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ABSTRACT OF THE DISSERTATION

Sequential Pattern Analysis in Dynamic Business Environments

By CHUANREN LIU

Dissertation Advisor: Dr. Hui Xiong

Sequential pattern analysis targets on finding statistically relevant temporal struc-

tures where the values are delivered in sequences. This is a fundamental problem in

data mining with diversified applications in many science and business fields, such as

multimedia analysis (motion gesture/video sequence recognition), marketing analyt-

ics (buying path identification), and financial modelling (trend of stock prices). Given

the overwhelming scale and the dynamic nature of the sequential data, new techniques

for sequential pattern analysis are required to derive competitive advantages and un-

lock the power of the big data. In this dissertation, we develop novel approaches for

sequential pattern analysis with applications in dynamic business environments.

Our major contribution is to identify the right granularity for sequential pattern

analysis. We first show that the right pattern granularity for sequential pattern

mining is often unclear due to the so-called “curse of cardinality”, which corresponds

to a variety of difficulties in mining sequential patterns from massive data represented

by a huge set of symbolic features. Therefore, pattern mining with the original

features may provide few clues on interesting temporal dynamics. To address this

challenge, our approach, temporal skeletonization, reduces the representation of the

sequential data by uncovering significant, hidden temporal structures. Furthermore,

the right granularity is also critical for sequential pattern modelling. Particularly,
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there are often multiple granularity levels accessible for estimating statistical models

with the sequential data. However, on one hand, the patterns at the lowest level may

be too complicated for the models to produce application-enabling results; and on

the other hand, the patterns at the highest level may be as trivial as common sense,

which are already known without analyzing the data. To dig out the most value

from the data, we propose to construct the modelling granularity in a data-driven

manner balancing between the above two extremes. By identifying the right pattern

granularity for both sequential pattern mining and modelling, we have successful

applications in B2B (Business-to-Business) marketing analytics, healthcare operation

and management, and modeling of the product adoption in digit markets, as three

case studies in dynamic business environments.
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CHAPTER 1

INTRODUCTION

Sequential pattern analysis, unravelling meaningful and significant temporal struc-

tures from large-scale sequential data, is a fundamental data mining task which

has diversified applications, such as mining the customer purchase sequences, Web

clickstreams modelling, motion gesture/video sequence recognition, and biological se-

quence analysis [Han et al., 2007]. This dissertation contributes towards this funda-

mental task in data mining with a focus on sequential pattern modelling and mining.

In particular, sequential pattern modelling infers a statistical model with a set of

parameters, with which the model is able to simulate the modelled processes without

breaking statistically significant characteristics. Hence, sequential pattern modelling

provides parsimonious descriptions for the sequential data and the underlying complex

dynamics hidden in the data. With the sequential pattern modelling techniques,

the dynamics can be proactively monitored, quantitatively audited, and intuitively

inspected [Boots and Gordon, 2011, Cao et al., 2009b, Bureau et al., 2003, Lafferty

et al., 2001, Galata et al., 2001].

In contrast, instead of assuming a specific statistical structure, sequential pattern

mining directly searches the data for frequent associations, which might be subsets

of items, subsequences, or subgraphs. These associations capture different orders of

temporal correlations, which can be used for different analytic tasks. Conventionally,
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research efforts focused on the computing efficiency of sequential pattern mining with

a variety of constraints over large-scale data sets [Yin et al., 2012, Lo et al., 2011,

Giannotti et al., 2006, Pei et al., 2004, Agrawal and Srikant, 1995].

In the following of this chapter, we first introduce our research motivation from

real-world applications of sequential pattern analysis. Then we highlight the contri-

butions of our research, and overview the major contents of this dissertation.

1.1 Research Motivation

In this dissertation, we aim to address the unique challenges of sequential pattern

modelling and mining, from both theoretical and practical perspectives. For the

sequential pattern mining, one unique challenge we have is the so-called “curse of

cardinality”, which is often observed with the growing complexity of real-world sce-

narios. To be specific, the curse of cardinality corresponds to a variety of difficulties

in mining sequential patterns when the sequential data are symbolic and represented

by a huge set of symbolic features. For example, a large number of symbols in a

sequence can “dilute” useful patterns which themselves exist on a different level of

granularity. Therefore, pattern mining with the original huge set of symbols may

provide few clues on interesting temporal structures. In the literature, the curse of

cardinality is often suppressed by performing a grouping of the symbols, for which

either a taxonomy already exists [Srikant and Agrawal, 1995], or extracted from do-

main knowledge [Han and Fu, 1999], or through clustering on the features associated

with the symbols [Giannotti et al., 2007c]. However, these grouping are performed

irrespective of the temporal content in the sequences, which might fail to capture
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intrinsic characteristics of sequential patterns. Instead, we propose a novel approach,

temporal skeletonization, to reducing the representation of the sequential data by

directly summarizing and analyzing the temporal correlations of the symbols. This

part of our research is motivated by an application of customer purchase pattern

analysis in B2B (Business-to-Business) marketing, where we have numerous symbolic

marketing events in the sequential behavior records of the business customers.

The right granularity is also critical for inferring statistical models with sequential

data (sequential pattern modelling). In practice, there are often multiple granularity

levels accessible for modelling the sequential data, while the optimal granularity level

is unknown. For example, for the healthcare workflow modelling with location traces

of medical devices, the concept of workflow patterns is actually a hierarchy with sev-

eral levels. At the lowest level, the location trace itself can be seen as an instance

of workflow patterns. On the other hand, three workflow stages at the highest level

are widely used in the healthcare industry to describe the workflow logistics: prepro-

cessing maintenance stage, in-use stage, postprocessing maintenance stage. However,

modeling the workflow patterns based on either the raw locations or the three stages

will be difficult to produce useful results with the location traces of moving objects

in the indoor space. In other words, the right modelling granularity level is needed to

help with tasks of operation and management in a hospital. To balance between the

extremes, we propose to first identify the workflow states as the location spots in the

hospital environments where specific healthcare activities frequently happen. Then we

transform the original location traces into the sequences of identified workflow states

and model the state transitions with finite state machines. In this way, we showed
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that valuable intelligent applications for healthcare operation and management can

be enabled to manage, evaluate and optimize the healthcare services.

1.2 Contributions

First, in the “temporal skeletonization”, our approach to identifying the meaningful

granularity level for sequential pattern mining, the key idea is to summarize the tem-

poral correlations in an undirected graph. Then, the “skeleton” of the graph serves

as a higher granularity level on which hidden temporal patterns are more likely to be

identified. In the meantime, the manifold embedding of the graph topology allows

us to translate the rich temporal content into a metric space. This opens up new

possibilities to explore, quantify, and visualize sequential data. Furthermore, by ex-

tending the robust temporal correlations, our approach can be utilized to model the

dynamic systems which are generally measured by multivariate time series. Evalu-

ation on a Business-to-Business (B2B) marketing application demonstrates that our

approach can effectively discover critical purchase patterns from noisy customer be-

havior records. Indeed, our work will not only provide new opportunities to improve

the marketing practice but also further the research of marketing science. For exam-

ple, since we can identify dynamic buying stages of customers, we can improve the

traditional static customer segmentation practice with dynamic extensions, which

allows us to target each customer with the marketing campaigns most relevant to

his/her current buying stage. In addition, by aggregating the behavior data of all

the customers, we have a systematic way to audit and visualize the marketing effects

of the campaigns. From the management perspective, this will help the marketing
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managers on the tasks of managing and inventing new campaigns to reduce the cus-

tomer conversion cycle and increase the customer conversion ratio. This part of our

work has been published in the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD 2014) [Liu et al., 2014b].

Second, for statistical sequential pattern modelling, we provide a focused study

of workflow modelling with the indoor location traces. In comparison with conven-

tional workflow models, our approach can proactively unravel the workflow patterns

hidden in the location traces, by automatically constructing the workflow states and

estimating parameters describing the workflow transitions. Specifically, we identify

the workflow states as the location spots in the hospital environments where specific

healthcare activities frequently happen. The identified workflow states correspond

to the right modelling granularity in the indoor space. Thus, we can transform the

original location traces into the sequences of workflow states and model the state

transitions with finite state machines. Moreover, due to the dynamic indoor struc-

ture, we need an automatic and adaptive modelling framework to support the critical

applications in real time. However, during some specific periods of observation, the

estimation of parameters in the finite state machines may be unstable due to the data

scarcity issue of the location traces. Meanwhile, there are some natural correlations

in the location traces of a group of medical devices, which are often used together

for a particular medical procedure and healthcare task. Therefore, using the Hidden

Markov Random Fields (HMRFs), we leverage the correlations in the location traces

between related types of medical devices to overcome the data scarcity issue and ul-

timately reinforce the modelling performance. In this way, we showed that valuable
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intelligent applications for healthcare operation and management can be enabled to

manage, evaluate and optimize the healthcare services. This part of our work has

been published in the 20th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD 2014) [Liu et al., 2014a].

Third, finding the right granularity for sequential pattern modelling is related to

localized/context-aware statistical inference. Particularly, although the right granu-

larity is unknown for the overall data, the local scenario can be much clearer. To see

this, in another application of sequential pattern analysis with the indoor location

traces, we develop the context-aware stochastic model to identity abnormal location

traces with missing events of the medical devices. We observed that the abnormal

missing events happen in special spots in the indoor environment, and the traces

leading to the missing events can be discriminated by stochastic models. Thus, we

first use clustering algorithms to identify ‘hotspots’ (cluster) of missing events. Then,

using the hotspots as context of location traces passing nearby, we use a Markov

model to quantify the anomaly degree of the nearby location traces. This part of our

work has been published in the 12th IEEE International Conference on Data Mining

(ICDM 2012) [Liu et al., 2012].

Indeed, identifying the right pattern granularity is often the key for practical se-

quential pattern analysis. As another example, Hidden Markov Model (HMM) is one

widely used method for sequence analysis. However, for the unsupervised HMMs,

the Expectation Maximization (EM) based model estimation could suffer from the

non-convexity of the objective likelihood, and consequently converge to a local op-

timum. As a consequence, it is difficult to interpret the estimated states since they
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could arbitrarily distribute over the observations. To solve this problem, we intro-

duce a bipartite based method to pre-cluster various observations. Specifically, in

the bipartite graph, the observations and sequential records compose the two partite

sets, and the frequencies of their co-occurrence are represented with the edges. By

clustering the observations in the bipartite graph, we can group temporally correlated

observations to initialize the subsequent unsupervised HMM estimation and guide its

convergence. As shown with real-world data from digit market, this approach signif-

icantly improves the model robustness and interpretability and is able to model the

dynamic product adoption in the market. This part of our work has been published

in IEEE Transactions on Cybernetics [Zhu et al., 2014].

1.3 Overview

Chapter 2 addresses the curse of cardinality for sequential pattern mining with appli-

cation to B2B marketing analytics. First, we discuss the motivation of the problem.

Then we compute robust temporal correlations for the symbolic observations in the

sequential data. We adopt the graph-based algorithms in a novel way to analyze the

topology of the correlation graph. Experimental results show that the graph topology

is useful to identify typical purchase patterns of B2B customers.

Chapter 3 presents a framework for healthcare workflow modelling. First, we show

that it is essential to construct the workflow states with the right granularity in the

indoor space. Then, we analyze the characteristics of indoor location traces to define

meaningful observation density of the healthcare activities. The density definition

can be used in a density-based clustering algorithm to identify the right workflow
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states. Further, we integrate the workflow modelling of multiple types of moving

objects with a joint learning algorithm. Extensive experimental results demonstrate

that the proposed framework can provide not only interpretable workflow patterns

but also accurate predictions.

Chapter 4 presents a stochastic model for context-aware anomaly detection in

indoor location traces. In detail, we first develop a density-based method to identify

the hotspots filled with high-level abnormal activities in the indoor environment. The

discovered hotspots serve as the context for nearby trajectories. Then, we introduce

an N-gram based method for measuring the degree of anomaly based on the detected

hotspots, which is able to predict the missing events possibly due to the devices

being stolen. Besides, to address the noisy nature of the indoor sensor networks,

we also propose an iterative algorithm to estimate the transition probabilities. This

algorithm allows to effectively recover the missing location records which are critical

for the abnormality estimation. Finally, the experimental results on the real-world

date sets validate the effectiveness of the proposed context-aware anomaly detection

method for identifying abnormal events.

Chapter 5 presents a sequential approach based on Hidden Markov Model (HMM)

for modeling the popularity information of mobile Apps towards mobile App recom-

mendation. Specifically, we first propose a Popularity based HMM (PHMM) to model

the sequences of heterogeneous popularity observations of mobile Apps. Then, we in-

troduce a bipartite based method to pre-cluster the popularity observations. This can

help to learn the parameters and initial values of the PHMM model. Furthermore,

we demonstrate that the PHMM model is a general model and can be applicable
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for various App recommendation services, such as ranking fraud detection, App rec-

ommendation, and rating and comment spam detection. Finally, we validate our

approach on a real-world data set collected from the Apple App Store. Experimental

results clearly show both the effectiveness and efficiency of our approach.
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CHAPTER 2

TEMPORAL SKELETONIZATION ON SEQUENTIAL DATA:

PATTERNS, CATEGORIZATION, AND VISUALIZATION

2.1 Introduction

Unraveling meaningful and significant temporal structures from large-scale sequential

data is a fundamental problem in data mining with diversified applications, such as

mining the customer purchasing sequences, motion gesture/video sequence recogni-

tion, and biological sequence analysis [Han et al., 2007]. While there have been a large

amount of research efforts devoted to this topic and its variants [Agrawal and Srikant,

1995, Ayres et al., 2002, Giannotti et al., 2007c, Han et al., 2001, Zaki, 2001], we are

still facing significant emerging challenges. Indeed, with the growing complexity of

real-world dynamic scenarios, it often requires more and more symbols to encode

a meaningful sequence. For example, in the Business to Business (B2B) marketing

analytics, we are interested in finding critical buying paths of B2B customers from

historical customer event sequences. Due to the complexity of the B2B marketing pro-

cesses, as well as the difficulty of manually annotating the great variety of customer

activities, a large number of symbols is often needed to represent the sequential data.

This is known as the “curse of cardinality”, which can impose significant challenges

to the design of sequential analysis methods from several perspectives.
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• Complexity. The computational complexity of finding frequent sequential

patterns is huge for large symbol sets. Many existing algorithms have a time

complexity that grows exponentially with decreasing pattern supports.

• Rareness. In general, the support of a specific sequential pattern decreases

significantly with the growing cardinality. To see this, let us consider k symbols

that appear with uniform probability in a sequence. The possibility of locating

a particular pattern of length ` is `−k. In other words, the higher the cardinality,

the rarer the patterns are. Since the number of unique subsequences grows with

the cardinality, the number of sequences required to identify significant patterns

also tends to grow drastically.

• Granularity. A large number of symbols in a sequence can “dilute” useful

patterns which themselves exist at a different level of granularity. As we will

discuss in more detail later, semantically meaningful patterns can exist at a

higher granularity level, therefore pattern mining on the original, huge set of

symbols may provide few clues on interesting temporal structures.

• Noise. Due to the stochastic nature of many practical sequential events, or

the multi-modality of events, useful patterns do not always repeat exactly but

instead can happen in many permutations. For example, the customers may

accidentally download some trial products by mistake when they are looking

for the desired information. Without dealing with such irregular perturbations,

we may fail to discover some meaningful patterns.
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In the literatures, there have been some related works on how to reduce the cardi-

nality in pattern mining by performing a grouping operation on the original symbols.

A commonality of these approaches is that they all exploit extra knowledge associated

with the symbols as a guidance to perform clustering. For example, a taxonomy of

the items may already exist in the form of domain knowledge [Srikant and Agrawal,

1995] or can be derived from the structured description of the product features [Han

and Fu, 1999]. In Giannotti et al. [2007c], the 2-dimensional coordinates of spatial

points are used to group them into regions to further facilitate the finding of the

trajectory patterns. Generally speaking, these approaches first apply clustering on

the items whose features are relatively easy to extract, and then search the patterns

in different clustering levels.

While these methods have been successfully applied in some application scenarios,

there are some emerging issues to be addressed when we face the overwhelming scale

and the heterogeneous nature of the sequential data. First, in some applications, it

might be difficult to obtain the knowledge of symbols. For example, many sequential

data simply use an arbitrary coding of events either for simplicity or security reasons.

Second, there are circumstances where it is difficult to define distance among sym-

bols, and therefore clustering becomes impractical. For example, it is unclear how

to define the distance between actions customers have taken in their purchasing pro-

cess. Finally, the biggest concern is that the grouping in these methods is performed

irrespective of the temporal content. As a result, these methods may not be able to

find statistically relevant temporal structures in sequential data. Therefore, there is

a need to develop a new vision and strategy for sequential pattern mining.
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To this end, this chapter proposes a temporal skeletonization approach to proac-

tively reduce the representation of sequences, so as to expose their hidden temporal

structures. Our goal is to make temporal structures of the sequences more concise

and clarified. Our basic assumption is the existence of symbolic events that tend to

aggregate temporally. Then, by identifying temporal clusters and mapping each sym-

bol to the cluster it belongs to, we can reduce not only the cardinality of sequences

but also their temporal variations. This allows us to find interesting hidden temporal

structures which are otherwise obscured in the original representation.

Exploring temporal clusters from a large number of sequences can be challenging.

To achieve this, we have resorted to graph-based manifold learning. The basic idea

is to summarize the temporal correlations in the data in an undirected graph. The

“skeleton” of the graph (i.e., the temporal clusters) can then be extracted through the

graph Laplacian, which serves as a higher granularity where hidden temporal patterns

are more likely to be identified. A nice interpretation of such temporal grouping is that

when individual symbols are replaced by their cluster labels, the averaged smoothness

of all sequences is maximized. Intuitively, this can greatly improve the possibility of

finding significant sequential patterns. In addition, the embedding topology of the

graph translates the rich temporal content of symbolic sequences into a metric space

for easier analysis. Compared with existing methods that reduces the cardinality

via feature-based clustering, our approach does not require specific knowledge about

the items. Instead, it caters directly to the temporal contents in the sequences. To

the best of our knowledge, using the temporal correlations to perform clustering and

reduction of representation is a novel approach in sequential pattern mining.
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Temporal skeletonization can be deemed as a transformation that maps the tem-

poral structures of sequences into the topologies of a graph. Such a dual perspective

provides not only more insights on pattern mining, but also brings powerful new tools

for analysis and visualization. For example, many techniques in graph theories can

be used to analyze symbolic sequences, which appear as random walks on the created

graph. On the other hand, due to the explicit embedding, symbolic sequences are

represented as numerical sequences or point clouds in the Euclidean space, for which

visualization becomes much more convenient.

Experimental results on real-world data have shown that the proposed approach

can greatly alleviate the problem of curse of cardinality for the challenging tasks

of sequential pattern mining and clustering. Also, we show that it is convenient

to visualize sequential patterns in the Euclidean space by temporal skeletonization.

In addition, the case study on a Business-to-Business (B2B) marketing application

demonstrates that our approach can effectively identify critical buying paths from

noisy marketing data.

2.2 Temporal Skeletonization

In this section, we introduce the detail of the proposed method. The key concept

is the “temporal cluster”, namely group of symbols which tend to aggregate more

closely together in the sequences. By transforming the sequential data into graphs,

we can identify such temporal clusters to simplify the representation of the sequences.
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2.2.1 Temporal Clusters

We believe that temporal clusters often exist in practical sequential data. Otherwise,

if there is no such “preferential” structures and everything becomes uniform, we may

not find anything interesting. In the following, we discuss two typical scenarios. One

involves stage-wise patterns where each stage can be deemed as a temporal cluster;

another scenario involves associative patterns.

Case I: Stage-Wise Patterns

First, some sequential processes exhibit stage-wise behaviors; that is, the process typ-

ically goes through a number of stages before reaching the final goal, with each stage

marked by a collection of representative events. For example, in B2B markets, the

business customer will go through stages such as “Investigating product information”,

“Trial experience and evaluation”, “Contacting customer service for more informa-

tion”, and “Contacting sales to finalize the purchase”. Here, each stage includes a

number of events, and the global structure of the underlying process is shaped by the

stages as backbones. Note that the order of stages can vary with regard to different

customers. Also, events within a stage may or may not have a dominant ordering.

However, collectively, we can observe that each stage forms temporally compact clus-

ters. It is useful to find such clusters to understand the global sequential patterns.

In case of stage-like sequences, it is obviously more meaningful to detect patterns

at the stage level. However, the stages are unknown and typically cannot be de-

termined by grouping the symbols based on their features. Therefore, few existing

methods could handle such situations. In the following we use one simple example
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to show that the large number of symbols in stage-like sequences can “dilute” use-

ful patterns which themselves exist at a different level of granularity, posing a big

challenge on existing methods.

1 : m, h, j, f, d, a, i, k, b

2 : j, l, m, a, n, f, b, o, g

3 : e, h, l, c, f, n, i, b, o

4 : h, l, e, c, a, f, k, o, i

For the four sequences above, if we apply pattern mining on the original level of

symbols, we would be unable to find any frequent pattern. However, if we properly

group the symbols in the following way

A = {m, h, j, e, l}

B = {a, f, c, d, n}

C = {k, g, o, b, i}

then all the four sequences read as

A, A, A, B, B, B, C, C, C

It is obvious that (A, B, C) is a frequent (stage) pattern with 100% support.

Case II: Frequent Associative Patterns

Temporal cluster also has an interesting connection with frequent associative patterns.

Since associative items tend to occur closely to each other, they are temporally more

coherent and can likely form temporal clusters. In other words, there must exist

temporal clusters if there are significant frequent patterns. However, temporal clusters
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can be more general than frequent patterns. Another challenge for finding frequent

patterns is the noise in the data. If frequent sub-sequences are somewhat perturbed,

special cares have to be taken in finding exact patterns. In comparison, the temporal

clusters we try to discover are identified via the temporal distribution of all event

pairs, thus our approach is inherently more resistant to noise.

2.2.2 Temporal Graph and Skeletonization

Since large cardinality hampers pattern mining, we propose to find meaningful tem-

poral clusters to alleviate it. The key role of temporal clusters is that they can be used

to re-encode the original sequences. Since temporal clusters are composed of symbols

that are temporally more coherent, the newly encoded sequences will be temporally

smoother than the original sequences. By doing this, we can greatly reduce not only

the cardinality but also the temporal variations of the sequences. The latter makes it

much easier to find semantically useful patterns. Specifically, we put this under the

following optimization framework.

Problem 1 (Temporal skeletonization) We have sequences {Sn|n = 1, 2, · · · , N},

where the n-th sequence is Sn = (sn1 , s
n
2 , · · · , snTn) with length Tn. We have a set of

symbols S = {e1, e2, · · · , e|S|}, where snt ∈ S. We want to find a new encoding scheme

of the symbols e ∈ S, denoted by the mapping f : e 7→ f(e) ∈ {1, 2, · · · , K}, such that

when encoded with f , the temporal variation of resultant sequences is minimized

min
f

1

N

N∑
n=1

∑
1≤p,q≤Tn
|p−q|≤r

(
f(snp )− f(snq )

)2
. (2.1)
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Here, the cardinality of the encoding scheme, K, is a pre-defined integer that is

much smaller than that of the original representation |S|. Also, r is a pre-defined

integer that controls the range that local sequence variations are computed. In other

words, in each of the N sequences, we only consider pairs of events snp and snq that

are within r intervals to each other, such that when they are re-encoded with f(snp )

and f(snq ), they are similar to each other.

