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Abstract

Algebraic Studies of Symmetric Operators
By Zhigin Shi

Dissertation Director: Professor William Keigher

There was an old problem of G. C. Rota regarding the classdicaf

all linear operators on associative algebras that satigfgbaaic identities.
We only know very few of such operators at the beginning, f@meple, the
derivative operator, average operatoffetience operator and Rota-Baxter op-
erator. Recently L. Guo, W. Sit and R. Zhang revisited Rgbacblem in a
paper by concentrating on two classes of operatofierdintial type operators
and Rota-Baxter type operators. One of the Rota-Baxter apeeators they
found is the symmetric Rota-Baxter operator which symrmesrithe Rota-
Baxter operator. In this dissertation, we initiate a systeenstudy of the
symmetric Rota-Baxter operator, extending the previousksvon the orig-
inal Rota-Baxter operator. After giving basic propertiesl @xamples, we
construct free symmetric Rota-Baxter algebras on an adgahd on a set by
bracketed words and rooted trees separately. We then ufe¢hgymmetric
Rota-Baxter algebra to obtain an extension of the well kndemdriform al-
gebra and its free objects. Finally, we extend our studyfferintial algebras.
We construct the free symmetricfidirential Rota-Baxter algebra based on the
previous free symmetric Rota-Baxter algebra on a set anftebesymmetric

differential algebra.
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1 Introduction

The subject of this thesis is motivated by Rota’s long staggtiroblem {6] [55]
and its possible solutiori[] as well as the research work of Rota-Baxter algebras.
A Rota-Baxter algebra is an associative algebra equippéd aviinear operator,
called the Rota-Baxter operator, that generalizes thegiat®perator in analysis.
The Rota-Baxter operator was introduced in 196PHy G. Baxter to study the
theory of fluctuations in probability. Later, other welldwn mathematicians such
as Atkinson, Catrtier, and especially G. C. Rota have showen k&erest in Baxter
algebras. Their fundamental papers brought the subjexthetdomains of algebra
and combinatorics. The study of Baxter algebras continhexigh the 1960s and
1970s [L3, 55, 54] and recently has led to remarkable results with applicetim
renormalization in quantum field theory(, 12, 25, 2€], multiple zeta values in
number theory42, 21], umbral calculus in combinatoric§§], and also in Loday’s
work on dendriform algebrag! [] and Hopf algebras]].

A long standing problem of Gian-Carlo Rota for associatilgelras is the clas-
sification of all linear operators that can be defined on them) [55. In the
1970s, there were only a few known operators, for exampéeiéhnivative operator,
the diference operator, the average operator, and the Rota-Bapeeator. A few
more appeared after Rota posed his problem. However,pittigress was made to
solve this problem in general. Guo, Sit and Zhaid fecently formulated Rota’s
problem, in which they worked on Rota’s problem in the fraragof free oper-
ated algebras by viewing an associative algebra with ardiogerator as one which

satisfies a certain operated polynomial identity. They ledse used rewriting sys-
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tems, Grobner-Shirshov bases and the help of computebralgén their research
work, the authors have obtained a possibly complete list4doRtta-Baxter type
operators and some otheffférential type operators as a partial solution to Rota’s
problem.

The symmetric Rota-Baxter operator is actually one of theRbfa-Baxter type
operators. Some operators from this list have been stuthe@&xample, average
operators [6], RBNTD operators §], Nijenhuis operatorsjY], and Rota-Baxter
operators $2]. Others remain unknown, including symmetric Rota-Baxteera-
tors which is the subject of the present research work.

Our approach to study this operator is based on algebragtremions. We first
give out some concrete examples from matrix algebras aniysemp algebras. The
computing method was partially adopted from the work of Lo@Ed. Rosenkranz
and S. Zheng4(]. Then we construct free symmetric Rota-Baxter algebras fr
the algebraic structures of bracketed words and rooted.trElis is an extension
of previous works of P. Lei and L. Gué{] and E. Fard and L. Gua’j3, 24]. We
continue our work on constructing free symmetric dendnifatgebras in two cases.
It is an extension of Loday’s work on dendriform algebrasafly, we extend our
research onto the fllerential symmetric Rota-Baxter algebra, which is an extens

of the work of L. Guo and W. KeigheB[].



2 Organization

The organization of this work is as follows. Standard matsror descriptions are
drawn from 32, 36]. In Section 3, we review the necessary definitions and pievi
examples of symmetric Rota-Baxter operators using MapieNathematica. We
begin Section 4 with the introduction of bracketed words #reh proceed to an
explicit construction of free symmetric Rota-Baxter algesover an algebra. After
that, we consider the case over a set by using rooted treedr@symmetric Rota-
Baxter algebra determines the symmetric dendriform akgelich is in Section 5,
and we construct its free objects in two cases. In the lasibseSection 6, we turn
our attention to dterential algebras. We compatibly define the symmetftetn-
tial algebra and construct the free symmetritediential Rota-Baxter algebra based

on the results from Section 4.



3 Definitions and Examples

We will useN.q, N, Z, Q, R andC respectively to denote the set of positive inte-
gers, non-negative integers, integers, rational numipeas numbers and complex
numbers.

To fix the notations and to be self-contained, we briefly dedefinitions. Refer

to [37].

3.1 Definitions

In the following, by a ring we always mean a unitary ring, tisat setA with binary
operationst+ and- (which will often be suppressed) such that €) is an abelian
group, @, -) is a monoid and is distributive over+. The unit of the monoid is
called the identity element &, denoted byi, or simply 1. A ring homomorphism
is assumed to preserve the unit. We kise denote a commutative ring with identity
element denoted by or simply 1.

Let Abe aring. A(left) A-module M is an abelian groupM together with acalar

multiplication Ax M — M such that
a(x+y) =ax+ay, (a+b)x=ax+bx (abx=a(bx), Vabe A xye M.

Definition 3.1. Letk be a commutative ring. K-algebra is a ringA together with

a unitaryk-module structure on the underlying abelian groupaiuch that

k(ab) = (ka)b = a(kb), Yk e k, a,be A.



All k-algebras are taken to be unitary and noncommutative.

A Rota-Baxter algebra of weight zero (or simply, a Rota Bexsigebra) is thus
an associative algebra equipped with a linear operatorgbaeralizes the inte-
gral operator in analysis. Rota-Baxter algebras (initiekiown as Baxter algebras)
originated in 1960 {] from the probability study by G. Baxter to understand the
Spitzer’s identity in fluctuation theory. This concept drdve attention of many
well-known mathematicians such as Atkinson, Cartier, aspkeially G. C. Rota,
whose fundamental papers brought the subject into the afedgebra and combi-
natorics around 1970. In 1980s, Lie algebras were studokebiendently by math-
ematical physicists C.N. Yang and R. Baxter under the nantieeo€lassical Yang
Baxter Equation (CYBE). In 2000, Aguiar discovered thatRuta-Baxter algebra
of weight zero and the associative analog of CYBE are relgiedHe also showed
that the Rota-Baxter algebra of weight zero naturally earthe structure of a den-
driform algebra which was introduced by Loday in his studiKetheory [47]. Also

in 2000, Guo and Keigher showed that the free Rota-Baxtebatg can be con-
structed via generalization of the ghia algebra 35|, called the mixable sHile

algebra.

