ng) be C* functions near the origin satisfying
L1 Zi(x,t,s) = O(s'), as s — 0, V1> 1,1 €N, and Zi(x,t,0) = ;.

Set Zng+1(z,t,s) =t—+/—1s. For 1 <1i < ng, we can write Z;(x,t,s) = x; + si;(x, t, s) for some C>
functions ;. We have, for any [ > 1,1 < i < ng,

i

S (xts)+1/z,(xts)+r

Zb (z,1) (513 +sa¢ (z,t s)> =0(s). (2.1.2)
It follows that

¢i($,t,0) = bi({l,‘,t), 1< < no. (2.1.3)

Differentiating equation (2.1.2) with respect to s leads to,

821/’2 1/% 8 wz 81/’1 a2¢i
5952 +2— Volo+ Vs ij — 53 b j:O(sl),VZZI.
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Evaluating the latter at s = 0, we get, for any 1 < ¢ < ny,

(;’/}Z( t0)+F¢lxt0 Zb mtawz(:ﬁtO)—O

which together with equation (2.1.3) leads to:

1 0b;

Imv;(z,t,0) =0 and glmqﬁl(:v t,0) = 25(&2&), vV 1<i<ny. (2.1.4)

We will use the FBI transform in (z,t) space. For the solution u = u(z,t), at level s = ', we

write,
F(z,t,&1,8) = /R » eQ(x’t’xl’t/’f’T’sl)n(x’, u(z' ) dZy (2, )Y N+ NdZpgi1 (2,8,
70

where (&,7) € R™ xR, n € C°(R™H) n(x,t) =1 for |2 +t2 < r? n(x,t) =0 when |z|? + ¢ > 212

for some r > 0 to be fixed. Here
Q(xa t7 .’13/, tlv 67 T, SI) =V _1<(€) T)? ('CE - Z(LU/, t/7 SI)) t - an-i—l (xlv t/a S/))>

_K‘(& T)’((.CC - Z(l’l, t/7 31))2 + (t - Zn0+1(1'/7 t/7 S/))2)7

where Z = (Z1,-++ , Zn,), (x — Z(2', ', 8'))? = > iy (x; — Zj(2',¥',¢'))?, and K is a positive number

which will be determined.
Let M; = 702, a;5(z,t, 3) ,1 <i < ngand My,41 = 8t + 252 ¢j(a,t, 8) - be C* vector

fields near the origin in (z,t, s) space that satisfy
MiZj:(Sij’ 1<4,5 <ng+ 1.

For any C' function h = h(x,t, s),

no+1 no+1
dh =" M(h)dZi+ | Lih = > M;(h)L1(Z)) | ds (2.1.5)
: ~

which can be verified by applying both sides of the equation to the basis of vector fields { L1, M1, -+, Mp,41}
of CT(R™7*2). Equation (2.1.5) implies that

no+1
d(hdZy A -+ NdZpyi1) = | Lih — Z M;(R)Li(Z;) | ds AdZy A -+ A dZyg 1. (2.1.6)

Let q(x,t,2/,t',&,7,8") = n(a, tu(a!, t)eQ@Ho ' Es) Denoting dZ; A- - - NdZpy+1 by dZ and using
equation (2.1.6), we have,
no+1

d(qdZ) = | Li(nu) + nuL1(Q) — Z (M (nu) + nuM;(Q))L1Z; | e%ds A dZ. (2.1.7)
j=1
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By Stokes theorem, for |sg| small, we have,
80
/ q(x,t, 2’ ¢ € 7,0)dx' dt :/ qlx,t, ' ¥ €T, so)dZ(x’,t’,so)—i—/ / d(qdZ) (2.1.8)
Rn0+1 Rn0+1 0 RnOJrl

We will estimate the two integrals on the right in equation (2.1.8) for (z,t) near (0,0) in Rmo+!
and (&,7) in a conic neighborhood T of (¢7,0) in R™T1. Observe that if 1 = (Y1, ,¥n,),

Re Q(‘/B7 t’ x,’ tl? g? T’ S,) :S/<£7 Im /ll}(x,’ tl? S/)> - TS,

(2.1.9)
— K[(&7)|(Jz — 2" = sRep(/, ', 8")* + [t = ¢'* = s)
Using equation (2.1.4), we can write
10b
Imw(mvtas) == ia('fﬂt)s + 0(52)
1ob (2.1.10)
=— 55(0,0)5 + O(|zs| + |ts| + 5?)
and so plugging this into equation (2.1.9) yields
1 b
ReQ(J:?tu Jll,t/,f,’r, S/) = - §<£7 gt(O,O)>S/2 — TS/
— K|(&,1)|(|lz — 2’ — sReyp(2/, ', 8")]* + [t — ']* — 52) (2.1.11)

+ €[OI |s* + [¢']s™ + ')

Since (£9, %(0, 0)) >0, given 0 < § < 1, we can get M > 0 and a conic neighborhood T of (¢°,0) in
R™0+! guch that %
(6. 5,(0,0)) > MI¢| and |7] < 3l¢], when (¢,7) €T (2.1.12)

Our interest is in estimating the integral on the left hand side of equation (2.1.8) for (x,¢) near
(0,0) and (&,7) € I'. When 7 > 0, we take s9 > 0 in (2.1.8) while when 7 < 0, we use so < 0. This
together with (2.1.12) allows us to deduce the following inequality from (2.1.11):

) / M 12 / / oyl N2
ReQ(m,t,x N 7577—’8) < - ?S ’€| - K|(§,7‘)|(|CIT —T = 3Re¢($ s )|

+ [t =t = s) + [€]0(2"|s” + [¢']s + |s')

" (2.1.13)
<(=5 + 1+ K)s[] = KI¢|(]v — 2’ = sRe (', ¢/, )
+ [t =) +1€|O(a"[s” + [t']s” + |s]%)
Choose K = 4(17]‘16). Then (2.1.13) becomes
M M
ReQ(ﬂZ’,t, xlvt,7§77_’ sl) < - 78’2|§| - 7‘£|(|l‘ —a’ - SlRew(mlvt,78/)’2
4 4(1+9) (2.1.14)

+ [t = t'7) + [€]0(a"|s” + [t'|s* + |s').

We choose 7 and |sg| small enough so that when (2/,¢) € supp(n) and |s'| < |so|, (&, 7) € T, (2.1.14)
will yield,
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M
4(1+96)
From (2.1.15), it follows that the first integral on the right in (2.1.8) (at level s’ = sg) decays
exponentially in £ and hence there are constants Cp, Cy > 0 such that for ({,7) € T,

M
ReQ(m7t7x/7t/7€7T7 8/) < _gslz‘gl - ‘5’("%. - 1'/ - S,Rew(xlvt/ﬂ Sl)‘Q + ‘t - t/’2)' (2115)

/ q(a,t, 2t 6 7, 50)dZ (2 1 s0)| < CheC2lE)] (2.1.16)
Rn0+1

Consider next the second integral on the right in (2.1.8). To estimate it, we use equation (2.1.7)
which is a sum of two kinds of terms. The first kind consists of terms involving Li(Z;), L1(Q) and

Liu(recall that Liu = Lu = 0) and these terms can be bounded by constant multiples of

’€||Sl‘meReQ(:c,t,a:’,t’,ﬁ,r,s’)’vm > 1,
and so using (2.1.15) which implies that
M
Re Q(:U, t7 xlv tla ga T, S/) S _§S,2|£|a

the integrals of such terms decay rapidly for (£, 7) € I". The second type of terms involve derivatives of
n(z,t) and hence |2/|?> +12 > r2 in the domains of integration. Therefore, if we choose 0 < |sg| << 7,
we can get A > 0 such that for (x,t) near (0,0) and (£, 7) € I, (2.1.15) will lead to,

ReQ(z,t, 2/, t',&,1,8) < —\[€], when |yv’|2 + 12> 2

The latter leads to an exponential decay in (£,7) € I' for (z,t) near (0,0) for the corresponding
integrals. We conclude that there exists a neighborhood W of (0,0) in (x,t) space and an open conic
neighborhood T of (£°,0) in R™*! such that for V(z,t) € W, (&,7) € T,Vm = 1,2, , there exists
Cm > 0 satisfying

oV Tlela—a ) br (=)= KD (o=’ P+ ) (00 41! ) dit

Rn0+1

Cm
q(z,t, 2’ ¢, €,0)dx'dt’| < .
/R ( ) A rie +1rm

By Theorem 2.1 in [BH] (see also [T] and the proof of Lemma V.5.2 in [BCH]), we conclude that

(€°,0) ¢ WF(u)lo.
Suppose now the Levi form L, at every o € T, 19 has a nonzero eigenvalue. Define
S={ceT):Ls;(v) >0, Vv e V,}.

The set S is conic, closed and convex. If £ € S, and £ # 0, then by hypothesis L; has at least
one positive eigenvalue and hence —¢ ¢ S. Since { € W F'(u), whenever L¢ has at least one negative

eigenvalue, it follows that W F'(u) C S, for every CR function near the point p. O
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2.1.3 Proof of Theorem 2.1.3

We begin by recalling the following “almost holomorphic” version of the implicit function theorem
from [Lal]:

Theorem 2.1.16. Let U C CV be open, 0 € U, A € CP, and Z = (Zy,--- , ZN) be the coordinates
in CN, W the coordinates in CP. Let F : U x CP — CN be smooth in the first N variables and a
polynomial in the last variables. Assume that F(0,A) = 0 and Fz(0,A) is invertible. Then there
exists a neighborhood U' x V' of (0,A) and a smooth map ¢ = (¢1,---,¥n) : U x VI — CV
with (0, A) = 0, such that if F(Z,Z,W) = 0 for some (Z,W) € U' x V' then Z = (Z,Z,W).

Furthermore, for every multiindex «, and each j, 1 < j < N,

0Y;
0Z;

D*Z (2, Z W)=0, 1<i<N, (2.1.17)

if Z=1(Z,Z,W), and v is holomorphic in W. Here D denotes the derivative in all real variables.

Given the abstract CR manifold (M,V) of CR dimension n and CR codimension d, we will use
local coordinates (z,7,s) € R® x R™ x R? that vanish at py € M. We will write z = (21, -, 2n)
where z; = x; ++/—1y; for j = 1,--- ,n. In a neighborhood W of 0, we may assume that a basis of
V is given by {L1,- -, L,} where

n d
0 0 0

Li: g\Lyr Ys9) 75 bZ Y 771§§ )
3§¢+;a]($ys)8zj+§ l(xys)aSZ i<n

the a;; and b;; are smooth and a;;(0) = 0 = b;;(0), Vi, j, | (see for example [BCH]). In these coordinates,

at the origin, the characteristic set
70 =1{(&n,0) €ER" x R" x RY: ¢ =1 = 0}.
By assumption, there is an acute open convex cone I' C R? such that
WF(Hj)|o c {(0,0,0):0€T},Vj=1,--- ,N"

Let ¢ € C3°(W) whose support is sufficiently small and ¢ = 1 in a neighborhood of the origin.

For each j = 1,---, N’, by Fourier’s inversion formula,

oy, 5)H(,,5) = / AV ST G H (€, o) dodndé

R2n+d

_ / 2V L@ty ntso) g (¢ n o)dodnde
B (2.1.18)

+/ eznﬁ(x-ﬁy-w&a)(ﬁ/]?j(g, n,o)dodnd§
R2n+d\ A
= (x,y,8) + J(2,y,s)

where A = {(¢,1,0) ER" xR* x R¢: o £ T}.
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Since WF(Hj)|o € {(0,0,0) : ¢ € T'}, if the support of ¢ is sufficiently small, for every m =

1,2, .-, there exists a constant Cy, > 0 such that

Ci
(L + [+ Il + [e[)™

|6H;(¢,m,0)] < V(€ n,0) € A.

It follows that I7(x,y, s) is C°° on R?"*4. Write

P(ay.s) = [T G (€ a)dodyde + [ YT G (€, o) doddg
B

Bs

where
Br={(&mn,0): [EP+n* <1, 0 €T},

By ={(&n,0): [ + [n]* > 1,0 € T}

Observe that since T3 N By = (), for any CR function u near the origin, WF (u)|o N By = 0.

