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Emerging coupled scienti ¢ simulation work ows are composed of multiple component ap-
plications that interact and exchange data at runtime. Coupled simulation work ow enables
multi-physics multi-model code coupling and online data aralysis, which has the potential
to provide high- delity modeling and accelerate the simulation data to insight process.
However, running coupled simulation work ows on extreme-gale computing systems
presents several challenges. First, most work ow componednapplications are originally
developed as programs that execute independently. Compaosj a work ow requires the
programming support to glue the component applications, ochestrate their executions and
express data exchange. Second, simulation work ow requigeextracting and moving data
between coupled applications. As the data volumes and genate rates keep growing, the
traditional disk I/O based data movement approach becomes ost prohibitive and work ow
requires more scalable and e cient approach to support the caita movement. Third, the cost
of moving large volume of data over system interconnection etwork becomes dominating
and signi cantly impacts the work ow execution time. Minim ize the amount of network
data movement and localize data transfers in the network tomlogy is critical for reducing
such cost. To achieve this, work ow task placement should egloit data locality to the

extent possible and move computation closer to data.



This thesis addresses these challenges related to work owomposition, data manage-
ment and task placement, and makes the following contributons: (1) This thesis presents
DIMES data management framework to support memory-to-memay data movement be-
tween coupled applications. DIMES co-locates in-memory stging on application compute
nodes to store data that needs to be shared or exchanged, andhables accessing the data
through array-based query interface. (2) This thesis presats CoDS task execution frame-
work to support work ow composition and execution, which implements the task execution
programming interface for composing customized work ow aml orchestrating the execution
of component applications. (3) This thesis presents commuication- and topology-aware
task mapping, which implements a holistic approach to map wok ow communication graph
onto physical network topology. The method e ectively reduces the total size of network
data movement and reduces the work ow communication time. The research concepts and
software prototypes have been evaluated using real appli¢@n work ows on extreme-scale

computing systems.
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Chapter 1

Introduction

With the fast growing computational power of supercomputers, scienti ¢ simulation is able
to realize ner granularity and plays an important role in dr iving cutting edge scientic
research. Moreover, scienti ¢ simulations increasingly érmulate as coupled work ows that
consist of multiple interacting applications, which enables code coupling and online data
analysis, and has the potential to achieve high- delity modeling and accelerate the data to
insight process.

This dissertation addresses the challenges associated Witprogramming and runtime
support for enabling coupled simulation work ows on extreme-scale computing systems. In
this introductory chapter, it starts with brief descriptio ns on the background and research
problems, then presents an overview of the thesis researchnd contributions. This chapter

concludes with the outline of the dissertation.

1.1 Background

Emerging coupled simulation work ows are composed of mulgple applications that interact
and exchange data at runtime. Simulation work ows running at extreme scale have the
potential to achieve higher accuracy and accelerate the dat to insight process. Multi-
physics multi-model simulation work ow simulates di eren t aspects of the phenomena being
modeled by coupling multiple physical models. For example,in the Community Earth
System Model (CESM) [28] application work ow, separate sinulations are coupled to model
the interaction of the earth's ocean, atmosphere, land sudce and sea ice. Meanwhile, online
data analytics work ow supports analyzing raw simulation data while it is being generated.
For example, online analytics work ow for combustion simulation S3D [27] extracts and

streams simulation data to a number of analysis operationse.g., visualization, descriptive



statistics, which execute concurrently and in parallel with the simulation.

However, running coupled simulation work ows on extreme-gale computing system is
non-trivial. Simulation work ows are generating large volumes of data that needs to be
dumped to storage system, shared with another coupled apptation, or analyzed and pro-
cessed in a timely manner to extract scienti ¢ insights. As the volumes and generation rates
of the data grow, the costs associated with extracting data fom simulation and transport-
ing it for coupling and analysis have become the dominating werheads, which makes the
traditional disk I/O based data interaction approach cost prohibitive and often infeasible.

In order to mitigate the increasing performance gap betweercomputation and parallel
I/0, the data staging approach has been proposed to accelerate I/O operations, spprt
memory-to-memory data coupling, and enable online simulabn-time data analysis and
processing. In this approach, data staging software buildsa scalable data management
layer on the extreme-scale machine, and utilizes DRAM, Nonvolatile Memory (NVRAM)
or Solid State Drive (SSD) for staging the simulation data. Recent research work in data
staging has focused on the following directions.

I/0 forwarding and acceleration . I/O forwarding technique has been used to trans-
parently o oad expensive 1/O operations to dedicated data staging nodes or I/O nodes.
This technique enables asynchronous I/O and reduces the ingxt of I/O on simulation.
Examples include DataStager [10], GLEAN [63], ADIOS [53], Mssie [57], IOFSL [13]. Sim-
ilarly, burst bu er has been proposed to absorb bursty application I/O behaviors by inte-
grating NVRAM or SSD based bu ers into the compute nodes or I/O nodes on extreme-
scale systems. Examples include Tianhe-2 [68], NESRC Corb] and ORNL Summit [8]
supercomputers.

Runtime data coupling enables e cient memory-to-memory data sharing between
applications that are part of a coupled work ow. Data staging software, such as DataS-
paces [35], Flexpath [29], H5FDdsm [19], builds a scalableath management layer for staging
of simulation data that needs to be shared or exchanged, andtilizes the high-performance
network interconnect for data movement.

Online data analysis and processing . Data staging software can be used to build

online data analysis and processing systems that analyze ¢hsimulation data while it is being



generated. Analysis operations can be placeth-situ on the same compute nodes that run
the simulation code, such as in Darmaris/Viz [37], FP [52], G®IdRush [74], orin-transit on
a set of separate and dedicated staging nodes, such as in AaiSpace [34], PreDatA [73].
Several recent research e orts, e.g., JITStager [9], FlexD [75], DataSpaces [16, 46] also
provides the exibility of supporting both in-situ and in-t ransit analysis placement.
Recent data staging research brings opportunities for impoving the performance of par-
allel 1/0, data sharing and analysis in a coupled simulation work ow. However, enabling
work ow execution on extreme-scale systems still presentprogramming and runtime chal-
lenges in the following aspects: (1) Work ow composition - @mpose a work ow by coupling
the component applications; (2) Data management - manage th data sharing and exchange
between coupled applications; (3) Task placement - place té application processes onto the
physical compute nodes and processor cores. These challesgare the focus of this thesis

and are described in more details in the next section.

1.2 Research challenges

Coupled simulation work ow builds on component applications that are originally developed
as programs that often execute independently, without conglering the need for coupling.
As a result, composing a work ow using existing component aplications requires program-
ming support. First, work ow composition requires the programming support for
orchestrating the application executions . This allows programmers to express the
control ow for the work ow execution, specify data dependencies between applications.
Second,work ow composition requires high-level data abstraction that al lows
programmers to e ectively express the data sharing and exchan ge between the
coupled applications

Coupled simulation work ow requires extracting data from one simulation, and transfer-
ring and redistributing the data to another simulation or an alysis. Traditionally, work ow
applications share and exchange data using distributed lesystems, such as Networked
File System (NFS) [61], Parallel Virtual File System (PVFS) [23], General Parallel File
System (GPFS) [62], Lustre [5]. The le-based disk 1/0O approach enables applications to

use common data access interfaces (e.g., POSIX 1/0) and a walvariety of scienti ¢ data



formats (e.g., HDF5 [4], NetCDF [7]), which brings portability and exibility to the soft-
ware development. But the increasing performance gap betven computation and disk 1/0
introduces signi cant overhead and limits the data exchang performance. As the volumes
and generation rates of the data grow, the traditional disk /O based coupling approach
becomes cost prohibitive and often infeasible.

Memory-based coupling approaches have been developed todidss the increasing per-
formance gap between computation and disk I/O.Direct data movement approaches, such
as Model Coupling Toolkit [49], FlexPath [29], enable memoy-to-memory data redistribu-
tion directly between coupled applications. Direct data movement reduces the latency by
avoiding extra data transfers. However, existing implemetations of direct data movement
only support sharing data between concurrently running appgications, because the avail-
ability of data is dependent on the presence of data produceapplications. Staging-based
data movementapproach, such as DataSpaces [35], H5FDdsm [19], uses dedéd staging
servers to support data sharing and exchange between the cpled applications. The more
persistent storage space on staging servers is capable ofppwrting data exchange for both
concurrently and sequentially coupled applications. But saging-based data movement in-
troduces performance overhead as it transfers data twicerém application to the staging
servers and then to the application. Moreover, this approah requires allocating additional

server resource to buer the data. We need adata management mechanism that

can support memory-to-memory data sharing for di erent coupling p atterns,
provide high-performance data movement, and minimize the use of additional
resource.

Even with the memory-based approach, moving large volume oflata over system in-
terconnection network can still impact the performance of work ow execution. Work ow
applications are often tightly coupled, and the data exchame is performed frequently. The
cost (latency and energy) associated with data exchanges ithese cases can dominate. Min-
imizing the amount of data movement over network, and localzing data transfers within the
network topology is critical for reducing such costs. Task pacement determines the map-
ping of work ow application processes to physical processocores, and plays a signi cant

role in minimizing and localizing data movement.



However, e ective task placement on extreme-scale computig systems is challenging.
System architecture of the largest supercomputers becomesighly hierarchical, with in-
creased core count per compute node and increased number adnepute nodes that are
interconnected by complex network topologies, e.g., 3D tars, Fat tree, Dragon y. On-node
data movement is more e cient than o -node data movement that requires transferring
data over the interconnection network. Data movement betwen compute nodes that are
nearby in the network topology is more e cient than between compute nodes that are
long-hop away. As a result,work ow task placement should exploit data locality
to the extent possible, increase the size of on-node data exchan ge by moving
computation closer to data, and map the work ow communications onto the

interconnected compute nodes in a topology-aware manner.

1.3 Overview of thesis research

The overall goal of this thesis is to address the research chHanges related to work ow
composition, data management and task placement for couptésimulation work ows, which
are described above. This section presents an overview of ékis research.

This thesis presents the DIMES data management framework, Wich implements the
programming interface and runtime mechanism for sharing déa between coupled applica-
tions. DIMES provides a shared array data model, and implemats array-based spatial
guery interface to enable applications to access data of ietrest. In scienti ¢ simulations,
multidimensional arrays are commonly used as the main data tsucture to store the raw
simulation data. Data exchange between applications typially requires moving and re-
distributing arrays from one simulation to the other. The DI MES array data model and
query interface can meet the programming requirement of mascoupled scienti ¢ simulation
work ows.

DIMES co-locates data staging with application execution o the same set of compute
nodes, and utilizes node-local storage resource, e.g., DRA to cache application data that
needs to be shared, exchanged or accessed. Co-located datagsig provides low-latency
high-throughput write performance and signi cantly reduc es the volume of data movement

over network as compared tostaging-based data movemerdpproaches. In addition, DIMES



implements location aware data movement. Depending on the ata locations, e.g., local
or remote memory, DIMES dynamically selects the appropriatetransport mechanism to

support high-performance data transfer. For example, DIMES uses hardware-supported
RDMA network operation for fetching data resides on remote ompute nodes, and uses
direct memory access to fetch data in node-local shared memp segment.

This thesis also presents the CoDS task execution frameworkwhich implements the
programming interface and runtime mechanism for task exection and placement. CoDS
extends the Directed Acyclic Graph (DAG) task graph abstraction used by traditional
scienti c work ow systems to represent coupled simulation work ows. Its programming
environment is exposed as a library to existing languages,ral implements task execution
APIs to compose a work ow. CoDS work ow consists of a driver program and a number
of task programs. Each task program represents a componentpplication, and the driver
program couple the component applications and compose thecaual work ow by combining
sequential, concurrent or iterative execution of task progams.

CoDS implements locality-aware task placement. It attempts to place task execution on
compute nodes that contain the largest portion of its input data. In particular, CoDS allows
programmers to express locality preferences for a task by pwiding data hints, e.g., name
and spatial region of the array data that to be accessed by thdask. In addition, CoDS
allows users to programmatically customize and control thetask placement, according to
the speci c needs of the targeted work ow. Programmers can dvide the allocated com-
putational resource into functional partitions, and explicitly express placement a nity by
providing location hint, e.g., the preferred functional partition for the task exeaution. For
example, online data analytics work ow requires the exibility [72, 16, 75] to place analysis
either \in-situ” on the same compute node that runs the simulation code, or \in-transit"
on a dedicated set of compute nodes. CoDS enables programmen construct such multi-
level functional partitions, e.g., \simulation”, \in-sit u", \in-transit", and exibly control
placement.

Finally, this thesis presents communication- and topologyaware task mapping, which
implements a holistic approach for mapping work ow communications onto a physical net-

work topology, with the goals of reducing the communicationcosts. The key underlying



idea is to localize communication at two levels. First, the task mapping improves data
locality by placing intensively communicating processes oto the same multi-core compute
node, in order to reduce the volume of data movement over the etwork fabric. Second,
the task mapping improves data locality by placing communiating processes onto phys-
ically \close" compute nodes in the network topology, in order to reduce the number of
hops for network-based data transfers. While existing resarch [69, 11, 18, 66] has focused
on mapping frequently communicating processes of a singlepalication, mapping coupled
simulation work ows consisting of multiple interacting ap plications has not been studied.
Our method targets coupled simulation work ow, and aims at reducing the cost caused by

both intra-application and inter-application data movement.

1.4 Contributions

This thesis makes the following contributions.

Design and implementation of DIMES, which provides programming and runtime
support for data sharing and exchange between coupled appgiations. DIMES enables
distributed in-memory data staging, and high-performance memory-to-memory data

movement.

Design and implementation of CoDS, which provides programring and runtime sup-
port for work ow task execution and placement. CoDS supports locality-aware and
exible task placement, by utilizing programmer-provided placement hints informa-
tion, e.g., data hints for expressing locality preferenceocation hints specifying exe-

cution location preference, etc..

Design and implementation of communication- and topologyaware task mapping for
coupled simulation work ows, which e ectively reduces the total size of data move-

ment over network fabric and reduces thehop-bytesfor network-based data transfers.

Integration of the prototype implementations with several real-world coupled simula-

tion work ows in combustion and plasma fusion.



1.5 Thesis outline

The rest of this thesis is organized as follows.

Chapter 2 presents motivating and representative work ow examples, and summarizes
the programming and runtime requirements.

Chapter 3 presents a high-level overview of the technical gmroaches for realizing the
programming and runtime support.

Chapter 4 presents the design, implementation, and evaluabn for DIMES.

Chapter 5 presents the design, implementation, and evaluabn for CoDS.

Chapter 6 presents communication- and topology-aware task mpping for optimizing
the communication performance of coupled simulation work ow.

Chapter 7 summarizes the research work, presents concludinremarks and directions

for future work.



Chapter 2

Motivating applications and requirements

This research is largely driven by the experiences of dealinwith the problems of data
management and task placement that arise in real world work ow applications. This chapter
presents representative work ow examples, describes andismarizes the key programming
and runtime requirements for supporting coupled simulation work ows on extreme-scale

computing systems.

2.1 Motivating coupled simulation work ow scenarios

2.1.1 Online data analytics work ow for combustion simulat ions
Work ow description

S3D data analytics work ow couples S3D [27] - a massively pallel turbulent combustion
simulation with data analysis operations, in order to enabk online analysis of raw simulation
data while it is being generated. This online processing appach enables more ne-grained
exploration of raw simulation data, which is not feasible wih the traditional post-processing
approach due to the signi cant I/O overhead.

Figure 2.1 illustrates the data interactions between coupéd applications, as well as the
execution logic of applications. At runtime, the work ow pe riodically extracts and transfers
selected chemical species to the analysis operations. Inithspecic example, S3D is cou-
pled with three data analysis operations including parallé visualization (VIZ), descriptive
statistics (STAT), and topological analysis (TOPO). As shown in Figure 2.1, analyses are
performed with di erent frequencies. For example, visualzation is executed after every 2
simulation time steps, while descriptive statistics is exeuted after each simulation time

step.



10

) tsl . ts 2 ) ts 3 ts4 ts5 ts 6
30 e
| V/ A | . () PR PR | A SR | R . N PR S ——. =
STAT oo Y i e ¥ b Y [l MY b Y LY L =

Figure 2.1: lllustration of data interactions between cougded applications and execution
logic for the S3D data analytics work ow. Solid arrows denote the data ow between
work ow applications.

