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ABSTRACT OF THE DISSERTATION 

INTEGRATION OF PROCESS SCHEDULING AND CONTROL 

By JINJUN ZHUGE 

Dissertation Director: 

Marianthi G. Ierapetritou, PhD 

The objective of this dissertation is to develop integrated models and optimization methods to 

solve for chemical process scheduling and control problems. A traditional approach to handle 

process operations at scheduling and control levels is to consider them as separate optimization 

problems. However, scheduling and dynamic optimization at control level are naturally connected. 

An integrated decision making helps to achieve an overall optimality and thus improves the 

profitability of process operations. Integration of scheduling and control results in Mixed Integer 

Dynamic Optimization (MIDO) which is computationally expensive. To reduce the complexity 

brought by integration, research efforts of this dissertation target two goals focusing on first 

reducing the model complexity, and second reducing the solution computational time especially 

in the case of online implementations (i.e. closed loop implementations). In this dissertation, we 

first proposed an approach of implementing closed loop scheduling and control when the 

processes are subject to disturbance. Then we proposed a decomposition approach for the large 

size Mixed Integer Nonlinear Programming (MINLP) resulted from the integration of scheduling 

and control through sensitivity analysis. To facilitate online applications, we adopt multi-

parametric Model Predictive Control (mp-MPC) at the control level and built a new integrated 

model using the explicit control solution generated by mp-MPC. We also developed an integrated 

model using a Piecewise Affine (PWA) model and used fast MPC at the control level to 

overcome the exponential dimension increasing in mp-MPC. Finally we discuss the uncertainty in 

process operations and present solution procedures of robust MPC for nonlinear problem at the 
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control level. Throughout this dissertation, detailed integrated models and the solution algorithms 

are developed and case studies are used to demonstrate the effectiveness of the proposed 

approaches.   
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Chapter 1 Introduction 

1.1 Scheduling and control for chemical processes 

Scheduling of process operations is an important activity especially when multiple multi-purpose 

units and a variety of products are involved in order to achieve the optimal production capacity 

and thus maximize plant profitability. Generally the solutions of scheduling problems involve the 

allocation of resources (material and equipments) at appropriate time over a production horizon 

following a pre-defined recipe for the production of specific products. For a short-term 

scheduling problem, the solutions are composed of equipment assignment, amount of material 

processed in units, task sequence and task starting/ending times. During the past years significant 

efforts have been made in the development of modeling and optimization approaches for batch 

scheduling problems. Detailed review regarding the problem formulations and optimization 

methods in batch scheduling can be found in (Floudas and Lin, 2004), (Mendez et al., 2006), 

(Mouret et al., 2011) and (Maravelias, 2012). 

Control problems of continuous processes focus on transition periods between different products, 

especially for polymerization processes that are usually carried out in continuous reactors such as 

CSTR and PFR. Mahadevan et al. (Mahadevan et al., 2002) investigated classic control strategies 

(i.e. based on transfer function, such as PID) for the transition periods in polymer processes. They 

solved the control problem under different scheduling policies and compared the corresponding 

solutions. Feather et al. (Feather et al., 2004) built a mixed integer Model Predictive Control for 

grade transition problems. They introduced integer variables to approximate the nonlinear process, 

and used heuristics to make selections. Padhiyar et al. (Padhiyar et al., 2006) proposed a 

differential evolution method to solve the optimization problem of grade transitions. We review 

control strategies mainly in polymerization processes because most of the work regarding the 

integration of scheduling and control are in this area and since our case studies are also based on 

the published case studies. 
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Unlike the steady state operations in continuous processes, batch processes are operated at 

transient state. In batch operations the state variables are varying under constraints stemmed from 

mass and energy conservation law (Sundaram et al., 2005). The task of control problem is to 

obtain the optimal state profiles by minimizing the operation cost under these constraints (Bonvin, 

2006). Thus the objective of batch control problem is different from the one addressing 

continuous processes. For continuous processes, the units operate at steady state and the optimal 

control strategies are designed to reduce off-spec products during transitions between different 

production stages. In contrast, the objective for batch control problem is to improve the 

productivity during transient periods by generating optimal operating conditions. 

1.2 The significance of integration of scheduling and control 

A traditional approach to handle production scheduling and dynamic optimization problems in 

chemical processes is to consider them separately. However, there are variables that link the 

scheduling and dynamic optimization problems, for example, the states at the beginning and end 

of the transient periods, duration of the transient periods and steady state periods, and amount of 

material in production stages. Scheduling and dynamic optimization are naturally connected by 

the linking variables and thus cannot be considered completely separately. Using an integrated 

approach, information can be shared between scheduling and dynamic optimization level, leading 

to the integrated decision making which improves the profitability of process operations (Engell 

and Harjunkoski, 2012) (Harjunkoski et al., 2009) (Mitra et al., 2009). 

Previous published papers in this area have demonstrated the advantages of integration. Bhatia 

and Biegler (Bhatia and Biegler, 1996) proposed a framework for the integration of design, 

scheduling and control of multiproduct batch plants. The authors addressed flowshop scheduling 

and replaced batch recipes with detailed dynamic models and show the improvement of 

profitability due to their integration using numerical examples. Mishra et al. (Mishra et al., 2005) 

compared the performance of standard recipe approach (SRA) with the overall optimization 
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approach (OOA) in optimizing general batch plants. In SRA the production scheduling problem 

follows the basis of standardized recipes and is formulated using event-point-based continuous-

time formulation proposed in Ierapetritou and Floudas (Ierapetritou and Floudas, 1998), whereas 

in OOA the dynamic models of the reaction tasks are incorporated into the STN framework. The 

OOA approach leads to a MIDO problem which is discretized and solved as a MINLP. Their 

results shown that the OOA outperformed SRA in terms of profitability. Recently Nie et al. (Nie 

et al., 2012) employed state equipment network (SEN) to represent a process and formulated 

mixed-logic dynamic optimization (MLDO) for integrated scheduling and control. They 

demonstrated the advantages of integrated approach over conventional scheduling method 

through numerical results. Chu and You (Chu and You, 2013b) proposed to use Benders 

Decomposition to decrease the computation complexity, and two-stage stochastic program (Chu 

and You, 2013c) to handle the uncertainties in the integration of scheduling and dynamic 

optimization for batch processes. They also proposed a new online integrated method in which a 

reduced integrated problem is developed using a rolling horizon approach (Chu and You, 2014b). 

1.3 Modeling, computation, and challenges of integration of scheduling and 

control 

Recently a number of publications appear in the literature to address the integration of scheduling 

and dynamic optimization problems for continuous processes. Two approaches can be identified 

in this area: simultaneous modeling and decomposition based approach. With simultaneous 

modeling, the process dynamics is treated as constraints and incorporated into the scheduling 

problems, forming a integrated problem which is a Mixed Integer Dynamic Optimization (MIDO) 

problem (Allgor and Barton, 1999). The MIDO can be discretized using collocation point 

methodsand a Mixed Integer Nonlinear Programming (MINLP) is obtained (Flores-Tlacuahuac 

and Grossmann, 2006) (Terrazas-Moreno et al., 2007) (Terrazas-Moreno et al., 2008b). Using 

decomposition methods, the scheduling problem (master problem) is modeled as Mixed Integer 
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Linear Programming and the control problem (primal problem) as dynamic optimization. This 

approach is implemented by iterating between the master problem and the primal problem until 

convergence is achieved (Nystrom et al., 2005) (Nystrom et al., 2006). 

Integration of scheduling and dynamic optimization results in a large size MINLP which is 

computational very expensive. In order to achieve better computational performance, (Terrazas-

Moreno et al., 2008a) proposed Lagrangean decomposition for the integrated model and solved it 

with iteration between a primal control problem and a master scheduling problem. (Chu and You, 

2013b) and (Chu and You, 2013a) explored the structure of the integrated problem and applied 

Benders Decomposition to decrease the computational complexity. Their approach effectively 

loweredthe computation time and achieved optimality of the integrated problem. 

Challenges of integration of scheduling and control for batch processes mainly lie in modeling 

and computation. Since scheduling and control levels have different dynamics and different time 

scales, the integration requires high-fidelity representations of both the scheduling problem and 

the dynamics of the plant (Engell and Harjunkoski, 2012). Moreover, the resulting MIDO is 

typically nonlinear and nonconvex, and the discretized MINLP involves a large number of 

variables and constraints and requires excessive computation effort to get solved (Allgor and 

Barton, 1999) (Flores-Tlacuahuac and Biegler, 2005). Thus the problem complexity limits the 

scale of the problems that can be considered in online applications. 

1.4 Motivation and outline of the dissertation 

As described above, challenges of integration of scheduling and control mainly lie in modeling 

and computation. In this dissertation we intend to develop new integrated models and 

optimization methods to reduce the complexity brought by integration, so as to facilitate the 

online implementations.  
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In Chapter 2 we build a closed loop implementation for simultaneous scheduling and control, 

which mitigates the effects of disturbances by generating new solutions once the state deviation 

due to disturbances is detected. In order to test the performance of the proposed methodology, we 

use two case studies, and compare its performance with that of open loop implementation. The 

results of the case studies verify the effectiveness of closed loop strategy in dealing with process 

disturbances. 

In Chapter 3 we continue with the integrated model presented in Chapter 2 and propose a 

decomposition approach that result in the efficient solution of the integrated problem. Sensitivity 

Analysis is utilized to prove that the production sequence and transition times are independent of 

products‟ demands. The proof leads to the decomposition of the integrated problem into two sub 

problems that can be solved separately without the need for iterations. Results of case studies 

verify the feasibility and effectiveness of proposed approach in reducing the computational 

complexity of the integrated problem but also obtaining the optimal solution. 

In Chapter 4 and 5 we focus on the online applications. In Chapter 4 we incorporare 

multiparametric Model Predictive Control (mp-MPC) in the integration of scheduling and control. 

The proposed methodology involves the development of an integrated model using continuous 

time event point formulation for the scheduling level and the derived constraints from explicit 

MPC for the control level. Results of case studies of batch processes prove that the proposed 

approach guarantees efficient computation and thus facilitates the online implementation. In 

Chapter 5 we propose a framework for the integration of scheduling and control. We identify a 

piece-wise affine (PWA) model from the first principle model and integrate it with the scheduling 

level leading to a new integration that has linear constraints. At the control level we employ fast 

Model Predictive Control (fast MPC) which overcomes the increasing dimensionality of multi-

parametric Model Predictive Control (mp-MPC) in our previous study. (Zhuge and Ierapetritou, 
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2014) Results of CSTR case studies prove that the proposed approach reduces the computing time 

by at least two orders of magnitude compared to the integrated solution using mp-MPC. 

In Chapter 6 we discuss the uncertainty in process operations and present solution procedures of 

robust MPC for nonlinear problem at the control level. 

Finally in Chapter 7 we summarize major conclusions and discuss the future perspectives in the 

area of integration of scheduling and control for chemical processes. 
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Chapter 2 A closed loop implementation of integrated scheduling and 

control 

2.1 Integrated model for cyclic scheduling and control for continuous 

processes 

2.1.1 General integrated model for scheduling and control 

In this section we present the general scheduling and dynamic optimization models for 

continuous cyclic productions, and explain how the scheduling and dynamic optimization 

problems are integrated. 

 

Figure 2.1 Cyclic production of continuous processes 

In continuous processes cyclic production, slot based formulation is adopted (Flores-Tlacuahuac 

and Grossmann, 2006) and in each slot transition period (dynamic profile) is followed by 

production period (steady state profile) (Figure 2.1). The optimization problem at scheduling 

level determines the production time and production sequence in order to satisfy demands. During 

transitions between steady state production stages optimal control (i.e. dynamic optimization) are 

needed which is obtained from the solution of problem (2.1) in which state variables  govern the 

system dynamics at slot k. 
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)
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ï
ï

î

ï
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        (2.1) 

In problem (2.1) kJ is the local profit, and ku and kq  are the manipulated variables and outputs, 

respectively, whereas xuq is the domain for , ,k k kx u q . With simultaneous modeling, the 

process dynamics(differential equations derived from mass and energy balance) are considered as 

constraints and incorporated into the scheduling problem, resulting in the integrated model in 

formula (2.2). More specifically, ( , )k k k kx f x u  are the differential equations describing the 

process dynamics which can be solved under the initial value of state and manipulated variables

0kx  and 0ku , leading to 0 0( , , , )k k k k k kx ff f u x u . Here kff is the solution for kx . It is 

determined by the form of kf and the manipulated variable ku and the initial conditions 0kx  and 

0ku . kff is not necessarily in an explicit form. Note that 0kx  and 0ku  are equal to the steady 

state values of the prior time slot, which are relevant to the scheduling solution y . In continuous 

processes because the transition between products is followed by the steady state period, the 

sequence of products determines the set point of the transition in a certain slot. Thus we obtain 

0 0( , , ( ), ( ))k k k k k kx ff f u x y u y  which is integrated with the scheduling model as shown in 

problem (2.2). 

, ,

0 0

max ( , , , , )

( , ) ( )

( , , ( ), ( ))
. .

( , )

( , , , )

w y u

i

k k k k k k

k k k k

k k k xquw

J w y x u q

g w y demand i i I

x ff f u x y u y k K
s t

q h x u k K

x q u w k K

  


  


  
   

      (2.2) 

where I is the product set and K is the slot set. y is a vector of binary variables representing 

assignment of products in slots;  w is the vector of production times which are decision variables 
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in scheduling problem; and xquw is the domain for w , the state variables x, the manipulated 

variables u, and the output variables q defined in problem (2.1). In this study infinite amounts of 

raw material and resources are considered. In the scheduling problem demands should be satisfied 

by the production amount ig . The objective ( , , , , )J w y x u q  represents the profit in unit time 

or in general the total profit in a pre-determined time period. 

To achieve economically optimal operations of chemical processes, we utilize the objective of 

maximizing profit per unit time, which can be calculated as follows: 

Profit per unit time = (Revenue – Inventory cost – Raw material cost)/Cycle time 

1 2 3             (2.3) 

1

1

pN p
i i

ci

C W

T


           (2.4) 

2

1

1

2

pN

s i
i i i

ci

W
C G

T


 
    

 
         (2.5) 

   11
3

1 1 1

/
s e sN N N

mr m t r
k kke ke k k k c

k e k

C u u h C u u p T

  

 
       




        (2.6) 

We consider a comprehensive economic objective incorporating market economics which we 

believe are very important in making scheduling decisions.  1 2 3, ,    represent the revenue rate, 

inventory cost rate, and raw material cost rate, respectively. The total revenue is given as the 

amount produced ( iW ) times the product price ( p
iC ).  The accumulation of product i with respect 

to time is shown in Figure 2.2. When it    the accumulation rate is given by the production 

rate iG minus the depletion rate i cW T , and at it    (i.e. the end of production period) the 

accumulation reaches its peak. At 
it   the accumulation decreases due to pure product 
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depletion. The total inventory cost of product i is thus calculated as the inventory cost s
iC times 

the area of the triangle i.e. 1
( )

2
c i i c iT G W T  . Unlike the objective in Flores-Tlacuahuac and 

Grossmann (Flores-Tlacuahuac and Grossmann, 2006), we do not incorporate state variation in 

3 . The main reason for this is that it is difficult to quantify state variation economically. For 

continuous processes, raw material is consumed both in transition periods and production periods. 

Thus 
3  

is composed of two terms which quantify the raw material consumption in these two 

periods. It should be noticed that the objective in the model of (Terrazas-Moreno et al., 2007) 

quantifies raw material consumption during product transitions as well but with a different 

manner compared to our model. 

 

Figure 2.2 Inventory is represented as product accumulation with respect to time 

2.1.2 Scheduling constraints 

Product assignment 

1

1,
sN

ik

k

y i I



            (2.7) 

1

1,

pN

ik

i

y k K



            (2.8) 

'
, 1, , , 1ik i ky y i I k K k            (2.9) 

'
1 , ,

si i Ny y i I            (2.10) 
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' 1, , ,ipk ik pkz y y i I p I k K             (2.11) 

' , , ,ipk ikz y i I p I k K            (2.12) 

, , ,ipk pkz y i I p I k K            (2.13)
 

where binary variables iky indicate the assignment of products in slots,  1iky  if product i is 

produced in slot k, otherwise 0iky  ; '
1iy are auxiliary variables. Constraints (2.7) enforces that 

each product can only be produced in one slot and (2.8) implies that only one product is produced 

in one slot. In constraints (2.11)-(2.13) if binary 1ipkz  , there is a transition from product i to 

product p within slot k; otherwise 0ipkz  . In the case studies of this work it is assumed that 

s pN N . 

It should be noticed that the production sequences that have the same relative positions in the 

production wheel are equivalent (i.e. cyclic feature). For example, sequences CADEB, ADEBC, 

DEBCA, EBCAD, BCADE are equivalent solutions in terms of producing the same transition 

profiles and the same objective values. 

Demand constraints 

,i i cW DT i I            (2.14) 

,i i iW G i I             (2.15) 

0 (1 ),i iG F X i I            (2.16) 

Inequality (2.14) implies that the total production amount of each product iW , which is calculated 

by Equation (2.15), should be greater than the demand iD in current production cycle. Equation 

(2.16) computers the production rate as a product of feed flow rate 0F and conversion iX . 
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Processing times 

max , ,ik iky i I k K             (2.17) 

1

,
sN

i ik

k

i I


            (2.18) 

1

,

pN

k ik

i

p k K


           (2.19) 

Inequality (2.17) sets up an upper bound for the time allowed for producing product iin slot k. In 

Equations (2.18) and (2.19), 
i , kp define the  production time of product i and slot k, 

respectively. 

Timing constraints 

1 1

,

p pN N

t t
k pi ipk

i p

z k K 
 

           (2.20) 

1 0st            (2.21) 

1 1

,

p pN N

e s t
k k k pi ipk

i p

t t p z k K
 

            (2.22) 

1, , 1s e
k kt t k K k            (2.23) 

,e
k ct T k K            (2.24) 

Equation (2.20) computers the time of transition t
k from product i to p in slot k. The starting s

kt

and the ending time point e
kt for each slot are presented by Equations (2.22) and (2.23). The 

starting point  is equal to the ending point of the prior slot. The ending point is calculated as the 
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sum of the starting point, the transition time, and the production time. As shown in inequality 

(2.24) all slots should finish in the cyclic time. 

2.1.3 Dynamic optimization problem 

In discretizing the dynamic model, we adopt implicit Runge-Kutta methods due to their high 

stability (Frank et al., 1985). A general form of implicit RK methods has Butcher tableau as 

following. 

1 11 12 1

2 21 22 2

1 2

1 2

s

s

T
s s s ss

s

c a a a

c a a a

c a a a

b b b

c A

b

 
 
 

  
  
    

 
  
 





    





     (2.25) 

Here we use Hammer-Hollingsworth with Butcher tableau as follows: 

3 3 1 1 3

6 4 4 6

3 3 1 3 1

6 4 6 4

1 1

2 2

 
 

 
 

 
 
 
 
 
 
 

       (2.26) 

Thus we obtain the following discretization of the dynamic model: 

1 1( , , , , , , ), , ,n n n m
ke ke ke ke ke ke xx f t x x u u n S k K e E           (2.27) 

11 ( 0.2113 , (0.25 1 0.0387 2 ), , ),

, ,

n n n n n m
ke ke k ke k ke ke ke ke

x

K f t h x h K K u u

n S k K e E

   

   


   (2.28)

 

12 ( 0.7887 , (0.5387 1 0.25 2 ), , ),

, ,

n n n n n m
ke ke k ke k ke ke ke ke

x

K f t h x h K K u u

n S k K e E

   

   


   (2.29) 

,
t
k

k
e

h k K
N


            (2.30)

 

 , 1 0.5 1 0.5 2 , , ,n n n n
k e ke k ke ke xx x h K K n S k K e E             (2.31)
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The derivatives of the state variables at each sample step are calculated using Equation (2.27) 

where f represents the detailed dynamic model; and sub-index e represent elements in each slot. 

Through the computing of intermediate variables 1, 2K K  in Equations (2.28) and (2.29), the 

state of the next sample step is obtained by Equation (2.31). Equation (2.30) defines the sample 

size(length of each element) in slot k. 

Lower and upper bounds of states and manipulated variables 

min max , , ,n n n
ke xx x x n S k K e E     

      (2.32)
 

min max , , ,m m m
ke uu u u m S k K e E     

      (2.33)
 

Inequality (2.32) and (2.33) provide lower and upper bounds for the state and manipulated 

variables at each sample point. 

Constraints that link scheduling and control level 

, , ,

1

, ,

pN

n n
in k ss i i k x

i

x x y n S k K



   
       (2.34)

 

, , 1

1

, , ,

pN

n n
k ss i i k x s

i

x x y n S k K k N



    
      (2.35)

 

, ,1

1

,

p

s

N

n n
N ss i i x

i

x x y n S



  
        (2.36)

 

, , ,

1

, ,

pN

m m
in k ss i i k u

i

u u y m S k K



   
       (2.37)

 

, , 1

1

, , , 1

pN

m m
k ss i i k u s

i

u u y m S k K k N



     
      (2.38)

 

, ,1

1

,

p

s

N

m m
N ss i i u

i

u u y m S



  
        (2.39)

 

,1 , ,n n
k in kx x k K  

         (2.40)
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,1 , ,m m
k in ku u k K  

        (2.41)

 

, ,
e

n n
k N kx x k K  

        (2.42)

 

The steady state values for each slot 
, ,,n m

ss i ss ix u  are computed beforehand by simulating the 

process at steady state. Equations (2.35) (2.36) and (2.38) (2.39) calculate the desired state and 

manipulated variables at each slot. Equations (2.34) and (2.37) provide the initial values of state 

and manipulated variables in slot k. (2.40) and (2.41) link the initial values with the state and 

control value of the first element in the transitions. (2.42) enforces that the state values at the end 

of transition are equal to the desired values (steady state values) in the current slot. Constraints 

(2.34)-(2.41) demonstrate how scheduling and control are linked. For example, sequence y in 

(2.34) and dynamic in (2.31) are linked through (2.40). 

2.2 The closed loop implementation 

In real applications, processes are subject to disturbances. There are a few disturbances that 

CSTRs or PFRs may be subject to, such as disturbances on feed flow rate, feed flow composition, 

and feed flow temperature. Even though the disturbances on these variables can be handled by 

local controllers, their fluctuations cause a joint effect on state variables (concentration), which 

may degrade products quality. In most cases this joint effect is difficult to track analytically. 

Therefore it is easier to measure the state variables (concentration) and update the control profile 

(feed flow rate) if concentration exceeds the quality bounds. 

We propose a closed loop strategy for implementing the integration of scheduling and control in 

chemical processes whose state variables are subject to disturbances. State variables are deviated 

because of disturbances. The deviation is a joint result of the disturbances on the variables 

mentioned previously. To make it more applicable to real processes, we assume disturbances can 

occur both in transition and production periods. In real operations, the state is monitored and 
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state‟s deviation from reference is measured at every step. A threshold (also defined as quality 

bounds) is set to determine whether the manipulated variables for the next step remain the same 

as the reference or should be updated using the solution of the integrated problem for the 

remaining time slots. The only limitation is that the time needed for solving the integrated 

problem should be less than the sample step. 

More specifically, as shown in Figure 2.3, we first solve the integrated problem off-line and 

obtain the scheduling solution and control input as reference. Then the solution is implemented in 

the process. If the state deviation from the reference is less than the threshold (i.e. within the 

quality bounds), no update is needed. If it is greater, which means off-spec product is produced, 

the integrated problem is solved again for the remaining part of the production cycle based on the 

current state information. A new solution for the integrated problem is generated at the point of 

significant deviation. Thus both the scheduling solution and control input are updated, which 

ensures that the operations thereafter are optimal. 

 

Figure 2.3 Flow chart of closed loop implementation 

The main steps of the proposed approach are as follows:  
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Assuming that the wheel time is divided into 
splN  

sample points having the same interval length 

so that  each time point n satisfies the following constraint: 1 spln N  . 

Step 0: Initialization: n=1.
 

Step 1: Solve original problem, obtain solution of scheduling and control as reference  

Step 2: At time point n. Implement the solution, detect state deviation from reference 

Step 3: Compare the deviation to the threshold 

Step 4: If deviation is smaller than threshold, go to step 6 

Step 5: If deviation is greater than threshold, re-solve the integrated problem, generate new   

solution of scheduling and control, and go to step 6 

Step 6:  n=n+1, if 1 spln N  , go to step 2; otherwise stop. 

2.3 Stability and robustness of closed loop implementation 

The proposed strategy in section 2.2 is implemented in a closed loop manner. For every sample 

step state information is feedback and new solutions are generated if its deviation exceeds a 

predefined threshold. The new solutions however are obtained by optimizing the cost function on 

the remaining slots in the production cycle. In a sense, this implementation is equivalent to 

constrained Nonlinear Model Predictive Control with varying prediction horizon. Due to the 

presence of disturbance and model mismatching, stability and robustness are investigated in this 

study. The nonlinearity in the prediction model necessitates the use of Lyapunov stability theory 

(Mayne et al., 2000). 

