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ABSTRACT OF THE DISSERTATION

Programming and Runtime Support for Enabling

Data-intensive Coupled Scientific Simulation Workflows

By FAN ZHANG

Dissertation Director:

Manish Parashar

Emerging coupled scientific simulation workflows are composed of multiple component ap-

plications that interact and exchange data at runtime. Coupled simulation workflow enables

multi-physics multi-model code coupling and online data analysis, which has the potential

to provide high-fidelity modeling and accelerate the simulation data to insight process.

However, running coupled simulation workflows on extreme-scale computing systems

presents several challenges. First, most workflow component applications are originally

developed as programs that execute independently. Composing a workflow requires the

programming support to glue the component applications, orchestrate their executions and

express data exchange. Second, simulation workflow requires extracting and moving data

between coupled applications. As the data volumes and generate rates keep growing, the

traditional disk I/O based data movement approach becomes cost prohibitive and workflow

requires more scalable and efficient approach to support the data movement. Third, the cost

of moving large volume of data over system interconnection network becomes dominating

and significantly impacts the workflow execution time. Minimize the amount of network

data movement and localize data transfers in the network topology is critical for reducing

such cost. To achieve this, workflow task placement should exploit data locality to the

extent possible and move computation closer to data.
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This thesis addresses these challenges related to workflow composition, data manage-

ment and task placement, and makes the following contributions: (1) This thesis presents

DIMES data management framework to support memory-to-memory data movement be-

tween coupled applications. DIMES co-locates in-memory staging on application compute

nodes to store data that needs to be shared or exchanged, and enables accessing the data

through array-based query interface. (2) This thesis presents CoDS task execution frame-

work to support workflow composition and execution, which implements the task execution

programming interface for composing customized workflow and orchestrating the execution

of component applications. (3) This thesis presents communication- and topology-aware

task mapping, which implements a holistic approach to map workflow communication graph

onto physical network topology. The method effectively reduces the total size of network

data movement and reduces the workflow communication time. The research concepts and

software prototypes have been evaluated using real application workflows on extreme-scale

computing systems.
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Chapter 1

Introduction

With the fast growing computational power of supercomputers, scientific simulation is able

to realize finer granularity and plays an important role in driving cutting edge scientific

research. Moreover, scientific simulations increasingly formulate as coupled workflows that

consist of multiple interacting applications, which enables code coupling and online data

analysis, and has the potential to achieve high-fidelity modeling and accelerate the data to

insight process.

This dissertation addresses the challenges associated with programming and runtime

support for enabling coupled simulation workflows on extreme-scale computing systems. In

this introductory chapter, it starts with brief descriptions on the background and research

problems, then presents an overview of the thesis research and contributions. This chapter

concludes with the outline of the dissertation.

1.1 Background

Emerging coupled simulation workflows are composed of multiple applications that interact

and exchange data at runtime. Simulation workflows running at extreme scale have the

potential to achieve higher accuracy and accelerate the data to insight process. Multi-

physics multi-model simulation workflow simulates different aspects of the phenomena being

modeled by coupling multiple physical models. For example, in the Community Earth

System Model (CESM) [28] application workflow, separate simulations are coupled to model

the interaction of the earth’s ocean, atmosphere, land surface and sea ice. Meanwhile, online

data analytics workflow supports analyzing raw simulation data while it is being generated.

For example, online analytics workflow for combustion simulation S3D [27] extracts and

streams simulation data to a number of analysis operations, e.g., visualization, descriptive
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statistics, which execute concurrently and in parallel with the simulation.

However, running coupled simulation workflows on extreme-scale computing system is

non-trivial. Simulation workflows are generating large volumes of data that needs to be

dumped to storage system, shared with another coupled application, or analyzed and pro-

cessed in a timely manner to extract scientific insights. As the volumes and generation rates

of the data grow, the costs associated with extracting data from simulation and transport-

ing it for coupling and analysis have become the dominating overheads, which makes the

traditional disk I/O based data interaction approach cost prohibitive and often infeasible.

In order to mitigate the increasing performance gap between computation and parallel

I/O, the data staging approach has been proposed to accelerate I/O operations, support

memory-to-memory data coupling, and enable online simulation-time data analysis and

processing. In this approach, data staging software builds a scalable data management

layer on the extreme-scale machine, and utilizes DRAM, Non-volatile Memory (NVRAM)

or Solid State Drive (SSD) for staging the simulation data. Recent research work in data

staging has focused on the following directions.

I/O forwarding and acceleration. I/O forwarding technique has been used to trans-

parently offload expensive I/O operations to dedicated data staging nodes or I/O nodes.

This technique enables asynchronous I/O and reduces the impact of I/O on simulation.

Examples include DataStager [10], GLEAN [63], ADIOS [53], Nessie [57], IOFSL [13]. Sim-

ilarly, burst buffer has been proposed to absorb bursty application I/O behaviors by inte-

grating NVRAM or SSD based buffers into the compute nodes or I/O nodes on extreme-

scale systems. Examples include Tianhe-2 [68], NESRC Cori [6] and ORNL Summit [8]

supercomputers.

Runtime data coupling enables efficient memory-to-memory data sharing between

applications that are part of a coupled workflow. Data staging software, such as DataS-

paces [35], Flexpath [29], H5FDdsm [19], builds a scalable data management layer for staging

of simulation data that needs to be shared or exchanged, and utilizes the high-performance

network interconnect for data movement.

Online data analysis and processing. Data staging software can be used to build

online data analysis and processing systems that analyze the simulation data while it is being
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generated. Analysis operations can be placed in-situ on the same compute nodes that run

the simulation code, such as in Darmaris/Viz [37], FP [52], GoldRush [74], or in-transit on

a set of separate and dedicated staging nodes, such as in ActiveSpace [34], PreDatA [73].

Several recent research efforts, e.g., JITStager [9], FlexIO [75], DataSpaces [16, 46] also

provides the flexibility of supporting both in-situ and in-transit analysis placement.

Recent data staging research brings opportunities for improving the performance of par-

allel I/O, data sharing and analysis in a coupled simulation workflow. However, enabling

workflow execution on extreme-scale systems still presents programming and runtime chal-

lenges in the following aspects: (1) Workflow composition - compose a workflow by coupling

the component applications; (2) Data management - manage the data sharing and exchange

between coupled applications; (3) Task placement - place the application processes onto the

physical compute nodes and processor cores. These challenges are the focus of this thesis

and are described in more details in the next section.

1.2 Research challenges

Coupled simulation workflow builds on component applications that are originally developed

as programs that often execute independently, without considering the need for coupling.

As a result, composing a workflow using existing component applications requires program-

ming support. First, workflow composition requires the programming support for

orchestrating the application executions. This allows programmers to express the

control flow for the workflow execution, specify data dependencies between applications.

Second, workflow composition requires high-level data abstraction that allows

programmers to effectively express the data sharing and exchange between the

coupled applications.

Coupled simulation workflow requires extracting data from one simulation, and transfer-

ring and redistributing the data to another simulation or analysis. Traditionally, workflow

applications share and exchange data using distributed file systems, such as Networked

File System (NFS) [61], Parallel Virtual File System (PVFS) [23], General Parallel File

System (GPFS) [62], Lustre [5]. The file-based disk I/O approach enables applications to

use common data access interfaces (e.g., POSIX I/O) and a wide variety of scientific data
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formats (e.g., HDF5 [4], NetCDF [7]), which brings portability and flexibility to the soft-

ware development. But the increasing performance gap between computation and disk I/O

introduces significant overhead and limits the data exchange performance. As the volumes

and generation rates of the data grow, the traditional disk I/O based coupling approach

becomes cost prohibitive and often infeasible.

Memory-based coupling approaches have been developed to address the increasing per-

formance gap between computation and disk I/O. Direct data movement approaches, such

as Model Coupling Toolkit [49], FlexPath [29], enable memory-to-memory data redistribu-

tion directly between coupled applications. Direct data movement reduces the latency by

avoiding extra data transfers. However, existing implementations of direct data movement

only support sharing data between concurrently running applications, because the avail-

ability of data is dependent on the presence of data producer applications. Staging-based

data movement approach, such as DataSpaces [35], H5FDdsm [19], uses dedicated staging

servers to support data sharing and exchange between the coupled applications. The more

persistent storage space on staging servers is capable of supporting data exchange for both

concurrently and sequentially coupled applications. But staging-based data movement in-

troduces performance overhead as it transfers data twice, from application to the staging

servers and then to the application. Moreover, this approach requires allocating additional

server resource to buffer the data. We need a data management mechanism that

can support memory-to-memory data sharing for different coupling patterns,

provide high-performance data movement, and minimize the use of additional

resource.

Even with the memory-based approach, moving large volume of data over system in-

terconnection network can still impact the performance of workflow execution. Workflow

applications are often tightly coupled, and the data exchange is performed frequently. The

cost (latency and energy) associated with data exchanges in these cases can dominate. Min-

imizing the amount of data movement over network, and localizing data transfers within the

network topology is critical for reducing such costs. Task placement determines the map-

ping of workflow application processes to physical processor cores, and plays a significant

role in minimizing and localizing data movement.
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However, effective task placement on extreme-scale computing systems is challenging.

System architecture of the largest supercomputers becomes highly hierarchical, with in-

creased core count per compute node and increased number of compute nodes that are

interconnected by complex network topologies, e.g., 3D torus, Fat tree, Dragonfly. On-node

data movement is more efficient than off-node data movement that requires transferring

data over the interconnection network. Data movement between compute nodes that are

nearby in the network topology is more efficient than between compute nodes that are

long-hop away. As a result, workflow task placement should exploit data locality

to the extent possible, increase the size of on-node data exchange by moving

computation closer to data, and map the workflow communications onto the

interconnected compute nodes in a topology-aware manner.

1.3 Overview of thesis research

The overall goal of this thesis is to address the research challenges related to workflow

composition, data management and task placement for coupled simulation workflows, which

are described above. This section presents an overview of thesis research.

This thesis presents the DIMES data management framework, which implements the

programming interface and runtime mechanism for sharing data between coupled applica-

tions. DIMES provides a shared array data model, and implements array-based spatial

query interface to enable applications to access data of interest. In scientific simulations,

multidimensional arrays are commonly used as the main data structure to store the raw

simulation data. Data exchange between applications typically requires moving and re-

distributing arrays from one simulation to the other. The DIMES array data model and

query interface can meet the programming requirement of most coupled scientific simulation

workflows.

DIMES co-locates data staging with application execution on the same set of compute

nodes, and utilizes node-local storage resource, e.g., DRAM, to cache application data that

needs to be shared, exchanged or accessed. Co-located data staging provides low-latency

high-throughput write performance and significantly reduces the volume of data movement

over network as compared to staging-based data movement approaches. In addition, DIMES
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implements location aware data movement. Depending on the data locations, e.g., local

or remote memory, DIMES dynamically selects the appropriate transport mechanism to

support high-performance data transfer. For example, DIMES uses hardware-supported

RDMA network operation for fetching data resides on remote compute nodes, and uses

direct memory access to fetch data in node-local shared memory segment.

This thesis also presents the CoDS task execution framework, which implements the

programming interface and runtime mechanism for task execution and placement. CoDS

extends the Directed Acyclic Graph (DAG) task graph abstraction used by traditional

scientific workflow systems to represent coupled simulation workflows. Its programming

environment is exposed as a library to existing languages, and implements task execution

APIs to compose a workflow. CoDS workflow consists of a driver program and a number

of task programs. Each task program represents a component application, and the driver

program couple the component applications and compose the actual workflow by combining

sequential, concurrent or iterative execution of task programs.

CoDS implements locality-aware task placement. It attempts to place task execution on

compute nodes that contain the largest portion of its input data. In particular, CoDS allows

programmers to express locality preferences for a task by providing data hints, e.g., name

and spatial region of the array data that to be accessed by the task. In addition, CoDS

allows users to programmatically customize and control the task placement, according to

the specific needs of the targeted workflow. Programmers can divide the allocated com-

putational resource into functional partitions, and explicitly express placement affinity by

providing location hint, e.g., the preferred functional partition for the task execution. For

example, online data analytics workflow requires the flexibility [72, 16, 75] to place analysis

either “in-situ” on the same compute node that runs the simulation code, or “in-transit”

on a dedicated set of compute nodes. CoDS enables programmers to construct such multi-

level functional partitions, e.g., “simulation”, “in-situ”, “in-transit”, and flexibly control

placement.

Finally, this thesis presents communication- and topology-aware task mapping, which

implements a holistic approach for mapping workflow communications onto a physical net-

work topology, with the goals of reducing the communication costs. The key underlying
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idea is to localize communication at two levels. First, the task mapping improves data

locality by placing intensively communicating processes onto the same multi-core compute

node, in order to reduce the volume of data movement over the network fabric. Second,

the task mapping improves data locality by placing communicating processes onto phys-

ically “close” compute nodes in the network topology, in order to reduce the number of

hops for network-based data transfers. While existing research [69, 11, 18, 66] has focused

on mapping frequently communicating processes of a single application, mapping coupled

simulation workflows consisting of multiple interacting applications has not been studied.

Our method targets coupled simulation workflow, and aims at reducing the cost caused by

both intra-application and inter-application data movement.

1.4 Contributions

This thesis makes the following contributions.

• Design and implementation of DIMES, which provides programming and runtime

support for data sharing and exchange between coupled applications. DIMES enables

distributed in-memory data staging, and high-performance memory-to-memory data

movement.

• Design and implementation of CoDS, which provides programming and runtime sup-

port for workflow task execution and placement. CoDS supports locality-aware and

flexible task placement, by utilizing programmer-provided placement hints informa-

tion, e.g., data hints for expressing locality preference, location hints specifying exe-

cution location preference, etc..

• Design and implementation of communication- and topology-aware task mapping for

coupled simulation workflows, which effectively reduces the total size of data move-

ment over network fabric and reduces the hop-bytes for network-based data transfers.

• Integration of the prototype implementations with several real-world coupled simula-

tion workflows in combustion and plasma fusion.
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1.5 Thesis outline

The rest of this thesis is organized as follows.

Chapter 2 presents motivating and representative workflow examples, and summarizes

the programming and runtime requirements.

Chapter 3 presents a high-level overview of the technical approaches for realizing the

programming and runtime support.

Chapter 4 presents the design, implementation, and evaluation for DIMES.

Chapter 5 presents the design, implementation, and evaluation for CoDS.

Chapter 6 presents communication- and topology-aware task mapping for optimizing

the communication performance of coupled simulation workflow.

Chapter 7 summarizes the research work, presents concluding remarks and directions

for future work.
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Chapter 2

Motivating applications and requirements

This research is largely driven by the experiences of dealing with the problems of data

management and task placement that arise in real world workflow applications. This chapter

presents representative workflow examples, describes and summarizes the key programming

and runtime requirements for supporting coupled simulation workflows on extreme-scale

computing systems.

2.1 Motivating coupled simulation workflow scenarios

2.1.1 Online data analytics workflow for combustion simulations

Workflow description

S3D data analytics workflow couples S3D [27] - a massively parallel turbulent combustion

simulation with data analysis operations, in order to enable online analysis of raw simulation

data while it is being generated. This online processing approach enables more fine-grained

exploration of raw simulation data, which is not feasible with the traditional post-processing

approach due to the significant I/O overhead.

Figure 2.1 illustrates the data interactions between coupled applications, as well as the

execution logic of applications. At runtime, the workflow periodically extracts and transfers

selected chemical species to the analysis operations. In this specific example, S3D is cou-

pled with three data analysis operations including parallel visualization (VIZ), descriptive

statistics (STAT), and topological analysis (TOPO). As shown in Figure 2.1, analyses are

performed with different frequencies. For example, visualization is executed after every 2

simulation time steps, while descriptive statistics is executed after each simulation time

step.
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Figure 2.1: Illustration of data interactions between coupled applications and execution
logic for the S3D data analytics workflow. Solid arrows denote the data flow between
workflow applications.

Requirements

First, the workflow requires timely extraction and redistribution of chemical species from

S3D simulation to analysis operations. Overlapping data movement with the computation

is desirable, which can reduce the data movement overhead as perceived by the simulation.

Second, in order to effectively utilize the computation resource allocated for the workflow,

it requires data-driven execution which starts the analysis only when all required input data

becomes available. Third, the workflow requires placement flexibility for analysis tasks. For

example, the workflow can execute an analysis task in-situ to reduce the amount of data

movement over network, if the communication between S3D and the analysis is a dominant

cost factor. Similarly, the workflow should also have the ability to execute an analysis task

in-transit to minimize the impact on simulation, if the cost of communication between S3D

and the analysis is insignificant.