Requirements

First, the work ow requires timely extraction and redistri bution of chemical species from
S3D simulation to analysis operations. Overlapping data mgement with the computation
is desirable, which can reduce the data movement overhead geerceived by the simulation.
Second, in order to e ectively utilize the computation resource allocated for the work ow,
it requires data-driven execution which starts the analyss only when all required input data
becomes available. Third, the work ow requires placement exibility for analysis tasks. For
example, the work ow can execute an analysis task in-situ toreduce the amount of data
movement over network, if the communication between S3D andhe analysis is a dominant
cost factor. Similarly, the work ow should also have the ability to execute an analysis task
in-transit to minimize the impact on simulation, if the cost of communication between S3D

and the analysis is insigni cant.
2.1.2 Coupled DNS-LES work ow for combustion simulation

Work ow description

Coupled DNS-LES work ow couples the direct numerical simultion (DNS) solver with the
large eddy simulation (LES) solver in order to perform a modé assessment for combustion
science. The DNS solver provides a high degree of accuracy are grids, but the accuracy

comes by running the simulation on a large number of processoccores and keeping the
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simulated timescale small. As a result, it is very expensivao use DNS to simulate longer
timescales that are typically the conditions of practical interest. In contrast, LES models
can be used with coarser grids to simulate longer timescalewith fewer computation re-
source, but with decreased simulation accuracy. Coupling NS and LES provides a testbed
to enable development and assessment of practical LES model DNS and LES executes
concurrently in lockstep and computes on identical physickdomain, but with di erent grid
sizes. At each time step, the base solution eld computed by NS simulation is Itered and

transferred to LES simulation.

: ts1 ; ts 2 : ts 2 ; ts 3 ; ts4 ;
DNS - i i i i i|melne
LES - | | =
ts1 E ts 2 5 ts 2 E ts3 E ts 4

Figure 2.2: lllustration of data interactions between cougded applications and execution
logic for the coupled DNS-LES work ow for combustion sciene. Solid arrows denote the
data ow between work ow applications.

Figure 2.2 illustrates the data interactions between coupéd applications, as well as the
execution logic of applications. In this speci c example, INS is coupled with one instance
of LES. Data is transferred from DNS to LES at every sub step, ie., 6 times in a single
time step, and each time step typically requires only a few seonds of wall-clock time. LES
can not proceed to its computation phase until it receives dlrequired data elds for current

sub step.

Requirements

First, the work ow requires scalable and low-latency data movement for the highly frequent
interaction between DNS and LES solvers, in order to supportthe lockstep execution.
Second, as the work ow executes on increasing number of compe nodes and exchanges
large volumes of data, the communication cost can becomes dunating. As a result,

task placement that takes into consideration both the commuication pattern and system
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network topology is desirable to optimize and reduce the comunication cost.

2.1.3 Coupled XGC1-XGCa work ow for plasma fusion simulati on
Work ow description

Coupled XGC1-XGCa work ow provides insight into plasma edge physics in magnetic fusion
devices, and consists of two axisymmetric kinetic transpdrcodes XGC1 and XGCa [48, 30].
Simulation of plasma edge is a multi-scale problem that invéves many disparate time and
length scales. Though XGC1 could solve multi-scale problemnalone, XGC1 has numerical
dissipation and model equation errors, and requires signcant computing power when sim-
ulating large quantity of particles. In contrast, XGCa uses a coarser mesh and requires

much fewer particles, and can be used as an accelerator for X@i.

Iteration 1 Iteration 2 L
Timeline

XGC1 -

Iteration 1 Iteration 2

turbulence data ——» particle data m——)

Figure 2.3: lllustration of data interactions between couded applications and execution
logic for the coupled XGC1-XGCa work ow. Solid arrows denote the data ow between
coupled applications.

Figure 2.3 illustrates the data interactions between coupkd applications, as well as
the execution logic of applications. XGC1-XGCa work ow executes for multiple coupling
iterations. In each coupling iteration, the work ow rst ex ecutes XGC1 forn (n is 7 in
the illustrated example) time steps to compute turbulence cata and particle state. XGC1
needs to write turbulence information generated at each tine step. After the plasma has
evolved to a quasi-steady turbulent state, the execution isswitched to XGCa to evolve
the background pro les using the turbulence data from XGC1. XGCa needs to read the

turbulence data at each time step in order to proceed its exadtion.
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Requirements

First, data exchange between the sequentially coupled XGCland XGCa is decoupled in
time. Memory-based coupling requires the ability to cache mtermediate data generated by
the simulations, and lookup and access the cached data on-gdend. Second, as work ow
execution is being switched between the two simulations, lcality-aware task placement is
desirable to execute newly launched simulation processesaaccompute nodes which have

cached the largest portions of the required input data.

2.2 Programming and runtime requirements

2.2.1 Work ow composition

As illustrated by the examples above, coupled simulation wdk ows are typically composed
of multiple applications. However, most component applicdions are originally developed
as independent programs, without considering the need foraupling. As a result, extended
programming support is required to compose a work ow and cople the component appli-
cations.

First, composing a work ow requires the programming suppot to express the control
ow for the work ow execution, and specify the data dependercy between applications
(or called tasks). In addition, many coupled simulation work ows require the support for
iterative or data-driven execution, which dynamically spawns task execution based on pre-
vious computation results. As a result, programming suppot for work ow composition
also requires the ability to express dynamic task execution Traditional scienti ¢ work ow
management systems [3, 32, 12] use directed acyclic graph AG) based task graph abstrac-
tion to represent a work ow, where each graph vertex represets a work ow task and each
edge identi es dependency between tasks. However, most eting systems support static
DAG that needs to be fully speci ed before executing the workow, which can not express
dynamic task execution.

Second, composing a work ow requires the programming suppd to express the data
sharing and exchange between the coupled applications thatre part of a work ow. Generic

low-level parallel programming abstractions, such as mesge-passing interface (MPI) [42],
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can be used to implement the data exchange. However, it is narivial to program with such
low-level communication interface, given the fact that data is distributed over a massive
number of parallel processes in each application and the ietracting applications may have
distinct data distribution types. Partitioned global addr ess space (PGAS) programming
languages [22, 26, 56, 25] emerge recently and provide higgwel data abstraction, such as
shared array, which is more expressive and hides low-levekethils. However, PGAS shared
array data abstraction is language-dependent and only acasible by processes (or threads)
in the same application. It currently does not support sharing data between applications of
distinct programming models, such as between PGAS and MPI aplications. As a result, we
need data abstraction and programming interface that is expessive, independent of speci c
parallel programming languages. This would allow programners to e ectively express data

sharing and exchange between heterogeneous coupled apptions.

2.2.2 Data management

As illustrated by the examples above, data management for agpled simulation work ow
requires staging, transfer and redistribution of a large vdume of data between the coupled
applications. This section summarizes the requirements fodata management.

Data indexing and lookup: Data exchange for coupled simulabn work ow requires
moving data, such as global array, from one application runing on M processes to another
application running on N processes, i.e., M N data redistribution problem. For example,
each data consumer application process may read a subarrayf the global array data for
local computation. E cient M N data redistribution requires the ability to index the data
generated by the data producer application and support quik data lookup for each read
request.

High-performance data movement: Coupled simulation work ow requires e cient and
scalable data movement to support coupling at scale. First,the data movement needs
to be low latency, and overlap with the application computation, so as to minimize the
overhead perceived by the applications. For example, the DS-LES work ow requires fast
memory-to-memory data movement to support the highly frequent data interaction between

DNS and LES solvers. Second, the data movement needs to utzie the most suitable data
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transport mechanism. For example, the data movement may be btween processes on the
same compute node, or on di erent compute nodes. It is desitale to adapt the underlying
transport mechanism based on data location, e.g., using netork data transfers for remote
data movement, and shared memory which bypasses network daes for node-local data

movement.

2.2.3 Task placement

Task placement determines where the work ow tasks are exeded, and the mapping of
application processes to physical processor cores, whicltas signi cant impact on the data
communication performance. This section summarizes the uirements for task placement.

Locality-aware and exible task placement: Locality-aware task placement that moves
computation closer to data is critical for reducing the sizeof data movement over network.
In addition, recent research [72, 16] has shown the need forexible placement of data
analysis tasks in online data analytics work ow, such as insitu analysis, in-transit analysis
or combined in-situ/in-transit analysis. As a result, it re quires the ability to exibly place
the analysis tasks, in order to meet the various placement rguirements.

Topology-aware task mapping: To e ectively reduce the costof data movement in cou-
pled simulation work ow, task mapping needs to consider boh the communication pattern
exhibited by the work ow and the network topology of interco nnected compute nodes. For
example, appropriate placement of heavily communicating pplication processes onto nearby
compute nodes in the network topology can reduce the numberfohops for data transfer,

and potentially reduce the contention by localizing the conmunications in the network.
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Chapter 3

Overview of technical approaches

Chapter 2 describes the programming and runtime requiremets for supporting coupled
simulation work ows. This chapter presents an overview of the technical approaches and
implementations for realizing the required programming ard runtime support. In addition,

this chapter describes the foundational technology, i.e.DataSpaces framework, which is

used by implementations presented in this thesis.

3.1 Overview of technical approaches and implementations

A high-level overview of the technical approaches for addresing the programming and

runtime requirements is presented as follow.

Figure 3.1: lllustration of task graph based representatims for the example work ows.

The proposed programming approach for work ow compositionuses thetask graph
abstraction to represent a work ow, which is based on the DAG task graph ugd by tradi-
tional scienti c work ow management systems [3, 32]. Each \ertex in the DAG represents
a task, i.e., work ow component application, and each edge epresents the data depen-
dency. A task can start after all its parent tasks nish executions. In order to represent

coupled simulation work ows, we extend the basic DAG task gaph abstraction with the
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abilities to annotate the data ows between concurrently executing tasks, express iterative
and data-driven task execution. The task graph abstractionrepresents the control ow and
data dependency between applications, and captures the ietr-application communication.
Figure 3.1 illustrates the task graph based representatioa for the work ows described in
Chapter 2.1. A detailed description of the work ow represenation is presented in Chap-
ter 5.2. The proposed programming approach is exposed as adi execution library to
existing language. Programmer develops a driver program t@ompose a work ow, which
implicitly implements the work ow task graph. A driver prog ram orchestrates the execu-

tions of task programs that are part of a work ow, and drives the work ow progression.

Figure 3.2: lllustration of sharing two 2D arrays through th e array-based data model.lb,
ub denote the bounding box of the inserted/retrieved array regon.

The proposed programming approach for work ow compositionusesarray-based data
model to express data sharing and exchange. In scienti ¢ simulatins, a multidimensional
array is commonly used as the main data structure to store dad, where the global array is
decomposed into non-overlapping subarrays and distributé over the simulation processes.
Data exchange typically involves moving and redistributing arrays from one simulation
to another. Array-based data model presents the shared arma abstraction, and enables
di erent applications to access the shared array data usingspecialized insert/retrieve query
interface. Figure 4.2 illustrates the sharing of two 2D arrgys between applications using
the array-based data model. This higher level data model preides a more natural way for

applications to share and exchange array-based scienti c ata.
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Figure 3.3: lllustration of co-locating in-memory data staging on application compute nodes.

This thesis proposesco-located in-memory data staging approach to support run-
time data management, and enable memory-based parallel datexchange between coupled
applications. Unlike existing data staging approaches thastore data on a set of dedicated
compute nodes, our approach co-locates the data staging oiné same set of compute nodes
that execute the work ow applications, and utilizes the node-local storage resource to cache
data that needs to be shared or exchanged. Figure 3.3 illuséites the co-located in-memory
data staging. This approach caches data in local memory andhus provides low-latency
high-throughput write performance, and enables transfering data directly between coupled

applications.

N2

Figure 3.4: Conceptual view of the hint-based task placemen

This thesis proposeshint-based task placement , which combines the programmer-
provided hint information and runtime status to make a better task placement decision.
Figure 3.4 illustrates the conceptual model of the approach Programmers can specify
placement hint according to their knowledge and expertise which provides a piece of in-
sightful information that can be utilized by the runtime system. Programmers can express

locality preference hint for a task, e.g., name and spatial egion of the task's input array
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data, which is used by the runtime to perform locality-aware placement and move task
computation closer to the required data. In addition, hint-based task placement enables
application scientists to functionally partition the comp utation resource and explicitly ex-
press the placement a nity of a task, i.e., the preferred functional partition for the task
execution. For example, as described in Chapter 2.2, onlinglata analytics work ow re-
quires placement exibility for analysis tasks that are coupled with the simulation. In this
case, programmers can partition the computation resource d create di erent placement
locations, e.g., \simulation”, \in-situ”, \in-transit*,  and control which partition to execute

a task by providing the location preference hint.
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Figure 3.5: lllustration of communication- and topology-aware task mapping.

This thesis proposes acommunication- and topology-aware task mapping ap-
proach to minimize the communication cost in a coupled simuition work ow, by reducing
the volume of data transfers over network as well as the numbreof hops for network data
transfers. This approach essentially performs the mappingf work ow application processes
to the physical compute nodes interconnected by the networKabric. It analyzes the logical
communication graph of a work ow, including both intra-app lication and inter-application
communications, and applies graph partitioning and topolagy mapping algorithms to map
the communication graph onto the network topology graph. Figure 3.5 uses a simple ex-
ample to illustrate the task mapping. APP1 runs 12 processesind APP2 runs 4 processes,
and each compute node has 8 processor cores. In this exampthe task mapping reduces
the data movement over network by placing heavily communicéing processes onto the same

multi-core compute node.
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Figure 3.6: Overview of thesis technical implementations.

Figure 3.6 presents an overview of the implementations, inading DIMES data manage-
ment framework and CoDS task execution framework. DIMES impements the co-located
in-memory data staging, and implements the data insert/retrieve query interface based on
array data model. Chapter 4 presents technical implementaibn details for DIMES. CoDS
implements the task execution APIs to compose work ows thatcan be represented using
the proposed task graph abstraction, and implements the hitrbased task placement. Chap-
ter 5 presents technical details for CoDS. In addition, we pesent the communication- and

topology-aware task mapping approach in Chapter 6.

3.2 Foundational technology - DataSpaces

The current prototype implementation builds on DataSpaces[35], which is a scalable data-
sharing framework targeted at current large-scale systemand designed to support dynamic
data interaction and coordination between coupled scientc applications. DataSpaces pro-
vides a semantically specialized shared space abstractiarsing a set of staging nodes. This
abstraction is derived from the tuple space model [24] and ca be associatively accessed
by the interacting applications in a coupled simulation work ow. DataSpaces also provides
services for asynchronously extracting and indexing datarbm running applications, and en-
ables this data to be exibly queried. DataSpaces is built onan RDMA-based asynchronous
memory-to-memory data transport layer called DART [36].

DataSpaces has been integrated with and deployed as part ohe Adaptive 10 System
(ADIOS) [54] framework distributed by Oak Ridge National Laboratories. ADIOS is an
open source I/O middleware package that has been shown to sleato hundreds of thousands

of cores and is being used by a wide range of applications.
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Chapter 4

DIMES - a distributed in-memory data staging and coupling
framework

4.1 Introduction

Data-intensive coupled simulation work ows require data generated by the data producer
application to be transferred and redistributed to the data consumer application. For
example, in the data analysis work ow for the S3D combustionsimulation, variables such as
temperature and velocity needs to be transferred to multipke user-de ned analysis operations
for online processing. Similarly in the climate modeling waok ow that couples di erent
geophysical simulations such as atmosphere, land and seeej boundary data consisting
of a large number of data elds needs to be frequently exchared between the coupled
component models.

This chapter presentsDI stributed ME moray Space (DIMES) data management frame-
work to support distributed in-memory staging, and memory-to-memory data sharing and
exchange between applications that are part of a work ow. DMES co-locates data staging
with application execution on the same set of compute nodesand utilizes node-local stor-
age resource (e.g., DRAM in current prototype) to cache and ®re application data that
needs to be shared, exchanged or accessed. In scienti ¢ sitations, a multidimensional
array is commonly used as the main data structure to store da#, where the global array is
decomposed into non-overlapping subarrays and distributé over the simulation processes.
Data exchange typically involves moving and redistributing arrays from one simulation to
another. DIMES provides array data model to user applications, and its array-based query
interface enables applications to retrieve data of interesby specifying spatial constraint,
e.g. Cartesian bounding box. In addition, DIMES implements data-location aware data

movement strategy. Depending on the data locations, e.g.dcal or remote memory, DIMES
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dynamically selects the appropriate transport mechanism o support high-performance data
movement. For example, DIMES uses hardware-supported RDMAnetwork operation for
fetching data resides on remote compute nodes, and uses ditanemory access to fetch data
in node-local shared memory segment.