Definition 3.2. Let A be a given element df. A Rota-Baxter k-algebra of weight
A, 1s a pair R, P) consisting of &-algebraR and a linear operatd® : R — Rthat

satisfies thérota-Baxter identity

P(X)P(y) = P(xP(y)) + P(P(X)y) + AP(xy), VX yeR (3.1)

ThenP is called aRota-Baxter operator of weight A.
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In 1995 [6] [55], Rota posed a question about finding all linear operatatsght-
isfy an algebraic identities on an associative algebra.evboecisely, Rota’s ques-
tion involved an associatiie-algebraR with a k-linear unary operatdP. The op-
erations: addition, multiplication, scalar multiplicati, andP, already are required
to satisfy certain identities such as the commutative laadofition, the associative
laws, the distributive law, ank-linearity for P. Rota wanted to find “all possible
polynomial identities that could be satisfied Byn an algebra” and to “classify all
such identities”. He also wanted to find “a complete list aftsidentities.”

Taking this work forward, Guo, Sit and Zhang recently puidid a paperd/],

in which they worked on Rota’s problem and put together taengwork of free
operated algebras by viewing associative algebra withealioperator, as one that
is compatible with a certain operated polynomial identifyhey have also used
rewriting systems, Grobner-Shirshov bases and the hetwiputer algebra. In
that research work, the authors have obtained a possiblpletenist of 14 Rota-
Baxter type operators and some othdfatential type operators as a partial solution
to Rota’s problem.

The completeness of the list of Rota-Baxter type identtti@s Guo, Sit and Zhang
found is still a conjecture and further work should be don@&e ©f the identities
in their framework is our identity: the symmetric Rota-Baxbperator. This new
identity, which gives rise to a new class of associakvagebras known asym-

metric Rota-Baxter algebrasis thesymmetric Rota-Baxter identity:

P(X)P(y) = P(xP(y)) + P(yP(X)), VYxyeR (3.2)
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whereR is a noncommutativk-algebra and this identity is automatically a case of
weight O.

It is easy to see that:

Remark 3.3. P(R), the image of the symmetric Rota-Baxter operator, is cotamu

tive.

3.2 Examples

3.2.1 Classification of symmetric Rota-Baxter operators othe algebra of2 x

2 matrices over a field

Let k be a field of characteristic zero. In order to consider chaisgj Ssymmetric
Rota-Baxter operators over the algebra of the 2 matrices with entries ik, we
formulate the setup first and then use Maple to do computti@ee the Maple

codes in Appendix A.

Setup: Lete, = (1,0,0,0),e; = (0,1,0,0),e3 = (0,0,1,0) andey = (0,0,0,1).

Since every X% 2 matrix is a unique linear combination of the given basis, le

4 4
Maca() i= ) ke = {Z Bmém | am € k} (3.3)
m=1 m=1

denote the algebra of»22 matrices.

Let P : Mao(k) — Mao(k) be a symmetric Rota-Baxter operator. Siriees



k-linear, we have

P(e)) a u i mile
P(e, b f | nl|le
@) _ J (ab,c.d,u, f,g hi,jkl,mnwpek). (3.4)
Pe)| [c g k wj|e

P(es) d h | pJles

The matrixC := Cp above is called thenatrix of P. Further,P is a symmetric

Rota-Baxter operator if and only if

P(e)P(e) = P(eP(e) + eP(e)) (1<i,j<4) (3.5)

By simplifying equations when | = 1,2, 3,4, we type them into Maple and com-
pute out the following results. Note that the module ot 2 matrices ovek is

isomorphic to thé&-moduleR = k x k x k x K.

Proposition 3.4. Consider thek-algebra R= k x k x k x k, where the operators
are defined componentwise. The matrices of symmetric RoteeBoperators of
weight zero on R with respect to the basis=(1,0,0,0), & = (0,1,0,0), &5 =

(0,0,1,0)and g = (0,0,0, 1) are given below, where all the parameters aréin

0000 f £ 0o
0000 b f 00

Ml = 5 M2 = 2 (3 (b # O)’
0gow £ £ oo
0000 f L oo




0 00O e e -e -e
b O j O -e -e e e
M3— ,M4: .
0 00O e e -e -e
0 00O -e -e e e

We also computed the usual Rota-Baxter operators overtgebia of 2 matrices

overk

Proposition 3.5. Consider thek-algebra R= k x k x k x k, where the operators
are defined componentwise. The matrices of Rota-Baxteatgrsrof weight zero
on R with respect to the basis e (1,0,0,0), & = (0,1,0,0), &3 = (0,0,1,0) and

e, = (0,0,0,1) are given below, where all the parameters arein

0000 00i O 0 0 0 O
00jO0 00ijO0 b £ j -b|
M = , Mo = , M3 = (j #0),
0000 0000 0 0 0 O
001 0 00O00O -sz?—j—bbT?

bTJ—bbTb 000 O 00i O
b & j -b| 00 0 -l 000 i
M4_ (JiO),M5: ’MG_ ’
0 0 0O 000 O 0000
0 0 0O 001 O 0000
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0 0 i k k & 0 0 0 uooO
-i -k 0 0| b -k 0 0 0 000
M7_ 2(|¢O)7M8: 2(b¢0),Mg: P
0 0 k¥ 0 0 k ¥ -u 000
-k € 0 o0 0 0 b —k 0 000
0000 Ouo0o0 0000
0000 0000 0000
MlO = ’ Mll = » MlZ = »
hooOoO 0go0o0 0go0o0
0hoo 0000 0hoo
OwoO 0 0 0 00
0000 0 0 00

MlS— ,M14—
000w 0 0 0w
0000 0 -w 0 0

3.2.2 Classification of symmetric Rota-Baxter operators orsemigroup alge-

bras of order two and three

We first formulate the setup for classifying symmetric RB&a¢ter operators on a
general semigroup algebra of order Then we use the software Mathematica to
do computations and give out two propositions. The comgutiethod is partially
adopted from40] and the Mathematica codes are attached in Appendix B.

Setup: LetS = {ey, - - - , &} be a finite semigroup with multiplicatiorihat we often
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suppress. Let be a commutative unitary ring and let

n n
k[S]::Zkem:{Zamem|amek,1£msn,m,neN>o} (3.6)
m=1 m=1

denote the semigroup algebra®f The ordem of the semigroufs is also said to
be theorder of the semigroup algebid S].