2.3.1 Proof of the asymptotic stability of the closed loop system 

Suppose a local Lyapunov function F can be constructed to satisfy the following constraint: 

Assumption 1: 

( ( , ( ))) ( ) ( , ( )) 0
SSxF f x u x F x l x u x x          (2.43) 
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where ( , )f   governs the state dynamic i.e. 1 ( , )k k kx f x u  , ( , )l   is the cost of current step, and 
SSx

is the set of steady state value of state x. 

Under the principle of optimality, we have * *

1 0( ) ( , ( )) ( ( , ( )))J x l x u x J f x u x  , where  ( )iJ x

is the optimal objective value at state x, and i is the prediction horizon. Since *( )u x is the optimal 

control solution, 
* *

0 0( , ( )) ( ( , ( ))) ( , ( )) ( ( , ( )))l x u x J f x u x l x u x J f x u x   in which 

0( ( , ( )))J f x u x can be substituted with ( ( , ( )))F f x u x based on the definition of 0J and F. 

Referring to Assumption 1, we obtain 0( , ( )) ( ( , ( ))) ( ) ( )l x u x F f x u x F x J x   . Hence,  

1 0( ) ( )
SSxJ x J x x           (2.44) 

Thus if we prove that 1 0( ) ( )
SSxJ x J x x   , then 1( ) ( ) 0

SSi i xJ x J x x i      . 

Assuming monotonicity of ( )iJ x  we have: 1( ) ( )
SSi i xJ x J x x   , then 

1

1

1

( ) ( ) ( , ( )) ( ( , ( )))

( , ( )) ( ( , ( )))

( ( , ( ))) ( ( , ( )))

0

i i i

i

i i

J x J x l x u x J f x u x

l x u x J f x u x

J f x u x J f x u x







  

 

 



     (2.45) 

To establish the monotonicity of  ( )iJ x  is  necessary to construct a local Lyaponov function F 

such that assumption 1 is satisfied.  

We define F as the terminal cost so we have the following objective function 

1

0

( , ) ( ( ), ( )) ( ( ))
N

i

J x u l x i u i F x N




         (2.46) 

In the simultaneous scheduling and control problem, from the MPC point of view, the final stage 

in the prediction horizon is the production stage, i.e. steady state is achieved. Thus we have:  

( , ( ))f x u x x           (2.47) 

So ( ( , ( ))) ( ) 0F f x u x F x   always hold and we only need to prove that
 

( , ( )) 0
SSxl x u x x    which means that the cost of each prediction step in the final 
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production stage is negative. This is satisfied in principle, because the process is profitable at the 

whole production stage, which implies that the cost is negative. Thus assumption 1 is always 

satisfied given any expression of (.)F ,
which eliminates the necessity of constructing an explicit 

(.)F . 

Based on the above argument, monotonicity of ( )iJ x  is proved and, hence, asymptotic stability 

of the close loop system is established. 

2.3.2 Robustness analysis of the integrated scheduling and control 

Suppose the real system is 1 ( , , )k r k k kx f x u w  ,the model is ( , )f   ,due to modeling errors,

( , ) ( , , )rf f     
.
 

From the proof of stability, we have 

1( , ( )) ( , ( ))N NJ x u x J x u x         (2.48)
 

Due to the optimality we have: 

1( ( , ( ))) ( ) ( , ( )) ( )N N NJ f x u x J x l x u x J x   
      (2.49) 

Hence we obtain monotonicity: 

( ( , ( ))) ( )N NJ f x u x J x          (2.50) 

If monotonicity holds, closed-loop stability is guaranteed (De Nicolao et al., 1999). 

In order to guarantee closed-loop stability with the presence of model mismatch, we must have 

( ( , ( )), ) ( , )rJ f x u x N J x N
         (2.51)  

Combined with the above, we obtain 

( ( , ( )), ) ( ( , ( )), ) ( , ( ))rJ f x u x N J f x u x N l x u x       (2.52)
 

Since ( , ( )) 0l x u x  , the above inequity  guarantees that closed-loop stability is preserved if 

model mismatch is small enough such that the difference between real cost and nominal cost is 

less than the cost of current step. 
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2.4 Case studies 

In order to test the effectiveness of closed loop implementation and compare with the open loop 

implementation, we applied our approach in two case studies (multiproduct CSTR and 

multiproduct PFR) and made quantitative comparisons between open and closed loop strategy. 

Both cases address cyclic production in which five products are produced. 

2.4.1 Cyclic production in a multiproduct CSTR 

The recipe and data set of this case study are imported from Flores-Tlacuahuac and Grossmann 

(Flores-Tlacuahuac and Grossmann, 2006). Reaction 3
k

R P  takes place in an isothermal 

CSTR with reaction rate 3
R Rr kC  . Five products, A, B, C, D, and E, are manufactured in a 

cyclic mode, which is shown in Figure 2.1. The following dynamic model is obtained applying 

mass balance in the reactor. 

 0
R

R R

dC Q
C C r

dt V
            (2.53) 

where 
0C  is feed stream concentration, Q is the feed flow rate (i.e. manipulated variable), and

RC  

is the concentration of the outflow (i.e. state variable). The following values of design and kinetic 

parameters are assumed: 0 1C mol L , 5000V L , 2 22 ( )k L mol h . A constraint on 

manipulated variable (i.e. feed flow rate) is enabled as 10 / 3000 /L h Q L h  . Market 

information is provided in Table 2.1. The values of the steady state conditions (i.e. the specific 

qualities of products) of each product in Table 2.1 are calculated beforehand. 

Table 2.1 Five products with steady state information and market information with CSTR 

Product ( / )Q L hour  ( / )RC mol L  Demand 

rate  

( / )kg hour  

Product 

price 

($ / )kg  

Inventory 

cost ($ / )kg  

A 10 0.0967 3 200 1 
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B 100 0.2 8 150 1.5 

C 400 0.3032 10 130 1.8 

D 1000 0.393 10 125 2 

E 2500 0.5 10 120 1.7 

 

The objective in this case is to maximize profit per hour which is expressed in Equation (2.3). 

Decision variables consist of sequence of production, production time, amount manufactured of 

each product, transition time and feed flow rate (i.e. manipulated variables) in transition periods. 

They are determined simultaneously by solving the integrated optimization problem. The 

dynamic model in Equation (2.53) is a nonlinear differential equation. It produces nonlinear 

equality constraints when discretized using implicit Runge-Kutta method. We formulated a 

MINLP on the basis of the discretized model in section 2.1.3. To find an appropriate number of 

elements in each slot, we divided the transition period using different number of elements and 

found that 60 elements produced an acceptable tradeoff between computational complexity and 

accuracy. The integrated problem has 2991 variables and 4055 constraints. It takes approximately 

10 seconds to solve using GAMS/SBB on an 8 CPUs server. The transition periods are 

discretized with 60 points and the minimum time step is 18 seconds, which ensures that the 

computation is completed during each step. Because the model is non-convex, global optimum is 

not guaranteed. We also investigated the use of GAMS/BARON but the solution time was more 

than ten minutes which is unacceptable since it exceeds the time step in the real process. However, 

it should be noticed that the solution found by BARON is the same as that of SBB. 

The solution for the original problem is demonstrated in Figure 4 and Table 2. Each slot has 

different length, indicating different processing time for each product. This figure also shows the 

state and control variable profiles during the transition and production stages. The state profile is 

obtained as reference. 
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Figure 2.4 Solution of the CSTR original problem: profile of manipulated variable and state 

variable, pre-calculated off line 

Table 2.2 Simultaneous scheduling and control results for the original CSTR integrated 

problem. no state deviation 

Slot Products Transition 

Time (h) 

Production Time 

(h) 

Amount Produced 

(kg) 

1 C 1.77 4.50 1254.89 

2 B 3.74 12.55 1003.91 

3 A 56.58 41.68 376.47 

4 D 0.77 2.07 1256.89 

5 E 0.83 1.00 1251.47 

 

Quantitatively comparison of open loop strategy and closed loop strategy 

In order to compare the performance of closed loop implementation and open loop 

implementation, we introduce three different state deviations both in transition and production 

periods in the original solution shown in Figure 2.4. The first state deviation from 0.25 mol/L to 

0.35 mol/L occurs at 8 hours in the transition from product C to B, and the second from 0.2 mol/L 

to 0.15 mol/L occurs at 15 hours in the production period of B, and the third from 0.2 mol/L to 

0.22 mol/L occurs at 15 hours in the production period of B. The threshold (i.e. quality bounds) 
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for state deviation is 0.01 mol/L in this case. That means a deviation greater than 0.01 mol/L is 

significant and closed loop implementation is required to deal with it. Applying these two 

strategies in the presence of significant state deviations, the process behaves differently and 

generates different objective values as described in the following. 

State deviation occurs in transition periods 

Following an open loop strategy in which the pre-calculated solution of scheduling and control is 

implemented during the whole process no matter if there is state deviation or not, when state 

deviation from 0.25 mol/L to 0.35 mol/L occurs at 8 hours, the current state information is not 

feedback to the controller, and control inputs remain the same as that of pre-calculated (Figure 

2.6 and Table 2.4). However, the closed loop strategy reacts instantly to the deviation so at 8 

hours, the process produces E instead of B (Figure 2.5 and Table 2.3). 

 

Figure 2.5 Closed loop implementation on CSTR, state deviation occurs in transition from 

C to B, new solution is generated as transition from C to E 

 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (Hr)

S
ta

te
 v

a
ri
a
b
le

 a
n
d
 M

a
n
ip

u
la

te
d
 v

a
ri
a
b
le

 

 

x: State in transition periods

x: State in production periods

u: Control input in transition periods, scaled down as U=U/4000

u: Control input production periods, scaled down as U=U/4000

C

A

E

D

B



24 
 

 

 

Figure 2.6 Open loop implementation on CSTR, state deviation occurs in transition from C 

to B, original solution is implemented and product B is not produced 

Table 2.3 Simultaneous scheduling and control results for closed loop implementation on 

CSTR, state deviation occurs in transition from C to B 

Slot Products Transition Time Production Time Amount Produced 

1 C 1.77 4.50 1254.89 

2 E 3.50 1.00 1251.47 

3 D 0.63 2.06 1251.47 

4 B 4.90 12.51 1001.18 

5 A 56.58 41.56 375.44 

Table 2.4 Simultaneous scheduling and control results for open loop implementation on 

CSTR, state deviation occurs in transition from C to B 

Slot Products Transition Time Production Time Amount Produced 

1 C 1.77 4.50 1254.89 

2 -- 16.29 0 0 

3 A 56.58 41.68 376.47 

4 D 0.77 2.07 1256.89 

5 E 0.83 1.00 1251.47 
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Table 2.5 Quantitatively comparison of open loop strategy and closed loop strategy on 

CSTR, state deviation occurs in transition from C to B 

Solutions No Deviation 

Open loop strategy 

(Figure 2.4) 

With Deviation 

Closed loop 

strategy 

(Figure 2.5) 

With Deviation 

Open loop 

strategy 

(Figure 2.6) 

Scheduling Solution C-B-A-D-E  C-E-D-B-A  C-×-A-D-E 

Cycle Time (Hr) 125.489 129.012 125.489 

Revenue per Hour ($) 5548.724 5387.180 4348.727 

Cost of Inventory per 

Hour ($) 

4184.573 4186.109 3536.573  

Cost of Raw Material 

per Hour ($) 

1082.101 1083.134 1082.101 

Profit per Hour ($)  282.04  117.937 -269.947 

 

As shown in Table 2.5,  the profit per hour obtained using open loop implementation is negative 

(i.e. -269.947) because product B is not produced (Figure 2.6). However, closed loop 

implementation guarantees a positive profit per hour (i.e. 117.937). 

State deviation occurs in production periods 

 

Figure 2.7 Closed loop implementation, state deviation occurs in production period of B 

(Case 1), new solution is generated as transition from partial B to A 
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Figure 2.8 Closed loop implementation, state deviation occurs in production period of B 

(Case 2), B is retrieved right after the deviation 

 

Figure 2.9 Open loop implementation, state deviation occurs in production period of B, 

original solution is implemented and product B is partially produced 

Table 2.6 Simultaneous scheduling and control results for closed loop implementation on 

CSTR, state deviation occurs in production period of B (Case 1) 
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2 B1 3.74 4.45 356 

3 A 52.02 37.91 342.46 

4 B2 0.30 6.92 553.65 

5 E 1.40 1.00 1251.47 

6 D 0.63 1.88 1141.54 

Table 2.7 Simultaneous scheduling and control results for closed loop implementation on 

CSTR, state deviation occurs in production period of B (Case 2) 

Slot Products Transition Time Production Time Amount Produced 

1 C 1.77 4.50 1254.89 

2 B1 3.74 4.99 399.20 

3 B2 1.08 6.93 554.22 

4 A 56.58 37.95 342.82 

5 E 1.61 2.39 2989.89 

6 D 0.63 1.88 1141.16 

Table 2.8 Simultaneous scheduling and control results for open loop implementation on 

CSTR, state deviation occurs in production period of B 

Slot Products Transition Time Production Time Amount Produced 

1 C 1.77 4.50 1254.89 

2 B‟ 3.74 4.99 399.20 

3 A 64.14 41.68 376.47 

4 D 0.77 2.07 1256.89 

5 E 0.83 1.00 1251.47 

Table 2.9 Quantitatively comparison of open loop strategy and closed loop strategy, 

disturbance occurs in production period of B 

Solutions No Deviation 

Open loop 

strategy (Figure 

2.4) 

With Deviation 

Closed loop 

strategy case 1 

(Figure 2.7) 

With Deviation 

Closed loop 

strategy case 2 

(Figure 2.8) 

With Deviation 

Open loop 

strategy (Figure 

2.9) 

Scheduling 

Solution 

C-B-A-D-E  C-B1-A-B2-E-D C-B1-B2-A-E-D C-B‟-A-D-E 

Cycle Time 

(Hr) 

125.489 116.522 124.052 125.489 

Revenue per 

Hour ($) 

5548.724 5672.269 7062.720 4825.900 

Cost of 

Inventory per 

Hour ($) 

4184.573 3992.450 5467.573 3791.318 

Cost of Raw 

Material per 

Hour ($) 

1082.101 1366.946 1328.343 1082.101 
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Profit per 

Hour ($)  

282.04 312.873 266.804 -12.561 

 

Figure 2.7 and Figure 2.8 demonstrate the response of closed loop implementation at the presence 

of significant state deviations that occur at 15 hours in the production period of B with different 

magnitudes (i.e. one is from 0.2 mol/L to 0.15 mol/L and the other from 0.2 mol/L to 0.22 mol/L). 

Figure 2.9 shows the behavior of open loop implementation when state is deviated from 0.2 

mol/L to 0.15 mol/L. Open loop strategy generates negative profit per hour (i.e. -12.561) because 

B is partially produced (as shown in Figure 2.9 and Table 2.8) while the profit per hour of closed 

loop strategy is still high because product B is produced in the remaining slots. A large state 

deviation in Figure 2.7 results in production interruption and switching to different product, while 

a relative small deviation in Figure 2.8 results in continuation of the current production. It is 

interesting to note that when the deviation is large it is more costly to force a largely deviated 

state back to reference rather than taking advantage of the deviation and start with another 

product. The updated solution generated by the closed loop strategy reflects exactly this concept. 

The open loop strategy fails because it carries out the pre-calculated manipulated variable on the 

real process regardless of the state deviation. When the state variable is deviated due to 

disturbances, the closed loop strategy forces the process to produce another product or take it 

back to steady value by implementing the updated control input. However, open loop strategy 

does not respond to this, making the current product slot less productive. 

2.4.2 Cyclic production of Multiproduct using Isothermal Tubular Reactor 

In this case study five products (i.e. A, B, C, D, and E) are manufactured in a single multiproduct 

PFR following cyclic production. Their corresponding steady state conditions can be calculated 

under steady state assumption using Equation (2.54). Table 2.10 lists the steady state information 

(i.e. volumetric flow rate, concentration, conversion) and market information (i.e. demand, 

process cost, inventory cost). The steady state volumetric flow rate and concentration correspond 
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to the manipulated and controlled variables, respectively. Steady state information describes the 

feature of reactant during production stages, while the transition stages focus on the dynamic 

transition from one production stage to another, namely from one product to another. All the 

recipe and data of this case study are those used by Flores-Tlacuahuac and Grossmann (Flores-

Tlacuahuac and Grossmann, 2010). 

In an isothermal PFR, reaction 2A B  takes place with reaction rate 2r kC  . One 

dimensional (i.e. z direction) mass transfer is assumed and both diffusion and convection is 

considered, resulting in the dynamic model in Equation (2.54) with initial condition in Equation 

(2.55) and boundary conditions in Equation (2.56). The dynamic model is composed of diffusion 

term ( 2 2/C z  ), a convective term ( /C z  ), and a reaction term ( 2KC ). 

Isothermal Tubular Reactor 

2
2

2

C C C
D v KC

t zz

  
  

 
        (2.54)

 

Initial conditions 

( ,0) tC z C           (2.55) 

Boundary conditions 

0

0

f

D C
C C at z

v z

C
at z L

z


   


  

 

       (2.56)

 

where ( , )C z t  is the concentration of component A at position z along longitudinal direction at 

time t. D and K are mass diffusivity and reaction constant, respectively; and v is the mass velocity 

within the reactor whose length equals L. The concentration of A at the end of PFR 
LC is taken as 

state variable and the flow rate Q calculated by v times cross sectional area is the manipulated 

variable. A constraint on manipulated variable is enabled as 3 30.01 / 2 /m s Q m s  . The 

threshold for state deviation caused by disturbances is 30.1 /kmol m . 
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In principle, the optimization problem in this problem is similar to that of the first case study. The 

dynamic model is discretized an integrated into the scheduling problem to form a MINLP 

problem. However, since PFR is a distributed parameter system, Equation (2.54) is a partial 

differential equation and should be discretized both in space and time. The spatial discretization is 

realized by applying the method of lines (Appendix A) and the temporal discretization is 

addressed by implicit Runge-Kutta method (Equations (2.25)-(2.31)). After a two dimensional 

discretization, the integrated problem has 20130 variables and 25545 constraints. It takes 

approximately 300 seconds to solve using GAMS/SBB on an 8 CPUs server. 

Table 2.10 Five products with steady state information and market information with PFR 

product Volumetric 

flow 
3( / )m s  

Concentration 

3( / )kmol m  

Conversion 

fraction 

Demand rate 

( / )kg hour  
Process cost 

($ / )kg  
Inventory 

cost 

($ / )kg  

A 1.169 49.8 0.5024 100 620 1.5 

B 0.62 39.6 0.6036 90 730 1 

C 0.302 30.4 0.6959 120 750 2 

D 0.1 19.8 0.8019 80 770 3 

E 0.02 10 0.9 70 790 2.5 
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Figure 2.10 Transition profile between products in PFR cyclic production 
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Figure 2.11 Solution for the PFR original integrated problem, no state deviation 

 

Figure 2.12 Closed Loop Implementation, state deviation occurs at 29 hours in the 

transition from D to B, scheduling solution and control profile are updated as targeting C 

right after the deviation 

 

Figure 2.13 enlarged illustration of the state deviation in Figure 2.12 
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Figure 2.14 Open Loop Implementation, state deviation occurs at 29 hours in the transition 

from D to B, scheduling solution and control profile are the same as the original solutions, 

the production period of B is shorter than the original one in Figure 2.11 

 

Figure 2.15 An enlarged illustration of the deviation in Figure 2.14, production period of B 

is shortened due to the negligence of state deviation 

Table 2.11 Simultaneous scheduling and control results for the original PFR problem, no 

state deviation, corresponding to Figure 2.11 
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Slot Products Transition Time Production Time Amount Produced 

1 D 0.15 26.43 20162.70 

2 B 2.41 6.38 22681.52 

3 A 0.41 75.91 423580.00 

4 E 0.50 103.18 17641.72 

5 C 1.09 15.12 30235.16 

Table 2.12 Simultaneous scheduling and control results for closed loop implementation on 

PFR, state deviation occurs in transition from D to B, corresponding to Figure 2.12 

Slot Products Transition Time Production Time Amount Produced 

1 D 0.15 26.43 20162.70 

2 C 2.57 15.12 30235.16 

3 B 0.56 6.38 22681.52 

4 A 0.41 75.91 423580.00 

5 E 0.50 103.18 17641.72 

Table 2.13 Simultaneous scheduling and control results for open loop implementation on 

PFR, state deviation occurs in transition from D to B, corresponding to Figure 2.14 

Slot Products Transition Time Production Time Amount Produced 

1 D 0.15 26.43 20162.70 

2 B 3.56 5.23 18593.16 

3 A 0.41 75.91 423580.00 

4 E 0.50 103.18 17641.72 

5 C 1.09 15.12 30235.16 

Table 2.14 Quantitatively comparison of open loop strategy and closed loop strategy, state 

deviation occurs in transition from D to B 

Solutions No State Deviation 

Open loop strategy 

(Figure 12) 

With State 

Deviation 

Closed loop strategy 

(Figure 13,14) 

With State Deviation 

Open loop strategy 

(Figure 15,16) 

Scheduling 

Solution 

D-B-A-E-C  D-C-B-A-E  D-B-A-E-C 

Cycle Time (Hr) 231.58 231.21 231.58 

Revenue per Hour 

($) 

1430675.00 1432964.48 1417787.44 

Cost of Inventory 

per Hour ($) 

289553.35 

 

291852.31 289181.28 
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Cost of Raw 

Material per Hour 

($) 

376137.83 376179.23 376137.83 

Profit per Hour ($)  764983.82 764932.94 752468.99 

 

Solving the original integrated problem, we obtain the optimal transition between products as 

shown in Figure 2.10 and the scheduling solution in (Figure 2.11, Table 2.11). When significant 

state deviation from 340 /kmol m to 335 /kmol m occurs at 20 hours, (Figure 2.12, Table 

2.12) present the updated solution at the point of deviation. Instead of producing B after D, the 

process produces C followed by B. In Figure 2.13, actually the manipulated variable takes 

advantage of state deviation by decreasing the feed flow rate to enable the production of C. The 

open loop performance with the presence of state deviation is shown in (Figure 2.14, Table 2.13). 

The production sequence remains the same but the production time of product B is decreased due 

to negligence of deviation, resulting in less revenue. We provide quantitative comparison of the 

solutions in Table 2.14, in which the profit per hour of closed loop strategy ($764932.94) is 

slightly lower than the pre-calculated ($764983.82). However, the profit per hour of open loop 

strategy ($752468.99) is much lower than both of them.  

2.5 Summary 

In this study, we formulate a closed loop implementation of simultaneous scheduling and control 

and apply it to two case studies. We refer to the work of Flores-Tlacuahuac and Grossmann 

(Flores-Tlacuahuac and Grossmann, 2006) and Flores-Tlacuahuac and Grossmann (Flores-

Tlacuahuac and Grossmann, 2010) in modeling the integrated problem as a MIDO problem. We 

discretize the dynamic model using implicit Runge-Kutta method which is more preferable than 

explicit Runge-Kutta method due to its high stability. 

Because of the presence of disturbances in real processes, it is necessary to implement the 

simultaneous scheduling and control in a closed loop manner to eliminate the side effects of 



36 
 

 

disturbances. However, the mechanism of the joint effect on state variables brought by 

disturbances from multi sources is difficult to comprehend. In this work, we measure the state 

deviation by comparing the current state value with the reference value, and update the integrated 

solutions for the remaining part of the production cycle if the deviation exceeds a pre-defined 

threshold (i.e. quality bounds). Using the proposed approach, even though we cannot completely 

eliminate the side effects of the disturbances, we mitigate it as much as possible by fully making 

use of the current state information.  

Two case studies offered validation that the closed loop strategy is effective in decreasing the 

influence of disturbances compared to open loop implementation. Quantitative results show that 

profit gain by closed loop implementation is much higher than that of open loop strategy. 

Nomenclature: 

Indices 

Products i 

Slots k 

Elements e 

States n 

Manipulated variables m 

 

Parameters 

pN number of products 

sN number of slots 

eN number of elements within each slot 

sN number of states 

uN number of manipulated variables 

splN number of samples in the production cycle 

iD demand rate for product i 

p
iC price of product i 

s
iC unit cost of inventory for product i 

rC unit cost of raw material 
max upper bound on processing time 

iX conversion 
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oF feed stream volumetric flow rate 

min max,n nx x minimum  and maximum value of n
th
 state variable 

min max,n nu u  minimum  and maximum value of m
th
 manipulated variable

 

 

Decision Variables 

 profit rate 

1 revenue rate 

2 inventory cost rate 

3 raw material cost rate 

iky binary variable indicating assignment  

       of product i to slot k 
'
iky auxiliary variable similar to iky  

ipkz  binary variable indicating transition  

       from product i to p in slot k 

kp process time at slot k 
e
kt ending time at slot k 
s
kt starting time at slot k 

ket time point for each element in each slot 
m
keu mth manipulated variable at element e of slot k 

n
kex nth state variable at element e of slot k 
n

kx desired value of n
th
 state at slot k 

m

ku  desired value of m
th
 manipulated variable at slot k 

,
n
ss ix n

th
 steady state value of product i 

,
m
ss iu  m

th
 steady manipulated value of product i 

,
n
in kx n

th
 state‟s initial value in slot k 

,
m
in ku  m

th
 manipulated variable‟s initial value in slot k 

kh length of element in slot k 

ik process time of product i at slot k 
t
k transition time at slot k 

i total processing time of product i 

1, 2K K   intermediate variables in implicit Runge-Kutta methods
 

iG production rate for product i 

cT total production cycle time 

iW amount produced for product i 
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Chapter 3 A decomposition approach for the solution of scheduling 

including process dynamics of continuous processes 

Integration of scheduling and dynamic optimization results in a large size MINLP which is 

computational very expensive. In order to achieve better computational performance, we explore 

the structure of the integrated optimization problem for continuous processes, and establish an 

efficient decomposition scheme based on the mathematical structure of the corresponding model. 

