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Abstract

On Character Sums of Lee-Weintraub, Arakawa, and Ibukiyama, and

Related Sums

By Brad Isaacson

Dissertation Director: Professor Robert Sczech

In this dissertation, we prove a dual version of an identity first conjec-

tured by Lee and Weintraub and later proved by Arakawa and Ibukiyama.

Our method follows a similar line of investigation. As a corollary, we prove a

character sum identity conjectured by Ibukiyama.
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1 Introduction

1.1 History and Main Result

The beauty of character sums can be intoxicating, and their theory unquestionably

rich. Letting χ be a Dirichlet character modulo k, one may think, for example, of the

Gaussian sum

τ(χ) =
k−1∑
n=0

χ(n)e2πin/k,

about which there exists a whole literature inaugurated by Gauss himself.

In this dissertation, we obtain formulas expressing various character sums in terms

of generalized Bernoulli numbers. We often encounter such formulas when we com-

pare the dimension formulas for the vector space of certain modular forms in two

different ways: by either the holomorphic Lefshetz fixed-point theorem or by the Sel-

berg trace formula. Often, the character sums appear in the first method and the

generalized Bernoulli numbers appear in the second. A famous instance of the these

types of formulas is the Lee-Weintraub conjecture[12] stated in 1982, and proved by

Ibukiyama[9] in 1994. To state it, we fix an odd prime p (the most interesting case

being p ≡ 3(4)). We denote by ψ the Legendre symbol mod p: ψ(a) =
(
a
p

)
. We put

T = {(a, b, c) ∈ (F×p )3 | ab+ bc+ ca = 0} and ζ = exp(2πi/p). Then, we have

∑
(a,b,c)∈T

ψ(abc)

(ζa − 1)(ζb − 1)(ζc − 1)
=
√
ψ(−1)p

(
1

6
B3,ψ −

3

2
B2,ψ +

p+ 1

4
B1,ψ

)
,

where the Bk,ψ are generalized Bernoulli numbers defined by the generating function

(3.1.3). Several people considered the challenge of finding an elementary proof, but

no one succeeded as of yet. We briefly describe Ibukyama’s proof. Hashimoto[8]

introduced an L-function L∗2(s, ψH,p) attached to the ternary zero form 4xy − z2 (for

the precise definition, see page 117). Arakawa[1] proved that the Lee-Weintraub

conjecture is equivalent to the identity L∗2(0, ψH,p) = 1
24
B1,ψ. Ibukiyama[9] then
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proved the relation L∗2(s, ψH,p) = −22s−1B1,ψ

ps
ζ(2s− 1) with the Riemann zeta function

ζ(s), which together with Arakawa’s result immediately implies the Lee-Weintraub

conjecture.

Not only is the work of Arakawa[1] an essential part of Ibukiyama’s proof of the

Lee-Weintraub conjecture, but it is also very interesting in its own right because of

the techniques used to express the special values of L∗2(s, ψH,p) at non-positive integer

values of s by finite sums of products of periodic Bernoulli polynomials. We describe

how this was done. Shintani[19] established an ingenious method of evaluating the

special values at non-positive integers of partial zeta functions for totally real number

fields, giving remarkable expressions of partial zeta functions by integrals taken over

complex contour paths. Following Shintani’s method, Satake[16] introduced zeta

functions of self-dual homogeneous cones and studied a general method of obtaining

nice expressions of the zeta functions by integrals over contour paths. Kurihara[11],

also following Shintani, evaluated the special values at non-positive integers of Siegel

zeta functions of Q-anisotropic quadratic forms (non-zero forms) with signature (1, n−

1) (n = 3, 4). However, their methods are not applicable to the zeta functions of

cones having the property that some of the associated edge vectors are contained

in the boundary of the underlying self-dual homogeneous cone. We now turn our

attention to the Hashimoto L-function L∗2(s, ψH,p) attached to the ternary zero form

4xy − z2. Following the method of Satake-Kurihara, Arakawa expressed L∗2(s, ψH,p)

as a finite linear combination of partial zeta functions of cones. However, since the

quadratic form 4xy−z2 is a zero form (which represents zero non-trivially), one needs

to deal with partial zeta functions of cones whose edge vectors are not necessarily in

the interior of P2, the self-dual homogeneous cone of positive definite symmetric

matrices of size two. Because of this, Satake-Kurihara’s method cannot be applied to

this situation. New ideas were needed to obtain useful integral representations of these

partial zeta functions, and Tsuneo Arakawa did indeed overcome this obstruction. By
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skillfully evaluating these integral representations via the residue theorem, Arakawa

was able to express the special values of L∗2(s, ψH,p) at non-positive integer values of

s by finite sums of products of periodic Bernoulli polynomials.

In our work (Chapter 5), we consider the dual Hashimoto L-function L2(s, ψH,p)

attached to the ternary zero form xy − z2, whose definition will be given now. Let

L2 denote the lattice formed by 2 × 2 integral symmetric matrices and let L2,+ be

the subset consisting of all positive definite matrices of L2. We fix an odd prime

integer p. We denote by ψ the Legendre symbol mod p: ψ(a) =
(
a
p

)
. For each

T ∈ L2, we define ψH,p(T ) as follows: We put ψH,p(T ) = 0, if det(T )6≡ 0 mod p.

When det(T )≡ 0(p), we have tgTg ≡ ( a 0
0 0 ) mod p for some g ∈ SL2(Fp) and a ∈ Fp,

and we put ψH,p(T ) = ψ(a). Then L2(s, ψH,p) is defined by

L2(s, ψH,p) =
∑

T∈L2,+/SL2(Z)

ψH,p(T )

ε(T )(det(T ))s
(Re(s) > 3/2),

where L2,+/SL2(Z) denotes the representatives of SL2(Z)-equivalence classes in L2,+

and ε(T ) = #{g ∈ SL2(Z) | tgTg = T}.

Following Arakawa’s method, with the help of Carlitz’s reciprocity theorem for

generalized Dedekind-Rademacher sums[5] (needed to overcome additional difficulties

not occurring in Arakawa’s work), we express the special values of L2(s, ψH,p) at non-

positive integer values of s by finite sums of products of periodic Bernoulli polynomials

(Theorem 5.2.36). Combining this result with Ibukiyama’s identity[9] L2(s, ψH,p) =

−B1,ψ

ps
ζ(2s − 1), we obtain as a corollary, for each s = 0,−1,−2, · · ·, formulas (to

be called Arakawa Identities) expressing finite sums of products of periodic Bernoulli

polynomials in terms of generalized Bernoulli numbers. These formulas are of great

importance, interest, and significance, since I strongly believe that they cannot be
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easily obtained by using elementary techniques from algebra and number theory.1

For this reason, I call these formulas Arakawa Identities (Theorem 5.5). This infinite

sequence of Arakawa Identities is the main theorem of this dissertation. From the

Arakawa Identity for s = 0, we obtain the dual version of the Lee-Weintraub identity,

Theorem 5:

∑
(a,b,c)∈S

ψ(abc)

(ζa − 1)(ζb − 1)(ζc − 1)
=
√
ψ(−1)p

(
1

6
B3,ψ −

3

4
B2,ψ + (p− 2)B1,ψ

)
,

where S = {(a, b, c) ∈ (F×p )3 | 4ab− (c− a− b)2 = 0}.

As a corollary to the above identity, we prove the following conjecture of Ibukiyama

(see Example 8.19 and Remark 8.20 in [2]).

Corollary 5.4.1:

∑
(a,b,c)∈T

abc ψ(abc) = −p
2

6
B3,ψ −

3p3

4
B2,ψ +

p2(p+ 1)

2
B1,ψ,

where T = {(a, b, c) ∈ Z3 | 1 ≤ a, b, c ≤ p− 1, ab+ bc+ ca ≡ 0(p)}.

The above results follow from the simplest case of an infinite sequence of Arakawa

Identities for each non-positive integer value of s, which we prove in Theorem 5.5. In

Section 5.5, we also explicitly state the Arakawa Identities for s = 0,−1,−2.

1.2 Further Results

We fix an odd prime p. We denote by ψ the Legendre symbol mod p: ψ(a) =
(
a
p

)
.

Let Pk(x) denote the kth periodic Bernoulli polynomial (see (3.1.4)). We define the

1The situation is reminiscent of the classical unsolved problem to give a proof of Dirichlet’s
class number formula by elementary means and methods; that is, to give an elementary proof that
−B1,ψ = # of reduced quadratic irrationalities in the complex upper half-plane of discriminant −p,
p ≡ 3(4), p ≥ 7.
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Mordell-Tornheim L-function of depth 2 by

LMT,2(s1, s2, s3;χ1, χ2, χ3)

=
∞∑

m1=1

∞∑
m2=1

χ1(m1)χ2(m2)χ3(m1 +m2)

ms1
1 m

s2
2 (m1 +m2)s3

(Re(sj) ≥ 1, 1 ≤ j ≤ 3)

for complex variables s1, s2, s3 and primitive Dirichlet characters χ1, χ2, χ3. We also

put ζ = exp(2πi/p).

In Section 3.3, we define the sum

Lp =
∑
k,t(p)

P1

(
2kt

p

)
P1

(
k2 + 2kt

p

)
P1

(
(k + t)2

p

)
.

In a completely elementary manner, we prove

Theorem 3.3:

Lp = − 1

16p
B3,ψ −

4p− 7 + 3ψ(2)

16p
B1,ψ.

In Section 3.4, we define the sum

Jp =
∑

(a,b,c)∈S

ψ(abc)

(ζa − 1)(ζb − 1)(ζc − 1)
,

where S = {(a, b, c) ∈ (F×p )3 | a+ b+ c = 0}. For p ≡ 3(4), we prove

Theorem 3.4:

Jp =
3p3i

4π3
LMT,2(1, 1, 1;ψ, ψ, ψ).

As a corollary, for p ≡ 3(4), we obtain the rationality statement

Corollary 3.4.3:

LMT,2(1, 1, 1;ψ, ψ, ψ) ∈ π3

√
p
Q,

a result for which we are not able to find any reference in the literature.
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In Section 3.5, we make our contribution towards an elementary proof of the

Lee-Weintraub identity. We prove, in a completely elementary manner,

Theorem 3.5: The Lee-Weintraub identity is equivalent to any of the following

three identities:

(i)
∑
k,t(2p)

P1

(
t2

2p

)
P1

(
k2 + 2kt

2p

)
P1

(
k2 − 2kt

2p

)
= 0,

(ii)
∑
k,t(p)

P1

(
t2

p

)
P1

(
k2

p

)
P1

(
k2 + 2kt

p

)
=
∑
k,t(p)

P1

(
t2

p

)
P1

(
2kt

p

)
P1

(
k2 + 2kt

p

)
,

(iii) lim
t→∞

∑′

x,y,z∈Z
xy−z2≡0(p)
|x|,|y|,|z|<t

ψ(x)

x(y2 − z2)
= 0.

Thus proving any one of these identities in an elementary manner would complete an

elementary proof of the Lee-Weintraub identity.

Let χ be a primitive Dirichlet character with conductor f > 1. Let l be any

positive integer which is prime to f . Let n ∈ Z, n ≥ 0. We also put ζ = exp(2πi/f).

In Chapter 4, we obtain a formula expressing the following character sum

Mn(l, χ) =

f−1∑
a=1

χ(a)

(ζ la − 1)n(ζa − 1)

in terms of generalized Bernoulli numbers using only elementary methods from algebra

and number theory (see Theorem 4.2.6). In Section 4.1, we evaluate the following

very special character sum

Zk(l, c, χ) = fk−1
∑
a(f)

Pk

(
la+ c

fl

)
χ(la+ c),

see Theorem 4.1. A special case of this theorem was established earlier by Ibukiyama[10].

In Section 4.2, we relate the sums Mn(l, χ) and Zk(l, c, χ), and in Section 4.3, we work

out some examples.
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2 Notation

Let N, Z, Q, R, and C denote the set of natural numbers, the ring of rational integers,

the rational number field, the real number field, and the complex number field. For

any communitive ring S, let Mn(S), GLn(S), and SLn(S) denote the ring of matrices

of size n with entries in S, the group of invertible elements in Mn(S), and the group

of elements in Mn(S) whose determinants are one, respectively. For any element A

of Mn(S), let tA, tr(A), and det(A) denote the transposed matrix of A, the trace of

A, and the determinant of A, respectively. Additionally, we have

Bk : the kth Bernoulli number

Bk(x) : the kth Bernoulli polynomial

Pk(x) : the kth periodic Bernoulli polynomial

ck(x) : given by (3.1.5)

δi,j : the Kronecker delta function

δ{x∈A} : the indicator function 1A(x)

δ(x, y) : given by (3.1.8)

δ1(x, y, z) : given by (3.1.9)

δ2(x, y, z) : given by (3.1.10)

φr,s(h, k;x, y) : the Carlitz Phi function given by (3.1.14)

ψr,s(h, k;x, y) : the Carlitz Psi function given by (3.1.14)

Γ (s) : the Gamma function

ζ(s) : the Riemann zeta function

e(s) : the abbreviation for exp(2πis)∑′
: means the meaningless terms are to be excluded
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3 Background and Elementary Results

3.1 Background Information

In this section, we discuss all of the relevant background information. We start by

introducing the Bernoulli polynomials. The Bernoulli polynomials {Bk(x)}∞k=0 are

defined recursively as follows:

B0(x) = 1,

B′k(x) = kBk−1(x) (k ≥ 1),∫ 1

0

Bk(x)dx = 0 (k ≥ 1).

(3.1.1)

Thus, from the penultimate equation, Bk(x) is obtained by integrating kBk−1(x), and

the constant of integration is determined from the last condition. From this, one can

easily prove the formula for the generating function of the Bernoulli polynomials:

(3.1.2)
tetx

et − 1
=
∞∑
k=0

Bk(x)

k!
tk (|t|< 2π).

This is a particularly useful formula. For example, we have the multiplication formula,

Proposition 3.1.1 [2]. For any k ∈ Z, k ≥ 0, n ∈ N, x ∈ R, we have

n−1∑
a=0

Bk

(
x+

a

n

)
=

1

nk−1
Bk(nx).

Proof. From (3.1.2), we get

n−1∑
a=0

∞∑
k=0

Bk

(
x+ a

n

)
k!

tk =
n−1∑
a=0

tet(x+ a
n)

et − 1
=

tetx

et/n − 1
= n

∞∑
k=0

Bk(nx)

k!

(
t

n

)k
,

from which the assertion follows from equating the coefficients.
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Proposition 3.1.2 [2]. For k ∈ Z, k ≥ 0, x ∈ R, we have

Bk(1− x) = (−1)kBk(x).

Proof. From (3.1.2), we get

∞∑
k=0

Bk(1− x)

k!
tk =

tet(1−x)

et − 1
=

(−t)e(−t)x

e(−t) − 1
=
∞∑
k=0

Bk(x)

k!
(−t)k.

Thus the assertion follows from equating the coefficients.

Proposition 3.1.3 [2]. Let k ∈ Z, k ≥ 0, x, y ∈ R. Then, we have

Bk(x+ y) =
k∑
j=0

(
k

j

)
Bk−j(y)xj.

Proof. Taking the Taylor series expansion of the kth Bernoulli polynomial centered

at x = y, we get

Bk(x+ y) =
k∑
j=0

B
(j)
k (y)

j!
xj.

From (3.1.1), we see that B
(j)
k (y) = k(k − 1) · · · (k − j + 1)Bk−j(y) for 0 < j ≤ k.

Thus the assertion follows.

We now introduce the Bernoulli numbers. The sequence of Bernoulli numbers

{Bk}∞k=0 is defined by

Bk = Bk(0) for k ≥ 0.

The following proposition expresses Bernoulli polynomials in terms of Bernoulli

numbers.

Proposition 3.1.4 [2]. For k ∈ Z, k ≥ 0, we have

Bk(x) =
k∑
j=0

(
k

j

)
Bk−jx

j.
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Proof. This follows from letting y = 0 in Proposition 3.1.3.

Proposition 3.1.5 [2]. We have

B2k+1 = 0 for k ≥ 1.

Proof. From (3.1.2), we have

t

2
+
∞∑
k=0

Bk

k!
tk =

t

et − 1
+
t

2
=
t(et + 1)

2(et − 1)
.

Since the right-hand side is an even function, we get Bk = 0 for k odd, k ≥ 3.

We would be remiss if we did not include the following proposition.1

Proposition 3.1.6 [2]. Let k,N ∈ N. Then, we have

N∑
n=1

nk =
Bk+1(N + 1)−Bk+1

k + 1
.

Proof. From (3.1.2), we get

∞∑
k=0

Bk(n+ 1)

k!
tk =

tet(n+1)

et − 1
= tetn

{
1 +

1

et − 1

}
=
∞∑
k=0

nk

k!
tk+1 +

∞∑
k=0

Bk(n)

k!
tk.

Equating the coefficient for tk+1, we obtain Bk+1(n+1) = (k+1)nk+Bk+1(n). Hence,

N∑
n=0

nk =
N∑
n=0

Bk+1(n+ 1)−Bk+1(n)

k + 1
=
Bk+1(N + 1)−Bk+1

k + 1
.

We next introduce the generalized Bernoulli numbers. Given a Dirichlet character

χ modulo f , the generalized Bernoulli numbers {Bk,χ}∞k=0 are defined by using the

1Jacob Bernoulli, who introduced the Bernoulli numbers, claims that he did not take “a half of a
quarter of an hour” to compute the sum of tenth powers of 1 to 1,000, which he computed correctly
as 91409924241424243424241924242500.
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generating function

(3.1.3)

f∑
a=1

χ(a)teat

eft − 1
=
∞∑
k=0

Bk,χ

k!
tk.

We have seen that all the Bernoulli numbers Bk with k odd, k ≥ 3, are 0. For

generalized Bernoulli numbers, we have the following.

Proposition 3.1.7 [2]. Let χ be a nontrivial Dirichlet character modulo f . Then,

for any k with χ(−1) 6= (−1)k, we have Bk,χ = 0. In other words, if χ is an even

character, then Bk,χ with odd indices are 0; if χ is an odd character, then Bk,χ with

even indices are 0.

Proof. We note that χ(f) = 0 since χ is nontrivial. Replacing a by f − a in the

generating function (3.1.3), we get

f−1∑
a=1

χ(a)teat

eft − 1
=

f−1∑
a=1

χ(f − a)te(f−a)t

eft − 1

= χ(−1)

f−1∑
a=1

χ(a)te−at

1− eft

= χ(−1)

f−1∑
a=1

χ(a)(−t)ea(−t)

ef(−t) − 1
.

Thus the generating function is an even function if χ(−1) = 1 and an odd function if

χ(−1) = −1, from which the assertion follows.

The following proposition expresses generalized Bernoulli numbers in terms of

Bernoulli polynomials.

Proposition 3.1.8 [2]. Let χ be a Dirichlet character modulo f . Then for any

k ∈ Z, k ≥ 0, we have

Bk,χ = fk−1

f∑
a=1

χ(a)Bk(a/f).
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Proof. Replacing a by a/f in (3.3.3), we get

teat

eft − 1
=

1

f

∞∑
k=0

Bk(a/f)

k!
(ft)k.

Thus, we have

∞∑
k=0

Bk,χ

k!
tk =

f∑
a=1

χ(a)teat

eft − 1
=

f∑
a=1

χ(a)
1

f

∞∑
k=0

Bk(a/f)

k!
(ft)k

=
∞∑
k=0

fk−1
∑f

a=1 χ(a)Bk(a/f)

k!
tk.

Thus the assertion follows from equating the coefficients.

Next we define the periodic Bernoulli polynomials. They are used everywhere in

this dissertation. Their usefulness goes well beyond providing the remainder term in

the Euler-Maclaurin summation formula (which relates sums to integrals). For any

k ∈ Z, k ≥ 0, we define

(3.1.4) Pk(x) =


0, if k = 1, x ∈ Z,

Bk({x}), otherwise,

where {x} denotes the fractional part of x. We remark that nearly all of the important

properties of the Bernoulli polynomials carry over to their periodic counterparts.

Proposition 3.1.9. Let k ∈ Z, k ≥ 0, n ∈ N, x ∈ R, and let χ be a nontrivial

Dirichlet character modulo f . Then, we have

(i)
∑
a(n)

Pk

(
x+

a

n

)
=

1

nk−1
Pk(nx).

(ii) Pk(−x) = (−1)kPk(x).

(iii) Bk,χ = fk−1
∑
a(f)

Pk

(
a

f

)
χ(a).
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Proof. The assertions (i), (ii), (iii) follow immediately from Proposition 3.1.1,

Proposition 3.1.2, Proposition 3.1.8, respectively.

We will henceforth refer to (i) in Proposition 3.1.9 as “the multiplication formula”.

From the Fourier series expansions of the Pk’s, we get the following proposition.

Proposition 3.1.10 [2]. Let k ∈ N, x ∈ R. We put e(x) = e2πix. Then,

Pk(x) = − k!

(2πi)k

∑′

n∈Z

e(nx)

nk
,

where the prime on the summation sign means that the meaningless terms (i.e. when

n = 0) are to be excluded. If k = 1, then the infinite sum on the right-hand side is

understood to be

lim
N→∞

N∑′

n=−N

e(nx)

n
.

Proof. Let 0 < x < 1. Consider the function

f(z) =
ezx

ez − 1
.

Observe that f(z) has poles at z = 2πin (n ∈ Z) and all of them are of order 1. The

residue at z = 2πin is given by

lim
z→2πin

(z − 2πin)
ezx

ez − 1
= e2πinx = e(nx).

Let N be a natural number and put R = 2π(N + 1/2). Let CN be a square path in

the complex plane with vertices at R+ iR, −R+ iR, −R− iR, R− iR. If t is a point

inside CN such that t 6= 2πin (n ∈ Z), then it follows from the residue theorem that

∫
CN

f(z)

z − t
dz = 2πi

(
f(t) +

N∑
n=−N

e(nx)

2πin− t

)
.
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As N →∞, one can show that

∫
CN

f(z)

z − t
dz → 0.

Hence, if 0 < |t|< 2π, we get

f(t) = − lim
N→∞

N∑
n=−N

e(nx)

2πin− t

=
1

t
− lim

N→∞

N∑
n=−N
n 6=0

e(nx)

2πin− t

=
1

t
− lim

N→∞

N∑
n=−N
n 6=0

e(nx)

2πin
(
1− t

2πin

)
=

1

t
− lim

N→∞

N∑
n=−N
n 6=0

e(nx)

2πin

∞∑
k=1

(
t

2πin

)k−1

=
1

t
− lim

N→∞

N∑
n=−N
n 6=0

∞∑
k=1

e(nx)

(2πin)k
· tk−1

Since the sum ∑
n∈Z
n 6=0

∞∑
k=2

e(nx)

(2πin)k+1
· tk

converges absolutely, we get

f(t) =
1

t
− lim

N→∞

N∑
n=−N
n6=0

e(nx)

2πin
−
∑
n∈Z
n6=0

∞∑
k=2

e(nx)

(2πin)k
· tk−1.

From (3.1.2), we see that

f(t) =
∞∑
k=0

Bk(x)

k!
tk−1 (|t|< 2π).
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Thus, comparing the coefficients, we obtain, for 0 < x < 1,

(i) P1(x) = − 1

2πi
lim
N→∞

N∑
n=−N
n6=0

e(nx)

n
,

(ii) Pk(x) = − k!

(2πi)k

∞∑
n=−∞
n6=0

e(nx)

nk
(k ≥ 2).

Since both sides of the above formulas are periodic with respect to x with period 1,

it suffices to show that both formulas hold for x = 0. The formula (i) clearly holds

for x = 0. Since the sum on the right-hand side of (ii) converges uniformly on [0, 1)

and Pk(x) (k ≥ 2) is continuous in the same interval, the formula (ii) also holds for

x = 0. Thus the assertion follows.

We remark in passing that from this proposition, we get the values of the Riemann

zeta function at positive even integers.

Proposition 3.1.11 [2]. Let k ∈ N. Then, we have

ζ(2k) = −(2πi)2k

2(2k)!
B2k.

Proof. This follows from Proposition 3.1.10 where we let x = 0.

We now discuss finite Fourier series expansions. They can often be helpful in

evaluating finite sums.

Proposition 3.1.12 [3]. Let f(n) be a any k-periodic function on Z and put

ζ = e2πi/k. Then we have the following finite Fourier series expansion:

f(n) =
1

k

k−1∑
j=0

f̂(j)ζnj, where the Fourier coefficients are f̂(j) =
k−1∑
i=0

f(i)ζ−ji.
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Proof. By direct substitution, we see that

f(n) =
1

k

k−1∑
j=0

f̂(j)ζnj =
1

k

k−1∑
j=0

k−1∑
i=0

f(i)ζ(n−i)j =
1

k

k−1∑
i=0

f(i)
k−1∑
j=0

ζ(n−i)j = f(n).

Proposition 3.1.13. Let f(n) be a k-periodic function on the integers so that we

have f(n) = 1
k

∑k−1
j=0 f̂(j)ζnj by Proposition 3.1.12. Then

ˆ̂
f(n) = kf(−n).

Proof. From Proposition 3.1.12, we get, by definition,

ˆ̂
f(n) =

k−1∑
j=0

f̂(j)ζ−jn = kf(−n).

Proposition 3.1.14 [3]. Let f(n) be a k-periodic function on the integers so that

we have f(n) = 1
k

∑k−1
j=0 f̂(j)ζnj by Proposition 3.1.12. Then f(n) is odd if and only

if f̂(j) is odd, and f(n) is even if and only if f̂(j) is even.

Proof. f(−n) = 1
k

∑k−1
j=0 f̂(j)ζ−nj = 1

k

∑k−1
j=0 f̂(−j)ζnj. Thus, f(−n) = −f(n) if

and only if f̂(−j) = −f̂(j), and f(−n) = f(n) if and only if f̂(−j) = f̂(j).

We next consider the sequence of functions {ck(x)}∞k=0 defined in Sczech[17]. They

are given as follows: c0(x) = 1, and

ck(x) =
∑′

n∈Z

1

(n+ x)k
(k ≥ 1),(3.1.5)

where x is a complex number and the prime on the summation sign indicates that

meaningless terms are to be excluded. If k = 1, then the infinite sum on the right-

hand side is understood to be

lim
t→∞

∑′

n∈Z
|n+x|<t

1

n+ x
.
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From Sczech[17], we see that c1(x) = π cot(πx) if x 6∈ Z and 0 otherwise, and that if

x 6∈ Z, then ck(x) = Vk(c1(x)) with a polynomial Vk(t) of degree k given recursively

by

V0(t) = 1, V1(t) = t, kVk+1(t) = (t2 + π2)V ′k(t) for k ≥ 1.

From this, we get the following useful facts that will be used in Section 3.2.

c2(x) =


c2

1(x) + π2, if x 6∈ Z,

π2/3, if x ∈ Z,

c3(x) = c3
1(x) + π2c1(x) = c1(x)c2(x).

(3.1.6)

We now turn our attention to some of the various properties of the ck’s. From the

definition (3.1.5), it is clear that ck(x) is periodic with period 1. Moreover, it is clear

that ck(−x) = (−1)kck(x). The ck’s also possess a multiplication formula.

Proposition 3.1.15. Let k, r ∈ N. Then, we have

∑
a(r)

ck

(
x+

a

r

)
= rkck(nx).

Proof. From (3.1.5), we get

∑
a(r)

ck

(
x+

a

r

)
=
∑
a(r)

∑′

n∈N

1(
n+ x+ a

r

)k
= rk

∑
a(r)

∑′

n∈N

1

((nr + a) + rx)k

= rk
∑′

m∈N

1

(m+ rx)k

= rkck(rx).

We have the following finite Fourier expansions of the Pk’s and ck’s.
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Proposition 3.1.16. Let k, f ∈ N, x ∈ Z, and put ζ = e2πi/f . Then, we have

(i) Pk

(
x

f

)
= − k!

(2πif)k

∑
a(f)

ck

(
a

f

)
ζax,

(ii) ck

(
x

f

)
= −(−1)k(2πif)k

fk!

∑
a(f)

Pk

(
a

f

)
ζax.

Proof. By Proposition 3.1.12, we have

Pk

(
x

f

)
=

1

f

∑
a(f)

P̂k

(
a

f

)
ζax where P̂k

(
a

f

)
=
∑
b(f)

Pk

(
b

f

)
ζ−ba.(3.1.7)

Employing the Fourier series of the Pk’s (Proposition 3.1.10), we get

P̂k

(
a

f

)
=
∑
b(f)

Pk

(
b

f

)
ζ−ba =

∑
b(f)

{
− k!

(2πi)k

∑′

n∈Z

e
(
nb
f

)
nk

}
ζ−ba

= − k!

(2πi)k

∑′

n∈Z

1

nk

∑
b(f)

ζb(n−a)

= − fk!

(2πi)k

∑′

n∈Z
n≡a(f)

1

nk

= − fk!

(2πi)k

∑′

m∈Z

1

(mf + a)k

= − fk!

(2πif)k

∑′

m∈Z

1(
m+ a

f

)k
= − fk!

(2πif)k
ck

(
a

f

)
.

Thus the assertion (i) follows from (3.1.7). In view of the above, it follows from

Proposition 3.1.13 that

ĉk

(
x

f

)
= −(2πif)k

fk!
ˆ̂
Pk

(
x

f

)
= −(2πif)k

k!
Pk

(
−x
f

)
= −(−1)k(2πif)k

k!
Pk

(
x

f

)
.
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Hence, from Proposition 3.1.12, we get

ck

(
x

f

)
= −(−1)k(2πif)k

fk!

∑
a(f)

Pk

(
a

f

)
ζax.

Proposition 3.1.16 shows that the Pk’s and ck’s are dual to each other. One

may wonder which is easier to work with, the Pk’s or ck’s. The answer is: both

are easy to work with, but both have their advantages. Since the Pk’s are rational

expressions, often times it is easier to deal with the Pk’s rather than the ck’s, and is

why the majority of the sums in this dissertation are converted into sums involving

Pk’s. However, the ck’s have their advantages as well. There is a wealth of well-

known trig identities that can be used when dealing with ck’s. In addition, a sum

involving ck’s can provide an alternative viewpoint to the equivalent sum involving

Pk’s. In mathematics, it is always a good idea to look at a problem from different

angles/viewpoints, for perhaps some insight will reveal itself. This was certainly the

case with me and the ck’s in Section 4.2.

We now discuss the fundamental property of the Pk’s, the addition formulas. We

first prove the “2-term addition formula”.

Proposition 3.1.17. Let v1, v2 ∈ R. Then, we have

P1(v1)P1(v2)− P1(v1)P1(v1 + v2)− P1(v2)P1(v1 + v2)

= −1

2
(P2(v1) + P2(v2) + P2(v1 + v2)) +

1

4
δ(v1, v2),

where

(3.1.8) δ(v1, v2) =


1, if v1, v2 ∈ Z,

0, otherwise.

Proof. The assertion is clear when v1, v2 ∈ Z. If exactly one of the arguments
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is an integer, say v2, then the assertion becomes −P 2
1 (v1) = −P2(v1) − 1

12
, which

is clearly true for v1 6∈ Z. Thus we assume that v1, v2 6∈ Z. Since P1, P2 are 1-

periodic, we may assume without a loss of generality that 0 < v1, v2 < 1. Then

0 < v1 + v2 < 2. If v1 + v2 ∈ Z, then v2 ≡ −v1 mod 1, and the assertion becomes

−P 2
1 (v1) = −P2(v1) − 1

12
, which again is clearly true for v1 6∈ Z. Thus it remains

to verify the assertion for v1, v2, v1 + v2 6∈ Z with 0 < v1 + v2 < 2. We have two

cases to consider, the case where 0 < v1 + v2 < 1, and where 1 < v1 + v2 < 2. If

0 < v1 + v2 < 1, the assertion becomes

(
v1 −

1

2

)(
v2 −

1

2

)
−
(
v1 −

1

2

)(
v1 + v2 −

1

2

)
−
(
v2 −

1

2

)(
v1 + v2 −

1

2

)
=

1

2

{(
v2

1 − v1 +
1

6

)
+

(
v2

2 − v2 +
1

6

)
+

(
(v1 + v2)2 − (v1 + v2) +

1

6

)}
,

which is easily verified to be true. Similarly, if 1 < v1 + v2 < 2, the assertion becomes

(
v1 −

1

2

)(
v2 −

1

2

)
−
(
v1 −

1

2

)(
v1 + v2 −

3

2

)
−
(
v2 −

1

2

)(
v1 + v2 −

3

2

)
=

1

2

{(
v2

1 − v1 +
1

6

)
+

(
v2

2 − v2 +
1

6

)
+

(
(v1 + v2 − 1)2 − (v1 + v2 − 1) +

1

6

)}
,

which is also easily verified to be true.

We called the above addition formula the 2-term addition formula because it

contained products of two P1’s. One might wonder, is there an addition formula

containing products of three P1’s? Or even more generally, does there exist an addition

formula containing products of an arbitrary number of, say n, P1’s? Thanks to the

revolutionary work of Gunnells and Sczech[7], the answer is yes. We will now prove

a 3-term addition formula which will henceforth be referred to as the “Sczech 3-term

addition formula”.
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Proposition 3.1.18. Let v1, v2, v3 ∈ R. Then, we have

− P1(v1)P1(v2)P1(v3)

+ P1(v1)P1(v2 − v1)P1(v3 − v1)

+ P1(v1 − v2)P1(v2)P1(v3 − v2)

+ P1(v1 − v3)P1(v2 − v3)P1(v3)

=
1

2

{
P1(v2 − v1)(P2(v2 − v3)− P2(v1 − v3))

+ P1(v2 − v1)(P2(v2)− P2(v1))

+ P1(v3 − v1)(P2(v3)− P2(v1))

+ P1(v3 − v2)(P2(v3)− P2(v2))

}
− 1

6

{
P3(v1 − v3) + P3(v2 − v3) + 2P3(v1) + 2P3(v2) + 2P3(v3)

}
− 1

4
δ1 (v1, v2, v3) +

1

4
δ2 (v1, v2, v3) ,

where

(3.1.9) δ1(v1, v2, v3) =


P1(v1), if v1 ≡ v2 ≡ v3 mod 1,

0, otherwise,

and

(3.1.10) δ2(v1, v2, v3) =



P1(v1), if v2, v3 are integers,

P1(v2), if v1, v3 are integers,

P1(v3), if v1, v2 are integers,

0, otherwise.
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Proof. We shall apply Theorem 3.3 in [7] with lattice L = Z3 and vectors

σ0 =


−1

−1

−1

 , σ1 =


1

0

0

 , σ2 =


0

1

0

 , σ3 =


0

0

1

 , v =


v1

v2

v3

 .

Let Q be a product of real-valued linear forms on LR that do not vanish on LQ\{0}.

Let 〈x, v〉 be the inner product of x and v, and put e(x) = exp(2πix). Then, we get,

from Theorem 3.3 in [7],

3∑
j=0

S(L, σj, v)|Q=
3∑
j=0

S(L ∩ σ⊥j , σj, v)|Q,

where

S(L, σ, v)|Q= lim
t→∞

(
(2πi)−3

∑′

x∈L
|Q(x)|<t

e(〈x, v〉)
〈x, σ1〉〈x, σ2〉〈x, σ3〉

)
.

This limit always exists (see Sczech[18], Theorem 2), and the value depends on Q in

a rather simple way. Thus, by making transformations of x that change Q into some

other product of real-valued linear forms on LR that do not vanish on LQ\{0}, say Q′,

we can easily determine the difference S(L, σ, v)|Q−S(L, σ, v)|Q′ . In essence, we can

rearrange the terms of a conditionally convergent series and keep track of the error

that any such rearrangement creates. What I have just described is what is called

the “Q-limit process”. For the details, we refer the interested reader to Gunnells and

Sczech[7]. We first treat the case where at least two of the vj’s (j = 1, 2, 3) are not

integers and that it is not the case that v1 ≡ v2 ≡ v3 mod 1. Then, by the Q-limit

process, all of the rearrangements that we make below will be justified. Therefore, to

keep notation to a minimum, we assume that everything converges absolutely. That
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is,

(3.1.11)
3∑
j=0

S(L, σj, v) =
3∑
j=0

S(L ∩ σ⊥j , σj, v),

where

S(L, σ, v) = (2πi)−3
∑′

x∈L

e(〈x, v〉)
〈x, σ1〉〈x, σ2〉〈x, σ3〉

.

is assumed to converge absolutely. By Proposition 3.1.10, it follows that

S(L, σ0, v) = (2πi)3
∑′

x,y,z∈Z

e(xv1 + yv2 + zv3)

xyz
= −P1(v1)P1(v2)P1(v3).

Next, let (a, b, c) = (x+ y + z, y, z). Then, again by Proposition 3.1.10, we get

S(L, σ1, v) = (2πi)3
∑′

x,y,z∈Z

e(xv1 + yv2 + zv3)

−(x+ y + z)yz

= −(2πi)3
∑′

a,b,c∈Z

e(av1 + b(v2 − v1) + c(v3 − v1)

abc

= P1(v1)P1(v2 − v1)P1(v3 − v1).

Similar reasoning reveals that

S(L, σ2, v) = P1(v1 − v2)P1(v2)P1(v3 − v1),

S(L, σ3, v) = P1(v1 − v3)P1(v2 − v3)P1(v3).

We now turn our attention to the right-hand side of (3.1.11). As σ⊥0 = {y ∈ R3 :

〈y, σ0〉 = −y1−y2−y3 = 0} = {(x, y,−x−y) ∈ R3}, we have L∩σ⊥0 = {(q, r,−q−r) ∈

Z3}. Hence,

S(L ∩ σ⊥0 , σ0, v) = (2πi)3
∑′

q,r∈Z

e(q(v1 − v3) + r(v2 − v3))

−qr(q + r)
.
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By the partial fraction decomposition

(3.1.12)
1

r(q + r)
=

1

qr
− 1

q(q + r)
(q, r, q + r 6= 0),

we get

S(L ∩ σ⊥0 , σ0, v)

= −(2πi)3

{∑′

q,r∈Z
r+q 66=0

e(q(v1 − v3) + r(v2 − v3))

q2r
−
∑′

q,r∈Z
r 66=0

e(q(v1 − v3) + r(v2 − v3))

q2(q + r)

}

= −(2πi)3

{∑′

q,r∈Z

e(q(v1 − v3) + r(v2 − v3))

q2r
−
∑′

q,r∈Z

e(q(v1 − v3) + r(v2 − v3))

q2(q + r)

−

[∑′

q∈Z

e(q(v1 − v2)

−q3
−
∑′

q∈Z

e(q(v1 − v3)

q3

]}
.

Letting (a, b) = (q, q + r), we get, by Proposition 3.1.10,

S(L ∩ σ⊥0 , σ0, v)

= −(2πi)3

{∑′

q,r∈Z

e(q(v1 − v3) + r(v2 − v3))

q2r
−
∑′

a,b∈Z

e(a(v1 − v2) + b(v2 − v3))

a2b

−

[∑′

q∈Z

e(q(v1 − v2)

−q3
−
∑′

q∈Z

e(q(v1 − v3)

q3

]}

=
1

2
P1(v2 − v3)

(
P2(v1 − v2)− P2(v1 − v3)

)
+

1

6

(
P3(v1 − v2) + P3(v1 − v3)

)
.

As σ⊥1 = {y ∈ R3 : 〈y, σ1〉 = y1 = 0} = {(0, y, z) ∈ R3}, we have L∩σ⊥1 = {(0, q, r) ∈

Z3}. Hence,

S(L ∩ σ⊥1 , σ1, v) = (2πi)3
∑′

q,r∈Z

e(qv2 + rv3)

−(q + r)qr
.
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From the partial fraction decomposition (3.1.12), we get

S(L ∩ σ⊥1 , σ1, v)

= −(2πi)3

{∑′

q,r∈Z
r+q 66=0

e(qv2 + rv3)

q2r
−
∑′

q,r∈Z
r 66=0

e(qv2 + rv3)

q2(q + r)

}

= −(2πi)3

{∑′

q,r∈Z

e(qv2 + rv3)

q2r
−
∑′

q,r∈Z

e(qv2 + rv3)

q2(q + r)

−

[∑′

q∈Z

e(q(v2 − v3)

−q3
−
∑′

q∈Z

e(qv2

q3

]}
.

Letting (a, b) = (q, q + r), we get, by Proposition 3.1.10,

S(L ∩ σ⊥1 , σ1, v)

= −(2πi)3

{∑′

q,r∈Z

e(qv2 + rv3)

q2r
−
∑′

a,b∈Z

e(a(v2 − v2) + bv3)

a2b

−

[∑′

q∈Z

e(q(v2 − v3)

−q3
−
∑′

q∈Z

e(qv2

q3

]}

=
1

2
P1(v3)

(
P2(v2 − v3)− P2(v2)

)
+

1

6

(
P3(v2 − v3) + P3(v2)

)
.

Similar reasoning reveals that

S(L ∩ σ⊥2 , σ2, v) =
1

2
P1(v3)

(
P2(v1 − v3)− P2(v1)

)
+

1

6

(
P3(v1 − v3) + P3(v1)

)
,

S(L ∩ σ⊥3 , σ3, v) =
1

2
P1(v2)

(
P2(v1 − v2)− P2(v1)

)
+

1

6

(
P3(v1 − v2) + P3(v1)

)
.
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Summing up the results above, we have, by (3.1.11),

− P1(v1)P1(v2)P1(v3)

+ P1(v1)P1(v2 − v1)P1(v3 − v1)

+ P1(v1 − v2)P1(v2)P1(v3 − v2)

+ P1(v1 − v3)P1(v2 − v3)P1(v3)

=
1

2

{
P1(v2 − v3)

(
P2(v1 − v2)− P2(v1 − v3)

)
+ P1(v3)

(
P2(v1 − v3) + P2(v2 − v3)− P2(v1)− P2(v2)

)
+ P1(v2)

(
P2(v1 − v2)− P2(v1)

)}
1

6

{
(2P3(v1 − v2) + 2P3(v1 − v3) + P3(v2 − v3) + 2P3(v1) + P3(v2)

}
.

Noting that the condition that {at least two of the vj’s (j = 1, 2, 3) are not integers}∩{it

is not the case that v1 ≡ v2 ≡ v3 mod 1} is equivalent to the condition that {at

least two of {v1, v1 − v3, v1 − v2} are not integers}∩{it is not the case that v1 ≡

v1 − v3 ≡ v1 − v2 mod 1}, we obtain the assertion by replacing (v1, v2, v3) with

(v1, v1− v3, v1− v2) and multiplying both sides by (−1). We now treat the remaining

cases where at least two of the vj’s (j = 1, 2, 3) are integers, or, where it is the case

that v1 ≡ v2 ≡ v3 mod 1. Suppose at least two of the vj’s (j = 1, 2, 3) are integers, say

v2, v3 ∈ Z. Then the assertion becomes P1(v1)3 = 3
2
P1(v1)P2(v1)− 1

2
P3(v1)− 1

4
δ{v1∈Z},

which clearly holds for all v1 ∈ R. Next, suppose that v1 ≡ v2 ≡ v3 mod 1. Then the

assertion becomes −P1(v1)3 = −P3(v1)− 1
4
P1(v1) + 1

4
δ{v1∈Z}, which also clearly holds

for all v1 ∈ R. This completes the proof.

As we shall see, the Sczech 3-term addition formula is a very useful resource in

evaluating sums containing products of three P1’s. In general, when confronted with

a product of n P1’s, it is a good start to look at an n-term addition formula via the

work of Gunnells and Sczech[7]. We now introduce a less general family of addition

formulas which do not contain products of P1’s. These formulas are much easier to
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prove since we can avoid the complications of rearranging the terms of a conditionally

convergent series.

Proposition 3.1.19. Let n ∈ N with n ≥ 3, and let x, y ∈ R. Then, we have

P1(x)Pn−1(x+ y) + P1(y)Pn−1(x+ y)− 1

n

n−1∑
j=1

(
n

j

)
Pj(x)Pn−j(y)

=
1

n

(
Pn(x) + (n− 1)Pn(x+ y) + Pn(y)

)
.

Proof. Let p, q, r ∈ R such that 1
pq

+ 1
qr

+ 1
rp

= 0, pqr 6= 0, and p + q + r = 0.

Moreover, we fix q so that ∂q
∂p

= 0, ∂r
∂p

= −∂p
∂p

= −1. Then, it follows that

1

(n− 2)!
∂(n−2)
p

(
1

pq
+

1

qr
+

1

rp

)
=

(−1)n

pn−1q
+

1

qrn−1
+

n−1∑
j=1

(−1)j−1 1

pjrn−j
= 0.

Multiplying both sides by e(p(x + y) + qy) = e(−qx − r(x + y)) = e(px − ry), and

summing symmetrically (so as to give meaning to the conditionally convergent series)

over all p, q, r ∈ Z, we get

(−1)n
∑′

p,q∈Z
r 6=0

e(p(x+ y) + qy)

pn−1q
+
∑′

q,r∈Z
p6=0

e(−qx− r(x+ y))

qrn−1
+

n−1∑
j=1

(−1)j−1
∑′

r,p∈Z
q 6=0

e(px− ry)

pjrn−j

= (−1)n
∑′

p,q∈Z

e(p(x+ y) + qy)

pn−1q
+
∑′

q,r∈Z

e(−qx− r(x+ y)

qrn−1
+

n−1∑
j=1

(−1)j−1
∑′

r,p∈Z

e(px− ry)

pjrn−j

−

{
(−1)n−1

∑′

p∈Z

e(px)

pn
+ (−1)n−1

∑′

q∈Z

e(qy)

qn
+ (−1)n−1

n−1∑
j=1

∑′

p∈Z

e(p(x+ y))

pn

}

= (−1)n

{∑′

p,q∈Z

e(px− qy)

pn−1q
+
∑′

q,r∈Z

e(q(x+ y) + rx)

qrn−1
−

n−1∑
j=1

∑′

r,p∈Z

e(px+ ry)

pjrn−j

+
∑′

p∈Z

e(px)

pn
+
∑′

r∈Z

e(ry)

rn
+ (n− 1)

∑′

p∈Z

e(p(x+ y))

pn

}
= 0.

