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ABSTRACT OF THE DISSERTATION

Single Image deblurring with or without face prior and its
applications

by Lin Zhong

Dissertation Director: Dimitris Metaxas

The motion blur is one of the most difficult challenges in photography, which is generated

from the relative motion between the sensor and the scene during exposure time. These blur

artifacts degrade the visual experience, and the performance of various applications, such as,

object detection, facial analysis. Therefore, it is significant to remove the blur and restore sharp

and clean images. Our work focuses on the general single image deblurring, and face image

deblurring with face prior.

State-of-the-art single image deblurring techniques are sensitive to image noise. Even a

small amount of noise, which is inevitable in low-light conditions, can degrade the quality

of blur kernel estimation dramatically. We propose a new method for handling noise in blind

image deconvolution based on new theoretical and practical insights. Based on the observations

on directional filter, our method applies a series of directional filters at different orientations to

the input image, and estimates an accurate Radon transform of the blur kernel from each filtered

image. Finally, we reconstruct the blur kernel using inverse Radon transform. Experimental

results on synthetic and real data show that our algorithm achieves higher quality results than

previous approaches on blurry and noisy images.

The human face is one of the most essential focuses in numerous applications. Although
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significant progress has been made in the image deblurring area, few of them can obtain promis-

ing results on blurry face images. Many state-of-the-art single image deblurring approaches

estimate the blur kernel based on analyzing the edge profiles of the input image. However, the

detection of strong edges is very difficult on human faces, since the human faces do not contain

as much texture as natural images. We propose to utilize the global face structure information

to help with the strong or salient edge detection. Our method outperforms the existing methods

in extensive evaluations on synthetic and real face images.

Facial expression is a significant application on sharp and restored face images. To improve

the general facial expression recognition performance, we present a new idea to analyze facial

expression by exploring the common and specific information among different expressions.
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Chapter 1

Introduction

With the development of hand-held cameras and smartphones, people take more and more

photos than before. However, the conditions for the photography may not be ideal in our daily

lives, such as, indoors, low light environment. In these cases, amateur photographers often

get blurry and noisy photos. Usually, retaking the image with the same content is impossible.

Besides daily life photos, blur also happens to satellite imaging, video recording and so on. It

is really important to develop an efficient, robust and fast deblurring method to restore a sharp

image with an blurry input. Although many methods have been proposed to solve this problem,

they can not restore promising latent images in many real cases. This thesis tries to contribute

to the single image deblurring area, and the proposed methods show their superiority over the

state-of-the-art methods in many aspects.

1.1 Background

The single image deblurring or blind deconvolution problem has attracted much attention since

early 1960s. However, it is very difficult to develop an efficient and robust method for various

blurry images since little or no general prior can be applied to diverse images. Thus, until now,

it is still an open question for the image processing and computer vision community.

Generally speaking, the image blur degradation is generated from the imperfection during

the capturing and imaging process. The degradation is quite complicated in real cases and could

result from different sources, such as out-of-focus blur, low-pass filter, motion blur, moving ob-

jects or combination of them. Some sample blurry images are shown in Fig. 1.1. The underline

reasons incurring different types of blur are different, so various methods are proposed to solve

different types of blur respectively.

Out-of-focus blur happens when the desired object is not in the proper distance when
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(a) out-of-focus blur (b) low-pass filter (c) motion blur

(d) moving object (e) combination

Figure 1.1: Some examples with different types of blur.

capturing. When the 3-D scene with objects of different depth is projected to a 2-D image

plane, some objects would be out-of-focus, and produce blur artifacts. The proper distance

is defined by the lens focal length and the aperture of the camera. Only the objects with the

proper distance can be captured sharply. Since the degree of defocusing is largely related to the

depth of the objects from the camera and the wavelengths, the blur can be modeled by geometry

properties. Grossmann [39], Darrell and Wohn [28] tried to extract the depth information of

the scene by measuring the degree of the blur. More recently, Shen et al. [76] derived a blur

map using local contrast prior and the guided filter, and then utilized the L1− 2 norm prior to

obtain a better restored image.

Low-pass filter blur is the result of filtering an image with a low pass filter, such as a 2-D

Gaussian function. This type of blur normally occurs in a number of situations, such as the

atmospheric turbulence blurs the astronomical images, low resolution images. Since these blur

in practice can be approximated by a Gaussian blur, Hummel et al. [43] proposed an approach

to deblur the Gaussian blur by restricting the band-limited functions. More generally, the Gaus-

sian blur or low-resolution problem are considered as super-resolution problems. Suppose the

restored image is natural and can be composed by a combination of small patches learned from
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natural images or selected examples, Yang et al. [103] provided a promising method to produce

super-resolution images.

Moving object blur normally occurs in dynamic scenes with one or multiple moving ob-

jects relative to the static scene. The moving direction and speed in the 3D scene are difficult

to estimate from a 2D blurry image, and thus dynamic scene deblurring is deeply challenging.

In [54], an adaptive segmentation method is utilized to separate the moving object from the

static scene, and the blur kernels are modeled independently with the corresponding data term

and regularization term.

Motion blur, which generates from the relative motion between the recording sensor and

the static scene during the exposure time, is one of the major sources of the blur. Motion

blur normally happens to hand-held camera in low-light condition when the exposure time

is long. The blurry image is normally modeled as the convolution result of the latent sharp

image and the motion blur, which can be considered as the trajectory of the recording sensor.

The deblurring methods are generally categorized into two types : blind deconvolution and

non-blind deconvolution methods. Blind deconvolution methods need to recover both the blur

kernel and the latent image from the single input blurry image [19, 56, 58, 75]. More literature

reivew can be found in the Relevant work Sec 2.1.

On the other hand, for non-blind deconvoluiton methods, the blur kernels are given, and

only the latent images are needed to be recovered. So they could be considered as one com-

ponent of the blind deconvolution method. Since the convolution is a linear operator, classical

linear image restoration is firstly used to solve this problem [50, 67]. Later, more priors are

employed to generate more promising latent images, such as, the local salient edge prior [75],

models of natural image patches [120], generic vs specific priors [77]. Cho et al. [20]

also proposed a method to handle the outliers i.e., saturated pixels and non-Gaussian noise in

convolution.

In the deblurring areas, there are many research topics regarding to different kinds of blurs

as mentioned above. Since the motion blur is a commonly seen degradation, and happens to

most handlheld cameras, our thesis will focus on single image deblurring, which recovers the

latent image and blur kernel from a single input blurry image.
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1.2 Problem Statement

Low-light photography is very common in our daily life. In such situations, the camera would

slow its shutter speed and increase the exposure time. The motion during the exposure time is

unavoidable to hand-held cameras. Even some cameras are equipped with vibration reduction

function, it is still very common for amateur photographers to get blurry images, especially

in low-light conditions. The blur results from the movement of the camera or the capturing

sensor, then the blurry image can be approximated as the convolution result of the latent sharp

image and the blur kernel. Moreover, the blurry image also contains a lot of noise because of

the long exposure time and high ISO setting. With slower shutter speed, the amount of salt-

and-pepper noise will increase because of the photo-diode leakage currents. High ISO setting

will amplify the take-in signal including noise, and make the imaging sensor more sensitive to

noise. Thus, we normally get more blurry and noisy images in low-light conditions than ideal

light environments.

The blur and noise of the images degrade the visual experience greatly, and the photo retake

is impossible in most of the cases. Thus, restoring the latent sharp images from blurry and noisy

images is of great significance. Many approaches have been proposed to solve the deblurring

problem, but the noise effects are largely ignored. Unfortunately, the noise would be amplified

in solving the convolution linear system, and thus most of the existing deblurring methods

would fail when the noise occurs in real cases. One of the major problems we would like to

solve in this thesis is how to handle the noise in single image deblurring.

Human faces are the most important and attractive areas in the photos. The deblurring

and refinement of the face is even more important than other areas in an image. Most of the

existing deblurring methods focus on the natural images without considering the properties

of human faces. Since human face does not follow the priors learned from natural images,

and also does not contains much salient edges, most existing methods fail in recovering high

quality face images from blurry images. On the other hand, the face structure information

has been largely utilized in many other applications, such as face detection, facial landmark

localization. Another major goal for our thesis is exploring good ways to employ global face

structure information in face image restoration and refinement.
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The restoration of sharp face images from blurry images would be beneficial to many face

related applications, such as face identification, facial expression analysis. These applications

would get better performance on sharp face images than blurry face images. The problem of

how to boost the facial expression recognition performance is also discussed in our thesis.

1.3 Main Contributions

The main contributions of this thesis are summarized as follows:

1) Since most state-of-the-art single image deblurring methods are sensitive to noise, and noise

is also unavoidable in low-light photography, we proposed a new method to handle noise in

blind image deconvolution based on new theoretical and practical insights. We found that

applying a directional low-pass filter to the input blurry and noisy image can greatly reduce

the noise level, while preserving the blur information in the orthogonal direction to the

filter. Based on this observation, we proposed a noise-aware kernel estimation method by

applying a series of directional filters in different directions. After the kernel is estimated,

we introduced a final noise-aware nonblind deconvolution method to restore a sharp and

clean image from the input blurry image.

2) The performances of most single image deblurring methods degrade greatly on face im-

ages, since the texture on face is limited, and salient edge detection is very hard on blurry

face image. The face landmark localization can implicitly help the salient edge detection

since its model contains the information of the face structure. We proposed a face image

deblurring method based on the face landmark detection. Extensive experiments show the

effectiveness of the proposed face deblurring method. The face deblurring algorithm can

be used as the preprocessing before various facial analysis, and thus boost the recognition

performance.

3) In the facial expression recognition area, we provided a solid validation for an important

psychology discovery, that only partial area of the face (corresponding to underlying fa-

cial muscles) are discriminative for expression recognition. A two-stage multi-task sparse

learning framework is proposed to formulate the commonalities among expressions, and
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to find out the locations of common and specific patches for expressions. Multi-scale im-

age division strategy is utilized to generate patches of different size for facial expression

analysis. More convincing conclusion about facial parts (muscles) could be achieved, since

they are of different sizes. The common and specific patches can be combined to improve

the performances of state-of-the-arts. Patches across different scales can also been fused to

further boost the performance.

1.4 Organization

The remainder of this thesis is organized as follows.

Chapter 2 reviews the relevant work in single image deblurring, and further image deblur-

ring with face prior. Besides reviewing the existing deblurring methods, we also analyze their

advantages and limitations. The literature of the facial expression recognition is also reviewed,

since it is an important application on the restored face image.

Chapter 3 introduces the proposed single image deblurring method based on the directional

filter in detail. It includes the introduction and proof of the directional filter, which can greatly

reduce the noise, while keeping the blur information intact in the orthogonal direction. The

details of the noise-aware kernel estimation and final nonblind deconvolution are also illustrated

in this chapter.

The method proposed in the previous chapter can not handle face image well, since salient

edges are difficult to detect on face images. Chapter 4 introduces how to employ face landmark

detection (containing the face structure prior) to help the face image deblurring. The robustness

of landmark detection on blurry image is first illustrated. The details of how to generate the

initial blur kernel based on the landmark detection results and the later iterative algorithm are

included.

In chapter 5, the facial expression recognition on face image is introduced. More specif-

ically, it is a multi-scale active patch learning algorithm based on multi-task sparse learning.

This chapter introduces how to construct multiply tasks of expression recognition, and how

to employ multi-task sparse learning to explore the common and specific patches, which can

further improve the recognition performance.
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Finally, chapter 6 summarizes the work and contributions of this thesis, along with more

discussions about the limitations and the future work.
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Chapter 2

Relevant Work

2.1 Single Image Deblurring

Single image deblurring, or blind deconvolution, has been studied for decades. In this problem

a blurry image b is modeled as:

b = l ∗ k + n, (2.1)

where l is the latent sharp image, k is the blur kernel, and n is noise. Estimating k and l from a

single observation b is a severely ill-posed problem, requiring additional assumptions or priors

on k and l to make the the estimation possible.

In the last ’90s, Yitzhaky et al. [107] proposed to use parametric blur kernels to model the

k. The directional blur kernels are defined by angle and length, which only have one dimen-

sion. Rav-Acha [66] also modeled the motion blur in a similar parametric way. However, the

shapes of the real motion blurs are quite complex and more complicated than simple parametric

models. The parametric blur kernel would be a too restrictive assumption for real cases, and

thus these methods fail very often and can not get high-quality results.

More recently, Some previous methods took the MAPk,l approach to jointly estimate k

and l [34,75]. To better constrain the problem, these approaches force the estimated l to satisfy

the natural image prior, i.e., the gradient magnitudes of l follows a heavy-tailed distribution.

Although these methods can work well in some cases, they suffer from the well-known MAP

failure [57] that often leads to non-satisfactory results in practice. The high computational cost

of these methods further hinders their practical usage.