We decompose the scheduling problem into an optimization model for the production time and a 

separate one for production sequence. In this way, two sub-problems are formed. One is an 

MINLP dealing with the production sequence and control profile during transitions, and the other 

is an NLP dealing with the production time for each product considering the market demands. 

We prove the separability of the resulting two sub-problems analytically. Unlike the Lagrangean 

decomposition approach, no iterations are needed in the proposed approach. Moreover, the 

computational complexity is significantly reduced compared to the simultaneous scheduling and 

dynamic optimization problem under varying demand. The main contribution of this work is that 

there is no need to solve the entire integrated problem for different demand specifications because 

the only decision variables that need to be updated are the production times. Results of case 

studies verify the feasibility and effectiveness of proposed approach in reducing the 

computational complexity of the integrated problem but also obtaining the optimal solution. 

3.1 General integrated model 

The intergrated model (2) follows the scheduling formulation introduced by Flores-Tlacuahuac 

and Grossmann (Flores-Tlacuahuac and Grossmann, 2006). Implicit Runge-Kutta is employed for 

the discretization of dynamic model (Zhuge and Ierapetritou, 2012).  

To optimize process operations, we utilize the objective of profit maximization per unit time, 

which can be computed in equations (3.1)-(3.3). 
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1 2             (3.1) 
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where 1 2,   represent the rate of revenue and raw material cost, respectively. 2 is composed of 

the cost during transition periods trCOST and cost during steady state production periods ssCOST . 

The total revenue is calculated as the amount produced ( iW ) times the product price ( p
iC ). Raw 

material cost is composed of two parts, the raw material consumption during production periods 

and during the transition periods. Unlike the objective in (Flores-Tlacuahuac and Grossmann, 

2006), we do not consider state variation in the objective, since we address a pure economic 

objective in this study. Another difference with (Flores-Tlacuahuac and Grossmann, 2006) is that 

we do not include inventory cost which can be considered at the planning level. We believe that 

incorporating inventory cost could complicate the decomposition addressed in this study, not only 

because the inventory cost could greatly add complexity to the objective but also because of the 

depleting strategy: delivering all the products at the end of the cycle or delivering the product 

once it is produced in the cycle. Detailed constraints of the integrated model are presented in 

Section 2.1. 

By combining the objective functions described in (3.1)-(3.3) and the constraints at both 

scheduling level (2.7)-(2.24) and dynamic optimization level (2.27)-(2.33) along with the linking 

constraints (2.34)-(2.42) we obtain the optimization problem for the integrated model as shown in 

problem (3.4). 
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1 2
, , , , , , , , ,

max

(2.7)-(2.24)  constraints at scheduling level

. . (2.27)-(2.33)  constraints of dynamic optimization at control level

(2.34)-(2.42) linking constraints

t s e
ik ipk ke ke k i i k k cy z x u W t t T

s t

 
 







   (3.4)

 

Note that in the integrated problem (3.4) the production sequence and transitions are connected. 

For example, if the sequence is BDEAC, then the transitions from B to D, D to E, E to A, A to C, 

and C to A have to be determined. Thus the production sequence and transitions are both part of 

the solution of the integrated solution (i.e. the overall solution) and they are obtained 

simultaneously once the integrated problem is solved. 

3.2 A decomposition approach with analytical proof 

For the purpose of sensitivity analysis, we introduce an alternative form of objective as shown in 

Equation (3.5). It should be noted that the compact objective in Equation (3.5) is equivalent to the 

one in (3.1)-(3.3). 

( , )t
i i ik k

i

t
i k

i k

P f y

J





 


 



 
        (3.5) 

where i  is production time for product i, and t
k is the transition time at slot k. i i

i

P represents 

the profit gained from production and ( )f  is the total transition cost. Note that Pi= ( p
iC

*production rate - rC *material consumption rate). Since production rate and material 

consumption rate are known in steady state, we group them together to make the expression more 

compact. Pi can be considered as a revenue coefficient. 

As shown in Figure 3.1, the original solution can be decomposed into two sub-problems. The first 

problem involves the transition stages including sequences and transition profiles and the second 

one consistsof the production stages. The corresponding optimization problems for these two 

parts are as shown in Figure 3.2. 
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Figure 3.1 Decomposition for the solutions of integrated problem of continuous processes 

 

Figure 3.2 Decomposition with variables for the optimization problem of continuous 

processes 

In Figure 3.2 sub-problem 1 deals with the sequence and transition times, and sub-problem 2 

deals with production. By assigning a fixed value to the production time in the original integrated 

problem (3.4) we obtain sub-problem 1(3.6). 
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1 2
, , , , , , ,

max

(2.7)-(2.13)  constraints at scheduling level

(2.17)-(2.24)  constraints at scheduling level

. . (2.27)-(2.33)  constraints of dynamic optimization at control leve

t s e
ik ipk ke ke k k k cy z x u t t T

s t


 

0

l

(2.34)-(2.42)  linking constraints

assign production time for each producti








   

   (3.6)

 

Solving (3.6) generates the optimal production sequence and optimal transition time. Those are 

then assigned in sub-problem 2 (3.7) which generates all the remaining decision variables in the 

integrated problem. 

1 2
, , , ,

*

*

*

*

max

(2.14)-(2.24)  constraints at scheduling level

assign production sequence

   assign production sequence
. .

assign transition time for each slot

assign

s e
i i k k cW t t T

ipk ipk

ik ik

t t
k k

ke ke

z z

y y
s t

x x

 


 









*

state profile

assign control profileke keu u














      (3.7)

 

where
* * * * *( , , , , )t
ipk ik k ke kez y x u  {solution set of problem (3.6)} 

Both sub problems correspond to much smaller problems compared to the original integrated 

problem. The following proof and case study results in Section 3.3 verify the proposed 

decomposition. 

It should be noticed that the proposed decomposition approach does not lead to the solution of the 

scheduling and the dynamic optimization problem separately. Theorem 1 provides a proof that the 

solution of (3.6) and (3.7) is the same as the one from the integrated problem (3.4). 
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Theorem 1: The decomposition in Figure 3.2 does not affect the optimality of the integrated 

problem. i.e. solving the sub-problems (3.6) and (3.7) results in the same solution as the 

integrated problem (3.4). 

Three lemmas are proposed to prove Theorem 1. 

3.2.1 Lemma 1: The perturbation on production time does not affect the transitions 

Proof: 

The profit for each time slot is: 

( ) ( )t t
tc tc

t t t

f P fP
J

 

  


  
  

       (3.8)
 

where P is revenue coefficient introduced in Equation (3.5).  , 
t and ( )t

tcf   correspond to 

production time, transition time, and transition cost, respectively. 

Assume that 
*t  is the optimal transition time when the production time is . Then we have: 

*

*

( ) ( )t t
tc tc

t t

P f P f 

 

 


 
        (3.9) 

The proposition that needs to be proved can be described as follows. 

If there is a small perturbation on  shown in Figure 3.3, *t still the optimal transition time 

which can be expressed mathematically as follows: 

*

*

( ) ( ) ( ) ( )

( ) ( )

t t
tc tc

t t

P f P f   

   

     


     
      (3.10)

 

The specific procedures to establish this proposition are provided in Appendix A. 
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Figure 3.3 Perturbation on production does not affect transition within one slot 

3.2.2 Lemma 2: The optimal transition time is obtained as the inferior of its feasible values 

A property of *t
k : *t

k  is obtained as the minimum value of feasible t
k obtained by solving 

problem (3.11). 
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Proof: 

The overall objective of the whole production cycle is 

( , )t
i i tc ik k

i

t
i k

i k

P f y

J





 


 



 
        (3.12)

 

0 0
( , )

t t
k ipt r r

tc ik k k ik k ipk

i k i p k

f y C u y dt C u z dt
 

         (3.13) 

and rC  is a coefficient for transition cost, for instance, the unit price for raw materials. The 

transition cost ( , )t
tc ik kf y  can be evaluated as the integral of the manipulated variable over the 



45 
 

 

transition duration t
k  in all time slots. Binary variables iky  and ipkz  indicate assignments of 

production in slots (2.7)-(2.13).Taking the partial derivative of J with respect to t
k  when 

, , ( , )
t

i K k ik
y i I k K


     are fixed, lead to the following property for t

k  i.e. *t t
k k  . The details 

of the proof are provided in Appendix A. 

With this property, we can calculate 
*t

ip  before hand by solving optimization problem  and 

calculate the corresponding transition cost from product i to product p at slot k. However, it 

involves significant computation since we need to solve problem (3.11) many times. For a cyclic 

production where n products are produced, the number of transitions would be

( ,2) ! ( 2)!p n n n  . Note that the transition from product A to B is not necessarily equivalent 

to the transition from B to A. It means that we have to solve problem (3.11) 20 times, so this will 

be computational impossible for a large number of products. 

Note that the optimal transition time computed by problem (3.11) is independent of the product 

demands. It should be noted that which transitions exist in the scheduling solution is of course a 

function of the demand but the optimal transition times are not. For example, the transition from 

D to E can be found through problem (3.11) without knowing the demands of D or E. However, 

the transition from D to E may not exist in the overall solution if for example the optimal 

sequence is BCDAE. 

3.2.3 Lemma 3: The perturbation on production time does not affect the production 

sequence 

Proof: 

Suppose *z  is the optimal sequence i.e. *( ) ( )J z J z , what we need to prove is that this inequality 

holds in the presence of perturbation in production. For example, the optimal sequence C-A-E-D-
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B in  is retained when  presents. Following the steps in Appendix A, we obtain a sufficient 

condition (A.36) for this hypothesis.  

 

Figure 3.4 Perturbation on production does not affect all the transitions 

3.2.4 Solution procedures for the decomposition approach 

Based on Lemmas 1, 2 and 3 we prove that the production does not affect the optimality of 

transitions and production sequence. Therefore Theorem 1 holds and the decomposition in Figure 

3.2 is verified. Note that Lemma 1 and 3 are essential steps in the proof of the decomposition. In 

Lemma 1 we prove that the production does not affect the optimality of transition, and in Lemma 

3 we prove the production does not affect sequence. Thus we can separate production variables 

from the integrated problem and achieve decomposition as shown in Figure 3.4. 

In principle the transition time can be pre-computed through problem (3.11). However, it involves 

significant computation since we need to solve (3.11) repeatedly, as described in the paragraphs 

following (3.13). In order to avoid the huge computation burden, we propose a solution procedure 

that involves two steps for the integrated problem (3.4). Note that the proposed solution 

procedure is supported by Theorem 1 and Lemmas1-3 in the proof. 

Based on the above analysis for decomposition, we propose the following solution procedure for 

the integrated problem (3.4) 



47 
 

 

Step 1: Treat i as constants and assign proper values for them. To get initial values of i  the 

demand constraints can be considered as equalities and for a typical production cycle Tc = 100 

hours, i can be specified. Solve sub-problem (3.6) and obtain 
* * * * *( , , , , )t
ipk ik k ke kez y x u . 

Step 2: Substitute 
* * * * *( , , , , )t
ipk ik k ke kez y x u  into the original problem, which results in sub-problem 

(3.7) Solve it and obtain *
i . 

Since we have proved that production times do not affect production sequence or transition 

profiles, this solution approach will lead to the same solution as the integrated optimization 

problem. 

3.3 Case studies 

In order to demonstrate the feasibility of the decomposition approach, we studied two numerical 

cases, one for a single state CSTR and the other for methyl methacrylate (MMA)polymerization 

which involves multiple states. In each case study we investigate three scenarios, and discuss 

their results. The first scenario is to solve for the original integrated problem MINLP (problem 

(3.4)) using both local and global optimization solvers. In scenario 2 we apply the proposed 

decomposition approach and solve the sub-problems (3.6) and (3.7) sequentially following the 

procedure presented in Section 3.2. 

In scenario 3 we solve for the scheduling and dynamic optimization problem in a conventional 

approach that does not involve integration of them. Given the estimation of transition time t
pi  

and transition cost 
tr
piCOST , scheduling problem (3.14) is solved under the constraints at 

scheduling level and linking constraints. Dynamic optimization problem (3.15) is then solved 

based on solution of the scheduling problem e.g. *
iky , The dynamic optimization problem 

minimizes the cost during transitions under the constraints at dynamic optimization level and 
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linking constraints. Note that the estimation of transition time t
pi  is made empirically based on 

the knowledge of the process. A conservative estimation unnecessarily extends the transition 

period and thus undermines the profitability, while a reckless one could make the dynamic 

optimization problem infeasible i.e. a transition too short makes it impossible to drive the states to 

the desired steady states within the estimated time period. The transition cost from product p to i

tr
piCOST  is calculated as the product of the average of initial and desired manipulated variables 

and the estimated transition time and the price i.e. 
tr
piCOST  ,0.5( )r t

in k k piC u u    . This is s 

simplification of the standard form of transition cost in Equation (3.13). Both t
pi and 

tr
piCOST  

can be obtained beforehand. They present in problem (3.14) as parameters. 



1 2
, , , , , , ,

1 1
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. .

,

t s e
ik ipk k i i k k c

p p

y z W t t T

t t
pi pi

N N
trtr
pi ipk

i p

s t

COST COST z k K



 



 

 




 


   





       (3.14)

 

 1
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   (3.15)

 

The purposes of investigating three scenarios are to demonstrate the significance of integration in 

terms of boosting profitability (comparing scenario 1 and 3), and the advantage of the proposed 

decomposition approach in reducing computing time (comparing scenario 1 and 2). 
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3.3.1 Single state CSTR cyclic production 

The specification of this case is the same as the one in Section 2.4.1. We solve the integrated 

problem for five production cycles in which demand for each product is varying. Table 3.1 shows 

the specific demands that we assign in five cycles and Figure 3.5 demonstrates the solutions for 

each cycle. It can be seen that the demands for all the five products are varying and 

correspondingly the productions are varying in order to satisfy the demands. Nevertheless, the 

transitions prior to the production stages are consistent but do not respond to the varying demands 

as shown in Figure 3.5. Obviously the optimal profit is varying with respect to cycles, due to the 

fluctuating demands. It‟s worth mentioning that all the cycles generate the same optimal sequence 

C-B-A-E-D, regardless of the varying demands. 

Table 3.3 summarizes the problem size, computation time and the results of scheduling and 

dynamic optimization under all these three scenarios described above i.e. scenario 1 the original 

integration, scenario 2 the proposed approach and scenario 3 the conventional approach. All 

scenarios correspond to product demands of cycle 1 in Table 3.1. Problems in scenario 3 is solved 

based on the transition estimation provided by Table 3.2. Scenarios 1 and 2 result in the same 

scheduling and dynamic optimization solutions and the same profit, however scenario 2 (the 

proposed decomposition approach) takes much less time to compute it. Though the problem size 

of scenario 2 is only slightly smaller than the original integrated problem in scenario 1, the 

computational complexity for MINLP is significantly reduced. This is because decomposing the 

decision variables effectively changes the structure of the optimization problem without 

undermining the optimality of the integrated problem, as proved by the theorems in section 3.2. 

The comparison between scenario 1 and 3 demonstrates the significance of integration of 

scheduling and dynamic optimization. Scenario 3 follows the conventional approach where the 

integrated problem is not obtained. It results in much lower profit than the original integrated 

problem does. This is because the scheduling solutions obtained based on the estimation of 



50 
 

 

transition time and transition costs are not optimal in terms of the overall profit in the integrated 

problem. Note that all scenarios generate the same optimal cycle time 140 hours while solving the 

corresponding optimization problems under the constraints for the cycle time 90 140cT   

Table 3.1 Demands assignment in a single state CSTR cyclic production
 

Demands 

(kg/h) 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

Product A 3 3.3 2.5 2 1 

Product B 8 6 11 9 10 

Product C 10 12 7 8 8 

Product D 10 8 14 12 11 

Product E 10 11 9 8 11 

 

 

Figure 3.5 Solutions for integrated problem at different cycles assigned with different 

demands
 

Table 3.2 Estimation of transition time (hour) and transition cost ($) between products 

(single state CSTR), for instance, transition time from product C to B is 4 hours and the 

corresponding transition cost is $10000 

( t
pi , 
tr

piCOST ) Product A Product B Product C Product D Product E 

Product A (0, 0) (0.4, 220) (0.5, 1030) (1.8, 9090) (2.1, 26360) 

Product B (60, 33000) (0, 0) (0.4, 10000) (0.8, 4400) (1.8, 23400) 
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Product C (62, 127100) (4, 10000) (0, 0) (0.9, 6300) (1.5, 21750) 

Product D (65, 328250) (6, 33000) (2.2, 15400) (0, 0) (1.2, 21000) 

Product E (69, 865950) (8, 104000) (3.5, 50750) (1.6, 28000) (0, 0) 

Table 3.3 Results of single state CSTR cyclic production, comparison between three 

scenarios 

Scenarios Scenario 1: Original 

Integration Problem (3.4)  

Scenario 2: 

Decomposition 

approach 

Scenario 3: 

Conventional (no 

integration) 

Problem type 

and solver in 

GAMS 

Problem 

(3.4), 

MINLP, 

SBB 

Problem 

(3.4), 

MINLP, 

BARON 

Problem 

(3.6),  

MINLP, 

SBB 

Problem 

(3.7),  

NLP, 

CONOPT 

Problem 

(3.14), 

MINLP, 

SBB  

Problem 

(3.15), 

NLP, 

CONOPT 

Problem size  

(constraints, 

variables) 

4046, 2986 4046, 2986 4041, 

2981 

65, 31 1011, 

1116 

336, 244 

CPU (s) 49.3 527.9 17.8 0.32 5.2 2.6 

Production 

sequence 

C-B-A-E-D C-B-A-E-D C-B-A-E-D C-A-B-D-E 

Cycle time (h) 140 140 140 140 

Production time 

in slots (h) 

5.02, 14.00, 

46.49, 8.49, 

2.31 

5.02, 

14.00, 

46.49, 

8.49, 2.31 

5.02, 14.00, 46.49, 

8.49, 2.31 

5.02, 46.49, 14.0, 

2.30, 4.27 

Transition time 

in slots (h) 

1.12, 3.74, 

56.57, 1.61, 

0.63 

1.12, 3.74, 

56.57, 

1.61, 0.63 

1.12, 3.74, 56.57, 

1.61, 0.63 

3.5, 62.0, 0.4, 0.8, 1.2 

Raw material 

cost ($/h) 

2353.67 2353.67 2353.67 2218.30 

Revenue ($/h) 13450.17 13450.17 13450.17 8929.74 

Profit ($/h) 11096.49 11096.49 11096.49 6711.44 

 

3.3.2 MMA production with multiple states 

The proposed decomposition approach is applied to an isothermal free radical polymerization 

process that produces methyl methacrylate (MMA)usingazobisisobutyronitrile as initiator and 

toluene as the solvent. The reaction takes place in an isothermal CSTR at the temperature of 335 

K. The kinetic model is describe by (Mahadevan et al., 2002) and summarized in the following 
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equations. (3.16)-(3.19) present the dynamics of four state variables monomer concentration mC , 

initiator concentration IC , molar concentration of dead chains 0D , and mass concentration of 

dead chains 1D . (3.20) presents an auxiliary variable 0P and (3.21) calculates the output variable 

the molecular weight 1 0D D . The manipulated variable is the initiator flow rate IF . The 

associated parameters and state/manipulated variables are provided in Table 3.4 and Table 3.5, 

respectively. The process is illustrated in Figure 3.6. 
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D
y

D
            (3.21) 

Table 3.4 Parameters in the kinetic model of MMA polymerization in a CSTR

 
335T K  Temperature of the reactor 

310.0F m h  Monomer flow rate 

31.0V m  Reactor volume 

* 0.58f   Initiator efficiency 

6 32.50 10pk m kmol h   Propagation rate constant 

11 31.09 10Tdk m kmol h   Termination by disproportionation rate constant 

10 31.33 10Tck m kmol h   Termination by coupling rate constant 

38.00
inIC kmol m  Inlet initiator concentration 

36.00
inmC kmol m  Inlet monomer concentration 

3 32.45 10fmk m kmol h   Chain transfer to monomer rate constant 

1 11.02 10Ik h    Initiation rate constant 

100.12mM kg kmol  Molecular weight of monomer 
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Table 3.5 Variables in the kinetic modelof MMA polymerization in a CSTR 

3( )mC kmol m  State: Monomer concentration 

3( )IC kmol m  State: Initiator concentration 

3
0 ( )D kmol m  State: Molar concentration of dead chains 

3
1 ( )D kg m  State: Mass concentration of dead chains 

3( )IF m h  Manipulate: Initiator flow rate 

1 0 ( )y D D kg kmol  Output: Molecular weight 

 

 

Figure 3.6 MMA polymerization in a CSTR 

In this case study, five products are produced cyclically at steady state and each product grade 

corresponds to a value of molecular weight. The steady-state values of the state variables, the 

manipulated variables, and the output variables are provided in Table 3.6. Similarly to the first 

case study we again investigate three scenarios and compare their problem size, CPU time, 

scheduling and dynamic optimization solution as well as the overall profit as provided in Table 

3.8.  

Scenario 1 is solved using normal MINLP solver SBB and global optimal solver BARON. They 

result in similar overall profit. Scenario 2 is following the decomposition approach presented in 

section 3.2 and the solution procedure described in section 3.2.4. Scenario 3 is solved based on 

the estimated transition time and transition cost in Table 3.7. It can be observed that scenario 2 
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(the proposed decomposition approach) produces slight less profit 562.43 than the global optima 

564.11 but consumes much less CPU time. However scenario 3 produces the least profit 542.56 

due to the lack of integration. 