Thus the assertion follows from multiplying both sides by (−1)n(n−1)!
(2πi)n

and applying
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Proposition 3.1.10.

We remark that the addition formulas of Proposition 3.1.19 with parameter n can

easily be obtained from n-term addition formulas of Gunnells and Sczech, which tell

the complete story. For example, the addition formula of Proposition 3.1.19 with

parameter n = 3 follows from the Sczech 3-term addition formula with (v1, v2, v3) =

(x, y, x+ y). Despite this, the addition formulas of Proposition 3.1.19 can still prove

useful (see Proposition 3.2.34).

We now state a powerful reciprocity theorem given by Carlitz. Let r, s ∈ Z with

r, s ≥ 0, h, k ∈ Z with k ≥ 1, and x, y ∈ R. Letting B̄k(x) = Bk(x − [x]), Carlitz[5]

introduced the functions


φ̃r,s(h, k;x, y) =

∑
a(k)

B̄r

(
h
a+ y

k
+ x

)
B̄s

(
a+ y

k

)
,

ψ̃r,s(h, k;x, y) =
r∑
j=0

(−1)r−j
(
r

j

)
hr−jφ̃j,r+s−j(h, k;x, y),

and proved the following reciprocity formula,

(s+ 1)ksψ̃r+1,s(h, k;x, y)− (r + 1)hrψ̃s+1,r(k, h; y, x)

= (s+ 1)kB̄r+1(x)B̄s(y)− (r + 1)hB̄r(x)B̄s+1(y).

(3.1.13)

Since I prefer to work with the periodic Bernoulli polynomials Pk rather than the

Bernoulli functions B̄k, we consider the functions

(3.1.14)


φr,s(h, k;x, y) =

∑
a(k)

Pr

(
h
a+ y

k
+ x

)
Ps

(
a+ y

k

)
,

ψr,s(h, k;x, y) =
r∑
j=0

(−1)r−j
(
r

j

)
hr−jφj,r+s−j(h, k;x, y).

We note that φ1,1(h, k; 0, 0) are Dedekind sums and φ1,1(h, k;x, y) are Rademacher

sums. We now prove the following reciprocity theorem which will also be referred to
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as “Carlitz reciprocity”.

Proposition 3.1.20. Let r, s ∈ Z with r, s ≥ 0, h, k ∈ N with (h, k) = 1, and

x, y ∈ R. Then, we have

(s+ 1)ksψr+1,s(h, k;x, y)− (r + 1)hrψs+1,r(k, h; y, x)

= (s+ 1)kPr+1(x)Ps(y)− (r + 1)hPr(x)Ps+1(y)− 2(−1)rkshrB2
1δr+s,1δx,0δy,0,

where ψ is given by (3.1.14).

Proof. In view of the reciprocity law given in (3.1.13), the assertion is equivalent

to

(s+ 1)ks
(
ψ̃r+1,s(h, k;x, y)− ψr+1,s(h, k;x, y)

)
− (r + 1)hr

(
ψ̃s+1,r(k, h; y, x)− ψs+1,r(k, h; y, x)

)
= (s+ 1)k

(
B̄r+1(x)B̄s(y)− Pr+1(x)Ps(y)

)
− (r + 1)h

(
B̄r(x)B̄s+1(y)− Pr(x)Ps+1(y)

)
+ 2(−1)rkshrB2

1δr+s,1δx,0δy,0.

(3.1.15)

Without a loss of generality, we may assume that 0 ≤ x, y < 1. Since B̄k(x) =

Pk(x) + δk,1δ{x∈Z}B1, we have, by definition,

φ̃r,s(h, k;x, y)− φr,s(h, k;x, y)

= δr,1
∑
a(k)

δ{h(a+y)k
+x∈Z}B1Ps

(
a+ y

k

)
+ δs,1δy,0B1Pr(x) + δr,1δs,1δx,0δy,0B

2
1 .
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Hence, we get

ψ̃r+1,s(h, k;x, y)− ψr+1,s(h, k;x, y)

=
r+1∑
j=0

(−1)r+1−j
(
r + 1

j

)
hr+1−j

(
φ̃j,r+s+1−j(h, k;x, y)− φj,r+s+1−j(h, k;x, y)

)
=

r+1∑
j=0

(−1)r+1−j
(
r + 1

j

)
hr+1−j

{
δj,1
∑
a(k)

δ{h(a+y)k
+x∈Z}B1Pr+s+1−j

(
a+ y

k

)

+ δr+s+1−j,1δy,0B1Pj(x) + δj,1δr+s+1−j,1δx,0δy,0B
2
1

}

= (−1)r(r + 1)hr
∑
a(k)

δ{h(a+y)k
+x∈Z}B1Pr+s

(
a+ y

h

)

+ (−1)1−s
(
r + 1

1− s

)
h1−sδ{s≤1}δy,0B1Pr+s(x) + (−1)r(r + 1)hrB2

1δr+s,1δx,0δy,0.

And similarly,

ψ̃s+1,r(k, h; y, x)− ψs+1,r(k, h; y, x)

= (−1)s(s+ 1)ks
∑
b(k)

δ{ k(b+x)h
+y ∈Z}B1Pr+s

(
b+ x

h

)

+ (−1)1−r
(
s+ 1

1− r

)
k1−rδ{r≤1}δx,0B1Pr+s(y) + (−1)s(s+ 1)ksB2

1δr+s,1δx,0δy,0.

We now show that

∑
a(k)

δ{h(a+y)k
+x∈Z}Pr+s

(
a+ y

h

)
= (−1)r+s

∑
b(k)

δ{ k(b+x)h
+y ∈Z}Pr+s

(
b+ x

h

)
.(3.1.16)

Observe that the existence of an ã ∈ {0, · · · , k − 1} such that h(ã+y)
k

+ x ∈ Z is

equivalent to the existence of a b̃ ∈ {0, · · · , h− 1} such that k(b̃+x)
h

+ y ∈ Z. Thus, if

there is not an ã ∈ {0, · · · , k− 1} such that h(ã+y)
k

+x ∈ Z, then (3.1.16) clearly holds

since both sides vanish. Otherwise, there is an ã ∈ {0, · · · , k − 1}, b̃ ∈ {0, · · · , h− 1}

such that h(ã+y)
k

+ x, k(b̃+x)
h

+ y ∈ Z, or equivalently, ã+y
k

+ b̃+x
h
∈ {0, 1}. Hence, we
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get

∑
a(k)

δ{h(a+y)k
+x∈Z}Pr+s

(
a+ y

h

)
= Pr+s

(
ã+ y

k

)
= Pr+s

(
− b̃+ x

h

)

= (−1)r+sPr+s

(
b̃+ x

h

)
= (−1)r+s

∑
b(k)

δ{ k(b+x)h
+y ∈Z}Pr+s

(
b+ x

h

)
.

Thus (3.1.16) is established. Computing the left-hand side of (3.1.15) where we take

(3.1.16) into account, we get

(s+ 1)ks
(
ψ̃r+1,s(h, k;x, y)− ψr+1,s(h, k;x, y)

)
− (r + 1)hr

(
ψ̃s+1,r(k, h; y, x)− ψs+1,r(k, h; y, x)

)
= (s+ 1)(r + 1)kshrB1

{
(−1)r

∑
a(k)

δ{h(a+y)k
+x∈Z}Pr+s

(
a+ y

h

)

− (−1)s
∑
b(k)

δ{ k(b+x)h
+y ∈Z}Pr+s

(
b+ x

h

)}

+ (−1)1−s(s+ 1)

(
r + 1

1− s

)
ksh1−sδ{s≤1}δy,0B1Pr+s(x)

− (−1)1−r(r + 1)

(
s+ 1

1− r

)
hrk1−rδ{r≤1}δx,0B1Pr+s(y)

+ (s+ 1)(r + 1)kshrB2
1δr+s,1δx,0δy,0

(
(−1)r − (−1)s

)
= (−1)1−s(s+ 1)

(
r + 1

1− s

)
ksh1−sδ{s≤1}δy,0B1Pr+s(x)

− (−1)1−r(r + 1)

(
s+ 1

1− r

)
hrk1−rδ{r≤1}δx,0B1Pr+s(y)

+ 4(−1)rkshrB2
1δr+s,1δx,0δy,0.
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Computing the right-hand side of (3.1.15), we get

(s+ 1)k
(
B̄r+1(x)B̄s(y)− Pr+1(x)Ps(y)

)
− (r + 1)h

(
B̄r(x)B̄s+1(y)− Pr(x)Ps+1(y)

)
+ 2(−1)rkshrB2

1δr+s,1δx,0δy,0

= (s+ 1)k
(
δs,1δy,0B1Pr+1(x) + δr,0δx,0B1Ps(y) + δr,0δs,1δx,0δy,0B

2
1

)
− (r + 1)h

(
δs,0δy,0B1Pr(x) + δr,1δx,0B1Ps+1(y) + δr,1δs,0δx,0δy,0B

2
1

)
+ 2(−1)rkshrB2

1δr+s,1δx,0δy,0.

Thus (3.1.15) is equivalent to

(−1)1−s(s+ 1)

(
r + 1

1− s

)
ksh1−sδ{s≤1}δy=0B1Pr+s(x)

− (−1)1−r(r + 1)

(
s+ 1

1− r

)
hrk1−rδ{r≤1}δx=0B1Pr+s(y)

+ 2(−1)rkshrB2
1δr+s,1δx,0δy,0

= (s+ 1)k
(
δs,1δy,0B1Pr+1(x) + δr,0δx,0B1Ps(y) + δr,0δs,1δx,0δy,0B

2
1

)
− (r + 1)h

(
δs,0δy,0B1Pr(x) + δr,1δx,0B1Ps+1(y) + δr,1δs,0δx,0δy,0B

2
1

)
.

(3.1.17)

We shall establish (3.1.17) by verifying all of the various possibilities. If x, y 6= 0, then

(3.1.17) clearly holds since everything vanishes. Moreover, if r, s ≥ 2, then (3.1.17)

also clearly holds since everything vanishes. Next, we assume that x = 0, y 6= 0.

From (3.1.17), we get

− (−1)1−r(r + 1)

(
s+ 1

1− r

)
hrk1−rδ{r≤1}B1Pr+s(y)

= (s+ 1)kδr,0B1Ps(y)− (r + 1)hδr,1B1Ps+1(y),

which is easily verified for r = 0, r = 1, and r ≥ 2. Next, we assume that x 6= 0, y = 0.
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From (3.1.17), we get

(−1)1−s(s+ 1)

(
r + 1

1− s

)
ksh1−sδ{s≤1}B1Pr+s(x)

= (s+ 1)kδs,1B1Pr+1(x)− (r + 1)hδs,0B1Pr(x),

which is also easily verified for s = 0, s = 1, and s ≥ 2. Lastly, we assume that

x = y = 0. From (3.1.17), we get

(−1)1−s(s+ 1)

(
r + 1

1− s

)
ksh1−sδ{s≤1}B1Pr+s(0)

− (−1)1−r(r + 1)

(
s+ 1

1− r

)
hrk1−rδ{r≤1}B1Pr+s(0)

+ 2(−1)rkshrB2
1δr+s,1

= (s+ 1)k
(
δs,1B1Pr+1(0) + δr,0B1Ps(0) + δr,0δs,1B

2
1

)
− (r + 1)h

(
δs,0B1Pr(0) + δr,1B1Ps+1(0) + δr,1δs,0B

2
1

)
,

from which the cases (r, s) = (0, 0), (0, 1), (1, 0), (1, 1), (0, l), (1, l), (l, 0), (l, 1) for

l ≥ 2 are all easily verified. This establishes (3.1.17), and consequently, completes

the proof.
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3.2 Auxiliary Sums

In this section, we obtain formulas for all of the auxiliary sums needed in Chapters 4

and 5. In many cases, they are interesting in their own right. To fix our standpoint,

we assume here that we are satisfied if an exponential sum or a character sum can

be expressed in terms of generalized Bernoulli numbers. We remark that all of the

results in this section will be obtained using only elementary methods from algebra

and number theory.

We fix an odd prime p. We denote by ψ the Legendre symbol mod p: ψ(a) =
(
a
p

)
.

We also put ζ = exp(2πi/p).

Proposition 3.2.1. Let n ∈ Z, n ≥ 0, and let l be any integer. Then, we have

∑
k(p)

P2n+1

(
lk

p

)
ψ(k) =

∑
k(p)

P2n+1

(
lk2

p

)
=
ψ(l)

p2n
B2n+1,ψ.

Proof. The assertion is clear when l ≡ 0(p), so we assume l 6≡ 0(p). Since P2n+1

is an odd function, we have
∑

k(p) P2n+1

(
lk
p

)
= 0. Hence,

∑
k(p)

P2n+1

(
lk

p

)
ψ(k) =

∑
k(p)

P2n+1

(
lk

p

)
ψ(k) +

∑
k(p)

P2n+1

(
lk

p

)

= 2
∑
k(p)

ψ(k)=1

P2n+1

(
lk

p

)

=
∑
k(p)

P2n+1

(
lk2

p

)
.

Thus we get the first equality. Replacing k by l−1k in the first sum where we note

that ψ(l−1) = ψ(l), we get

∑
k(p)

P2n+1

(
lk

p

)
ψ(k) = ψ(l−1)

∑
k(p)

P2n+1

(
k

p

)
ψ(k) =

ψ(l)

p2n
B2n+1,ψ.

Thus we obtain the second equality.
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Proposition 3.2.2. Let l be any integer prime to p. Then, we have

(i)
∑
k(p)

P2

(
lk

p

)
=

1

6p
,

(ii) If p ≡ 3(4), then
∑
k(p)

P2

(
lk2

p

)
=

1

6p
.

Proof. Replacing k by l−1k in (i), we get

∑
k(p)

P2

(
lk

p

)
=
∑
k(p)

P2

(
k

p

)
=

p−1∑
k=0

((
k

p

)2

−
(
k

p

)
+

1

6

)
=

1

6p
.

Thus the assertion (i) is proved. If p ≡ 3(4), then since P2 is even and ψ odd, we get

∑
k(p)

P2

(
lk

p

)
ψ(k) = 0.

Hence,

∑
k(p)

P2

(
lk

p

)
=
∑
k(p)

P2

(
lk

p

)
+
∑
k(p)

P2

(
lk

p

)
ψ(k)

= 2
∑
k(p)

ψ(k)=1

P2

(
lk

p

)

=
∑
k(p)

P2

(
lk2

p

)
.

Thus the assertion (ii) follows from (i).

Proposition 3.2.3. Let l be any integer. We have

∑
k(p)

P1

(
lk

p

)
P1

(
k2

p

)
=
∑
k(p)

P1

(
lk

p

)
P2

(
k2

p

)
= 0.

Proof. This follows from replacing k by −k in the two sums above and noting

that P1 is odd.
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Proposition 3.2.4. We have

∑
k,t(p)

P1

(
t2

p

)
P2

(
k2 − t2

p

)
= − 1

3p
B3,ψ +

1

6p
B1,ψ.

Proof. If p ≡ 1(4), replacing (k, t) by (k
√
−1, t

√
−1), noting that P1 is odd and

P2 is even, reveals that

∑
k,t(p)

P1

(
t2

p

)
P2

(
k2 − t2

p

)
= 0.

Since B3,ψ and B1,ψ also vanish (by Proposition 3.1.7), the assertion is clear in the

case p ≡ 1(4). Thus we assume that p ≡ 3(4). Applying the finite Fourier transform

(Proposition 3.1.16) to P1

(
t2

p

)
and P2

(
k2−t2
p

)
, we find that

∑
k,t(p)

P1

(
t2

p

)
P2

(
k2 − t2

p

)
=
∑
k,t(p)

2

(2πip)3

∑
a,b(p)

c1

(
a

p

)
c2

(
b

p

)∑
k,t(p)

ζ(a−b)t2+bk2

=
2

(2πip)3


∑
a,b(p)
b≡0(p)

+
∑
a,b(p)
b6≡0(p)

a−b≡0(p)

+
∑
a,b(p)
b 6≡0(p)

a−b6≡0(p)

 c1

(
a

p

)
c2

(
b

p

)∑
k,t(p)

ζ(a−b)t2+bk2

=
2

(2πip)3

{
p τ(ψ) c2(0)

∑
a(p)

c1

(
a

p

)
ψ(a) + p τ(ψ)

∑
a(p)
b6≡0(p)

a−b≡0(p)

c1

(
a

p

)
c2

(
b

p

)
ψ(b)

+ τ 2(ψ)
∑
a,b(p)
b6≡0(p)

a−b6≡0(p)

c1

(
a

p

)
c2

(
b

p

)
ψ(b)ψ(a− b)

}

=
2

(2πip)3

{
p τ(ψ) c2(0)

∑
a(p)

c1

(
a

p

)
ψ(a) + p τ(ψ)

∑
a(p)

c1

(
a

p

)
c2

(
a

p

)
ψ(a)

+ τ 2(ψ)
∑
a,b(p)

c1

(
a

p

)
c2

(
b

p

)
ψ(b)ψ(a− b)

}
.
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Replacing (a, b) by (−a,−b) in the third sum, noting that c1, ψ are odd and c2 is

even, we see that the third sum vanishes. Hence, by (3.1.6), we get

∑
k,t(p)

P1

(
t2

p

)
P2

(
k2 − t2

p

)
=

2p τ(ψ)

(2πip)3

{
c2(0)

∑
a(p)

c1

(
a

p

)
ψ(a) +

∑
a(p)

c3

(
a

p

)
ψ(a)

}
.

From Proposition 3.1.16 and (iii) in Proposition 3.1.9, we get

∑
a(p)

ck

(
a

p

)
ψ(a) = −(−1)k(2πip)k

pk!

∑
b(p)

Pk

(
b

p

)∑
a(p)

ζbaψ(a)

= −(−1)kτ(ψ)(2πi)k

k!
pk−1

∑
b(p)

Pk

(
b

p

)
ψ(b)

= −(−1)kτ(ψ)(2πi)k

k!
Bk,ψ.

(3.2.1)

Noting that c2(0) = π2/3 and applying (3.2.1), we obtain the assertion of the propo-

sition.

Proposition 3.2.5. We have

(i)
∑
k,t(p)

P1

(
t2

p

)
P2

(
k2 ± 2kt

p

)
= − 1

3p
B3,ψ +

1

6p
B1,ψ,

(ii)
∑
k,t(p)

P1

(
(k ± t)2

p

)
P2

(
k2 ± 2kt

p

)
= − 1

3p
B3,ψ +

1

6p
B1,ψ.

Proof. The assertion (i) follows from replacing (k, t) by (k ∓ t, t) and applying

Proposition 3.2.4. The assertion (ii) follows from replacing (k, t) by (t∓ k, k), noting

that P2 is even, and applying Proposition 3.2.4.

Proposition 3.2.6. We have

∑
k,t(p)

P1

(
2kt

p

)
P2

(
k2 + 2kt

p

)
=

1

3p
B3,ψ.

Proof. If p ≡ 1(4), replacing (k, t) by (k
√
−1, t

√
−1), noting that P1 is odd and
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P2 is even, reveals that

∑
k,t(p)

P1

(
2kt

p

)
P2

(
k2 + 2kt

p

)
= 0.

Since B3,ψ also vanishes (by Proposition 3.1.7), the assertion is clear in the case

p ≡ 1(4). Thus we assume that p ≡ 3(4). Replacing (k, t) by (k, (2k)−1t) where

k 6≡ 0(p), we get

∑
k,t(p)

P1

(
2kt

p

)
P2

(
k2 + 2kt

p

)
=
∑
k,t(p)
k 6≡0(p)

P1

(
t

p

)
P2

(
k2 + t

p

)
.

Since ∑
t(p)

P1

(
t

p

)
P2

(
t

p

)
= 0

follows from replacing t by −t, we have

∑
k,t(p)

P1

(
2kt

p

)
P2

(
k2 + 2kt

p

)
=
∑
k,t(p)

P1

(
t

p

)
P2

(
k2 + t

p

)
.

Applying the finite Fourier transform (Proposition 3.1.16) to P1

(
t
p

)
and P2

(
k2−t
p

)
,

we find that

∑
k,t(p)

P1

(
t

p

)
P2

(
k2 + t

p

)
=
∑
k,t(p)

2

(2πip)3

∑
a,b(p)

c1

(
a

p

)
c2

(
b

p

)∑
k,t(p)

ζ(a+b)t+bk2

=
2p

(2πip)3

∑
a(p)

c1

(
a

p

)
c2

(
−a
p

)∑
k(p)

ζ−ak
2

= −2p τ(ψ)

(2πip)3

∑
a(p)

c1

(
a

p

)
c2

(
a

p

)
ψ(a).
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By (3.1.6), (3.2.1), we get

∑
k,t(p)

P1

(
t

p

)
P2

(
k2 + t

p

)
= −2p τ(ψ)

(2πip)3

∑
a(p)

c3

(
a

p

)
ψ(a) =

1

3p
B3,ψ.

Proposition 3.2.7. We have

(i)
∑
k,t(2p)

P1

(
t2

2p

)
P1

(
k2

p

)
P1

(
k2 ± 2kt

2p

)

=
∑
k,t(p)

P1

(
t2

p

)
P1

(
k2

p

)
P1

(
k2 ± 2kt

p

)
,

(ii)
∑
k,t(2p)

P1

(
t2

2p

)
P1

(
2kt

p

)
P1

(
(k ± t)2

2p

)

=
∑
k,t(p)

P1

(
t2

p

)
P1

(
2kt

p

)
P1

(
(k ± t)2

p

)
,

(iii)
∑
k,t(2p)

P1

(
(k ± t)2

2p

)
P1

(
2kt

p

)
P1

(
k2 ± 2kt

2p

)

=
∑
k,t(p)

P1

(
(k ± t)2

p

)
P1

(
2kt

p

)
P1

(
k2 ± 2kt

p

)
,

(iv)
∑
k,t(2p)

P1

(
(k + t)2

2p

)
P2

(
2kt

p

)
= 2

∑
k,t(2p)

P1

(
(k + t)2

p

)
P2

(
2kt

p

)
.

Proof. We first prove the assertion (i). We have

∑
k(2p)

P1

(
k2

p

)
P1

(
k2 ± 2kt

2p

)
=

p−1∑
k=0

P1

(
k2

p

)
P1

(
k2 ± 2kt

2p

)

+

p−1∑
k=0

P1

(
(k + p)2

p

)
P1

(
(k + p)2 ± 2(k + p)t

2p

)

=

p−1∑
k=0

P1

(
k2

p

)
P1

(
k2 ± 2kt

2p

)
+

p−1∑
k=0

P1

(
k2

p

)
P1

(
k2 ± 2kt

2p
+

1

2

)

=

p−1∑
k=0

P1

(
k2

p

){
P1

(
k2 ± 2kt

2p

)
+ P1

(
k2 ± 2kt

2p
+

1

2

)}
.
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Applying the multiplication formula (Proposition 3.1.8), we get

∑
k(2p)

P1

(
k2

p

)
P1

(
k2 ± 2kt

2p

)
=
∑
k(p)

P1

(
k2

p

)
P1

(
k2 ± 2kt

p

)
.

Hence, we have

∑
k,t(2p)

P1

(
t2

2p

)
P1

(
k2

p

)
P1

(
k2 ± 2kt

2p

)

=
∑
k(p)

P1

(
k2

p

)∑
t(2p)

P1

(
t2

2p

)
P1

(
k2 ± 2kt

p

)
.

(3.2.2)

Then,

∑
t(2p)

P1

(
t2

2p

)
P1

(
k2 ± 2kt

p

)
=

p−1∑
t=0

P1

(
t2

2p

)
P1

(
k2 ± 2kt

p

)

+

p−1∑
t=0

P1

(
(t+ p)2

2p

)
P1

(
k2 ± 2k(t+ p)

p

)

=

p−1∑
t=0

P1

(
t2

p

)
P1

(
k2 ± 2kt

p

)
+

p−1∑
t=0

P1

(
t2

p
+

1

2

)
P1

(
k2 ± 2kt

p

)

=

p−1∑
t=0

{
P1

(
t2

2p

)
+ P1

(
t2

2p
+

1

2

)}
P1

(
k2 ± 2kt

p

)
.

Again applying the multiplication formula, we get

∑
t(2p)

P1

(
t2

2p

)
P1

(
k2 ± 2kt

p

)
=
∑
t(p)

P1

(
t2

p

)
P1

(
k2 ± 2kt

p

)
.

Thus, from (3.2.2), we get the assertion (i). The other identities are similarly verified,

so the proofs are omitted.
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Proposition 3.2.8. We have

(i)
∑
k,t(2p)

P1

(
t2

2p

)
P2

(
k2 ± 2kt

2p

)
= − 1

6p
B3,ψ +

1

12p
B1,ψ,

(ii)
∑
k,t(2p)

P1

(
2kt

p

)
P2

(
k2 ± 2kt

2p

)
= ± 1

3p
B3,ψ,

(iii)
∑
k,t(2p)

P1

(
t2

2p

)
P2

(
k2

p

)
=

1

3p
B1,ψ,

(iv)
∑
k,t(2p)

P1

(
t2

2p

)
P2

(
(k ± t)2

p

)
=

1

12p
B1,ψ,

(v)
∑
k,t(2p)

P1

(
t2

2p

)
P2

(
2kt

p

)
=

1

3p
B1,ψ,

(vi)
∑
k,t(2p)

P1

(
(k ± t)2

2p

)
P2

(
t2

2p

)
=

1

12p
B1,ψ,

(vii) For n ∈ Z, n ≥ 0, we get∑
k(2p)

P2n+1

(
k2

2p

)
=
∑
k(2p)

P2n+1

(
k

2p

)
ψ(k) =

1

(2p)2n
B2n+1,ψ.

Proof. We apply the same reasoning as in the proof of (i) in Proposition 3.2.7.

Then, the assertion (i) follows from Proposition 3.2.4, the assertion (ii) follows from

Proposition 3.2.6, and the assertions (iii)-(vii) follow from Proposition 3.2.1 and

Proposition 3.2.2.

Proposition 3.2.9. We have

∑
k,t(2p)

P1

(
(k + t)2

2p

)
P2

(
(k − t)2

2p

)
=

3ψ(2)− 1

6p
B1,ψ.

Proof. Suppose p ≡ 1(4). If
√
−1 mod p is relatively prime to 2p, we replace (k, t)

by (k
√
−1, t

√
−1). Otherwise (

√
−1 + p) is relatively prime to 2p and we replace
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(k, t) by (k(
√
−1 + p), t(

√
−1 + p)). Since P1 is odd and P2 is even, we find that

∑
k,t(2p)

P1

(
(k + t)2

2p

)
P2

(
(k − t)2

2p

)
= 0.

Since B1,ψ also vanishes (by Proposition 3.1.7), the assertion is clear in the case

p ≡ 1(4). Thus we assume that p ≡ 3(4). Replacing (k, t) by (k − t, t), we get

∑
k,t(2p)

P1

(
(k + t)2

2p

)
P2

(
(k − t)2

2p

)
=
∑
k(2p)

P1

(
k2

2p

)∑
t(2p)

P2

(
(k − 2t)2

2p

)
.

We have two cases to consider. Suppose k is even. Then k = 2r for some r, and we

get ∑
t(2p)

P2

(
(k − 2t)2

2p

)
= 2

∑
t(p)

P2

(
2(r − t)2

p

)
.

Replacing t by t+ r and applying (ii) in Proposition 3.2.2, we get

(3.2.3)
∑
t(2p)

P2

(
(k − 2t)2

2p

)
=

1

3p
.

If k is odd, then k = 2r + p for some r, and we get

∑
t(2p)

P2

(
(k − 2t)2

2p

)
= 2

∑
t(p)

P2

(
2(r − t)2

p
+

1

2

)
.

By the multiplication formula, we have P2

(
2(r−t)2

p
+ 1

2

)
= 1

2
P2

(
4(r−t)2

p

)
−P2

(
2(r−t)2

p

)
.

Replacing t by t+ r and applying (ii) in Proposition 3.2.2, we get

∑
t(2p)

P2

(
(k − 2t)2

2p

)
= − 1

6p
.(3.2.4)
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From (3.2.3), (3.2.4), we have

∑
t(2p)

P2

(
(k − 2t)2

2p

)
=


1

3p
, if k is even,

− 1

6p
, if k is odd.

Hence,

∑
k,t(2p)

P1

(
k2

2p

)
P2

(
(k − 2t)2

2p

)
=

1

3p

∑
k(2p)
k even

P1

(
k2

2p

)
− 1

6p

∑
k(2p)
k odd

P1

(
k2

2p

)

=
1

3p

∑
r(p)

P1

(
(2r)2

2p

)
− 1

6p

∑
r(p)

P1

(
(2r + p)2

2p

)

=
1

3p

∑
r(p)

P1

(
2r2

p

)
− 1

6p

∑
r(p)

P1

(
2r2

p
+

1

2

)
.

By the multiplication formula, we have P1

(
2r2

p
+ 1

2

)
= P1

(
4r2

p

)
− P1

(
2r2

p

)
. Then,

by Proposition 3.2.1, we obtain

∑
k,t(2p)

P1

(
k2

2p

)
P2

(
(k − 2t)2

2p

)
=

1

2p

∑
r(p)

P1

(
2r2

p

)
− 1

6p

∑
r(p)

P1

(
4r2

p

)
=

3ψ(2)− 1

6p
B1,ψ.

Proposition 3.2.10. We have

(i)
∑
k,t(p)

P1

(
2kt

p

)
P2

(
k2 + t2

p

)
=
∑
k,t(p)

P1

(
kt

p

)
P2

(
t2 − k2

p

)

=
∑
k,t(p)

P3

(
2kt

p

)
= 0,

(ii)
∑
k,t(p)

P3

(
(k + t)2

p

)
=

1

p
B3,ψ,

(iii)
∑
k,t(p)

P3

(
k2 + t2

p

)
= 0.
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Proof. The assertion (i) follows from replacing k by −k in each of the sums and

noting that P1, P3 are odd. The assertion (ii) follows from replacing k by k − t and

applying Proposition 3.2.1. Applying the finite Fourier transform (Proposition 3.1.16)

to P3

(
k2+t2

p

)
, we get

∑
k,t(p)

P3

(
k2 + t2

p

)
= − 3!

(2πip)3

∑
a(p)

c3

(
a

p

)∑
k,t(p)

ζa(k2+t2)

= −3! τ 2(ψ)

(2πip)3

∑
a(p)

c3

(
a

p

)
.

Since c3 is odd, the above sum vanishes. This completes the proof of the assertion

(iii).

Proposition 3.2.11. We have

∑
x(p)

p−1∑
i,j,k=1

P1

(
i

p

)
ψ(i+ x)ψ(j + x)ψ(k + x) = −B1,ψ.

Proof. Clearly, we have

∑
x(p)

p−1∑
i,j,k=1

P1

(
i

p

)
ψ(i+ x)ψ(j + x)ψ(k + x) =

∑
x(p)

p−1∑
i=1

P1

(
i

p

)
ψ(i+ x)ψ(x2)

= −
p−1∑
i=1

P1

(
i

p

)
ψ(i) = −B1,ψ.

Proposition 3.2.12. We have

(i) For any integer k, we have∑
x(p)

P1

(
x+ k

p

)
= 0.

(ii)
∑
i,k(p)

P1

(
k − i
p

)
ψ(i2)ψ(k) = −B1,ψ.
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Proof. The assertion (i) follows from replacing x by x − k and noting that P1 is

odd. Next, we have

∑
i,k(p)

P1

(
k − i
p

)
ψ(i2)ψ(k) =

∑
i,k(p)

P1

(
k − i
p

)
ψ(k)−

∑
k(p)

P1

(
k

p

)
ψ(k).

Thus the assertion (ii) follows from (i) and Proposition 3.2.1.

Proposition 3.2.13 [2]. Let χ be a nontrivial primitive Dirichlet character mod-

ulo f , and let a be an integer. Then, we have

(i)
∑
n(f)

χ(n) = 0,

(ii)
∑
n(f)

ζanχ(n) = χ̄(a)τ(χ),

(iii)
∑
n(f)

ζan =


f, if a ≡ 0(f),

0, otherwise.

Proof. Since χ is nontrivial, there is a b such that (b, f) = 1 and χ(b) 6= 1.

Replacing n by bn in (i), we obtain

∑
n(f)

χ(n) = χ(b)
∑
n(f)

χ(n).

Thus the assertion (i) follows. If a ≡ 0(f) in (ii), then the assertion (ii) follows from

(i). Thus we assume that a 6≡ 0(f). Replacing n by a−1n, we obtain

∑
n(f)

ζanχ(n) = χ(a−1)
∑
n(f)

ζnχ(n) = χ(a−1)τ(χ).

Thus the assertion (ii) follows from the fact that χ(a−1) = χ̄(a). The assertion (iii)

is clear.
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Proposition 3.2.14 [2]. For any a with (a, p) = 1, we have

1

ζa − 1
=

1

p

p−1∑
n=1

nζan.

Proof. Observe that (x − 1)(1 + x + · · · + xp−1) = xp − 1, which yields after

differentiation,

(x− 1)(1 + 2x+ · · ·+ (p− 1)xp−2) + (1 + x+ · · ·+ xp−1) = pxp−1.

Multiplying by x and replacing x by ζa, we get

(ζa − 1)

p−1∑
n=1

nζan +
∑
n(p)

ζan = p.

Thus the assertion follows from (iii) in Proposition 3.2.13.

Lemma 3.2.15 [2]. We have

∑
x(p)

ψ(x2 + e) =


−1, if e 6≡ 0(p),

p− 1, if e ≡ 0(p).

Proof. From (ii) in Proposition 3.2.13, for χ = ψ, we see that

ψ(a) =
1

τ(ψ)

∑
n(p)

ζanψ(n).
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Hence,

∑
x(p)

ψ(x2 + e) =
∑
x(p)

1

τ(ψ)

∑
n(p)

ζ(x2+e)nψ(n)

=
1

τ(ψ)

∑
n(p)

ζenψ(n)
∑
x(p)

ζnx
2

=
∑
n(p)

ζenψ2(n).

Thus the assertion follows from (iii) in Propostion 3.2.13.

Proposition 3.2.16 [2]. Let a, b, c ∈ Z, a 6≡ 0(p). Then, we have

∑
x(p)

ψ(ax2 + bx+ c) =


−ψ(a), if b2 − 4ac 6≡ 0(p),

(p− 1)ψ(a), if b2 − 4ac ≡ 0(p).

Proof. Completing the square yields

∑
x(p)

ψ(ax2 + bx+ c) = ψ(a)
∑
x(p)

ψ((x+ (2a)−1b)2 − (4a2)−1(b2 − 4ac)).

Replacing x by x− (2a)−1b, we get

∑
x(p)

ψ(ax2 + bx+ c) = ψ(a)
∑
x(p)

ψ(x2 − (4a2)−1(b− 4ac)).

Thus the assertion of the proposition follows from Lemma 3.2.15.

Proposition 3.2.17 [4]. For any integer a prime to p, we have

∑
n(p)

ζanψ(n) =
∑
n(p)

ζan
2

= ψ(a)τ(ψ).
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Proof. From (ii), (iii) in Proposition 3.2.13, we get

ψ(a)τ(ψ) =
∑
n(p)

ζanψ(n) =
∑
n(p)

ζan(1 + ψ(n)) =
∑
n(p)

ζan
2

.

Here, we state the following beautiful result of Gauss.

(3.2.5) τ(ψ) =
√
ψ(−1)p.

While it is very easy to see that τ 2(ψ) = ψ(−1)p, it is considerably more difficult to

determine that the + sign of the square root in τ(ψ) is correct in all cases.2 For the

proof, we refer the interested reader to Berndt, Evans, and Williams[4].

Proposition 3.2.18. Let a, b ∈ Z. Then, we have

∑
x(p)

ζax
2+bx =


p, if a, b ≡ 0(p),

0, if a ≡ 0(p), b 6≡ 0(p),

τ(ψ)ψ(a)ζ−(4a)−1b2 , if a 6≡ 0(p).

Proof. The case where a ≡ 0(p) was already handled in (iii) of Proposition 3.2.13.

Thus we assume that a 6≡ 0(p). Completing the square and replacing x by x−(2a)−1b,

we obtain ∑
x(p)

ζax
2+bx =

∑
x(p)

ζax
2−(4a)−1b2 ,

from which the assertion follows from Proposition 3.2.17.

Proposition 3.2.19. We have

p−1∑
k,m=1

kmψ(k +m) = −p
2

2
(B2,ψ + 2B1,ψ).

2On August 30, 1805, Gauss wrote in his diary that he devoted some time to this problem every
week for more than four years before he was able to prove his conjecture on the sign of these sums.
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Proof. Expressing everything in terms of periodic Bernoulli polynomials, we get

p−1∑
k,m=1

kmψ(k +m) = p2

p−1∑
k,m=1

(
P1

(
k

p

)
+

1

2

)(
P1

(
m

p

)
+

1

2

)
ψ(k +m)

= p2

{
p−1∑
k,m=1

P1

(
k

p

)
P1

(
m

p

)
ψ(k +m)

+
1

2

p−1∑
k,m=1

(
P1

(
k

p

)
+ P1

(
m

p

))
ψ(k +m)

+
1

4

p−1∑
k,m=1

ψ(k +m)

}
.

From (i) in Proposition 3.2.13, we get

p−1∑
k,m=1

kmψ(k +m) = p2

{ ∑
k,m(p)

P1

(
k

p

)
P1

(
m

p

)
ψ(k +m)−B1,ψ

}
.(3.2.6)

Replacing k by k −m in the sum on the right side, we get

∑
k,m(p)

P1

(
k

p

)
P1

(
m

p

)
ψ(k +m) =

∑
k,m(p)

P1

(
k −m
p

)
P1

(
m

p

)
ψ(k)(3.2.7)

Applying the two-term addition formula (Proposition 3.1.17) with the arguments

k−m
p

, m
p

, we get

P1

(
k −m
p

)
P1

(
m

p

)
− P1

(
k −m
p

)
P1

(
k

p

)
− P1

(
m

p

)
P1

(
k

p

)
= −1

2

(
P2

(
k −m
p

)
+ P2

(
m

p

)
+ P2

(
k

p

))
+

1

4
δ

(
k −m
p

,
m

p

)
.

Multiplying throughout by ψ(k), carefully summing over k,m(p), applying (i) in

Proposition 3.2.12, (i) in Proposition 3.2.2, and (i) in Proposition 3.2.13, we obtain

(3.2.8)
∑
k,m(p)

P1

(
k −m
p

)
P1

(
m

p

)
ψ(k) = −1

2
B2,ψ.
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Thus the assertion follows from (3.2.6), (3.2.7), and (3.2.8).

Proposition 3.2.20. We have

∑
l,m(p)

P1

(
m2l +ml

p

)
P1

(
l +ml

p

)
ψ(l) = −

∑
l,m(p)

P1

(
m2l +ml

p

)
P1

(
ml

p

)
ψ(l)

= −
∑
l,m(p)

P1

(
l +ml

p

)
P1

(
ml

p

)
ψ(l) = −1

2
B2,ψ.

Proof. Replacing (l,m) by (l,−m− 1) in the first sum and noting that P1 is odd,

we get the first equality. Replacing (l,m) by (l2m−1,ml−1) in the second sum and

by (m,m−1l) in the third sum, where l,m 6≡ 0(p), we obtain the second equality.

Replacing (l,m) by (l,−ml−1) in the third sum where l 6≡ 0(p), we get

−
∑
l,m(p)

P1

(
l +ml

p

)
P1

(
ml

p

)
ψ(l) =

∑
l,m(p)

P1

(
l −m
p

)
P1

(
m

p

)
ψ(l).

Thus the third equality follows from (3.2.8).

Proposition 3.2.21. We have

(i)
∑
l,m(p)

P1

(
l +ml

p

)
ψ(l) =

∑
l,m(p)

P1

(
ml

p

)
ψ(l) = 0,

(ii)
∑
l,m(p)

P1

(
m2l +ml

p

)
ψ(l) = −B1,ψ.

Proof. We first prove the assertion (i). Replacing (l,m) by (l,m− 1) in the first

sum, we get the first equality. The second equality follows from replacing (l,m) by

(l,−m) in the second sum and noting that P1 is odd. We now prove the assertion

(ii). Replacing (l,m) by (l2m−1,ml−1) where l,m 6≡ 0(p) and then applying (i) in

Proposition 3.2.12, we get

∑
l,m(p)

P1

(
m2l +ml

p

)
ψ(l) =

∑
l,m(p)

P1

(
m+ l

p

)
ψ(l2m) = −B1,ψ.



51

Proposition 3.2.22. We have

(i)
∑
k,t(p)

P1

(
kt

p

)
P1

(
k2 + kt

p

)
=

1

3p
B3,ψ,

(ii)
∑
k,t(p)

P1

(
kt

p

)
P1

(
k2 + 2kt

p

)
=

1

6p
B3,ψ +

1− ψ(2)

2p
B2p.

Proof. The assertion (i) follows immediately from Proposition 3.2.6 by replacing t

by 2t. Following the same reasoning as in Proposition 3.2.6, we see that the assertion

(ii) is clear for p ≡ 1(4), and for p ≡ 3(4), we have

∑
k,t(p)

P1

(
kt

p

)
P2

(
k2 + 2kt

p

)
=
∑
k,t(p)

P1

(
t

p

)
P2

(
k2 + 2t

p

)

=
∑
k,t(p)

2

(2πip)3

∑
a,b(p)

c1

(
a

p

)
c2

(
b

p

)∑
k,t(p)

ζ(a+2b)t+bk2

=
2p

(2πip)3

∑
a(p)

c1

(
a

p

)
c2

(
−2−1a

p

)∑
k(p)

ζ−2−1ak2

= −2p τ(ψ)

(2πip)3

∑
a(p)

c1

(
2a

p

)
c2

(
a

p

)
ψ(a).

We define following trig function,

t1(x) =


π tan(πx), if x 6∈ Z,

0, otherwise.

From the trig identity c1(2x) = 1
2
(c1(x) − t1(x)) together with the fact that c2(x) =
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c2
1(x) + π2 for x 6∈ Z, we get

∑
a(p)

c1

(
2a

p

)
c2

(
a

p

)
ψ(a)

=
1

2

∑
a(p)

{
c1

(
a

p

)
− t1

(
a

p

)}
c2

(
a

p

)
ψ(a)

=
1

2

∑
a(p)

c1

(
a

p

)
c2

(
a

p

)
ψ(a)− π2

2

∑
a(p)

c1

(
a

p

)
ψ(a)− π2

2

∑
a(p)

t1

(
a

p

)
ψ(a).

Observe that t1(x) = −c1(x+ 1/2). Therefore, by the multiplication formula for the

ck’s (Proposition 3.1.15), we get

∑
a(p)

t1

(
a

p

)
ψ(a) = −

∑
a(p)

c1

(
a

p
+

1

2

)
ψ(a)

= −2
∑
a(p)

c1

(
2a

p

)
ψ(a) +

∑
a(p)

c1

(
a

p

)
ψ(a)

= (1− 2ψ(2))
∑
a(p)

c1

(
a

p

)
ψ(a).

Hence, by (3.1.6), (3.2.1), we get

∑
a(p)

c1

(
2a

p

)
c2

(
a

p

)
ψ(a) =

1

2

∑
a(p)

c3

(
a

p

)
ψ(a)− π2(1− ψ(2))

∑
a(p)

c1

(
a

p

)
ψ(a)

=
2π3ip

τ(ψ)

(
1

3
B3,ψ + (1− ψ(2))B1,ψ

)
.

Thus the assertion (ii) follows.
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Proposition 3.2.23. We have

(i)
∑
k,t(p)

P1

(
k2 + kt

p

)
P2

(
t2 − k2

p

)
=
∑
k,t(p)

P1

(
k2 + kt

p

)
P2

(
k2 + 2kt

p

)

=
∑
k,t(p)

P1

(
t2 + kt

p

)
P2

(
t2 + 2kt

p

)
= − 1

6p
B3,ψ −

1− ψ(2)

2p
B1,ψ,

(ii)
∑
k,t(p)

P1

(
k2 + kt

p

)
P2

(
t2 + kt

p

)
=
∑
k,t(p)

P1

(
k2 + kt

p

)
P2

(
kt

p

)

=
∑
k,t(p)

P1

(
t2 + kt

p

)
P2

(
kt

p

)
= − 1

3p
B3,ψ,

(iii)
∑
k,t(p)

P1

(
t2 − k2

p

)
P2

(
t2 + 2kt

p

)
= −

∑
k,t(p)

P1

(
t2 − k2

p

)
P2

(
k2 + 2kt

p

)

=
∑
k,t(p)

P1

(
k2 + 2kt

p

)
P2

(
t2 − k2

p

)
,

(iv)
∑
k,t(p)

P3

(
t2 + kt

p

)
=
∑
k,t(p)

P3

(
kt

p

)
= 0,

(v)
∑
k,t(p)

P3

(
t2 − k2

p

)
=
∑
k,t(p)

P3

(
t2 + 2kt

p

)
=
∑
k,t(p)

P3

(
k2 + 2kt

p

)
= 0.

Proof. We first prove (i). Replacing (k, t) by (k+ t,−t) in the first sum yields the

first equality. Replacing (k, t) by (t, k) in the second sum gives the second equality.

