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ABSTRACT OF THE DISSERTATION

Data Normalization and Clustering for Big and

Small Data and an Application to Clinical Trials

by YAYAN ZHANG

Dissertation Director: Javier Cabrera

The purpose of this thesis is to propose new methodology for data normaliza-
tion and cluster prediction in order to help us unravel the structure of a data set.
Such data may come from many different areas, for example clinical responses,
genomic multivariate data such as microarray, educational test scores, and so on.
In addition and more specifically for clinical trials this thesis proposes a new co-
hort size adaptive design method that will adapt cohort size eventually and finally
will save time and cost while still keep the accuracy to find the target maximum
tolerate dose.

The new normalization method is called Fishe-Yates normalization and it
has the advantage of being computationally superior than the standard quantile
normalization and it improved the power of the following statistical analysis. Once
the data has been normalized the observations are clustered by their pattern of
response and cluster prediction is used to validate the findings. We propose a new
method for cluster prediction which is a natural way to predict for hierarchical

clustering. Our prediction method using nonlinear boundaries between clusters.
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Normalization method and clustering prediction method can help to identify
subgroups of patients which has positive treatment effect. For clinical trial study,
this thesis also proposes a new adaptive design which will adapt cohort size thus

save time and cost to locate the target maximum tolerated dose.
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Chapter 1

Introduction

1.1 Background and Motivation

One of the motivating examples for the statistical methodology presented in this
thesis is the analysis of clinical trial data for the treatment of neuropathic pain.
Neuropathic pain (NeP) is a complex, central nervous system related pain state.
It is part of the disorder or dysfunction of peripheral nerves. Usually neuropathic
pain is caused by diseases affecting the somatosensory system, and presents het-
erogeneous sensory deficits. The nerve fibers maybe damaged and thus will send
incorrect information to other pain centers.

Though there is no obvious cause for neuropathic pain, there are several com-
mon causes: alcoholism, diabetes, HIV infection or AIDS, Chemotherapy etc.
Generally, neuropathic pain symptoms may include shooting and burning pain,
tingling and numbness. It actually is not a single disease, but is a complication
that is based on various underlying medical conditions. Thus the research tar-
geted to find effective treatment for neuropathic pain is always a challenge. The
Institute for Advanced Reconstruction at the plastic surgery center indicated that
“more than 100 types of peripheral neuropathy have been identified, each with
its own particular set of symptoms, patterns of development and prognosis”.

To diagnosis neuropathic pain, usually the doctor will conduct a few ques-
tionnaires which evaluate different pain symptom descriptors. The patient maybe

asked to record a daily pain diary on a numeric rating scale, and also record when



and how this pain arises. Blood tests and nerve tests are also necessary some-
times. Due to the limitations of current treatment, a number of neuropathic pain
studies failed to meet the primary efficacy target and many patients felt no relief
or even occasionally got worse instead of better over time.

A research study was conducted by Freeman et al. (2014) aimed to depict any
phenotype of neuropathic pain and uncover any pattern of sensory symptoms if
exist. Freeman et al. (2014) mentioned that “the management of neuropathic
pain is challenging and many patients obtain only partial or no pain relief taking
currently available pain medications”.

Four clinical studies were conducted by Freeman et al. (2014), for testing the
treatment effect of an undisclosed drug. The results of the four studies turned out
to be negative, because they found no difference between treatment and placebo.
We find out in this example that the reason why the analysis didn’t work is that
pain acts differently in different people. It is unlikely to find a treatment that
reduces pain on everybody. However, the study also provides pain scale measures
based on sensory scales and pain scales that can be used to find clusters or patients
with similar pain patterns some of which will respond to treatment. The analysis
that was initially performed using z-score normalization was not able to detect
clusters that were predictive of good response to treatment. This is because the
skewness of the pain measurements is obscuring the good clustering and z-score
transformations are linear transformations and do not alter skewness and the
underlying structure maybe missed. This is just an example but this problem
is very generalized among scale data, microarray and genomic data, education
testing data, imaging data and others.

The purpose of this thesis is to propose some new methodology for normalizing
the data and for cluster prediction that help us unravel the structure that is
presented in the data. In addition and more specifically for clinical trails this

thesis propose a new adaptive design method that can save time to perform the



study.

Normalization methods are very important in data sets in which the mea-
surement scales depend on the observation. For example two patients fill up
questionnaires one gives high values while the other gives low values but their
pain maybe the same. Microarrays and image data are based in pictures or scans
which are sensitive to the luminosity at the instance of the picture. The idea of
normalization is to make the scales as similar as possible.

In our example of pain clinical trials we improve the data set by standardizing
or normalizing the answers using the Fisher Yates normalization and the hierar-
chical clustering methods, which hopefully will be able to detect subgroups with
positive treatment response. For the adaptive design methodology we promoted
a new cohort adaptive method which could find the maximum tolerate dose more

quickly while still keep the accuracy.

1.2 Thesis Goals and Overview

The goal of this thesis is to develop new techniques to pre-process the big and
small data as well as demonstrate new prediction algorithm and adaptive method
that could better detect subgroups with positive treatment response, and could save
cohort numbers and time when locating the target maximum tolerated dose in
clinical trial studies by applying to the existing challenges and problems.

The remainder of the thesis document is structured as follows:

In Chapter2 we present a new data normalization method with Fisher-Yates
transformation that could remove as much as possible, any systematic sources
effects of variation. We also build extensive simulation analyses and conduct real
data application on neuropathic pain questionnaire data and Sialin data.

In Chapter3 we study the incorporating of new data to an existing hier-

archical clustering partition that was obtained earlier using older training data.



We derive a novel method called hierarchical clustering tree prediction method,
which will use the existing hierarchical tree to insert the new observation into the
appropriate cluster by inter-point distance and inter-cluster distance.

Finally, in Chapter4 we demonstrate in clinical trial study, our new approach
called Dose and Size adaptive design can save study time and thus save cost while
keep the accuracy to find the true maximum tolerate dose, which is very exciting

result in clinical trial study.

1.3 Data Normalization and Fisher-Yates Transformation

Once the experiment has been done and data has been collected, it is necessary to
preprocess the data before formally analyzing it. The purpose of normalization
is to remove as much as possible, any systematic sources effects of variation.
Data normalization is a very popular technique to remove technological noise in
genomic, in test scoring, in questionnaire scoring of medicine, and social sciences
etc.

Early researchers noticed that there are substantial differences in intensity
measurements among questionnaire data and microarrays which were treated ex-
actly alike. In this thesis, we will show there are statistical analysis challenges
in using this questionnaire data and microarray data while conducting standard
analyses such as linear and non-linear modeling, factor analysis, cluster analysis
etc. It has been emphasized in many literature about the importance of prepro-
cessing the predictors and responses before modeling and analysis.

We prove that the traditional transformation methods (centering, scaling, z-
scores) are inadequate to fulfill this task and we propose a new data normalization
method with Fisher-Yates transformation. We build extensive simulation analyses
and conduct real data application on neuropathic pain questionnaire data and

Sialin data to show Fisher-Yates transformation is more successful at removing



noise and reducing skewness.

The idea of quantile normalization is motivated by making the common scales
of the normalized data as close as possible to the true scale of the data. Con-
ceptually it seems like the proper thing to do, but the problem is then the data
analyzed using T-tests or F-tests will rely much on the assumption of normality.
Suppose we have a data set X = (Xy,...,Xp) = {z;;} (i =1,....1; j = 1,..P),
where X; stands for the column array, and X; = zyj,...,27;. The column of X
represent the observations and the row of X are the variables or questions for
questionnaire data or gene.

The main idea of quantile normalization is to first sort each subject vector and
calculate the coordinate-wise median of the vectors, say M;. Then replace each
x;; in M with the corresponding rank, thus Q,(X) = {M[r;;]}, wherei =1,...,1
and j =1, ..., P. One concern for quantile normalization is that the median array
may not look similar to any of the arrays and may has shorter tailer than other
arrays in the data set. Another concern is, when the number of variables or genes
or questions in our data set is not large, the median array is very variable and
may not be adequate for normalization.

Quantile normalization tries to put all data into the same scale and this is
scale as close as possible to the true scale. However, it does not remove the
skewness of the original if it is very skewed. We proposed that Fisher-Yates
normalization can bring data into same scale and reduce skewness of data at the
same time. We also conclude that Fisher-Yates normalization handles skewness
and outliers better than quantile normalization and as a result it increases the
power to detect genes that are differentially expressed between arrays and also it
gets better classification results by simulation study and application on real data

example.



1.4 Hierarchical Clustering Tree Prediction

Cluster analysis, also known as data segmentation, is an unsupervised classifica-
tion method to split the data into clusters or segments, so that within cluster
objects are as homogenous as possible and between clusters are as heterogeneous
as possible. Clustering methods can be classified as hierarchical (nested) or par-
titional (un-nested). However, they all depend on a dissimilarity or a similarity
measure, depict the “distance” of two observations: how far or how close, the
observations are from each other.

Here we want to study the incorporating of new data to an existing hierarchical
clustering partition that was obtained earlier using older training data. The issue
is on how do we use the existing hierarchical clustering to predict the clusters for
the new data. The standard prediction method is to assign the new observation
to the closest cluster using inter-cluster distance between that observations and
the existing clusters. We derive a novel method called hierarchical clustering tree
prediction method (HCTP), which will use the existing hierarchical tree to insert
the new observation into the appropriate cluster.

We analyzed a data set about the treatment effect of Lyrica on neuropathic
pain patients data from four randomized clinical trials (Freeman et al. (2013)).
After the data on baseline symptoms of Neuropathic pain was normalized by
Fisher-Yates we applied hierarchical clustering we identified three clusters. Once
the clusters were established, a new clinical trial data became available for us. We
wanted to assign new patients from the recent trial into the established clusters
from the previous four trials.

The basic idea for this method is to include the new observed data with the
original data and to perform hierarchical tree clustering until the new observation
join a cluster A. Then we assign the new observation to cluster A" which is the

cluster in the original configuration where points in cluster A falls into. But for



different inter-cluster distance we may find a different way to do this. This new
method depends on the inter-point distance and inter-cluster distance which was
used to generate the hierarchical tree.

We will study the most commonly used distance measures like “Single link-
age”, “Complete linkage”, “Average linkage” and “Ward’s method” for hierar-
chical clustering to compare our HCTP to the standard prediction method. The
classification boundaries are different from HCTP and traditional method in our

simulation study and also misclassification rate is reduced.

1.5 Dose and Cohort Size Adaptive Design

Early-phase clinical trials are first-in-human studies for new treatment. The pri-
mary objective of phase I oncology trial is to define the recommended phase II
dose of a new drug, aiming at locating the MTD. The main outcome for most
existing dose-finding designs is toxicity, and escalation action is guided by ethical
considerations. It is very important to estimate the MTD as accurate as possible,
since it will be further investigated for efficacy in Phase II study. The study will
begins at low doses and escalate to higher doses eventually due to the severity
of most DLTs. However, we also want the escalation of doses to be as quick as
possible since the lower doses are expected to be ineffective in most cases.

A rich literature has been published for dose-finding designs of Phase I tri-
als. The conventional 343 design, first introduced in the 1940s, is still the most
widely utilized dose-escalation and de-escalation scheme. However, there are some
limitations when applying 343. Statistical simulations demonstrated that 3+3
design is used to identify the MTD in as few as 30% of trials. Another very
popular model-based method is Continual Reassessment Method (CRM) which
estimate the MTD based on one-parameter model and eventually updated the

estimator every time one cohort completes either by Bayesian methods given by



O’Quigley et al. (1990), or maximum likelihood methods given by O’Quigley and
Shen (1996).

Traditional adaptive methods will adapt dose up and down eventually depend
on the toxicity from the observed data. We promoted a novel dose assignment
method called dose and cohort size (D&S) adaptive design, which is based on
conjugate Beta prior, and will adapt dose and cohort size at the same time, thus
able to detect the true MTD with less cohorts while still keep the accuracy.

For dose escalation rules, D&S follows the same principles as 3+3, TPI and
CRM etc., that will “Escalate” if current dose has AE rate too high, “Stay” if
around the target rate, and “De-escalate” if is too low. Also, we change the cohort
size depending on whether the next dose is likely or unlikely to be the MTD. We
will not change cohort size if we are uncertain it is MTD, add more subjects if the
dose is likely to be the dose with targeted AE rate, and add much more subjects
if the dose is highly likely to be the dose with targeted AE rate. Simulation
results indicate that with appropriate parameters, D&S design performs better
at estimating the target dose and at subject assignment of the target dose.

This new method may also appeal to physicians while its implementation and
computation are very simple. To implement this new method, we will need to
specify the target toxicity probability pr, the number of doses D and true toxicity
probabilities for each dose to start simulation study.

The main distinction of this new proposed method is: it requires all infor-
mation from current dose, lower dose and higher dose to decide dose assignment
action. And we will adapt cohort size at the same time when some specified

criteria are satisfied.



Chapter 2

Data Normalization and Fisher- Yates
Transformation

Data normalization is a very popular technique to remove technological noise in
genomic, in test scoring, in questionnaire scoring of medicine, and social sciences
etc. Early researchers noticed that there are substantial differences in intensity
measurements among questionnaire data and microarrays which were treated ex-
actly alike. There are statistical challenges in using these data when conducting
standard analyses such as modeling or clustering and the main issue is to pre-
process the data to construct a response score. We show that the traditional
transformation methods (centering, scaling, z-scores) are inadequate to fulfill this
task and we propose a new data normalization method with Fisher-Yates trans-
formation. We build extensive simulation analyses and conduct real data applica-
tion on neuropathic pain questionnaire data and Sialin data to show Fisher-Yates

transformation is more successful at removing noise and reducing skewness.

2.1 Introduction and Motivation

2.1.1 Background and Introduction

Once the experiment has been done and data has been collected, it is necessary to
preprocess the data before formally analyzing it. The purpose of normalization is
to remove as much as possible, any systematic sources effects of variation. Nor-

malization methods can greatly enhance the quality of any downstream analyses.
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I present here two basic examples of data that are commonly needed preprocess
of normalization:

(I) Questionaire data example.

Questionnaire data is a research tool utilized in many research areas. A ques-
tionnaire means eliciting the feelings, beliefs, experiences or attitudes from sample
of individuals. Though there are economy and uniformity of questions advantages
when using questionnaire data, the respondent’s motivation is difficult to assess
and sample bias does exist at the beginning of the study.

Many questionnaires are based on scales such like Likert scales that take values
in a fixed range (1-7 or 0-10) and it is common to have many such questions on the
same questionnaire. The response score is very personal dependent, with same
stabbing, some subjects will return generally high scores while others will return
relatively low scores. This is a very common behavior among population and has
been studied in many different research areas.

Our concerns about this questionnaire data are:

1. The distribution of the response scores may differ substantially from subject

to subject, spread and shape;

2. The boundary threshold effects at the low and high values make the distri-

bution of the scores either left or right skewed.

3. Especially the introduction of online questionnaires or medical outcomes
questionnaires that are recorded by health providers, the number of cases

can grow very large and the data becomes big data.

(IT) Microarray Data Example.
Early microarray researchers indicated there are substantial difference in in-
tensity measurements among microarrays which were treated exactly alike. Mi-

croarray technology though popular, is well known of various technical noises due
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to the limitation of technology. Though the magnitude is reduced now due to
improvements of technology, difference still persist.