Technical contributions of DIMES are summarized as below:

DIMES provides scalable and e cient inter-application dat a sharing and exchange for
coupled simulation work ow. DIMES implements data-locati on aware data transfer

using high-performance RDMA network operations and on-no@ shared memory.

DIMES co-locates data staging with work ow execution. DIME S implements a dis-
tributed in-memory object store on the compute nodes that run the work ow, and

caches application data in node-local memory. Co-located ata staging provides low-
latency high-throughput write performance and reduces thevolume of data movement

over network.

DIMES supports data exchange for both concurrently and segantially coupled ap-
plications. Existing approaches [49, 75, 29] can only suppb memory-based data
movement between simultaneously executing applicationsand does not support data
exchange between sequential applications. DIMES has the pability to cache data
in on-node persistent shared memory segment, and enablesaass to data even after

the data producer application nishes its execution.

DIMES is integrated into Adaptive 10 System (ADIOS) I/0O midd leware [54], and
enables a large number of existing applications to bene t fom in-memory coupling.
Applications using ADIOS APIs can switch from le-based to memory-based data
sharing, by changing the transport method in ADIOS con guration XML le. This

brings productivity and portability to application develo pment.

Hybrid data staging is supported by combing in-memory staghg on both application
compute nodes and dedicated staging nodes. DIMES builds onnd derives from our
previous work on DataSpaces, which caches data on a dedicatset of compute nodes,
and can co-exist with DataSpaces. As a result, coupled simation work ows have

access to both local data staging and remote data staging (oDataSpaces servers).
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The remainder of the chapter is organized as follows. Sectin4.2 describes DIMES data
abstractions. Section 4.3 presents DIMES system architecire. Section 4.4 presents the
design and implementation. Section 4.5 presents the programing interface and examples.
Section 4.6 presents evaluation results. Section 4.7 pre#s related research work and

Section 4.8 summarizes this chapter.

4.2 Coordination and data model

Work ow applications can express data exchange using two tpes of data abstractions that

are provided by DIMES, including shared space model and arnadata model.

o

QO
6 ®¢®

Figure 4.1: lllustration of data sharing through the shared space abstraction.

Shared Space Model is conceptually based on the tuple space model [41] and pralés
the abstraction of a shared space of data objects which can bassociatively accessed by the
work ow applications. Data in the space is abstracted as a tple or object, and each object
is associated with a key. Most scienti ¢ applications represent data as multidimensional
array de ned with Cartesian coordinate system. In this case key associated with a object
can be de ned as the multidimensional bounding box that desdbes the array region stored
by the object. As illustrated in Figure 4.1, applications can access data objects in the
shared space through one-sidegut() / get() operators.

Array Data Model builds on top of the shared space of objects, and provides the
abstraction of a shared space of multidimensional arrays. pplications can directly access
the array region of interest through the data insert/retrie ve queries with spatial constraints,

as illustrated in Figure 4.2. In this case, application only need to express what sub-array
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it is writing or reading, and does not need to handle details ach as how many objects are
used to store the sub-array data and where the objects are lated. This higher level data
abstraction provides a more natural way for work ow applications to share and exchange

array-based scienti ¢ data.

Figure 4.2: lllustration of sharing two 2D arrays through the array data model. Ib, ub
denote the bounding box of the inserted/retrieved subarray

4.3 System architecture

DIMES builds on DataSpaces and inherits its client-server &chitecture. DIMES clients
build a distributed in-memory object store on the application compute nodes to cache data
that needs to be shared and exchanged. Applications data isypically represented as multi-
dimensional arrays, and each DIMES object stores the data o& subarray. DIMES servers
run on dedicated compute nodes, and implement a distributedndexing service to support
fast lookup of in-memory data objects. The distributed indexing service enables coupled
applications to perform array-based spatial queries to retieve data from the object store.
Figure 4.3 presents a schematic view of DIMES system architdure. DIMES client and
server components build on a common communication layer - DRT [36]. DART de nes
portable communication primitives for asynchronous messging and data transfers, and
implements these primitives using native network programning interfaces such as Cray
uGNI, In niband verbs, IBM DCMF and PAMI. DART provides low- latency and high-
throughput data transfer performance on high-end computirg systems. As shown in the

gure, DIMES inherits DataSpaces's client and server implanentation, and retains all the
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Figure 4.3: DIMES system architecture. Shadowed boxes dem® the core functional mod-
ules implemented for DIMES.

features supported by DataSpaces.

DIMES servers implement the following core functional modue:

Data lookup service enables fast lookup of data objects for data retrieve queryThis
service constructs a specialized index based on in-memonpject's spatial attribute,
e.g., a Cartesian bounding box describing the subarray stad by the object. The data
lookup service builds its index on the distributed DIMES sewers. Global dimension
of each newly inserted array is partitioned into non-overlaping regions of equal size.
Each DIMES server is assigned one array region, and only matains indexes for data

objects (subarrays) that overlap with the assigned array reion.
DIMES clients implement the following core functional modules:

Query APIs de nes the set of programming interface that used by applicdions to
share and exchange array-based scienti c data. Detailed dsription of programming

APIls and examples is presented in Chapter 4.5.

In-memory data store  creates a temporary in-memory object store on application
compute nodes. This module manages the physical byte-addssable shared memory
segments allocated for the object storage, performs memorsllocation for newly in-

serted object and deallocates evicted object. In additionthis module manages the
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RDMA registration for the shared memory segments, which enbles RDMA-based

one-sided access to the in-memory data objects.

Data locator/updater interacts with the server-side data lookup service to locag¢
objects that need to be fetched for data retrieve query. It abo updates the distributed
indexing when new data objects are inserted by the applicatins or existing data

objects are deleted from the in-memory object store.

Data transfer engine  manages the data transport for data retrieve query. Comple-
tion of a retrieve query requires fetching data of one or muliple objects and assem-
bling the fetched data into a contiguous memory bu er provided by the application.
Data transfer engine dynamically selects the appropriate dta transport mechanism

depending on the locations of the data object.

4.4 Implementation

The design objective of DIMES is to build distributed data staging that is co-located on ap-
plication's compute nodes, and provide the array-based sl query interface for work ow
applications to share and exchange data. This section pregés the technical implementation

details that enable this design objective.

4.4.1 Node-local in-memory object storage

In the current implementation, each application process runs as a DIMES client, and imple-
ments a node-local in-memory object store to cache data inseed by the application. For
compute nodes that execute multiple application processesnultiple instances of DIMES
clients and object stores co-exist on the same compute noderigure 4.4 presents a high-
level view of the implementation, which is composed oMemory Managementand Object
Management subsystems.
DIMES client-side Memory Managementmanages a number of byte-addressable shared

memory segments as the storage space for data objects. DIMESes POSIX shared memory

programming interface to create, open, map and remove shadememory segments, which is
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Figure 4.4: DIMES node-local in-memory object storage imptmentation.

portable and available on most Linux distributions. Data object stored by DIMES is write-
once read-only and each DIMES client inserts application data to its local object store. As
a result, read access to a shared memory segment is granted &l DIMES clients running
on local compute node, but write access is only granted to DINES client who creates the
shared memory segment. For example, as illustrated in Figwr 4.4, the compute node has
two shared memory segments. DIMES client 1 and client 2 cre& shared memory segment 1
and 2 respectively, and have read access to both memory segnte. However, only DIMES
client 1 has write access to shared memory segment 1, and alite2 has write access to shared
memory segment 2.

Memory Managementimplements a customized memory allocator, which allocatesnem-
ory blocks from the shared memory segment to store newly insted data objects, and deal-
locates memory blocks for evicted/deleted data objects. Iraddition, Memory Management
manages memory registration/deregistration to support RDMA-based data transport for
inter-node data movement. Most high-performance network equires explicit registration

of a memory bu er (using the RDMA network programming interf ace), in order to enable
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one-sided remote access to the buer. DIMES client can perfon registration using two
di erent approaches: (1) register each allocated memory ldck on-demand; (2) register the
entire shared memory segment in advance. The latter approdcis preferred, because it re-
duces the overhead by minimizing the number of required RDMADbu er register/deregister
operations.

Object Managementcaches multiple versions of a data object in the node-local emory
space, and the maximum number of distinct versions can be daed by the programmer. For
example, in Figure 4.4, the number of distinct versions is seas 5, and Object Management
creates 5 slots where each slot uses a linked list to store theata objects. A new data
object is inserted to a slot according to the object's versia. In the current implementation,
we apply aobject.version mod num _distinct _version operation to decide in which slot to
insert new data object. Object Managementalso implements a versioning based garbage
collection mechanism to delete data objects with older veri®ns. Object Managementonly
caches data objects of the most recentN versions, whereN is the maximum number
of distinct versions. For example, when versions R + 1 and 2N + 2 of a data object is
inserted, versionsN +1 and N +2 are deleted from the in-memory object store. In practice,
most coupled simulation work ows consists of applicationsthat run iteratively and need to
share data generated in recent iterations. This mechanism wrks e ectively for work ows

presenting such data interaction pattern.

4.4.2 Data lookup service

DIMES servers build a lookup service to enable fast lookup ofn-memory data objects,
speci cally for spatial queries that request a spatial regon of the cached array data.
Central to the implementation is distributed indexing of in -memory data objects. The
key space of the index derives from the global dimension of tamultidimensional array vari-
ables inserted by application. DIMES uses the Hilbert spaceling curve (SFC) to linearize
the N-dimensional array domain into a 1-dimensional key spae. Using this linearization, a
data cell of the array can be uniquely identi ed using a point in the key space, while a spa-
tial region of the array can be described by a set of intervalsn the key space. As a result, a

N-d spatial query over the multidimensional array data is translated into a 1-d range query.
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Figure 4.5: Build distributed indexing: (1) construction of index key space by linearization
of application data domain using Hilbert SFC (shown as dotted lines); (2) partitioning and
distribution of the key space to DIMES servers.

Figure 4.5 illustrates the construction of the 1-d key space Arrayl is a 2D 4 4 array, and
its linearized key space can be described by spatial boundinbox f (0); (15)g. Array2 is a
2D 8 8 array, and its linearized key space i (0); (63)g.

Linearized key space is partitioned and distributed to DIMES servers, which distributes
the objects indexing and query processing workload. Each DMES server is assigned a set
of intervals from the 1-d key space, and only maintains indeing for data objects whose
linearized spatial bounding box overlaps with the key spaceéntervals assigned to the server.
Similarly, the server only handles data queries whose ling&zed spatial constraints overlaps
with the assigned key space intervals. The current prototyge implementation evenly parti-
tions the 1-d key space into N intervals, where N is the numbeof servers, and each sever is
assigned a contiguous key space interval. This partitionig and distribution approach works
e ectively when the data query load is evenly distributed over the entire data domain and
each query fetches a subarray of modest size. More complex migoning and distribution
approaches can be implemented, e.g., distribute the key spa based on application's query

pattern, but this is beyond the scope of this thesis and can bénvestigated in future research
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work.

4.4.3 Data query processing

Application work ows can use DIMES insert/retrieve query i nterface to exchange array
data, and express the array region of interest by specifyinghe spatial constraint, i.e., a
N-dimensional bounding box. This section describes the preessing of data insert/retrieve

queries.

Data insert query

A data insert query works as follows: (1) Client creates a newdata object by allocating
a memory block from the shared memory segment, and copies afipation data into the
allocated memory block. (2) Client inserts the new data objet into the node-local in-
memory object store. (3) Client selects the index servers b#ed on the spatial constraint
speci ed in the query, and sends data update requests to thegdected servers. Data update
request contains important metadata, e.g., data location,shared memory and RDMA bu er
information for the data object. (4) Index servers update the local index for newly inserted

data object, and stores the metadata of the object.

Data retrieve query

A data retrieve query involves the following steps: (1) Client selects the index servers based
on the spatial constraint specied in the query, and sends d& lookup requests to the
selected servers. (2) Index servers performs local lookugnd responds to the querying
client with metadata for the data objects that need to be fetched. (3) After gathering all
the required metadata for the query, client fetches data fran local or remote nodes and

returns the result data bu er to the user application.

4.5 Programming interface and examples

This sections describes the DIMES C programming interfaceqee Listing 4.1) that enables
array-based data insert and retrieve. It also presents progamming examples to illustrate

the use of DIMES APIs to implement inter-application data sharing and exchange.
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Listing 4.1: DIMES C programming interface.

/I Define the global dimension for array variable.
void dimes_define_gdim (const char var_name,
int ndim, uint64 _.t gdim);

/I Data insert query.
int dimes_put( const char var_name, unsigned int ver, int size,
int ndim, uint64 _t |Ib, uint64 _t wub, void data);

/I Data retrieve query.
int dimes_get(const char var_name, unsigned int ver, int size,
int ndim, uint64 _-t Ib, uint64 _t ub, void data);

dimes.de ne_gdim() de nes the global dimensions of the array-based data variale to
be inserted or retrieved. Programmer-provided global dimasion information is used

to achieve a balanced distribution of array indexing acrosDIMES servers.

{ Input arguments: (1) var_.name: name of the variable. (2) ndim: number of

array dimension. (3) gdim: size in each dimension.
dimes put() inserts array data into the distributed in-memory object store.

{ Input arguments: (1) var_name: name of the variable. (2)ver: version of the
data. (3) size: data size (in bytes) of the array element. (4)ndim: number
of array dimension. (5) Ib, ub: specify spatial constraint for the query, using a
Cartesian bounding box to describe the spatial region of thenserted or retrieved

array data. (6) data: pointer to user data bu er.
dimes. get() retrieves array data from the distributed in-memory object store.

{ Input arguments: seedimes_put().

Listing 4.2 and 4.3 presents the code snippets using DIMES AR to share data between
applications. The example has two applications, a data prodcer (see Listing 4.2) and a
data consumer (see Listing 4.3). The applications use the lking service implemented by
DataSpaces to ensure exclusive access to the shared resaurcdata variable \particles".
The data producer application inserts a 2D 20 20 double array, with spatial bounding
box f (0;0); (19;19)g. The data consumer application retrieves a 10 10 sub-region of the

inserted array data, using spatial bounding boxf (0; 0); (9; 9)g.
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Listing 4.2: Data insertion example using DIMES.

/I Acquires the write lock for variable "particles".
dspaceslock_on_write("particles");

/I Define the bounding box.

gdim[0] = 20; gdim[1] = 20;

Ib[0] = O0; Ib[1] = O;

ub[0] = 19; ub[1] = 19;

dimes_define_gdim ("particles", 2, gdim);

dimes_put("particles", version, sizeof (double ), 2, Ib, ub, data);

/| Releases the write lock for variable "particles".
dspacesunlock_on_write("particles");

Listing 4.3: Data retrieval example using DIMES.

/I Acquires the read lock for variable "particles".
dspaceslock_on_read ("particles");

/I Define the bounding box.

gdim[0] = 20; gdim[1] = 20;

Ib[0] = O0; Ib[1] = O;

ub[0] = 9; ub[1] = 9;

dimes_define_gdim ("particles”, 2, gdim);

dimes_get("particles", version, sizeof (double ), 2, Ib, ub, data);

/I Releases the read lock for variable "particles".
dspacesunlock_on_read("particles");
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4.6 Experimental evaluation

The prototype implementation of DIMES was evaluated on the Cray XK7 Titan system
at Oak Ridge National Laboratory. Titan has 18,688 compute rodes, and each compute
node has a 16-core AMD Opteron processor, 32GB memory, and ae®ini router that
interconnects the nodes via a fast network with a 3D torus tomlogy.

This sections presents two distinct sets of experiments. Th rst set of experiments
evaluates the performance and scalability of DIMES inserttetrieve queries with increasing
numbers of application processes and data sizes. The secosekt of experiments presents the
integration of DIMES with a coupled fusion simulation work ow, and compares the data

exchange performance with le-based and server-based appaches.

4.6.1 Evaluation of scalability

Coupled simulation work ows simulating complex phenomenasuch as climate modeling
and plasma fusion science typically run on a large number of @cessor cores and signi cant
amounts of data is transferred between the component appliEtions. The scalability exper-
iments presented in this section evaluate the ability of theDIMES framework to support
parallel data redistribution for a di erent numbers of appl ication processes and data sizes.

This experiment uses a testing work ow composed of two apptations, a Writer and a
Reader application, which captures data sharing and exchange behaors while removing the
complexity of the computational aspects of the full simulaton codes. The two applications
perform parallel computations over a common 3-dimensionatomputational domain, and
each application is assigned a distinct set of processor ags. The coupled variable is a
3-dimensional global array, which is decomposed using a stdard blocked distribution.
During the work ow execution, DIMES is used to support the parallel data redistribution
which transfers and redistributes the global array data fran Writer application processes
to the Reader processes.