Let P : k[S] — k[S] be a symmetric Rota-Baxter operator. Siftes k-linear, we

have
P(ey) Ci1 -+ Cnf| &
P(e C1 - Cxplle
(@) _ | & (cjek.1<i,j<n). (3.7)
P(en) Cii - Cm €n

The matrixC := Cp 1= (Cjj) 4 ., IS called thematrix of P. Further,Pis a symmet-

ric Rota-Baxter operator if and only if
P(e)P(e) = P(eP(g) + ejP(e)) (1<i,j<n). (3.8)
Let the Cayley (multiplication) table of the semigro8fbe given by
n
q-eg:Zr{j}em 1<k t<n), (3.9)
m=1

wherer} € {0, 1}. Then we have

n n n

n n
P@)P(e) = Y > ciciaer = ) r17CikCj¢Em

k=1 ¢=1 m=1 k=1 ¢=1
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and

P(ejP(e) + eP(e)))

n n
D ckPee) + Y ciP(ee)
k=1 (=1

Zn] Zn: FikCicP(em) + an Zn: ri7CieP(em)

k=1 m=1 (=1 m=1
n n n n n n
= D e D emer)+ D) D ek D cme)
jk ik A4 ik “ik meSt
=1 m=1 =1 k=1 m=1 =1
n n n
_ 4 t
= Z Z Z(rikcik + I, Cik ) CemEim.
m=1 (=1 k=1

Thus we obtain

Theorem 3.6.Let S = {ey,-- -, &,} be a semigroup with its Cayley table given by
Eq. B.9. Letk be a commutative unitary ring and let:K[S] — k[S] be a linear
operator with matrix C:= Cp = (Cij)1<ij<n- Then P is a symmetric Rota-Baxter

operator of weight zero ok[S] if and only if the following equations hold.

n n n n
Z Z rCiCic = Z Z(rfkcik +T15Cik)Cm (L <i,j,m<n). (3.10)

=1 k=1 =1 k=1

We will determine the matriceGp for all symmetric Rota-Baxter operatoPson

k[S] of order two and three.

Order 2: As is well known [1], there are exactly five distinct nonisomorphic
semigroups of order 2. We u$®, L, Ry, Y, andZ, respectively to denote the null
semigroup of order 2, the left zero semigroup, right zeroigeonp, the semilattice

of order 2 and the cyclic group of order 2. SincgandR, are anti-isomorphic,
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there are exactly four distinct semigroups of order 2, ugstariorphism and anti-
isomorphism, nameli,, Y,, Z, andL,. The only noncommutative semigroup is
L,, which we will work on. We still show all the semigroups in tteble below.
Let{ey, &} denote the underlying set of each semigroup. Then the Ctaflbgs for

these semigroups are as follows:

Table 1: The Cayley table of semigroups of order 2

8 & 18 & €1 & 8 &
No:= e (e e |[Yo=e |6 & |(L=¢e |6 & |Li=ea|e e
el & e 6 & e & & e & &

Proposition 3.7. Letk be a field of characteristics zero. All symmetric Rota-Baxte
operators on an noncommutative semigroup algeki@] of order 2 have their
matrices G given below,where all the parameters arekin

a -a

N]_: .
b -b

Order 3: Up to isomorphism and anti-isomorphism, there are 18 semjg of
order 3 [L7, 29, 30]. The Cayley tables of the 18 semigroups of order 3 can be
found in [30]. See also]7, 50, 53]. We only consider the noncommutative cases
and denote b]NCS the class of 6 noncommutative semigroups. The Cayley table

is given below.

For symmetric Rota-Baxter operators on the corresponainggroup algebras, we

have the following classification proposition.
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Table 2: The Cayley table of noncommutative semigroups @é¢io8

& & & e & & & & &
NCS(1):= |3 & @ incg) = 2|2 S & Inegr) = 2SO G
e & e ©|a & e @la & &
&le & e e & & e & &
e & e e & e e & e
NCS@) = |3 & & InegE) = 2SS & Nege)= | S O
ele e e ele e e e & e
&sle e e &le & e e & &

Proposition 3.8. Letk be a field of characteristic zero. The matrices of the symmet-

ric Rota-Baxter operators on honcommutative semigrouelaigs of order three

are given in Table3, where all the parameters take valueskin

Table 3: Symmetric Rota-Baxter operators on noncomm@atnigroup algebras of order 3

Semigroups Matrices of symmetric Rota-Baxter operators on semigroup &ebras
000
NCS(1) Nii=|0 0 O
0 ao
-a -b -c -a —-a -b 0 -a -b
NCS(2) Noaz=[0 0 Of:N2=|0 0 O[|:Ns={0 0 Of-
a b c a a b 0 a b
0O 0 O
NCS(3) Nsi=|a b c|
-a -b -c

Continued on next pag

P
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Table 3: Symmetric Rota-Baxter operators on noncomunwetagmigroup algebras of order 3

Semigroups Matrices of symmetric Rota-Baxter operators on semigroup &ebras

c -a-b d c -a-b d
NCS(4) Nyp=|-c—d a e |'Ni2=[-—c a e |
d b -d-e 0 b -d-e
c -a-b d 0 -a b
Nizs=|-c a —-2¢c [-Naa=]|0 O c |
0 b 2c-d 0 a -b-c
a 0 b

Nas=[ 0 O C

-a 0 -b-c
a c e
NCS(5) Ns1 = b d f

-a-b -c-d -e-f

b -a b
NCS(6) Ne1=|0 O O]
-b a -b

Remark 3.9. We verified manually that all the above results are indeedhsgtnc

Rota-Baxter operators.
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4 Symmetric Rota-Baxter Algebras

4.1 Free symmetric Rota-Baxter algebras over an algebra

We start with the definition of free symmetric Rota-Baxteyeddras.

Definition 4.1. Let Abe a noncommutative-algebra wheré is a field. A free sym-
metric Rota-Baxter algebra ovArs a symmetric Rota-Baxter algeldfg(A) with a
symmetric Rota-Baxter operatSi and an algebra homomorphigm: A — Fs(A)
such that, for any symmetric Rota-Baxter algeBrand any algebra homomor-
phismf : A — S, there is a unique symmetric Rota-Baxter algebra homonemph

f: Fs(A) — S such thatf o ja=f:

For the construction of free symmetric Rota-Baxter algepvee follow the con-
struction of free Rota-Baxter algebras3[ 327] using bracketed words. Alterna-
tively, one can follow the approach of Grobner-Shirshosdsaf]. Because of the
lack of a uniform approach (seé&’, 38 for some recent attempts in this direc-
tion) and to be notationally self contained, we give somaitket We first display
a k-basis of the free symmetric Rota-Baxter algebra in termisratketed words
in § 4.1.1 Then the product on the free symmetric Rota-Baxter algebgiven

in § 4.1.2and the universal property of the free symmetric Rota-Baaigebra is
provedin§ 4.1.3



17

4.1.1 A basis of the free symmetric Rota-Baxter algebra

Let A be a noncommutativie-algebra with &-basisX. We first display &-basis
X, of F5(A) in terms of bracketed words from the alphabetX$et
Let | and] be symbols, called brackets, and ¥t= X U {, |}. Let M(X’) denote

the free semigroup generated X

Definition 4.2. Let Y,Z be two subsets oM(X’). As in [23, 37], we define the

alternating product of Y andZ to be

a2y = (Jozy) Uz U ezm) U (U ez @y

r>1 r>0 r>1 r>0

Note thatA(Y, Z) € M(X').
We construct a sequenég(n > 0) of subsets oM(X") by the following recursion.