The systematic effects introduced into intensity measurements due to the com-
plexities of microarray experimental process can be substantial enough to dilute
the effects that the experimenter is trying to detect. Sources of variability caused

Systematic effects were summarized by Amaratunga and Cabrera (2004):

e “the concentration and amount of DNA placed on the microarrays, arraying
equipment such as spotting pins that wear out over time, mRNA prepara-
tion, reverse transcription bias, labeling efficiency, hybridization efficiency,
lack of spatial homogeneity of the hybridization on the slide, scanner setting,
saturation effects, background fluorescence, linearity of detection response,

and ambient conditions.”

In order to make valid comparisons across microarrays, we need to remove the

effects of such systematic variations and bring the data onto a common scale.

2.1.2 Case Study

There are many data sets used by Amaratunga and Cabrera (2004) in book “Ex-
ploration and Analysis of DNA microarray and Other High-Dimensional Data”.
The Golub data, the Mouseb data, the Khan data, the Sialin data, the Behavioral
study data, the Spiked-In data, the APOAI study data, the Breast Cancer data,
the Platinum Spike data set, and Human Epidermal Squamous Carcinoma Cell
Line A431 Experiment data. Amaratunga and Cabrera (2004) applied generally
quantile normalization on these data set. In particular we are looking into the
Sialin Data as microarray data example to demonstrate our Fisher-Yates normal-
ization method.

The Sialin data was collected basically from two different types of mice:

Sle17A5 gene knocked out mice, and the wild-type mice (“normal” mice), where
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Slc17A5 is the gene expression for the production of Sialin. The RNA samples
then collected from newborn and 18-day-old mice from these two types mice.
The final profile has 496,111 probes corresponding to 45,101 genes collected from
RNA samples using Affymetrix Mouse430-2 Gene-chips. Other biological data
can achieve to much higher dimension like 30 million variables.

Questionnaire data used by Freeman et al. (2014) were from patients who were
males or non-pregnant, non-lactating females aged > 18 days with a diagnosis of
NeP syndromes: CPSP, PTNP, painful HIV neuropathy and painful DPN. The
NPSI questionnaire evaluated 10 different pain symptom descriptors: superficial
and deep spontaneous ongoing pain; brief pain attacks or paroxysmal pain; evoked
pain (pain provoked or increased by brushing, pressure, contact with cold on the

painful area); and abnormal sensations in the painful area.

2.1.3 Why Fisher-Yates Normalization

There are statistical analysis challenges in using this questionnaire data and mi-
croarray data while conducting standard analyses such as linear and non-linear
modeling, factor analysis, cluster analysis etc. It has been emphasized in many
literature about the importance of preprocessing the predictors and responses
before modeling and analysis.

The objective of questionnaire score normalization is to reduce as much as
possible the difference in shape between set of scores belonging to the same sub-
ject. By doing so we improve the compatibility of the individual subject scales so
that the variables that come out of the questionnaire are more homogeneous and
could be better used in further analysis.

Traditionally the questionnaire scores are replaced by z-scores obtained from
each individual subject data. This calibrates each subject to have zero mean
and one standard deviation but it does not affect the skewness and other shape

measures of the data. However, we find an application of Fisher-Yates scoring
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which we call F'Y normalization can remedy the shortages. Quantile normalization
is widely used to analyze microarray data, but we will also demonstrate in the

following sections why we prefer Fisher-Yates normalization.

2.2 Exist Normalization and Standardization Methodol-

ogy

Once we have collected the data, it is necessary to pre-process it before formally
analyzing it. There are several issues we could solve to enhance the quality of

any downstream analyses:
1. to transform the data into a scale suitable for analysis;
2. to remove the effects of systematic sources of variation;
3. to identify discrepant observations and arrays.

The purpose of normalization is to remove the effects of any systematic sources of
variation as much as possible by data processing. Systematic effects can dilute the
effects that the experimenter is wanting to detect. Some source variability can be
controlled by the experimenter, however, we can not eliminate them completely.
Early researchers noticed this problem and did lots of work to remove the effects

of such systematic variations.

2.2.1 Global or Linear Normalization

Early methods used normalization by the sum, by mean, by the median and by
Q3 (third quantile). For example, for normalization by the sum, the sums for each
individual of questionnaire data are forced to be equal to one another. Suppose
the k original sums were X, ..., X;, and we divide i"* sum by X, , then we force

the sum to be 1. Similarly, normalization by the mean will force the arithmetic
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means of each individual to be equal; and normalization by the median equated
the row medians.

We call these examples global or linear normalization. For linear normaliza-
tion, we assume the spot intensities for every pair of individual scores are linearly
related without intercept. Then we can apply normalization scheme to adjust
intensity for every single score by the same amount to reduce the systematic

variation and make the data more comparable.

2.2.2 Intensity-Dependent Normalization

We could use global normalization if the pair of our data is linearly related without
intercept. But in most cases, the spot intensities are nonlinear. Different factors
needed to adjust low-intensity and high-intensity measurements. We call this
normalization scheme intensity-dependent normalization while the normalizing
factor is a function of the intensity level. We denote the nonlinear normalization
function as: X — f(X).

A lot of pre-work had been done for this intensity-dependent normalization
including Amaratunga and Cabrera (2001), Li and Wong (2001), Schadt et al.
(2001). Baseline array needs to be specified for intensity-dependent normaliza-
tion. For example, the median mock array. If X;; represents the transformed
spot intensity measurement for the i** individual (i=1,...,I) for the jth question

(j=1,...,P), the median mock array for kth observation is:
Mk :median{Xkl,...,ka}. (21)

There are several ways to perform intensity-dependent normalization.
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Smooth Function Normalization

For smooth function normalization, there is an inverse function g; = f; ! is esti-

mated by fitting the model
Xij = 9:(My) + €4 (2.2)

where €;; is a random error term and the normalized values for the ith individual
are obtained from

X, = fi(Xy) (2.3)

Stagewise Normalization

Stagewise normalization is used when data is combined with technical and bio-
logical replicates. Usually smooth function normalization is applied to technical

replicates, and quantile normalization is applied to biological replicates.

Other Intensity-Dependent Normalization Methods

Quantile Normalization and Fisher-Yates Normalization are two other very pop-
ular intensity-dependent normalization methods, we will discuss quantile normal-

ization and propose Fisher-Yates method in details in the following sections.

2.3 Quantile Normalization and Fisher-Yates Transforma-

tion

The idea of quantile normalization is motivated by making the common scales of
the normalized data as close as possible to the true scale of the data. Conceptually
it seems like the proper thing to do, but the problem is then the data analyzed
using T-tests or F-tests will rely much on the assumption of normality.

Quantile normalization and Fishr-Yates normalization are performed basically

when the data is non-normal. We expect to see some power loss on the t-test with
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respect to the non-normal method. Also the more skewed data is, the less reliable
is the tail of the observed data.

We have a data set X = (Xy,...,Xp) = {2y} (i =1,...,1; j =1,...P), where
X stands for the column array, and X; = xy, ..., 2;. The column of X represent
the observations and the row of X are the variables or questions for questionnaire

data or gene.

2.3.1 Quantile Normalzation

Quantile normalization introduced by Amaratunga and Cabrera (2001) is to make
the distributions of the transformed spot intensity as similar as possible, or at
least to the distribution of the median mock array. For quantile normalization,
the shape of the normalized data is the median shape of the original data. But
the data maybe skewed and median shape is deformed on the tails.

Amaratunga and Cabrera (2001) proposed the idea of standardization or nor-
malization by quantiles for micro-array data under the name of quantile stan-
dardization and was changed to quantile normalization later by Irizarry et al.
(2003). The differences between micro-array data and questionnaire data are:
(a) the measurements are continuous, (b) the shapes of subject observations are
more similar, and (c) the number of subjects [ is usually much smaller than the
number of predictors P, I < P.

The algorithm for constructing the quantile normalization of the rows of a

data matrix X with I observations (rows) and P genes (columns) is as follows:

1. Construct the median subject. First we need to sort each of the subject
vectors and calculate the coordinate-wise median of the vectors and lets

call this vector M of length P. Let X* represents the sorted data, we say

X*={X7, ., X5} (2.4)
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and
XJ* = {x(l)j,...,x(])j}. (25)
Where X7 is the ordered vector, and z(1); < z(2); < ... < x(p);. Then the

median vector, M; can be derived as

M[i] = median{x @, ..., xop}; (2.6)

2. We know w;; is the i score (question) of j column (subject). Let r;; be
the rank of i** score among gt column, 1 < i < T and 1< j < P. Then
we will replace x;; with M (r;;) by column and the resulting array Y;; is the

normalized scores.

Qn(X) = {M[ri;]} (2.7)

2.3.2 Fisher-Yates Normalization

One concern for quantile normalization is that the median array may not look
similar to any of the arrays and may has shorter tailer than other arrays in the
data set. Another concern is, when the number of variables or genes or questions
in our data set is not large, the median array is very variable and may not be
adequate for normalization.

Also we know quantile normalization tries to put all data into the same scale
and this is scale as close as possible to the true scale. However, quantile normal-
ization does not remove the skewness of the original if it is very skewed. In order
to fix skewness, we need to do other. Here we propose Fisher-Yates rank transfor-
mation to normalize the data, we call Fisher-Yates Normalization. Fisher-Yates
normalization can bring data into same scale and reduce skewness of data at the

same time, thus we can see in our simulation study power is improved due to
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skewness reduction. Also good properties of Fisher-Yates are listed and proved
in the following section.

Generally, the algorithm for Fisher-Yates normalization is: suppose z;; is the
i" score (question) of j™ column (subject). Let 7;; be the rank of i" score among
g column, 1 <i < Tand 1 < j < P. Then x;; will be replaced by ®~1(r;; /(I+1))
and the resulting array Y;; is the Fisher Yates normalization scores.

Fisher-Yates (1928) proposed Fisher-Yates transformation by replacing z-scores

by scores based on ranks and assign the scores the corresponding quantile of a

standard normal distribution.
FY (wy5) = @7 (rij/(I + 1)) (2.8)
for Fisher-Yates Normalization F'Y (X)) can be proposed as
FY(X)={FY(Xy),..,FY(Xp)} (2.9)

Theorem 1. If XM is a random variable from a distribution F and suppose
we draw observations {x}!,...,a} ~ F. In reality we observe x;; = v;(z} +
€ij) where ¥; is also unobserved and strictly monotonic. Then {¢;,zM} are not

identifiable.

Proof. Suppose h is also strictly monotonic, let 1@ and xz” be estimators of 1);

and zM, such that z;; = ¥;(2M). Then if ¢; = ¢;(h~!) and XM = h(XM), we

have z;; = 1); (a:z”) = (SL’ZW) Thus means that {t;, 2} are not identifiable. [
Quantile normalization solve this pattern of non-identifiability by setting
X = Me(jiz'an{X(i)j}.
And Fisher-Yates normalization solves by setting

XM =07 (ry /(T +1)).
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2.3.3 Properties for Fisher-Yates Transformation

Property 1. The Fisher-Yates transformation FY can be obtained from the

Quantile normalization algorithm Qn by replacing M(r;;] with @1 (r; /(I +1)).
Proof. For Quantile Normalization

Qn(X) = {M[ri;]}
we replace with Fisher-Yates transformation ®~*(r;; /(I + 1)), then we have

{27 (ry/(I + 1))} = {FY(X)),..., FY (Xp)} = FY(X)

Property 2. If Skew(X) > 0:
1. If X has no ties, then Skew(FY (X)) =0;

2. If X has tie but proportion of tie goes to zero when n — oo, then

lim Skew(FY (X)) =0

n—oo

Proof. If the random variable X has n observations, then the estimator of popu-

lation skewness can be written as:

shew(x) = BEEZEX0) i ¥Li(@ - X)’

g I S (- X2

3

where X is the sample mean and s is the sample standard deviation.

E(FY(X) - B(FY(X)))
S(FY (X))
L@/ (0 + 1) — mean(FY (X))

— \/ﬁ Yo [@7H(ri/(n+ 1)) — mean(FY (X))]?

skew(FY (X)) =

3




1. If X has no ties:

mean(FY (X)) = %Z[@l(ﬂ/(” +1))]
:%{[q)_l(nilH@_l(nL)]qul(niﬂ ‘D‘“Zﬁ

1
=—04+0+4+..}=0
—{0+0+..)

Then

skew(FY (X)) = 2 Ziiﬁ;sf’g{(;j )]

{7 (7)) + (@' G+ (@7 ()’ + (@7 (G + -

n+1 n+1

n.sd(FY (X))3

~ {o+0+..} 0
n-sd(FY(X))3

2. If X has tie but proportion of tie goes to zero when n — oo, that is

lim O(N7)

n—00 n

—0

Then
mean(FY (X)) = lim % S [0 s/ (n + 1))]
=1
< lim% — lim OWNT) _ 0
n—oo N n—o0 n

i@ e/ (n + )P
skew(FY(X)) = lim sd(FY (X))3

here N7 is the number of ties.

Property 3. If X s continuous:
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1. Skew(FY (X)) =0

2. Suppose that the median vector Mp of quantile normalization has |Skew(Mp)| =

k where k > 0, then |Skew(FY (Mp))| < k.
Proof. 1. If X is continuous, X has no ties, then Skew(FY (X)) = 0.

2. X is continuous, then the median array Mp of quantile normalization is

also continuous. Then

Skew(FY (Mp)) =0
thus

|Skew(FY (Mp))| < k.

]

Property 4. For discrete case, if vector {z;} (i=1,...,P) has only two values a;
and agy, then the skewness of {h(x;)} is the same as the skewness of {x;}, where

h is any monotonic transformation.

Proof. For any monotonic transformation h : {a;,a;} — R, can be represented

by the linear transformation
B (x —ay)
h(z) = h(ar) + —=(h(az) — h(a1))
where we can show

h(a1) = h(a;) +0 = h(ay)

ag — g

h(as) = h(a1) + (h(ag) — h(a1)) = h(as)

ag — a1

Thus h is a linear transformation when {x;} has only two values and the skewness

is invariant under linear transformation. O
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Property 5. Fisher-Yates normalization is better for big data I:
Fisher-Yates normalization is computationally faster than quantile normalization
because it dose not require the computation of the median sample, or array. There-

for is more useful for big data.

Property 6. Fisher-Yates normalization is better for big data I1:

Suppose that we obtain new observation from the same experiment or from new
data that is added. Quantile normalization requires the re-computation of the
median array which has changed with the new data. This may introduce changes
i the analysis which are unsettling. However, Fisher-Yates normalization that’s
not change anything so the analysis from the prior data remains untouch. It also

saves additional computing time thus good for big data.

2.4 Simulation Study for Two-Group Gene Comparative

Experiments

The objective of many microarray experiments is to detect different gene expres-
sion levels across two or more conditions. For example for people who have lung
cancer, we would like to differentiate the gene expression levels of lung tissue with
cancer cells with lung tissue with normal cells. Due to the complexity of microar-
ray experiments, we consider a simple and most common case: a comparative

experiment to compare two groups.