2.1.2 Coupled DNS-LES workflow for combustion simulation

Workflow description

Coupled DNS-LES workflow couples the direct numerical simulation (DNS) solver with the

large eddy simulation (LES) solver in order to perform a model assessment for combustion

science. The DNS solver provides a high degree of accuracy on fine grids, but the accuracy

comes by running the simulation on a large number of processor cores and keeping the
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simulated timescale small. As a result, it is very expensive to use DNS to simulate longer

timescales that are typically the conditions of practical interest. In contrast, LES models

can be used with coarser grids to simulate longer timescales with fewer computation re-

source, but with decreased simulation accuracy. Coupling DNS and LES provides a testbed

to enable development and assessment of practical LES models. DNS and LES executes

concurrently in lockstep and computes on identical physical domain, but with different grid

sizes. At each time step, the base solution field computed by DNS simulation is filtered and

transferred to LES simulation.

Figure 2.2: Illustration of data interactions between coupled applications and execution
logic for the coupled DNS-LES workflow for combustion science. Solid arrows denote the
data flow between workflow applications.

Figure 2.2 illustrates the data interactions between coupled applications, as well as the

execution logic of applications. In this specific example, DNS is coupled with one instance

of LES. Data is transferred from DNS to LES at every sub step, i.e., 6 times in a single

time step, and each time step typically requires only a few seconds of wall-clock time. LES

can not proceed to its computation phase until it receives all required data fields for current

sub step.

Requirements

First, the workflow requires scalable and low-latency data movement for the highly frequent

interaction between DNS and LES solvers, in order to support the lockstep execution.

Second, as the workflow executes on increasing number of compute nodes and exchanges

large volumes of data, the communication cost can becomes dominating. As a result,

task placement that takes into consideration both the communication pattern and system
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network topology is desirable to optimize and reduce the communication cost.

2.1.3 Coupled XGC1-XGCa workflow for plasma fusion simulation

Workflow description

Coupled XGC1-XGCa workflow provides insight into plasma edge physics in magnetic fusion

devices, and consists of two axisymmetric kinetic transport codes XGC1 and XGCa [48, 30].

Simulation of plasma edge is a multi-scale problem that involves many disparate time and

length scales. Though XGC1 could solve multi-scale problem alone, XGC1 has numerical

dissipation and model equation errors, and requires significant computing power when sim-

ulating large quantity of particles. In contrast, XGCa uses a coarser mesh and requires

much fewer particles, and can be used as an accelerator for XGC1.

Figure 2.3: Illustration of data interactions between coupled applications and execution
logic for the coupled XGC1-XGCa workflow. Solid arrows denote the data flow between
coupled applications.

Figure 2.3 illustrates the data interactions between coupled applications, as well as

the execution logic of applications. XGC1-XGCa workflow executes for multiple coupling

iterations. In each coupling iteration, the workflow first executes XGC1 for n (n is 7 in

the illustrated example) time steps to compute turbulence data and particle state. XGC1

needs to write turbulence information generated at each time step. After the plasma has

evolved to a quasi-steady turbulent state, the execution is switched to XGCa to evolve

the background profiles using the turbulence data from XGC1. XGCa needs to read the

turbulence data at each time step in order to proceed its execution.
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Requirements

First, data exchange between the sequentially coupled XGC1 and XGCa is decoupled in

time. Memory-based coupling requires the ability to cache intermediate data generated by

the simulations, and lookup and access the cached data on-demand. Second, as workflow

execution is being switched between the two simulations, locality-aware task placement is

desirable to execute newly launched simulation processes on compute nodes which have

cached the largest portions of the required input data.

2.2 Programming and runtime requirements

2.2.1 Workflow composition

As illustrated by the examples above, coupled simulation workflows are typically composed

of multiple applications. However, most component applications are originally developed

as independent programs, without considering the need for coupling. As a result, extended

programming support is required to compose a workflow and couple the component appli-

cations.

First, composing a workflow requires the programming support to express the control

flow for the workflow execution, and specify the data dependency between applications

(or called tasks). In addition, many coupled simulation workflows require the support for

iterative or data-driven execution, which dynamically spawns task execution based on pre-

vious computation results. As a result, programming support for workflow composition

also requires the ability to express dynamic task execution. Traditional scientific workflow

management systems [3, 32, 12] use directed acyclic graph (DAG) based task graph abstrac-

tion to represent a workflow, where each graph vertex represents a workflow task and each

edge identifies dependency between tasks. However, most existing systems support static

DAG that needs to be fully specified before executing the workflow, which can not express

dynamic task execution.

Second, composing a workflow requires the programming support to express the data

sharing and exchange between the coupled applications that are part of a workflow. Generic

low-level parallel programming abstractions, such as message-passing interface (MPI) [42],
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can be used to implement the data exchange. However, it is nontrivial to program with such

low-level communication interface, given the fact that data is distributed over a massive

number of parallel processes in each application and the interacting applications may have

distinct data distribution types. Partitioned global address space (PGAS) programming

languages [22, 26, 56, 25] emerge recently and provide high-level data abstraction, such as

shared array, which is more expressive and hides low-level details. However, PGAS shared

array data abstraction is language-dependent and only accessible by processes (or threads)

in the same application. It currently does not support sharing data between applications of

distinct programming models, such as between PGAS and MPI applications. As a result, we

need data abstraction and programming interface that is expressive, independent of specific

parallel programming languages. This would allow programmers to effectively express data

sharing and exchange between heterogeneous coupled applications.

2.2.2 Data management

As illustrated by the examples above, data management for coupled simulation workflow

requires staging, transfer and redistribution of a large volume of data between the coupled

applications. This section summarizes the requirements for data management.

Data indexing and lookup: Data exchange for coupled simulation workflow requires

moving data, such as global array, from one application running on M processes to another

application running on N processes, i.e., M×N data redistribution problem. For example,

each data consumer application process may read a subarray of the global array data for

local computation. Efficient M×N data redistribution requires the ability to index the data

generated by the data producer application and support quick data lookup for each read

request.

High-performance data movement: Coupled simulation workflow requires efficient and

scalable data movement to support coupling at scale. First, the data movement needs

to be low latency, and overlap with the application computation, so as to minimize the

overhead perceived by the applications. For example, the DNS-LES workflow requires fast

memory-to-memory data movement to support the highly frequent data interaction between

DNS and LES solvers. Second, the data movement needs to utilize the most suitable data
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transport mechanism. For example, the data movement may be between processes on the

same compute node, or on different compute nodes. It is desirable to adapt the underlying

transport mechanism based on data location, e.g., using network data transfers for remote

data movement, and shared memory which bypasses network devices for node-local data

movement.

2.2.3 Task placement

Task placement determines where the workflow tasks are executed, and the mapping of

application processes to physical processor cores, which has significant impact on the data

communication performance. This section summarizes the requirements for task placement.

Locality-aware and flexible task placement: Locality-aware task placement that moves

computation closer to data is critical for reducing the size of data movement over network.

In addition, recent research [72, 16] has shown the need for flexible placement of data

analysis tasks in online data analytics workflow, such as in-situ analysis, in-transit analysis

or combined in-situ/in-transit analysis. As a result, it requires the ability to flexibly place

the analysis tasks, in order to meet the various placement requirements.

Topology-aware task mapping: To effectively reduce the cost of data movement in cou-

pled simulation workflow, task mapping needs to consider both the communication pattern

exhibited by the workflow and the network topology of interconnected compute nodes. For

example, appropriate placement of heavily communicating application processes onto nearby

compute nodes in the network topology can reduce the number of hops for data transfer,

and potentially reduce the contention by localizing the communications in the network.
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Chapter 3

Overview of technical approaches

Chapter 2 describes the programming and runtime requirements for supporting coupled

simulation workflows. This chapter presents an overview of the technical approaches and

implementations for realizing the required programming and runtime support. In addition,

this chapter describes the foundational technology, i.e., DataSpaces framework, which is

used by implementations presented in this thesis.

3.1 Overview of technical approaches and implementations

A high-level overview of the technical approaches for addressing the programming and

runtime requirements is presented as follow.

 S3D data analysis workflow DNS-LES workflow XGC1-XGCa workflow

S3D

Viz.

Stat.

Topo.

XGC1

iteration

XGCa

DNS

LES-1

Bundle 1

LES-2

LES-3

Data dependency

Data-driven task execution

Data flow between concurrent tasks

Figure 3.1: Illustration of task graph based representations for the example workflows.

The proposed programming approach for workflow composition uses the task graph

abstraction to represent a workflow, which is based on the DAG task graph used by tradi-

tional scientific workflow management systems [3, 32]. Each vertex in the DAG represents

a task, i.e., workflow component application, and each edge represents the data depen-

dency. A task can start after all its parent tasks finish executions. In order to represent

coupled simulation workflows, we extend the basic DAG task graph abstraction with the
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abilities to annotate the data flows between concurrently executing tasks, express iterative

and data-driven task execution. The task graph abstraction represents the control flow and

data dependency between applications, and captures the inter-application communication.

Figure 3.1 illustrates the task graph based representations for the workflows described in

Chapter 2.1. A detailed description of the workflow representation is presented in Chap-

ter 5.2. The proposed programming approach is exposed as a task execution library to

existing language. Programmer develops a driver program to compose a workflow, which

implicitly implements the workflow task graph. A driver program orchestrates the execu-

tions of task programs that are part of a workflow, and drives the workflow progression.

Array Data Model

Insert 'Array1' 

lb: (0,0) ub: (3,3)

App1

App2

Array 1
Array 2

Insert 'Array2' 

lb: (0,0) ub: (4,4)

Retrieve 'Array1' 
lb: (2,2) ub: (3,3)

Retrieve 'Array2' 
lb: (0,0) ub: (1,1)

Figure 3.2: Illustration of sharing two 2D arrays through the array-based data model. lb,
ub denote the bounding box of the inserted/retrieved array region.

The proposed programming approach for workflow composition uses array-based data

model to express data sharing and exchange. In scientific simulations, a multidimensional

array is commonly used as the main data structure to store data, where the global array is

decomposed into non-overlapping subarrays and distributed over the simulation processes.

Data exchange typically involves moving and redistributing arrays from one simulation

to another. Array-based data model presents the shared array abstraction, and enables

different applications to access the shared array data using specialized insert/retrieve query

interface. Figure 4.2 illustrates the sharing of two 2D arrays between applications using

the array-based data model. This higher level data model provides a more natural way for

applications to share and exchange array-based scientific data.



18

Processor cores for executing 

workflow applications

DRAM

Figure 3.3: Illustration of co-locating in-memory data staging on application compute nodes.

This thesis proposes co-located in-memory data staging approach to support run-

time data management, and enable memory-based parallel data exchange between coupled

applications. Unlike existing data staging approaches that store data on a set of dedicated

compute nodes, our approach co-locates the data staging on the same set of compute nodes

that execute the workflow applications, and utilizes the node-local storage resource to cache

data that needs to be shared or exchanged. Figure 3.3 illustrates the co-located in-memory

data staging. This approach caches data in local memory and thus provides low-latency

high-throughput write performance, and enables transferring data directly between coupled

applications.

Hardware	informaon

Runme	informaon

Programmer-provided	

placement	hint

Input

Task

placement
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Output

Data	hint:	locality	preference

Loca�on	hint:	func�onal	

par��on	affinity

Locality-aware	task	placement

Flexible	task	placement	

through	affinity	control

Hint-based	task	placement

Figure 3.4: Conceptual view of the hint-based task placement.

This thesis proposes hint-based task placement, which combines the programmer-

provided hint information and runtime status to make a better task placement decision.

Figure 3.4 illustrates the conceptual model of the approach. Programmers can specify

placement hint according to their knowledge and expertise, which provides a piece of in-

sightful information that can be utilized by the runtime system. Programmers can express

locality preference hint for a task, e.g., name and spatial region of the task’s input array
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data, which is used by the runtime to perform locality-aware placement and move task

computation closer to the required data. In addition, hint-based task placement enables

application scientists to functionally partition the computation resource and explicitly ex-

press the placement affinity of a task, i.e., the preferred functional partition for the task

execution. For example, as described in Chapter 2.2, online data analytics workflow re-

quires placement flexibility for analysis tasks that are coupled with the simulation. In this

case, programmers can partition the computation resource to create different placement

locations, e.g., “simulation”, “in-situ”, “in-transit”, and control which partition to execute

a task by providing the location preference hint.
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APP1
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Figure 3.5: Illustration of communication- and topology-aware task mapping.

This thesis proposes a communication- and topology-aware task mapping ap-

proach to minimize the communication cost in a coupled simulation workflow, by reducing

the volume of data transfers over network as well as the number of hops for network data

transfers. This approach essentially performs the mapping of workflow application processes

to the physical compute nodes interconnected by the network fabric. It analyzes the logical

communication graph of a workflow, including both intra-application and inter-application

communications, and applies graph partitioning and topology mapping algorithms to map

the communication graph onto the network topology graph. Figure 3.5 uses a simple ex-

ample to illustrate the task mapping. APP1 runs 12 processes and APP2 runs 4 processes,

and each compute node has 8 processor cores. In this example, the task mapping reduces

the data movement over network by placing heavily communicating processes onto the same

multi-core compute node.
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Figure 3.6: Overview of thesis technical implementations.

Figure 3.6 presents an overview of the implementations, including DIMES data manage-

ment framework and CoDS task execution framework. DIMES implements the co-located

in-memory data staging, and implements the data insert/retrieve query interface based on

array data model. Chapter 4 presents technical implementation details for DIMES. CoDS

implements the task execution APIs to compose workflows that can be represented using

the proposed task graph abstraction, and implements the hint-based task placement. Chap-

ter 5 presents technical details for CoDS. In addition, we present the communication- and

topology-aware task mapping approach in Chapter 6.

3.2 Foundational technology - DataSpaces

The current prototype implementation builds on DataSpaces [35], which is a scalable data-

sharing framework targeted at current large-scale systems and designed to support dynamic

data interaction and coordination between coupled scientific applications. DataSpaces pro-

vides a semantically specialized shared space abstraction using a set of staging nodes. This

abstraction is derived from the tuple space model [24] and can be associatively accessed

by the interacting applications in a coupled simulation workflow. DataSpaces also provides

services for asynchronously extracting and indexing data from running applications, and en-

ables this data to be flexibly queried. DataSpaces is built on an RDMA-based asynchronous

memory-to-memory data transport layer called DART [36].

DataSpaces has been integrated with and deployed as part of the Adaptive IO System

(ADIOS) [54] framework distributed by Oak Ridge National Laboratories. ADIOS is an

open source I/O middleware package that has been shown to scale to hundreds of thousands

of cores and is being used by a wide range of applications.
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Chapter 4

DIMES - a distributed in-memory data staging and coupling

framework

4.1 Introduction

Data-intensive coupled simulation workflows require data generated by the data producer

application to be transferred and redistributed to the data consumer application. For

example, in the data analysis workflow for the S3D combustion simulation, variables such as

temperature and velocity needs to be transferred to multiple user-defined analysis operations

for online processing. Similarly in the climate modeling workflow that couples different

geophysical simulations such as atmosphere, land and sea-ice, boundary data consisting

of a large number of data fields needs to be frequently exchanged between the coupled

component models.

This chapter presents DIstributed MEmoray Space (DIMES) data management frame-

work to support distributed in-memory staging, and memory-to-memory data sharing and

exchange between applications that are part of a workflow. DIMES co-locates data staging

with application execution on the same set of compute nodes, and utilizes node-local stor-

age resource (e.g., DRAM in current prototype) to cache and store application data that

needs to be shared, exchanged or accessed. In scientific simulations, a multidimensional

array is commonly used as the main data structure to store data, where the global array is

decomposed into non-overlapping subarrays and distributed over the simulation processes.

Data exchange typically involves moving and redistributing arrays from one simulation to

another. DIMES provides array data model to user applications, and its array-based query

interface enables applications to retrieve data of interest by specifying spatial constraint,

e.g. Cartesian bounding box. In addition, DIMES implements data-location aware data

movement strategy. Depending on the data locations, e.g., local or remote memory, DIMES
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dynamically selects the appropriate transport mechanism to support high-performance data

movement. For example, DIMES uses hardware-supported RDMA network operation for

fetching data resides on remote compute nodes, and uses direct memory access to fetch data

in node-local shared memory segment.

Technical contributions of DIMES are summarized as below:

• DIMES provides scalable and efficient inter-application data sharing and exchange for

coupled simulation workflow. DIMES implements data-location aware data transfer

using high-performance RDMA network operations and on-node shared memory.

• DIMES co-locates data staging with workflow execution. DIMES implements a dis-

tributed in-memory object store on the compute nodes that run the workflow, and

caches application data in node-local memory. Co-located data staging provides low-

latency high-throughput write performance and reduces the volume of data movement

over network.

• DIMES supports data exchange for both concurrently and sequentially coupled ap-

plications. Existing approaches [49, 75, 29] can only support memory-based data

movement between simultaneously executing applications, and does not support data

exchange between sequential applications. DIMES has the capability to cache data

in on-node persistent shared memory segment, and enables access to data even after

the data producer application finishes its execution.

• DIMES is integrated into Adaptive IO System (ADIOS) I/O middleware [54], and

enables a large number of existing applications to benefit from in-memory coupling.