Let X, = X and, forn > 0, define
Xn1 = AKX X)).
Further, define

X, = an:nmxn. (4.2)

n>0

Here the second equation in Edt.%) follows sinceX; 2 X, and, assuming, 2
Xn_1, we have

%n_'.l = A(X, %n) ;) A(X, xn_l) 2 xn.
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By [23, 32] we have the disjoint union

Yo = (| oo (] o)

r>1 r>0

L (] a0t | (] ] axaaxiza)). (4.3)

r>1 r>0

Further, everx € X, has a unique decomposition
X = X1+ Xp, (4.4)

wherex;, 1 < i < b, is alternatively inX or in | X.,]. This decomposition will be
called thestandard decompositionof x.

For x in X, with standard decomposition - - - X,, we defineb to be thebreadth
b(x) of x, we define thdneadh(x) of x to be 0 (resp. 1) ik, is in X (resp. in[X.]).
Similarly define thdail t(x) of x to be O (resp. 1) ik, is in X (resp. in X, ]). And

we also definelepth d(x):=min{n, wherex € X,}.

4.1.2 The product in a free symmetric Rota-Baxter algebra

Let

Fs(A) = P kx.

XeXoo
We now define a produeton Fs(A) by definingx ¢ x” € Fg(A) for x,x’ € X, and
then extending bilinearly. Roughly speaking, the prod@isctandx’ is defined to be
the concatenation whenewgx) # h(x’). Whent(x) = h(x’), the product is defined
by the product inA or by the symmetric relation in Eq3(1).

To be precise, we use induction on the saom= d(x) + d(x") of the depths ok
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andx’. Thenn > 0. If n = 0O, thenx,x” are inX and so are iMA and we define
XoX =x-X € AC Fs(A). Here- is the product irA.

Suppose ¢ x’ have been defined for all X’ € X, withn > k > 0 and letx, X’ € X,
withn =Kk + 1.

First assume the breadhtiix) = b(x’) = 1. Thenx andx’ are inX or | X.,]. Since

n=k+ 1is atleast ones andx’ cannot be both itX. We accordingly define

XX, if xe X, X" e€X.],
XoX =12 xx/, if Xe[X,],X €X, (4.5)

IXoX |+ X ox], if x=[X],X =[X]e€[Xs].

Here the product in the first and second case are by conciate@aid in the third
case is by the induction hypothesis since for the two pradmctthe right hand side

we have

d((X]) - 1+ d(X']) = d(x) + d(x) - 1,

d(x) + d(1X'])

d(X) +d(lx]) = d(IX']) - 1+d(X]) = d(x) + d(x) - 1

which are all less than or equal ko
Now assumeb(x) > 1 orb(x’) > 1. Letx = X;---X, andx’ = x| ---x{, be the

standard decompositions from E4.4). We then define

X0 X' = Xq -+ Xp1(Xp 0 X) X5+ -+ Xy (4.6)

wherex;, ¢ X] is defined by Eq.4.5 and the rest is given by concatenation. The
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concatenation is well-defined since by E4.5), and we havé(x;,) = h(x, ¢ X)) and

t(x}) = t(Xp o X7). Thereforef(xy-1) # h(xy ¢ X7) andh(x;) # t(xy ¢ X}).
We have the following simple properties @based on its definition above.
Lemma 4.3. Letx, X’ € X.,. We have the following statements.

(@) h(x) = h(x ¢ x") and {(x’) = t(x ¢ X).

(b) Ift(x) # h(X), thenx ¢ X’ = xx’ (concatenation).

(c) Ift(x) # h(x’), then for any” € X,

(xx) o X" = X(X" o Xx"), X' o(xx")=(X"oXx)X.

Extendinge bilinearly, we obtain a binary operation

Lo Fs(A) ® FS(A) - FS(A)

Forx € X, define

Sa(x) = Lx]. (4.7)

Obviously|x] is again inX,,. ThusS, extends to a linear operat&p on Fs(A).

Let
jx X - X, — Fs(A)

be the natural injection which extends to an algebra irgecti

ja:A— Fs(A). (4.8)
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The following is our first main result which will be proved ine next subsection.
Theorem 4.4. Let A be ak-algebra with ak-basis X.

(a) The pair(Fs(A), ¢) is an algebra.

(b) The triple(Fs(A), ¢, Sa) is a symmetric Rota-Baxter algebra.

(c) The quadruplgFs(A), ¢, Sa, ja) is the free symmetric Rota-Baxter algebra

on the algebra A.
The following corollary of this theorem will be used later.

Corollary 4.5. Let M be ak-module and let (M) = @nzl M®" be the reduced
tensor algebra over M. ThengFT (M)), together with the natural injectionyi :

M — T(M) M Fs(T(M)), is a free symmetric Rota-Baxtor algebra over M,
in the sense that, for any symmetric Rota-Baxter algebra ékamodule map

f : M > A there is a unique symmetric Rota-Baxter algebra homonismpfi :

Fs(T(M)) — A such thatf o iy = f.

Proof. This follows immediately from Theorerh.4 and the fact that the construc-
tion of the free algebra on a module (resp. free symmetri@fBatxter algebra
on an algebra, resp. free symmetric Rota-Baxter on a modtég left adjoint
functor of the forgetful functor from algebras to modulessfr. from symmetric
Rota-Baxter algebras to algebras, resp. from symmetria-Bakter algebras to
modules), and the fact that the composition of two left adjéiinctors is the left

adjoint functor of the composition. O
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4.1.3 The proof of Theorem4.4

Proof. a. We just need to verify the associativity. For this we onlgaé¢o verify

1244

(X oxX)oX" =X o (X" oX"” (4.9)
for X', x”,x”" € X,. We will do this by induction on the sum of the deptis=
d(x’) + d(xX”) + d(x”’). If n = 0, then all ofx’, x”, X"”” have depth zero and so are in
X. In this case the produetis given by the productin A and so is associative.
Assume the associativity holds for < k and assume that,x”,x"” € X, have
n=dX)+dXx”)+dx")=k+1.