Moreover,
By N {(&n,0) : € + [nf* + |o|* = 1}
is a compact set. It follows that for each m =1,2,--- | we can get C/, > 0 such that
Crn
(L+ g1+ Inl + o)™

GH;(€,m,0)| < V(&,m,0) € By

It follows that
FQj(%y,S) :/ 627”_l(m'§+y"7+5'”)¢/ffj(£,n, o)dodnd§
By

is O on R2td,

(2.1.19)

Since I is an acute cone, there is ¢° € R% such that ¢ - ¢ > 0,Vo € I'. We may assume that for

some conic neighborhood I'; of ¢ and Cy > 0,
v-o>Colv|lo], YveT, oel.
For t € I'1, we define

Fij (:Ea Y, s, t) = /B e27rﬁ(;r~§+y-n+(s+ﬁt)~a)@(é-’ m, U)dadndf
1

Since QS/I?] has a polynomial growth, for some C1, M > 0,
|PH; (&, 1. 0)] < C1(1+ [o])™, V(€ n,0) € Br.

Therefore, using (2.1.20) and (2.1.21), we get,

; C:
\FY (z,y,s,t)| < C’{/ e~ @oltllel(1 4 |oNMdo < — 2 __ teTy, for some C1,Cs > 0.
R4

’t’M—i—d—i—l’

Moreover, for all multiindices a, 3 € N*, v € N¢,

C

o ﬁ H J

(2.1.20)

(2.1.21)

(2.1.22)

(2.1.23)
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for some C' > 0 when t € I'y.
When t € T'q,

8wVF1j(m,y, s,t) =0, for 1 <v <d, (2.1.24)

where 0,,, = %(é% + \/—1%).
Define

F(z,y,8,t) = /B 2™V @ eyt I G (¢ . o) dEdndo,
2

for t € T';. By (2.1.19), FQJ is C* up to t =0, and
Du, Fi (2,y,5,t) =0, for 1 <v<d,tel. (2.1.25)

Since I/ (z,y, s) is C* and bounded, we can find a bounded C* function Fg (x,y,s,t) (|t| small)
such that

Fg(x,y,s,O) = I/(x,y,s), and 5qug(x,y,s,t) =o(t]", vw=1,---,d,¥l=1,2,3,... (2.1.26)

Let ¢(z,y,s) € C§°(W) such that its support is contained in a neighborhood of the origin where

¢ = 1. By Parseval’s formula,

lim B o,y s, ol )dedyds = [ 1wy, 9)p(o.y,s)dodyds
t—0,tel’y R2n+d R2n+d
= [ Peno)a(-€ —n —o)dsdnds  (21.27)
R2n+d
- /A ST (€, 0, 0)(—€, —1, —0)dédndo

Likewise, since Fy is C*° and bounded,

/R a B s)o(ay, s)dndyds = | GH;(€m,0)P(~& —n, ~o)deddo: (2.1.28)
n 2

For t € T'y, using (3.2.4), we have,
/ Ff<$7y787t)90(x,y, S)d.’lfd’yds
R2n+d
:/ (/ 627r\/—71(m-§+y.77+s.0)80(x’ n S)dxdyds)e_t'agb/l—fj(g’n, o)d¢dndo (2.1.20)
B1 R2n+d

= /B 9/5(_57 -1, _U)e_t‘g(ﬁ/]q\'j(§7 7, J)dgdndaa

and hence
lim Fi(z,y,5,t)¢(x,y, s)dvdyds = / B(—&,—n, —0)oH;(€,n, 0)dedndo (2.1.30)
t—0, tely R2n+d B

Let FV(x,y,s,t) = Fg(x,y,s,t) + Flj(x,y,s,t) + Fg(m,y,s,t) for t € I';. From (2.1.27),(2.1.28)
and (2.1.30),
lim Fj (CL‘, Y, S, t)90($a Y, s)dxdyds = / 9/5(757 =, 70)(;7-[:7](67 m, O->d€dnd0-

t—0, tel'y Jp2ntd R2n+d

(2.1.31)
:/R? B o(z,y,s)Hj(z,y,s)p(z,y, s)dedyds.
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Therefore, in a neighborhood of the origin, in the distribution sense,

lim  FJ t) = H; : 2.1.32
t%O}I?Gl_‘l (1‘, ya 87 ) J ([B, y? S) ( )
For ¢t € I'y small, from (2.1.23)-(2.1.26), we have: for (z,y, s) near 0, given «, [3,~, there exists C; > 0
such that for some A > 0,
Ch

\6?858;*Fj(:c,y,s,t)] < s and (2.1.33)

90020 Dy, F' (x,y,5,t) = O(Jt|)), VI>1, Vw=1,--- ,d. (2.1.34)

Yy s

For the rest of the proof, we follow the argument of claim 3 in [Lal]. We may assume that
H(0)=0€ M'. Let p=(p1,- -+, par) be defining functions for M’ near 0. For o € N" a multiindex,
recall that LY = L™ --- L.

Set F(x,y,s,t) = (F'(z,y, s,t), - ,FY (x,y,s,t)),t € I'1. Asin [Lal], there are smooth functions
02,77, W) for |a| < ko, 1 < pu < d, defined in a neighborhood of {0} x CK(*o) in CV' x CKko),
polynomial in W, such that

Lo, (H(2,8), H(z,8)) = U, o(H(z,5), H(z,s), (LPH(z, 5))18|<ko ) (2.1.35)

and
L% z(H, H)|o =V, 4.2/(0,0, (Lﬁﬁ(o,()))wgko). (2.1.36)

Here K (ko) = N'|{f : |8] < ko}|. Equation (2.1.36) and the kp—nondegeneracy assumption on the
map H allows us to get (a', - ,a™'), (u1,-- ,un) € NN and a smooth function ¢(Z', 2", W) =
(11, -+ ,¥pNr), which is holomorphic in W, such that with

U= (¥ v

pi,als Ty “N”O‘N/)’

if W(2',Z',W) =0, then Z' =(Z',Z’,W). Moreover, with Z' = (2}, , 2, we have,

O

Da
0z,

(Z',ZZ,W)=0, Vi=1,--- ,N,j=1,--- ,N', (2.1.37)

whenever Z' = ¢(Z',Z',W). In particular, since ¥, ,(H(z,s), H(z,s), (Lﬁﬁ(z,s))wgko) = 0, we

have,

HJ(Z’S) = ¢j(F(27570)5F(27350)7 (LBF(Z7870))|5\§/€0)’VJ =1, 7N/' (2138)

Recall that for i =1,--- ,n,

L= LS ag(es) +Zd:b (2,y,5) 2
i aiilx S)—— (o §)—.
7 8@1 pt ij\ Ty Y, sz < W\, Y, aSl
Let
0 n o d P
M= o +;A¢j(w,y,s,t)azj -I—ZZ_;BZ-Z(:B,y,s,t)aSl,l <i<n,
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where the A;; and B;; are smooth extensions of the a;; and b; satisfying
Ow, Aij(x,y, 8,t), 0w, Bu(z,y,5,t) = O(Jt|™), VWw=1,--- ,d, Vm =1,2,--- . (2.1.39)
Now define
gi(z,8,t) = ;(F(z,s,—t), F(z,s,—t), (Mﬁf(z, 8, —1))181<ko)>

for j=1,--- ,N" and for t € —T'y,|¢t| small. Using (2.1.34), (2.1.37) and (2.2.19), we conclude that,
when (2, s) is near the origin in C* x R? and t € —T'; (|¢| small), for any «, 3,7 multiindices, there
is C' > 0 such that

C
|D§‘D5ngj(z, s, t)| < i for some A > 0. (2.1.40)
and
DeDEDIdy,g;(2,5,t) = O(|t|™),YVm = 1,2, ,v =1, ,d. (2.1.41)

From (2.1.38), we know that,

Hj(z,s) = taoli?el—l“l gi(z,8,t),¥j=1,--- ,N". (2.1.42)

By Theorem V.3.7 in [BCH], it follows that WF(H;)|o NI' = (. Since by assumption WF(H;)|o C T,

we conclude that H is C°*° near the origin.

2.1.4 Proof of Theorem 2.1.5

Fix any p € M, and assume p’ = F(p) = 0. Since M’ is strictly pseudoconvex, we may assume that
there is a neighborhood G of 0 in C"**, and a local defining function p of M’ in G such that

MNG={Z€G:p(Z,Z") =0},

where p(Z',7') = —v' + Z;Lif*l EAR iqﬁ*(Z’,?). Here Z' = (21, ,2,,;) are the coordinates of
Crth 2l = + V=1 and ¢*(Z',Z") = O(|Z'[*) is a real-valued smooth function on G. Note
that rank;(F, p) is a lower semi-continuous integer-valued function on M for each 1 <[ < k. For any

pE M,

ranko(F, p) < rank;(F,p) < --- < rankg(F,p).

We next recall some basic properties of the rank of F. Write F' = (Fy,--- , Fy41). Since F(M) C

M', we have

_ F - F _ . _
p(F,F) = -~ 2k BB 4 4 B Pt + ¢°(F,F) = 0, (2.1.43)

2y/—1
on M near p. Applying Lq,--- , L, to the above equation, we get

LiFy g

NSt + PILiFy + -+ Fyip 1 LiFpik 1+ Li¢"(F,F)=0,1<j <n, (2.1.44)
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LYFy 1k — - _
+ FILYF 4+ Fy g 1 LYF 1 + LY (F,F) =0, 2.1.45
S 1LY Fy nk—1L Foyk—1 ¢"(F, F) ( )
on M near p for any multiindex 1 < |a| < k. Therefore, on M near p,
T Sni * Fnl - * T\ Vv —1 * al
pz(E,F) = (F) + (bzll(F, F), - Foik_1+ <;5Z;L+k_l(F, F), 5 + ¢Z;+k(F, F)), (2.1.46)
and for any multiindex 1 < |o| <k,
Lpz(F,F) = (L*(F + ¢%), -+ L (Fur1 + ¢ )L ) (2.1.47)

Lemma 2.1.17. With the assumption of Theorem 2.1.5, for any p € M, we have ranky(F,p) =
1, rank;(F,p) = n+ 1, and thus rank;(F,p) > n+1, for 1 <1 < k.

Proof. Assume that F(p) = 0. Note that ¢* (F, F)|, =0, for all 1 < i < n+ k. Equation (4.4) shows
that rankg(F, p) = 1. By assumption, dF' : V, — Téo’l)M’ is injective. By plugging Z = p in equation
(4.2), we get L;F,x(p) = 0 for each 1 <4 < n. Since {Ly, Lo, -+, Ly,} is a local basis of V near p,

we conclude that the rank of the matrix (LiFZ)lgign,lgl§n+kfl is n. Without loss of generality, we

assume that,

L\Fy . . . LF,
# 0 at p.
L,F, . . . L,F,
Notice that 671, = 6%lp = -+ = 0% |p = 0, Liglp = Lid%ly = -+ = Lid% |y = 0, for all
1 < j < n. Thus ranki(F,p) = n + 1. Consequently, rank;(F,p) > n+ 1, for 1 < [ < k for any
pEe M. ]

To simplify the notations, let

CLZ'(Z,7) :Fi—i-d)*/(F,i), 1<i<n+k-1,

+ ¢

/
Zn+k:

a(Z, Z) = (CL1,~ e ,an+k).

(F, F),

Then
pz/(F,F)=a= (a1, ", Gnik—1, Gntk),
L%z (F,F)= L% = (L%a1," -+, Lnyp_1, L%nik)
for any multiindex 0 < || < k. Recall that

rank;(F, p) = dim¢ (Spanc{L*a(Z, Z)|, : 0 < |a| < 1}).