On the other hand, the MAPk framework has recently emerged as a practical deblurring

solution for handling real world data. Representative approaches are developed by Cho and

Lee [19], Xu et al. [100], Cho et al. [21], Joshi et al. [47], Lin et al. [117], and Jia
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[45]. These approaches first explore edges and estimate k only, which is a better-constrained

problem than MAPk,l, and then apply a non-blind deconvolution method to recover l given the

estimated k. A common property of these methods is that they all extract and rely on some

“good” image edges, rather than the entire image, to estimate k. Thus, how to select proper

edges to use becomes a critical issue for these edge-based kernel estimation methods. Previous

approaches have shown the importance of the selected edges, which should be strong and well-

separated from nearby image structures, and then the blur information can be extracted reliably

from them. For instance, Cho and Lee [19] and Lin et al. [117] identify edges with highest

gradient magnitudes; Xu et al. [100] utilizes the usefulness map to eliminate small edges; Cho

et al. [21] and Joshi et al. [47] explicitly detect step or sharp edges on blurry image using a

set of heuristic rules. Hu et al. [41] tries to explore good regions for deblurring.

2.2 Face Image Deblurring

The faces are the most informative and important areas on face images. However, we often get

blurry face images in low-light photography. The restoration of the blurry faces is even more

important. Unfortunately, the previous methods do not perform well on face images mainly for

two reasons: first, the face images are quite different from natural images, and the prior learned

on natural images can not be applied directly. Second, the human faces do not contain much

salient edges. Most of the edges are soft edges and hard to detect. There are only quite few

deblurring approaches are proposed to handle face blurry image specifically. Pan et al. [63]

tries to find exemplar sharp image which is similar to the blurry image, and transfer the edge

gradients in the exemplar images to deblur the blurry face image. The main problem for this

method is the exemplar database can not be completed enough to match arbitrary faces with

various poses, expressions, and shapes.

2.2.1 Facial Landmark Localization

Facial landmark localization has been studied for many years in computer vision area, which

would be beneficial to many applications, including face recognition, facial expression analysis,

video editing. The methods to locate the facial landmarks can be generally categorized into two
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categories: parametric template based methods and regression based methods.

Early successes in facial landmark localization are achieved by the well-known framework

of the Active Shape Model (ASM) [8] and the Active Appearance Model (AAM) [25]. These

methods fit a generative model of the global facial appearance to a given image by optimizing

over the template’s parameter space. So these methods are effective for many cases, and robust

to local corruptions. However, these methods need expensive iterative steps to get the optimal

solution, and also very easy to break down on extreme poses, and expressions, due to the

limitations of the model flexibility.

Recently, new regression based methods [12, 26, 99] have been proposed. These methods

consider landmark localization as a regression task directly and and a holistic regressor is used

to compute the landmark coordinates from raw input pixels. These methods overcome some

disadvantages of parametric based methods because of their greater flexibility and effective

sub-pixel localization capability. These methods are also more efficient since no iterative fitting

step is required. Powerful deep convolutional neural networks (DCNN) have been successfully

utilized in the regression framework [105, 119]. These methods achieve two-fold advantages:

1) geometric constraints among facial points are implicitly utilized; 2) huge amount of training

data can be leveraged, and thus the state-of-the-art performance.

2.3 Facial Expression Analysis

Most facial expression analysis methods generally follow the aforementioned two categories:

AU-based and message and sign judgement methods. Although our method belongs to the

latter category, it is still necessary to give a completed review on related works on expression

analysis.

AU-based facial expression analysis inspired by the well-known study on facial activity,

Facial Action Coding System (FACS) [31]. In this system, the subtle changes in facial appear-

ance are encoded into 32 action units (AUs) with individual linguistic description. Since each

basic expressions can be decomposed into several related AUs, the expression recognition prob-

lem can be transferred to AUs detection problem. Bartlett et al. [5] recognized six single upper

face AUs, but no simultaneous AUs are considered in combination. Tian et al. [81] detected



11

16 AUs from face image sequences using lip tracking, template matching and neural networks.

More works have been done on spontaneous facial expression data by automatic recognition of

AUs [6,7,22,23,46,91]. Some differences between spontaneous and deliberate facial behavior

are also studied by [24]. Recently, AU detection and AU-based expression recognition meth-

ods make a lot of significant progresses. Tong et al. [85] explore the dynamic and semantic

relationships of facial AUs to improve their recognition performance. A dynamic Bayesian

network is built by Tong et al. [84] for better facial activity understanding. Senechal et al. [72]

combines different types of features using SimpleMKL learning algorithm to extract geometric

and appearance information simultaneously. Sandbach et al. [69, 70] exploit 3D motion-based

features between frames of 3D facial geometry sequences for dynamic AU detection and fur-

ther expression recognition. AU-based methods decompose the facial expressions into different

individual muscle activities, and then infer the expression categories based on the AU detection

results. These methods can have great representation power, but AU detection itself is quite

difficult and it is still an open problem to the community.

Message and sign judgement facial expression analysis methods generally consist of the

two main steps: facial representation and expression recognition.

Facial representation derives a set of features from original facial images to effectively

represent all faces. Different features have been applied to either the whole-face or specific

face regions to extract the facial appearance changes, such as Gabor [6, 40, 60], haar-like fea-

tures [96], local binary patterns (LBP) [62, 73]. Zafeirious et al. [110] explored the graph

structures with landmarks to represent the variations among different expressions. In Shan et

al. [74], facial images are equally divided into small regions, and then LBP features are ex-

tracted from these empirically weighted sub-regions to represent the facial appearance. The

LBP features are shown to be effective in expression recognition, so our method will also uti-

lize the LBP features with the same sub-region division strategy. Different from their work, we

will focus on learning the effective sub-regions statistically.

Expression recognition aims to correctly categorize different facial representations. Support

Vector Machine (SVM) [6, 74, 104] is the most popular and effective learning method in facial

expression recognition. Shan’s work [74] is the most similar work with ours, so it will be

considered as the baseline. For fair comparison, our method will also employ SVM as the the
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classification algorithm.

Besides these works, there are also some works utilizing the geometric features [14, 64,

65, 116], such as the location of facial feature points (corners of the eyes, mouth, etc.). Some

methods perform facial expression analysis based on 3D face models [14,71,106]. More works

on fusion of audio and visual information can be found in [111].

2.3.1 Multi-task Sparse Learning

Sparsity methods have attracted much attention in computer vision, multimedia and medical

image communities, and have been employed in many applications, such as face recogni-

tion [97], background substraction [42], image annotation and retrieval [114], and shape prior

based segmentation [115]. Many algorithm are proposed to solve these problems of sparsity

priors, such as greedy methods (basis pursuit (BP) [16], matching pursuit [61], orthogonal

matching pursuit (OMP) [86]), or L1 norm relaxation and convex optimization [11, 35, 52].

Multi-task sparse learning is an inductive transfer machine learning approach. It aims to

learn a problem together with some related problems for better performance [13, 29]. Multi-

task sparse learning is then designed in [3] for feature selection, through encouraging multiple

predictors from different tasks to share similar parameter sparsity patterns. Multi-task sparse

learning also obtained a rewarding performance on handwritten character recognition in [36].

Yuan et al. [109] developed a visual classification algorithm by learning the shared parts among

different representation tasks. Recently, Chen et al. [15] provided a faster solution to multi-task

sparse learning problems.

Suppose there are T related tasks, and (xti, y
t
i), i = 1, 2, ..., Nt is the training set of task

t, where each sample is represented by K-dimensional features, xti ∈ RK , and yti ∈ {−1, 1}

indexes xti is negative or positive. wt is a K-dimensional vector of representation coefficients

for task t. All the wts are the rows of the matrix W = [wtk]t,k, while every column of the

matrix W is a T -dimensional vector that means the representation coefficients from the k-th

feature across different tasks, wk = [w1
k, w

2
k, ..., w

T
k ]
′. Multi-task sparse learning aims to learn

the shared sparse information among all the tasks. The formulation with L1/L2 mixed-norm
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regularization is as follows:

argmin
W

T∑
t=1

1

Nt

Nt∑
i=1

J t(wt, xti, y
t
i) + λ

K∑
k=1

‖wk‖2 (2.2)

where J t(wt, xti, y
t
i) is the cost function of the tth task, λ is a constant to balance the spar-

sity, and
∑

is the mathematic format for L1 norm. The regularization term encourages most

columns of matrix W to be zero, and the remaining non-zero columns indicate the correspond-

ing features are shared features across all the tasks.
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Chapter 3

Single Image Deblurring using Directional Filters

3.1 Problem Background

Taking handheld photos in low-light conditions is challenging. Since less light is available,

longer exposure times are needed – and without a tripod, camera shake is likely to happen

and produce blurry pictures. Increasing the camera light sensitivity, i.e., using a higher ISO

setting, can reduce the exposure time, which helps. But it comes at the cost of higher noise

levels. Further, this is often not enough, and exposure time remains too long for handheld

photography, and many photos end up being blurry and noisy. Although many techniques have

been proposed recently to deal with camera shake, most of them assume low noise levels. In

this work, we do not make this assumption and aim to restore a sharp image from a blurry and

noisy input.

Many single image blind deconvolution methods have been recently proposed [19, 21, 34,

37, 47, 53, 57, 75, 100]. Although they generally work well when the input image is noise-free,

their performance degrades rapidly when the noise level increases. Specifically, the blur kernel

estimation step in previous deblurring approaches is often too fragile to reliably estimate the

blur kernel when the image is contaminated with noise, as shown in Fig. 3.1. Even assuming

that an accurate blur kernel can be estimated, the amplified image noise and ringing artifacts

generated from the non-blind deconvolution also significantly degrade the results [20, 48, 108,

112].

To handle noisy inputs in single image deblurring, Tai and Lin [78] first apply an existing

denoising package [2] as preprocessing, and then estimate the blur kernel and the latent image

from the denoised result. This process iterates a few times to produce the final result. However,

applying existing denoising methods is likely to damage, at least partially, the detailed blur
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(a) Input (b) Cho and Lee [19] (c) Levin et al. [58] (d) Our method

Figure 3.1: Previous deblurring methods are sensitive to image noise. (a) Synthetic input image
with 5% noise and the ground truth kernel (overlayed). It is cropped to better show blur and
noise. (b) Estimated kernel and latent image by Cho and Lee [19]. (c) Results by Levin et al.
[58]. (d) Results of our method.

information that one can extract from the input image, thereby leading to a biased kernel esti-

mation. In 3.2, we illustrate that standard denoising methods, from bilateral filtering to more

advanced approaches such as Non-Local Means [10] and BM3D [27], have negative impacts

on the accuracy of kernel estimation.

In this chapter, we propose a new approach for estimating an accurate blur kernel from a

noisy blurry image. Our approach still involves denoising and deblurring steps. However, we

carefully design the denoising filters and deblurring procedures in such a way that the esti-

mated kernel is not affected by the denoising filters. That is, we shall see that, unlike existing

approaches, we can theoretically guarantee that our approach does not introduce any bias in the

estimated kernel.

Our approach is derived from the key observation that if a directional low-pass linear filter

is applied to the input image, it can reduce the noise level greatly, while the frequency content,

including essential blur information, along the orthogonal direction is not affected. We use this

property to estimate 1D projections of the desired blur kernel to the orthogonal directions of

these filters. These projections, also known as the Radon transform, will not be affected by

applying directional low-pass filters to the input image, except for the noise reduction. Based

on this observation, we apply a series of directional low-pass filters at different orientations,

and estimate a slice of kernel projection from each image. This yields an accurate estimate of

the Radon transform. Finally, we reconstruct the blur kernel using the inverse Radon transform.

Once a good kernel is obtained, we incorporate denoising filtering into the final deconvolution

process to suppress noise and obtain a high-quality latent image. Results on synthetic and
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real noisy data show that our method is more robust and achieves better results than previous

approaches.

3.2 Side Effects of Denoising as Preprocessing

Before introducing our approach, we first analyze the negative impact of employing denoising

as preprocessing on kernel estimation. In single image deblurring, a blurry and noisy input

image b is usually modeled as:

b = ` ∗ k + n, (3.1)

where `, k and n represent the latent sharp image, blur kernel, and additive noise, respectively,

∗ is the convolution operator. Solving ` and k from input b is a severely ill-posed problem, and

the additional noise n makes this problem even more challenging.

Assuming that ` is known, a common approach to solve for k is:

k = argmin
k

{
‖b− k ∗ `‖2 + ρ(k)

}
, (3.2)

where ρ(k) is the additional regularization term that imposes smoothness and/or sparsity prior

on k. Without considering the regularization term, this becomes a least-squares problem and

the optimal k can be found by solving the following linear system:

LTLk = LTb = LT (b′ + n), (3.3)

where k and b are the corresponding vector forms of k and b, respectively, and L is the matrix

form of `. We also introduce the noise-free blurry image b′ = b− n. We estimate the relative

error of k with respect to the noise in b using the condition number of the linear system, that

is:

e(k)

e(b)
=
‖(LTL)−1LTn‖/‖(LTL)−1LTb′‖

‖LTn‖/‖LTb′‖
≤ ‖(LTL)‖ · ‖(LTL)−1‖ = κ(LTL), (3.4)

where e(k) and e(b) are relative errors in k and b, respectively. Thus, the noise n in the

input image will be amplified at most by the condition number κ(LTL) for kernel estimation,
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(a) Input (b) True kernel (c) No denoising (d) Gaussian filter

(e) Bilateral filter (f) Non-local means (g) BM3D (h) Our method

Figure 3.2: The side effects of employing different denoising methods as preprocessing step
in single image deblurring. (a) the synthetic input image with 5% noise. (b) the ground truth
kernel. (c) the blur kernel estimated without applying any denoising method to the input image
(a). (e)-(g) the estimated blur kernels after applying different denoising filters. (h) the kernel
estimated by our method.

where LTL is often called the deconvolution matrix and has a block-circulant-with-circulant-

block (BCCB) structure [51]. Eq. 3.4 shows that the upper bound on the error in the estimated

kernel is proportional to the amplitude of the noise in input image. Building on this result,

one can attempt to apply sophisticated denoising filter to the blurry image to reduce the noise

amplitude, hoping that this will improve the kernel estimate. However, denoising filters also

alter the profile of edges, e.g., [9]. This information is critical to accurate kernel estimation,

and as we shall see, the benefits of the noise reduction are often outweighed by the artifacts

caused by the profile alteration.