Replacing (k, t) by (−k− t, k) in the third sum, noting that P1 is odd and P2 is even,

we get

∑
k,t(p)

P1

(
t2 + kt

p

)
P2

(
t2 + 2kt

p

)
= −

∑
k,t(p)

P2

(
kt

p

)
P1

(
k2 + 2kt

p

)
.

Thus the third equality follows from (ii) in Proposition 3.2.22. We next prove (ii).

Replacing (k, t) by (k+t,−t) in the first sum yields the first equality. Replacing (k, t)

by (t, k) in the second sum gives the second equality. Replacing (k, t) by (−k − t, k)
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in the third sum, noting that P1 is odd and P2 is even, we get

∑
k,t(p)

P1

(
t2 + kt

p

)
P2

(
kt

p

)
= −

∑
k,t(p)

P1

(
kt

p

)
P2

(
k2 + kt

p

)
.

Thus the third equality follows from (i) in Proposition 3.2.22. We next prove (iii).

Replacing (k, t) by (t, k) in the first sum yields the first equality. Replacing (k, t) by

(k+t,−t) in the second sum gives the second equality. We next prove (iv). Replacing

(k, t) by (k−t, t) in the first sum yields the first equality. Replacing (k, t) by (−k, t) in

the second sum and noting that P3 is odd, yields the second equality. Lastly we prove

(v). Replacing (k, t) by (k, t+ k) in the first sum yields the first equality. Replacing

(k, t) by (t, k) in the second sum yields the second equality. The third equality follows

from replacing (k, t) by (t, k) in the first sum and noting that P3 is odd.

Proposition 3.2.24. We have

(i)
∑
x(2p)
x even

Pj

(
x

2p

)
ψ(x) =

ψ(2)

pj−1
Bj,ψ,

(ii)
∑
x(2p)
x odd

Pj

(
x

2p

)
ψ(x) =

1− 2j−1ψ(2)

(2p)j−1
Bj,ψ.

Proof. If x is even, then x = 2k for some k. Hence,

∑
x(2p)
x even

Pj

(
x

2p

)
ψ(x) = ψ(2)

∑
k(p)

Pj

(
k

p

)
ψ(k).

Thus the assertion (i) follows from Proposition 3.2.1. Next, observe that

∑
x(2p)
x odd

Pj

(
x

2p

)
ψ(x) =

∑
x(2p)

Pj

(
x

2p

)
ψ(x)−

∑
x(2p)
x even

Pj

(
x

2p

)
ψ(x).

Thus the assertion (ii) follows from (vii) in Proposition 3.2.8 and the assertion (i).
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Proposition 3.2.25 [6]. Let n ∈ Z, n ≥ 0. Then, we have

n∑
j=0

(−1)j
(
n

j

)
= δn,0.

Proof. For n = 0, the assertion is clear. Thus we assume that n ≥ 1. From the

Binomial Theorem, we have (x + y)n =
∑n

j=0

(
n
j

)
xn−jyj. Putting x = 1, y = −1, we

get

n∑
j=0

(−1)j
(
n

j

)
= (1− 1)N = 0.

I am particularly fond of this little, yet very important identity.

Proposition 3.2.26 [6]. Let n ∈ N, and let k ∈ Z with 0 ≤ k ≤ n− 1. Then, we

have

k∑
j=0

(−1)j
(
n

j

)
= (−1)k

(
n− 1

k

)
.

Proof. We proceed by induction on k. If k = 0, the assertion is clear. Assume the

assertion holds for k = K ≤ n− 2. Then,

K+1∑
j=0

(−1)j
(
n

j

)
=

K∑
j=0

(−1)j
(
n

j

)
+ (−1)K+1

(
n

K + 1

)
= (−1)K

(
n− 1

K

)
+ (−1)K+1

(
n

K + 1

)
= (−1)K+1

{(
n

K + 1

)
−
(
n− 1

K

)}
= (−1)K+1

(
n− 1

K + 1

)
.

Since n is arbitrary, the assertion follows.



56

Proposition 3.2.27. Let n ∈ N, and let k ∈ Z with 0 ≤ k ≤ n− 1. Then,

2n−1∑
j=2k+1

(−1)j−1

(
2n− 1

j − 1

)(
j − 1

2k

)
=

(
2n− 1

2k

)
.

Proof. We have

2n−1∑
j=2k+1

(−1)j−1

(
2n− 1

j − 1

)(
j − 1

2k

)

=
2n−2−2k∑
j=0

(−1)j
(

2n− 1

j + 2k

)(
j + 2k

2k

)

=

(
2n− 1

2k

) 2n−2−2k∑
j=0

(−1)j
(

2n− 1− 2k

j

)

=

(
2n− 1

2k

){ 2n−1−2k∑
j=0

(−1)j
(

2n− 1− 2k

j

)
− (−1)2n−1−2k

(
2n− 1− 2k

2n− 1− 2k

)}
.

Thus the assertion follows from Proposition 3.2.25.

Proposition 3.2.28. Let φ and ψ denote the Carlitz Phi and Psi functions given

by (3.1.14). Let N,M ∈ N, h, k ∈ N with (h, k) = 1, and x, y ∈ R. Then, we have

N∑
j=0

(−1)N−j
(
N
j

)
hN−j

N +M − j
· φj,N+M−j(h, k;x, y)

=
1

(N +M)
(
N+M−1

N

) N∑
j=0

(
N +M

j

)
hN−j ψj,N+M−j(h, k;x, y).
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Proof. By definition of ψ, we get

N∑
j=0

(
N +M

j

)
hN−j ψj,N+M−j(h, k;x, y)

=
N∑
j=0

j∑
i=0

(−1)j−i
(
N +M

j

)(
j

i

)
hN−i φi,N+M−i(h, k;x, y)

=
N∑
i=0

N∑
j=i

(−1)j−i
(
N +M

j

)(
j

i

)
hN−i φi,N+M−i(h, k;x, y)

=
N∑
i=0

N−i∑
j=0

(−1)j
(
N +M

j + i

)(
j + i

i

)
hN−i φi,N+M−i(h, k;x, y)

=
N∑
i=0

(
N +M

i

){ N−i∑
j=0

(−1)j
(
N +M − i

j

)}
hN−i φi,N+M−i(h, k;x, y).

From Proposition 3.2.26, we get

N∑
j=0

(
N +M

j

)
hN−j ψj,N+M−j(h, k;x, y)

=
N∑
i=0

(−1)N−i
(
N +M

i

)(
N +M − i− 1

N − i

)
hN−i φi,N+M−i(h, k;x, y).

Thus the assertion follows from the fact that

1

(N +M)
(
N+M−1

N

)(N +M

i

)(
N +M − i− 1

N − i

)
=

(
N
i

)
N +M − i

.

Proposition 3.2.29. Let φ and ψ denote the Carlitz Phi and Psi functions given

by (3.1.14). Let N,M ∈ N with M ≥ 3 and odd. Let h, k ∈ N with (h, k) = 1, and
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x, y ∈ R. Then, we have

(i)
N∑
j=0

(
N +M

j

)
h1−j ψj,N+M−j(h, k;x, 0)

=
N+M∑
j=M+1

(
N +M

j

)
k1−j ψj,N+M−j(k, h; 0, x),

(ii)
M∑
j=0

(
N +M

j

)
h1−j ψj,N+M−j(h, k; 0, y)

=
N+M∑
j=N+1

(
N +M

j

)
k1−j ψj,N+M−j(k, h; y, 0).

Proof. We have

N∑
j=0

(
N +M

j

)
h1−j ψj,N+M−j(h, k;x, 0)

= hψ0,N+M(h, k;x, 0) +
N−1∑
j=0

(
N +M

j + 1

)
h−j ψj+1,N+M−1−j(h, k;x, 0).

(3.2.9)

From Proposition 3.2.1, we have

ψ0,N+M(h, k;x, 0) = φ0,N+M(h, k;x, 0) =
1

kN+M−1
BN+M .

By Carlitz reciprocity (Proposition 3.1.20), we have

ψj+1,N+M−1−j(h, k;x, 0) =
1

(N +M − j)kN+M−1−j

{
(j + 1)hj ψN+M−j,j(k, h, 0, x)

+ (N +M)kBj+1(x)BN+M−1−j − (j + 1)hBj(x)BN+M−j

}
.
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Hence, plugging in the above results back into (3.2.9), we get

N∑
j=0

(
N +M

j

)
h1−j ψj,N+M−j(h, k;x, 0)

=
1

kN+M−1

N−1∑
j=0

(
N +M

j

)
kj ψN+M−j,j(k, h; 0, x) +

1

hN−1kM−1

(
N +M

N

)
PN(x)BM .

Since M ≥ 3 is odd, BM = 0, and we get

N∑
j=0

(
N +M

j

)
h1−j ψj,N+M−j(h, k;x, 0)

=
1

kN+M−1

N−1∑
j=0

(
N +M

j

)
kj ψN+M−j,j(k, h; 0, x).

Thus the assertion (i) follows from replacing j by N + M − j. The assertion (ii) is

similarly verified, so the proof is omitted.

Proposition 3.2.30. Let φ and ψ denote the Carlitz Phi and Psi functions given

by (3.1.14). Let N ∈ N, h, k ∈ N with (h, k) = 1, and x, y ∈ Z. Then, we have

N∑
j=0

(
N

j

)
h1−j ψj,N−j

(
h, k;

x

k
,
y

h

)
=

BN

(hk)N−1
−B1δN,1.

Proof. From the definition of ψ, we have

N∑
j=0

(
N

j

)
h1−j ψj,N−j

(
h, k;

x

k
,
y

h

)
=

N∑
j=0

j∑
i=0

(−1)j−i
(
N

j

)(
j

i

)
h1−i φi,N−i

(
h, k;

x

k
,
y

h

)
=

N∑
i=0

N∑
j=i

(−1)j−i
(
N

j

)(
j

i

)
h1−i φi,N−i

(
h, k;

x

k
,
y

h

)
=

N∑
i=0

(
N

i

)
h1−i φi,N−i

(
h, k;

x

k
,
y

h

){ N−i∑
j=0

(−1)j
(
N − i
j

)}
.
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By Proposition 3.2.25, we get

N∑
j=0

(
N

j

)
h1−j ψj,N−j

(
h, k;

x

k
,
y

h

)
=

N∑
i=0

(
N

i

)
h1−i φi,N−i

(
h, k;

x

k
,
y

h

)
δN−i,0

= h1−N φN,0

(
h, k;

x

k
,
y

h

)
.

(3.2.10)

From the definition of φ, we have

φN,0

(
h, k;

x

k
,
y

h

)
=
∑
a(k)

PN

(
h

(
a+ y

h

k

)
+
x

k

)
=
∑
a(k)

PN

(
ha+ x+ y

k

)
.

Replacing a by h−1(a − x − y) (which is permissible since (h, k) = 1 and x, y ∈ Z),

we get

φN,0

(
h, k;

x

k
,
y

h

)
=
∑
a(k)

PN

(a
k

)
.

From the multiplication formula, we get

φN,0

(
h, k;

x

k
,
y

h

)
=

1

kN−1
BN −B1δN,1.

Thus the assertion follows from plugging back into (3.2.10).

Proposition 3.2.31. Let φ and ψ denote the Carlitz Phi and Psi functions given

by (3.1.14). Let M ∈ N with M ≥ 3, N ∈ Z with 0 ≤ N ≤M − 1, and x ∈ Z. Then,

we have

ψM−N,N

(
2, p;

x

p
, 0

)
=

(M −N)2M−1−N

(N + 1)pN

N+1∑
k=0

(−1)N+1−k
(
N + 1

k

)
2N+1−k φk,M−k

(
2, p;

x

p
, 0

)
+

BN

pN−1
· PM−N

(
x

p

)
− 2(M −N)BN+1

(N + 1)pN
· PM−1−N

(
x

p

)
+
δN,1

2
· PM−1

(
x

p

)
−MδN,0 · PM−1

(
x

p

)
.
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Proof. From Carlitz reciprocity (Proposition 3.1.20), we get

ψM−N,N

(
2, p;

x

p
, 0

)
=

(M −N)2M−1−N

(N + 1)pN
· ψN+1,M−1−N

(
p, 2; 0,

x

p

)
+

BN

pN−1
· PM−N

(
x

p

)
− 2(M −N)BN+1

(N + 1)pN
· PM−1−N

(
x

p

)
+
δN,1

2
· PM−1

(
x

p

)
−MδN,0 · PM−1

(
x

p

)
.

Thus the assertion follows from the definition of ψN+1,M−1−N

(
p, 2; 0, x

p

)
.

Proposition 3.2.32. Let φ denote the Carlitz Phi function given by (3.1.14). Let

M ∈ N, k ∈ Z with 0 ≤ k ≤M . Then, we have

∑
x(p)

ψ(x)φk,M−k

(
p, 2; 0,

x

p

)

=
(Bk −Bk(1/2))2M−1−kψ(2) +Bk(1/2)

(2p)M−1−k ·BM−k,ψ +
ψ(2)δk,1
2pM−2

·BM−1,ψ.

Proof. From the definition of φ, we have

φk,M−k

(
p, 2; 0,

x

p

)
=
∑
a(2)

Pk

(
p(a+ x

p
)

2

)
PM−k

(
a+ x

p

2

)

= Pk

(x
2

)
PM−k

(
x

2p

)
+ Pk

(
x+ 1

2

)
PM−k

(
x

2p
+

1

2

)
.

Therefore,

φk,M−k

(
p, 2; 0,

x

p

)

=


(
Bk +

δk,1
2

)
PM−k

(
x

2p

)
+Bk(1/2)PM−k

(
x

2p
+

1

2

)
, if x is even,

Bk(1/2)PM−k

(
x

2p

)
+

(
Bk +

δk,1
2

)
PM−k

(
x

2p
+

1

2

)
, if x is odd.
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Hence,

∑
x(p)

ψ(x)φk,M−k

(
p, 2; 0,

x

p

)

=

(
Bk +

δk,1
2

) p−1∑
x=1
x even

PM−k

(
x

2p

)
ψ(x) +Bk(1/2)

p−1∑
x=1
x even

PM−k

(
x

2p
+

1

2

)
ψ(x)

+Bk(1/2)

p−1∑
x=1
x odd

PM−k

(
x

2p

)
ψ(x) +

(
Bk +

δk,1
2

) p−1∑
x=1
x odd

PM−k

(
x

2p
+

1

2

)
ψ(x)

=

(
Bk +

δk,1
2

) 2p−1∑
x=1
x even

PM−k

(
x

2p

)
ψ(x) +Bk(1/2)

2p−1∑
x=1
x odd

PM−k

(
x

2p

)
ψ(x).

Thus the assertion follows from Propostion 3.2.24.

Proposition 3.2.33. Let φ and ψ denote the Carlitz Phi and Psi functions given

by (3.1.14). Let M ∈ N with M ≥ 3 and odd. Let h, k ∈ N with (h, k) = 1, and

x ∈ R. Let {bn}M−1
n=1 be any set of numbers. Then, we have

M−1∑
n=1

bn φM−n,n (h, k;x, 0) =
M−1∑
n=1

cn ψM−n,n (h, k;x, 0) ,

where

(3.2.11) cn =
n∑
j=1

(
M − j
n− j

)
hn−jbj (n = 1, · · · ,M − 1).

Proof. We note that φ0,M = 1
kM−1BM = 0 since M ≥ 3 and odd. With cn given
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by (3.2.11) together with the definition of ψ, we have

M−1∑
n=1

cn ψM−n,n(h, k, x, 0)

=
M−1∑
n=1

n∑
j=1

(
M − j
n− j

)
hn−jbj

M−n∑
k=1

(−1)M−n−k
(
M − n
k

)
hM−j−k φk,M−k(h, k, x, 0)

=
M−1∑
k=1

k−1∑
n=1

n∑
j=1

(−1)M−n−k
(
M − j
n− j

)(
M − n
k

)
hM−j−kbj φk,M−k(h, k, x, 0)

=
M−1∑
k=1

M−k∑
j=1

M−k∑
n=j

(−1)M−n−k
(
M − j
n− j

)(
M − n
k

)
hM−j−kbj φk,M−k(h, k, x, 0).

Replacing k by M − k and n by n+ j, we get

M−1∑
n=1

cn ψM−n,n(h, k, x, 0)

=
M−1∑
k=1

(−1)khk φM−k,k(h, k, x, 0)
k∑
j=1

(−1)jh−jbj

k−j∑
n=0

(−1)n
(
M − j
n

)(
M − j − n
M − k

)
.

Evaluating the innermost sum, we get, by Proposition 3.2.25,

k−j∑
n=0

(−1)n
(
M − j
n

)(
M − j − n
M − k

)
=

(
M − j
k − j

) k−j∑
n=0

(−1)n
(
k − j
n

)
= δk−j,0.

Thus the assertion of the proposition follows.

Proposition 3.2.34. We put

Sp(n,m) =
∑
k,t(p)

Pn

(
k2 − 2kt

p

)
Pm

(
t2 − k2

p

)
.

Then, we have

Sp(1, 4) = −Sp(2, 3).



64

Proof. From Proposition 3.1.19, for n = 4, we get

P1(x)P3(x+ y) + P1(y)P1(x+ y)− P1(x)P3(y)− 3

2
P2(x)P2(y)

− P3(x)P1(y) =
1

4
(P4(x) + 3P4(x+ y) + P4(y)) .

(3.2.12)

Noting that

P 2
1 (y) = P2(y) +

1

12
− 1

4
δ{y∈Z},

P1(y)P2(y) = P3(y) +
1

6
P1(y),

P1(y)P3(y) = P4(y) +
1

4
P2(y)− 1

120
,

P1(y)P4(y) = P5(y) +
1

3
P3(y)− 1

30
P1(y),

multiplying (3.2.12) throughout by P1(y) yields

P1(x)P1(y)P3(x+ y) + P3(x+ y)P2(y)− P1(x)P4(y)− 1

4
P1(x)P2(y)− 3

2
P2(x)P3(y)

− 1

4
P2(x)P1(y)− P3(x)P2(y) +

1− 3δ{y∈Z}
12

P3(x+ y)−
1− 3δ{y∈Z}

12
P3(x) +

1

120
P1(x)

=
1

4

(
P4(x)P1(y) + 3P4(x+ y)P1(y) + P5(y) +

1

3
P3(y)− 1

30
P1(y)

)
.

Letting (x, y, x + y) =
(
k2+2kt

p
, t

2−k2
p
, t

2+2kt
p

)
, carefully summing over k, t(p), and

simplifying, we get

− Sp(1, 4)− 1

4
Sp(1, 2)− 3

2
Sp(2, 3)− 1

4
Sp(2, 1) = −1

2
Sp(4, 1).(3.2.13)

Replacing (k, t) by (k + t, t) in the definition of Sp, we find that

Sp(n,m) = (−1)n+mSp(m,n) (n,m ∈ N).

Hence Sp(4, 1) = −Sp(1, 4) and Sp(2, 1) = −Sp(1, 2). Thus the proposition follows
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from (3.2.13).

Lemma 3.2.35 [15]. Let f be multiplicative. Suppose that

n =
∏
pα||n

pα

is the unique factorization of n into powers of distinct primes. Then, we have

∑
d|n

f(d) =
∏
pα||n

(1 + f(p) + f(p2) + · · ·+ f(pα)).

The notation pα||n means that pα is the exact power dividing n.

Proof. A typical divisor d of n is of the form d =
∏

p|n p
β(p), where β(p) ≤ α and

pα||n. Thus f(d) =
∏

p|n f(pβ(p)), which is a typical term on the right-hand side.

Proposition 3.2.36. Let l ∈ N. Let χ, δ be Dirichlet characters and let µ denote

the Möbius function. Then, we have

∑
m|l

µ(m)χ(m)δ(m)mk =
∏
q|l

q prime

(1− qkχ(q)δ(q)).

Proof. This follows from letting f(m) = µ(m)χ(m)δ(m)mk and applying Lemma

3.2.35.
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3.3 The Evaluation of the Sum Lp

We fix an odd prime p. The following sums will play a major role througout this

section:

Lp =
∑
k,t(p)

P1

(
2kt

p

)
P1

(
k2 + 2kt

p

)
P1

(
(k + t)2

p

)
,

Fp =
∑
k,t(p)

P1

(
t2

p

)
P1

(
k2

p

)
P1

(
k2 + 2kt

p

)
,

Gp =
∑
k,t(p)

P1

(
t2

p

)
P1

(
2kt

p

)
P1

(
k2 + 2kt

p

)
,

Tp =
∑
k,t(p)

P1

(
t2

p

)
P1

(
2kt

p

)
P1

(
(k + t)2

p

)
,

Rp =
∑
k,t(2p)

P1

(
t2

2p

)
P1

(
k2 + 2kt

2p

)
P1

(
k2 − 2kt

2p

)
,

Zp =
∑
k,t(2p)

P1

(
t2

2p

)
P1

(
(k + t)2

2p

)
P1

(
(k − t)2

2p

)
,

ap =
∑
k,t(p)

P1

(
(k + t)2

p

)
P2

(
k2 + t2

p

)
,

bp =
∑
k,t(p)

P1

(
2kt

p

)
P2

(
(k + t)2

p

)
,

cp =
∑
k,t(p)

P1

(
(k + t)2

p

)
P2

(
2kt

p

)
.

Theorem 3.3. With notation and assumptions as above, we have

Lp = − 1

16p
B3,ψ −

4p− 7 + 3ψ(2)

16p
B1,ψ.

Before proving this theorem, we must first establish several results.

Proposition 3.3.1. With notation and assumptions as above, we have

Lp = − 1

12p
B3,ψ −

6p− 5

24p
B1,ψ +

1

4
(bp + cp) .
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Proof. Applying the 2-term addition formula (Proposition 3.1.17) to the argu-

ments k2

p
, 2kt

p
, we get

P1

(
k2

p

)
P1

(
2kt

p

)
− P1

(
k2

p

)
P1

(
k2 + 2kt

p

)
− P1

(
2kt

p

)
P1

(
k2 + 2kt

p

)
= −1

2

(
P2

(
k2

p

)
+ P2

(
2kt

p

)
+ P2

(
k2 + 2kt

p

))
+

1

4
δ

(
k2

p
,
2kt

p

)
,

(3.3.1)

where δ is given by (3.1.8). Multiplying throughout by P1

(
t2

p

)
, carefully summing

over k, t(p), and applying Proposition 3.2.3, Proposition 3.2.2, Proposition 3.2.1, and

Proposition 3.2.4, yields

(3.3.2) Fp +Gp = − 1

6p
B3,ψ −

p− 1

4p
B1,ψ.

Multiplying (3.3.1) throughout by P1

(
(k+t)2

p

)
, carefully summing over k, t(p), and

applying Proposition 3.2.2, Proposition 3.2.1, and Proposition 3.2.5, yields

(3.3.3) Lp = Tp + Fp +
1

2
cp −

1

6p
B3,ψ −

3p− 2

12p
B1,ψ.

Applying the two-term addition formula (Proposition 3.1.17) to the arguments − t2

p
,

(k+t)2

p
, we get

− P1

(
t2

p

)
P1

(
(k + t)2

p

)
+ P1

(
t2

p

)
P1

(
k2 + 2kt

p

)
− P1

(
k2 + 2kt

p

)
P1

(
(k + t)2

p

)
= −1

2

(
P2

(
t2

p

)
+ P2

(
k2 + 2kt

p

)
+ P2

(
(k + t)2

p

))
+

1

4
δ

(
−t

2

p
,
(k + t)2

p

)
.

Multiplying throughout by P1

(
2kt
p

)
, carefully summing over k, t(p), and applying

Proposition 3.2.3, Proposition 3.2.6, yields

(3.3.4) Lp = Gp − Tp +
1

2
bp +

1

6p
B3,ψ.
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From (3.3.3) and (3.3.4), we get

2Lp = Fp +Gp +
1

2
(bp + cp)−

3p− 2

12p
B1,ψ,

and from (3.3.2), we obtain

Lp = − 1

12p
B3,ψ −

6p− 5

24p
B1,ψ +

1

4
(bp + cp) .

This completes the proof of the Proposition 3.3.1.

To complete the proof of Theorem 3.3, we must evaluate bp and cp. To this

end, we will find three independent relations involving ap, bp, and cp. We note that

e(x) = exp(2πix).

Proposition 3.3.2. With notation and assumptions as above, we have

ap + cp =
1

3p
B1,ψ.

Proof. First we note that the assertion is obvious in the case of p ≡ 1(4) (since

ap = cp = B1,ψ = 0). Thus, we will assume that p ≡ 3(4) for the remainder of the

proof. Replacing (k, t) by (k + t,−t) in the definition of ap, we get

ap =
∑
k,t(p)

P1

(
k2

p

)
P2

(
(k + t)2 + t2

p

)
.

Similarly, replacing (k, t) by (−k − t, t) in the definition of cp, noting that P2 is an

even function, we get

cp =
∑
k,t(p)

P1

(
k2

p

)
P2

(
(k + t)2 + t2 − k2

p

)
.

Applying the finite Fourier transform (Proposition 3.1.16) to P2

(
(k+t)2+t2

p

)
,
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P2

(
(k+t)2+t2−k2

p

)
and summing over t(p), we obtain

∑
t(p)

P2

(
(k + t)2 + t2

p

)
= − 2!

(2πip)2

∑
b(p)

c2

(
b

p

)∑
t(p)

e

(
b((k + t)2 + t2)

p

)

= − 2!

(2πip)2

∑
b(p)

c2

(
b

p

)
e

(
bk2

p

)∑
t(p)

e

(
2bt2 + 2bkt

p

)
,

∑
t(p)

P2

(
(k + t)2 + t2 − k2

p

)
= − 2!

(2πip)2

∑
b(p)

c2

(
b

p

)∑
t(p)

e

(
b((k + t)2 + t2 − k2)

p

)

= − 2!

(2πip)2

∑
b(p)

c2

(
b

p

)∑
t(p)

e

(
2bt2 + 2bkt

p

)
.

By Proposition 3.2.18, it follows that

∑
t(p)

e

(
2bt2 + 2bkt

p

)
=


p, b ≡ 0(p),

τ(ψ)ψ(2b)(−1)−bk
2

e

(
−bk2

2p

)
, b 6≡ 0(p).

Hence, we get

∑
t(p)

P2

(
(k + t)2 + t2

p

)

= − 2!

(2πip)2

{
p c2(0) + τ(ψ)ψ(2)

p−1∑
b=1

c2

(
b

p

)
(−1)bk

2

ψ(b)e

(
bk2

2p

)}
,

∑
t(p)

P2

(
(k + t)2 + t2 − k2

p

)

= − 2!

(2πip)2

{
p c2(0) + τ(ψ)ψ(2)

p−1∑
b=1

c2

(
b

p

)
(−1)bk

2

ψ(b)e

(
−bk2

2p

)}
.
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Replacing b by p− b in the sum above, noting that ψ is odd and c2 is even, we get

∑
t(p)

P2

(
(k + t)2 + t2 − k2

p

)

= − 2!

(2πip)2

{
p c2(0)− τ(ψ)ψ(2)

p−1∑
b=1

c2

(
b

p

)
(−1)−bk

2

ψ(b)e

(
bk2

2p

)}
.

Therefore,

∑
t(p)

{
P2

(
(k + t)2 + t2

p

)
+ P2

(
(k + t)2 + t2 − k2

p

)}
= −4p c2(0)

(2πip)2
=

1

3p
.

Multiplying the above equation by P1

(
k2

p

)
and summing over k(p), we get

ap + cp =
∑
k(p)

P1

(
k2

p

)∑
t(p)

{
P2

(
(k + t)2 + t2

p

)
+ P2

(
(k + t)2 + t2 − k2

p

)}

=
1

3p

∑
k(p)

P1

(
k2

p

)
=

1

3p
B1,ψ.

Proposition 3.3.3. With notation and assumptions as above,

Rp = −2Tp +
1

3p
B3,ψ +

3p− 2

12p
B1,ψ.

Proof. Applying the two-term addition formula (Proposition 3.1.17) to the argu-

ments k2+2kt
2p

, k2−2kt
2p

, we get

P1

(
k2 + 2kt

2p

)
P1

(
k2 − 2kt

2p

)
− P1

(
k2 + 2kt

2p

)
P1

(
k2

p

)
− P1

(
k2 − 2kt

2p

)
P1

(
k2

p

)
= −1

2

(
P2

(
k2 + 2kt

2p

)
+ P2

(
k2 − 2kt

2p

)
+ P2

(
k2

p

))
+

1

4
δ

(
k2 + 2kt

2p
,
k2 − 2kt

2p

)
.



71

Multiplying throughout by P1

(
t2

2p

)
, carefully summing over k, t(2p), and applying

Proposition 3.2.7, Proposition 3.2.8, and Proposition 3.2.1, yields

Rp = 2Fp +
1

6p
B3,ψ +

p− 1

4p
B1,ψ.

From (3.3.2), we see that

(3.3.5) Rp = Fp −Gp,

and from (3.3.3), (3.3.4), we obtain

Rp = −2Tp +
1

3p
B3,ψ +

3p− 2

12p
B1,ψ.

Proposition 3.3.4. With notation and assumptions as above,

Zp = −2Tp +
1

4p
B1,ψ.

Proof. Applying the two-term addition formula (Proposition 3.1.17) to the argu-

ments (k+t)2

2p
, − (k−t)2

2p
, we get

− P1

(
(k + t)2

2p

)
P1

(
(k − t)2

2p

)
− P1

(
(k + t)2

2p

)
P1

(
2kt

p

)
+ P1

(
(k − t)2

2p

)
P1

(
2kt

p

)
= −1

2

(
P2

(
(k + t)2

2p

)
+ P2

(
(k − t)2

2p

)
+ P2

(
2kt

p

))
+

1

4
δ

(
(k + t)2

2p
,
−(k − t)2

2p

)
.

Multiplying throughout by P1

(
t2

2p

)
, carefully summing over k, t(2p), and applying
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Proposition 3.2.7, Proposition 3.2.8, yields

Zp = −2Tp +
1

4p
B1,ψ.

Proposition 3.3.5. With notation and assumptions as above, we have

bp − cp =
1

4p
B3,ψ +

1− 3ψ(2)

12p
B1,ψ.

Proof. Applying Sczech’s 3-term addition formula (Proposition 3.1.18) to the

arguments

v1 = − t
2

2p
, v2 =

k2 + 2kt

2p
, v3 =

k2 − 2kt

2p
,
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we obtain

P1

(
t2

2p

)
P1

(
k2 + 2kt

2p

)
P1

(
k2 − 2kt

2p

)
− P1

(
t2

2p

)
P1

(
(k + t)2

2p

)
P1

(
(k − t)2

2p

)
+ P1

(
(k + t)2

2p

)
P1

(
k2 + 2kt

2p

)
P1

(
2kt

p

)
− P1

(
(k − t)2

2p

)
P1

(
k2 − 2kt

2p

)
P1

(
2kt

p

)
=

1

2
P1

(
(k + t)2

2p

)(
P2

(
2kt

p

)
− P2

(
(k − t)2

2p

))
+

1

2
P1

(
(k + t)2

2p

)(
P2

(
k2 + 2kt

2p

)
− P2

(
t2

2p

))
+

1

2
P1

(
(k − t)2

2p

)(
P2

(
k2 − 2kt

2p

)
− P2

(
t2

2p

))
− 1

2
P1

(
2kt

p

)(
P2

(
k2 − 2kt

2p

)
− P2

(
k2 + 2kt

2p

))
− 1

6

(
−P3

(
(k − t)2

2p

)
+ P3

(
2kt

p

))
− 1

6

(
−2P3

(
t2

2p

)
+ 2P3

(
k2 + 2kt

2p

)
+ 2P3

(
k2 − 2kt

p

))
− 1

4
δ1

(
− t

2

2p
,
k2 + 2kt

2p
,
k2 − 2kt

2p

)
+

1

4
δ2

(
− t

2

2p
,
k2 + 2kt

2p
,
k2 − 2kt

2p

)
,

where

δ1(x, y, z) =


P1(x), if x ≡ y ≡ z mod 1,

0, otherwise,

and

δ2(x, y, z) =



P1(x), if y, z are integers,

P1(y), if x, z are integers,

P1(z), if x, y are integers,

0, otherwise.

Carefully summing over k, t(2p) and applying Proposition 3.2.7, Proposition 3.2.9,
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Proposition 3.2.5, Proposition 3.2.8, and Proposition 3.2.1, we get

Rp − Zp + 2Lp = cp +
5

12p
B3,ψ +

−3p+ 1− 3ψ(2)

12p
B1,ψ.

Applying Proposition 3.3.1, Proposition 3.3.3, and Proposition 3.3.4, we obtain

1

6p
B3,ψ −

1

4
B1,ψ + bp = cp +

5

12p
B3,ψ +

−3p+ 1− 3ψ(2)

12p
B1,ψ,

from which the assertion of the proposition immediately follows.

Proposition 3.3.6. With notation and assumptions as above, we have

ap + bp − cp =
1

3p
B3,ψ.

Proof. Applying Proposition 3.1.19 with n = 3 and the arguments x = (k+t)2

p
,

y = −2kt
p

, we obtain

P1

(
(k + t)2

p

)
P2

(
k2 + t2

p

)
− P1

(
2kt

p

)
P2

(
k2 + t2

p

)
− P1

(
(k + t)2

p

)
P2

(
2kt

p

)
+ P1

(
2kt

p

)
P2

(
(k + t)2

p

)
=

1

3

(
P3

(
(k + t)2

p

)
+ 2P3

(
k2 + t2

p

)
− P3

(
2kt

p

))
.

Carefully summing over k, t(p) and applying Proposition 3.2.10, we obtain

ap + bp − cp =
1

3p
B3,ψ,

which was to be demonstrated.
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Theorem 3.3.7. With notation and assumptions as above, we have

ap =
1

12p
B3,ψ −

1− 3ψ(2)

12p
B1,ψ,

bp =
1

6p
B3,ψ +

1− ψ(2)

2p
B1,ψ,

cp = − 1

12p
B3,ψ +

5− 3ψ(2)

12p
B1,ψ.

Proof. This follows immediately from Propostion 3.3.2, Proposition 3.3.5, and

Proposition 3.3.6.

We are now in position to prove Theorem 3.3.

Proof of Theorem 3.3. This follows immediately from Proposition 3.3.1 and The-

orem 3.3.7.



76

3.4 The Sum Jp and the Mordell-Tornheim L-Function

In this section, we discuss a very interesting exponential sum and its connection with

a particular Mordell-Tornheim L-function. Matsumoto et al.[14] define the Mordell-

Tornheim L-functions of depth k by

LMT,k(s1, · · · , sk+1;χ1, · · · , χk+1)

=
∞∑

m1=1

· · ·
∞∑

mk=1

χ1(m1) · · ·χk(mk)χk+1(m1 + · · ·+mk)

ms1
1 · · ·m

sk
k (m1 + · · ·+mk)sk+1

(Re(sj) ≥ 1, 1 ≤ j ≤ k + 1)

for complex variables s1, · · · , sk+1 and primitive Dirichlet characters χ1, · · · , χk+1.

We fix an odd prime p ≡ 3(4). We denote by ψ the Legendre symbol mod p:

ψ(a) =
(
a
p

)
. We also put ζ = exp(2πi/p).

Theorem 3.4. With notation and assumptions being the same as above, put

Jp =
∑

(a,b,c)∈S

ψ(abc)

(ζa − 1)(ζb − 1)(ζc − 1)
,

where S = {(a, b, c) ∈ (F×p )3 | a+ b+ c = 0}. Then, we get

Jp =
3p3i

4π3
LMT,2(1, 1, 1;ψ, ψ, ψ).

Incidentally, when p ≡ 1(4), the sum Jp is not so interesting since replacing (a, b, c)

by (−a,−b,−c) reveals that Jp = 0. Before proving this theorem, we first establish

two propositions.

Proposition 3.4.1. With notation and assumptions being the same as above, we

have

Jp = p
√
−p jp,
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where

(3.4.1) jp =
∑
i,j,k(p)

P1

(
j + i

p

)
P2

(
j + k

p

)
ψ(ijk).

Proof. We have

Jp =
∑

(a,b,c)∈S

ψ(abc)

(ζa − 1)(ζb − 1)(ζc − 1)

=
1

p

∑
x(p)

p−1∑
a,b,c=1

ψ(abc)ζx(a+b+c)

(ζa − 1)(ζb − 1)(ζc − 1)
.

Applying Proposition 3.2.14, we get

Jp =
1

p4

∑
x(p)

p−1∑
a,b,c=1

p−1∑
i,j,k=1

ijk ζ(i+x)a+(j+x)b+(k+x)c ψ(abc)

=
τ(ψ)3

p4

∑
x(p)

p−1∑
i,j,k=1

ijk ψ(i+ x)ψ(j + x)ψ(k + x),

where τ(ψ) is the Gaussian sum τ(ψ) =
∑p−1

a=1 ψ(a)ζa. We will now express everything

in terms of periodic Bernoulli polynomials and take full advantage of their periodicity.

Noting that P1 and ψ are odd functions and applying Proposition 3.2.11, we obtain

Jp =
τ(ψ)3

p

∑
x(p)

p−1∑
i,j,k=1

(
P1

(
i

p

)
+

1

2

)(
P1

(
j

p

)
+

1

2

)(
P1

(
k

p

)
+

1

2

)
× ψ(i+ x)ψ(j + x)ψ(k + x)

=
τ(ψ)3

p

{∑
x(p)

p−1∑
i,j,k=1

P1

(
i

p

)
P1

(
j

p

)
P1

(
k

p

)
ψ(i+ x)ψ(j + x)ψ(k + x)

+
1

4

∑
x(p)

p−1∑
i,j,k=1

(
P1

(
i

p

)
+ P1

(
j

p

)
+ P1

(
k

p

))
ψ(i+ x)ψ(j + x)ψ(k + x)

}

=
τ(ψ)3

p

{ ∑
i,j,k,x(p)

P1

(
i+ x

p

)
P1

(
j + x

p

)
P1

(
k + x

p

)
ψ(ijk)− 3

4
B1,ψ

}
.
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Applying the Sczech 3-term addition formula (Proposition 3.1.18) with the arguments

v1 =
i+ x

p
, v2 =

j + x

p
, v3 =

k + x

p
,

we obtain

− P1

(
i+ x

p

)
P1

(
j + x

p

)
P1

(
k + x

p

)
+ P1

(
i+ x

p

)
P1

(
j − i
p

)
P1

(
k − i
p

)
+ P1

(
i− j
p

)
P1

(
j + x

p

)
P1

(
k − j
p

)
+ P1

(
i− k
p

)
P1

(
j − k
p

)
P1

(
k + x

p

)
=

1

2
P1

(
j − i
p

)(
P2

(
k − j
p

)
− P2

(
k − i
p

))
+

1

2
P1

(
j − i
p

)(
P2

(
j + x

p

)
− P2

(
i+ x

p

))
+

1

2
P1

(
k − i
p

)(
P2

(
k + x

p

)
− P2

(
i+ x

p

))
+

1

2
P1

(
k − j
p

)(
P2

(
k + x

p

)
− P2

(
j + x

p

))
− 1

6

(
−P3

(
k − i
p

)
− P3

(
k − j
p

))
− 1

6

(
2P3

(
i+ x

p

)
+ 2P3

(
j + x

p

)
+ 2P3

(
k + x

p

))
− 1

4
δ1

(
i+ x

p
,
j + x

p
,
k + x

p

)
+

1

4
δ2

(
i+ x

p
,
j + x

p
,
k + x

p

)
.

Multiplying throughout by ψ(ijk), carefully summing over i, j, k, x(p), and applying

Proposition 3.2.12, Proposition 3.2.2, we find that

∑
i,j,k,x(p)

P1

(
i+ x

p

)
P1

(
j + x

p

)
P1

(
k + x

p

)
ψ(ijk) = −p jp +

3

4
B1,ψ,

where jp is given by (3.4.1). Hence, plugging this result back into the above expression
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for Jp, we obtain

Jp = −τ(ψ)3jp.

As p ≡ 3(4), τ(ψ) =
√
−p, and the assertion of the proposition immediately follows.

Proposition 3.4.2. With notation and assumptions as above, we have

jp =
3p
√
p

4π3
LMT,2(1, 1, 1;ψ, ψ, ψ).

Proof. Employing the Fourier series for P1

(
j+i
p

)
and P2

(
j+k
p

)
(Proposition

3.1.10), we get

jp =
2!

(2πi)3

∑
i,j,k(p)

∑′

x,y∈Z

e
(
x(j+i)+y(j+k)

p

)
ψ(ijk)

xy2

=
2τ(ψ)3

(2πi)3

∑′

x,y∈Z

ψ(xy(x+ y))

xy2
.

From the partial fraction expansion 1
xy

= 1
x(x+y)

+ 1
y(x+y)

, together with ψ(−x) =

−ψ(x), it follows that

jp =
τ(ψ)3

(2πi)3

∑′

x,y∈Z

ψ(xy(x+ y))

xy(x+ y)

=
2τ(ψ)3

(2πi)3

∑′

x,y∈Z
y>0

ψ(xy(x+ y))

xy(x+ y)

=
2τ(ψ)3

(2πi)3

{∑′

x,y∈Z
x,y>0

ψ(xy(x+ y))

xy(x+ y)
+
∑′

x,y∈Z
y>x>0

ψ(xy(y − x))

xy(y − x)
+
∑′

x,y∈Z
x>y>0

ψ(xy(y − x))

xy(y − x)

}

=
6τ(ψ)3

(2πi)3

∑′

x,y∈Z
x,y>0

ψ(xy(x+ y))

xy(x+ y)

=
6τ(ψ)3

(2πi)3
LMT,2(1, 1, 1;ψ, ψ, ψ).
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As p ≡ 3(4), τ(ψ) =
√
−p, and the assertion of the proposition immediately follows.

We are now in position to prove Theorem 3.4.

Proof of Theorem 3.4. This follows immediately from Proposition 3.4.1 and Propo-

sition 3.4.2.

We now obtain the following interesting corollary of Proposition 3.4.2, a result for

which we are not able to find any reference in the literature.

Corollary 3.4.3. With notation and assumptions being the same as above, we

have

LMT,2(1, 1, 1;ψ, ψ, ψ) ∈ π3

√
p
Q.

Proof. This follows immediately from Proposition 3.4.2 and the fact that jp ∈ Q.
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3.5 A Contribution Towards an Elementary Proof of the Lee-

Weintraub Identity

In this section, we make our contribution towards an elementary proof of the Lee-

Weintraub identity. We prove, in a completely elementary manner, that the Lee-

Weintraub identity is equivalent to any of the three identities given in Theorem 3.5.

Thus proving any one of these identities in an elementary manner would complete an

elementary proof of the Lee-Weintraub identity.

We fix an odd prime p. We denote by ψ the Legendre symbol mod p: ψ(a) =
(
a
p

)
.

We also put ζ = exp(2πi/p). We recall the sums Fp, Gp, Rp, and introduce the sum

Sp:

Fp =
∑
k,t(p)

P1

(
t2

p

)
P1

(
k2

p

)
P1

(
k2 + 2kt

p

)

Gp =
∑
k,t(p)

P1

(
t2

p

)
P1

(
2kt

p

)
P1

(
k2 + 2kt

p

)

Rp =
∑
k,t(2p)

P1

(
t2

2p

)
P1

(
k2 + 2kt

2p

)
P1

(
k2 − 2kt

2p

)

Sp =
∑
k,t(p)

P1

(
t2

p

)
P1

(
k2

p

)
P1

(
(k + t)2

p

)

We also recall the Lee-Weintraub identity, proved by Ibukiyama.

The Lee-Weintraub Identity [9]. With notation and assumptions being the

same as above, put

LWp =
∑

(a,b,c)∈T

ψ(abc)

(ζa − 1)(ζb − 1)(ζc − 1)
,

where T = {(a, b, c) ∈ (F×p )3 | ab+ bc+ ca = 0}. Then, we get

LWp =
√
ψ(−1)p

(
1

6
B3,ψ −

3

2
B2,ψ +

p+ 1

4
B1,ψ

)
.
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Theorem 3.5 With notation and assumptions being the same as above, the Lee-

Weintraub identity is equivalent any of the following three identities:

(i) Rp = 0,

(ii) Fp = Gp,

(iii) lim
t→∞

∑′

x,y,z∈Z
xy−z2≡0(p)
|x|,|y|,|z|<t

ψ(x)

x(y2 − z2)
= 0.

Proof. By applying the same reasoning as in Section 5.1, in a completely elemen-

tary manner, one easily shows that

LWp =
√
ψ(−1)p

(
−pSp −

3

2
B2,ψ +

3

4
B1,ψ

)
.

Thus the Lee-Weintraub identity is equivalent to the identity

(3.5.1) Sp = − 1

6p
B3,ψ −

p− 2

4p
B1,ψ.

Applying the 2-term addition formula (Proposition 3.1.17) to the arguments

v1 = −t
2

p
, v2 =

(k + t)2

p
,

we obtain

− P1

(
t2

p

)
P1

(
(k + t)2

p

)
+ P1

(
t2

p

)
P1

(
k2 + 2kt

p

)
− P1

(
(k + t)2

p

)
P1

(
k2 + 2kt

p

)
= −1

2

(
P2

(
t2

p

)
+ P2

(
(k + t)2

p

)
+ P2

(
k2 + 2kt

p

))
+

1

4
δ

(
t2

p
,
(k + t)2

p

)
,

where

δ(x, y) =


1, if x, y are integers,

0, otherwise.
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Multiplying both sides of the above equation by P1

(
k2

p

)
, carefully summing over

k, t(p), and applying Proposition 3.2.1, Proposition 3.2.2, we get

Sp = 2Fp +
1

4p
B1,ψ.