The following normalization will be applied later in this section.
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Lemma 2.1.18. Let M, M', F be as in Theorem 2.5. Assume rank;(F,p) = Ny, for some 1 <1 <
k,n+1 < Ny < n+ k. Then there exist multiindices {fBn+1,- -, Bng—1} with 1 < |B;] < I for all
i, such that after a linear biholomorphic change of coordinates in C*F : Z = Z'A7L, where A is a

unitary (n + k) x (n + k) matriz, and Z denotes the new coordinates, the following hold:

Lyal,

_ VA Lnal,

alp = (0,--+,0,75—), Lz, —<BN0_1 0 b). (2.1.48)
LﬁN0715|p

Here we write a = ﬁZ(Z(F),Z(F)), and p is a local defining function of M’ near 0 in the new
coordinates. Moreover, By,—1 is an invertible (Ng—1) x (No—1) matriz, 0 is an (Ng—1) x (n+k—Ny)

zero matriz, and b is an (Ng — 1)—dimensional column vector.
Proof. Tt follows from Lemma 2.1.17 that
{a7 L1a7 T 7Lna}‘17

is linearly independent. Extend it to a basis of Fj(p), which has dimension Ny by assumption. That
is, we choose multiindices {841, -, Bny—1} with 1 < |5;] < for each 4, such that

{a,Lia, -, Lya, LPr+1a, ... ,LBNO*la}|p

is linearly independent over C. We write a := (a1, -+, anir—1), that is, the first n+%—1 components
of a. Notice that a(p) = (0,--- ,0, @) Consequently,

{Llaa e >Lna> Lﬁn+1aa T aLﬁNOilaHp

is linearly independent in C"**~1. Let S be the (Ny — 1)—dimensional vector space spanned by

them and let {77, - ,Tn,—1} be an orthonormal basis of S. Extend it to an orthonormal basis of
Cntk-1 . {Tl, s ,77]\[0_17 TNO, s ,TnJr]g,l} and set
7\’
T = ,A:( T sz+k1>.
Totk—1 Onth1 !

Here 0,441 is an (n + k — 1)—dimensional zero row vector. Next we make the following change of
coordinates: Z' = ZA, or Z = Z'A~!. The function p(Z,Z) = p(ZA,ZA) is a defining function of

M’ near 0 with respect to the new coordinates Z. By the chain rule,

p3(Z(F),Z(F)) = py (F, F)A. (2.1.49)

For any multiindex «,

(F)) = L%p (F, F)A. (2.1.50)

N

LaﬁZ(Z(F)a
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In particular, at p, we get:

Llfé’p Lla]p
- L,a L
al, = alp4, ndl | ndly |y (2.1.51)
Lﬂn«kla’p Lﬂn«kla’p
LﬁN071§|p L/@Nofla|p

Furthermore from the definition of A, in the new coordinates, equation (2.1.48) holds and By,_1 is

invertible. O

Remark 2.1.19. From the construction of A in the proof of Lemma 2.1.18, one can see that, in the
new coordinates Z, the following continues to hold: There is a neighborhood G of p' = 0 in C*F,

and a smooth real-valued function p in G, such that,
M'NG={ZeG:pZ Z) =0}

Moreover, ,B(Z,E) =—v+ Z?if_l \53\2—1—;;(2,?), where Z = (31, , Zntk) Znik = U+ /—10 and

%(E,E) = O(|Z®) is a real-valued smooth function in G. We will write the new coordinates as Z

instead of Z.
Theorem 2.1.9 will follow from the following in the degenerate case:

Theorem 2.1.20. Let M, M’ F be as in Theorem 2.1.5 and p € M. Assume that F is of constant
geometric rank n+1 at p with | < k — 1. Then F is smooth near p.

Proof. By Remark 2.1.7, there exists a neighborhood O of p such that rank;(F, q) = rank;1(F,q) =
n + [ for all ¢ € O. Applying Lemma 2.1.18, after a suitable holomorphic change of coordinates in

C™*F, there exist multiindices {311, -, Bnsi_1} with 1 < |8;| <[ for all n < i < n+1—1 satisfying
Lla|p
-1 Lyal,
al, = (0,---,0, Y2, :(B B 0b>. 9.1.52
U i (2152
Lﬁn+l—1a|p

Here B,,1;—1 is an invertible (n +1—1) X (n+1— 1) matrix, 0 is an (n+1—1) x (k — 1) zero matrix,

b is an (n 4+ [ — 1)—dimensional column vector. From equation (2.1.52), we know that
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ai T An+1-1 An+k
Liay e Liayq1—1 Lya,1g
Lypaq e Lypanii-1 Lypanik # 0 at p. (2.1.53)
Lﬂn+1 al e L/Bn+1 an+l—l L,Bn+1 an+k
[Bn+i-1 a, - Bn+1-1 Upgl—1 IBn+i-1 Utk
To simplify the notation, we denote the n—dimensional multiindices by Gy = (0,---,0), and 3, =

(0,---,0,1,0,---,0),for p = 1,--- ,n, where 1 is at the " position. That is, L% = Lyp=1,--,n.
Then inequality (2.1.53) can be written as

LPoa, - Lﬁoanﬂil Lﬁoan+k

# 0 at p. (2.1.54)
Lﬁn+l—1a1 .. Lﬁn+l_1an+l—1 Lﬁn+z—1an+k

By shrinking O if necessary, it is nonzero everywhere in O. Since rank;,1(F,q) = n+1 in O, we have
dimc(Ej+1(q)) = dime(Spanc{(L%a1, -+ , L%p4k)]q : 0 < |a| <1+ 1}) =n+1

everywhere in O. Hence for any multiindex 3 with 0 < |§| <l+1l,andanyn+I1<j<n+k-—1,
we have, in O,

Lﬁoal e Lﬁoan+l_1 Lﬁoan_,_k Lﬁoaj
=0. 2.1.55
Lﬁn«kl*lal PR Lﬂ7b+l71an+l—1 Lﬂn«kl*lan_"_k L/Bn+l71 a‘j ( )
Lbay LPay i LPay ik LPa
Furthermore, we will prove the following claim.
Claim: Forany 1 <v <n,n+l < j<n+k—1,and iy < io < -+ < ipyy—1 with {iy, -+ ,iny—1} C
{1,---,n+1—1,n+ k}, the following holds in O :
Lﬁoail T Lﬁoa’in+l—1 Lﬁoa’j
L/Bl ail e Lﬁl a/in+l—1 Lﬁl a’j
LBnvi-1q. ... [Bnti-1g, Bn+i-1q,
L, - Ra ! =0 (2.1.56)

LPoay o Lﬂoan+l_1 Lﬁoan+k

Lﬁn+z—1a1 - Lﬁn+l—1an+l_1 L/Bn+l—lan+k




Proof. By the quotient rule,
LB 0 A4y
LBI ai,

LBn+1-1 ai,
the numerator of

Bo .
L aln+l71

Big.
L a1n+l71

Lﬁoaj
Lﬁlaj

Bnti—1,. Bnti—1g .
LPn+ aln+l—1 Lo+ a;

Lﬁoal

Lﬁn«klfl al

LPoa, Lﬁoan+l_1 Lﬁoan+k

LPrtiziqy ... LPnti-iq, y_q LPrti1q,

Lﬂoal Lﬁoan—l—l—l Lﬁoan+k

L,

LBTLJrl*l aj - Lﬁ’rkalan_"_l_l Lﬂn«klflan_"_k

LPog, I/@’oanJrF1 LﬁoanJrk

LPnti-1qy ... [Bn+i-1q, i LPnti-1q,

L,LPq ---
L51a1

LuLﬁO An41—1 LZ/LBO An+k

LA An4l1-1 L An+k

LBn«&»l*lal e L/Bn+l71an+lil Lﬁn+l71an+k

Lﬁoal Lﬁo@n-s-l—l Lﬁoan+k

Lﬁn«klfl al e Lﬁn«klflaﬂnr‘rlil LBTL+171 a/’ll+k

LPoa, Lﬂoanﬂil Lﬁoanﬂc

LPn+i—2¢4 Lﬂ”+l_2(1n+l—1 LBH-H_QG’TH-]C

LVLﬂ”“*l ap - LVLﬁnqufl Untl—1 LVLB"H*lam-k

Lﬁo@n—&—l—l Lﬁoan—&—k

Lﬁn+171an+l71 Lﬁn+l71an+k

Lﬁoail Lﬁoain+171 Lﬁoaj
Lﬁlail Lﬁlain+171 Lﬁlaj
LB’n«Hfl ail e Lﬂn+l71ain+l_1 Lﬁn«klfl aj
Lﬁoai1 Lﬁoai7L+171 Lﬁoaj
I LPra;, Lﬂlain+l_1 LPra;
14
Lﬁn+l71ai1 e L/Bn+l71ain+l71 Lﬁn+l71aj
L%a;, Lﬁoain+l_1 LAa;
Lﬁlail Lﬁlain+l_1 Lﬂlaj
Lﬁn+l_1ai1 .. Lﬁ”+l_lain+l,1 Lﬂn+1—1aj
+- ot
L,L%a; -+ L,L%a; , . L,LPaq;
Lﬁlail Lﬁlain+171 Lﬁlaj

Brnii—1g. ... [Bnti-1g. Brti—1 .
LPnti-1q, LPn+i=ta,; . LPrti-lq;

Lﬁoail
Lﬁlail

Bo .
L aznﬁ»lfl

Big.
L aln-&-l—l

Lﬁoaj
LPra;

Bnti—1g. ... [Bnti-1g. Brti—1p .
LPnti-1q, LPnti=ta, . LPrti-lq;
Lﬁoail

Lﬁoain+l_1 Lﬁoaj

Brnti—2 . Brti—2 .
LPn ai, LPn @iy s

Lﬁn+l—2 CL]'
LyLﬂnuﬂ a;, - LVLﬁanlainH_l LyLﬂnuﬂ a;

29
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From equation (2.1.55) and Lemma 1.3.1, we know each term on the right-hand side of the

equation above equals 0. Hence equation (2.1.56) holds. This completes the proof of the claim. [

Thus the fraction in the parentheses in equation (2.1.56) equals a C*¥~! CR function in O.
It follows that for any fixed n +1 < j < n + k — 1, there exist C*~'—smooth CR functions

G%,GJQ, o GZL—H—PGZL—HC in O, such that, if i1 < 79 < -+ < 4pyy—1 and /(\Z'l,iz,'” yinti—1) =
(1,2, ,ig, -+ ,n+l—1,n+k),ig € {1,2,--- ,n+l—1,n+k}, where (1,2,--- ,ig, - ,n+l—1,n+k)
means (1,2,--- ,n+1—1,n+ k) with the component “iy” missing, then in O,
Lﬁoail . Lﬁoain+z—1 Lﬁoaj
Lﬁlail - LA Wiy LA a;
LPn+i-1 ai, - Lﬁn+l_1ain+l—1 Lﬁn+z—1a].
Lﬁoail o IBo N Lﬁoaio
_ o LA ai, .. LA Wiy LA iy
ZO ..
L5n+171ai1 c Lﬁn+l71ain+l—l L6n+l71ai0
That is,
L%a;, e Lﬁoain+1,1 Lﬁo(aj — Ggoaio)
LY, - LPai,, L (a5 = G ai) =0. (2.1.57)
Lﬁn«klflal.l v Lﬁn+l71ain+l,1 Lﬁnqtlfl (a’] _ G{Oaio)

We further assert:

Claim: In O, we have,

Lﬁoasl . LﬁOa,Sn+F1 LB (a,j — Z?:—'—lj_l Ggai — G‘ZL+kan+k>
Lk 4
LPay, e Lﬁlasn+l,1 LB (a; — Z?jl Gla; — GﬁLJrkan_i_k) —0 (2.1.58)
L/Bn+l71a81 T L5n+171a8n+l_1 Lﬁn+l71(aj - Zyill_l Gzal - GZH—kanJrk)
for all s1 < sg < -+ < $pgy—1 with {s1,--+ ,$pr1—1} C{1l,--- ,n+l—1,n+k}andany n+1<j <
n+k—1.