To illustrate it, we first look at a simple noise reduction method, Gaussian smoothing. Con-

volving with a Gaussian Gg decreases the noise level. However, the kernel estimation then

becomes:

kg = argmin
kg
‖b ∗Gg − ` ∗ kg‖2

= argmin
kg
‖(` ∗ k + n) ∗Gg − ` ∗ kg‖2

≈ argmin
kg
‖` ∗ (k ∗Gg − kg)‖2 = k ∗Gg, (3.5)

where k is the blur kernel for the original input image and kg is the optimal solution after

Gaussian denoising. Eq. 3.5 shows that the estimated kernel kg is a blurred version of the
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actual kernel k. Further, since Gg is a low-pass filter, the high frequencies of k are lost and

recovering them from kg would be very difficult, if possible at all. This result comes from the

initial noise reduction and is independent of the kernel estimation method.

Although more sophisticated denoising methods are better at preserving high frequencies,

denoising remains an open problem for which no perfect solution exists. Since no information

about the blur kernel can be observed in uniform regions of the blurry image, edges are the main

source of information that drives deblurring algorithms either implicitly or explicitly, e.g., [19,

21, 47, 100]. Even small degradations introduced by state-of-the-art denoising techniques can

have a strong impact on deblurring results as shown in Fig. 3.2. In this experiment, we apply

bilateral filtering [83], non-local means [10] and BM3D [27] to a test image with 5% noise, i.e.,

noise of standard deviation 0.05 when the intensity range is [0, 1], and then use Cho and Lee’s

method [19] to estimate the blur kernel. The estimated kernels are not accurate due to the side

effects of denoising.

The recent approach of Tai and Lin [78] first applies an existing commercial denoising

package (NeatImage [2]) to the input image, then iteratively applies a motion-aware non-local

mean filtering and deblurring to refine the results. Although special treatment has been added

into the process, both the commercial denoising package and the non-local means filter have

the same negative impacts on kernel estimation as we will show in 3.4.

3.3 Methodology

In the previous section, we have shown that there is a tension between noise reduction and

edge preservation. The former helps to estimate a more accurate kernel, but the latter hinders

it. Our experiments showed that even state-of-the-art denoising filters do have negative impacts

on kernel estimation. In this section, we resolve this problem by using directional blur and the

Radon transform to estimate the kernel. Our approach reduces the noise without degrading blur

information, thereby producing better kernels.
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3.3.1 Applying directional filters

We now show that directional low-pass filters can be applied to an image without affecting its

Radon transform, while decreasing its noise level. We consider the directional low-pass filter

fθ:

I(p) ∗ fθ =
1

c

∫ ∞
−∞

w(t)I(p+ tuθ)dt, (3.6)

where I is an image, p is a pixel location, t is the spatial distance from one pixel to p, c is

the normalization factor defined as c =
∫∞
−∞w(t)dt, and uθ = (cos θ, sin θ)T is a unit vector

of direction θ. The profile of the filter is determined by w(t), for which we use a Gaussian

function: w(t) = exp(−t2/2σ2f ), where σf controls the strength of the filter.

Filtering the image affects the estimated kernel. With the same argument as for Eq. 3.5, the

kernel that we estimate from the filtered image bθ = b ∗ fθ is:

kθ = k ∗ fθ. (3.7)

Similarly to filtering with a 2D Gaussian Gg, applying fθ averages pixels and reduces the

noise level. Since fθ filters only along the direction θ, it has nearly no influence on the blur

information in the orthogonal direction. We exploit this property to estimate the projection

of the original kernel k along the direction θ. The projection can be formulated as Radon

transform [21,82], which is the collection of integrals of a signal (i.e., k) along projection lines.

The particular value on Radon transform corresponding to one projection line ρ = x sin(θ) +

y cos(θ) is:

Rθ′(ρ) =

∫ ∫
k(x, y)δ(ρ− x sin(θ)− y cos(θ))dxdy, (3.8)

where k(x, y) indicates the value at the coordinate (x, y) on kernel k. θ and ρ are the angle and

offset of the projection line, respectively. Thus, the projection of kernel kθ along the projection

direction θ is:

Rθ′(kθ) = Rθ′(k ∗ fθ) = Rθ′(k) ∗Rθ′(fθ) = Rθ′(k), (3.9)

where Rθ′(·) is the Radon transform operator to the direction θ′, and θ′ = θ + π/2. It is a

linear operator, and one can verify that Rθ′(fθ) is a 1D delta function, given the definition of

fθ (Eq. 3.6). Eq. 3.9 shows fθ has no impact on the Radon transform of the blur kernel to the
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orthogonal direction of the filter. This is the foundation of the proposed approach. An example

is shown in Fig. 3.3.

No noise 

(a)

Noisy 

(b)

Directional filter 

Noisy + filter 

(c)

x 

y 

PSF 

(d)

PSF 

x 

(e)

PSF 

x 

y 

(f)

Figure 3.3: Directional denoising mechanism in single image deblurring. (a)(b)(c) are the
synthetic image before adding noise, after adding noise, and after applying a directional
filter(θ = 3π/4), respectively. (d)(e)(f) are the corresponding estimated blur kernels and their
Radon transforms in the same direction. Note that the estimated kernel in (f) is largely damaged
by the directional filter, but its Radon transform is the same as the one in (d).

3.3.2 The algorithm

We now explain how we recover the sharp image, with the kernel estimation first, and then the

deconvolution step.

Noise-aware kernel estimation

Based on the above analysis, we apply a directional blur fθ, estimate the combined blur kernel

kθ, and then project it along the same direction of the filter to get the corresponding Radon
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Algorithm 1 Multiscale noise-aware blind deconvolution

Input: The pyramid {b0, b1, ..., bn} by down-sampling the input blurry and noisy image b,
where b0 = b.
Output: blur kernel k0 and latent image `0.

1: Apply an existing nonblind approach ( [19] in our implementation) to estimate ki and `i
for bi,i = n, ..., 1.

2: Upsample `1 to generate initial `0.
3: repeat
4: Apply Nf directional filters to the input image b0, each filter has a direction of i · π/Nf ,

i = 1, ..., Nf , where Nf is the number of directional filters.
5: For each filtered image bθ, use `0 as the latent image to estimate kθ.
6: For each optimal kernel kθ, compute its Radon transform Rθ′(kθ) as in Eq. 3.9, along

the direction θ′ = θ + π/2.
7: Reconstruct k0 from the series of Rθ′(kθ) using inverse Radon transform.
8: Update `0 based on the new k0 using a noise-aware nonblind deconvolution approach.
9: until k0 converges.

10: With the final estimated kernel k0, use the final deconvolution method described in 3.3.2 to
generate the final output `0.

transform. We repeat this process to get a set of projections. Finally, we compute the 2D kernel

using the inverse Radon transform [82]. The advantage of this strategy is that it greatly reduces

noise when applying fθ, while keeping the computed Radon transform intact. However, so far,

we have assumed that the latent image ` is known when estimating the blur kernels. This is not

the case in practice, and even with state-of-the-art kernel estimation techniques, recovering kθ

from bθ, which is a blurry image convolved with an additional directional blur, has proven to be

challenging. The additional filter tends to make nearby edges “collide” with each other, which

in turn introduces errors in the estimated kernel.

For a more reliable kernel estimation, we adopt the multiscale blind deconvolution frame-

work commonly used in previous approaches [19, 100]. We create an image pyramid of the

input image b as {b0, b1, ..., bn}, where b0 is the original resolution, and estimate the blur ker-

nel in a bottom-up fashion from bn to b0. Since noise is largely removed by image downsizing,

we apply an existing approach by Cho and Lee [19] to estimate the blur kernels ki and latent

images `i from layer bn to b1. Only for the full resolution layer b0, we apply the directional

filter fθ and then estimate the kernel using the robust deconvolution technique described later

in this section. The process is described in Algorithm 1. Steps 4 to 7 are also illustrated in
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PSF Reconstruction 

Figure 3.4: Illustration of applying directional filters for blur kernel estimation from a noisy
input image. We apply directional filters in different orientations to the input image. From
each filtered image a corresponding kernel is computed first, then projected along the same
direction to generate the correct radon transform of the true kernel. The final blur kernel k0 is
reconstructed using inverse Radon transform [21].

Fig. 3.4. Specifically, in Step 5, although each filtered image bθ is severely blurred with the ad-

ditional filtering, the latent image `0, initialized from the multiscale process, is relatively sharp

and clean, which allows us to estimate kθ as:

kθ = argmin
kθ

{
‖∇bθ − kθ ∗ ∇`0‖2 + ρ(kθ)

}
, (3.10)

where ∇ is the gradient operator. This process is robust to noise because ∇bθ is a low-pass

filtered image. In Step 8, nonblind deconvolution is employed to update `0 based on the new

k0. However, existing methods do not work well in this case since we need to estimate a clean

`0 from a noisy image b0, and the results of previous methods are prone to inaccuracy. To

generate a noise-free `0, we minimize the following energy function that aims for limiting the

impact of noise on the result:

‖∇`0 ∗ k0 −∇b0‖2 + w1‖∇`0 − u(∇`1)‖2 + w2‖∇`0‖2, (3.11)

where u(·) is the upsampling function, and w1 and w2 are pre-defined weights. The second

term encourages the gradient of `0 to be similar to the upsampled gradient field of `1, which

is from the previous level in the pyramid. Since `1 contains much less noise due to image
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downsizing, incorporating this term can effectively reduce the noise level in `0. This non-blind

deconvolution step is an intermediate step in blur kernel estimation that produces sufficiently

accurate images at a limited computational cost. In the next section, we describe a more sophis-

ticated non-blind deconvolution algorithm for generating high-quality final latent image given

the estimated kernel.

It is worth mentioning that for simplicity, in the above discussion we assume b1 is almost

noise-free after downsizing the image by half. However, this will not be true, if severe noise

presents in b0. To deal with severe noise, we will only use previous methods to estimate blur

kernels from bn to b2 in Step 1 of the algorithm, and then apply noise-aware kernel estimation

from Step 2 to 9 to the last two layers b1 and b0. We applied this modified version of the

algorithm to examples with 10% noise (Gaussian noise with standard deviation of 0.1) in 3.4.

Discussion

Cho et al. [21] also use the Radon transform to recover the blur kernel. However, their

approach to compute the kernel projection is different from ours. They rely on heuristics to

identify straight edges in the images, and extract the projections from these edges. Because

this process relies on a few arbitrary thresholds to locate and analyze the edges, it is sensitive

to noise. We also show that it performs poorly on noisy inputs in the experimental section.

In comparison, our approach does not rely on such arbitrary thresholds and performs well on

noisy images.

Final noise-aware nonblind deconvolution

Once an accurate k0 is estimated, we use it to estimate a good latent image `0 from the

noisy input b0. This is not a trivial task when b0 contains severe noise [108]. However, since

k0 is fixed at this stage, it is safe to apply existing denoising methods in the process. This is

in sharp contrast to Tai and Lin’s method [78] where denoising and kernel estimation interfere

with each other.
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(a) Input image (b) Estimated kernel

(c) Zoran&Weiss [120] (d) Cho et al. [20] (e) Our method

Figure 3.5: Comparison results of our final noise-aware nonblind deconvolution with other
recent nonblind deconvolution methods. The results are obtained using the same input image
and the estimated kernel. (c),(d),(e) show the zoom-in results.

In our approach, we minimize the following energy function to estimate the final `0:

‖`0 ∗ k0 − b0‖2 + w3‖`0 − NLM(`0)‖2, (3.12)

where NLM(·) is the non-local means denoising operation [10], and w3 is a balancing weight.

Minimizing this energy function will ensure that the deblurred result is noise-free, and can best

fit with k0 and b0 as well.

Directly minimizing this energy is hard because NLM(`0) is highly nonlinear. We found

that iterating the following two steps yields a good result in practice:

`′0 = NLM(`0), (3.13a)

`0 = argmin
`0

{
‖`0 ∗ k0 − b0‖2 + w3‖`0 − `′0‖2

}
. (3.13b)

For initialization, we set `′0 to be zero (a black image). Solving Eq. 3.13b yields a noisy `0 that

also contains useful high-frequency image structures. In the alternating minimization process,

the noise in `0 is gradually reduced, while the high-frequency image details are preserved. To

show the effectiveness of our method, we compare it with other two recent non-blind deconvo-

lution methods, i.e., Zoran and Weiss [120] and Cho et al. [20] in Fig. 3.5.
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3.4 Experimental Results

We implemented our method in Matlab on an Intel Core i5 CPU with 8GB of RAM. We apply

directional filters along 36 regularly sampled orientations, that is, one sample every 5◦. The

computation time is a few minutes for a one-megapixel image. For all the experiments, we set

the extent σf of the directional filter to 30 pixels. We also setw1 = 0.05 andw2 = 1 (Eq. 3.11),

and w3 = 0.05 (Eq. 3.12).