If t(x’) # h(x”), then by Lemmal.3,

77 77 244

(X oX")o X" =(X'X") o X" =X (X" oX")=X"o (X" o X
A similar argument holds whetifx”’) # h(x"").
Thus we only need to verify the associativity whéxi) = h(x”") andt(x”") = h(x"’).

We next reduce the breadths of the words.

Lemma 4.6. If the associativity

244 244

(X oX")oX" =X o (X" oX

holds for allx’, x” andXx’” in X, of breadth one, then it holds for atl, X" andx’”’

in X..

Proof. We use induction on the sum of breadths= b(x’) + b(x”) + b(x’”’). Then
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m > 3. The case whem = 3 is the assumption of the lemma. Assume the associa-
tivity holds for 3< m< j and takex’,x”,x"” € X, withm= j+ 1. Thenj+ 1> 4.

So at least one of , x”, X" have breadth greater than or equal to 2.
Firstassumé(x’) > 2. Thenx’ = x)x, with X}, X}, € X, andt(x}) # h(x}). Thus by

Lemma4.3, we obtain

244 77 77

(X oX") o X" = ((X71X5) o X”) o X" = (X1(X5 o X)) o X" = X1((X5 o X"") o X").

Similarly,

244

X' o (X" o X") = (X(X5) o (X" o X)) = X1 (X5 0 (X" o X")).

Thus &’ o X”) o X" = X" o (X" o X"") wheneverx; o X’) ¢ X"’ = X, o (X" ¢ X"’). The
latter follows from the induction hypothesis. A similar pfavorks if b(x"”’) > 2.
Finally if b(x”) > 2, thenx” = x{x; with X!, X7 € X, andt(x]) # h(x}). By

applying Lemmal.3repeatedly, we obtain

11\, 144 " 24

(X oX")o X" = (X" o (X{X3)) o X" = ((X" o X])X5) o X" = (X" o X{)(X5 o X").

In the same way, we have

(X o X)X o X)) =X o (X{ (X5 o X)) =X o (X{X5) o X)) =X"o (X" o X").

This again proves the associativity. O
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To summarize, our proof of the associativity has been retltméhe special case

whenx’, x”,x”” € X, are chosen so that

(@) n:=dx) +d(x”) + d(x””) = k+ 1 > 1 with the assumption that the associa-

tivity holds whenn < k.
(b) the elements have breadth one and
(c) t(x’) = h(x”) andt(x”) = h(x"”).

By item (b), the head and tail of each of the elements are the same. forere
by item (), either all the three elements are Xnor they are all in X, ]. If all

of X', x”,x”" are inX, then as already shown, the associativity follows from the
associativity inA.

So it remains to consider the case wheénx”,x”” are all in|X.]. Thenx =
IX'|,x” = [X"],x” = |[X"] with X',X",X”" € X,. Using Eq. ¢.5 and bilinear-

ity of the product, we have

244

X ox")ox” = |[X oxX'+X oX]oX

1244

244 1244

= X oX"]JoX”" +|X " oxX']oX

=/

X oX” oX” |+ |X

==/ 77 ==/ ==/

oIX oX']]+|X oX o X"+ |X" o X" oX]]

Applying the induction hypothesis amto the first term and the third term, and

then use Eq.4.5) again, we obtain

(X oxX")ox” = [Xo(X oX")]+ X" o X oX']]+ X" o(X oX”)]+|X" o X" ox]]

=/ =/

=X o[ X oX"]]+|X o X" oX"]]+|X" o X oX"]]
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244 244

HX o X o X"+ X" o |X" oX ||+ X" o|X" oX]].

By a similar computation, we obtain

X' o(X"oxX") = X oX oX"]]+|X" o [X" oX']]+|X" o [X ox"]]

2 177 =/’ 177

+X o [ X" o X"+ |X" o X o X' ]+ X" o X oX"]].
Now by induction, tha-th term in the expansion ok{ ¢ x”’) ¢ X’ matches with

theo(i)-th term in the expansion of ¢ (X ¢ x”’). Here the permutation € ¢ is

[1 2 345 6]
o= . (4.10)

given by

146 3 235

This completes the proof of Theoref.a.

b. The proof follows from the definitio®A(x) = |x] and Eq. £.5).

c. Let (S, =, P) be a symmetric Rota-Baxter algebra with multiplicatian Let
f : A — S be ak-algebra homomorphism. We will constructkdinear map
f: Fs(A) — S by defining ﬁx) for x € X,,. We achieve this by defining_(x) for
X € X,, n > 0, inductively onn. Forx € Xy := X, definef_(x) = f(x). Suppose
f_(x) has been defined fore X,, and considex in X,,,; which is, by definition and

Eq. @.3),

A %) = (o) (L Jxzalrx)

r>1 r>0

U (Uan) [ (o).

r>1 r>0
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Let x be in the first union componei,. (X[ X,])" above. Then

X = l_l(xzi—leziJ)
i—1

for x;i.1 € X andx, € X,, 1 <i < r. By the construction of the multiplication

and the symmetric Rota-Baxter operagy, we have
X = o{_1(Xai-1 © [Xai]) = 0i_3(Xai-1 © Sa(X2)).
Define

F(X) = *_y(f (xai1) * P(f (x21))). (4.11)

where the right hand side is well-defined by the inductiondtlgpsis. Similarly
definef_(x) if X is in the other union components. For any X, we haveSa(x) =

[X] € X, and by the definition of in (Eq. @.11)), we have
f(1x)) = (Sa() = P(f(x)). (4.12)

So f commutes with the symmetric Rota-Baxter operator. Comigittis equation

with Eq. @4.11) we see that ik = Xy - - - Xy is the standard decompositionxafthen

f(x)

f(xa) * - % f (o). (4.13)

Note that this is the only possible way to defiﬁa) in order forf to be a symmetric
Rota-Baxter algebra homomorphism extending

It remains to prove that the meff)defined in Eg.4.1)) is indeed an algebra homo-
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morphism. For this we only need to check the multiplicity
f(x o x) = f(X) = f(X) (4.14)

for all x,x’ € X.,. For this we use induction on the sum of depths: d(x) + d(x’).
Thenn > 0. Whenn = 0, we havex,x’ € X. Then Eq. 4.14) follows from the
multiplicity of f. Assume the multiplicity holds fax, x’ € X, with n < k and take
X, X' € X withn = k+ 1. Letx = X;---Xp andx’ = X} ---x;, be the standard
decompositions. Sinae= k + 1 > 1, at least one of, andx;, is in | X, ]. Then by

Eg. @.5 we have,

f(xox5), if X, € X, %) € [X.],
f(xo 0 X)) =1 F(xpx)), if Xp € [ X, X] € X,

F([Rp o Xl + 1% © Xpl), i Xp = [Rol, X, = [X;) € [Xool.