Proof. Assume that (s1,---,sp4-1) = (1,-+-, 80, ,n+1—1,n+ k). Notice that for any n 4+ <
j<n+k—-1i#spandie{l,--- ,n+1l—2,n+k},
Lboq,, Lay, LPo (G{ai)
Lﬁlasl Lﬁlasnufl L (Ggai)

Il
e

(2.1.59)

LBnnLlflaSl Lﬂ”+l’1asn+1_1 LBHH*l(Gjai)

i
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Combining this with equation (2.1.57), one can check that equation (2.1.58) holds. O

By Lemma 1.3.4, equation (2.1.54), and (2.1.58), we immediately obtain that in O,

n+l—1
Lﬁt(aj— Z Ggai—sz+kan+k):O,V1§t§n+l—1,n+l§j§n+k—l.
i=1

In particular, when ¢ = 0, we have:

n+l—1
- Y Glai-G ank=0n+1<j<n+k-1 (2.1.60)
That is in O,
n+l—1
F; + ¢* G] F; + ¢* + ¢* =0. 2.1.61
i+ 0% Zl oL~ n+k<zr¢ ) (2.1.61)
Recall that we have, by shrinking O if necessary, in O,
T —— o
-+ PR+ + Fgk Bk 07 (L F) =0, 2.1.62
Wi 151 ntk—1Fnik—1 + ¢ (F, F) ( )
LiFy g = — e .
——— tFPLjFi+ -+ Fp 1 LjFyg g1 + L™ (F, F) = 0,1 < j <n, (2.1.63)
2¢/—1
LBan+k

e + LR 4 4 Fp Lo + LA " (FF)=0,n+1<t<n+1—-1. (2.1.64)

We introduce local coordinates (x,7,s) € R™ x R" x R? that vanish at the central ponit p €
M. By Theorem 2.1.9, Gj Gﬁ o P10 Fogg extend to almost analytic functions into a wedge
{(z,y,s+it) e UxV xT1: (z,y,s) € UxV,t eI}, with edge M near p =0 for all 1 < i <
n+l—1,n+1 < j < n+k—1. Here U xV is a neighborhood of the origin in C"* x R% and Iy is an acute
n+k’ By B
Arguments similar to those used in the proof of Theorem 2.1.3 imply that the G’J and G7 i Satisty

convex cone in R? in t—space. We still denote the extended functions by G G’

the estimates:

C
£

o
L

Dg‘DgDng(z, s,t)’ < for some C, XA >0

n+k(z7 Sat) S

and
DYDPDYB,, Gl(z,5,t) = O(|t|™), DS DEDID,, G (2,5,t) = O(Jt|™),

forall1<i<n+4+l—-1,n+1<j<n+k—-1,1<v <d,m>1. And similarly for Fy,--- , F, .
We now use equations (2.1.61), (2.1.62), (2.1.63) and (2.1.64) to get a smooth map ¥(Z', Z/, W) =

(Uy,- -+, W, ) defined in a neighborhood of {0} x C? in C*** x C9, smooth in the first n-+k variables

and polynomial in last ¢ variables for some integer ¢, such that,

W(FF, (L Figjajet, G175 Gl GRly Gl LGRS G =0
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at (z,s,0) with (z,s) € U x V. Write

rali n—+l n—+l1 n—+l n+k—1 n+k—1 n+k—1
G = (Gl S 7Gn+l—1’Gn+k7'” 7G1 S ’Gn+l—1 ’Gn+k )

Observe that

Onti—1 Op—y @
Y2l (o) oy G@) = | Brti-i 0 b,
C | P 0};71

where Oy is an N—dimensional zero row vector, C is a (k — 1) x (n + [ — 1) matrix, I;_; is the
(k —1) x (k — 1) identity matrix and we recall that B,,4;—; is an invertible (n +1—1) x (n+1— 1)
matrix, 0 is an (n+ 1 — 1) x (k —[) zero matrix, b is an (n + [ — 1)—dimensional column vector.
The matrix Wz, (10F), 0 <,(0).Gr)
= (Y1, -+, ¥nsr) satisfying (2.1.17) and for each 1 < j < n +k,

is invertible. By applying Theorem 2.1.16, we get a solution

Fj = ¢j(F,F,(L°F)1<ja)<1, G)

at (z,s,0) with (z,s) € U x V. Recall that in Section 2.1.3, for each i = 1,--- ,n, we denote by M;
the smooth extension of L; to U x V x RY satisfying (2.1.39). For each 1 < j < n + k, set

hj(z7 S, t) = d}j(F(zv S, —t),F(Z’, S, _t)7 (MQF)1§|(1|§Z(27 S, _t)aa(za S, _t))

and shrink U and V and choose § in such a way that h; is well defined and continuous in Q_ where
Q- = {(z,y,s +it) : (x,y,5) € UxV,t € —T,[t] < d}. The same proof as before leads to the

estimates:

<

Dgpgpghj(z,s,t) < i

for some C, A >0

and
DEDID)0y, hj(z,5,t) = O(Jt|™), Vv =1, ,d,m=1,2,...
forte —TI',1<j<n+k.

Notice that the F} satisfy similar estimates in I'1, and by F; = b_h; for each 1 < j < n + k.
Applying Theorem V.3.7 in [BCH] as before, we conclude that F' is smooth near p. This establishes
Theorem 2.1.20.

O

Proof of Theorem 2.1.9 and Theorem 2.1.5: Theorem 2.1.9 follows easily from Theorem
2.1.3 in the nondegenerate case (I = k) and from Theorem 2.1.20 in the degenerate case (I < k —1).
We thus establish Theorem 2.1.9 and hence Theorem 2.1.5.

As a consequence of Theorem 2.1.20, we immediately have

Corollary 2.1.21. Let M c C™*1, M’ C C™* be two smooth strongly pseudoconvex real hypersur-
faces (n > 1,k > 1), F: M — M’ be a C*~smooth CR map. Assume that ranks(F,p) < n + 1

everywhere in M. Then F is smooth.
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Proof. We may assume that F' is nonconstant. By a result of Pinchuk ([Pi]), dF" : TIEI’O)M — T[gl(;?)) M’
is injective for every p € M. Note that rank;(F,p) = n+ 1 for all p € M by Lemma 2.1.17. By
Theorem 2.1.20 (note that in this case, the proof showed that we did not need F' to be C’k), we arrive

at the conclusion. O

Since a CR diffeomorphism of class C* of a k—nondegenerate manifold is k—nondegenerate,

Theorem 2.1.3 implies the following:

Corollary 2.1.22. Let M C CV be a generic CR manifold that is ko—nondegenerate. Suppose
H = (Hy,--- ,Hy): M — M is a CR diffeomorphism of class C*0 such that for some pg € M and
an open convex cone I C R?,

WF(Hj)|p, cT,j=1,--- N

where d is the CR codimension of M. Then H is C'*° in some neighborhood of pg.

2.2 CR mappings into a Levi-nondegenerate hypersurface

2.2.1 Main results

Let M and M’ be CR manifolds with CR bundles V and V' respectively. Recall that a differentiable
CR mapping F' : M — M’ | is called CR transversal at p € M if dF(CT,M) is not contained in

V% (p) + V%‘ (p)

The main result of this section is as follows:

Theorem 2.2.1. Let M be a smooth abstract CR manifold of hypersurface type of CR dimension n
and M’ Cc CN* (n > 1,n < N < 2n) be a smooth real hypersurface. Assume that M and M' are
Levi-nondegenerate and M’ has signature (I, N —1), 1 > 0 the number of positive eigenvalues of the
Levi form. Let F = (Fy,--- ,Fyxy1) : M — M’ be a CR-transversal CR mapping of class CN—"+1,
Assume that | <n and N — 1 <n. Then F is smooth on a dense open subset of M.

We remark that if { > n or N —1 > n, Example 2.2.5 will show that the Theorem will not hold.
This explains the assumption N < 2n in Theorem 2.2.1. Note that the case [ = 0 (and therefore
also [ = N) was treated in Section 2.1, and therefore, we may always assume that 0 <! < N. Since
CR functions are C'*° whenever the Levi form has a positive and a negative eigenvalue, we may also

assume that M is strongly pseudoconvex. Our methods also lead to the following analyticity result:

Theorem 2.2.2. Let M € C"*! and M’ € CNF1 (n > 1,n < N < 2n) be real analytic hypersurfaces.
Assume that M and M’ are Levi-nondegenerate and M' has signature (I, N —1), | > 0 the number
of positive eigenvalues of the Levi form. Let F = (Fy,--+ ,Fny1): M — M’ be a CR-transversal CR
mapping of class CN~"1. Assume that | < n and N —1 < n. Then F is real analytic on a dense
open subset of M.

It is well known that in Theorem 2.2.2, if M7 C M denotes the dense subset where F' is real ana-
lytic, then F extends as a holomorphic map in a neighborhood of each point of M;. As a consequence

of Theorem 2.2.1, Theorem 2.2.2 and the main result in Section 2.1, we have the following:
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Corollary 2.2.3. Let M C C" and M' C C"*1(n > 2) be real analytic (resp. smooth) hypersurfaces.
Assume that M and M’ are Levi-nondegenerate and F : M — M’ is a CR-transversal CR mapping

of class C%. Then F is real analytic (resp. smooth) on a dense open subset of M.

When F' is assumed to be C°, Corollary 2.2.3 in the real analytic case was proved in [EL].
Corollary 2.2.3 implies that a result on finite jet determination proved in [EL] (see Corollary 1.3 in

[EL]) holds under a milder smoothness assumption:

Corollary 2.2.4. Let M C C" and M’ C C*""(n > 2) be smooth connected hypersurfaces which are
Levi-nondegenerate, and f : M — M’ and g : M — M’ transversal CR mappings of class C%. If for
any p in some dense open subset of M, the jets at p of f and g satisfy j;lf = j;lg, then f =g.

The following examples show that in Theorems 2.2.1 and 2.2.2, neither the hypothesis on the

signature of M’ nor the transversality assumption on F' can be dropped.

Example 2.2.5. Let M C C"tY(n > 1) be the hypersurface given by {(z1,...,2p,w) € C*FL .
Imw = Y1 | |z%}. Let M' € CN*L(N > n + 2) be defined as {(z1, -+ ,2n,w) € CN*1 i Imw =
St ]21]24-2;\[:_“1” €;12j1> = |2n |2}, where each e; € {1,—1}. Let f be a CN="L CR function on M
which not smooth on any nonempty open subset of M (see Theorem 2.7 below for an example of such).
Then F(z1,...,2n,w) = (21, 2n, f(21,. .., 20, w),0,...0, f(21,...,2p,w),w) is a CR-transversal
map of class CN="F1 from M to M'. Clearly F is not smooth on any nonempty open subset of M
and, hence, since we may assume in Theorem 2.2.1 that M’ is not strongly pseudoconvex and that
therefore when | > n, N > n+ 2, Theorem 2.1 does not hold. Likewise, the theorem does not hold
when N —1 > n. It follows that for the theorem to hold, we need to assume thatl < n, N —1 <n
and hence N < 2n.

Example 2.2.6. Let M C C"(n > 2) be given by {(z1, -+ ,2p—1,w) € C" : Imw = Z?:_ll | 2%}
and define M' C C**' by M' = {(21,--+ ,2zn,w) € C**' - Imw = S0 2]? — |20)?}. Then F =
(0,---,0, f, £,0) is a C* CR map from M to M', where f is a C* CR function on M which is not
smooth on any nonempty open subset of M. Note that F' is not transversal at any point on M, and

18 not smooth on any nonempty open subset of M.

In order to make the preceding two examples meaningful, we will next show the existence of a C*
CR function on a strongly pseudoconvex hypersurface which is not smooth on any nonempty open

subset.

Theorem 2.2.7. Let D C C" be a bounded domain with a smooth boundary M which is strongly
pseudoconver. Let k > 1 be a positive integer. Then there exists a CR function f on M of class C*

which is not C*° on any nonempty open subset of M.

Proof. First fix p € M and let g € C°°(D) that is holomorphic on D and peaks at p, say, |g(z)| <
g(p) = 1 for z € D\ p. By Hopf’s Lemma, the normal derivative of g at p is nonzero and hence
there is a smooth vector field X tangent to M near p such that Xg(p) # 0. It follows that for any

positive integer m, with a choice of a branch of logarithm, the function g,,(z) = (1 — g(z))m“'% is a
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CR function of class C™ on M but which is not of class C™*1 at p. Let {p;}32, C M be a dense
subset of M. We choose a sequence of C* CR. functions { fi}2, on M with the following properties:
For each i > 0, f; € C*{(M) N C®(M \ {p;}), and f; is not C*++1 at p;. Then there exists a
sequence of positive numbers {b;}5°, such that, for any sequence of complex numbers {c¢;}°, with
il < b0 >0, .2, ¢ifi converges uniformly to a C* CR function on M.

We fix a local chart (U;,x) for each p;,i > 0 on M, where U; is a neighborhood of p;. Choose
Q; CcC U;,i > 0 to be a sufficiently small neighborhood of p; with the following properties:

(1). For each i > 1,po,- -+ ,pi—1 & Q.
(2). There exists a sequence of positive numbers {sz }i>j such that for any j > 0, |[D“ f;(z)| < Mg
for all |a] < k+j+ 1,5 > j, and for all z € Q;. Here « is a multiindex, and D® denotes derivatives

with respect to all real variables. The existence of such {sz }isj is ensured by the fact that f; is
Ck+i+1 _smooth for all i > j.