3.4.1 Synthetic data

We first conducted experiments on images that we convolved with a known blur kernel and to

which we added noise in a controlled fashion. This allows us to report quantitative measures in

addition to visual results.

Comparisons with Tai and Lin’s [78] method

Tai and Lin’s method [78] is the most related work to ours since it also seeks to handle noisy

images. This section focuses on comparing this method with our approach. We first ran com-

parisons on synthetic images (Fig. 3.6), where the latent sharp images were blurred using two

blur kernels provided by Levin et al. [57]. We then added Gaussian noise with zero mean and

standard deviations of 0.05 and 0.1 for a [0,1] intensity range. Tai and Lin kindly provided the

results for their method. The comparison shows that visually our estimated blur kernels are

closer to the ground truth, and our estimated latent images contain more details and less ring-

ing artifacts. We also evaluate the results quantitatively by computing the Peak Signal-to-Noise

Ratio (PSNR) and Structural SIMilarity (SSIM) (Table 3.1).

Comparisons with other methods

We also conducted experiments to explore how noise affects the performance of other state-

of-the-art single-image blind deconvolution methods. Using the “Aque” image and the blur

kernel shown in 3.6(e), we generated 10 input images with noise from 1% to 10%. We then

applied different blind deconvolution methods to these test images, and measure the PSNR

curve of each method (3.7). The accuracies of previous methods degrade rapidly when the
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(a) Abbey(input, 5%
noise)

(b) Chalet(input, 5%
noise)

(c) Aque(input,10%
noise)

(d) Kernel 1 (e) Kernel 2

Tai and Lin Ours

(f) Abbey (result, 5% noise)

Tai and Lin Ours

(g) Chalet (result, 5% noise)

i d iTai and Lin Ours

(h) Aque (result, 5% noise)

Tai and Lin Ours

(i) Abbey (result, 10% noise)

Tai and Lin Ours

(j) Chalet (result, 10% noise)

i d iTai and Lin Ours

(k) Aque (result, 10% noise)

Figure 3.6: Comparing Tai and Lin’s method [78] and our method on synthetic data. Three
input blurry image examples with different levels of noise are shown in (a),(b),(c). (d) and (e)
are the ground truth blur kernels from Levin et. al. [57]. (d) is used for the examples “Abbey”
and “Chalet”, and (e) is used for the example “Aque”. (f-k) show the estimated kernels and the
latent images of Tai and Lin’s method and our method with 5% noise and 10% noise. Due to
the space limit only the areas highlighted by the bounding boxes in (a-c) are shown. Full size
images for comparison are in the supplementary material.
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PSNR SSIM
Noise 5% 10% 5% 10%

Abbey
Tai 22.43 21.05 .8122 .7242

Ours 22.73 21.61 .8150 .7270

Chalet
Tai 19.79 18.95 .8244 .7162

Ours 22.80 19.35 .8273 .7200

Aque
Tai 26.58 24.53 .8206 .7415

Ours 28.46 25.58 .8512 .7469

Table 3.1: The comparison experiments of our method and Tai and Lin [78] on synthetic blurry
images with different amount of noises. The performances are evaluated by PSNR and SSIM,
comparing the generated latent images with the ground truth.
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Figure 3.7: The PSNR curves of various blind deconvolution algorithms, including Goldstein
and Fattal [37], Cho and Lee [19], Cho et al. [21], Levin et al. [58] and our method, on the 10
synthetic test images with noise level from 1% to 10%, generated by the “Aque” image and the
kernel shown in 3.6(e). The two data points of Tai and Lin’s method [78] are shown as black
diamonds, which are provided by the authors. While the PSNR values are closer to ours, the
visual difference is still significant; our approach produces cleaner images (3.8). All images
are included in the supplementary material.
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noise level increases. On the contrary, our method is more robust, i.e., it works more reliably

in the presence of noise, and achieves satisfactory results even when the input noise level is

high. This figure also includes two data points of the Tai and Lin’s method [78] provided by

the authors themselves.

3.4.2 Results on real examples

We first compared our method and Tai and Lin’s method on real-world images shown in their

original paper [78], and the results are shown in 3.8. The results of other state-of-the-art meth-

ods can be found in [78]. Our estimated kernels are sharper than Tai and Lin’s. The close-ups

show that our method recovers more high-frequency details. For the boundaries of objects,

our results have less noticeable ringing artifacts. Overall, our approach produces visually more

satisfying results.

Tai and Lin OursTai and Lin Ours

(a) Santorini

Tai and Lin Ours

(b) Books

Figure 3.8: Comparisons of Tai and Lin’s method and our method on real-world images
from [78]. Our results contain more high-frequency details and less ringing artifacts. Zoom-in
regions are shown in bounding boxes.

We further show our results on real-world photographs that were captured under common

low-light conditions with a Nikon D90 DLSR camera and a 18−105mm lens. We compare our

results with those of other state-of-the-art methods, including Goldstein and Fattal [37], Cho

and Lee [19], Cho et al. [21], Levin et al. [58]. The results (Fig. 3.9) show that our recovered

latent images exhibit less artifacts, such as noise and ringing, and contain more high-frequency

details at the same time. These observations are consistent across all test images. We provide

additional examples in supplemental material.
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Input Goldstein & Fattal Cho & Lee Cho et al Levin et al OursInput Goldstein & Fattal Cho & Lee Cho et al. Levin et al. Ours

Input Cho & Lee

Figure 3.9: Comparisons on real-world examples, where we compare our results with the results
of Goldstein and Fattal [37], Cho and Lee [19], Cho et al. [21], Levin et al. [58]. More results
are in the supplementary material.

3.5 Conclusion

We have shown that most state-of-the-art image deblurring techniques are sensitive to image

noise. In this chapter, we propose a new single image blind deconvolution method that is more

robust to noise than previous approaches. Our method uses directional filters to reduce the noise

while keeping the blur information in their orthogonal direction intact. By applying a series of

such directional filters, we showed how to recover correct 1D projections of the kernel in all

directions, which we use to estimate an accurate blur kernel using the inverse Radon transform.

We also introduced a noise-tolerant non-blind deconvolution technique that generates high-

quality final results. The effectiveness of the proposed approach is demonstrated on several

comparisons on synthetic and real data.
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Chapter 4

Image Deblurring with Face Prior

4.1 Problem Background

Single image deblurring has been studied for decades, and has attracted much attention with

significant progress in recent years [19, 20, 37, 48, 117]. The purpose of the image deblurring

is to restore the sharp image and recover the latent blur kernel from single blurry image. The

motion blur is normally modeled as a spatially-invariant model:

b = ` ∗ k + n, (4.1)

where `, k and n represent the latent sharp image, blur kernel, and additive noise respectively,

∗ is the convolution operator. The image deblurring problem is an ill-posed problem, because

for a given blurry image, there would be many pairs of latent images and blur kernels which

would meet this equation.

Normally, additional information or constraints are required to constrain the solution. The

statistic prior knowledge of natural image is commonly used to constrain the solving process,

such as heavy-tailed gradient distribution [34, 56, 58, 75], and L1, L2 priors [57]. Since these

priors are obtained from natural images, they are effective for generic cases. However, for

specific cases, such as face images and text images, these priors would not be able to achieve

promising results because the pre-learned priors from natural images are not suitable for these

specific images. Specific priors or constraints, which capture the object properties, are needed

to perform well on these specific cases, such as text object properties [18], and face structure

properties [63].

Implicit or explicit extraction of salient edges is another category of constraint which

achieved great success in many blind deconvolution methods [19, 21, 100, 117]. These meth-

ods typically employ a salient edge prediction step, which is mainly based on heuristic image
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(a) Input (b) Xu and Jia [100] (c) Cho and Lee [19] (d) Krishnan [55]

(e) Zhong et al. [117] (f) Landmark (g) Mask (h) Our result

Figure 4.1: The deblurring results of the state-of-the-art methods on a real face image. (a) is
the input blurry face image. (b) - (e) are the results of all different methods. (f) is the facial
landmark localization results on this blurry face. (g) is the generated mask from (h). The final
result of our method is shown in (h).

processing method to explore high contrast local edge structures. These methods may fail on

images with less textures, since few salient edges could be recovered to provide enough blur

information. For example, face images have similar skin color components and low contrast

edges. Thus, existing edge-prediction methods can not robustly detect the edges and obtain

promising results. Moreover, only local structure information is used to locate the salient edges

without considering the latent global object structure. Therefore, for these methods, the ambi-

guity of selecting salient edges will be difficult to eliminate, and will degrade the performance

greatly.

We test some state-of-the-art single image deblurring methods on a given blurry face. The

restored latent images and the estimated kernels are shown in Fig. 4.1. We can see the existing

methods can not achieve promising results because of the above mentioned difficulties. Fig.

4.1(f) shows the landmark localization result on this blurry face image, and the mask (in Fig.

4.1(g)) generated from the landmarks captures the main structure of the face. Our estimated

kernel and restored image are shown in Fig. 4.1(h), which demonstrate the superiority over the
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compared methods.

In this work, we propose a facial landmark localization based face image deblurring method

to address the above-mentioned problems. Facial landmark localization module is trained on

face images with manual annotations, which embed the facial structure information. Thus, the

landmarks detected on the face would be used as a global constraint for salient edge selection.

We generate a mask by connecting the landmarks and use the mask to generate an initial blur

kernel.

4.2 Methodology

Existing state-of-the-art edge-based deblurring methods employ heuristic edge selection explic-

itly or implicitly. Since face images do not contain much texture, it is very difficult to identify

salient edges. Although previous methods normally use the coarse-to-fine strategy to eliminate

the ambiguities in edge selection, the local structure information can not provide enough evi-

dence for accurate edge prediction. In our method, the landmark localization is employed to

constrain the edge selection with the global face structure, which would improve the accuracy

of kernel estimation.

4.2.1 Landmark Localization on Blurry Images

Recently, landmark localization methods made huge progress in accuracy and robustness, es-

pecially with the development of regression frame [12, 26, 99], and the employment of deep

convolutional neural networks (DCNN) [105, 119]. The landmark localization utilizes coarse-

to-fine strategy to refine the facial landmarks,

Most of the facial landmark localization methods are designed for sharp images. Never-

theless, they are robust to blur at certain extent since the face image used for training varies

in resolution. Moreover, the coarse-to-fine strategy is employed and the initial positions of the

landmarks are first estimated on low-resolution down-sampled images, and then the locations

are refined on higher resolution images. Take the Zhou et al. [119] as an example. Their

method is based on the deep convolutional neural network framework. The first level networks

predict the bounding boxes for the inner points and contour points separately. Then, the second
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level predicts an initial estimation of the positions. Because the inner points would have more

gradient evidence and can be refined further on finer scale, the third and fourth levels are de-

signed further to improve the predictions of mouth and eyes by considering them as individual

components.

In our cases, the motion blur is different from the low-resolution blur. But when the images

are down-sampled, the difference will decrease greatly. Thus, we would like to explore how

robust is the facial landmark localization method to motion blur. Given a sharp image with

resolution of 320× 240 pixels, we blur it with different sizes of kernels, and perform the facial

landmark localization on the synthesized blurry images. In Fig. 4.2, we can see the landmark

localization is robust to the increasing size of blur kernel with relatively small kernel.

The landmarks can capture the main structure and the salient edges on the face from kernel

size of 2 × 2 to 22 × 22. The proposed deblurring method is also able to obtain promising

sharp latent images. When the kernel size increases to 32 × 32 pixels, the contour points are

erroneous, but the inner points with eyes and mouths are still robust (in Fig. 4.2(e)). With

partial correct information with the inner face points, the proposed method can still recover

promising latent images (in Fig. 4.2(i)). When the kernel size increases to super large (47×47

pixels), the landmark localization method totally fails (in Fig. 4.2(f)), and thus our method can

not recover the latent image neither (in Fig. 4.2(j)).

4.2.2 Face deblurring with Landmarks

Most blind deconvolution methods contain two main steps: kernel estimation and non-blind

deconvolution. Those methods iterate these two steps until converge to the optimal solution.

Kernel estimation tries to estimate the motion blur kernel from the blurred image. For edge-

based methods, salient edges need to be predicted beforehand from the blurred image, and

treated as the gradients from the latent sharp image to estimate the blur kernel:

k = argmin
k

{
‖∇b− k ∗ ∇`‖22 + λ ∗ ρ(k)

}
, (4.2)

where ∇b is the gradient calcuated form the blurred image, ∇` is the gradient of the predicted

salient edges, k is the blur kernel, ρ(k) is the prior on k, which could be L2, L0 norm or other

constraints and λ is the weight for the prior.
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(a) Sharp Image (b) Blur kernel

(c) 12 × 12 (d) 22 × 22 (e) 32 × 32 (f) 47 × 47

(g) Restored image (size
12× 12)

(h) Restored image (size
22× 22)

(i) Restored image (size
32× 32)

(j) Restored image (size
47× 47)

Figure 4.2: The performance of the landmark localization method [119] on blurry images
with increasing kernel sizes. The restored latent images from these blurring images and their
detected landmarks are also shown here. (a) shows the sharp face image and the landmark
detection result. The resolution of the sharp image is 320 × 240 pixels. The blurry images in
(c) - (f) are generated by convoluting the sharp image with different sizes of the kernel shown
in (b). (c) - (f) show the facial landmark localization results on these blurry images. With
the landmark localization results, the corresponding deblurring results are shown in (g) - (j).
Landmark localization method is robust to motion blur when the kernel size is relatively small
(smaller than 22 × 22 on this image), and becomes worse with bigger kernels. The proposed
method can handle partial incorrectness (e.g., size 32) with landmark localization, but will also
fail when the landmarks are totally misplaced (e.g., size 47). Please zoom in for better view.
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Figure 4.3: The framework of our deblurring method. Given a blurred face image, landmark
localization method is applied to extract the salient points. A mask is then generated from
the landmarks of the face contour, mouth, and eyes. The mask would be used to estimate an
initial blur kernel. After a few iterations of kernel estimation and non-blind deconvolution in
the deblurring process, the method would converge to the optimal solution.