From (3.3.2), (3.3.5), we see that

Sp = Rp −
1

6p
B3,ψ −

p− 2

4p
B1,ψ.

Thus the assertion (i) follows from (3.5.1). The assertion (ii) follows immediately

from (i) and (3.3.5). If p ≡ 1(4), then the sum in the assertion (iii) vanishes by the

usual even/odd argument. Thus we assume that p ≡ 3(4) in what follows. By the

multiplication formula, we find that

Rp =
∑
k,t(2p)

P1

(
t2

2p

)
P1

(
k2 + 2kt

2p

)
P1

(
k2 − 2kt

2p

)

=
∑
k(2p)

0≤t≤p−1

P1

(
t2

2p

)
P1

(
k2 + 2kt

2p

)
P1

(
k2 − 2kt

2p

)

+
∑
k(2p)

0≤t≤p−1

P1

(
t2

2p
+

1

2

)
P1

(
k2 + 2kt

2p

)
P1

(
k2 − 2kt

2p

)

=
∑
k(2p)
t(p)

P1

(
t2

p

)
P1

(
k2 + 2kt

2p

)
P1

(
k2 − 2kt

2p

)
.

Applying the Fourier series for the P1’s (Proposition 3.1.10), we get

Rp =
∑
k(2p)
t(p)

P1

(
t2

p

)
P1

(
k2 + 2kt

2p

)
P1

(
k2 − 2kt

2p

)

= − 1

(2πi)3

∑
k(2p)
t(p)

∑′

x,y,z∈Z

e
(

2xt2+y(k2+2kt)+z(k2−2kt)
2p

)
xyz

.
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Recall that we are summing symmetrically with respect to x, y, z. Applying the Q-

limit formula (see Gunnells and Sczech[7]), we can replace (x, y, z) by (x, y + z, y −

z) while still summing symmetrically with respect to x, y, z. This together with

Proposition 3.2.18 yields

Rp = − 1

(2πi)3

∑′

x,y,z∈Z

1

x(y2 − z2)

∑
t(p)

e

(
xt2

p

)∑
k(2p)

e

(
yk2 + 2ztk

p

)

= −2 τ(ψ)

(2πi)3

∑′

x,y,z∈Z

ψ(y)

x(y2 − z2)

∑
t(p)

e

(
{x− y−1z2}t2

p

)
= −2p τ(ψ)

(2πi)3

∑′

x,y,z∈Z
xy−z2≡0(p)

ψ(y)

x(y2 − z2)
.

Thus the assertion (iii) follows from (i).
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4 A Special Family of Character Sums

Let χ be a primitive Dirichlet character with conductor f > 1. Let l be any positive

integer which is prime to f . Let n ∈ Z, n ≥ 0. We also put ζ = exp(2πi/f).

Consider the Dedekind sum

s(l, f) =
∑
a(f)

P1

(
la

f

)
P1

(
a

f

)

= − 1

f

f−1∑
a=1

1

(ζ la − 1)(ζa − 1)
+
f − 1

4f
.

Observe that the mystery of the Dedekind sum s(l, f) lies in the exponential sum

f−1∑
a=1

1

(ζ la − 1)(ζa − 1)
.

Thus, the only natural (and responsible) thing to do is to twist this exponential sum

with an arbitrary primitive Dirichlet character with conductor f . This is precisely

what we did, and in fact, we generalized it even further.

The aim of this chapter is to obtain a formula expressing the following character

sum

Mn(l, χ) =

f−1∑
a=1

χ(a)

(ζ la − 1)n(ζa − 1)

in terms of generalized Bernoulli numbers using only elementary methods from algebra

and number theory. The following plays the starring role in accomplishing this.

4.1 The Star Character Sum Zk(l, c, χ)

Fix a primitive Dirichlet character χ with conductor fχ > 1. We write f for fχ when

there is no fear of confusion. For any natural number l prime to f and any integer c,
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we define a character sum Zk(l, c, χ) by

(4.1.1) Zk(l, c, χ) = fk−1
∑
a(f)

Pk

(
la+ c

fl

)
χ(la+ c).

For any Dirichlet character δ, we denote by fδ the conductor of δ. For any natural

number m, we denote by X(m) the set of primitive Dirichlet characters δ such that m

is divisible by fδ, and by Y (m) the set of primitive Dirichlet characters with conductor

m. The following theorem is a generalization of Ibukiyama’s Theorem 2 in [10].

Theorem 4.1. Let l be a natural number prime to f and c be a natural number

prime to l with 1 ≤ c ≤ l−1. For any integer u with u | l, denote by lu the u-primary

part of l, that is, the maximum integer which divides l and is prime to u. We get

Zk(l, c, χ) =
1

φ(l)lk−1

∑
u|l

∑
δ∈Y (u)

δ(c−1)Bk,δχ

∏
q|lu

q prime

(1− qk−1χ(q)δ(q))

 ,

where φ is the Euler function.

To prove Theorem 4.1, we prepare several lemmas. In preparation for Lemma 1,

we recall the multiplication formula for periodic Bernoulli polynomials:

Pk(nx) = nk−1

n−1∑
a=0

Pk

(
x+

a

n

)
.

Lemma 4.1.1. For a natural number l prime to fχ and any δ ∈ X(l), we get

lk−1

l−1∑
c=0

δ(c)Zk(l, c, χ) = Bk,δχ.
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Proof. Since δ(c) = δ(ln+ c), we get

lk−1

l−1∑
c=0

δ(c)Zk(l, c, χ) = (fχl)
k−1

l−1∑
c=0

fχ−1∑
n=0

Pk

(
ln+ c

fχl

)
δ(ln+ c)χ(ln+ c)

= (fχl)
k−1

fχl−1∑
m=0

Pk

(
m

fχl

)
δ(m)χ(m).

Since (l, fχ) = 1, the Dirichlet character δχ is primitive with conductor fδχ = fδfχ.

Hence, we get

lk−1

l−1∑
c=0

δ(c)Zk(l, c, χ) = (fχl)
k−1

fχl−1∑
m=0

Pk

(
m

fχl

)
δχ(m)

= (fχl)
k−1

fδχ−1∑
a=0

lf−1
δ −1∑
b=0

Pk

(
fδχb+ a

fχl

)
δχ(fδχb+ a)

= (fχl)
k−1

fδχ−1∑
a=0

lf−1
δ −1∑
b=0

Pk

(
a

fχl
+

b

lf−1
δ

) δχ(a).

Applying the multiplication formula, we obtain

lk−1

l−1∑
c=0

δ(c)Zk(l, c, χ) = (fχl)
k−1

(
fδ
l

)k−1 fδχ−1∑
a=0

Bk

(
a

fδχ

)
δχ(a)

= Bk,δχ.

From this formula, we shall extract a kind of inversion formula. We fix a natural

number l which is prime to fχ and put L =
∏

q|l q, where q runs over primes. For any

m | l, denote by lm the m-primary part of l.

Lemma 4.1.2. For any fixed number d ∈ (Z/lZ)∗, we get

∑
m|L

φ(lm)χ(m) (lmm)k−1 Zk(lm, e, χ) =
∑
δ∈X(l)

δ(d−1)Bk,δχ,
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where e is the unique integer such that me ≡ d mod lm with 0 ≤ e ≤ lm − 1.

Proof. We shall show this lemma by taking the sum over δ ∈ X(l) of both sides

of the formula in Lemma 4.1.1. For an integer c with 0 ≤ c ≤ l − 1, there exists a

unique m | L such that m | c and (c, L/m) = 1. Denote by A(m) the following set of

integers:

A(m) = {c ∈ Z : 0 ≤ c ≤ l − 1, m | c, (c, L/m) = 1}.

Then for any c ∈ A(m), we have
∑

δ∈X(l) δ(c) =
∑

δ∈X(lm) δ(c), since δ(c) = 0 when-

ever (fδ,m) > 1. Hence, applying Lemma 4.1.1, we get

∑
δ∈X(l)

δ(d−1)Bk,δχ = lk−1
∑
δ∈X(l)

l−1∑
c=0

δ(d−1c)Zk(l, c, χ)

= lk−1
∑
m|L

∑
c∈A(m)

∑
δ∈X(l)

δ(d−1c)Zk(l, c, χ)

= lk−1
∑
m|L

∑
c∈A(m)

∑
δ∈X(lm)

δ(d−1c)Zk(l, c, χ).

(4.1.2)

We note that ∑
δ∈X(lm)

δ(d−1c) =


φ(lm), if d ≡ c mod lm,

0, otherwise,

and denote by C(m) the following set of integers:

C(m) = {c ∈ Z : 0 ≤ c ≤ l − 1, m | c, (c, L/m) = 1, and d ≡ c mod lm}.

Then, from (4.1.2), we get

∑
δ∈X(l)

δ(d−1)Bk,δχ = lk−1
∑
m|L

∑
c∈A(m)

∑
δ∈X(lm)

δ(d−1c)Zk(l, c, χ)

= lk−1
∑
m|L

φ(lm)
∑

c∈C(m)

Zk(l, c, χ).

(4.1.3)
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If we take the unique integer e such that me ≡ d mod lm with 0 ≤ e ≤ lm − 1, then

(e, lm) = 1, since (d, l) = 1. Hence we get

C(m) = {m(e+ lma) : a ∈ Z, 0 ≤ a ≤ l(lmm)−1 − 1},

and

∑
c∈C(m)

Zk(l, c, χ) =

l(lmm)−1−1∑
a=0

Zk(l,m(e+ lma), χ)

= fk−1
χ

l(lmm)−1−1∑
a=0

fχ−1∑
n=0

Pk

(
ln+m(e+ lma)

fχl

)
χ(ln+m(e+ lma))

= χ(m)fk−1
χ

l(lmm)−1−1∑
a=0

fχ−1∑
n=0

Pk

(
lm (l(lmm)−1n+ a) + e

fχlm−1

)
× χ

(
lm
(
l(lmm)−1n+ a

)
+ e
)

= χ(m)fk−1
χ

fχl(lmm)−1−1∑
b=0

Pk

(
lmb+ e

fχlm−1

)
χ (lmb+ e)

= χ(m)fk−1
χ

fχ−1∑
n=0

l(lmm)−1−1∑
a=0

Pk

(
lm (fχa+ n) + e

fχlm−1

)
χ (lm (fχa+ n) + e)

= χ(m)fk−1
χ

fχ−1∑
n=0

l(lmm)−1−1∑
a=0

Pk

(
lmn+ e

fχlm−1
+

a

l(lmm)−1

)χ (lmn+ e) .

Applying the multiplication formula, we get

∑
c∈C(m)

Zk(l, c, χ) = χ(m)fk−1
χ

(
lmm

l

)k−1 fχ−1∑
n=0

Pk

(
lmn+ e

fχlm

)
χ (lmn+ e)

= χ(m)

(
lmm

l

)k−1

Zk(lm, e, χ).

Thus, from (4.1.3), we obtain

∑
δ∈X(l)

δ(d−1)Bk,δχ =
∑
m|L

φ(lm)χ(m) (lmm)k−1 Zk,lm,e.
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Lemma 4.1.3. We fix natural numbers l prime to fχ and c prime to l with

1 ≤ c ≤ l − 1. We define L and lm for m | l in the same way as in Lemma 4.1.2.

Then, we get

φ(l)lk−1Zk,l,c =
∑
m|L

µ(m)χ(m)mk−1
∑

δ∈X(lm)

δ(mc−1)Bk,δχ,

where µ is the Möbius function.

Proof. For u | v | L and any d ∈ (Z/lZ)∗, we put

g(u, v, d) = φ (l/lu)χ
(
u−1v

) (
u−1vl/lu

)k−1
Zk(l/lu, w, χ),

where w is defined as the unique integer such that (u−1v)w ≡ d mod (l/lu) with

1 ≤ w ≤ l/lu − 1. Also, we put

f(v, d) =
∑

δ∈X(l/lv)

δ(d−1)Bk,δχ.

Next, we apply Lemma 4.1.2 for (v, l/lv) instead of (L, l). Noting that (l/lv)m = lm/lv

for any m | v, we get

∑
m|v

φ(lm/lv)χ(m)(lmm)k−1Zk(lm/lv, e, χ) =
∑

δ∈X(l/lv)

δ(d−1)Bk,δχ,

where e is determined by me ≡ d mod (lm/lu) with 1 ≤ e ≤ lm/lv−1. For each m | v,

we define u by mu = v. Then lm/lv = l/lu, and we get

∑
u|v

g(u, v, d) = f(v, d).

For any u | v | L, we put G(u) = g(u, L, c) and F (v) = (L/v)k−1 χ(v−1L)f(v, L−1vc).
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Observe that g(u, L, c) = (L/v)k−1 χ(v−1L)g(u, v, L−1vc), where L−1vc is regarded as

an element of (Z/luZ)∗. Hence, we get

∑
u|v

G(u) = (L/v)k−1 χ(v−1L)
∑
u|v

g(u, v, L−1vc)

= (L/v)k−1 χ(v−1L)f(v, L−1vc)

= F (v).

Applying the Möbius inversion formula for v = L, we get

G(L) =
∑
m|L

µ(m)F

(
L

m

)
.

Thus, we obtain

φ(l)lk−1Zk(l, c, χ) =
∑
m|L

µ(m)χ(m)mk−1
∑

δ∈X(lm)

δ(mc−1)Bk,δχ.

We are now in position to prove Theorem 4.1.

Proof of Theorem 4.1. We define L and lm for m | l in the same way as in Lemma

4.1.2. From Lemma 4.1.3, we get

Zk(l, c, χ) =
1

φ(l)lk−1

∑
m|L

∑
δ∈X(lm)

µ(m)χ(m)δ(m)mk−1δ(mc−1)Bk,δχ

=
1

φ(l)lk−1

∑
m|l

∑
δ∈X(lm)

µ(m)χ(m)δ(m)mk−1δ(mc−1)Bk,δχ

=
1

φ(l)lk−1

∑
m|l

∑
u|lm

∑
δ∈Y (u)

µ(m)χ(m)δ(m)mk−1δ(mc−1)Bk,δχ.

Observe that u | lm for m | l is equivalent to m | lu for u | l. Thus, taking Proposition
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3.2.36 into account, we get

Zk(l, c, χ) =
1

φ(l)lk−1

∑
u|l

∑
m|lu

∑
δ∈Y (u)

µ(m)χ(m)δ(m)mk−1δ(mc−1)Bk,δχ

=
1

φ(l)lk−1

∑
u|l

∑
δ∈Y (u)

δ(c−1)Bk,δχ

∑
m|lu

µ(m)χ(m)δ(m)mk−1

=
1

φ(l)lk−1

∑
u|l

∑
δ∈Y (u)

δ(c−1)Bk,δχ

∏
q|lu

q prime

(1− qk−1χ(q)δ(q)).

Hence, we get Theorem 4.1.

As an immediate corollary, we get Ibukiyama’s Theorem 2 in [10].

Corollary 4.2.4 [10]. With notation and assumptions being the same as in

Theorem 4.1, we get

f−1∑
n=0

χ(ln+ c)n =
f

φ(l)

∑
u|l

∑
δ∈Y (u)

δ(c−1)B1,δχ

∏
q|lu

q prime

(1− χ(q)δ(q))

 ,

Proof. As fZ1(l, c, χ) =
∑f−1

n=0 χ(ln+ c)n, the assertion follows immediately from

Theorem 4.1.

4.2 The Evaluation of Mn(l, χ)

Let us recall the definition of Mn(l, χ) introduced at the beginning of Chapter 4. Let

χ be a primitive Dirichlet character with conductor f > 1. Let l by any positive

integer which is prime to f . We also put ζ = exp(2πi/f). Then,

Mn(l, χ) =

f−1∑
a=1

χ(a)

(ζ la − 1)n(ζa − 1)
.

The aim of this section is to express Mn(l, χ) in terms of the character sums Zj(l, c, χ)

given by (4.1.1). This is given in Theorem 4.2.6.
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We put

(4.2.1) Tj(l, c, χ) =


χ(c), if j = 0,

f−1∑
a1,···,aj=0

{
j∏
i=1

P1

(
ai
p

)}
χ

(
l

j∑
i=1

ai + c

)
, if j > 0.

Proposition 4.2.1. With notation and assumptions being the same as above, we

have

Mn(l, χ) =
(−1)n+1τ(χ)

2n+1

n+1∑
j=0

(−1)j2j
(
n+ 1

j

) l−1∑
c=0

Tj(l, c, χ̄).

Proof. Since

ζ la − 1

ζa − 1
=

l−1∑
c=0

ζca,

we get

Mn(l, χ) =

f−1∑
a=1

χ(a)

(ζ la − 1)n(ζa − 1)

=

f−1∑
a=1

χ(a)(ζ la − 1)

(ζ la − 1)n+1(ζa − 1)

=
l−1∑
c=0

f−1∑
a=1

χ(a)ζca

(ζ la − 1)n+1
.

Applying Proposition 3.2.14, (ii) in Proposition 3.2.13, we get

Mn(l, χ) =
1

fn+1

l−1∑
c=0

f−1∑
a1,···,an+1=1

f−1∑
a=1

a1 · · · an+1ζ
la(a1+···+an+1)+ca χ(a)

=
1

fn+1

l−1∑
c=0

f−1∑
a1,···,an+1=1

a1 · · · an+1

f−1∑
a=1

ζa{l(a1+···+an+1+c} χ(a)

=
τ(χ)

fn+1

l−1∑
c=0

f−1∑
a1,···,an+1=1

a1 · · · an+1 χ̄(l(a1 + · · ·+ an+1) + c).

Next, we shall express everything in terms of periodic Bernoulli polynomials and take
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full advantage of their periodicity. Continuing along, taking (i) in Proposition 3.2.13

into account, we get

Mn(l, χ) = τ(χ)
l−1∑
c=0

f−1∑
a1,···,an+1=1

{
n+1∏
i=1

(
P1

(
ai
f

)
+

1

2

)}
χ̄

(
l
n+1∑
i=1

ai + c

)

= τ(χ)
l−1∑
c=0

f−1∑
a1,···,an+1=1

{
n+1∑
j=0

1

2j

(
n+ 1

j

) n+1−j∏
i=1

P1

(
ai
f

)}
χ̄

(
l
n+1∑
i=1

ai + c

)

= τ(χ)
l−1∑
c=0

n+1∑
j=0

f−1∑
a1,···,an+1−j=1

(−1)j

2j

(
n+ 1

j

){ n+1−j∏
i=1

P1

(
ai
f

)}
χ̄

(
l

n+1−j∑
i=1

ai + c

)

= τ(χ)
l−1∑
c=0

n+1∑
j=0

(−1)j

2j

(
n+ 1

j

)
Tn+1−j(l, c, χ̄),

from which the assertion of the proposition immediately follows.

Proposition 4.2.2. With notation and assumptions being the same as above, we

have

Tj(l, c, χ) =

(
i

2π

)j
1

f

f−1∑
a,b=0

cj1

(
b

f

)
ζab χ(la+ c),

where c1(x) is given by (3.1.5).

Proof. For j = 0, the assertion follows from (iii) in Proposition 3.2.13. We now

assume that j > 0. Replacing a1 by a1 −
∑j

i=2 ai in the definition of Tj(l, c, χ) given

by (4.2.1), we get

Tj(l, c, χ) =

f−1∑
a1,···,aj=0

P1

(
a1 −

∑j
i=2 ai

f

){
j∏
i=2

P1

(
ai
f

)}
χ(la1 + c).
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Employing the finite Fourier transform to all of the P1’s (Proposition 3.1.16), we get

Tj(l, c, χ) =

(
−1

2πif

)j f−1∑
b1,···,bj=0
a1,···,aj=0

c1

(
b1

f

)
· · · c1

(
bj
f

)
ζb1(a1−

∑j
i=2 ai)+b2a2+···+bjaj χ(la1 + c)

=

(
−1

2πif

)j f−1∑
b1,···,bj=0
a1,···,aj=0

c1

(
b1

f

)
· · · c1

(
bj
f

)
ζa1b1+a2(b2−b1)+···+aj(bj−b1) χ(la1 + c)

=

(
−1

2πif

)j
· f j−1

f−1∑
b1,a1=0

cj1

(
b1

f

)
ζa1b1 χ(la1 + c),

from which the assertion of the proposition immediately follows.

Recall from Sczech[17], for x 6∈ Z, we have ck(x) = Vk(c1(x)) with a polynomial

Vk(t) of degree k given recursively by

(4.2.2) V0(t) = 1, V1(t) = t, kVk+1(t) = (t2 + π2)V ′k(t) for k ≥ 1.

Then, V2(t) = t2 +π2, V3(t) = t3 +π2t, V4(t) = t4 + 4π2

3
t2 + π4

3
, V5(t) = t5 + 5π2

3
t3 + 2π4

3
t,

and so on. Accordingly, c0(x) = 1, c1(x) = c1(x), c2(x) = c2
1(x) + π2, c3(x) =

c3
1 + π2c1(x), c4(x) = c4

1(x) + 4π2

3
c2

1(x) + π4

3
, c5(x) = c5

1(x) + 5π2

3
c3

1(x) + 2π4

3
c1(x) etc.

From this, it easily follows that for x 6∈ Z, there is a polynomial Uk(t) of degree k such

that ck1(x) = Uk(c(x)) where we use the symbolic power notation (c(x))j to denote

cj(x). Consequently, the Uk(t)’s must satisfy the following condition:

(4.2.3) Vk(U(t)) = tk (k = 0, 1, · · ·),

where we use the symbolic power notation (U(t))j to denote Uj(t). Thus the Uk(t)’s

can easily be determined recursively by (4.2.3) via (4.2.2). We find that U0(t) = t0,

U1(t) = t, U2(t) = t2 − π2t0, U3(t) = t3 − π2t, U4(t) = t4 − 4π2

3
t2 + π4t0, U5(t) =

t5 − 5π2

3
t3 + π4t, and so on. Accordingly, c0

1(x) = c0(x), c1(x) = c1(x), c2
1(x) =

c2(x)− π2c0(x), c3
1(x) = c3(x)− π2c1(x), c4

1(x) = c4(x)− 4π2

3
c2(x) + π4c0(x), c5

1(x) =



96

c5(x)− 5π2

3
c3(x) + π4c1(x), etc.

Proposition 4.2.3. With notation and assumptions being the same as above, we

have

Tj(l, c, χ) =

(
i

2π

)j
1

f

f−1∑
a,b=0

Uj

(
c

(
b

f

))
ζab χ(la+ c),

where Uj(t) denotes the polynomial of degree j determined by (4.2.3) and
(
c
(
b
f

))k
denotes ck

(
b
f

)
.

Proof. We will show that this is the same expression for Tj(l, c, χ) given in Propo-

sition 4.2.2. For j = 0, the assertion is clear. We now assume that j > 0. Since

cj1

(
b
f

)
= Uj

(
c
(
b
f

))
for b = 1, · · · , f − 1, we only need to verify the equality in the

case of b = 0. Since c1(0)j = 0, we must show that

f−1∑
a=0

Uj(c(0))χ(la+ c) = 0.

This follows immediately from (i) in Proposition 3.2.13, thus completing the proof.

In view of the finite Fourier transform of the Pk’s ((i) in Proposition 3.1.16), we

see that

f−1∑
b=0

Uj

(
c

(
b

f

))
ζab = Uj

(
P ∗
(
a

f

))
,

where we use the symbolic power notation
(
P ∗
(
a
f

))k
to denote P ∗k

(
a
f

)
,

P ∗k

(
a

f

)
=



f, if k = 0, a = 0,

0, if k = 0, a 6= 0,

−(2πif)k

k!
Pk

(
a

f

)
, otherwise.
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Letting

Q∗k (l, c, χ) =
1

f

f−1∑
a=0

P ∗k

(
a

f

)
χ(la+ c)

= δk,0 χ(c)− (2πi)kfk−1

k!

f−1∑
a=0

Pk

(
a

f

)
χ(la+ c),

(4.2.4)

we get

(4.2.5)
1

f

f−1∑
a,b=0

Uj

(
c

(
b

f

))
ζab χ(la+ c) = Uj (Q∗ (l, c, χ)) ,

where we use the symbolic power notation (Q∗ (l, c, χ))k to denote Q∗k (l, c, χ). Hence

from Proposition 4.2.3 and (4.2.5), we have

(4.2.6) Tj(l, c, χ) =

(
i

2π

)j
Uj (Q∗ (l, c, χ)) .

For any natural number l prime to f and any integer c, recall the character sum

Zk(l, c, χ) given by (4.1.1),

Zk(l, c, χ) = fk−1
∑
a(f)

Pk

(
la+ c

fl

)
χ(la+ c).

Lemma 4.2.4. With notation and assumptions being the same as above, we have

f−1∑
a=0

Pk

(
a

f

)
χ(la+ c) =

k∑
j=1

(−1)k−j
(
k

j

)(
c

fl

)k−j
1

f j−1
· Zj(l, c, χ) +

1

2
δk,1 χ(c).

Proof. From Proposition 3.1.2, we see that

Bk

(
a

f

)
=

k∑
j=0

(
k

j

)(
−c
fl

)k−j
Bj

(
a

f
+

c

fl

)
,
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from which it follows that

f−1∑
a=0

Bk

(
a

f

)
χ(la+ c) =

k∑
j=0

(−1)k−j
(
k

j

)(
c

fl

)k−j f−1∑
a=0

Bk

(
la+ c

fl

)
χ(la+ c).

Since Bk(0) = Pk(0)− (1/2)δk,1 and χ(0) = 0, we have, for 0 ≤ c ≤ l − 1,

f−1∑
a=0

Pk

(
a

f

)
χ(la+ c) =

k∑
j=0

(−1)k−j
(
k

j

)(
c

fl

)k−j
1

f j−1
· Zj(l, c, χ) +

1

2
δk,1 χ(c).

Since Z0(l, c, χ) = 0, the assertion of the lemma immediately follows.

We put

Z∗k (l, c, χ)

= −(2πi)k

k!

{
k∑
j=1

(−1)k−j
(
k

j

)(c
l

)k−j
Zj(l, c, χ) +

(
1

2
δk,1 − δk,0

)
χ(c)

}
(4.2.7)

Proposition 4.2.5. With notation and assumptions being the same as above, we

have

Q∗k(l, c, χ) = Z∗k(l, c, χ).

Proof. From (4.2.4) and Lemma 4.2.4, we have

Q∗k(l, c, χ) = δk,0 χ(c)− (2πi)kfk−1

k!

×

{
k∑
j=1

(−1)k−j
(
k

j

)(
c

fl

)k−j
1

f j−1
Zj(l, c, χ) +

1

2
δk,1 χ(c)

}

= δk,0 χ(c)− (2πi)k

k!

{
k∑
j=1

(−1)k−j
(
k

j

)(c
l

)k−j
Zj(l, c, χ) +

1

2
δk,1 χ(c)

}

= Z∗k(l, c, χ).

We are now in position to state the main theorem of this section.
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Theorem 4.2.6. Let χ be a primitive Dirichlet character with conductor f > 1

and let l by any positive integer which is prime to f . Let n ∈ Z, n ≥ 0. Then, we

have

Mn(l, χ) =
(−1)n+1τ(χ)

2n+1

n+1∑
j=0

(−1)j
(
i

π

)j (
n+ 1

j

) l−1∑
c=0

Uj (Z∗ (l, c, χ̄)) ,

where Uj(t) denotes the polynomial of degree j determined by (4.2.3), (Z∗ (l, c, χ̄))k

denotes Z∗k (l, c, χ̄) given by (4.2.7), and Zj(l, c, χ̄) is given by (4.1.1).

Proof. This follows immediately from Proposition 4.2.1, (4.2.6), and Proposition

4.2.5.

By Theorem 4.2.6, it is clear that we can express the sum Mn(l, χ) in terms of

the character sums {Zj(l, c, χ)}n+1
j=1 . Since the Zj(l, c, χ)’s can be expressed in terms

of generalized Bernoulli numbers by virtue of Theorem 4.1, so can the sum Mn(l, χ).

This is precisely what we were trying to show. Next we work out some examples.

4.3 Some Examples

Let χ be a primitive Dirichlet character with conductor f > 1 and let l by any positive

integer which is prime to f . Let n ∈ Z, n ≥ 0. We will also consider the following

character sum that is closely related to Mn(l, χ).

Sn(l, χ) =

f−1∑
a1,···,an+1=1

a1 · · · an+1 χ(l(a1 + · · ·+ an) + an+1).

Proposition 4.3.1. With notation and assumptions being the same as above, we

have

Sn(l, χ) =
fn+1

τ(χ̄)
Mn(l, χ̄).
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Proof. By Proposition 3.2.14 and (ii) in Proposition 3.2.13, we have

Mn(l, χ̄) =
1

fn+1

f−1∑
a1,···,an+1=1

f−1∑
a=1

a1 · · · an+1ζ
la(a1+···+an)+aan+1χ̄(a)

=
1

fn+1

f−1∑
a1,···,an+1=1

a1 · · · an+1

f−1∑
a=1

ζa{l(a1+···+an)+an+1}χ̄(a)

=
τ(χ̄)

fn+1

f−1∑
a1,···,an+1=1

a1 · · · an+1 χ(l(a1 + · · ·+ an) + an+1)

=
τ(χ̄)

fn+1
Sn(l, χ).

Lemma 4.3.2. With notation and assumptions being the same as above, with

Zk(l, c, χ) given by (4.1.1), we have

l−1∑
c=0

Zk(l, c, χ) =
1

lk−1
Bk,χ.

Proof. This follows immediately from Lemma 4.1.1 where we let δ ∈ X(l) be the

trivial character.

Proposition 4.3.3. With notation and assumptions being the same as in Theo-
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rem 4.2.6, we have

(i) M1(l, χ) =
τ(χ)

4

{
− 4B1,χ̄ −

2

l
B2,χ̄ +

4

l

l−1∑
c=1

c Z1(l, c, χ̄)

}
,

(ii) M2(l, χ) = −τ(χ)

8

{
− 8B1,χ̄ −

6

l
B2,χ̄ −

4

3l2
B3,χ̄

+
l−1∑
c=1

(
12c

l
− 4c2

l2

)
Z1(l, c, χ̄) +

4

l

l−1∑
c=1

c Z2(l, c, χ̄)

}
,

(iii) M3(l, χ) =
τ(χ)

16

{
− 16B1,χ̄ −

44

3l
B2,χ̄ −

16

3l2
B3,χ̄ −

2

3l3
B4,χ̄

+
l−1∑
c=1

(
88c

3l
− 16c2

l2
+

8c3

3l3

)
Z1(l, c, χ̄)

+
l−1∑
c=1

(
16c

l
− 4c2

l2

)
Z2(l, c, χ̄) +

8

3l

l−1∑
c=1

c Z3(l, c, χ̄)

}
,

(iv) M4(l, χ) = −τ(χ)

32

{
− 32B1,χ̄ −

100

3l
B2,χ̄ −

140

9l2
B3,χ̄ −

10

3l3
B4,χ̄ −

4

15l4
B5,χ̄

+
l−1∑
c=1

(
200c

3l
− 140c2

3l2
+

40c3

3l3
− 4c4

3l4

)
Z1(l, c, χ̄)

+
l−1∑
c=1

(
140c

3l
− 20c2

l2
+

8c3

3l3

)
Z2(l, c, χ̄)

+
l−1∑
c=1

(
40c

3l
− 8c2

3l2

)
Z3(l, c, χ̄) +

4

3l

l−1∑
c=1

c Z4(l, c, χ̄)

}
.

Proof. We get, by Theorem 4.2.6,

M1(l, χ) =
τ(χ)

4

2∑
j=0

(−1)j
(
i

π

)j (
2

j

) l−1∑
c=0

Uj(Z
∗(l, c, χ̄))

=
τ(χ)

4

l−1∑
c=0

{
U0(Z∗(l, c, χ̄))− 2i

π
U1(Z∗(l, c, χ̄))− 1

π2
U2(Z∗(l, c, χ̄))

}
.
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From (4.2.3), we have U0(t) = t0, U1(t) = t, and U2(t) = t2 − π2t0. Hence, we get

M1(l, χ) =
τ(χ)

4

l−1∑
c=0

{
Z∗0(l, c, χ̄)− 2i

π
Z∗1(l, c, χ̄)− 1

π2

(
Z∗2(l, c, χ̄)− π2Z∗0(l, c, χ̄)

)}

=
τ(χ)

4

l−1∑
c=0

{
2Z∗0(l, c, χ̄)− 2i

π
Z∗1(l, c, χ̄)− 1

π2
Z∗2(l, c, χ̄)

}
.

From (4.2.7), we have Z∗0(l, c, χ̄) = χ̄(c), Z∗1(l, c, χ̄) = −2πi
(
Z1(l, c, χ̄) + 1

2
χ̄(c)

)
, and

Z∗2(l, c, χ̄) = 2π2
(
−2c

l
Z1(l, c, χ̄) + Z2(l, c, χ̄)

)
. Hence, we get

M1(l, χ) =
τ(χ)

4

l−1∑
c=0

{(
−4 +

4c

l

)
Z1(l, c, χ̄)− 2Z2(l, c, χ̄)

}
.

Thus the assertion (i) follows from Lemma 4.3.2. The other identities are similarly

verified, so they are omitted.

We shall now work out some examples.

Proposition 4.3.4 [2]. Let f > 1 be an odd number and let χ be a primitive

Dirichlet character with conductor f . We also put ζ = exp(2πi/f). Then, we get

(i) M2(2, χ) =

f−1∑
a=1

χ(a)

(ζ2a − 1)2(ζa − 1)

= τ(χ)

{
1

24
B3,χ̄ +

1 + χ̄(2)

4
B2,χ̄ +

3 + 5χ̄(2)

8
B1,χ̄

}
,

(ii) S2(2, χ) =

f−1∑
a,b,c=1

abc χ(2(a+ b) + c) =

= f 2

{
1

24
B3,χ +

1 + χ(2)

4
B2,χ +

3 + 5χ(2)

8
B1,χ

}
.

Proof. From (ii) in Proposition 4.3.3, we get

M2(2, χ) = −τ(χ)

8

{
− 8B1,χ̄ − 3B2,χ̄ −

1

3
B3,χ̄ + 5Z1(2, 1, χ̄) + 2Z2(2, 1, χ̄)

}
.
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From Theorem 4.1, we have

Zj(2, 1, χ̄) =
1

2j−1

{
Bj,χ̄(1− 2j−1χ̄(2))

}
.

Thus the assertion (i) follows. From Proposition 4.3.1, we get

S2(2, χ) =
f 2

τ(χ̄)
M2(2, χ̄).

Thus the assertion (ii) follows from (i).

Proposition 4.3.5. Let f > 1 be a natural number prime to 5 and let χ be a

primitive Dirichlet character with conductor f . We denote by δ1, δ2, δ3, the primitive

Dirichlet characters modulo 5 characterized by δ1(2) = i, δ2(2) = −1, δ3(2) = −i. We

also put ζ = exp(2πi/f). Then, we get

(i) M1(5, χ) =

f−1∑
a=1

χ(a)

(ζ5a − 1)(ζa − 1)

= τ(χ)

{
− 1

10
B2,χ̄ −

1 + χ̄(5)

2
B1,χ̄ +

1

4
B1,δ3B1,δ1χ̄ +

1

4
B1,δ1B1,δ3χ̄

}
,

(ii) S1(5, χ) =

f−1∑
a,b=1

ab χ(5a+ b) =

= f 2

{
− 1

10
B2,χ −

1 + χ(5)

2
B1,χ +

1

4
B1,δ3B1,δ1χ +

1

4
B1,δ1B1,δ3χ

}
.

Proof. From (i) in Proposition 4.3.3, we get

M1(5, χ) =
τ(χ)

4

{
− 4B1,χ̄ −

2

5
B2,χ̄ +

4

5

4∑
c=1

c Z1(5, c, χ̄)

}
.(4.3.1)

From Theorem 4.1, for 1 ≤ c ≤ 4, we have

Z1(5, c, χ̄) =
1

4

{
B1,χ̄(1− χ̄(5)) +

3∑
i=1

δi(c
−1)B1,δiχ̄

}
.
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Hence,
4∑
c=1

c Z1(5, c, χ̄) =
5(1− χ̄(5))

2
B1,χ̄ +

5

4

3∑
i=1

B1,δ̄iB1,δiχ̄.

From (4.3.1), we get

M1(5, χ) =
τ(χ)

4

{
− 2(1 + χ̄(5))B1,χ̄ −

2

5
B2,χ̄ +

3∑
i=1

B1,δ̄iB1,δiχ̄

}
.

As δ2 is an even character, we get, by Proposition 3.1.7, B1,δ2 = 0. Since δ̄1 = δ3,

δ̄3 = δ1, we obtain the assertion (i). From Proposition 4.3.1, we get

S1(5, χ) =
f 2

τ(χ̄)
M1(5, χ̄).

Thus the assertion (ii) follows from (i).

Proposition 4.3.6. Let f > 1 be a natural number prime to 4 and let χ be a

primitive Dirichlet character with conductor f . We denote by δ the unique primitive
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Dirichlet character modulo 4. We also put ζ = exp(2πi/f). Then, we get

(i) M4(4, χ) =

f−1∑
a=1

χ(a)

(ζ4a − 1)4(ζa − 1)

= τ(χ)

{
1

30720
B5,χ̄ +

17

768
B4,χ̄ +

1

6144
B4,δχ̄ +

1903− 12χ̄(2)

9216
B3,χ̄

+
1

192
B3,δχ̄ +

271− 6χ̄(2)

384
B2,χ̄ +

173

3072
B2,δχ̄ +

2163− 115χ̄(2)

2048
B1,χ̄

+
15

64
B1,δχ̄

}
,

(ii) S4(4, χ) =

f−1∑
a,b,c,d,e=1

abcde χ(4(a+ b+ c+ d) + e)

= f 5

{
1

30720
B5,χ +

17

768
B4,χ +

1

6144
B4,δχ +

1903− 12χ(2)

9216
B3,χ

+
1

192
B3,δχ +

271− 6χ(2)

384
B2,χ +

173

3072
B2,δχ +

2163− 115χ(2)

2048
B1,χ

+
15

64
B1,δχ

}
.

Proof. From (iv) in Proposition 4.3.3, we get

M4(4, χ) = −τ(χ)

32

{
− 32B1,χ̄ −

25

3
B2,χ̄ −

35

36
B3,χ̄ −

5

96
B4,χ̄ −

1

960
B5,χ̄

+
3∑
c=1

(
50

3
c− 35

12
c2 +

5

24
c3 − 1

192
c4

)
Z1(4, c, χ̄)

+
3∑
c=1

(
35

3
c− 5

4
c2 +

1

24
c3

)
Z2(4, c, χ̄)

+
3∑
c=1

(
10

3
c− 1

6
c2

)
Z3(4, c, χ̄) +

1

3

3∑
c=1

c Z4(4, c, χ̄)

}
.

(4.3.2)
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From Theorem 4.1, we find that

Zj(4, 1, χ̄) =
1

2 · 4j−1
((1− 2j−1χ̄(2))Bj,χ̄ +Bj,δχ̄),

Zj(4, 2, χ̄) = χ̄(2)Zj(2, 1, χ̄) =
χ̄(2)

2j−1
(1− 2j−1χ̄(2))Bj,χ̄,

Zj(4, 3, χ̄) =
1

2 · 4j−1
((1− 2j−1χ̄(2))Bj,χ̄ −Bj,δχ̄) (j ∈ N).

Hence,

(4.3.3)
3∑
c=1

ci Zj(4, c, χ̄) =
1 + 3i + 2i+jχ̄(2)

2 · 4j−1
(1− 2j−1χ̄(2))Bj,χ̄ +

1− 3i

2 · 4j−1
Bj,δχ̄.

Applying (4.3.3) to all of the sums in (4.3.2), we obtain the assertion (i). From

Proposition 4.3.1, we get

S4(4, χ) =
f 5

τ(χ̄)
M4(4, χ̄).

Thus the assertion (ii) follows from (i).
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5 The Dual Lee-Weintraub Identity

We fix an odd prime p. We denote by ψ the Legendre symbol mod p: ψ(a) =
(
a
p

)
.

We put ζ = exp(2πi/p), and set

S = {(a, b, c) ∈ (F×p )3 | 4ab− (c− a− b)2 = 0},

T = {(a, b, c) ∈ (F×p )3 | ab+ bc+ ca = 0}.

We consider the sets S and T to be dual to each other since the quadratic forms in

their respective congruence conditions are dual to each other. Indeed,

(
a b c

)
−1 1 1

1 −1 1

1 1 −1



a

b

c

 = 4ab− (c− a− b)2,

(
a b c

)
−1 1 1

1 −1 1

1 1 −1


−1

a

b

c

 = ab+ bc+ ca.

In this chapter, we prove the dual version of the Lee-Weintraub identity, where the

summation set is S instead of T .

Theorem 5 (The Dual Lee-Weintraub Identity). With notation and as-

sumptions being the same as above, put

Ip =
∑

(a,b,c)∈S

ψ(abc)

(ζa − 1)(ζb − 1)(ζc − 1)
.

Then, we get

Ip =
√
ψ(−1)p

(
1

6
B3,ψ −

3

4
B2,ψ + (p− 2)B1,ψ

)
.

To prove Theorem 5, we must first establish several results.
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5.1 Rewriting the Sum Ip

We shall rewrite the sum Ip in the following way.

Theorem 5.1. With notation and assumptions being the same as in Theorem 5,

we get

Ip =
√
ψ(−1)p

(
−6p

(
Qp +

1

6
hp

)
− 3

4
B3,ψ −

3

4
B2,ψ −

9− 3ψ(2)− 2pδp,3
4

B1,ψ

)
,

where

(5.1.1) Qp =
∑
k,t(p)

P1

(
k2 + 2kt

p

)
P1

(
kt

p

)
P1

(
t2 − k2

p

)
,

and

(5.1.2) hp =
∑
k,t(p)

P1

(
k2 + 2kt

p

)
P2

(
t2 − k2

p

)
.

Proof of Theorem 5.1. We have

Ip =
∑
a,b,c∈S

ψ(abc)

(ζa − 1)(ζb − 1)(ζc − 1)

=
∑
a,b,c(p)
a,b,c 6≡0(p)

4ab−(c−a−b)2≡0(p)

ψ(abc)

(ζa − 1)(ζb − 1)(ζc − 1)

=
∑
a,b,c(p)

a,b,a+b+c 6≡0(p)
4ab−c2≡0(p)

ψ(ab(a+ b+ c))

(ζa − 1)(ζb − 1)(ζa+b+c − 1)
.

We notice that 4ab − c2 ≡ 0(p) with a, b 6≡ 0(p) implies that ab is a nonzero square

mod p. Therefore, b ≡ at2(p), c ≡ ±2at(p), and a + b + c ≡ a(t ± 1)2(p) for some
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t : 1 ≤ t ≤ p−1
2

. Hence, we get

Ip =
∑

1≤a≤p−1

1≤t≤ p−1
2

a,t,t+16≡0

ψ(a3t2(t+ 1)2)

(ζa − 1)(ζat2 − 1)(ζa(t+1)2 − 1)

+
∑

1≤a≤p−1

1≤t≤ p−1
2

a,t,t−16≡0

ψ(a3t2(t− 1)2)

(ζa − 1)(ζat2 − 1)(ζa(t−1)2 − 1)
.

Substituting p− t for t in the second sum, we get

Ip =
∑

1≤a≤p−1

1≤t≤ p−1
2

a,t,t+16≡0

ψ(a3t2(t+ 1)2)

(ζa − 1)(ζat2 − 1)(ζa(t+1)2 − 1)

+
∑

1≤a≤p−1
p−1
2
≤t≤p−1

a,t,t+16≡0

ψ(a3t2(t+ 1)2)

(ζa − 1)(ζat2 − 1)(ζa(t+1)2 − 1)

=

p−1∑
a=1

p−2∑
t=1

ψ(a)

(ζa − 1)(ζat2 − 1)(ζa(t+1)2 − 1)
.

As 1
ζa−1

= 1
p

∑p−1
n=1 nζ

an for any a with (a, p) = 1 (Proposition 3.2.14), we get

Ip =
1

p3

p−1∑
a=1

p−2∑
t=1

ψ(a)

p−1∑
k,l,m=1

klmζka+lat2+ma(t+1)2

=
1

p3

p−1∑
k,l,m=1

klm

p−2∑
t=1

∑
a(p)

ζa{(l+m)t2+2mt+(k+m)}ψ(a)

=
τ(ψ)

p3

p−1∑
k,l,m=1

klm

p−2∑
t=1

ψ((l +m)t2 + 2mt+ (k +m))

=
τ(ψ)

p3

 p−1∑
k,l,m=1

klm
∑
t(p)

ψ((l +m)t2 + 2mt+ (k +m))− 2

p−1∑
k,l,m=1

klmψ(k +m)

 ,

where τ(ψ) is the Gaussian sum τ(ψ) =
∑p−1

a=1 ψ(a)ζa. From Proposition 3.2.16, it
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follows that

Ip =
τ(ψ)

p3

ψ(−1)p
∑

(k,l,m)∈T

klmψ(klm)− 3

p−1∑
k,l,m=1

klmψ(k +m)

 ,

where T = {(k, l,m) ∈ Z3 | 1 ≤ k, l,m ≤ p− 1, kl + lm+mk ≡ 0(p)}. Letting

(5.1.3) Ap =
∑

(k,l,m)∈T

klmψ(klm),

and applying (3.2.5), Proposition 3.2.19, we obtain

(5.1.4) Ip =
√
ψ(−1)p

(
ψ(−1)

p2
Ap +

3(p− 1)

4
(B2,ψ + 2B1,ψ)

)
.