Next choose a sequence of positive numbers {a;}5°, as follows: ag < by, and

1 1

a; < min{b;, 20 b=
7

7}, fori>1.

Let f =3 2,aifi. Then fis a C* CR function on M. Moreover, from the choice of a;,i > 1, one
can see that > 2, a;D*f; converges uniformly in g, for any |a| < k + 1. Consequently, >, a;f;
converges to a C*+! function in €. Thus f is not C**1 at pg since fy is not. Similarly, one can check
that f is not C*++1 at p;, for all i > 0. Hence, by the density of the sequence {p;}32,, f is a C¥ CR

function which is not smooth on any nonempty open subset of M. O

Remark 2.2.8. As a consequence of Theorem 2.2.7, we see that for any k > 1, there exists a CR
function f of class C* on the hypersurface M = {(z1, -+ , zp,w) € C"* : ITmw = S0, 2>} (n > 1)
which is not smooth on any nonempty open subset, since M is biholomorphically equivalent to the
unit sphere OB™ = {(21,+++ ,2,) € C"" o 292 + - + |241]? = 1} minus the point (0,...,0,1).

2.2.2 Proof of Theorem 2.2.1 and 2.2.2

Let M, M’ F be as in Theorem 2.2.1. We work near a point p € M which we fix. If the Levi form of
M at p has a positive and a negative eigenvalue, then the smoothness of F' follows trivially and so we
may assume that M is strongly pseudoconvex at p. Let V denote the CR bundle of M. By Theorem
IV.1.3 in [T], there is an integrable CR structure on M near p with CR bundle V that agrees with V
to infinite order at p. In particular, (M, )7) is strongly pseudoconvex at p and hence we can find local
coordinates x1,¥1, - . ., Tn, Yo and s vanishing at p and first integrals Z; = mj+Mj1yj =2zj,1<j<n,
Zni1 =58+ /—1(z,%,s) where z = (21,...,2,) and 1 is a real-valued smooth function satisfying

1/}(2757 3) = ‘2‘2 + 0(32) + O(’Z‘g)
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In these coordinates, near the origin, the bundle V has a basis of the form

0 0
L;= Gz + Aj( Z kzzs—kl<j<n
where each
—1Yz(2,%Z, s
Aj(z,%Z,8) = 5 ) to infinite order at 0

1+ lelbs(2757 5)

and the Bjj, vanish to infinite order at 0. We may assume 0 € M’, F(0) = 0 and that we have

coordinates Z' = (21,..., 2y ) in CN+1 50 that near 0, M’ is defined by
2y — Zhae _
W +Z 751~ Z | +¢"(2.Z7) = 0 (22.1)
i=l+1

where ¢*(Z',Z") = O(|Z'|?) is a real-valued smooth function.

In the following, for two m-tuples z = (z1.--- , %),y = (y1, - ,Ym) of complex numbers, we
write (z,y); = >0 0175y, and 2|2 = (z,T), = Py §j.lzj|?, where we denote by d;,; the symbol
which takes value 1 when 1 < j <[ and —1 otherwise. Let 2/ = (z1,---,2}). Then M’ is locally
defined by

— Z ;N+1
Z/, Z/ _ N+1
p(Z',2") = W
If we write F = (Fy,...,Fy+1) = (F, Fy41), then F satisfies:

+ 12} + 652", 77) = 0.

 Fnp - Fni

ooy 1

Let V' denote the CR bundle of M'. Since F is CR- transversal, and the fibers Vy and V)| are spanned
= 255(0)

+|F|} +¢"(F,F) = 0. (2.2.2)

byw,1<3<nan

# 0. Moreover, equation (2.2.2) shows
that the imaginary part kof F N+1 Vanlshes to second order at the origin, and so the number X is
real. We claim that we can assume that A > 0. Indeed, when A < 0, by considering M’ defined by
p(7(Z),7(Z)) instead of M’, and considering F = 7 o F instead of F, we get A > 0. Here 7 is the
change of coordinates in CN*!: 7(zy, -+, zy,w) = (21, , 2n, —w). By applying L;, L;jLy, L; L, to

equation (2.2.2), and evaluating at 0, we get

OFN 11
8ZZ'

(0)=0, 1<i<n,

and
OFN+1 0) — OFN 41

6ZkaZj N 8@85

=0, 1<k, j<n.

We next apply ijk to Fyy+1 and evaluate at 0 to get

OFN 11 —
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where 9§, is the Kronecker delta. Hence we are able to write,
Frni1(2,Z,8) = As + V=1Al2[* + O(|z[[s| + 5%) + o(|2]), (2:2.3)

For 1 < j < N, using L, F;(0) = 0, we have:

n
F; = bjs+2a¢jzi+0(\z\2+32). (2.2.4)
i=1

for some b; € C,a;; € C,1 <7 <n,1 <j <N, or equivalently,

(Flv"' 7FN):3(b17"' 7bN)+(Zl7"' 7zn)A+(F17 7FN) (225)

where A = (a;j)nxn is an n x N matrix, and FJ = O(]z]? + 5?),1 < j < N. Plugging (2.2.3) and
(2.2.4) into equation (2.2.2), we get

Mzl? + O(zlls| + 5%) + ol|2[*) = (zA, ZA); + O(|z]|s] + 5%) + o(|2[*).
When s = 0 the latter equation leads to
Mzl? +o(|2?) = (24, 7A); + o(|2]*).
It follows that
M, = AE(l,N)A", (2.2.6)

where A* = At. Here I,, denotes the n by n identity matrix and E(k,m) denotes the m x m diagonal
matrix with its first k£ diagonal elements 1 and the rest —1. Note from equation (2.2.6) that the
matrix A has rank n. Moreover, since A > 0, we get [ > n from equation (2.2.6) using elementary

linear algebra. Since | < n, it follows that { = n. Thus M’ is locally defined by

/ b
_AN+41 T~ N+l

p(ZG?) = 2—1

+ 2%+ ¢%(2', 7)) =0, (2.2.7)
and we have
A, = AE(n,N)A*. (2.2.8)

A direct computation shows that

LZ-FJ-(O):@-J-, 1<i<n,1 <5< N,

M s injective. Now

Since A = (a;j)1<i<n,1<j<n is of rank n, we conclude that dF : Téo’l)M — TO(O’1

let us introduce some notations. Set
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and
a=(ay, ,an41)-
We have:
L%z (F,F) = L% = (L%ay, -+, L%an, Lan1),

for any multiindex 0 < |a| < N —n + 1. Recall that for any 0 <i < N —n + 1,

rank;(F, p) = dim¢(Spanc{L*a(Z, Z)|, : 0 < |a] < i}).

Recall the notions of ky—nondegeneracy and rank;(F, p) from Section 2.1. From the injectivity of
dF, we get

Lemma 2.2.9. Let M, M’  F be as in Theorem 2.2.1. Then for anyp € M,ranky(F,p) = 1, rank, (F,p) =
n + 1. Consequently, rank;(F,p) > n+ 1, for any i > 1.

We next prove a normalization lemma which will be used later.

Lemma 2.2.10. Let M, M’ F be as in Theorem 2.2.1. Assume rank;(F,p) = m + 1, for some | >
1,m > n. Then there exist multiindices {fBn+y1,- -+, Bm} with 1 < |B;| <1 for alli, such that after a lin-
ear biholomorphic change of coordinates in CN*t1 . 7 = (Z1,-+, 2N, 2n41) = ((21, -, 20)Va 2vi1)s
where Z denotes the new coordinates in CN*L and V is an N x N matriz satisfying VE(n, N)V* =
E(n,N), the following hold:

Lral,
_ s
aly= (0,0, ), | o | = (VAL Ouqveny 0L ), (2.2.9)
Lyal,
Lﬂn+1a|p
- z(c Mo n Oy (N—m) d). (2.2.10)
LPma],

Here we write a = ﬁZ(Z(F), Z(F)), and p is a local defining function of M' near 0 in the new
coordinates. Moreover, 1, is the nxn identity matriz, Opy(N—y) S an n X (N —n) zero matriz, and 0},
is an n—dimensional zero column vector. C is an (m—n) x n matriz, My,_, is an (m—n) x (m—mn)
invertible matrix, 0(y,—p)x (N—m) 5 an (m—n)x (N—m) zero matriz, and d is an (m—n)—dimensional

column vector.
Proof. Assume that p = 0. Note that L;a;(0) = 6,,L;F;(0) = ;,a;;. Thus we have,

a’(]

L1a|0 _ On—n @
AE(n,N) 0, |’
Lna|0
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where A = (aij)1<i<n,1<j<n is as mentioned above, Oy_, is an (N — n)— dimensional zero row
vector, 0! is an n—dimensional zero column vector. Let B = E(n, N)A!. Then by equation (2.2.8),
we know that AB = AI,,, and B*E(n, N)B = \,,. By a result in [BHu] (see page 386 in [BHu] for
more details on this), we can find an N x N matrix U whose first n rows are rows of B*, such that,
UE(n,N)U* = AE(n, N). Consequently, U*E(n, N)U = AE(n, N),WE(n, N)W* = E(n, N ), where
W = %U *. )

We next make the following change of coordinates in CVN*t1: Z = Z’D~! where

D_ E(n, NYW 0%
Oy 1 ]’

and Oy is N—dimensional zero row vector. Then the function ﬁ(Z,E) = p(ZD,%) is a defining

function for M’ near 0 with respect to the new coordinates Z. By the chain rule,

p7(F(2),F(2)) = pz(F(2),F(Z))D, where F(Z) = F(Z)D™".

For any multiindex «,

LGP (2), F(Z)) = L (F(Z), F(Z))D.

In particular, at p = 0, we have,

alo
AE(n,N) 0 Aw ot )’
Lyalo

where a(Z,Z) = p5(F(Z),F(Z)). Since A= B*E(n, N),
— 1
AW = — B*E(n, N)U* = ( VAL, 0 )
BB ) .
Thus equation (2.2.9) holds with respect to the new coordinates Z. In the following, we will still
write Z instead of Z, a instead of a. Since {a, Lia,--- , L,a}|o is linearly independent, extend it to a
basis of F;(0), which has dimension m + 1 by assumption. That is, pick multiindices {841, ,Bm}

with 1 < |3;| <1 for each i, such that,
{a,L1a,---, Lya, Lﬁn+1a, o ,Lﬁma}\o

is linearly independent over C. Write & = (any1,--- ,an), i.e., the (n + 1)™ to N*" components
of a. Note that {a, L1a,---,Lpa}| is of the form (2.2.9). The set {L’+14,...  LPma}|y is lin-

early independent in CV~". Let S be the (m — n)—dimensional vector space spanned by it and let

{T1, - ,Tyn—n} be an orthonormal basis of S. Extend it to an orthonormal basis {74, -, Tp—n,
Tm—n+1, s Tv—n} of CN=" and set T to be the following (N —n) x (N — n) unitary matrix:
o\
T —

TN—n
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We next make the following change of coordinates:

Z = (517'” 7ngzN+1) = (2/17”' 7Z;’L7(Z7/1+17”. 7Z§\7)T71723V+1)'

One can check that equation (2.2.10) holds in the new coordinates Z. O

Remark 2.2.11. From the construction of V in the proof of Lemma 2.2.10, one can see that, in
the new coordinates Z, the following continues to hold: M’ is locally defined near 0 by

-5 = Z; —ZNt1 ~ ~ ~ =
p2.2) = -2 = +Z\zz|2 Z I +¢*(2.2) =0,
1=n+1

where Z = (21, -+ 2N, ZN+1), and %(Zg) = O(|Z]?) is a real-valued smooth function near 0. In
what follows, we will write the new coordinates as Z' instead of Z, drop the tilde from p and set
a(Z,7) = pzy(F(Z),F(2)).

Remark 2.2.12. In Lemma 2.2.10, equations (2.2.9), (2.2.10) can be rewritten as follows:

Lialg

~ \/—1 Lna‘o
alo=(0,--,0,——), Loaly | ( B, 0 b ) (2.2.11)
LPmalg

where By, is an m X m invertible matriz, 0 is an m x (N —m) zero matriz, b is an m—dimensional

column vector. We note that Lemma 2.2.10 plays the same role as Lemma 2.1.18 in Section 2.1.