The salient edges (i.e., large gradient) of face could come from the face contour, mouth

lips, eyes, eyebrows, hair, nose, glasses if exist. Pan et al. [63] show that the deblurring pro-

cess would still get promising results with only edges from eyes, mouth and face contour. The

landmark localization would robustly capture the salient edges from the face contour, mouth,

and eyes. As shown in Fig. 4.3, given an blurred face image, we first locate the facial land-

marks, and connect the landmarks on face contour, mouth and eyes to generate the mask. To

generate a smoothing mask, dilation and erosion are employed. Then, an initial blur kernel can

be estimated by:

k = argmin
k

{
‖∇b− k ∗M ∗ ∇b‖22 + λ‖k‖22

}
, (4.3)

Where M is the estimated binary mask, the other symbols are defined the same as in 4.2. λ is

set to 1 in our experiments. In this kernel estimation, the L2 norm regularization on the kernel

is applied, which would make the optimization to be a quadratic problem and thus be solved

fast by conjugate gradient descent methods. With the constraint of the mask, the initial blur

kernel could be estimated. Compared to other existing methods, the initial estimated kernel is

more accurate since it utilizes the global face structure prior which is embedded in the mask.

With the initial start point, iterative kernel estimation and non-blind deconvolution would
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be performed. To handle the large blur and eliminate the edge ambiguities, the L0 norm is

employed to restore the latent image l. The L0 norm is showed to be very effective in removing

the ringing artifacts [102]. The non-blind deconvolution would be :

k = argmin
I

{
‖∇b− k ∗ ∇`‖22 + γ‖∇`‖0

}
, (4.4)

where γ is set to be 0.002 in the experiment. Since Equ. 4.4 is half-quadratic, we need to

decompose the problem with auxiliary variables to get an approximate solution as Xu et al.

[101]. The Equ. 4.4 can be rewritten using the auxiliary variables W = (wx, wy)
T as :

k = argmin
I,W

{
‖∇b− k ∗ ∇`‖22 + β‖W −∇`‖22 + γ‖W‖0

}
, (4.5)

We note that Equ. 4.5 can be splitted into two sub-problems and efficiently solved by

alternatively minimizing I and W independently. In each iteration, The optimal solution of I

would be obtained by

k = argmin
I

{
‖∇b− k ∗ ∇`‖22 + β‖W −∇`‖22

}
, (4.6)

This sub-problem is a quadratic problem and has a closed-form solution which can be com-

puted quickly.

The optimal solution of W can be estimated from

k = argmin
I

{
β‖W −∇`‖22 + γ‖W‖0

}
, (4.7)

which could be obtained by :

W =


∇`, if |∇`|2 ≥ γ

β

0, otherwise

Even this is an approximate solution for Equ. 4.4, it has been proved to be effective in

image smoothing [101], and image deblurring [102]. Our method also shows its capabilities in

eliminating ambiguities and removing ringing artifacts.

After the iterative optimization process, the blur kernel would be estimated. Since L0 norm

in ` estimation focuses on the most strong gradient, the estimated latent image would be too
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smooth. We employ the final non-blind deconvolution methods proposed in Levin et al. [56]

to recover the final latent image.

4.2.3 Comparison with Pan et al. [41]

Among the existing single image deblurring methods, Pan et al. [41] is the most related work

to ours, which explores the face structure information to help with the deblurring process, and

also employs L0 norm constraint in the intermediate non-blind deconvolution step. However,

there are a few major differences between their methods and ours. The biggest difference is the

way in extracting the global face structure. Their method tries to find a exemplar image from

their image database, which should be similar with the input blurred image. The salient edges

or large gradients from the exemplar image are then directly used in the deblurring process.

This strategy faces two major problems. Firstly, the training database is limited, so it may not

be able to find good exemplar image for an arbitrary input image. Take the input in Fig. 4.4 as

an example, [41] would first find an exemplar image for the input image from their training set

(i.e., Multi-PIE dataset [38]). Since the dataset only contains face images with upright pose

with fixed angles, it can not cover all the arbitrary angles.

(a) input (b) Exemplar im-
age

(c) Predicted gradi-
ents

(d) Landmark lo-
calization (ours)

(e) Generated
mask (ours)

Figure 4.4: Face structure information extraction comparison between Pan et al. [41] and our
method. The selected exemplar image is quite different from the input image, including pose,
facial expression, face shapes. Thus the predicted gradients are also erroneous, and would
unavoidable introduce bias in deblurring. Our method can get more accurate facial landmarks
and more promising mask, since we do not directly rely on any limited exemplar image set.

Moreover, it is also quite difficult to match the blurred images and sharp images with un-

known blur kernel and different people. Therefore, the selected exemplar image could be quite

different from the input image in many ways, such as, the head pose, expressions, and face
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shape. Some examples are shown in 4.4(a) and 4.4(b). On the contrary, the mask calcu-

lated by our method fits the original face better, and also our method has better generalization

capability with various pose and angles.

4.3 Experiments

The robustness of the landmark localization is first investigated on blurred image with blur

kernels of different sizes. Then our method is compared with other state-of-the-art methods on

both synthetic and real face images. All our experiments run on a Macbook laptop with 2.4

GHz Intel Core i5 processor and 8 GB memory. To deblur a face image with 320× 240 pixels,

our method takes around 20 seconds.

(a) (b) (c)

(d) (e) (f) (g)

Figure 4.5: The sample sharp images and blur kernels in our experiments. Each subject would
have three different expressions for quantitative analysis, such as (a) - (c). (d) - (g) are the 4
selected blur kernels used for synthesizing blurred face images.

4.3.1 Landmark Localization Robustness

The landmark localization method provides the global facial structure information for our de-

blurring method. Thus its accuracy affects the performance of our proposed deblurring method
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directly. The robustness of landmark localization method on blurred face image is rarely ana-

lyzed in the literature. In this chapter, we would investigate the landmark localization method

proposed in [119] quantitatively. We randomly select 27 face images with 9 subjects from

Multi-PIE database [38]. Each subject would have 3 images with different expressions. The

four ground truth kernels we used to synthesize the blurred image are from Levin et al. [57].

The sample images and blur kernels can be found in Fig. 4.5. For each kernel, we resize it to

different sizes from 7× 7 to 47× 47 pixels with every 5 pixels. Each image will be convoluted

with the kernels with different sizes to generate blurred images, as in Fig. 4.2.

To measure the difference between two detected facial landmarks on image p and q, the

average distance between the corresponding points is normalized by distance of two eye outside

corners.

dis =
1

T

T∑
t=1

|pt − qt|
|p` − qr|

(4.8)

where t is the index of the facial landmarks. There are T = 83 points in our experiments. `, q

are the indexes for the outside corners of left eye and right eye.

The landmark localization method [119] is performed on these blurred images. Some of

the landmark results are shown in Fig. 4.2. The error distance of the detected landmarks is

calculated by the Equ. 4.8. The landmark locations detected on the corresponding sharp image

are considered as the ground truth. We then calculate the mean error distance for the images

with the same size of kernel, which is shown in the Fig. 4.6. As expected, the performance of

the landmark localization method degrades with increasing size of blur kernels. The average

error distance increases at the beginning since the detection of the inner face landmarks are

robust to the blur to some extent. However, when the kernel size increases up to 32×32 pixels,

the blur would be too big for the landmark localization method, and thus the error distance

increases quicker.

4.3.2 Comparison with Existing Deblurring Methods

To further evaluate our method, we compare our method with some state-of-the-art methods on

both synthetic and real images.

Synthetic images: To quantitatively evaluate the proposed method, we run our method and



40

5 7 12 17 22 27 32 37 42 47 50
0.5

1

1.5

2

2.5

3

3.5

4

kernel size (pixels)

Er
ro

r D
is

ta
nc

e 
(p

ix
el

s)

Landmark detection robustness

Figure 4.6: The robustness of landmark localization on blurry images. With the increasing blur
kernel, the landmark detection will be more erroneous and the average error increases. When
the kernel size increases up to 27 × 27, the landmark localization may fail, and thus the error
increases even quicker. The resolution of the test images is 320× 240 pixels.

some of the state-of-the-art methods on the synthesized blurry images, which are produced by

different size of kernels. The Fig. 4.7 shows the results of different methods on the blurry

images generated by a 17 × 17 kernel. To avoid the artifacts produced by the non-blind de-

blurring step, we use the restored image with the ground truth kernel as the ground truth for

comparison (Fig. 4.7(c)). We compared our method with a few existing methods, i. e., Xu and

Jia [100], Cho and Lee [19], Kristinan et al. [55], and Zhong et al. [117]. The average Peak

signal-to-noise ratios (PSNR) of the restored results for different kernel sizes are shown in Fig.

4.8. With the kernel size increases, the performance of all the methods degrades. Our method

outperforms the other methods when the kernel size is smaller than 42×42. This is because the

landmark localization method can perform well when the kernel size is not super large, and thus

provide face structure information to help with the deblurring. Meanwhile, the other methods,

which only focus on local structures or take advantages of priors from natural images, can not

get promising results as our method. When the kernel size increases up to 42× 42, our method

would perform similar with other methods, since the face prior is not accurate because of the
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erroneous landmark locations.

(a) Sharp Image (b) Blurry image (c) Deblur with real
kernel

(d) Xu and Jia [100]

(e) Cho and Lee [19] (f) Krishnan [55] (g) Zhong et al. [117] (h) Our result

Figure 4.7: An synthetic example for the comparison of different existing methods. (b) is
the synthesized blurry image of (a) with kernel size of 17 × 17 pixels. (c) is the non-blind
deconvolution method with the ground truth kernel, and it will be used as the ground truth
for restored image comparison. (d)-(h) show the recovered image by different state-of-the-art
methods, and the corresponding PSNR are also shown.

Real Images: We also compared our method with other state-of-the-art deblurring methods

on some real blurred images. The real images are different from synthesized blurred images,

since they may contain complicated types of noises, saturated pixels and non-uniform kernels.

The comparison results are shown in Fig. 4.1, Fig. 4.9, and Fig. 4.12. For image deblurring,

the promising restored images should be sharp without blur, and also clean without noise and

artifacts. In Fig. 4.9, our method performs slightly better than Zhong et al. [117], and gets

sharper edges for the face contours. The other methods can not get promising results without

a lot of noise and ringing artifacts. Our method also performs very robustly and consistently

outperforms the compared state-of-the-arts methods on several real images as in Fig. 4.1 and

Fig. 4.12.
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Figure 4.8: The quantitative analysis of different blind deconvolution methods. Our method
shows its superiority over the compared method when the kernel size is reasonable. This is
mainly because our method utilizes the additional face structure prior provided by landmark
localization. When the landmark localization method fails with super large kernels, our method
would perform similar with the other methods.

(a) Input (b) Landmark (c) Mask (d) Xu and Jia [100]

(e) Cho and Lee [19] (f) Krishnan [55] (g) Zhong et al. [117] (h) Our result

Figure 4.9: The Comparison results of the proposed method with other state-of-the-art methods.
Our method contains cleaner and sharper result with much less noise and artifacts.



43

4.3.3 Iterative Landmark Localization and Deblurring

Our method strongly relies on the accuracy of landmark localization result, so iteratively run

the landmark localization on the restored face image would potentially improve the accuracy of

landmarks. We test our method on a face example blurred with a kernel of 17× 17 pixels, and

the results are shown in Figure. 4.10. It seems simply adding more iterations cannot improve

the results much.

(a) Input

(b) Landmark
(iter1)

(c) Landmark
(iter2)

(d) Landmark
(iter3)

(e) Landmark
(iter4)

(f) Landmark
(iter5)

(g) Result (iter1) (h) Result (iter2) (i) Result (iter3) (j) Result (iter4) (k) Result (iter5)

Figure 4.10: The deblurring results with iterative landmark localization and deblurring.

Our iterative deblurring process uses strong L0 norm to suppress small changes, so it is also

robust to the errors in landmark localization to some extent. We would like to explore if the

iteration can improve the result in real cases potentially. To eliminate the errors in landmark

localization on blurry images, we use the sharp image to extract the landmark localization
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instead. The results are shown in Figure. 4.11. We could see our method can produce similar

result when the landmark localization contains reasonable errors.

(a) Landmark (gt) (b) Landmark (blurry) (c) Result (gt) (d) Result (blurry)

Figure 4.11: Landmark error effects on face deblurring.

On the other hand, computational cost is one of the essential factor for image deblurring

algorithm. Iteratively applying landmark localization and deblurring will greatly increase the

running time for a single image. Therefore, our method only contains single localization and

deblurring loop in most cases.