This is an integer programming problem which has shown to be NP-hard. There-

fore, we propose to relax the integer constraint to real numbers. In addition, we will

define the so-called “temporal graph” to re-phrase the problem as a graph optimiza-

tion one.

Definition 1 (Temporal graph) Let G be a weighted graph G = 〈V,E〉 with vertex

set V = S and edges E. The i-th node of G corresponds to the i-th symbol ei in the

symbol set S. The weight of the edge between node i and node j is defined as the ij-th

entry of an |S| × |S| matrix W , where

Wij =
1

N

N∑
n=1

∑
1≤p,q≤Tn
|p−q|≤r

[ei = snp ∧ ej = snq ]. (2.2)

We show an example of the temporal graph in Figure 2.1 for the 4 sequences in

section 2.2.1. We call G = 〈V,E〉 “temporal graph”, because the edge weight of the

graph captures the averaged temporal closeness between any pair of symbols/events

across all the input sequences. It is straightforward to show Wij = Wji ≥ 0, thus G is

a symmetric graph. With 1, and let y ∈ R|S| where yi = f(ei), the objective function
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Figure 2.1. An example of the temporal graph (15 vertexes and 29 weighed edges).

The 3 bold edges are weighted by 0.5 and the other edges are weighted by 0.25.

in Problem 1 can be written in the following compact form

1

N

N∑
n=1

∑
1≤p,q≤Tn
|p−q|≤r

(
f(snp )− f(snq )

)2

=
1

N

N∑
n=1

∑
1≤p,q≤Tn
|p−q|≤r

∑
i,j

[snp = ei ∧ snq = ej] (f(ei)− f(ej))
2

=
∑
i,j

Wij(yi − yj)
2

Thus, Problem 1 has a standard form of graph-based optimization. Let us define

the graph Laplacian of G as L = D −W , where D is a diagonal degree matrix with
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Dii =
∑

jWij. Then, Problem 1 can be further written as

min
y∈R|S|

y′(D −W )y (2.3)

s.t. 1′Dy = 0

y′Dy = 1

where 1 is a vector of all 1’s. Here, the translation and scale constraints are added to

avoid trivial solutions. This is also known in the literatures as Laplacian eigenmap

[Belkin and Niyogi, 2001], which has also been applied in spectral clustering [Ng

et al., 2002]. To the best of our knowledge, it is a novel application to use graph-

based algorithm to extract temporal structures from multiple sequences.

Note that the more often symbol ei and symbol ej appear close to each other in the

sequences, the higher the Wij is and the larger the penalty it induces on the objective

(Equation 2.3), and as a result, the closer yi and yj should be. This equivalently

achieves a grouping of the symbols, which are the temporal clusters we try to extract.

As can be expected, by re-encoding the sequence with the label of the temporal

clusters, we can improve the temporal smoothness which is beneficial to subsequent

pattern mining.

2.2.3 Generalizations of Temporal Graph

In practice, instead of only considering event pairs that are within r intervals, one

can also use a smoother function such as

Wij =
1

N

N∑
n=1

∑
1≤p,q≤Tn

ρr (|p− q|) [ei = snp ∧ ej = snq ], (2.4)
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Figure 2.2. The embedding of symbols in different types of sequence data.

where ρr is a non-increasing function parametrized by r. The Equations 2.2 and 2.4

are equivalent with ρr(u) = [u ≤ r]. For an example of smoother function, we can

use the exceedance of the Exponential distribution ρr(u) = exp(−u/r).

Moreover, we can also construct the temporal graph using the exact event hap-

pening time if it is recorded in the sequences. Let the happening time of snl be tnl ,

then we extend the construction in Equation 2.4 to

Wij =
1

N

N∑
n=1

∑
1≤p,q≤Tn

ρr
(
|tnp − tnq |

)
[ei = snp ∧ ej = snq ]. (2.5)

It is easy to see that, when ρr(d) = [d ≤ r], the skeletonization coding scheme derived

from Equation 2.5 is optimal with respect to

min
f

1

N

N∑
n=1

∑
1≤p,q≤Tn
|tnp−tnq |≤r

(
f(snp )− f(snq )

)2
.

Thus, we consider pairs of events snp and snq that happened within r time period, such

that they have similar encoding f(snp ) and f(snq ).

2.2.4 Embedding and Visualization

The optimal solution of Problem 2.3 is the eigenvector of the graph Laplacian corre-

sponding to the second smallest eigenvalue. In practice, one usually computes several
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(e.g., d) eigenvectors as columns in y ∈ R|S|×d, and then applies clustering algorithms

(subsection 2.2.5) with it to identify temporal clusters. The useful eigenvectors of the

graph Laplacian not only provide a relaxed solution of temporal clusters, but also

more interestingly, naturally connect to the manifold embedding of the graph.

Note that the eigenvectors of the graph can be deemed a low-dimensional embed-

ding, in which the proximity relation among objects preserves that in the original

space [Yan et al., 2007]. Since the similarity measurements in Wij of the graph re-

flect the temporal closeness of the events, the embedding eigenvectors of the graph

will also inherit this configuration. Namely, if two symbols, ei and ej are temporally

more related, their distance will also be small in the embedded space. In this way,

our approach provides a direct platform for visualizing the temporal structures of

sequential data. We believe that such visualization can provide interesting insights

allowing domain experts to draw useful conclusions.

To provide more intuition on the temporal embedding results, in Figure 2.2, we

give several examples. Figure 2.2a is the embedding of a collection of random se-

quences. As can be seen, the embedded symbols (each represented by one point) are

distributed uniformly and there is hardly any interesting structure. Figure 2.2b is

a simulated data containing 5 stages of events (more details in section 2.5). As can

be seen, there are clear clusters in the embedding, each representing exactly events

belonging to one stage. In Figure 2.2c we used a real-world data set composed of

thousands of B2B customer event sequences. As can be seen, the cluster structures

are complicated: some clusters are well separated while others are diffusing. This has

to do the complicated relationships between practical events in the data set. From
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these examples, we can see that our temporal skeletonization approach can translate

the temporal structures in the sequential data into their topological counterparts.

The resultant visualization can bring useful insights.

In the literatures, there are many algorithms for manifold learning. Many of these

approaches rely on the eigenvalue decomposition of a similarity matrix to obtain

the manifold embedding. For example, Isomap [Tenenbaum et al., 2000] is another

popular method that embed a graph into an Euclidean space. In our experiments,

we also use Isomap to visualize the data, and find that it can provide spatially more

unfolded embedding.

2.2.5 Temporal Clustering

There are several simple clustering algorithms available to identify the temporal clus-

ters in the low-dimensional embedding space of the temporal graph, e.g., K-means,

GMM (Gaussian mixture model), and Mean-Shift clustering. Among them, we recom-

mend the Mean-Shift clustering [Cheng, 1995], which does not require prior knowledge

of the number of clusters, does not constrain the shape of the clusters, and works ef-

ficiently in the low-dimensional space. Given the embedding y ∈ R|S|×d, and a kernel

density estimated with a kernel κ and bandwidth h

p(y) =
1

hd|S|
∑
i

κ(
y − yi
h

), (2.6)

the Mean-Shift clustering iteratively translate y to the kernel weighted mean

ŷ =

∑
i κ(y−yi

h
)yi∑

i κ(y−yi

h
)
.
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This procedure is guaranteed to converge to the maximas of the data density, and the

points which converge to the same maxima are associated with the same cluster. We

use this clustering solution as the coding scheme in Problem 1, such that f(ei) = k if

and only if the yi belongs to the k-th cluster in the embedding space. Accordingly,

we define the k-th temporal cluster Sk = {e : f(e) = k} ⊂ S.

2.2.6 Post-Temporal-Smoothing

By finding temporal clusters in the embedded Euclidean space, and use it to re-encode

the sequence, we can obtain temporally smoother representation. For example, we

can transform the original customer event sequences to sequences of stages, with each

stage being defined as the groups of symbols (marketing campaigns) in the temporal

clusters identified. However, although the embedded graph is estimated robustly with

the integrated data from all sequences, the individual sequence might still be noisy

in some cases, for instance, the order parameter r is chosen too small. Thus, one

might want to further smooth away the irregularities in the sequences. To this end,

we propose a multi-series post-smoothing using fused lasso [Tibshirani et al., 2005].

Specifically, we first compute the a partition matrix Y ∈ R|S|×K where Ysk is the

probability that the symbol s ∈ S belongs to the k-th temporal cluster. For the

Mean-Shift clustering, we compute

Ysk ∝
1

|Sk|
∑
i∈Sk

κ(
ys − yi
h

),

where Sk is the k-th cluster. These probabilities are normalized with
∑

k Ysk = 1.

We can use this partition matrix Y to transform each individual sequence Sn =

(sn1 , s
n
2 , · · · , snTn) into a multiple of K sequences, denoted by Y n ∈ RTn×K where Y n

tk
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is the probability that the t-th interaction snt in Sn belongs to the k-th cluster. Then

we try to find a smoother version of the multiple sequences Y n, denoted by Xn. To

achieve this, we encourage sparsity of the differences between the successive rows

in Xn, i.e.,
∑Tn−1

t=1 ‖Xn
t − Xn

t+1‖1 where ‖Xn
t − Xn

t+1‖1 =
∑K

k=1 |Xn
tk − Xn

(t+1)k|. We

optimize the approximation of Xn by maximizing the alignment
∑Tn

t=1

∑K
k=1X

n
tkY

n
tk

and with probability constraints. Thus, we would like to maximize
∑Tn

t=1

∑K
k=1 X

n
tkY

n
tk,

subject to

1

Tn − 1

Tn−1∑
t=1

‖Xn
t −Xn

t+1‖1 ≤ λ, (2.7)

in addition to
∑K

k=1X
n
tk = 1 and Xn

tk ≥ 0. Here λ is a tuning parameter control-

ling smoothness of Xn. An example with the noisy matrix Y n and the smoothed

approximation Xn is shown in Figure 2.3.

To solve the approximation problem with the smooth constraint, we let Xn
tk −

Xn
(t+1)k = αntk − βntk for t = 1, · · · , Tn − 1 and k = 1, · · · , K where αntk, β

n
tk ≥ 0.

Let An ∈ R(Tn−1)×Tn with Antt = 1, Ant(t+1) = −1 and Antt′ = 0 otherwise so that

AnXn = αn−βn. We can rewrite the smooth approximation as a linear programming

problem:

max
Tn∑
t=1

K∑
k=1

Xn
tkY

n
tk,

s.t.
K∑
k=1

Xn
tk = 1,∀t = 1, · · · , Tn,

AnXn = αn − βn,

1

Tn − 1

Tn−1∑
t=1

K∑
k=1

(αntk + βntk) ≤ λ,

in addition to the non-negativity Xn, αn, βn ≥ 0.
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Figure 2.3. An example of the post-temporal-smoothing. The two noisy stages in red

boxes are removed.
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2.3 Parameter Selection

Now we summarize the important parameters in our temporal skeletonization ap-

proach, and we provide principled guidance on selecting the appropriate parameter

values, including the temporal order parameter, the mean-shift clustering kernel and

bandwidth, and the degree of post-temporal regularization.

2.3.1 The temporal order parameter

The level of smoothness can be adjusted effectively by the order parameter r, which

controls the resolution on which clusters are extracted. A larger r captures the sim-

ilarities among events in a longer temporal range, which potentially increase the

connectivity of the temporal graph and lead to fewer clusters, while a small r only

considers directly adjacent symbols as similar, which make the temporal graph more

spread and lead to more clusters. In the extreme case when r approaches infinity, all

appearing events will be fully connected. Indeed, the order parameter r is related to

the progression rate of the underlying sequences, thus the domain knowledge can be

used for selecting a appropriate value for r. For example, in a specific application,

if we know there is little correlation between events happened with time gap larger

than some period, namely r, and we have the happening time recorded, we can use

the application specific parameter r in Equation 2.5.

2.3.2 The Mean-Shift kernel and bandwidth

In the Mean-Shift clustering, the choice of the kernel function κ is not crucial to

the accuracy of the kernel density estimation and clustering, so we use the Gaussian
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kernel function κ(u) = 1√
(2π)d

exp(−‖u‖
2

2
), for which, the optimal choice for bandwidth

is ĥ = ( 4
3n

)1/5σ where σ can be the standard deviation of the pairwise distances

[Silverman, 1986]. When the kernel κ and bandwidth h are selected, the Mean-Shift

clustering can be applied automatically without knowing the number of clusters K.

Note that, when introducing the temporal skeletonization, we assumed that we have a

given K, which can also be determined according to domain knowledge. In this case,

a mixed strategy to determine the bandwidth h can be used: we search the optimal

bandwidth between 0.25ĥ and 1.5ĥ to get the clustering solution with the number of

clusters close to K.

2.3.3 The post-temporal-smoothing regularization

In the final step when transforming the raw sequences into sequences of temporal clus-

ters, we use the post-temporal-smoothing to further remove the noises in individual

sequences. For an appropriate degree of the smoothing regularization, we suggest

λ = α
K − 1

Tn − 1
. (2.8)

Intuitively, let Xn
t be the hard clustering indicator of snt (Xn

tk = 1 if and only if snt

is from the stage k), then
∑Tn−1

t=1 ‖Xn
t − Xn

t+1‖1 is the times of stage transitions in

the sequence sn. Suppose the sequence went through all the K stages, with one stay

in each stage, then we have
∑Tn−1

t=1 ‖Xn
t − Xn

t+1‖1 = K − 1. For some sequences,

the number of stages visited during the observation period may be less than K − 1,

so λ = K−1
Tn−1

is a realistic upper bound in Equation 2.7. We also suggest α > 1 in

Equation 2.8 to allow some perturbation, e.g., α = 1.2.
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2.4 Applications

In this section, we discuss the applications of the temporal skeletonization method

in several interesting problems. The reduced representation makes it much easier to

perform these tasks than on the original sequences.

2.4.1 Sequence Visualization

Our framework embeds symbolic events in sequences into an Euclidean space, which

allows to visualize each sequence as a trajectory. Such visualization can provide

insights on the relationship between events, which, when subject to examination

of domain expert, can greatly facilitate them making analysis and decisions. In

section 2.6, we will report how temporal clusters in the customer event data can

help to understand purchase patterns.

In choosing the embedding dimensions, we typically choose two or three dimen-

sions, which correspond to the dominant components of the temporal graph. Usually,

these few dimensions can encode a sufficient amount of the temporal relations. To

see this, we show the residual variance in the embedding with regard to the number

of selected embedding dimensions. As shown in Figure 2.4, in both the simulation

and real-world data sets, the residual variance drops most significantly with the first

few dimensions.

2.4.2 Sequential Pattern Mining

Our method transforms the original sequence of events to the sequence of temporal

clusters (the cluster labels are used as a new set of symbols to encode events). This
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(a) Simulation data.
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(b) B2B customer data.

Figure 2.4. The residual variance vs. dimensionality.

helps to reduce the cardinality of the sequence representation, and the supports of the

sequential patterns are increased. As a result, consequent sequential pattern mining

is able to discover significant knowledge which otherwise would be diluted in the raw

data. Indeed, the patterns discovered in this way are defined with a higher level of

granularity, i.e., the temporal clusters. Therefore, to interpret the patterns, we can

first annotate the temporal clusters with domain knowledge.

For example, in the customer event data, the temporal event clusters can be

semantically labelled as Tradeshow, Direct Mail Ads, Web Ads, Trial Product Down-

load, and Unsubscribe, etc. As we shall see, these temporal clusters correspond to

stages in the purchasing route of the customers, which are much easier to understand

and interpret compared with the raw sequences.

2.4.3 Sequence Clustering

Sequence clustering is an important task, however, it is not always easy to extract

appropriate features or define distances among sequences so that clustering can be
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performed properly. This is particularly true when sequences are represented by a

huge number of symbols. The temporal skeletonization method we have proposed can

be used to tackle these difficulties. This is because the temporal skeletonization can

remove noises in the sequences based on their collectively temporal behaviours. More

importantly, it re-summarizes the events in the form of groups of events, therefore

we will observe much more repeated subsequence on which sequential features can be

more meaningful.

For example, when there is only a reasonably small number of symbols in the

sequences, we can extract the following useful features, such as the counts of each

temporal cluster passed by the sequence, or how many times one symbol appears

in precedence of another, and so on. It turns out such a straightforward approach

can effectively cluster the sequences. To incorporate more temporal information, we

can also leverage the frequent sequential patterns discovered by the aforementioned

sequential pattern mining, as suggested by Lee et al. [2011].

2.5 Empirical Evaluation

In this section, we evaluate the performances of our approach in comparison with

several state-of-the-art methods. All the experiments are performed on a GNU/Linux

system with 8 CPUs (Intel i7 2.93GHz) and 8G RAM.

2.5.1 Synthetic Data

We have simulated symbolic sequential data composed of stages of events. We define

5 stages {A,B,C,D,E}, where each contains 25 symbols. Then, we create 5000

sequences that are of two patterns. The first 2500 sequences mainly follow stage
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pattern A → B → C → D; the other 2500 sequences follow B → E → C. The

simulation proceeds as follows. After deciding which stage to sample from based on

the two patterns, we randomly pick d symbols from that stage, where d is a random

integer. Then, we inject the selected symbols into the sequence, and continue to

the next stage in the pattern. Indeed, such a simulation process is equivalent to

a standard Hidden Markov Model (HMM), where 5 stages correspond to 5 hidden

states and symbols within each stage correspond to observations. Let the transition

probability from each stage to itself be p, and that to the next stage (as specified in

the two patterns) be 1−p. Then, the stage duration d follows a geometric distribution

d ∼ (1 − p)pd−1, with the expected value E[d] = 1
1−p . To have significant stage-wise

patterns in the produced sequences, we have used a large probability p = 14
15

, leading

to E[d] = 15. In other words, on average, we randomly pick 15 symbols for each stage.

2.5.2 Baselines

First, we apply state-of-the-art Frequent Sequence Mining (FSM) algorithms, includ-

ing GSP [Srikant and Agrawal, 1996], SPADE [Zaki, 2001], PrefixSpan [Han et al.,

2001], SPAM [Ayres et al., 2002]. The results in Figure 2.5 show that, when de-

sired pattern support drops, the time consumption of these algorithms grow super-

exponentially, indicating the difficulties introduced by the large numbers of sym-

bols. The number of detected patterns also becomes explosive, most of which are

non-informative and provide no clear insight of the underlying sequence generating

processes (as shown in Table 2.1). In comparison, using the temporal clusters identi-

fied via our approach (more details in subsection 2.5.3), the mining process succeeds
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quickly in about one second.
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Figure 2.5. FSM algorithms on the simulated data.

In addition to the improvement on efficiency, we also compare the pattern mining

results on the original and the re-encoded sequences via our method in Table 2.1. For

the task of pattern mining, we compute the precision (fraction of discovered patterns

that are relevant) and recall (fraction of the relevant patterns that are discovered)

of the discovered patterns against the ground truth. The results show that when

working on the raw data, FSM performs poorly with an F-measure around 0.281. In

contrast, after re-encoding using our approach, it can lead to an 100% accuracy.

Task
Pattern Sequence Stage

Mining Clustering Recovery

Method FSM Ours HMM Ours HMM Ours

Precision 0.725 1.0 0.997 1.0 0.488 1.0

Recall 0.174 1.0 0.997 1.0 0.448 1.0

Table 2.1. Utility comparison on the simulated data.

Since data simulation process follows the Markov property, the second baseline
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approach we have experimented with is the classical HMM. In our data, there are two

hidden patterns, thus we adopt the HMM based clustering (HMMC) [Owsley et al.,

1997] to simultaneously cluster the sequences and estimate the HMM parameters for

each cluster. Specifically, to group sequences into M clusters, the HMMC randomly

allocates all sequences to M disjoint subsets as initial clusters, then the following two

procedures are iterated until convergence. First, for all sequences in cluster Cm, we

estimate a transition matrix φm and a emission matrix θm; Second, we reallocate each

sequence Sn to the cluster Cm on whose transition and emission matrices it has the

highest probability of being produced, i.e., m = arg maxm Pr(Sn|φm, θm).

We have provided the HMMC method with some ground truth parameters, i.e., the

number of clusters M = 2, and the number of hidden states (stages) for each cluster.

Table 2.1 shows the accuracy of the HMM based method for the task of sequence

clustering and stage recovery. To be specific, for these two tasks, we first compute

the so-called confusion matrix C, where Cij is the number of instances in resulted

group i and ground truth class j. Then, the precision is computed as 1
N

maxσ
∑

j Cσ(j)j

where N =
∑

ij Cij and σ maps classes to different groups; the recall is computed as

1
N

∑
i maxj Cij, which is also termed as clustering purity. Again, our method gives

perfect results on both tasks. The HMMC only works well for sequence clustering,

while it performs almost randomly for the stage recovery.

2.5.3 Our Results

Our approach can successfully recover patterns hidden in the sequences. In Fig-

ure 2.6a, we see that our approach embeds altogether 125 symbols in such a way that
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5 dominant clusters emerge. This is in perfect consistency with the ground truth

structure we have used in the simulation. In Figure 2.6b, we can also correctly group

the 5000 sequences into two clusters (in red and green), by extracting simple features

as discussed in subsection 2.4.3.
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Figure 2.6. The embedding of simulated data.

Our approach does not require any prior knowledge on the simulated data. We

tried different ways to construct the temporal graph, and the results were robust with

respect to parameters (e.g., 1 ≤ r ≤ 5 in both Equation 2.2 and Equation 2.4). Also,

we clearly identify the temporal clusters as stages based on well clustered symbols.

2.5.4 Noisy Cases

Now we examine the performances of our approach in case of noisy data. We have

injected two types of noises. The first is introduced on items of each sequence, such

that one stage could contain symbols that belong to other stages. Such a noisy

behavior is quite natural in the buying process of customers. For example, customers

might occasionally participate events not very relevant to their current buying stages.
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The second kind of noise is introduced as random sequences not following any certain

patterns. In real world, these random sequences might correspond to event sequences

of some unintended customers. We have 5% noisy observations for each type of noise

and two more stage-wise patterns making the problem more challenging.
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Figure 2.7. The noisy simulated data. a: The temporal clusters. b: The sequences

clusters. c: Pattern (A,B,C,D) and (B,E,C). d: Pattern (A,B,D) and (A,C,D).

We can see from Figure 2.7a that, even in this noisy data, the temporal clusters

are still identifiable, which correspond to stages of events. The reason is that, our

temporal graph is estimated robustly with integrated temporal content from all the
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sequences, therefore a small portion of individual noisy observations cannot signif-

icantly affect the result. As shown in Figure 2.7b, once noisy random events are

removed, we can discover important patterns (groups of sequences). Indeed, the 4

stage-wise patterns are all discovered by our approach.