Next we shall evaluate Ap. To this end, we will express everything in terms of periodic

Bernoulli polynomials and take full advantage of their periodicity.

1

p3
Ap =

∑
(k,l,m)∈T

k

p

l

p

m

p
ψ(klm)

=
∑

(k,l,m)∈T

(
P1

(
k

p

)
+

1

2

)(
P1

(
l

p

)
+

1

2

)(
P1

(
m

p

)
+

1

2

)
ψ(klm)

=
∑

(k,l,m)∈T

P1

(
k

p

)
P1

(
l

p

)
P1

(
m

p

)
ψ(klm)

+
1

2

∑
(k,l,m)∈T

(
P1

(
k

p

)
P1

(
l

p

)
+ P1

(
l

p

)
P1

(
m

p

)
ψ(klm)

+ P1

(
m

p

)
P1

(
k

p

))
ψ(klm)

+
1

4

∑
(k,l,m)∈T

(
P1

(
k

p

)
+ P1

(
l

p

)
+ P1

(
m

p

))
ψ(klm)

+
1

8

∑
(k,l,m)∈T

ψ(klm).
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We observe the 1-to-1 correspondence between the sets

T = {(k, l,m) ∈ Z3 | 1 ≤ k, l,m ≤ p− 1, kl + lm+mk ≡ 0(p)}

and

{(m2l +ml, l +ml,−ml) ∈ (F×p )3 | 1 ≤ l,m ≤ p− 1, m 6= p− 1}.

Hence, substituting m2l +ml, l +ml,−ml for k, l,m in the sums above, we get

ψ(−1)

p3
Ap = −

p−1∑
l=1

p−2∑
m=1

P1

(
m2l +ml

p

)
P1

(
l +ml

p

)
P1

(
ml

p

)
ψ(l)

+
1

2

p−1∑
l=1

p−2∑
m=1

P1

(
m2l +ml

p

)
P1

(
l +ml

p

)
ψ(l)

− 1

2

p−1∑
l=1

p−2∑
m=1

P1

(
l +ml

p

)
P1

(
ml

p

)
ψ(l)

− 1

2

p−1∑
l=1

p−2∑
m=1

P1

(
ml

p

)
P1

(
m2l +ml

p

)
ψ(l)

+
1

4

p−1∑
l=1

p−2∑
m=1

(
P1

(
m2l +ml

p

)
+ P1

(
l +ml

p

)
− P1

(
ml

p

))
ψ(l)

+
1

8

p−1∑
l=1

p−2∑
m=1

ψ(l).
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Simplifying where we note that
∑p−1

l=1 ψ(l) = 0,
∑p−1

l=1 P1

(
l
p

)
ψ(l) = B1,ψ, we obtain

ψ(−1)

p3
Ap = −

∑
l,m(p)

P1

(
m2l +ml

p

)
P1

(
l +ml

p

)
P1

(
ml

p

)
ψ(l)

+
1

2

∑
l,m(p)

P1

(
m2l +ml

p

)
P1

(
l +ml

p

)
ψ(l)

− 1

2

∑
l,m(p)

P1

(
l +ml

p

)
P1

(
ml

p

)
ψ(l)

− 1

2

∑
l,m(p)

P1

(
ml

p

)
P1

(
m2l +ml

p

)
ψ(l)

+
1

4

∑
l,m(p)

(
P1

(
m2l +ml

p

)
+ P1

(
l +ml

p

)
− P1

(
ml

p

))
ψ(l)

− 1

2
B1,ψ.

By Proposition 3.2.20, Proposition 3.2.21, it follows that

ψ(−1)

p3
Ap = −

∑
l,m(p)

P1

(
m2l +ml

p

)
P1

(
l +ml

p

)
P1

(
ml

p

)
ψ(l)

− 3

4
B2,ψ −

3

4
B1,ψ.

(5.1.5)

Observe that the sum above without the character,

∑
l,m(p)

P1

(
m2l +ml

p

)
P1

(
l +ml

p

)
P1

(
ml

p

)
,
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is odd in l and hence vanishes. Therefore,

∑
l,m(p)

P1

(
m2l +ml

p

)
P1

(
l +ml

p

)
P1

(
ml

p

)
ψ(l)

=
∑
l,m(p)

P1

(
m2l +ml

p

)
P1

(
l +ml

p

)
P1

(
ml

p

)
ψ(l)

+
∑
l,m(p)

P1

(
m2l +ml

p

)
P1

(
l +ml

p

)
P1

(
ml

p

)

= 2
∑
l,m(p)
ψ(l)=1

P1

(
m2l +ml

p

)
P1

(
l +ml

p

)
P1

(
ml

p

)
ψ(l)

=
∑
l,m(p)

P1

(
m2l2 +ml2

p

)
P1

(
l2 +ml2

p

)
P1

(
ml2

p

)

=
∑
l,m(p)

P1

(
m2 +ml

p

)
P1

(
l2 +ml

p

)
P1

(
ml

p

)
,

where we replaced m by ml−1 where l 6≡ 0(p) in the last step. Let

(5.1.6) Xp =
∑
l,m(p)

P1

(
m2 +ml

p

)
P1

(
l2 +ml

p

)
P1

(
ml

p

)
.

Then, we get, by (5.1.5),

(5.1.7) Ap = ψ(−1)(−p3)

(
Xp +

3

4
B2,ψ +

3

4
B1,ψ

)
.

Let

Yp =
∑
k,t(p)

P1

(
kt

p

)
P1

(
k2 + 2kt

p

)
P1

(
t2 + 2kt

p

)
.

Applying Sczech’s 3-term addition formula (Proposition 3.1.18) to the arguments

v1 =
kt

p
, v2 =

k2 + 2kt

p
, v3 =

t2 + 2kt

p
,
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we obtain

− P1

(
kt

p

)
P1

(
k2 + 2kt

p

)
P1

(
t2 + 2kt

p

)
+ P1

(
kt

p

)
P1

(
k2 + kt

p

)
P1

(
t2 + kt

p

)
− P1

(
k2 + kt

p

)
P1

(
k2 + 2kt

p

)
P1

(
t2 − k2

p

)
− P1

(
t2 + kt

p

)
P1

(
k2 − t2

p

)
P1

(
t2 + 2kt

p

)
=

1

2
P1

(
k2 + kt

p

)(
P2

(
t2 − k2

p

)
− P2

(
t2 + kt

p

))
+

1

2
P1

(
k2 + kt

p

)(
P2

(
k2 + 2kt

p

)
− P2

(
kt

p

))
+

1

2
P1

(
t2 + kt

p

)(
P2

(
t2 + 2kt

p

)
− P2

(
kt

p

))
+

1

2
P1

(
t2 − k2

p

)(
P2

(
t2 + 2kt

p

)
− P2

(
k2 + 2kt

p

))
− 1

6

(
−P3

(
t2 + kt

p

)
− P3

(
t2 − k2

p

))
− 1

6

(
2P3

(
kt

p

)
+ 2P3

(
k2 + 2kt

p

)
+ 2P3

(
t2 + 2kt

p

))
− 1

4
δ1

(
kt

p
,
k2 + 2kt

p
,
t2 + 2kt

p

)
+

1

4
δ2

(
kt

p
,
k2 + 2kt

p
,
t2 + 2kt

p

)
,

where

δ1(x, y, z) =


P1(x), if x ≡ y ≡ z mod 1,

0, otherwise,

and

δ2(x, y, z) =



P1(x), if y, z are integers,

P1(y), if x, z are integers,

P1(z), if x, y are integers,

0, otherwise.

Carefully summing both sides over k, t(p) and applying Proposition 3.2.23, Proposi-
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tion 3.2.1, we get

(5.1.8) Xp = 3Yp + hp +
1

4p
B3,ψ +

3p− 3 + 3ψ(2) + pδp,3
4p

B1,ψ.

Next, applying the 2-term addition formula (Proposition 3.1.17) to the arguments

v1 =
k2 + 2kt

p
, v2 = −t

2 + 2kt

p
,

we obtain

P1

(
k2 + 2kt

p

)
P1

(
t2 − k2

p

)
− P1

(
t2 + 2kt

p

)
P1

(
t2 − k2

p

)
− P1

(
t2 + 2kt

p

)
P1

(
k2 + 2kt

p

)
= −1

2

(
P2

(
k2 + 2kt

p

)
+ P2

(
t2 + 2kt

p

)
+ P2

(
t2 − k2

p

))
+

1

4
δ

(
k2 + 2kt

p
,−t

2 + 2kt

p

)
,

where

δ(x, y) =


1, if x, y are integers,

0, otherwise.

Multiplying both sides of the above equation by P1

(
kt
p

)
, carefully summing over

k, t(p), and applying Proposition 3.2.22, (i) in Proposition 3.2.10, Proposition 3.2.1,

we get

Yp = 2Qp +
1

6p
B3,ψ +

2− 2ψ(2)− pδp,3
4p

B1,ψ.

Plugging Yp back into (5.1.8), we get

Xp = 6Qp + hp +
3

4p
B3,ψ +

3p+ 3− 3ψ(2)− 2pδp,3
4p

B1,ψ,
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and plugging Xp back into (5.1.7), we get

Ap = ψ(−1)(−p3)

(
6Qp + hp +

3

4p
B3,ψ +

3

4
B2,ψ +

6p+ 3− 3ψ(2)− 2pδp,3
4p

B1,ψ

)
.

Upon plugging Ap back into (5.1.4), we finally obtain

Ip =
√
−p
(
−6p

(
Qp +

1

6
hp

)
− 3

4
B3,ψ −

3

4
B2,ψ −

9− 3ψ(2)− 2pδp,3
4

B1,ψ

)
,

and the proof of Theorem 5.1 is now complete.
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5.2 Special Values of L2(s, ψH,p)

Next, we evaluate special values at non-positive integers of a particular Hashimoto

L-function. We now fix the notation. Take an odd prime p and fix it. Let Ln (resp.

L∗n) denote the lattice formed by integral symmetric (resp. half-integral symmetric)

matrices of size n, and let Ln,+, L∗n,+ be the subsets consisting of all positive definite

matrices of Ln, L∗n, respectively. Denote by Ln,+/SLn(Z) (resp. L∗n,+/SLn(Z)) the set

of SLn(Z)-equivalence classes in Ln,+ (resp. L∗n,+). In the case of n = 2, Hashimoto

introduced the following L-functions L2(s, ψH,p), L
∗
2(s, ψH,p). Let ψ be the unique

non-trivial quadratic character mod p, and let ψH,p be a mapping from L∗2 to R given

as follows: We put ψH,p(T ) = 0, if det(T )6≡ 0 mod p. When det(T )≡ 0(p), we have

tgTg ≡ ( a 0
0 0 ) mod p for some g ∈ SL2(Fp) and a ∈ Fp, and we put ψH,p(T ) = ψ(a).

Set

L2(s, ψH,p) =
∑

T∈L2,+/SL2(Z)

ψH,p(T )

ε(T )(det(T ))s
(Re(s) > 3/2),

L∗2(s, ψH,p) =
∑

T∈L∗2,+/SL2(Z)

ψH,p(T )

ε(T )(det(T ))s
(Re(s) > 3/2),

where ε(T ) = #{g ∈ SL2(Z) | tgTg = T}.

Arakawa[1] worked primarily with the L-function L∗2(s, ψH,p). He showed that

L∗2(s, ψH,p) can be continued analytically to a meromorphic function of s in the whole

complex plane which is holomorphic at non-positive integers. Moreover, he established

the rationality of the special values of L∗2(s, ψH,p) at non-positive integers and gave

a complicated explicit formula for L∗2(0, ψH,p). We will now do the the same for

L2(s, ψH,p). Additionally, a formula for all of the special values of L2(s, ψH,p) and

L∗2(s, ψH,p) at non-positive integers will be given. While we follow Arakawa’s method

for the most part, we also have to overcome additional difficulties not occurring in

Arakawa’s work. These difficulties are resolved using Carlitz’s reciprocity theorem

for generalized Dedekind-Rademacher sums (see Lemma 5.2.27).
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Theorem 5.2. Let p be an odd prime.

(i) The special values L2(1−m,ψH,p) (m = 1, 2, · · ·) are rational numbers.

(ii) If p ≡ 1(4), then L2(1−m,ψH,p) = 0 (m = 1, 2, · · ·).

(iii) If p ≡ 3(4), then, in particular,

L2(0, ψH,p) = Qp +
1

6
hp +

11

72p
B3,ψ +

6p+ 1− 3ψ(2)− 2pδp,3
24p

B1,ψ,

where Qp, hp are the constants given by (5.1.1), (5.1.2) in Theorem 5.1.

We must establish several results before proving Theorem 5.2.

5.2.1 Expressing L2(s, ψH,p) in Terms of Partial Zeta Functions

The aim of this section is to represent the L-function L2(s, ψH,p) as a finite linear com-

bination of partial zeta functions. We need more notation. Let V
(n)
R be the R-vector

space of real symmetric matrices of size n, Pn ⊂ V
(n)
R be the set of positive definite

symmetric matrices of size n, and let ∂Pn denote the boundary of the domain Pn in

V
(n)
R , that is, ∂Pn is the set of positive semi-definite symmetric matrices of size n. Let

{W1,W2, · · · ,Wr} be an r-tuple of elements in P2∪∂P2 such that W1,W2, · · · ,Wr are

linearly independent over R. Then, necessarily r ≤ 3. For any r-tuple ξ = (ξ1, · · · , ξr)

of positive numbers, we define a partial zeta function ζ(s; {W1, · · · ,Wr}, ξ) as follows:

(5.2.1) ζ(s; {W1, · · · ,Wr}, ξ) =
∞∑

m1,···,mr=0

det

(
r∑
j=1

(ξj +mj)Wj

)−s
.

Let C = C(W1, · · · ,Wr) be a simplicial cone spanned by W1, · · · ,Wr:

C = C(W1, · · · ,Wr) =

{
r∑
j=1

λjWj | λj > 0 (1 ≤ j ≤ r)

}
.

We assume that the cone C = C(W1, · · · ,Wr) is contained in P2. Then it is easily
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shown that the zeta function ζ(s; {W1, · · · ,Wr}, ξ) is absolutely convergent for Re(s)>

r/2. For any subset M of V
(2)
R , the zeta function ζ(s;C,M), if it converges absolutely,

is defined by

(5.2.2) ζ(s;C,M) =
∑

T∈C∩M

det(T )−s.

It is well-known that, as a fundamental domain of Pn under the usual action of

GLn(Z), one can take the so-called Minkowski domain Rn of reduced matrices (see

Maass[13]). In the case of n = 2, the domain R2 has a simple form:

R2 =


 y1 y12

y12 y2

 : 0 ≤ 2y12 ≤ y1 ≤ y2, 0 < y1

 .

We fix three very special elements V1, V2, V3 in P2 ∪ ∂P2; put

V1 =

1 0

0 1

 , V2 =

2 1

1 2

 , V3 =

0 0

0 1

 .

Remark. It is this choice of V1, V2, V3 that will eventually lead us back to our

sum Ip.

For simplicity, we set

(5.2.3)


C123 = C(V1, V2, V3),

Cij = C(Vi, Vj) (1 ≤ i < j ≤ 3),

Cj = C(Vj) (j = 1, 2),

which are simplicial cones contained in P2. Then the domain R2 has the decompo-
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sition

(5.2.4) R2 = C123 ∪ C12 ∪ C13 ∪ C23 ∪ C1 ∪ C2 (disjoint union).

For each cone C in (5.2.3) and any Y ∈ C, observe that the order ε∗(Y ) of the group

{U ∈ GL2(Z) | tUY U = Y } takes the same value independent of Y belonging to C,

and one can put

ε∗(C) = ε∗(Y ) (Y ∈ C).

It is easily verified that

(5.2.5) ε∗(C123) = 2, ε∗(Cij) = 4 (1 ≤ i < j ≤ 3), ε∗(C1) = 8, ε∗(C2) = 12.

For any x ∈ R, we denote by 〈x〉 the unique real number which satisfies 0 < 〈x〉 ≤ 1

and x− 〈x〉 ∈ Z. Let p be an odd prime. Let

(5.2.6) M (p) = {(α, γ) ∈ Z/pZ× Z/pZ | (α, γ) 6= (0, 0) mod p}.

For any integer µ prime to p, let L(µ) be the set consisting of all elements T ∈ L2

satisfying ψH,p(T ) = ψ(µ). Then it immediately follows that

L(µ) =

T ∈ L2 | T ≡ µ

α2 αγ

αγ γ2

mod p for some (α, γ) ∈M (p)


and that L(µl2) = L(µ) for any integer l prime to p. For each (α, γ) ∈M (p) and for

each integer µ prime to p, we put

(5.2.7) ξα,γ,µ = (〈µ(α2 − 2αγ)/p〉, 〈µαγ/p〉, 〈µ(γ2 − α2)/p〉).

Let ΞH,µ be the set of all triples ξα,γ,µ : ΞH,µ = {ξα,γ,µ | (α, γ) ∈M (p)}. Observe that
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M (p)/{±1} corresponds to ΞH,µ bijectively by ±(α, γ)→ ξα,γ,µ(= ξ−α,−γ,µ). For any

integers i, j with 1 ≤ i < j ≤ 3, we set

Ξ
(i,j)
H,µ = {ξ = (ξ1, ξ2, ξ3) ∈ ΞH,µ | ξk = 1},

where k is the unique integer of 1, 2, 3 satisfying {i, j, k} = {1, 2, 3}. We notice that

(5.2.8)


Ξ

(1,2)
H,µ = {ξα,γ,µ | (α, γ) ∈M (p), α2 ≡ γ2(p)},

Ξ
(1,3)
H,µ = {ξα,γ,µ | (α, γ) ∈M (p), αγ ≡ 0(p)},

Ξ
(2,3)
H,µ = {ξα,γ,µ | (α, γ) ∈M (p), α2 ≡ 2αγ(p)}.

For each cone C of the form (5.2.3), the zeta function ζ(s;C,L(µ)) given by (5.2.2)

is absolutely convergent at least for Re(s)> 3/2.

Proposition 5.2.1. The following expressions for the zeta functions ζ(s;C,L(µ))

hold:

ζ(s;C123, L(µ)) = p−2s
∑

ξ∈ΞH,µ

ζ(s; {V1, V2, V3}, ξ),

ζ(s;Cij, L(µ)) = p−2s
∑

ξ∈Ξ
(i,j)
H,µ

ζ(s; {Vi, Vj}, (ξi, ξj)) (1 ≤ i < j ≤ 3),

ζ(s;C1, L(µ)) = 0,

ζ(s;C2, L(µ)) =


0, if p > 3,

p−2sζ(s; {V2}, 〈2µ/p〉), if p = 3.

Proof. Take T ∈ C123 ∩ L(µ) and write T =
∑3

j=1 mjVj with all mj ∈ N. Then



122

for any pair (α, γ) ∈M (p) such that

(5.2.9) T ≡ µ

α2 αγ

αγ γ2

mod p,

the mj’s must necessarily satisfy the following congruences:


m1 ≡ µ(α2 − 2αγ) (p),

m2 ≡ µαγ (p),

m3 ≡ µ(γ2 − α2) (p).

Therefore, there exists a triple l = (l1, l2, l3), lj being non-negative integers, such that

(m1,m2,m3) = p(ξα,γ,µ + l). As each T ∈ C123 ∩ L(µ) determines a triple l uniquely

and also (α, γ) ∈ M (p) uniquely up to (±1)-multiplication, the first identity in

Proposition 5.2.1 follows. Next, let T ∈ C12 ∩ L(µ) and write T =
∑2

j=1 mjVj (mj ∈

N). Taking a pair (α, γ) ∈M (p) as in (5.2.9), the congruences m1 ≡ µ(α2−2αγ) (p),

m2 ≡ µαγ (p) follow, and necessarily, the relation α2 ≡ γ2 (p) has to hold. Hence the

identity for ζ(s;C12, L(µ)) immediately follows. The identities for ζ(s;C23, L(µ)) and

ζ(s;C13, L(µ)) are similarly verified, so the proofs are omitted. Next, let T ∈ C1∩L(µ)

and write T = mV1 for some m ∈ N. Then there is no pair (α, γ) ∈ M (p) as in

(5.2.9) and the identity for ζ(s;C1, L(µ)) is vacuously true. Lastly, let T ∈ C2 ∩L(µ)

and write T = mV2 for some m ∈ N. Taking a pair (α, γ) ∈ M (p) as in (5.2.9),

then necessarily, the relations α ≡ 2γ (p) and γ ≡ 2α (p) have to hold. This can

only happen if p = 3, in which case ξα,γ,µ = (1, 〈µαγ/p〉, 1) = (1, 〈2µα2/p〉, 1) =

(1, 〈2µ/p〉, 1). Thus the identity for ζ(s;C2, L(µ)) follows, and the proof of Proposition

5.2.1 is now complete.

Let κ be a non-quadratic residue mode p so that we can write L2 = L(1) ∪ L(κ)

(disjoint union).
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Proposition 5.2.2. Let ψ be the unique non-trivial quadratic character mod p.

Then we have

L2(s, ψH,p) =
∑
µ

ψ(µ)

{
ζ(s;C123, L(µ)) +

1

2

∑
i<j

ζ(s;Cij, L(µ))

+
1

6
δp,3ζ(s;C2, L(µ))

}
,

where µ is taken over 1 and κ, and the summation
∑

i<j indicates that i, j run over

all integers with 1 ≤ i < j ≤ 3.

Proof. Only in this proof do we introduce the L-function M2(s, ψH,p) which is

very similar to L2(s, ψH,p). We set

M2(s, ψH,p) =
∑

T∈L2,+/GL2(Z)

ψH,p(T )

ε∗(T )(det(T ))s

where T is taken over GL2(Z)-equivalence classes of positive definite integral sym-

metric matrices of size two, and ε∗(T ) is the order of the unit group {U ∈ GL2(Z) |
tUTU = T} of T . Then an elementary observation shows that L2(s, ψH,p) =

2M2(s, ψH,p). In view of the decomposition (5.2.4) of R2, we may take a disjoint union

∪C(C ∩ L2) with C varying over all the simplicial cones in (5.2.3), as a complete set

of GL2(Z)-equivalence classes of all elements in L2,+. Thus we get, with the help of

the decomposition L2 = L(1) ∪ L(κ) (disjoint union),

L2(s, ψH,p) = 2
∑
C

ε∗(C)−1
∑
µ

ψ(µ)ζ(s;C,L(µ)),

where C runs over all the simplicial cones in (5.2.3) and µ is taken over 1 and κ. This

together with (5.2.5) and Proposition 5.2.1, completes the proof of Proposition 5.2.2.
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5.2.2 Integral Representations of Partial Zeta Functions I

The aim of this section is to obtain convenient expressions of partial zeta functions

as integrals over contour paths, and then to evaluate special values of them at non-

positive integers. Several results in this section immediately follow from Arakawa’s

work on L∗2(s, ψH,p). All of the details will be included here for completeness.

Let ζ(s; {W1, · · · ,Wr}, ξ) be a partial zeta function as defined in (5.2.1). We

assume that the cone C(W1, · · · ,Wr) is contained in P2. The following formula is

well-known (see Maass[13] and Satake[16]):

det(T )−s =
1

Γ2(s)

∫
P2

det(Y )setr(TY )dv(Y ) (T ∈P2, Re(s) > 1/2),(5.2.10)

where we put

Γ2(s) = π1/2Γ (s)Γ (s− 1/2) and dv(Y ) = det(Y )−3/2
∏

1≤i≤j≤2

dYij.

We set, for t ∈ C, x ∈ R,

φ(t;x) =
etx

et − 1
,

which is the generating function of Bernoulli polynomials Bk(x). Recall that the

Laurent expansion at t = 0 of φ(t;x) is given by

(5.2.11) φ(t;x) =
∞∑
k=0

Bk(x)

k!
tk−1 (|t|< 2π).

By a usual argument which uses the formula (5.2.10), we get an expression of

ζ(s; {W1, · · · ,Wr}, ξ) for Re(s) > r/2 by the integral taken over P2:

ζ(s; {W1, · · · ,Wr}, ξ) =
1

Γ2(s)

∫
P2

det(Y )s
r∏
j=1

φ(tr(WjY ); 1− ξj)dv(Y ).
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We set, for θ ∈ R, kθ =

 cos θ sin θ

−sin θ cos θ

.

Following Satake[16], we make a change of variables Y → (t, u, θ) with Y =

tkθ

u 0

0 1

 tkθ (0 < t, 0 < u ≤ 1, 0 ≤ θ ≤ π). Then using the relation dv(Y ) =

t−1u−3/2(1− u) dt du dθ, we get

ζ(s; {W1, · · · ,Wr}, ξ)

=
1

Γ2(s)

∫ ∞
0

dt

∫ 1

0

du

∫ π

0

dθ · t2s−1us−3/2(1− u)

× Φ((t, u, θ); {W1, · · · ,Wr}, ξ),

(5.2.12)

where we put

Φ((t, u, θ); {W1, · · · ,Wr}, ξ) =
r∏
j=1

φ(tλ((u, θ),Wj); 1− ξj),

and

λ((u, θ),W ) = tr

Wkθ

u 0

0 1

 tkθ

 for any W ∈P2 ∪ ∂P2.

If all the Wj’s (1 ≤ j ≤ r) are contained in P2, then the integral in (5.2.12) has

been studied in full generality by Satake[16] and Kurihara[11]. Unfortunately, we

have to deal with the case where one of the edge vectors coincides with the special

vector V3 in ∂P2. Because of this complication, Satake-Kurihara’s method cannot be

applied directly to our situation, and as a result, new ideas are needed. Arakawa[1] has

developed these new ideas in his evaluation of L∗2(s, ψH,p). In view of Proposition 5.2.1,

we only have to consider the cases in which, with respect to an r-tuple {W1, · · · ,Wr},

the vectors W1, · · · ,Wr−1 are all in P2 and Wr coincides with the special vector V3

in ∂P2.
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Now we set

ψ(t;x) = φ(t;x)− 1

t
,

which is a holomorphic function of t in the region |t|< 2π. Let {W1, · · · ,Wr−1, V3}

(r = 2 or 3) be an r-tuple of vectors in P2 ∪ ∂P2 such that W1, · · · ,Wr−1 are all in

P2. We set, for an r-tuple ξ = (ξ1, · · · , ξr) of positive numbers,

ΦP ((t, u, θ); {W1, · · · ,Wr−1, V3}, ξ) =
r−1∏
j=1

φ(tλ((u, θ),Wj); 1−ξj)ψ(tλ((u, θ), V3); 1−ξ3),

and, for an (r − 1)-tuple ξ′ = (ξ1, · · · , ξr−1),

ΦS((t, u, θ); {W1, · · · ,Wr−1, V3}, ξ′) =
1

tλ((u, θ), V3)

r−1∏
j=1

φ(tλ((u, θ),Wj); 1− ξj).

Next we define the principal and singular parts of ζ(s; {W1, · · · ,Wr−1, V3}, ξ).

ζP (s; {W1, · · · ,Wr−1, V3}, ξ)

=
1

Γ2(s)

∫ ∞
0

dt

∫ 1

0

du

∫ π

0

dθ · t2s−1us−3/2(1− u)

× ΦP ((t, u, θ); {W1, · · · ,Wr−1, V3}, ξ),

(5.2.13)

ζS(s; {W1, · · · ,Wr−1, V3}, ξ′)

=
1

Γ2(s)

∫ ∞
0

dt

∫ 1

0

du

∫ π

0

dθ · t2s−1us−3/2(1− u)

× ΦS((t, u, θ); {W1, · · · ,Wr−1, V3}, ξ′).

(5.2.14)

The integrals in (5.2.13) and (5.2.14) are absolutely convergent for Re(s) > 3/2, and

obviously,

ζ(s; {W1, · · · , V3}, ξ) = ζP (s; {W1, · · · , V3}, ξ) + ζS(s; {W1, · · · , V3}, ξ′).
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We now prepare more notation. For a positive number ε, let Iε(∞) (resp. Iε(1))

be the contour path consisting of the oriented half line (+∞, ε) (resp. (+∞, 1)),

a counterclockwise circle of radius ε around the origin, and the oriented half line

(ε,+∞) (resp. (ε, 1)). We will express the integral in (5.2.12) as the integral taken

over contour paths Iε(∞) and Iε(1) (for a small ε) with respect to t and u, respectively.

However, the function φ(tλ((u, θ), V3); 1 − ξ3) has serious singularities as a function

of t and u on the paths Iε(∞) and Iε(1), because of the form of λ((u, θ), V3) =

u sin2(θ) + cos2(θ), and therefore such an integral representation cannot be easily

obtained. To avoid the difficulties derived from such singularities, we divide the zeta

function ζ(s; {W1, · · · , V3}, ξ) into two parts as above. In the rest of this section, we

shall mainly discuss the function ζP (s; {W1, · · · ,Wr−1, V3}, ξ) and its expression by

an integral over contour paths. The singular part ζS(s; {W1, · · · ,Wr−1, V3}, ξ′) will be

dealt with in the next section.

For a positive number δ, we denote by Dδ(∞) and Dδ(1) the regions given as

follows:

Dδ(∞) = {z ∈ C | |z|< δ} ∪ {z ∈ C | Re(z) > 0 and |Im(z)|< δ},

Dδ(1) = Dδ(∞) ∩ {z ∈ C | |z|≤ 1}.

If W is in P2, we can take positive constants a, b satisfying

(5.2.15) a12 < W < b12.

We may write λ((u, θ),W ) = α1u+ α2 with a < α1, α2 < b. It then follows that

|λ((u, θ),W )|< b(1 + |u|),

Re(λ((u, θ),W )) > a− bδ if Re(u) > −δ (δ > 0).

(5.2.16)
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We need some analytic properties of the functions φ(tλ((u, θ),W ); 1− ξ) and

ψ(tλ((u, θ),W ); 1− ξ) (ξ > 0).

Lemma 5.2.3 [1]. Suppose that W ∈ P2 satisfies the condition (5.2.15). Let

ξ > 0 and 0 < δ < a/b.

(i) If |t|< π/2b, and u ∈ Dδ(1), then, tφ(tλ((u, θ),W ); 1− ξ), which is a holomor-

phic function of (t, u) for each θ in that region of (t, u), has the power series expansion

with respect to t:

tφ(tλ((u, θ),W ); 1− ξ) =
1

λ((u, θ),W )
+
∞∑
k=1

Bk(1− ξ)
k!

{λ((u, θ),W )}k−1tk,

(ii) If t > 0 and 0 ≤ u ≤ 1, then,

tφ(tλ((u, θ),W ); 1− ξ) < te−tξa

1− e−ta
.

Proof. If |t|< π/2b, u ∈ Dδ(1), then, we get, by (5.2.16),

|tλ((u, θ),W )|< π(1 + |u|)/2 < 2π.

Thus, the Laurent expansion in (5.2.11) implies the assertion (i). The assertion (ii)

follows immediately from the inequality λ((u, θ),W ) > a (0 ≤ u ≤ 1).

Lemma 5.2.4 [1]. Let ξ > 0 and 0 < δ < 1. Then ψ(tλ((u, θ), V3); 1 − ξ) is a

holomorphic function of t, u for each θ in the region {(t, u) | |t|< 2π, u ∈ Dδ(1)}, and

has a Taylor expansion with respect to t:

ψ(tλ((u, θ),W ); 1− ξ) =
∞∑
k=1

Bk(1− ξ)
k!

(u sin2 θ + cos2 θ)k−1tk−1.

Proof. Recalling that λ((u, θ), V3) = u sin2 θ + cos2 θ, we see that |tλ((u, θ), V3)|<

2π if |t|< 2π, u ∈ Dδ(1). The assertion of Lemma 5.2.4 then immediately follows.
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The function ψ(t; 1− ξ) has the following preferable property which will be used

in the proof of Proposition 5.2.6.

Lemma 5.2.5 [1]. Let ξ > 0. There exist positive constants Mk (k = 1, 2, · · ·)

independent of t such that, if 0 ≤ t < +∞,

|ψ(k)(t; 1− ξ)|< Mk,

where ψ(k)(t; 1− ξ) denotes the k-th derivative of ψ(t; 1− ξ) as a function of t.

We omit the proof of Lemma 5.2.5, which is an easy exercise of differential calculus.

From (5.2.16) and Lemma 5.2.5, we easily see that if δ is taken sufficiently small,

then, tφ(tλ((u, t),W ); 1− ξ) (W ∈P2, ξ > 0) is holomorphic as a function of t, u for

each θ ∈ R in the region Dδ(∞) × Dδ(1). Moreover, taking (5.2.16), Lemma 5.2.3,

and Lemma 5.2.4 into account, we see that the integral

t2
∫ π

0

ΦP ((t, u, θ); {W1, · · · ,Wr−1, V3}, ξ)dθ

is a holomorphic function of t, u in the region Dδ(1)×Dδ(1). We notice here that the

range of t is the region Dδ(1) (not Dδ(∞)).

To define the function ts = es log t, we take the branch of log t with 0 < arg t < 2π.

Proposition 5.2.6 [1]. The function ζP (s; {W1, · · · ,Wr−1, V3}, ξ) is analytically

continued to a meromorphic function in the whole complex plane which is holomorphic

at s = 1−m (m = 1, 2, · · ·). Moreover, the special value at s = 1−m is given by

ζP (1−m; {W1, · · · ,Wr−1, V3}, ξ)

= C(m)

∫
Γε

dt

∫
Iε(1)

du

∫ π

0

dθ · t1−2mu−m−1/2(1− u)

× ΦP ((t, u, θ); {W1, · · · ,Wr−1, V3}, ξ),
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where C(m) = (2m − 1)! /(22m+2π2i) and Γε denotes a circle of radius ε around the

origin oriented counterclockwise, ε being taken sufficiently small.

Proof. We set, only in the proof of this proposition,

f(t, u, θ) = ΦP ((t, u, θ); {W1, · · · ,Wr−1, V3}, ξ).

We divide the integral in (5.2.13) into two parts by the range of the variable t. We

set

ζP (s; {W1, · · · ,Wr−1, V3}, ξ) =
1

Γ2(s)
(I1(s) + I2(s)),

where

I1(s) =

∫ 1

0

dt

∫ 1

0

du

∫ π

0

dθ · t2s−1us−3/2(1− u)f(t, u, θ),

I2(s) =

∫ ∞
1

dt

∫ 1

0

du

∫ π

0

dθ · t2s−1us−3/2(1− u)f(t, u, θ).

We put e(w) (w ∈ C) to denote exp(2πiw). From the remarks made just before the

statement of Proposition 5.2.6, it is easy to see that I1(s) has the following expression

by an integral over contour paths:

I1(s) =
1

(e(2s)− 1)(e(s− 3/2)− 1)

∫
Iε(1)

dt

∫
Iε(1)

du

∫ π

0

dθ

× t2s−1us−3/2(1− u)f(t, u, θ),

(5.2.17)

where ε is taken sufficiently small. Since the integral in (5.2.17) is an entire function

of s, the function I1(s) can be continued analytically to a meromorphic function in

the whole complex plane. Thus we easily obtain

lim
s→1−m

I1(s)

Γ2(s)
= C(m)

∫
Γε

dt

∫
Iε(1)

du

∫ π

0

dθ · t1−2mu−m−1/2(1− u)f(t, u, θ)

(m = 1, 2, · · ·).
(5.2.18)
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From Lemma 5.2.5, we see that f(t, u, θ) is a C∞-function of (t, u, θ) in the region

(0,+∞)×[0, 1]×[0, π], and especially that the partial derivatives (∂kf/∂uk)(t, u, θ)(k =

0, 1, · · ·) are bounded in the region [1,+∞]× [0, 1]× [0, π]. We set, for Re(s) > 0,

F (s; (t, θ)) =

∫ 1

0

us−1f(t, u, θ)du.

Then we have

(5.2.19) I2(s) =

∫ ∞
1

dt

∫ π

0

dθ · t2s−1{F (s− 1/2; (t, θ))− F (s+ 1/2; (t, θ))}.

By repeatedly integrating by parts, we obtain

F (s; (t, θ)) =
m−1∑
j=0

(−1)j

s(s+ 1) · · · (s+ j)

∂jf

∂uj
(t, 1, θ)

+
(−1)m

s(s+ 1) · · · (s+m− 1)

∫ 1

0

us+m−1∂
mf

∂um
(t, u, θ)du

(Re(s) > −m).

(5.2.20)

Since any m ∈ N can be taken, it follows from (5.2.19), (5.2.20) that I2(s) can be

continued to an entire function of s. Thus we get

(5.2.21)

[
I2(s)

Γ2(s)

]
s=1−m

= 0.

The analytic continuation of ζP (s; {W1, · · · ,Wr−1, V3}, ξ) immediately follows those

of I1(s), I2(s). The last assertion of Proposition 5.2.6 is derived from (5.2.18) and

(5.2.21).

We also need the following proposition obtained by Satake which deals with partial

zeta functions whose edge vectors are all in P2.

Proposition 5.2.7 [16]. Let all vectors Wj(1 ≤ j ≤ r), which are linearly inde-
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pendent over R, be in P2. Then the zeta function ζ(s; {W1, · · · ,Wr}, ξ) is analytically

continued to a meromorphic function in the whole complex plane which is holomorphic

at s = 1−m (m = 1, 2, · · ·). Moreover, the special value at s = 1−m is given by

ζ(1−m; {W1, · · · ,Wr}, ξ) =C(m)

∫
Γε

dt

∫
Iε(1)

du

∫ π

0

dθ · t1−2mu−m−1/2(1− u)

× Φ((t, u, θ); {W1, · · · ,Wr, }, ξ).

Proof. Lemma 5.2.3 implies that the integral

t2
∫ π

0

Φ((t, u, θ); {W1, · · · ,Wr}, ξ)dθ

is a holomorphic function of (t, u) in the region Dδ(∞) × Dδ(1). Thus one obtains,

for a sufficiently small ε,

ζ(s; {W1, · · · ,Wr}, ξ) =
1

Γ2(s)(e(2s)− 1)(e(s− 3/2)− 1)

∫
Iε(∞)

dt

∫
Iε(1)

du

∫ π

0

dθ

× t2s−1us−3/2(1− u)Φ((t, u, θ); {W1, · · · ,Wr}, ξ).

Since the integral on the right side of the equality is absolutely convergent, this

identity gives the analytic continuation of ζ(s; {W1, · · · ,Wr}, ξ) to a meromorphic

function of s in the whole complex plane. Passing to the limit as s→ 1−m, we get

the identity in Proposition 5.2.7.

In view of Proposition 5.2.1 and Proposition 5.2.2, we need only partial zeta

functions of the form

ζ(s; {V1, V2, V3}, (ξ1, ξ2, ξ3)),

ζ(s; {Vi, Vj}, (ξi, ξj)) (1 ≤ i < j ≤ 3),

ζ(s; {V2}, ξ).
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Now we discuss the evaluation of

ζP (1−m; {V1, V2, V3}, (ξ1, ξ2, ξ3)),

ζP (1−m; {Vj, V3}, (ξj, ξ3)) (j = 1, 2),

ζ(1−m; {V1, V2}, (ξ1, ξ2)),

ζ(1−m; {V2}, ξ),

as a continuation of Proposition 5.2.6, Proposition 5.2.7. For each triple (k1, k2, k3) of

integers such that k1, k2 ≥ 0, k3 ≥ 1, and k1 + k2 + k3 = 2m+ 1, we define a number

Λ(k1,k2,k3) by putting

(5.2.22) Λ(k1,k2,k3) =
1

2π

∫
Iε(1)

du

∫ π

0

dθ · u−m−1/2(1− u)
3∏
j=1

λ((u, θ), Vj)
kj−1,

where the integral in the right side is independent of the choice of a small positive

number ε.

Proposition 5.2.8. Let ξ = (ξ1, ξ2, ξ3) be a triple of positive numbers, and m ∈ N.

Then we have

ζP (1−m; {V1, V2, V3}, ξ) = −4π2iC(m)
∑′

k1,k2,k3

{
3∏
j=1

Bkj(ξj)

kj!

}
Λ(k1 ,k2 ,k3 ),

where k1, k2, k3 run over all integers satisfying the conditions k1, k2 ≥ 0, k3 ≥ 1, and

k1 + k2 + k3 = 2m+ 1.

Proof. We take δ sufficiently small so that Lemma 5.2.3 for V1, V2 and Lemma 5.2.4

for V3 hold. Then we get the following power series expansion, if |t|< δ, u ∈ Dδ(1),

ΦP ((t, u, θ); {V1, V2, V3}, ξ) =
∑

k1,k2,k3

3∏
j=1

{
Bkj(1− ξj)

kj!
λ((u, θ), Vj)

kj−1

}
· tk1+k2+k3−3,

where k1, k2, k3 run over all integers satisfying k1, k2 ≥ 0, k3 ≥ 1. Applying Proposi-
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tion 5.2.6, the residue theorem, and noting that Bk(1− ξ) = (−1)kBk(ξ) (k ≥ 0), we

obtain the expression for ζP (1−m; {V1, V2, V3}, ξ) in Proposition 5.2.8.

In exactly the same manner as in the proof of Proposition 5.2.8, one can evaluate

the special values

ζP (1−m; {Vj, V3}, (ξj, ξ3)) (j = 1, 2),

ζ(1−m; {V1, V2}, (ξ1, ξ2)),

ζ(1−m; {V2}, ξ),

so we omit the proof of the following proposition.

Proposition 5.2.9. Let ξ, ξj(j = 1, 2, 3) be positive numbers and m ∈ N. Then

the following expressions hold.

(a) ζP (1−m; {V1, V3}, (ξ1, ξ3)) = 4π2iC(m)
∑′

k1,k3

Bk1(ξ1)Bk3(ξ3)

k1! k3!
Λ(k1 ,0 ,k3 ),

where k1, k3 run over all integers with k1 ≥ 0, k3 ≥ 1, k1 + k3 = 2m+ 1.

(b) ζP (1−m; {V2, V3}, (ξ2, ξ3)) = 4π2iC(m)
∑′

k2,k3

Bk2(ξ1)Bk3(ξ3)

k2! k3!
Λ(0 ,k2 ,k3 ),

where k2, k3 run over all integers with k2 ≥ 0, k3 ≥ 1, k2 + k3 = 2m+ 1.

(c) ζ(1−m; {V1, V2}, (ξ1, ξ2)) = 4π2iC(m)
∑′

k1,k2

Bk1(ξ1)Bk2(ξ3)

k1! k2!
Λ(k1 ,k2 ,0 ),

where k1, k2 run over all integers with k1, k2 ≥ 0, k1 + k2 = 2m+ 1.

(d) ζ(1−m; {V2}, ξ) = −4π2iC(m)
B2m−1(ξ)

(2m− 1)!
Λ(1 ,2m−1 ,1 ).

To complete the evaluation of the special values of zeta functions above, we have

to study some properties of the numbers Λ(k1,k2,k3).

Proposition 5.2.10. Let k1, k2, k3 be integers with k1, k2 ≥ 0, k3 ≥ 1, and k1 +

k2 + k3 = 2m + 1 (m ∈ N). If k1, k2, k3 satisfy one of the following two conditions,
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then Λ(k1 ,k2 ,k3 ) is a rational number.

(i) k1, k2, k3 are positive integers,

(ii) k2 = 0 and k1, k3 are positive integers.

Proof. A straightforward calculation shows that

(5.2.23)


λ((u, θ), V1) = 1 + u,

λ((u, θ), V2) = 2{1 + u+ (1− u) sin θ cos θ},

λ((u, θ), V3) = u sin2 θ + cos2 θ.

Changing the variable by cot θ = x in (21), we obtain

(5.2.24) Λ(k1,k2,k3) =

∫
Iε(1)

u−m−1/2(1− u)Pk1,k2,k3(u)du,

where ε is taken to be sufficiently small and

Pk1,k2,k3(u) =
1

2π
(1 + u)k1−12k2−1

×
∫
R

{
1 + u+ (1− u)

x

1 + x2

}k2−1(
x2 + u

1 + x2

)k3−1
dx

1 + x2
.

(5.2.25)

If k1, k2, k3 satisfy condition (i), then from the binomial formula, we get

Pk1,k2,k3(u) =
1

2π
(1 + u)k1−12k2−1

b k2−1
2 c∑
i=0

k3−1∑
j=0

(−1)j
(
k2 − 1

2i

)(
k3 − 1

j

)
× (1 + u)k2−1−2i(1− u)2i+j · I2i,2i+j+1,

(5.2.26)

where

In,m =

∫
R

xn

(1 + x2)m
dx.
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By the following recursive relations,

(5.2.27)


In,m = In−2,m−1 − In−2,m,

I0,m =
2m− 3

2m− 2
I0,m−1 (n,m ≥ 2),

and noting that I0,1 = π, we easily see that if k1, k2, k3 satisfy condition (i), then

Pk1,k2,k3(u) is a polynomial of u with rational coefficients. Noting that

(5.2.28)

∫
Iε(1)

uk−1/2du = − 4

2k + 1
for any k ∈ Z,

it follows from (5.2.24) that the value of Λ(k1,k2,k3) is a rational number whenever

k1, k2, k3 satisfy condition (i).

Suppose k2 = 0 and k1, k3 ≥ 1. Set

Q(u) = 3u2 + 10u+ 3,

and

ω(u) =
−(1− u) + i

√
Q(u)

2(1 + u)
(0 ≤ u ≤ 1).

Observe that ω(u), ω(u) are the distinct roots of the quadratic equation: (1 + u)x2 +

(1−u)x+1+u = 0. We write ω for ω(u). Applying the residue theorem in computing

the integral in (5.2.25), we get

(5.2.29) Pk1,0,k3 =
i

2
· (1 + u)k1−1

(1 + u)(ω − ω)

(
1− 1− u

1 + ω2

)k3−1

+Rk1,k3(u),

where we put

Rk1,k3(u) =
i

2
(1 + u)k1−1

× Res
x = i
{(1 + u)x2 + (1− u)x+ (1 + u)}−1

(
1− 1− u

1 + x2

)k3−1

.