Table 3.6 Steady state information for each product of MMA production 

Product mC  
3( )kmol m  

IC  
3( )kmol m  

0D  
3( )kmol m  

1D  
3( )kg m  

IF  
3( )m h  

1 0D D  
( )kg kmol  

Demand 
3( )m h  

Price 
3($ )m  

A 5.73 0.0366 0.0007 27.0324 0.0463 40084 0.4 170 

B 5.63 0.0713 0.0012 37.0444 0.0900 31938 0.7 150 

C 5.57 0.0984 0.0015 43.0516 0.1242 28293 1.1 130 

D 5.46 0.1615 0.0023 54.0648 0.2039 23153 0.9 125 

E 5.41 0.1963 0.0028 59.0708 0.2479 21294 0.8 110 

Table 3.7 Estimation of transition time (hour) and transition cost ($) between products 

(MMA case study), for instance, transition time from product C to B is 0.16h and the 

corresponding transition cost is $85.68 

( t
pi , 
tr

piCOST ) Product A Product B Product C Product D Product E 

Product A (0, 0) (0.14, 47.70) (0.16, 68.20) (0.23, 143.86) (0.28, 205.94) 

Product B (0.12, 40.89) (0, 0) (0.14, 74.97) (0.19, 139.60) (0.22, 185.84) 

Product C (0.18, 76.72) (0.16, 85.68) (0, 0) (0.15, 123.03) (0.19, 176.74) 

Product D (0.28, 175.14) (0.25, 183.68) (0.17, 139.44) (0, 0) (0.16, 180.72) 

Product E (0.29, 213.29) (0.27, 228.08) (0.22, 204.65) (0.15, 169.42) (0, 0) 

Table 3.8 Results of MMA case study, comparison between three scenarios 

Scenarios Scenario 1: Original 

Integration Problem (3.4) 

Scenario 2: 

Decomposition 

approach 

Scenario 3: Sequential 

(no integration) 

Problem type 

and solver in 

GAMS 

Problem 

(3.4), 

MINLP, SBB 

Problem 

(3.4), 

MINLP, 

BARON 

Problem 

(3.6),  

MINLP, 

SBB 

Problem 

(3.7),  

NLP, 

CONOP

T 

Problem 

(3.14), 

MINLP, 

SBB  

Problem 

(3.15), 

NLP, 

CONOP

T 

Problem size  

(constraints, 

variables) 

5430, 4035 5430, 4035 5425, 

4030 

65, 31 592, 390 1035, 

759 
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CPU (s) 275.4 1154.9 129.1 0.43 16.9 24.4 

Production 

sequence 

C-B-E-D-A C-E-D-A-B C-B-E-D-A C-A-D-E-B 

Cycle time (h) 70 70 70 70 

Production time 

in slots (h) 

7.7, 9.7, 5.6, 

6.3, 40.0 

7.7, 5.6, 

6.3, 40.0, 

9.80 

7.7, 9.7, 5.6, 6.3, 

40.0 

7.7, 40.0, 6.3, 5.6, 9.4 

Transition time 

in slots (h) 

0.10, 0.10, 

0.12, 0.07, 

0.27 

0.06, 0.10, 

0.07, 0.27, 

0.08 

0.10, 0.10, 0.12, 

0.07, 0.27 

0.14, 0.18, 0.23, 0.16, 

0.27 

Raw material 

cost ($/h) 

960.97 960.85 960.97 974.22 

Revenue ($/h) 1523.41 1524.96 1523.41 1516.78 

Profit ($/h) 562.43 564.11 562.43 542.56 

3.4 Summary 

In this work, we propose a decomposition approach for the integrated scheduling and dynamic 

optimization for continuous cyclic production. Although the main focus is in reaction processes 

since this is the example used for demonstration, the approach is general to handle other 

processes that have the same basic behavior. The decomposition approach of continuous process 

was applied to the CSTR cyclic production with general kinetic models. Note that the 

decomposition for continuous case is feasible when certain condition (A.36) is satisfied. Through 

sensitivity analysis we prove that for continuous processes the production sequence is retained 

when demands are varying. This property is of particular importance in real applications where 

the demands are varying for different production cycles, since there is no need to update 

production sequence for the future cycles and the production can be updated by solving the sub-

problem regarding production periods only. Results of case studies verify this property and also 

show that the decomposition approaches generate the same results as the integrated approach but 

using less computation time. 
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Nomenclature:  

Indices 

Products i 

Slots k 

Elements e 

States n 

Manipulated variables m 

 

Sets 

Product set I 

Slot set K 

Element set E 

State set Sx 

Manipulated variable set Su 

 

 

Constants 

pN
number of products 

sN number of slots 

eN
number of elements within each slot 

xN
number of states 

uN
number of manipulated variables 

splN
number of samples in the production cycle 

iD demand rate for product i 
p

iC price of product i 
rC unit cost of raw material 

max upper bound on processing time 

iX conversion in steady state of continuous processes 
oF feed stream volumetric flow rate 

min max,n nx x minimum  and maximum value of nth state variable 

min max,n nu u  minimum  and maximum value of mth manipulated variable 

 

Common variables 

x state variables 
u manipulated variables 
q output variables 
y binary variable indicating assignment of production in slots 
z binary variable indicating transfer between products 
J objective function 

cT cycle time 

W amount of product 
e
kt ending time at slot k 
s
kt starting time at slot k 



57 
 

 

 

 

Continuous case 

 profit 

1 revenue 

2  cost 
trCOST  cost during transition period 

tr
piCOST  estimation of transition cost from product p to i 
ssCOST  cost during steady state production 

 

 production time of a product 
t transition time between products 

kp process time at slot k 

ket time point for each element in each slot 
m
keu mth manipulated variable at element e of slot k 
n
kex nth state variable at element e of slot k 
n
kx desired value of n

th
 state at slot k 

m
ku  desired value of m

th
 manipulated variable at slot k 

,
n
ss ix n

th
 steady state value of product i 

,
m
ss iu m

th
 steady manipulated value of product i 

,
n
in kx n

th
 state‟s initial value in slot k 

,
m
in ku m

th
 manipulated variable‟s initial value in slot k 

kh length of element in slot k 

ik process time of product iat slot k 
t
k transition time at slot k 
t
pi transition time from product p to i

t
pi estimation of transition time from product p to i 

tcf transition cost 

i total processing time of product i 
K1, K2 intermediate variables in implicit Runge-Kutta methods

 
iG production rate for product i 

cT total production cycle time 

iW amount produced for product i 

P revenue coefficient 

 

 

 

 

 

  



58 
 

 

Chapter 4 Integration of scheduling and control for batch processes 

using multi-parametric model predictive control (mp-MPC)  

4.1 Introduction 

In this study we propose to use Multi-Parametric Model Predictive Control (mp-MPC) 

(Bemporad et al., 2000) in the integration of scheduling and control, since it is capable in 

generating the control solution fast in the presence of disturbance by evaluating the function of 

pre-determined explicit solution. Model Predictive Control (MPC) is an online optimization 

technique based on a receding horizon mode (Lee, 2011). At each sample point the current state 

and output are measured and a constrained optimization problem is solved over a future time 

horizon to generate the optimal future control strategy. After the first control strategy is 

implemented to the process, the procedure is repeated in the following time point with the horizon 

moving forward. mp-MPC generates the control law as a set of explicit functions of state 

variables, via multi-parametric programming (Pistikopoulos, 2009). The explicit control law can 

then be obtained offline and the online optimization is reduced to simple function evaluations. 

Therefore mp-MPC results in faster application of MPC in larger scale problems. 

In order to enable the integration of scheduling and control using this idea, we first linearize the 

non-linear dynamics and obtain the piece wise affine (PWA) approximation model. Then we 

apply the Multi-Parametric Toolbox (MPT) (M. Kvasnica et al., 2004) and obtain the explicit 

control solutions as functions of state variables. We then transform the explicit solutions into 

explicit linear constraints and incorporate them into the constraints of scheduling and obtain the 

integrated problem. We apply this approach in two batch processes, and the results demonstrate 

the feasibility and efficiency of the proposed methodology. 
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4.2 Modeling the integration of scheduling and control for batch processes 

As outlined in the introduction section, scheduling and control are modeled simultaneously in this 

study. The dynamic behavior of batch processes is incorporated into the constraints of scheduling 

problem to form an integrated problem.  

The scheduling problems for batch processes typically involve decisions associated with 

equipment assignment, amount of material used in each task, task sequence and task 

starting/ending times. The constraints are mainly composed of precedence constraints, duration of 

tasks, mass balance in units and demand fulfillment. Because infinite amount of raw material is 

assumed in our case studies, there are no constraints on raw material availability. A general 

mathematical model of the scheduling problem can be concisely presented as follows: 

, , ,
max ( , , , )

w y V T
J w y V T          (4.1) 

1

2

( , , , ) demand

( ) Constant
. .

in out

f i s

g w y V T

g y
s t

V V

T T T








  

       (4.2) 

where the vectors w and y stand for task and equipment assignment with respect to time slots or 

event points, respectively; V is the vector of amount of material used in different tasks;  and T is 

the vector of processing times for tasks. The first constraint is to satisfy the demands and the 

second represents the task and unit assignments at slots or event points. The other two sets of 

constraints correspond to mass balances and duration constraints for each task or unit. The 

objective ( , , , )J w y V T is to maximize the profit over a given time horizon.  

The control problem focuses on the dynamic profile of tasks in batch processes. Constraints 

involve the material and energy balances, initial and end values as well as bounds of state and 

manipulated variables in each task, during processing. Optimal control strategies are desirable 
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since they generate transient profiles of state variables which are economically preferable. An 

appropriate control strategy is effective in improving the conversion or selectivity as well as 

saving raw materials and utility cost. A general form of the optimal control problem is as follows: 

 
( )

max ( ), ( ), ( )
u t

J x t u t q t         (4.3) 

 
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q t h x t u t V t
s t
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t T

 








 



        (4.4) 

where x(t) is the vector of state variables such as concentration, temperature and reaction rate; u(t) 

is the set of manipulated variables such as heating or cooling flow rate; q(t) is the set of output 

(i.e. controlled variables) like conversion. Note that all these variables are changing with respect 

to time. xuq is the set of bounds for x(t), u(t) and q(t). Since safety is a priority, we enforce 

bound constraints for state variables e.g. temperature cannot exceed the upper bound. Vector V is 

the amount of raw materials involved in the reactions; and T is the processing time which can be 

either a variable or a known value provided by the scheduling level. 

With simultaneous modeling, dynamic models are incorporated into the constraints of scheduling 

problem giving rise to the following integrated model: 

 
, , , , ( )

max , , , , ( ), ( ), ( )
w y V T u t

J w y V T x t u t q t      (4.5) 
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where index i represents time slots or event points, depending on whether time slots formulation 

or event point formulation is adopted in the scheduling problem, Vi and Ti are the linking 

variables between the scheduling and control problems. The integration of scheduling and control 

levels results in an overall optimization problem incorporating all the constraints and an objective 

function that takes into account all the decision variables in scheduling and control level, 

resulting in a better overall performance. 

4.3 Simultaneous scheduling and control incorporating mp-MPC 

With integration of scheduling and control, the resulting MINLP is generally computational very 

expensive. In the literature in order to achieve better computational performance, Terrazas- 

Moreno et al. (Terrazas-Moreno et al., 2008a) applied Lagrangean decomposition to the 

integrated model and developed an iterative strategy between a master scheduling problem and a 

primal control problem. Their approach is effective in lowering computation time and achieving 

optimality of the integrated problem. Chu and You (Chu and You, 2013a) used generalized 

Bender decomposition to solve the MIDO of the integrated problem and observed significant 

reduction of computation time. In chapter 3 we explore the structure of the integrated 

optimization problem for continuous processes cyclic production, and establish an efficient 

decomposition scheme in which the production sequence could be separated from the integrated 

problem when certain conditions are satisfied.  

As described in the previous section, the online implementation of integrated scheduling and 

control requires a repetitive solution of the resulting MINLP. In this study we propose to use mp-

MPC in order to not only reduce the complexity of the integrated problem but also reduce the 

calculation in online application.  
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A brief summary of the parametric programming is provided here which serves as a basis for mp-

MPC. Problem (4.7) describe a parametric programming problem which obtains the objective z as 

a function of parameters x, and Equation (4.8) describes the corresponding critical regions. 

( ) min ( , )

. . ( , ) 0

u

x

u

z x f u x

s t g u x

x

u






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         (4.7) 
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



  

  

       (4.8) 

The solution set of parametric programming includes the objective and decision variables as a 

function of the parameters and the partition of the space of parameters. A certain partition 

produces critical regions where the optimal solutions are valid. According to the features of the 

objective and constraints the parametric programming problem can be categorized as mp-LP, 

(Gal and Nedoma, 1972), (Gal, 1975) mp-MIQP (Dua et al., 2002), mp-MILP (Dua and 

Pistikopoulos, 2000), mp-MINLP (Dua and Pistikopoulos, 1999), mp-NLP (Domínguez et al., 

2010). 

MPC is widely recognized as it‟s capable to repetitively solve the optimization problem that 

accounts for a future horizon in online application (Figure 4.1) (Lee, 2011). Mp-MPC on the 

other hand parameterizes the states and solves the optimization problem in MPC using parametric 

programming, and performs function evaluation in online application (Figure 4.2) (Pistikopoulos, 

2009), (Kouramas et al., 2011). In a sense mp-MPC transfers the online computation into offline 

computation, effectively reducing the computational burden in online application. 
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Figure 4.1 The working mode of conventional MPC 

 

Figure 4.2 The working mode of mp-MPC 

In this work we apply mp-MPC in the online implementation for the simultaneous solution of 

scheduling and control, and solve the mp-MPC problem using MPT toolbox (M. Kvasnica et al., 

2004). As shown in Figure 4.3 the dynamic optimization at the control level is solved offline 

using MPT toolbox. The obtained explicit control solutions are incorporated into scheduling 

problem, resulting in a simplified integrated problem i.e. a MINLP whose nonlinearity only 

present in the objective. 

Specifically four steps are involved in implementing this approach. 

Step 1: Linearize the original dynamic model using PWA approximation, which is a common 

approximation for Lipschitz continuous nonlinear dynamics (Sontag, 1981), (Azuma et al., 2006). 
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Step 2: Solve the control problem for the derived PWA using MPT toolbox and obtain the explicit 

solutions for the control problem.  

Step 3: Transform the explicit solutions into explicit linear constraints by introducing additional 

variables. 

Step 4: Incorporate the constraints obtained in Step 3 into the constraints of scheduling problem 

and build an overall economic objective, which is calculated as the revenue minus raw material 

and utility costs. 

 

Figure 4.3 A scheme of integrated scheduling and control using MPT toolbox 

4.4 Detailed integrated model of scheduling and control incorporating mp-

MPC 

Figure 4.4 demonstrates how the scheduling and control level are connected and how they are 

integrated. Let‟s assume that task i is executed in unit j at event point n. The dynamic behavior of 

the manipulated variables u and state variables x are the focus of the control problem. It can be 
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observed that the amount of material V and processing time T are shared as common variables at 

scheduling and control levels. Therefore it is essential to integrate these two levels and handle the 

shared information simultaneously. 

 

Figure 4.4 Demonstration of the integration using event point based scheduling formulation 

4.4.1 Constraints at scheduling level 

The scheduling model follows the event point based formulation proposed by Ierapetritou and 

Floudas (Ierapetritou and Floudas, 1998). The model involves the constraints that are described 

below. 

Allocation Constraints 

For each event point n, only one task can take place in unit j if unit j is suitable for task i.e.
 

ji I  y(j,n)=1 indicates that unit j is utilized at event point n. If y(j,n)=0, then all w(i,n) are 

forced to be zero i.e. neither task nor unit is assigned in event point n. 



66 
 

 

( , ) ( , ), ,

ji I

w i n y j n j J n N



          (4.9) 

Capacity Constraints 

The material undertaken in the unit should be greater than the minimum requirement of material 

and meanwhile less than the capacity of the unit. For a trivial case, if w(i,n)=0, then B(i,j,n)=0, 

and the following inequality still hold. 

min max( , ) ( , , ) ( , ), , ,ij ij iV w i n V i j n V w i n i I j J n N         (4.10) 

Storage Constraints 

The intermediate material at any state stored in storage tank at event point n is limited by the tank 

capacity. In the case that unlimited intermediate storage (UIS) is assumed, max( )ST s goes to 

infinity. 

max( , ) ( ) , ,ST s n ST s s S n N          (4.11) 

Material Balance 

The amount of material of state s at event point n is equal to the sum of the material amount at the 

previous event point and the amount produced at the previous event point subtracted by the 

amount delivered to the market and amount consumed by the unit at the current event point. 

( , ) ( , 1) ( , ) ( , , 1)

( , , ), ,

s i

s i

p
si

i I j J

c
si

i I j J

ST s n ST s n d s n V i j n

V i j n s S n N





 

 

    

   

 

 
    (4.12) 

Duration Constraints 

The processing time of task i at unit j is calculated as the sum of a fixed term ij and a varying 

term  ( , , )ijV i j n which is linearly increasing with the amount of material. 
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( , , ) ( , , ) ( , ) ( , , ),

, ,

f s
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i

T i j n T i j n w i n V i j n

i I j J n N
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   
     (4.13) 

When the process dynamics are integrated, the processing time of tasks ( rvT ) should be variables 

as shown in (4.14) rather than a proportional term in (4.13) 

( , , ) ( , , ) ( , ) ( , , ) ( , ),

, ,

f s
ij rv

i

T i j n T i j n w i n T i j n y j n

i I j J n N

  

   
    (4.14) 

Sequence Constraints: same task in the same unit 

Task i starting at event point n+1 should start after the end of the same task processed at unit j but 

started at event point n. If ( , ) ( , ) 0w i j y i j  , (4.15) is trivially satisfied.
 

( , , 1) ( , , ) (2 ( , ) ( , )),

, , ,

s f

i

T i j n T i j n H w i n y j n

i I j J n N n N

    

    
   (4.15) 

( , , 1) ( , , ), , , ,s s
iT i j n T i j n i I j J n N n N          (4.16) 

( , , 1) ( , , ), , , ,f f
iT i j n T i j n i I j J n N n N          (4.17) 

Sequence Constraints: different tasks in the same unit 

Task i starting at event point n+1 in unit j should start after the end of the other tasks processed at 

unit j but started at the prior event point. 

' '

' '

( , , 1) ( , , ) (2 ( , ) ( , )),

, , , , ,
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      
    (4.18) 

Sequence Constraints: different tasks in different units 

Tasks starting at event point n+1 should start after the end of tasks starting at event point n, for 

whichever units the tasks are processed in.  
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Sequence Constraints: Completion of Previous Tasks 

Task should start after all the previous tasks in the same unit are finished. 

' ' '

' ' ' '
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Time Horizon Constraints 

The starting time and ending time for each task should be within the time horizon. 

( , , ) , , ,f
iT i j n H i I j J n N           (4.21) 

( , , ) , , ,s
iT i j n H i I j J n N           (4.22) 

4.4.2 Constraints at control level 

The control strategy in batch processes involves generating time-varying profiles of manipulated 

and state variables. For example, when a batch reactor is in operation temperature plays an 

important role in affecting reaction rate and conversion. In order to achieve high conversion as 

well as reduce the heating or cooling utility cost, a comprehensive objective involving the process 

yield and utility cost is usually adopted.  

A first principle model based on material and energy balances describes the system dynamic of 

batch process. The state variables include concentration, temperature, and pressure; the 

manipulated variables are heating or cooling flow rate, and feeding flow rate in semi-batch 

processes. Following is a general form of such a model. 

0 0

( ) ( ( ), ( ))

( ) ( ( ), ( ))

(0) , (0)

x t f x t u t

q t h x t u t

x x u u





 



        (4.23) 
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where x represents the vector of state variables, q is the output, and u is the vector of manipulated 

variables. 

During batch operations the process variables are undergoing transient state. Therefore, unlike the 

continuous case in which an optimal constant set-point is obtained, the objective in batch 

operation is to determine the optimal transient profile which maximizes or minimizes an 

economic performance including revenue, material cost and utility cost.  

A general form of objective function is 

( ) 0
max ( ( )) ( ( ), ( ))

ft

f
u t

J x t L x t u t dt   
      (4.24) 

where J is the overall profit to be maximized, tf is final time; and is the profit at the final time 

point.  The integral term is a comprehensive form involving the profit due to production and the 

utility cost with respect to the entire transient period. 

Constraints including the process dynamics (4.23) as well as safety constraints including bounds 

for temperature and other important state variables (4.25), and unit operation specifications such 

as the maximum valve position: 

min max

min max

( )

( )

x x t x

u u t u

 

 
         (4.25) 

4.4.3 The linking variables and constraints 

After solving the mp-MPC problem we obtain the state transitions at each sample step Equations 

(4.26)-(4.28) and the manipulated variables as linear functions of the states Equations (4.29)-

(4.31). These constraints describe the dynamic profiles of manipulated variables and state 

variables. 

PWA approximation of the kinetic model 
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( 1) ( ) ( ) ,

if ( ) , {1, 2,..., }

j j j

j K

x k A x k B u k C

x k k K N

   

  
      (4.26) 

where  

{ : }j j jx V x W   , {1, 2,..., }Jj J N         (4.27) 

and j satisfies the following conditions  which enforce that 1 2{ , , , }
JN   represents a 

complete and non-overlapping partition of x . 

1 1 1 2 1 2, , and

j x
j

j j j j J j j

  

    
      (4.28) 

Explicit control solutions obtained by solving mp-MPC problem using the MPT toolbox  

( ) ( ) , if ( ) ,i i iu k F x k G x k CR k K         (4.29) 

where  

{ : }i i iCR x H x K  , {1, 2,..., }Ii I N         (4.30) 

and iCR satisfies the following constraints. 

1 2 1 2 1 2, , and

i x
i

i i

CR

CR CR i i I i i

  

   
      (4.31) 

Equations (4.26)-(4.31) are implicitly linear, because the linear functions are valid in certain 

regions. We need to transform them into explicit linear constraints Equations (4.32)-(4.37). 

Binary variables 1y are introduced to select the critical region in (4.30). If 1 1iy  this means 

that x is located in region i while if 1 0iy  x is not at this region. M is a big positive number 

which relaxes constraints inequality (4.32) when 1 0iy  . Constraint (4.33) enforces that only 

one region is valid for a certain pair of ,i iH K . 

(1 1 ) ( )i i iM y H x k K            (4.32) 

1 1i

i

y            (4.33) 
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Using these binary variables, (4.29) is transformed into the following constraint: 

( ) (1 1 ) ( ) ( ) (1 1 )i i i i i iF x k G M y u k F x k G M y            (4.34) 

Similarly variables 2y are introduced to select the region (4.27) where the specific linearization 

is valid 

(1 2 ) ( )j j jM y V x k W            (4.35) 

2 1j

j

y            (4.36) 

(4.26) is then transformed into the following: 

( ) ( ) (1 2 ) ( 1)

( ) ( ) (1 2 )

j j j j

j j j j

A x k B u k C M y x k

A x k B u k C M y

      

   
      (4.37) 

Since the dynamic period is discretized, the processing time Trv can be calculated in Equation 

(4.38) where h is the step length, and Nk is the total number of steps. 

rv kT N h          (4.38) 

Both manipulated and state variables are confined by their corresponding bounds in inequalities 

(4.39). 

low up

low up

u u u

x x x

 

 
         (4.39) 

Note that all the derived constraints at control level and the constraints at scheduling level are 

linear. Thus the integrated problem is simplified from the original MINLP. 

4.4.4 The objective of the integrated problem 

The objective of the integrated problem is to maximize the overall profit by obtaining the optimal 

scheduling and control solutions. Thus the objective corresponds to revenue minus raw material 

and utility cost as follows. 
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'

1
'

1

( ) ( )

k
P r u

k

J C VX k C V C V u k





          (4.40) 

where X is the conversion, u is the scaled temperature corresponding to utility consumption (Nie 

et al., 2012), , andP r uC C C are the product price, raw material price and utility price, respectively. 

The dynamic model is discretized with fixed step size as shown in Figure 4.5, and in the control 

problem the optimal number of steps is determined. Note that the index k in (4.40) is a decision 

variable and X and u are defined over k, making k an implicit decision variable. In order to 

eliminate this complexity we introduce an alternative formulation given by Equation (4.41) that 

eliminates index k from the objective using varying step size h and fixed number of steps Nk, as 

shown in Figure 4.6. The number of sample points Nk is constant and the step size h1 and the 

processing time T1 are variables. Figure 4.6 demonstrates two cases with different processing 

times but identical number of sample steps. It can be observed that a varying step size enables a 

flexible processing time with a constant sample size. Therefore solving the integrated problem 

generates the optimal step size and the corresponding processing time. 

'

1

'

1

( ) ( )
kN

P r u
k

k

J C VX N C V C V u k





          (4.41) 

 

Figure 4.5 Discretization with fixed step size 
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Figure 4.6 Discretization with varying step size but fixed number of steps 

4.5 Case studies 

In this section we consider two case studies that have been extensively studied in the scheduling 

literature and compare the results of the integrated methodology presented above with the 

approach that considers the scheduling and control problems separately. In this later approach, we 

solve the scheduling problem first and then solve the control problem based on the solution of the 

scheduling problem. The overall objective for the optimization problem is the maximization of 

profit, which is defined as the revenue from selling the products minus raw material cost, 

equipment cost, and utility cost. The recipe and data set of the case studies are the ones used at 

Ierapetritou and Floudas (Ierapetritou and Floudas, 1998). 

4.5.1 A simple batch process 

As shown in Figure 4.7 a batch process produces a single product through three consecutive 

processing stages i.e. mixing, reaction and separation. The process is represented by the state-task 
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network (STN) in Figure 4.8. Information regarding the capacity of units, suitability, price of 

material is provided in Table 4.1. In this case No Intermediate Storage (NIS) and Zero Wait (ZW) 

policies are assumed. 

 

 

Figure 4.7 Flow sheet of a simple batch process 

 

Figure 4.8 State task network of a simple batch process 

Table 4.1 Data for unit specification and market information of example 1: a simple batch 

process 

Unit Capacity (L) Suitability Mean processing 

time (h) 

Mixer 100 task 1 4.5 

Reactor 75 task 2 3.0 

Purificator 50 task 3 1.5 

State and Utility Storage capacity (L) Initial amount (L) Price ($/L) 

state 1 (Raw) unlimited unlimited 0.2 

state 2 100 0.0 0.0 

state 3 100 0.0 0.0 

state 4 (Product) unlimited 0.0 1.0 

Utility unlimited 0.0 0.05 
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In this study a simplified reaction kinetic is assumed. u is a scaled temperature which is defined to 

substitute the rate constant and (4.42) is an approximation of the kinetic model (Nie et al., 2012). 

The utility consumption is equal to an integral of u with respect to time. In this case the reaction 

is assumed to be endothermic, so higher temperature drives the concentration of reactants to 

decrease fast, as indicated in (4.42). 

dx
ux

dt
            (4.42) 

As mentioned in section “Simultaneous scheduling and control incorporating mp-MPC” we 

transform the nonlinear model into PWA as follows. 

Let ( , )f u x dx dt , and linearize it at 
0 0,x x u u   

0 0 0 0 0 0 0 0

0 0 0 0

( , )

( , ) ( ) ( , ) ( ) ( , )u x

dx
f u x

dt

f u x u u f u x x x f u x

x u u x u x



    

   

   (4.43) 

( ( 1) ( ))dx dt x k x k h   , where h is the sample step. Thus we obtain 

0 0 0 0

( 1) ( )x k x k
x u u x u x

h

 
         (4.44) 

leading to the following equation  

0 0 0 0( 1) (1 ) ( ) ( )x k u h x k x hu k u x h         (4.45) 

which pertains to the general form as  follows: 

( 1) ( ) ( )x k Ax k Bu k C          (4.46) 

In this case we linearize the dynamic around seven points: u0=1, x0=[3, 2.5, 2, 1.5, 1, 0.5, 0]. 