2.6 B2B Purchase Pattern Analysis

In this section, we apply our method to find critical buying paths of Business-to-

Business (B2B) buyers from historical customer event sequences. Since B2B pur-

chases are often involved with strategic development of the company, and as a result,

extra cautions and extensive research efforts have to be taken in making such invest-

ment, the decision process of customers in purchasing certain products or services is

much more complicated than that in our daily purchasing activities. Thus, it is of

significant business value if we can discover characteristic and critical buying paths

from observations. These can be used to recommend directed advertising campaigns

so as to increase potential profits and also reduce the marketing cost. In addition, we

would also like to visually display the buying processes of the customers. By doing

this, we can better understand the customer behavior patterns and accordingly de-

velop promising marketing strategies. In the following, we show that our framework

is effective for these objectives.

2.6.1 Data Description

We have collected huge amount of purchasing event data for the customers of a big

company. In more detail, we have event sequences from N = 88040 customers, with

the number of unique events (symbols) |S| = 5028, leading to altogether T =
∑

n Tn =
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248725 event records. We construct the temporal graph using Equation 2.4 and r = 5,

and then embed the graph using Isomap.

2.6.2 Embedding Results and Buying Stages

We plot the embedding of selected 503 events (top 10% nodes with the largest degrees

in the temporal graph) in Figure 2.8, and mark it with the clustering results. For each

detected cluster, we are able to extract dominant semantic keywords for the events in

that cluster, as shown in Table 2.2. Note that the semantic information here is only

used to summarize each temporal cluster for better understanding of our results, but

not for the purpose of grouping the events.
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Figure 2.8. The customer event clusters.

We discuss some interesting observations on the temporal clusters. First, clusters

appearing close to each other are logically related, e.g., ‘search engine’ (C13) and ‘trial
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Cluster Top keywords Size

C1 Official Website 12

C2 Corporate Event, Marketing Mail 20

C3 Trial Product Download 45

C4 Conference 27

C5 Unsubscribe 38

C6 Webinar 101

C7 Trial Product Download 70

C8 Tradeshow 37

C9 Corporate Event, Marketing Mail 65

C10 Web Marketing Ads 13

C11 Webinar 21

C12 Webinar 42

C13 Search Engine 12

Table 2.2. The semantic annotation of event clusters.

product download’ (C3); ‘webinar’ (C12) and ‘trade show’ (C8). Second, symbols with

the same semantic meaning may not be in the same temporal cluster. For example,

C6, C11, C12 are all marked with ‘webinar’ but they form 3 clusters. Note that these

three clusters are close to ‘direct marketing mail’, ‘trial product download’, ‘trade

show’, respectively, indicating that they have different levels of maturity towards fi-

nal purchase. Thus, it is reasonable to have them separated. Nevertheless, the three

clusters are still neighbors, after all, since they have the same nature (‘webinar’). In
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other words, temporal clusters could be partially consistent with attribute-based clus-

ters, while meanwhile revealing more fine-grained structure by exploiting the temporal

correlations. This is where the extra value comes from.

2.6.3 Critical Buying Paths

With the detected temporal clusters, we can transform the original event sequences

to sequences of temporal clusters, and apply the FSM algorithms on the re-encoded se-

quences. For the sequence transformation, we also apply the post-temporal-smoothing,

since the data set we collected is very noisy and can be subject to human errors.

Figure 2.9 reports some results of pattern mining on the original and re-encoded se-

quences respectively. The pattern supports are generally chosen much smaller than

those used in the simulation study, since we have much more symbols here and more

complicated patterns. As can be observed, on the original sequences, the number

of identified patterns again grows super-exponentially with decreasing support. This

would indicate that it is very hard to have a conclusive and comprehensive under-

standings of the customers’ purchasing patterns. In contrast, using the transformed

sequences via temporal skeletonization, the number of patterns is more reasonable.

We then perform clustering on the transformed sequences, using the frequent

patterns detected to extract features as discussed in subsection 2.4.3. We focus on a

few dominant clusters in which the customers have relatively longer event sequences.

The remaining customers only participated events in one or two buying stages and

their behaviors are almost random. In Figure 2.10, we plot the dominant sequence

clusters covering 3501 customers, by connecting each event of the sequence embedded
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Figure 2.9. Sequential patterns in B2B customer event data.

in the two-dimensional plane. Here, each cluster corresponds to one type of customers

with a unique buying path. We summarized these paths in Table 2.3.

With the semantic annotation in Table 2.2, we can see that the temporal clus-

ters can be used to reveal several interesting buying paths. For example, the blue

path P1 passes through 5 clusters (or stages), as C10 → C1 → C7 → C12 → C8.

These customers were attracted by ‘Web Marketing Ads’, then they went to ‘Official

Website’ and found the ‘Trial Product Download’. When customers needed more in-

formation to make decisions, they continued to attend ‘Webinar’ and finally went to

‘Tradeshow’. The green path P2 also ends with ‘Trade Show’, but starts with ‘Search

Engine’, indicating that these customers started from their own effort in acquiring

information of the product suiting their needs. In comparison, the pattern in the red

path P3 is simpler, starting with ‘Webinar’ and ending with ‘Tradeshow’. All these

three paths can be grouped into the ‘Successful’ class (‘+’ in Table 2.3), which leads

to the higher maturity of the customers. The remaining two paths, P4 and P5, which

end with ‘Unsubscribe’, indicating these customers do not want to participate further

events any more.
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Figure 2.10. The customer buying paths.

These buying paths reveal different psychologies of B2B customers. Among the

successful class, P1 and P2 represent customers that are comfortable with self-motivated

(directed) actions, e.g., searching product information themselves or browsing adver-

tisements. In comparison, in the unsuccessful class, P4 represents customers passively

involved via ‘direct marketing mail’ but finally choose to give up. For paths P3 and

P5, although they both start from webinar, they branch to opposite routes. We spec-

ulate that P3 are easy customers; while P5 are customers that are relatively more

difficult to persuade. These uncovered patterns can be helpful in guiding the market-

ing campaigns, such as identifying customer groups, initiating more customer-friendly

and less commercialized advertisements, and so on.
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Class Path Path/Keyword Size

+

P1

C10 → C1 → C7 → C12 → C8

933Ads→Website→Download→

Webinar→Tradeshow

P2

C13 → C3 → C11 → C12 → C8

1110Search→Download→Webinar→

Webinar→Tradeshow

P3

C6 → C11 → C12 → C8

702Webinar→Webinar→Webinar→

Tradeshow

-

P4

C2 → C9 → C5

423Mail→Corporate Event→

Unsubscribe

P5

C11 → C4 → C5

333Webinar→Conference→

Unsubscribe

Table 2.3. The sequence clusters/buying paths.
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2.6.4 Comparison with baselines

We also report the results of baseline algorithms such as FSM, HMMC, as well as the

grouping based on the external knowledge (annotation) of the symbols.

Frequent pattern mining on raw sequences

We apply the FSM algorithms on the raw sequences and report the patterns identified

in Table 2.4. With a very small support threshold (0.001 as shown in Figure 2.9),

the maximum pattern length is only three, among which the top 10 with the largest

support are listed. As can be seen, the resultant patterns mainly represent simple

action sequences well expected by our common sense. Note that, there are thousands

of patterns returned, which are difficult to be investigated one by one.

HMM based clustering

For the HMMC algorithm, we visualize the estimated transition matrix in one of the

clusters in Figure 2.11, where the line width signifies the probabilities and edges less

than 0.1 are omitted. As can be seen, there is no clear structure in the transition

graph, which indicates that HMM based method cannot discover hidden patterns in

such a complicated scenario. Moreover, as shown in Table 2.5, we cannot clearly

annotate the hidden states by representative keywords of the campaigns with top

emission probabilities to that state. For example, ‘Seminar’ appears in every hidden

state with high probabilities. Indeed, this is consistent with the results we obtained in

the simulated study (section 2.5), where the hidden states are typically quite hybrid

with arbitrary subset of symbols which are hard to interpret.
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Pattern/Keywords Support

s497 → s616 → s2134

0.007
Webinar→Webinar→Webinar

s64 → s2135 → s2140

0.007
Webinar→Webinar→Webinar

s3114 → s4809 → s141

0.006
Webinar→Webinar→Webinar

s4809 → s390 → s186

0.006
Webinar→Webinar→Download

s2135 → s2139 → s4521

0.005
Webinar→Webinar→Download

s135 → s329 → s425

0.005
Search→Website→Website

s2209 → s390 → s621

0.005
Search→Webinar→Webinar

s2279 → s2164 → s3576

0.004
Ads→Website→Website

s3167 → s809 → s3565

0.003
Ads→Website→Website

s64 → s141 → s390

0.003
Webinar→Webinar→Webinar

Table 2.4. The raw sequential customer event patterns.
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Figure 2.11. The HMMC transitions.

State Top keywords

H1 Seminar, Official Website, Trial Download

H2 Seminar, Corporate Event, Tradeshow

H3 Trial Download, Seminar, Corporate Event

H4 Seminar, Conference, Corporate Event

H5 Seminar, Unsubscribe, Corporate Event

Table 2.5. The semantic annotation of HMMC states.

External symbol grouping

Finally, we compare temporal skeletonization with the conventional practice of simply

grouping the symbols based on their external attributes. In our data set, we have

six categorical attributes describing the events attended by the customers. With

these attributes, we do K-means clustering with Hamming distance, and use the

cluster labels to re-encode the original sequence. Then, we measure the temporal

variations of resultant sequences (Equation 2.1) and compare it with our approach.
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As can be seen from Figure 2.12, the external grouping, which is irrespective of the

temporal content of the sequences, leads to much larger temporal variations. This

is undesired in subsequent pattern mining, while our approach leads to much less

temporal variations even with relatively large number of clusters, meaning that it

better captures the temporal structures of the sequences.
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Figure 2.12. The comparison of temporal variation between external grouping and

temporal skeletonization.

We also apply the FSM algorithms on the re-encoded sequences via external group-

ing. Table 2.6 reports top 10 patterns of length 3, with semantic annotations and

support. Clearly, the patterns listed here are similar as the raw sequential patterns

reported in Table 2.4, most of which represent well-known common sense. The only

improvements are larger pattern support (e.g., 0.032 > 0.007 for the first pattern),

which is still much lower than that by temporal skeletonization (larger than 0.08 as

shown in Figure 2.9).
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Pattern/Keywords Support

E6 → E2 → E1

0.032
Webinar→Search→Webinar

E4 → E2 → E1

0.026
Mail→Search→Webinar

E2 → E1 → E1

0.021
Search→Webinar→Webinar

E2 → E7 → E1

0.020
Search→Conference→Webinar

E2 → E2 → E1

0.019
Search→Search→Webinar

E2 → E8 → E1

0.017
Search→Others→Webinar

E2 → E1 → E9

0.016
Search→Webinar→Download

E6 → E7 → E1

0.015
Webinar→Conference→Webinar

E6 → E1 → E3

0.012
Webinar→Webinar→Webinar

E5 → E2 → E1

0.011
Ads→Search→Webinar

Table 2.6. The patterns with external grouping.



- 49 -

2.7 Related Work

Sequential pattern mining [Agrawal and Srikant, 1995] is an important topic in data

mining. Given a database of customer transactions, where each transaction consists of

customer-id, transaction time, and the items bought, sequential pattern mining finds

frequent sequences of item sets. Some research efforts [Zaki, 2001, Han et al., 2001,

Ayres et al., 2002] focused on the computing efficiency. In addition to the customer

behavior analysis, sequential data from other application domains have also been

exploited. For example, Giannotti et al. [2007c] proposed to find trajectory patterns

from the location traces of moving objects to study their movement behaviors.

However, limited efforts [Srikant and Agrawal, 1995, Han and Fu, 1999, Giannotti

et al., 2007c] have been focused on the “curse of cardinality” problem. As we discussed

in section 2.1, these methods typically reduce the cardinality by performing a grouping

of symbols, for which either a taxonomy already exists [Srikant and Agrawal, 1995],

or extracted from domain knowledge [Han and Fu, 1999], or through clustering on

the features associated with the symbols [Giannotti et al., 2007c]. These grouping

are irrespective of the temporal content in the sequences, while our approach achieves

the grouping of symbols based on their temporal relations. Note that combining the

two types of clustering is a very interesting topic we shall pursue in the future.

Instead of reducing the cardinality of original symbols/items, one can also com-

press the discovered patterns for more concise interpretation. Pei et al. [2002] com-

puted so-called condensed frequent pattern bases to approximate the support of any

frequent pattern. Xin et al. [2005] proposed to compress frequent patterns with repre-
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sentative patterns via clustering. In these methods, an initial set of frequent patterns

has to be identified first, which could suffer from the large cardinality. In comparison,

our approach can be deemed as compressing the original set of symbols.

Another category of related work is the rank aggregation [Schalekamp and van

Zuylen, 2009], which tries to find a unified ranking of a set of elements that is “clos-

est to” a given set of input (partial) rankings. For example, each customer event

sequence can be deemed a ranking of the participated events. Methods for rank ag-

gregation include position based statistics [Coppersmith et al., 2006] and permutation

optimization [Dwork et al., 2001, Gionis et al., 2006], etc. However, rank aggregation

is suited only when there is a dominant ordering in the data. When there are different

patterns of the ordering, rank aggregation fails to give a valid result. In comparison,

our approach can identify different types of orders as discussed in subsection 2.4.3.

The HMM is another widely used method for sequence analysis. Most algorithms

for HMM estimation are supervised; that is, hidden states in the training data need

to be provided for model estimation. However, in the B2B customer event sequence

analysis, it is very difficult to obtain labels for the buying stages corresponding to

individual events. For unsupervised estimation of HMM, Expectation Maximization

(EM) is often used, which could suffer from the local optimum problem. In our

simulated study (section 2.5), we observed that unsupervised HMM estimation often

fails to recover the ground truth.
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2.8 Summary

In this work, we proposed a novel approach of temporal skeletonization to address

the problem of “curse of cardinality” in sequential data analysis. The key idea is to

map the temporal structures of sequences into the topologies of a graph in a way

that the temporal contents of the sequential data are preserved in the so-called tem-

poral graph. Indeed, the embedding topology of the graph can allow to translate

the rich temporal content into the metric space. Such a transformation enables not

only sequential pattern mining at a more informative level of granularity, but also

enables new possibilities to explore, quantify, and visualize statistically relevant tem-

poral structures in the metric space. Finally, the experimental results showed the

advantages of temporal skeletonization over existing methods. The case study also

showed the effectiveness of the proposed method for finding interesting buying paths

from real-world B2B marketing data, which otherwise would be hidden.



- 52 -

CHAPTER 3

PROACTIVE WORKFLOW MODELING FOR HEALTHCARE OPERATION

AND MANAGEMENT

3.1 Introduction

Recent years have witnessed the increasing deployment of real-time location systems

(RTLS) in hospitals. These RTLS solutions, as shown in Figure 3.1, allow people to

track and monitor the movement of moving objects (e.g., medical devices, doctors

and patients), and the interactions between people and medical devices. However,

currently such systems are only used for basic tasks, such as simply locating a wheel

chair and checking the availability of an inpatient bed. Meanwhile, hospital managers

are still facing many managerial challenges. Particularly, there are three important

tasks of operation and management in hospital: workflow monitoring, workflow audit-

ing, and inspection of workflow compliance. For example, many healthcare providers

have their own work protocols to ensure that the healthcare practices are executed in

a controlled manner. Non-compliance practices may be costly and expose the health-

care providers to severe risks, such as litigation, prosecution and damage to brand

reputation. However, it is not an easy task to systematically evaluate the degree

to which the ongoing healthcare processes are compliant with the predefined proto-

cols. Thus, effective inspection of workflow compliance is very needed by healthcare
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providers to maintain the performance and reputation of their services.

Conventionally, to accomplish these tasks, hospital managers mainly rely on in-

specting detailed workflow logs, which are managerially daunting. In particular, the

logs can be heterogeneous in format and stored in different media. For example, many

medical records are still documented in papers, which are not easy to be systemati-

cally processed and analyzed in real time. More importantly, these workflow logs are

provided passively by the personnel, which might be biased. In contrast, a proactive

approach requiring minimum human intervention would be a promising complement

for the workflow management tasks. Indeed, the existing RTLS and collected loca-

tion traces provide unparalleled opportunities for us to develop new ways to help with

the workflow management tasks. To this end, this work provides a focused study of

workflow modeling by the integrated analysis of indoor location traces in the hospital

environments. One major goal is to proactively unravel the workflow patterns hidden

in the location traces, by automatically constructing the workflow states and estimat-

ing parameters describing the transition patterns of medical devices. The discovered

knowledge from the indoor location traces are then transformed to actionable intelli-

gence for healthcare operation and management. Indeed, the learned workflow model

is valuable in that a wide range of practical problems in hospital environments can

be relieved with the modeling results.

Although modeling the workflow patterns in hospitals is of significant managerial

value, it is not trivial to systematically construct and estimate the models with the

massive indoor location traces. First, there are some inherent characteristics in the

indoor scenario, which pose new challenges to the workflow analysis.
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• The granularity and quality of indoor location traces captured by wireless lo-

cation systems might vary a lot from place to place due to several factors:

the density of sensor receivers, the underlying localization techniques, and the

sensor device itself (e.g., the battery power percentage).

• The topologies of indoor space are often much more complex than outdoor space.

Therefore, some fundamental assumptions of outdoor scenarios may not hold

for indoor scenarios. For example, the widely-used similarity measurements for

outdoor trajectories based on geometry distance [Ge et al., 2010] or overlapping

degree [Giannotti et al., 2007a] are not much meaningful for indoor location

traces.

• The structure of indoor space is very dynamic and the modeling framework

should be automatic and adaptive accordingly. For instance, the structure and

utility of many modern buildings may be frequently changed per the ongoing

needs. Such dynamic changes will alter the semantic of indoor location traces.

As a result, even there are intensive works on the analysis of outdoor location

traces [Giannotti et al., 2007a, Mamoulis et al., 2004, Ge et al., 2011a], most of

them are not suitable or practical for modeling the indoor location traces of medical

devices. Moreover, the results of those methods are not very helpful towards the

workflow analysis in hospital environments. For example, the method developed by

Giannotti et al. [2007a] aims for the discovery of frequent trajectory patterns based

on given thresholds, i.e., minimum support and time tolerance, from outdoor location

traces. However, such frequent patterns cannot provide a parsimonious description
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Figure 3.1. A demonstration of the real-time location system in hospitals. At the bot-

tom layer, the moving objects (medical devices, patients, doctors, etc.) are attached

with sensor tags, which send signals to the sensor receivers. The sensor receivers at

the middle layer transmit the signal data to the network bridges. At the top layer,

network bridges connected with data/application servers will collect the signal data

and the data/application servers will calculate locations of the tracked objects.
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for healthcare activities in hospitals. For example, to help with workflow compliance

inspection, we need to consider all activities rather than only a subset of moving

patterns, i.e., frequent patterns. Similarly, the periodic patterns mined from outdoor

spatio-temporal data by Mamoulis et al. [2004] are also a subset of moving activities

and cannot fully meet the needs of workflow monitoring, auditing, or compliance

inspection in a hospital. While Yin et al. [2005] proposed stochastic models for indoor

activities, the purpose of these models is to predict the goals of activities, rather than

summarize overall activity patterns in descriptive ways. Besides, their methods are

mostly supervised and need sufficient training data.

To accommodate the unique characteristics of indoor location traces of medical

devices in a hospital, in this work, we propose a stochastic process-based framework to

model the healthcare workflow. First, to extract each workflow state which is related

to a particular type of healthcare activity, we develop a density-based clustering

algorithm to partition the indoor space. Particularly, to incorporate the complex

indoor topologies, we compute the neighborhood of a location record and its density

in the indoor space based on the transition history rather than the geometry distance.

With the clustering results, we further transform the original location traces into the

sequences of workflow states. Then we analyze the workflow sequences by modeling

the transitions among states with finite state machines.

Second, due to the dynamic indoor structure, we need an automatic and adap-

tive modeling framework to support the critical applications in real time. However,

during some specific periods of observation, the estimation of parameters in the finite

state machines may be unstable due to the data scarcity issue of the location traces.
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Meanwhile, there is some natural correlation in the location traces of a group of med-

ical devices, which are often used together for a particular task. By leveraging such

correlation, we may overcome the data scarcity issue and improve the robustness of

the parameter estimation for the finite state machines. Therefore, we explore MAP

(Maximum A Posteriori) estimation in the Hidden Markov Random Fields (HMRFs)

to estimate the transition probabilities, which can effectively leverage the correlation

in the location traces of related medical devices. Moreover, in addition to the cor-

relation relationship, we will be able to integrate more prior or domain information

about the workflow of medical devices with the HMRFs, which will further improve

the effectiveness of our workflow modeling.

Finally, we demonstrate the effectiveness of our models with the real-world data

collected from multiple hospitals in US. We have also implemented and deployed a

management information system, HISflow, based on our methods to show how the

discovered knowledge can help with the three important managerial tasks in hospitals:

workflow monitoring, auditing, and inspection of workflow compliance.

3.2 Preliminaries and Problem Formulation

In this section, we first introduce the data format of the indoor location traces. Then,

we formally formulate the problem of workflow modeling for medical devices.

3.2.1 Data Description and Transformation

Our location traces (trajectories) of medical devices are collected from indoor envi-

ronments of several US hospitals. The location trace of an object O is represented

as a sequence: Ot = (L1, L2, ...), where Li represents the ith record in the sequence.
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Li = (starti, endi;xi, yi, zi) contains the specific coordinate and the corresponding

time-stamp when that record is recorded, where starti and endi are the start time

and the end time of Li. In other words, during the time frame from starti to endi,

the object O stays at the coordinate (xi, yi, zi) in a three-dimensional indoor space.

However, the indoor wireless communication may be interrupted by environmen-

tal factors and lead to some errors or noises for the localization of moving objects.

Therefore, a coordinate localized by the RTLS might not indicate the exact position,

but a small area surrounding the coordinate. In addition, it may not be meaningful

to directly use these coordinates for workflow modeling in the indoor space. For ex-

ample, for two recorded coordinates which are close to each other on the same floor,

although the geometry distance of them is very small, the actual moving distance

from one coordinate to another one may be very long when there is a wall between

these two coordinates.

To cope with these challenges, we normalize the original location traces for work-

flow modeling. Specifically, we project each raw coordinate to a semantic location of

the building, such as a room in the hospital, based on the floor maps of the building.

For the data and maps in this study, each hallway is also treated as a room and

some long hallways have been segmented into several small rooms. Then, we map

Li = (starti, endi;xi, yi, zi) to L∗i = (starti, endi, ri), where ri is the room containing

the coordinate (xi, yi, zi). After this projection, two neighboring coordinates of the

raw location traces may be mapped into the same room. In practice, we merge these

consecutive records within the same room to one union record. Specifically, if i < j

and ri = ri+1 = · · · = rj, we replace the subsequence (Li, Li+1, · · · , Lj) with only one
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record L∗i = (starti, endj, ri).

Now, each raw location record Li is mapped to a symbolic room (graph node),

and each location trace Tr = (L∗1, L
∗
2, · · · ) is transformed to a symbolic sequence

(traveling path). This data preprocessing drastically reduces the computational cost,

since we significantly reduce the number of records in the data after the projection.