2.4.1 Notations

Assuming we have two phenotypic groups of gene, say two groups of microarrays
(Groupl and Group2); there are n; microarrays in Groupl and n, microarrays
in Group2. In our simulation study, Groupl represents the normal microarrays,
which will be simulated from a fixed distribution, while Group2 is the group of

interest, for example, the disease group.
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Let xfj represent the intensity measure of the ith gene in the jth microar-
ray from the kth group, where k=1,2, i=1,....I, and j=1,....,n;z. The normalized
counterparts are written as x;*]’-“. In addition, let ¥ and 0¥ be the mean and stan-
dard deviation of the ith gene in the kth group. Also the normalized intensity

observations are denoted as p* and o7*.

2.4.2 Hypothesis Testing

For microarray data, to test if there is any difference between two groups, we need
to construct I null hypotheses (The same I genes in each group). In practice,
gene differential expression level and variance are unlikely to be constant. Due to
the complexity of the microarray experiment, the variation depends very much
on the measurement accuracy. However, there is a trade off between variance
and mean difference when our interest is the statistical power. In our simulation
study, we thus fix the gene expression variance, and test the equality of gene

expression means between two groups:
Ho: pi = 4
vs H: g 7 1

where i=1,...,1.
Genes in the normal group (Groupl) are simulated from a fixed distribution
where p} = g, i=1,...,I. Genes in the group of interest (Group2) are generated

from three hypotheses:
e GZ: takes up 70% of gene with p? = u! = po, 1 € [1,....1].
e G7: takes up 15% of gene with u? > p, i € [1,...,1].

o G?: takes up 15% of gene with p? < po, i € [1,....]].
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2.4.3 Simulation Study for Normal Distribution Data

In our simulation study, each microarray has N = 10,000 genes or probes. This
number N is not as big as the number of features as most genomic data sets
that can goto 50,000 and millions, but for simulation purpose, we think it is a
reasonable number. Without loss of generalization, we simulate 10,000 observa-
tions from Normal(u} = 0,1) for genes in Groupl. For three parts of Group2,

we simulate:
o G ngo = 7,000, z7; ~ Normal(0,1).
o Gi": g =1,500, 22 ~ Normal(p; ", 1).
o Gi7: ngy = 1,500, 2% ~ Normal(p;~,1).

For both groups, the variance is fixed at 62 = 1 and the « level is controlled
at 5%. To simplify but without loss of generality, we set ny = ny = n. Table 2.1
lists the power and Type I error for different mean pairs (u", u?~) and also for
each pair lists the results with different number of observations V.

From Table 2.1, we compare the power of the two-sample t-test across data
sets that have been normalized using Fisher-Yates or quantile normalization with
the old standard which in this case is the identity transformation. Notice, the
identity transformation is not a choice for real data, because the data always need
to be normalized. In Table 2.1, we see that all the normalization methods produce
reasonable type I error, though have a small loss of type I error for both Quantile
and Fisher-Yates normalization, and the power of Fisher-Yates and quantile are
almost the same to true normalization.

To make Table 2.1 more intuitive, we use Figure 2.1 to capture the relationship
between power and group size for each method. The red line chart is the power
line for method 1. When sample size is small, power for method1 is always a little

bit higher than other methods, while the powers for all three methods will go to
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Table 2.1: Hy : Normal(p; = 0,1) vs Hy : Normal(u?,1)

e =—0.5, 2t =0.5

True Normalization

Fisher-Yates

Quantile Normalization

Group Size | Power Typel Error | Power Typel Error | Power  Typel Error
n=>6 0.1143 0.0506 0.1107 0.0501 0.1103 0.0497
n=10 0.2017 0.0463 0.2000 0.0454 0.2007 0.0453
n=20 0.3317 0.0499 0.3233 0.0503 0.3233 0.0504
n=>50 0.6900 0.0470 0.6733 0.0464 0.6737 0.0463

n=100 0.9423 0.0524 0.9370 0.0526 0.9370 0.0527
:u’zzi - _17 M?Jr =1
True Normalization Fisher-Yates Quantile Normalization

Group Size | Power Typel Error | Power Typel Error | Power  Typel Error
n=~6 0.3387 0.0516 0.3027 0.0526 0.3030 0.0521
n=10 0.5597 0.0516 0.5080 0.0513 0.5070 0.0511
n=20 0.8650 0.0467 0.8123 0.0457 0.8123 0.0460
n=>5>0 0.9993 0.0503 0.9970 0.0509 0.9970 0.0506

n=100 1.0000 0.0527 1.0000 0.0527 1.0000 0.0527
pi =15 it =15
True Normalization Fisher-Yates Quantile Normalization

Group Size | Power Typel Error | Power Typel Error | Power  Typel Error
n=>6 0.6517 0.0469 0.5200 0.0484 0.5193 0.0486
n=10 0.8860 0.0533 0.7820 0.0549 0.7817 0.0547
n=20 0.9943 0.0493 0.9817 0.0487 0.9813 0.0493
n=>50 1.0000 0.0520 1.0000 0.0534 1.0000 0.0526

n=100 1.0000 0.0493 1.0000 0.0491 1.0000 0.0490
:u?_ — _2a :u12+ =2
True Normalization Fisher-Yates Quantile Normalization

Group Size | Power Typel Error | Power Typel Error | Power  Typel Error
n=~6 0.8700 0.0499 0.6893 0.0534 0.6827 0.0530
n=10 0.9877 0.0510 0.9143 0.0524 0.9133 0.0524
n=20 1.0000 0.0493 0.9983 0.0504 0.9987 0.0503
n=>50 1.0000 0.0523 1.0000 0.0516 1.0000 0.0514

n=100 1.0000 0.0519 1.0000 0.0529 1.0000 0.0524
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Figure 2.1: Hy : Normal(p; = 0,1) vs Hy : Normal(u?, 1)

1 eventually when we increase our sample size.

2.4.4 Simulation Study for Gamma Distribution Data

To summarize, in the normal case, all the methods are similar and work reasonably
well. But what if our data is generated from a Gamma distribution? Still we
simulate 10,000 observations from Gamma(u; = 3,1) for genes in Groupl. For

Group2, similarly:

o G§: ngo = 7,000, z3; ~ Gamma(u; =3, 1).
o Gi": g =1,500, 22 ~ Gamma(p; ", 1).

o Gi7: gy = 1,500, 2% ~ Gamma(p;~,1).
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Table 2.2: Hy : Gamma(pu; = 3,1) vs Hy : Gamma(u?, 1)

T

=2, p =4

True Normalization

Fisher-Yates

Quantile Normalization

Group Size | Power Typel Error | Power Typel Error | Power  Typel Error
n=~6 0.1480 0.0460 0.1543 0.0473 0.1403 0.0459
n=10 0.2500 0.0460 0.2633 0.0480 0.2410 0.0470
n=20 0.4467 0.0497 0.4677 0.0509 0.4283 0.0499
n=>50 0.8233 0.0527 0.8567 0.0550 0.8083 0.0526

n=100 0.9770 0.0541 0.9883 0.0547 0.9733 0.0539
/%2_ = 2, M?+ =9
True Normalization Fisher-Yates Quantile Normalization

Group Size | Power Typel Error | Power Typel Error | Power  Typel Error
n=>6 0.2607 0.0459 0.2597 0.0491 0.2387 0.0449
n=10 0.4377 0.0509 0.4287 0.0543 0.3963 0.0533
n=20 0.6933 0.0449 0.7110 0.0491 0.6710 0.0490
n=>50 0.9487 0.0514 0.9707 0.0536 0.9713 0.0631

n=100 0.9953 0.0493 0.9987 0.0600 0.9977 0.0893
pi =2, =6
True Normalization Fisher-Yates Quantile Normalization

Group Size | Power Typel Error | Power Typel Error | Power  Typel Error
n=>6 0.3943 0.0446 0.3543 0.0516 0.3273 0.0466
n=10 0.5710 0.0439 0.5520 0.0497 0.5227 0.0510
n=20 0.7490 0.0471 0.7923 0.0591 0.7750 0.0679
n=>50 0.9487 0.0544 0.9810 0.0711 0.9800 0.1063

n=100 0.9953 0.0501 0.9990 0.1001 0.9990 0.1816

Table 2.2 lists the output for power and Type I error with different mean pairs

(3™, u27) (a level is controlled at 5%) and for each pair displays the results with

different number of gene observations n.

It appears from table 2.2 that when the data is not normally distributed,

Fisher-Yates method is better than Quantile normalization. In this gamma case,

the power for Fisher-Yates is also higher than non-normalization in most cases.

Also from figure 2.2 we find the red curve (curve for method 1) is generally

below the other two curves. So we could say identity transformation is optimal

when our data for simulation is i.i.d normally distributed. But if it appears when
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Figure 2.2: Hy : Gamma(u} = 3,1) vs Hy : Gamma(u?,1)

the data is not symmetric, Fisher-Yates normalization works better. Also there is

a loss of type I error in quantile and Fisher-Yates normalization due to over-fitting.

2.4.5 Discussion

In this section, we compare Fisher-Yates transformation to quantile normalization
and the true transformation, which in this case is identity. From our simulation
example, we could see all methods are similar and work reasonably well when
data is generated from normal distribution. Notice that in practice, the true
transformation is always unknown and unlikely to be identity transformation.
That’s why we use Fisher-Yates and quantile normalization to preprocess the
data (the true transformation here represents the optimal method you can do).

And we can find when data is non-normal, Fisher-Yates is more successful at
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reducing skewness and thus improve the power.

2.5 Simulation Study for Scoring Scale Data

Fisher-Yates normalization handles skewness and outliers better than quantile
normalization and as a result it increases the power to detect genes that are
differentially expressed between arrays and also it gets better classification results.

We generate here three different cluster patterns similar to the questionnaire
scoring scale data which we use as the real data example: generally horizontal,
oblique with positive slope, oblique with negative slope. We first define six proba-
bility vectors which will be used to generate data: high-top and low-top put more
weight on top(large) numbers; high-middle and low-middle put more weight on
middle numbers; high-bottom and low-bottom put more weight on bottom(small)
numbers. The specific probability vectors we used are listed in Table 2.3 (p; is
the probability used to generate scoring scale i), also in Figure 2.3 gives the

probability trend for each pattern.

Table 2.3: Probability Vectors for Data Generation

Name Po  p1 P2 P3 P4 Ps Pe Pr Ps Py Pio
High-top | 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.1 0.63
Low-top | 0.02 0.02 0.02 0.02 0.02 0.02 0.07 0.17 0.35 0.24 0.05
High-middle | 0.00 0.01 0.01 0.04 0.05 0.20 0.22 0.17 0.10 0.10 0.10
Low-middle | 0.10 0.10 0.10 0.17 0.22 020 0.05 0.04 0.01 0.01 0.00
High-bottom | 0.10 0.24 0.35 0.12 0.07 0.02 0.02 0.02 0.02 0.02 0.02
Low-bottom | 0.63 0.10 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

1200 observations with 10 columns are generated from the above six proba-
bility vectors, where each column corresponds to one out of 10 questions. Ob-
servations are generated similarly to the patterns of the three clusters that we

obtained from our pain scale data set. After we generate this data we need to
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Figure 2.3: Probability Trend Barchart for Different Patterns.

perform the following three steps:

1. First normalize the data separately with the Z-score method, quantile nor-

malization method and Fisher-Yates normalization method;

2. Perform a hierarchical clustering with “Ward” distance, and set the number

of clusters to be three;

3. We compare the cluster predictions that were obtained from the hierarchi-
cal clustering to the real clusters, and then calculate the number of true

classification.

The numbers of true classification for each method are listed in Table 2.4. Ta-
ble 2.4 indicates quantile normalization and Fisher-Yates normalization are better

classifiers than Z-score and Identity transformation for our simulated data.
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Table 2.4: True Classification Numbers

Normalization Method | True Classification Number
Identity Transformation 491
Z-score Transformation 610
Quantile Normalization 706

Fisher-Yates Normalization 708

2.6 Normalization Application on Neuropathic Pain Data

2.6.1 Data Description

Neuropathic Pain Symptoms Inventory (NPSI) questionnaire consisted of 10 de-
scriptors on a 0-10 pain scale, 0 means no pain and 10 means worse imaginable
pain. The descriptors measured a range of symptoms: Burning, Pressure, Squeez-
ing, Electric Shocks, Stabbing, Evoked by Brushing, Evoked by Pressure, Evoked
by Cold Stimuli, Pins and Needles, Tingling.

Four clinical studies were conducted for testing the treatment effect of an
undisclosed drug. The results of the three studies turned out to be negative,
because they found no difference between treatment and placebo, and one was
positive. This was followed by an attempt to find subgroups of the data here
the pain scale questionnaire data by standardizing or normalizing the answers
using z-sores but that was also unsuccessful. Our objective here is to find out if
we improve the data by applying our F-Y normalization and hopefully we will be
able to find subgroups with positive treatment response. Clinicians and physicians
believe that the treatment effect should work for large subgroups of population
that follow the specific pain pattern.

Our hope is that by using F'Y normalization of this questionnaire data we will

be able to find subpopulation that are very responsive to the treatment.



32

2.6.2 Normalization Outcomes

Figure 2.4 displays boxplots of the raw symptom descriptors grouped by patient
and sorted by the mean NPSI. To make the figure workable we skip 19 out of 20
patients. We observe differences in shape and strong skewness on the boundaries.
When we applied the z-scores normalization to this data in Figure 2.5 we could
see the skewness is not removed.

Figure 2.6 shows the boxplots of the quantile normalized symptom descrip-
tors grouped by patient and sorted by the mean NPSI. It seems that quantile
normalization could improve the skewness but it has a problem with the median
subject because of the small number of predictors the “median subject” has a
small range(score from 0 to 8). This effect happens also on microarray data but
is less pronounced as the number of predictors is much larger.

Figure 2.7 shows the boxplots of the Fisher-Yates normalization grouped by
patient and sorted by the patient median. Fisher-Yates can improve the skewness
while doesn’t suffer from the median subject problem as quantile normalization

does.

2.6.3 Skewness Reduction

As show in Property 3, the skewness of data after Fisher-Yate’s transformation
is always 0 if the random variable is continuous. But in reality we may have data
with many ties like this example, and therefore FY normalization not always
produce data with 0 skewness. But we expect that overall the skewness of the
data should be reduced more than other methods by FY. In our example data,
you can see this is the case

The skewness improvement (or normalization result) between Quantile and
Fisher-Yates is not obvious from boxplots listed(Figure 2.4 to Figure 2.7). Thus

we calculate the skewness for each method and summarized in Table 2.5.
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Figure 2.4: Boxplots of the raw symptoms grouped by the patient and sorted by
the patient median. 1 out of every 20 patients are plotted.

Table 2.5: Skewness Reduction Comparison

|SE(Z)| > |Sk(FY)|

[Sk(Qn)| > |SE(FY)]

[Sk(Z)| > |Sk(@n)]

Ture
False

864
287

765
386

766
385

where |Sk(Z)] is the absolute skewness value of z-score transformation, | Sk(Qn)|
is the absolute skewness of Quantile normalization and |Sk(FY)| is the absolute

skewness of Fisher-Yates.

We can see the Skewness Comparison Ratio between these three normalization

methods:
o R(|Skew(Z)| > |Skew(FY)|) ~ 75%
o R(|Skew(Qn)| > |Skew(FY)|) ~ 66%
o R(|Skew(Z)| > |Skew(Qn)|) ~ 67%

So Fisher-Yates transformation is most successful at reducing skewness effect:

75% times the skewness of Fisher-Yates is smaller than Z-score, and 66% times
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Figure 2.5: Boxplots of the z-scores on symptoms grouped by the patient and
sorted by the patient median.

the skewness of Fisher-Yates is smaller than Quantile normalization.