Handle the nonlinearity brought by h 



76 
 

 

For a control problem with fixed sample step h, (4.45) corresponds to a linear problem. However, 

in this study we consider the unit processing time as a variable ( rvT in (4.14) and T1, T2 in Figure 

4.6) and since we use fixed number of sample points (Figure 4.6), the sample step is also a 

variable which transforms (4.46) to a nonlinear equation. 

From (4.45) and (4.46) we obtain 

0

0

0 0

1A u h

B x h

C u x h

 

 



         (4.47) 

In order to avoiding the nonlinearity in (4.46), we discretize h as shown in Figure 4.9 and 

introduce binary variables to represent the selection of h. 

 

Figure 4.9 Discretization of step size h 

(4.48) and (4.49) represent the selection of h in the discretized segment. 

(1 3 ) 3 3m m mM y H h K            (4.48) 

3 1m

m

y            (4.49) 

Therefore (4.37) is transformed into (4.50). 

0 0 0 0

0 0 0 0

(1 ) ( ) ( ) (1 2 ) (1 3 )

( 1) (1 ) ( ) ( ) (1 2 ) (1 3 )

m j m j m j m

m j m j m j m

u hh x k x hh u k u x hh M y M y

x k u hh x k x hh u k u x hh M y M y

       

        
  (4.50) 

Handle the nonlinearity in (4.14) 
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Since in (4.14) both Trv and y are decision variables, the last term corresponds to a bilinear term. 

In order to eliminate the nonlinearity we introduce an alternative form as follows: 

( , , ) ( , , ) ( , ) ( , , )f s
ij rvT i j n T i j n w i n T i j n        (4.51) 

( , ) ( , , ) ( , )rvTy j n T i j n Ty j n         (4.52) 

Where ( , ) 1y j n  , unit j is selected for processing and Trv is subject to the lower and upper 

bounds. Otherwise the unit is not selected and the processing time should be zero. 

The explicit control solutions generated by mp-MPC are shown in Figure 4.10. The integrated 

problem (MINLP) has 2582 variables and 17050 constraints and it takes 218.71s to solve using 

GAMS/SBB on a 3.0GHz CPU/1.0GB RAM PC. Solving the integrated problem we obtain the 

dynamic profile at control level (Figure 4.11) and the scheduling solution in Figure 4.12. 

 

Figure 4.10 Explicit solution for mp-MPC 
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Figure 4.11 Dynamic profile of the reactor. x represents the concentration of raw material 

and u represents the scaled temperature 

 

Figure 4.12 Scheduling solution for example 1 a simple batch process 

4.5.2 A more complex batch process 

As shown in Figure 4.13 this problem‟s STN represents a process that is capable of producing 

two products through five processing stages: heating, reaction 1, 2 and 3, and separation of 

product 2 from impure E. The material flow in this process indicates that two cascade reactions 

(reaction 1 and 2) are involved in producing product 1. It is reasonable to assume that the overall 
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conversion is calculated by multiplying the conversions of the related reactions. The problem 

time horizon is 8 hours. Equipment specification and price information are provided in Table 4.2. 

 

Figure 4.13 Flow sheet for a complex batch process 

Table 4.2 Data for unit specification and market information of example 2: a complex batch 

process 

Unit Capacity (L) Suitability Mean processing 

time (h) 

Heater 100 Heating 1.0 

reactor 1 50 Reaction 1,2,3 2.0, 2.0, 1.0 

reactor 2 80 Reaction 1,2,3 2.0, 2.0, 1.0 

distillation 200 separation 1 for product 2, 2 for 

Int AB 

State and utility Storage capacity (L) Initial amount 

(L) 

Price ($/L) 

feed A unlimited unlimited 0.2 

feed B unlimited unlimited 0.2 

feed C unlimited unlimited 0.2 

hot A 100 0.0 0.0 

Int AB 200 0.0 0.0 

Int BC 150 0.0 0.0 

impure E 200 0.0 0.0 

product 1 unlimited 0.0 5.0 
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product 2 unlimited 0.0 1.0 

utility unlimited 0.0 0.05 

 

Compared to the previous case, this process features cascade reactions and multiple raw materials 

multiple products. Thus a product of conversions VX1X2 is present in the objective (4.53). 

1 2
1 1 2 3 3

'

'

( ) ( ) ( )

( )i

P P
k k k

r u
i j j

i j k

J C V X N X N C V X N

C V C V u k

 

         (4.53) 

When building the integrated model in order to make the problem computationally tractable 

without losing essential parts of the proposed modeling approach, we made the following 

assumptions in this study. 

Assumption 1:  

A generalized kinetic model that relates scaled temperature (u) and conversion (X). 

A first order reaction kinetics is assumed: 

dC
uC

dt
            (4.54) 

Using the relation between concentration and conversion 0 (1 )C C X  , we obtain: 

(1 )
dX

u X
dt

           (4.55) 

We simplify the specific kinetic of the all the reactions and use (4.55) as a general form. The 

amounts of product 1 and product 2 are then given by VX1X2 and VX3, respectively. Utility 

amount is equal to Vu. 

Assumption 2: 

The conversions for the tasks, which belong to the same reaction but are executed at different 

reactors are equal. For example, the conversion for tasks 2 and 3 are equal. This avoids mixing 

the material with different conversion in storage IntBC. 

Assumption 3: 
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In order to satisfy the products‟ quality specification, we assign lower bounds for the conversion 

of reaction 1, 2 and 3: X1 >0.6, X2 >0.5 and X3>0.3. 

In this case study we investigate four scenarios, and compare their detailed results. 

Scenario 1: The integrated problem (MINLP) involving the nonlinear objective in (4.53) and the 

linear constraints shown in formula (4.56). This is the proposed methodology where mp-MPC is 

incorporated in this study. 

1 2
1 1 2 3 3

, , , , , ,
, , , , 1, 2

'

'

max ( ) ( ) ( )

( )

(4.9)-(4.12) scheduling constraints

(4.15)-(4.22) scheduling constraints

. . (4.32)-(4.39) explicit MPC

(4.48)-

s f

rv

i

R

P P
k k k

w y V d ST T T
T x u X y y

r u
i j j

i I j k

J C V X N X N C V X N

C V C V u k

s t



 

   

(4.50) handle the nonlinearity in (4.45)

(4.51)-(4.52) handle the nonlinearity in (4.14)










   (4.56) 

Scenario 2: Directly apply the explicit control solution produced by mp-MPC to the scheduling 

solution generated by the pure scheduling problem in (Ierapetritou and Floudas, 1998). In the 

pure scheduling problem involving constraints (4.9)-(4.13) and (4.15)-(4.22), the objective is to 

maximize the throughput of the process with empirical estimation of the processing time in (4.13). 

The optimization problem for scenario 2 is presented in (4.57). 

, , , , , ,
max ( "product1", )

( "product2", )

(4.9)-(4.13) scheduling constraints
. .

(4.15)-(4.22) scheduling constraints

s fw y V d ST T T
n

n

J d s n

d s n

s t

 

 







      (4.57) 

Scenario 3: Solve the control problem using mp-MPC and apply the obtained explicit control 

solutions to the dynamic and obtain the operation conditions (Figure 4.14-Figure 4.16). The 

approximated relations are incorporated into the scheduling constraints.  
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Figure 4.14 Temperature profile obtained by applying the explicit control solution to the 

reaction 

 

Figure 4.15 Conversion profile and the approximation (empirical relation) 

 

Figure 4.16 Utility amount profile and the approximation (empirical relation) 
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From Figure 4.15 we obtain the empirical relation between reaction time and conversion: the 

required reaction time is proportional to the desired conversion. 

rvT X           (4.58) 

Thus we have the following time constraint which replaces the original constraints in (4.13) 

f sT T X             (4.59) 

By combining the empirical relations in Figure 4.15 and Figure 4.16, we obtain the empirical 

relation between utility amount and the conversion: the utility consumption is proportional to the 

desired conversion. 

Utility amount
0

( )
rvT

u t dt X         (4.60) 

Based on the above, we have the optimization problem for scenario 3. 

1 2
1 1 2 3 3

, , , , , , ,
max

C

empirical time constraint

. . (4.9)-(4.12) scheduling constraints

(4.15)-(4.22) scheduling constraints

s f

i

R R

P P

w y V d ST T T X

r u
i i i

i I i I

f s

J C V X X C V X

C V V X

T T X

s t



 

 

 

 

   





 
    (4.61) 

This is a small scale MINLP problem which involves a nonlinear objective function and linear 

constraints. The formulation in (4.61) realizes an implicit integration (compared to the explicit 

integration in scenario 1) of scheduling and control since it incorporates empirical relations of the 

operation conditions obtained in the control problem. Note that the implicit integration does not 

bring extra constraints to the scheduling problem but replaces constraint (4.13) with (4.59). 

Scenario 4: In this scenario we build an integrated problem (MIDO) and discretize it into a 

MINLP using implicit Runge-Kutta method (Frank et al., 1985) which has a general form in 

equations (4.62) and (4.63). 
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1 2( 1) ( ) 1 2 s sx k x k b K b K b K           (4.62) 

where 

1

( ) , ( )

s

i i ij j

j

K hf t k c h x k a K



 
   
 
 

      (4.63) 

Here a, b, c are parameters and K is the intemediate variable. x is the state variable here it 

represents conversion. The dynamic model f follows the kinetic model in (4.55). We use 

Hammer-Hollingsworth with Butcher tableau as follows: 

1 11 12 1

2 21 22 2

1 2

1 2

3 3 1 1 3

6 4 4 6

3 3 1 3 1

6 4 6 4

1 1

2 2

s

s

s s s ss

s

c a a a

c a a a

c a a a

b b b

 
 

 
 

 
    

    
 

 
 

 
 

  
 
 





    





    (4.64) 

Thus we obtain the following discretization of the dynamic model: 

( , ) ( ( , ), ( , )), [1, , ],kx k n f x k n u k n k N n N          (4.65) 

 1( , ) ( , ) 0.2113 ( ), ( , ) ( )(0.25 1( , ) 0.0387 2( , )), ( , )

[1, , ],k

K k n f t k n h n x k n h n K k n K k n u k n

k N n N

   

    (4.66) 

 2( , ) ( , ) 0.7887 ( ), ( , ) ( )(0.5387 1( , ) 0.25 2( , )), ( , )

[1, , ],k

K k n f t k n h n x k n h n K k n K k n u k n

k N n N

   

    (4.67) 

( )
( ) rv

k

T n
h n

N
          (4.68) 

 ( 1, ) ( , ) ( ) 0.5 1( , ) 0.5 2( , ) , [1, , 1],kx k n x k n h n K k n K k n k N n N           (4.69) 

The first-order derivatives of the state variables at each step are calculated using Equation (4.65) 

and k represents sample steps in the transient duration. Through the calculation of intermediate 

variables in equations (4.66) and (4.67), and the sample size in (4.68) the state of the next step is 

obtained by Equation (4.69). Optimization problem for this scenario is presented in (4.70). 
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g implicit Runge-Kutta method







  (4.70) 

Scheduling solutions and detailed results of all scenarios are presented in Figure 4.17-Figure 4.21 

and Table 4.3. Note that in the sequential solution procedures of scenario 1, the optimization 

problem in (4.56) corresponds to MILP with the objective function being linearized using (4.78) 

and (4.79), whereas the optimization problem in (4.56) is a MINLP. For scenario 3, the 

optimization problem in (4.61) with the objective linearized using (4.72), (4.78) and (4.79) is a 

MILP, and the optimization problem in (4.61) corresponds to MINLP. In scenario 4 we solve 

problem (4.70) using MINLP solver DICOPT and also the global optimizer BARON. 

 

Figure 4.17 Scenario 1, scheduling solution for MINLP. Red number represents the index of 

task-unit-eventpoint (ijn) and black number represents the (amount of 

material/conversion/utility consumption)
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Figure 4.18 Scenario 2, apply control to pre-obtained scheduling solution. Red number 

represents the index of task-unit-event point (ijn) and black number represents the (amount 

of material/conversion/utility consumption)
 

 

Figure 4.19 Scenario 3, implicit integration based on the recipe obtained in control problem. 

Red number represents the index of task-unit-event point (ijn) and black number 

represents the (amount of material/conversion/utility consumption) 

 

Figure 4.20 Scenario 4, original integrated problem MIDO discretized into a MINLP using 

implicit RK method, solved using GAMS/DICOPT. Red number represents the index of 

task-unit-event point (ijn) and black number represents the (amount of 

material/conversion/utilit 

 

Figure 4.21 Scenario 4, original integrated problem MIDO discretized into a MINLP using 

implicit RK method, solved using GAMS/BARON. Red number represents the index of 

task-unit-event point (ijn) and black number represents the (amount of 

material/conversion/utility 
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Table 4.3 Comparison of the quantitative results for four scenarios of the complex batch 

process case study 

4 scenarios Scenario 1: 

Integrated 

problem 

(MINLP) 

nonlinearity 

only in the 

objective 

Scenario 2: 

Apply control 

to obtained 

scheduling 

(Directly 

apply explicit 

control 

solution) 

Scenario 3: 

Implicit 

integration 

based on the 

recipe 

obtained in 

control 

problem 

(small 

MINLP) 

Scenario 4:  

original MIDO 

discretized into 

MINLP using implicit 

RK4 method, 

nonlinearities in the 

objective and 

constraints 

Problem size 16039 

variables, 

107324 

constraints 

N/A 653variables, 

1284 

constraints 

5932 variables, 

8495 constraints 

Solver warm start 

solving 

procedures: 

solve MILP 

using CPLEX, 

and then solve 

MINLP using 

DICOPT, 76s 

N/A (no 

solver is 

needed) 

warm start 

solving 

procedures: 

solve MILP 

using CPLEX, 

and then solve 

MINLP using 

DICOPT, 14s 

DICOPT 

157.6s 

BARON 

4804.9s,  

maximum 

CPU time 

is set to 

6000s 

Product 1 

Amount (L) 

38.71 29.77 37.70 34.38 41.25 

Product 2 

Amount (L) 

58.50 26.34 30.15 50.0 55.03 

Revenue ($) 252.06 175.19 218.65 221.89 261.23 

Raw A Amount 

(L) 

86.67 70.44 84.0 72.0 86.0 

Raw B Amount 

(L) 

65.0 52.84 63.0 54.0 85.0 

Raw C Amount 

(L) 

84.50 70.58 73.0 73.50 84.50 

Raw Cost ($) 47.23 38.77 44.0 39.90 47.10 

Utility Amount 

(L) 

445.47 305.60 540.40 430.76 515.60 

Utility Cost ($) 22.27 15.28 27.02 21.54 25.78 

Profit ($) 182.55 121.14 147.63 160.45 188.35 

 

It can be observed that scenario 2 generates significantly lower profit. This is due to the lack of 

integration of scheduling and control. In scenario 2 the scheduling problem and control are solved 

sequentially and thus it cannot achieve the overall optimum solution since the obtained 
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scheduling solutions based on which the control problem is solved may not be optimal for the 

control level. As shown in Figure 4.18, slot 623 and 733 which correspond to reaction 3 

correspond to smaller processing time compared to scenario 1, resulting in less production of 

product 2 (see the amount of product 2 in Table 4.3) and thus less revenue. 

It can also be observed that the profit of scenario 3 is lower than scenario 1 but higher than 

scenario 2. The implicit integration of scheduling and control in scenario 3 partially shares 

information between scheduling and control levels since it approximates the nonlinear relations 

using linear functions (Figure 4.15 and Figure 4.16), so it performs better than scenario 2 where 

no integration is performed but worse than the explicit integration in scenario 1. However, the 

problem size of scenario 3 is significantly smaller than scenario 1 and thus requires much less 

computation time.  

Table 4.3 also presents the detailed results for scenario 4 where we build a MIDO for the 

integrated problem and discretize it into a MINLP using implicit Runge-Kutta method. There is a 

remarkable comparison between scenario 1 and scenario 4, where they both represent the 

integrated problem but they differ significantly in problem size, CPU time and profit. Though 

scenario 1 (the proposed approach) has much larger problem size, it needs much less time to 

compute compared to DICOPT and BARON solver in scenario 4. This is because of the problem 

formulation since all the constraints are linear in scenario 1, while constraints (4.14), (4.65)-(4.69) 

in scenario 4 are nonlinear. Scenario 1 produces slightly lower profit than BARON does while its 

solution time is reduced in nearly two orders of magnitude. Apparently DICOPT in scenario 4 

obtains a local optimum solution since in this case the profit found is 15% lower than the one 

using a global optimization approach. 

The dash lines in Figure 4.15 and Figure 4.16 show two extreme cases of scenario 3 that 

corresponds to an optimistic and a pessimistic case. In the optimistic case the approximated 
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conversion profile is always above the true profile and the utility amount is lower than the true 

one, while in pessimistic case the approximation follows an opposite trend. Solving problem 

(4.61) for both cases results in profit $140.29 and $136.5, respectively. Both of them have lower 

profit than scenario 3 because they use worse approximation (the distance between the linear 

profile and the true profile is greater) as shown in Figure 4.15 and Figure 4.16. Note that the 

profit associated with scenario 3 is obtained by incorporating the solution of problem (4.61)-(4.65) 

and calculating the real profit using the objective in (4.56) i.e. the profit is the one that realized in 

the real case. This ensures a fair comparison between the different scenarios. 

The proposed formulation for simultaneous scheduling and control results corresponds to a 

MINLP which involves linear constraints and a nonlinear objective function. To improve the 

computation efficiency we linearize the bilinear term in the objective using a simple first order 

Taylor expansion (4.71) and thus transforming the problem to a MILP. 

In case 1 we linearize the term V*X(Nk) at (V0, X0) following (4.72) and obtain a linear objective  

function (4.73). We chose different points where the bilinear term is expanded and solve the 

corresponding MILP, and summarize the results in Table 4.4. 

0 0 0 0 0 0 0 0( , ) ( , ) ( ) ( , ) ( ) ( , )
f f

f u x f u x u u u x x x u x
u x

 
    

 
   (4.71) 

0 0 0 0 0 0 0 0 0 0( ) ( )VX V X V V X X X V V X X V V X           (4.72) 

'

1

'
0 0 0 0 0

1

( ( ) ( ) ( )) ( )
kN

P r u
k k k

k

J C V X N VX N V X N C V C u k





        (4.73) 

Table 4.4 Results of the MINLP and the derived MILP (case 1) 

 MINLP MILP  

V0=50 

X0=0.5 

MILP  

V0=60 

X0=0.4 

MILP  

V0=70 

X0=0.6 

MILP  

V0=70 

X0=0.7 

MILP  

V0=40 

X0=0.7 

MILP  

V0=80 

X0=0.6 

Solver SBB/ 

IPOPT 

Cplex Cplex Cplex Cplex Cplex Cplex 
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ProductAmount (L) 53.56 45.33   43.67 51.0 51.0 51.0 45.33 

Revenue ($) 53.56 45.33 43.67 51.0 51.0 51.0 45.33 

RawMaterialAmount 

(L) 

78.0 68.0 64.0 75.0 75.0 75.0 68.0 

RawCost ($) 15.60 13.60 12.80  15.0 15.0 15.0 13.60  

UtilityAmount (L) 42.32 40.0   41.16 20.8   20.8   20.8   40.0   

UtilityCost ($) 2.12 2.0 2.06 1.04 1.04 1.04 2.0 

Profit ($) 35.84 29.73 28.80 34.96 34.96 34.96 29.73 

Note that the MILP is solved with a different objective (4.73) compared to the one of the MINLP 

(4.40). However, the results in Table 4.4 are calculated following the same equations as follows: 

Revenue= ProductAmount*ProductPrice      (4.74) 

RawCost= RawMaterialAmount*RawPrice      (4.75) 

UtilityCost= UtilityAmount*UtilityPrice       (4.76) 

Profit= Revenue- RawCost- UtilityCost       (4.77) 

In case 2 through linearization of the bilinear term in the objective (4.78)  and (4.79) we obtain a 

linear objective function and an overall MILP problem. The derived MILP has the same problem 

size as the MINLP and takes around 18s to solve using GAMS/CPLEX. The results of the MILP 

with four linearization points are provided in Table 4.5. The best linearization point is 

0 0
1 3 50V V  , 0 0 0

1 2 3 0.6X X X   where the corresponding result $179.96 is slightly 

lower than the profit of the MINLP which is $182.55. 

0 0 0 0 0 0 0 0 0
1 1 2 1 1 2 1 2 1 1 2 1 1 1 22V X X V X X V X X X X V V X X       (4.78) 

0 0 0 0
3 3 3 3 3 3 3 3V X V X X V V X          (4.79) 
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Table 4.5 Results of the MINLP and the derived MILP (case 2) 

 MINLP MILP  

V1
0
= V3

0
=60, 

X1
0
= X2

0
=0.5 

X3
0
=0.5 

MILP  

V1
0
= V3

0
=60, 

X1
0
= X2

0
=0.6 

X3
0
=0.6 

MILP  

V1
0
= V3

0
=50, 

X1
0
= X2

0
=0.6 

X3
0
=0.6 

MILP  

V1
0
= V3

0
=50, 

X1
0
= X2

0
=0.5 

X3
0
=0.5 

Solver CPLEX for 

MILP, 

DICOPT for 

MINLP 76s 

CPLEX, 17s CPLEX, 19s CPLEX, 18s CPLEX, 18s 

Product1 Amount (L) 38.71 37.15 37.77 38.31 37.45 

Product2 Amount (L) 58.5 55.82 50.14 57.38 47.61 

Revenue ($) 252.06 241.55 239.02 248.93 234.84 

Raw A Amount (L) 86.67 89.07 82.4 83.1 96.1 

Raw B Amount (L) 65.0 75.3 78.63 62.07 72.36 

Raw C Amount (L) 84.5 80.23 61.12 85.13 91.79 

Raw Cost ($) 47.23 48.92 44.43 46.04 52.05 

Utility Amount (L) 445.47 484.0 413.8 459 349.6 

Utility Cost ($) 22.27 24.2 20.69 22.95 17.48 

Profit ($) 182.55 168.43 173.87 179.96 165.31 

 

Results for both cases show that the MILP generates lower profit than the MINLP. This is 

because the MILP fails to capture the optimum of the original objective. However, the MILP 

requires significantly less computation time. This helps to achieve a balance between 

computation complexity and optimality, since the linearization greatly simplifies the problem 

while keeping the solution close to the optimum. 
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4.6 Summary 

In this study we model scheduling and control problem for batch processes simultaneously using 

mp-MPC. The reason that we adopt mp-MPC is that it generates control signal instantly by 

function evaluation and thus greatly reduce computation complexity when control level is 

integrated with scheduling level. To the authors‟ knowledge, this is the first attempt in this area to 

explore the possibility and feasibility of applying mp-MPC in control and scheduling problem. 

The main contribution of this study is that we propose a framework which is capable to transform 

explicit control solution generated by mp-MPC into explicit linear constraints, and incorporate 

with the linear constraints at scheduling level. This results in an integrated problem that involves 

linear constraints and a nonlinear objective. Results of case studies demonstrate that the 

integration achieves much high profit compared to the sequential approach. 

Nomenclature:  

Indices 

i tasks 

j units 

s states 

n event points 

k sample steps 

 

Sets 

I tasks 

Ij tasks which can be performed in unit j 

IS tasks which process state s 

Ji units which are suitable to perform task i 

IR set of reaction tasks 

N event points within the time horizon 

S states 

 

Parameters 

min
ijV minimum amount of material required to process task i in unit j 
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max
ijV  capacity of unit j when processing task i 

max( )ST s storage capacity for state s 

ij coefficient of constant part of processing time of task i in unit j 

ij  coefficient of variable part of processing time of task i in unit j 

H time horizon 

, ,p r uC C C price of product, raw material and utility 

M big positive number 

Nk number of discretization point 

 

Decision Variables 

( , )w i n binary variable assign task i at event point n 

( , )y i n binary variable assign unit j at event point n 

( , , )V i j n amount of material undertaking task i in unit j at event point n 

( , )d s n amount of state s sold at event point n 

( , )ST s n amount of state s at event point n 

( , , )sT i j n starting time of task i in unit j at event point n 

( , , )fT i j n ending time of task i in unit j at event point n 

( , , )rvT i j n processing time of task i in unit j at event point n 

X conversion 

h step size 

x state variables such as concentration 

u scaled temperature corresponding to utility consumption 

A, B, C coefficients in PWA model 

V, W coefficients of the inequalities corresponding to the PWA 

F, G coefficients in the explicit solution 

H, K coefficients of the inequalities describing the critical regions 

CR critical region 

y1 binary variables selecting the critical regions  

y2 binary variables selecting the valid regions of PWA 

K1, K2 intermediate variables in implicit RK method 

 domain of variables  
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Chapter 5 An integrated framework for scheduling and control using 

fast Model Predictive Control  

5.1 Introduction 

Online integration of scheduling and control requires updating operation solutions for both 

scheduling and control levels at real time in the presence of disturbance, thus the online 

integration requires a repetitive solution of the integrated problem at each time interval (Zhuge 

and Ierapetritou, 2012). To reduce the computation complexity of the integrated problem, 

researchers proposed to use Lagrangean Decomposition (Terrazas-Moreno et al., 2008a) and 

Bender Decomposition (Chu and You, 2013b) (Chu and You, 2013a) (Nie et al., 2014) to 

converge to the optimal solution. Chu and You (Chu and You, 2014a) models the integrated 

problem using game theory and efficiently solve the resulting bi-level optimization problem. 