The remaining argument will be essentially the same as in Section 2.1. First we need the following

regularity theorem.

Theorem 2.2.13. Let M, M' F be as in Theorem 2.2.1 (resp. as in Theorem 2.2.2). Let p € M
and O be a neighborhood of p in M. Assume that for some 1 <1 < N —n, rank;(F,p) =n+1, and
rank;1(F,q) = n+1 for all g € O. Then F is smooth (resp. real analytic) near p.

Proof. We first prove Theorem 2.2.13 in the smooth case. Although M’ is different from the one in
Section 2.1, the proof of theorem 2.1.20 applies to establish Theorem 2.2.13 which involves applica-
tions of Lemma 2.2.10 above and Theorem V.3.7 in [BCH]. Assume p = 0. From Lemma 2.2.10 and
the assumption, after a suitable biholomorphic change of coordinates, we conclude that there exist
multiindices {511, ..., Bnti—1} with 1 < |8;| <, such that

Lla]()

\/—1) Lna|0
2 )

L5”+1a|0 = ( Bn+l—1 0 b ) (2212)

Lﬁn«l»lfla’()
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Indeed, the form (2.2.12) is all that is needed to use the proof of Theorem 2.1.20 to arrive at the
following;:

There are CR functions Gg of smoothness class CV 17"~ defined in a neighborhood O of 0 in
M such that :

n+l—1
=Y Glai -Gy a1 =0, n+1<j<N. (2.2.13)
That is, in O,
L n+l—17'
Ojny + &% — Z G} (binFi + 67, — G§V+1(2F +65, ) =0 (2.2.14)
=1
We also have,
Fni1— Fny - - = T kB Q.
-+ I"WFi + -+ F,F, — Fn+1Fn+1 — - —FNFn+ 9 (F,F) = 0; (2215)
2v/—1
for1<j<n,
LiFNet | p - _— R o,
ﬁ + FleFl + -+ FnLan — Fn+1LJ’Fn+1 — = FNLJ'FN + Ljd) (F, F) =0; (2216)
and forn+1<t<n+1-1,
L7 Fy BT B BT B o Bt (T —
27\/—1+F1L P+ + L7, — Fpp L7 Fpyy — - — FNLPPFy 4+ L7 (F,F) =0. (2.2.17)

We recall the local coordinates (a: y,s) € R™ x R™ x R that vanish at the central ponit p € M.
As in the proof of Theorem 2.1.3, G} G Na1 F1s oo Fyga extend to almost analytic functions into
a half-space {(z,y,s+it) e U xV xT': (x,y, ) e U x V,t € '}, with edge M near p = 0 for all
1<i<n+l—-1,n+1<7<N.HereU x V is a neighborhood of the origin inC" xR and I' is an
interval (0,r) in t—space. We still denote the extended functions by G? G?VH, Ty FNg1-

Equations (2.2.14), (2.2.15), (2.2.16) and (2.2.17) can be used to get a smooth map
U(Z',Z',W) = (U1, ,Uny) defined in a neighborhood of {0} x C% in CN*! x CY, smooth in the

first N + 1 variables and polynomial in the last ¢ variables for some integer ¢, such that,

U(F.F, (L Fhigaj<: G1 - GRll GR GY o Gy, GLy) =0

at (z,s,0) with (z,s) € U x V. Write

G= (G, artt et G GN LGN, (2.2.18)

Observe that

NS
On+i-1 ON—n-1+1 5=

V2| (7 (0) F(0) (L), < <1 (0).T(0) = | Brti— 0 b ,
C ~INn—is1 O, g
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where 0,, is an m—dimensional zero row vector, C is a (N —n — 1+ 1) x (n + 1 — 1) matrix,
InN_p—iy1is the (N —=n—1+4+1) x (N —n — 1+ 1) identity matrix and we recall that B,,;;_; is an
invertible (n +1—1) x (n+ 11— 1) matrix, 0 isan (n +1—1) x (N —n — 1+ 1) zero matrix, b is an
(n 4+ — 1)—dimensional column vector.

The matrix ¥ Z’|( F(0)F(0),(LOF) 1 < a0 (0).G(0)) is invertible. By applying the “almost holomorphic”
implicit function theorem in [Lal], we get a solution 9 = (¥1,--- ,¥n41) from CNT1 x C? to CNH!
satisfying for each multiindex «, and each 7,

N

Da
07!

(Zl,i, W) =0, if z' = w(Zlvﬁa W)
and for each 1 < j < N +1,

Fj = i(F, F,(L°F)1<jal<i; G)

at (z,s,0) with (z,s) € U x V. The map ® is smooth in all variables and holomorphic in W. For
each j = 1,--- ,n, we denote by M; smooth extensions of L; to U x V' x R given by

0 0 - 0
M= 1A 213 B; <
J 85] + <m7y787t>as +k:1 ]k(xay787t)azk

where the Bj;, and A are smooth extensions of the corresponding coefficients of the L; satisfying

OwA(z,y, 8,t), 0w Bjk(z,y,5,t) = O(|t|™), Ym =1,2,--- . (2.2.19)
Foreach1 <j < N +1, set
hi(z,s,t) =¥j(F(z,s,—t), F(z,s,—t), (M“F)1§|a|§l(z, s,—t),G(z,5,—t))

and shrink U and V' and choose ¢ in such a way that each h; is defined and continuous in Q_ where
Q- ={(z,y,s+1t): (z,y,s) e UxV,te —I,|t| <} The arguments in Section 2.1 showed the

estimates:

o

DSDIDYhj(z,5,1)| < s

for some C, A > 0

and
DeDEDIyhj(z,5,t) = O([t|™), ¥Ym =1,2,...

forte -I,1<j<N+1.
Notice that the F} satisfy similar estimates for ¢ € I', and b4 F; = b_h; for each 1 < j < N + 1.
Applying Theorem V.3.7 in [BCH], we conclude that F' is smooth near p. This establishes Theorem

2.2.13 in the smooth case.

The proof of Theorem 2.2.13 in the real analytic case is similar and so we will only briefly indicate
the modifications that are needed. With M, M’, F as in Theorem 2.2.2, we will show that the map
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F' is real analytic at p which we assume is the origin. Since ¢* and the L; are real analytic now,
equations (2.2.14) — (2.2.17) imply that there is a real analytic map
U(Z',Z' W) = (Uy,--- ,¥ny1) defined in a neighborhood of {0} x C? in CV*! x C4, polynomial in

the last ¢ variables for some integer g, such that,

W(FF, (L F)igjajen G GRl L G G Gl GG =0

at (z,s,0) with (z,s) € U x V. Since the matrix U is invertible at the central point, by the
holomorphic version of the implicit function theorem, we get a holomorphic map ¥ = (¢1,...,¥nN+1)

such that near the origin,

Fj = j(F,(L°F)1<ja)<1, G), 1<j < N+1,

where G is as in equation (2.2.18). We may assume that near the origin, M is given by {(z,w) €
C" x C: Imw = ¢(z,%,s)}, where ¢ is a real-valued, real analytic function with ¢(0) = 0, and

dp(0) = 0. In the local coordinates (z,s) € C" x R, we may assume that

L:i—l Qng(Z,E,S) 2 1<i<n
70z 1+ips(z,%,5) 08 =J =0

Since ¢ is real analytic, we can complexify in the s variable and write
0 z.(2,2,8 + 1t 0

Mj:T—i QDZ.J( — ) a0

0Z;  1+4ips(z,%Z,s+it) Os

which are holomorphic in s + it and extend the vector fields L;. For each 1 < j < N +1, set

I<j<n

hj(z,s,t) = wj(F(z, s, —t), (Maf)lga‘gl(z, s, —t),G(z, s, —t)).

Since M is strongly pseudo convex, the CR functions F; and G; all extend as holomorphic functions in
s+it to the side t > 0. Hence the conjugates F'j(z,%, s, —t) and G;(2, %, s, —t) extend holomorphically
to the side t < 0. It now follows that the F} extend as holomorphic functions to a full neighborhood
of the origin (see Lemma 9.2.9 in [BER]). This establishes Theorem 2.2.13 in the real analytic case.

O

End of the proof of Theorem 2.2.1: Let

O ={pe M :ranky_pny1(F,p) = N + 1},

Qy ={pe M :ranky_,+1(F,q) < N for all ¢ in a neighborhood of p},

Q= {pe M : F is smooth in a neighborhood of p}

Let p € Q3. Since rank;(F,p) =n+ 1 < N + 1, there is a minimum m, 1 <m < N —n + 1 such
that rank,,(F,p) = N + 1. By Theorem 2.1.3, it follows that F' is smooth near p, for any p € €,
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ie, Q1 C Q. If p € Oy there is a neighborhood O of p, an integer 2 < d < N —n+ 1, and a sequence
{pi}s2, C O converging to p such that the following hold: ranky(F,q) <n-+d—1 for all g € O, and
ranky 1(F,p;) =n+d— 1, for all i« > 0. By applying Theorem 3.5, F' is smooth near each p;. Thus
() is dense in 1 U Qs and therefore dense in M. This establishes Theorem 2.2.1.

Proof of Theorem 2.2.2: Let 21,25 be as in the proof of Theorem 2.2.1 Note that at a point
p € Q, that is, at a point where the map F' is non-degenerate, Theorem 2 of [La2] shows that F is
real analytic. Thus as in the proof of Theorem 2.2.1, by applying Theorem 2.2.13 in the real analytic

case, we establish that F' is real analytic on a dense open subset of M.

2.3 Remarks on reflection principle

To end this section, we mention the stronger versions of conjectures of Forstneric ([Frl]) and Huang
([Hu2]).

Conjecture 2.3.1. (Forstneric) Let F : M — M' be a C**1 smooth CR map, where M C C*, and
M' C C"k (k> 1,n > 2) are real analytic, strongly pseudoconvex hypersurfaces. Then F is real

analytic.

Conjecture 2.3.2. (Huang) Let M C C*, M’ C C"** be smooth strongly pseudoconvex real hyper-
surfaces with n > 2,k > 1. Let F': M — M’ be a CR mapping of class C¥T'. Then F € C*(Q) on
a dense open subset Q C M.

Note in a work of Pinchuk and Sukhov ([PS]), they confirmed Conjecture 2.3.1 in low codimen-
sions. More precisely, They obtained the analyticity of F' everywhere on M when the codimension k
is less than n (in the setting of Conjecture 2.3.1) with the assumption that F' is C°*°. The argument
in [PS] is based on the fact that F' has a priori extension to a neighborhood of a dense open subset of
M, by the result of Forstneric. Motivated by this fact and Theorem 2.2.2, we have some hope that

the following is true:

Conjecture 2.3.3. Let M C C"*! be a real analytic strongly pseudoconver hypersurface,and M' C
CN*1 (1 <n < N < 2n) be a real analytic Levi-nondegenerate with signature (I, N —1). Let F : M —
M' be a C*° CR map. Assumel <n, N —1 <mn, then F is real analytic along M.
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Chapter 3
An embeddability problem in CR geometry

3.1 Main results

In this chapter, as in a joint work with Xiaojun Huang and Xiaoshan Li([HLX]), we work along the

line of the following embeddability problem in several complex variables.

Question 3.1.1. Given a real hypersurface M in a complex manifold X, when can it be holomorphi-
cally embedded into a more special real hypersurface M' in a complex manifold X' of possibly larger

dimension?

Compact CR manifolds of hypersurface type play an important role in the subject of Complex
Analysis of Several Variables. For instance, these manifolds include the small link of all isolated
complex singularities and, in particular, all exotic spheres of Milnor. In a more geometric aspect,
spheres are the model of strongly pseudo-convex hypersurfaces. Motivated by various embedding
theorems in differential topology, Stein space theory, etc, it has been a natural question in Several
Complex Variables to determine when a real hypersurface M C C" can be holomorphically embedded
into the sphere: S?V—1 .= {E;\le 2|2 = 1} C CV for a sufficiently large N.

By a holomorphic embedding of M C C" into M’ C CV, we mean a holomorphic embedding
of an open neighborhood X of M into a neighborhood X’ of M’, sending M into M’'. It follows
easily that a hypersurface holomorphically embeddable into a sphere S*V—1 := {3~ y |z =1} c CV
is necessarily strongly pseudoconvex and real-analytic. However, not every strongly pseudoconvex
real-analytic hypersurface can be embedded into a sphere of any dimension, as shown by Forstneric
[For] and Faran [Fa] in the mid 1980s based on a Baire category argument. Explicit examples of
non-embeddable strongly pseudoconvex real-analytic hypersurfaces were given much later by Zaitsev
in [Zat] along with explicit invariants serving as obstructions to the embeddability.