Applications using ADIOS APIs can switch from file-based to memory-based data

sharing, by changing the transport method in ADIOS configuration XML file. This

brings productivity and portability to application development.

• Hybrid data staging is supported by combing in-memory staging on both application

compute nodes and dedicated staging nodes. DIMES builds on and derives from our

previous work on DataSpaces, which caches data on a dedicated set of compute nodes,

and can co-exist with DataSpaces. As a result, coupled simulation workflows have

access to both local data staging and remote data staging (on DataSpaces servers).
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The remainder of the chapter is organized as follows. Section 4.2 describes DIMES data

abstractions. Section 4.3 presents DIMES system architecture. Section 4.4 presents the

design and implementation. Section 4.5 presents the programming interface and examples.

Section 4.6 presents evaluation results. Section 4.7 presents related research work and

Section 4.8 summarizes this chapter.

4.2 Coordination and data model

Workflow applications can express data exchange using two types of data abstractions that

are provided by DIMES, including shared space model and array data model.

Shared Space Model

put()

Data object

d d d
d

dd
d

d

App1 App2

get()

Figure 4.1: Illustration of data sharing through the shared space abstraction.

Shared Space Model is conceptually based on the tuple space model [41] and provides

the abstraction of a shared space of data objects which can be associatively accessed by the

workflow applications. Data in the space is abstracted as a tuple or object, and each object

is associated with a key. Most scientific applications represent data as multidimensional

array defined with Cartesian coordinate system. In this case, key associated with a object

can be defined as the multidimensional bounding box that describes the array region stored

by the object. As illustrated in Figure 4.1, applications can access data objects in the

shared space through one-sided put()/get() operators.

Array Data Model builds on top of the shared space of objects, and provides the

abstraction of a shared space of multidimensional arrays. Applications can directly access

the array region of interest through the data insert/retrieve queries with spatial constraints,

as illustrated in Figure 4.2. In this case, application only need to express what sub-array
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it is writing or reading, and does not need to handle details such as how many objects are

used to store the sub-array data and where the objects are located. This higher level data

abstraction provides a more natural way for workflow applications to share and exchange

array-based scientific data.

Array Data Model

Insert 'Array1' 

lb: (0,0) ub: (3,3)

App1

App2

Array 1
Array 2

Insert 'Array2' 

lb: (0,0) ub: (4,4)

Retrieve 'Array1' 
lb: (2,2) ub: (3,3)

Retrieve 'Array2' 
lb: (0,0) ub: (1,1)

Figure 4.2: Illustration of sharing two 2D arrays through the array data model. lb, ub
denote the bounding box of the inserted/retrieved subarray.

4.3 System architecture

DIMES builds on DataSpaces and inherits its client-server architecture. DIMES clients

build a distributed in-memory object store on the application compute nodes to cache data

that needs to be shared and exchanged. Applications data is typically represented as multi-

dimensional arrays, and each DIMES object stores the data of a subarray. DIMES servers

run on dedicated compute nodes, and implement a distributed indexing service to support

fast lookup of in-memory data objects. The distributed indexing service enables coupled

applications to perform array-based spatial queries to retrieve data from the object store.

Figure 4.3 presents a schematic view of DIMES system architecture. DIMES client and

server components build on a common communication layer - DART [36]. DART defines

portable communication primitives for asynchronous messaging and data transfers, and

implements these primitives using native network programming interfaces such as Cray

uGNI, Infiniband verbs, IBM DCMF and PAMI. DART provides low-latency and high-

throughput data transfer performance on high-end computing systems. As shown in the

figure, DIMES inherits DataSpaces’s client and server implementation, and retains all the
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DIMES client component

DIMES server component

Figure 4.3: DIMES system architecture. Shadowed boxes denote the core functional mod-
ules implemented for DIMES.

features supported by DataSpaces.

DIMES servers implement the following core functional module:

• Data lookup service enables fast lookup of data objects for data retrieve query. This

service constructs a specialized index based on in-memory object’s spatial attribute,

e.g., a Cartesian bounding box describing the subarray stored by the object. The data

lookup service builds its index on the distributed DIMES servers. Global dimension

of each newly inserted array is partitioned into non-overlapping regions of equal size.

Each DIMES server is assigned one array region, and only maintains indexes for data

objects (subarrays) that overlap with the assigned array region.

DIMES clients implement the following core functional modules:

• Query APIs defines the set of programming interface that used by applications to

share and exchange array-based scientific data. Detailed description of programming

APIs and examples is presented in Chapter 4.5.

• In-memory data store creates a temporary in-memory object store on application

compute nodes. This module manages the physical byte-addressable shared memory

segments allocated for the object storage, performs memory allocation for newly in-

serted object and deallocates evicted object. In addition, this module manages the
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RDMA registration for the shared memory segments, which enables RDMA-based

one-sided access to the in-memory data objects.

• Data locator/updater interacts with the server-side data lookup service to locate

objects that need to be fetched for data retrieve query. It also updates the distributed

indexing when new data objects are inserted by the applications or existing data

objects are deleted from the in-memory object store.

• Data transfer engine manages the data transport for data retrieve query. Comple-

tion of a retrieve query requires fetching data of one or multiple objects and assem-

bling the fetched data into a contiguous memory buffer provided by the application.

Data transfer engine dynamically selects the appropriate data transport mechanism

depending on the locations of the data object.

4.4 Implementation

The design objective of DIMES is to build distributed data staging that is co-located on ap-

plication’s compute nodes, and provide the array-based spatial query interface for workflow

applications to share and exchange data. This section presents the technical implementation

details that enable this design objective.

4.4.1 Node-local in-memory object storage

In the current implementation, each application process runs as a DIMES client, and imple-

ments a node-local in-memory object store to cache data inserted by the application. For

compute nodes that execute multiple application processes, multiple instances of DIMES

clients and object stores co-exist on the same compute node. Figure 4.4 presents a high-

level view of the implementation, which is composed of Memory Management and Object

Management subsystems.

DIMES client-side Memory Management manages a number of byte-addressable shared

memory segments as the storage space for data objects. DIMES uses POSIX shared memory

programming interface to create, open, map and remove shared memory segments, which is
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Figure 4.4: DIMES node-local in-memory object storage implementation.

portable and available on most Linux distributions. Data object stored by DIMES is write-

once read-only, and each DIMES client inserts application data to its local object store. As

a result, read access to a shared memory segment is granted to all DIMES clients running

on local compute node, but write access is only granted to DIMES client who creates the

shared memory segment. For example, as illustrated in Figure 4.4, the compute node has

two shared memory segments. DIMES client 1 and client 2 create shared memory segment 1

and 2 respectively, and have read access to both memory segments. However, only DIMES

client 1 has write access to shared memory segment 1, and client 2 has write access to shared

memory segment 2.

Memory Management implements a customized memory allocator, which allocates mem-

ory blocks from the shared memory segment to store newly inserted data objects, and deal-

locates memory blocks for evicted/deleted data objects. In addition, Memory Management

manages memory registration/deregistration to support RDMA-based data transport for

inter-node data movement. Most high-performance network requires explicit registration

of a memory buffer (using the RDMA network programming interface), in order to enable
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one-sided remote access to the buffer. DIMES client can perform registration using two

different approaches: (1) register each allocated memory block on-demand; (2) register the

entire shared memory segment in advance. The latter approach is preferred, because it re-

duces the overhead by minimizing the number of required RDMA buffer register/deregister

operations.

Object Management caches multiple versions of a data object in the node-local memory

space, and the maximum number of distinct versions can be defined by the programmer. For

example, in Figure 4.4, the number of distinct versions is set as 5, and Object Management

creates 5 slots where each slot uses a linked list to store the data objects. A new data

object is inserted to a slot according to the object’s version. In the current implementation,

we apply a object version mod num distinct version operation to decide in which slot to

insert new data object. Object Management also implements a versioning based garbage

collection mechanism to delete data objects with older versions. Object Management only

caches data objects of the most recent N versions, where N is the maximum number

of distinct versions. For example, when versions 2N + 1 and 2N + 2 of a data object is

inserted, versions N+1 and N+2 are deleted from the in-memory object store. In practice,

most coupled simulation workflows consists of applications that run iteratively and need to

share data generated in recent iterations. This mechanism works effectively for workflows

presenting such data interaction pattern.

4.4.2 Data lookup service

DIMES servers build a lookup service to enable fast lookup of in-memory data objects,

specifically for spatial queries that request a spatial region of the cached array data.

Central to the implementation is distributed indexing of in-memory data objects. The

key space of the index derives from the global dimension of the multidimensional array vari-

ables inserted by application. DIMES uses the Hilbert space filing curve (SFC) to linearize

the N-dimensional array domain into a 1-dimensional key space. Using this linearization, a

data cell of the array can be uniquely identified using a point in the key space, while a spa-

tial region of the array can be described by a set of intervals in the key space. As a result, a

N-d spatial query over the multidimensional array data is translated into a 1-d range query.
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Figure 4.5: Build distributed indexing: (1) construction of index key space by linearization
of application data domain using Hilbert SFC (shown as dotted lines); (2) partitioning and
distribution of the key space to DIMES servers.

Figure 4.5 illustrates the construction of the 1-d key space. Array1 is a 2D 4× 4 array, and

its linearized key space can be described by spatial bounding box {(0), (15)}. Array2 is a

2D 8× 8 array, and its linearized key space is {(0), (63)}.

Linearized key space is partitioned and distributed to DIMES servers, which distributes

the objects indexing and query processing workload. Each DIMES server is assigned a set

of intervals from the 1-d key space, and only maintains indexing for data objects whose

linearized spatial bounding box overlaps with the key space intervals assigned to the server.

Similarly, the server only handles data queries whose linearized spatial constraints overlaps

with the assigned key space intervals. The current prototype implementation evenly parti-

tions the 1-d key space into N intervals, where N is the number of servers, and each sever is

assigned a contiguous key space interval. This partitioning and distribution approach works

effectively when the data query load is evenly distributed over the entire data domain and

each query fetches a subarray of modest size. More complex partitioning and distribution

approaches can be implemented, e.g., distribute the key space based on application’s query

pattern, but this is beyond the scope of this thesis and can be investigated in future research
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work.

4.4.3 Data query processing

Application workflows can use DIMES insert/retrieve query interface to exchange array

data, and express the array region of interest by specifying the spatial constraint, i.e., a

N-dimensional bounding box. This section describes the processing of data insert/retrieve

queries.

Data insert query

A data insert query works as follows: (1) Client creates a new data object by allocating

a memory block from the shared memory segment, and copies application data into the

allocated memory block. (2) Client inserts the new data object into the node-local in-

memory object store. (3) Client selects the index servers based on the spatial constraint

specified in the query, and sends data update requests to the selected servers. Data update

request contains important metadata, e.g., data location, shared memory and RDMA buffer

information for the data object. (4) Index servers update the local index for newly inserted

data object, and stores the metadata of the object.

Data retrieve query

A data retrieve query involves the following steps: (1) Client selects the index servers based

on the spatial constraint specified in the query, and sends data lookup requests to the

selected servers. (2) Index servers performs local lookup, and responds to the querying

client with metadata for the data objects that need to be fetched. (3) After gathering all

the required metadata for the query, client fetches data from local or remote nodes and

returns the result data buffer to the user application.

4.5 Programming interface and examples

This sections describes the DIMES C programming interface (see Listing 4.1) that enables

array-based data insert and retrieve. It also presents programming examples to illustrate

the use of DIMES APIs to implement inter-application data sharing and exchange.



31

Listing 4.1: DIMES C programming interface.

// Define the g l o b a l dimension f o r array v a r i a b l e .
void dimes de f ine gd im ( const char ∗var name ,

int ndim , u in t 64 t ∗gdim ) ;

// Data i n s e r t query .
int dimes put ( const char ∗var name , unsigned int ver , int s i z e ,

int ndim , u in t 64 t ∗ lb , u i n t 64 t ∗ub , void ∗data ) ;

// Data r e t r i e v e query .
int dimes get ( const char ∗var name , unsigned int ver , int s i z e ,

int ndim , u in t 64 t ∗ lb , u i n t 64 t ∗ub , void ∗data ) ;

• dimes define gdim() defines the global dimensions of the array-based data variable to

be inserted or retrieved. Programmer-provided global dimension information is used

to achieve a balanced distribution of array indexing across DIMES servers.

– Input arguments: (1) var name: name of the variable. (2) ndim: number of

array dimension. (3) gdim: size in each dimension.

• dimes put() inserts array data into the distributed in-memory object store.

– Input arguments: (1) var name: name of the variable. (2) ver : version of the

data. (3) size: data size (in bytes) of the array element. (4) ndim: number

of array dimension. (5) lb, ub: specify spatial constraint for the query, using a

Cartesian bounding box to describe the spatial region of the inserted or retrieved

array data. (6) data: pointer to user data buffer.

• dimes get() retrieves array data from the distributed in-memory object store.

– Input arguments: see dimes put().

Listing 4.2 and 4.3 presents the code snippets using DIMES APIs to share data between

applications. The example has two applications, a data producer (see Listing 4.2) and a

data consumer (see Listing 4.3). The applications use the locking service implemented by

DataSpaces to ensure exclusive access to the shared resource - data variable “particles”.

The data producer application inserts a 2D 20 × 20 double array, with spatial bounding

box {(0, 0), (19, 19)}. The data consumer application retrieves a 10 × 10 sub-region of the

inserted array data, using spatial bounding box {(0, 0), (9, 9)}.
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Listing 4.2: Data insertion example using DIMES.

// Acquires the wr i t e l o c k f o r v a r i a b l e ” p a r t i c l e s ” .
d spa c e s l o c k on wr i t e ( ” p a r t i c l e s ” ) ;

// Define the bounding box .
gdim [ 0 ] = 20 ; gdim [ 1 ] = 20 ;
lb [ 0 ] = 0 ; lb [ 1 ] = 0 ;
ub [ 0 ] = 19 ; ub [ 1 ] = 19 ;
d imes de f ine gd im ( ” p a r t i c l e s ” , 2 , gdim ) ;
dimes put ( ” p a r t i c l e s ” , ver s ion , s izeof (double ) , 2 , lb , ub , data ) ;

// Re leases the wr i t e l o c k f o r v a r i a b l e ” p a r t i c l e s ” .
dspace s un l o ck on wr i t e ( ” p a r t i c l e s ” ) ;

Listing 4.3: Data retrieval example using DIMES.

// Acquires the read l o c k f o r v a r i a b l e ” p a r t i c l e s ” .
dspac e s l o ck on r ead ( ” p a r t i c l e s ” ) ;

// Define the bounding box .
gdim [ 0 ] = 20 ; gdim [ 1 ] = 20 ;
lb [ 0 ] = 0 ; lb [ 1 ] = 0 ;
ub [ 0 ] = 9 ; ub [ 1 ] = 9 ;
d imes de f ine gd im ( ” p a r t i c l e s ” , 2 , gdim ) ;
d imes get ( ” p a r t i c l e s ” , ver s ion , s izeof (double ) , 2 , lb , ub , data ) ;

// Re leases the read l o c k f o r v a r i a b l e ” p a r t i c l e s ” .
dspace s un lock on read ( ” p a r t i c l e s ” ) ;
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4.6 Experimental evaluation

The prototype implementation of DIMES was evaluated on the Cray XK7 Titan system

at Oak Ridge National Laboratory. Titan has 18,688 compute nodes, and each compute

node has a 16-core AMD Opteron processor, 32GB memory, and a Gemini router that

interconnects the nodes via a fast network with a 3D torus topology.

This sections presents two distinct sets of experiments. The first set of experiments

evaluates the performance and scalability of DIMES insert/retrieve queries with increasing

numbers of application processes and data sizes. The second set of experiments presents the

integration of DIMES with a coupled fusion simulation workflow, and compares the data

exchange performance with file-based and server-based approaches.

4.6.1 Evaluation of scalability

Coupled simulation workflows simulating complex phenomena such as climate modeling

and plasma fusion science typically run on a large number of processor cores and significant

amounts of data is transferred between the component applications. The scalability exper-

iments presented in this section evaluate the ability of the DIMES framework to support

parallel data redistribution for a different numbers of application processes and data sizes.

This experiment uses a testing workflow composed of two applications, a Writer and a

Reader application, which captures data sharing and exchange behaviors while removing the

complexity of the computational aspects of the full simulation codes. The two applications

perform parallel computations over a common 3-dimensional computational domain, and

each application is assigned a distinct set of processor cores. The coupled variable is a

3-dimensional global array, which is decomposed using a standard blocked distribution.

During the workflow execution, DIMES is used to support the parallel data redistribution

which transfers and redistributes the global array data from Writer application processes

to the Reader processes.

The ratio of Writer to Reader application processes is fixed as 16:1. The size of the

Writer application is varied from 1K to 64K processes. Meanwhile, the size of Reader

application is varied from 64 to 4K processes. The number of DIMES servers is varied
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from 4 to 256, which uses less than 0.4% of the total compute nodes allocated for workflow

execution.