Zhuge and Ierapetritou (Zhuge and Ierapetritou, 2014) utilizes mp-MPC to handle the control 

problem and incorporation the explicit control solution with the scheduling level, resulting in a 

MILP which simplifies the integrated problem. 

Model Predictive Control (MPC) is an online optimization technique that involves repetitively 

solution of an optimization problem over a future time horizon. To reduce the computation 

burden of conventional MPC, multi-parametric Model Predictive Control (mp-MPC) was 

proposed to solve for the explicit control law offline and thus the online optimization is reduced 

to simple function evaluations (Pistikopoulos, 2009). However, as the problem size increases in 

terms of state dimension and prediction horizon, the number of polyhedral regions in the state 

partition increases exponentially and this limits the applicability of mp-MPC to small and 

medium-sized control problems (Richter et al., 2012). 

Fast MPC on the other hand is capable in handling large scale problems, and therefore can be 

used to facilitate the efficient integration of scheduling and control of large-scale processes. Fast 

MPC for linear systems transforms the MPC problem into a convex quadratic programming 
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problem, for which efficient nonlinear programming methods and computational tools can be 

used to speed up the computation by exploring the problem structure. Among the existing work in 

the literature three solution approaches can be identified: active set method (Ferreau et al., 2008), 

interior point method (Rao et al., 1998) (Wang and Boyd, 2010), and Fast gradient method 

(Richter et al., 2009) (Richter et al., 2012). These methods are specifically elaborated in section 

5.4.1. Zavala et al. (Zavala et al., 2008) developed algorithms for fast nonlinear MPC that is 

based on sensitivity calculation for the Karush–Kuhn–Tucker (KKT) conditions of the NLP 

derived from differential and algebraic equations (DAE) of the nonlinear MPC. This approach 

was further investigated and applied in large scale industrial processes in Lopez-Negrete et al 

(Lopez-Negrete et al., 2013). 

In this study we propose a cascade control strategy that involves two control loops for the online 

integration of scheduling and control (Figure 5.1). In the outer loop we approximate the original 

process dynamics using a piece-wise affine (PWA) model and incorporate it with the scheduling 

level. This leads to an integrated problem that is subject to linear constraints. The primary MPC at 

the outer loop solves the integrated problem and generates both the production scheduling and the 

control solution. However, only the scheduling solution is transferred to the inner loop where the 

secondary MPC (a fast MPC) treats the scheduling solution as parameters and computes the exact 

control solution online. Note that these two loops correspond to different models and different 

time scales. The outer loop uses the integrated model and solves it in the period of days or weeks 

while the inner loop uses the process dynamic model and updates the solution in seconds. 

Essentially the inner loop is solved much more frequently than the out loop does. Following this 

approach the primary MPC is able to achieve an overall optimalility for both scheduling and 

control levels efficiently, and the secondary MPC is able to respond quickly to the local 

disturbance. Note that the proposed approach is applicable in a dynamic market environment as 

the outer loop incorporates the market information such as demand and price. The proposed 



96 
 

 

framework solves an integrated model to guarantee the overall optimality and employes fast MPC 

to respond timely to process disturbances. While solving the integrated problem the latest market 

information such as material price and product demands are incorporated into the integrated 

problem, and the scheduling solutions are updated accordingly.  

When disturbance is detected (state deviation from the referece is measured), the state 

information is fedback to the inner fast MPC or outer integrated problem. A threshold is 

introduced to determine the feedback. If the state deviation is less than the threshold, the state is 

fedback to inner fast MPC and locally treated by fast MPC. Otherwise if the state deviation is 

large (higher than the threshold) it is fedback to the integrated problem and the scheduling 

solution is updated accordingly. The threshold is an empirical value and it is determined to avoid 

the unecessary changes of the scheduling solution when disturbances are small enough that can be 

handled efficiently in the control level, whereas updates in the scheduling solution are considered 

if significant disturbance occurs. 

 

Figure 5.1 Cascade strategy for the online integration of scheduling and control 

5.2 Integration of scheduling and control based on (Piece-Wise Affine) PWA 

model 

The main challenge of integration of scheduling and control for chemical processes is that the 

integrated problem cannot be solved as fast as it is required for the control level but also that the 
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scheduling solution should not be adjusted all the time. Since scheduling and control levels 

correspond to different dynamics and different time scales, an appropriate integration has to 

capture the process behavior well enough at both scheduling and control levels, while maintaining 

the appropriate level of integration (Engell and Harjunkoski, 2012). Moreover, the integrated 

problem should not be very computational expensive thus the integrated solution could be 

updated timely when disturbance occurs. Typically an integration results in a MIDO which is 

discretized into a MINLP using collocation point method (Flores-Tlacuahuac and Grossmann, 

2006) (Chu and You, 2012) (Nie et al., 2012) or implicit RK4 method (Zhuge and Ierapetritou, 

2012). However, the nonlinearity in MINLP poses significant difficulty in the computation 

method of solving the integrated optimization problem. 

In control practice a standard way to handle the nonlinear dynamics is to linearize the nonlinear 

model around operating points. However, the linearized model is valid only if the process 

operates at the vicinity of operating points. It is just an approximation of the actual process 

dynamics when process experiences transitions where the states are far from the operation points 

(e.g. steady state points). In contrast, PWA systems have shown to be an effective approach in 

dealing with nonlinear systems (Johansson, 2003) (Rodrigues and How, 2003) (Rodrigues and 

Boyd, 2005). The basic idea of PWA system is that the nonlinear dynamics can be approximated 

by a collection of distinct linear (or affine) dynamic approximations with associated regions of 

validity. Compared to standard linear model, PWA composes a group of linear models and 

therefore it is capable to address the process dynamics at the entire state domain. PWA models 

eliminate the nonlinearity while retaining high approximation accuracy. 

5.2.1 A brief review of the PWA identification techniques 

There are two types of techniques regarding PWA model identification. One is clustering 

technique where PWA models are obtained by processing K-means algorithm on input-output 

data. Ferrari-Trecate et al (Ferrari-Trecate et al., 2003) combined use of clustering, linear 
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identification, and pattern recognition techniques to identify both the affine sub-models and the 

polyhedral partition of the domain. Magnani and Boyd (Magnani and Boyd, 2009) proposed a 

heuristic method for fitting a convex piecewise linear function to a given set of data. It uses K-

means algorithm for clustering, and requires the piecewise linear function to be convex. 

Researchers (Buchan et al., 2013) (Gegúndez et al., 2008) (Nakada et al., 2005) (Ohlsson and 

Ljung, 2011) (Roll et al., 2004) (Vasak et al., 2006) employ K-means clustering technique or 

variations derived from that. The downside of this approach is that there is no guarantee that the 

union of regions obtained by clustering is able to cover the whole area of the original domain 

without gaps where the model is actually defined. 

The other type of PWA identification technique is optimization based PWA approximation. This 

technique applies to the cases where the original nonlinear functions are available. Stevek et al. 

(Števek et al., 2012) proposed a two-stage optimization-based approach. At the first stage, they fit 

the input/output data using multivariable nonlinear functions that are represented as a sum of 

products of functions in single variables. They employ neural networks with pre-defined basis 

functions to obtain the nonlinear functions. At the second stage they obtain the PWA 

approximation for the nonlinear functions obtained in the first stage using the approaches in 

Kvasnica et al. (Michal Kvasnica et al., 2011). Kvasnica et al. (Michal Kvasnica et al., 2011) 

handles one-dimensional functions. They treat the partition of the domain and the corresponding 

linear model as decision variables and build an optimization problem (5.1) to minimize the error 

between the PWA and the original functions. For example, PWA approximation ( )f x  for a 

nonlinear function 
3( )f x x  is obtained through solving problem (5.1) where A and B are 

coefficients in PWA and r is the partition of the x domain. Note that continuity is enforced by the 

third constraint. The solutions are presented in formula (5.2) and Figure 5.2. 
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7.431x+7.495, 2 x<-1.123

f(x)= 0.757x, -1.123 x<1.123

7.431x-7.459, 1.123 x<2

 



 

      (5.2)

 

 

Figure 5.2 Example of one-dimension PWA approximation 

For two and multiple dimensional functions, Kvasnica et al. (Michal Kvasnica et al., 2011) 

investigated two particular cases: 

Case 1: if the function 1 2( , , , )nf x x x  is separable, i.e. 1 2( , , , )nf x x x = 1 1 2 2( ) ( )f x f x

( )n nf x  , then apply one-dimensional approximation for each term. 

Case 2: if the function 1 2( , , , )nf x x x is in a form of product i.e. 1 2( , , , )nf x x x =

1 1 2 2( ) ( ) ( )n nf x f x f x , then introduce new variables to transform the product into a 
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summation form in case 1. For example, let 1 1 2y x x  and 2 1 2y x x  , we have

 2 2
1 2 1 2 4x x y y  . 

However, for general multiple dimension functions that cannot be put into the form of case 1 and 

2, Kvasnica et al. (Michal Kvasnica et al., 2011) did not provide any approximation approaches. 

Julian et al. (Julian et al., 1999) explored a uniform triangular-shape partition for the domain and 

approximated a nonlinear function by adjusting the grid size of the partition. Zavieh and 

Rodrigues (Zavieh and Rodrigues, 2013) used heuristic selection of linearization points where a 

new linearization point is determined by the intersection of tangential lines associated with the 

old linearization points. Casselman and Rodrigues (Casselman and Rodrigues, 2009) used a set of 

linearization points and Voronoi partitions in the approximation. Sontag (Sontag, 1981) discussed 

the stability, controllability, and observability in PWA systems. However, the existing work in 

PWA identification cannot handle a general form of nonlinear model. 

5.2.2 A PWA identification technique using optimization methods 

To overcome the shortcomings of the optimization based PWA identification described in section 

5.2.1, we propose a PWA identification technique that is able to handle general forms of 

nonlinear function. In 2-dimensional cases we use rectangular partition of the domain of function 

(1) (2)( , )f x x  (Figure 5.3). Index {1,2,..., }ii I N  is associated with (1)
x , and 

{1,2,..., }jj J N  is associated with (2)
x . Intermediate points 

(1)
int,ix  and (2)

int, jx are 

introduced as partitions for (1)
x  and (2)

x , respectively. Therefore we have constraints:

(1) (1) (1)
int,0 int,1 int, iN

x x x   and (2) (2) (2)
int,0 int,1 int, jN

x x x   , where 
(1)
int,0x  and (2)

int,0x  

are the lower bounds of (1)
x  and (2)

x and 
(1)

int, iN
x  and (2)

int, jN
x  are the upper bounds. iN and 

jN are the number of intermediate points for (1)
x  and (2)

x . The sub-index “int” represents 

„intermediate points‟. 
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Figure 5.3 Rectangular partition of the domain of two-dimensional functions 

Define the Valid Regions (VR) and the PWA 

(1) (1) (2) (2)(1) (2) (1) (2)
, int, 1 int, int, 1 int,{( , ) | , }i j i i j jVR x x x x x x x x        (5.3) 

(1) (2) (1) (2) (1) (2)
, , , , ,

ˆ ( , ) , if ( , )i j i j i j i j i jf x x a x b x c x x VR      (5.4)
 

Equation (5.3) determines that point 
(1) (2)( , )x x  belongs to a certain valid region and Equation 

(5.4) provides the Linear Time Invariant (LTI) associated with the regions. 

Constraints: 

The profile of PWA should be continuous at the boundaries of valid regions. In other words, the 

function values of adjacent LTIs are the same at the boundaries. Note that if the continuity at the 

intersection points is established, then the continuity at the segment defined by the intersection 

points is established as well. For example, at point A in Figure 5.3, the LTIs of the four adjacent 

valid regions should have the same value. This gives rise to the constraints in Equation (5.5). 

(1) (2) (1) (2) (1) (2) (1) (2)
, 1, , 1 1, 1int, int, int, int, int, int, int, int,

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )i j i j i j i ji j i j i j i jf x x f x x f x x f x x         (5.5) 
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More specifically, 

(1) (2)
, , ,int, int,

(1) (2)
1, 1, 1,int, int,

(1) (2)
, 1 , 1 , 1int, int,

(1) (2)
1, 1 1, 1 1, 1int, int,

i j i j i ji j

i j i j i ji j

i j i j i ji j

i j i j i ji j

a x b x c

a x b x c

a x b x c

a x b x c

  

  

     

 

  

  

  

       (5.6) 

Optimization problem: 

The proposed PWA identification approach can be modeled as an optimization problem with 

decision variables that include the partition of the domain 
(1) (2)

int, int,
,

i j
x x

 
and the coefficients of LTI 

, . ,
, ,

i j i j i j
a b c , and constraints that specify the continuity constraints in (5.6). The objective of the 

optimization problem is to minimize the sum of squared error between the PWA and the original 

function as provided in problem (5.7). 

 
(1) (2)

, . ,int, int,

2
(1) (2) (1) (2)
int, int, int, int,

, , , ,

ˆmin ( , ) ( , )

. . (5.3) (5.6)

i j i j i ji j

i j i j
x x a b c

i j

f x x f x x

s t






  (5.7)

 

The optimization problem of identifying PWA from a 3-dimensional function is provided in 

Appendix. 

Complexity analysis 

The decision variables of problem (5.7) include the coefficients of PWA  , , , . , ,, ,i j k i j ka b 
 

, , , , , ,, ,i j k i j kc d  and the intermediate points of each dimension  (1) (2) (3)
int, int, int,, , ,i j kx x x  . If there is an 

additional dimension, there would be a new coefficient in PWA, a new dimension sub-index for 

each coefficient and a new group of intermediate points. Therefore the number of coefficients of 

PWA and the number of intermediate points are increasing in the order of  ( 1)N N   and ( )N , 
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respectively, where N is the number of dimension. However, the number of constraints is 

increasing exponentially with respect to the number of dimensions, since the number of adjacent 

valid regions is increasing in the order of (2 )N  and the associated linear functions all have the 

same value at the intersection point (the continuity constraints). For example for a 2-dimentional 

function, there are 4 continuity constraints and for a 3-dimentional function, there are 8 continuity 

constraints. 

5.3 Integrated problem incorporating PWA systems 

In this study we address continuous cyclic production for which the scheduling constraints are 

adopted from the work of Flores-Tlacuahuac and Grossmann (Flores-Tlacuahuac and Grossmann, 

2006). The constraints at control level are built via the PWA identification proposed in section 

5.2.2. The PWA model is incorporated into the scheduling constraints by introducing extra binary 

variables in a similar way as the previous work in mp-MPC (Zhuge and Ierapetritou, 2014). Since 

the out loop MPC has a fixed horizon, cycle time Tc is not a decision variable. Thus the objective 

is linear and the integrated problem is a MILP. 

Constraints at scheduling level 

Product assignment 

,

1

1,
sN

p s p

s

y p S



  
        (5.8) 

,

1

1,

pN

p s s

p

y s S



            (5.9)

 

where ,p sy are binary variables indicating the assignment of each product in each slot.
, 1p sy 

 
if 

product p is assigned to slot s, otherwise 
, 0p sy  . Equations (5.8) and (5.9) imply that only one 

product is produced in one slot and each product can only be produced in one slot. 
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Production and demands 

,p p p pW G p S             (5.10) 

,p p pW D p S            (5.11) 

Inequality (5.11) implies that the production amount of each product 
pW , which is a product of 

production rate 
pG  and production time 

p (equation (5.10)), should satisfy the demand 
pD in 

current production cycle. 

Production time 

, max , , ,p s p s p sy p S s S           (5.12) 

,

1

,
sN

p p s p

s

P S



            (5.13) 

,

1

,

pN

s p s s

p

s S



            (5.14) 

Inequality (5.12) implies that the production time 
,p s  is less than the maximum duration 

allowed for producing product p in slot s. In Equations (5.13) and (5.14), 
p , s define the 

production time of product p and slot s, respectively. 

Timing constraints 

1 0st             (5.15)
 

,e s t
s s s s st t s S            (5.16) 

1, ( {1})s e
s s st t s S            (5.17) 

,e
s c st T s S            (5.18) 
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Equation (5.15) initializes the starting time of the first slot. As described by (5.16), the ending 

point 
e
st  

is equal to the sum of the starting point 
s
st , the production s and transition times t

s  

of the current slot. Equation (5.17) enforces that the starting point in slot s equals the ending point 

of the previous slot to ensure continuity between slots. Inequality (5.18) indicates that all slots 

should end before the end of the cycle. 

Constraints at control level 

Selection of LTI in PWA,  

The LTI described by equation (5.19) is valid when state ,s kx  is in the region of validity xi . 

We transform this implicit requirement into explicit constraints (equations (5.20)-(5.23)) by 

introducing binary variables , ,1s k iy . If , ,1 1s k iy  , the region of validity xi is selected by 

(5.20) and thus the LTI associated with coefficients , ,i i iA B C  is selected through the 

constraints (5.21) and (5.22). Equation (5.23) indicates that only one LTI is selected at each 

sample step. 

, 1 , , ,, if { : }s k i s k i s k i s k xi i ix A x B u C x x V x W            (5.19) 

, , ,(1 1 ) , , ,s k i i s k i s k iM y V x W s S k S i S             (5.20) 

, 1 , , , ,(1 1 ), , , ( { })s k i s k i s k i s k i s i k kx A x B u C M y s S i S k S N              (5.21) 

, 1 , , , ,(1 1 ), , , ( { })s k i s k i s k i s k i s i k kx A x B u C M y s S i S k S N              (5.22) 

, ,1 1, ,s k i s k

i

y s S k S           (5.23) 

Bounds for state and manipulated variables 

min , max , ,s k s kx x x s S k S            (5.24) 

min , max , ,s k s ku u u s S k S            (5.25) 

, 1 , , , ( { })u s k s k u s k ku u s S k S N              (5.26) 
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Inequalities (5.24) confine the states using lower and upper bounds while the constraints (5.25) 

and (5.26) introduce lower/upper bounds for the manipulated variables and their increments, 

respectively. 

Determination of the end of transitions and evaluation of the transition times 

In the integration of scheduling and control for continuous processes, the control action applies to 

the transitions between products that are distinguished by their steady states. The time points and 

state values at the beginning and end of the transitions are important variables in connecting 

scheduling and control levels. In practice, the transitions naturally start from the steady state of 

the previous product but the end point and the duration of transition are unknown. Therefore in 

the integrated model we need to build constraints to determine the end of the transition and 

calculate the transition time accordingly.  

As shown schematically in Figure 5.4, there is a need to determine whether the process states 

governed by the PWA model reach the end of transition or not. Thus in this section we develop 

the constraints required to enable this. Constraints (5.27) to (5.30) enforce that the transient states 

achieve the steady state values when transitions end. 

Due to the existence of some margins around the set point, if the state is between the lower bound 

marginsx x and the upper bound marginsx x , it is viewed as meeting the set point (steady state 

point sx ). In order to determine the end of transition we need to identify the point that lies within 

the bounds while the previous point is outside the bounds. Two types of binary variables are 

involved in determining the end of transition ,4s ky and 5sy . ,4s ky indicates whether the end of 

transition state is reached or not while 5sy indicate if the state right before the end of transition is 

above or below the bounds. More specifically, if ,4 1s ky  , step k is selected as the end of 

transition and the state at step k is within the bounds. If the state at step k-1 is above the upper 
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bound marginsx x , 5 1sy   whereas if it is below the lower bound marginsx x , 5 0sy  . 

Conceptually, 5 0sy   
means state increases to steady state during transition (as shown in Figure 

5.4) and 5 1sy   
means state decreases to steady state. 

Inequality (5.27) is based on the definition of ,4s ky and (5.28) ensures that only one of the step 

points is selected as the end of the transition. 

margin , , margin ,(1 4 ) (1 4 ),

,

s s k s k s s k

s k

x x M y x x x M y

s S k S

       

  
   (5.27)

 

,4 1,s k s

k

y s S           (5.28) 

If ,4 0s ky  , the end of transition is not reached and constraints (5.27), (5.29) and (5.30) are 

relaxed. If ,4 1s ky 
 
step k is the end of transition, so constraint (5.27) enforces that the state at 

step k ( ,s kx ) must be within the quality bounds, and constraint (5.29) enforces that the state at 

step k-1 ( , 1s kx  ) must be below the lower bound marginsx x or above the upper bound 

marginsx x . The transition time is determined as kh by constraints (5.30). 

margin , , 1 margin

,

(2 4 5 )

(1 4 5 ), , ( {1})

s s k s s k s

s k s s k

x x M y y x x x

M y y s S k S

      

      
    (5.29) 

, ,(1 4 ) (1 4 ), ,t
s k s s k s kkh M y kh M y s S k S            (5.30)
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Figure 5.4 The end of the transition locates at the point inside the bounds with the prior one 

locating outside the bounds 

Constraints that link scheduling and control level  

Initial values and steady state values are linked by ,p sy  

, , , 1

1

, ( {1})

pN

in s ss p p s s

p

x x y s S



           (5.31)

 

,1 , ,

1

p

s

N

in ss p p N

p

x x y



         (5.32) 

,1 , ,s in s sx x s S            (5.33)
 

Equations (5.31) and (5.32) calculate the initial state value at each slot. Equation (5.33) defines 

the initial state value ,in sx  as the value of the first sample step. 

, , , 1

1

, ( {1})

pN

in s ss p p s s

p

u u y s S



           (5.34)
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,1 , ,

1

p

s

N

in ss p p N

p

u u y



          (5.35) 

,1 , ,s in s su u s S            (5.36) 

Equations (5.34)-(5.36) compute the initial value for manipulated variables following the similar 

way as shown in equations (5.31)-(5.33). Note that ,1sx and ,1su
 
are also present in the dynamic 

PWA in equation (5.19). They are linked to the scheduling variables , , ,( , , )ss p ss p p sx u y  through 

(5.31)-(5.36). Thus constraints (5.31)-(5.36) demonstrate how scheduling and control are linked.  

The desired values and steady state values are linked by ,p sy  

, ,

1

,

pN

s ss p p s s

p

x x y s S



           (5.37)
 

, ,

1

,

pN

s ss p p s s

p

u u y s S



           (5.38)
 

Equation (5.37) and (5.38) compute the desired state values and desired manipulated variables at 

each slot.  

Optimization problem 

To achieve economically optimal operations of chemical processes, we utilize the objective of 

maximizing profit per unit time, which can be calculated as follows. Profit per unit time ( = 

(Revenue– Raw material cost – Utility cost)/Cycle time 

1 2 3             (5.39) 

1

1

pN

p p

cp

P W

T


           (5.40)
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1 22 3 1 , 2 ,

1 1 1

1
( ) ( )

t
s

s s sN h N

s sr s k u s k s r u s
cs k s

P u P u h P u P u
T



  



      
 



   (5.41) 

where 1 2,  and 3  represent the revenue rate, raw material cost rate and utility cost 

respectively. Note that for continuous processes raw material cost and utility cost 

(heating/cooling) can be combined in (5.41) where u1 represents raw material feeding flow rate 

and u2 represents utility flow rate. The total revenue is given as the amount produced ( pW ) 

times the product price ( rP ). Raw material cost is composed of two parts, the raw material 

consumption during production periods (the second term in the parenthesis of (5.41)) and during 

the transition periods (the first term in the parenthesis of (5.41)). Utility cost is calculated 

following the similar way of raw material cost. Note that the raw material consumed during the 

transition is the shaded area of Figure 4 which can be calculated as 

,
0

1

( )

t
s

t s
s

k
h

t

s k s
t

k

u t dt u h











 
        (5.42) 

Combining the objective functions described in (5.39)-(5.41) and the constraints at both 

scheduling level (5.8)-(5.18), control level (5.19)-(5.30) and the linking constraints (5.31)-(5.38) 

we obtain the optimization model for the integrated problem as shown in (5.43). 

, , ,

1 2 3
, , , , , , , ,

max

(5.8)-(5.18)  constraints at scheduling level

. . (5.19)-(5.30)  constraints at control level

(5.31)-(5.38) linking constraints

t s e
p s s k s k s p p s s cy x u W t t T

s t

 
  







      (5.43)
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5.4 Fast MPC for PWA systems 

5.4.1 The role of fast MPC 

The MPC problem for LTI systems with quadratic objective corresponds to a quadratic 

programming (QP) problem. Fast MPC solves the QP problem online to satisfactory optimality 

criteria, whereas if mp-MPC is employed the calculations are done offline.  