The ratio of Writer to Reader application processes is xed as 16:1. The size of the
Writer application is varied from 1K to 64K processes. Meanwhile, lie size ofReader

application is varied from 64 to 4K processes. The number of IMES servers is varied
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from 4 to 256, which uses less than 0.4% of the total compute res allocated for work ow
execution.

The experiment evaluates both weak scaling and strong scalg performance. In the
weak scaling experiment, each\riter process inserts a xed 4MB of data per iteration,
and the total data size is varied from 4GB to 256GB. In the strong scaling experiment,
the total data size being transferred is xed as 4GB. In each gperiment, the applications
ran for 200 iterations to simulate 200 parallel data redistibutions between the Writer and
Reader applications, and the average data insert and retrieve quer time is presented.
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Figure 4.6: Weak scaling results on Titan. The bottom X axis is the size ofWriter ap-
plication / the size of Reader application. The top X represents the size of data that is
transferred and redistributed in each iteration.

Figure 4.6 presents the performance of data insert and retave queries for a weak scaling
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Figure 4.7: Strong scaling results on Titan. The bottom X axis is the size ofWriter
application / the size of Reader application. The top X represents the size of data that is
transferred and redistributed in each iteration.
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experiment. The results show good overall scalability withincreasing number of processes
and data sizes. Because a DIMES client writes data into nodéacal memory region, the data
insert query does not need to perform any o -node network dat movement and is very fast.
The average data insert query time is between 6 and 12 ms, whichas minimal overhead
on the Writer application. Data retrieve query time sustains at about 0.4 seconds, as the
size of work ow is increased from 1K/64 to 16K/1K. Data retri eve query time increases to
0.99 seconds at 32K/2K, and to 1.27 seconds at 64K/4K. The pdormance degradation of
data retrieve query is mainly due to the increased contentio at the shared network links,
which is caused by the increasing number of concurrent datarainsfers at larger application
sizes. However, this small increase in transfer time is acpeable when considering the scale
of the application and the total data size.

Figure 4.7 presents the performance of data insert and retgve queries for a strong scaling
experiment. The results show good strong scaling performaie. As the size of work ow
increases from 1K/64 to 8K/512, the data query performance sales linearly. Average data
insert query time decreased by about 8 times from 6.49 ms to @4 ms, and the average data
retrieve query time decreased by about 6 times from 337.58 m® 59.12 ms. Both curves
become at when the size of work ow is further increased. Thaigh the size of data inserted
or retrieved by each process keeps decreasing in the strongading experiment, there exist
costs that are independent of the data size and can not be fuhter reduced, such as the cost
of locating data in a retrieve query, and updating data in an insert query. As a result, both

curves become at when the size of work ow is between 16K/1K and 64K/4K.

4.6.2 Evaluation with coupled fusion simulation work ow
Overview

This section describes using DIMES to support the in-memorydata sharing for a coupled
plasma fusion work ow. The work ow provides insight into pl asma edge physics in magnetic
fusion devices, and consists of two separate axisymmetricitketic transport codes XGC1
and XGCa [48, 30]. The work ow executes for multiple coupling iteration. In each coupling
iteration, the work ow rst executes XGC1 for n time steps to compute turbulence data and

particle state, and then executes XGCa form time steps to evolve the state of plasma. The
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sharing of turbulence data is one-way from XGC1 to XGCa. XGC1lwrites turbulence data
at each time step of its execution, which is read by XGCa in thesubsequent execution step.
The sharing of particle data is two-way. Both XGC1 and XGCa write particle data at the
end of their executions, and needs to read particle data gemated by the other application

at the beginning of their executions.

O O

(a) Sharing particle data between XGC1 and XGCa processes.

(b) Sharing turbulence data between XGC1 and XGCa processes.

Figure 4.8: lllustration of communication pattern for sharing particle and turbulence data
in XGC1-XGCa coupled simulation work ow.

Figure 4.8(a) illustrates the communication pattern for sharing particle data. Commu-
nication pattern for sharing particle data depends on the deomposition and distribution
of plasma patrticles across the application processes. Tygally, XGC1 and XGCa have the
same decomposition and distribution for particles. As a reslt, the sharing of particle data
requires simpleone-to-one communication between XGC1 and XGCa processes.

Figure 4.8(b) illustrates the communication pattern for sharing turbulence data, which
depends on the work ow's poloidal domain decomposition. Inthis simple example, XGC1
and XGCa executes on 16 processes and has 4 poloidal planesnay plane-0 to plane-3
where each poloidal plane has 4 application processes. Daog the execution of XGC1, each
poloidal plane selects one process (marked with gray colonithe gure) to write the plane's

turbulence data. During the execution of XGCa, each applicsion process of poloidal plane
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i needs to read the turbulence data from four poloidal planesricludingi 1,i, i+ 1 and
i +2. For example, XGCa processes imlane-1 need turbulence data generated by XGCl1's
plane-0, plane-1, plane-2 and plane-3 The sharing of turbulence data exhibitsone-to-many

communication between XGC1 and XGCa processes.

Results

Prototype implementation of the in-memory data sharing utilizes DIMES to enable dis-
tributed in-memory data staging and sharing. XGC1 and XGCa executes on the same set
of compute nodes, and writes turbulence and particle data itb node-local memory bu er
that is managed by DIMES.

Table 4.1 summarizes the experimental setup. The number of @plication processes
for XGC1/XGCa is varied from 1K to 16K. The work ow runs for 2 ¢ oupling iteration,
both XGC1 and XGCa executes for 20 time steps per coupling itation. In each coupling
iteration, the size of particle data read by XGC1 and XGCa ranges from 4GB to about
65GB, and the total size of turbulence data read by XGCa rangs from 12GB to about
202GB. To demonstrate the bene ts of the DIMES approach, we ompare the performance
with both the le-based approach, which exchanges data through disk les, and theserver-

basedapproach, which exchanges data through a set of dedicated &jing compute nodes.

] | Setup 1 | Setup 2 | Setup 3 \
Num. of processor cores 1024 4096 16384
Num. of coupling iteration 2 2 2
XGC1 num. of steps (per iteration) 20 20 20
XGCa num. of steps (per iteration) 20 20 20
Size of particle data written/read by | 4.05 GB 16.21 GB 64.85 GB
XGCL1 (per iteration)

Size of particle data written/read by | 4.05 GB 16.21 GB 64.85 GB
XGCa (per iteration)

Size of turbulence data write by XGC1 | 0.19 GB 0.19 GB 0.19 GB
(per iteration)

Size of turbulence data read by XGCa| 12.63 GB 50.52 GB 202.09 GB
(per iteration)

Table 4.1: Experimental setup for the evaluation of XGC1-XGCa coupled simulation work-
ow.

Tables 4.2 and Figure 4.9 presents the performance for exchging particle data between
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XGC1 and XGCa applications. The results show signi cant pefformance improvement for

DIMES when compared with the two other approaches. As shown ¥ Tables 4.2, DIMES

decreases the total time for writing particle data by 99% on aerage when compared with

le-based approach, by 93% on average when compared witserver-basedapproach. As

shown by Figure 4.9, DIMES decreases total time for reading article data time by 98%

on average when compared withle-based approach, by 92% on average when compared

with server-basedapproach. This signi cant performance advantage is due to DMES's

in-memory local data caching, which does not require movingdata o -node. In the le-

based approach, particle data needs to be moved and written to stoage system, while in

the server-basedapproach, particle data needs to be transferred to the stagig servers.

] | Setup 1 | Setup 2 | Setup 3 \
File-based (seconds) 35.792 90.062 425.059
Server-based (seconds)| 1.865 2.283 3.781
DIMES (seconds) 0.097 0.131 0.316

Table 4.2: Total time of writing particle data.
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Figure 4.9: Total time of reading particle data.

Table 4.3 and Figure 4.10 presents the performance of exchgimg turbulence data be-

tween XGC1 and XGCa. As shown by Table 4.3, DIMES decreases #htotal time for writing

turbulence data by 99% on average when compared withle-based approach, and by 31%
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on average when compared wittserver-basedapproach. One observation is that when com-
pared with the server-basedapproach, the performance improvement of writing turbulence

data is not as signi cant as that of writing particle data. Th e reason is that the size of
turbulence data written by XGC1 application is very small (as can be seen in Table 4.1).
As a result, the time for transferring turbulence data to staging servers is much smaller.
Figure 4.10 presents the performance for reading turbulere data. DIMES decreases the
total time for reading turbulence data by 99% on average whencompared with le-base

approach, and by 96% on average when compared witkerver-basedapproach.

] | Setup 1 | Setup 2 | Setup 3 \
File-based (seconds) 36.228 31.236 16.430
Server-based (seconds)| 0.024 0.039 0.029
DIMES (seconds) 0.016 0.029 0.019

Table 4.3: Total time of writing turbulence data.
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Figure 4.10: Total time of reading turbulence data.

4.7 Related work

4.7.1 Programming abstractions for expressing parallel da ta exchange

Coupled simulation work ow consists of multiple applicati ons that need to interact and ex-

change data at runtime, and requires the programming suppdrfor expressing data exchange
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between coupled applications. Generic low-level paralleprogramming abstractions, such
as message-passing interface [42], can be used to implemémé data exchange. However,
it is nontrivial to use such low-level communication interface, and requires programmers
investing signi cant e ort into every implementation deta il required by the parallel data

exchange, such as memory management, data indexing and logf, scheduling data trans-

fers. This section presents research work that provides higlevel programming and data
abstraction, which is more expressive and hides the low-l&l implementation details.

Shared tuple space abstraction provides the abstraction o& shared repository of tuple
objects, which can be associatively accessed. Linda [41]qgramming language initially
introduces tuple space as the coordination model for data slring and communication be-
tween parallel processes, and implements a set of primitive e.g.in() , out(), rd(), eval(), to
access the tuple space. DataSpaces [35] and Seine [71] bwli the concept of tuple space
abstraction and implement semantically specialized data pace to support coordination and
data exchange between applications that are part of a coupkk simulation work ow. In par-
ticular, DataSpaces provides the global array based data adiraction to facilitate exchanging
distributed scienti ¢ array between coupled applications. DIMES presented in this thesis
implements the shared data space abstraction that is similato DataSpaces.

Common component architecture (CCA) [14] is an e ort to support interoperability
between coupled scienti c applications, which promotes tke concept of component object
model that is similar in industrial standards such as CORBA [2] and COM [1]. Scientic
application is abstracted as a component and implements a sindard set of interfaces. Ap-
plications interact by invoking the remote component interfaces. Speci cally, CCA de nes
the collective portsinterface to support data exchange between parallel compants that run
on multiple processes. Several CCA-compliant runtime franreworks have been developed,
including InterComm [50], Parallel Application Work Space (PAWS) [40], MetaChaos [38].
CCA approach only supports data exchange between concurrély running applications,
because it requires the presence of remote component apgioon in order to establish con-
nection and invoke the component interfaces. Sharing data étween sequentially running
applications can not be supported by CCA approach. In contrat, DIMES shared data

space abstraction decouples the data sharing from applicéin execution, and supports data
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exchange for both concurrently and sequentially running aplications.

Partitioned global address space (PGAS) has emerged as a pruasing parallel program-
ming model, which provides a global memory address space thas logically partitioned
in the context of distributed memory machines. PGAS languags and libraries, such as
UPC [22], Chapel [25], X10 [26], GlobalArray [56], supportsthe global-view multidimen-
sional array, which provides a convenient high-level data hstraction to share data between
application processes or threads. While existing PGAS imm@mentations enable sharing
data between parallel processes of single application, tlyedo not support data coupling
across heterogeneous programs. For example, transferrirgnd redistributing global-view
array between di erent application programs is not supported by existing PGAS languages
and runtime systems. DIMES provides a shared space abstraicin that is globally accessible
by applications that are part of a work ow, and supports inte r-application data sharing and
exchange.

Flexpath [29] uses a type-based publish/subscribe appro&cto implement communica-
tions between simulations and concurrent running data anaftics. The publish/subscribe
pattern decouples the analytics services from simulation @des, and supports dynamic ar-
rivals/departures of analytics services. Flexpath essernally implements the data streaming
model between data producer and consumer applications. Hasver, Flexpath is limited to
work ow scenario where data producer and consumer applicabns need to run concurrently,
and does not support work ows that couple sequentially exeated producer and consumer

applications.

4.7.2 Parallel data exchange for coupled applications

One intuitive and simple approach to exchange data betweenaupled applications running
on HPC cluster is sharing data through the distributed le systems, such as Networked
File System (NFS), Parallel Virtual File System (PVFS) [23], General Parallel File System
(GPFS) [62], Lustre [5]. This approach enables applicatios to use common data access
interfaces (e.g. POSIX 1/0) and a wide variety of scientic d ata formats (e.g. HDFS5,
NetCDF), which brings productivity, portability and exib ility to the software development.

However, the increasing performance gap between computath and disk I/O introduces
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signi cant data sharing overhead and limits the data excharge performance. This section
presents systems that support memory-based data sharing ahexchange, which can be
categorized into two classes.

Direct data movement between coupled applications : Model Coupling Toolkit
(MCT) [49] is a Fortran-based software package to couple MPIbased component models into
a single coupled model. MCT requires running the work ow as asingle MPI executable, and
partitions the MPI _.COMM WORLD global communicator into a set of sub-communicators
for each of the component model. MCT implements the direct déa transfers between
component models using the inter-communicator communicabns supported by MPI. Flex-
path [29] implements a serverless publish/subscribe syste to support direct connection and
communication between coupled applications. Flexpath impements direct data transfers by
leveraging multiple communication mechanisms, includingshared memory, Remote Direct
Memory Access (RDMA), TCP/IP, which provides high performance and portability. Di-
rect data movement approach avoids extra data transfers whe compared with approaches
that require moving data to external servers. However, exigng implementations of direct
data movement approach only support coupling concurrentlyrunning applications, and does
not support sharing data between sequentially running appications.

Inter-application data movement through dedicated staging ser vers: DataS-
paces [35] builds a distributed in-memory storage space onset of dedicated servers. DataS-
paces stores and indexes data inserted by the application,ra provides a query API to
retrieve the data cached in server memory. In addition, it leverages RDMA one-sided com-
munication to implement high-performance data transfers ketween application and servers.
H5FDdsm [19] framework builds around the idea of virtual le in distributed shared mem-
ory, and enables coupled applications use HDF5 I/O API to exbange data. Virtual le
is stored in a distributed shared memory bu er allocated on aset of severs. Using the
HDF5 virtual le driver extension, H5SFDdsm transparently r eroutes all I/O requests to the
in-memory le. Staging-based data movement uses dedicatedervers to store data. The
availability of data is not dependent on the presence of dataproducer application as in
the direct data movement approach, which enables data shang that is decoupled in time.

However, staging-based approach requires transferring da twice, rst from data producer
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application to server, then from server to data consumer apfication, which may increase

the latency.

4.8 Summary

This chapter presented the design, implementation and evalation of DIMES - a data man-
agement framework for supporting memory-based data sharig and redistribution in coupled
scienti ¢ simulation work ow. DIMES co-locates distribut ed data staging with application
execution, and caches application data in node-local objéstore. This approach e ectively
reduces the volume of network data movement when compared Wi data coupling ap-
proaches that cache data on remote storage servers. In addtin, DIMES indexes staged data
objects according to their spatial attributes, and the array-based query interface enable ap-
plications to retrieve data of interest. DIMES utilizes high-performance hardware-enabled
RDMA operations for inter-node communication, and on-node shared memory for intra-
node communication, which provides e cient and scalable dda movement. This chapter
also presented evaluation results on large-scale HPC clust, and demonstrated the scala-

bility and performance of DIMES data insert/retrieve queri es.



45

Chapter 5

CoDS - a framework for work ow task execution and
placement

5.1 Introduction

DIMES data management framework (presented in Chapter 4) adresses the problem of
supporting distributed data staging, memory-based data slaring and exchange for coupled
simulation work ow. This chapter presents CoDS framework to provide the programming
and runtime support for work ow composition, task executionand task placement

CoDS implements a task execution engine to support schedulg and executing parallel
task programs. It manages a set of compute nodes allocatedrfavork ow execution, and in-
tegrates DIMES to support in-memory data management. CoDS iplements locality-aware
task placement, which attempts to place task execution on copute nodes that contain the
largest portion of its input data. To achieve this objective, CoDS allows programmers to
express locality preference for a task by providinglata hint, e.g., name and spatial region of
the array data that to be accessed by the task. In addition, C®S allows users to program-
matically customize and control the task placement, accoréhg to the speci c need of the
targeted work ow. For example, programmers can functionaly partition the computation
resource, and explicitly express task placement a nity by providing location hint, e.g., the
preferred functional partition for the task execution.