(5.2.30)
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Since the residue at x = i of the function

{(1 + u)x2 + (1− u)x+ (1 + u)}−1

(
1− u
1 + x2

)l
(l ∈ Z, l ≥ 0),

is a polynomial of u with coefficients in the Gaussian field Q(i), so is Rk1,k3(u).

Therefore, the real part of Rk1,k3(u) is a polynomial of u with rational coefficients.

An elementary calculation shows us that

(1 + u)(ω − ω) = i
√
Q(u), 1 + ω2 = −1− u

1 + u
ω, ωω = 1, and

1− 1− u
1 + ω2

=
1 + u− i

√
Q(u)

2
.

Then, we get, by (5.2.29),

(5.2.31) Pk1,0,k3 = 2−k3(1 + u)k1−1
{

1 + u− i
√
Q(u)

}k3−1

Q(u)−1/2 +Rk1,k3(u).

Observe that the function u−m+1(1 + u)2m−2−2jQ(u)j (0 ≤ j ≤ m − 1) is invariant

under the transformation u → 1/u, and is therefore a polynomial of (u + 1/u) of

degree m− 1. Thus we can write

(5.2.32) u−m+1(1 + u)2m−2−2jQ(u)j =
m−1∑
k=0

bj,m,k(u
k + u−k) (0 ≤ j ≤ m− 1)

with some bj,m,k ∈ Q. We set, for a sufficiently small ε > 0,

g(s) =

∫
Iε(1)

us−1/2Q(u)−1/2,

where we take the branch of Q(u)1/2 so that Q(u)1/2 > 0, if u ∈ R. The integral in

the right side is independent of the choice of ε and converges for arbitrary s ∈ C.
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Consequently, g(s) is an entire function of s. We define a sequence {αn} by putting

αn = g(n)− g(−n) (n = 0, 1, · · ·).

Lemma 5.2.11 [1]. The sequence {αn} satisfies the following recursive formula

3(n− 1/2)αn + 10(n− 1)αn−1 + 3(n− 3/2)αn−2 = −16 (n ≥ 2)

with α0 = 0, α1 = −16/3. Consequently, all αn are rational numbers.

Proof. If Re(s) > −1/2, we get

3g(s+ 1) + 5g(s) =

∫
Iε(1)

us−1/2(3u+ 5)Q(u)−1/2du

= (e(s− 1/2)− 1)

∫ 1

0

us−1/2 d

du
Q(u)1/2du.

Then integration by parts implies that, if Re(s) > 1/2,

3g(s+ 1) + 5g(s) = −4(1 + e(s))− (s− 1/2)

∫
Iε(1)

us−3/2Q(u)1/2du.

As Q(u)1/2 = Q(u) ·Q(u)−1/2, we get the following functional equation:

(5.2.33) 3(s+ 1/2)g(s+ 1) + 10sg(s) + 3(s− 1/2)g(s− 1) = −4(1 + e(s)),

which is valid for all s ∈ C by analytic continuation. Putting s = 0, we get α1 =

g(1) − g(−1) = −16/3. Moreover, if we substitute s = m − 1 and s = 1 − m,

respectively in (5.2.33), and add both of the equalities obtained, we get the recursive

formula in Lemma 5.2.11.

We continue the proof of Proposition 5.2.10. From (5.2.25), we see that Pk1,0,k3(u)

is real-valued, if 0 ≤ u ≤ 1. Hence, it follows from (5.2.31) that Pk1,0,k3(u) is a
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polynomial of u with rational coefficients plus a Q-linear sum of the functions (1 +

u)2m−1−2jQ(u)j−1/2 (0 ≤ j ≤ m− 1). Moreover, from (5.2.32), it follows that

∫
Iε(1)

u−m−1/2(1− u)(1 + u)2m−1−2jQ(u)j−1/2du

= −2bj,m,0α1 +
m−1∑
k=1

bj,m,k(αk−1 − αk+1) (0 ≤ j ≤ m− 1),

which is a rational number by virtue of Lemma 5.2.11. Thus, by (5.2.24), (5.2.31),

we have

Λ(k1,0,k3) = 2−k3
b k3−1

2 c∑
j=0

(−1)j
(
k3 − 1

2j

)

×

(
−2bj,m,0α1 +

m−1∑
k=1

bj,m,k(αk−1 − αk+1)

)

+

∫
Iε(1)

u−m−1/2(1− u) Re(Rk1,k3(u))du.

(5.2.34)

Taking (5.2.28) into account, it follows that Λ(k1,0,k3) (k1, k3 ≥ 1) is a rational number.

Remark. For triples (k1, k2, k3) not satisfying the conditions of Proposition

5.2.10, it will be hard to compute Λ(k1,k2,k3) in an elementary manner. However,

as we shall see in Section 5.2.4, we do not need the explicit values of them.

To evaluate the special value at s = 0 of L2(s, ψH,p), we only need the following

explicit values of Λ(k1,k2,k3).

Proposition 5.2.12. We have

Λ(1,1,1) = 4, Λ(2,0,1) = 8/3, Λ(1,0,2) = 4/3.

Proof. The first identity is straightforward. Then, by (5.2.34), we obtain Λ(2,0,1) =
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2Λ(1,0,2) = −b0,1,0α1 = 8/3.

5.2.3 Integral Representations of Partial Zeta Functions II

We keep the notation used in 5.2.2. We shall study the analytic continuations of the

functions ζS(s, {V1, V2, V3}, (ξ1, ξ2)), ζS(s, {Vj, V3}, ξ) (j = 1, 2), and determine the

first and second terms of the Laurant expansions at s = 1−m (m ∈ Z) of them.

For simplicity, we write λj for λ((u, θ), Vj) (j = 1, 2, 3), if there is no fear of

confusion. We easily see from (5.2.14) that, for positive numbers ξ1, ξ2, ξ, and for

Re(s) > 3/2,

ζS(s, {V1, V2, V3}, (ξ1, ξ2)) =
1

Γ2(s)(e(2s)− 1)
I(s; (ξ1, ξ2))

ζS(s, {Vj, V3}, ξ) =
1

Γ2(s)(e(2s)− 1)
I(s; ξ) (j = 1, 2),

(5.2.35)

where we put

I(s; (ξ1, ξ2)) =

∫
Iε(∞)

dt

∫ 1

0

du

∫ π

0

dθ · t2s−2us−3/2(1− u)
1

λ3

2∏
j=1

φ(tλj; 1− ξj),

I(s; ξ) =

∫
Iε(∞)

dt

∫ 1

0

du

∫ π

0

dθ · t2s−2us−3/2(1− u)
1

λ3

φ(tλj; 1− ξj) (j = 1, 2),

where ε is taken sufficiently small. The absolute convergence for Re(s) > 3/2 of the

integrals above is easily verified by Lemma 5.2.3. We shall first integrate with respect

to θ. Changing the variable by cot θ = x (−∞ < x <∞), we get, by (5.2.23),

(5.2.36) λ1 = 1 + u, λ2 = 2

{
1 + u+ (1− u)

x

1 + x2

}
, λ3 =

u+ x2

1 + x2
.

As is easily seen, for each positive number β < 1, there exists a positive number

δ = δ(β) such that φ(t(1 + z); 1 − ξ) (ξ > 0), as a function of t, z, is holomorphic in

the region {(t, z) ∈ C2 | t ∈ Dδ(∞), t 6= 0, |z|≤ β}. Then, φ(t(1 + z); 1 − ξ), as a
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function of z, has the power series expansion

(5.2.37) φ(t(1 + z); 1− ξ) =
∞∑
k=0

φ(k)(t; 1− ξ)tk

k!
· zk (t ∈ Dδ, t 6= 0, |z|≤ β).

It follows from (5.2.37) that, if t ∈ Dδ(∞), t 6= 0, and 0 ≤ u ≤ 1,

(5.2.38) φ(tλ2; 1− ξ) =
∞∑
k=0

φ(k)(2t(1 + u); 1− ξ)(2t)k(1− u)k

k!
·
(

x

1 + x2

)k
,

where δ is taken sufficiently small. We then define a function Hk(u) for each non-

negative integer k:

(5.2.39) Hk(u) = (1− u)k
∫
R

1

x2 + u

(
x

1 + x2

)k
dx (u > 0).

Obviously, we have Hk(u) = 0 for any odd k. Applying the residue theorem in

calculating the integral in (2.3.5), we can divide Hk(u) (k ∈ Z, k ≥ 0) into two parts

as follows:

(5.2.40) H2k(u) = πu(−u)k + πA2k(u),

where

(5.2.41) A2k(u) = 2i(1− u)2k Res
x = i

(
1

x2 + u

(
x

1 + x2

)2k
)
.

An elementary calculation shows that A0(u) = 0,A2(u) = (1 + u)/2. Moreover, we

observe that each A2k(u) is a polynomial with rational coefficients. We set, for ξ > 0,

F1(t, u; 1− ξ) =
∞∑
k=0

φ(2k)(2t(1 + u); 1− ξ)
(2k)!

· (2t)2k(−u)k,

F2(t, u; 1− ξ) =
∞∑
k=0

φ(2k)(2t(1 + u); 1− ξ)
(2k)!

· (2t)2kA2k(u).
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We shall discuss the convergence and regularity of Fj(t, u; 1−ξ) (j = 1, 2) as functions

of t, u. For that purpose, some preparations will be needed. We put, for a ∈ R, and

j ∈ N,

φj(t; a) =
eta

(et − 1)j
.

Lemma 5.2.13 [1]. Let n ∈ N and a < 1. If we write, in a unique way,

(5.2.42) φ(n)(t; a) =
n∑
j=0

λj, n(a)φj+1(t; a) with some λj, n(a) ∈ R,

then, we have (−1)nλj, n(a) > 0 for each j (0 ≤ j ≤ n).

Proof. Differentiating the both sides of (5.2.42) with respect to t, and using the

identity φ′j+1(t; a) = (a − j − 1)φj+1(t; a) − (j + 1)φj+2(t; a), we get the recursive

relations:

(5.2.43)


λ0, n+1(a) = (a− 1)λ0, n(a),

λj, n+1(a) = (a− j − 1)λj, n(a)− jλj−1, n(a),

λn+1, n+1(a) = −(n+ 1)λn, n(a).

In the case of n = 1, we have, trivially, (−1)λj, 1(a) > 0 (j = 0, 1). Thus the assertion

follows by induction on n from (5.2.43).

Taking the k-th derivative of (5.2.11), one gets, if |t|< 2π,

(5.2.44)
φ(k)(t; a)

k!
= (−1)kt−k−1 +

∞∑
n=k+1

Bn(a)

n!

(
n− 1

k

)
tn−1−k.

For x ∈ R, [x] denotes the largest integer less than or equal to x.
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Lemma 5.2.14 [1]. Let 0 < β < 1 and a ∈ R. If |t|≤ π/2, |w|≤ β, then,

(5.2.45) t
∞∑
k=0

φ2k(t; a)t2k

(2k)!
· wk =

1

1− w
+
∞∑
n=1

Bn(a)

n!

(
κn∑
k=0

(
n− 1

2k

)
wk

)
tk,

where we put κn = [(n−1)/2], and the infinite series of both sides are absolutely con-

vergent. Moreover, the function defined by the infinite series (5.2.45) is a holomorphic

function of t, w in the region {(t, w) | |t|≤ π/2, |w|≤ β}.

Proof. By virtue of the fact that tφ(t; a) =
∑∞

k=0(Bk(a)/k! )tk is absolutely con-

vergent for |t|< 2π, there exists a positive constant C1 independent of k which satisfies

|Bk(a)/k! |< C1(3π/2)−k (k = 1, 2, · · ·).

Then, from (5.2.44), we get

∞∑
k=0

∣∣∣∣φ(2k)(t; a)t2k+1

(2k)!
· wk

∣∣∣∣ ≤ ∞∑
k=0

|w|k+C1

∞∑
k=0

∞∑
n=2k+1

(
n− 1

2k

)
|w|k

(
2|t|
3π

)n
≤ 1

1− |w|
+ C1

∞∑
n=1

(
κn∑
k=0

(
n− 1

2k

)
βk

)(
2|t|
3π

)n
≤ 1

1− |w|
+ C1

∞∑
n=1

(
4|t|
3π

)n
,

where the last infinite series is convergent for |t|≤ π/2. Thus, the infinite series in

both sides of (5.2.45) are absolutely and uniformly convergent for |t|≤ π/2, |w|≤ β.

In a similar manner, the identity (5.2.45) is easily shown to hold.

Proposition 5.2.15. If we take δ sufficiently small, then, the infinite series

2tFj(t, u; 1−ξ) (ξ > 0, j = 1, 2) are absolutely and uniformly convergent in the region

Dδ(∞)×Dδ(1). Consequently, 2tFj(t, u, 1−ξ) (j = 1, 2) are holomorphic in the same

region. Moreover, 2tFj(t, u, 1− ξ), as functions of t, have the following power series
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expansions; if |t|< δ, u ∈ Dδ(1), then, we have

(5.2.46) 2tF1(t, u; 1− ξ) =
1 + u

1 + 3u+ u2
+
∞∑
n=1

Bn(1− ξ)
n!

µn(u)2ntn,

(5.2.47) 2tF2(t, u; 1− ξ) =
∞∑
n=0

A2n

(1 + u)2n+1
+
∞∑
n=1

Bn(1− ξ)
n!

νn(u)2ntn,

where we put

(5.2.48)


µn(u) =

κn∑
k=0

(
n− 1

2k

)
(1 + u)n−1−2k(−u)k,

νn(u) =
κn∑
k=0

(
n− 1

2k

)
(1 + u)n−1−2kA2k

(
κn =

[
n− 1

2

])
.

Proof. First we consider the infinite series 2tF1(t, u; 1 − ξ). We put t′ = 2t(1 +

u), w = −u/(1 + u)2. Then, we get

2tF1(t, u; 1− ξ) =
t′

1 + u

∞∑
k=0

φ(2k)(t′; 1− ξ)(t′)2k

(2k)!
· wk.

Let δ1 be a small positive constant such that |−u/(1 + u)2|≤ 1/2 for u ∈ Dδ1(1).

If |t|< π/8, u ∈ Dδ1(1), then we get |t′|< π/2, |w|≤ 1/2. It follows easily from

Lemma 5.2.14 that 2tF1(t, u; 1 − ξ) converges absolutely and is holomorphic in the

region {(t, u) | |t|< π/8, u ∈ Dδ1}, and moreover that the power series expansion

(5.2.46) holds in the same region. We take δ sufficiently small with δ < δ1. Let

|t|≥ π/8, t ∈ Dδ(∞), and u ∈ Dδ. Set τ ′ = Re(t′). Then we may have τ ′ > |t′|/
√

2,

δ being taken sufficiently small. An elementary observation shows that

|φj(t′; a)|≤ φj(τ
′; a) (a ∈ R, j = 0, 1, · · ·),
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from which, in addition to Lemma 5.2.13, we get

|φ(k)
j (t′; 1− ξ)|≤ (−1)kφ

(k)
j (τ ′; 1− ξ) (ξ > 0, k = 0, 1, · · ·).

Hence, from Lemma 5.2.13 and the expansion (5.2.37), we see that

∞∑
k=0

∣∣∣∣φ(2k)(t′; 1− ξ)(t′)2k

(2k)!
· wk

∣∣∣∣ ≤ ∞∑
k=0

∣∣∣∣φ(k)(t′; 1− ξ)(t′)k

k!
· wk/2

∣∣∣∣
≤

∞∑
k=0

φ(k)(τ ′; 1− ξ)(τ ′)k

k!
·
(
−|t′|√

2τ ′

)k
= φ

(
τ ′ − |t

′|√
2

; 1− ξ
)
.

Thus, F1(t, u; 1 − ξ) is absolutely convergent in the region {(t, u) | |t|≥ π/8, t ∈

Dδ(∞), u ∈ Dδ(1)}. Moreover, we see from the above calculations that F1(t, u; 1− ξ)

is uniformly convergent in some small neighborhood of (t, u) contained in the region

above. Consequently, F1(t, u; 1− ξ) is holomorphic in that region.

Next we consider the series 2tF1(t, u; 1 − ξ). We have to estimate A2k(u) from

above. The definition of A2k(u) implies that

πA2k(u) = (1− u)2k

∫
R

1

x2 + u

{(
x

1 + x2

)2k

−
(
−u

(1− u)2

)k}
dx.

Letting s(x) = (x/1 + x2)2 for simplicity, we get the expression

(5.2.49) πA2k(u) =

∫
R

ux2 + 1

(1 + x2)2

k−1∑
j=0

{
s(x)(1− u)2

}k−1−j
(−u)jdx,

which holds for any u ∈ C. We take a positive number δ2 in such a manner that, if

|u|< δ2, then, |−u/(1 − u)2|< 1/16. Accordingly, δ2 ≤ 9 − 4
√

5 = 0.0557 · · ·. Using
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the inequality s(x) ≤ 1/4, we see easily from (5.2.49) that, if |u|< δ2,

∣∣∣∣ A2k(u)

(1 + u)2k

∣∣∣∣ < (1/4)k−1 |1− u|2(k−1)

|1 + u|2k
k−1∑
j=0

∣∣∣∣ −4u

(1− u)2

∣∣∣∣j
< (1/4)k−1 1

(1− δ2)2

(
1 + δ2

1− δ2

)2(k−1)

· 4

3
.

Observe that we have the inequality (1 + δ2)/(2(1− δ2)) < 3/5. Thus it follows that

there exists a constant C2 independent of k such that

(5.2.50)

∣∣∣∣ A2k(u)

(1 + u)2k

∣∣∣∣ < C2(3/5)2k if |u|< δ2 (k = 0, 1, 2, · · ·).

We put δ3 = δ2/2. On the other hand, if |u|≥ δ2 and u ∈ Dδ3(1), then,

|1 + u|≥ 1 + Re(u) > 1 + δ3, |1− u|≤ 1, and |u|≤ 1.

Thus the inequalities above and (5.2.49) imply that, for any non-negative integer k,

(5.2.51)

∣∣∣∣ A2k(u)

(1 + u)2k

∣∣∣∣ < 4

3

(
1

1 + δ3

)2k

if |u|≥ δ2 and u ∈ Dδ3(1).

Putting t′ = 2t(1 + u) as before, we get

(5.2.52) 2tF2(t, u; 1− ξ) =
t′

1 + u

∞∑
k=0

φ(2k)(t′; 1− ξ)(t′)2k

(2k)!
· A2k

(1 + u)2k
.

With the help of (5.2.50), (5.2.51), we can prove that the right side of (5.2.52) is

absolutely convergent if |t|< π/8, u ∈ Dδ3(1), and we obtain, similarly as in the

proof of (5.2.46), the identity (5.2.47). Since A2k is a polynomial of u, we easily

see from the expression (5.2.47) that 2tF2(t, u; 1 − ξ) is holomorphic in the region

{(t, u) | |t|< π/8, u ∈ Dδ3}. The rest of the assertions for 2tF2(t, u; 1 − ξ) can be

verified in the same manner as in the case of 2tF1(t, u; 1− ξ) by using the inequalities
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(5.2.50), (5.2.51).

We are now in position to integrate with respect to θ. We take δ sufficiently small

so that the identity (5.2.38) and Proposition 5.2.15 simultaneously hold. Then, taking

the identities (5.2.38), (5.2.39), and (5.2.40) into account, noting that |x/(1 + x2)|≤

1/2, we obtain

∫ π

0

1

λ3

φ(tλ2; 1− ξ)dθ = πu−1/2F1(t, u; 1− ξ) + πF2(t, u; 1− ξ)

(t ∈ Dδ(∞), 0 < u ≤ 1).

(5.2.53)

We set, for positive numbers ξ1, ξ2, ξ,

(5.2.54)


Φ(0)(t, u; ξ1, ξ2) = φ(t(1 + u); 1− ξ1)F1(t, u; 1− ξ2),

Φ(1)(t, u; ξ) = φ(t(1 + u); 1− ξ1),

Φ(2)(t, u; ξ) = F1(t, u; 1− ξ2),

(5.2.55)


Ψ (0)(t, u; ξ1, ξ2) = φ(t(1 + u); 1− ξ1)F2(t, u; 1− ξ2),

Ψ (1)(t, u; ξ) = 0,

Ψ (2)(t, u; ξ) = F2(t, u; 1− ξ2).

Let Φ(t, u) (resp. Ψ(t, u)) be one of the three functions in (5.2.54) (resp. in (5.2.55)).

We set

J(s; Φ) =

∫
Iε(∞)

dt

∫
Iε(1)

du · t2s−2us−2(1− u)Φ(t, u),

K(s; Ψ) =

∫
Iε(∞)

dt

∫
Iε(1)

du · t2s−2us−3/2(1− u)Ψ(t, u),

(5.2.56)

where ε is taken sufficiently small with ε < δ, δ being the same as in (5.2.53). Then,

by virtue of Proposition 5.2.15 and its proof, the integrals J(s; Φ), K(s; Φ) are inde-
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pendent of the choice of ε and absolutely convergent for arbitrary s ∈ C. Moreover,

they are entire functions of s. For convenience, we write

(5.2.57)



J(s; (ξ1, ξ2) = J(s; Φ(0)(t, u; ξ1, ξ2)),

Jj(s; (ξ) = J(s; Φ(j)(t, u; ξ)) (j = 1, 2),

K(s; (ξ1, ξ2) = K(s; Φ(0)(t, u; ξ1, ξ2)),

Kj(s; (ξ) = K(s; Φ(j)(t, u; ξ)) (j = 1, 2).

Trivially, K1(s; ξ) = 0. Then, using (5.2.53), we obtain the following convenient

expressions for I(s; (ξ1, ξ2)), Ij(s; ξ) (j = 1, 2) by the integrals (5.2.57) over contour

paths Iε(∞), Iε(1).

Proposition 5.2.16. Let ξ1, ξ2, ξ be positive numbers. We have

I(s; (ξ1, ξ2)) =
π

e(s)− 1
J(s; (ξ1, ξ2)) +

π

e(s− 3/2)− 1
K(s; (ξ1, ξ2)),

Ij(s; ξ) =
π

e(s)− 1
Jj(s; ξ) +

π

e(s− 3/2)− 1
Kj(s; ξ) (j = 1, 2),

which give the analytic continuation to meromorphic functions of s in the whole com-

plex plane.

The following corollary is an immediate consequence of Proposition 5.2.16 and

(5.2.35).

Corollary to Proposition 5.2.16. The functions

ζS(s; {V1, V2, V3}, (ξ1, ξ2)),

ζS(s; {Vj, V3}, ξ) (j = 1, 2)

can be continued analytically to meromorphic functions of s in the whole complex

plane.
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From Proposition 5.2.16, the Laurent expansions at s = 1 − m (m ∈ N) of

I(s; (ξ1, ξ2)), Ij(s; ξ) (j = 1, 2) are given as follows:

I(s; (ξ1, ξ2)) =
J(1−m; (ξ1, ξ2))

2i
(s+m− 1)−1 +

1

2i
{J ′(1−m; (ξ1, ξ2))

− πiJ(1−m; (ξ1, ξ2))− πiK(1−m; (ξ1, ξ2))}

+ higher terms of (s+m− 1),

(5.2.58)

Ij(s; ξ) =
Jj(1−m; ξ)

2i
(s+m− 1)−1 +

1

2i
{J ′j(1−m; ξ)− πiJj(1−m; ξ)

− πiKj(1−m; ξ)}+ higher terms of (s+m− 1) (j = 1, 2).

(5.2.59)

Let C(m) (m ∈ N) be the constant given in Proposition 5.2.6. Then, as a Taylor

expansion at s = 1−m (m ∈ N), we have

1

Γ2(s)(e(2s)− 1)
= −2C(m) + βm(s+m− 1) + higher terms of (s+m− 1)

with some constant βm ∈ C. Thus, by (5.2.35), (5.2.58), (5.2.59), we get the Laurent

expansions at s = 1−m of ζS(s; {V1, V2, V3}, (ξ1, ξ2)), ζS(s; {Vj, V3}, ξ) (j = 1, 2):

ζS(s; {V1, V2, V3}, (ξ1, ξ2))

= iC(m)J(1−m; (ξ1, ξ2))(s+m− 1)−1

+
1

2i
{(βm + 2πiC(m))J(1−m; (ξ1, ξ2))− 2C(m)J ′(1−m; (ξ1, ξ2))

+ 2πiC(m)K(1−m; (ξ1, ξ2))}+ higher terms of (s+m− 1),

(5.2.60)

ζS(s; {Vj, V3}, ξ)

= iC(m)Jj(1−m; ξ)(s+m− 1)−1 +
1

2i
{(βm + 2πiC(m))Jj(1−m; ξ)

− 2C(m)J ′j(1−m; ξ) + 2πiC(m)Kj(1−m; ξ)}

+ higher terms of (s+m− 1) (j = 1, 2).

(5.2.61)
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We shall now evaluate J(1−m; (ξ1, ξ2)), J ′(1−m; (ξ1, ξ2)), K(1−m; (ξ1, ξ2)), and so

on.

We consider the integral J(s,Φ) in (5.2.56). Putting s = 1−m, we get

J(1−m; Φ) =

∫
Γε

dt

∫
Γε

du · t−2mu−m−1(1− u)Φ(t, u)

(for the path Γε, see Proposition 5.2.6).

(5.2.62)

Furthermore, differentiating the integrand of J(s,Φ) with respect to s, we obtain

J ′(1−m; Φ)

=

∫
Iε(∞)

dt

∫
Iε(1)

du · t−2mu−m−1(1− u)(2log t+ log u)Φ(t , u),
(5.2.63)

where the integral is absolutely convergent again by Proposition 5.2.15. For non-

negative integers n, we define the functions Φn(t), according to the choice of Φ(t, u),

as follows:

Φn(t) =
φ(t; 1− ξ1)φ(2n)(2t; 1− ξ2)(−4)n

(2n)!
if Φ(t, u) = Φ(0)(t, u; ξ1, ξ2),

Φ0(t) = φ(t; 1− ξ1), Φn(t) = 0 (n ≥ 1) if Φ(t, u) = Φ(1)(t, u; ξ),

Φn(t) =
φ(2n)(2t; 1− ξ2)(−4)n

(2n)!
if Φ(t, u) = Φ(2)(t, u; ξ),

Moreover, we see from Proposition 5.2.15 that Φ(t, u) has a Laurent expansion with

respect to t:

(5.2.64) Φ(t, u) =
∞∑

n=−2

bn(u; Φ)tn if |t|< δ, u ∈ Dδ(1).
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Proposition 5.2.17. Let m ∈ N. For a sufficiently small ε, we have the following:

(i) J(1−m; Φ) = 2πi

∫
Γε

Φm(t)dt,

(ii) J ′(1−m; Φ) = 4πi

∫
Iε(∞)

log t · Φm(t)dt− 4πi
m−1∑
j=0

(2m− 2j − 1)!

{(m− j)! }2

×
∫

Γε

t2(j−m)Φj(t)dt+ 2πi

∫
Iε(1)

u−m−1(1− u)log u · b2m−1(u; Φ)du.

Proof. The function Φ(t, u) is holomorphic if t ∈ Dδ(∞), t 6= 0, and |u|< δ, and

therefore be expanded in a power series of u as follows:

(5.2.65) Φ(t, u) =
∞∑
n=0

1

n!

∂nΦ

∂un
(t, 0)un.

On the other hand, it is easy to see from the definition of Φn(t) that

(5.2.66) t2Φ(t, u) = t2
∞∑
n=0

Φn(t(1 + u))t2nun (t ∈ Dδ(∞), u ∈ Dδ(1)).

Since the infinite series in the right side of (5.2.66) is uniformly convergent in Dδ(∞)×

Dδ(1) by Proposition 5.2.15, and each term t2Φn(t(1 + u))t2nun is a holomorphic

function of t, u, we can differentiate it termwise. Thus, taking the k-th derivative of

(5.2.66) with respect to u, we get

∂kΦ

∂uk
(t, u) =

k∑
j=0

∞∑
n=j

(
k

j

)
n(n− 1) · · · (n− j + 1)Φ(k−j)

n (t(1 + u))tk−j+2nun−j.

Therefore,

(5.2.67)
∂kΦ

∂uk
(t, 0) =

k∑
j=0

(
k

j

)
j! Φ(k−j)

n (t)tk+j.
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It follows from (5.2.65), (5.2.67) that

∫
Iε(1)

u−m−1(1− u)Φ(t, u)du

= 2πi

{
1

m!
· ∂

mΦ

∂um
(t, 0)− 1

(m− 1)!
· ∂

m−1Φ

∂um−1
(t, 0)

}
= 2πi

(
Φm(t)t2m

+
m−1∑
j=0

{
tm+j

(m− j)!
Φ

(m−j)
j (t)− tm−1+j

(m− 1− j)!
Φ

(m−1+j)
j (t)

})
.

(5.2.68)

By integrating by parts, the identity

(5.2.69) −s
∫
Iε(∞)

ts−1Φ
(m−1−j)
j (t)dt =

∫
Iε(∞)

tsΦ
(m−j)
j (t)dt

holds for each j (0 ≤ j ≤ m− 1). Putting s = j −m, we get

(5.2.70) (m− j)
∫
Iε(∞)

tj−m−1Φ
(m−1−j)
j (t)dt =

∫
Iε(∞)

tj−mΦ
(m−j)
j (t)dt.

Therefore, the identities (5.2.62), (5.2.68), and (5.2.70) imply assertion (i). Differ-

entiating both sides of (5.2.69) with respect to s and then, putting s = j − m, we

get

(m− j)
∫
Iε(∞)

log t · tj−m−1Φ
(m−1−j)
j (t)dt−

∫
Iε(∞)

tj−m−1Φ
(m−1−j)
j (t)dt

=

∫
Iε(∞)

log t · tj−mΦ
(m−j)
j (t)dt (0 ≤ j ≤ m− 1).

(5.2.71)

By repeatedly integrating by parts, we see that

(5.2.72)

∫
Iε(∞)

tj−m−1Φ
(m−1−j)
j (t)dt =

(2m− 2j − 1)!

(m− j)!

∫
Γε

t2(j−m)Φj(t)dt.
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Thus, from (5.2.68), (5.2.71), and (5.2.72), we get

2

∫
Iε(∞)

dt

∫
Iε(1)

du · t−2mu−m−1(1− u)log t · Φ(t, u)

= 4πi

∫
Iε(∞)

log t · Φm(t)dt− 4πi
m−1∑
j=0

(2m− 2j − 1)!

{(m− j)! }2

∫
Γε

t2(j−m)Φj(t)dt.

(5.2.73)

Moreover, we get, using the expansion (5.2.64),

∫
Iε(∞)

dt

∫
Iε(1)

du · t−2mu−m−1(1− u)log u · Φ(t, u)

= 2πi

∫
Iε(1)

u−m−1(1− u)log u · b2m−1(u; Φ)du,

which, in addition to (5.2.63), (5.2.73), completes the proof.

Let m ∈ N. For integers k, n with k, n ≥ 0, k+n = 2m+1, we define the numbers

M(k−1,n−1) by putting

(5.2.74) M(k−1,n−1) =
1

πi

∫
Iε(1)

log u · u−m−1(1− u)(1 + u)k−12n−1µn(u)du,

where µn(u) (n ≥ 1) is a polynomial of u given by (5.2.48), and

µ0(u) =
1 + u

1 + 3u+ u2
.

The numbers M(k−1,n−1) are independent of the choice of small ε.

Lemma 5.2.18. If k, n ≥ 1 with k + n = 2m + 1, then M(k−1,n−1) are rational

numbers.

Proof. It follows from (5.2.48) that

(1− u)(1 + u)k−1µn(u) =
κn∑
j=0

(
n− 1

j

)
(1− u)2(m−j)−1(−u)j.
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By the conditions k ≥ 1 and k + n = 2m + 1, we have m > j for each j (0 ≤ j ≤

κn = [(n−1)/2]). As is easily shown, the coefficient of the term um of the polynomial

(1−u)(1+u)2(m−j)−1(−u)j vanishes. Therefore, the assertion of Lemma 5.2.18 follows

from the formula

(5.2.75)
1

πi

∫
Iε(1)

log u · updu =
2

p+ 1
for p ∈ Z, p 6= −1).

In the case of Φ(t, u) = Φ(0)(t, u; (ξ1, ξ2)), Proposition 5.2.17 yields

Proposition 5.2.19. Let ξ1, ξ2 be positive numbers and m ∈ N. Then,

(i) J(1−m; (ξ1, ξ2)) =
2π2(−1)m

(2m+ 1)!
{B2m+1(ξ1) + 22m+1B2m+1(ξ2)},

(ii) J ′(1−m; (ξ1, ξ2)) =
22m+2πi(−1)m

(2m)!

∫
Iε(∞)

log t · φ(t; 1− ξ1)φ(2m)(2t; 1− ξ2)dt

− 4πi
m−1∑
j=0

(2m− 2j − 1)! 22j(−1)j

{(m− j)! }2(2j)!

∫
Γε

t2(j−m) · φ(t; 1− ξ1)φ(2j)(2t; 1− ξ2)dt

+ 2π2

2m+1∑
n=0

B2m+1−n(ξ1)Bn(ξ2)

(2m+ 1− n)!n!
·M(2m−n,n−1).

Proof. In the proof, we have Φ(t, u) = Φ(0)(t, u; (ξ1, ξ2)) and

Φn(t) =
φ(t; 1− ξ1)φ(2n)(2t; 1− ξ2)(−4)n

(2n)!
(n = 0, 1, 2, · · ·).

The expansions (5.2.11), (5.2.44) show that the coefficient of the term t−1 in the

Laurent expansion at t = 0 of Φm(t) is given by

(−1)m

2(2m+ 1)!
{B2m+1(1− ξ1) + 22m+1B2m+1(1− ξ2)}.

Thus, by (i) of Proposition 5.2.17, the assertion (i) follows. In view of the expansions
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(5.2.11), (5.2.46) of Proposition 5.2.15, the coefficient b2m−1(u; Φ) in (5.2.64) is given

as follows:

b2m−1(u; Φ) =
B2m+1(1− ξ1)(1 + u)2m+1

2(2m+ 1)! (1 + 3u+ u2)
+

2m+1∑
n=1

B2m+1−n(1− ξ1)Bn(1− ξ2)

(2m+ 1− n)!n!

× (1 + u)2m−nµn(u)2n−1.

Therefore, we see from (5.2.74) that

∫
Iε(1)

u−m−1(1− u)log u · b2m−1(u; Φ)du

= −πi
2m+1∑
n=0

B2m+1−n(ξ1)Bn(ξ2)

(2m+ 1− n)!n!
·M(2m−n,n−1).

Hence, by (ii) of Proposition 5.2.17 together with the above result, we obtain the

assertion (ii).

In the other two cases of Φ(t, u), we obtain the following.

Proposition 5.2.20. Let m ∈ N and ξ > 0. Then,

(i) Jj(1−m; 1− ξ) = 0 (j = 1, 2),

(ii) J ′1(1−m; 1− ξ) =
4π2B2m(ξ)

m(m! )2
− 2π2B2m(ξ)

(2m)!
·M(2m−1,0),

J ′2(1−m; 1− ξ) =
22m+1π2(−1)mB2m(ξ)

m(2m)!

+
22m+1π2B2m(ξ)

m

m−1∑
j=0

(−1)j

{(m− j)! }2(2j)!

− 2π2B2m(ξ)

(2m)!
·M(0,2m−1).

(iii) In particular, J ′j(1−m; ξ) ∈ Q (j = 1, 2).

Proof. If Φ(t, u) = Φ(1)(t, u; ξ) = φ(t(1 + u); 1 − ξ), then, we have Φ0(t) =

φ(t; 1 − ξ),Φn(t) = 0 (n ≥ 1), and b2m−1(u; Φ) = B2m(1 − ξ)(1 + u)2m−1/{(2m)! }.
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Hence, we immediately see from Proposition 5.2.17 that J1(1−m; ξ) = 0, and that

J ′1(1−m; ξ) =− 4πi(2m− 1)!

(m! )2

∫
Γε

t−2mφ(t; 1− ξ)dt

+
2πiB2m(1− ξ)

(2m)!

∫
Iε(∞)

log u · u−m−1(1− u)(1 + u)2m−1du,

from which we get the expression for J ′1(1 − m; ξ) in the assertion (ii) (note that

µ1(u) = 1). In the case of Φ(t, u) = Φ(2)(t, u; ξ) = F1(t, u; 1− ξ), we have

Φn(t) =
φ(2n)(2t; 1− ξ)(−4)n

(2n)!
and b2m−1(u; Φ) =

B2m(1− ξ)
(2m)!

· µ2m(u)22m−1.

The expansion (5.2.44) shows that the coefficient of the term t−1 in the Laurent

expansion at t = 0 of Φm(t) is equal to 0. Hence, we see from Proposition 5.2.17 that

J2(1−m; ξ) = 0. Since integration by parts implies that

∫
Iε(∞)

tsφ(2m)(2t; 1− ξ)dt = −s
2

∫
Iε(∞)

ts−1φ(2m−1)(2t; 1− ξ)dt,

differentiating both sides with respect to s and setting s = 0, we obtain

∫
Iε(∞)

log t · φ(2m)(2t; 1− ξ)dt = −1

2

∫
Iε(∞)

t−1φ(2m−1)(2t; 1− ξ)dt

= −πiB2m(1− ξ)
2m

.

(5.2.76)

Thus,

4πi

∫
Iε(∞)

log t · Φm(t)dt =
22m+1π2(−1)mB2m(1− ξ)

m(2m)!
.

Moreover, we have, by a usual argument,

∫
Γε

t2(j−m)Φj(t)dt =
22mπiB2m(1− ξ)

(2m)!
·
(

2m− 1

2j

)
.

Hence, by (ii) of Proposition 5.2.17 together with the results above, we obtain the
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expression for J ′2(1−m; ξ) in the assertion (ii). By assertion (ii) together with Lemma

5.2.18, we obtain assertion (iii).

Finally, we evaluate the special values at s = 1−m of K(s; (ξ1, ξ2)), K2(s; ξ) (for

the definition, see (5.2.57)).

Let νn(u) (n ≥ 1) be the polynomials defined by (5.2.48). Then, we have ν1(u) =

ν2(u) = 0, ν3(u) = (1 + u)/2, and so on. For convenience, we put

ν0(u) =
∞∑
j=0

A2j

(1 + u)2j+1
for |u| sufficiently small.

For any pairs (k, n) of non-negative integers with k + n = 2m+ 1 (m ∈ N), we define

the numbers N(k−1,n−1) by putting

(5.2.77) N(k−1,n−1) =

∫
Iε(1)

u−1/2−m(1− u)(1 + u)k−12n−1νn(u)du,

where ε is taken sufficiently small. Observe that the integral on the right side of

(5.2.77) is independent of the choice of small ε. Then the identity (5.2.28) implies

that

(5.2.78) N(k−1,n−1) ∈ Q for k, n ≥ 1.

Proposition 5.2.21. Let ξ1, ξ2, ξ > 0 and m ∈ N. Then,

(i) K(1−m; (ξ1, ξ2)) = −2πi
2m+1∑
n=0

B2m+1−n(ξ1)Bn(ξ2)

(2m+ 1− n)!n!
·N(2m−n,n−1),

(ii) K1(1−m; ξ) = 0,

(iii) K2(1−m; ξ) =
2πiB2m(ξ)

(2m)!
·N(0,2m−1).

Proof. Let Ψ(t, u) be one of the functions given in (5.2.55). Recalling the definition
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(5.2.56) of K(s; Ψ), we have by the Fubini theorem,

K(1−m; Ψ) =

∫
Iε(1)

u−m−1/2(1− u)du

∫
Γε

dt · t−2mΨ(t, u).

If Ψ(t, u) = Ψ (0)(t, u; ξ1, ξ2), then, by the expansions (5.2.11), (5.2.48), we get

∫
Γε

t−2mΨ(t, u)dt = 2πi
2m+1∑
n=0

B2m+1−n(1− ξ1)Bn(1− ξ2)

(2m+ 1− n)!n!
· (1 + u)2m−nν2m(u)22m−1.

Thus we obtain the assertion (i). The assertion (ii) is clear. If Ψ(t, u) = Ψ (2)(t, u; ξ),

then, by the expansion (5.2.48), we get

∫
Γε

t−2mΨ(t, u)dt = 2πi
B2m(1− ξ)

(2m)!
· ν2m(u)22m−1,

from which the assertion (iii) immediately follows.

5.2.4 Determination of Special Values of L2(s, ψH,p)

The aim of this next section is to obtain a formula for all of the special values at

non-positive integers of L2(s, ψH,p), and in particular, to obtain an explicit formula

for the special value L2(0, ψH,p). We keep the notation used in the previous sections.

Suppose that p is an odd prime. For any integer µ prime to p, let L(µ) be the same

as in 5.2.1. Corresponding to L(µ), we shall define the principal part ζP (s;C,L(µ))

and the singular part ζS(s;C,L(µ)) of the zeta function ζ(s;C,L(µ)), C being the
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simplicial cones C123, Cj3 (j = 1, 2). In view of Proposition 5.2.1, we set

ζP (s;C123, L(µ)) = p−2s
∑

ξ∈ΞH,µ

ζP (s; {V1, V2, V3}, ξ),

ζS(s;C123, L(µ)) = p−2s
∑

ξ∈ΞH,µ

ζS(s; {V1, V2, V3}, (ξ1, ξ2)),

ζP (s;Cj3, L(µ)) = p−2s
∑

ξ∈Ξ
(j,3)
H,µ

ζP (s; {Vj, V3}, (ξj, ξ3)),

ζS(s;Cj3, L(µ)) = p−2s
∑

ξ∈Ξ
(j,3)
H,µ

ζS(s; {Vj, V3}, ξj) (j = 1, 2),

(ξ being denoted by (ξ1, ξ2, ξ3)).

(5.2.79)

Proposition 5.2.2 then makes it possible to define the principal and singular parts of

the L-function L2(s, ψH,p). We set

L2,P (s, ψH,p) =
∑
µ

ψ(µ)

{
ζP (s;C123, L(µ)) +

1

2

2∑
j=1

ζP (s;Cj3, L(µ))

+
1

2
ζ(s;C12, L(µ)) +

δp,3
6
ζ(s;C2, L(µ))

}
,

L2,S(s, ψH,p) =
∑
µ

ψ(µ)

{
ζS(s;C123, L(µ)) +

1

2

2∑
j=1

ζS(s;Cj3, L(µ))

}
,

(5.2.80)

where µ runs over 1 and κ, (κ being a non-quadratic residue mod p). Thus we have

the obvious identity

(5.2.81) L2(s, ψH,p) = L2,P (s, ψH,p) + L2,S(s, ψH,p).

We see from Proposition 5.2.6, Proposition 5.2.7, and Corollary to Proposition 5.2.16

that L2,P (s, ψH,p), L2,S(s, ψH,p) can be continued analytically to meromorphic func-

tions of s in the whole complex plane.

In the rest of this section, we shall discuss the evaluation of special values at
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s = 1−m (m ∈ N) of L2(s, ψH,p). We note that

Bj(〈a〉) =


B1(1), if j = 1, a ∈ Z

Pj(a), otherwise.

(5.2.82)

We will need two lemmas related to the Bernoulli polynomials.

Lemma 5.2.22. Let m ∈ N. Then,

∑
ξ∈ΞH,µ

B2m+1(ξj) = 0 (j = 1, 2, 3),

where ξj = ξ
(j)
α,γ,µ is the j-component of ξα,γ,µ ∈ ΞH,p.

Proof. From (5.2.82) and the fact that P2m+1(0) = 0, we have

(i)
∑

(α,γ)∈M (p)

B2m+1(ξ(1)
α,γ,µ) =

∑
α,γ(p)

P2m+1

(
µ(α2 − 2αγ)

p

)
,

(ii)
∑

(α,γ)∈M (p)

B2m+1(ξ(2)
α,γ,µ) =

∑
α,γ(p)

P2m+1

(
µαγ

p

)
,

(iii)
∑

(α,γ)∈M (p)

B2m+1(ξ(3)
α,γ,µ) =

∑
α,γ(p)

P2m+1

(
µ(γ2 − α2)

p

)
.

As P2m+1(−x) = −P2m+1(x) for any x ∈ R, replacing (α, γ) by (α + γ, γ), (−α, γ),

(γ, α) in (i), (ii), (iii) respectively yields the desired result.

Lemma 5.2.23. Let m ∈ N and let k2, k3 be positive integers with k2+k3 = 2m+1.
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Then,

(i) If k2, k3 ≥ 2, then,∑
ξ∈ΞH,p

Bk2(ξ2)Bk3(ξ3) = 0.

(ii) If k2 = 1, then,∑
ξ∈Ξ , ξ2 6=1

B1(ξ2)B2m(ξ3) = 0,

(iii) If k3 = 1, then,∑
ξ∈Ξ , ξ3 6=1

B2m(ξ2)B1(ξ3) = 0,

where ξj = ξ
(j)
α,γ,µ is the j-component of ξα,γ,µ ∈ ΞH,p.

Proof. From (5.2.82) and the fact that P2j−1(0) = 0 (j ∈ N), we have

∑
(α,γ)∈M (p)

Bk2

(
ξ(2)
α,γ,µ

)
Bk3(ξ

(3)
α,γ,µ) =

∑
α,γ(p)

Pk2

(
µαγ

p

)
Pk3

(
µ(γ2 − α2)

p

)
,

∑
(α,γ)∈M (p), αγ 6≡0

B1(ξ(2)
α,γ,µ)B2m(ξ(3)

α,γ,µ) =
∑
α,γ(p)

P1

(
µαγ

p

)
P2m

(
µ(γ2 − α2)

p

)
,

∑
(α,γ)∈M (p), γ2 6≡α2

B1(ξ(2)
α,γ,µ)B2m(ξ(3)

α,γ,µ) =
∑
α,γ(p)

P2m

(
µαγ

p

)
P1

(
µ(γ2 − α2)

p

)
.