In the first two cases, the right hand side‘_(xb) * f_(x’l) by the definition off. In
the third case, we have, by Ed..{2, the induction hypothesis and the symmetric

Rota-Baxter relation of the operatBron S,

F(Ro 0 X4 + X3 0 Xo)) =F(Ro 0 X, 1) + F(1X3 © X))
=P(f(Xp ¢ X})) + P(f(X, © Xp))
=P(f (%) * f(x})) + P(f(X}) * f(xy))
—P(f(Ro) * FIXLD) + P(F(R) * f([Ro)))
=P(f (Xo) = P(f(X)))) + P(f (X;) * P( (X))

=P(f(%y)) * P(f (X))
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= (X)) * F(IX,1)

f(xp) * f(X}).

Thereforeﬁxb o X)) = ﬁxb) s f_(x’l). Then

f(xox') = f(Xy- - Xp1(Xp & X)X5 - - X{y)
= f_(Xl) %ok f_(Xb_l) * f_(Xb o X'l) * f_(X'z) Hoee ek f_(XEJ/)
= F(xq) %% F(Xoo1) * F(Xo) * F(XD) % FOXG) % - % F(x5,)
= f(x) * F(x).
This is what we need. m|

4.2 Free symmetric Rota-Baxter algebras over a module or a e

We first obtain a symmetric Rota—Baxter algebra structurplanar rooted forests
and their various subsets. This allows us to give a uniformstraction of free
symmetric Rota—Baxter algebras irffdrent settings (modules, sets, etc§h2.3
For other variations of this construction, ség 72, 34]. The following standard

descriptions for rooted forests are partially drawn fraif] [

4.2.1 Planar rooted forests

For the convenience of the reader and for fixing notations,eeall basic concepts

and facts of planar rooted trees. For references,kgé&(].

A (free) tree is an undirected graph that is connected anthomnno cycles. A
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rooted treeis a free tree in which a particular vertex has been diststyed as the
root. Such a distinguished vertex endows the tree with a diregtaph structure
when the edges of the tree are given the orientation of pwratway from the root.
If two vertices of a rooted tree are connected by such an tedeadge, then the
vertex on the side of the root is called tharent and the vertex on the opposite
side of the root is called ehild. A vertex with no children is called lzaf. By our
convention, in a tree with only one vertex, this vertex isaf,las well as the root.
The number of edges in a path connecting two vertices in @daoge is called the
length of the path. Thealepth d(T) (or height) of a rooted tredl is the length of
the longest path from its root to its leafs.pdanar rooted tree is a rooted tree with

a fixed embedding into the plane.

There are two ways to draw planar rooted trees. In the first aihyertices are
represented by a dot and the root is usually at the top of &ee Trhe following list

shows the first few of them.

alalpr AR o

Note that we distinguish the sides of the trees (i.e. thégnele above is dierent
from the seventh), so the trees are planar. Thedtr@igh only the root is called the
empty tree. This method is used, for example, in the above referencgs{] and

in the Hopf algebra of non-planar rooted trees of Connes aedhiér P, 10].

In the second way the leaf vertices are removed with only dges leading to them
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left, and the root, placed at the bottom in opposite to thedirmwing, gets an extra

edge pointing down. The following list shows the first few lo¢ém.

VAR SRV

This is used, for example in the Hopf algebra of planar rottees of Loday and
Ronco 6, 48] and noncommutative variation of the Connes-Kreimer Hdgéa

bra [41, 31]. In the following we will mostly use the first method.

Let T be the set of planar rooted trees andiidte the free semigroup generatediby
in which the product is denoted hy, called the concatenation. Thus each element
in ¥ is a noncommutative produ@t LI - - - LI T, consisting of tree3,--- , T, € T,

called aplanar rooted forest. We also use the abbreviation

T =Tuy---uT. (4.15)

n terms

Remark 4.1. For the rest of this chapter ari®, a tree or forest means a planar

rooted one unless otherwise specified.

We use the (graftind)rackets| T,LI- - -LIT,] to denote the tree obtained gyafting,
that is, by adding a new root together with an edge from the m@wto the root
of each of the tree$,,--- , T,,. This is theB* operator in the work of Connes and
Kreimer [LO]. The operation is also denoted byv - - - VT, in some other literatures,
such as in Loday and Roncéd, 48]. Note that our operation is different fromv.
Their relation is

[Tiu---UTp] =Ty V- VT
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As an opposite operation, we use the (degraftivagy) F to denote the forest ob-
tained bydegrafting, that is, by deleting the root with its edges.

See 4] for a general framework of such algebraic structures wgbrators.

The depth of a forestF is the maximal depth &= d(F) of trees inF. Clearly,
d(F)]) = d(F) + 1. The trees in a fore$t are called root branches @ |. Further-
more, for a foresk = T, U --- U Ty, with treesTy, - - -, Ty, we defineb = b(F) to be

thebreadth of F. Let ¢(F) be the number of leafs &f. Then

b
((F) = > ((T). (4.16)

i=1

We will often use the following recursive structure on fased-or any subseX of
F, let (X) be the sub-semigroup &f generated by. Let F, = (o), consisting of

forestse"", n > 0. These are also the forests of depth zero. Then recursiediye
In=({e} U Fnal) (4.17)

It is clear thatd, is the set of forests with depth less or equaito From this

observation, we see that, form a linear ordered direct syste, 2 F,_1, and

g’ = Unzog’n = Ilm ?n. (4.18)
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4.2.2 Symmetric Rota-Baxter operators on rooted forests

In this section, we are going to define the prodecin k &, making{kJ, ¢} into a

symmetric Rota—Baxter algebra. We definBy giving a set map
0l FxF-okTF

and then extend it bilinearly. For this, we use the depthafitin F = U,.cJF}, in

Eq. @4.18 and apply induction on+ j to define
o1 I xTFj—-kT.
Wheni + j = 0, we haved; = J; = (e). With the notation in Eq.4.15, we define
o1 FoxFog—o KT, "Moo = oHMN-1), (4.19)

For a giverk > 0, suppose that : J; x J; — k J is defined foii + j < k. Consider
forestsF, F” with d(F) + d(F’) = k+ 1.
First assume thdt andF’ are trees. Note that a tree is eitlear is of the form|F

for a forestF of smaller depth. Thus we can define

F, if F' =,
FoF =4 F, if F=oe, (4.20)

IFoF'|+|F oF], ifF=|TLF =T
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since for the two products on the right hand of the third eignathe sums
d(F) + d(F’), d(F)+d(F) (4.21)

are both equal t&. Note that in every case abovey F’ is a tree or a sum of trees.
Now consider arbitrary forests = T, LU --- U Ty andF’ = T; 0 --- U Ty, with

d(F) + d(F’) = k+ 1. We then define
FoF =Tiu---UTpg U (TpoT) U Ty - UTy (4.22)

whereTy, o T; is defined by Eq.4.20). By the remark after Eq4(21), F o F’ isiin
k &. This completes the definition of the set mapnJ x .