Also, this preprocessing step greatly smooths out the noise and alleviates the impact

of errors on the workflow modeling tasks.

3.2.2 Concepts for Workflow Modeling

The ultimate goal of our workflow pattern modeling is to automatically summarize

the healthcare activities in a systematic manner. To this end, the concept of workflow

patterns is actually a hierarchy with several levels. At the lowest level, the location

trace itself can be seen as an instance of workflow patterns. For example, in Figure 3.2,

we show location traces of an infusion pump with red line segments. However, it is

difficult to comprehensively understand the pattern hidden in the raw location traces.

Locations Functions

C1 Post-anesthesia care unit (PACU)

C2 Operating room (OR)

C3 Intensive care unit (ICU)

C4, C5 Patient care unit (PCU)

E1, E2 Elevator

Table 3.1. The functions of key locations in Figure 3.2.
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C3 C4
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Figure 3.2. The workflow instances of infusion pump.

On the other hand, three workflow stages at the highest level are widely used in

the healthcare industry to describe the workflow logistics: preprocessing maintenance

stage, in-use stage, postprocessing maintenance stage. The in-use stage of a medical

device corresponds to the period when it is used for any healthcare purpose. Before

the in-use stage, a device is in the preprocessing maintenance stage, e.g., held in the

storage room. After the in-use stage, the device must go through the postprocessing

maintenance stage before the next circle of use. These maintenance processes include

cleaning up, sterilization, disinfection, etc. However, modeling the workflow patterns

based on these three stages is too coarse to get useful results to help with tasks of

operation and management in a hospital. In particular, one important factor missed

by the workflow stages is the spatial information, and the modeling results based
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on these high level stages cannot facilitate the workflow evaluation from the spatial

perspectives, such as the evaluation for the utilization efficiency of the indoor space.

Therefore, we need to model the workflow patterns using a middle-level representation

of location traces of medical devices.

Workflow States

To that end, we introduce an important concept, workflow state, which will serve

as a basis for our workflow modeling at the proper level of granularity. Indeed, to

better understand the location traces, we need to annotate a few key locations in

these trajectories. For example, as shown in Figure 3.2, we annotate location traces

with important location spots: Ci (i = 1, · · · , 5). The medical functions of these

spots are summarized in Table 3.1. With these annotations, the location trace in red

in Figure 3.2 can be represented as C1 7→ C2 7→ C3 7→ C4. Such representation with

annotated spots makes it easy to understand the workflow behind the location trace.

In fact, Figure 3.2 is the map of the second floor of a hospital building, which is

centered around E1, the elevator connected to the basement. The red location trace

of one infusion pump starts from the storage room in the basement to the elevator E1.

After E1, the first spot C1 is Post-Anesthesia Care Unit (PACU) where the patient

is ready for medical procedures such as surgery and the medical devices are attached

with the patients. Spot C2 is the area of operating rooms (OR) where medical pro-

cedures happen. After the medical procedure, the patients and the medical devices

are moved to C3, Intensive Care Unit (ICU), based on the medical needs. When the

situation of the patient becomes stable, the patient and the medical devices being
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used will be further moved to C4, Patient Care Unit (PCU), before the patient is dis-

charged. After the patient is discharged, the medical devices will be moved through

elevator E2 to the basement for cleaning up in a disinfection room and depositing

into the storage rooms.

From the above example, we know that each spot with a particular healthcare

purpose corresponds to a workflow state, and the location traces represented with such

workflow states are very meaningful for understanding and modeling the workflow

patterns. Therefore, we formally define the workflow states in the context of hospitals

as follows:

Definition 2 (Workflow state) A workflow state is a location spot in the indoor

space where specific healthcare activities frequently happen.

According to this definition, a workflow state is a cluster of location records with

specific activities. In the example, we have workflow states C1, C2, C3, C4. By repre-

senting the location traces with workflow states, the workflow patterns are clearer to

be understood and inferred than that with low level rooms or high level stages.

3.2.3 The Problem Statement of Workflow Pattern Modeling

With workflow states, a further task is to describe the transition patterns of the

moving objects among the workflow states. As shown in Figure 3.2, the transition

from one state may go to several different states. For example, when the situation

of a patient is stable after the medical operation at C2, the medical devices and the

patient might be moved directly to PCU without passing through ICU (C3). Also,

there are more than one PCU spots in the hospital. For example, in addition to C4,
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we have C5 as another PCU spot in Figure 3.2. Note that, Figure 3.2 is only one

floor in one building. In fact, we may have many workflow states since there might be

several buildings and many floors in one hospital. Thus, the overall workflow patterns

are indeed much more complex than the examples discussed above.

Furthermore, we have multiple types of medical devices moving around in the

indoor space. In hospitals, many different medical devices are often used together for

a particular task. Therefore, although different types of medical devices have different

workflow patterns, there is some natural correlation among their location traces.

Modeling such correlation not only helps reinforce the robustness of the workflow

modeling, but also provides better understanding of the overall workflow patterns.

Now, we can formally state the problem of workflow pattern modeling in the

indoor healthcare environments.

Problem 2 (Workflow pattern modeling) Given the location traces ({Tr}) of

moving objects, such as medical devices, workflow pattern modeling is to discover the

workflow knowledge including workflow states (C), and parameters (µ) describing the

transition patterns of the moving objects among the workflow states. In addition, we

would also like to learn the correlation measurement (s) among the transition patterns

for different types of moving objects.

To accomplish these tasks, in section 3.3, we first propose a clustering algorithm to

construct the workflow states. Next, in section 3.4, we model the transition patterns

among the workflow states with finite state machines. In section 3.5, we further show

how to compute the correlations and jointly build the multiple transition models.
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3.3 Workflow State Construction

Inspired by Liu et al. [2012], we develop a DBSCAN-style clustering algorithm to

construct the workflow states from the location traces. This density-based method is

adopted to meet the requirements for the workflow analysis. Particularly, the clus-

tering method should be able to automatically determine the number of clusters,

and detect clusters of different densities and arbitrary shapes. The detected clusters

should also be spatially contiguous, since we want to identify areas of semantically

meaningful locations, such as ‘2nd floor northeast patient rooms’ and ‘basement cen-

tral storage rooms’. However, even if we adopt the framework in [Liu et al., 2012], we

have to develop some new methods to address the challenges caused by the unique

characteristics of the workflow traces. First, we need a meaningful neighborhood defi-

nition for the location records in the indoor space. Second, to cope with the definition

of workflow states, we need a density definition associated with workflow activities to

detect clusters of different densities.

To address these challenges, let us first introduce how to define the neighborhood of

a location record by exploiting the topologies of the indoor space. Since the location

traces are represented symbolically, the indoor space map can be modeled with a

corresponding symbolic graph. With all the symbolic nodes V as vertexes of the

graph G = (V,E), we can use edge E to represent neighboring relationship among

the nodes. An edge is added between two vertexes if a direct transition path between

the corresponding pair of symbolic location nodes exists. Formally, we define the

neighboring relationship based on the transition connectivity:
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Definition 3 (Transition neighborhood) For room r0, we denote

TN(r0) = {r | ∃ Tr, (rr0) ∈ Tr}

as the transition neighboring rooms of r0. One room r is said to be transition neighbor

of another room r0 if one can transit from r to r0 without passing through other rooms.

With 3, we define the neighborhood of a location record in the symbolic space:

Definition 4 The neighborhood of a location record L0 = (start0, end0, r0) is a set of

location records observed in the rooms that are involved in transitions to r0, denoted

by

N(L0) = {L = (start, end, r)|r ∈ TN(r0)}.

Thus, instead of identifying the neighborhood of a location record based on a distance

threshold as used in DBSCAN, we define the neighborhood of a location record by

directly querying the transition history from the data. In this way, we avoid the use

of parameters, such as the distance threshold, which DBSCAN is very sensitive to.

To detect the clusters of different densities, we propose a weighted density defi-

nition to measure the density of individual neighborhood and identify core location

records. If we know the distribution of waiting time T in room r0, then a natural choice

to weight the location record L = (start, end, r0) is the p-value w(L) = Pr(T ≤ d),

where d = end − start is the waiting time of L. Intuitively, a longer waiting time

d will lead to a bigger weight, as it takes time to carry out medical procedures and

we are identifying the spot where specific medical activities frequently happen. If

we do not know the distribution of T , which often happens in reality, we propose to
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estimate the weight as

w(L) =
|{(start, end, r)|r = r0, end− start ≤ d}|

|{(start, end, r|r = r0}|
.

With this formulation, we have the following definition of the weighted density for a

neighborhood:

Definition 5 The weighted density of a neighborhood N(L0) is defined as:

w(N(L0)) =

∑
L=(start,end,r)∈N(L0) w(L)(end− start)

|N(L0)|
.

Proof[Example] By the definition above, suppose N(L0) = {L = (start, end, r0)},

let us calculate the weighted density for the following distributions of waiting times:

• D1 = {1, 2, · · · , 10}, 10 observations.

• D2 = {5.5, 5.5, · · · , 5.5}, 10 observations.

• D3 = {1, 1, · · · , 1}, 55 observations.

Although the total waiting time of D1, D2 and D3 is the same as 55, our weighted

densities are 3.85, 5.5, 1 respectively. For D3, the neighborhood N(L0) is more likely

in hallway or in front of elevator. Although the total waiting time in these places is

long due to a lot of trajectories passing around, there is no long period of waiting time

for carrying out medical procedures. Our weighted density definition can underrate

this kind of situations. Similarly, observations with shorter waiting time in D1 are

also weighted lower.

Finally, we compare this estimated weighted density with a user-specified thresh-

old θ to decide if a location record is a core point or not. Although there is similar
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parameter in DBSCAN, i.e., minimum number of points required to form a cluster,

the parameter θ is not the count of points but a weight measurement based on his-

torical statistics. Due to the space limit, readers are referred to Liu et al. [2012] for

details of the algorithm, except that the neighborhood and density definitions should

be replaced by Definition 4 and 5.

3.4 Workflow Transition Estimation

With the constructed workflow states C, we can transform the original location trace

into a workflow sequence Tr = (s1, s2, · · · , sl), where si = (ci, di), ci ∈ C is the ith

workflow state and di is the waiting duration in ci. This transformation makes it fea-

sible to model the workflow sequences of the objects moving among the indoor states

with a continuous time Markov chain (CTMC). Specifically, with the constructed

workflow states C as stochastic states in the workflow processes, a CTMC(µ) is de-

fined with two sets of parameters µ = (P, q): waiting time parameters qc for each

state c ∈ C, and state transition probabilities Pcc′ from state c to c′. Let S(t) ∈ C

denote the state of the process at time t ∈ [0,∞). CTMC stays in S(t) = c at time

instant t for a random amount of duration Dc ∼ Exp(qc). When CTMC finally leaves

c, the next state of the system is c′ with probability Pcc′ where c′ 6= c. For c = c′, we

let Pcc = 0. With these parameters, for the process Tr starting from s1 and ending

at time d =
∑l

i=1 di, the probability of Tr is

Pr(Tr|P, q) = exp(−qcldl)
l−1∏
i=1

qci exp(−qcidi)Pcici+1
. (3.1)

Without causing confusion, in the following, we denote states in C by integers

1, 2, · · · , |C| for simplicity. For a set of processes {Tr}, the probability calculated
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above can also be expressed in terms of N and D, where Nij is the transition count

from state i to state j, and Di =
∫

[S(t) = i]dt is the total waiting time in state i.

Specifically,

∏
Tr

Pr(Tr|P, q) = Pr(N,D|P, q)

=

(∏
ij

P
Nij

ij

)(∏
i

qNi
i exp(−qiDi)

)
,

Here, Ni =
∑

j Nij is the transition counts from state i. Note that by definition we

have Nii = 0 and we compute PNii
ii = 1.

One important fact in the likelihood of parameters P, q is that, we can estimate

Pij and qi separately. That is, Pr(N,D|P, q) = Pr(N |P ) Pr(N,D|q), where:

Pr(N |P ) =
∏
i,j

P
Nij

ij (3.2)

Pr(N,D|q) =
∏
i

qNi
i exp(−qiDi) (3.3)

The solution to maximize Pr(N,D|q) is qi = Ni

Di
. In other words, qi is estimated by

the reciprocal of the mean waiting time at state i. In the following, we will focus on

optimizing Pr(N |P ) to estimate the transition probability matrix P .

Under the normalization constraints
∑

j Pij = 1 and Pij ≥ 0, it is straightfor-

ward to estimate the parameters P using a maximum likelihood estimation approach.

However, the result estimated in this way will be unstable if the training data is not

sufficient (e.g., when analyzing the daily data instead of monthly or yearly data). For-

tunately, the data collected from different types of moving objects may help mutually

reinforce each other to estimate the moving patterns in a robust way. To leverage

this potential, we introduce the Maximum A Posteriori (MAP) estimation approach
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which simultaneously estimates transition models for multiple types of moving ob-

jects. More importantly, with this approach, we will also be able to understand the

collaborating relationship among different types of medical devices.

3.5 MAP Estimation in HMRFs

For the healthcare procedures of one patient, multiple types of medical devices are

often needed. Thus, these different types of moving objects transit together and

produce the correlated location traces. Therefore, although different medical devices

follow different patterns, their workflow models can be built jointly with the consid-

eration of these correlations. To this end, we first piece together the workflow states

for all the K types of moving objects:

C = ∪Kk=1C
(k)

where C(k) is the workflow states of the kth type of moving objects. Note that, when

C1 ∈ C(1) and C2 ∈ C(2) overlap, i.e., C1 ∩ C2 6= ∅, we merge them together as

C1 ∪ C2 ∈ C. Now, all the K types of transition sequences can be expressed with

the common transition states C, while each type has one transition count matrix

N (k) and one transition probability matrix P (k). To estimate the K transition prob-

ability matrices {P (k)|1 ≤ k ≤ K} together based on {N (k)|1 ≤ k ≤ K}, we use

Hidden Markov Random Fields (HMRFs) to leverage the correlation among all types

of objects. Specifically, an HMRF has the following components:

Hidden field: In our model, the hidden field includes the transition matrices P (k)

for 1 ≤ k ≤ K for all types of objects, whose values are hidden or unobservable.
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Figure 3.3. A Hidden Markov Random Field

Observations: The observed data includes the transition counts N (k) for 1 ≤ k ≤ K.

As shown in Figure 3.3, there is also a connecting structure in the hidden field. We

would like to reinforce the estimation of the connected parameters by leveraging the

prior distribution of the random field. For our problem, we consider pairwise correla-

tion among different types of objects, so the prior depends on
∑

k1,k2
V (k1, k2), where

V (k1, k2) ≥ 0 is the potential of the link between P (k1) and P (k2). Specifically, we

have Pr(P ) ∝ exp(−
∑

k1,k2
V (k1, k2)). By applying this prior, the objective function

to be maximized is:

Pr(P |N) ∝ exp(−
∑
k1,k2

V (k1, k2))
∏
k,i,j

(P
(k)
ij )N

(k)
ij
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or equivalently

log Pr(P |N) = −
∑
k1,k2

V (k1, k2) +
∑
k,i,j

N
(k)
ij logP

(k)
ij . (3.4)

Note that a normalization constant is omitted in the log-likelihood equation.

3.5.1 Adaptive Parameterized Correlation

HMRFs can integrate the knowledge about the neighborhood structure by formulat-

ing the potential V (k1, k2). In the following, we demonstrate this framework by an

unsupervised approach, where the neighborhood structure itself is also learned from

the data. Specifically, we define the potential between them as

V (k1, k2) = w × s(k1, k2)× Tr(P (k1)P (k2)), (3.5)

where w ≥ 0 is a scaling constant. Here, the correlation s(k1, k2) measures the

similarity between the transition patterns of types k1 and k2. The matrix trace

Tr(P (k1)P (k2)) =
∑

ij P
(k1)
ij P

(k2)
ji is actually the probability that we can observe about

the contradicting moves. For example, in the extreme case when Tr(P (k1)P (k2)) = 0,

we have P
(k1)
ij P

(k2)
ji = 0 for any given states i, j. In this case, we have P

(k2)
ji = 0 only

if P
(k1)
ij > 0. In other words, for two types of objects that have no contradicting

workflows, the probability of transition from state j to i is 0 for the second type of

objects, only if we have a positive transition probability from state i to j for the first

type of objects.

To measure the correlation adaptively with respect to the observed data, we pro-

pose to parameterize the Frobenius inner product using a non-negative matrix M ,
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which leads to the following formula:

s(k1, k2) =
< N (k1), N (k2) >M

‖N (k1)‖M‖N (k2)‖M
,

where the weighted Frobenius inner product is < X, Y >M=
∑

ij XijMijYij and

weighted Frobenius matrix norm is‖X‖M =
√
< X,X >M . Indeed, N is direc-

tional observation and s(k1, k2) corresponds to a von-Mises Fisher (vMF) distribution

[Banerjee et al., 2003] as the underlying generative model.

3.5.2 Iterative Optimization Algorithm

We need an iterative updating algorithm to learn the correlation from the data and

optimize the objective function in Equation 3.4 simultaneously. Specifically, there

are two sets of parameters: Frobenius weights M and transition probabilities P . To

update the Frobenius weights by increasing Equation 3.4, a closed-form solution is

unattainable. In this case, gradient ascent update can be used alternatively. Partic-

ularly, the gradients are

∂ log Pr(P |N)

∂Mij

= −w
∑
k1,k2

∂s(k1, k2)

∂Mij

Tr(P (k1)P (k2)) (3.6)

and

∂s(k1, k2)

∂Mij

=
N

(k1)
ij N

(k2)
ij

‖N (k1)‖M‖N (k2)‖M

− 1

2

< N (k1), N (k2) >M

‖N (k1)‖M‖N (k2)‖M

( N
(k1)
ij

‖Nk1‖M

)2

+

(
N

(k2)
ij

‖Nk2‖M

)2
 .

With the given M , the optimal P can be obtained by solving the following KKT

system:

− 2
∑
k′

s(k, k′)P
(k′)
ji +N

(k)
ij /P

(k)
ij − λki = 0 (3.7)
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for 1 ≤ k ≤ K and 1 ≤ i, j ≤ |C|. Here λki is a KKT multiplier. With the

normalization constraints
∑

j P
(k)
ij = 1, this quadratic system can be numerically

solved. Note that, by iteratively conducting above updates, Equation 3.4 will be

monotonically increased and we can stop the process when a sufficiently accurate

solution is reached.

3.6 Empirical Evaluation

Here, we evaluate the performances of our workflow models in indoor healthcare

environments. First, we show the identified workflow states and analyze the goodness-

of-fit of our transition models with respect to important statistics. Then, we show that

the learned correlation can reinforce the modeling performance, especially for real-

time applications. The proposed models will also be compared with some baseline

models. Finally, we showcase a few intelligent applications in healthcare operation

and management that can benefit from the learned knowledge.

3.6.1 The Experimental Data

We use real-world data sets for validation. These data sets are collected from several

hospitals in US. Medical devices operated in these hospitals have been attached with

sensor tags and tracked by RTLS. In Table 3.2, we show basic statistics of the data

collected for various types of medical devices in Hospital 1. Specifically, we will build

workflow models for 7 types of medical devices. The 2nd and 3rd columns show the

number of medical devices of each type operated in this hospital, and the number of

location records collected during the period from January 2011 to August 2011.



- 74 -

Type #Objects #Locations #States θ seconds

Wheelchair 121 524415 121 1200

PCA II Pump 66 4431 2 1200

Venodyne 403 1588045 74 1200

Feeding Pump 83 157370 58 3600

Heating Pad 1 211 1 1200

PCA Pump 136 231057 74 1800

ETCO2 137 220380 79 1200

Table 3.2. Basic data statistics in Hospital 1

3.6.2 The Workflow States

In Hospital 1, there are totally 123 different workflow states identified. The last two

columns in Table 3.2 give the number of workflow states identified for each device

type and the corresponding threshold for density-based clustering. We can see that

different types of medical devices are used in different ranges of region. For instance,

wheelchairs move among 121 workflow states, while feeding pumps transit only in 58

workflow states. We also automatically identified that PCA II Pump and Heating

Pad only move in a small range, which means the workflows of these two types of

devices are quite simple. Thus, in the following we focus on analyzing the remaining

5 types of devices which have more complex workflow patterns. For the threshold

of clustering, we empirically specify the parameter based on the mobility of medical

devices and the classical work time for treatment in order to achieve well-separated

workflow states.
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The identified workflow states are verified to be semantically meaningful by the

domain experts. For example, in Figure 3.4, we show the constructed workflow states

for Venodyne, which moves most frequently, on 4 building floors. A summary of these

workflow states is reported in Table 3.3. Particularly, with the developed clustering

algorithm based on the the weighted density (demonstrated as transparency), we

can effectively focus on the most important location spots. For example, as shown

in Figure 3.4a, although most of the right part on this floor is planned to be PCU

(Patient Care Unit), we find that only a small subset of rooms were frequently used.

This is especially surprising in the top right corner, where only one room was used

efficiently. These observations lead to an important application, workflow auditing,

which we will further discuss in section 3.6.5.

3.6.3 The Goodness-of-Fit

We experimented with different values of the scaling constant w in Equation 3.5 to

build the transition models. If w = 0, our framework gives the maximum likelihood

estimation. When w > 0, the scaling constant controls the trade-off between max-

imizing Pr(N |P ) and deconstructing the potentials in the hidden field. Users can

chose a value according to the correlation degree of the workflow patterns. In this

work, we perform an exhaustive search in [ r
2
, 1+r

2
] with step size 0.1 where r is the

average non-weighted Frobenius inner products of the transition matrices.

To measure the goodness-of-fit of the learned transition models, we compute the

average log-loss with test location traces. For a test location trace Tr = (L1, L2, · · · , Lt)

and its corresponding workflow sequence Tr = (s1, s2, · · · , s`) transformed with work-
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Building/Floor State Function

1/2nd middle bottom Post-anesthesia care unit

1/2nd left bottom Operating room

1/2nd left top Intensive care unit

1/2nd right top Patient care unit

1/2nd right middle Patient care unit

1/2nd right bottom Patient care unit

1/Basement middle Clinical Engineering

1/Basement left middle Storage

1/Basement left bottom Decontamination Service

2/1st left top Behavioral Health

2/1st middle Equipment Services

3/Basement right top Storage

3/Basement middle Nuclear Medicine

3/Basement middle bottom Hemodialysis

Table 3.3. Semantic summary of workflow states in Figure 3.4.
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(a) Building 1/2nd Floor (b) Building 1/Basement

(c) Building 2/1st Floor (d) Building 3/Basement

Figure 3.4. Examples of workflow states.

flow states C, where si = (ci, di), the average log-loss is calculated as

L(Tr) = −1

`
log Pr(Tr|P, q), (3.8)

where Pr(Tr|P, q) is defined in Equation 3.1 and µ = (P, q) is learned from training

data. According to Rissanen and Langdon [1979], smaller average log-loss implies

better compression of the data when using the estimated parameters.