The experiment evaluates both weak scaling and strong scaling performance. In the

weak scaling experiment, each Writer process inserts a fixed 4MB of data per iteration,

and the total data size is varied from 4GB to 256GB. In the strong scaling experiment,

the total data size being transferred is fixed as 4GB. In each experiment, the applications

ran for 200 iterations to simulate 200 parallel data redistributions between the Writer and

Reader applications, and the average data insert and retrieve query time is presented.
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Figure 4.6: Weak scaling results on Titan. The bottom X axis is the size of Writer ap-
plication / the size of Reader application. The top X represents the size of data that is
transferred and redistributed in each iteration.

Figure 4.6 presents the performance of data insert and retrieve queries for a weak scaling
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Figure 4.7: Strong scaling results on Titan. The bottom X axis is the size of Writer
application / the size of Reader application. The top X represents the size of data that is
transferred and redistributed in each iteration.
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experiment. The results show good overall scalability with increasing number of processes

and data sizes. Because a DIMES client writes data into node-local memory region, the data

insert query does not need to perform any off-node network data movement and is very fast.

The average data insert query time is between 6 and 12 ms, which has minimal overhead

on the Writer application. Data retrieve query time sustains at about 0.4 seconds, as the

size of workflow is increased from 1K/64 to 16K/1K. Data retrieve query time increases to

0.99 seconds at 32K/2K, and to 1.27 seconds at 64K/4K. The performance degradation of

data retrieve query is mainly due to the increased contention at the shared network links,

which is caused by the increasing number of concurrent data transfers at larger application

sizes. However, this small increase in transfer time is acceptable when considering the scale

of the application and the total data size.

Figure 4.7 presents the performance of data insert and retrieve queries for a strong scaling

experiment. The results show good strong scaling performance. As the size of workflow

increases from 1K/64 to 8K/512, the data query performance scales linearly. Average data

insert query time decreased by about 8 times from 6.49 ms to 0.74 ms, and the average data

retrieve query time decreased by about 6 times from 337.58 ms to 59.12 ms. Both curves

become flat when the size of workflow is further increased. Though the size of data inserted

or retrieved by each process keeps decreasing in the strong scaling experiment, there exist

costs that are independent of the data size and can not be further reduced, such as the cost

of locating data in a retrieve query, and updating data in an insert query. As a result, both

curves become flat when the size of workflow is between 16K/1K and 64K/4K.

4.6.2 Evaluation with coupled fusion simulation workflow

Overview

This section describes using DIMES to support the in-memory data sharing for a coupled

plasma fusion workflow. The workflow provides insight into plasma edge physics in magnetic

fusion devices, and consists of two separate axisymmetric kinetic transport codes XGC1

and XGCa [48, 30]. The workflow executes for multiple coupling iteration. In each coupling

iteration, the workflow first executes XGC1 for n time steps to compute turbulence data and

particle state, and then executes XGCa for m time steps to evolve the state of plasma. The
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sharing of turbulence data is one-way from XGC1 to XGCa. XGC1 writes turbulence data

at each time step of its execution, which is read by XGCa in the subsequent execution step.

The sharing of particle data is two-way. Both XGC1 and XGCa write particle data at the

end of their executions, and needs to read particle data generated by the other application

at the beginning of their executions.

XGC1

XGCa

(a) Sharing particle data between XGC1 and XGCa processes.

XGC1

XGCa

plane-0 plane-1 plane-2 plane-3

plane-0 plane-1 plane-2 plane-3

(b) Sharing turbulence data between XGC1 and XGCa processes.

Figure 4.8: Illustration of communication pattern for sharing particle and turbulence data
in XGC1-XGCa coupled simulation workflow.

Figure 4.8(a) illustrates the communication pattern for sharing particle data. Commu-

nication pattern for sharing particle data depends on the decomposition and distribution

of plasma particles across the application processes. Typically, XGC1 and XGCa have the

same decomposition and distribution for particles. As a result, the sharing of particle data

requires simple one-to-one communication between XGC1 and XGCa processes.

Figure 4.8(b) illustrates the communication pattern for sharing turbulence data, which

depends on the workflow’s poloidal domain decomposition. In this simple example, XGC1

and XGCa executes on 16 processes and has 4 poloidal planes namely plane-0 to plane-3,

where each poloidal plane has 4 application processes. During the execution of XGC1, each

poloidal plane selects one process (marked with gray color in the figure) to write the plane’s

turbulence data. During the execution of XGCa, each application process of poloidal plane
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i needs to read the turbulence data from four poloidal planes including i − 1, i, i + 1 and

i+2. For example, XGCa processes in plane-1 need turbulence data generated by XGC1’s

plane-0, plane-1, plane-2 and plane-3. The sharing of turbulence data exhibits one-to-many

communication between XGC1 and XGCa processes.

Results

Prototype implementation of the in-memory data sharing utilizes DIMES to enable dis-

tributed in-memory data staging and sharing. XGC1 and XGCa executes on the same set

of compute nodes, and writes turbulence and particle data into node-local memory buffer

that is managed by DIMES.

Table 4.1 summarizes the experimental setup. The number of application processes

for XGC1/XGCa is varied from 1K to 16K. The workflow runs for 2 coupling iteration,

both XGC1 and XGCa executes for 20 time steps per coupling iteration. In each coupling

iteration, the size of particle data read by XGC1 and XGCa ranges from 4GB to about

65GB, and the total size of turbulence data read by XGCa ranges from 12GB to about

202GB. To demonstrate the benefits of the DIMES approach, we compare the performance

with both the file-based approach, which exchanges data through disk files, and the server-

based approach, which exchanges data through a set of dedicated staging compute nodes.

Setup 1 Setup 2 Setup 3

Num. of processor cores 1024 4096 16384
Num. of coupling iteration 2 2 2
XGC1 num. of steps (per iteration) 20 20 20
XGCa num. of steps (per iteration) 20 20 20
Size of particle data written/read by
XGC1 (per iteration)

4.05 GB 16.21 GB 64.85 GB

Size of particle data written/read by
XGCa (per iteration)

4.05 GB 16.21 GB 64.85 GB

Size of turbulence data write by XGC1
(per iteration)

0.19 GB 0.19 GB 0.19 GB

Size of turbulence data read by XGCa
(per iteration)

12.63 GB 50.52 GB 202.09 GB

Table 4.1: Experimental setup for the evaluation of XGC1-XGCa coupled simulation work-
flow.

Tables 4.2 and Figure 4.9 presents the performance for exchanging particle data between
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XGC1 and XGCa applications. The results show significant performance improvement for

DIMES when compared with the two other approaches. As shown by Tables 4.2, DIMES

decreases the total time for writing particle data by 99% on average when compared with

file-based approach, by 93% on average when compared with server-based approach. As

shown by Figure 4.9, DIMES decreases total time for reading particle data time by 98%

on average when compared with file-based approach, by 92% on average when compared

with server-based approach. This significant performance advantage is due to DIMES’s

in-memory local data caching, which does not require moving data off-node. In the file-

based approach, particle data needs to be moved and written to storage system, while in

the server-based approach, particle data needs to be transferred to the staging servers.

Setup 1 Setup 2 Setup 3

File-based (seconds) 35.792 90.062 425.059
Server-based (seconds) 1.865 2.283 3.781
DIMES (seconds) 0.097 0.131 0.316

Table 4.2: Total time of writing particle data.
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Table 4.3 and Figure 4.10 presents the performance of exchanging turbulence data be-

tween XGC1 and XGCa. As shown by Table 4.3, DIMES decreases the total time for writing

turbulence data by 99% on average when compared with file-based approach, and by 31%
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on average when compared with server-based approach. One observation is that when com-

pared with the server-based approach, the performance improvement of writing turbulence

data is not as significant as that of writing particle data. The reason is that the size of

turbulence data written by XGC1 application is very small (as can be seen in Table 4.1).

As a result, the time for transferring turbulence data to staging servers is much smaller.

Figure 4.10 presents the performance for reading turbulence data. DIMES decreases the

total time for reading turbulence data by 99% on average when compared with file-base

approach, and by 96% on average when compared with server-based approach.

Setup 1 Setup 2 Setup 3

File-based (seconds) 36.228 31.236 16.430
Server-based (seconds) 0.024 0.039 0.029
DIMES (seconds) 0.016 0.029 0.019

Table 4.3: Total time of writing turbulence data.
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4.7 Related work

4.7.1 Programming abstractions for expressing parallel data exchange

Coupled simulation workflow consists of multiple applications that need to interact and ex-

change data at runtime, and requires the programming support for expressing data exchange
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between coupled applications. Generic low-level parallel programming abstractions, such

as message-passing interface [42], can be used to implement the data exchange. However,

it is nontrivial to use such low-level communication interface, and requires programmers

investing significant effort into every implementation detail required by the parallel data

exchange, such as memory management, data indexing and lookup, scheduling data trans-

fers. This section presents research work that provides high-level programming and data

abstraction, which is more expressive and hides the low-level implementation details.

Shared tuple space abstraction provides the abstraction of a shared repository of tuple

objects, which can be associatively accessed. Linda [41] programming language initially

introduces tuple space as the coordination model for data sharing and communication be-

tween parallel processes, and implements a set of primitives, e.g. in(), out(), rd(), eval(), to

access the tuple space. DataSpaces [35] and Seine [71] build on the concept of tuple space

abstraction and implement semantically specialized data space to support coordination and

data exchange between applications that are part of a coupled simulation workflow. In par-

ticular, DataSpaces provides the global array based data abstraction to facilitate exchanging

distributed scientific array between coupled applications. DIMES presented in this thesis

implements the shared data space abstraction that is similar to DataSpaces.

Common component architecture (CCA) [14] is an effort to support interoperability

between coupled scientific applications, which promotes the concept of component object

model that is similar in industrial standards such as CORBA [2] and COM [1]. Scientific

application is abstracted as a component and implements a standard set of interfaces. Ap-

plications interact by invoking the remote component interfaces. Specifically, CCA defines

the collective ports interface to support data exchange between parallel components that run

on multiple processes. Several CCA-compliant runtime frameworks have been developed,

including InterComm [50], Parallel Application Work Space (PAWS) [40], MetaChaos [38].

CCA approach only supports data exchange between concurrently running applications,

because it requires the presence of remote component application in order to establish con-

nection and invoke the component interfaces. Sharing data between sequentially running

applications can not be supported by CCA approach. In contrast, DIMES shared data

space abstraction decouples the data sharing from application execution, and supports data
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exchange for both concurrently and sequentially running applications.

Partitioned global address space (PGAS) has emerged as a promising parallel program-

ming model, which provides a global memory address space that is logically partitioned

in the context of distributed memory machines. PGAS languages and libraries, such as

UPC [22], Chapel [25], X10 [26], GlobalArray [56], supports the global-view multidimen-

sional array, which provides a convenient high-level data abstraction to share data between

application processes or threads. While existing PGAS implementations enable sharing

data between parallel processes of single application, they do not support data coupling

across heterogeneous programs. For example, transferring and redistributing global-view

array between different application programs is not supported by existing PGAS languages

and runtime systems. DIMES provides a shared space abstraction that is globally accessible

by applications that are part of a workflow, and supports inter-application data sharing and

exchange.

Flexpath [29] uses a type-based publish/subscribe approach to implement communica-

tions between simulations and concurrent running data analytics. The publish/subscribe

pattern decouples the analytics services from simulation codes, and supports dynamic ar-

rivals/departures of analytics services. Flexpath essentially implements the data streaming

model between data producer and consumer applications. However, Flexpath is limited to

workflow scenario where data producer and consumer applications need to run concurrently,

and does not support workflows that couple sequentially executed producer and consumer

applications.

4.7.2 Parallel data exchange for coupled applications

One intuitive and simple approach to exchange data between coupled applications running

on HPC cluster is sharing data through the distributed file systems, such as Networked

File System (NFS), Parallel Virtual File System (PVFS) [23], General Parallel File System

(GPFS) [62], Lustre [5]. This approach enables applications to use common data access

interfaces (e.g. POSIX I/O) and a wide variety of scientific data formats (e.g. HDF5,

NetCDF), which brings productivity, portability and flexibility to the software development.

However, the increasing performance gap between computation and disk I/O introduces
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significant data sharing overhead and limits the data exchange performance. This section

presents systems that support memory-based data sharing and exchange, which can be

categorized into two classes.

Direct data movement between coupled applications: Model Coupling Toolkit

(MCT) [49] is a Fortran-based software package to couple MPI-based component models into

a single coupled model. MCT requires running the workflow as a single MPI executable, and

partitions the MPI COMM WORLD global communicator into a set of sub-communicators

for each of the component model. MCT implements the direct data transfers between

component models using the inter-communicator communications supported by MPI. Flex-

path [29] implements a serverless publish/subscribe system to support direct connection and

communication between coupled applications. Flexpath implements direct data transfers by

leveraging multiple communication mechanisms, including shared memory, Remote Direct

Memory Access (RDMA), TCP/IP, which provides high performance and portability. Di-

rect data movement approach avoids extra data transfers when compared with approaches

that require moving data to external servers. However, existing implementations of direct

data movement approach only support coupling concurrently running applications, and does

not support sharing data between sequentially running applications.

Inter-application data movement through dedicated staging servers: DataS-

paces [35] builds a distributed in-memory storage space on a set of dedicated servers. DataS-

paces stores and indexes data inserted by the application, and provides a query API to

retrieve the data cached in server memory. In addition, it leverages RDMA one-sided com-

munication to implement high-performance data transfers between application and servers.

H5FDdsm [19] framework builds around the idea of virtual file in distributed shared mem-

ory, and enables coupled applications use HDF5 I/O API to exchange data. Virtual file

is stored in a distributed shared memory buffer allocated on a set of severs. Using the

HDF5 virtual file driver extension, H5FDdsm transparently reroutes all I/O requests to the

in-memory file. Staging-based data movement uses dedicated servers to store data. The

availability of data is not dependent on the presence of data producer application as in

the direct data movement approach, which enables data sharing that is decoupled in time.

However, staging-based approach requires transferring data twice, first from data producer
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application to server, then from server to data consumer application, which may increase

the latency.

4.8 Summary

This chapter presented the design, implementation and evaluation of DIMES - a data man-

agement framework for supporting memory-based data sharing and redistribution in coupled

scientific simulation workflow. DIMES co-locates distributed data staging with application

execution, and caches application data in node-local object store. This approach effectively

reduces the volume of network data movement when compared with data coupling ap-

proaches that cache data on remote storage servers. In addition, DIMES indexes staged data

objects according to their spatial attributes, and the array-based query interface enable ap-

plications to retrieve data of interest. DIMES utilizes high-performance hardware-enabled

RDMA operations for inter-node communication, and on-node shared memory for intra-

node communication, which provides efficient and scalable data movement. This chapter

also presented evaluation results on large-scale HPC cluster, and demonstrated the scala-

bility and performance of DIMES data insert/retrieve queries.
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Chapter 5

CoDS - a framework for workflow task execution and

placement

5.1 Introduction

DIMES data management framework (presented in Chapter 4) addresses the problem of

supporting distributed data staging, memory-based data sharing and exchange for coupled

simulation workflow. This chapter presents CoDS framework to provide the programming

and runtime support for workflow composition, task execution and task placement.

CoDS implements a task execution engine to support scheduling and executing parallel

task programs. It manages a set of compute nodes allocated for workflow execution, and in-

tegrates DIMES to support in-memory data management. CoDS implements locality-aware

task placement, which attempts to place task execution on compute nodes that contain the

largest portion of its input data. To achieve this objective, CoDS allows programmers to

express locality preference for a task by providing data hint, e.g., name and spatial region of

the array data that to be accessed by the task. In addition, CoDS allows users to program-

matically customize and control the task placement, according to the specific need of the

targeted workflow. For example, programmers can functionally partition the computation

resource, and explicitly express task placement affinity by providing location hint, e.g., the

preferred functional partition for the task execution.

CoDS workflow representation extends the DAG task graph abstraction used by tradi-

tional scientific workflow management systems with data flow annotation, iterative execu-

tion, and data-driven task execution, in order to represent the execution model of coupled

simulation workflow. CoDS’s programming environment is exposed as a library to exist-

ing language (current implementation supports C), and implements task execution APIs

to compose a workflow. Workflow written for CoDS consists of a driver program and a
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number of task programs. Each task program represents a component application that is

part of the workflow, and is typically based on existing MPI parallel simulation or data

analysis code. The driver program is written to compose the actual workflow by combining

sequential, concurrent and iterative execution of task programs.

It’s worth noting that CoDS is not a system-wide task execution framework deployed

on the HPC cluster. Typical HPC cluster uses a system-wide job scheduler, such as

SLURM [45], to support resource allocation, scheduling, and execution of jobs submitted

by multiple users. CoDS is a light-weight task execution framework, and targets executing

coupled simulation workflows using compute nodes in a single job allocation.

Technical contributions of CoDS is summarized as below:

• CoDS presents a highly programmable and customizable task execution framework.