CoDS work ow representation extends the DAG task graph abstaction used by tradi-
tional scienti ¢ work ow management systems with data ow a nnotation, iterative execu-
tion, and data-driven task execution, in order to representthe execution model of coupled
simulation work ow. CoDS's programming environment is exposed as a library to exist-
ing language (current implementation supports C), and implements task execution APIs

to compose a work ow. Work ow written for CoDS consists of a driver program and a
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number of task programs. Each task program represents a congment application that is
part of the work ow, and is typically based on existing MPI parallel simulation or data
analysis code. The driver program is written to compose the etual work ow by combining
sequential, concurrent and iterative execution of task prgrams.

It's worth noting that CoDS is not a system-wide task execution framework deployed
on the HPC cluster. Typical HPC cluster uses a system-wide jb scheduler, such as
SLURM [45], to support resource allocation, scheduling, ad execution of jobs submitted
by multiple users. CoDS is a light-weight task execution franework, and targets executing
coupled simulation work ows using compute nodes in a singlgob allocation.

Technical contributions of CoDS is summarized as below:

CoDS presents a highly programmable and customizable taskxecution framework.
CoDS provides the programmability to partition the allocat ed compute nodes/cores,
and create di erent functional partitions according to the need of the work ow. For
example, in online data analytics work ow that requires in-transit placement of anal-
ysis operation, users can programmatically divide the proessor cores into two parti-
tion. One partition of processor cores is used for simulatin execution, while the other

partition is used for \in-transit" data analysis and processing.

CoDS allows users to provide hint information for task placenent. Users provide
task placement hint according to their knowledge and expegnce. Hint-based task
placement mechanism aims at making a better placement dedisn by combining the
programmer-provided and runtime information. Current pro totype implementation
supports two types of placement hint, including data hint that is used by the runtime
to perform locality-aware placement, and location hint that explicitly species the

preferred functional partition.

The remainder of this chapter is organized as follows. Seain 5.2 presents the work ow
representation. Section 5.3 presents CoDS system architege. Section 5.4 presents the
design and implementation. Section 5.5 presents the programing interface and examples.
Section 5.6 presents the evaluation using two real world cquled simulation work ows.

Section 5.7 presents related research work and Section 5.8ramarizes the chapter.
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5.2 Work ow representation

CoDS work ow representation builds on the DAG task graph abdraction used by tradi-

tional scienti c work ow management systems [3, 32]. Each \ertex in the DAG represents
an application and each edge represents the data dependencyhere an application can
start after all its parent applications nish executions. | n order to represent the coupled

simulation work ow, we extend the basic DAG task graph abstraction in the following ways.

- O

(@) DNS-LES task graph (b) DNS-LES task graph with bundle anno-
tation

Figure 5.1: Task graph representations: DNS-LES work ow.

First, we extend the basic DAG task graph representation wih the concept of bundle
to annotate a group of tightly coupled applications that execute simultaneously and have
frequent inter-application data communications. The bast DAG representation can not
capture the data streams/ ows between concurrently executing applications that have no
explicit data dependency. For example, DNS-LES work ow for combustion science couples
DNS solver with multiple instances of LES solvers. DNS and LE executes concurrently
in lockstep, and data is transferred from DNS to LES instance at every sub step, i.e., 6
times in a single time step. Figure 5.1(a) presents the DAG rpresentation for a work ow
that couples DNS with 3 LES instances. Figure 5.1(b) preserg the same work ow using
DAG with bundle annotation. Bundle annotation describes which concurrent applications
are tightly coupled as well as the data ow between concurreh applications.

Second, task graph abstraction needs to representerative execution , which is re-
quired by many simulation work ows. For example, XGC1-XGCa work ow for plasma
fusion science requires iterative execution of sequentigl coupled XGC1 and XGCa simula-

tion code. Figure 5.2 presents the task graph representatiofor the XGC1-XGCa work ow.
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Figure 5.2: Task graph representations: XGC1-XGCa work ow.

Figure 5.3: Task graph representations: S3D data analyticsvork ow.

Third, the task graph needs to representdata-driven task execution , which starts a
task when all its data dependencies are satis ed. This di eis from the dependency resolution
in traditional scienti ¢ work ow management systems [3, 32] where the execution of a task
depends on the completion of its parent tasks. The ability ofrunning data-driven task is
very useful for online data analytics work ow. For example, S3D data analytics work ow for
combustion science couples the simulation code S3D with seral analysis operations, e.g.,
visualization, descriptive statistics, topological analsis. With the data-driven execution
capability, runtime system can dynamically start concurrent execution of a analysis task
after its required data is produced by S3D. Figure 5.3 preses the task graph representation
for S3D data analytics work ow (the dotted arrow shows data-driven coupling between

tasks).

5.3 System architecture

CoDS task execution framework consists of four componentsicluding task executor work-
ow manager, task submitter, and information space. Figure 5.4 presents a graphical rep-

resentation of the system architecture.
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Figure 5.4: Work ow execution framework system architecture.

Task executor is responsible for executing work ow tasks. Each task exedor runs
on one physical processor core, and a pool of task executorseaassigned to the allocated
compute nodes. In addition to task execution, the executor o integrates DIMES to cache
work ow data in local memory of compute nodes, and support dda sharing and exchange
between interacting work ow tasks.

Task submitter is responsible for submitting task execution request to thework ow
manager. Task submitter executes the driver program at runime, and drives the work ow
progression by launching asynchronous task executions oré executor resource pool.

Work ow manager is responsible for coordinating task executions within a wek ow.
Work ow manager maintains three tables to respectively stae the information about work-
ow tasks, data variables, and executors. Task table contains the information for submitted
tasks. Variable table contains the information for currently available data vari ables that ap-
pears as a task input or output. Executor table contains the information of all task executors
in the system. Each task has zero or multiple input dependenies and becomes runnable
when all its dependencies are satis ed. Based on the state @ésk table and variable table
work ow manager can perform dependency resolution to idenify runnable tasks.

Information space runs on a dedicated set of compute nodes, and builds on Data@pes
servers. Information space enables coordination and mesgiag between other components,

and supports indexing and lookup of data cached in DIMES.
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5.4 Implementation

5.4.1 Work ow execution

Work ow makes progress by executing tasks. This subsectioroutlines the key steps of
work ow execution.

The rst key step is task submission . Both task submitter and executor can send
task submission requests to work ow manager. Work ow manager adds a new entry totask
table. Meanwhile, the work ow manager adds input data variables that the task depends
on into variable table For each data variable in variable table work ow manager needs to
subscribe on the variable's status that is maintained by theinformation space. Work ow
manager will receive noti cations from the information space whenever the data variable of
interest becomes available, updated or deleted.

The second key step isdependency resolution . Work ow manager evaluates if a
task is runnable, utilizing information stored in task tableand variable table When a task
becomes runnable, it is ready for scheduling and placement.

The third key step is task scheduling and placement . Firstly, work ow manager
needs to decide when to execute a runnable task. A runnable sk becomes ready for ex-
ecution when its computation resource requirement is satied. Current implementation
employs simple rst-come- rst-serve policy to select the rext ready-for-execution task. Sec-
ondly, work ow manager needs to decide where to execute theaisk, by selecting the idle
executors for task execution. In current implementation, executor table orders the task
executors by their compute node id. The node id is system-wid information and typically
preserves the network locality of compute nodes. For exampl on ORNL Titan system,
compute nodes with adjacent id are physically connected wh direct network link. By
default, the work ow manager allocates contiguous idle exeutors in the table to execute
a task. In addition to the default placement policy, the framework also supports two cus-
tomized task placement approaches to optimize the work ow &ecution, which is described
in next section.

The last key step istask execution . Work ow manager dispatches the task to idle

executors selected during task scheduling and placementhén the executors start executing
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the assigned task. As noted previously, work ow task is typically a MPI parallel program.
CoDS runtime needs the ability to dynamically launch and exeute a task, i.e., the MPI
executable, on selected task executors. However, though MRBtandard de nes the dynamic
process management [43], this feature is not fully supporgt on many current generation
high-end computing systems, such as Cray XE/XK and IBM BlueGene/Q. As a result,
current prototype implementation requires to wrap the MPI t ask program as a library.
The execution framework dynamically creates a MPI communiator on the idle executors
selected for the task, and starts executing the task by involkng the entry function of the

task library.

5.4.2 Hint-based task placement

Task placement determines which physical compute nodes angrocessor cores to execute a
task, and has signi cant impact on the performance of overdl work ow execution. CoDS
framework implements hint-based task placement mechanisgrwhich combines programmer-
provided placement hint and runtime information (e.g., location of data). Speci cally,
current prototype implementation supports two types of programmer-provided placement

hint, including data hint and location hint

A

0000 Q00O 0000 0000
0000 Q000 0000 0000
| '# $

Figure 5.5: lllustration of locality-aware task placementthrough programmer-provided data
hint.
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Data hint allows programmers to express locality preference for a tks CoDS frame-
work performs locality-aware task placement according to he data hint, with the objective
of moving computation closer to data. Work ow data is staged in memory across the com-
pute nodes, and reading data from local memory requires no meork data movement and is
much faster than reading data from remote memory. Localityaware placement aims at ex-
ecuting task on compute nodes where a large portion of input dta is available in node-local
memory, which can e ectively reduce the size of data movemenover network. Figure 5.5
presents a simple example of moving task to data by utilizingprogrammer-provided data
hint. Input data variable of the task is a 2D 400 800 array, and the array data is distributed
over 4 compute nodes, namely nl, n2, n3, n4. Instead of readinthe entire 2D array, the
task only needs to read subarrayf (0; 200); (399; 799)g. Programmer can provide the spatial
bounding box to describe the array region of interest. At rurtime, work ow manager can
retrieve the data location information by querying DIMES data lookup service, and places
task onto compute nodes n3 and n4, in order to maximize the s of locally available input
data.

Location hint  allows programmers to explicitly express the functional patition for task
execution. This approach rst divides the allocated computation resource (or task executors
in CoDS) into programmer-de ned functional partitions. Ea ch partition represents one
possible execution location. Programmers then can providdocation hint to specify the

preferred partition of executors for a task.

O O
o
O
( o000
ara) >
T L

Figure 5.6: lllustration of functionally partitioning the task executors to create di erent
placement options for analysis operation in online data anbytics work ow.
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Location hint based task placement targets speci cally theonline data analytics work-
ow. In a typical execution of online data analytics work ow , computation resource can
be divided into three possible partitions (as shown in Figue 5.6), which creates the fol-
lowing placement options: (1) In-situ inline - data analysis and simulation share the same
processor cores. (2) In-situ co-located - processor cores @ach compute node are func-
tionally partitioned into simulation cores and analysis cores. Data analysis is executed on
the dedicated analysis cores. (3) In-transit - data analyss is executed on a dedicated set of
compute nodes. As presented by recent research work [72, 1@pgta analysis operations may
have di erent placement preference, depending on variousaittors such as scalability of the
analysis algorithm, input data size of the analysis. Supparof location hint presents several
advantages: First, it enables placement exibility for data analysis. Programmers can ex-
plicitly control the placement of analysis operation accoding to their expertise knowledge
about the work ow. Placement location can be changed simplyby changing the location
hint, which enables programmers to explore di erent placenent locations and the trade-
0s. Second, it enables customized partitioning of computdion resource as required by
the speci c work ow. For example, some work ows may require the placement options of
\in-situ co-located” plus \in-transit”, while others may o nly require the placement option

of \in-transit".

5.5 Programming interface and examples

This section presents the programming interface and exampis for composing the work ow

and providing task placement hint.

5.5.1 Work ow composition

This section presents the task execution APls, which is usedo compose coupled simula-
tion work ows. Programmers uses the API to launch asynchrorous task execution on idle
executors. Task program can be serial code running on one exor, or parallel code run-
ning on multiple executors. Programmer can specify input déa dependency for a task, and
the CoDS work ow manager performs dependency resolution ath starts the task execution

when all input data of the task becomes available.
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Listing 5.1: Task execution C programming interface.

/I Initialize the runtime framework.
int cods_init();

/I Finalize the runtime framework.
int cods_finalize ();

/I Add task to a bundle.
int cods_add_task(bundle _descriptor bundle_desc,
task_descriptor task_desc);

/I Execute a task.
int cods_exec_task(task _descriptor task_desc);

/I Execute a bundle
int cods_exec_bundle(bundle _descriptor bundle_desc);

/I Block for the completion of task/bundle execution.
cods_status cods_wait _task_completion(task _.descriptor desc);
cods_status cods_wait _bundle_completion(bundle _descriptor desc);

/I Check the status of task/bundle execution.
cods_status cods_task_status(task_descriptor desc);
cods_status cods_bundle_status(bundle _descriptor desc);

Listing 5.1 presents the C programming interface for execuhg work ow tasks.

cods add task() adds a task (described bytask desg to a bundle. The function is used
to construct a bundle of concurrently executing tasks. task desc contains the basic
task information, including task name, list of data variables that the task depends on.
task desc also speci es the resource requirement for the task execuin, such as the

number of required task executors.

cods exectask()/cods _execbundle() submits the task/bundle execution request to work-
ow manager. The function is non-blocking and returns immedately after successful

submission.

cods wait_task completion()/cods wait_bundle completion() blocks for the completion

of a submitted task/bundle.

cods task status()/cods_bundlestatus() returns the execution status of a submitted

task/bundle. The function is non-blocking and returns immediately.

Programmer needs to write a driver program to implement workow execution logic and
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Listing 5.2: Example driver program of coupled XGC1-XGCa wak ow.

void workflow _driver ()
f
cods_init();
int i, num_coupling_step = 50;
for (i = 1; i <= num _coupling_step; i++) f
task_descriptor xgcl, xgca;

/ Set up task descriptors.
Detailed source code is omitted. /

/ Execute xgcl task /
cods_exec_task(xgcl);
cods_wait _task_completion(xgcl);

/| Execute xgca task /
cods_exec_task(xgca);
cods_wait _task_completion(xgca);

g
cods_finalize ();

the actual task graph. This section presents the programmig examples of two represen-
tative work ows, including XGC1-XGCa work ow for plasma fu sion science and DNS-LES
work ow for combustion science (described in Chapter 2.1.2

Listing 5.2 presents the example driver program of XGC1-XGG work ow. The work ow
has 2 tasksxgcl and xgca The two tasks are executed in sequential order, and for mulple
coupling steps. The driver program uses a outer loop to conwl the coupling steps. At each
coupling step, the driver program rst executes xgcl and waits for its completion, and then
starts executingxgca The driver program waits for the completion of xgca before advancing
to the next coupling step.

Listing 5.3 presents the example driver program of DNS-LES wrk ow. The work ow
has 2 tasks namelydns and les. dns and les executes concurrently in lockstep for multiple
time steps. At each time step, data is transferred fromdns to les. In this example, the
driver program creates a bundle to include both tasks, exedes the bundle and waits for
its completion. The driver program does not need to explicity control the time stepping

using a control loop, because the time stepping is managed byns and les program itself.
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void workflow _driver ()

f
cods_init();
bundle_descriptor bil;
task_descriptor dns, les;

/ Set up task descriptors.
Detailed source code is omitted. /

/| Execute dns and les tasks /
cods_add_task(bl, dns);
cods_add_task(bl, les);
cods_exec_bundle(bl);

cods_wait _bundle_completion(bl);
cods_finalize ();

Listing 5.4: Task placement C programming interface.