4.3.4 Failure Case

Our method strongly relies on the landmark localization results to identify the salient edges.

Even the landmark localization method is already robust on various faces, it may still have

some errors on images with large kernel size. When the landmark localization only contains

partial correct information, our deblurring method can also recover the incorrect part by iter-

ative salient edge detection and non-blind deconvolution (e.g., Fig. 4.2(i)). However, when

the kernel size is too big, salient edges are more difficult to extract in the later edge extraction.

So if the landmark localization is wrong, our method will also fail and can not get promising

results (e.g., Fig. 4.2(j)).

4.4 Conclusion

In this chapter, we proposed a new face blind deconvolution method based on facial landmark

localization. Since previous methods either focus on the local edge structure or utilize the
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(a) Input (b) Landmark (c) Mask (d) Xu and Jia [100]

(e) Cho and Lee [19] (f) Krishnan [55] (g) Zhong et al. [117] (h) Our result

Figure 4.12: The Comparison results of the proposed method with other state-of-the-art meth-
ods. Our method contains cleaner and sharper results with much less noise and artifacts.

natural image prior, they can not get promising results on facial images. The facial landmark

localization is embedded with global face structure information, thus it would be employed

to eliminate the ambiguities in identifying salient edges. Our method utilizes the detected

landmarks to predict the salient edges of faces from blurry images. The robustness of landmark

localization on blurry image is analyzed in the experiment. Extensive experiments on both

synthetic images and real images show the effectiveness of the proposed method in restoring

sharp and clean images from blurred face images.

The face shape prior is utilized to help with the salient edge detection on face in this work,

and then boost the face image deblurring. The underline reason for this success is that the

faces have relative stable shape pattern. Thus, this approach can be extended to deblur other

structured objects, such as cars, human body, particular animals. The extraction and utilization

of other structured object information to boost the deblurring performance will be our future

work.
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Chapter 5

Learning Multi-scale Active Facial Patches for Expression Analysis

5.1 Problem Background

Facial expressions play significant roles in our daily communication, due to their abilities to

reflect human emotions, and social interaction. In the past three decades, automatic facial

expressions recognition has become an increasingly fascinating topic in the computer vision

and pattern recognition communities for their extensive applications, such as human-computer

interface, multimedia, and security [68,92,94]. However, as the basis of expression recognition,

the exploration of the functional facial features is still an open problem.

(a) (b)

Figure 5.1: (a) Illustration of facial muscles distribution [30]. (b) Major AUs for six expres-
sions. The arrows represent for AUs.

Studies in psychology show that facial features of expressions are located around mouth,

nose, and eyes, and their locations are essential for explaining and categorizing facial expres-

sions. Through electrical muscle stimulation, Duchenne [1, 30] found that most expressions

are invoked by a small number of facial muscles around the mouth, nose and eyes (See Fig-

ure 5.1(a)). This indicates that most of the descriptive regions for each expression are located
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around certain face parts. Moreover, expressions can be generally categorized into six popular

”basic” or ”universal” expressions [44]: anger, disgust, fear, happiness, sadness and surprise.

(Of course, there are a lot of complex expressions which are not basic expressions). These

expressions seems to be universal across different ethnicities and cultures [33]. As shown in

Figure 5.1(b), each of these basic expressions can be further decomposed into a set of sev-

eral related action units (AUs) [31], e.g., happiness can be roughly decomposed to cheek raiser

and lip corner puller. However, few existing methods statistically utilize these prior knowledge

about facial muscle and AUs to aid facial expression analysis in computer vision community.

Common patches for expressions

K features (q groups)

Single expression task 1

Single expression task 2

Single expression task T

.  .  . T
ta

sk
s

.  .  .

.  .  .
Coefficients matrix results (see Figure 7)

Group regulation
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2 2 2 2
1 1... . . .m K m Kw w w w 

1 1... . . .T T T T
m K m Kw w w w 

Group 1 Group q.  .  .

Figure 5.2: Discovering the common patches across six expressions using multi-task sparse
learning (MTSL). Each single expression task is the binary classification task for one expression
(See Figure 5.4). Expression tasks are combined in a MTSL model to select out the common
patches under the group sparsity constraint.

Previous expression recognition methods can be generally categorized into two groups:

AU-based methods and message and sign judgement methods. AU-based methods [32,80,81,

85, 87] recognize expressions by detecting AUs, which have more descriptive power, but these

methods suffer from the difficulties of AU detection. Message and sign judgement methods

[60,74,96] reveal the differences among expressions by facial appearance variations, which has

been proved to be more reliable on single still images. However, these methods treat different

facial parts equally or assign different weights to them empirically, thus lacking statistical sup-

port for the weight settings. This motivates us to fully make use of the prior knowledge from

facial muscles and AU studies to extract the most discriminative regions, which can further

assist expression analysis.

Inspired by the locations of AUs, we divide human face into non-overlapping patches on

different scale levels, and then conceptually group these patches into three categories: common

facial patches, specific facial patches, and the rest. Common facial patches are active ones for
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all expressions. Specific facial patches are only active for one particular expression. Therefore,

the most important facial patches are the common ones shared by all expressions; specific

patches are only a few and only useful to discriminate a particular expression; the rest of the

patches are of less help to expression recognition. The effective facial patches corresponding

to different facial muscles may have different sizes, and the optimal size of patches is hard to

be determined and it may vary among different areas of the face, we employ three different

scale patches in our method to cover effective facial parts with different sizes. That is, each

face image is divided into 8×8, 6×6 and 4×4 patches. The patches are smaller when the face

image is divided into more patches. An example of face division (8×8) is illustrated in Figure

5.3(a).

A two-stage multi-task sparse learning framework is proposed to explore common and spe-

cific patches statistically on each scale level respectively. In the first stage, the binary classi-

fication problem for each expression is treated as an individual task (see Figure 5.4), then a

multi-task sparse learning (MTSL) model is built based on these related tasks to extract the

common facial patches. In the second stage, the face verification task (see Figure 5.5) is de-

signed to be coupled with the previous classification task for one expression. In this way,

another MTSL model can be constructed to find out the specific patches for this particular

expression. Similarly, the specific patches for all the expressions can be figured out sepa-

rately. After the common and specific patches on different scales are learned by the two-stage

multi-task sparse learning model, they are combined to boost the facial expression recognition

accuracy.

For all the scales, the common and specific patches, found by extensive experiments on

the Cohn-Kanade database [49] and the MMI database [90], not only confirm the psychology

discoveries of the facial muscles and AUs, but also provide more accurate appearance loca-

tions. Moreover, these common and specific patches at the same scale can be used to boost the

performance of expression recognition. The learned patches are shown to be effective across

different databases, e.g. Cohn-Kanade database [49], GEMEP-FERA [88]. Only using rela-

tively small number of patches (∼ 1/3 of the face), our method still outperforms other methods

in expression recognition. Finally, the learned effective patches at different scales can be also

combined to further improve the expression recognition performance.
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Our contributions are:

1) We provide a solid validation for an important psychology discovery, that only partial area

of the face (corresponding to underlying facial muscles) are discriminative for expression

recognition.

2) A two-stage multi-task sparse learning framework is proposed to formulate the commonal-

ities among expressions, and to find out the locations of common and specific patches for

expressions.

3) Multi-scale image division strategy is utilized to generate patches of different size for facial

expression analysis. More convincing conclusion about facial parts (muscles) could be

achieved, since they are of different sizes.

4) Extensive experiments with 3 different scales on three public databases demonstrate that

these active patches are effective in recognizing expressions. The common and specific

patches can be combined to improve the performances of state-of-the-arts. Patches across

different scales can also been fused to further boost the performance.

The rest of the chapter is organized as follows. Section 2 reviews Related work of facial

expression analysis and multi-task sparse learning. Section 3 presents our framework to learn

common and specific patches based on multi-task sparse learning. These effective patches on

all different scales are learned in this section. The experimental results on three public databases

are shown in section 4. We conclude the chapter in section 5.

5.2 Methodology

In this section we first introduce the multi-scale facial appearance representation strategy, and

then the learning procedures of common and specific patches at each scale level are illustrated.

Finally, we design the classifier with these learned effective patches.

5.2.1 Multi-scale Appearance Representation

Facial expressions are usually manifested by local facial appearance variations. However, it is

not easy to automatically localize these local active areas on a facial image. A facial image is
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divided into p local patches, and then local binary pattern (LBP) features are used to represent

the local appearance of the patch. These features have been proven to be a powerful descriptor

in expression recognition [74] and face verification [95]. Since the facial parts corresponding

to facial muscles do not have equal size, multi-scale division strategy should be applied to

facial images to generate facial patches with different sizes. These patches could offer a more

complete coverage for the effective facial parts than the generated patches if only one single

scale is applied. The facial patches should have reasonable size, which can not be too big to

cover too much facial parts or too small to have no physic meaning. In our method, we adopt

three different scale sizes, We set p = 8×8, 6×6, 4×4 in the experiments with the image size

of 96×96. We denote these three scales as S8, S6, S4, respectively. An example of division for

S8 is shown in Figure 5.3(a). For each patch, the uniform LBP features are extracted with the

LBP operator LBP8,1, as shown in Figure 5.3(b), and mapped to a m-dimensional histogram

(m = 59 in our method).

(a) (b)

Figure 5.3: (a)A cropped facial image is divided into 64 patches. (b) LBP feature example.
(LBPP,R refers to a neighborhood size of P equally spaced pixels on a circle of radius R that
form a circularly symmetric neighbor set. P = 8, R = 1 for this example.)

Based on these local patches, the common patches across all expressions on each scale

level are learned for expression recognition. Then, some specific patches for each expression

are explored to enhance the performance. Finally, these learned patches on different scales are

fused to further boost the recognition performance.
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Figure 5.4: Illustration of one single expression task. Each task is a binary expression classifi-
cation problem. Take Expression task of happiness for example here.

5.2.2 Learning Common Patches Across Expressions

Discovering the common patches across all the expressions is actually equivalent to learning the

shared discriminative patches for all the expressions. Since Multi-task sparse learning (MTSL)

can learn common representations among multiple related tasks [3], our problem can be trans-

fered into a MTSL problem. T related tasks are defined as T discriminative patch learners for T

facial expressions respectively (we set T = 6 for six basic expressions). Supposing each image

has p patches, it can be represented by (p × m)-dimensional LBP-based histogram features.

Let K = p × m. However, equation (1) cannot directly model our problem. Different from

the MTSL model described in Equation(2.2), we focus on the selection of common patches

instead of individual features. Since a group of consecutive features stand for one patch, and

the number of common patches are not large, group sparsity prior can be assumed [113, 114].

Our problem is modeled as the following MTSL problem, in which the regularization term of

Equation(2.2) is modified to a patch level sparse constraint:

argmin
W

T∑
t=1

1

Nt

Nt∑
i=1

J t(wt, xti, y
t
i) + λ

p∑
j=1

‖wGj‖2 (5.1)

Here, wGj is a sub-matrix of matrix W , where Gj denotes the j-th patch, as shown in Fig-

ure 5.2. Figure 5.4 illustrates how to set up each task. In each task, images of one particular

expression are considered as positive samples, while others are negative samples. This regu-

larization term encourages the representation coefficients of the features in most patches to be
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zero, and then the remaining non-zero patches indicate the shared important representation for

all the expressions. The cost function of J t is defined as a logistic loss function:

J t(wt, xti, y
t
i) = ln(1 + exp(−ytixti · wt)). (5.2)

To solve this patch-based multi-task sparse learning, the proposed algorithm is based on the

accelerated gradient method proposed in [98]. The algorithm comprises two main steps: the

generalized gradient mapping step and the aggregation step. The two steps alternately update

two matrices in each iteration, i.e., a weight matrix sequence Ws and an aggregation matrix

sequence Vs, s is the iteration index number. The updating of Ws+1 is the generalized gradient

mapping step, which uses the current aggregation matrix Vs to update matrix Ws. During

this updating, we heuristically enforce the group sparsity prior which makes the representation

coefficients of the features in one patch to be zeros under the condition in step 5-9 of Algorithm

1. The updating of V is the aggregation step, in which we construct a linear combination of

Ws+1 andWs to update Vs+1 (step 11 in Algorithm 1). The detailed problem solving procedure

are summarized in Algorithm 1.

5.2.3 Learning Specific Patches For Individual Expression

Although learned common patches can discriminate all facial expressions, the performance

could not be the best, because each expression also has its special properties besides the com-

mon properties. Here, we aim to explore some specific facial patches for each expression with

the help of face verification, and then they are used to further boost the performance of common

facial patches.

The motivation to employ the face verification task is that those special facial patches are

important face regions, which are not only useful for recognize this expression, but also very

significant for identifying the subjects. Take an expression e for example. Recognition e task

will prefer to select out those patches which are useful only to recognizing the expression.