CoDS provides the programmability to partition the allocated compute nodes/cores,

and create different functional partitions according to the need of the workflow. For

example, in online data analytics workflow that requires in-transit placement of anal-

ysis operation, users can programmatically divide the processor cores into two parti-

tion. One partition of processor cores is used for simulation execution, while the other

partition is used for “in-transit” data analysis and processing.

• CoDS allows users to provide hint information for task placement. Users provide

task placement hint according to their knowledge and experience. Hint-based task

placement mechanism aims at making a better placement decision by combining the

programmer-provided and runtime information. Current prototype implementation

supports two types of placement hint, including data hint that is used by the runtime

to perform locality-aware placement, and location hint that explicitly specifies the

preferred functional partition.

The remainder of this chapter is organized as follows. Section 5.2 presents the workflow

representation. Section 5.3 presents CoDS system architecture. Section 5.4 presents the

design and implementation. Section 5.5 presents the programming interface and examples.

Section 5.6 presents the evaluation using two real world coupled simulation workflows.

Section 5.7 presents related research work and Section 5.8 summarizes the chapter.
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5.2 Workflow representation

CoDS workflow representation builds on the DAG task graph abstraction used by tradi-

tional scientific workflow management systems [3, 32]. Each vertex in the DAG represents

an application and each edge represents the data dependency, where an application can

start after all its parent applications finish executions. In order to represent the coupled

simulation workflow, we extend the basic DAG task graph abstraction in the following ways.

DNS LES-1 LES-2 LES-3

(a) DNS-LES task graph

DNS

LES-1
Bundle 1

Data dependency

Data flow between concurrent tasks

LES-2

LES-3

(b) DNS-LES task graph with bundle anno-
tation

Figure 5.1: Task graph representations: DNS-LES workflow.

First, we extend the basic DAG task graph representation with the concept of bundle

to annotate a group of tightly coupled applications that execute simultaneously and have

frequent inter-application data communications. The basic DAG representation can not

capture the data streams/flows between concurrently executing applications that have no

explicit data dependency. For example, DNS-LES workflow for combustion science couples

DNS solver with multiple instances of LES solvers. DNS and LES executes concurrently

in lockstep, and data is transferred from DNS to LES instances at every sub step, i.e., 6

times in a single time step. Figure 5.1(a) presents the DAG representation for a workflow

that couples DNS with 3 LES instances. Figure 5.1(b) presents the same workflow using

DAG with bundle annotation. Bundle annotation describes which concurrent applications

are tightly coupled as well as the dataflow between concurrent applications.

Second, task graph abstraction needs to represent iterative execution, which is re-

quired by many simulation workflows. For example, XGC1-XGCa workflow for plasma

fusion science requires iterative execution of sequentially coupled XGC1 and XGCa simula-

tion code. Figure 5.2 presents the task graph representation for the XGC1-XGCa workflow.
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XGC1

iteration

XGCa

Data dependency

Figure 5.2: Task graph representations: XGC1-XGCa workflow.

S3D

Viz.

Stat.

Topo.

Data-driven task execution

Figure 5.3: Task graph representations: S3D data analytics workflow.

Third, the task graph needs to represent data-driven task execution, which starts a

task when all its data dependencies are satisfied. This differs from the dependency resolution

in traditional scientific workflow management systems [3, 32] where the execution of a task

depends on the completion of its parent tasks. The ability of running data-driven task is

very useful for online data analytics workflow. For example, S3D data analytics workflow for

combustion science couples the simulation code S3D with several analysis operations, e.g.,

visualization, descriptive statistics, topological analysis. With the data-driven execution

capability, runtime system can dynamically start concurrent execution of a analysis task

after its required data is produced by S3D. Figure 5.3 presents the task graph representation

for S3D data analytics workflow (the dotted arrow shows data-driven coupling between

tasks).

5.3 System architecture

CoDS task execution framework consists of four components including task executor, work-

flow manager, task submitter, and information space. Figure 5.4 presents a graphical rep-

resentation of the system architecture.
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ExecutorExecutor

Informa�on	space

Manager Submi�er

Figure 5.4: Workflow execution framework system architecture.

Task executor is responsible for executing workflow tasks. Each task executor runs

on one physical processor core, and a pool of task executors are assigned to the allocated

compute nodes. In addition to task execution, the executor also integrates DIMES to cache

workflow data in local memory of compute nodes, and support data sharing and exchange

between interacting workflow tasks.

Task submitter is responsible for submitting task execution request to the workflow

manager. Task submitter executes the driver program at runtime, and drives the workflow

progression by launching asynchronous task executions on the executor resource pool.

Workflow manager is responsible for coordinating task executions within a workflow.

Workflow manager maintains three tables to respectively store the information about work-

flow tasks, data variables, and executors. Task table contains the information for submitted

tasks. Variable table contains the information for currently available data variables that ap-

pears as a task input or output. Executor table contains the information of all task executors

in the system. Each task has zero or multiple input dependencies and becomes runnable

when all its dependencies are satisfied. Based on the state of task table and variable table,

workflow manager can perform dependency resolution to identify runnable tasks.

Information space runs on a dedicated set of compute nodes, and builds on DataSpaces

servers. Information space enables coordination and messaging between other components,

and supports indexing and lookup of data cached in DIMES.
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5.4 Implementation

5.4.1 Workflow execution

Workflow makes progress by executing tasks. This subsection outlines the key steps of

workflow execution.

The first key step is task submission. Both task submitter and executor can send

task submission requests to workflow manager. Workflow manager adds a new entry to task

table. Meanwhile, the workflow manager adds input data variables that the task depends

on into variable table. For each data variable in variable table, workflow manager needs to

subscribe on the variable’s status that is maintained by the information space. Workflow

manager will receive notifications from the information space whenever the data variable of

interest becomes available, updated or deleted.

The second key step is dependency resolution. Workflow manager evaluates if a

task is runnable, utilizing information stored in task table and variable table. When a task

becomes runnable, it is ready for scheduling and placement.

The third key step is task scheduling and placement. Firstly, workflow manager

needs to decide when to execute a runnable task. A runnable task becomes ready for ex-

ecution when its computation resource requirement is satisfied. Current implementation

employs simple first-come-first-serve policy to select the next ready-for-execution task. Sec-

ondly, workflow manager needs to decide where to execute the task, by selecting the idle

executors for task execution. In current implementation, executor table orders the task

executors by their compute node id. The node id is system-wide information and typically

preserves the network locality of compute nodes. For example, on ORNL Titan system,

compute nodes with adjacent id are physically connected with direct network link. By

default, the workflow manager allocates contiguous idle executors in the table to execute

a task. In addition to the default placement policy, the framework also supports two cus-

tomized task placement approaches to optimize the workflow execution, which is described

in next section.

The last key step is task execution. Workflow manager dispatches the task to idle

executors selected during task scheduling and placement, then the executors start executing
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the assigned task. As noted previously, workflow task is typically a MPI parallel program.

CoDS runtime needs the ability to dynamically launch and execute a task, i.e., the MPI

executable, on selected task executors. However, though MPI standard defines the dynamic

process management [43], this feature is not fully supported on many current generation

high-end computing systems, such as Cray XE/XK and IBM BlueGene/Q. As a result,

current prototype implementation requires to wrap the MPI task program as a library.

The execution framework dynamically creates a MPI communicator on the idle executors

selected for the task, and starts executing the task by invoking the entry function of the

task library.

5.4.2 Hint-based task placement

Task placement determines which physical compute nodes and processor cores to execute a

task, and has significant impact on the performance of overall workflow execution. CoDS

framework implements hint-based task placement mechanism, which combines programmer-

provided placement hint and runtime information (e.g., location of data). Specifically,

current prototype implementation supports two types of programmer-provided placement

hint, including data hint and location hint.

Compute node 1

"var1"

{(0,0), (199,399)}

400x800 

2D array "var1"

"var1"

{(200,0), (399,399)}
"var1"

{(0,200), (199,799)}
"var1"

{(200,200), (399,799)}

Compute node 2 Compute node 3 Compute node 4

Task data hint:  "var1", spatial region {(0,200), (399,799)}

400x800 

2D array "var1"

Figure 5.5: Illustration of locality-aware task placement through programmer-provided data
hint.
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Data hint allows programmers to express locality preference for a task. CoDS frame-

work performs locality-aware task placement according to the data hint, with the objective

of moving computation closer to data. Workflow data is staged in memory across the com-

pute nodes, and reading data from local memory requires no network data movement and is

much faster than reading data from remote memory. Locality-aware placement aims at ex-

ecuting task on compute nodes where a large portion of input data is available in node-local

memory, which can effectively reduce the size of data movement over network. Figure 5.5

presents a simple example of moving task to data by utilizing programmer-provided data

hint. Input data variable of the task is a 2D 400×800 array, and the array data is distributed

over 4 compute nodes, namely n1, n2, n3, n4. Instead of reading the entire 2D array, the

task only needs to read subarray {(0, 200), (399, 799)}. Programmer can provide the spatial

bounding box to describe the array region of interest. At runtime, workflow manager can

retrieve the data location information by querying DIMES data lookup service, and places

task onto compute nodes n3 and n4, in order to maximize the size of locally available input

data.

Location hint allows programmers to explicitly express the functional partition for task

execution. This approach first divides the allocated computation resource (or task executors

in CoDS) into programmer-defined functional partitions. Each partition represents one

possible execution location. Programmers then can provide location hint to specify the

preferred partition of executors for a task.

Functional 

partitioning 

Compute Nodes

Task executor 

Data

Compute Nodes

Executor partition: In-situ co-located

Executor partition: In-transit 3

2

1 Executor partition: Simulation 

Compute Nodes

1 21 1

1 21 1

3 3 3 3

3 3 3 3

1 21 1

1 21 11 21 1

2 21

2 21

2

1

Figure 5.6: Illustration of functionally partitioning the task executors to create different
placement options for analysis operation in online data analytics workflow.
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Location hint based task placement targets specifically the online data analytics work-

flow. In a typical execution of online data analytics workflow, computation resource can

be divided into three possible partitions (as shown in Figure 5.6), which creates the fol-

lowing placement options: (1) In-situ inline - data analysis and simulation share the same

processor cores. (2) In-situ co-located - processor cores on each compute node are func-

tionally partitioned into simulation cores and analysis cores. Data analysis is executed on

the dedicated analysis cores. (3) In-transit - data analysis is executed on a dedicated set of

compute nodes. As presented by recent research work [72, 16], data analysis operations may

have different placement preference, depending on various factors such as scalability of the

analysis algorithm, input data size of the analysis. Support of location hint presents several

advantages: First, it enables placement flexibility for data analysis. Programmers can ex-

plicitly control the placement of analysis operation according to their expertise knowledge

about the workflow. Placement location can be changed simply by changing the location

hint, which enables programmers to explore different placement locations and the trade-

offs. Second, it enables customized partitioning of computation resource as required by

the specific workflow. For example, some workflows may require the placement options of

“in-situ co-located” plus “in-transit”, while others may only require the placement option

of “in-transit”.

5.5 Programming interface and examples

This section presents the programming interface and examples for composing the workflow

and providing task placement hint.

5.5.1 Workflow composition

This section presents the task execution APIs, which is used to compose coupled simula-

tion workflows. Programmers uses the API to launch asynchronous task execution on idle

executors. Task program can be serial code running on one executor, or parallel code run-

ning on multiple executors. Programmer can specify input data dependency for a task, and

the CoDS workflow manager performs dependency resolution and starts the task execution

when all input data of the task becomes available.
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Listing 5.1: Task execution C programming interface.

// I n i t i a l i z e the runtime framework .
int c o d s i n i t ( ) ;

// F ina l i z e the runtime framework .
int c o d s f i n a l i z e ( ) ;

// Add ta s k to a bund le .
int cods add task ( bund l e d e s c r i p t o r ∗bundle desc ,

t a s k d e s c r i p t o r ∗ t a sk de s c ) ;

// Execute a t a s k .
int cod s ex e c t a sk ( t a s k d e s c r i p t o r ∗ t a sk de s c ) ;

// Execute a bund le
int cods exec bund le ( bund l e d e s c r i p t o r ∗ bundle desc ) ;

// Block f o r the comple t ion o f t a s k / bund le execu t i on .
c od s s t a tu s cod s wa i t t a sk comp l e t i on ( t a s k d e s c r i p t o r ∗desc ) ;
c od s s t a tu s cods wa i t bund l e comple t i on ( bund l e d e s c r i p t o r ∗desc ) ;

// Check the s t a t u s o f t a s k / bund le execu t i on .
c od s s t a tu s c od s t a s k s t a t u s ( t a s k d e s c r i p t o r ∗desc ) ;
c od s s t a tu s cod s bund l e s t a tu s ( bund l e d e s c r i p t o r ∗desc ) ;

Listing 5.1 presents the C programming interface for executing workflow tasks.

• cods add task() adds a task (described by task desc) to a bundle. The function is used

to construct a bundle of concurrently executing tasks. task desc contains the basic

task information, including task name, list of data variables that the task depends on.

task desc also specifies the resource requirement for the task execution, such as the

number of required task executors.

• cods exec task()/cods exec bundle() submits the task/bundle execution request to work-

flow manager. The function is non-blocking and returns immediately after successful

submission.

• cods wait task completion()/cods wait bundle completion() blocks for the completion

of a submitted task/bundle.

• cods task status()/cods bundle status() returns the execution status of a submitted

task/bundle. The function is non-blocking and returns immediately.

Programmer needs to write a driver program to implement workflow execution logic and
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Listing 5.2: Example driver program of coupled XGC1-XGCa workflow.

void work f l ow dr ive r ( )
{

c o d s i n i t ( ) ;
int i , num coupl ing step = 50 ;
for ( i = 1 ; i <= num coupl ing step ; i++) {

t a s k d e s c r i p t o r ∗xgc1 , ∗xgca ;

/∗ Set up ta s k d e s c r i p t o r s .
De ta i l ed source code i s omit ted . ∗/

/∗ Execute xgc1 t a s k ∗/
cod s ex e c t a sk ( xgc1 ) ;
c od s wa i t t a sk comp l e t i on ( xgc1 ) ;

/∗ Execute xgca t a s k ∗/
cod s ex e c t a sk ( xgca ) ;
c od s wa i t t a sk comp l e t i on ( xgca ) ;

}
c o d s f i n a l i z e ( ) ;

}

the actual task graph. This section presents the programming examples of two represen-

tative workflows, including XGC1-XGCa workflow for plasma fusion science and DNS-LES

workflow for combustion science (described in Chapter 2.1.2).

Listing 5.2 presents the example driver program of XGC1-XGCa workflow. The workflow

has 2 tasks xgc1 and xgca. The two tasks are executed in sequential order, and for multiple

coupling steps. The driver program uses a outer loop to control the coupling steps. At each

coupling step, the driver program first executes xgc1 and waits for its completion, and then

starts executing xgca. The driver program waits for the completion of xgca before advancing

to the next coupling step.

Listing 5.3 presents the example driver program of DNS-LES workflow. The workflow

has 2 tasks namely dns and les. dns and les executes concurrently in lockstep for multiple

time steps. At each time step, data is transferred from dns to les. In this example, the

driver program creates a bundle to include both tasks, executes the bundle and waits for

its completion. The driver program does not need to explicitly control the time stepping

using a control loop, because the time stepping is managed by dns and les program itself.
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Listing 5.3: Example driver program of tightly coupled DNS-LES workflow.

void work f l ow dr ive r ( )
{

c o d s i n i t ( ) ;
bund l e d e s c r i p t o r ∗b1 ;
t a s k d e s c r i p t o r ∗dns , ∗ l e s ;

/∗ Set up ta s k d e s c r i p t o r s .
De ta i l ed source code i s omit ted . ∗/

/∗ Execute dns and l e s t a s k s ∗/
cods add task (b1 , dns ) ;
cods add task (b1 , l e s ) ;
cods exec bund le ( b1 ) ;
cods wa i t bund l e comple t i on ( b1 ) ;
c o d s f i n a l i z e ( ) ;

}

Listing 5.4: Task placement C programming interface.

// Re t r i eve a r c h i t e c t u r a l in format ion o f t a s k execu to r s .
compute resource ∗ c od s g e t c omput e r e s ou r c e i n f o ( ) ;

// Divide t a s k execu to r s on the a l l o c a t e d compute nodes
// in t o programmer−de f i ned p a r t i t i o n s .
int c o d s b u i l d p a r t i t i o n s ( compute resource ∗ i n f o ) ;

// Set l o c a t i o n h in t f o r a t a s k .
int c o d s s e t l o c a t i o n h i n t ( t a s k d e s c r i p t o r ∗ ta sk desc ,

unsigned char pa r t i t i o n t yp e ) ;

// Set data h in t f o r a t a s k .
int c od s s e t d a t a h i n t ( t a s k d e s c r i p t o r ∗ ta sk desc ,

da ta h in t ∗ h int ) ;

5.5.2 Task placement

This section presents the task placement APIs (see Listing 5.4) that allows programmer to

explicitly specify task placement hint.