A recent observation in [HZ] further shows that if a germ M of a strongly pseudoconvex algebraic
hypersurface extends to a germ of algebraic hypersurface with strongly pseudoconcave points or with
Levi nondegenerate points of positive signature, then M can not be holomorphically embedded into
any sphere.

However, much less is known about the holomorphic embeddability of an open piece of a compact
strongly pseudoconvex hypersurface into a sphere. In [HZ], using the local construction in [Zat], the
authors gave a compact real analytic strongly pseudoconvex hypersurface, an open piece of which
can not embedded into a sphere. Also, in [HZ|, it was shown that there are many compact real

algebraic pseudoconvex hypersurfaces with just one weakly pseudoconvex point, any open piece of
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which can not be holomorphically embedded into any compact real algebraic strongly pseudoconvex
hypersurface which, in particular, includes the spheres. For a related work on this, the reader may
also consult Ebenfelt and Son [ES]. Here, we should mention a celebrated result of Fornaess [Forn]
which states that any compact smooth strongly pseudoconvex hypersurface in a complex Euclidean
space can be embedded into a compact strongly convex hypersurface in CV for a sufficiently large
N. Though much attention has been paid to the understanding of the embeddability problem as

discussed above, the following remains a longstanding open question:

Open Question: Is any compact strongly pseudoconvex real algebraic hypersurface in C" (n > 2)

holomorphically embeddable into a sphere of a sufficiently large dimension?

Here recall that a smooth real hypersurface in an open subset U of C™ is called real algebraic, if
it has a real-valued polynomial defining function.

In this chapter, we carry out a study along the lines of the above open question. First, write

M, = {(z,w) € C?: p = go(]2|® + cRe|z|?2%) + |w|® + |2|*° + €[2]* — 1 = 0}. (3.1.1)

Here, 2 < ¢ < 1—76,

An easy computation shows that, for any 0 < € < 1, M, is strongly pseudoconvex. Also, it is easy to

go > 0 is a sufficiently small number such that M. is smooth for all 0 < e < 1.

see that M, is compact. M, is a small algebraic deformation of the famous Kohn-Nirenberg domain
[KN]. Write D, for the domain bounded by M.. We prove the following result in this chapter:

Theorem 3.1.2. For any positive integer N, there is a number ¢(N) with 0 < ¢(N) < 1 such that

for any € with 0 < € < €(N), the compact algebraic strongly pseudoconvex hypersurface M¢ can not

be locally holomorphically embedded into S*N 1

S2N71

. More precisely, for any open piece U, of M., any

holomorphic map sending U, into must be a constant map.

Theorem 3.1.2 does not give yet a negative answer to the above Open Question. However, it
shows at least that the Whitney (or Remmert ) type embedding theorem in differential topology
(or in the Stein space theory, respectively) does not hold in the setting considered in this Open
Question. We notice that M, can always be embedded into a generalized sphere with one negative
Levi eigenvalue. Indeed, this embedding property is a special case of a general result of Webster [We]
which concerns the holomorphic embeddability of an algebraic strongly pseudo-convex hypersurface
into a generalized sphere with one negative Levi eigenvalue. Since the Segre families of generalized
spheres with the same dimension are biholomorphic to each other, we see that the Segre family of M,
can be holomorphically Segre-embedded into the Segre family of the sphere in C®. We will explain

this in more detail in Remark 3.2.12.

Our proof is based on the algebraicity theorem in [Hul] and the work in Huang-Zaitsev [HZ],
where it was shown that M, can not be embedded into any sphere when ¢ = 0. Unfortunately, the
compact smooth algebraic hypersurface M, with ¢ = 0 has Kohn-Nirenberg points [KN] which are
weakly pseudo-convex points. Our family of compact strongly pseudoconvex hypersurfaces are small

algebraic perturbation of the Kohn-Nirenberg type domain M. Other main ideas in the chapter
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include the Segre variety technique developed in [HZ] to show the rationality for a certain class of

algebraic maps.

3.2 Proof of Theorem 3.1.1

We divide the proof into many small lemmas for clarity of the exposition.
We first fix needed notations. Let M C U(C C") be a closed real-analytic subset defined by a
family of real-valued real analytic functions {p,(Z, Z)}, where Z is the coordinates of C". Assume

that the complexification p(Z, W) of po(Z, Z) is holomorphic over U x conj(U) with
conj(U) :={W :W € U}

for each a.. Then the complexification M of M is the complex-analytic subset in U x conj(U) defined
by pa(Z,W) = 0 for each a. Then for W € C™, the Segre variety of M associated with the point W
is defined by Qw = {Z : (Z,W) € M}. In what follows, we will write M, for the complexification
of M, and write M’ for the complexification of OBY . Similarly, we will write @, for the Segre variety
of M, associated with the point p, and write Qg for the Segre variety of OB associated with the
point ¢. For any p € C?, write p = (2, wp) or p = (&, 7). The following lemma proved in [HZ] will
be used in this chapter:

Lemma 3.2.1. Let U C C" be a simply connected open subset and S C U be a closed complex
analytic subset of codimension one. Then for p € U\ S, the fundamental group m (U \ S,p) is
generated by loops obtained by concatenating (Jordan) paths ~1,72,73, where 1 connects p with a

point arbitrarily close to a smooth point gy € S, Y2 s a loop around S near qo and 3 is 1 reversed.

Making use of the above lemma, we next prove the following lemma: (Notice that a local but a

general version of this result played an important role in the paper [HZ].)

Lemma 3.2.2. Let M, be defined as in (3.1.1) with py in M.. Let S be a complex analytic hyper-
variety in C? not containing py. Let v € m(C%\ S,po) be obtained by concatenation of v1,72,73
as described in Lemma 3.2.1, where 5 is a small loop around S near a smooth point qo € S with
wq, # 0. Then v can be slightly and homopotically perturbed to a loop ¥ € 71 (C%\ S,po) such that
there exists a null-homotopic loop A € m(C*\ S, po) with (\,75) contained in the complezification M.
of M. Similarly, for an element 4 € w1 (C?\S,po) obtained by concatenation of 41,42,43 as described
in Lemma 3.2.1, where 42 is a small loop around S near a smooth point gy € S with wg, # 0, after a

small perturbation to % if needed, we can find a null-homotopic loop in Aem (C%2\ S, pg) such that
(3. A) € Me.

Proof. First notice the fact that @, is smooth when w;, # 0 defined by n = ©(p, &) with & € C?,
where ¢ is as in (3.2.1) below:

50(§4§§ + %(57510 + 555)) + 555}2 +e€zp — 1

3.2.1
= , (3:2.1)

(D, €) = p(Zp, Wp, &) = —
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Moreover, for any q; # g2 € C? with w,, # 0,wg, # 0 and for any U C C?, o 7 Qg inU
unless they both are empty subset. After slightly perturbing pg in M., if some needed, we can assume
without loss of generality that wy,, # 0.

Now for any ¢ € C, we define a map Re¢(z,w) = (£, 9(Z,w,&)) from C? \ {w # 0} into C?, which
is anti-holomorphic in (z,w) for w # 0 and is real analytic in all variables away from w = 0. Also, if
we write po = (&pg, po ), then (§p,, ©(P0,&py)) = po and thus Re,, (po) = po. From the defintion, we
see that R¢ sends (z,w) to sz’w).

We claim that, possibly away from a certain nowhere dense closed subset in C for £, for a generic
smooth point ¢ in the irreducible branch of & containing gy as in the lemma, there is a sufficiently
small ball €, centered at ¢ (whose size may depend on ¢) such that R¢ maps €, into a small open
ball B, with B, NS = (. Suppose not. Then we have a smooth piece E from the branch described
above of S such that R¢(F) is contained in S for any ¢ in a certain open subset first and then for
all £ by the uniqueness of analytic functions. Letting & = 0, we see that the branch containing all
these images must be defined by z = 0 unless F is defined by w = constant. However, if the branch
containing E is defined by w = constant, by making £ # 0, we easily see that the union of R¢(F) as
¢ varies occupies an open subset of C?. This is a contradiction again.

Now, we fix a &) as in the above claim and also assume without loss of generality that &; is the
first coordinate &y, of py (for we are certainly always allowed to perturb pg inside M, to achieve
this). Back to our loop 7, we now deform =i, 72,73 to 71,72,73 respectively. Here 7; connects pg
with a point ¢* in a small ball Q centered at a certain smooth point ¢ € S =~ ¢*, 72 is a loop
based at ¢* around S inside € and sufficiently close to ¢, and 73 is 41 reserved such that the loop
7 obtained by concatenation of 71,72, 73 is the same as 7 as elements in m1(C? \ S, pg). Moreover,
Re(92) is contained in a ball not cutting S. Also, we assume that the w-coordinate of points in
7(t) never vanishes. Now define Ay = R¢,(72). We choose a suitable path {{(¢) : 0 <t < 1} in C
with £(0) = £(1) = &o such that if we define A1 = R¢(;y(71), then Ay avoids S(with possibly a slight
perturbation of 7 fixing endpoints). Furthermore, if we define A3 to be the reverse of A\j, and A
to be the concatenation of A1, A2, A3, then A is a null-homotopic loop in 71(C? \ S,po). Moreover,
(A(t),7(t)) is in the complexification M, of M, by the way it was constructed. The last statement

in the lemma follows from the symmetric property of Segre variety and what we just proved. O

Proposition 3.2.3. For an € with 0 < € < 1, assume that F is non-constant holomorphic map from
an open piece of M, into OBY (N € N). Then F extends to a proper rational map from D, into BV,

holomorphic over D..

Proof. By a theorem of the first author in [Hul], F' is complex algebraic (possibly multi-valued). In
particular, any branch of F' can be holomorphically continued along a path not cutting a certain
proper complex algebraic subset S C C2. We need only to prove the proposition assuming that S is
a hyper-complex analytic variety. Seeking a contradiction, suppose not. Then we can find a point
po € U C M, po = (20, wp) with wg # 0, a loop v € 71(C?\ S, po) obtained by concatenation of

Y1,7v2,73 as in Lemma 2.1, where 9 is a small loop around & near a smooth point gy € S, such
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that when we holomorphically continue F' from a neighborhood of py along v one round, we will
obtain another branch Fy(# F') of F' near py. Obviously, we can assume ¢ is a smooth point of some

branching hypervariety S’ C S of F. We next proceed in two steps:

Case I: If we can find a loop v as above such that the corresponding S’ # {w = 0}, by perturbing
7y if necessary, we can make wq, # 0. By Lemma 3.2.2, after slightly perturbing v if necessary, there
exists a null-homotopic loop A in 71 (C? \ S, pg) with (v, \) contained in the complexification M, of
M,. We know that (F, F) := (F(-), F(7)) sends a neighborhood of (pg,7g) in M. into M’. Applying
the analytic continuation along the loop (v, A) in M. for p(F, F'), one concludes by the uniqueness of

analytic functions that (Fy, F') also sends a neighborhood of (pg,pg) in M, into M’. Consequently,
we get Fo(Qp) C Q%(p) for p € M, near pg. In particular, we have the following:

Fy(p) € Q) VP € Me, p = po. (3.2.2)

Now applying the holomorphic continuation along the loop (\,7%) in M, for p(Fs, F'), we get by
uniqueness of analytic functions that (Fy, F») sends a neighborhood of (pg,pg) in M, into M’. Hence,
we also have

F5(p) € Qpy (), VP € Me, p = po. (3.2.3)
In particular, Fy(p) € OBY. Combining this with equation (3.2.2), and noting that for any ¢ €
OBN . oBN N Qy = q, we get Fy(p) = F(p) for any p € M, near pg. Thus F2 = F' in a neighborhood

of po in C?, which is a contradiction.