Since we have the assumption that those patches should be the important face regions, and thus

they are also very discriminative to face verification task, a multi-task sparse learning model

can be used to couple these two tasks and select out those shared important patches between

these two tasks more robustly. The learned patches should embed some specific signatures of
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Algorithm 2 Algorithm for learning common patches

1: Input : Training data {(xti, yti), i = 1, .., Nt}, define Xt = [xt1; ...;x
t
Nt
], Y t =

[yt1; ...; y
t
Nt
], V = [v1; ...; vT ]. t indicates the task index, and t = 1, ..., T . j is the group

index, and j = 1, ..., p.
2: Initialize :W0 takes equal weights, V0 = W0 and a0 = 1. Tuning parameter λ and step

size η.
3: for s = 0...S do
4: wts+1 = vts−

η[ 1

1+exp(−(Y t)′Xtvts)
exp(−(Y t)

′
Xtvts)(−(Xt)

′
Y t)]

5: if ‖wGj ,s+1‖2 ≥ λη then
6: Set wGj ,s+1 = (1− λη

‖wGj,s+1‖2 )wGj ,s+1

7: else
8: Set wGj ,s+1 = 0
9: end if

10: as+1 =
2
s+3 , δs+1 =Ws+1 −Ws

11: Vs+1 =Ws+1 +
1−as
as

as+1δs+1

12: if ‖δs+1‖2 ≤ ε then
13: break
14: end if
15: end for
16: Normalization : wt = wt

‖wt‖2
17: wGj =

∑
wtk, where wGj is the weight for patch j, and wtk ∈ Gj

18: Output : order wGj decreasingly, and output the top patches as the common patches for
all expressions.

the face identity.

This multi-task sparse learning framework for specific patches is the same as the framework

of learning the common patches except the different task design. The individual expression

analysis task is organized in the same way as in Figure 5.4. Figure 5.5 illustrates how to

organize the task of face verification. For face verification, we need to compare two images

and label them as the same person or not, so we organize the training data of this task by the

feature difference between two images. Assuming (x2i , y
2
i )
N2

i=1 is the training set, x2i is the

feature difference between two images in i-th image pair. y2i ∈ {−1, 1} indicates whether

the two images in i-th pair come from one subject or not. N2 is the number of image pairs.

The superscript 2 means this task is the second task in the multi-task sparse learning model.

The procedure for solving this problem is the same with Algorithm 1. Because there are six

expressions, six multi-task sparse learning models are needed to be built to learn their specific

patches respectively.
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Figure 5.5: The design of Face Verification task. Image pairs from the same subject are con-
sidered as positive samples. Otherwise, as negative samples.

The specific patches have overlap with the learned common patches. Since the common

patches will be used for all expressions, the overlapped patches are removed from the specific

patches. The rest patches are considered as the final specific patches.

5.2.4 Classifier Design

With the extracted common and specific patch features based on the training data, classifiers are

then built based on these features for testing data. Multi-task sparse learning model can directly

give out classification results [109]. However, to fairly compare with previous work [59, 74],

SVM is adopted to learn the expression classifiers and the one-against-all strategy is employed

to decompose the six class problem into multiple binary classification problems. Each binary

classification will output a confidence value of the test sample belonging to this class. The

class label with the highest confidence will be the final classification result of this sample. The

performances of common patches and the combination of common and specific patches are

evaluated respectively. For expression e, denotes the common patches as Pc, and the specific

patches as {P es }6e=1. When both common and specific patches are investigated, the features

from Pc and P es are concatenated to represent facial images, and train the SVM classifiers;

While only use the features of Pc when common patches are tested.
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5.3 Experiments

We evaluate the learned common and specific patches for facial expression recognition. All

methods are compared on three datasets, the Cohn-Kanade database [49], the MMI database [90]

and the GEMEP-FERA [88], which are widely used for facial expression recognition algo-

rithms. Our methods are denoted as CPL and CSPL respectively (see Table 5.1). To efficiently

evaluate the performance of our proposed methods, they are compared with [74], which is the

most recent comprehensive study on expression recognition with remarkable results. In [74],

two methods are evaluated, denoted as ADL and AFL respectively. ADL uses Adaboost to se-

lect important patches and then performs SVM on the extracted LBP features of these patches.

AFL uses all the patches to train the classifier without feature selection. MCPL, MCSPL,

MADL and MAFL are the methods using multi-scale patches for CPL, CSPL, ADL and AFL,

respectively. For fair comparison, all the methods are based on the same patch(sub-region)

division strategy, same feature representation, and the same classification method (SVM). The

only difference among the methods is the patches they use. All method abbreviations are listed

in table 5.1. 10 folds cross-validation is employed for all methods.

Table 5.1: Method abbreviations.
ADL only use patches selected by ADaboost are used.
AFL All patches of the whole Face are used.

MADL only use Multi-scale patches selected by
ADaboost are used.

MAFL Multi-scale All patches of the whole Face are
used.

CPL only use Common Patches. (our method)
CSPL use Common and Specific Patches. (our method)

MCPL only use Multi-scale Common Patches. (our
method)

MCSPL use Multi-scale Common and Specific Patches.
(our method)

5.3.1 Experiments On the Cohn-Kanade Database

The Cohn-Kanade database consists of 100 university students aged from 18 to 30 years old, of

which 65% were female, 15% were African-American and 3% were Asian or Latino. Subjects

were instructed to perform a series of 23 facial displays, six of which were based on description



56

of prototypic emotions. For our experiments, image sequences are selected out from 96 sub-

jects, whose sequences could be labeled as one of the six basic emotions. For each sequence,

we only use the three peak frames with the most expressions. The faces are detected automati-

cally by Viola’s face detector [93], and then they are normalized to 96×96 as in Tian [79] based

on the location of the eyes. Figure 5.7 shows some normalized samples with all expressions.
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Figure 5.6: Results for six expressions in the coefficient matrix after multi-task sparse learning
for learning the common patches. X-axis corresponds to the feature index in the coefficient
matrix, where features index are ordered consecutively as group by patches. Y-axis is the
weight values for features in each task after multi-task sparse learning. The non-zeros parts are
grouped, and matches across all tasks.

Figure 5.7: Example of six basic expressions from the Cohn-Kanade database.(Anger, Disgust,
Fear, Happiness, Sadness and Surprise).

To better demonstrate the patch selection strategy and the physical meaning of the selected

patches, we first apply our method to only one patch scale (S8). The performance of the

recognition can be further boosted by combining the patch selection across all different scales.



57

Number of common patches

Re
co

gn
iti

on
 ra

te

(a) (b) (c)

Figure 5.8: The expression recognition rate with different number of common patches. (a) The
recognition result with selected common patches for the scale S8. The patch number for the
three faces images marked with selected common patches are 10, 20, 40, respectively. (b) The
results for S6. Patch number are 11, 24, respectively. (c) The results for S4. Patch number are
5, 10, respectively. All results show the most effective patches are around the mouth and the
eyes, and using only one third of all the patches can achieve satisfied performance.

Analysis of Common Patches

As described in section 2.1, the proposed multi-task sparse learning aims to select the shared

patches instead of the shared features, so we apply the L1/L2 norm regularization on the patch

level to obtain patch-based group sparsity. Figure 5.6 reports the representation coefficient re-

sults for six expression tasks. We can see that the representation coefficients of features are

sparse, and show the property of patch-based group sparsity. It is also clear to see the index

correspondences for non-zero values across six expressions, which indicates the commonali-

ties among them. So, this result demonstrates the effectiveness of our proposed algorithm in

learning the shared common patches for expressions.

Before evaluating the recognition performance of the common patches, we want to inspect

the performance when a different number of common patches is selected. Figure 5.8 reports

the results with different number of the common patches. We can see that the recognition rate

increases quickly with the first leading common patches, and when the number of the selected

patches reaches around 20, it will get a recognition rate of 88.42%. If too many common

patches are selected, the performance goes down slightly and fluctuates. It means that only

some common patches are discriminative for all the expressions. When some patches with little

importance are selected as the common patches, they will introduce some noises and influence

the discriminative power of the common patches. We set the number of the common patches to

be 20 in the following experiments. Figure 5.9 shows the superimposing effect of the selected
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common patches over the 10 fold experiments. There are great overlaps between different fold

experiments. It indicates that our algorithm is robust to the selection of the training set. The

selected common patches are basically around the areas of mouth, eye, and eyebrows, which

are consistent with AU-based analysis in FACS [31].

Figure 5.9: The distribution of selected common patches on faces. The darker the red color is,
the more times (shown as numbers) the patch has been selected as common patches in 10-fold
experiments.

Table 5.4 reports the detailed recognition performance of the common patches on each ex-

pression, where the expressions of anger, disgust, fear, happiness, sadness, surprise are denoted

as ag, dg, fa, hp, sd, and sp for simplicity. Promising recognition rates are obtained on all the

expressions except anger. Anger is often misclassified as sadness. This is because these two

expressions have similar appearance variations on the common patches. This problem can be

alleviated by adding some specific patches, which will be discussed next.

Analysis of Specific Patches

Although a rewarding recognition result can be obtained by only using the common patches,

the performance can be further improved by integrating some specific patches of each expres-

sion. Figure 5.10 shows the top three learned specific patches for each expression based on the

proposed multi-task learning. We can see the locations of these patches are highly related to

expression types. Take surprise for example. The selected specific patches show the charac-

teristics of surprise expression, in which special appearance changes are distributed in opened

mouth, on stared eye, and raised eyebrow. In CSPL, the common patches and the specific

patches are integrated together, and the experimental results are reported in Table 5.5. Com-

pared to the results of CPL (Table 5.4), we can see that adding specific patches can further
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Table 5.2: The confusion matrix of AFL on Cohn-Kanade database.(Measured by recognition
rate: %)

ag dg fa hp sd sp
ag 66.67 7.5 0 0.83 25 0
dg 6.67 87.67 0.67 1.33 3.67 0
fa 3.73 1.43 77.54 10.40 6.90 0
hp 1.00 0.33 2.58 95.42 0.67 0
sd 10.60 1.25 2.87 0 84.54 0.74
sp 0 0 1.73 0 1.25 97.02

Table 5.3: The confusion matrix of ADL on Cohn-Kanade database.(Measured by recognition
rate: %)

ag dg fa hp sd sp
ag 64.72 10.00 1.11 0 24.17 0
dg 5.33 89.33 2.00 1.33 2.00 0
fa 3.65 1.43 78.57 10.87 5.48 0
hp 1.00 0.33 3.24 94.76 0.67 0
sd 11.43 1.25 2.50 0 84.40 1.42
sp 0 0 1.73 0 0 98.27

improve the performance of the common patches.

Figure 5.10: The top 3 specific patches for six expressions after eliminating the shared patches
on the Cohn-Kanade database.

Comparisons with other methods

To further evaluate the proposed CPL and CSPL, we compare them to ADL and AFL devel-

oped in [74]. Table 5.6 lists the F1 measure for every expression and the overall recognition

rates of these four methods. AFL gets the recognition rate of 86.94%, which is much worse
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Table 5.4: The confusion matrix of CPL on the Cohn-Kanade database.(Measured by recogni-
tion rate: %)

ag dg fa hp sd sp
ag 65.56 8.33 0 0 25.28 0.83
dg 2.67 92.67 0.67 2 2 0
fa 0 1.98 78.97 13.25 5.79 0
hp 0.33 0.67 4.24 94.76 0 0
sd 6.20 1.67 3.33 0 87.69 1.11
sp 0 0 1.25 0 0.48 98.27

Table 5.5: The confusion matrix of CSPL on the Cohn-Kanade database.(Measured by recog-
nition rate: %)

ag dg fa hp sd sp
ag 71.3889 7.5 0 0.83 19.44 0.83
dg 2.67 95.33 0 0 2 0
fa 0 2.46 81.11 10 6.43 0
hp 0.33 0.33 3.58 95.42 0.33 0
sd 7.45 1.25 2.92 0 88.01 0.37
sp 0 0 1.25 0 0.48 98.27

than our methods. It shows the importance of selecting discriminative patches. The confusion

matrixes of methods, AFL and ADL, can also be found in Table 5.2 and Table 5.3. Although

ADL also uses Adaboost to select the patches, it does not take the commonalities among all

the expressions into account. ADL gets a recognition rate of 82.26% with the selected patches

(highest rate with 20±3 patches), while the recognition rates of CPL and CSPL are 88.42% and

89.89% respectively. It demonstrates that the learned common and specific patches by our pro-

posed two-stage multi-task sparse learning can really improve the performance of expression

recognition.

Analysis of multi-scale patches

The selected patches are shown to be effective in expression recognition, even the number of

them is limited [118]. However, no prior of the optimal patch size is given. Besides, patches

with different scales may represent different information for recognition. So, we can employ

the patch selection strategy on different patch sizes, and then combine the selected patches

with different scales together to further improve the recognition performance. In Figure 5.11,

we show the selected common patches for all the scales for one of the 10-fold experiments.
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Table 5.6: Recognition performances and F1 measures per expression for all compared meth-
ods(i.e., AFL, ADL, CPL, CSPL, MAFL, MADL, MCPL, MCSPL ) on the Cohn-Kanade
database.