/I Retrieve architectural information of task executors.
compute_resource cods_get_.compute_resource.info();

/I Divide task executors on the allocated compute nodes
/I into programmer defined partitions.
int cods_build _partitions(compute _resource info);

/I Set location hint for a task.
int cods_set_location_hint(task _descriptor task_desc,
unsigned char partition _type);

/I Set data hint for a task.
int cods_set_data_hint(task _descriptor task_desc,
data_hint hint);

5.5.2 Task placement

This section presents the task placement APIs (see Listing 8) that allows programmer to

explicitly specify task placement hint.

cods get computeresourceinfo() retrieves the architectural information of all task ex-

ecutors from work ow manager. computeresource data eld executortab uses a table

to record the architectural information, such as compute nale id and network topol-

ogy, for each task executor.

cods build_partitions() de nes customized functional partitions over the task exew-

tors. Programmer-de ned partition type (a integer value in current implementation)
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Listing 5.5: S3D data analytics work ow: example driver program.

enum programmer_defined_partition _type f
SIMULATION = 1,
INTRANSIT

g9,

void workflow _driver ()

f
cods_init ();
task_descriptor s3d;
compute_resource info;

info = cods_get_.compute_resource.info ();

!/ Update info >executor_tab[i].partition with
programmer defined partition type.
Detailed source code is omitted. /

/[ Build partitions /
cods_build _partitions (info);

/  Set up task descriptors.
Detailed source code is omitted. /

/  Execute s3d task /
cods_set_location_hint(s3d, SIMULATION);
cods_exec_task(s3d);

cods_wait _task_completion(s3d);
cods_finalize ();

can be assigned to executor entry in tableexecutortab. For example, one typical
customization for online data analytics work ow is to divid e task executors into sim-
ulation and in-transit partitions. By default, task execut ors are not associated with

any partition, and programmer-provided location hint has no e ect.

cods set location_hint() / cods set data_hint() sets placement hint for a task.

This section uses S3D data analytics work ow to demonstratethe use of task placement
APls. The work ow executes a simulation task s3d as the data producer, and three analysis
tasks as the data consumers, includingiz (visualization), stat (descriptive statistics) and
topo (topological analysis). Simulation task s3d runs for multiple time steps, and the data
analysis is performed in everyn time steps. Value ofn determines the frequency of online
data analysis. In the presented example, the value oh is de ned as 1. Programming of

the example work ow involves two parts, which is described & follow.
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Listing 5.6: S3D data analytics work ow: code snippets for 8d task program.

void s3d_execute_analysis()
f
task_descriptor stat, viz, topo;
/ Set up task descriptors.
Detailed source code is omitted. /

|/  Execute analysis tasks in transit /
cods_set_location_hint(stat, INTRANSIT);
cods_set_location_hint(viz, INTRANSIT);
cods_set_location _hint(topo, INTRANSIT);
cods_exec_task(stat);
cods_exec_task(viz);
cods_exec_task(topo);

g
int s3d()
f
int ts;
for (ts = 1; ts <= num _time _step; ts++) f
/  Computation.
Detailed source code is omitted. /
/ Execute analysis tasks. /
if (rank = 0) s3d _execute_analysis ();
g
g

Listing 5.5 presents the driver program, which is used to botstrap the work ow execu-
tion by submitting s3d task. Similar to DNS and LES solvers,s3d task program manages
the time stepping by itself, and the driver program does not reed a control loop to explicitly
manages thes3d time stepping. In addition, the driver program retrieves the computation
resource information, and divides the task executors into 8MULATION and INTRANSIT
partitions by calling codsbuild_partitions() . Driver program sets the location hint of s3d
task as SIMULATION, and submits the task execution request.

Listing 5.6 presents the analysis execution logic, which iglirectly embedded into s3d
task program. At each time step, s3d rank 0 process invokes routines3d executeanalysis()
to start the asynchronous execution of data analysis tasksAs shown in Listing 5.6, location
hint is speci ed and used to control the placement. In this speci c example, all the three

data analysis tasks are preferred to execute on INTRANSIT patition.
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5.6 Applications

This section presents using CoDS task execution frameworkaot support two real world

coupled simulation work ows.

5.6.1 Online feature-based object tracking for scientic s imulation data
Overview

In order to extract insightful information from large datas ets produced by simulations over
thousands of time steps, scientists often need to follow dat objects of interest (i.e., fea-
tures) across the di erent time steps. For example, meteortogists track storm formation
and movement in climate modeling simulation while physiciss identify burning regions in
combustion simulations. As a result, feature extraction ard tracking is an important tech-
nique for analyzing and visualizing scienti c datasets. Havever, most feature extraction
and tracking techniques operate o ine by post-processing dta written into les by the
simulation runs. Being able to perform such feature-based malytics in-situ, i.e., concur-
rently with a simulation itself, can signi cantly improve t he utility of these techniques at
large scale. It can also lead to better utilization of expenwe high-end resources as well as
the overall productivity of the simulations.

This section presents the online in-situ feature-based olgjct tracking on time-varying
simulation data. The application is a 3D computational uid dynamics (CFD) simulation
that contains evolving amorphous regions. The feature-basd object tracking operation is
implemented using DOC - a scalable decentralized and onlinelustering technique [59], [60],
which executes in-situ and analyzes the simulation data wHe it is being generated. Con-
nected voxel regions of interest { features { needs to be idaned at each time step and
tracked over multiple time steps in order to visualize the time-varying datasets. More specif-
ically, we focus on tracking objects as thresholded conneet voxel regions that evolve both
in location and shape over time.

Figure 5.7 illustrates the placement of simulation processs and DOC workers across the
allocated compute nodes. The prototype implementation buids on CoDS task execution

framework to enable the co-located execution of simulatiorand analysis operations, where
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Figure 5.7: Architecture of the in-situ feature extraction and tracking system.

the physical processor cores on the multi-core compute nodeare functionally partitioned.
DIMES (Chapter 4) is used to support sharing data between simlation and DOC through
the node-local shared memory.

The prototype implementation was evaluated on the Lonestarlinux cluster at Texas
Advanced Computing Center (TACC). The Lonestar has 1,888 conpute nodes, and each
compute node contains two hex-core Intel Xeon processors4%B of memory and a QDR
In niBand switch fabric that interconnects the nodes throu gh a fat-tree topology. The
system also supports a 1PB Lustre parallel le system.

Our evaluation consists of two parts. The rst part evaluates the end-to-end data
transfer performance of our in-situ data analysis framewok, and also compares it with the
traditional disk 1/0O approach. The second part evaluates the e ectiveness and accuracy
of our DOC-based feature tracking algorithm, using a time-varying dataset generated by

simulation of coherent turbulent vortex structures.

Performance of data transfer

This section evaluates the end-to-end data transfer perfanance, and more speci cally the
time used to transfer data from simulation processes to DOC wrkers, for both our in-

situ memory-to-memory and the disk I/O approaches. In this case, we use a testing MPI
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program as the parallel data producing simulation, which runs on a set ofm processor cores.
The parallel DOC workers runs on a separate set of processor cores where the ratio aih:n
is 8. In our in-situ data analysis approach, each DOC worker uns on a processor core co-
located with 8 simulation cores of the same compute node, antetrieves data generated by
the intra-node simulation processes. In our framework, them:n ratio can be con gured by
users. From our experience, the simulation part of the expament is usually more compute
intensive, thus it makes sense to allocate a large amount ofoces to simulation tasks. On
the other hand, the data analysis part (DOC in this case) often requires a smaller number of
cores. Our in-situ approach requires simulation and analyis tasks that exchange data to be
placed on the same node in order to minimize data transfer ando reduce the overhead on
the simulation itself. In the disk I/O approach, simulation processes dump data to disk with
the one le per process method using binary POSIX I/O operations. Data les are then
read by parallel DOC workers. For this evaluation, the numbe of simulation processean is
varied from 256 to 4,096, and the total data size produced byisulation at each timestep
is varied from 8GB to 128GB. The testing program is con guredto run for 100 timesteps

at each data output size.
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Figure 5.8: End-to-end data transfer time. The size of data poduced per simulation process
at each timestep is 32MB.

Figure 5.8 and 5.9 compare the performance of the two data tnasfer approaches. As
shown in Figure 5.8, our in-situ memory-to-memory method ismuch faster than the disk
I/O approach, with average speedup of transfer performances about 10. Also, the in-situ

memory-to-memory method is scalable, and shows no perfornmge degradation when the
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Figure 5.9: Aggregate data transfer throughput. The size ofdata produced per simulation
process at each timestep is 32MB.

number of MPI processes in data producing program increasésom 256 to 4096. The reason
for this signi cant performance gain is that all data movement is intra-node, and performed
through the on-node fast 1/O path - shared memory. But for the disk 1/O approach,
both data producer and DOC worker processes have to use the enode slow path - disk.
Figure 5.9 illustrates the performance gain from another dinension - aggregate data transfer
throughput. The fast intra-node shared memory approach enales much higher aggregate

bandwidth for the data movement between simulation and DOC.

E ectiveness of the feature-based cluster tracking algorithm

This section evaluates the e ectiveness and accuracy of oysroposed feature tracking algo-
rithm, using a time-varying 3D dataset. The dataset is geneated by simulation of coherent
turbulent vortex structures with 128 2 resolution (vorticity magnitude) and 100 time steps.
In this case, the data cluster or object of interest is de nedas thresholded connected voxel
regions. These regions evolve both in location and shape dmg the simulation. Although
di erent time steps of the dataset can be visualized o ine using visualization tools such
as Visit, it is dicult to visually observe and accurately fo llow regions of interest. The
tracking information from our algorithm is used to determine how the regions evolve, e.g.,
size, location, density, over the time steps.
In this experiment, we de ne the regions of interest as the déa points with vorticity

values in the range of 9 to maximum. Since the tracked objectin our experiment vary fast
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Figure 5.10: A visualized view of the evolving volume regioa (objects) tracked by our
feature-based tracking algorithm.

Figure 5.11: lllustration of tracked path for object evolves over multiple time steps.
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and last only around 10 time steps, we snapshot three time sf&s of the visualized dataset
for the duration of the tracked object, as shown in Figure 5.D. Also, it demonstrates the
e ective tracking of the evolving volume region (or object as in DOC) pointed by black
arrows. We de ne tracking accuracy as the ratio of data points encompassed by the tracked
objects to total number of points in the experiment. This enares that high accuracy
in object tracking can only be achieved by identifying paths from which the object pass
through. In each experiment 50 frames were used to identifylie paths of the objects within
these 50 frames.

The tracking accuracy across 47 tests was 92.28% on averageeaning only 7.72% of all
vortex points were not associated to any trackable object inour experiments. In Figure 5.11
we present the tracking of a object (the same one as in visualed Figure 5.10), as seen by
DOC, at three di erent time steps. As shown in the gure, this object moves from left to

right and shrinks in size.

5.6.2 Online data analytics for S3D combustion simulation
Overview

This section presents the online data analysis work ow for @mbustion simulation, which
is implemented using CoDS task execution framework. The wdcow couples parallel data
analysis operations with S3D combustion simulation to anayze the raw simulation data on-
the-y, and decouple analysis operations from led-based IO by utilizing memory-based
data sharing.

Figure 5.12 presents an overview of the S3D online data anadys framework. Task execu-
tor resource is divided into two distinct partitions namely SIMULATION and INTRANSIT.
Task executors of SIMULATION partition is used for executing the S3D simulation, while
the INTRANSIT partition is used for executing online data an alysis operations. Data anal-
ysis tasks of the work ow is dynamically submitted and spawred by the S3D simulation, and
work ow manager is responsible for the task scheduling and [acement. DIMES is used to
support asynchronous RDMA-based memory-to-memory data s&ring between simulation
and analysis tasks.

The online data analysis framework integrates two speci ¢ aalysis operations including
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Figure 5.12: An overview of the online data analysis framewk for S3D combustion simu-
lation.

visualization, and value-based indexing.

Visualization : Visualization enables scientists to visually monitor the simulations
output. Our implementation uses the parallel volume rendeing software library de-
veloped by UC Davis [70], which renders full-resolution siralation data. The parallel
rendering approach generates high-quality images that canisually convey simulation

results with great details.

Value-based indexing : Value-based indexing enables scientists to formulate valk-
based range queries on the simulation data, and analyzes thgata in an explorative
manner. Our implementation uses software library FastBit [67] to generates value-
based index of S3D simulation data. FastBit implements e cient compressed bitmap
index technique, and has been demonstrated in a number of siti c applications to

support value-based indexing and query processing.

Results

The prototype implementation was evaluated on the Cray XK7 Titan system at Oak Ridge
National Laboratory. Titan has 18,688 compute nodes, and eeh compute node has a 16-
core AMD Opteron processor, 32GB memory, and a Gemini routetthat interconnects the

nodes via a fast network with a 3D torus topology.



66

S3D simulation periodically outputs chemical species data 21 3D double arrays. One
double array that represents the combustion temperature isthe input for visualization
operation, while the other 20 double arrays are the input forvalue-based indexing operation.
Each simulation process computes on a 3D 20 20 20 grid, and generates about 1.28MB
data for the 21 double arrays. The experiments vary the totalnumber of S3D simulation
processes from 64 to 16384, in order to evaluate the scalaibyl and performance results at

di erent scales.
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Figure 5.13: End-to-end execution time for S3D data analys work ow.

In our experiments, S3D simulation runs for 50 time steps. Vsualization and value-
based indexing operation is performed at each time step. To emonstrate the bene ts of
concurrent data analysis supported by our framework, we compare with tke inline data
analysis approach which performs analysis operations dimly on the physical processor
cores that execute the S3D simulation.

We measure the total end-to-end wallclock execution time aperceived by the simulation,
and Figure 5.13 presents the evaluation results of botttoncurrent and inline approach.
Concurrent approach reduces the end-to-end execution timby 16.7%, 10.6%, 13.1%, 14.1%,
32.7% respectively, when the number of S3D simulation coreis varied from 64 to 16384.
The advantage of concurrent approach becomes more signi ¢ at larger scale. Because
the analysis operations need to write results to les, the ire cient le-based I/O at larger
scale causes signi cant overhead to simulation executionni the inline approach. In the

concurrent approach, data analysis operations are o oadedto separate processor cores and
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performed asynchronously, which introduces minimum overkad to simulation execution.
Concurrent approach requires additional computation resource to pedrm data anal-
ysis operations, as compared with theinline approach. Table 5.1 presents the amount of
additional computation resource used in concurrent approah, including the number of pro-
cessor cores for running work ow manager andnformation space servers, and the number
of processor corse for executing data analysis operation3he resource overhead is less than
2% for large scale experiments with 1024, 4096 and 16384 S3bnalation cores, which is
acceptable considering the e ective reduction of end-to-ed execution time and support of

online data analytics work ow.

Num. of S3D | Num. of cores (work-| Num. of cores (data| Overhead
simulation ow manager and infor- | analysis operations)

cores mation space servers)

64 1 1 3.12%
256 2 4 2.34%
1024 4 16 1.95%
4096 8 64 1.75%
16384 16 256 1.66%

Table 5.1: Computation resource used in the concurrent apprach of S3D online data anal-
ysis.

5.7 Related work

5.7.1 Programming model for work ow composition

Traditionally, programming scienti ¢ work ow is based on t he abstraction of acyclic task
dependency graph. Work ow is described as a directed acydli graph (DAG), where each
graph vertex represents a task and the edge identi es the dat dependency. A task be-
comes runnable only after all its parent tasks complete thei executions. Scienti ¢ work ow

management systems DAGMan [3], Pegasus [32], Makelow [12jeaexamples using the task
dependency graph model. Task dependency graph enforces seqtial execution order be-
tween parent and child tasks connected by a edge. Task exedoh is completion-dependent,
which depends on the completion of parent tasks. However, t# programming model does
not support expressing data-driven execution where a task écomes runnable once its data

dependencies are satis ed. Data-driven execution is requed by many coupled simulation
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work ow scenarios, such as the S3D online analytics work owdescribed in Chapter 2.1.1.
Many recent scienti c work ow programming systems employ the data ow program-
ming model. A DAG of tasks can be used to represent a data ow, \mere each graph vertex
represents a task and the edge represents data ow between tks. PreDatA [73] provides
the map-shu e-reduce model for users to compose customizedlata processing pipeline,
which essentially composes a xed dataow. Twister [39] prwides a iterative MapRe-
duce [31] programming model. Users can express scienti ¢ wWoow as iterative execution
of MapReduce tasks, which essentially composes a iterativdata ow. Swift [64, 15, 65]
is a data ow language designed for programming many task comuting (MTC) work ow,
and supports data ow-driven task-parallel execution. Swift supports arbitrary data ow,
and the data ow speci cation is from the dynamic evaluation of programs written in the

concurrent, expressive Swift scripting language.

5.7.2 Software framework for online data analytics work ow

This section presents software frameworks that support onihe data analytics on large-scale
HPC clusters. Online data analytics work ow is one represetative scenario of coupled
simulation work ow, which emerges to address the increasig performance gap between
computation and disk 1/0. The work ow couples simulation co de with data analysis, and

analyze the raw simulation data while it is being generated.Data analysis operations can
executein-situ on the same compute nodes that run the simulation code, omn-transit on

a set of separate and dedicated compute nodes.