In the following, after constructing the workflow states C, we randomly partition

the data into 10 subsets and compute the average log-loss in 10 rounds. In each
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round, we use 9 of these subsets as training data to estimate the transition parameters

µ = (P, q) and compute L(Tr) for each Tr in the remaining test data. The solid green

lines in Figure 3.5 show the average log-loss along the sequence length ` for different

types of medical devices. We also show the performances with dashed green lines for

the baseline models. The baseline model of each type straightforwardly estimates the

transition parameters without considering the correlation among different types of

moving objects. In the figure, we can see that our models based on HMRFs achieve

lower information loss consistently for all types of moving objects.

In practice, as we will discuss in subsection 3.6.5, sufficient observations might

not be available to monitor the ongoing workflow patterns. In this case, our models

can perform much better than baselines by holistic estimation. To see this, we repeat

the above comparison by using only 1 subset as the training data. In Figure 3.5, as

shown by the red lines, our models achieve much better performance. Our models

not only achieve lower losses, but also produce robust results without rigid jumps.

3.6.4 The Simulation Performance

In addition to the goodness-of-fit in terms of information loss, a realistic model should

also be able to simulate the modeled process without breaking important character-

istics. In the research of time series data, one important characteristic is the auto-

correlation function, ACF , which describes the serial dependence structure in the

sequence models. In our workflow models, the state space C is categorical, thus we

propose to investigate the χ2 statistic to test the homogeneity. Specifically, for a set

of categorical sequences {Tr = (c1, · · · , cl)} where ci ∈ C and C = {1, 2, · · · , |C|},
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Figure 3.5. A comparison of the average log-loss. X-axis: the sequence length `.

Y-axis: the average log-loss.



- 80 -

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

Obse rva t ion

Sim u la t ion

(a) Wheelchair

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

Obse rva t ion

Sim u la t ion

(b) Venodyne

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Obse rva t ion

Sim u la t ion

(c) Feeding Pump

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Obse rva t ion

Sim u la t ion

(d) PCA Pump

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

Obse rva t ion

Sim u la t ion

(e) ETCO2

Figure 3.6. A comparison of the AXF structure. X-axis: the time-lag h in AXF.

Y-axis: the p-value of AXF.
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the auto χ2 function, AXF, is calculated as

AXF(h) =

|C|∑
i=1

|C|∑
j=1

(Mij − Eij)2

Eij

where Mij =
∑

Tr

∑l−h
k=1[ck = i, ck+h = j], Mi∗ =

∑|C|
j=1Mij, M∗j =

∑|C|
i=1Mij,

M =
∑

Tr(l − h) and Eij =
Mi∗M∗j
M

. The degree of freedom of the corresponding

χ2 distribution for AXF(h) is (|C| − 1)2. We can then calculate the p-value of the

test of homogeneity with a null hypothesis that (c1, · · · , cl−h) and (ch, · · · , cl) are

independent. In Figure 3.6, we show the p-values of AXF(h) for the raw observa-

tions in solid lines. As can be seen, the serial dependence structures of the simulated

processes shown in dashed lines are quite close to that of raw observations. Further-

more, we prefer the p-values that increase rapidly along h. This means the long-term

dependence is little in the sequences and thus CTMC is a feasible model.

3.6.5 The Prototype Applications

The learned workflow model is valuable in that a range of practical problems can

benefit from the results of modeling. In this work, we have implemented a manage-

ment information system, HISflow, to exploit the discovered knowledge for healthcare

operation and management. In the following we elaborate on the techniques used in

our implementation.

Workflow Monitoring

When the mined workflow patterns are legislated as procedure codes, we can identify

abnormal behavior from daily healthcare activities in a real-time manner. When such

anomaly occurs, warnings and alerts can be activated by the management system.
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Figure 3.7. The screenshot of HISflow.

Such a system helps reduce the risks of faults or accidents of healthcare services.

To develop this system, a simple approach is to rank the ongoing trajectories of all

monitored medical devices based on average log-loss in Equation 3.8. In this way,

the devices ranked in the top are worth more scrutiny. However, this ranking results

might not be intuitive from the management perspective. In fact, it is vital to provide

more insights into the cause for the higher log-loss trajectories. To this end, we further

identify the recent transition si = (ci, di) in Tr = (s1, s2, · · · , sl) which causes L(Tr)

to increase. With the identified si, we can then clarify whether the increase is caused

by ci or di via comparing − logPci−1ci and − log qci + qcidi. If − logPci−1ci is larger,

the increase is caused by ci because the transition coming from ci−1 is unlikely to end

at ci. Otherwise, it indicates that the device stays at ci too long.

A screenshot of the real-time monitoring is shown in Figure 3.7.As can be seen,

the average log-loss of the selected device (Id = 49202) increases linearly at the

beginning, which means the device stayed at a workflow state c and − log qc + qcd
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increases linearly with waiting time d. As shown in red, when this device is moved

from Storage Room (left middle spot in Figure 3.4b) to 526 Soiled Utility Room

(blue spot in the floor map in Figure 3.7), it is ranked into the top due to the unlikely

transition. We also show the related information in the grid and the location status

on the floor map. Such an intuitive and interpretable real-time monitor system is

valuable for the hospital managers to improve the quality of healthcare services.

Workflow Auditing

Our workflow models can also provide insights into auditing the efficiency of the

healthcare services. Particularly, hospital managers would like to know how and how

much the indoor spaces and the medical devices are being used. With our models,

the utilization efficiency of medical devices and indoor space can be measured with

sound statistics.

First, we can use waiting time parameter q in each state c to measure the uti-

lization efficiency of the medical devices. Specifically, a small q indicates that the

healthcare procedures taken in these states need a lot of time. For the workflow

states corresponding to preprocessing maintenance stage (e.g., Storage rooms) and

postprocessing stage (e.g., Soiled Utility Rooms, Decontamination Service Rooms),

this small q means the processing procedures are not efficient. Second, to investigate

the utilization efficiency of the indoor space, we would like to know the proportion of

time the stochastic process spend at each state. In our CTMC model, this proportion

at the ith state can be estimated by the stationary probability ri = limt→∞ Pr(S(t) =

i) = πi/qi∑
j πj/qj

where πj =
∑

i πiPij and
∑

j πj = 1.
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Our system periodically calculates these statistics which allow hospital managers

to audit the utilization efficiency of the medical devices and indoor space. By show-

ing the trends over time and comparisons between different hospitals, one can get

both intuitive understanding and quantitative measurement of the ongoing operation

performance.

Workflow Compliance Inspection

The procedure of healthcare services is an operation process controlled by the science

of medical treatment as well as industry legislation. Non-compliance practices lead

to adverse affects such as litigation, prosecution and damage to brand reputation. To

inspect the workflow compliance, we can calibrate the classical workflow sequences

with respect to given workflow policies. In our stochastic model, the classical workflow

sequences can be constructed by finding the most likely trajectories. Note that,

in addition to providing statistic evidence on workflow compliance, the constructed

classic workflow sequences are also helpful for understanding the ongoing workflow

practices. Technically, given the initial state c, the final state c′ and a time duration

d, finding the most likely trajectory is an optimization problem to maxTr Pr(Tr|P, q),

where Tr = (s1, · · · , sl), si = (ci, di), with constraints c1 = c, cl = c′ and
∑l

i=1 di = d.

With parameters µ = (P, q) learned by our framework, this boundary value problem

[Perkins, 2009] can be solved by dynamic programming algorithms.

3.7 Related Work

Workflow analysis conventionally relies on detailed workflow logs [Agrawal et al.,

1998, Van der Aalst et al., 2004, Greco et al., 2005]. The workflow processes are
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typically represented by activity graphs. Given the execution logs, which are lists of

activity records, the workflow mining can be formalized as a graph mining problem

by deeming the execution logs as walks on the activity graphs [Agrawal et al., 1998].

In practice, there might be discrepancies between the actual workflow processes and

the processes perceived by the management. In this case, to discover a completely

specified workflow design model, Van der Aalst et al. [2004] presented an algorithm to

extract a process model from the workflow logs and represent it in terms of a Petri net.

Instead of discovering the complete model, Greco et al. [2005] later formalized the

problem of discovering the most frequent patterns of executions, i.e., the workflow

substructures that have been scheduled more frequently and had lead to a desired

final configuration. However, these methods rely on the workflow logs which are often

recorded by people in the healthcare industry. Thus, the results may be distorted due

to the missed activities and bias in the logs. These distorted results can be misleading

for many operation and management tasks in hospitals, such as the inspection of

workflow compliance. In comparison, as we discussed in section 3.1, in this work we

propose a proactive approach to workflow modeling by mining the digital location

traces of moving objects automatically recorded by RTLS in the hospitals, which

requires minimum amount of human intervention. Our modeling results are helpful

for a range of operation and management tasks in hospital environments.

In terms of methodology, another category of related work is the modeling and

prediction of human activities. For instance, Yin et al. [2005] proposed stochastic

process models to predict the goals of indoor human activities. Furthermore, for

multiple-goal recognition, Chai and Yang [2005] proposed a two-level architecture for
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behavior modeling and Hu and Yang [2008] developed a dynamic Bayesian model

where skip-chain conditional random fields were used for modeling interleaving goals.

However, these approaches are supervised and require sufficient training data. Also,

the activities considered in the above papers are not within the hospital environments,

where specialized workflow and activities happen. In the hospital environments, the

desired knowledge to be discovered is different from and more complicated than that

within other environments, such as school or company.

In terms of analytics of location traces, trajectory pattern mining is also related

to this work. For instance, Giannotti et al. [2007a] introduced trajectory patterns as

frequent behaviors in terms of both time and space, where the frequent trajectory

patterns are computed based on the given thresholds. In [Li et al., 2010], methods

were proposed to discover the periodic patterns from spatio-temporal data, where a

periodic pattern is defined as a regular activity which periodically happens at certain

locations. Also, Yang and Hu [2006] proposed methods to discover sequential patterns

from imprecise trajectories of moving objects. However, these methods developed for

outdoor space are not designed for the purpose of workflow modeling in the indoor

hospital environments, and more importantly, the mined frequent patterns cannot

provide a parsimonious description of healthcare activities in hospitals and support

the applications we have considered.

Finally, the last category of related work is the detection of area-of-interest with

trajectory data. For instance, Liu et al. [2010b] proposed a non-density-based ap-

proach, called mobility-based clustering, to identify the hotspots of moving vehicles

in an urban area. The key idea is that sample objects are used as “sensors” to per-
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ceive the vehicle crowdedness in nearby areas using their instant mobility, rather than

the “object representatives”. Moreover, Zheng et al. [2009a] proposed a stay point

concept and identified hotspots from human moving trajectory. One location was

considered as a hotspot if a lot of moving objects stay nearby over a thresholded

time period. In addition, Giannotti et al. [2007a] used the neighborhood function

to model Regions-of-Interest. Basically, they partitioned the spatial space into grids

and quantified the interest of each grid with the density and the direction information

of each grid. As we have discussed, even some methods mentioned above are very

successful for analyzing outdoor location traces, most of them are not applicable to

our hospital environments because of the unique characteristics of the indoor space.

3.8 Summary

In this work, we exploited the location traces of medical devices for modeling the

healthcare workflow patterns in the hospital environment. Specifically, we developed

a stochastic process-based framework, which provides parsimonious descriptions for

long location traces. This framework provides new opportunities to understand the

logistics of a large hospital in a concise manner. From the application perspective, the

discovered knowledge, such as workflow states, transition patterns, and co-transiting

relationships, can be integrated for use in the management information system we

developed. With this system, we showed that valuable intelligent applications for

healthcare operation and management can be enabled to manage, evaluate and opti-

mize the healthcare services.
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CHAPTER 4

A STOCHASTIC MODEL FOR CONTEXT-AWARE ANOMALY DETECTION

IN INDOOR LOCATION TRACES

4.1 Introduction

Advances in mobile and sensor based technologies have allowed us to collect and

process massive amounts of location traces across many different mobile applications.

If properly analyzed, this data can be a source of rich intelligence for providing real-

time decision making in various applications. It has been shown that the analysis of

trajectory data can help to identify object movement patterns and understand moving

object activities. Indeed, there are extensive work on the analysis of outdoor location

traces, such as GPS traces Ge et al. [2011b,c]. However, the study of indoor location

traces is relatively scattered due to the less availability of large-scale context-rich

indoor location traces.

In this chapter, we study the indoor location data in the context of a hospital

environment, where each medical device has been attached by a sensor. A real-time

wireless location system has been deployed to locate and track each medical device.

With this location system, it is possible to track the utilization of medical devices

for better asset management. However, the indoor scenarios are quite different from

the outdoor scenarios. The quality of indoor location traces captured by wireless
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location systems depends on the density of device deployment as well as the underlying

wireless localization techniques. Also, the quality of indoor location traces can also

be affected by many other issues related to wireless devices, such as the battery

issues and the defective sensor devices. Therefore, some fundamental assumptions for

outdoor scenarios do not hold for indoor scenarios, and many techniques developed in

the outdoor scenarios may not be suitable for the analysis of indoor location traces.

For example, the widely used similarity measurements for outdoor trajectories are

based on geometry distance or the overlapping degree of the trajectories, while these

two measures are not much meaningful for indoor location traces.

To address the above challenges, we provide a focused study of identifying anomaly

events of medical devices from their location traces. Indeed, one purpose of tracking

all the medical devices in a hospital is to prevent the medical devices from being

stolen. The location traces of all the medical devices provide the opportunity to

detect the locations of missing devices. Along this line, we propose a stochastic

model for context-aware anomaly detection in indoor location traces. The motivation

for the context-aware framework comes from the observation that the missing events

usually have a clustering effect and happen in some special spots in the hospital.

These special spots are semantically meaningful and are usually close to the exits of

building, elevators, or windows.

However, not all missing events are necessarily the stolen events of medical de-

vices. For instance, when the wireless signal has been blocked in an area, the devices

in this area may not be tracked for a long time. Although the system will indicate that

there are missing events in this area, the devices will be tracked again in the system



- 90 -

if the communication channels have been cleared. Also, there are other issues which

can lead to missing events, such as the battery problem and the sensor device change.

Therefore, the missing events may happen in different contexts. In our context-aware

framework, we first identify the hotspots which have high-level abnormal events in

the indoor environment. The identified hotspots can then be used as the context

for the nearby trajectories. With this context-aware model, we could identify several

categories of abnormal events, such as missing events due to the blocking signal, the

defective sensor devices, and the devices being stolen. In this stochastic model, we

consider the hospital work flow and model the movements of medical devices as the

transitions in finite state machines. In this way, we can estimate the stochastic prop-

erties of the hotspots and the transition patterns from the historical indoor location

traces. The missing events can then be detected by measuring the abnormality of

transition patterns comparing with the majority location traces.

Before we can accurately estimate the abnormality, however, we need to first ad-

dress the uncertainty of the recorded location traces, which is caused by the relatively

poor quality of the indoor sensor networks. To this end, after carefully studying data

characteristics of recorded indoor location traces, we propose an iterative algorithm to

address this uncertainty. Indeed, this algorithm is developed to effectively recover the

missing location records which are critical for the abnormality estimation. Finally, we

have conducted extensive experiments with real-world indoor location traces collected

in a hospital environment. In experiments, we show the anomaly events captured by

the context-aware anomaly detection model. With the benchmark from domain ex-

perts, we also show the effectiveness of our method in terms of detection accuracy.



- 91 -

4.2 Preliminaries and Problem Formulation

In this section, we first introduce the location traces of medical devices. Then, we

formulate the problem of anomaly event detection. Next, we investigate the unique

characteristics of these location traces in the hospital environment, where the moving

activities of these devices are constrained by the routine work flow in the hospital.

These unique data characteristics are important for the development of customized

missing event detection techniques.

4.2.1 Data Preprocessing

We have collected a large amount of location traces (trajectories) of medical devices

by real-time location systems in a number of hospitals. The location trace of each

medical device can be denoted as a sequence:

Tr = (L1, L2, · · · , Ll) (4.1)

where Li(1 ≤ i ≤ l) represents the ith location in the sequence of length l. Li

contains the specific coordinate and the corresponding time stamp when this location

is recorded, i.e., Li = (starti, endi;xi, yi, zi) where starti and endi are the start time

and the end time of Li. In other words, during the time window from starti to endi,

the corresponding device locates at the coordinate (xi, yi, zi) in the 3-dimensional

indoor space.

However, some wireless communication can be interrupted by environmental fac-

tors, such as metal objects. This communication interruption often leads to some

errors or noise in the collected data. Indeed, a coordinate in the location traces lo-
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calized by the sensor networks might not indicate the exact geometry position, but

a small area surrounding the coordinate. In addition, it may not be very meaningful

to directly use the coordinates for such indoor location traces of medical devices.

For example, for two recorded coordinates which are close to each other on the same

floor, although the geometry distance is very short, the real moving distance from

one coordinate to another one may be very long when there is a wall between these

two coordinates. To deal with these specific indoor challenges, we use the normalized

location traces instead of the raw location traces. Specifically, we project each raw

coordinate to a semantic location of the building, such as a room in the hospital,

based on the given floor map. Each hallway is also treated as a room and some long

hallways have been segmented into several small rooms. Then, Li can be transformed

to the following term:

Li = (starti, endi, ri) (4.2)

where ri is the room containing the coordinate (xi, yi, zi). After such a projection,

two neighboring coordinates within the raw location traces may be mapped into the

same room. In other words, ri for Li may be the same as ri+1 for Li+1. In practice, we

merge these consecutive repeating records to one union record. Specifically, if i < j

and ri = ri+1 = · · · = rj, we replace the subsequence (Li, Li+1, · · · , Lj) with only one

record L∗i = (starti, endj, ri).

Now, each raw location record Li is transformed to a transition state, and Tr is

transformed to a transition sequence among the rooms. This data preprocessing can

drastically reduce the computational cost of anomaly detection because we signifi-
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cantly reduce the number of records in the data. Also, this preprocessing step can

greatly smooth out the noise and alleviates the impact of errors on anomaly detection.

To facilitate the following discussion, we use r ∈ Tr to indicate that the location

trace Tr passes the room r. A subsequence (ri, ri+1, · · · , rj) of Tr will be denoted as

(ri, ri+1, · · · , rj) ⊂ Tr. To estimate the transition probability in Equation 4.15, we

let NTr(rirj) count the transitions from ri to rj in the collected traces, and

NTr(∗rj) =
∑
ri

NTr(rirj), (4.3)

NTr(ri∗) =
∑
rj

NTr(rirj). (4.4)

In Section 4.5, we also use NTr(rirjrk) as the number of transitions passing through

the 3 consecutive states ri, rj, rk.

In addition to the location traces, we also have access to the map data. Although

the underlying indoor environment is complicated, we focus on one important infor-

mation; that is, we extract the neighboring relationship among the rooms. The first

one is based on geometric distance.

Definition 6 For room r0, we denote

GN(r0) = {r | min
L∈r,L0∈r0

d(L,L0) < d0}

as the geometric neighboring rooms of r0, where d(L,L0) is the geometric distance

between two locations L,L0. Two rooms r0, r are said to be geometric neighbors if the

minimal distance between some point in one room and some point in the other room

is less than a threshold d0.
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Note that r ∈ GN(r0) if and only if r0 ∈ GN(r). Strictly speaking, Definition 6

only applies to rooms on the same floor. For rooms on different floors, we treat them

as not neighboring, although there might be common neighbors such as the stairs

and elevators. Thus, we can also use different thresholds d0 for different floors. For

example, we can use a bigger threshold for a floor with bigger rooms without losing

accuracy. For the hospital we study, we use d0 = 5 meters regarding the building

structure. The second type of neighboring relationship is based on connectivity.

Definition 7 For room r0, we denote

TN(r0) = {r | ∃ Tr, (rr0) ∈ Tr}

as the transition neighboring rooms of r0. One room r is said to be transition neighbor

of another room r0 if one can transit from r to r0 without passing through other rooms.

Note that each hallway is also treated as a room and some long hallways have

been segmented into small rooms. Thus, two geometric neighboring rooms facing to

the same hallway may not be transition neighbors, because one must pass through

the hallway to transit from one to the other. On the contrary, for r to be in TN(r0),

it must hold that r ∈ GN(r0) if the transition sequence is recorded correctly. The

reason is that it is not likely to transit from one room to another room far away

without passing through other rooms. We will study this issue further in Section 4.5.

4.2.2 The Abnormal Event Detection Problem

In the deployed sensor networks, a medical device with a remote sensor communicates

with the networks at every network configuration time. However, some medical de-
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vices may be inactive, such as disconnected from the networks, for a longer period, and

some of them may never communicate with the networks again. Formally, suppose

the network configuration time is D, which means a remote sensor communicates with

the networks for every time period D, an inactive event of a medical device is recorded

when this medical device does not communicate with the networks after a time pe-

riod D. For the location traces of a medical device, Tr = (L1, L2, · · · , Li, · · ·Ll) and

Li = (starti, endi, ri), if di = starti+1 − endi > D, we can define

I = (di, ri) (4.5)

as an inactive event. Especially, if the device is stolen, then there is no the last

location record, we let di = starti+1 = ∞. For a given trajectory Tr of a device, we

denote its inactive event set by

E(Tr) = {I = (d, r)|r = ri ∈ Tr, d = starti+1 − endi > D}. (4.6)

For those devices with such inactive events never communicating with the networks

again, it probably means these devices have been stolen out of the hospital. In

this chapter, we aim to detect abnormal location traces, which might lead to missing

(stolen) events.

4.2.3 Data Characteristics

The Clustering Effect

Before proposing the method for anomaly detection, we first investigate the character-

istics of these indoor location traces of medical devices. One important characteristic

is the clustering effect for the spatial distribution of all the missing events. For exam-
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ple, Figure 4.1 shows the locations of the missing events in a floor map. These missing

events are identified by domain experts, which will be treated as the benchmark in

this chapter. As can be seen in Figure 4.1 (a), there is a strong clustering effect for

the last locations of missing medical devices in the first floor of the hospital. Indeed,

there is a big cluster which is actually near exits and the elevators of the building.

Another smaller cluster is near the top-right corner in the map. In this corner, there

is no exit or elevator nearby, but this is on the first floor of the building and there

are several windows in this corner. The situation in Figure 4.1 (b) is similar, where

the cluster in the left corner is close to elevators and stairs.

Actually, this clustering effect is caused naturally by the building structure and

network construction. First, the building structure may lead to the clustering effect of

missing events. For example, the locations of missing or theft events are usually close

to exists and windows directly connected to outside at the first floor of a building,

because it is usually difficult to steal a device out of a building directly from a higher

floor or a room without windows. The theft suspects may hide the devices near the

elevator or the exit and then wait for a good time to steal the device out. When

these stolen trials happen, the location systems will lose the traces of these devices

for an abnormally long period. If the attempt fails eventually, we can also observe an

abnormally long period of being inactive for the corresponding device.

Second, the network construction may also lead to this kind of clustering effect.