One of the shortcomings of mp-MPC however, is that the number of critical regions grows 

exponentially with respect to the size of MPC problem (e.g. number of input and output, 

prediction horizon). In contrast, fast MPC can solve large scale problem online. Another 

advantage of fast MPC is that fast MPC is capable to perform Real Time Optimization (RTO) as 

described by problem (5.44) where the reference kx  (set point) is a continuous function rather 

than a fixed value. However, mp-MPC treats the reference trajectory as parameters and the 

parameter space (the critical regions) is exponentially increasing with respect to the length of 

prediction horizon (the length of reference track). This makes it impossible to apply mp-MPC in 

cases with long prediction horizon. 

 
1

1 1 2 2 2
1

0
1

1

min max

min max

min

, 1, , 1
. .

, 1, ,

, 1, ,

k k N

k

N
Q R Q

k k k k k N k N
u

k

k k k

k

k

x x u u x x

x x

x Ax Bu C k N
s t

x x x k N

u u u k N



   





    

 


    


  
   









  (5.44) 

The general methodology of fast MPC for linear systems is to transform the MPC problem into a 

convex quadratic programming, apply nonlinear programming methods and speed up the 

computation by exploring the problem structure. The detail solution approaches can be 

categorized as, interior point method (barrier method), active set method and fast gradient method. 

Using interior point method the MPC problem is built as a QP and the inequality constraints of 
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QP are treated with a log barrier and added to the objective (Rao et al., 1998) (Wang and Boyd, 

2008). The resulting problem is then solved using Newton‟s method with the barrier coefficient 

adjusted in each iteration till convergence. When active set method is applied to MPC problem 

(Ferreau et al., 2008), equality problems are defined by active set of the original QP and updated 

when different active constraints are considered in the equality problems. Thus the equality 

problems are solved sequentially and the iterations are terminated if all KKT conditions are 

satisfied. Fast gradient method (Nesterov, 1983) has also been applied in solving the linear 

quadratic MPC problem where iteration algorithms with derived lower iteration bounds are 

developed (Richter et al., 2009) (Richter et al., 2012). Recently a primal-dual interior point 

method is applied in solving MPC problems (A. Domahidi et al., 2012) where the authors 

proposed an efficient solution method for the KKT conditions derived from the linear MPC 

problem and thus speed up the interior point method. 

5.4.2 Fast MPC for PWA systems 

Note that the above mentioned fast MPC strategies are targeting linear systems. In the following 

we propose an algorithm of implementing fast MPC on nonlinear systems (problem (5.45)). The 

basic idea is to firstly derive the PWA model from nonlinear dynamics, and then iteratively locate 

the LTI in PWA and implement fast MPC at the local LTI so as to quickly drive the states to the 

next sample step. 

 
( ), ( ) 0

0

min max

min max

min

(0)

( , )
. .

( ) , 0

( ) , 0

Ht t
T T T

N N
x t u t t

H

H

x Qx u Ru dt x Qx

x x

x f x u
s t

x x t x t t

u u t u t t




 

 





   
    



      (5.45) 

Step 1: Transform nonlinear dynamics ( , )x f x u  into PWA using the proposed 

optimization method in section 5.2.2. 
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( )i

i

PWA LTI           (5.46)

 

1 2

( )

1 2

: ( 1) ( ) ( )

if ( ) { : }, {1,2, }

where and if

i
i i i

i i i i i

i x i i
i

LTI x k A x k B u k C

x k x V x W i S N

i i

   

    

      




   (5.47) 

Step 2: Set the initial state and initial manipulated variables 0 0( , )x u
 

Step 3: Locate the corresponding LTI for current states  

( )

if { : }, {1,2, },

then select : ( 1) ( ) ( )

i i i i i

i
i i i

x x V x W i S N

LTI x k A x k B u k C

    

   


   (5.48)

 

This step can be computationally very expensive especially when x and u are of high dimensions. 

If an enumeration method is employed someone has to loop over all the LTIs to determine the 

position of 
*( ( 1), ( ))x k u k , leading to complexity that is increasing in the order of  i

i
N   In 

order to lower the complexity we employ binary search method (Tøndel et al., 2003) (Jones et al., 

2006) with much lower computational complexity
lg( )i

i

N
 
 
 
 


. 

When the dimension is high and the number of discretization points is large, binary search is 

significantly faster. This is shown in (Table 5.1) with an example of searching for a LTI in a 3-

dimensional PWA with varying number of discretization points (10, 100 and 200). 

Table 5.1 Comparison of enumeration and binary search based on their CPU time used in 

searching for a LTI in a 3-dimensional PWA 

Number of discretization N1=N2=N3=10 N1=N2=N3=100 N1=N2=N3=200 

Binary search CPU time 0.016s 0.036s 0.047s 

Enumeration CPU time 0.016s 1.922s 14.266s 
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Step 4: Solve the MPC problem (5.49) for LTI using toolbox FORCES (Alexander Domahidi, 

2012) which is based on primal-dual interior-point method (A. Domahidi et al., 2012), and obtain 

*( )u k . Primal-dual interior-point method efficiently solves for the KKT conditions derived from 

the linear MPC problem and thus speed up the interior point method. 

1

1 1
2 2

1

2

0

1 1

min max

min max

min

, 1, ,
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, 1, ,
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 
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 
   

 

 

 
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   
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  


  









   (5.49)

 

Step 5: Evaluate the state transfer using the following equation:

*( 1) ( ) ( )i i ix k A x k B u k C           (5.50) 

Step 6: k=k+1, go to step 3. 

5.4.3 Stability analysis 

Input-output stability implies Bounded Input-Bounded Output (BIBO) stability i.e. in a well 

behaved system a bounded input should result in a bounded output (Safonov, 1980). Since PWA 

is a discrete system and the stability is relevant to the sample step, we analyze the stability in the 

context of z-transform and derive the necessary conditions for a stable PWA. The necessary 

conditions provide a reference when deciding the sample step. 

A general form of PWA ( 1) ( ) ( )x k Ax k Bu k C     where 1( ) nx k  1( ) mu k  n nA 

n mB  1nC   has an equivalent form 

' ' '( 1) ( ) ( )x k Ax k Bu k           (5.51) 

where '
1( ) ( )x k x k M  and '

2( ) ( )u k u k M  . M1 and M2 can be obtained through

1 2( )A I M BM C   . 
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Applying z transform to (5.51) yields 

1 1( ) ( ) ( )I Az X z Bz U z           (5.52) 

Thus we obtain a transfer function 

1 1 1( )
( )

( )

X z
I Az Bz

U z

            (5.53)

 

The necessary conditions for BIBO stability of (5.52) are that the absolute value of all the 

diagonal terms of A should be less than one:  

1,1iiA i n             (5.54)
 

5.5 Case studies 

In order to demonstrate the feasibility of the proposed PWA identification and solve the 

integrated problem using PWA and fast MPC, we studied two numerical cases, a SISO CSTR and 

a MIMO CSTR continuous production. 

5.5.1 Single-Input Single-Output (SISO) CSTR 

The data for the first case study involving a CSTR is taken from Flores-Tlacuahuac and 

Grossmann (Flores-Tlacuahuac and Grossmann, 2006). The reaction 3 k
R P  takes place in 

an isothermal CSTR with reaction rate 3
R Rr kC  , while products A, B, C, D and E, which are 

differentiated by their concentration RC (Table 5.2), are manufactured in a cyclic mode (Figure 

5.5 and Figure 5.6). The basic dynamic model of the process is shown in Equation (5.55). 

 0
R

R R

dC Q
C C r

dt V
           (5.55)

 

where
0C is feed stream concentration, Q is the feed flow rate (i.e. manipulated variable), and

RC  is the concentration of the raw material in the outflow (i.e. state variable). Using u and x to 

represent the manipulated and state variable respectively leads to the following:  
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3(1 ) 2
5000

dx u
x x

dt
           (5.56) 

 

Figure 5.5 CSTR cyclic production, feeding flow rate is the manipulated variable and raw 

material concentration is the state variable 

 

Figure 5.6 CSTR cyclic production, each slot is composed of a transition period and a 

production period 

Table 5.2 Steady state information of a CSTR with cyclic production 

Product ( / )Q L hour  ( / )RC mol L  Demand rate  

( / )kg hour  

Product price 

($ / )kg  
A 10 0.0967 3 200 

B 100 0.2 8 150 

C 400 0.3032 10 130 

D 1000 0.393 10 125 

E 2500 0.5 10 120 

 

PWA identification 

Following the PWA identification approach presented in section 5.2.2, we transform the 

nonlinear dynamics in (5.56) into PWA by solving problems (5.57) using GAMS/IPOPT. Using 

10 discretization points for x and u results in the solution of problem (5.57) in 3.4 CPU sec. The 

profile of the original function and PWA are shown in Figure 5.7 where the smooth and colored 

sphere represents the original nonlinear dynamic and the grid represents the PWA. 
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Figure 5.7 Profiles of the nonlinear dynamic and the PWA 

Solving the integrated problem 

In this case study we assign five slots, five products, 20 sample steps during transitions. Therefore 

Np=NS=5, Nk=20. We solve the integrated problem using GAMS/SBB and summarize the results 

in Table 5.3. 

Table 5.3 Results of the integrated problem of SISO CSTR case 

Number of variables 1601 

Number of binary variables 1225 

Number of constraints 4542 

CPU time (s) 334.64 

Relative Gap 1.19% 

Optimal sequence D-E-A-B-C 

Cycle time 116.52 

Transition time in slot 1 to 

5 (hour) 

0.600, 1.000, 2.200, 

0.500, 0.600 

Production time in slot 1 to 

5 (hour) 

0.198, 0.880, 44.282, 

13.750, 2.511 

Revenue ($) 4639.03 

Raw material cost ($) 1174.48 
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Profit ($) 3464.55 

 

It takes 334.64 sec to solve the integrated problem using SBB solver in GAMS. The optimal 

production sequence is D-E-A-B-C. The scheduling solution including transition time, production 

time for each product and the economic performance such as revenue, cost and profit are 

provided in Table 5.3. 

Implementation of fast MPC 

We implement fast MPC on the obtained PWA system following the algorithm presented in 

section 5.4.2. The original control problem is a nonlinear MPC problem (5.57), which is 

transformed through the PWA identification method. 

2
0

3

1

min

(1 ) 2
5000

(0)
. .

0 ( ) 1, 0

0 ( ) 3000, 0

200

Ht

ref
u

ref

H

H

J x x dt

dx u
x x

dt

x x
s t

x t t t

u t t t

u

 


  





   

    

 



       (5.57)

 

The PWA of this case has 100 LTIs. It takes 0.0636 CPU sec to solve for the entire transition 

using a sample step of 0.02 hour, and 0.000279 CPU sec for the MPC problem over the local LTI 

at one sample step. The calculations were performed using a PC of 1.86GHz/4GB RAM. Figure 

5.8 and Figure 5.9 illustrate two examples of transition (transition from product 2 to 5 and 

transition from product 5 to 4). Both figures demonstrate the profiles of manipulated variables 

and state variables. Note that the manipulated variables are subject to a bound of 200L/hour that 

represents the maximum increasing or decreasing rate within one sample interval. In Figure 5.8 

the manipulated variable feeding flow rate Q increases up to its maximum value 3000 L/hour to 

drive the concentration of raw material CR from one steady state 0.2 mol/L to another steady state 

0.5 mol/L in a short time period. Note that Q decreases to the corresponding steady state value of 
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2500 L/hour before CR is approaching 0.5 mol/L. This is due to the involvement of MPC that 

helps to avoid the overshot. Similarly in Figure 5.9 the feeding flow rate Q decreases to its 

minimum value 10 L/hour to speed up the transition and then adjusts to 1000 L/hour to catch the 

following production period where the steady state value of CR is 0.393 mol/L. 

 

Figure 5.8 Transition profile from product 2 to product 5 in SISO CSTR, obtained by fast 

MPC 

 

Figure 5.9 Transition profile from product 5 to product 4 in SISO CSTR, obtained by fast 

MPC 
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The effects of threshold at the state feedback in the proposed framework  

As describe in the introduction section a threshold of state deviation is employed to determine 

whether the state information is fedback to the inner fast MPC or outer integrated problem so that 

the scheduling solution can be updated. As we test many different values of the threshold we find 

that a state deviation less than 0.08 mol/L would not disrupt the scheduling solution and thus 

could be handled by the fast MPC, while in the case of a state deviation greater than that it‟s more 

profitable to update the scheduling solution. Therefore we set up the threshold as 0.08 mol/L. 

Figure 5.10 and Figure 5.12 demonstrate two examples of the responses to minor disturbance at 

transtion and production periods where the scheduling solutions are not interupted. In Figure 5.10 

the disturbance occurs at 0.7 h with magnitude 0.04 mol/L. Since this is a minor disturbance the 

scheduling solution of the integrated problem is not updated i.e. the process continues with the 

current transition to product 5. In Figure 5.12 the disturbance occurs at steady state with 

magnitude 0.05 mol/L and the control action adjusts the deviated state back to the steady state. 

Figure 5.11 however, demonstrates a significant disturbance at transitions and thus the scheduling 

solution is updated i.e. the process goes to another production stage. In this case the disturbance 

occurs at 1.2 h with magnitute 0.09 mol/L. This is a significant deviation and the scheduling 

solution is updated in order to keep the optimality of the overall operations. So product 4 is 

produced next instead of product 5. 
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Figure 5.10 Disturbance with magnitude -0.04 (less than threshold 0.08) at time 0.7 h (in 

transition), handled by fast MPC, scheduling solution does not change 

 

Figure 5.11 Disturbance with magnitude -0.09 (great than threshold 0.08) at time 1.2 h (in 

transition), steady state value (scheduling solution) updated by integrated problem, process 

goes to product 4 (SS=0.393) instead of product 5 (SS=0.5) 
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Figure 5.12 Disturbance with magnitude +0.05 (less than threshold 0.08) at time 2.6 h (in 

production), handled by fast MPC, scheduling solution does not change 

5.5.2 Multi-Input Multi-Output (MIMO) CSTR 

In this case study we investigate a MIMO CSTR cyclic production where reaction A -> B takes 

place with first order reaction rate: r = -kCa (Figure 5.13). Specifications of this process is 

adopted from Camacho and Bordons Alba (Camacho and Bordons Alba, 2007). The manipulated 

variables are Fl (flow rate of the liquid) and Fc (flow rate of the coolant). States variables are Cb 

(concentration of product B) and Tl (liquid temperature). Three steady states are involved in the 

cyclic production (Table 5.4). The detailed process specifications are provided in Table 5.5. The 

utility price for the coolant Fc is $3/m
3
, and the raw material price is $10/m

3
. The model derived 

from mass and energy balance are represented by Equations (5.58) and (5.59), respectively. 
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Figure 5.13 A MIMO CSTR process 

Table 5.4 Products at different steady states for MIMO CSTR case study 

Steady state Cb 

(mol/L) 

Tl 

(K) 

Fl 

(m
3
/h) 

Fc 

(m
3
/h) 

Demand 

(L/h) 

Price 

($/L) 

Inventory 

($/h) 

SS1: produce A 1 290 1829 774 110 17 1.7 

SS2: produce B 1.3 310 1266 264 120 25 2 

SS3: produce C 2 330 610 132 70 32 1.8 

Table 5.5 Process specifications of MIMO CSTR 

k reaction constant 26/h 

H heat of reaction 70000 kJ/kmol 

ρl liquid density 800 kg/m
3
 

ρc coolant density 1000 kg/m
3
 

Cpl specific heat of liquid 3 kJ/(kg K) 

Cpc specific heat of coolant 4.19 kJ/(kg K) 

Vl tank volume 24 m
3
 

Tl0 liquid entering temperature 283 K 

Tc0 coolant in-flow temperature 273 K 

Tc coolant out-flow temperature 303 K 

Ca0 initial concentration of reactant 4 mol/L 
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0

( )
( )l b

l a b l b

d V C
V k C C F C

dt
           (5.58) 

0 0

0

( )
( )

( )

l l pl l

l l pl l l l pl l c c pc c c

l a b

d V C T
F C T F C T F C T T

dt

V k C C H


     

 

     (5.59)

 

Identifying the PWA from (5.58) and (5.59) leads to equations (5.60) and (5.61). 

11 12 11 12 1

( ) ( )
( 1) [ ] [ ]

( ) ( )

b l
b

l c

C k F k
C k A A B B C

T k F k

   
      

   
      (5.60)

 

21 22 21 22 2

( ) ( )
( 1) [ ] [ ]

( ) ( )

b l
l

l c

C k F k
T k A A B B C

T k F k

   
      

   
      (5.61) 

That can be represented in a matrix format as follows:  

111 12 11 12

21 22 21 22 2

( 1) ( ) ( )

( 1) ( ) ( )

b b l

l l c

C k C k F k CA A B B

A A B BT k T k F k C

          
            

           
    (5.62) 

The obtained PWA is composed of three LTIs as shown in (5.63)-(5.65). 

( 1) ( ) ( )-0.0164 0 -0.0004 0

( 1) -7.4115 0.2377 ( ) -0.0029 -0.0218 ( )

1.7788
, if 0 1.15

250.7210

b b l

l l c

b

C k C k F k

T k T k F k

C

        
         

         

 
   
 

   (5.63)

 

( 1) ( ) ( )0.2181 0 -0.0005 0

( 1) -7.4115 0.4722 ( ) -0.0113 -0.0218 ( )

1.7025
, if 1.15 1.6

193.2533

b b l

l l c

b

C k C k F k

T k T k F k

C

        
         

         

 
   
 

   (5.64)

 

( 1) ( ) ( )0.4918 0 -0.0008 0

( 1) -7.4115 0.7459 ( ) -0.0196 -0.0218 ( )

1.5247
, if 1.6

113.5021

b b l

l l c

b

C k C k F k

T k T k F k

C

        
         

         

 
  
 

   (5.65) 

Table 5.6 Scheduling solutions for the integrated problem of MIMO CSTR case

 
Number of variables 555 

Number of constraints 2712 

Solver and CPU time (s) DICOPT, 14.1s on 3.9GHz/4GRAM 

Relative Gap 0.00% 

Optimal sequence C-A-B 

Cycle time (h) 10 
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Transition time in slot 1 to 

3 (hour) 

0.1, 0.15, 0.07 

Production time in slot 1 to 

3 (hour) 

1.15, 0.60, 7.93 

Revenue ($) 29211.73 

Raw material cost($) 12222.46 

Utility cost ($) 829.03 

Inventory cost ($) 3513.85 

Profit($) 12646.39 

The solution of the integrated problem is provided in Table 5.6. It takes 14.1 sec to solve the 

integrated problem which maximizes the profit using DICOPT solver in GAMS. The optimal 

production sequence is C-A-B. The transition time, production time for each product and the 

economic performance such as revenue, cost and profit are provided in Table 5.6. It takes 0.028s 

for the fast MPC to obtain the entire transitions (sample step is 0.02 hour) and 0.00045s for the 

MPC problem over the local LTI at one sample step, using a PC of 1.86GHz/4GB RAM. Figure 

5.14 and Figure 5.15 illustrate two examples of transition (transition from steady state 3 to 1 and 

transition from steady state 1 to 2). 

 

Figure 5.14 Transition profile from steady state 3 to steady state 1 in MIMO CSTR, 

obtained by fast MPC 
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Figure 5.15 Transition profile from steady state 1 to steady state 2 in MIMO CSTR, 

obtained by fast MPC 

A comparison between fast MPC and mp-MPC 

Here we compare the performance of fast MPC and mp-MPC in terms of algorithms and 

computational complexity. We present solution algorithms of implementing fast MPC ((5.45)-

(5.50) in section 5.4.2) and mp-MPC ((5.67)-(5.71)) on nonlinear systems, and their detailed 

computation time as summarized in Table 5.7.  

MPC problem for nonlinear systems (The original problem) 

 
( ), ( ) 0

0

min max

min max

min

(0)

( , )
. .

( ) , 0

( ) , 0

Ht t
T T T

N N
x t u t t

H

H

x Qx u Ru dt x Qx

x x

x f x u
s t

x x t x t t

u u t u t t




 

 





   
    



      (5.66)

 

Algorithms of implementing mp-MPC on nonlinear systems 

Step 1: Transfer nonlinear dynamic ( , )x f x u  into PWA using the proposed optimization 

based method 

( )i

i

PWA LTI           (5.67) 
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   (5.68)

 

Step 2: Solve the following mp-MPC problem offline for the PWA system obtained in step 1. 
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   (5.69) 

Step 3: Set the initial state and initial manipulated variables 0 0( , )x u  

Step 4: Locate the corresponding critical region (CR) (Figure 5.16) for current states and 

reference states in the prediction horizon, using binary searching method (Jones et al., 2006) 

(Tøndel et al., 2003). 

 

Figure 5.16 Locate the critical regions and evaluate the explicit solution obtained by mp-

MPC 
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Step 5: Evaluate the manipulated variables as a function of states and obtain the optimal control 

inputs. 

*

if ( ) { : }, {1,2, }

then ( ) ( )

j j j j

j j

x k CR x H x K j J N

u k F x k G

    

 


     (5.70)

 

Step 6: Locate the corresponding LTI for the current states using binary searching method. 

Step 7: State transfer 

*

if ( ) { : }, {1,2, }

then ( 1) ( ) ( )

i i i i i

i i i

x k x V x W i S N

x k A x k B u k C

    

   


    (5.71)

 

Step 8: k=k+1, go to step 4.  

Note that mp-MPC and fast MPC share step 1. In mp-MPC, step 1, 2 are solved off-line, and 

steps 4 through 8 are calculated online in a loop manner. In fast MPC, step 1 is solved off-line, 

and Steps 3 through 6 are calculated online in a loop manner. 

When comparing the computation complexity of fast MPC and mp-MPC, we focus on the online 

steps. Table 5.7 presents the detailed CPU time for each online step of fast MPC and mp-MPC. 

Table 5.7 Analysis of the computation time for fast MPC and mp-MPC, online steps only 

CPU time fast MPC mp-MPC 

Step 3 Locate LTI:
1

lg( )
xN

LTI m
m

t N


   N/A 

Step 4 Solve QP using primal-dual 

interior-point method: 
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1 1
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x HN N

CR m n
m n

t N N
 

 
    

 

 

Step 5 State transfer: 
STt  Function evaluation: 

FEt  

Step 6 Move to next sample step: 
MOt  Locate the LTI: 

1

lg( )
xN

LTI m
m

t N


   

Step 7 N/A State transfer: 
STt  

Step 8 N/A Move to next sample step: 
MOt  
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FE ST MO
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t t t


 

 
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 

  

 

Table 5.8 Notations associated with Table 5.7 

xN  number of states dimension 

mN  number of discretization point for the mth state 
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HN  prediction horizon 

nN  number of discretization point for the nth reference state in the prediction horizon 

  unit time in binary searching method 

LTIt  time consumed in locating LTI 

CRt  time consumed in locating critical regions 

STt  time consumed in state transfer 

MOt  time consumed in moving to the next sample step 

FEt  time consumed in function evaluation 

fastMPCt  time consumed in implanting fast MPC in one sample step 

mpMPCt  time consumed in implanting mp-MPC in one sample step 

 

We employ YALMIP toolbox (Löfberg, 2004) to solve the MPC problem in (5.69) and obtain the 

explicit control solution shown in Figure 5.17 where both manipulated variables Fl and Fc are 

functions of state variables Cb and Tl. Then we implement the explicit solution following steps 4 

to 8 in the algorithm of implementing mp-MPC and obtain the same transition profiles as those 

obtained by fast MPC. Table 5.9 summarizes the computation time of fast MPC and mp-MPC in 

solving for one sample step as well as the whole transition period. As shown in the table, mp-

MPC requires more computational time. This is consistent with the fact presented in Table 5.7 

that mp-MPC takes more time due to its repeatedly locating the critical regions. 

 

Figure 5.17 Explicit solution for the control problem in transition from product 3 to 1 of 

MIMO CSTR case 
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Table 5.9 Comparison of CPU time in implementing fast MPC and mp-MPC using a 

1.86GHz/4G RAM PC 

CPU time fast MPC mp-MPC 

One sample step 0.00045s 0.016s 

Entire transition 0.028s 0.437s 

5.6 Summary 

In this study we build a novel framework for the integration of scheduling and control. In the 

framework, we proposed a heuristic determination of the threshold feedback value. For example 

in the case of SISO CSTR, we tested many cases of disturbances with different magnitudes and 

found that when the magnitude of disturbance was great than 0.09, there was a high probability 

that the scheduling solution should be updated in order to keep the optimality of the process. 

When the disturbance was less than 0.05, it‟s very likely that scheduling solution remains the 

same. Therefore, there is no exact threshold for the feedback. In this study we choose an 

empirical value between 0.05 and 0.09 to avoid unnecessarily computing the integrated problem 

and meanwhile guarantee the optimality when disturbance occurs. 