• cods get compute resource info() retrieves the architectural information of all task ex-

ecutors from workflow manager. compute resource data field executor tab uses a table

to record the architectural information, such as compute node id and network topol-

ogy, for each task executor.

• cods build partitions() defines customized functional partitions over the task execu-

tors. Programmer-defined partition type (a integer value in current implementation)
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Listing 5.5: S3D data analytics workflow: example driver program.

enum prog rammer de f ined par t i t i on type {
SIMULATION = 1 ,
INTRANSIT

} ;

void work f l ow dr ive r ( )
{

c o d s i n i t ( ) ;
t a s k d e s c r i p t o r ∗ s3d ;
compute resource ∗ i n f o ;

i n f o = cod s g e t c omput e r e s ou r c e i n f o ( ) ;
/∗ Update in fo−>e x e cu t o r t a b [ i ] . p a r t i t i o n wi th

programmer−de f i ned p a r t i t i o n type .
De ta i l ed source code i s omit ted . ∗/

/∗ Bui ld p a r t i t i o n s ∗/
c o d s b u i l d p a r t i t i o n s ( i n f o ) ;

/∗ Set up ta s k d e s c r i p t o r s .
De ta i l ed source code i s omit ted . ∗/

/∗ Execute s3d ta s k ∗/
c o d s s e t l o c a t i o n h i n t ( s3d , SIMULATION) ;
c od s ex e c t a sk ( s3d ) ;
c od s wa i t t a sk comp l e t i on ( s3d ) ;
c o d s f i n a l i z e ( ) ;

}

can be assigned to executor entry in table executor tab. For example, one typical

customization for online data analytics workflow is to divide task executors into sim-

ulation and in-transit partitions. By default, task executors are not associated with

any partition, and programmer-provided location hint has no effect.

• cods set location hint()/cods set data hint() sets placement hint for a task.

This section uses S3D data analytics workflow to demonstrate the use of task placement

APIs. The workflow executes a simulation task s3d as the data producer, and three analysis

tasks as the data consumers, including viz (visualization), stat (descriptive statistics) and

topo (topological analysis). Simulation task s3d runs for multiple time steps, and the data

analysis is performed in every n time steps. Value of n determines the frequency of online

data analysis. In the presented example, the value of n is defined as 1. Programming of

the example workflow involves two parts, which is described as follow.
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Listing 5.6: S3D data analytics workflow: code snippets for s3d task program.

void s 3 d e x e cu t e ana l y s i s ( )
{

t a s k d e s c r i p t o r ∗ s tat , ∗ viz , ∗ topo ;
/∗ Set up ta s k d e s c r i p t o r s .

De ta i l ed source code i s omit ted . ∗/

/∗ Execute ana l y s i s t a s k s in−t r a n s i t ∗/
c o d s s e t l o c a t i o n h i n t ( s tat , INTRANSIT) ;
c o d s s e t l o c a t i o n h i n t ( viz , INTRANSIT) ;
c o d s s e t l o c a t i o n h i n t ( topo , INTRANSIT) ;
c od s ex e c t a sk ( s t a t ) ;
c od s ex e c t a sk ( v i z ) ;
c od s ex e c t a sk ( topo ) ;

}

int s3d ( )
{

int t s ;
for ( t s = 1 ; t s <= num time step ; t s++) {

/∗ Computation .
De ta i l ed source code i s omit ted . ∗/

/∗ Execute ana l y s i s t a s k s . ∗/
i f ( rank == 0) s 3d ex e cu t e ana l y s i s ( ) ;

}
}

Listing 5.5 presents the driver program, which is used to bootstrap the workflow execu-

tion by submitting s3d task. Similar to DNS and LES solvers, s3d task program manages

the time stepping by itself, and the driver program does not need a control loop to explicitly

manages the s3d time stepping. In addition, the driver program retrieves the computation

resource information, and divides the task executors into SIMULATION and INTRANSIT

partitions by calling cods build partitions(). Driver program sets the location hint of s3d

task as SIMULATION, and submits the task execution request.

Listing 5.6 presents the analysis execution logic, which is directly embedded into s3d

task program. At each time step, s3d rank 0 process invokes routine s3d execute analysis()

to start the asynchronous execution of data analysis tasks. As shown in Listing 5.6, location

hint is specified and used to control the placement. In this specific example, all the three

data analysis tasks are preferred to execute on INTRANSIT partition.
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5.6 Applications

This section presents using CoDS task execution framework to support two real world

coupled simulation workflows.

5.6.1 Online feature-based object tracking for scientific simulation data

Overview

In order to extract insightful information from large datasets produced by simulations over

thousands of time steps, scientists often need to follow data objects of interest (i.e., fea-

tures) across the different time steps. For example, meteorologists track storm formation

and movement in climate modeling simulation while physicists identify burning regions in

combustion simulations. As a result, feature extraction and tracking is an important tech-

nique for analyzing and visualizing scientific datasets. However, most feature extraction

and tracking techniques operate offline by post-processing data written into files by the

simulation runs. Being able to perform such feature-based analytics in-situ, i.e., concur-

rently with a simulation itself, can significantly improve the utility of these techniques at

large scale. It can also lead to better utilization of expensive high-end resources as well as

the overall productivity of the simulations.

This section presents the online in-situ feature-based object tracking on time-varying

simulation data. The application is a 3D computational fluid dynamics (CFD) simulation

that contains evolving amorphous regions. The feature-based object tracking operation is

implemented using DOC - a scalable decentralized and online clustering technique [59], [60],

which executes in-situ and analyzes the simulation data while it is being generated. Con-

nected voxel regions of interest – features – needs to be identified at each time step and

tracked over multiple time steps in order to visualize the time-varying datasets. More specif-

ically, we focus on tracking objects as thresholded connected voxel regions that evolve both

in location and shape over time.

Figure 5.7 illustrates the placement of simulation processes and DOC workers across the

allocated compute nodes. The prototype implementation builds on CoDS task execution

framework to enable the co-located execution of simulation and analysis operations, where
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Figure 5.7: Architecture of the in-situ feature extraction and tracking system.

the physical processor cores on the multi-core compute nodes are functionally partitioned.

DIMES (Chapter 4) is used to support sharing data between simulation and DOC through

the node-local shared memory.

The prototype implementation was evaluated on the Lonestar linux cluster at Texas

Advanced Computing Center (TACC). The Lonestar has 1,888 compute nodes, and each

compute node contains two hex-core Intel Xeon processors, 24GB of memory and a QDR

InfiniBand switch fabric that interconnects the nodes through a fat-tree topology. The

system also supports a 1PB Lustre parallel file system.

Our evaluation consists of two parts. The first part evaluates the end-to-end data

transfer performance of our in-situ data analysis framework, and also compares it with the

traditional disk I/O approach. The second part evaluates the effectiveness and accuracy

of our DOC-based feature tracking algorithm, using a time-varying dataset generated by

simulation of coherent turbulent vortex structures.

Performance of data transfer

This section evaluates the end-to-end data transfer performance, and more specifically the

time used to transfer data from simulation processes to DOC workers, for both our in-

situ memory-to-memory and the disk I/O approaches. In this case, we use a testing MPI
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program as the parallel data producing simulation, which runs on a set of m processor cores.

The parallel DOC workers runs on a separate set of n processor cores where the ratio of m:n

is 8. In our in-situ data analysis approach, each DOC worker runs on a processor core co-

located with 8 simulation cores of the same compute node, and retrieves data generated by

the intra-node simulation processes. In our framework, the m:n ratio can be configured by

users. From our experience, the simulation part of the experiment is usually more compute

intensive, thus it makes sense to allocate a large amount of cores to simulation tasks. On

the other hand, the data analysis part (DOC in this case) often requires a smaller number of

cores. Our in-situ approach requires simulation and analysis tasks that exchange data to be

placed on the same node in order to minimize data transfer and to reduce the overhead on

the simulation itself. In the disk I/O approach, simulation processes dump data to disk with

the one file per process method using binary POSIX I/O operations. Data files are then

read by parallel DOC workers. For this evaluation, the number of simulation processes m is

varied from 256 to 4,096, and the total data size produced by simulation at each timestep

is varied from 8GB to 128GB. The testing program is configured to run for 100 timesteps

at each data output size.
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Figure 5.8: End-to-end data transfer time. The size of data produced per simulation process
at each timestep is 32MB.

Figure 5.8 and 5.9 compare the performance of the two data transfer approaches. As

shown in Figure 5.8, our in-situ memory-to-memory method is much faster than the disk

I/O approach, with average speedup of transfer performance as about 10. Also, the in-situ

memory-to-memory method is scalable, and shows no performance degradation when the
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Figure 5.9: Aggregate data transfer throughput. The size of data produced per simulation
process at each timestep is 32MB.

number of MPI processes in data producing program increases from 256 to 4096. The reason

for this significant performance gain is that all data movement is intra-node, and performed

through the on-node fast I/O path - shared memory. But for the disk I/O approach,

both data producer and DOC worker processes have to use the off-node slow path - disk.

Figure 5.9 illustrates the performance gain from another dimension - aggregate data transfer

throughput. The fast intra-node shared memory approach enables much higher aggregate

bandwidth for the data movement between simulation and DOC.

Effectiveness of the feature-based cluster tracking algorithm

This section evaluates the effectiveness and accuracy of our proposed feature tracking algo-

rithm, using a time-varying 3D dataset. The dataset is generated by simulation of coherent

turbulent vortex structures with 1283 resolution (vorticity magnitude) and 100 time steps.

In this case, the data cluster or object of interest is defined as thresholded connected voxel

regions. These regions evolve both in location and shape during the simulation. Although

different time steps of the dataset can be visualized offline using visualization tools such

as Visit, it is difficult to visually observe and accurately follow regions of interest. The

tracking information from our algorithm is used to determine how the regions evolve, e.g.,

size, location, density, over the time steps.

In this experiment, we define the regions of interest as the data points with vorticity

values in the range of 9 to maximum. Since the tracked objects in our experiment vary fast
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Figure 5.10: A visualized view of the evolving volume regions (objects) tracked by our
feature-based tracking algorithm.

Figure 5.11: Illustration of tracked path for object evolves over multiple time steps.
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and last only around 10 time steps, we snapshot three time steps of the visualized dataset

for the duration of the tracked object, as shown in Figure 5.10. Also, it demonstrates the

effective tracking of the evolving volume region (or object as in DOC) pointed by black

arrows. We define tracking accuracy as the ratio of data points encompassed by the tracked

objects to total number of points in the experiment. This ensures that high accuracy

in object tracking can only be achieved by identifying paths from which the object pass

through. In each experiment 50 frames were used to identify the paths of the objects within

these 50 frames.

The tracking accuracy across 47 tests was 92.28% on average, meaning only 7.72% of all

vortex points were not associated to any trackable object in our experiments. In Figure 5.11

we present the tracking of a object (the same one as in visualized Figure 5.10), as seen by

DOC, at three different time steps. As shown in the figure, this object moves from left to

right and shrinks in size.

5.6.2 Online data analytics for S3D combustion simulation

Overview

This section presents the online data analysis workflow for combustion simulation, which

is implemented using CoDS task execution framework. The workflow couples parallel data

analysis operations with S3D combustion simulation to analyze the raw simulation data on-

the-fly, and decouple analysis operations from filed-based I/O by utilizing memory-based

data sharing.

Figure 5.12 presents an overview of the S3D online data analysis framework. Task execu-

tor resource is divided into two distinct partitions namely SIMULATION and INTRANSIT.

Task executors of SIMULATION partition is used for executing the S3D simulation, while

the INTRANSIT partition is used for executing online data analysis operations. Data anal-

ysis tasks of the workflow is dynamically submitted and spawned by the S3D simulation, and

workflow manager is responsible for the task scheduling and placement. DIMES is used to

support asynchronous RDMA-based memory-to-memory data sharing between simulation

and analysis tasks.

The online data analysis framework integrates two specific analysis operations including
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Figure 5.12: An overview of the online data analysis framework for S3D combustion simu-
lation.

visualization, and value-based indexing.

• Visualization: Visualization enables scientists to visually monitor the simulations

output. Our implementation uses the parallel volume rendering software library de-

veloped by UC Davis [70], which renders full-resolution simulation data. The parallel

rendering approach generates high-quality images that can visually convey simulation

results with great details.

• Value-based indexing: Value-based indexing enables scientists to formulate value-

based range queries on the simulation data, and analyzes the data in an explorative

manner. Our implementation uses software library FastBit [67] to generates value-

based index of S3D simulation data. FastBit implements efficient compressed bitmap

index technique, and has been demonstrated in a number of scientific applications to

support value-based indexing and query processing.

Results

The prototype implementation was evaluated on the Cray XK7 Titan system at Oak Ridge

National Laboratory. Titan has 18,688 compute nodes, and each compute node has a 16-

core AMD Opteron processor, 32GB memory, and a Gemini router that interconnects the

nodes via a fast network with a 3D torus topology.
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S3D simulation periodically outputs chemical species data - 21 3D double arrays. One

double array that represents the combustion temperature is the input for visualization

operation, while the other 20 double arrays are the input for value-based indexing operation.

Each simulation process computes on a 3D 20× 20× 20 grid, and generates about 1.28MB

data for the 21 double arrays. The experiments vary the total number of S3D simulation

processes from 64 to 16384, in order to evaluate the scalability and performance results at

different scales.
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Figure 5.13: End-to-end execution time for S3D data analysis workflow.

In our experiments, S3D simulation runs for 50 time steps. Visualization and value-

based indexing operation is performed at each time step. To demonstrate the benefits of

concurrent data analysis supported by our framework, we compare with the inline data

analysis approach which performs analysis operations directly on the physical processor

cores that execute the S3D simulation.

We measure the total end-to-end wallclock execution time as perceived by the simulation,

and Figure 5.13 presents the evaluation results of both concurrent and inline approach.

Concurrent approach reduces the end-to-end execution time by 16.7%, 10.6%, 13.1%, 14.1%,

32.7% respectively, when the number of S3D simulation cores is varied from 64 to 16384.

The advantage of concurrent approach becomes more significant at larger scale. Because

the analysis operations need to write results to files, the inefficient file-based I/O at larger

scale causes significant overhead to simulation execution in the inline approach. In the

concurrent approach, data analysis operations are offloaded to separate processor cores and
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performed asynchronously, which introduces minimum overhead to simulation execution.

Concurrent approach requires additional computation resource to perform data anal-

ysis operations, as compared with the inline approach. Table 5.1 presents the amount of

additional computation resource used in concurrent approach, including the number of pro-

cessor cores for running workflow manager and information space servers, and the number

of processor corse for executing data analysis operations. The resource overhead is less than

2% for large scale experiments with 1024, 4096 and 16384 S3D simulation cores, which is

acceptable considering the effective reduction of end-to-end execution time and support of

online data analytics workflow.

Num. of S3D
simulation
cores

Num. of cores (work-
flow manager and infor-
mation space servers)

Num. of cores (data
analysis operations)

Overhead

64 1 1 3.12%
256 2 4 2.34%
1024 4 16 1.95%
4096 8 64 1.75%
16384 16 256 1.66%

Table 5.1: Computation resource used in the concurrent approach of S3D online data anal-
ysis.

5.7 Related work

5.7.1 Programming model for workflow composition

Traditionally, programming scientific workflow is based on the abstraction of acyclic task

dependency graph. Workflow is described as a directed acyclic graph (DAG), where each

graph vertex represents a task and the edge identifies the data dependency. A task be-

comes runnable only after all its parent tasks complete their executions. Scientific workflow

management systems DAGMan [3], Pegasus [32], Makelow [12] are examples using the task

dependency graph model. Task dependency graph enforces sequential execution order be-

tween parent and child tasks connected by a edge. Task execution is completion-dependent,

which depends on the completion of parent tasks. However, the programming model does

not support expressing data-driven execution where a task becomes runnable once its data

dependencies are satisfied. Data-driven execution is required by many coupled simulation
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workflow scenarios, such as the S3D online analytics workflow described in Chapter 2.1.1.

Many recent scientific workflow programming systems employ the dataflow program-

ming model. A DAG of tasks can be used to represent a dataflow, where each graph vertex

represents a task and the edge represents data flow between tasks. PreDatA [73] provides

the map-shuffle-reduce model for users to compose customized data processing pipeline,

which essentially composes a fixed dataflow. Twister [39] provides a iterative MapRe-

duce [31] programming model. Users can express scientific workflow as iterative execution

of MapReduce tasks, which essentially composes a iterative dataflow. Swift [64, 15, 65]

is a dataflow language designed for programming many task computing (MTC) workflow,

and supports dataflow-driven task-parallel execution. Swift supports arbitrary dataflow,

and the dataflow specification is from the dynamic evaluation of programs written in the

concurrent, expressive Swift scripting language.