For instance, when there is no network coverage at a specific location, the devices will

not be able to communicate with the system at this location and abnormal events

might be identified. Although this kind of missing events is not necessarily related



- 97 -

0 500 1000 1500 2000 2500 3000 3500
x

0

500

1000

1500

2000

2500

3000

y

(a) 1st Floor

0 500 1000 1500 2000 2500 3000 3500 4000
x

0

500

1000

1500

2000

2500

3000

y

(b) 2nd Floor

Figure 4.1. The spatial distribution of missing events identified by domain experts.

to theft events, detecting this kind of clusters can also help to improve the network

quality and the medical asset management. In fact, a thief who is familiar with these

locations with poor network coverage may intentionally pass these locations to steal

a device without being tracked or captured.

Moving Patterns

The moving pattern of medical devices is highly influenced by the hospital work flow.

For example, when an infusion pump is needed by a patient and there is no pump

available nearby, the nurse will take one from the storage rooms. After the pump is

used by the patient, it must be transported to one of the clean utility rooms. After it

is cleaned or sterilized, the nurse will put it back to one of the storage rooms. There

might also be the registration process when the medical devices are brought into and

taken out of the storage rooms. Due to these work flows, the transition sequences

of medical devices will show some frequently repeated patterns. Although we do not

have the utilization information for each room, the abnormal transition sequence can

be identified by our context-aware stochastic model.
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The Uncertainty in Transition Sequences

For the high noisy indoor environment, a common issue is that some transition states

may not be captured by the system. For instance, let us consider the underlying real

transition sequence ri, ri+1, ri+2, · · · . Due to the noisy environment, very often, only

the states ri, ri+2, · · · are recorded and the state of ri+1 is not captured by the system.

The consequence of this issue is critical for mining the real transition pattern and the

subsequent anomaly detection practice. Thus, we propose an iterative algorithm

to deal with these difficulties. Specifically, we first investigate the nature of such

issues using the building map. We show that it is possible to recover the lost states

for recorded transition sequences by estimating the uncertainty for a finite set of

candidates to be interpolated in between.

4.3 A Density-based Clustering Algorithm for Hotspot Detection

As we discussed in Section 4.2.3, it is critical to first identify hotspot as context for

anomaly detection. In this section, we propose a density based clustering algorithm

to group all the inactive events and detect hotspots with high levels of abnormality.

Formally, each cluster is a hotspot of inactive events weighted by anomaly degree.

Inspired by Ester et al. [1996], we provide a DBSCAN-style algorithm to identify

the hotspots. However, even we adopt the framework of the DBSCAN algorithm, we

have to develop some new methods to address the challenges caused by the unique

characteristics of the indoor location traces. First, while DBSCAN uses the geometry

distance to define the neighborhood of an object, it is almost meaningless to define

the neighborhood of one inactive event based on the geometry distance. Second,
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DBSCAN estimates the density by simply counting the number of points within a

neighborhood and uses the density to identify the core points. However, for the inac-

tive event data, we have more information associated with each inactive event, such

as the duration of being inactive. To address these challenges, let us first introduce

how to define the neighborhood of an inactive event.

Definition 8 The neighborhood of an inactive event I0 = (d0, r0) is a set of inactive

events located in the rooms that are involved in transitions to r0, denoted by

N(I0) = {I = (d, r) ∈ E | r ∈ TN(r0)}.

Thus, instead of identifying the neighborhood of an inactive event based on a

distance threshold as used in DBSCAN, we search the neighborhood of an inactive

event by directly querying all the transition history from the data. In this way we

can avoid the use of the parameters, such as the distance threshold, which DBSCAN

is very sensitive to.

After identifying the neighborhood of each inactive event, we propose a weighted

density to measure the density of individual neighborhood and identify core inactive

events. Intuitively, more weight should be assigned to the event with a longer inactive

duration, which is more likely abnormal with respect to the network configuration.

To this end, we use a stochastic process model (Figure 4.2) to estimate the weight

based on the inactive duration. Specifically, the state of a device can be either active

or inactive at a moment. And we denote the state at time t as S(t), which is 1 when

it is active, and 0 otherwise. Moreover, if the memory less property is assumed in the

appearance pattern, such a stochastic process becomes the Continuous-Time Markov



- 100 -

chain. For the Continuous-Time Markov chain, the amount of time Ti that the process

stays in state 1 (0) before making a transition into state 0 (1) follows an exponential

distribution as Pr(Ti > d) = e−λid where i = 0, 1 and λi is the exponential rate in

distribution of Ti. With this assumption, we can weight each inactive event by the

transition probability as

w(I) = Pr(T0 ≤ d) = 1− e−λ0d. (4.7)

Then, we have the following definition of the weighted density.

Definition 9 The weighted density of a neighborhood of an inactive event I0 is de-

fined as:

P (I0) =

∑
I∈N(I0) w(I)

|N(I0)|
. (4.8)

The exponential rates λi for i = 0, 1 are the reciprocal of the expectation of the

waiting time which can be estimated via the mean waiting time from the historical

data. In particular, when estimating λ0 for event I0 = (d0, r0), we use the following

formula

λ0 =
|N(I0)|∑

I=(d,r)∈N(I0) d
.

Finally, we compare this estimated weighted density with a user-specified threshold

θ to decide if an inactive event is a core inactive event or not. Specifically, the inactive

event I is a core one if P (I) > θ. Similar to DBSCAN, we can also identify the border

inactive events and noisy ones according to the definition of the weighted density. A

detailed algorithm is described in Algorithm 1. Note that the noise events will be

automatically detected and omitted, thus the union of clustering results is only a

subset of all inactive events.
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Algorithm 1 A Clustering Algorithm for Finding Hotspots

1: Construct the set of inactive events E = ∪TrE(Tr).

2: Estimate λ0 for each I = (d, r) ∈ E.

3: for Each event I ∈ E do

4: if P (I) > θ then

5: Label I as core point;

6: else

7: if ∃I0, P (I0) > θ, I ∈ N(I0) then

8: Label I as border point;

9: else

10: Eliminate I from E as noise point.

11: end if

12: end if

13: end for

14: for Each pair of core points: I, I0 do

15: if I ∈ N(I0) and I0 ∈ N(I) then

16: Put an edge between I, I0.

17: end if

18: end for

19: for Each group of connected core points C do

20: Label C as a cluster.

21: end for

22: for Each border point I do

23: Assign I to one of the clusters of its associated core points.

24: end for
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T0 T1

Figure 4.2. The states of the appearance process. State 0 is inactive and state 1 is

active. Ti is the waiting time in state i.

rn r2 r1 r0 ∈ Hotspot C

Figure 4.3. The transition process rn:0.

4.4 A Stochastic Model for Anomaly Detection

Here, we introduce a probabilistic method for measuring the degree of anomaly based

on the detected hotspots.

The behaviors of stealing the devices out of the building usually leave abnormal

transition sequences (location traces) compared with the majority of transition se-

quences of most devices. This is especially true when suspects try to avoid the security

guards when they steal the medical devices out of the building. Also, these abnormal

location traces are usually related to those hotspots identified in the previous sec-

tion. Thus, we define the abnormality measurement of the location traces with the

identified hotspots as the context of the local transition sequences. Specifically, for

each hotspot C, the set of local transitions ending within the cluster can be divided

into two disjoint sets: O contains transitions ending with an inactive event and Ō

contains transitions ending without any inactive event. The goal here is to determine

if a specific transition sequence Tr ending within C belongs to O or Ō.

Given a transition sequence Tr ending within the cluster C, we choose the tran-
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sitions happened most recently to determine its subsequent event. Suppose that we

have n transitions in the recent period t before the sequence ends within C. We de-

note the sequence as Tr = (rn, rn−1, · · · , r1, r0) where r0 ∈ C as shown in Figure 4.3.

To simplify the following discussion, we use ri:j to denote the sequence (ri, · · · , rj).

Now we define the abnormality of Tr as

o(Tr) =
Pr(O|rn:0)

Pr(Ō|rn:0)
(4.9)

which is the ratio between the probability that it ends with an inactive event and the

probability that it ends normally. By applying the Bayes’ Rule, it can be rewritten

as

o(Tr) =
Pr(rn:0|O)Pr(O)

Pr(rn:0|Ō)Pr(Ō)
, (4.10)

where the evidence term Pr(rn:0) is reduced.

To compute this abnormality measurement, the first step is to estimate the ratio of

priors Pr(O)

Pr(Ō)
. By Algorithm 1, each hotspot is identified with the location traces which

have inactive events near the hotspot. Thus, a simple estimation of the abnormality

of C can be computed as o(C) = |O|
|Ō| . However, the inactive events in O with different

inactive duration have different weights defined by Equation 4.7. To take the weights

into account, we estimate the ratio of priors as follows:

Pr(O)

Pr(Ō)
=

∑
I∈O w(I)

|Ō|
. (4.11)

Furthermore, by using the Chain Rule, the likelihood can be expanded. For the
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set O, we have

Pr(rn:0|O) =Pr(rn|rn−1:0, O)Pr(rn−1|rn−2:0, O)

· · ·Pr(r1|r0, O)Pr(r0|O)

If expanded in this way, the last term Pr(r0|O) is able to be estimated from the

historical data.

However, the estimation of these conditional transition probabilities are compu-

tationally too expensive. Instead, we propose to use the simpler N -gram model; that

is, the transition ri is independent of transitions ri−j if j ≥ N . We use the Bigram

model (N = 2) as follows

Pr(rn:0|O) =Pr(rn|rn−1, O)Pr(rn−1|rn−2, O)

· · ·Pr(r1|r0, O)Pr(r0|O). (4.12)

Similarly, for the set of active events, we have

Pr(rn:0|Ō) =Pr(rn|rn−1, Ō)Pr(rn−1|rn−2, Ō)

· · ·Pr(r1|r0, Ō)Pr(r0|Ō) (4.13)

Finally, we have the anomaly degree measurement as the following:

o(r1:n) =
n∏
i=1

Pr(ri|ri−1, O)

Pr(ri|ri−1, Ō)
× Pr(r0|O)

Pr(r0|Ō)
×
∑

I∈O w(I)

|Ō|
. (4.14)

We will show the effectiveness of this Bigram model later in Section 4.6.

4.5 Transition Probability Estimation in Noisy Environment

Now we elaborate on the estimation of Pr(ri|rj), which is the probability of a tran-

sition starting from state ri given that it ends in state rj. Empirically, Pr(ri|rj) can
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be estimated as

Pr(ri|rj) =
NTr(rirj)

NTr(∗rj)
, (4.15)

where NTr(rirj),NTr(∗rj) are defined in Section 4.2. Nevertheless, as we discussed

in Section 4.2.3, the issue of uncertainty in transition sequences is critical for the

estimation in Equation 4.15 and the model in Equation 4.14.

To address this problem, we empirically interpolate possible missing states be-

tween each recorded transition, and simultaneously estimate transition probability

in an iterative way. Specifically, for the recorded transition from ri to rj where

ri /∈ TN(rj), we need to recover the possible lost transition states between ri and rj.

Ideally, we should consider all possible transition sequences (rir
∗
1r
∗
2 · · · r∗krj) from ri to

rj, where ri ∈ TN(r∗1), and r∗k ∈ TN(rj). Also r∗t ∈ TN(r∗t+1) for t = 1, 2, · · · , k − 1,

where k is the length of missing sequence. However, this leads to an intractable

problem due to extreme complexity. Fortunately, in many indoor wireless network

systems, it is not common that a long sequence of states are lost in most transition

sequences. Thus, we can significantly reduce the complexity by limiting the length of

the lost sequence k less than a threshold. To determine a practical threshold, Figure

4.4a shows the histogram of number of intermediated states of recorded trajectories

near one hotspot. One can see that most of the transitions (about 74.7 percent) are

from and to states which are transition neighbors. For these transitions, there was

no lost record between the neighboring transition states. We have 7454 (about 25

percent) recorded transitions, for which we need 1 intermediate state because they

are from and to states which are not geometric neighboring (thus also not transition



- 106 -

0 1 2 3
Number of Intermediate States

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

(a) Number of Intermediate States

0 1 2 3 4 5
Number of Candidate States

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Fr
eq

ue
nc

y

(b) Number of Candidate States

Figure 4.4. Two Histograms of Transitions.

neighboring). Our task is to recover the lost intermediate state for each transition

(rirj). We have few (70, about 0.2 percent) transitions, where it is impossible to

recover the sequence with only 1 intermediate state. Since transitions with multiple

consecutive missing states are really rare, it is sufficient to use the threshold of 1. In

other words, we assume only one state may be missed between two consecutive states

of a sequence in this chapter.

For a recorded transition (rirj), where ri and rj are not geometric neighboring, we

need to find candidate intermediate states r∗ such that r∗ ∈ TN(rj) and ri ∈ TN(r∗).

If there exists only one such candidate intermediate state, r∗, we are quite confident

that the real transition sequence is (rir
∗rj) which can be confirmed by domain ex-

perts with experiments. But there may be more than one candidate intermediate

states between ri and rj. Figure 4.4b shows the distribution of number of candidate

intermediate states for the 7454 transitions. For the first category, where we have

only 1 candidate intermediate state for each transition, we interpolate that state r∗

between ri and rj. For the remaining categories, we have more than 1 (and no more
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than 5) candidate intermediate states, where there is uncertainty on which of them

should be interpolated.

Let G denote the set of recoverable transitions. We recover the lost state r∗ for

the transitions (rirj) ∈ G with uncertainty defined as

Pr∗

rirj
=

NTr(rir
∗rj)∑

r∈TN(rj),ri∈TN(r) NTr(rirrj)
. (4.16)

Via Equation 4.16 we obtain a probability for each candidate intermediate state for

a transition. In other words, we consider each candidate intermediate state as the

missing point with a probability.

After the interpolation in such a probabilistic way, each trajectory Tr with tran-

sition (rirj) ∈ Tr now can be reconstructed by replacing (rirj) with (rir
∗rj) and a

corresponding weight Pr∗

rirj
. Here the uncertainty weights will be used during counting

the number of transitions in the weighted trajectories. Each transition in one weighted

trajectory will be counted as the weight instead of 1 as we did in the beginning.

However, after this reconstruction, the estimation in 4.16 will be changed due to

overlap between lost states. For example, suppose we have trajectories with transition

sequence (r1r3r4) and r2 ∈ TN(r3) and r1 ∈ TN(r2). After the reconstruction process,

some of these trajectories will be recovered as (r1r2r3r4). Thus, one consequence is

that the count of NTr(r2r3r4) and the uncertainty weight Pr3
r2r4

will be increased.

Therefore, we need to iterate the two steps, computing the uncertainty weights and

reconstructing trajectories, till convergence. Specifically, an iterative algorithm is

shown in Algorithm 2. Generally, this algorithm converges quickly for the following

reasons. First, consider the example above again, if the increase of Pr3
r2r4

will not
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Figure 4.5. A type of infusion pump.

affect Pr2
r1r3

, then these two uncertainty weights will not be changed again because of

these two segments. On the contrary, if the increase of Pr3
r2r4

does affect Pr2
r1r3

, Pr2
r1r3

must be increased too. Thus, they will be changed monotonously. We omit more

detailed analysis due to space limit.

4.6 Experimental Results

In this section, we evaluate the performances of the proposed context-aware anomaly

detection method in indoor location traces. Specifically, we demonstrate: 1) the

effectiveness of the proposed model for identifying interesting anomaly events. 2) a

performance comparison between the proposed method and the baseline methods.

4.6.1 The Experimental Setup

Experimental Data. We use a real-world data set for the evaluation of the proposed

methods. This data set is collected from a hospital. Each medical device operated in

the hospital has an attached sensor and tracked by the location system. The location

traces of each medical device is recorded in an accumulative way. Specifically, the

network tracks every device periodically. When the location of a tracked device

changes, a location change record will be generated and recorded in the database.
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Algorithm 2 Algorithm to estimate the uncertainty for intermediate state

Input: Historical trajectories {Tr}.

Output: Recovered trajectories {Tr∗}.

1: Extract the recoverable transitions into set G.

2: repeat

3: for Each transition (rirj) ∈ G do

4: for Each r∗ where r∗ ∈ TN(rj) and ri ∩ TN(r∗) do

5: Compute the uncertainty weight Pr∗

rirj
by Equation 4.16.

6: end for

7: end for

8: for Each Tr do

9: for Each transition (rirj) ∈ G do

10: for Each r∗ ∈ N(ri) ∩N(rj) do

11: Recover (rirj) as (rir
∗rj) with weight Pr∗

rirj
for Tr.

12: end for

13: end for

14: end for

15: until Converge
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Figure 4.6. The histogram of the number of location records of each infusion pump.

The medical device we studied in this chapter is infusion pump, which is the most

common device in the hospital. The size of one pump is about 9× 5× 5 inches and

the weight is about 15 pounds. An infusion pump is shown in Figure 4.5. Given

the size and weight, it is easy to take it out of the hospital without the notice of

security guards. Since each infusion pump is worth several thousand dollars, it is

very important to detect the missing events of infusion pumps.

In detail, we have collected the location traces of 1680 infusion pumps in the

hospital. The duration is from January 2011 to August 2011. For these infusion

pumps, the total number of location records is 7038246. The distribution of the

number of location records of each pump is shown in Figure 4.6. The sensor network

deployed in this hospital is configured to communicate with the remote sensor of a

device with a time gap no longer than D = 30 minutes: If a device is in motion, the

network will communicate with the senor and a new location of this device will be

recorded every minute; If the device is not in motion, the network will communicate
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with the sensor every 30 minutes. Based on the definition of inactive events in Section

4.2.2, we obtained 26752 inactive events, which were used to discover the hotspots.

Algorithm 3 A Context-Aware Anomaly Detection Algorithm

1: Use Algorithm 1 to identify hotspots {C} from {Tr}.

2: For each hotspot C, divide the location transitions ending within C into two

disjoint sets: O containing transitions ending with an inactive event and Ō con-

taining transitions ending without inactive event.

3: Use Algorithm 2 to recover the lost transition states for transitions in O and Ō,

separately.

4: Use transition sequences in O to estimate Pr(ri|rj, O) with Equation 4.15.

5: Use transition sequences in Ō to estimate Pr(ri|rj, Ō) with Equation 4.15.

6: Use Equation 4.14 to estimate the anomaly degree of rn:0.

The proposed overall detection method. Our overall method is outlined in

Algorithm 3. Specifically, there are three components. First, we identify the hotspots

as the context of transition sequences. Then, before measuring the anomaly degree,

we recover the lost transition states for trajectories of each context. Finally, we use

the N -gram model defined in Equation 4.14 to distinguish the normal trajectories

from the abnormal trajectories.

To demonstrate the effectiveness of our approach, we also proposed the following

baseline methods:

The baseline method 1 via Hotspots. As a baseline method, we can estimate

the anomaly degree of a transition sequence Tr ending within the core point c based
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on its density in the hotspot C. Specifically, as discussed in Section 4.3, we define

o(Tr) = P (c) =

∑
I∈N(c)w(I)

|N(c)|
. (4.17)

The baseline method 2 without addressing the uncertainty issues. An-

other baseline method we compared is similar with Algorithm 3, except that the step

3 is omitted. In other words, we measure the anomaly degree of trajectories without

addressing the uncertainty issues in the recorded sequences.

Experimental Tools and Parameters. The parameter θ, i.e., the minimum

mean weight of the inactive events to construct a hotspot, for our clustering algorithm

is empirically set as θ = 0.85. Another important parameter is the time lag t. We

use t = 1 day, because it is natural to assume that the abnormal events only happen

in a short period of the same day in most cases.

Accuracy Measurement. We use three popular accuracy measurements to

evaluate the experimental results. With the detected abnormal trajectory set A by

our methods and the manually-labeled abnormal trajectory set B by domain experts,

the precision, recall and F-measure can be calculated by:

Precision =
|A ∩B|
|A|

, (4.18)

Recall =
|A ∩B|
|B|

, (4.19)

F −measure = 2
Precision×Recall
Precision+Recall

. (4.20)

In this experiment, we compute these measurements for the top-k abnormal trajec-

tories with different k values.

Human labeled benchmark. We have obtained 67 abnormal missing events
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Figure 4.7. The spatial distribution of weighted inactive events and hotspots. Each

red point is an inactive event with the radius proportional to its weight. Each green

box is a hotspot.

which are manually labeled by the domain experts as the benchmark. The spatial

distribution of these events are illustrated in Figure 4.1.

4.6.2 Anomaly Events

As shown in Figures 4.1 and 4.7, the proposed clustering algorithm can successfully

discover almost all the locations which contain missing events labeled by domain

experts. We identified 7 hotspots on two floors of a building. A semantic summary

of these hotspots is provided in Table 4.1. Particularly, with the weighted density

clustering algorithm, we can effectively eliminate noise events. For example, in the

circle shown in Figure 4.7b, the number of events with small weight is much higher

than that of those with large weight. Thus, the average weight is less than the

specified criterion. Indeed, many of these events actually end within the cluster

above the circle.
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Floor Hotspot Summary

1st Floor top Patient room area

1st Floor middle Near exit and elevator

1st Floor bottom Patient room area

2nd Floor left Storage, near exit and stairs

2nd Floor middle left Near stairs

2nd Floor middle right Near stairs

2nd Floor right Patient room area

Table 4.1. A semantic summary of the identified hotspots.

With the developed anomaly degree measurement, we can rank all location traces

according to their anomaly degree from high to low. Figure 4.8 shows top-5 abnormal

location traces of the detected missing events. The red color indicates that the corre-

sponding detected event is confirmed in the benchmark. In Figure 4.8a, we plot the

examples of normal location traces. In Figure 4.8b, we show top-5 abnormal location

traces based on our methods. To make a comparison, we show top-5 abnormal loca-

tion traces in Figure 4.8c based on the baseline methods. By comparing the results

in Figures 4.8b and 4.8c, we can see the proposed method performs better than the

baseline methods. Specifically, the abnormal events detected by our method went

through rare transition patterns. In contrast, the baseline methods cannot differenti-

ate events according to their historical transitions or have difficulty when measuring

the anomaly degree accurately, and thus have a higher rate of false alarms.
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Figure 4.8. An illustration of detected abnormal events. The red sequences are

confirmed in benchmark data.
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Figure 4.9. The accuracy comparison of the proposed method and the baseline meth-

ods. The blue lines on the top are of the proposed method. The other lines on the

bottom are of the baseline methods.

4.6.3 A Performance Comparison

In Figure 4.9, we evaluate the performances of our method and the baseline methods

with respect to the precision, recall and F-measure defined in Equation 4.18, 4.19

and 4.20. We identified top k abnormal events by these methods, where k ranges

to 100 with a step of 5. We can see that our method outperforms the baseline

methods in terms of both precision and recall consistently. Moreover, the results of

our method are more stable than those of the baseline methods. For example, in

Figure 4.9a, we can see there is dramatic change at the beginning of the precision

curve for the baseline methods. This is not a surprise because the baseline methods

cannot distinguish the different transitions ending within the same core point or have

difficulty when measuring the anomaly degree accurately. In contrast, our method

integrates the information from both the hotspots and the transition pattern with

uncertainty addressed, thus leads to more stable results.
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4.7 Related Work

Related work can be grouped into four categories. The first category includes the work

related to trajectory outlier detection, which is most relevant to the main theme of this

chapter. In the second category, we introduce some more general studies of trajectory

data, such as trajectory clustering and trajectory pattern mining. The third category

includes the relevant studies for finding area of interest from trajectory data. Finally,

we introduce recent studies on activity recognition in the indoor scenarios.