As P2j−1(−x) = −P2j−1(x) for any x ∈ R, j ∈ N, replacing (α, γ) by (−γ, α) in the

three sums above yields the desired result.

Let m ∈ N. In the below, let k1, k2, k3 be integers satisfying k1, k2 ≥ 0, k3 ≥ 1

and k1 + k2 + k3 = 2m + 1. For any triple ξ = (ξ1, ξ2, ξ3) of positive numbers, we

write, for convenience,

B(k1, k2, k3; ξ) =
3∏
j=1

Bkj(ξj)

kj!
, P (k1, k2, k3; ξ) =

3∏
j=1

Pkj(ξj)

kj!
.(5.2.83)
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Let µ be any integer prime to p. Viewing Proposition 5.2.8, Proposition 5.2.9, and

taking (5.2.82), P2j−1(0) = 0 (j ∈ N), and Proposition 3.2.1 into account, we define

the numbers A(k1,k2,k3)(µ) as follows:

(i) If k1, k2, k3 6= 1, we set

A(k1,k2,k3)(µ) = −4π2iC(m)Λ(k1,k2,k3)

∑
ξ∈ΞH,p

B(k1, k2, k3; ξ)

= −2π2iC(m)Λ(k1,k2,k3)

∑
α,γ(p)

P (k1, k2, k3; ξ).

(ii) Let r be an integer with 1 ≤ r ≤ 3. If kr = 1 and the other kj’s 6= 1, we set

A(k1,k2,k3)(µ) = −4π2iC(m)Λ(k1,k2,k3)

∑
ξ∈ΞH,p, ξr 6=1

B(k1, k2, k3; ξ)

= −2π2iC(m)Λ(k1,k2,k3)

∑
α,γ(p)

P (k1, k2, k3; ξ).

(iii) Let r, n be integers with 1 ≤ r < n ≤ 3. If kr = kn = 1, and the remaining

kj 6= 1 (then, necessarily, m > 1), we set

A(k1,k2,k3)(µ) = −4π2iC(m)Λ(k1,k2,k3)

×

{ ∑
ξ∈ΞH,p, ξr,ξn 6=1

B(k1, k2, k3; ξ)− s(k1, k2, k3;µ)

}
,

= −2π2iC(m)Λ(k1,k2,k3)

×

{ ∑
α,γ(p)

P (k1, k2, k3; ξ)− 2s(k1, k2, k3;µ)

}
,

where

s(k1, k2, k3;µ) =



1

8
g2m−1(µ) (k1, k2, k3) = (1, 1, 2m− 1),

1

24
δp,3g2m−1(2µ) (k1, k2, k3) = (1, 2m− 1, 1),

0 (k1, k2, k3) = (2m− 1, 1, 1),

g2m−1(µ) =
1

(2m− 1)!

∑
α(p)
α 6≡0(p)

B2m−1(〈µα2/p〉) =
ψ(µ)

(2m− 1)! p2m−2
·B2m−1,ψ.
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(iv) In the case of (k1, k2, k3) = (1, 1, 1), we set

A(1,1,1)(µ) = −4π2iC(1)Λ(1,1,1)

×

{ ∑
ξ∈ΞH,p, ξj 6=1 (j=1,2,3)

B(1, 1, 1; ξ)− 1

8
g1(µ)− 1

24
δp,3g1(2µ)

}

= −2π2iC(1)Λ(1,1,1)

×

{∑
α,γ(p)

P (1, 1, 1; ξ)− 1

4
g1(µ)− 1

12
δp,3g1(2µ)

}
.

We note that A(k1,k2,k3)(d
2µ) = A(k1,k2,k3)(µ) for any d prime to p. We put

(5.2.84)


c(k1, k2, k3) =

Λ(k1 ,k2 ,k3 )

k1! k2! k3!
,

Sp(k1, k2, k3) =
∑
α,γ(p)

Pk1

(
α2 − 2αγ

p

)
Pk2

(
αγ

p

)
Pk3

(
γ2 − α2

p

)
.

The special values at s = 1−m (m ∈ N) of L2,P (s, ψH,p) can now be evaluated with

the use of the numbers defined above.

Proposition 5.2.24. Let m ∈ N. Then,

(i) L2,P (1−m,ψH,p) = −(2m− 1)! p2(m−1)

22m

∑′′

k1,k2,k3

c(k1, k2, k3)Sp(k1, k2, k3)

+
(2m− 1)! {3c(1, 1, 2m− 1)− c(1, 2m− 1, 1)δp,3}

3 · 22m+2
·B2m−1,ψ,

where (k1, k2, k3) runs over all triples of integers with k2 ≥ 0, k1, k3 ≥ 1, and

k1 + k2 + k3 = 2m+ 1.

(ii) Accordingly, L2,P (1−m,ψH,p) ∈ Q.

(iii) If p ≡ 1(4), then L2,P (1−m,ψH,p) = 0,

If p ≡ 3(4), then, in particular,

L2,P (0, ψH,p) = Qp +
1

6
hp +

3− δp,3
12

B1,ψ,

where Qp, hp are the constants given by (5.1.1), (5.1.2) in Theorem 5.1.
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Proof. Let ξα,γ,µ be the triple of ΞH,µ given by (5.2.7). We notice that B1(1) = 1/2,

and moreover that

(5.2.85)



Ξ
(2,3)
H,µ ∩ Ξ

(1,3)
H,µ = {ξα,γ,µ | α ≡ 0(p), γ 6≡ 0(p)},

Ξ
(2,3)
H,µ ∩ Ξ

(1,2)
H,µ =


φ (p > 3),

{ξα,γ,µ | γ ≡ −α(p), α 6≡ 0(p)} (p = 3),

Ξ
(1,3)
H,µ ∩ Ξ

(1,2)
H,µ = φ.

Taking very carefully (5.2.79), (5.2.80), Proposition 5.2.8, Proposition 5.2.9 and

(5.2.85) into account, we get

L2,P (1−m,ψH,p) = p2(m−1)
∑
µ

∑′

k1,k2,k3

ψ(µ)A(k1,k2,k3)(µ),

where µ is over 1 and κ, and (k1, k2, k3) runs over all triples of integers with k1, k2 ≥

0, k3 ≥ 1, and k1 + k2 + k3 = 2m + 1. By Lemma 5.2.22 and Lemma 5.2.23, we see

that A(0,k2,k3)(µ) = 0 for k2 ≥ 0, k3 ≥ 1 with k2 + k3 = 2m+ 1. Hence, we have

L2,P (1−m,ψH,p) = p2(m−1)
∑
µ

∑′′

k1,k2,k3

ψ(µ)A(k1,k2,k3)(µ),(5.2.86)

where µ is over 1 and κ, and (k1, k2, k3) runs over all triples of integers with k2 ≥

0, k1, k3 ≥ 1, and k1 + k2 + k3 = 2m + 1. Noting that Pk(−x) = (−1)kPk(x) for any

x ∈ R, k ≥ 0, we easily see that, for any triple (k1, k2, k3) with k2 ≥ 0, k1, k3 ≥ 1,

and k1 + k2 + k3 = 2m+ 1,

(5.2.87) A(k1,k2,k3)(−µ) = −A(k1,k2,k3)(µ).

Suppose p ≡ 1(4). Then −1 is a quadratic residue mod p, say, d2 ≡ −1(p). Hence,

A(k1,k2,k3)(−µ) = A(k1,k2,k3)(d
2µ) = A(k1,k2,k3)(µ), which implies that A(k1,k2,k3)(µ) = 0.
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Thus the first assertion of (iii) follows. Moreover, replacing (α, γ) by (dα, dγ) in the

sum Sp, we get Sp(k1, k2, k3) = (−1)k1+k2+k3Sp(k1, k2, k3). If k1+k2+k3 = 2m+1, then

Sp(k1, k2, k3) = 0, and as B2m−1,ψ = 0, we obtain the expression (i) for L2(1−m,ψH,p)

in the case of p ≡ 1(4).

Suppose p ≡ 3(4). Then we may take −1 as κ. By (5.2.86), together with (5.2.87)

and the property ψ(−1) = −1, we get

L2,P (1−m,ψH,p) = 2p2(m−1)
∑′′

k1,k2,k3

A(k1,k2,k3)(1),

where (k1, k2, k3) runs over all triples of integers with k2 ≥ 0, k1, k3 ≥ 1, and k1 +

k2 + k3 = 2m + 1. Thus we obtain the expression (i) for L2(1−m,ψH,p) in the case

of p ≡ 3(4).

If a triple (k1, k2, k3) satisfies either of the conditions (i), (ii) in Proposition 5.2.10,

then Λ(k1,k2,k3), and consequently, A(k1,k2,k3)(µ), is a rational number. Therefore, the

assertion (ii) follows from (i).

It remains to prove the second assertion of (iii). Suppose p ≡ 3(4). By assertion

(i) and Proposition 5.2.12, we get

L2,P (0, ψH,p) = −1

6
Sp(1, 0, 2)− Sp(1, 1, 1)− 1

3
Sp(2, 0, 1) +

3− δp,3
12

B1,ψ,

where

Sp(1, 0, 2) =
∑
α,γ(p)

P1((α2 − 2αγ)/p)P2((γ2 − α2)/p),

Sp(1, 1, 1) =
∑
α,γ(p)

P1((α2 − 2αγ)/p)P1(αγ/p)P1((γ2 − α2)/p),

Sp(2, 0, 1) =
∑
α,γ(p)

P2((α2 − 2αγ)/p)P1((γ2 − α2)/p).

Replacing (α, γ) by (−α, γ) in the first two sums and by (α+ γ, γ) in the third sum,
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noting that Pk(−x) = (−1)kPk(x), we get

Sp(1, 0, 2) =
∑
α,γ(p)

P1((α2 + 2αγ)/p)P2((γ2 − α2)/p) = hp,

Sp(1, 1, 1) = −
∑
α,γ(p)

P1((α2 + 2αγ)/p)P1(αγ/p)P1((γ2 − α2)/p) = −Qp,

Sp(2, 0, 1) =
∑
α,γ(p)

P2((α2 − γ2)/p)P1((−α2 − 2αγ)/p) = −hp.

Thus the second assertion of (iii) follows.

Now we study the singular part L2,S(s, ψH,p).

Proposition 5.2.25. Let m ∈ N and let µ be an integer prime to p. The functions

ζS(s;C123, L(µ)), ζS(s;Cj3, L(µ)) (j = 1, 2) are holomorphic at s = 1 − m, and the

special values at s = 1−m are given by

(i) ζS(1−m;C123, L(µ))

= iC(m)p2(m−1)
∑

ξ∈ΞH,µ

{J ′(1−m; (ξ1, ξ2))− πiK(1−m; (ξ1, ξ2))},

(ii) ζS(1−m;Cj3, L(µ))

= iC(m)p2(m−1)
∑

ξ∈Ξ
(j,3)
H,µ

{J ′j(1−m; (ξ1, ξ2))− πiKj(1−m; (ξ1, ξ2))}

(j = 1, 2).

Proof. Proposition 5.2.19, Lemma 5.2.22, and Proposition 5.2.20, show that

∑
ξ∈ΞH,p

J(1−m; (ξ1, ξ2)) = 0,
∑

ξ∈Ξ
(j,3)
H,p

Jj(1−m; (ξ1, ξ2)) = 0 (j = 1, 2).

Thus we immediately see from (5.2.79) and the expansions (5.2.60), (5.2.61) that

ζS(s;C123, L(µ)), ζS(s;Cj3, L(µ)) (j = 1, 2) are holomorphic at s = 1 −m, and that
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the special values at s = 1−m are expressed as in the proposition.

It follows from Proposition 5.2.25 and (5.2.80) that L2,S(s, ψH,p) is holomorphic

at s = 1−m (m ∈ N).

Proposition 5.2.26. Let m ∈ N. Set (η1, η2) = (〈(x− 2u)/p〉, 〈u/p〉). Then,

(i)
∑
µ

ψ(µ)ζS(1−m;C123, L(µ)) = iC(m)p2(m−1)

×
∑
x(p)
x 6≡0(p)

ψ(x)
∑
u(p)

{J ′(1−m; (η1, η2))− πiK(1−m; (η1, η2))},

(ii)
∑
µ

ψ(µ)ζS(1−m;C13, L(µ)) = iC(m)p2(m−1)

×
∑
x(p)
x 6≡0(p)

ψ(x){J ′j(1−m; 〈x/p〉)− πiKj(1−m; 〈x/p〉)},

(iii)
∑
µ

ψ(µ)ζS(1−m;C23, L(µ)) = iC(m)p2(m−1)

×
∑
x(p)
x 6≡0(p)

ψ(x){J ′j(1−m; 〈2−1x/p〉)− πiKj(1−m; 〈2−1x/p〉)},

where µ runs over 1 and κ (κ being a non-quadratic residue mod p).

Proof. Let ξ
(j)
α,γ,µ (j = 1, 2, 3) be the j-component of ΞH,µ (see (5.2.7)). We set

µα2 = x, µαγ = u. If (α, γ) runs over all elements of M (p) with α 6≡ 0(p), and µ is

over 1 and κ, then, (x, u) = (µα2, µαγ) just doubly covers all elements of M (p) with

x 6≡ 0(p). If α ≡ 0(p), then, ξ
(1)
α,γ,µ = ξ

(2)
α,γ,µ = 1, and all of the sums over µ would
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vanish. Thus, by Proposition 5.2.25, we get

∑
µ

ψ(µ)ζS(1−m;C123, L(µ)) = iC(m)p2(m−1)

×
∑
µ

ψ(µ)
∑

ξ∈ΞH,µ

{J ′(1−m; (ξ1, ξ2))− πiK(1−m; (ξ1, ξ2))},

= iC(m)p2(m−1)

× 1

2

∑
µ

ψ(µ)
∑

(α,γ)∈M (p)

{J ′(1−m; (ξ(1)
α,γ,µ, ξ

(2)
α,γ,µ))− πiK(1−m; (ξ(1)

α,γ,µ, ξ
(2)
α,γ,µ))},

= iC(m)p2(m−1)

×
∑
x(p)
x 6≡0(p)

ψ(x)
∑
u(p)

{J ′(1−m; (η1, η2))− πiK(1−m; ((η1, η2)))},

which proves the assertion (i). Similarly, we get

∑
µ

ψ(µ)ζS(1−m;C13, L(µ)) = iC(m)p2(m−1)

×
∑
µ

ψ(µ)
∑

ξ∈Ξ
(1,3)
H,µ

{J ′(1−m; ξ1)− πiK(1−m; ξ1)},

= iC(m)p2(m−1)

× 1

2

∑
µ

ψ(µ)
∑

(α,γ)∈M (p)
αγ≡0(p)

{J ′(1−m; ξ(1)
α,γ,µ)− πiK(1−m; ξ(1)

α,γ,µ)},

= iC(m)p2(m−1)

×
∑
x(p)
x6≡0(p)

ψ(x)
∑
u(p)
u≡0(p)

{J ′(1−m; η1)− πiK(1−m; η1)},
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from which the assertion (ii) follows, and

∑
µ

ψ(µ)ζS(1−m;C23, L(µ)) = iC(m)p2(m−1)

×
∑
µ

ψ(µ)
∑

ξ∈Ξ
(2,3)
H,µ

{J ′(1−m; ξ1)− πiK(1−m; ξ1)},

= iC(m)p2(m−1)

× 1

2

∑
µ

ψ(µ)
∑

(α,γ)∈M (p)
α2≡2αγ(p)

{J ′(1−m; ξ(2)
α,γ,µ)− πiK(1−m; ξ(2)

α,γ,µ)},

= iC(m)p2(m−1)

×
∑
x(p)
x6≡0(p)

ψ(x)
∑
u(p)

u≡2−1x(p)

{J ′(1−m; η2)− πiK(1−m; η2},

from which the assertion (iii) follows.

The following lemma plays a key role in evaluating the special values of L2,S(s, ψH,p)

at s = 1−m (m ∈ N).

Lemma 5.2.27. Let m ∈ N, j ∈ Z with j ≥ 0, and x be any integer prime to p.
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Then,

(i)
∑
u(p)

φ(t; 1− 〈(x− 2u)/p〉)φ(2j)(2t; 1− 〈u/p〉)

=

2j+1∑
k=0

(
γ1
k,j(x)φ(k)

(
2t;

1

2
− x

2p

)
+ γ2

k,j(x)φ(k)

(
2t; 1− x

2p

))
with

γ1
k,j(x) = δk,0δj,0B1 +

(−1)k
(

2j+1
k

)
(2j + 1)p2j−k ·


B2j+1−k if x is odd,

B2j+1−k(1/2) if x is even,

γ2
k,j(x) = δk,0δj,0B1 +

(−1)k
(

2j+1
k

)
(2j + 1)p2j−k ·


B2j+1−k(1/2) if x is odd,

B2j+1−k if x is even,

(0 ≤ k ≤ 2j + 1).

(ii)

∫
Iε(∞)

log t ·
∑
u(p)

φ(t; 1− 〈(x− 2u)/p〉)φ(2m)(2t; 1− 〈u/p〉)dt

= −πi
2m+1∑
k=1

(−1)k

k

(
γ1
k,m(x)Bk

(
x

2p
+

1

2

)
+ γ2

k,m(x)Bk

(
x

2p

))
.

(iii) For 0 ≤ j ≤ m− 1, we have∫
Γε

t2(j−m)
∑
u(p)

φ(t; 1− 〈(x− 2u)/p〉)φ(2j)(2t; 1− 〈u/p〉)dt

= 2πi

2j+1∑
k=0

(−1)k
(
k+2m−2j−1

k

)
k! 22m−2j−1

(k + 2m− 2j)!

×
{
γ1
k,j(x)Bk+2m−2j

(
x

2p
+

1

2

)
+ γ2

k,j(x)Bk+2m−2j

(
x

2p

)}
.

Proof. We may take x so that 1 ≤ x ≤ p− 1. Noting the obvious identity

φ(t; 1− a) = φ (2t; 1/2− a/2) + φ (2t; 1− a/2) ,



171

we get, with the help of Lemma 5.2.13,

∑
u(p)

φ(t; 1− 〈(x− 2u)/p〉)φ(2j)(2t; 1− 〈u/p〉)

=

2j∑
k=0

∑
u(p)

λk,2j(1− 〈u/p〉)
e2t( 3

2
−〈u/p〉− 1

2
〈(x−2u)/p〉)

(e2t − 1)k+2

+

2j∑
k=0

∑
u(p)

λk,2j(1− 〈u/p〉)
e2t(2−〈u/p〉− 1

2
〈(x−2u)/p〉)

(e2t − 1)k+2

=

2j∑
k=0

1

(e2t − 1)k+2

{ dx/2e−1∑
u=1

λk,2j(1− u/p)e2t( 3
2
− x

2p)

+

d(x+p)/2e−1∑
u=dx/2e

λk,2j(1− u/p)e2t(1− x
2p) +

p∑
u=d(x+p)/2e

λk,2j(1− u/p)e2t( 1
2
− x

2p)

}

+

2j∑
k=0

1

(e2t − 1)k+2

{ dx/2e−1∑
u=1

λk,2j(1− u/p)e2t(2− x
2p)

+

d(x+p)/2e−1∑
u=dx/2e

λk,2j(1− u/p)e2t( 3
2
− x

2p) +

p∑
u=d(x+p)/2e

λk,2j(1− u/p)e2t(1− x
2p)

}

=

2j∑
k=0

{ d(x+p)/2e−1∑
u=1

λk,2j(1− u/p)φk+1

(
2t;

1

2
− x

2p

)

+

p∑
u=d(x+p)/2e

λk,2j(1− u/p)φk+2

(
2t;

1

2
− x

2p

)}

+

2j∑
k=0

{ dx/2e−1∑
u=1

λk,2j(1− u/p)φk+1

(
2t; 1− x

2p

)

+

p∑
u=dx/2e

λk,2j(1− u/p)φk+2

(
2t; 1− x

2p

)}
.

Then, repeatedly using the formula

φk+1(2t; a) = −(1/(2k))φ′k(2t; a) + ((a− k)/k)φk(2t; a) (k ≥ 1),
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we obtain the expression

∑
u(p)

φ(t; 1− 〈(x− 2u)/p〉)φ(2j)(2t; 1− 〈u/p〉)

=

2j+1∑
k=0

(
γ1
k,j(x)φ(k)

(
2t;

1

2
− x

2p

)
+ γ2

k,j(x)φ(k)

(
2t; 1− x

2p

))
,

(5.2.88)

where γ1
k,j(x), γ2

k,j(x) (0 ≤ k ≤ 2j + 1) are certain rational numbers depending on x.

Recalling the Laurent expansion (5.2.44) of φ(k)(t; a), we shall compare the coefficients

in the Laurent expansions at t = 0 of both sides of (5.2.88). For |t|< π, we have

φ(t; 1− 〈(x− 2u)/p〉)φ(2j)(2t; 1− 〈u/p〉)

= (2j)! 2−2j−1

2j∑
n=0

Bn(1− 〈(x− 2u)/p〉)
n!

· tn−2j−2

+
1

2j + 1

{
2−2j−1B2j+1(1− 〈(x− 2u)/p〉) +B2j+1(1− 〈u/p〉)

}
t−1

+
∞∑
r=0

{
(2j)! 2−2j−1Br+2j+2(1− 〈(x− 2u)/p〉)

(r + 2j + 2)!
+

1

(r + 1)!

×
r+1∑
k=0

(
r+1
k

)
2r+1−k

r + 2j + 2− k
·Bk(1− 〈(x− 2u)/p〉)Br+2j+2−k(1− 〈u/p〉)

}
tr.
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By (5.2.82) and Proposition 3.2.1, it follows that

∑
u(p)

φ(t; 1− 〈(x− 2u)/p〉)φ(2j)(2t; 1− 〈u/p〉)

= (2j)! 2−2j−1

2j∑
n=0

Bn

n! pn−1
· tn−2j−2

+
(2−2j−1 + 1)B2j+1

(2j + 1)p2j
· t−1

+
∞∑
r=0

{
(2j)! 2−2j−1Br+2j+2

(r + 2j + 2)! pr+2j+1

+
(−1)r+12rB1

r! (r + 2j + 1)
· Pr+2j+1

(
x

2p
+
x

2

)
+

(−1)r+1B1δj,0
(r + 1)!

· Pr+1

(
x

p

)
+

(−1)r+1

(r + 1)!

r+1∑
k=0

(−1)r+1−k(r+1
k

)
2r+1−k

r + 2j + 2− k
· φk,r+2j+2−k

(
2, p;

x

p
, 0

)}
tr,

(5.2.89)

where φr,s(h, k;x, y) denotes the Carlitz Phi function given by (3.1.14). Similarly, for

|t|< π, we have

2j+1∑
k=0

(
γ1
k,j(x)φ(k)

(
2t;

1

2
− x

2p

)
+ γ2

k,j(x)φ(k)

(
2t; 1− x

2p

))

=

2j+1∑
n=0

(−1)2j+1−n(2j + 1− n)! 2n−2j−2

×
(
γ1

2j+1−n,j(x) + γ2
2j+1−n,j(x)

)
tn−2j−2

+
∞∑
r=0

{
2j+1∑
k=0

(−1)r+k+1

r! (r + k + 1)

×
(
γ1
k,j(x)Pr+k+1

(
x

2p
+

1

2

)
+ γ2

k,j(x)Pr+k+1

(
x

2p

))
2r

}
tr.

(5.2.90)

Suppose γ1
k,j(x), γ2

k,j(x) are given as in the assertion (i). We will show that all of the
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coefficients in the Laurent expansions (5.2.89), (5.2.90) are the same; that is,

(I) (−1)2j+1−n(2j + 1− n)! 2n−2j−2
(
γ1

2j+1−n,j(x) + γ2
2j+1−n,j(x)

)
= (2j)! 2−2j−1 Bn

n! pn−1
(0 ≤ n ≤ 2j),

(II)
1

2

(
γ1

0,j(x) + γ2
0,j(x)

)
=

(2−2j−1 + 1)B2j+1

(2j + 1)p2j
,

(III)

2j+1∑
k=0

(−1)r+k+1
(
γ1
k,j(x)Pr+k+1

(
x
2p

+ 1
2

)
+ γ2

k,j(x)Pr+k+1

(
x
2p

))
2r

r! (r + k + 1)

=
(2j)! 2−2j−1Br+2j+2

(r + 2j + 2)! pr+2j+1
+

+
(−1)r+12rB1

r! (r + 2j + 1)
· Pr+2j+1

(
x

2p
+
x

2

)
+

(−1)r+1B1δj,0
(r + 1)!

· Pr+1

(
x

p

)
+

(−1)r+1

(r + 1)!

r+1∑
k=0

(−1)r+1−k(r+1
k

)
2r+1−k

r + 2j + 2− k
· φk,r+2j+2−k

(
2, p;

x

p
, 0

)
(r = 0, 1, 2, · · ·).

(I) follows immediately from the fact that Bn(0)+Bn(1/2) = Bn/2
(n−1) (0 ≤ n ≤ 2j),

and (II) is obvious. We observe that the left side of (III) is equal to

(−1)r+12rB1

r! (r + 2j + 1)
· Pr+2j+1

(
x

2p
+
x

2

)
+

(−1)r+1B1δj,0
(r + 1)!

· Pr+1

(
x

p

)
+

(−1)r2r

p2jr! (2j + 1)

2j+1∑
k=0

(−1)2j+1−k(2j+1
k

)
p2j+1−k

r + 2j + 2− k
· φk,r+2j+2−k

(
p, 2; 0,

x

p

)
.

Thus, (III) reduces to

(
r + 2j + 2

r + 1

){
2j + 1

2r

r+1∑
k=0

(−1)r+1−k(r+1
k

)
2r+1−k

r + 2j + 2− k
· φk,r+2j+2−k

(
2, p;

x

p
, 0

)

+
r + 1

p2j

2j+1∑
k=0

(−1)2j+1−k(2j+1
k

)
p2j+1−k

r + 2j + 2− k
· φk,r+2j+2−k

(
p, 2; 0,

x

p

)}

=
Br+2j+2

(2p)r+2j+1
(r = 0, 1, 2, · · ·).
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Applying Proposition 3.2.28 to both of the sums above, we get

r+1∑
k=0

(
r + 2j + 2

k

)
21−kψk,r+2j+2−k

(
2, p;

x

p
, 0

)

+

2j+1∑
k=0

(
r + 2j + 2

k

)
p1−kψk,r+2j+2−k

(
p, 2; 0,

x

p

)
=

Br+2j+2

(2p)r+2j+1
(r = 0, 1, 2, · · ·),

where ψr,s(h, k;x, y) denotes the Carlitz Psi function given by (3.1.14). Applying

Proposition 3.2.29 to the first sum, we get

r+2j+2∑
k=0

(
r + 2j + 2

k

)
p1−kψk,r+2j+2−k

(
p, 2; 0,

x

p

)
=

Br+2j+2

(2p)r+2j+1

(r = 0, 1, 2, · · ·),

which follows immediately from Proposition 3.2.30, and hence establishes (III). The

proof of the assertion (i) is now complete.

Similarly as in (5.2.76), we have

∫
Iε(∞)

log t · φ(k) (2t; 1− a) dt = −πi(−1)kBk (a)

k
(k ∈ N, a 6∈ Z).

This together with (i), noting that γ1
0,m(x) = γ2

0,m(x) = 0 for m ∈ N, completes the

proof of the assertion (ii).

From (5.2.44), the coefficient of the term t2(m−j)−1 (0 ≤ j ≤ m− 1) in the Laurent

expansion at t = 0 of φ(k)(2t; 1− a) for t < |π|, is

(−1)k
(
k+2m−2j−1

k

)
k! 22m−2j−1Bk+2m−2j(a)

(k + 2m− 2j)!
(k ≥ 0, a ∈ R).

Thus the assertion (iii) readily follows from (i).
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Proposition 5.2.28. Let m ∈ N. Then,

22m+2πi(−1)m

(2m)!

∑
x(p)
x6≡0(p)

ψ(x)

∫
Iε(∞)

log t ·
∑
u(p)

φ(t; 1− 〈(x− 2u)/p〉)φ(2m)(2t; 1− 〈u/p〉)dt

=
22m+2π2(−1)m

p2m−1

2m∑
k=0

{Bk −Bk(1/2)}22m−kψ(2) +Bk(1/2)

(2m+ 1− k)k! (2m+ 1− k)! 22m−k ·B2m+1−k,ψ,

where ε is taken sufficiently small.

Proof. By Lemma 5.2.27 and Proposition 3.2.24, we get

p−1∑
x=1

ψ(x)

∫
Iε(∞)

log t ·
∑
u(p)

φ(t; 1− 〈(x− 2u)/p〉)φ(2m)(2t; 1− 〈u/p〉)dt

= −πi
2m+1∑
j=1

(−1)j

j

×

{
γ1
j,m(1)

p−1∑
x=1
x odd

Bj

(
x

2p
+

1

2

)
ψ(x) + γ1

j,m(0)

p−1∑
x=1
x even

Bj

(
x

2p
+

1

2

)
ψ(x)

+ γ2
j,m(1)

p−1∑
x=1
x odd

Bj

(
x

2p

)
ψ(x) + γ2

j,m(0)

p−1∑
x=1
x even

Bj

(
x

2p

)
ψ(x)

}

= −πi
2m+1∑
j=1

(−1)j

j

{
γ1
j,m(1)

2p−1∑
x=1
x even

Bj

(
x

2p

)
ψ(x) + γ1

j,m(0)

2p−1∑
x=1
x odd

Bj

(
x

2p

)
ψ(x)

}

= −πi
2m+1∑
j=1

(−1)j

j

{
(γ1
j,m(1)− γ1

j,m(0))
ψ(2)Bj,ψ

pj−1
+ γ1

j,m(0)
Bj,ψ

(2p)j−1

}

=
−πi

(2m+ 1)p2m−1

×
2m+1∑
j=1

(
2m+1
j

)
{(B2m+1−j −B2m+1−j (1/2)) 2j−1ψ(2) +B2m+1−j (1/2)}Bj,ψ

2j−1j
.

Thus the assertion of Proposition 5.2.28 immediately follows.
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Proposition 5.2.29. Let m ∈ N. Then,

− 4πi
m−1∑
j=0

(2m− 2j − 1)! 22j(−1)j

{(m− j)! }2(2j)!

×
∑
x(p)
x 6≡0(p)

ψ(x)

∫
Γε

t2(j−m)
∑
u(p)

φ(t; 1− 〈(x− 2u)/p〉)φ(2j)(2t; 1− 〈u/p〉)dt

=
22m+2π2

p2m−1

m−1∑
j=0

(−1)j

{(m− j)! }2

2j+1∑
k=0

{Bk −Bk(1/2)}22m−kψ(2) +Bk(1/2)

(2m+ 1− k)k! (2j + 1− k)! 22m−k ·B2m+1−k,ψ

− 2π2

m(m! )2p2m−1
·B2m,ψ,

where ε is taken sufficiently small.
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Proof. By Lemma 5.2.27 and Proposition 3.2.24, we get

p−1∑
x=1

ψ(x)

∫
Γε

t2(j−m)
∑
u(p)

φ(t; 1− 〈(x− 2u)/p〉)φ(2j)(2t; 1− 〈u/p〉)dt

= 2πi

2j+1∑
k=0

(−1)k
(
k+2m−2j−1

k

)
k! 22m−2j−1

(k + 2m− 2j)!

×

{
γ1
k,j(1)

p−1∑
x=1
x odd

Bk+2m−2j

(
x

2p
+

1

2

)
ψ(x) + γ1

k,j(0)

p−1∑
x=1
x even

Bk+2m−2j

(
x

2p
+

1

2

)
ψ(x)

+ γ2
k,j(1)

p−1∑
x=1
x odd

Bk+2m−2j

(
x

2p

)
ψ(x) + γ2

k,j(0)

p−1∑
x=1
x even

Bk+2m−2j

(
x

2p

)
ψ(x)

}

= 2πi

2j+1∑
k=0

(−1)k
(
k+2m−2j−1

k

)
k! 22m−2j−1

(k + 2m− 2j)!

×

{
γ1
k,j(1)

2p−1∑
x=1
x even

Bk+2m−2j

(
x

2p

)
ψ(x) + γ1

k,j(0)

2p−1∑
x=1
x odd

Bk+2m−2j

(
x

2p

)
ψ(x)

}

= 2πi

2j+1∑
k=0

(−1)k
(
k+2m−2j−1

k

)
k! 22m−2j−1

(k + 2m− 2j)!

×

{
(γ1
k,j(1)− γ1

k,j(0))
ψ(2)Bk+2m−2j,ψ

pk+2m−2j−1
+ γ1

k,j(0)
Bk+2m−2j,ψ

(2p)k+2m−2j−1

}

=
2πi

(2j + 1)p2m−1

2j+1∑
k=0

(
2j+1
k

)
{(Bk −Bk (1/2)) 22m−kψ(2) +Bk (1/2)}B2m+1−k,ψ

(2m+ 1− k)(2m− 2j − 1)! 22j+1−k

+
2πiB1δj,0

(2m)! p2m−1
B2m,ψ.

Thus the assertion of Proposition 5.2.29 immediately follows.
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Proposition 5.2.30. Let m ∈ N. Then,

∑
µ

ψ(µ)ζS(1−m;C123, L(µ)) = iC(m)p2(m−1)

×

{
22m+2π2

p2m−1

m∑
j=0

(−1)j

{(m− j)! }2

×
2j+1−δj,m∑

k=0

{Bk −Bk(1/2)}22m−kψ(2) +Bk(1/2)

(2m+ 1− k)k! (2j + 1− k)! 22m−k ·B2m+1−k,ψ

+ 2π2
∑
x(p)

ψ(x)
2m∑
n=1

Bn,m · φ2m+1−n,n

(
2, p;

x

p
, 0

)}

− iC(m)

2p

{
4π2

m(m! )2
−

2π2M(2m−1,0)

(2m)!

}
B2m,ψ

− iC(m)

2p

{
−2π2M(0,2m−1) + 2π2N(0,2m−1)

(2m)!

}
ψ(2)B2m,ψ,

where µ is over 1 and κ, and

(5.2.91) Bn,m = (−1)n ·
M(2m−n,n−1) −N(2m−n,n−1)

(2m+ 1− n)!n!
.

Proof. By assertion (i) of Proposition 5.2.26, Proposition 5.2.19, Proposition

5.2.21, Proposition 5.2.28, Proposition 5.2.29, and Lemma 5.2.22, it remains to show

that

2π2

2m∑
n=1

(−1)nBn,m

∑
x(p)
x 6≡0(p)

ψ(x)
∑
u(p)

B2m+1−n(〈(x− 2u)/p〉)Bn(〈u/p〉)

= 2π2
∑
x(p)

ψ(x)
2m∑
n=1

Bn,m · φ2m+1−n,n

(
2, p;

x

p
, 0

)

+
2π2B1(1) {−B1,m + B2m,mψ(2)}

p2m−1
·B2m,ψ,

(5.2.92)

where we note that N(2m−1,0) = 0 (m ∈ N) by virtue of ν1(u) = 0. Taking Proposition
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3.2.1 into account, we get

2π2

2m∑
n=1

(−1)nBn,m

∑
x(p)
x 6≡0(p)

ψ(x)
∑
u(p)

B2m+1−n(〈(x− 2u)/p〉)Bn(〈u/p〉)

= 2π2
∑
x(p)

ψ(x)
2m∑
n=1

(−1)nBn,m

∑
u(p)

P2m+1−n((x− 2u)/p)Pn(u/p)

+ 2π2
∑
x(p)

ψ(x)B1(1)

{
(−1)B1,mP2m

(
x

p

)
+ B2m,mP2m

(
2−1x

p

)}

= 2π2
∑
x(p)

ψ(x)
2m∑
n=1

Bn,m · φ2m+1−n,n

(
2, p;

x

p
, 0

)

+
2π2B1(1) {−B1,m + B2m,mψ(2)}

p2m−1
·B2m,ψ.

Thus (5.2.92) is established, and consequently, completes the proof.

Proposition 5.2.31. Let m ∈ N. Then,

(i)
∑
µ

ψ(µ)ζS(1−m;C13, L(µ)) =
iC(m)

p

{
4π2

m(m! )2
−

2π2M(2m−1,0)

(2m! )

}
B2m,ψ,

(ii)
∑
µ

ψ(µ)ζS(1−m;C23, L(µ)) =
iC(m)

p

{
22m+1π2

m

m∑
j=0

(−1)j

{(m− j)! }2(2j)!

+
−2π2M(0,2m−1) + 2π2N(0,2m−1)

(2m)!

}
ψ(2)B2m,ψ,

where µ is over 1 and κ.

Proof. By Proposition 5.2.26, Proposition 5.2.20, and Proposition 5.2.21, both

assertions follow from Proposition 3.2.1.
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Proposition 5.2.32. Let m ∈ N. Then,

L2,S(1−m,ψH,p) =

(2m− 1)!

22mp

{
1

2m+ 1

m∑
j=0

(−1)j

{(m− j)! }2(2j + 1)!

}
B2m+1,ψ

+
(2m− 1)!

p

m∑
k=1

1

(2m+ 1− 2k)(2k)!

m∑
j=k

(−1)j

{(m− j)! }2(2j + 1− 2k)!

× {B2k −B2k(1/2)}22m−2kψ(2) +B2k(1/2)

22m−2k
·B2m+1−2k,ψ

+
(2m− 1)! p2(m−1)

22m+1

∑
x(p)

ψ(x)
2m∑
n=1

Bn,m · φ2m+1−n,n

(
2, p;

x

p
, 0

)
,

where Bn,m is given by (5.2.91) and φr,s(h, k;x, y) is given by (3.1.14).

Proof. By (5.2.80), Proposition 5.2.30, and Proposition 5.2.31, we have

L2,S(1−m,ψH,p) =

(2m− 1)!

p

m∑
j=0

(−1)j

{(m− j)! }2

×
2j+1−δj,m∑

k=0

{Bk −Bk(1/2)}22m−kψ(2) +Bk(1/2)

(2m+ 1− k)k! (2j + 1− k)! 22m−k ·B2m+1−k,ψ

+
(2m− 1)! p2(m−1)

22m+1

∑
x(p)

ψ(x)
2m∑
n=1

Bn,m · φ2m+1−n,n

(
2, p;

x

p
, 0

)

+
(2m− 1)!

4p

{
1

m

m∑
j=0

(−1)j

{(m− j)! }2(2j)!

}
ψ(2)B2m,ψ.

As B2j+1 = B2j+1(1/2) = 0 (j ∈ N), the assertion of the proposition follows.

In fact, much more can be said. We first prove a proposition, then a lemma.

Proposition 5.2.33. Let m ∈ N. Let φr,s(h, k;x, y), ψr,s(h, k;x, y) denote the

Carlitz Phi and Psi functions given by (3.1.14), respectively. Let Bn,m be the numbers
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given in (5.2.91). Set

(5.2.93) Cn,m =
n−1∑
j=1

(
2m+ 1− j
n− j

)
2n−j ·Bj,m (n = 1, 2, · · · , 2m).

Then, we have

∑
x(p)

ψ(x)
2m∑
n=1

Bn,m · φ2m+1−n,n

(
2, p;

x

p
, 0

)

=
1

p2m−1

{
2m∑
n=1

(−1)n+1(2m+ 1− n)Cn,m

(n+ 1)2n

}
B2m+1,ψ

+
22m

p2m−1

m∑
k=1

{
2m∑

n=2k−1

(−1)n+1
(
n+1
2k

)
(2m+ 1− n)Cn,m

(n+ 1)2n

}

× {B2k −B2k(1/2)}22m−2kψ(2) +B2k(1/2)

22m−2k
·B2m+1−2k,ψ

+
1

p2m−1

2m∑
n=2

Bn{nCn,m − 2(2m+ 2− n)Cn−1,m}
n

·B2m+1−n,ψ.

Proof. By Proposition 3.2.33, we have

2m∑
n=1

Bn,m · φ2m+1−n,n

(
2, p;

x

p
, 0

)
=

2m∑
n=1

Cn,m · ψ2m+1−n,n

(
2, p;

x

p
, 0

)
,

where the numbers Cn,m are given by (5.2.93). Applying Proposition 3.2.31, Propo-
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sition 3.2.32, and Propositon 3.2.1, we get

∑
x(p)

ψ(x)
2m∑
n=1

Bn,m · φ2m+1−n,n

(
2, p;

x

p
, 0

)

=
1

p2m−1

{
2m∑
n=1

(2m+ 1− n)22m−nCn,m

n+ 1

n+1∑
k=0

(−1)n+1−k
(
n+ 1

k

)
× {Bk −Bk(1/2)}22m−kψ(2) +Bk(1/2)

22m−k ·B2m+1−k,ψ

+

[
2m∑
n=1

(−1)n(2m+ 1− n)22m−n−1Cn,m

]
ψ(2)B2m,ψ

+
2m∑
n=2

Bn{nCn,m − 2(2m+ 2− n)Cn−1,m}
n

·B2m+1−n,ψ

}
.

As B2j+1 = B2j+1(1/2) = 0 (j ∈ N), the assertion of the proposition follows.

Lemma 5.2.34. Let Cn,m (1 ≤ n ≤ 2m) be given by (5.2.93). Then,

C2n,m =
2m+ 2− 2n

n
· C2n−1,m (1 ≤ n ≤ m).

Proof. By the definition of Cn,m, we must show

(5.2.94) B2n,m = − 1

2n

2n−1∑
j=1

j

(
2m+ 1− j

2n− j

)
22n−j ·Bj,m (1 ≤ n ≤ m).

We first show

(5.2.95)


µ2n(u) = − 1

2n

2n−1∑
j=1

(−1)jj

(
2n

j

)
(1 + u)2n−jµj(u),

ν2n(u) = − 1

2n

2n−1∑
j=1

(−1)jj

(
2n

j

)
(1 + u)2n−jνj(u) (1 ≤ n ≤ m).
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By (5.2.48) and Proposition 3.2.27, we get

− 1

2n

2n−1∑
j=1

(−1)jj

(
2n

j

)
(1 + u)2n−jµj(u)

=
2n−1∑
j=1

κj∑
k=0

(−1)j−1

(
2n− 1

j − 1

)(
j − 1

2k

)
(1 + u)2n−1−2k(−u)k

=

κ2n∑
k=0

(1 + u)2n−1−2k(−u)k
2n−1∑
j=2k+1

(−1)j−1

(
2n− 1

j − 1

)(
j − 1

2k

)

=

κ2n∑
k=0

(
2n− 1

2k

)
(1 + u)2n−1−2k(−u)k

= µ2n(u).

Similar reasoning can be applied to ν2n(u), thus establishing (5.2.95). From (5.2.95),

it follows that
(1 + u)2m−2nµ2n(u)

(2m+ 1− 2n)! (2n)!
= − 1

2n

2n−1∑
j=1

(−1)jj

(
2m+ 1− j

2n− j

)
(1 + u)2m−jµj(u)

(2m+ 1− j)! j!
,

(1 + u)2m−2nν2n(u)

(2m+ 1− 2n)! (2n)!
= − 1

2n

2n−1∑
j=1

(−1)jj

(
2m+ 1− j

2n− j

)
(1 + u)2m−jνj(u)

(2m+ 1− j)! j!
.

Therefore, from (5.2.74), (5.2.77), we see that



M(2m−2n,2n−1)

(2m+ 1− 2n)! (2n)!
= − 1

2n

2n−1∑
j=1

j

(
2m+ 1− j

2n− j

)
22n−j (−1)jM(2m−j,j−1)

(2m+ 1− j)! j!
,

N(2m−2n,2n−1)

(2m+ 1− 2n)! (2n)!
= − 1

2n

2n−1∑
j=1

j

(
2m+ 1− j

2n− j

)
22n−j (−1)jN(2m−j,j−1)

(2m+ 1− j)! j!
.

This implies (5.2.94), and consequently, completes the proof.
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Proposition 5.2.35. Let m ∈ N. Then,

(i) L2,S(1−m,ψH,p) =

(2m− 1)!

22mp

{
1

2m+ 1

m∑
j=0

(−1)j

{(m− j)! }2(2j + 1)!

+
2m∑
n=1

(−1)n+1(2m+ 1− n)Cn,m

(n+ 1)2n+1

}
B2m+1,ψ

+
(2m− 1)!

p

m∑
k=1

{
1

(2m+ 1− 2k)(2k)!

m∑
j=k

(−1)j

{(m− j)! }2(2j + 1− 2k)!

+
2m∑

n=2k−1

(−1)n+1
(
n+1
2k

)
(2m+ 1− n)Cn,m

(n+ 1)2n+1

}

× {B2k −B2k(1/2)}22m−2kψ(2) +B2k(1/2)

22m−2k
·B2m+1−2k,ψ,

where Cn,m is given by (5.2.93).

(ii) Accordingly, L2,S(1−m,ψH,p) ∈ Q.

(iii) If p ≡ 1(4), then L2,S(1−m,ψH,p) = 0,

If p ≡ 3(4), then, in particular,

L2,S(0, ψH,p) =
11

72p
B3,ψ +

1− 3ψ(2)

24p
B1,ψ.

Proof. We first prove the assertion (i). From Proposition 5.2.32 and Proposition

5.2.33, it remains to show

(2m− 1)!