In-situ data analysis : Functional partitioning (FP) [52] runtime allocates dedi cated
processor cores, hamelyelper cores on the same compute nodes that run the simulation,
and uses the helper cores to perform specic data processingsks, e.g. checkpointing,
de-duplication, and data format transformation. Similarly, Damaris/Viz [37] framework
utilizes helper cores to perform online in-situ visualizaton. Darmaris/Viz implements a
shared memory, zero-copy communication model to support ecient data sharing between
simulation and visualization tasks. GoldRush [74] framewok executes in-situ data analysis
by utilizing idle CPU cycles of the processor cores running lte simulation. Unlike the

helper cores approach, data analysis tasks in GoldRush sharthe same computation cores
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with simulation. GoldRush employs ne-grained schedulingto \steal" idle resources from
simulation, with the objective of minimizing interference between the simulation and data
analytics. In-situ data analysis reduces the size of netwdr data movement by placing
analysis tasks closer to simulation data. However, on-nodeesource sharing, e.g. CPU,
memory, and network, may cause interference between simuian and analysis.

In-transit data analysis on staging nodes : GLEAN [63] framework supports in-
transit data analysis on dedicated staging nodes. Simulatin running on compute nodes can
use GLEAN transparently through a standard 1/O library such as pNetCDF and HDF5,
which provides non-intrusive integration with existing applications. PreDatA [73] mid-
dleware o oads output data from a running simulation to dedi cated staging nodes using
asynchronous data extraction, and performs data pre-procgsing and analysis in-transit.
PreDatA supports in-transit execution of user-de ned operations, and provides users with
a map-shu e-reduce programming paradigm to build customized data stream processing in
the staging area. In-transit data analysis minimizes the inpact on simulation, by o oading
analysis computation to separate staging nodes.

Hybrid online data analysis : Several recent work provides the exibility of anal-
ysis placement, and supports both in-situ and in-transit daa analysis. JITStager [9] en-
ables users to apply customized data operators to simulatio output data along the en-
tire 1/0 pipeline. JITStager implements SmartTap to execut e data operations in-situ on
processor cores that run the simulation code. In addition, JTStager builds on software
DataStager [10] to extract data from simulation to staging area, execute the data cus-
tomization operators, and forward the data to downstream dda analysis framework, i.e.
PreDatA middleware, for further processing. FlexIO [75] middleware enables users to tune
analytics placement to improve performance for online dataanalytics work ow. FlexIO can
automatically con gure the underlying transport to suppor t placement decision made by
users, and support various placement options, e.g. in-sitinelper cores, in-transit staging

nodes.
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5.7.3 Task placement based on programmer-provided informa tion

Several recent parallel programming languages and systenalow programmers to explic-
itly control the location of task execution or express \hint" that can be utilized by runtime
to make the placement decision. PGAS programming language I@&pel [25] provides the
abstraction of locale to represent a portion of the target parallel machines that has compu-
tation and storage capabilities. For example, on HPC cluste of multicore nodes, each node
can be abstracted as docale Programmer can use the Chapebn statement to control on
which locale to execute a block of code. Similarly, PGAS langage X10 [26] provides the
abstraction of place and programmer can use the X10at statement to express theplace
of computation task. Parallel programming model Piccolo [8] builds application around
kernel functions, and the application data is stored in in-memory tables that partitioned
and distributed on di erent compute nodes. Piccolo allows grogrammer to express locality
policies (or preferences) to co-locate a kernel executionith desired table partition. Piccolo
runtime executes a kernel instance on machine that stores nsb of the required data, which

minimizes remote reads.

5.8 Summary

This chapter presents CoDS framework that supports the progamming, task execution and
placement for coupled simulation work ows. CoDS provides he programming support by
implementing asynchronous and dynamic task execution APIs Programmers can compose
work ow by combining concurrent, sequential and iterative executions of task programs.
CoDS implements hint-based task placement mechanism that tilizes programmer-provided
hint as input. Programmers can provide data hint for the locality-aware placement, and
explicitly control the location of task execution by specifying location hint. This chap-
ter also presents the experimental evaluation of the runtine framework by using several

representative work ow applications.
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Chapter 6

Communication- and topology-aware task mapping

6.1 Introduction

High-performance computing (HPC) systems are increasingl being based on two architec-
tural trends to achieve better performance: First, systemshave increased core count/den-
sity on a single compute node. Second, systems have incredseumber of compute nodes,
which are interconnected by network with complex topology. For example, petascale su-
percomputer Cray XK7 Titan uses a 3D torus network to interconnect its 18,688 16-core
compute nodes, and IBM BlueGene/Q Mira uses a 5D torus netwdk to interconnect its
49,152 18-core compute nodes. This architectural trend mads the largest supercomputers
highly hierarchical, and the cost of data communication canvary signi cantly depending
on where the communicating processes are placed. For exangplon-node data movement
is more e cient than o -node data movement that requires tra nsferring data over inter-
connection network. Data communication between compute ndes that are nearby in the
network topology is more e cient than between compute nodesthat are connected long-
hop away. Meanwhile, emerging coupled scienti ¢ simulatiom work ows consist of multiple
applications that need to interact and exchange signi cantvolume of data at runtime. The
cost of moving the increasingly large volumes of data assatied with these interactions and
couplings has become a dominant part of the overall work ow &ecution.

Clearly, in order to e ectively utilize the potential of cur rent and emerging HPC systems
it is critical that such data-intensive coupled simulation work ows exploit data locality to
the extent possible, increase the size of on-node data examge and reduce the cost of
data movement over network. To achieve this objective, one &y research direction is task
mapping, which determines the mapping of application proceses onto network topology,

and has signi cant impact on the cost of data movement. While existing research work [69]
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[18] [44] [33] has focused on mapping frequently communidaly processes within a single
application onto processor cores that are physically \clos", mapping processes of multiple
applications that are part of a work ow has not been studied.

This chapter presents the communication- and topology-awee task mapping to localize
communication for coupled simulation work ow. First, the t ask mapping improves data
locality by placing intensively communicating processes nto the same multi-core compute
node, with the objective of reducing the size of data movemerover interconnection network.
Intra-node data movement can use more e cient shared memory bypassing the network
devices. Figure 6.1 illustrates the co-located executionfgrocesses from two concurrently
coupled applications. Second, the task mapping improves da locality by placing commu-
nicating processes onto physically \close" compute nodesiithe network topology, with the

objective of reducing the number of hops for data transfers wer network.

O

O /—

7

Figure 6.1: lllustration of localized data communication through co-located execution ap-
plications processes.

Unlike existing research work that focus on optimizing intra-application communica-
tion for single application, our method targets coupled sinulation work ow that consists of
multiple applications, and optimizes the overall work ow communication performance by
considering both intra-application and inter-application communications. Moreover, while
existing approaches focus on communication between apphtion processes that execute
simultaneously, our method also targets communication betreen sequentially executed ap-

plications, which is unique to coupled simulation work ow.
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Communication- and topology-aware task mapping utilizes &isting graph partitioning
and topology mapping algorithms as the main building blocks The prototype implementa-
tion builds on DIMES (presented in Chapter 4) to support memory-based inter-application
data exchange, and builds on CoDS (presented in Chapter 5) t@xecute the work ow and
control the runtime placement of application processes.

The remainder of the chapter is organized as follows. Sectin6.2 formulates the task
mapping problem. Section 6.3 presents algorithm descriptin of the communication- and
topology-aware task mapping method. Section 6.4 presentshe integration of the task
mapping method into CoDS framework. Section 6.5 presents ta experimental evaluation
using three representative testing work ows. Section 6.6 pesents related research work and

Section 6.7 summarizes this chapter.

6.2 Task mapping problem

This section rst formulates the task mapping problem using the task graph based work ow
representation (described in Chapter 5.2). In addition, this section de nes the performance

metrics, and describes the assumptions we made for the taskapping problem.

6.2.1 Formalization

Work ow communication graph : Each work ow application is a parallel program
that executes on a massive number of processes. Work ow comumication includes
intra-application communication which moves data betweenprocesses in the same
application, and inter-application communication which moves data between di erent
applications. Work ow communication is represented by a waghted, undirected graph
Gc = (Ve Ec;we). V¢ is the set of application processes in a work ow, ance. de nes
the set of graph edges. For each edgeufv) 2 E., wc(u;Vv) represents the size of

communication between application processi and v.

Network topology graph  : The physical interconnection network is represented by
a undirected graph G; = (V;; Et;¢). V; is the set of physical nodes (compute node

or network switch) in the network topology, and an edge {i;v) 2 E; represents a
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direct network link between nodeu and v. Capacity value c¢;(u) de nes the number of
application processes that can execute on compute node2 V;. The value ofc;(u) is 0
for switches (if any in the network topology), and is equal tothe number of processor
cores on a compute node. For example, the value;(u) is set as 16 for Cray XK7

Titan supercomputer where each compute node has 16 processmres.

Task mapping : The task mapping is represented by a function
Vel W (6.1)

which maps the vertices ofV. (work ow application processes) to the vertices of V;
(physical compute nodes). As shown by previous research wikr11l] [44], the task
mapping problem can be formulated as mapping the communicabn graph to network
topology graph, which is essentially a graph embedding prolem and is known to be

NP-hard.

6.2.2 Quality measures

Size of network data movement measures the amount of inter-node data commu-
nication. On high-end computing system that consists of muti-/many-core compute

nodes, communication can be generally categorized as twoges: intra-node communi-
cation and inter-node communication. Intra-node communi@tion is performed using
much faster, e cient on-node memory. Inter-node communicdion needs to transfer

data over network, which could have higher overhead in termf latency and energy.

Hop-bytes [11] [66] measures the total size of data communication in kgs weighted
by network distance. Network distance is measured as the lagth (number of network
hops) of the shortest path between communicating processds the network topology
graph. Given the communication graphGc, network topology graph G;, and a specic
task mapping , the hop-bytes HB (G¢; G¢; ) can be computed as
X
HB (G¢; Gt; ) = we(u;v):d( (u); (V) (6.2)
(u;v)2E¢

where d( (u); (v)) denotes the network distance between compute node (u) and
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(v). For application processes running on the same compute na&j the network

distance is de ned as 0.

Communication time  measures the total communication time as perceived by the
application during the work ow execution. Reduction of communication time is an
important indicator of the task mapping quality, because reducing the communication

time directly reduces the end-to-end work ow execution time.

6.2.3 Assumptions

One assumption we made is that the communication graph doesat change across di erent
iterations of work ow execution, and the mapping of application processes to compute nodes
does not need to change at runtime. As a result, the communid#éon- and topology-aware
task mapping is static and only needs to be computed once befe the work ow execution.
In practice, this assumption is valid for most coupled simuktion work ows we have been
working on. Task mapping for work ows exhibiting dynamic communication patterns is

beyond the scope of current research work, and will be expled in future work.

6.3 Communication- and topology-aware task mapping

This section starts with an overview of the communication- and topology-aware task map-

ping method, and then describes the task mapping algorithmn details.

6.3.1 Overview

Existing topology mapping methods for single application typically involve two key steps.
First, inter-process communication graph of the applicaton is partitioned into N=n equal
pieces, whereN is the total number of application processes andn denotes the number
of processes that can execute on a compute node. With the indl partitioning, the inter-

process communication graph is reduced to a inter-partitim communication graph. Second,
inter-partition communication graph is mapped to the network topology graph, which de-
termines the mapping of application processes to networkedompute nodes. Topology

task mapping is a well-known NP-hard problem, and many heurstic algorithms have been
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proposed, including greedy approaches [11] [44], recursiipartitioning [44] [66], graph
similarity [44], and geometric based mapping methods [17]33].

Figure 6.2: lllustration of task graph that can be representd as pipeline of application
bundles.

Our communication- and topology-aware task mapping for copled simulation work ow
builds on graph partitioning and topology mapping algorithms used by existing mapping
methods. However, our method di erentiates from single apgication task mapping, and
aims at reducing the cost of data movement caused by both in@-application and inter-
application communication. In many coupled simulation work ows, applications can be
represented as a pipeline of bundles, as illustrated by Fige 6.2. Our task mapping method
optimizes the data communication between concurrently copled applications in the same
bundle, such as APP2 and APP3 in bundle 2. In addition, our tak mapping method also
optimizes the data communication between sequentially copled applications from di erent
bundles, such as APP1 and APP2.

The communication- and topology-aware work ow task mapping involves three key

steps:

Partition the communication graph for each application bundle, in order to reduce
the size of network data movement within a bundle, which incudes intra-application

communication and inter-application communication.

Group the partitions to reduce the size of network data movenent between sequential
bundles, which includes inter-application communicationbetween sequentially coupled

applications.
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Map the groups onto the physical compute nodes.

6.3.2 Method description

In this section, we will use a synthetic work ow example to demonstrate the step-by-step
execution for the task mapping. Figure 6.3 shows the DAG repesentation of the work ow
example, which consist of three applications. The work ow gplications APP1, APP2
and APP3 run on 12, 8 and 4 processes respectively, and sharecammon data domain
represented by a 2D cartesian grid. The work ow executes budle 1 and bundle 2 in
sequential order, which starts executing APP2 and APP3 afte the completion of APP1.
Figure 6.3 also shows the decomposition and distribution othe data domain over application

processes. In this example, we de ne the number of processopres on a compute node as

T
® O

Figure 6.3: Simple work ow example used to demonstrate the ommunication- and
topology-aware task mapping: (Left) DAG representation ard (Right) the applications
data decomposition.

6.

The rst step is to divide application processes into partitions, and theobjective is
to minimize the size of network data movement between appliation processes in the same
bundle. Algorithm used in this step aims at mapping heavily @mmunicating processes to
the same partition. Application processes mapped to the sam partition would execute on
the same compute node and exchange data using shared memory.

Input of the partitioning is the bundle communication graphs Gy, ; Gyp; :::Gpn, Where
Vo= Vo[ Ve[ [ Von (Ve is the set of all application processes in the work ow). Output

of the patrtitioning is the mapping from application processes to a set of partitions:

1iVe! Vp; (6.3)
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where V, is the set of partitions. The size of a partition equals to the core count of a
compute node. Graph partitioning is applied to each bundle,and our method uses graph
partitioning library METIS [47] which o ers optimized part itioning heuristics. Figure 6.4

illustrates the step 1 for mapping the example work ow.

@ @ @

Figure 6.4: lllustrations: (1) Partitioning of communicat ion graph - application processes
in each bundle is divided into partitions to localize the data communication. (2) Grouping

of the graph partitions - map data consumer processes to wherthe input data is generated
to increase the amount of data reuse from local group

The second step is to assign partitions into groups, and the objective is to mnimize
the size of network data movement between sequentially exeited bundles. Algorithm used
in this step aims at mapping heavily communicating partitions (from sequential bundles)
to the same group, which essentially places application proesses closer to input data.
For example, as presented in Figure 6.4, Bundlel-Partitiod and Bundle2-Partitionl are
mapped to group 1, Bundlel-Partition2 and Bundle2-Partition2 are mapped to group 2.
Data sharing between partitions of the same group can also ulize shared memory, which is
enabled by the local in-memory staging capability of DIMES (presented in Chapter 4). Data
sharing between the sequentially executed bundles is decpled in time. For example, data
generated by APP1 needs to be available after the completiorof APP1, which is read by
APP2 and APP3. The traditional approach to support this decoupled-in-time data sharing
is through disk les. DIMES caches data generated by the prodicer application in the local
memory of compute nodes. Consumer applications can diregtiread the data from local
memory if appropriate task mapping is achieved.

Input of the grouping is the partitions computed in step 1, and the output is the mapping
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from partitions to groups:

where Vg is the set of groups. The number of groups is equal to the totalnumber of
compute nodes required for the work ow execution. Figure 64 illustrates step 2 for mapping
the example work ow. It builds a inter-partition communica tion graph to represent data
movement between sequential bundles. Graph vertex repreats a partition computed in
step 1, and graph edge represents the amount of data commurdtion between partitions.
Similar to the previous step, graph partitioning technique is applied to this inter-partition

communication graph, to divide the partitions into groups.

@ ® @

Figure 6.5: Topology mapping: map the groups onto compute ndes interconnected by the
underlying network.