The first category includes the work on trajectory outlier detection, which is highly

related to this work. For instance, Lee et al. Lee et al. [2008] proposed a two-phase

trajectory partition strategy for detecting trajectory outliers. This work has exploited

both distance and density information for outlier detection. In Bu et al. [2009], an

outlier detection framework was proposed for monitoring anomalies over continuous

trajectory streams. The key idea is to build local clusters upon trajectory streams

and detect anomalies by a cluster join mechanism. Li et al. Li et al. [2009] proposed

a method for detecting temporal trajectory outliers with an emphasis on historical

similarity trends among data points. Outliers could be determined if they have drastic

changes from the historical trend and this drastic change is only observed in the

membership of neighborhoods. In Ge et al. [2011c], Ge et al. proposed to quantify the

outlier score in two ways and combined these two types of outlier scores together based

on the Dempster-Shafer Theory. An incremental semi-supervised learning method was

developed in R.R.Sillito and R.B.Fisher [2008] for trajectory outlier detection. This

work is along the line of a learning approach and requires the training data. Finally,
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Ge et al. Ge et al. [2010] proposed an evolving outlier detection method to detect the

outlier trajectories in an evolving way. However, most methods above were developed

to detect the outliers from outdoor trajectories, and not suitable for the analysis of

specific indoor trajectories.

The second category includes the work on more general analysis of trajectory

data, such as trajectory clustering and trajectory pattern mining. For instance, Gi-

annotti et al.Giannotti et al. [2007b] introduced trajectory patterns as the concise

descriptions of frequent behaviors in terms of both time and space. Also, a trajec-

tory clustering algorithm was proposed in Lee et al. [2007]. This clustering algorithm

first partitions the trajectories according to the Minimum Description Length (MDL)

principle and then clustered the trajectory segments using a line-segment clustering

algorithm. In Jeung et al. [2008], a filter-refinement approach was developed for dis-

covering convoys in trajectory databases. Moreover, people have various interests

in developing similarity and distance measures for trajectories Chen et al. [2005],

Vlachos et al. [2002]. Finally, in Wang et al. [2008], Wang et al. proposed to co-

cluster trajectories and semantic regions with the Dual Hierarchical Dirichlet Process

(Dual-HDP) model, by treating trajectories as documents and positions as words.

The third category includes the work on the detection of area of interest with tra-

jectory data. For instance, Liu et al. Liu et al. [2010a] proposed a non-density-based

approach, called mobility-based clustering, to identify the hotspots of moving vehicles

in an urban area. The key idea is that sample objects are used as “sensors” to perceive

the vehicle crowdedness in nearby areas using their instant mobility, rather than the

“object representatives”. Moreover, Zheng et al. proposed a stay point concept and
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identified hotspots from human moving trajectory Zheng et al. [2009b]. One location

was considered as a hotspot if a lot of moving objects stay nearby over a certain time

period controlled by a time threshold. In addition, Giannotti et al.Giannotti et al.

[2007b] used the neighborhood function to model Regions-of-Interest. Basically, they

partitioned the spatial space into grids and quantified the interest of each grid with

the density and the direction information of each grid. Even some methods above are

very successful for analyzing outdoor location traces, most of them are not applicable

to the proposed indoor hospital environments because of the unique characteristics

of these indoor location traces.

Finally, for the location based pattern mining research in indoor scenarios, there

exist some studies focused on the activity recognition. For instance, in Chai and

Yang [2005], Chai et al. exploited a dynamic Bayesian model to recognize the activity

goals of the tracked object in a controlled experiment environment. Focused on the

segmentation of the sensor signal sequences, in Yin et al. [2005], Yin et al. modeled

the transition sequence as a Markov process conditioned on goals. However, most of

the studies in this direction focused on recognizing activity goals for single or a few

tracked objects who travel with the sensor devices intensively. Moreover, these studies

are usually deployed in the school environment. The activities are not constrained

by routine work flow patterns which are typical in the hospital environment. Indeed,

in this chapter, our work is based on the real-world hospital scenario and has a focus

on the missing event detection using indoor location traces of all the medical devices.

This is a very unique problem setting, while the traditional methods for activity

recognition in indoor environments are not designed for this purpose.
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4.8 Summary

In this chapter, we provided a pilot study of detecting anomaly events of medical

devices in indoor hospital environments, where all the medical devices have sensors

attached and a real-time localization system can locate the position of any medical

device. Since the activities of these medical devices have been constrained by the

work flow in the hospital, there are a lot of context information which is available

for the anomaly analysis. Therefore, we proposed a context-aware stochastic model

for anomaly detection in indoor location traces. Along this line, we first identified

the hotspots, the places with high-level anomaly activities. These hotspots can then

be used as the context for the passing trajectories. This context-aware model could

help us to identify different categories of anomaly events, such as the missing events

due to the blocking signal, the defective sensor devices, and the devices being stolen.

The key idea of this stochastic model is to exploit the hospital work flow and model

the movements of medical devices as the transitions in finite state machines. As a

result, the stochastic properties of the hotspots and the transition patterns can be

estimated by the analysis of historical location traces. Finally, we have performed

extensive experiments on real-world indoor location data in a hospital environment.

The results clearly showed the different anomaly activities captured by the context-

aware anomaly detection model. Also, we have demonstrated the effectiveness of

missing event detection in terms of the detection accuracy.
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CHAPTER 5

POPULARITY MODELING FOR APP RECOMMENDATION SERVICES

5.1 Introduction

With the rapid development of mobile App industry, the number of mobile Apps

available has exploded over the past few years. For example, as of the end of April

2013, there are more than 1.6 million Apps at Apple’s App store and Google Play.

To facilitate the adoption of mobile Apps and learn the user experience with mobile

Apps, many App stores enable the periodical (such as daily) App chart rankings and

allow users to post ratings and comments for their Apps. Indeed, such popularity

information plays an important role in App recommendation services Böhmer et al.

[2013], Shi and Ali [2012], Yan and Chen [2011], and opens a venue for mobile App

understanding, trend analysis and other App recommendation services Lim et al.

[2010], Wu et al. [2012].

While people have developed some specific approaches to explore the popular-

ity information of mobile Apps for some particular tasks Yan and Chen [2011], Zhu

et al. [2012], the use of popularity information for App recommendation services is

still fragmented and under-researched. Indeed, there are two major challenges along

this line. First, the popularity information of mobile Apps often varies frequently

and has the instinct of sequence dependence. For example, although the daily rank-
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ings of different mobile Apps may be different, it is impossible that an App with a

high ranking will be ranked very low in the following day due to the momentum of

popularity. Second, the popularity information is heterogeneous, but contains latent

semantics and relationships. For example, although Ranking=1 and Rating=5 are

totally different observations, they may both indicate some sort of popularity.

To this end, in this work, we propose a sequential approach based on Hidden

Markov Model (HMM) to model the heterogeneous popularity information of mobile

Apps. Particularly, the objective of our approach is to provide the comprehensive

modeling of popularity information towards App recommendation services. Along

this line, we first propose a Popularity based HMM (PHMM) model by extending the

HMM with heterogeneous popularity information of mobile Apps, including chart

rankings, user ratings and review topics extracted from comments. The popularity

information can be modeled in terms of different transitions of different popularity

states, which indicate the latent semantics and relationships of popularity observa-

tions. Then, to efficiently train our PHMM model, we introduce a bipartite based

method to pre-cluster various popularity observations. The pre-cluster results can

be leveraged for choosing parameters and the initial values of our PHMM model.

Although many applications may benefit from the results of our PHMM model, in

this work, we focus on demonstrating several novel App recommendation services

enabled by our PHMM model, including App recommendation, rating and comment

spam detection, and ranking fraud detection. Finally, to validate the proposed model,

we carry out extensive experiments on a real-world data set collected from Apple’s

App Store. The experimental results clearly demonstrate both the effectiveness and
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efficiency of our approach.

5.2 Overview

We first introduce the popularity observations of mobile Apps, and then present the

problem statement of popularity modeling and the overview of our model.

5.2.1 Preliminaries of Popularity Observations

In this work, we focus on three kinds of important popularity information, namely

chart rankings, users ratings and review comments. We can collect periodical obser-

vations for each type of popularity information.

• Chart Rankings. Most of the App stores launch the chart rankings of Apps,

which are usually updated periodically, e.g., daily. Therefore, each mobile App

a has many historical ranking observations which can be denoted as a time

series, Pa = {pa1, · · · , pan}, where pai ∈ {1, ..., Kp} is the ranking position of a at

time stamp ti. Note that, the smaller value pai is, the higher ranking the App a

has. Intuitively, the higher ranking indicates the higher popularity.

• User Ratings. After an App is published, it can be rated by any user who

downloaded it. Indeed, the user rating is one of the most important features of

App popularity. Particularly, each rating can be categorized into Kr discrete

rating levels, e.g., 1 to 5, which represent users’ different preferences for Apps.

Therefore, the rating observations of an App a can also be denoted as a time

series, Ra = {ra1 , · · · , ran}, where rai ∈ {1, · · · , Kr} is the user rating posted at

time stamp ti.
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• Review Comments. Besides ratings, users can also put their comments on

each App. Each comment reflects a user’s personal perception for a particular

App. Similar as user ratings, we can denote all comments of an App a as a

time series, Ca = {ca1, · · · , can}, where cai is the comment posted at time stamp

ti. Note that, the number of comments is always the same as that of ratings for

a single App.

Indeed, all popularity observations on the above are important for mobile App

recommendation. However, different from the ranking and rating observations, it

is hard to directly leverage comments as observations for modeling App popularity.

Therefore, in this work we propose to leverage topic modeling Blei et al. [2003] to ex-

tract the latent semantics of user comments as popularity observations. The intuitive

motivation is mapping each comment onto a specific review topic, which is easy to

understand and exploit for opinion analysis. Specifically, in this work we adopt the

widely used Latent Dirichlet Allocation (LDA) model Blei et al. [2003] for learning

latent semantic topics. To be more specific, the historical comments of a mobile App

a, i.e., Ca, is assumed to be generated as follows. First, before generating Ca, Kz prior

conditional distributions of words given latent topics {φz} are generated from a prior

Dirichlet distribution β. Second, a prior latent topic distribution θa is generated from

a prior Dirichlet distribution α for each mobile App a. Then, for generating the j-th

word in Ca denoted as wa,j, the model firstly generates a latent topic z from θa and

then generates wa,j from φz. Particularly, Figure 5.1 shows the graphic representation

of the LDA model, where M is the number of mobile Apps, N is the number of all



- 125 -

α θ z w β

M
N

Kz

Figure 5.1. The graphic representation of LDA model.

unique words in comments, and Kz is the predefined number of latent topics. The

training process of LDA model is to learn proper latent variables θ = {P (z|Ca)} and

φ = {P (w|z)} for maximizing the posterior distribution of comment observations, i.e.,

P (Ca|α, β, θ, φ). In this work, we use a Markov chain Monte Carlo method named

Gibbs sampling Griffiths and Steyvers [2004] for training LDA model. Then we can

map each comment cai onto a review topic zai by

zai = arg max
z
P (z|cai ) ∝ arg max

z

( ∏
w∈cai

P (w|z)P (z)
)
, (5.1)

where both P (w|z) and P (z) can be learned via training LDA model. Therefore, we

can obtain the time series of comments as Za = {za1 , · · · , zan}, where zai ∈ {1, · · · , Kz}

In reality, the time stamps of ranking observations and user rating (comment)

observation are usually not identical. For example, for a particular App, there may

be multiple ratings and comments from multiple users per day, while there may be

only one ranking observation per day. Therefore, we first aggregate the ranking, and

rating (comment) observations together to get the integrated observations, which

share the same time stamp with the ranking observations. Moreover, in practice

we may need to model App popularity with different time granularity, such as daily

or weekly. The aggregation can allow us to get the integrated observations with



- 126 -

different time interval/granularity. After getting the integrated observations with the

same time stamps, we can represent the heterogeneous observations of popularity for

a mobile App a as a sequence as Oa = {oa1, · · · , oan}, where oai = {Pai ,Ra
i ,Zai } contains

the observations of ranking, rating and review topic during time interval ti.

5.2.2 Problem Statement

We define the problem of popularity modeling for mobile Apps as follows:

Definition 10 (Problem Statement) Given a set of mobile Apps A, where each

App a ∈ A has a sequence of historical popularity observations Oa = {oa1, · · · , oan}.

The problem of popularity modeling is to learn a model M from all the observation

sequences {Oa|a ∈ A}, which can be used for predicting the popularity observations

for each mobile App in the future.

However, it is not a trivial problem to model mobile App popularity. First, the

popularity information of mobile Apps often varies frequently and has the instinct

of sequence dependence. Second, the popularity information is heterogeneous but

contains latent semantics and relationships. To solve those challenges, we propose

a novel approach for popularity modeling based on Hidden Markov Model (HMM),

which is widely used for modeling sequential observations. Specifically, we assume

that there are multiple latent Popularity States of mobile Apps, such as very popular,

popular, and out-of-popular, and different kinds of popularity observations appear

for one App at the same time because they all belong to the same popularity state.

Moreover, the varying of popularity observations is due to the transitions of different

popularity states. Figure 5.2 shows the graphic representation of our Popularity based
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Figure 5.2. The graphical structure of PHMM model.

HMM (PHMM) model. In this figure, each observation oi is generated by the latent

state si, and oi contains np,i rankings, nr,i ratings and review topics. Particularly,

here we adopt the widely used first order Morkov assumption in our model. In

other words, the probability distribution of each popularity state si is independent

of the previous states s1, · · · , si−2, given the immediately previous state si−1, i.e.,

P (si|s1, · · · , si−1) = P (si|si−1).

Indeed, with this PHMM model for modeling App popularity, there are two main

problems to be resolved. First, how to train the PHMM model with respect to different

kinds of popularity observations? Second, how to choose the proper number of latent

popularity states for PHMM? In the following section, we will present our solutions

for both problems.

5.3 App Popularity Modeling

Now we present the details of App popularity modeling by the PHMM model.
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5.3.1 Training PHMM Model

Given a set of popularity states S = {s1, · · · , sKs}, a set of App rankings P =

{p1, · · · , pKp}, a set of user ratings R = {r1, · · · , rKr}, and a set of review topics

Z = {z1, · · · , zKz}, the PHMM can be represented by a model containing three

different probability distributions:

• The transition probability distribution ∆ = {P (si|sj)}, where si, sj ∈ S are the

latent popularity states.

• The initial state distribution Ψ = {P (si)}, where P (si) is the probability that

popularity state si occurs as the first element of a state sequence.

• The emission probability distribution Λ = {P (P ,R,Z|si)}, where P (P ,R,Z|si)

is the joint probability that popularity observations P , R and Z are generated

by state si.

As the common setting of HMM, here we assume that ranking, rating and review

topics are conditionally independent given the popularity state, i.e., P (P ,R,Z|si) ≡∏
p∈P P (p|si)

∏
r∈R P (r|si)

∏
z∈Z P (z|si). Therefore, we can denote the emission prob-

ability distribution Λ by the triple (Λp,Λr,Λz) ≡ ({P (p|si)}, {P (r|si)}, {P (z|si)}),

which stratifies
∑

p P (p|si) =
∑

r P (r|si) =
∑

z P (z|si) = 1.

Therefore, given a set of training sequences of popularity observations X =

{O1, · · · ,ON}, the task of training PHMM is to learn the set of parameters Θ =

(Ψ,∆,Λp,Λr,Λz). Specifically, we denote the length of sequence On as Ln and the

j-th observation oj ∈ On as an triple (Pn,j,Rn,j,Zn,j). Moreover, we let pn,j,k, rn,j,k,
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and zn,j,k denote the k-th ranking, rating and review topic in Pn,j, Rn,j, and Zn,j.

Therefore, we can use the Maximum Likelihood Estimation (MLE) to compute the

optimal parameters Θ∗ by

Θ∗ = arg max
Θ

logP (X|Θ) = arg max
Θ

∑
n

logP (On|Θ). (5.2)

Here, we denote all the possible state sequences of an observation sequence On

as a set Ωn = {Sn1 , · · · , SnM}, and define a variable Yn ∈ Ωn, where each Snm is

a state sequence with length Ln. Moreover, we denote the j-th state in Snm as snm,j.

Accordingly, we can define Y = {Y1, · · · ,YN} as the set of all possible state sequences.

Then we can rewrite the likelihood logP (On|Θ) in Equation 5.2 as

logP (On|Θ) = log
∑
m

P (On, Snm|Θ), (5.3)

where the joint distribution can be written as

P (On, Snm|Θ) = P (On|Snm,Θ)P (Snm|Θ)

=

(
Ln∏
j=1

∏
k

P (pn,j,k|snm,j)
∏
i

P (rn,j,i|snm,j)P (zn,j,i|snm,j)

)

×

(
P (snm,1)

Ln∏
j=2

P (snm,j |snm,j−1))

)
. (5.4)

Indeed, directly optimizing the above likelihood function is not a trivial problem. In

this work, we propose to exploit the Expectation Maximization (EM) algorithm to

iteratively estimate the parameters.

Specifically, at the E-Step, we have

Q(Θ,Θ(i−1)) = E
[

logP (X ,Y|Θ);X ,Θ(i−1)
]

=
∑
n,m

P (Snm|On,Θ(i−1)) logP (On, Snm|Θ), (5.5)
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where Θ(i−1) is the set of model parameters estimated in the last round of EM itera-

tion. Particularly, we can estimate P (Snm|On,Θ(i−1)) by

P (Snm|On,Θ(i−1)) ∝ P (On, Snm|Θ(i−1)). (5.6)

At the M-step, we maximize Q(Θ,Θ(i−1)) iteratively until it converges by estimating

the model parameters as follows,

P (si) =

∑
m,n P (Sn

m|On,Θ(i−1))δ(snm,1 = si)∑
m,n P (Sn

m|On,Θ(i−1))
, (5.7)

P (p|si) =

∑
m,n P (Sn

m|On,Θ(i−1))
∑

j δ(s
n
m,j = si ∧ p ∈ Pn,j)∑

m,n P (Sn
m|On,Θ(i−1))

∑
j δ(s

n
m,j = si)NPn,j

, (5.8)

P (r|si) =

∑
m,n P (Sn

m|On,Θ(i−1))
∑

j δ(s
n
m,j = si ∧ r ∈ Rn,j)∑

m,n P (Sn
m|On,Θ(i−1))

∑
j δ(s

n
m,j = si)NRn,j

, (5.9)

P (z|si) =

∑
m,n P (Sn

m|On,Θ(i−1))
∑

j δ(s
n
m,j = si ∧ z ∈ Zn,j)∑

m,n P (Sn
m|On,Θ(i−1))

∑
j δ(s

n
m,j = si)NZn,j

, (5.10)

P (si|sj) =

∑
m,n P (Sn

m|On,Θ(i−1))δ(∃t snm,t−1 = sj ∧ snm,t = si)∑
m,n P (Sn

m|On,Θ(i−1))δ(∃t snm,t−1 = sj)
, (5.11)

where δ(x) = 1 if x = True, and 0 otherwise; NPn,j
, NRn,j

, and NZn,j
are the number

of unique ranking, rating, topic observations in Pn,j, Rn,j, and Zn,j. Furthermore, the

above equations can be efficiently computed by the Forward-Backward algorithm Ra-

biner [1989].

5.3.2 Choosing the Number of Popularity States

Another problem of training PHMM model is how to choose the proper number of

latent popular states. Indeed, a common used approach for estimating the latent state

of HMMs is to leverage domain knowledge or some existing algorithms to pre-cluster

the observations Cao et al. [2009a]. In our problem, the popularity observations

contain Kp +Kr +Kz elements, i.e., Kp unique rankings, Kr unique ratings, and Kz

unique topics. Intuitively, these observations are heterogeneous and contain internal
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Figure 5.3. An example of E-R bipartite graph.

relationships. Thus how to cluster such information is an open question. To solve this

problem, in this work we propose a novel clustering method based on the Element-

Record (E-R) bipartite graph. Specifically, the E-R bipartite graph can be denoted

as G = {V,E,W} where V = {V b, V o}. V b = {b1, · · · , bK} denotes the set of unique

observation elements, i.e., K = Kp + Kr + Kz, and V o = {o1, · · · , oM} denotes the

set of all observation records from sequence set X . Edge set is E = {eij}, where

eij denotes the observation element bi has appeared in record oj. Edge weight set is

W = {wij}, where each wij represents the normalized frequency of the appearance

of bi in oj. For example, if an observation element bi = (Rating = 5) has appeared

ni times in oj and there are totally nj ratings in oj, the weight would be wij = ni

nj
.

Figure 5.3 shows an example of the E-R bipartite graph.

Therefore, given an E-R bipartite graph, we can denote each unique observation

element as a normalized vector
−→
bi = dim[M ], where M is the number of all unique ob-
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servation records, dim[j] =
wij∑
k wik

is the normalized dimension of vector. Accordingly,

we can estimate the similarity between two popularity observations by calculating the

Cosine distance between their vectors. After that, many existing algorithms can be

leveraged for estimating the number of clusters, such as density based clustering algo-

rithms. In this work, we utilize a clustering algorithm proposed in Cao et al. [2008],

which is robust for high dimensional data and only needs a parameter to indicate

the minimum average mutual similarity Smin for the data points in each cluster. The

average mutual similarity for a cluster C is calculated as SC =
2×

∑
1≤i<j≤|C| Sim(bi,bj)

|C|×(|C|−1)
,

where |C| indicates the number of observation elements in C and Sim(bi, bj) is the

similarity between the i-th and j-th observation elements in C.

The results of pre-clustering may not be the true popularity states learned by

PHMM. However, we believe the pre-clustering can provide positive guidance for

estimating the number of latent states due to the intrinsic relationships between pop-

ularity observations. Furthermore, the results of pre-clustering can also be used for

assigning initial values of EM algorithm. Actually, the basic EM algorithm imple-

mented by randomly assigning initial values for model parameters Θ, which may lead

to more training iterations and unexpected local optimal results. Particularly, if we

treat each popularity cluster Ci as the latent state si, we can estimate the initial

values of parameters Θ as follows. First, we define the prior distribution of observa-

tion element bi (b = p, r, z) as P (bi), which can be computed by the MLE method.

Specifically, P (bi) =
Nbi∑
k Nbk

, where Nbk is the appearance frequency of bk in all ob-

servation records. Second, for each observation element bi, we can first compute the

probability P (sj|bi) by the normalized similarity between observation vector
−→
bi and
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cluster Cj, i.e., P (sj|bi) =
Sim(

−→
bi ,
−→
Cj)∑

k Sim(
−→
bi ,
−→
Ck)

, where Sim(∗, ∗) is the Cosine distance and

−→
Cj = Norm(

∑
b∈Ci

−→
b

|Ci| ) is the normalized centroid of cluster. Actually, here we assume

that an observation has higher probability of belonging to a nearer cluster. Therefore,

we have following estimations:

• The initial state distribution can be computed by the summation P 0(si) =∑
b=p,r,z

∑
k P (si|bk)P (bk).