2.7 Normalization Application on Sialin Data

2.7.1 Data Description

As described by Amaratunga and Cabrera (2004), Sialin data are gene expressions
collected from a group of mice whose Slc17A5 gene was knocked out compared
to gene expression of a group of “normal” mice. Slc17A5 is the gene responsible
for Sialin production which is involved in the development of the mice. In the
experiment, RNA samples were derived for each group from newborn and 18-
day-old mice. There are total 24 observations which corresponds to 2 groups by
2 time points by 6 biological observations. The gene expressions were generated
by hybridization of the observations using 24 Affymetrix Mouse430-2 gene chips.
Each chip generated the gene expression profile of the sample, which contains

45,101 gene expressions.
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Figure 2.6: Boxplots of the Quantile Normalization of the symptoms grouped by
the patient and sorted by the patient median.

2.7.2 Normalization Results

We conducted quantile normalization and Fisher-Yates transformation separately
on the Sialin data, want to test the significance of the gene expression based on
each method. There are two groups of 6 observations each for the 18 day data.
In order to perform t-tests to compare the two groups after the normalization,
we need to assume the observations in each group are normally distributed. This
is actually not likely to be always true, because quantile normalization approx-
imately preserves the shape of the original distribution which is unlikely to be

normal. Thus our hypotheses will be:
Ho: pi = 44
vs Hi: i # 13

where i=1,....I, and p' is the mean for group 1, and p? is the mean for group 2.
We calculate the p-value at significance level a for testing for differential

expression of each gene between group 1 and group 2. The most basic statistical
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Figure 2.7: Boxplots of the Fisher-Yates Algorithm on symptoms grouped by the
patient and sorted by the patient median. This improve the skewness and gives
a more satisfactory shape result.

test for comparing two groups is the two-sample t-test:

g o i el 1 (2.10)
1 1
Sp n_1 -+ n—2

where
o (ni—1)sT+ (ny — 1)s3

= 2.11
Sp ny + No — 2 ( )

is the pooled estimate of variance.

After normalization, under the assumptions that the populations are Gaus-
sian and the variances are homoscedastic, the null distribution of 7, is then a
t-distribution with degrees of freedom v = ny + ny — 2. The p-value for each gene
is calculated as p. = Prob(|T.| > Teops), where T,y is the observed value of Te.
A gene is declared as significant at level « if p, < a.

The significance table at significance level a« = 0.01 is given in Table 2.6
and significance level o = 0.05 is given in Table 2.7. Tables listed below in-
dicate Fisher-Yates transformation could detect more significantly differentially

expressed gene than quantile normalization.
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Table 2.6: Significance Level a = 0.01

Fisher-Yate’s Quantile Normalization
Transformation | Not Significant Significant
Not Significant 24322 268

Significant 329 20182

Table 2.7: Significance Level a = 0.05

Fisher-Yates Quantile Normalization
Transformation | Not Significant Significant
Not Significant 23701 261

Significant 338 20801

We also present the boxplots of gene expression level in log-scale for probes of
RMA18 under raw data and normalized data. From figure 2.8 we could see most of
the log-scaled gene levels are in range 4 to 8 with median array around 6. Z-score
normalization makes the data more normally distributed but very skewed. Fisher-
Yate’s transformation handles the skewness and the normalization result is quite
good. In figure 2.8 here quantile normalization result is the same as raw data,

because our data set has already been pre-processed with quantile normalization.

2.8 Discussion and Conclusion

The main reason to use quantile normalization is that the median chip is similar
in shape to the individual chips, and it seems a reasonable idea to normalize to a
function of shape that is close to the shape of the real data.

But in the case of small number of genes or small number of questions per
subject the median chip is not informative because it does not necessarily have
similar shape than the individual observations.

Fisher- Yates normalization is a very simple algorithm which normalizes each

subject with multiple questions. It is not uncommon that data comes measured
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Figure 2.8: Gene Expression Level in Log-scale for probes of RMA18

on different scales. Here we consider the case when multivariate observations of
similar quantities are measured in scales that are dependent on the observation.
For example questionnaire data where the scale of the answers depends on the
individuals perception, or microarray data where each microarray has its own
scale or images where the luminosity of the image depends on the light level of
the picture. We compare traditional z-scores normalization with quantile nor-
malization that is the standard in genomic and with Fisher-Yates normalization
which is our new proposal. We show that Fisher-Yates is more efficient when
testing hypothesis following the normalization procedure when compared to the
other two.

For micro-array normalization, quantile normalization is standard but there
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maybe situations where Fisher-Yates is a better alternative. In our questionnaire
data example it appears that the Fisher-Yates algorithm does a better job at
normalizing data.

For future work, we could concentrate on applying Fisher-Yates normaliza-
tion to imaging data and educational testing data, or we can also explore the

application on combined date sets from different sources.
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Chapter 3

Hierarchical Clustering Tree Prediction; An
Unsupervised Algorithm for Predicting New
Data based on the Established Clusters

In the previous chapter we applied Fisher-Yates normalization to the clinical
outcomes data which ended up generating a set of clusters, some of which had
a positive response to treatment. In this Chapter we validate our method by
adding data from a new study that was obtained after performing the previous
analysis. For this we develop a new method for incorporating new data to the
existing hierarchical clustering partition that was obtained earlier using older
training data. The issue is on how to use the existing hierarchical clustering to
predict the clusters for the new data. The standard prediction method is to assign
the new observation to the closest cluster using inter-cluster distance between
that observations and the existing clusters. Here we derive a novel method called
hierarchical clustering tree prediction method (HCTP), which will use the existing
hierarchical tree to insert the new observation into the appropriate cluster. This
new method depends on the distance and inter-cluster distance which was used
to generate the hierarchical tree. We will study the most commonly used distance
measures used for hierarchical clustering to compare our HCTP to the standard

prediction method.
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3.1 Introduction

Cluster analysis, also known as data segmentation, is an unsupervised classifica-
tion method to split the data into clusters or segments, so that within cluster
objects are as homogenous as possible and between clusters are as heterogeneous
as possible.

Clustering methods can be classified as hierarchical (nested) or partition (un-
nested). However, they all depend on a dissimilarity or a similarity measure,
depict the “distance” of two observations: how far or how close, the observa-
tions are from each other. Given two observations, x; and z,, there are many
choices of the dissimilarity measure D(z1,z3), generally D obeys the following

rules (Amaratunga and Cabrera (2004)):
1. D>0;
2. D =0 if and only if xy = xo;
3. D increase if 1 and x, are further apart;
4. D(x1,29) = D(x9,21).
Some choices for D also satisfy either
1. the triangle inequality, D(z1,22) < D(x1,23) + D(z3,22); OR
2. the ultra-metric inequality, D(z1,x) < maz(D(x1,x3), D(xs, x3)).

The most widely used dissimilarity measure is the Euclidean distance, Dg:

p

Dp(wy,m9) = | > (w15 — 72;)? (3.1)

j=1
In this documnet we apply hierarchical clustering i based on Euclidean distance

Dg.
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3.1.1 Motivation

We recently analyzed a data set about the treatment effect of Lyrical on neu-
ropathic pain patients data from four randomized clinical trials (Freeman et al.
(2014)). After the data on baseline symptoms of Neuropathic pain was normalized
by Fisher-Yates we applied hierarchical clustering, then identified three clusters.
Once the clusters were established, a new clinical trial data became available for
us. We wanted to assign new patients from the recent trial into the established
clusters from the previous four trials.

Here we present a novel prediction method based on the usual hierarchical
clustering methodology which will return a dendrogram with the original hierar-
chical cluster plus the insertion points of the new data, allowing us to directly
observe and interpret our prediction results. The standard clustering prediction
method is to use inter-cluster distance between new observations and the final
cluster configuration for the training data, and assign to the new observation the
clusters with the smallest distance. Also in some cases we use supervised classifi-
cation methods where the response is the cluster number and the predictors are
the cluster variables.

Our method consists of inserting the new observation into the hierarchical
tree without changing the tree structure. The basic idea is to include the new
observation data with the original data and to perform hierarchical tree clustering
until the new observation joins a cluster A. Then we assign the new observation
to cluster A', which is the cluster in the original configuration where cluster A
falls into. As with the clustering itself, different inter-cluster distances may result

in different predictions.
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3.1.2 Two Simple Approaches to Prediction

Before we goto HCTP, let’s first look at two simple approaches to prediction.
Suppose we got 200 random points in R? from an unknown distribution, and
suppose they are clustered into 2 groups, ® = {red, blue}. Then how to predict
the color of future points? There are two simple approaches to prediction [Hastie

et al. (2009)]: Least squares and Nearest neighbors.

Least Squares

For linear models, we know given a vector of inputs X7 = (X7, ..., X,,), we predict
a response variable Y via
A A p A A
Y =P+ X;B=X"B (3.2)
j=1
The prediction method for least square is: we code Y =1 if Gisred and Y =0

if G is blue. Then the classification will be

) Red, ifY > 0.5;
G= )
Blue, if Y <0.5.

In this case, the decision boundary is linear given by function (3.3)

{z|27 = 0.5} (3.3)

Nearest-Neighbor Methods

For k Nearest-Neighbor (kNN) prediction, we predict response variable Y via
Vi=p 3 (34)
Xr) = — i .
2 Y
x; ENy, ($)

The classification function is the same:

) Red, ifY >0.5;
G: A
Blue, if Y < 0.5.
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The results of these two methods show kNN has far fewer misclassified training
observations than linear model Hastie et al. (2009), and the error of misclassifi-
cation is an increasing function of k. Means if £ = 1, the misclassification error

is minimized.

3.2 Hierarchical Cluster Tree Prediction Analysis on A

Set of Dissimilarities and Methods

Hierarchical clustering is one of the most widely used data analysis tools. The
idea is to build a tree configuration of data that successively merges similar groups
of points. Usually hierarchical clustering will fall into two types: bottom-up or
top-down.

Bottom-up clustering (also known as agglomerative hierarchical clustering) al-
gorithms are started with each unit situated in its own cluster, and the algorithm
grows the hierarchical tree that puts together the observations into different clus-
ters. At each step, the closest pair of clusters is combined and finally the data
will falls into one super cluster. At each stage, when agglomerating two clusters,
distance between the new cluster and all the others rest will be recalculated ac-
cording to the particular clustering method being used (for “ward” method, we
use Lance-Williams dissimilarity).

Top-down clustering (also known as divisive hierarchical clustering) algo-
rithms are initiated all units put together as one cluster. The cluster then is
split into two clusters at the next step. Process can be continued until each unit
is alone in its own cluster. A serious disadvantage of top-down clustering method
is, at the early stage, there are a huge number of ways of splitting the initial
cluster (e.g., 2971 — 1 in the first stage).

Agglomerative (bottom-up) is more popular and simpler than divisive (top-

down), but less accurate. There are some advantages of hierarchical clustering:
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I) Partitions can be visualized using a tree structure (a dendrogram), which will
provide a useful summary of the data.

IT) Does not need the number of clusters as input, it can be decided by visually
analyzing the hierarchical tree.

[IT) Can give different partitions depending on the level-of-resolution we are look-
ing at. However, hierarchical clustering can be very slow, need to make lot of
merge/split decisions. In following sections, we will look into different dissimilar-

ity measures of hierarchical clustering.

3.2.1 Model Construction and Algorithm

We here note our training data as X = {x;;},i = 1,2,...,N;j = 1,2,.... P.
Where n is the number of independent variables and p is the number of features.
Likewise, let X;. be our testing data. The objective of supervised classification is
to use the training data for “training” purposes, that is, to develop a classification
rule. The idea is given a new sample x, the classification rule is used to predict,
as accurate as possible, the true class of the new sample.

The main idea of our HCTP is:
1. Perform hierarchical clustering on our training data;

2. Add a new observation into the training data and re-perform hierarchical
clustering method, up to the point when the new observation joins a clus-
ter A. Follow cluster A in the original hierarchical just adding the new

observation until we stop a cluster A';
3. The new observation will be included in cluster A";

4. Repeat the previous steps for all new observations. The resulting hierarchi-

cal tree will include the old tree with the insertions of the new observations.
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The idea is illustrated roughly in Figure 3.1 and Figure 3.2. We perform
hierarchical clustering on the training data and cut into four clusters as show in
Figure 3.1. Now if we have a new point, which cluster should we assign it to?
For the traditional method, we calculate the distance between the new point to
the four clusters, assigning it to the closest cluster. For our HCTP, we perform
hierarchical clustering again on the combined data set (training data and the new
point). For example x; and 5 join together as one cluster first, then 3 joins
with them. And then our new point joins with zg, we stop and assign this new
point to cluster 4 (the same cluster as xg) with respect to the tree configuration

of the training data.

Figure 3.1: Algorithm Illustration Graph 1.

If a new point joins a cluster below the red line stage (before growing to 4

clusters), we take action as illustrated in Figure 3.1. But what if this new point
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doesn’t join any existing clusters while we already established four clusters, like
the new point 3 in Figure 3.27 This may happen in real occasion, but we still
need a strategy. In this situation, we assign this new point to the cluster with
minimum distance. That is we use the same algorithm as the traditional method

in this special case.

Figure 3.2: Algorithm Illustration Graph 2.

3.2.2 Single Linkage Prediction

The single linkage hierarchical clustering (also known as nearest neighbor clus-
tering), is one of the oldest methods among cluster analysis and was suggested
by researchers in Poland in 1951. The definition is: the distance between two

clusters is the smallest dissimilarity measure between any two objects in different
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Figure 3.3: Traditional and New Prediction Methods with “Single” Linkage Dis-
tance.
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clusters. Mathematically, the linkage function D(X,Y") can be expressed as:

D(X,Y)= min_ d(z,y) (3.5)

zeX,yey

where X and Y represent two clusters, while d(z,y) represents distance between
two elements x € X and y € Y. The merge criterion is local, that means we only
need to focus on the area where two clusters are closest to each other at each
stage, and ignore the overall clusters or other more further parts.

There is a well known drawback called chaining phenomenon: two clusters
may be forced together due to some single elements being close to each other,
though actually some elements in each may be very far away to each other. This
disadvantage promoted a bunch of other hierarchic and non-hierarchic methods
(Lance and Williams 1957; Sneath 1957).

So in this case, our new observation will always cluster with the closest ob-
servation. We don’t need to run the tree again, but just look for the cluster of
the nearest neighbor to the new data. That means there is no difference between
our HCTP and traditional method while the distance is “Single” linkage. Look
at Figure 3.3, there are two groups & = {red, blue}, also these two groups cor-
respond to two well separated clusters under “single” linkage, say red=clusterl
and blue=cluster2. The red and blue points are our training data, and yellow
and green dots are the prediction results. Both methods predict yellow dots to
clusterl and blue dots to cluster2. From Figure 3.3, we could see the boundary

is the same for two different prediction methods.