This framework aims to simultaneously consider the scheduling and control problem and 

facilitate the online applications where disturbances are efficiently handled. In this framework a 

PWA model is identified from the process‟s first principle model and incorporated within the 

scheduling level, leading to an integrated model. More specifically, the PWA is obtained using 

optimization method that minimizes the error between the original nonlinearity and the proposed 

PWA composed of a group of local LTIs. Note that the PWA is incorporated as linear constraints 

with the scheduling level. This eliminates the nonlinear constraints brought by traditional 

integration that uses collocation point discretization, and thus reduces the computation 

complexity of the integrated problem. Results show that fast MPC computes the control problem 

much faster than mp-MPC does, though both of them perform in the speed of msec. 
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Nomenclature: 

Index and sets 

i LTI in PWA 

s slot 

p product 

k sample points 

 

pN number of products 

sN number of slots 

kN number of sample steps 

iN number of polytopes in PWA 

 

Parameters 

Ma big positive number 

h sample step 

pG production rate of product p 

pD demand of product p 

pP price of product p 

rP price of raw material
 

max maximum production time 

iA coefficient of LTI
 

iB coefficient of LTI
 

iC coefficient of LTI
 

iV coefficient of polytope
 

iW coefficient of polytope
 

minx lower bound of state variables
 

maxx  upper bound of state variables
 

minu  lower bound of manipulated variables
 

maxu  upper bound of manipulated variables
 

u  maximum increment of manipulated variables
 

marginx  the margin of quality bounds
 

 

Variables 

,s kx state variable at sample step k in slot s 

,s ku  manipulated variable at sample step k in slot s 

,ss px steady state value of product p 

,ss pu steady manipulated value of product p 

,in sx initial state value in slot s 



132 
 

 

,in su initial manipulated value in slot s 

sx desired state value in slot s(the set point) 

su desired manipulated value in slot s(the set point) 

 

,p sy binary variable indicating assignment of product p to slot s 

, ,1s k iy binary variable indicating the selection of LTI in PWA
 

,4s ky binary variable indicating the end of transitions, equal to 1 if step k is the end of transition 

,41s ky auxiliary binary variable for 
,4s ky , equal to one if state is below the lower bound 

,42s ky auxiliary binary variable for 
,4s ky , equal to one if state is above the upper bound

 
 

s production time in slot s 

p production time of product p 

,p s production time of product p in slot s 
t
s transition time in slot s 

 
s
st starting time of slot s 
e
st ending time of slot s 

cT total production cycle time 

pW amount produced for product p 
VR valid region where the LTI of PWA is valid
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Chapter 6 Dealing with uncertainties in the integration of scheduling 

and control 

6.1 Uncertainty in process operations, origin and models 

Uncertainty in process operations can originate from both internal and external of the process 

(Figure 6.1). In general, it can be classified as follows due to the source of its origin and the 

nature of uncertainty (Pistikopoulos, 1995). (1) model-inherent uncertainty (model mismatch), 

such as mass/heat transfer coefficients and kinetic constants; (2) internal disturbance, such as the 

disturbance on feeding flow rate or feeding flow composition, and heating/cooling flow rate; (3) 

external disturbance, mainly referred as market uncertainty such as demand and price fluctuation; 

(4) discrete uncertainty, such as equipment availability, machine breakdown and operational 

personnel absence.  

 

Figure 6.1 Origin of uncertainty in process operations 

The model of uncertainty can be categorized into two types, based on the availability of the 

information about the uncertainty. One type is bounded form that includes the lower and upper 

bounds of the uncertainty. This form applies to the cases where the probability distribution of the 

uncertainty is not available but the bound information can be obtained according to physical 
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limits or historical observations. The other type of model of uncertainty is probability distribution 

function. This type of model can be used if the random behavior of the uncertainty is fully known.  

6.2 Approaches of dealing with uncertainty 

There are two types of approaches in dealing with uncertainty: preventive approach and reactive 

approach. With preventive approach the decisions at acheduling and control levels are generaged 

prior to the occurance of disturbance. Specifically, the model of uncertainty is incorporated into 

scheduling and control problems when they are solved. Typical techniques used in preventive 

approach are stochastic programming (when probability distribution of uncertainty is available) 

and robust optimization (only bound form of uncertainty is available) (Li and Ierapetritou, 2008b).  

Using reactive approach the solutions at scheduling and control levels are obtained based on 

nominal models that have no consideration of uncertainty. The solutions are then implemented 

and updated in response to the occurance of uncertainty. In fact, this corresponds to a closed loop 

implementation where the latest state information is fed-back to the scheduler or controller and 

the new solutions are generated accordingly. However, the reactive approach involves expensive 

computation, since the uncertainty can occur frequently and the original optimization problems 

have to be solved repeatatively. In order to improve the efficiency of reactive approach, 

parametric programming is proposed to parametrize the uncertianty and generate the explicit 

solutions offline. (Li and Ierapetritou, 2008a) (Pistikopoulos, 2009) Following this approach, 

reactive scheduling and parameric MPC are obtained as explicit functions of the states. When the 

explicit solutions are implemented in real applications, the online computing only involves 

function evaluation which needs much less computing time. 
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6.3 Robust MPC for control problems 

In this study, we focus on the uncertainty at control level and employ robust MPC to handle 

uncertainty. Problem (6.1) presents a general form of robust programming where a worst case of 

the minimization problem is considered. 

min max ( , )

. . ( , ) 0

u
f u

s t g u




 
         (6.1) 

where u are decision variables and  stands for the uncertainty. Problem (6.1) is equivalent to 

(6.2) that introduces an auxiliary variable   and ensures that   is a cap of the objective function 

in any case of uncertainty. 

,
min

( , ),
. .

( , ) 0

u

f u
s t

g u







  



  




       (6.2) 

6.3.1 Robust MPC formulation for PWA systems 

We first obtain PWA approximation to the nonlinear systems based on the optimization method 

presented in section 5.2.2, than apply robust MPC to the PWA system. Problem (6.3) describes a 

conventional MPC formulation while (6.4) presents a robust MPC formulation. Both of them 

minimize the quadratic error between the predictive states and the reference states. The last term 

of the objective function ensures the stability of the process i.e. state at the end of horizon xk+N 

should be closed to the reference. x
0
 is the initial state in the prediction horizon. States and 

manipulated variables are confined by upper and lower bounds. In the formulations we assume 

additive uncertainty in the process dynamic. 
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According to the following Theorem (Bertsekas, 1999), min-max problem in (6.4) can be 

transformed into a min problem in (6.5). 

Let  be a closed convex set and let :f R be a convex function. Then if f attains a 

maximum over  , it attains a maximum at some extreme point of  . 

Note that the inner max problem (6.4) is a QP where the objective function is convex and the 

feasible region is a convex set. Therefore  should attain its extreme value provided in Table 6.1 

and problem (6.4) can be transformed into (6.5), as the way of transforming (6.1) into (6.2). 

Table 6.1 Possible combinations of future uncertainty, and the associated possible states 

Possible 

states,  

m scenarios 

Future 

uncertainty  

1pk   

Future 

uncertainty 

2pk   

Future 

uncertainty 

3pk   

Future 

uncertainty 

4pk   

Future 

uncertainty 

5pk   

(1)

pk k
x

            

(2)

pk k
x

            
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Note that in Table 6.1 2Nm  , where N is the prediction horizon. 
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(6.5) 

In the following we implement robust MPC and conventional MPC on a LTI system (6.6) and 

(6.7) and compare their performance in tracking the reference.  

1.1 1 1 3
( 1) ( ) ( )

0 1 0.5 2
x k x k u k 

   
      

   
     (6.6) 
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        (6.7) 

We simulated the process using robust MPC (6.5) and conventional MPC (6.3) for 8 times. In 

each simulation, there are 20 sample points. The criterion for the performance of robust MPC and 

conventional MPC is the sum of the squared error over the whole simulation span. Figure 6.2 

shows that the SumSquareError  of conventional MPC is much higher for all simulations. 

20
2

1

( )k desired

k

SumSquareError x x



        (6.8) 

 

Figure 6.2 Performance comparison between robust MPC and conventional MPC 
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6.3.2 A general formulation of robust MPC for nonlinear systems 

In this section we develop solution precedures of robust MPC for nonlinear systems. Following is 

a general form of robust MPC for nonlinear system. 

 
( ) 0

0

min max

min max

min max

(0)

( , , )
. .

( ) , 0

( ) , 0

Ht t
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N N
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x Qx u Ru dt x Px

x x

x f x u
s t

x x t x t t

u u t u t t








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 





   
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


     (6.9)

 

where  is a random variable confined by lower and upper bounds     . 

Procedures of applying robust MPC to nonlinear systems 

Step 1: Treat the uncertainty  as a variable and transform nonlinear dynamics ( , , )x f x u   

into ( )i

i

PWA LTI   

1 2

( )

1 2

: ( 1) ( ) ( ) ( )

if ( ) { : }, {1,2, }

where and if

i
i i i i

i i i i i

i x i i
i

LTI x k A x k B u k C k D

x k x V x W i S N

i i

    

    

      




   (6.10)

 

Now we obtain the robust MPC formulation for PWA systems (6.4). 

Step 2: Set the initial states x
0
  

Step 3: Locate the corresponding LTI for current states  

( )

if { : }, {1,2, },

then select : ( 1) ( ) ( ) ( )

i i i i i

i
i i i i

x x V x W i S N

LTI x k A x k B u k C k D

    

    


  (6.11)

 

Step 4: Solve problem (6.5) and obtain the current control solution. 

Step 5: Do state transfer using the following equation: 

*( 1) ( ) ( )i i ix k A x k B u k C           (6.12)
 

Step 6: k=k+1, go to step 3.  
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Chapter 7 Conclusions and future perspectives  

The proposed closed loop implementation works in a similar manner as the Model Predictive 

Control. In the proposed approach the integrated model of scheduling and control is regarded as 

the predictive model, and the remaining part of the production cycle is regarded as the prediction 

horizon. At each sample step, state deviation is determined and new solutions are generated in the 

case of large deviation exceeding the quality bounds by solving the integrated optimization 

problem based on the predictive model. Unlike traditional MPC, the solutions here are not only 

manipulated variables in transition periods but also scheduling solutions in production periods. 

Note that in the integration of scheduling and dynamic optimization the dynamic optimization 

problem is formulated at the control level of process operations. In this study the integrated 

problem is solved offline and implemented in an open-loop manner. What we present in this 

paper is an solution approach that reduces the computation complexity of the integrated problem. 

It should be emphasized that the decomposition approach proposed in this study is not simply 

decomposing the integrated problem into the scheduling and dynamic optimization problems, 

though these two problems are integrated as one. In other words, solving the integrated problem 

in a decomposition scheme does not change the nature of integration. The problem that is 

addressed is indeed, the integrated scheduling and dynamic optimization problem and the 

decomposition is proposed as a way to improve the computational efficiency of the solution 

approach. The fact that the transition periods are proved independent of the production in 

continuous cyclic production decreases the computation complexity of the integrated scheduling 

and dynamic optimization problem. This facilitates the integration with planning level, since the 

only linking variables between planning and integrated scheduling and dynamic optimization are 

the productions. Based on this, our future efforts are towards the modeling and optimization of 

simultaneous planning, scheduling and control. 
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To reduce the computation burden of the integrated problem and facilitate the online applications, 

we propose a framework which is capable to transform explicit control solution generated by mp-

MPC into explicit linear constraints, and incorporate with the linear constraints at scheduling 

level. This results in an integrated problem that involves linear constraints and a nonlinear 

objective. Currently we use PWA system in solve mp-MPC using MPT toolbox. We believe that 

the progress in developing mp-MPC for nonlinear dynamic would benefit the direct integration 

with a nonlinear system. 

This study demonstrates that mp-MPC builds linear constraints for control level and thus 

effectively reduces the complexity of the integrated problem involving scheduling and control 

levels. Since the integration of planning and scheduling levels results in a MILP (Li and 

Ierapetritou, 2009) (Li and Ierapetritou, 2010) we believe an integration of planning, scheduling 

and control would also lead to linear constraints, if mp-MPC is incorporated. Based on this, our 

future efforts are towards enterprise wide optimization. 

To facilitate the online application, we use fast MPC to compute the optimal control actions and 

eliminate the effects of disturbances in a timely manner. Previous investigation of mp-MPC in 

solving the control problem has shown that the number of critical regions in the explicit solution 

of mp-MPC increases exponentially with respect to problem size in terms of number of 

dimensions of state and manipulated variables and the length of prediction horizon. To overcome 

the dimensionality problem, we propose to use fast MPC in this study. We develop the algorithms 

of implementing fast MPC and mp-MPC and compare their computing performance. Results 

show that fast MPC computes the control problem much faster than mp-MPC does, though both 

of them perform in the speed of msec. To the authors‟ knowledge, this is the first attempt in this 

area to explore the possibility and feasibility of applying fast-MPC in simultaneous scheduling 

and control problem. The future efforts are towards the application of fast MPC in large scale 

systems.  
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Appendix A (Supporting Material for the decomposition proof in 

section 3.2) 

Lemma 1: The perturbation on production time does not affect the transition for any specific time 

slot.  

Continued proof: 

Rearranging Inequality (9), we obtain: 

* * * *( ) ( ) ( ) ( ) 0t t t t t t t t
tc tc tc tcP f f f P f                   (A.1) 

Rearranging Inequality (10) we obtain: 

* * * *

* *

[ ( ) ( ) ( ) ( )]

[ ( ) ( )] 0

t t t t t t t t
tc tc tc tc

t t t t
tc tc

P f f f P f

P f P f

       

       

      

        

    (A.2) 

Comparing (A.1) and (A.2), we can establish a sufficient condition so that (A.2) holds. 

* *( ) ( ) 0t t t t
tc tcP f P f              (A.3) 

which can be rearranged as follows 

*

*

( ) ( )t t
tc tc

t t

f f
P

 

 


 


         (A.4) 

Assume ( )tcf  is continuous on interval max[0, ]t and differentiable on interval max(0, )t , apply 

Lagrange‟s Mean Value Theorem, there exists a point 't in *( , )t t  if *t t  or *( , )t t  if 

*t t   such that: 

*
' '

*

( ) ( )
( )

t t
t tc tc

tc t t

f f
f

 


 





        (A.5) 

Based on (A.5) we obtain a sufficient condition to establish (A.4). 
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t
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 
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
           (A.6) 

Since 
0

( )

t

t r
tcf C u dt



   (This is a simplified version of Equation (13) addressing only one  

transition), we have 

( )
( ) 0

t
r ttc

t

df
C u

d





           (A.7) 

Apparently it verifies (A.6), and as a result,(A.2)-(A.5) all hold. Thus the proposal in (10) is 

proved. Q.E.D. 

Lemma 2: a property of *t
k : *t

k  is obtained as the minimum value of feasible t
k  

Continued proof: 
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As has been proved before 

,
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k y

f y
C u
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
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        (A.9) 

Note thatu is a function of time, and u(t) is valid when 0, t
kt  

 
. u does not depend on t

k , 

instead, u can be any value in the range of 
min max,u u  .  t

ku  represents the value of u at t
kt  . It 

does not correspond to a function of t
k . 

It is assumed that ,( ) 0t
i i tc ik k

i

P f y    i.e.the process is profitable. 
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Thus the numerator of (A.8) is negative, and we have  

, ,

0
t

i k ik

t
k y

J



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



          (A.10) 

which implies that *t
k  should be the minimum value of the feasible region of t

k i.e. *t t
k k  . 

Figure A.1 illustrates a transition from slot k-1to slot k, where two dynamic profiles *1 *2( ( ), ( ))k kx t u t , 

*[0, ]t
kt   and *2 *2( ( ), ( ))k kx t u t , *[0, ]t

kt   correspond to one optimal transition duration *t
k . If a one-

to-one mapping between optimal transition time and optimal transition profile can be proved (i.e.

*1 *2( ) ( )k kx t x t and *1 *2( ) ( )k ku t u t , *[0, ]t
kt   ), we only need to investigate the optimal transition 

time rather than the whole transition profile, which effectively simplify the proof. In the 

following through (A.11)-(A.27) we prove the one-to-one mapping between optimal transition 

time and optimal transition profile i.e. the case shown in Figure A.1does not exist. 

 

Figure A.1: Two dynamic profiles correspond to one optimal transition duration 

We need to prove that 

* * * *( ( ), ( )), [0, ]t t
k k k ku t x t t           (A.11) 
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A general formula for the optimal control problem in formula (11) is 

   
( ), [0, ] 0

0

1

max ( ), ( ) ( ), ( )

( ) ( ( ), ( )), [0, ]

(0)

. . ( )

( ) , [0, ]

( ) , [0, ]

u t t

u

x

J L x u x t u t dt

x t f x t u t t

x x

s t x x

u t t

x t t




 










  

 






  

  





     (A.12) 

Define Hamiltonian H as 

[ ( ), ( ), ( ), ] ( ( ), ( ), ) ( ) ( ( ), ( ), )TH x t u t t t x t u t t t f x t u t t      (A.13) 

Assume * *( ), [0, ]u t t  is the optimal solution for (A.12) and *( )x t is the corresponding 

trajectory. According to Pontryagin Maximum Principle (Pontryagin et al., 1962), the necessary 

conditions for *( )u t to be the optimum are (A.14)-(A.16): 

* * * *( ) ( ( ), ( ), ( ))x t H x t u t t






        (A.14) 

* * * *( ) ( ( ), ( ), ( ))t H x t u t t
x

 


 


       (A.15) 

* * * * *

*

[ ( ), ( ), ( )] [ ( ), ( ), ( )],

( ) , 0u

H x t u t t H x t u t t

u t t

 





   
     (A.16) 

Applying Equations (A.13)-(A.16) to problem (11) we obtain Hamiltonian  

[ ( ), ( ), ( ), ] 1 ( ) ( ( ), ( ), )H x t u t t t t f x t u t t        (A.17) 

and the necessary conditions (A.18)-(A.20). 
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* *( ) ( )
f

t t
x

 


 


          (A.18)  

*( ) 0
H f

t
u u


 

 
 

         (A.19) 

* * * * *

*

1 ( ) ( ( ), ( ), ) 1 ( ) ( ( ), ( ), ),

( ) , 0 t
u k

t f x t u t t t f x t u t t

u t t

 



  

   
    (A.20)  

Here we assume *( ) 0t  , otherwise Equations (A.18)-(A.20) are always satisfied and *( )u t

is free in u , which is abnormal. If u* could attain any value in the feasible region, this 

becomes a trivial solution of Equations (A.18)-(A.20), which is not complete nor correct in the 

real case i.e.umust be governed and be able to drive the state to the following production stage. 

This point can also be verified by checking the Hamilton–Jacobi–Bellman equation in the 

following.In addition, we assume that 0f u   i.e. the dynamic is affected by control input. 

Therefore condition Equation (A.19) is not satisfied, which indicates that there does not exist a 

stationary trajectory for ui.e. *( )u t could locate at the boundary or non-differentiable point. Since 

min max( )u u t u  , 0 t
kt   we infer that the optimal u must be obtained at the boundary i.e.

min( )u t u , 0 t
kt   or max( )u t u , 0 t

kt   . 

Here we prove the one-to-one mapping (A.11) through checking the Hamilton–Jacobi–Bellman 

equations (Kirk, 1970) (A.21) and(A.22). 

( , ) ( , )
min ( , ) ( , ) 0

u

V x t V x t
x u f x u

t x

  
    

  
     (A.21) 

where 
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   
' '

' ' ' '

( ), [ , ]

' ' ' '

1
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( , ) min ( ), ( ), ( ),

( ) ( ( ), ( )), [ , ]
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






  

  








 
  




    (A.22) 

Note that in formula (A.22) and (A.24) we use 't in order to differentiate it from t. Both 't and t 

represent time. 

In the case of problem (11) we have HJB equations (A.23) and (A.24). 

( , ) ( , )
min 1 ( , ) 0, [0, ]t

k
u

V x t V x t
f x u t

t x


  
     

  
    (A.23) 
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' ' ' '
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t
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t
k

t
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t
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V x t dt

x t f x t u t t t

x t x

s t x x
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x t t t
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








  
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
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 


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      (A.24) 

Propose that there are two optimal control profiles *1 '( )u t and *2 '( )u t  satisfying 

*1 ' *2 ' '( ) ( ), [ , ]t
ku t u t t t           (A.25) 

If there exist ' [ , ]t
kt t  such that *1 ' *2 '( ) ( )u t u t , we say that the profiles of *1 '( )u t and 

*2 '( )u t are different over region [ , ]t
kt  . 

Plugging *1 '( )u t and *2 '( )u t  into (A.23) yields 

*1( , ) ( , )
1 ( , ) 0, [0, ]t

k

V x t V x t
f x u t

t x


  
     

  
    (A.26) 
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*2( , ) ( , )
1 ( , ) 0, [0, ]t

k

V x t V x t
f x u t

t x


  
     

  
    (A.27) 

Note that both x and u are trajectories with respect to time. f is a compound function and therefore 

f is also a trajectory with respect to time. If there exists [0, ]t
kt  such that *1 *2( ) ( )u t u t , the 

resulting f trajectories would be different, given the same state trajectories. In other words, there 

exists [0, ]t
kt  such that *1( ( ), ( ))f x t u t  *2( ( ), ( ))f x t u t . Note that when we compare two functions 

*1( ( ), ( ))f x t u t  and *2( ( ), ( ))f x t u t  we are comparing their profiles over the whole region of t. Even 

though their profiles could overlap at some points, the profiles are considered different over the 

whole region.Therefore, the only way to make both Equation (A.26) and (A.27) hold is that 

( , ) 0V x t x   i.e. the state at t does not affects ( , )V x t . However, this is not true. Suppose ( )x t x , 

then obviously ( , ) 0V x t  given by (A.24). But if ( )x t x , we have ( , ) 0V x t  according to (A.24). 

This fact contradicts ( , ) 0V x t x   . Thus the proposition in inequality (A.25) is not established 

and there is unique optimal control solution *u . Therefore * * *( , )t
k k ku x   is proved. 

Through (A.21)-(A.27) we introduce a contradiction to prove that (A.25) does not hold. In other 

words, the optimal control profile is unique. Based on the above derivation, we infer that optimal 

control input for problem (11) is unique and the corresponding optimal state path is unique as 

well. In other words, there is a one-to-one mapping between optimal transition time and optimal 

dynamic profile. Thus it‟s reasonable to investigate the optimal transition time rather than 

dynamic profile, for the sake of simplification. Q.E.D. 

Lemma 3: The optimal production sequence is not affected by production perturbation 

Continued proof: 

Given that 
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* *

*

* *

( , )t
i i tc ip ipk

i

t
i ip ipk

i i p k

P f z

J
z





 


 



 
        (A.28) 

Substituting (A.28) into * *( ) ( )J z J z yields 

* * *

*

* * *

( , ) ( , )

| |
i i

t t
i i tc ip ipk i i tc ip ipk

i i

t t
i ip ipk i ip ipk

i i p k i i p k

P f z P f z

J J
z z

 

 
 

   

  
   

 

   
   (A.29) 

We need to prove that 

* * * *( , ) | ( , ) |
i ii i

t t
ip ipk ip ipkJ z J z  

    
       (A.30) 

Substituting (A.28) into (A.30) yields 

* * *

* * *

( , ) ( , )
i i

i i

t t
i i i tc ip ipk i i i tc ip ipk

i i

t t
i ip ipk i ip ipk

i i p k i i p k

P P f z P P f z

z z

   

   

 

 

     


     

 

   
   (A.31) 

After fraction manipulations, we obtain a sufficient condition for (A.31). 

* * * * * *( , ) ( , ) 0t t t t
i ip ipk i ip ipk tc ip ipk tc ip ipk

i p k i p k

P z P z f z f z           (A.32) 

Prove (A.32): 

Let
*t

c i ip ipk

i i p k

T z    , 
* * *t

c i ip ipk

i i p k

T z    ,
*( , )t

tc tc ip ipkf f z , 

* * *( , )t
tc tc ip ipkf f z  

Rearranging (A.29), we obtain  
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* *

*

( )tc c i i c c

i
tc z

c

f T P T T

f z
T

  

  


       (A.33) 

Rearranging (A.32), we obtain 

* *( )tc tc i c c zf f P T T z     ,        (A.34) 

Now the problem is transformed into: given (A.33), prove (A.34). 

Obviously a sufficient condition to establish (A.34) is 

* *

* *

*

( )

( )

tc c i i c c

i
tc i c c z

c

f T P T T

f P T T z
T

  

    


     (A.35) 

Rearranging (A.35), we obtain 

* * *( )( ) 0tc i c i i c c z

i

f PT P T T z             (A.36) 

Thus, (A.36) is a sufficient condition to verify the hypothesis (A.30) and (A.31), i.e. the 

optimality is preserved in the presence of production variation. 

(A.36) consists of two terms. The first term (the one in the first parentheses) is calculated as the 

revenue gained by dedicating the whole production cycle to one product plus all the transition 

cost minus the nominal revenue. This term will be greater than zero in most common cases but 

there can be some extreme cases (price Pi is extremely low) where this term can be negative. The 

second term is positive since we proved that the optimal transition time is obtained as the 

minimum value given any production sequence. Therefore (A.36) is satisfied in most cases. 

In our case studies, 
* * 0tc i i i

i

f PT P    , *
zT T z   , therefore (A.36) is satisfied. Q.E.D. 
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