As an example, we have
Nol=leUoole=L(eUa)oLe]]+ oo el = /}JJ'\ (4.23)

We record the following simple properties ofor later applications.
Lemma4.7.Let FE F’, F” be forests.

@ FUF)oF” =FuU(F oF”), F’'o(FUF)=(F"oF)UF".

(b) ¢(F o F") =¢(F)+¢(F) - 1.
Sok F with the operations! and¢ forms a 2-associative algebra in the sense of
[49, 5.

Proof. (8). LetF = Ty ---U Ty, F =T;u---uTy, andF” = T/ L--- 01T/,

be the decomposition of the forests into trees. Singgan associative product, by
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Eq. @.22 we have,

(FUrF)oF” = (Tau---uTpoUTiU---UT)o (T LTS U---UT)

Tiu--UTpu Ty UT,  u(T, e THUTS LU Ty,

= (Tu---uTp)uU(TMu---uT,  u(T,eTHUTSLU---UTy)

FU(F oF”).

The proof of the second equation is the same.

(b). We prove by induction on the sum:= d(F) + d(F’). Whenm = 0, it follows
from Eq. @.19. Assume that the equation holds for BllandF’ with m < k and
consider andF’ with d(F) + d(F") = k + 1.

If F andF’ are trees, then the equation holds by BEq(), the induction hypothesis
and the fact that(| F |) = ¢(F) for a forestF. Then for forest& andF’, the equation
follows from Eq. @.22 and Eq. 4.16 |

Note that/(F ¢ F’) is defined as the number of leafs of either tree of the rightiha
side if there are more than one tree, and each tree on thehdglat side has the
same number of leafs.

Extendinge bilinearly, we obtain a binary operation

o kF®KkF = KkJT.

ForF € &, we use the grafting operation to define

Ps(F) = LF]. (4.24)
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ThenPs extends to a linear operator &r¥.
The following is our first main result in this chapter and viaél proved in the next

subsection.
Theorem 4.8. (a) The pair(k &, ¢) is an associative algebra.

(b) The triple(k F, ¢, P5) is a symmetric Rota—Baxter algebra.

4.2.3 The proof of Theorem4.8

Proof. (a). By Definition 4.20), e is the identity under the produet So we just

need to verify the associativity. For this we only need tafyer

(FoF)oF" =Fo(F oF") (4.25)

for forestsF, F’, F” € F. We will accomplish this by induction on the sum of the
depthsn := d(F) + d(F’) + d(F”). If n = O, then all ofF, F’, F” have depth zero
and so are irff, = (e), the sub-semigroup df generated bw. Then we have
F = e F = e andF” = &"", fori,i’,i” > 1. Then the associativity follows
from Eq. @.19 since both sides of Eq4(25) is e-(+"+"-2),

Letk > 1. Assume Eq.4.25 holds forn < kand assume th&t F’, F” € F satisfy

n=d(F)+d(F) +d(F”) = k+ 1. We next reduce the breadths of the forests.

Lemma 4.9. If the associativity

(FoF)oF" =Fo(F oF")

holds when FF’ and F’ are trees, then it holds when they are forests.
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Proof. We use induction on the sum of breadths= b(F) + b(F’) + b(F”"). Then

m > 3. The case whem = 3 is the assumption of the lemma. Assume the associa-
tivity holds for 3< m < j and takeF, F',F” € Fwithm= j+ 1. Thenj+ 1 > 4.

So at least one dF, F’, F” has breadth greater than or equal to 2.

Firstassumé(F) > 2. ThenF = F, U F, with Fq, F, € &. Thus by Lemmat.7,

(FoF)oF" =(FiuFy)oF)oF” = (Fiu(FaoF))oF”" = Fiu((FaoF)oF").

Similarly,

Fo(FFoF" ) =(FiuFy) o (F oF")=Fiu(Foo (F' o F")).

Thus
(FoF)oF"=F<(F' oF")

whenever

(F20F)oF"=F,0(F oF")

which follows from the induction hypothesis. A similar pfaworks if b(F”) > 2.
Finally if b(F") > 2, thenF’ = F| u F, with F}, F;, € J. Using Lemma4.7

repeatedly, we have

(FoF)oF" =(Fo(FiUF))oF" =((FoF)UF)oF”" =(FoF)U(F,0F").

In the same way, we haveo (F' o F”) = (F ¢ F}) U (F; ¢ F”). This again proves

the associativity. O
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To summarize, our proof of the associativityZ5 has been reduced to the special

case when the foresis F’, F”” € J are chosen such that

(@) n:=d(F)+d(F")+d(F"”) = k+1 > 1 with the assumption that the associativity

holds whem < k, and
(b) the forests are of breadth one, that is, they are trees.

If either one of the trees is, the identity under the product then the associativity
is clear. So it remains to consider the case wkeR’,F” are all in|F]|. Then

F=|FL,F =|FJ,F"=|F JwithE,E,E e 7. Todeal with this case, we prove
the following general fact on symmetric Rota—Baxter opmsabn not necessarily

associative algebras.

Lemma 4.10. Let R be ak-module with a multiplication that is not necessarily
associative. Let |r : R —» R be ak-linear map such that the symmetric Rota—

Baxter identity holds:
[XIr- [X|r=[X-[X]rlg+ X - XIr]gY X X €R. (4.26)
Let x X and X’ be in R. If
(X-X)-X"=x-(X-X"),

then we say thatx, X', X’) is an associative triple for the product-. For any

y,Y,y’ € R, ifall the triples

V.Y Jr LY JR): (Y LYJR YY), (Y LY Jr: LYIR). (Y75 LY Jr: LYIR) (4.27)
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are associative triples for, then(Lylr, LY Ir, LY’ Ir) IS an associative triple for.