3.2.3 Complete Linkage Prediction

In complete linkage hierarchical clustering (also known as farthest neighbor clus-

tering), the distance between two clusters is the largest dissimilarity measure
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Figure 3.4: Traditional and New Prediction Method with “Complete” Linkage

Distance.
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between any two objects in different clusters. Mathematically, we define the com-

plete linkage function D(X,Y) as:

D(X,Y)= maz_d(x,y) (3.6)

zeX,yeY

similar to the single linkage function, X and Y are two clusters, and d(z, y) is the
distance between two elements x € X and y € Y. This complete linkage merge
is non-local. The whole structure of the clustering has influence on our final
decisions. Also complete linkage clustering avoids chaining phenomenon caused
by single linkage.

From Figure 3.4 we could see for “Complete” linkage, our HCTP is different
from traditional method, and seems better at classification. We will use the
same training set as “Single” linkage, & = {red, blue}, and also red=clusterl,
blue=cluster2. From the first graph in Figure 3.4, we could see there is one blue
point falls into yellow dots region, which is the prediction region of clusterl. While

in the second graph, the boundary classifies two clusters more reasonable.

3.2.4 Average Linkage Prediction

In average linkage hierarchical clustering, the distance between two clusters A
and B is the arithmetic mean of the dissimilarity measures between all pairs of
members in different clusters.
1
|n1|.|n2|3;4yz€;d(x’y) (3.7)
here n; is the number of members in A and ny is number of members in B.
From Figure 3.5 and Figure 3.5 we could see for “Average” linkage, our
HCTP is also different from traditional method. The training set is unchanged,
® = {red,blue}, and red=clusterl, blue=cluster2. The boundary for traditional

method is linear, while nonlinear for our method.
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Figure 3.5: Traditional and New Prediction Method with “Average” Linkage
Distance.
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3.2.5 Ward’s Clustering

In ward’s clustering, the distance between two clusters is calculated as the sum of
squares between clusters divided by the total sum of squares, or equivalently, the
change in R? when a cluster is split into two clusters. Here R? is the coefficient
of determination , which is the percent of the variation that can be explained by
the clustering.

Our prediction method for ward clustering, may not correspond to the same
cluster as the prediction with the traditional method. The traditional prediction
method calculate the distance between the new point and all the cluster centers
and assign this point to the cluster with the closest distance. While our method
will calculate the inter-cluster distance using bottom-up clustering algorithms until
this new point joints to a cluster, say A. Finally We will assign the new point to
the original cluster of the first point in A, namely A". The difference is showed in
Figure 3.6. We could see the boundary is linear for traditional clustering while
nonlinear for our HCTP. In this case, the results for “Ward” are the same as

“Average” linkage.

3.2.6 Comments on different Hierarchical Clustering Meth-

ods

All the hierarchical clustering methods we mentioned above, though have lot of
similarities, they do persist different properties and will generally cluster the data
in quite different ways and may even impose a structure of their own.

The single linkage is setting up to maximize the connectedness of a cluster
and highly prefer to find chain-like clusters. A sequence of close observations in
different groups may cause early merge by single linkage. The complete linkage

has the opposite problem: it sets up to minimize the maximum within-cluster
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Traditional Method for 'Ward' Linkage

X2

X1

New Prediction Method for ‘Ward' Linkage

X2

X1

Figure 3.6: Traditional and New Prediction Method with “Ward” Linkage Dis-
tance.
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distance and tends to find compact clusters but may overemphasize small differ-
ences between clusters. Complete linkage might not merge close groups if outlier

members are far apart.

3.3 Simulation Set Up and Results

We simulated data from two normal distributions but constrained to some certain

regions of the space. The distributions we used for simulation study are: & =

/

{G1,Gs}, where G; = {(za,yin)}, @ = 1,...,ny, and Gy = {(xyq,yy9)}, @ =
1,...,ny. Here we use (z;1,¥:1) to stand for the coordinate for i observation
in group 1, and (zj2,¥:2) to be the coordinate for i** observation in group 2.

Observations in (G satisfy conditions:

Raw Data

Figure 3.7: Simulation Data. Red and Green samples are corresponding to two
groups.

zi1 >0

Vah +yh <225
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T <0
(3.9)
|y11\ < 1.5

for each i € {1,...,n1}, here we set n; = 1000. In contrast, conditions for G, are:

(

Tio > 0

v < 1 (3.10)

| VTh +yh >225

for each i € {1,...,ny}, we set ny = 2000.

Data we generated above is plotted in Figure 3.7. We could see the raw data

is clearly divided into two groups: colored with Red and Green.
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o~ -
...
*» ° e . @
fo:‘ $ .y .
a - ¢ 2%y, #e .« @
e ay, * g
. o .
‘e ® - « ° .
> 9o e 5
I i
., "
e o, ed
¥ 4 PO .
» L]
@ ¢ .
.
L ]
T T T T T T T T
4 2 0 2 4 6 8 10
X

Figure 3.8: Training Data.Red and Green samples are corresponding to two
groups.

There are 1000 observations for group 1 (Red) and 2000 observations for the
group 2 (Green) in Figure 3.7. We took the first 50 observations in each group

to be our training data as in Figure 3.8, and use the rest to be the validation set.
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Hierarchical clustering with “Ward” method clustered our training observations
into two clusters (colored as yellow and blue in Figure 3.9). We could see from
Figure 3.9, yellow observations (clusterl) and red observations (groupl) are per-
fectly matched, also blue observations (cluster2) and green observations (group2)
are perfectly matched. So our training set is well clustered into two clusters under

“Ward” method.

Clusters for Training Set
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Figure 3.9: Clusters of Training Data.Yellow and Blue samples are corresponding
to two clusters.

Both traditional method and our HCTP method were applied to the simulated
data to assess their performance. We run 1000 reiteration and pick one to be
an illustration example as show in Figure 3.10. We could see the classification
boundaries are different it is linear for the traditional method while nonlinear for
our HCTP. And it follows the data density. Then which one is better? We will
compute the misclassification ratio to measure the performance for both methods.

The prediction scheme for each method assigned the simulated test observa-
tions into two clusters: C = {C1,Cq}. Let Gf = {g5 : (z3,y;)}, and G5 =

{95 : (ZL':/Q,y:,2)} be testing observations in group 1 and group 2. We use r; to
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present our HCTP misclassification ratio, and ry be the traditional prediction

misclassification ratio. The formula for misclassification ratio ry (k=1,2) is:

_ #Py(Gy) € Cy + #P,(Gs) € Cy

/ /
nq +n2

- (3.11)

where P, is our HCTP result, P, is the traditional prediction result, n} is the
number of test observations in group 1 and n), is the number of testing obser-
vations in group 2. With 1000 reiteration, the average values for r; and ro are:
ry = 0.0283, r, = 0.1067. So the misclassification ratio r; < 79 indicating mis-
classification error of our HCTP is smaller than traditional method. We will go

further in next section by application of each method on real data example.

3.4 Real Data Example

3.4.1 Data Description

The NPSI questionnaire consists of 10 different pain symptom descriptors. The
data came from 4 randomized, double-blind, placebo-controlled clinical studies of
pregabalin (150-600 mg/day) in patients with neuropathic pain (NeP) syndromes:
central post-stoke pain, post-traumatic peripheral pain, painful HIV Neuropathy,
and painful diabetic peripheral neuropathy. Patients enrolled were males or non-
pregnant, non-lactating females aged > 18 with a diagnosis of NeP syndromes:
CPSP (219), PTNP (254), painful HIV neuropathy (302), and painful DPN (450).

Patients with specific NeP syndrome were enrolled in each study, and were
asked to record their daily pain score on Numeric Rating Scale (NRS) with 11-
points, where 0= no pain and 10= worst possible pain. The average of the NRS
scores over the 7 days prior to randomization was used as mean pain score at
baseline.

We will use NPSI as our training data set, which has 1161 observations 11

variables. The columns of NPSI are 10 different pain symptom descriptors and
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1 mean vector: superficial and deep spontaneous ongoing pain (Questions 1 and
2); brief pain attacks or paroxysmal pain (Questions 5 and 6); evoked pain (pain
provoked or increased by bushing, pressure, contact with cold on the painful
area; Questions 8 through 10); abnormal sensations in the painful area (dysesthe-
sia/paresthesia; Questions 11 and 12); and duration of spontaneous ongoing pain
assessment (Question 3). Our testing data is a new clinical trial NPSI data set,

with 210 observations and same 11 variables.

3.4.2 Clustering Prediction Result

The objective of this exercise is to try our new clustering prediction method on
the fifth study which was finalized after we had performed the analysis of the four
previous studies.

Once the new data has been normalized by Fisher Yate’s, we predict the cluster
number of each for the new observation. Table 3.1 and Table 3.2 summarize the
new prediction results compared to the traditional method.

Figure 3.11 indicates the patients’ overall NPSI scores’ means are: clus-
ter1=>5.54, cluster2=2.41, and cluster3=4.29. Perform our HCTP and traditional
prediction method on NPSI data, we have Table 3.1 to capture the clustering
prediction results. We could see our HCTP predict more observations (102 ob-
servations) to clusterl, while traditional method predict more to cluster 2 and
3. Also the sum of off diagonal numbers “63” means our HCTP and traditional
method assign 63 observations in testing data to different clusters.

Figure 3.12 and Figure 3.13 list some testing observations which will get differ-
ent prediction result under different clustering prediction method. For example,
our HCTP predicts sample 1 to cluster 1, while the traditional clustering method
predicts it to cluster 2 as shown in Figure 3.12. We summarize the clustering
ratio results for these two methods in Table 3.2, indicating that the predicted

cluster ratio under our HCTP is more closer to the ratio of training data.
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Figure 3.11: NPSI Cluster means by disease and individual pain dimension.
CPSP= central post-stroke pain; DPN= painful diabetic peripheral neuropathy;
HIV= painful HIV neuropathy; NPSI= Neuropathic Pain Symptom Inventory;
PTNP=post-traumatic peripheral neuropathic pain.

3.5 Conclusions

In this chapter we propose a cluster prediction method for hierarchical clustering.

The idea is to

I) Make predictions that follow the structure of the tree;

IT) Produce a tree which is the original tree but where we have incorporated all

the new observations, and therefor this new tree is more complete than just the

predictions because it also includes the level at which the prediction happens.
We also show the results of using the new prediction method with a new

clinical trial that was completed after the initial 4 trials were analyzed. We found

that the cluster that had significant treatment in the initial 4 studies also showed
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Figure 3.12: Testing observations 1. Show some testing observations which get
different prediction result under HCTP and Traditional method. Main title for
each sample indicates the prediction cluster result for each method.
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Figure 3.13: Testing observations 2. Show some testing observations which get
different prediction result under HCTP and Traditional method. Main title for
each sample indicates the prediction cluster result for each method.



Table 3.1: Prediction Table for Both Methods

Traditional

HCTP | 1 2 3
1 66 21 15
2 7 50 6
3 9 5 31

Table 3.2: Cluster Ratio Table

1 2 3
Training Set | 57.97 18.26 23.77
HCTP 48.57 30 2143
Tradition | 39.05 36.19 24.76

significant treatment effect in the new trial.

64
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Chapter 4

Dose and Cohort Size Adaptive Design

The primary objective of phase I clinical trial is aiming at locating the maximum-
tolerated dose (MTD). The Food and Drug Administration published the guid-
ance for industry in 2010 indicating that “an adaptive design clinical study is
defined as a study that includes a prospective planned opportunity for modifica-
tion of one or more specified aspects of the study design and hypotheses based on
analysis of data from subjects in the study”. Traditional adaptive methods will
adapt dose up and down eventually depend on the toxicity from observed data.
In this chapter, we are going to introduce a novel dose assignment method called
dose and cohort size adaptive design, which will adapt dose and cohort size at the
same time, thus able to detect the true MTD with less cohorts while still keep

the accuracy.

4.1 Introduction and Background

Early-phase clinical trials are first-in-human studies for new treatment. The pri-
mary objective of phase I oncology trial is to define the recommended phase II
dose of a new drug, aiming at locating the MTD: the dose with a dose-limiting
toxicity (DLT)is closest to a predefined target toxicity rate n(0 < n < 1). The
main outcome for most existing dose-finding designs is toxicity, and escalation
action is guided by ethical considerations. It is very important to estimate the
MTD as accurate as possible, since it will be further investigated for efficacy in

Phase II study. The study will begins at low doses and escalate to higher doses
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eventually due to the severity of most DLTs. However, we also want the escala-
tion of doses to be as quick as possible since the lower doses are expected to be
ineffective in most cases.

A rich literature has been published for dose-finding designs of Phase I tri-
als. The conventional 343 design, first introduced in the 1940s, is still the most
widely utilized dose-escalation and de-escalation scheme. However, there are some
limitations when applying 3+3. Statistical simulations demonstrated that 3+3
design is used to identify the MTD in as few as 30% of trials. Another very
popular model-based method is Continual Reassessment Method (CRM) which
estimate the MTD based on one-parameter model and eventually updated the
estimator every time one cohort completes either by Bayesian methods given by
O’Quigley et al. (1990), or maximum likelihood methods given by O’Quigley and
Shen (1996).

We developed a new approach called Dose and Size(D&S) adaptive design.
Here we are going to introduce algorithms of our approach with comparison to
previous designs through a simulation study. Comparisons are focused on ac-
curacy, safety and benefits of the procedures. Results show general advantages
of our new method, and also show saving on time and cost, which is the most

exciting advantage of our approach.

4.1.1 Case Study

AABO003 STUDY AABO003 from Pfizer is a backup compound of Bapineuzumab.
Preclinical evidence suggested that AAB003 may have a reduced risk of VE (va-
sogenic edema) compared to Bapineuzumab. An AAB003 dose higher than Bap-
ineuzumab dose may result in good efficacy, while maintain the same or lower
VE rate(< 5%)So the First-in-Human (FIH) study of AAB003 in subjects with
mild to moderate Alzheimer’s disease was conducted, to assess the safety and tol-

erability of AAB003 at different dose levels (0.5,1,2,4,8 mg/kg).This FIH study
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was also compared to an alternative, more traditional design of a single ascending
dose study (SAD) followed by a multiple ascending dose (MAD) study.

The objective of the trial is to establish as efficiently as possible whether
AABO003 has a better safety profile than bapineuzumab(AAB001). The current
safety profile of bapineuzumab includes vasogenic edema (VE) of the brain, a
radiographic finding that has been reported among some subjects treated with
Bapineuzumb. Final dose selection will depend on the full package of preclinical
safety data.

DIABETES COMPOUND A multiple ascending dose (MAD) study was
conducted for Diabetes Compound project. During the study, a particular adverse
event emerged and raised concern. The team planned to narrow down the dose
range with a parallel study with AE target rate < 3%.

For both projects, the AE rates are very small (3% and 5%). That means
the sample size for each dose will be very big: need at least n = 33(1/3%) and
n = 20(1/5%) to observe one AE in average. So the study will be very big, if go
with parallel study, take lot of time and cost.

We are highly motivated to develop a new study to save time and money. Lot
of adaptive models are given in different literatures, but no one adapts the cohort
size. Our D&S design is focusing on cohort size adaptive method and we will

show the advantages of this new model.

4.2 Existing Methods for Dose-finding Study

Before going to introduce some well applied existing methods, let’s first give
the definition of MTD. Rosenberger and Haines (2002) mentioned there are two
different definitions of MTD. It could be defined as the dose just below the lowest
dose level with unacceptable toxicity rate 'y, or can be defined as the dose with

the toxicity probability equal to some acceptable toxicity level I', where I' < I'y.
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Figure 4.1: 343 Design. One of the most popular dose-escalation and de-
escalation scheme.