5.7.2 Software framework for online data analytics workflow

This section presents software frameworks that support online data analytics on large-scale

HPC clusters. Online data analytics workflow is one representative scenario of coupled

simulation workflow, which emerges to address the increasing performance gap between

computation and disk I/O. The workflow couples simulation code with data analysis, and

analyze the raw simulation data while it is being generated. Data analysis operations can

execute in-situ on the same compute nodes that run the simulation code, or in-transit on

a set of separate and dedicated compute nodes.

In-situ data analysis: Functional partitioning (FP) [52] runtime allocates dedicated

processor cores, namely helper cores, on the same compute nodes that run the simulation,

and uses the helper cores to perform specific data processing tasks, e.g. checkpointing,

de-duplication, and data format transformation. Similarly, Damaris/Viz [37] framework

utilizes helper cores to perform online in-situ visualization. Darmaris/Viz implements a

shared memory, zero-copy communication model to support efficient data sharing between

simulation and visualization tasks. GoldRush [74] framework executes in-situ data analysis

by utilizing idle CPU cycles of the processor cores running the simulation. Unlike the

helper cores approach, data analysis tasks in GoldRush share the same computation cores
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with simulation. GoldRush employs fine-grained scheduling to “steal” idle resources from

simulation, with the objective of minimizing interference between the simulation and data

analytics. In-situ data analysis reduces the size of network data movement by placing

analysis tasks closer to simulation data. However, on-node resource sharing, e.g. CPU,

memory, and network, may cause interference between simulation and analysis.

In-transit data analysis on staging nodes: GLEAN [63] framework supports in-

transit data analysis on dedicated staging nodes. Simulation running on compute nodes can

use GLEAN transparently through a standard I/O library such as pNetCDF and HDF5,

which provides non-intrusive integration with existing applications. PreDatA [73] mid-

dleware offloads output data from a running simulation to dedicated staging nodes using

asynchronous data extraction, and performs data pre-processing and analysis in-transit.

PreDatA supports in-transit execution of user-defined operations, and provides users with

a map-shuffle-reduce programming paradigm to build customized data stream processing in

the staging area. In-transit data analysis minimizes the impact on simulation, by offloading

analysis computation to separate staging nodes.

Hybrid online data analysis: Several recent work provides the flexibility of anal-

ysis placement, and supports both in-situ and in-transit data analysis. JITStager [9] en-

ables users to apply customized data operators to simulation output data along the en-

tire I/O pipeline. JITStager implements SmartTap to execute data operations in-situ on

processor cores that run the simulation code. In addition, JITStager builds on software

DataStager [10] to extract data from simulation to staging area, execute the data cus-

tomization operators, and forward the data to downstream data analysis framework, i.e.

PreDatA middleware, for further processing. FlexIO [75] middleware enables users to tune

analytics placement to improve performance for online data analytics workflow. FlexIO can

automatically configure the underlying transport to support placement decision made by

users, and support various placement options, e.g. in-situ helper cores, in-transit staging

nodes.
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5.7.3 Task placement based on programmer-provided information

Several recent parallel programming languages and systems allow programmers to explic-

itly control the location of task execution or express “hint” that can be utilized by runtime

to make the placement decision. PGAS programming language Chapel [25] provides the

abstraction of locale to represent a portion of the target parallel machines that has compu-

tation and storage capabilities. For example, on HPC cluster of multicore nodes, each node

can be abstracted as a locale. Programmer can use the Chapel on statement to control on

which locale to execute a block of code. Similarly, PGAS language X10 [26] provides the

abstraction of place, and programmer can use the X10 at statement to express the place

of computation task. Parallel programming model Piccolo [58] builds application around

kernel functions, and the application data is stored in in-memory tables that partitioned

and distributed on different compute nodes. Piccolo allows programmer to express locality

policies (or preferences) to co-locate a kernel execution with desired table partition. Piccolo

runtime executes a kernel instance on machine that stores most of the required data, which

minimizes remote reads.

5.8 Summary

This chapter presents CoDS framework that supports the programming, task execution and

placement for coupled simulation workflows. CoDS provides the programming support by

implementing asynchronous and dynamic task execution APIs. Programmers can compose

workflow by combining concurrent, sequential and iterative executions of task programs.

CoDS implements hint-based task placement mechanism that utilizes programmer-provided

hint as input. Programmers can provide data hint for the locality-aware placement, and

explicitly control the location of task execution by specifying location hint. This chap-

ter also presents the experimental evaluation of the runtime framework by using several

representative workflow applications.
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Chapter 6

Communication- and topology-aware task mapping

6.1 Introduction

High-performance computing (HPC) systems are increasingly being based on two architec-

tural trends to achieve better performance: First, systems have increased core count/den-

sity on a single compute node. Second, systems have increased number of compute nodes,

which are interconnected by network with complex topology. For example, petascale su-

percomputer Cray XK7 Titan uses a 3D torus network to interconnect its 18,688 16-core

compute nodes, and IBM BlueGene/Q Mira uses a 5D torus network to interconnect its

49,152 18-core compute nodes. This architectural trend makes the largest supercomputers

highly hierarchical, and the cost of data communication can vary significantly depending

on where the communicating processes are placed. For example, on-node data movement

is more efficient than off-node data movement that requires transferring data over inter-

connection network. Data communication between compute nodes that are nearby in the

network topology is more efficient than between compute nodes that are connected long-

hop away. Meanwhile, emerging coupled scientific simulation workflows consist of multiple

applications that need to interact and exchange significant volume of data at runtime. The

cost of moving the increasingly large volumes of data associated with these interactions and

couplings has become a dominant part of the overall workflow execution.

Clearly, in order to effectively utilize the potential of current and emerging HPC systems

it is critical that such data-intensive coupled simulation workflows exploit data locality to

the extent possible, increase the size of on-node data exchange and reduce the cost of

data movement over network. To achieve this objective, one key research direction is task

mapping, which determines the mapping of application processes onto network topology,

and has significant impact on the cost of data movement. While existing research work [69]
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[18] [44] [33] has focused on mapping frequently communicating processes within a single

application onto processor cores that are physically “close”, mapping processes of multiple

applications that are part of a workflow has not been studied.

This chapter presents the communication- and topology-aware task mapping to localize

communication for coupled simulation workflow. First, the task mapping improves data

locality by placing intensively communicating processes onto the same multi-core compute

node, with the objective of reducing the size of data movement over interconnection network.

Intra-node data movement can use more efficient shared memory, bypassing the network

devices. Figure 6.1 illustrates the co-located execution of processes from two concurrently

coupled applications. Second, the task mapping improves data locality by placing commu-

nicating processes onto physically “close” compute nodes in the network topology, with the

objective of reducing the number of hops for data transfers over network.

... ...

... ...

a multicore compute node

MEM

MEM

A1

A2

Processor core running application 1

Processor core running application 2
processor core

Figure 6.1: Illustration of localized data communication through co-located execution ap-
plications processes.

Unlike existing research work that focus on optimizing intra-application communica-

tion for single application, our method targets coupled simulation workflow that consists of

multiple applications, and optimizes the overall workflow communication performance by

considering both intra-application and inter-application communications. Moreover, while

existing approaches focus on communication between application processes that execute

simultaneously, our method also targets communication between sequentially executed ap-

plications, which is unique to coupled simulation workflow.
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Communication- and topology-aware task mapping utilizes existing graph partitioning

and topology mapping algorithms as the main building blocks. The prototype implementa-

tion builds on DIMES (presented in Chapter 4) to support memory-based inter-application

data exchange, and builds on CoDS (presented in Chapter 5) to execute the workflow and

control the runtime placement of application processes.

The remainder of the chapter is organized as follows. Section 6.2 formulates the task

mapping problem. Section 6.3 presents algorithm description of the communication- and

topology-aware task mapping method. Section 6.4 presents the integration of the task

mapping method into CoDS framework. Section 6.5 presents the experimental evaluation

using three representative testing workflows. Section 6.6 presents related research work and

Section 6.7 summarizes this chapter.

6.2 Task mapping problem

This section first formulates the task mapping problem using the task graph based workflow

representation (described in Chapter 5.2). In addition, this section defines the performance

metrics, and describes the assumptions we made for the task mapping problem.

6.2.1 Formalization

• Workflow communication graph: Each workflow application is a parallel program

that executes on a massive number of processes. Workflow communication includes

intra-application communication which moves data between processes in the same

application, and inter-application communication which moves data between different

applications. Workflow communication is represented by a weighted, undirected graph

Gc = (Vc, Ec, wc). Vc is the set of application processes in a workflow, and Ec defines

the set of graph edges. For each edge (u, v) ∈ Ec, wc(u, v) represents the size of

communication between application process u and v.

• Network topology graph: The physical interconnection network is represented by

a undirected graph Gt = (Vt, Et, ct). Vt is the set of physical nodes (compute node

or network switch) in the network topology, and an edge (u, v) ∈ Et represents a
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direct network link between node u and v. Capacity value ct(u) defines the number of

application processes that can execute on compute node u ∈ Vt. The value of ct(u) is 0

for switches (if any in the network topology), and is equal to the number of processor

cores on a compute node. For example, the value ct(u) is set as 16 for Cray XK7

Titan supercomputer where each compute node has 16 processor cores.

• Task mapping: The task mapping is represented by a function

τ : Vc → Vt (6.1)

which maps the vertices of Vc (workflow application processes) to the vertices of Vt

(physical compute nodes). As shown by previous research work [11] [44], the task

mapping problem can be formulated as mapping the communication graph to network

topology graph, which is essentially a graph embedding problem and is known to be

NP-hard.

6.2.2 Quality measures

• Size of network data movement measures the amount of inter-node data commu-

nication. On high-end computing system that consists of multi-/many-core compute

nodes, communication can be generally categorized as two types: intra-node communi-

cation and inter-node communication. Intra-node communication is performed using

much faster, efficient on-node memory. Inter-node communication needs to transfer

data over network, which could have higher overhead in terms of latency and energy.

• Hop-bytes [11] [66] measures the total size of data communication in bytes weighted

by network distance. Network distance is measured as the length (number of network

hops) of the shortest path between communicating processes in the network topology

graph. Given the communication graph Gc, network topology graph Gt, and a specific

task mapping τ , the hop-bytes HB(Gc, Gt, τ) can be computed as

HB(Gc, Gt, τ) =
∑

(u,v)∈Ec

wc(u, v).d(τ(u), τ(v)) (6.2)

where d(τ(u), τ(v)) denotes the network distance between compute node τ(u) and
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τ(v). For application processes running on the same compute node, the network

distance is defined as 0.

• Communication time measures the total communication time as perceived by the

application during the workflow execution. Reduction of communication time is an

important indicator of the task mapping quality, because reducing the communication

time directly reduces the end-to-end workflow execution time.

6.2.3 Assumptions

One assumption we made is that the communication graph does not change across different

iterations of workflow execution, and the mapping of application processes to compute nodes

does not need to change at runtime. As a result, the communication- and topology-aware

task mapping is static and only needs to be computed once before the workflow execution.

In practice, this assumption is valid for most coupled simulation workflows we have been

working on. Task mapping for workflows exhibiting dynamic communication patterns is

beyond the scope of current research work, and will be explored in future work.

6.3 Communication- and topology-aware task mapping

This section starts with an overview of the communication- and topology-aware task map-

ping method, and then describes the task mapping algorithm in details.

6.3.1 Overview

Existing topology mapping methods for single application typically involve two key steps.

First, inter-process communication graph of the application is partitioned into N/n equal

pieces, where N is the total number of application processes and n denotes the number

of processes that can execute on a compute node. With the initial partitioning, the inter-

process communication graph is reduced to a inter-partition communication graph. Second,

inter-partition communication graph is mapped to the network topology graph, which de-

termines the mapping of application processes to networked compute nodes. Topology

task mapping is a well-known NP-hard problem, and many heuristic algorithms have been
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proposed, including greedy approaches [11] [44], recursive bipartitioning [44] [66], graph

similarity [44], and geometric based mapping methods [17] [33].

APP1

APP2 APP3

APP4

Bundle 1

Bundle 2

Bundle 3

Figure 6.2: Illustration of task graph that can be represented as pipeline of application
bundles.

Our communication- and topology-aware task mapping for coupled simulation workflow

builds on graph partitioning and topology mapping algorithms used by existing mapping

methods. However, our method differentiates from single application task mapping, and

aims at reducing the cost of data movement caused by both intra-application and inter-

application communication. In many coupled simulation workflows, applications can be

represented as a pipeline of bundles, as illustrated by Figure 6.2. Our task mapping method

optimizes the data communication between concurrently coupled applications in the same

bundle, such as APP2 and APP3 in bundle 2. In addition, our task mapping method also

optimizes the data communication between sequentially coupled applications from different

bundles, such as APP1 and APP2.

The communication- and topology-aware workflow task mapping involves three key

steps:

• Partition the communication graph for each application bundle, in order to reduce

the size of network data movement within a bundle, which includes intra-application

communication and inter-application communication.

• Group the partitions to reduce the size of network data movement between sequential

bundles, which includes inter-application communication between sequentially coupled

applications.
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• Map the groups onto the physical compute nodes.

6.3.2 Method description

In this section, we will use a synthetic workflow example to demonstrate the step-by-step

execution for the task mapping. Figure 6.3 shows the DAG representation of the workflow

example, which consist of three applications. The workflow applications APP1, APP2

and APP3 run on 12, 8 and 4 processes respectively, and share a common data domain

represented by a 2D cartesian grid. The workflow executes bundle 1 and bundle 2 in

sequential order, which starts executing APP2 and APP3 after the completion of APP1.

Figure 6.3 also shows the decomposition and distribution of the data domain over application

processes. In this example, we define the number of processor cores on a compute node as

6.

APP1

APP2 APP3

Bundle 1

Bundle 2

0     1     2     3

4     5     6     7

8     9     10   11

0     1     2     3

4     5     6     7

0              1

2              3

APP1 data decomposition

APP2 data decomposition APP3 data decomposition

Figure 6.3: Simple workflow example used to demonstrate the communication- and
topology-aware task mapping: (Left) DAG representation and (Right) the applications
data decomposition.

The first step is to divide application processes into partitions, and the objective is

to minimize the size of network data movement between application processes in the same

bundle. Algorithm used in this step aims at mapping heavily communicating processes to

the same partition. Application processes mapped to the same partition would execute on

the same compute node and exchange data using shared memory.

Input of the partitioning is the bundle communication graphs Gb1, Gb2, ...Gbn, where

Vc = Vb1 ∪ Vb2 ∪ ...∪ Vbn (Vc is the set of all application processes in the workflow). Output

of the partitioning is the mapping from application processes to a set of partitions:

τ1 : Vc → Vp, (6.3)
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where Vp is the set of partitions. The size of a partition equals to the core count of a

compute node. Graph partitioning is applied to each bundle, and our method uses graph

partitioning library METIS [47] which offers optimized partitioning heuristics. Figure 6.4

illustrates the step 1 for mapping the example workflow.

Bundle 1

Bundle 2

Group 1 Group 2

0 1 2

4 5 6

8 9 10

3

7

11

0 1 2

4 5 6

3

7

0 1

2 3

Bundle 1

Bundle 2

APP1 process APP2 process APP3 process

Step 1 Step 2

Figure 6.4: Illustrations: (1) Partitioning of communication graph - application processes
in each bundle is divided into partitions to localize the data communication. (2) Grouping
of the graph partitions - map data consumer processes to where the input data is generated
to increase the amount of data reuse from local group

The second step is to assign partitions into groups, and the objective is to minimize

the size of network data movement between sequentially executed bundles. Algorithm used

in this step aims at mapping heavily communicating partitions (from sequential bundles)

to the same group, which essentially places application processes closer to input data.

For example, as presented in Figure 6.4, Bundle1-Partition1 and Bundle2-Partition1 are

mapped to group 1, Bundle1-Partition2 and Bundle2-Partition2 are mapped to group 2.

Data sharing between partitions of the same group can also utilize shared memory, which is

enabled by the local in-memory staging capability of DIMES (presented in Chapter 4). Data

sharing between the sequentially executed bundles is decoupled in time. For example, data

generated by APP1 needs to be available after the completion of APP1, which is read by

APP2 and APP3. The traditional approach to support this decoupled-in-time data sharing

is through disk files. DIMES caches data generated by the producer application in the local

memory of compute nodes. Consumer applications can directly read the data from local

memory if appropriate task mapping is achieved.

Input of the grouping is the partitions computed in step 1, and the output is the mapping
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from partitions to groups:

τ2 : Vp → Vg, (6.4)

where Vg is the set of groups. The number of groups is equal to the total number of

compute nodes required for the workflow execution. Figure 6.4 illustrates step 2 for mapping

the example workflow. It builds a inter-partition communication graph to represent data

movement between sequential bundles. Graph vertex represents a partition computed in

step 1, and graph edge represents the amount of data communication between partitions.

Similar to the previous step, graph partitioning technique is applied to this inter-partition

communication graph, to divide the partitions into groups.

Group 1 Group 2

APP1 process APP2 process APP3 process

Step 3
node 0

node 1 node 2

node 3

node 4

node 5node 6

node 7
Group 1

Group 2

Figure 6.5: Topology mapping: map the groups onto compute nodes interconnected by the
underlying network.