Case II: Now, suppose W := {w = 0} is the only branching locus of the algebraic extension of
F. Since W is smooth and 71(C2\ W) = Z, we get the cyclic branching property for F. Now, we
notice that W cuts M, transversally at a certain point p* =: (29,0). When we will continue along
loops inside TZS,} 0) M, near p*, we recover all branches of F(z,w). Since any loop inside ngi ’O)Me
near p* can be easily homotopically deformed into loops in M, near p*, we conclude that we recover
all branches of F' near p* by continuing any branch of F' near p* along loops inside M, \ W near
p*. Hence, we are now reduced to the local situation as encountered in Proposition 3.10 of [HZ].
Hence, by Proposition 3.10 of [HZ], for Z(#) ~ p* and two branches F} and F; of F near Z, we have
F(2),F(Z) e Q'Fl(Z) N Q},Z(Z). As above, we see that F}(Z) = F»(Z). We thus conclude that F' is
single-valued.

Since F' is algebraic, it is rational. Once we know that F' is a rational map from M, into the
sphere, by a theorem of Chiappari [Ch]|, we know that F' extends to a holomorphic map from a
neighborhood of D, and properly maps D, into the ball. This completes the proof of Proposition
3.2.3.

O]

Next we recall the following definition.

Definition 3.2.4. Let F' be a rational map from C™ into C™. We write

(Pr,---, Pm)

F=
R
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where Pj,j =1,--- ,m and R are holomorphic polynomials, their greatest common divisor (Py,--- , Py, R) =
1. The degree of F, denoted by degF, is defined to be

degF := maz{deg(Pj),j =1,--- ,m,degR}.

To emphasize the dependence on the parameter ¢, in what follows, we write £ for a holomorphic
map from a certain open piece of M, into OBY. By what we did above, F¢ extends to holomorphic
map over a neighborhood of D.. The purpose of the next three lemmas is to show the uniform
boundedness of the degree of F'“. We mention a related article of Meylan in [Mey| for the uniform

estimate of degree for proper rational maps between balls.

Lemma 3.2.5. Let F€ be a proper rational map from D, into BN holomorphic over D.. Then there
is an open piece U of M. such that for any p € U with wy, # 0 and we have degF*|q, < d, where
d = % Here we set F¢lq, = F(&, ¢(2p,wp,&)) with ¢(Z,,wp,§) as in (3.2.1), which is a

holomorphic polynomial function in &.

Proof. Let py = (20, wo) € M¢ with wy, # 0. For any (§,1) € Qp,, we have

Ff(z,w)Ff(f,n) + FJEV(va)F]eV(gan) = 17 (va) € Q(E,n) (324)

Here we write F'“ = (Ff,--- , F). Recall Q¢ is given by 50(z4g4 +£(&7+ z?)) +wi+ z5g5 +
€z€ —1 = 0. Write
CE0=T .5 4 = O _ 0
— — —n=. 2.
U 5t ) T (3.25)
Then £ forms a basis for the holomorphic tangent vector fields of Q¢ ) near (z,w) € Q¢ When
(&,m) = (z,w) and moves along U C M, L reduces to the CR vector field along U C M,. Applying

_ TeEn—
L= (4505423 + ?526 +

LY, |a] > 0, to (3.2.4) and evaluating at pg, one gets

‘CaFle(Zoa wO)Fle(fv 7)) + e+ [’aF]eV(ZO? wO)F]EV(ga 77) = O’ |Oé| > 0. (326)
Write
Val(&,n) = (LYFT (20, wo), - -+ , LYFy (20, w0)). (3.2.7)

Choose U C M. such that {VS(z0,wo)}o% has a constant rank & < N for (z9,wg) € U. Then,
after shrinking U if needed, by a calculus computation (see [La2|, for instance) we conclude that
{V(20, wo) ., must be a basis of {V,f(z0,wp)}3%,. Making use of the Taylor expansion, we see

that the linear span of {V,£(zo,wo)}E- is the smallest subspace containing F(Q wg)) — F€(20, wo).

e If k= N —1in U, we can solve for F({,n) for (§,1) € Q(zw,) from Equation (3.2.4) and
(3.2.6) by the Cramer rule. Notice that n = ¢(pg, &) is solved as a polynomial function of & of

degree 7. Therefore, as a rational function in &, we get

<d

degF Q. uy) <

for (Zo,wo) eU.
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e If k < N — 1, then one can find constant vectors V1,---, Vy_; in CV such that

Span{vl, s ,VN—k} @ Span{Vof(zo, wO)}lgagk = (CN_I

and Vz : (Fe(é.vn) - Fe(z()va)) =0on Q(
rule to solve for F'“(£,n) with (£,7) € Q(z,wy) to show, as a rational function of £, that

1 <7< N — k. One can still apply Cramer’s

20,Ww0)

degFE]Q(z(w0> <d. (3.2.8)

This completes the proof of the lemma. O

Remark: The above argument can be used to show directly that F' is rational (as a function in
€) when restricted to a Segre variety. However this type of information is not enough, in general,
to conclude the rationality of F: Let M C C? be a strongly pseudoconvex hypersurface defined
by [w*> = (1 + |2/*)* and g = /w. The Segre variety Q. of M for each (z,w) is defined by
wn = (1+ 26)2. ng(z,w) = il%g, which is a polynomial as a function in £ for w # 0.

w
The following lemma is motivated by Lemma 5.4 in [HJ]:

Lemma 3.2.6. Let H = w with R(0,0) # 0 be a rational map from C?\ {R = 0} into
CN, where Pj,5 = 1,--- ,N,R are holomorphic polynomials and their greatest common divisor
(Py,---,Py,R) = 1. Assume that there is an open subset U of M, such that for each p € U with
wy # 0 and, as a rational function in §, deg(H|q,) < k with k > 0 a fived integer. Then deg(H) < k.

Proof. Set
A={(&n) eC®: Pi(&n) == Pn(&n) = R(&n) =0} (3.2.9)

Then A has at most finitely many points. It is easy to see that if ), does not pass through any
point of A, then as a rational function in &, the degree of H|g, is the same as the degree of H as a
rational function in all variables. Thus it only remains to show the existence of (zg,wy) € U such
that Q(.g,we) N A = 0. Indeed, fix (§o,m0) € A, then &y # 0 or ng # 0. (§0,7m0) € Q(29,uwo) if and only if

—4 c = =7 _ =5 =
cofoza + iao(fozg + 2€0) + woly + 25€0 + €20 = 1. (3.2.10)

The collection of such pairs {(zg, wp)} is a complex subvariety of complex dimension 1. Thus {(z,w) €
Cc?: Qw) NA F# ()} is a finite union of complex subvarieties of complex dimension 1. But U C M,
is of real dimension 3. Thus there exists (20, wq) € U such that Q( ,,) NA = 0. O

Notice that our F¢ is holomorphic in D, and thus at 0. As a consequence of Lemma 3.2.5 and

Lemma 3.2.6, we have the following:
Lemma 3.2.7. Let F¢,d be as in Lemma 3.2.5. Then degF© < d.

The following three lemmas will show the uniform boundedness of the coefficients of F*.
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m .

Lemma 3.2.8. Let p(z) = > a;z" + 1 be a holomorphic polynomial in C. Assume that p(z) # 0 in
i=1

A, where A is the unit disk centered at 0 in C. Then |a;| < Cp, for all 1 < i < m, where Cy, is a

constant depending only on m. Consequently, |p(z)] < mCp, + 1 in A.

Proof. We write p(z) = a;II¥_, (2 — z;), where 1 < k < m is the largest number [ such that a; # 0,

and {z;}¥_, are the roots of p(z) in C. Notice that p(0) = 1 and p(z) # 0 in A, we get |z;| > 1 for all

1 <i <k, and |apIT¥_ 2| = 1. Thus |ag| < 1. Moreover, by applying Vieta’s formula, we have for

each 1 <j<k—1,

El1<"‘<lj Rl Rl
LS

|ak—j| = ‘ | < Cm

for a certain constant C), depending only on m. O

Lemma 3.2.9. Let p(z) = ZTZ\:1 aa2®+1 be a holomorphic polynomial in CN, N > 1. Assume that
p(2) # 0 in BY. Then |as| < Con for all 1 < la] < m, where Cyn is a positive constant depending

only on m.

Proof. Fix z € OBY. Set p(¢) = p(£2),& € A, which is a holomorphic polynomial in C. Noting that
p(§) # 0 in A, by Lemma 3.2.8, [p(§)| < mCy, + 1, where C,, is as in Lemma 3.2.8. Consequently,
Ip(2)| < mCy, +1,¥z € BY. By the Cauchy estimate, we conclude that there exists some constant
5’m such that |a,| < ém for all 1 < |a] < m. ]

Lemma 3.2.10. Let F€ d be as in Lemma 3.2.5 and assume that F€(0) = 0. Write F¢(z,w) =
gzgz;, where P¢(z,w) = > asziwj,Qg(z,w) = > bgjziwj + 1. Moreover (P¢,Q°) = 1.
’ 1<i+j5<d 1<i+j<d

Then |af;| < C,|bj;| < C for some constant C' depending only on N.

Proof. Notice that there exists 7 > 0 independent of 0 < € < 1 such that B(0,7) C D, and Q°(z,w) #
0 in B(0,7). As an application of Lemma 3.2.9, one can show the uniform boundedness of \bf-j\ by
considering Q(z,w) = Q¢(y/rz, /rw). Consequently, P¢ is uniformly bounded in B(0,r) for all e.

And the uniform boundedness of a;; follows from the Cauchy estimate. 0

Set Mg = {(z,w) € C?: p = eo(|2|® + cRe|z|?2%) + |w|? + |2|'° — 1 = 0}. Notice that My has the
Kohn-Nirenberg property at the point (0, 1). Here recall that (see [HZ]) a real hypersurface M C C"
is said to satisfy the Kohn-Nirenberg property at p € M, if for any holomorphic function A # 0 in
any neighborhood U of p in C™ with h(p) = 0, the zero set Z of h intersects M transversally at some
smooth point of Z near p. As an immediate application of Theorem 3.6 in [HZ], one has the following

lemma,

Lemma 3.2.11. Let My be as above. Then any holomorphic map sending an open piece of My into

OBY is a constant.

We are now ready to prove our main theorem.
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Proof of Theorem 3.1.2. Seeking a contradiction, suppose the statement in the main theorem

does not hold. Then for a certain positive integer N and for a certain sequence 1 > ¢ — 0, M,

are locally holomorphically embeddable into S?V~! for any €. For each of such ¢, write a local
holomorphic embedding as F'*. Then, by Lemma 3.2.3, F'* extends to a rational and holomorphic
map over D,. After composing with an automorphism of BV, we can assume that F¢ (0) =0.

By Lemma 3.2.7 and Lemma 3.2.10, we can write

d € . .
k alnJ
> aZ'w
i+j=1
d b
3 bz?ziwj +1
i+7=1

F*(z,w) =

(3.2.11)

N(N+1)
2

where d = * and |agf| < C, [bjk| < C for all 4, j with C' a constant as in Lemma 3.2.10. Hence

after passing to a subsequence if necessary, we can assume that af-;? — aij,bf-;? — bjj as k — oo

d . .
for some a;; € C,b;; € C for all i,j. Set F(z,w) = ggzg, where P(z,w) = > a;z'w’ and
’ i+j=1

Q(z,w) = Z?ﬂ-:l bijz'wl + 1. Let V = {(z,w) € C? : Q(z,w) = 0} be the variety defined by the
zeros of Q(z,w) in C2. Tt is easy to see that for any open subset K CC C2\V, we have [ converges
to F uniformly in K. Pick pg € M\ V and a neighborhood U of py with U cC C2\ V. F¢ converges
to F uniformly in U. Notice that for any p € U N M, there exists pj € M, such that p, — p as
k — oo. Then ||F(p)| = limg—wo [|[F(px)|| = 1. By Lemma 3.2.11, F is a constant map from DN M
into the sphere. This is a contradiction, for we know that F'(0) = 0. The proof of Theorem 3.1.2 is

complete. B

Remark 3.2.12. It is clear that with the same proof, we can construct a lot of more similar examples

as i Theorem 3.1.2.
Next, to see that M. can be holomorphically embedded into the generalized sphere in C® with
one negative Levi eigenvalue, we observe that Re(|2|22%) = (|27 + z|? — |27 — 2|2). Thus the map

F(z,w) = (Veozt, %\/5070(27 + 2),w, 2%, ez, %\/6070(27 —2))

holomorphically embeds M, into the generalized sphere in C® defined by S = {(Zy,---, Zg) € C%:
>5o1 125 = 1Z6]* = 13.
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