4.2.1 343 Design

The conventional 343 design, was originally mentioned in 1940s and re-promoted
by Storer (1989). It is among the earliest dose-escalation and de-escalation
schemes. We showed the method of 3+3 as in Figure 4.1, which can be more
easily to present.

The basic idea of 343 is, treat 3 patients per dose level. If one Dose Limiting
Toxicity (DLT) occur, dose is escalated for the next cohort of 3 patients. If 1
DLT, put 3 more patients at this levle with dose escalation only if no additional
DLTs. If > 2 DLTSs, we define prior dose level as MTD. 3+3 is very simple and
very easy to implement, however, there are some limitations. First, statistical
simulations show that 343 is mostly used when MTD is as few as 30% of the
trails. Furthermore, this may put very large population being treated at sub-
therapeutic doses.

343 design has been widely criticized due to its escalation decision is made
only based on the most recent recruited patients. Promoted by this disad-
vantage, O’Quigley et al. (1990) developed a new model-based adaptive design
CRM(continual reassessment method) which made decisions based on posterior

distributions and likelihoods formed from all accumulated data.
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4.2.2 Continuous Reassessment Method

The underlying assumption of CRM is the probability of DLT increases mono-
tonically with re-scaled version of the doses. If define Y; to be the binary toxicity
outcome of patient i: Y; = 1, if DLT occur, Y; = 0 otherwise. The CRM uses a

one-parameter hyperbolic-tangent dose-response model as:
¢ = m(disy) = [(tanh(d;) +1)/2]" (4.1)

where v € R, which will be updated during the trial; d; is standardized or re-
scaled value of the dose assigned to subject i; while 7 is the monotonic function
with range [0,1]. There are two further 1-parameter models given in original paper

O’Quigley and Chevret (1991):

1. a logistic model with fixed intercept ¢ (always use 3):

exp(c+ vd;)
m(di; ) 1+ exp(c+ vd;) (42)
2. a power model given by:
m(di;y) = d} (4.3)

The exponential prior of v is m(y) = exp(—y) with mean equal to 1. Given

the data for doses d; and outcomes Y; the likelihood is

L(dly) = I (di; 7)™ (1 = m(dyz 7)) ™" (4.4)
The posterior is
_ Ld)7(v)
O = = )y (42)

Calculate the posterior mean 7; of the DLT rate at dose d;, then the recommended

dose for the next cohort is the one with DLT rate closest to the target n. That is

| = arg min |T; — 4.6
j g min J)Iﬂy nl (4.6)



70

The CRM usually does not allow dose skipping during dose escalation. The
trial will stop if the total number of subjects N is reached or if a specific stopping
rule is satisfied. We will discuss stopping rules later. The MTD is determined at

the end of the trial by simply selecting dose j according to function (4.6).

4.2.3 Escalation and Group Designs

Let D = {dy,...dp} be the set of ordered dose, and p; is the corresponding toxicity
probability of d;, where p; < ... < pg, n is the cohort size for dose i. The adverse
events at each dose x; < n has a Binomial distribution. The likelihood function

is a product of binomial densities,

l(p) o< [Tpi*(1 = pi)= (4.7)

FEscalation Design Subjects are treated in cohort size n starting from lowest
dose. Let ¢y be an integer that 0 < ¢y < n. Assume our current dose is dose d;,

1=1,....,D—1. Then
1. if x; < ¢y, the next n cohort subjects will be assigned to dose d;, .

2. if x; > ¢y, the trial is stopped and claim the dose one level below ¢y is the

MTD.

Group Design Subjects are treated in cohort size n starting from lowest dose.

Let ¢y, cy be two integers that 0 < ¢, < ¢y < n. Assume our current dose is dose

d;, i=1,...D. Then
1. if x; < ¢, escalate to dose d;1 and assign the next n cohort subjects.

2. if ¢, < m; < cy, stay in the current dose and assign the next n cohort

subjects.

3. if x; > ¢y, De-escalate to dose d;_; and assign the next n cohort subjects.
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4.2.4 Toxicity Probability Intervals Methods

Rosenberger and Haines (2002) noted that “Bayesian methods, such as the CRM,
the EWOC, and the decision theoretic approach, are complicated to explain to
non-statisticians and computationally challenging to implement.” Ji et al. (2007)
promoted a simpler Bayesian model which is easier to implement and understand.

Their assignment rule for phase I clinical trials is based on a conjugate Beta-
Binomial model. Assume an independent beta prior B(a,b) with mean a/(a +
b),a,b > 0. With a binomial likelihood, the posterior distribution of toxicity
is also a beta. Similar to the idea of group design, Ji et al. (2007) built the
probabilistic up-and-down rule based on the posterior distribution at the current
tried dose. The idea is to cut the posterior distribution into 3 intervals, each
corresponds to de-escalate, stay or escalate dose-assignment action, depends on
which interval has the largest posterior probability.

Let pr be the target AE rate at MTD. The three intervals for current dose d;

are defined as:
e qE(i) = P(pi — pr < —K,oi|data)
e ¢S(i) = P(—Kso; < p; — pr < Kyo;|data)
e ¢D(i) = P(p; — pr > Kyo;|data)

where o; is the posterior standard deviation of p;. K; and K, are two design
parameters and will be adjusted through intensive simulations.

The dose assignment rule can be written as
8 = argmaz{qFE,qS,qD} (4.8)

where the action corresponding to the interval with the largest posterior proba-

bilities.
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4.3 Dose and Size Adaptive Design

Ji’s Toxicity Probability Interval(TPI) method is easy to implement and ex-
plain compared to biased-coin design(BCD) with isotonic regression estimator by
Stylianou and Flournoy (2002), cruve-free method(CFM) by Gasparini and Eisele
(2000), and continual reassessment method(CRM) by O’Quigley et al. (1990).

Our D&S method adds more strict rules and is more hesitate to take actions
compared to TPI. For example, if current dose is d; and our action is Stay when
applying TPI and the next cohort size is n. Our method will also takes a look at
the next lower dose and next higher dose, we will take action depend on all this
combined information and will also adapt the cohort size.

For dose escalation rules, D&S follows the same principles as 3+3, TPI and
CRM etc., that will Escalate if current dose has AE rate too high, stay if around
the target rate, and De-escalate if is too low. Also, we change the cohort size
depending on whether the next dose is likely or unlikely to be the MTD. We will
not change cohort size if we are uncertain it is MTD, add more subjects if the
dose is likely to be the dose with targeted AE rate, and add much more subjects
if the dose is highly likely to be the dose with targeted AE rate.

4.3.1 Stopping Rules

Taking ethical concern of overdosing subjects into consideration, researchers de-
veloped lot of stopping rules that assuming all doses under study are too toxic
(Korn et al. (1994), O’QUIGLEY and Reiner (1998)). Ji et al. (2007) also men-
tioned if taking escalation action as long as the current dose is not toxic is in-
complete for ethical consideration. However, it is not safe if the next higher dose
is highly toxic and usually it is not allowed to expose patients under such high

toxic dose. Ji et al. (2007) modified the dose-assignment rule by adding a toxicity
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exclusion rule based on a random variable
7, = {P(p; > pr|data) > £} (4.9)

where 1 is the indicator function, ¢ is a cutoff point that £ € (0,1). For a large
value of £, e.g., £ = 0.95, 7, = 1 means dose i is highly toxic and escalate to this
dose should never be allowed. So we need to information of current dose and next

higher dose to decide the action of “Escalation”. Redefine gF as ¢FE:

qE(i) = ¢E()(1 — 7ita) (4.10)
now the assignment rule becomes

= argmax{qF, qS,qD} (4.11)

Based on random variable 7, we could see if our current dose is d; and 7,47 = 1,
means the next higher dose is too toxic and the probability of ¢F will equal zero
and the assignment rule § will never chose action Escalation.

Another question is, if the first dose is already too toxic, what should we do?
As we mentioned above, in clinical trial study, the toxic probability is assumed
non-decreasing, p; < ... < pg. So if 77 = 1, means the first dose is already too
toxic, also implicates all the higher doses are highly toxic, so we will terminate
the trial immediately. In other words, if the DLT rate of the lowest dose is
already higher than the target pre-specified probability 7, the trial will terminate

immediately and no dose is selected as MTD.

4.3.2 Escalation Tables

We use different escalation rules which are listed from Table 4.1 to table 4.3.
They correspond to the design principle tables when current dose has escalation
trend, stay trend and de-escalation trend separately. The first column is the trend

for current dose in all three tables, second column is the trend for higher dose
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or lower dose(table 4.3), third column gives the actual action taken and adapted
cohort size numbers by our D&S adaptive design, and fourth column gives the
action and cohort size taken by TPI or other dose-finding studies. The cohort
sizes m0, m1, m2, m3, m4 will be specified in our simulation study, also we will
give mathematical explanations for strong escalation, weak escalation, stay and

de-escalation.

Table 4.1: General Dose Escalation Tablel: Current dose has Escalation trend.

Current Dose  Higher Dose  Action by D&S  Action by TPI or Others

Strong Esc  Strong De-esc S;CS=all E;CS=m0
Strong Esc ~ Weak De-esc E;CS=m1 E;CS=m0
Weak Esc Strong De-esc S;CS=m4 E;CS=m0
Weak Esc Weak De-esc E;CS=m0 E;CS=m0

Table 4.2: General Dose Escalation Table2: Current dose has Stay trend.

Current Dose  Higher Dose  Action by D&S  Action by TPI or Others
Stay Strong De-esc S;CS=m3 S;CS=m0
Stay Weak De-esc S;CS=m2 S;CS=m0

Table 4.3: General Dose Escalation Table3: Current dose has De-escalation trend.

Current Dose Lower Dose Action by D&S  Action by TPI or Others

Strong De-esc  Strong Esc D;CS=all D;CS=m0
Strong De-esc  Weak Esc D;CS=m4 D;CS=m0
Weak De-esc  Strong Esc S;CS=ml D;CS=m0
Weak De-esc  Weak Esc S;CS=m0 E;CS=m0

We should have noticed that for first dose there is no lower dose, and for last
dose there is no higher dose. So the escalation rules are different when the fist dose
is dosel or doseD. If first dose is dosel, our current action can only be Escalation

or Stay, then the escalation rules are the same as table 4.1 or table 4.2; but if
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current action is De-escalation, we take action Stay and don’t change the cohort
size. If fist dose is doseD, our current action is De-escalation, the escalation rules
are same as table 4.3; but if current action is Escalation or Stay, see table 4.4 and

table 4.5.

Table 4.4: Dose Escalation Table: d=D, current dose has FEscalation trend.

Current Dose Action by D&S  Action by TPI or Others
Strong Esc S;CS=all S;CS=m0
Weak Esc S;CS=m4 S;CS=m0

Table 4.5: Dose Escalation Table: d=D, current dose has Stay trend.

Current Dose Lower Dose Action by D&S  Action by TPI or Others
Stay Strong Esc S;CS=m3 S;CS=m0
Stay Weak Esc S;CS=m?2 S;CS=m0

The mathematical definitions for strong escalation, weak escalation, strong

de-escalation and weak de-escalation are listed as:
e Strong Escalation: ¢E(i) > 0;
o Weak Escalation: ¢E(i) < d;
e Strong De-escalation: ¢D(i) > 6;

e Weak De-escalation: ¢D(i) < 4.

4.4 Simulation Set-up and Results

4.4.1 Pre-defined Parameters

Similar to most clinical trial studies, we assume the probabilities of toxicity to be

correlated and increase with the dose level. We will consider several simulation
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scenarios to evaluate the performance of the proposed design under starting cohort
size of 10 for each pre-defined target toxicity rate n. Here, we use pr to stand for
1. We will look at both py = 0.03 and py = 0.1. The simulation results will show
comparison between our D&S method and Ji’'s TPI.

We have 5 active doses dy, ..., ds when pr = 0.03, cap subject number n < 100
for active 5 doses. Each cohort has original 10 subjects on active, but will be
adapted eventually during the clinical study. Dose up or down assignment action
will be taken depend on the combination information of current dose, lower dose
and higher dose. Since our pyr is very small, we need at least 1/0.03 = 33 subjects
to observe 1 AE (Adverse Event). If go with parallel study, it takes lot of time
and money. Thirteen scenarios are covered in our simulation study as shown
in figure 4.2, we could see these scenarios cover almost all different dose ranges

around pr = 0.03.

13 Scenarios for pT=0.03
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Figure 4.2: 13 Scenarios when pr = 0.03
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For pr = 0.1 we have 4 active doses dj, ..., d4, cap subject number n < 100 for
active 4 doses. Each cohort also has original 10 subjects on active, but will be
adapted during the clinical study. When our pr = 0.1, we need around 1/0.1 = 10
subjects to observe 1 AE (Adverse Event). This is much better than pr = 0.03.
Under the situation when pr = 0.1, we will consider 3 different scenarios to show
the simulation results in later section.

We assigned a = 0.003, § = 0.007 to the parameters of our prior Beta(a, [3),
given the values of n; and z;, our posterior distribution is Beta(0.003+ x;,0.007 4
n; — x;). Therefore, we can computer decision rule 88 for any values of n; and z;
and tabulate the results.

Also for escalation tables, we set 6 = 0.8 in our simulation study.

4.4.2 Model Construction and Variance Transformation

In our study, we will use Beta(a, #) distribution as the prior for p, i.e.,

B I+ B)
™) = St @ 11 =)

(4.12)

With a binomial likelihood Equation (4.7), the posterior distribution is still a

Beta. This makes our model more convenient. Note:

m(p|x) o f(x1, X2, ..., Tp|p)7 (D)
=p*(1—p)""p* (1 —p)" (4.13)

a—i—at—l(l o \B+n—z—1

=p p)
So in our model, the posterior is Beta(a+x, 5+n—x), where x stands for adverse
event, n is each cohort number. Then the questions is how to pick up the prior

properly? Under the posterior distribution, we can see the posterior mean and

variance are:

o+
Bk = g

(a+2x)(f+n—2x)
@+ B +nRatprntD)

(4.14)

Var(p|x) = (4.15)
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Zhu and Lu (2004) indicates that, the prior variance is a decreasing function
in prior parameters, so the larger the prior variance, the less influential the prior
is. Zhu and Lu (2004) also gave other methods on how to select non-informative
prior for binomial family.

In our model, we assign a = 0.003, 8 = 0.007, so the prior doesn’t provide
much information. But the problem is, with such small prior parameters, if no
adverse event occur in the first trial and we put n (n=10 here) subjects into
current dose, we could see the posterior mean is close to 0, and posterior variance
is also quite close to 0.