• The emission probability can be computed according to the Bayes rule, i.e.,

P 0(bi|sj) =
P (sj |bi)P (bi)

P 0(sj)
.

• The transition distribution P 0(si|sj) can be computed by the normalized simi-

larity between cluster Ci and Cj, i.e., P 0(si|sj) =
Sim(

−→
Ci,
−→
Cj)∑

k Sim(
−→
Ck,
−→
Cj)

.

Indeed, our experimental results clearly validate that using pre-clustering for as-

signing initial values of EM algorithm can accelerate the training process and enhance

the model fitting of PHMM.

5.4 PHMM Model Application

There are many applications which can be derived from our PHMM model. But, in

this work, we focus on demonstrating several novel recommendation related applica-

tions motivated by our PHMM model, including trend based mobile App recommen-

dation, rating and comment spam detection, as well as ranking fraud detection for

mobile Apps.

Particularly, our PHMM model can be learned from different time and App gran-

ularity. For example, as introduced in Section 5.2, we can use the daily, weekly
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or monthly observations from one or more Apps for modeling popularity. Different

model granularity may generate different popularity patterns and lead to different ap-

plications. Particularly, in this work we mainly focus on learning PHMM model from

all mobile Apps, which can be used for capturing the common popularity patterns

and relationships of mobile Apps.

Assume that we have observed a popularity sequence Oa = {oa1, · · · , oat } from a

mobile App a. Thus we can estimate the latent states for the i-th observation oai

(0 ≤ i ≤ t) by

P (s|oai ,Θ) ∝ P (oai |s,Θ)P (s|Θ) =
∏

p,r,z∈oai

P (p|s)

× P (r|s)P (z|s)
∑
s′

P (s|s′)P (s′|oai−1,Θ), (5.12)

which can be computed effectively by Forward-Backward algorithm or Viterbi

algorithm Viterbi [1967]. Similarly, we can predict the (t+ 1)-st popularity state for

App a by P (s(t+1) = s|Oa,Θ) =
∑

s′ P (s|s′)P (s′|oat ,Θ). Based on the above, we can

conduct the following three App recommendation related applications.

• Trend based Mobile App Recommendation. The existing mobile App rec-

ommender systems usually recommend Apps which were popular in the past. This is

not proper in practice because the popularity information is always varying frequently,

and mobile users tend to follow the future popularity trend of Apps. Therefore, in

this work we propose a trend based App recommendation approach by leveraging

our PHMM model. Specifically, given a t-length observation sequence of mobile App
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a, i.e., Oa = {oa1, · · · , oat }, we can predict the possible rankings and ratings of a at

next time stamp t + 1 by P (p(t+1) = p|Oa,Θ) =
∑

s P (p|s)P (s(t+1) = s|Oa,Θ), and

P (r(t+1) = r|Oa,Θ) =
∑

s P (r|s)P (s(t+1) = s|Oa,Θ), where s(t+1) is the (t + 1)-st

popularity state of Oa. Furthermore, we can compute the ranking and rating ex-

pectations of App a at time stamp t + 1 by p∗a =
∑

p p × P (p(t+1) = p|Oa,Θ) and

r∗a =
∑

r r×P (r(t+1) = r|Oa,Θ). Similarly, we can rank all mobile Apps with respect

to their ranking and rating expectations, and obtain two ranked list ΥRank and ΥRate.

Then, we can calculate the final popularity score of each mobile App by Borda’s

ranking fusion method:

P Score(a) = α× 1

RKRank(a)
+ (1− α)× 1

RKRate(a)
, (5.13)

where α is the fusion parameter; RKRank(a) and RKRate(a) is the ranking of a in

ranked list ΥRank and ΥRate. Particularly, if α = 0, the final rank is only based on

the rating trend, which is similar to the ranked list ΥRate. If α = 1, the final rank

is only based on the ranking trend, which is similar to the ranked list ΥRank. The

score P Score(a) indicates the popularity trend in the future, thus can be used for

recommending Apps.

• Rating and Comment Spam Detection. User ratings and comments are

the important information in mobile App market. The App store provider and the

developers of Apps rely on the ratings and comments of users a lot to get helpful

feedback from various users. However, some of the shady users may post deceptive

ratings and comments with the purpose of inflating or deflating corresponding mobile

Apps. Many efforts have been made in the literatures for detecting such rating and
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comments spams Lim et al. [2010], Wu et al. [2012], Xie et al. [2012]. However, few of

them took the sequence characteristics of App popularity into consideration. In this

work, we propose a novel approach based on PHMM model for detecting rating and

comment spams. Specifically, given a t-length observation sequence of mobile App a,

i.e., Oa = {oa1, · · · , oat }, we can first leverage the first (t−1)-length sequence to predict

the possible t-th popularity states of a by Equation 5.12. Then, we can calculate

the likelihood of the observations of rating and review topic at time stamp t by

logP (Ra
t |Θ) = log

∑
s P (Ra

t , s
t = s|Θ), and logP (Zat |Θ) = log

∑
s P (Zat , st = s|Θ),

which can be estimated by the similar way of Equation 5.4. Then, if the likelihood

is less than the predefined thresholds τr, and τz, we believe that there are rating or

comment spams in a at time stamp t.

• Ranking Fraud Detection. The ranking fraud of mobile Apps refers to

fraudulent or deceptive activities which have a purpose of bumping up the rankings

of Apps during a specific time period. Detecting such ranking fraud is very important

for the healthy development of mobile App industry, especially for building mobile

App recommender systems. Different from rating and comment spam, the ranking

fraud always happens during some specific time periods. It is due to that people who

try to manipulate the App rankings always have some specific expectations of ranking,

such as top 25 for one month. Moreover, some of the normal promotion means, such as

“Free App a Day”, may also result in the abnormal ranking observations. Therefore,

to detect the ranking fraud for mobile Apps, we should check the observation sequence

during a time period but not at only one time stamp. To be specific, we can first define

a sliding window with length T , and segment the popularity records of mobile Apps
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Table 5.1. Statistics of the experimental data.

Data Statistics

App Num. 9,784

Ranking Num. 285,900

Avg. Ranking Num. 29.22

Rating/Comment Num. 14,912,459

Avg. Rating/Comment Num. 1,524.17

a by several T -length observation sequences {Oa1 , · · · ,Oan}. Then, for each sequence

Oai we will calculate its anomaly score by the average log-loss of ranking observations:

L(Oai ) = − 1

T
logP (POa

i
|Θ) = − 1

T
log
∑
m

P (POa
i
, STm|Θ), (5.14)

where POa
i

= {Pai,1, · · · ,Pai,T} is the sequence of all ranking observations in Oai , and

each STm is a state sequence with length T and the equation can be estimated in the

similar way as Equation 5.4. Finally, if the anomaly score L(Oai ) is larger than a

predefined threshold τp, we believe that the ranking fraud happens during the time

period of Oai .

5.5 Experimental Results

In this section, we evaluate the performance of our PHMM model by using a real-

world App data set.
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Figure 5.4. The distribution of the number of Apps w.r.t (a) different rankings, (b)

different rating levels, (c) different number of ratings/comments, (d) the distribution

of the number of comments w.r.t different topics.

5.5.1 The Experimental Data

The experimental data set was collected from the “Top Free 300” leaderboard of

Apple’s App Store (U.S.) from February 2, 2010 to September 17, 2012 1 . The

data set contains the daily chart rankings, which were collected at 11:00PM (PST)

daily, all user ratings and review comments of top 300 free Apps during the period.

Specifically, Table 5.1 shows some statistics of the data.

Figures 5.4 (a), (b) and (c) show the distributions of the number of Apps with

respect to different rankings, different rating levels and different number of rat-

ings/comments. Although the distributions of popularity observations are not even.

1This data set will be made publicly available soon.
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Furthermore, we use the LDA model to extract review topics as introduced in Sec-

tion 5.2. Particularly, we first remove all stop words (e.g., “of”, “the”) and normalize

verbs and adjectives (e.g., “plays → play”, “better → good”) of each comment by

the Stop-Words Remover 2 and the Porter Stemmer 3 . Then, the number of latent

topic Kz is set to 20 according to the perplexity based estimation approach Zhu et al.

[2012]. Two parameters α and β for training LDA model are set to be 50/K and 0.1

according to Heinrich [2008]. Figures 5.4 (d) shows the distribution of the number

of comments w.r.t different topics. From the figure we can observe that only a few

topics are frequently mentioned in comments.

5.5.2 The Performance of Training PHMM

Here, we demonstrate the performance of training PHMM model. Particularly, we

treat the data of each day as an observation record. Therefore, for each observation

record of a specific App, there are one chart ranking, several user ratings and review

comments (topics). Note that, for each App a, we get the first (or last) record when

it appears in the top 300 leaderboard for the first (or last) time during the time

period (i.e., from February 2, 2010 to September 17, 2012). We treat the days that

are the first and last time of App a to appear in the top 300 leardboard or have

ratings/comments as the start and end records of observation sequence Oa.

We first use the algorithm introduce in Cao et al. [2008] for pre-clustering popu-

larity observations from all Apps, where the parameter Smin is empirically set as 0.5.

After that, there are totally 13 clusters used for assigning initial values of PHMM

2http://www.lextek.com/manuals/onix/index.html
3http://www.ling.gu.se/̃lager/mogul/porter-stemmer
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Figure 5.5. The value of the Q(Θ,Θ(i−1)) of PHMM model with different initial value

assignment.

parameters. Figure 5.5 shows the the value of the Q(Θ,Θ(i−1)) of PHMM model with

initial value assignment of model parameters randomly, and initial value assignment of

model parameters by pre-clustering in each iteration. Particularly, both experiments

are conducted five times and the figure shows the average values. We can observe that

the pre-clustering approach can accelerate the training process of PHMM. Moreover,

the PHMM model with initial value assignment by the pre-clustering can achieve the

better fitting, which indicates the higher likelihood of PHMM model.

To further demonstrate the performance of our PHMM model, we show two ex-

amples of identified latent popularity states in Table 5.2 and Table 5.3. Note that, we

manually transfer each review topic to semantic description, and due to the limited

space we only show top 2 ranking, rating and topic observations which are most prob-

able to appear in each state. In these tables, we can see that the latent popularity

states are meaningful. For example, the states s1 and s6 may indicate the Apps are
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Table 5.2. The PHMM state s1.

Ranking=5

Ranking=15

Rating=5

Rating=4

Topic=“Funny Apps”

Topic=“Good Design”

Table 5.3. The PHMM state s6.

Ranking=253

Ranking=148

Rating=3

Rating=4

Topic=“Boring”

Topic=“Old-Fashioned”

very popular and out-of-popular respectively.

Indeed, all the applications of PHMM model introduced in Section 5.4 are based on

the prediction of popularity observations. Therefore, in this subsection we validate the

effectiveness of PHMM model by evaluating its performance of predicting rankings,

rankings and topics. To reduce the uncertainty of splitting the data into training and

test data, in the experiments we utilize a five-fold cross validation to evaluate PHMM

model. To be specific, we first randomly divide all observation sequences of mobile

Apps into five equal parts, and then use each part as the test data while using other

four parts as the training data in five test rounds. Particularly, for each test sequence

we randomly select top T observation records for fitting model, and use the (T + 1)-

st observation record as ground truth for predicting probable rankings, ratings and

topics. Moreover, in our experiments we find that the pre-clustering results of each

training data set are very similar, thus we set the number of popularity states as 13

for all five PHMM models. To the best of our knowledge, there is no existing work

of App popularity modeling has been reported. Thus, we develop two baselines for
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evaluating our PHMM model, which are static and sequential approaches respectively.

The first baseline CPP stands for pre-Clustering based Popularity Prediction,

which is a static approach for predicting popularity observations. Specifically, given

a T -length observation sequence O = {o1, · · · , oT}, we predict the popularity ob-

servation b(T+1) (b = p, r, z) by the probability P (b(T+1) = b|O) =
∑

i P (b(t+1) =

b, Ci|O) ∝
∑

i P (b(T+1) = b|Ci)P (Ci|O), where Ci is the i-th observation cluster.

P (b(T+1) = b|Ci) can be estimated as introduced in Section 5.3, and P (Ci|O) can be

computed by P (Ci|O) ∝ P (Ci)
∏T

j=1

∏
k,m P (pj,k|Ci)

P (rj,m|Ci)P (zj,m|Ci), where pj,k, rj,m, and zj,m denote the k-th ranking observation,

m-th rating and topic observations in observation record oj ∈ O.

The second baseline MPP stands for Markov chain based Popularity Prediction,

which is a sequential approach with first order Markov assumption. Specifically,

given a T -length observation sequence O = {o1, · · · , oT}, we predict the popularity

observation b(T+1) (b = p, r, z) by the probability P (b(T+1) = b|O) = P (b(t+1) =

b|oT ). We have the probability P (b(t+1) = b|oT ) ∝ P (b(T+1) = b)
∏

k P (pT,k|b(T+1) =

b)
∏

m P (rT,m|b(T+1) = b)P (zT,m|b(T+1) = b), where probabilities P (b(T+1) = b) and

P (b′|b(T+1) = b) (b′ = p, r, z) can be computed by the MLE method. Specifically, we

have P (b(T+1) = b) = Nb∑
b′ Nb′

, and P (b′|b(T+1) = b) =
No

b′,b
No

b
, where Nb is the appearance

frequency of b in all observation records. N o
b is the number of observation records in

training data that contain b, and N o
b′,b is the number of observation records in training

data that contain b, and the last record as b′.

First, we compare the performance of ranking and rating prediction by each ap-

proach. Indeed, both ranking and rating are numerical observations, thus we expect
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the prediction results should be close to the ground truth values of observations.

Particularly, in our data set, there are one ranking observation and several rating

observations in each observation record. Therefore, we can use the ranking observa-

tion and the average rating as ground truth values for evaluation. Specifically, we

evaluate each approach by calculating the Root Mean Square Error (RMSE) with the

predicted results and ground truth values for all test sequences. Take ranking as an

example, we define RSME =

√∑
Oi

(p∗i−b∆i )2

N
, where Oi is the i-th test sequence with

length Ti, p
∗
i = arg maxp P (p(Ti+1) = p|Oi), p∆

i is the ground truth ranking in the

(Ti + 1)-st observation record, and N is the number of test sequences. Moreover, we

can calculate the RMSE of rating prediction in a similar way. The smaller RMSE

value, the better performance of ranking and rating prediction.

Second, we evaluate the performance of predicting topics by each approach. Dif-

ferent from ranking and rating, review topic is categorical observation. Therefore,

we propose to exploit the popular metric Normalized Discounted Cumulative Gain

(NDCG) for evaluation. Specifically, in the ground truth observation records, there

are several review topics, thus we define the ground truth relevance of each unique

topic z, i.e., Rel(z), as its normalized appearance frequency in the record. Also, each

approach can predicate a ranked list, i.e., ΥPR, of topics for each test sequenceOi with

respect to the posterior probability P (z(Ti+1) = z|Oi). After that, we can calculate

the discounted cumulative gain (DCG) of each approach by DCG =
∑Kz

i=1
2Rel(zi)−1
log2(1+i)

,

where Kz = 20 is the number of topics, zi is the i-th topic in ΥPR, Rel(zi) is the

ground truth relevance. The NDCG is the DCG normalized by the IDCG, which is

the DCG value of the ideal ranking list of the returned results and NDCG = DCG
IDCG

.
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Figure 5.6. The demonstration of the ranking records of two different Apps.

Finally, we calculate the average NDCG for all test cases. Indeed, NDCG indicates

how well the rank order of topics is by each approach. The larger NDCG value, the

better performance of topic prediction.

5.5.3 A Case Study of Ranking Fraud Detection

As introduced in Section 5.4, our PHMM model can be used for detecting ranking

fraud for mobile Apps. Here, we study the performance of ranking fraud detection

based on the prior knowledge from existing reports. Specifically, as reported by

IBTimes cas, there are eight free Apps which might involve the ranking fraud. In

this work, we use seven of them in our data set (Tiny Pets, Social Girl, Fluff Friends,

Crime City, VIP Poker, Sweet Shop, Top Girl) for evaluation. Particularly, instead

of using sliding widow to segment observation sequences, we directly calculate the

anomaly score with respect to all popularity observations of each sequence. When we

rank all Apps in our data set with respect their ranking anomaly scores, we find that

all above seven suspicious Apps are ranked in top 5%, which indicates our PHMM

model can find these suspicious Apps with high rankings. Furthermore, Figure 5.6

(a), (b) show the ranking records of the highest-ranked (i.e., most suspicious) Apps in
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our data set and the seven suspicious Apps. From these figures, we can find that the

Apps that contain several impulsive ranking patterns have high ranking positions. In

contrast, the ranking behaviors of the normal Apps may be completely different. For

example, Figure 5.6 (c), (d) show the ranking records of the lowest-ranked (i.e., most

normal) App in our data set and a popular App “Angry Birds: Season-Free”, both

of which have the clear popularity trends. In fact, once a normal App is ranked high

in the leaderboard, it often owns a lot of honest fans and may attract more and more

users to download. Thus, the popularity will not vary dramatically in a short time.

5.6 Related Work

Generally speaking, the related works of this study can be grouped into two categories.

The first category is about the mobile App recommendation and other related

services. For example, Yan et al. Yan and Chen [2011] developed a mobile App rec-

ommender system, named Appjoy, which is based on user’s App usage records to

build a preference matrix instead of using explicit user ratings. Also, to solve the

sparsity problem of App usage records, Shi et al. Shi and Ali [2012] studied several

recommendation models and proposed a content based collaborative filtering model,

named Eigenapp, for recommending Apps in their Web site Getjar. Karatzoglou et

al. Karatzoglou et al. [2012] proposed a novel context-aware collaborative filtering al-

gorithm based on tensor factorization for mobile App recommendation, which named

Djinn model. Indeed, detecting the rating and comment spam is also an important

application of recommender systems. For example, Lim et al. Lim et al. [2010] have

identified several representative behaviors of review spammers and model these be-
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haviors to detect the spammers. Wu et al. Wu et al. [2012] have studied the problem

of detecting hybrid shilling attacks on rating data based on the semi-supervised learn-

ing algorithm. Xie et al. Xie et al. [2012] have studied the problem of singleton review

spam detection. Specifically, they solved this problem by detecting the co-anomaly

patterns in multiple review comments based time series. Although most of the previ-

ous studies leveraged the popularity information in their applications, none of them

can comprehensively model the popularity observations. To this end, in this work

we proposed a PHMM model for popularity modeling of mobile Apps, which can be

exploited for most of above applications.

The another category of related works is about the HMM models, which have

been widely used in various research domains. For example, Rabiner has propose a

comprehensive tutorial of HMM and its applications in speech recognition. Maiorana

et al. Maiorana et al. [2010] have applied the HMM into biometrics with application

of online signature recognition. Yamanishi et al. Yamanishi and Maruyama [2005]

proposed to leverage HMM for network failure detection by estimating the anomaly

sequences of system logs. Different with above works, in this work, we introduce

a novel application, namely popularity modeling for mobile Apps, by extending the

HMM model with multiple popularity observations. To our best knowledge, this is

the first comprehensive study of modeling popularity for Apps.

5.7 Summary

In this work, we presented a sequential approach for modeling the popularity infor-

mation of mobile Apps. Along this line, we first proposed a Popularity based HMM
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(PHMM) model by learning the sequences of heterogeneous popularity observations

from mobile Apps. Then, we introduced a bipartite based method to pre-cluster the

popularity observations, which can efficiently learn the parameters and initial values

of the PHMM model. A unique perspective of our approach is that it can capture the

sequence dependence and the latent semantics of multiple popularity observations.

Furthermore, we also demonstrated several novel App recommendation services en-

abled by the PHMM model, including trend based App recommendation, rating and

comment spam detection, and ranking fraud detection. Finally, the extensive exper-

iments on a real-world data set collected from the Apple App Store clearly showed

the efficiency and effectiveness of our approach.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Major Results

This dissertation presents a suite of techniques for sequential pattern analysis. Par-

ticularly, we focus on identifying the right pattern granularity for both sequential

pattern mining and modelling. First, in Chapter 2, we contend that the right pat-

tern granularity for sequential pattern mining is hidden due to the curse of cardi-

nality. To proactively reduce the cardinality based on the temporal content in the

sequences, we develop the temporal skeletonization. We use graph-based algorithms

in a novel way to analyze the correlation structures of the high-dimensional symbolic

features. Second, in Chapter 3, for statistical modelling of sequential data, we show

that the right data granularity is critical to improve both the interpretability and the

goodness-of-fit of the learned models. Focused on the workflow modelling with the

indoor location traces of the moving objects in hospitals, we identify the modelling

granularity with the activity density based clustering algorithm. We also exploit the

correlations between multiple types of medical devices to jointly estimate the work-

flow models. Third, in Chapter 4, we show another strategy to improve the modelling

performance with complicated pattern granularity. The assumption is that, although

the right granularity is unknown for the overall data, the local scenario can be much
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clearer. Focused on identifying the abnormal location traces with missing events of

the medical devices, we first use clustering algorithms to locate the ‘hotspots’ of the

missing events, then use stochastic models to quantify the anomaly degree of the

nearby location traces. Finally, in Chapter 5, we develop the PHMM method to an-

alyze the product adoption in the digit markets. The goal is again to improve both

the interpretability and the goodness-of-fit of the stochastic model. Motivated by

the data characteristic, we introduce a bipartite based method to pre-cluster the raw

observations and use the clustering solution to initialize the non-convex unsupervised

HMM estimation and guide its convergence.

6.2 Future Research Directions

The general future research align with this dissertation is the Temporal and Structural

Analysis of Sequential Data. As we have shown in earlier chapters, by introducing

the powerful graph-based algorithms to the analysis of sequences and particularly the

temporal correlations, we open up new possibilities to explore, quantify, and visualize

the symbolic sequential data. In the future, it is worthy to generalize the tempo-

ral graph to accommodate the real-valued multivariate time series. The generalized

temporal graph should be able to capture the correlations with practical temporal

decays, and naturally substitute the conventional covariance analysis. In terms of

application, the generalized temporal graph can be used for dynamic system moni-

toring, such as disease diagnosis with fMRI (functional magnetic resonance imaging)

data and modelling the correlated trending of stock prices. In the literature, this is

an active field where different formulations are being proposed to compute the tem-
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poral correlations with better robustness and interpretability. It will be interesting

to investigate the complementariness between our idea and the existing approaches.

As another direction to further the temporal and structural analysis of sequential

data, it is meaningful to exploit the personalized temporal graphs. For instance, a

temporal graph can be constructed with the sequential observations for each indi-

vidual. Then a set of graphs can be mined and modelled for downstream analytical

tasks. In this way, the personalized temporal graph can be deemed a new knowledge

representation of the sequential data. One challenge along this line is how to learn

informative features based on the graph-based sequence representation.

Moreover, on sequential pattern modelling, we have been improving the model in-

terpretability and goodness-of-fit by constructing semantically meaningful states for

better model granularity and pre-clustering the temporally correlated observations for

model initialization. In the future, to cope with different applications, it is interesting

to generalize these works with an unified probabilistic framework which simultane-

ously identifies the pattern granularity levels and estimates the model parameters.
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