Single Scale Multi Scale
Expressions AFL ADL CPL CSPL MAFL MADL MCPL MCSPL

Anger 0.6407 0.6281 0.7144 0.7440 0.6512 0.6325 0.7350 0.7628
Disgust 0.8782 0.8776 0.8927 0.9134 0.8875 0.8796 0.9105 0.9411

Fear 0.8235 0.8206 0.8209 0.8432 0.8369 0.8316 0.8462 0.8619
Happiness 0.9416 0.9381 0.9305 0.9462 0.9536 0.9467 0.9512 0.9635
Sadness 0.8204 0.8346 0.8515 0.8619 0.8269 0.8362 0.8645 0.8829
Surprise 0.9806 0.9791 0.9827 0.9870 0.9806 0.9821 0.9842 0.9870

Recognition Rate 0.8694 0.8226 0.8842 0.8989 0.8732 0.8324 0.9034 0.9153

For each scale, only 1/3 patches are selected out. The results show that for different scales, the

effective patches are around the mouth and the eyes. As shown in Table 5.6, the performance of

these multi-scale patches can achieve better performance (90.34%) than only using the common

patches from a single scale S8 (88.42%). The F1 measures for each expression also validate

the usefulness of multi-scale strategy. The specific patches are selected out at different scale

individually, following the way we already shown for the scale S8. Incorporating selected

specific patches, we get the best performance (91.53%). Thus, the experiment results show

that multi-scale patches could contain more useful statistic information for recognition than

one scale with a single division strategy. Our patches selection are effective in selecting the

discriminative patches across all patch scales.

Figure 5.11: The distribution of selected common patches with different scales on faces. The
darker the red color is, the more times the patch has been selected. To make the results visibly
clearer, only one result of the 10-fold experiments is shown. The selected patches for all scale
are around mouth and the eyes.
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5.3.2 Results on the MMI database

The MMI database includes 30 students and research staff members aged from 19 to 62, of

whom 44% are female, having either a European, Asian, or South American ethnic background.

In this database, 213 sequences have been labeled with six basic expressions, in which 205

sequences are with frontal face. Different from [74], in which only the experimental data are

collected from 99 selected sequences, we conduct our experiments on the data from all the 205

sequences. As in [74], the apex images are extracted from the sequences as the experimental

data. Facial image are corpped based on locations of eyes, and resize it to 96× 96, same as on

Cohn-Kanada database.

MMI is a more challenging database than the Cohn-Kanade database. First, the subjects

make expressions non-uniformly. Different people make the same expression in different ways.

Second, some subjects wear accessories, such as glasses, headcloth, or moustache. Addition-

ally, in some sequences, the apex frames are not with high expression intensity. All these factors

will greatly degrade the recognition performance.

Table 5.7: The confusion matrix of CPL on MMI database.(Measured by recognition rate: %)
(%) ag dg fa hp sd sp
ag 46.94 25.83 1.11 1.11 25.00 0.00
dg 24.17 46.67 0 16.67 11.67 0.83
fa 2.22 7.78 49.44 13.33 22.22 5.00
hp 3.50 7.67 7.83 70.67 4.17 6.17
sd 22.50 7.50 7.78 11.39 50.83 0.00
sp 0.83 2.50 25.33 2.50 2.50 66.33
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Figure 5.12: Recognition rate with different common patch number. Result of one fold experi-
ment is shown.
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Table 5.8: The confusion matrix of CSPL on the MMI database.(Measured by recognition rate:
%)

ag dg fa hp sd sp
ag 50.28 10.56 5.56 2.50 28.61 2.50
dg 5.50 79.83 3.50 2.17 9.00 0
fa 1.67 4.13 67.14 15.56 8.97 2.54
hp 2.63 0.67 12.82 82.91 0.67 0.30
sd 16.34 2.87 13.98 4.54 60.28 1.99
sp 0.42 0 4.94 0.83 5.30 88.51

Table 5.9: F1 measures per expression and recognition performances for all compared meth-
ods(i.e., AFL, ADL, CPL, CSPL, MAFL, MADL, MCPL, MCSPL ) on the MMI database.

Single Scale Multi Scale
Expressions AFL ADL CPL CSPL MAFL MADL MCPL MCSPL

Anger 0.4584 0.4191 0.4715 0.4949 0.4851 0.4250 0.4898 0.6568
Disgust 0.4670 0.3890 0.4821 0.7925 0.4957 0.4062 0.4939 0.725

Fear 0.3593 0.3985 0.4721 0.6143 0.4236 0.4315 0.4721 0.7259
Happiness 0.6888 0.6572 0.7022 0.8342 0.7068 0.6984 0.7365 0.8823
Sadness 0.4771 0.5419 0.4788 0.6311 0.4874 0.5419 0.5816 0.7109
Surprise 0.6375 0.5760 0.7496 0.9099 0.6984 0.6253 0.7554 0.9386

Recognition rate 0.4774 0.4778 0.4936 0.7353 0.4924 0.4868 0.5365 0.7739

We first investigate the performance of the common patches with different patch number,

and Figure 5.12 shows the results. It can be seen that the results are similar to the results on the

Cohn-Kanade database. About 20 common patches are discriminative for all the expressions,

so we set the number of the common patches as 20 on this database too. Table 5.9 lists the

F1 measures for each expression and the overall recognition rates of CPL, CSPL, AFL, ADL,

AFL, and their corresponding multi-scale methods respectively. Same as on the Cohn-Kanade

data, CPL and CSPL are superior to AFL and ADL. However, the performances of all four

methods are much lower than that of the Cohn-Kanade database, because this database has

several challenging factors as mentioned above. CSPL obtains much better performance than

CPL. This is because each expression has a very big variance due to the diversity of the subjects

in this database, but the common patches cannot describe these specific variations. Although

a much better result of 86.7% is reported in [74], their experimental data are carefully chosen

99 sequences, while we perform the experiments on all the 205 sequences. Besides, they adopt

sliding and multi-scale windows to extract much more patches. We only divide the facial image

into 64 patches, and we also obtain a recognition rate of 73.53% on more than double size of the
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data than [74]. Table 5.7 and Table 5.8 list the confusion matrix of CPL and CSPL, respectively.

We further explore the common and specific patches selection for different patch sizes.

The accuracy rate of the baseline method MAFL and MADL increases with more multi-scale

patches. The recognition rate of MCPL and MCSPL using more multi-scale patches both

achieve better performance than CPL and CSPL with single patch scale. The detail results

are also shown in Table 5.9.

The experimental results indicate the location of learned common and specific patches,

which confirms the previous knowledge about active facial parts in psychology. The rewarding

performances of these patches in facial expression recognition provide a solid basis for patches

selection and weight setting in similar applications. Our work opens the road for the researches

of utilizing the prior knowledge of facial muscles in psychology, and further improves the

performances of existing methods in computer vision.

5.3.3 Experiments On the GEMEP-FERA2011 database

The GEneva Multimodal Emotion Portrayals (GEMEP) is a collection of audio and video

recordings [4]. It consists of over 7000 audiovisual emotion portrayals, representing 18 emo-

tions portrayed by 10 actors trained by a professional director. The GEMEP-FERA2011 con-

tains both AU sub-challenge and Emotion sub-challenge. Our method will focus on the Emo-

tion sub-challenge, in which a total of 289 portrayals are selected (155 for training and 134

for testing). The training set included 7 actors with 3 to 5 instances of each emotion per actor.

The test set includes 6 actors, half of which were not present in the training set [88, 89]. For

each video in training or testing, five frames are evenly extracted from the video. We use the

landmark detection from Zhou et al. [119] to localize the position of the eyes, based on which

we align and crop out the face images. The landmark detection result and cropped images are

shown in Figure 5.13.

The emotion recognition challenge involves the classification of the following 5 emotions:

anger, fear, joy, relief and sadness. When determining the label of the test video, we first

classify the extracted frames individually using a five-way forced strategy, then the emotion

class which obtains the highest score will be the winner of the sequence.

Since the subjects in training part of database are quite few, it is quite difficult to learn the
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(a) (b) (c)

Figure 5.13: (a) The landmark detection result of [119]. (b, c) Aligned and cropped face image
examples from the GEMEP-FERA2011 Database.

common patches and the specific patches on this database itself. In this experiment, we utilize

the knowledge of the learned patches from the CK database. It also shows the capability of gen-

eralization across different databases. We follow the training/testing partition in the database,

and the performances of our methods are compared with some related works in Table 5.10.

Our method MCSPL achieve much better recognition rate than the baseline work, i.e., Valstar

et al. [88] and Chew et al. [17]. These results that the patches selected out by our algorithm are

discriminative for expression recognition and are also robust across databases. Compared to the

1st prize of 2011 FERA competition, i.e., Senechal et al. [72], which gets 83.5% accuracy, our

method MCSPL achieves 80.0%. Senechal et al. [72] utilize a lot of features, such as LGPB

histograms, 2.5 D Active Appearance model to combine appearance and geometry informa-

tion. It also employs complex classification algorithm, such as, Multi-kernels SVMs, temporal

filtering. However, our method just uses the LBP feature and naive SVM. Considering these

factors, our patch learning method is proved to be effective, and the results of our method are

promising. More detailed comparisons of using different patches are given in Table 5.12.

Table 5.10: The classification rate for emotion detection on the GEMEP-FERA2011 database.
Emotion baseline [88] Chew et al. [17] Senechal et al. [72] MCSPL
Anger 0.89 0.26 0.963 0.926
Fear 0.20 0.40 0.640 0.640
Joy 0.71 0.52 0.968 0.936

Relief 0.46 0.88 0.846 0.654
Sadness 0.52 0.92 0.760 0.800
Overall 0.56 0.60 0.835 0.800
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Table 5.11: Confusion matrix of MCSPL for emotion recognition on the overall test set of
GEMEP-FERA2011 database.)

pred truth Anger Fear Joy Relief Sadness
Anger 25 4 1 2 3
Fear 2 16 1 0 0
Joy 0 4 29 4 0

Relief 0 0 0 17 2
Sadness 0 1 0 3 20

Table 5.12: F1 measures per expression and recognition performances for all compared
methods(i.e., AFL, ADL, CPL, CSPL, MAFL, MADL, MCPL, MCSPL ) on the GEMEP-
FERA2011 database.

Single Scale Multi Scale
Expressions AFL ADL CPL CSPL MAFL MADL MCPL MCSPL

Anger 0.5214 0.4628 0.6942 0.7187 0.5424 0.5024 0.7858 0.8065
Fear 0.4952 0.4156 0.5246 0.5500 0.5604 0.4695 0.6729 0.7273
Joy 0.7608 0.6815 0.8264 0.8529 0.7428 0.7261 0.8115 0.8529

Relief 0.7254 0.6358 0.7592 0.7626 0.7068 0.6424 0.7188 0.7756
Sadness 0.6892 0.5703 0.7325 0.7600 0.7451 0.6481 0.7954 0.8163

Recognition rate 0.6791 0.5824 0.7241 0.7463 0.6958 0.6251 0.7751 0.8000

5.4 Conclusions

In this chapter, a new method to analyze facial expressions is proposed. Different from previous

work, we aimed at exploring the commonalities among the expressions by discovering the

common and specific patches. A two-stage sparse learning model is proposed to learn the

locations of these patches based on the prior knowledge of facial muscles and AUs. A multi-

scale face division strategy is employed to obtain facial patches with different coverage area

and eliminate the side effects from fixed patch size. The effectiveness of these patches are

evaluated by facial expression recognition. Extensive experiments show that common patches

can generally discriminate all the expressions, and the recognition performance can be further

improved by integrating specific patches. More comprehensive patches can also be selected

out to achieve better performance by using multi-scale patch division strategy. The learned

location information of these patches also confirms the location knowledge of facial muscles in

psychology.
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Chapter 6

Conclusions and Future Work

This dissertation improves the blind deconvolution methods in deblurring natural images and

face images. Because of the unavoidable noises involved in the capturing time in practice,

most existing single image deblurring methods fail without considering them. We proposed a

directional filter to handle the noise in the deblurring process. Without introducing new side

effects from denosing, the directional filter could remove the noise, and also keep the blur

information intact in the orthogonal direction. These partially correct blur information can be

further used to reconstruct the real 2-D blur kernel. Based on this observation, We proposed

the noise-aware kernel estimation algorithm to accurately estimate the motion blur from blurry

and noisy image. After the kernel is estimated, we proposed a final non-blind deconvolution

method to restore the latent sharp image from severely noisy image. Extensive experiments

on both synthetic and real images show that our method outperforms the existing methods on

noisy and blurry images.

The faces are the most important areas in images, but quite few research has been done for

the face deblurring. Most existing methods are designed mainly for natural images, and they

are not suitable for dealing with face images because face images neither contain many salient

edges, nor follow the priors learned from natural images. With the facial landmark localization

result, we could incorporate the global face structure information, which would provide guid-

ance for the following salient edge detection. The proposed face deblurring method is shown

to be robust on blurry face images, and outperforms the existing state-of-the-art methods.

Many face related applications can perform better on restored sharp images than blurry face

images, such as face identification and facial expression analysis. To further improve the facial

expression recognition performance, we proposed to extract the active facial patches using

multitask sparse learning methods. With the learned common and specific facial patches, the
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proposed method can achieve better recognition rate on various databases in the experiments.

Our proposed methods also contain some defects, and solving them could be our future

research directions. First of all, the proposed single image deblurring method employs heavy

noise suppress regulation. So, the final restored images contain much over-smoothing and some

color ringing artifacts. In the future, we would explore the solution to handle the noise without

heavy smooth regulations.

Secondly, the proposed face image deblurring method relies on the facial landmark local-

ization heavily. When the blur kernel size increases too large, the landmark localization method

will fail and provide erroneous information for the deblurring steps. In such situations, our de-

blurring method will fail as well. As for the future work, our research attention would focus on

how to improve the robustness of the facial landmark localization method on images with large

blur kernel size, and how to automatically correct the erroneous landmark information in the

deblurring steps.
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