Figure 4.3 shows three different prior densities: Black one is Beta(0.003,0.007),
which concentrate density around 0 and 1; Red one is Beta(0.003,10.007), also
concentrate around 0; and Green one is Beta(1.003,9.007), showing the density

when one AE occurs.

y1

0.0 02 04 06 08 1.0

Figure 4.3: Plot for Different Beta Prior densities

We could see from figure 4.3 if no AE occur, the density is too skew. Often,

we use a logarithmic transformation X — log(X) for analysis (figure 4.4). The
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logged intensity is popular for number of reasons: taking logs can reduce skewness
and improve variance estimation, also the logged intensities variation tends to be
less dependent on the magnitude of the values. The raw data are very skew,
heavily clumped at low densities and with a long tail. Thus more than 75% of
the data lie in the lowest 10% of the intensity. After log transformation, we could

see the data are more spread out, and more easily to be examined.

p~Beta(0.003,10.007) log(p):p~Beta(0.003,10.007)
(=]
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Iy 8 5 o
T g B8
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g 8 g o
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Figure 4.4: Histograms of Log Transformation for Different Beta Prior densities

Sapir and Churchill (2000) also mentioned a more complex transformation,
X — log(X + ¢) maybe a better achieve to stabilize the data set. After analyzing
real data from experiments with replicate spots, Durbin et al. (2002) discovered

that it maybe appropriate to model spot intensity data as
X =a+u"+e, (4.16)

« is the mean background, u is the true expression level, n and € are error terms

with properties 77 N(0,07) and € N(0,0?).
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Durbin et al. (2002) showed that after the generalized log transformation,

X—>(X—04)—|—\/(X—a)2—|—0—6 (4.17)

the transformed variance is a constant equal to 5’727. Durbin et al. (2002) also
indicated the loss of convenient interpretation of log ratio by using generalized
log transformation can be compromise by the started log transformation, X —

log(X +¢), with ¢ = 02 /0.

4.4.3 Isotonic Regression

[sotonic regression is an important form of non-parametric regression. It was
first promoted on 1950’s and has been widely used in data mining area. Isotonic
regression solves the following problem:

minimaize Z wi(yi — Z)i)2

)

subject to
Ymin = U1 < Y2.-- < Yn = Ymaa
w € R™ is the weight vector and every w; is strictly positive.

One of the biggest advantages of isotonic regression is that it doesn’t have
any assumption for the target function. Barlow (1972) and Hanson et al. (1973)
proposed the pool adjacent violators algorithm to solve the above target function,
which will find a non-decreasing approximation of the target function. There
are lot of existing R packages can implement this PAVA method, so it is quite
straightforward to apply.

In our simulation study, when the clinical trial is finished, we will apply PAVA
on posterior mean p;. Then transformed posterior mean p; is non-decreasing, that
p; < pjifi < j. We will select dose i with the smallest value [p; — pr| as our
estimated MTD. Suppose there are ties for estimated posterior mean which min-

imizes the difference, say p; = p;o1 = ... = piyr = p*, Ji et al. (2007) mentioned
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that:
o If p* < pr, we select dose 7 + k as our estimated MTD;

o If p* > ppr, we select dose ¢ as our estimated MTD.

4.4.4 Simulation Results

We simulated 1,000 trials. Suppose a toxicity rate of 3% or above is considered
unacceptable, 5 doses with different toxicity rates are chosen for the trial. Ta-
ble 4.6 summarizes the results from 3 common scenarios. Like for scenariol, the
first row is the true toxicity probability of each dose (0.01,0.02,0.03,0.1,0.15), from
which we generated the trial data, and the target dose is dose3. The first cohort
is treated at dose3 with pre-information and the maximum number of patients
allowed is 100 in this trial. The next 2 rows are the percentage of times the i"
dose was selected as MTD in 1,000 simulations while applying D&S and TPI;
4t and 5" rows are the average number of patients treated at dose i using our
D&S adaptive design and TPI; last two rows are average adverse events rate for
each dose under D&S and TPI. The last two columns return the cohort size for
each scenario and the average total number of patients used for one trial.

From Table 4.6 we could see our D&S adaptive design could improve the
accuracy a little to find the MTD compared to TPI method and also we put
more subjects in the MTD. The most exciting improvement of our new design
is: generally we can save 3-4 cohorts compared with original 10 cohorts. If each
cohort takes 3-4 weeks, our method can save around 3 months for the whole study
and keep accuracy at the same time (actually can improve a little bit). Also the
AFE rates for both methods are quite close to the true toxicity probability.

In Table 4.6, the true toxicity probabilities for each scenario covers our target
toxicity probability. We will show some uncommon scenarios in Table 4.7, where

the true toxicity probabilities do not cover the target toxicity probability: For
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scenarioll, the starting dose has toxicity probability p=0.1, which is highly toxic
while target toxicity pr = 0.03. Both methods stop early, from Table 4.7 can
we could see 59.5% times our D&S selects nothing while 74.1% times TPI selects
nothing. Also both methods stop without using up 100 subjects.

For scenariol2, since the toxicity probabilities for all 5 doses are below target
toxicity, both methods select last dose as MTD. In this case, we should conduct
further clinical study to test dose with higher toxicity. Our D&S will detect the
last dose as M'TD more quickly, say takes average 5.5 cohort numbers compared
to 10.

Then let’s look at scenariol3: dosel has toxicity probability p = 0.01%, which
is far lower than 3%, so we want to escalate quickly if we touch dosel; dose3 has
toxicity probability p = 20%, which is far higher than 3%, we will de-escalate
without hesitation if we touch dose3. In this case, our D&S finds the true MTD
with accuracy p = 92.5% compared to TPI where p = 87.5%, and also we put
more subjects in dose2, 74 compared to 58. So under scenariol3, it is clear our

method is much better than TPI.



Table 4.6: Simulation Results for D&S and TPI Common Scenarios: pr = 0.03, StartDose=3.

Different Dose levels Average  Average
pr = 0.03 Cohort  number of
Dose 1 2 3 4 5 Numbers  Patients
Scenariol 1 2 3 10 15  none
D&S %MTD 0.3 5.2 84 10.1 0.4 0 5.9 100
#Pts 0.1 3.5 56.8  32.5 7.1
%AE 0 2.9 3 10.2 15.5
TPI %MTD 0.7 10.1 772 119 0 0 10 100
#Pts 223 13.7 50.58 27.81 5.63
%AE 1.35 1.9 3.02 9.82 15.28
Scenario?2 1 3 10 15 20  none
D&S %MTD 3 81.2 15.5 0.3 0 0 5.9 100
#Pts 1.5 42.6  44.7 10.2 0.9
%AE 0 2.8 10.1 147 222
TPI %MTD 8 779 133 0.6 0 0 10 100
#Pts  16.22 39.25 36.21 7.34 091
NAE 0.86 298 994 1499 19.78
Scenariod 0.5 1 2 3 10 none
D&S %MTD 0 2.7 14 75.8 7.5 0 6.4 100
#Pts 0 2.1 21.1 423 345
%AE  NaN 0 1.9 2.8 10.1
TPI %MTD 0.1 2.1 16.4  75.8 7.5 0 10 100
#Pts 0.5 222 30.8 41.27 2521
%AE 0 1.35 192 286 10

€8



Table 4.7: Simulation Results for D&S and TPI Uncommon Scenarios: py = 0.03, StartDose=3.

Different Dose levels Average  Average
pr = 0.03 Cohort  number of
Dose 1 2 3 4 5 Numbers  Patients
Scenarioll 10 15 20 25 30 none
D&S %MTD 28.7 11.6 0.2 0 0 59.5 5.2 82.8
#Pts 33 25.6 22 2.1 0
%AE 10 14.8 20 23.8 NaN
TPI %MTD 23 2.8 0.1 0 0 74.1 7.1 71.2
#Pts  34.73 19.26 15.73 1.35 0.08
%AE 9.9 14.75 20.28 2593 37.5
Scenariol2 1 1 1 2 2 none
D&S %MTD 0 0.4 3.2 11.1  85.6 0 5.5 100
#Pts 0 0.4 15.1 23.8 60.8
%AE  NaN 0 0.7 2.1 2
TPI %MTD 0 0.5 4 14.7  80.8 0 10 100
#Pts 0.14 0.89 16.51 20.5 61.96
%AE 0 1.12 091 1.9 2
Scenariol3 0.01 3 20 20 20 none
D&S %MTD 6.7 92.5 0.8 0 0 0 6.4 100
#Pts 2.8 73.8  20.8 2.3 0.2
%AE 0 3 19.7  21.7 0
TPI %MTD 12.1 875 0.3 0.1 0 0 10 100
#Pts  23.52 5797 16.81 1.52 0.81
%AE 0 3 19.75 19.74 22.22
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Table 4.8 returns 3 common simulation results for pr = 3% but with start
dose as Dosel. Table 4.9 is corresponding results for three uncommon scenarios.
Also when pr = 10%, we conducted simulation studies with 4 active doses
dy,...,ds, with starting dose as Dose2(Table 4.10). In this case, we get similar
result as pr = 3%. That our method can save 3-4 cohort numbers and improve a

little bit of the power compared to TPI.



Table 4.8: Simulation Results for D&S and TPI Common Scenarios: pr = 0.03, StartDose=1.

Different Dose levels Average  Average
pr = 0.03 Cohort  number of
Dose 1 2 3 4 5 Numbers  Patients
Scenariol 1 2 3 10 15  none
D&S %MTD 3.2 13.8 648 163 14 0 7.6 100

#Pts 14.7  25.7 33 21.9 4.3
%AE 0.7 1.9 2.7 10 14
TPI %MTD 6.3 21.1 583 128 0.8 0 10 100
#Pts  18.67 28.11 30.39 1795 4.31
%AE 0.96 1.89 299 10.14 15.08
Scenario?2 1 3 10 15 20  none
D&S %MTD 9 771 11.6 2.1 0 0 6.9 100
#Pts 15.6 499 285 5.5 0.5
%AE 0.6 3 10.2 14.5 20
TPI %MTD 154 714 115 0.9 0.1 0 10 100
#Pts  26.86 44.57 22.19 4.99 0.82
%AE 0.93 3.01 10  15.63 17.07
Scenariod 0.5 1 2 3 10 none
D&S %MTD 0.3 4 16.1 69.1 104 0 7.7 100
#Pts 11.7 194 23 25.1  20.8
%AE 0.9 1 1.7 2.8 10.1
TPI %MTD 2.5 5 21.9 61.2 9.3 0 10 100
#Pts  14.64 15.68 24.45 26.05 19.09
%AE 0.55 0.89 196 299 10.11
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Table 4.9: Simulation Results for D&S and TPI Uncommon Scenarios: pr = 0.03, StartDose=1.

Different Dose levels Average  Average
pr = 0.03 Cohort  number of
Dose 1 2 3 4 5 Numbers  Patients
Scenarioll 10 15 20 25 30  none

D&S %MTD 175 0.2 0 0 0 82.3 3.5 56.3
#Pts 444 11.1 0.8 0 0
%NAE 9.9 153 25  NaN NaN

TPI %MTD 136 0.4 0 0 0 86 4.7 47.3

#Pts 38.89 728 103 0.13 0.01
%AE  10.05 15.11 21.36 15.38 100

Scenariol2 1 1 1 2 2 none
D&S %9MTD 0.8 2.1 6.5 22.4  67.8 0 7.3 99.7
#Pts 13.5 19.2 17.8 195 29.7
%AE 0.7 1 1.1 2.1 2
TPI %MTD 4.2 4.2 9.1 126  69.2 0 9.9 99.4
#Pts  16.69 15.39 13.93 16.34 37.08
%AE 096 1.04 0.93 1.9 1.97

Scenariol3 0.01 3 20 20 20 none
D&S %9MTD 7.8 91.3 0.7 0.2 0 0 5.9 100
#Pts 126  69.7 16.9 0.8 0
%AE 0 3 20.1 25 NaN
TPI %MTD 114 874 1.1 0.1 0 0 10 100

#Pts  26.34 59.29 1295 1.28 0.14
NAE 0 292 1992 21.09 2143

L8



Table 4.10: Simulation Results for D&S and TPI: pr = 0.1, StartDose=2.

Different Dose levels Average  Average
pr =0.1 Cohort  number of
Dose 1 2 3 4 Numbers  Patients
Scenariol 10 30 45 55 none
D&S %MTD  91.3 0 0 0 0 5.7 96.5

#Pts 743 216 0.6 0
NAE 10 30.1 50  NaN
TPI %MTD  90.5 0 0 0 0 9.6 95.8
#Pts 7731 18.04 0.42 0
N%AE 9.9 2999 47.62 NalN

Scenario?2 1 10 30 50 none
D&S %MTD 9.5 90.4 0.1 0 0 6.6 100
#Pts 7 78.6 14 0.4
%AE 1.4 9.8 30 50
TPI %MTD 9.3 90.2 0.5 0 0 10 100
#Pts  10.37 75.1 14.19 0.34
%AE 0.96 9.93 29.67 50

Scenario3 1 5 10 30 none
D&S %MTD 0.2 146 84.5 0.7 0 7.1 100
#Pts 0.3 23.6 60.7 154
%AE 0 5.1 9.9 29.9
TPI %MTD 04 15.7 82.6 1.3 0 10 100
#Pts 1.19 26.5 59.71 12.6
%AE 0.84 4.87 10.02 29.68
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4.5 Discussion

We have proposed a new dose-finding algorithm based on conjugate Beta prior
and some new rules. Simulation results indicate that with appropriate parame-
ters, D&S design performs better at estimating the target dose and at subject
assignment of the target dose.

This new method may also appeal to physicians while its implementation and
computation are very simple. To implement this new method, we will need to
specify the target toxicity probability pr, the number of doses D and true toxicity
probabilities for each dose to start simulation study.

The main distinction of this new proposed method is: it requires all infor-
mation from current dose, lower dose and higher dose to decide dose assignment
action. And we will adapt cohort size at the same time when some specified

criteria are satisfied.
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APPENDIX 1

Codes for Data Normalization and Fisher-Yates Transformation

Table 11: Description for Function or Package

Name Description

DNAMR R package with routines for microarray data analysis.