The last step performs mapping of groups onto the topology of underlying interconnec-

tion network, and the objective is to minimize the network hop-bytes. After the first two

steps, the mapping from application processes to groups (Vc → Vg) can be acquired. The

original inter-process communication graph can be reduced to a inter-group communication

graph. Input of the topology mapping is the inter-group communication graph Gg and

network topology graph Gt, the output is the mapping from groups to compute nodes:

τ3 : Vg → Vt, (6.5)

Figure 6.5 uses a 3D 2 × 2 × 2 mesh network to illustrate the mapping of the sample

workflow onto the compute nodes. The principle is to map communicating groups to nearby

compute nodes to reduce the network distance of data transfers. In this case, the groups
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are mapped to two adjacent compute nodes, node 0 and 1, in the network topology graph.

Algorithm 1 Recursive bisection mapping recursive map()

Input: Communication graph Gg, network graph Gt

Output: Mapping τ : Vg → Vt

1: if |Vt| == 1 then
2: τ(u) = v, for u ∈ Vg, v ∈ Vt;
3: return;
4: end if
5: (Gg1, Gg2) ← bipartition(Gg);
6: (Gt1, Gt2) ← bipartition(Gt);
7: if |Vg1| == |Vt1| then
8: recursive map(Gg1,Gt1);
9: recursive map(Gg2,Gt2);

10: else
11: recursive map(Gg1,Gt2);
12: recursive map(Gg2,Gt1);
13: end if

Topology mapping applies the recursive bisection based algorithm [44] [66], as presented

in Algorithm 1. In this method, the weighted communication graph Gg is recursively split

with minimum edge-cut into equal halves, while the topology graph Gt is split with maxi-

mum edge-cut. The runtime complexity of this algorithm is O(|Eg|log(|Vg|)+ |Et|log(|Vt|)).

After the completion of above three steps, the mapping τ : Vc → Vt (defined in Equa-

tion 6.1) can be derived from Equation 6.3, 6.4 and 6.5. As a result, workflow application

process are successfully mapped to compute nodes in the network topology. For compute

node with multi-core processors, another level of mapping is required within the physical

node to map each application process to a specific processor core. Our approach employs

sequential mapping, which first orders the processes mapped to the same node by MPI

rank, and then sequentially assigns the processes to physical cores. Advanced node-local

mapping, such as node architecture-aware approach [66] [75], can be utilized. But it is

beyond the scope of our current research work and will be investigated in future work.

6.4 Implementation

The communication- and topology-aware task mapping method has been implemented and

integrated into the CoDS framework (presented in Chapter 5). CoDS framework consists

of four main components, including workflow manager, task executor, task submitter and
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information space. Task executors span across the allocated compute nodes. Each task

executor runs on one physical processor core, and is used to execute one application process.

Workflow manager is responsible for scheduling and allocating task executors for workflow

execution.

In our prototype implementation, CoDS workflow manager performs communication-

and topology-aware task mapping, and generates the mapping from application processes

to cores. The complete execution flow is described as below.

• Obtain network topology graph: Workflow manager needs to obtain the network

topology graph of the compute nodes used for workflow execution, in order to perform

the task mapping. CoDS framework uses system tools or library to query the network

topology information for compute nodes, and then build the network topology graph.

For example, on Cray Gemini 3D-torus interconnection network, CoDS uses the Cray

RCA library function rca get meshcoord() to retrieve network coordinate of a compute

node.

• Generate workflow communication graph: Workflow manager also needs to

obtain the workflow communication graph representing both intra-application and

inter-application communications. In practice, two approaches can be used to generate

the communication graph: (1) Communication graph can be inferred or estimated for

applications presenting simple, regular and structured communications. For example,

many scientific applications are based on multidimensional cartesian grid data domain,

and the data decomposition can be expressed in terms of a domain size, process

layout, data distribution type, and data block size. A n-tuple (s1, ..., sn) and n-tuple

(p1, ..., pn) is used to specify the size and number of processes in each dimension of the

data domain. As a result, the intra-application communication graph can be easily

computed if the application processes exhibit regular communication pattern such as

near-neighbor data exchange. Similarly, communication graph can be computed for

regular inter-application communication pattern, such as M ×N array redistribution.

(2) Tracing tools can be used to extract inter-process communications, and generate

more accurate communication graphs. However, most tracing tools are not scalable,
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which can only trace applications running at small scale.

• Apply the task mapping method: After obtaining the network topology and

workflow communication graph, workflow manager executes the communication- and

topology-aware task mapping algorithm. Because most application programs are im-

plemented using MPI, output of this step is the mapping from application MPI ranks

to task executors.

• Runtime mapping of application processes: CoDS framework uses a technique

called “rank reordering” [21] [55] to achieve the actual placement of application pro-

cesses to task executors. Task executors first dynamically create a new MPI com-

municator, and then reorder the MPI rank values according to the mapping result

computed in previous step. Application program’s data decomposition and inter-

process communication depends on the reordered MPI rank values. As a result, the

rank reordering successfully enforces the desired process placement.

6.5 Evaluation

This section uses three representative testing workflows to evaluate the effectiveness and

scalability of the task mapping approach. The experimental evaluation is performed on

Titan Cray XK7 supercomputer at Oak Ridge National Laboratory’s National Center for

Computational Sciences. Titan has 18,688 compute nodes, and each compute node has a

16-core processor and 32GB node-level memory. Titan uses Gemini, a 3D-torus network

topology, to interconnect the compute nodes. The 3D torus network of Titan has a global

dimension 25 × 16 × 24, where each Gemini ASIC in the 3D torus network provides two

network interface controllers (NICs) and can connect to two compute nodes.

6.5.1 Experiment setup

The application used in the experiment is a 3D Stencil benchmark in MPI. The application

has a 3D global data domain, and organizes the application processes into a regular 3D

grid. The global data domain is decomposed and distributed to the application processes

according to the layout of the process grid. During the application execution, each process
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needs to communicate with six neighbors and exchange boundary information about local

data domain. In this testing application, the intra-application data communication is mainly

dominated by the near-neighbor data exchange. The inter-application data communication

involves extracting data for the entire domain from M processes of one application to N

processes of another application, which is known as M ×N data redistribution.

APP1

APP2 APP3

Bundle 1

Bundle 2

APP1

Bundle 1

APP2

Bundle 2 APP1 APP2

Bundle 1

Testing workflow 1 

DAG representation

Testing workflow 2 

DAG representation

Testing workflow 3 

DAG representation

Figure 6.6: DAG representations for the testing workflows used in the experimental evalu-
ation.

The experiment used three testing workflow scenarios that represent typical interaction

patterns in coupled simulation workflows, as illustrated by Figure 6.6. The first testing

workflow wf1 consists of two applications wf1-app1 and wf1-app2. The workflow executes

the two applications in a sequential order, and data generated by wf1-app1 needs to be

redistributed to processes of wf1-app2. The second testing workflow wf2 also consists of

two applications, namely wf2-app1 and wf2-app2, but the two applications are executed

concurrently and data is redistributed from application wf2-app1 to wf2-app2. The third

testing workflow wf3 has a more complex interaction patterns and consists of three applica-

tions. The workflow first executes application wf3-app1, and then launches two concurrently

executing applications wf3-app2 and wf3-app3 after the completion of wf3-app1. As shown

in Figure 6.6, the workflow has two different interaction patterns, firstly sharing data from

wf3-app1 to wf3-app2 and wf3-app3, secondly sharing data between wf3-app2 and wf3-app3.

Table 6.1 to 6.3 presents the setup of application global data domain, number of processes

for each application. For each testing workflow, the experiment configures 4 different cases

to increase the total number of processor cores from about 4K to 32K, in order to evaluate

the scalability of our mapping approach.
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Global data domain wf1-app1 number of
process

wf1-app2 number of
process

Case-1 512×1024×1024 4096 1024

Case-2 1024×1024×1024 8192 2048

Case-3 1024×1024×2048 16384 4096

Case-4 1024×2048×2048 32768 8192

Table 6.1: Testing workflow 1 - configurations of global data domain and the number of
application processes

Global data domain wf2-app1 number of
process

wf2-app2 number of
process

Case-1 512×1024×1024 4096 256

Case-2 1024×1024×1024 8129 1024

Case-3 1024×1024×2048 16384 2048

Case-4 1024×2048×2048 32768 4096

Table 6.2: Testing workflow 2 - configurations of global data domain and the number of
application processes

Global data domain wf3-app1
number of
process

wf3-app2
number of
process

wf3-app3
number of
process

Case-1 512×1024×1024 4096 2048 512

Case-2 1024×1024×1024 8192 4096 1024

Case-3 1024×1024×2048 16386 8192 2048

Case-4 1024×2048×2048 32768 16384 4096

Table 6.3: Testing workflow 3 - configurations of global data domain and the number of
application processes
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Our experimental evaluation compare communication- and topology-aware task mapping

with the sequential mapping approach. Sequential mapping is the default process-to-core

mapping approach used by the job scheduler of most HPC clusters, including ORNL Titan,

which serves as the baseline approach in our evaluation. Sequential mapping approach places

the application processes onto the compute nodes in a sequential way purely based upon

the process MPI rank, and is oblivious to either the intra-application or inter-application

communication patterns.

6.5.2 Size of data movement over network

This section measures the reduction in the size of data movement over network. Fig-

ure 6.7(a) to 6.7(c) presents the evaluation results of total network data transfers. As

shown in the figures, the communication- and topology-aware task mapping approach effec-

tively reduces the size of network data communication, for all the three testing workflows.

Compared with sequential mapping, the communication and topology-aware task mapping

approach in testing workflow 1 reduces the the amount of network data transfer by 24%

(1.69 GB), 29% (4.46 GB), 22% (6.74 GB), 15% (9.55 GB) respectively for the different con-

figured cases. For testing workflow 2, the communication and topology-aware task mapping

reduces the network data transfer by 10% (0.66 GB), 11% (1.49 GB), 11% (3.08 GB), 12%

(6.82 GB). For testing workflow 3, the communication and topology-aware task mapping

reduces the network data transfer by 29% (4.74 GB), 34% (11.73 GB), 27% (18.72 GB),

20% (26.49 GB).

6.5.3 Hop-bytes

Figure 6.8(a) to 6.8(b) presents the evaluation results of total network hop-bytes. For

testing workflow 1, compared with sequential mapping, the communication and topology-

aware task mapping approach reduces the network hop-bytes by 60%, 71%, 61%, 53%

respectively for the different configured cases. For testing workflow 2, our approach reduces

network hop-bytes by 48%, 47%, 44%, 52%. For testing workflow 3, our approach reduces

the network hop-bytes by 54%, 61%, 53%, 46%.

Figures 6.9(a) to 6.9(c) presents the reduction of network hops for transferred data
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Figure 6.7: Compare the size of network data communication.
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Figure 6.8: Compare the network hop-bytes.
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Figure 6.9: Compare the average hop per byte.
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using another performance metric - average hop per byte. This metric shows in average

how many network hops each data byte would transfer. As shown by the figures, our

communication- and topology-aware task mapping approach also effectively reduces the

average hop/byte for all the three testing workflows. In addition, it can be observed from

Figure 6.9 that the task mapping has more significant reduction in average hop per byte for

experimental configurations that use larger number of processor cores, such as Case-3 and

Case-4 which uses about 16K and 32K. This is because the diameter or maximum number of

network hops of the underlying network topology graph increases, inappropriate placement

of the application processes could potentially cause longer network distance for the data

communications.

6.5.4 Communication time

This experiment evaluates the reduction in communication time. Each testing workflow is

executed for 100 iterative runs, and the total communication time is measured and pre-

sented. The measured communication activities include the intra-application near-neighbor

data exchanges, and the inter-application data communication.

As shown by Figure 6.10(a) to 6.10(c), the communication- and topology-aware task

mapping approach effective reduces the communication time for all the three testing work-

flows, when compared with the default mapping approach. For testing workflow 1, the total

communication time is reduced by about 49% to 69%. For testing workflow 2, the total

communication time is reduced by about 64% to 76%. For testing workflow 3, the total

communication time is reduced by about 54% to 68%.

6.6 Related work

Mapping application processes onto parallel computers has been well studied. Bokhari [20]

reduces the mapping problem to graph isomorphism, and develops a heuristic algorithm

that starts with a initial mapping followed by sequences of pairwise interchanges. Lee and

Aggarwal [51] proposes similar two-stage optimization approach with initial greedy assign-

ment and pairwise swaps. With the advent of parallel computers that interconnect tens of
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Figure 6.10: Compare the data communication time.
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thousands of multi-core compute nodes, recent research work focuses on developing map-

ping heuristics that can be applied to the high-performance computing systems. Yu, Chung,

and Moreira [69] proposes different topology mapping strategies to map regular Cartesian

processes structures onto the torus network of BlueGene/L supercomputer. Bhatelei [18]

presents a automated mapping framework that uses a suite of heuristic techniques to map

regular communication patterns to 2D and 3D processor meshes, on both BlueGene/P and

Cray XT supercomputers. Hoefler and Snir presents LibTopoMap [44], a topology map-

per library that supports task mapping for generic (both regular and irregular) application

communication graphs and network topology graphs. Most existing research work targets

at mapping single parallel application, our approach and framework focuses on coupled sim-

ulation workflows consisting of both concurrently and sequentially executing applications,

and considers both the intra-application and inter-application communications.

6.7 Summary

This chapter presents the communication- and topology-aware task mapping for coupled

simulation workflow, which aims at reducing the size of data movement over network and

the number of hops for data transfers over network. Specifically, the task mapping applies

graph partitioning technique to workflow communication graph, in order to map intensively

communication application processes onto the same multi-core compute node, so as to re-

duce the data movement over network. In addition, the approach applies topology mapping

to reduce the hop-bytes. Experimental evaluation is performed on ORNL Titan, using three

representative benchmark workflows. The evaluation results show effective reduction of the

size of network data movement and end-to-end communication time.
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Chapter 7

Conclusions and future work

Emerging coupled scientific simulation workflows are composed of multiple applications

that need to interact and exchange data at runtime, which have the potential to achieve

higher accuracy and accelerate the data to insight process. However, running data-intensive

coupled simulation workflows on parallel machines with thousands of compute nodes is

non-trivial. While existing HPC programming and runtime systems have focused on single

application, many research challenges remain unsolved for coupled simulation workflow that

couples and executes multiple interacting applications.

This thesis identifies and addresses key problems and requirements for coupled simu-

lation workflow. Specifically, this thesis presents the programming interface and runtime

mechanisms to support workflow composition and execution, in-memory data management,

task placement. Firstly, this thesis presents DIMES data management framework to support

memory-based data sharing and exchange between coupled applications. DIMES co-locates

distributed in-memory staging on compute nodes that run the applications, and caches

data in node-local memory. Data is indexed according to its spatial geometric domain, and

applications can access data of interest using insert/retrieve queries that contains spatial

constraints, e.g., Cartesian bounding box. Secondly, this thesis presents CoDS task exe-

cution framework to support the workflow composition, task execution and placement. In

CoDS, programmers write a driver program to compose the workflow and orchestrate the

execution of component applications through the task execution APIs. CoDS implements

locality-aware task placement, and allows programmers to express locality preference for

a task by providing data hint. In addition, CoDS allows users to programmatically di-

vide the allocated computation resource into functional partitions, and explicitly express

the placement affinity by providing location hint, e.g., the preferred functional partition
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for task execution. Finally, this thesis presents communication- and topology-aware task

mapping to optimize the workflow communication performance. The thesis presents a holis-

tic method to map workflow communication graph onto physical network topology graph,

with the objective to improve data locality and localize communications. We evaluated

the effectiveness, scalability and performance of the proposed programming interface and

runtime mechanisms, through integration and experiments with several real-world coupled

simulation workflows.

In the future, this work can be extended in several directions.

• Utilizing new storage technologies: Next-generation supercomputers are integrat-

ing new storage technologies, such as faster solid-state drives (SSD) and non-volatile

random-access memory (NVRAM), to increase the node-local storage capacity. Cur-

rent implementation of co-located data staging only utilizes DRAM as the node-local

storage resource. This can be extended to include node-local SSD or NVRAM storage

resources, which can increase the staging capacity and free more space of the precious

DRAM for applications.

• Handle dynamic runtime behaviors of coupled simulation workflow: This

thesis focuses on coupled simulation workflows that exhibit static regular application

data distribution and inter-application communication. However, emerging workflows

start to exhibit dynamic runtime behaviors. For example, scientific simulations based

on adaptive mesh refinement (AMR) have the data distribution dynamically changing

at runtime. Another example is dynamic workflow where the data interaction pattern

between applications is not known in advance. At runtime, new applications may join

an existing group of workflow applications and start data interaction in a dynamic on-

demand fashion. This presents the new requirement for autonomic runtime data and

analytics management, which can capture the dynamic runtime behavior and adapt

the data and analytics placement.
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