22m+1p

2m∑
n=2

Bn{nCn,m − 2(2m+ 2− n)Cn−1,m}
n

·B2m+1−n,ψ = 0.

This follows immediately from Lemma 5.2.34 and the fact that B2n+1 = 0 (n ∈ N).

Thus we obtain the expression (i) for L2,S(1−m,ψH,p). By (5.2.93), (5.2.91), Lemma

5.2.18, and (5.2.78), we see that Cn,m ∈ Q (1 ≤ n ≤ 2m). Therefore, the assertion (ii)

follows from (i). If p ≡ 1(4), then Bk,ψ = 0 for any odd k. Thus the first assertion of
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(iii) follows from (i). By (5.2.74), (5.2.48), and (5.2.75), we have

M(1,0) =
1

2
M(0,1) =

1

πi

∫
Iε(1)

log u · u−2(1− u2)du = −4,

and by (5.2.77), (5.2.48) (where we see that ν1(u) = ν2(u) = 0), we have N(1,0) =

N(0,1) = 0. Hence, by (5.2.91), B1,1 = 2, B2,1 = −4, and by (5.2.93), C1,1 = 2,

C2,1 = 4. Thus the second assertion of (iii) follows from (i).

We are now in position to prove Theorem 5.2 introduced at the beginning of

Section 5.2.

Proof of Theorem 5.2. This follows immediately from Proposition 5.2.24, Propo-

sition 5.2.35, and (5.2.81).

We now give a formula for all of the special values of L2(s, ψH,p) at non-positive

integer values of s.

Theorem 5.2.36. Let m ∈ N. With the numbers c(k1, k2, k3), Sp(k1, k2, k3), Cn,m
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given by (5.2.84), (5.2.93), we have

L2(1−m,ψH,p) = −(2m− 1)! p2(m−1)

22m

∑′′

k1,k2,k3

c(k1, k2, k3)Sp(k1, k2, k3)

+
(2m− 1)!

22mp

{
1

2m+ 1

m∑
j=0

(−1)j

{(m− j)! }2(2j + 1)!

+
2m∑
n=1

(−1)n+1(2m+ 1− n)Cn,m

(n+ 1)2n+1

}
B2m+1,ψ

+
(2m− 1)!

3 · 22m+2p

{[
2

2m− 1

m∑
j=1

(−1)j

{(m− j)! }2(2j − 1)!

+
2m∑
n=1

(−1)n+1n(2m+ 1− n)Cn,m

2n

]
×
(

3 · 22m−2ψ(2)− 1
)

+ p
(

3c(1, 1, 2m− 1)− c(1, 2m− 1, 1)δp,3

)}
B2m−1,ψ,

+
(2m− 1)!

p

m∑
k=2

{
1

(2m+ 1− 2k)(2k)!

m∑
j=k

(−1)j

{(m− j)! }2(2j + 1− 2k)!

+
2m∑

n=2k−1

(−1)n+1
(
n+1
2k

)
(2m+ 1− n)Cn,m

(n+ 1)2n+1

}

× {B2k −B2k(1/2)}22m−2kψ(2) +B2k(1/2)

22m−2k
·B2m+1−2k,ψ,

where (k1, k2, k3) runs over all triples of integers with k2 ≥ 0, k1, k3 ≥ 1, and

k1 + k2 + k3 = 2m+ 1.

Proof. This follows immediately from Proposition 5.2.24, Proposition 5.2.35, and

(5.2.81).

While Arakawa[1] gave an explicit formula for the special value of L∗2(s, ψH,p) at

s = 0, he only proved the rationality of the other special values of L∗2(s, ψH,p) at

negative integer values of s. Therefore, we will give a formula for all of the special

values of L∗2(s, ψH,p) at non-positive integer values of s. The process of finding the

special values of L∗2(s, ψH,p) is similar to that of L2(s, ψH,p), so we omit the proof of

the following theorem.
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We put

(5.2.96) S∗p(k1, k2, k3) =
∑
α,γ(p)

Pk1

(
α2 − 2αγ

p

)
Pk2

(
2αγ

p

)
Pk3

(
γ2 − α2

p

)
.

Theorem 5.2.37. Let m ∈ N. With the numbers c(k1, k2, k3), S∗p(k1, k2, k3), Cn,m

given by (5.2.84), (5.2.96), (5.2.93), we have

L∗2(1−m,ψH,p) = −(2m− 1)! p2(m−1)

22m

∑′′

k1,k2,k3

c(k1, k2, k3)

2k2−1
S∗p(k1, k2, k3)

+
(2m− 1)!

22m−1p

{
1

2m+ 1

m∑
j=0

(−1)j

{(m− j)! }2(2j + 1)!

+
2m∑
n=1

(−1)n+1(2m+ 1− n)Cn,m

(n+ 1)2n+1

}
B2m+1,ψ

+
(2m− 1)!

3 · 22m+2p

{
2

2m− 1

m∑
j=1

(−1)j

{(m− j)! }2(2j − 1)!

+
2m∑
n=1

(−1)n+1n(2m+ 1− n)Cn,m

2n

+ p

(
3c(1, 1, 2m− 1) +

c(1, 2m− 1, 1)

22m−2
δp,3

)}
B2m−1,ψ,

+
(2m− 1)!

22m−1p

m∑
k=2

{
1

(2m+ 1− 2k)(2k)!

m∑
j=k

(−1)j

{(m− j)! }2(2j + 1− 2k)!

+
2m∑

n=2k−1

(−1)n+1
(
n+1
2k

)
(2m+ 1− n)Cn,m

(n+ 1)2n+1

}
B2k ·B2m+1−2k,ψ,

where (k1, k2, k3) runs over all triples of integers with k2 ≥ 0, k1, k3 ≥ 1, and

k1 + k2 + k3 = 2m+ 1.
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5.3 Ibukiyama’s Evaluation of L2(s, ψH,p)

First, we review the definition of L2(s, ψH,p). Let L2 (resp L∗2) denote the lattice

formed by 2 × 2 integral symmetric (resp. half-integral symmetric) matrices, and

let L2,+, L∗2,+ be the subsets consisting of all positive definite matrices of L2, L∗2,

respectively. We fix an odd prime integer p. We denote by ψ the Legendre symbol

mod p: ψ(a) =
(
a
p

)
. For each T ∈ L∗2, we define ψH,p(T ) as follows: We put

ψH,p(T ) = 0, if det(T )6≡ 0 mod p. When det(T )≡ 0(p), we have tgTg ≡ ( a 0
0 0 ) mod p

for some g ∈ SL2(Fp) and a ∈ Fp, and we put ψH,p(T ) = ψ(a). Then L2(s, ψH,p) is

defined by

L2(s, ψH,p) =
∑

T∈L2,+/SL2(Z)

ψH,p(T )

ε(T )(det(T ))s
,

where L2,+/SL2(Z) denotes the representatives of SL2(Z)-equivalence classes in L2,+

and ε(T ) = #{g ∈ SL2(Z) | tgTg = T}.

The following result was proved by Ibukiyama.

Theorem 5.3 [9]. With notation and assumptions being the same as above, we

get

L2(s, ψH,p) = −B1,ψ

ps
ζ(2s− 1).

Before proving this, we first prove a lemma. If T ∈ L∗2,+, then 4 det(T ) = −dKf 2

for some positive integer f and the fundamental discriminant dK of some imaginary

quadratic field K. For any such d = dKf
2, we denote by P(d) the set of primitive

matrices of L∗2,+ with 4 det(T ) = −d:

P(d) =


 a b/2

b/2 c

 ∈ L∗2,+ : 4ac− b2 = −d, (a, b, c) = 1

 .

Denote by S (d) = P(d)/∼ the set of SL2(Z)-equivalence classes in P(d).

Remark. If T =
(

a b/2
b/2 c

)
∈ P(d), then ψH,p(T ) = ψ(a) if p - a and ψH,p(T ) =
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ψ(c) if p | a. Indeed, if p | a, then since rank(T mod p) = 1, we have p | b and c ∈ F×p ,

and if p - a, then we have

 1 0

− b
2a

1


a b

b c


1 − b

2a

0 1

 =

a 0

0 4ac−b2
4a

 ≡
a 0

0 0

 mod p.

This shows that for each equivalence class in S (d), we can choose a representative

T =
(

a b/2
b/2 c

)
∈P(d) such that ψH,p(T ) = ψ(a). This will prove useful in the lemma

below.

We state without proof the following Proposition.

Proposition 5.3.1 [2]. Let K be a quadratic number field, and let dK denote its

fundamental discriminant. Let χ be a primitive Dirichlet character with conductor

|dK |, and let χK be the primitive Dirichlet character with conductor |dK | associated

to the quadratic number field K: χK(n) =
(
dK
n

)
. Let OK,f = Z + fOK denote the

order of K with conductor f . Then,

χ = χK ⇔ χ(N(I)) = 1 for any ideal I of OK,f with (N(I), dK) = 1.

Lemma 5.3.2 [9]. With notation and assumptions being the same as above, we

get

(i) If Q(
√
d) 6= Q(

√
ψ(−1)p), then

∑
T∈S (d)

ψH,p(T ) = 0,

(ii) If Q(
√
d) = Q(

√
ψ(−1)p) (which can only occur if p ≡ 3(4)), then ψH,p(T ) = 1

for any T ∈P(d).

Proof. This can be proved by using the well-known relation between S (d) and

proper ideal classes of the order OK,f of K with conductor f . We review this shortly.

For any T =
(

a b/2
b/2 c

)
∈ P(d), put I(T ) = Za + Z(b +

√
d)/2. Then, I(T ) is the
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proper primitive OK,f ideal and Norm(I(T )) = #(OK,f/I(T )) = a. Through this

mapping, we get a bijection S (d) ∼= Cl(OK,f ), where Cl(OK,f ) is the class group

of the proper OK,f ideals prime to f . If p - d, then by definition ψH,p = 0 for any

T ∈ S (d), and the above assertion is trivial. Next we assume that p | d. From the

remark made before Proposition 5.3.1, we see that for each equivalence class in S (d),

we can choose a representative T ∈ P(d) such that ψH,p(T ) = ψ(Norm(I(T ))) with

(Norm(I(T )), p) = 1. If Q(
√
d) = Q(

√
ψ(−1)p), then ψ = χ

Q(
√
ψ(−1)p

, and it follows

by Proposition 5.3.1 that ψH,p(T ) = 1 for any T ∈ S (d). If on the other hand,

Q(
√
d) 6= Q(

√
ψ(−1)p), then ψ 6= χ

Q(
√
ψ(−1)p

, and it follows again by Proposition

5.3.1 that ψ induces a nontrivial character on Cl(OK,f ). Since Cl(OK,f ) is a group,

we get the assertion (i).

Proof of Theorem 5.3. First, it is obvious that ψH,p(eT ) = ψ(e)ψH,p(T ) for any

integer e prime to p and any T ∈ L∗2,+. Moreover, we see that ε(eT ) = ε(T ) for any

T ∈ L∗2,+. Noting that L2,+ = {T ∈ L∗2,+ | 4 det(T ) ≡ 0(2)}, we can reduce L2(s, ψH,p)

to a sum over primitive matrices of L∗2,+:

L2(s, ψH,p) =
∑

T∈L∗2,+/SL2(Z)

4 det(T )≡0(2)

ψH,p(T )

ε(T )(det(T ))s

=
∞∑
e=1

ψ(e)

e2s

∞∑
d=1
d even

∑
T∈S (−d)

ψH,p(T )

ε(T )(d/4)s

= 22sL(2s, ψ)
∞∑
d=1
d even

∑
T∈S (−d)

ψH,p(T )

ε(T )ds
.

Since ε(T ) has a common value for all elements in P(−d), we denote this by ε(−d).

Applying Lemma 5.3.2, we see that only the part for T with 4 det(T ) = d = pf 2
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(f ∈ N) remains alive. Hence, we get

L2(s, ψH,p) =
22s

ps
L(2s, ψ)

∞∑
f=1
f even

|S (−pf 2)|
ε(−pf 2)f 2s

.

By virtue of the relation between S (dKf
2) and proper ideal classes of the order OK,f

of K with conductor f , |S (−pf 2)| is the class number h(−pf 2) = #Cl(OK,f ) of the

order OK,f of the imaginary quadratic number field K = Q(
√
−p). If p ≡ 3(4) and

K = Q(
√
−p), it is well known that the class number h(−pf 2) of OK,f is given by

h(−pf 2) =
h(−p)f

[O×K :O×K,f ]

∏
q|f

q prime

(
1− ψ(q)

q

)
,

where OK denotes the maximal order of K. Since ε(T ) = #(O×K,f ) for T ∈P(−pf 2),

and B1,ψ = −2h(−p)/#(O×K), we have

L2(s, ψH,p) = −22s−1B1,ψ

ps
L(2s, ψ)

∞∑
f=1
f even

1

f 2s−1

∏
q|f

q prime

(
1− ψ(q)

q

)

= −22s−1B1,ψ

ps
L(2s, ψ)

∞∑
f=1
f even

1

f 2s−1

∏
q|f

q prime

(
1 +

ψ(q)µ(q)

q

)

= −22s−1B1,ψ

ps
L(2s, ψ)

∞∑
f=1
f even

1

f 2s−1

∑
m|f

1

m
ψ(m)µ(m).

Letting f = 2mn in the sum above, we get

L2(s, ψH,p) = −B1,ψ

ps
L(2s, ψ)

∞∑
n,m=1

1

n2s−1m2s
ψ(m)µ(m)

= −B1,ψ

ps
L(2s, ψ)ζ(2s− 1)

∏
q

q prime

(
1− ψ(q)

q2s

)

= −B1,ψ

ps
ζ(2s− 1).
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We give two corollaries to Theorem 5.3.

Corollary 5.3.3. Let m ∈ N. Then,

L2(1−m,ψH,p) =
pm−1B2mB1,ψ

2m
.

In particular, we get L2(0, ψH,p) = 1
12
B1,ψ.

Proof. This follows immediately from the fact that ζ(1− 2m) = −B2m

2m
(m ∈ N).

Corollary 5.3.4. L2(s, ψH,p) is absolutely convergent for Re(s)> 3
2

and can be

continued analytically to a meromorphic function in the whole complex plane which

is holomorphic everywhere except at s = 1, where L2(s, ψH,p) has a simple pole with

residue −B1,ψ

2p
.

Proof. This follows immediately from the properties of the Riemann zeta function

and the fact that lims→1(s− 1)ζ(s) = 1.

Since the evaluation of L∗2(s, ψH,p) is similar to that of L2(s, ψH,p), we omit the

proof of the following theorem.

Theorem 5.3.5 [9]. With notation and assumptions being the same as above, we

get

L∗2(s, ψH,p) = −22s−1B1,ψ

ps
ζ(2s− 1).

We give two corollaries to Theorem 5.3.5.

Corollary 5.3.6 [9]. Let m ∈ N. Then,

L∗2(1−m,ψH,p) =
pm−1B2mB1,ψ

22m ·m
.

Proof. This follows immediately from the fact that ζ(1− 2m) = −B2m

2m
(m ∈ N).
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Corollary 5.3.7 [1]. L∗2(s, ψH,p) is absolutely convergent for Re(s)> 3
2

and can

be continued analytically to a meromorphic function in the whole complex plane which

is holomorphic everywhere except at s = 1, where L∗2(s, ψH,p) has a simple pole with

residue −B1,ψ

p
.

Proof. This follows immediately from the properties of the Riemann zeta function

and the fact that lims→1(s− 1)ζ(s) = 1.
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5.4 Proof of Theorem 5 and its Corollaries

We shall now prove Theorem 5 introduced at the beginning of Chapter 5. We fix an

odd prime p. We denote by ψ the Legendre symbol mod p: ψ(a) =
(
a
p

)
.

Proof of Theorem 5 (The Dual Lee-Weintraub Identity). By Theorem

5.1, Theorem 5.2, and Theorem 5.3, we get

Ip =
√
ψ(−1)p

(
−6p

(
Qp +

1

6
hp

)
− 3

4
B3,ψ −

3

4
B2,ψ −

9− 3ψ(2)− 2pδp,3
4

B1,ψ

)
=
√
ψ(−1)p

(
−6pL2(0, ψH,p) +

1

6
B3,ψ −

3

4
B2,ψ +

3p− 4

2
B1,ψ

)
=
√
ψ(−1)p

(
1

6
B3,ψ −

3

4
B2,ψ + (p− 2)B1,ψ

)
.

As an immediate corollary to Theorem 5, we prove the following conjecture of

Ibukiyama (see Example 8.19 and Remark 8.20 in [2]).

Corollary 5.4.1 We put T = {(a, b, c) ∈ Z3 | 1 ≤ a, b, c ≤ p − 1, ab + bc + ca ≡

0(p)} and

Ap =
∑

(a,b,c)∈T

abc ψ(abc).

Then, we get

Ap = −p
2

6
B3,ψ −

3p3

4
B2,ψ +

p2(p+ 1)

2
B1,ψ.

Proof. Observe that this is the same Ap given by (5.1.3). By (5.1.4) and Theorem

5, we get

Ap =
p2

ψ(−1)

(
1√

ψ(−1)p
Ip −

3(p− 1)

4
(B2,ψ + 2B1,ψ)

)

= −p
2

6
B3,ψ −

3p3

4
B2,ψ +

p2(p+ 1)

2
B1,ψ.
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We put

S = {(a, b, c) ∈ Z3 | 1 ≤ a, b, c ≤ p− 1, 4ab− (c− a− b)2 ≡ 0(p)},

T = {(a, b, c) ∈ Z3 | 1 ≤ a, b, c ≤ p− 1, ab+ bc+ ca ≡ 0(p)},

and consider the following four character sums

Sp =
∑

(a,b,c)∈S

P1

(
a

p

)
P1

(
b

p

)
P1

(
c

p

)
ψ(abc),

Tp =
∑

(a,b,c)∈T

P1

(
a

p

)
P1

(
b

p

)
P1

(
c

p

)
ψ(abc)

Sp =
∑

(a,b,c)∈S

c1

(
a

p

)
c1

(
b

p

)
c1

(
c

p

)
ψ(abc),

Tp =
∑

(a,b,c)∈T

c1

(
a

p

)
c1

(
b

p

)
c1

(
c

p

)
ψ(abc).

Proposition 5.4.2. With notation and assumptions being the same as above, we

have

(i) Sp =
∑
k,t(p)

P1

(
k2

p

)
P1

(
t2

p

)
P1

(
(k + t)2

p

)
,

(ii) Tp =
∑
k,t(p)

P1

(
kt

p

)
P1

(
k2 + kt

p

)
P1

(
t2 + kt

p

)

(iii) Sp =
∑
k,t(p)

c1

(
k2

p

)
c1

(
t2

p

)
c1

(
(k + t)2

p

)
,

(iv) Tp =
∑
k,t(p)

c1

(
kt

p

)
c1

(
k2 + kt

p

)
c1

(
t2 + kt

p

)
.

Proof. All of the assertions are clear in the case of p ≡ 1(4) since everything

vanishes. (The left sides vanish by the usual even/odd argument and the right sides

vanish by replacing (k, t) by (k
√
−1, t

√
−1)). Thus we assume that p ≡ 3(4). We
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observe the 1-to-1 correspondence between the sets

S = {(a, b, c) ∈ Z3 | 1 ≤ a, b, c ≤ p− 1, 4ab− (c− a− b)2 ≡ 0(p)}

and

{(k, kt2, k(t+ 1)2) ∈ (F×p )3 | 1 ≤ k, t ≤ p− 1, t 6= p− 1}.

Substituting (k, kt2, k(t+ 1)2) for (a, b, c) in Sp, we get

Sp =
∑
k,t(p)

P1

(
k

p

)
P1

(
kt2

p

)
P1

(
k(t+ 1)2

p

)
ψ(k).

Observe that, without the character, the sum on the right would vanish due to the

usual even/odd argument. Hence, adding this vanishing sum to both sides yields

Sp =
∑
k,t(p)

P1

(
k2

p

)
P1

(
k2t2

p

)
P1

(
k2(t+ 1)2

p

)
.

Thus the assertion (i) follows from replacing t by k−1t where k 6≡ 0. The asser-

tion (iii) is similarly verified, so the proof is omitted. Next, we observe the 1-to-1

correspondence between the sets

T = {(k, l,m) ∈ Z3 | 1 ≤ k, l,m ≤ p− 1, kl + lm+mk ≡ 0(p)}

and

{(−kt, k(t+ 1), kt(t+ 1)) ∈ (F×p )3 | 1 ≤ k, t ≤ p− 1, t 6= p− 1}.

Substituting (−kt, k(t+ 1), kt(t+ 1)) for (a, b, c) in Tp, we get

Tp =
∑
k,t(p)

P1

(
kt

p

)
P1

(
k(t+ 1)

p

)
P1

(
kt(t+ 1)

p

)
ψ(k).

As before, observe that without the character, the sum on the right would vanish
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due to the usual even/odd argument. Hence, adding this vanishing sum to both sides

yields

Tp =
∑
k,t(p)

P1

(
k2t

p

)
P1

(
k2(t+ 1)

p

)
P1

(
k2t(t+ 1)

p

)
.

Thus the assertion (ii) follows from replacing t by k−1t where k 6≡ 0. The assertion

(iv) is similarly verified, so the proof is omittted.

Recall that the sets S and T are dual to each other since the quadratic forms

in their respective congruence conditions are dual to each other. This implies the

following proposition,

Proposition 5.4.3. Let f1, f2, f3 be periodic functions with period p, and let

f̂1, f̂2, f̂3 be their respective finite Fourier transforms. Then, we have

∑
(a,b,c)∈T

f1

(
a

p

)
f2

(
a

p

)
f3

(
a

p

)
ψ(abc)

=
ψ(−1)p τ(ψ)

p3

{ ∑
(a,b,c)∈S

f̂1

(
a

p

)
f̂2

(
a

p

)
f̂3

(
a

p

)
ψ(abc)

+ f̂1(0)
∑
a(p)

f̂2

(
a

p

)
f̂3

(
a

p

)
ψ(a) + f̂2(0)

∑
a(p)

f̂1

(
a

p

)
f̂3

(
a

p

)
ψ(a)

+ f̂3(0)
∑
a(p)

f̂1

(
a

p

)
f̂2

(
a

p

)
ψ(a)− 1

p

∑
a,b,c(p)

f̂1

(
a

p

)
f̂2

(
b

p

)
f̂3

(
c

p

)
ψ(c)

− p3f3(0)

p τ(ψ)

f1(0)
∑
a(p)

f2

(
a

p

)
ψ(a) + f2(0)

∑
a(p)

f1

(
a

p

)
ψ(a)

}.
Proof. Recall the 1-to-1 correspondence between the sets T and {(−kt, k(t +

1), kt(t+1)) ∈ (F×p )3 | 1 ≤ k, t ≤ p−1, t 6= p−1}. Substituting (−kt, k(t+1), kt(t+1))
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for (a, b, c), we get

∑
(a,b,c)∈T

f1

(
a

p

)
f2

(
a

p

)
f3

(
a

p

)
ψ(abc)

= ψ(−1)
∑
k,t(p)

f1

(
−kt
p

)
f2

(
k(t+ 1)

p

)
f3

(
kt(t+ 1)

p

)
ψ(kt2(t+ 1)2)

= ψ(−1)

{∑
k,t(p)

f1

(
−kt
p

)
f2

(
k(t+ 1)

p

)
f3

(
kt(t+ 1)

p

)
ψ(k)

− f3(0)

f1(0)
∑
k(p)

f2

(
k

p

)
ψ(k) + f2(0)

∑
k(p)

f1

(
k

p

)
ψ(k)

}.

(5.4.1)

Let

Mp =
∑
k,t(p)

f1

(
−kt
p

)
f2

(
k(t+ 1)

p

)
f3

(
kt(t+ 1)

p

)
ψ(k).

Applying the finite Fourier transform to f1, f2, f3 (Proposition 3.1.12), we get

Mp =
1

p3

∑
k,l,m(p)

f̂1

(
k

p

)
f̂2

(
l

p

)
f̂3

(
m

p

)∑
k,t(p)

ζ−dkt+ek(t+1)+fkt(t+1)ψ(k)

=
1

p3

∑
k,l,m(p)

f̂1

(
k

p

)
f̂2

(
l

p

)
f̂3

(
m

p

)∑
k,t(p)

ζk{−dt+e(t+1)+ft(t+1)}ψ(k)

=
τ(ψ)

p3

∑
k,l,m(p)

f̂1

(
k

p

)
f̂2

(
l

p

)
f̂3

(
m

p

)∑
t(p)

ψ(mt2 + (l +m− k)t+ l).

Let ∆ = (k − l −m)2 − 4ml. By Proposition 3.2.16, we see that

∑
t(p)

ψ(mt2 + (l +m− k)t+ l) =



pψ(k), if m ≡ 0(p), l ≡ k(p),

0, if m ≡ 0(p), l 6≡ k(p),

−ψ(m), if m 6≡ 0(p), ∆ 6≡ 0(p)

(p− 1)ψ(m), if m 6≡ 0(p), ∆ ≡ 0(p).
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Hence, we get

Mp =
p τ(ψ)

p3

{
f̂3(0)

∑
k(p)

f̂1

(
k

p

)
f̂2

(
k

p

)
ψ(k)

− 1

p

∑
k,l,m(p)

f̂1

(
k

p

)
f̂2

(
l

p

)
f̂3

(
m

p

)
ψ(m)

+
∑

k,l,m(p)
∆≡0(p)

f̂1

(
k

p

)
f̂2

(
l

p

)
f̂3

(
m

p

)
ψ(m)

}
.

(5.4.2)

Observe that

∑
k,l,m(p)
∆≡0(p)

f̂1

(
k

p

)
f̂2

(
l

p

)
f̂3

(
m

p

)
ψ(m)

=
∑

(k,l,m)∈S

f̂1

(
k

p

)
f̂2

(
l

p

)
f̂3

(
m

p

)
ψ(m)

+ f̂1(0)
∑
m(p)

f̂2

(
m

p

)
f̂3

(
m

p

)
ψ(m) + f̂2(0)

∑
m(p)

f̂1

(
m

p

)
f̂3

(
m

p

)
ψ(m).

Since ψ(m) = ψ(klm) for any (k, l,m) ∈ S, the assertion of the proposition follows

from plugging back into (5.4.2) and (5.4.1).

Thus, the sum of products of f ’s taken over T is “roughly” equal to the sum

of products of f̂ ’s taken over S. When f1, f2, f3 are all odd p-periodic functions (and

therefore so are f̂1, f̂2, f̂3 by Proposition 3.1.14), then f1(0) = f2(0) = f3(0) = f̂1(0) =

f̂2(0) = f̂3(0) = 0, and Proposition 5.4.3 reveals that

∑
(a,b,c)∈T

f1

(
a

p

)
f2

(
a

p

)
f3

(
a

p

)
ψ(abc)

=
ψ(−1)p τ(ψ)

p3

∑
(a,b,c)∈S

f̂1

(
a

p

)
f̂2

(
a

p

)
f̂3

(
a

p

)
ψ(abc).

(5.4.3)

From the work of Ibukiyama[9], we get

Proposition 5.4.4. With notation and assumptions being the same as above, we
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have

(i) Sp = − 1

6p
B3,ψ −

p− 2

4p
B1,ψ,

(ii) Tp = 8π3p3/2

(
1

6p
B3,ψ +

p− 2

4p
B1,ψ

)
.

Proof. The assertion is clear for p ≡ 1(4) since everything vanishes by the usual

even/odd argument. Thus we assume that p ≡ 3(4). We put

Dp =
∑

(a,b,c)∈S

abc ψ(abc).

From Corollary 1.3 of Ibukiyama[9], we have, for p ≡ 3(4),

(5.4.4) Dp = −p
2

6
B3,ψ +

p2(3p− 1)(p− 2)

4
B1,ψ.

Expressing everything in terms of periodic Bernoulli polynomials, we get

1

p3
Dp =

∑
(a,b,c)∈S

a

p

b

p

c

p
ψ(abc)

=
∑

(a,b,c)∈S

(
P1

(
a

p

)
+

1

2

)(
P1

(
b

p

)
+

1

2

)(
P1

(
c

p

)
+

1

2

)
ψ(abc)

= Sp

+
1

2

∑
(a,b,c)∈S

(
P1

(
a

p

)
P1

(
b

p

)
+ P1

(
b

p

)
P1

(
c

p

)
ψ(abc)

+ P1

(
c

p

)
P1

(
a

p

))
ψ(abc)

+
1

4

∑
(a,b,c)∈S

(
P1

(
a

p

)
+ P1

(
b

p

)
+ P1

(
c

p

))
ψ(abc)

+
1

8

∑
(a,b,c)∈S

ψ(abc).
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By the usual even/odd argument, the second and fourth sums vanish, leaving us with

1

p3
Dp = Sp +

1

4

∑
(a,b,c)∈S

(
P1

(
a

p

)
+ P1

(
b

p

)
+ P1

(
c

p

))
ψ(abc).

Recall the 1-to-1 correspondence between the sets S and {(k, kt2, k(t+ 1)2) ∈ (F×p )3 |

1 ≤ k, t ≤ p− 1, t 6= p− 1}. Substituting (k, kt2, k(t+ 1)2) for (a, b, c), we get

1

p3
Dp = Sp +

1

4

∑
k,t(p)

(
P1

(
k

p

)
+ P1

(
kt2

p

)
+ P1

(
k(t+ 1)2

p

))
ψ(kt2(t+ 1)2).

Then by Proposition 3.2.1, we obtain

Sp =
1

p3
Dp −

3(p− 2)

4
B1,ψ.

Thus the assertion (i) of the proposition follows from (5.4.4). From (5.4.3), when

f1 = f2 = f3 = c1, f̂1 = f̂2 = f̂3 = (2πi)P1, we get

Tp = −p
√
−p (2πip)3

p3
Sp.

Thus the assertion (ii) follows from (i).

As another corollary to Theorem 5, we have

Corollary 5.4.5. With notation and assumptions being the same as above, we

have

(i) Tp = − 1

6p
B3,ψ −

p− 2

4p
B1,ψ,

(ii) Sp = 8π3p3/2

(
1

6p
B3,ψ +

p− 2

4p
B1,ψ

)
.

Proof. The assertion is clear when p ≡ 1(4) since both sides vanish by the usual
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even/odd argument. Thus we assume that p ≡ 3(4). From Proposition 5.4.2, we have

Tp =
∑
k,t(p)

P1

(
kt

p

)
P1

(
k2 + kt

p

)
P1

(
t2 + kt

p

)
.

Observe that the sum on the right-hand side is precisely the sum Xp given by (5.1.6).

Therefore, by (5.1.7) and Corollary 5.4.1, we get

Tp =
1

p3
Ap +

3

4
B2,ψ −

3

4
B1,ψ

= − 1

6p
B3,ψ −

p− 2

4p
B1,ψ.

Thus the assertion (i) is established. From (5.4.3), when f1 = f2 = f3 = P1, f̂1 =

f̂2 = f̂3 = − 1
2πi
c1, we get

Tp =
p
√
−p

(2πip)3
S p.

Thus the assertion (ii) follows from (i).

We now prove the following conjecture that I made several years ago. It was this

conjecture, dubbed “The S = T Conjecture”, that led me down the path of Chapter

5.

The S = T Theorem. With notation and assumptions being the same as above,

we have

Sp = Tp and Sp = Tp.

Proof. This follows immediately from Proposition 4.5.4 and Corollary 4.5.5.
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5.5 Arakawa Identities

From Theorem 5.2.36 and Corollary 5.3.3, and from Theorem 5.2.37 and Corol-

lary 5.3.6, we see that the special values of L2(1 − m,ψH,p) (m ∈ N) and L∗2(1 −

m,ψH,p) (m ∈ N) give rise to formulas expressing sums of products of periodic

Bernoulli polynomials in terms of generalized Bernoulli numbers. These formulas

are of great importance, interest, and significance, since I strongly believe that they

cannot be easily obtained by using elementary techniques from algebra and num-

ber theory. For this reason, I call these formulas Arakawa Identities. This infinite

sequence of Arakawa Identities is the main theorem of this dissertation.

Theorem 5.5 (Arakawa Identities). We fix an odd prime p. We denote by ψ

the Legendre symbol mod p: ψ(a) =
(
a
p

)
. Let m ∈ N. We put

Ap(k1, k2, k3) =
∑
α,γ(p)

Pk1

(
α2 − 2αγ

p

)
Pk2

(
αγ

p

)
Pk3

(
γ2 − α2

p

)
,

A∗p(k1, k2, k3) =
∑
α,γ(p)

Pk1

(
α2 − 2αγ

p

)
Pk2

(
2αγ

p

)
Pk3

(
γ2 − α2

p

)
,

T (m) = {(k1, k2, k3) ∈ Z3 | k2 ≥ 0, k1, k3 ≥ 1, k1 + k2 + k3 = 2m+ 1}.
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Then, we have

(i)
∑

(k1,k2,k3)∈T (m)

c(k1, k2, k3)Ap(k1, k2, k3)

=
1

p2m−1

{
1

2m+ 1

m∑
j=0

(−1)j

{(m− j)! }2(2j + 1)!

+
2m∑
n=1

(−1)n+1(2m+ 1− n)Cn,m

(n+ 1)2n+1

}
B2m+1,ψ

+
1

12p2m−1

{[
2

2m− 1

m∑
j=1

(−1)j

{(m− j)! }2(2j − 1)!

+
2m∑
n=1

(−1)n+1n(2m+ 1− n)Cn,m

2n

](
3 · 22m−2ψ(2)− 1

)
+ p
(

3c(1, 1, 2m− 1)− c(1, 2m− 1, 1)δp,3

)}
B2m−1,ψ

+
22m

p2m−1

m−1∑
k=2

{
1

(2m+ 1− 2k)(2k)!

m∑
j=k

(−1)j

{(m− j)! }2(2j + 1− 2k)!

+
2m∑

n=2k−1

(−1)n+1
(
n+1
2k

)
(2m+ 1− n)Cn,m

(n+ 1)2n+1

}

× {B2k −B2k(1/2)}22m−2kψ(2) +B2k(1/2)

22m−2k
·B2m+1−2k,ψ

+
22m

(2m)! p2m−1

{
(−1)m

(
{B2m −B2m(1/2)}ψ(2) +B2m(1/2)

)
(1− δm,1)

− pmB2m

}
B1,ψ,

where c(k1, k2, k3), Cn,m are given by (5.2.84), (5.2.93).
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(ii)
∑

(k1,k2,k3)∈T (m)

c(k1, k2, k3)

2k2−1
A∗p(k1, k2, k3)

=
2

p2m−1

{
1

2m+ 1

m∑
j=0

(−1)j

{(m− j)! }2(2j + 1)!

+
2m∑
n=1

(−1)n+1(2m+ 1− n)Cn,m

(n+ 1)2n+1

}
B2m+1,ψ

+
1

12p2m−1

{
2

2m− 1

m∑
j=1

(−1)j

{(m− j)! }2(2j − 1)!

+
2m∑
n=1

(−1)n+1n(2m+ 1− n)Cn,m

2n

+ p

(
3c(1, 1, 2m− 1) +

c(1, 2m− 1, 1)

22m−2
δp,3

)}
B2m−1,ψ

+
2

p2m−1

m−1∑
k=2

{
1

(2m+ 1− 2k)(2k)!

m∑
j=k

(−1)j

{(m− j)! }2(2j + 1− 2k)!

+
2m∑

n=2k−1

(−1)n+1
(
n+1
2k

)
(2m+ 1− n)Cn,m

(n+ 1)2n+1

}
B2k ·B2m+1−2k,ψ

+
2

(2m)! p2m−1

{
(−1)m(1− δm,1)− pm

}
B2m ·B1,ψ,

where c(k1, k2, k3), Cn,m are given by (5.2.84), (5.2.93).

Proof. Noting that mC2m,m − 2C2m−1,m = 0 by Lemma 5.2.34, the assertion (i)

follows immediately from Theorem 5.2.36 and Corollary 5.3.3, and the assertion (ii)

follows immediately from Theorem 5.2.37 and Corollary 5.3.6.

The only obstruction to explicitly determining Arakawa Identities is determining

the numbers c(k1, k2, k3), Cn,m given by (5.2.84), (5.2.93). While these numbers may

seem complicated, all of our hard work in Section 5.2 has allowed us to find these

numbers in a rather simple and systematic manner.

Recipe for explicitly determining Arakawa Identities. Let m ∈ N. We first

determine c(k1, k2, k3) for (k1, k2, k3) ∈ T (m). If k2 ≥ 1, then c(k1, k2, k3) is easily
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determined by (5.2.84), (5.2.24), (5.2.26), (5.2.27), and (5.2.28). If k2 = 0, then

c(k1, 0, k3) is easily determined by (5.2.84), (5.2.34), (5.2.32), Lemma 5.2.11, (5.2.30),

and (5.2.28). The numbers Cn,m (1 ≤ n ≤ 2m) are also easily determined by (5.2.93),

(5.2.91), (5.2.74), (5.2.77), (5.2.48), (5.2.41), (5.2.75), and (5.2.28).

We give three corollaries corresponding to the Arakawa Identities for m = 1, 2, 3,

respectively. We first prepare a lemma.

Lemma 5.5.1. With notation and assumptions being the same as above, we have


Ap(i, 0, j) = (−1)i+jAp(j, 0, i),

A∗p(i, 0, j) = (−1)i+jA∗p(j, 0, i) (i, j ∈ N).

Proof. This follows by replacing (α, γ) by (α + γ, γ) in the definitions of Ap, A
∗
p.

Corollary 5.5.2. With notation and assumptions being the same as above, we

get

(i) 4Ap(1, 1, 1)− 2

3
Ap(1, 0, 2) =

11

18p
B3,ψ +

4p+ 1− 3ψ(2)− 2pδp,3
6p

B1,ψ.

(ii) 4A∗p(1, 1, 1)− 4

3
A∗p(1, 0, 2) =

11

9p
B3,ψ +

5p− 1 + 2pδp,3
6p

B1,ψ.
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Proof. Computing the Arakawa Identities for m = 1, we obtain

c(1, 0, 2)Ap(1, 0, 2) + c(1, 1, 1)Ap(1, 1, 1) + c(2, 0, 1)Ap(2, 0, 1)

=
1

p

{
5

18
+

C1,1

4
− C2,1

24

}
B3,ψ +

1

12p

{(
−2 + C1,1 −

C2,1

2

)
(3ψ(2)− 1)

+ pc(1, 1, 1)(3− δp,3)− 4p

}
B1,ψ,

2c(1, 0, 2)A∗p(1, 0, 2) + c(1, 1, 1)A∗p(1, 1, 1) + 2c(2, 0, 1)A∗p(2, 0, 1)

=
2

p

{
5

18
+

C1,1

4
− C2,1

24

}
B3,ψ

+
1

12p

{
− 2 + C1,1 −

C2,1

2
+ pc(1, 1, 1)(3 + δp,3)− 2p

}
B1,ψ.

We see from (5.2.84) and Proposition 5.2.12 that c(1, 0, 2) = 2/3, c(1, 1, 1) = 4,

c(2, 0, 1) = 4/3, and from the proof of the assertion (iii) in Proposition 5.2.35, that

C1,1 = 2, C2,1 = 4. Hence, we get

2

3
Ap(1, 0, 2) + 4Ap(1, 1, 1) +

4

3
Ap(2, 0, 1) =

11

18p
B3,ψ +

2p+ 1− 3ψ(2)− pδp,3
6p

B1,ψ,

4

3
A∗p(1, 0, 2) + 4A∗p(1, 1, 1) +

8

3
A∗p(2, 0, 1) =

11

9p
B3,ψ +

5p− 1 + 2pδp,3
6p

B1,ψ.

By Lemma 5.5.1, we have Ap(2, 0, 1) = −Ap(1, 0, 2) and A∗p(2, 0, 1) = −A∗p(1, 0, 2).

Thus the assertions of the corollary immediately follow.

Corollary 5.5.3. With notation and assumptions being the same as above, we

get

(i)
4

3
Ap(1, 2, 2) +

8

3
Ap(1, 3, 1) +

2

3
Ap(2, 1, 2) +

8

3
Ap(2, 2, 1) +

8

9
Ap(3, 1, 1)

=
1

p3

(
203

1800
B5,ψ +

1− 12ψ(2)− 8pδp,3
36

B3,ψ +
8p2 + 7− 15ψ(2)

360
B1,ψ

)
.

(ii)
2

3
A∗p(1, 2, 2) +

2

3
A∗p(1, 3, 1) +

2

3
A∗p(2, 1, 2) +

4

3
A∗p(2, 2, 1) +

8

9
A∗p(3, 1, 1)

=
1

p3

(
203

900
B5,ψ +

−1 + 2pδp,3
36

B3,ψ +
p2 − 1

360
B1,ψ

)
.
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Proof. We first prove the assertion (i). Following the recipe for explicitly deter-

mining Arakawa Identities (where the details are left to the interested reader), we find

that c(1, 1, 3) = 0, c(1, 2, 2) = 4/3, c(1, 3, 1) = 8/3, c(2, 1, 2) = 2/3, c(2, 2, 1) = 8/3,

c(3, 1, 1) = 8/9, c(1, 0, 4) = −4/81, c(2, 0, 3) = −4/81, c(3, 0, 2) = 4/81, c(4, 0, 1) =

4/81, and C1,2 = 5/12, C2,2 = 5/3, C3,2 = 34/9, C4,2 = 34/9. Hence, we obtain the

following Arakawa Identity for m = 2:

4

3
Ap(1, 2, 2) +

8

3
Ap(1, 3, 1) +

2

3
Ap(2, 1, 2) +

8

3
Ap(2, 2, 1) +

8

9
Ap(3, 1, 1)

− 4

81
Ap(1, 0, 4)− 4

81
Ap(2, 0, 3) +

4

81
Ap(3, 0, 2) +

4

81
Ap(4, 0, 1)

=
1

p3

(
203

1800
B5,ψ +

1− 12ψ(2)− 8pδp,3
36

B3,ψ +
8p2 + 7− 15ψ(2)

360
B1,ψ

)
.

By Lemma 5.5.1, we get Ap(4, 0, 1) = −Ap(1, 0, 4) and Ap(3, 0, 2) = −Ap(2, 0, 3).

Moreover, from Proposition 3.2.34, we see that Ap(1, 0, 4) = −Ap(2, 0, 3). Thus the

assertion (i) follows. The assertion (ii) is similarly verified, so the proof is omitted.

Corollary 5.5.4. With notation and assumptions being the same as above, we

get

(i)
32

135
Ap(1, 3, 3) +

4

5
Ap(1, 4, 2) +

24

25
Ap(1, 5, 1) +

8

45
Ap(2, 2, 3) +

44

45
Ap(2, 3, 2)

+
8

5
Ap(2, 4, 1) +

8

135
Ap(3, 1, 3) +

8

15
Ap(3, 2, 2) +

176

135
Ap(3, 3, 1)

+
2

15
Ap(4, 1, 2) +

8

15
Ap(4, 2, 1) +

8

75
Ap(5, 1, 1)− 152

18225
Ap(1, 0, 6)

− 76

6075
Ap(2, 0, 5)− 26

3645
Ap(3, 0, 4)

=
1

p5

{
1759

176400
B7,ψ +

1− 48ψ(2)− 32pδp,3
400

B5,ψ +
49− 420ψ(2)

32400
B3,ψ

+
−32p3 + 31− 63ψ(2)

15120
B1,ψ

}
.
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(ii)
8

135
A∗p(1, 3, 3) +

1

10
A∗p(1, 4, 2) +

3

50
A∗p(1, 5, 1) +

4

45
A∗p(2, 2, 3) +

11

45
A∗p(2, 3, 2)

+
1

5
A∗p(2, 4, 1) +

8

135
A∗p(3, 1, 3) +

4

15
A∗p(3, 2, 2) +

44

135
A∗p(3, 3, 1)

+
2

15
A∗p(4, 1, 2) +

4

15
A∗p(4, 2, 1) +

8

75
A∗p(5, 1, 1)− 304

18225
A∗p(1, 0, 6)

− 152

6075
A∗p(2, 0, 5)− 52

3645
A∗p(3, 0, 4)

=
1

p5

{
1759

88200
B7,ψ +

−1 + 2pδp,3
400

B5,ψ −
7

32400
B3,ψ −

p3 + 1

15120
B1,ψ

}
.

Proof. Taking into account Ap(i, 0, j) = −Ap(j, 0, i), A∗p(i, 0, j) = −A∗p(j, 0, i)

(i + j = 2m + 1) which follows from Lemma 5.5.1, these are precisely the Arakawa

Identities for m = 3. Following the recipe for explicitly determining Arakawa Identi-

ties (where the details are left to the enthusiastic reader), we find that c(1, 1, 5) = 0,

c(1, 2, 4) = 0, c(1, 3, 3) = 32/135, c(1, 4, 2) = 4/5, c(1, 5, 1) = 24/25, c(2, 1, 4) = 0,

c(2, 2, 3) = 8/45, c(2, 3, 2) = 44/45, c(2, 4, 1) = 8/5, c(3, 1, 3) = 8/135, c(3, 2, 2) =

8/15, c(3, 3, 1) = 176/135, c(4, 1, 2) = 2/15, c(4, 2, 1) = 8/15, c(5, 1, 1) = 8/75,

c(1, 0, 6) = 32/18225, c(2, 0, 5) = 16/6075, c(3, 0, 4) = 14/3645, c(4, 0, 3) = 8/729,

c(5, 0, 2) = 92/6075, c(6, 0, 1) = 184/18225, and C1,3 = 11/270, C2,3 = 11/45,

C3,3 = 241/270, C4,3 = 241/135, C5,3 = 446/225, C6,3 = 892/675. Whence the

Arakawa Identities for m = 3 yield the desired results.
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