My.qn(x,y) | Function for Quantile (y missing) and Fisher-Yates normalization.

fyqtest Simulation function for two-group gene comparative experiments.
FYsim Simulation function for scoring scale data.
library(DNAMR)

My.qn = function(x,y){

xm < —apply(z, 2, sort)

zaem < —if(missing(y)) f.rmedian.na(xm) else
gqnorm((1 : nrow(x))/(nrow(x) + 1))

xr < —c(apply(z, 2, rank))

array(approzx(1 : nrow(zx), xam, xr)Sy, dim(z), dimnames(z))

}

f.rmedian.na < — function(zx){

n < —nrow(x)

p < —ncol(z)

zm < —rep(NA,n)

naxr < —is.na(x)

nai < —c(nax% * %rep(1, p))

r < —t(x)

for(iin unique(nai)){

] < —nat==1

xi < —c(x[, 7])
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xi < —array(xillis.na(xi)], c(p — i, sum(j)))

xmlj] < — f.emedian(zi)

Tm

Simulation Function for Two-Group Gene Comparative Experiment

fyqtest < — function(nl, s1,s2){
for(dd in ¢(6,10, 20,50, 100)){

n = 10000
c0 = —qt(0.025,dd * 2 — 2)
set.seed(111)
k1 = array(rgamma(n x dd, 3), dim = ¢(n, dd))
k2 = t(array(c(rgamma(nl * dd, scale < —rep(c(sl,s2),rep(nl x

dd/2,2))),rgamma((n —nl) x dd, 3)), dim = c(dd, n)))
#k1 = array(rnorm(n * dd), dim = ¢(n, dd))
#k2 = t(array(c(rnorm(nlxdd, scale < —rep(c(sl, s2),rep(nl*dd/2,2))),
rnorm((n —nl) x dd)), dim = c¢(dd,n)))
kfy = My.qn(cbind(k1,k2),1)
kqn = My.qn(cbind(k1, k2))
library(DNAMR)
ply = c(frtt(Efyl, (1: dd),kfyl,— (1 dd)))
pgn = c(f.rtt(kgn|,1 : dd], kqn|[, —(1 : dd)]))
pt0 = c(f.rtt(k1, k2))
pp0 = 1 % cbind(abs(pt0) > c0, abs(pfy) > 0, abs(pgn) > c0)
cat("nsamples =" ,dd,”\n")

print(apply(pp0, 2, function(z, nn)c(mean(xz[1 : nnl), mean(z[—(1 :



92

Simulation Function for Scoring Scale Data

FYsim < — function(sim){
yy < —rep(0,4); nsim = rep(0,4)
for(kin1: sim){

J = table(sample(3,nn[l],rep =T))

ul = ¢(sample(0 : 10, j[1] * 10, replace = T, prob = vhtop),

sample(0 : 10, j[2] * 10, replace = T, prob = vhmid),

sample(0 : 10, j[3] x 10, replace = T, prob = vhbot))

dim(ul) = ¢(10, nn[1])

ul = t(ul)

J = table(sample(3,nn[2],rep =T))

u2 = rbind(array(c(sample(0 : 10, j[1]%5, replace = T, prob = vhtop),

sample(0 : 10, j[1] * 5, replace = T, prob = vitop)), dim = c(j[1], 10)),

array(c(sample(0 : 10, j[2]x5, replace = T, prob = vhmid), sample(0 :
10, j[2] % 5, replace = T, prob = vimid)), dim = c(j[2], 10)),

array(c(sample(0 : 10, j[3] * 5, replace = T, prob = vhbot), sample(0 :
10, 7[3] % 5, replace = T, prob = vlbot)), dim = ¢(j[3], 10)))

J = table(sample(3,nn[3|,rep =T))

u3 = rbind(array(c(sample(0 : 10, j[1]*5, replace = T, prob = vltop),

sample(0 : 10, j[1] x5, replace = T, prob = vhtop)), dim = c(j[1], 10)),

array(c(sample(0 : 10, j[2] * 5, replace = T, prob = vimid), sample(0 :
10, j[2] * b, replace = T, prob = vhmid)), dim = ¢(j[2], 10)),

array(c(sample(0 : 10, j[3] * 5, replace = T, prob = vlbot), sample(0 :
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10, 7[3] * 5, replace = T, prob = vhbot)), dim = ¢(j[3], 10)))
u = rbind(ul, u2,u3)
kk = c(apply(u, 1, sd) == 0)
uu < —array(, dim = ¢(1200, 10))
for(iin1:1200){uuli,| = uli,] — median(u[i,])}
gnnorm < —My.qn(t(uu))
fynorm < —My.qn(t(uu),1)
znorm < —t(apply(uu, 1, function(z)(z — mean(z))/sd(z)))
if(any(kk))znormlkk,] =0
dn < —hclust(dist(uuw))
dz = hclust(dist(znorm), method = "ward.D”)
dgn = hclust(dist(t(gnnorm)), method = "ward.D")
dfy = hclust(dist(t( fynorm)), method = "ward.D”)
nna < —sum(diag(comp3(table(cutree(dn,3),rep(1l : 3,nn)))))
)

ng < —sum(diag(comp3(table(cutree(dgn,3),rep(l : 3,nn)))))
)

nz < —sum(diag(comp3(table(cutree(dz,3),rep(1 : 3,nn))

nfy < —sum(diag(comp3(table(cutree(dfy,3),rep(1 : 3,nn)))))
nsim[l] = nsim|[l]4+nna; nsim[2] = nsim[2]+nz; nsim[3] = nsim|[3]+
ng; nsim[4] = nsim[4] + nfy
}
yy < —nsim/sim

return(yy)
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APPENDIX 2

Codes for Hierarchical Clustering Tree Prediction

Table 12: Description for Function or Package

Name Description
ward.pred | Our hierarchical clustering function with “ward” linkage.
Simward | Function for simulation study.

Our prediction function with “ward” linkage. The function for “single” link-
age and “complete” linkage etc. is the same just by replacing method=“ward”

with method="“single” or method=“complete”.

ward.pred = function(z1, 22, nc){
hq = hclust(dist(z1), method = "ward”)
cll = cutree(hgq, nc)
nnl = NULL;nn2 = NULL
zm = NULL
for(iin1:ne){
zm = cbind(zm, apply(z1[cll == i,],2, mean,na.rm = T))
}
for(jin1:nrow(z2)){
zz1p = rbind(z1, 22]7,])
nl = nrow(zz1p)
hql = hclust(dist(zz1p), method = "ward”)
for(iin1l: (nl—nc)){
cl2 = cutree(hql,nl — i)
jj < —(cl2[nl] == cl2[—n1])

i f(any(jj))break
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}
nnl[j] = cl1[j7][1]
nn2[j] = which.min(apply((zm — unlist(22[j,]))?, 2, sum,na.rm =
7))
}
cbind(nnl, nn2)
}

Function for simulation study

Simward < — function(n, Sim){

rll < —rl2 < —r2l < —r22 < —rep(0, Sim)

Ffor(tinl : Sim){
x = rnorm(2 xn)
dim(z) = ¢(n, 2)
r = apply(z,1,norm,”2”)
i = (r < 1.5&z], 1] >= 0)|(x], 1] < 0&abs(z[,2]) < 1.5)
it = (r < 2.25&x[, 1] >= 0)|(z[, 1] < 0&abs(z[,2]) < 1.5)
y =rnorm(4*n) %3
dim(y) = c¢(2*n,2)
yl, 1] =y[, 1]+ 1.5
ry = apply(y, 1, norm,”2")
J = (ry > 3&y[,1] >=0&y[,2] <=1)
Jj = (ry > 2.25&y[, 1] >= 0&y[,2] <=1)
zx = z[—(1:100),][#[—(1 : 100)],]
yy = y[=(1:100), ][5j[—(1 : 100)],]
xz0 = z[1 : 100, ][¢[1 : 100], ]
y0 = y[1 :100,][4]1 : 100],]
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rl = xx
yl=yy
u0 < —rbind(z0,y0)
ul < —rbind(zl,yl)

ward.pred(u0,ul,nc =2)— >r

r11[t] = 1 — nrow(z1fr[l : nrow(z1),1] == 1,])/nrow(x1)
r12[t] = 1—nrow(yl[r[(nrow(z1)+1) : nrow(ul), 1] == 2,])/nrow(yl)
r21[t] = 1 — nrow(z1[r[l : nrow(z1),2] == 1,])/nrow(zl)

r22[t] = 1—nrow(yl[r[(nrow(z1)+1) : nrow(ul), 2] == 2,])/nrow(yl)

}

rr < —rep(0, 6)

rr[l] < —sum(rll)/Sim;rr[2] < —sum(r12)/Sim;rr[3] < —sum(r21l)/Sim;
rr[d] < —sum(r22)/Sim

rr[5] < —rr[l] 4+ rr[2];rr[6] < —rr[3] + rri4]

return(rr)
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APPENDIX 3

Simulation Function for Dose and Cohort Size Adaptive Design

Adpttrs < — function(p,itr){
nnn < —rep(0,nd); zxx < —rep(0,nd); Nco < —0;rez < —rep(0, itr)
N = sub* gp
set.seed(123)
for(min 1 :itr){
nn < —xr < —r < —sig < —miu < —vary < —qd < —qs < —qe <
—qee < —tau < —pa < —pb < —skew < —rep(0, nd)
dose = stdose; st < —0;nodose < —0; maxdose < —1;toxdose < —nd +
1; seldose < —0; Nc =0
n < —rep(sub,nd)
for(jin1: gp){
if (st == 0&sum(nn) < N&dose >= 1&dose <= nd){
Nc=Nc+1
maxdose < —max(mazxdose, dose)
d = dose
zld] < —rbinom(1,n|[d], p|d])
nnld] = nnld] + n[d]; zx[d] = zz[d] + x[d]
mm < —N — sum(nn)
m0 = min(mm, sub)
ml = min(mm, sub+ aa)
m2 = min(mm, sub + 2 * aa)
m3 = min(mm, sub + 3 * aa)
m4 = min(mm, sub + 4 * aa)
pald) < —a + xzx|d]; pbld] < —b+ nnl|d] — zz|[d]
miuld] = pald]/(pald] + pbld])
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sigld] < —sqrt((pald] = pb[d])/((pald] + pb[d])* * (pa[d] + pbld] +1)))
varyld] = sig|d] /miuld]
skew(d] = 2 (pb[d] — pald]) * sqrt(pald] + pbld] + 1) / ((pald] + pbld] +
2) * sqrt(pald] * pbld]))
if(abs(skew[d]) > w){
qd[d] = pbeta(pt * exp(K2 * vary[d]), pa[d], pbld], lower.tail =
FALSE)
gsld] = pbeta(pt * exp(K2 * vary|d]), pald], pbld]) — pbeta(pt *

exp(—K1 % vary[d]),
[

pald], pbld])

ge[d] = pbeta(pt * exp(—K1 % vary[d]), pa[d], pb[d])
}
else{

<
QU

&
Il

pbeta(pt + v2 x sig[d], pald], pb[d], lower.tail = FALSFE)
gsld] = pbeta(pt +v2 x sig[d], pa[d], pb|d]) — pbeta(pt — v1 * sig|d],

ge[d] = pbeta(pt — v1 * sig[d], pa[d], pb[d])

}

if (pbeta(pt, pald], pbld], lower.tail = FALSE) > cut){tauld : nd] =
1}

else{tau[d] = 0}

if(tau[l] == 1){st = 1;nodose < —1;break}

if(d < nd){qeeld] = ge[d] x (1 — tau[d + 1])}

elseqee[nd] = qe[nd]

A = max(qd|d], qs[d], gee[d])

if((d>1)&(d < nd)){

if(qeeld] == A&qeeld] > ul&tauld + 1] == 1){tordose = dose +

1; dose = dose; n[dose] = mm}
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if(qeeld] == A&qee[d] > ul&tau[d+1] == 0&qd[d+1] > 0){dose =
dose + 1;n[dose] = m1}

if(gee[d] == A&gee[d] > ul&tau[d + 1] == 0&qd[d + 1] ==
0){dose = dose + 1;n[dose] = m1}

if(qeeld] == A&qee[d] <= ul&tau[d+ 1] == 1){tordose = dose +
1; dose = dose; nldose] = m4}

if(gee[d] == Alqeeld] <= ulltauld + 1] == 0&qd[d + 1] >
0){dose = dose 4 1;n[dose] = mO}

if(qeeld] == A&kgqeeld] <= ul&tauld + 1] == 0&qd[d + 1] ==
0){dose = dose + 1; n[dose] = m0}

if(gsld] == A&taul[d + 1] == 1){toxdose < —dose + 1;dose =
dose; n|dose] = m3}

if(gsld] == A&tau[d+1] == 0&qd[d+1] > 0){dose = dose; n|dose] =

m2}

if(gsld] == A&tau[d+1] == 0&qd[d+1] == 0){dose = dose; n[dose] =
m0}

if(qd[d) == A&tauld] == 0&qee|d—1] > ul){dose = dose; n[dose] =
m1}

if(qdld] == A&tau[d] == 0&gqeeld — 1] <= ul&gee[d — 1] >
0){dose = dose;n[dose] =m0}

if(qd[d] == A&tauld] == 0&gee[d — 1] <= ul&qeeld — 1] ==
0){dose = dose — 1;n[dose] = m0}

if (tauld] == 1&gqee[d — 1] > ul){toxdose < —dose;dose = dose —
1;nldose] = mm}

if(tau[d] == 1&qeeld — 1] <= ul&qgee[d — 1] > 0){toxdose <
—dose; dose = dose — 1;n[dose] = m4}

if(tauld] == 1&qeeld — 1] <= ul&qeel[d — 1] == 0){toxdose <

—dose; dose = dose — 1;n[dose] =m0}
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}
i(d == 1){
if(geeld] == A&qeeld] > ul&taul[d 4+ 1] == 1){toxdose = dose +
1; dose = dose; n|dose] = mm}
if(qgeeld] == A&qee[d] > ul&tau|d+1] == 0&qd[d+1] > 0){dose =
dose 4 1;n[dose] = ml}
if(gee[d] == A&qgee[d] > ul&tau[d + 1] == 0&qd[d + 1] ==
0){dose = dose 4 1;n[dose] = m1}
if(gee[d] == A&qee[d] <= ul&tau|d+1] == 1){dose = dose;n[dose] =
m4}
if(gee[d] == A&gqee[d] <= ul&tau[d + 1] == 0&qd[d + 1] >
0){dose = dose + 1;n[dose] = m0}
if(gee[d] == A&gee[d] <= ul&tauld + 1] == 0&qd[d + 1] ==
0){dose = dose + 1;n[dose] = m1}
if(gsld] == A&taul[d + 1] == 1){toxdose < —dose + 1;dose =
dose; n[dose] = m3}

if(gsld] == A&tau[d+1] == 0&qd[d+1] > 0){dose = dose;n|dose] =

m2}
if(gs]d] == A&taud+1] == 0&qd[d-+1] == 0){dose = dose; n[dose] =
mo}
if(qdld] == A&tau[d] == 0){dose = dose; n|dose] = m0}
}
if(d==nd){
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ml}

if(qdld] == A&taul[d] == 0&qee[d — 1] <= ul&gqgeeld — 1] >
0){dose = dose;n[dose] =m0}

if(qd[d] == A&tauld] == 0&gee[d — 1] <= ul&qeeld — 1] ==
0){dose = dose — 1;n[dose] = m0}

if (tauld] == 1&gqee[d — 1] > ul){toxdose < —dose;dose = dose —
1;nldose] = mm}

if(tauld] == 1&gqeeld — 1] <= ul&gee[d — 1] > 0){toxdose <
—dose; dose = dose — 1;n[dose] = m4}

if(tauld] == 1&qeeld — 1] <= ul&qeeld — 1] == 0){toxdose <
—dose; dose = dose — 1;n[dose] = m0}

}

}
Nco= Nco+ Nc

i f(nodose == 0){
tdose < —min(mazdose, toxdose — 1)
pp < —rep(—100, tdose)
pp.var < —rep(0, tdose)
for(iinl : tdose){
if (pali]! = 0){
ppli] < —pali]/(pali] + pbli])
pp-varli] < —(pali] * pbli]) /((pali] + pb[i])? * (pali] + pbli] + 1))

}

pp < —pava(pp,wt = 1/pp.var)
for(iin2 : tdose){

ppli] < —ppli] +i % 1E — 10
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}

seldose < —order(abs(pp — pt))[1]
}
rezlm] < —seldose;
for(iin1:nd){

aaa < —rep(0,nd)
for(iin 1 : nd){aaali] < —sum(rez ==1)/itr}
sbn = round(nnn/itr, 1)
ae = round(xxz /itr, 1)
r = round(100 x ae/sbn, 1)
select = round(100 * aaa, 1)
NNco < —round(Nco/itr, 1)
ntotal = round(sum(nnn)/itr, 1)
ww < —cbind(select, sbn, ae, r)
result = c(as.vector(ww), N Nco,ntotal)

return(result)
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