The last step performs mapping of groups onto the topology of underlying mterconnec-
tion network, and the objective is to minimize the network hop-bytes. After the rst two
steps, the mapping from application processes to groups\t ! Vg) can be acquired. The
original inter-process communication graph can be reducetb a inter-group communication
graph. Input of the topology mapping is the inter-group communication graph Gy and

network topology graph Gg, the output is the mapping from groups to compute nodes:
3:Vg! Vi (6.5)

Figure 6.5 uses a 3D 2 2 2 mesh network to illustrate the mapping of the sample
work ow onto the compute nodes. The principle is to map communicating groups to nearby

compute nodes to reduce the network distance of data transfs. In this case, the groups
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are mapped to two adjacent compute nodes, node 0 and 1, in theetwork topology graph.

Algorithm 1 Recursive bisection mapping recursivemap()

Input:  Communication graph Gg4, network graph G
Output:  Mapping :Vg! W

if V{j==1 then
(u)=v,foru2 Vg, v2WV,
return;
end if

: (Gg1;Gg2)  bipartition( Gg);

: (Gi1; Gr2) bipartition( Gy);

if jVg1j == jVi1j then
recursivemap(Gg1,Gt1);

9:  recursivemap(Ggz,Gyt2);

10: else

11:  recursivemap(Gg,Gt2);

12:  recursivemap(Ggp,Gt1);

13: end if

O N wDdNR

Topology mapping applies the recursive bisection based atgithm [44] [66], as presented
in Algorithm 1. In this method, the weighted communication graph G is recursively split
with minimum edge-cut into equal halves, while the topology graph G; is split with maxi-
mum edge-cut. The runtime complexity of this algorithm is O(jEgjlog(jVgj) + JEtjlog(jVi))).

After the completion of above three steps, the mapping : V! V; (de ned in Equa-
tion 6.1) can be derived from Equation 6.3, 6.4 and 6.5. As a mult, work ow application
process are successfully mapped to compute nodes in the netik topology. For compute
node with multi-core processors, another level of mappingsi required within the physical
node to map each application process to a speci ¢ processoore. Our approach employs
sequential mapping, which rst orders the processes mappedo the same node by MPI
rank, and then sequentially assigns the processes to physiccores. Advanced node-local
mapping, such as node architecture-aware approach [66] [[,5can be utilized. But it is

beyond the scope of our current research work and will be in&igated in future work.

6.4 Implementation

The communication- and topology-aware task mapping methodhas been implemented and
integrated into the CoDS framework (presented in Chapter 5) CoDS framework consists

of four main components, including work ow manager, task excutor, task submitter and
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information space. Task executors span across the allocalecompute nodes. Each task
executor runs on one physical processor core, and is used tweeute one application process.
Work ow manager is responsible for scheduling and allocatg task executors for work ow
execution.

In our prototype implementation, CoDS work ow manager performs communication-
and topology-aware task mapping, and generates the mappinfrom application processes

to cores. The complete execution ow is described as below.

Obtain network topology graph . Work ow manager needs to obtain the network
topology graph of the compute nodes used for work ow executin, in order to perform
the task mapping. CoDS framework uses system tools or librarto query the network
topology information for compute nodes, and then build the retwork topology graph.
For example, on Cray Gemini 3D-torus interconnection netwak, CoDS uses the Cray
RCA library function rca_getmeshcoord()to retrieve network coordinate of a compute

node.

Generate work ow communication graph . Work ow manager also needs to
obtain the work ow communication graph representing both intra-application and
inter-application communications. In practice, two approaches can be used to generate
the communication graph: (1) Communication graph can be inérred or estimated for
applications presenting simple, regular and structured conmunications. For example,
many scienti ¢ applications are based on multidimensionalcartesian grid data domain,
and the data decomposition can be expressed in terms of a dornmasize, process
layout, data distribution type, and data block size. A n-tuple (s1;:::;sn) and n-tuple
(p1;::5; pn) is used to specify the size and number of processes in eachmdinsion of the
data domain. As a result, the intra-application communication graph can be easily
computed if the application processes exhibit regular commnication pattern such as
near-neighbor data exchange. Similarly, communication gaph can be computed for
regular inter-application communication pattern, such asM N array redistribution.
(2) Tracing tools can be used to extract inter-process commuaications, and generate

more accurate communication graphs. However, most tracingdols are not scalable,
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which can only trace applications running at small scale.

Apply the task mapping method . After obtaining the network topology and
work ow communication graph, work ow manager executes the communication- and
topology-aware task mapping algorithm. Because most apptiation programs are im-
plemented using MPI, output of this step is the mapping from gpplication MPI ranks

to task executors.

Runtime mapping of application processes . CoDS framework uses a technique
called \rank reordering" [21] [55] to achieve the actual placement of application pro-
cesses to task executors. Task executors rst dynamically reate a new MPI com-
municator, and then reorder the MPI rank values according to the mapping result
computed in previous step. Application program's data deconposition and inter-
process communication depends on the reordered MPI rank vaés. As a result, the

rank reordering successfully enforces the desired procegkmcement.

6.5 Evaluation

This section uses three representative testing work ows toevaluate the e ectiveness and
scalability of the task mapping approach. The experimental evaluation is performed on
Titan Cray XK7 supercomputer at Oak Ridge National Laboratory's National Center for
Computational Sciences. Titan has 18,688 compute nodes, dneach compute node has a
16-core processor and 32GB node-level memory. Titan uses @i, a 3D-torus network
topology, to interconnect the compute nodes. The 3D torus ntwork of Titan has a global
dimension 25 16 24, where each Gemini ASIC in the 3D torus network provides tvo

network interface controllers (NICs) and can connect to twocompute nodes.

6.5.1 Experiment setup

The application used in the experiment is a 3D Stencil benchrark in MPI. The application
has a 3D global data domain, and organizes the application grcesses into a regular 3D
grid. The global data domain is decomposed and distributed ¢ the application processes

according to the layout of the process grid. During the applcation execution, each process
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needs to communicate with six neighbors and exchange boundainformation about local
data domain. In this testing application, the intra-applic ation data communication is mainly
dominated by the near-neighbor data exchange. The inter-aplication data communication
involves extracting data for the entire domain from M processes of one application to N

processes of another application, which is known as N data redistribution.

O

T |
O
O - o O

Figure 6.6: DAG representations for the testing work ows used in the experimental evalu-
ation.

The experiment used three testing work ow scenarios that rgpresent typical interaction
patterns in coupled simulation work ows, as illustrated by Figure 6.6. The rst testing
work ow wfl consists of two applicationswfl-appl and wfl-app2 The work ow executes
the two applications in a sequential order, and data generagd by wfl-appl needs to be
redistributed to processes ofwfl-app2 The second testing work ow wf2 also consists of
two applications, namely wf2-appl and wf2-app2 but the two applications are executed
concurrently and data is redistributed from application wf2-appl to wf2-app2 The third
testing work ow wf3 has a more complex interaction patterns and consists of thre applica-
tions. The work ow rst executes application wf3-appl, and then launches two concurrently
executing applicationswf3-app2 and wf3-app3 after the completion of wf3-appl As shown
in Figure 6.6, the work ow has two di erent interaction patt erns, rstly sharing data from
wif3-applto wf3-app2 and wf3-app3 secondly sharing data betweemwf3-app2 and wf3-app3

Table 6.1 to 6.3 presents the setup of application global dat domain, number of processes
for each application. For each testing work ow, the experiment con gures 4 di erent cases
to increase the total number of processor cores from about 4ko 32K, in order to evaluate

the scalability of our mapping approach.



Global data domain

wfl-appl number of
process

wfl-app2 number of
process

Case-1| 512 1024 1024 | 4096 1024
Case-2| 1024 1024 1024 | 8192 2048
Case-3| 1024 1024 2048 | 16384 4096
Case-4| 1024 2048 2048 | 32768 8192
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Table 6.1: Testing work ow 1 - con gurations of global data domain and the number of
application processes

Global data domain

wf2-appl number of
process

wf2-app2 number of
process

Case-1| 512 1024 1024 | 4096 256
Case-2| 1024 1024 1024 | 8129 1024
Case-3| 1024 1024 2048 | 16384 2048
Case-4| 1024 2048 2048 | 32768 4096

Table 6.2: Testing work ow 2 - con gurations of global data d omain and the number of

application processes

Global data domain | wf3-appl wi3-app2 wif3-app3
number of | number of | number of
process process process

Case-1| 512 1024 1024 | 4096 2048 512
Case-2| 1024 1024 1024 | 8192 4096 1024
Case-3| 1024 1024 2048 | 16386 8192 2048
Case-4| 1024 2048 2048 | 32768 16384 4096

Table 6.3: Testing work ow 3 - con gurations of global data d omain and the number of
application processes
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Our experimental evaluation compare communication- and tomlogy-aware task mapping
with the sequential mapping approach. Sequential mappings the default process-to-core
mapping approach used by the job scheduler of most HPC clusts, including ORNL Titan,
which serves as the baseline approach in our evaluation. Seential mapping approach places
the application processes onto the compute nodes in a seque way purely based upon
the process MPI rank, and is oblivious to either the intra-application or inter-application

communication patterns.

6.5.2 Size of data movement over network

This section measures the reduction in the size of data moveemt over network. Fig-
ure 6.7(a) to 6.7(c) presents the evaluation results of tota network data transfers. As
shown in the gures, the communication- and topology-awaretask mapping approach e ec-
tively reduces the size of network data communication, for 8 the three testing work ows.
Compared with sequential mapping, the communication and t@ology-aware task mapping
approach in testing work ow 1 reduces the the amount of netwok data transfer by 24%
(1.69 GB), 29% (4.46 GB), 22% (6.74 GB), 15% (9.55 GB) respeitely for the di erent con-
gured cases. For testing work ow 2, the communication and topology-aware task mapping
reduces the network data transfer by 10% (0.66 GB), 11% (1.4%B), 11% (3.08 GB), 12%
(6.82 GB). For testing work ow 3, the communication and topology-aware task mapping
reduces the network data transfer by 29% (4.74 GB), 34% (11.7%B), 27% (18.72 GB),
20% (26.49 GB).

6.5.3 Hop-bytes

Figure 6.8(a) to 6.8(b) presents the evaluation results of dtal network hop-bytes. For

testing work ow 1, compared with sequential mapping, the canmunication and topology-

aware task mapping approach reduces the network hop-bytesyb60%, 71%, 61%, 53%
respectively for the di erent con gured cases. For testingwork ow 2, our approach reduces
network hop-bytes by 48%, 47%, 44%, 52%. For testing work ow3, our approach reduces
the network hop-bytes by 54%, 61%, 53%, 46%.

Figures 6.9(a) to 6.9(c) presents the reduction of network lops for transferred data
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using another performance metric - average hop per byte. Tl metric shows in average
how many network hops each data byte would transfer. As showrby the gures, our
communication- and topology-aware task mapping approach o e ectively reduces the
average hop/byte for all the three testing work ows. In addition, it can be observed from
Figure 6.9 that the task mapping has more signi cant reduction in average hop per byte for
experimental con gurations that use larger number of procesor cores, such as Case-3 and
Case-4 which uses about 16K and 32K. This is because the diatee or maximum number of
network hops of the underlying network topology graph increases, inappropriate placement
of the application processes could potentially cause longenetwork distance for the data

communications.

6.5.4 Communication time

This experiment evaluates the reduction in communication ime. Each testing work ow is

executed for 100 iterative runs, and the total communication time is measured and pre-
sented. The measured communication activities include thentra-application near-neighbor

data exchanges, and the inter-application data communicabn.

As shown by Figure 6.10(a) to 6.10(c), the communication- ad topology-aware task
mapping approach e ective reduces the communication time ér all the three testing work-
ows, when compared with the default mapping approach. For testing work ow 1, the total
communication time is reduced by about 49% to 69%. For testig work ow 2, the total
communication time is reduced by about 64% to 76%. For testig work ow 3, the total

communication time is reduced by about 54% to 68%.

6.6 Related work

Mapping application processes onto parallel computers habeen well studied. Bokhari [20]
reduces the mapping problem to graph isomorphism, and deveps a heuristic algorithm
that starts with a initial mapping followed by sequences of mirwise interchanges. Lee and
Aggarwal [51] proposes similar two-stage optimization appoach with initial greedy assign-

ment and pairwise swaps. With the advent of parallel computes that interconnect tens of
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thousands of multi-core compute nodes, recent research wiorfocuses on developing map-
ping heuristics that can be applied to the high-performancecomputing systems. Yu, Chung,
and Moreira [69] proposes di erent topology mapping stratajies to map regular Cartesian
processes structures onto the torus network of BlueGene/L percomputer. Bhatelei [18]
presents a automated mapping framework that uses a suite ofduristic techniques to map
regular communication patterns to 2D and 3D processor meslg on both BlueGene/P and
Cray XT supercomputers. Hoe er and Snir presents LibTopoMgo [44], a topology map-
per library that supports task mapping for generic (both regular and irregular) application
communication graphs and network topology graphs. Most exsting research work targets
at mapping single parallel application, our approach and famework focuses on coupled sim-
ulation work ows consisting of both concurrently and sequentially executing applications,

and considers both the intra-application and inter-application communications.

6.7 Summary

This chapter presents the communication- and topology-awee task mapping for coupled
simulation work ow, which aims at reducing the size of data movement over network and
the number of hops for data transfers over network. Speci cdly, the task mapping applies
graph partitioning technigue to work ow communication gra ph, in order to map intensively
communication application processes onto the same multiare compute node, so as to re-
duce the data movement over network. In addition, the approah applies topology mapping
to reduce the hop-bytes Experimental evaluation is performed on ORNL Titan, using three
representative benchmark work ows. The evaluation resuls show e ective reduction of the

size of network data movement and end-to-end communicationtime.



92

Chapter 7

Conclusions and future work

Emerging coupled scienti ¢ simulation work ows are composed of multiple applications
that need to interact and exchange data at runtime, which hawe the potential to achieve
higher accuracy and accelerate the data to insight procesgowever, running data-intensive
coupled simulation work ows on parallel machines with thousands of compute nodes is
non-trivial. While existing HPC programming and runtime sy stems have focused on single
application, many research challenges remain unsolved faoupled simulation work ow that
couples and executes multiple interacting applications.

This thesis identi es and addresses key problems and requéments for coupled simu-
lation work ow. Speci cally, this thesis presents the programming interface and runtime
mechanisms to support work ow composition and execution, n-memory data management,
task placement. Firstly, this thesis presents DIMES data management framework to support
memory-based data sharing and exchange between coupled djgations. DIMES co-locates
distributed in-memory staging on compute nodes that run the applications, and caches
data in node-local memory. Data is indexed according to its patial geometric domain, and
applications can access data of interest using insert/refieve queries that contains spatial
constraints, e.g., Cartesian bounding box. Secondly, thighesis presents CoDS task exe-
cution framework to support the work ow compaosition, task execution and placement. In
CoDS, programmers write a driver program to compose the worlow and orchestrate the
execution of component applications through the task exection APIs. CoDS implements
locality-aware task placement, and allows programmers to xpress locality preference for
a task by providing data hint. In addition, CoDS allows users to programmatically di-
vide the allocated computation resource into functional patitions, and explicitly express

the placement a nity by providing location hint, e.g., the preferred functional partition
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for task execution. Finally, this thesis presents communiation- and topology-aware task
mapping to optimize the work ow communication performance. The thesis presents a holis-
tic method to map work ow communication graph onto physical network topology graph,

with the objective to improve data locality and localize communications. We evaluated
the e ectiveness, scalability and performance of the propsed programming interface and
runtime mechanisms, through integration and experiments vith several real-world coupled
simulation work ows.

In the future, this work can be extended in several directiors.

Utilizing new storage technologies . Next-generation supercomputers are integrat-
ing new storage technologies, such as faster solid-stateides (SSD) and non-volatile
random-access memory (NVRAM), to increase the node-localterage capacity. Cur-
rent implementation of co-located data staging only utilizes DRAM as the node-local
storage resource. This can be extended to include node-ldc8SD or NVRAM storage
resources, which can increase the staging capacity and fresore space of the precious

DRAM for applications.

Handle dynamic runtime behaviors of coupled simulation work ow . This
thesis focuses on coupled simulation work ows that exhibitstatic regular application

data distribution and inter-application communication. H owever, emerging work ows
start to exhibit dynamic runtime behaviors. For example, sdenti ¢ simulations based
on adaptive mesh re nement (AMR) have the data distribution dynamically changing
at runtime. Another example is dynamic work ow where the data interaction pattern

between applications is not known in advance. At runtime, nev applications may join
an existing group of work ow applications and start data int eraction in a dynamic on-
demand fashion. This presents the new requirement for autoomic runtime data and
analytics management, which can capture the dynamic runtine behavior and adapt

the data and analytics placement.
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