Proof. Using Eq. ¢.26 and bilinearity of the product we have

Wlr- YR - Y Jr=(y YR+ 1Y - lYIrIR) - LY’ IR
Ly- Y IRIR-LY IR+ LY - LYIrIR- LY IR

Ly WY IR) - Y Irlr+ LY - Ly - LY IrIRIR

+(Y - YIR) - LY IRIr+ Y - LY - LYIRIRIR:

Applying the associativity of the triples in E¢.@7) to (y- LY Ir) - LY’ ]Jr @and(y’ -
Lylr) - Ly” Ir @above and then using Eg@t.26) again, we have

(ylr- YR - LY Ir
= WYL [rlrlr + WY'LY Irlrlr + LY LYLY IrIRIR
+LY LYY IrIrIR + LY LY LYJRIRIR + LY'LY LYJRIR]R-

By a similar calculation, we have

lylr- (LY Ir-LY'IR)
= WYL Irlrlr + LY LY LYIrIRIR + LY LYLY” IRIRIR
+HWLY'LY IrIrIR + Y LY LYJRIRIR + LY/ LYLY JRIRIR-

Now by the associativity of the triples in Egt.27), thei-th term in the expansion
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of (Lylr- LY Ir) - LY” Jr matches with the-(i)-th term in the expansion ¢¥]r- (LY Ir-

Ly’ lr). Here the permutatioor € X5 is

i 123456
= . (4.28)
o (i) 146325

This proves the lemma. O

To continue the proof of Theorem8, we apply Lemma!.10to the situation where
Ris k & with the multiplication- = ¢, the symmetric Rota—Baxter operatofr =

| | and the tripley,y.,y’) = (F,E,F ). By the induction hypothesis om, all

the triples in Eq. 4.27) and are associative fer. So by Lemma.10, the triple

(F, F’, F”) is associative fos. This completes the induction and therefore the proof
of the first part of Theorem.8.

(b). We just need to prove th&;(F) = |F] is a symmetric Rota—Baxter operator

This is immediate from Eq.4(20). |

We will construct the free symmetric Rota—Baxter algebraaémmodule or on a
set by expressing elements in the symmetric Rota—Baxtebedgn terms of forests
from § 4.2, in addition with angles decorated by elements fromktireodule or set.
These decorated forests will be introducedid.2.4 The free symmetric Rota—
Baxter algebra will be constructed §n4.2.5 When thek-module is taken to be
free on a set, we obtain the free symmetric Rota—Baxter edgeb the set. This

will be discussed i 4.2.6
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4.2.4 Rooted forests with angular decorations by a module

Let M be a non-zer&-module. LetF be inF with ¢ leafs. We letM®"™ denote the

tensor poweM®(‘ 1) |abeled byF. In other words,

M®F = {(F;m) | m e M®D) (4.29)

with the k-module structure coming from the second component andthtlton-
vention thatM®® = k. We can think oM®F as the tensor power & with exponent
F with the usual tensor powén®" n > 0, corresponding t&1*~ whenF is the for-

est.u(n+1).

Definition 4.11. We callM®" themodule of the forestF with angular decoration
by M, and call f;m), for m e M®(F)-1 anangularly decorated forestF with

the decoration tensai.

Also define the depth and breadth &f (n) by

d(F;m) =d(F), b(F;m)=Db(F).

Definition 4.11is justified by the following tree interpretation &*~. Let (F; m)

be an angularly decorated forest with a pure temser a; ® --- ® a,_; € M8,

¢ > 2. We picture F; m) as the foresF with its angles between adjacent leafs
(either from the same tree or from adjacent trees) decotated, - - - ,a,_;, from
the left most angle to the right most angle.f(F) = 1, soF is a ladder tree with

only one leaf, thenK; a), a € k, is interpreted as the multipl= of the ladder tree
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F. For example, we have
(/E; X) = /)ﬁ : (/I\; X®Y) = A . (U xey) = LA () =a.

Whenm = ¥, my; is not a pure tensor, but a sum of pure tensorin M3, we
can picture E; m) as a suny;(F; m;) of the forest~ with decorations from the pure
tensors. Likewise, if is a linear combinationy; ¢;F; of forestsF; with the same
number of leavegand ifm = &, ®- - -®a,_.1 € M®“D, we also useR; m) to denote

the linear combinatiory; ¢;(Fi; m). For example,
(/I\+ U X®y):A ol A -

Let (F; m) be an angular decoration of the forésby a pure tensom. LetF =
T, U---U Ty, be the decomposition &f into trees. We consider the corresponding
decomposition of decorated forests.blf= 1, thenF is a tree andK; m) has no

further decompositions. i > 1, then there is the relation
C(F) = €(Ty) + -+ + £(Tp).
Denotet; = £(T;),1 <i < b. Then
(T a® - ®an-1), (T2;84:1®®8s16-1),*+  (Th) Brprsty 141 @+ - @ Bpysenvy)

are well-defined angularly decorated trees for the tig®gth £(T;) > 1. If £(T;) =

1, thenay, ,.;-1 = &, , and we use the conventiomi(ay, ,.s-1) = (Ti; 1). With this
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convention, we have,

Fae ®a-1) = (Tha® - ®a;-1)Ua, (T2; 8,41 ® ®3g40-1) Ua,y,

o Ua s (Toy @ty 131 ® - @ Bpitsy):
We call this thestandard decompositionof (F; m) and abbreviate it as
(F;m) = (T1; my) Uy, (To; m2) Uy, -+ Uy, (T Mp). (4.30)
In other words,

(Ti; Apy et 141 ® 0 ® a€1+-~-+€i—1), 6> 1i<b,
(Ti; mi) = (Ti; Ayt 41 ® @ a€1+m+€i), 6> 1, i =bh, (4.31)
(Ti; 1), ti=1

andu; = ay,....4. FOr example,
ar Qu Jovexeway) = (. 1) uv(j}; X) Ly (%) = o Ly /} U A\

We display the following simple property for later applicais.

Lemma 4.12.Let F # o. In the standard decompositiod.G0 of (F; m), if T; =

for somel < i < b, then b> 1 and the corresponding factdi;; my) is (T;; 1).

Proof. LetF # e and letF = T, LI -- - U Ty, be its standard decomposition. Suppose
T; = e forsome 1< i < bandb = 1. ThenF = T; = e, a contradiction. Sb > 1,

and by our convention{; m;) = (Tj; o). O
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4.2.5 Free symmetric Rota—Baxter algebras on a module as dwated forests

We define thé&k-module
H_[NC(M) _ @ M®F

FeF
and define a produ@ton 11N®(M) by using the product on F in Section4.2.2
Let T(M) = @,,0M®" be the tensor algebra and &be its product, so fom € M®"

andm’ € M®, we have

mem € M®™"  ifn>0,n >0,
_ mm’ € M®", ifn=0,n >0,
meom’ = (4.32)
m'me M®", if n>0,n =0,
m'm ek, fn=n=0.

Here the products in the second and third case are scalangiradd in the fourth
case is the product ik. In other wordsg identifiesk ® M andM ® k with M by

the structure maps® M — M andM ® k — M of thek-moduleM.

Definition 4.13. For tensor® = (F; m) € M®" andD’ = (F’; m’) € M®"', define

DsD’ = (F ¢ F’; mem). (4.33)

The right hand side is well-defined sine&@m’ has tensor degree

degmem’) = degfn) + degfm’) = ¢(F) - 1+ ¢(F') -1

which equal(F ¢ F’) — 1 by Lemma4.7.(b). For example, from Eq.4(23 we
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have

A AL (4.34)

By Eq. @.19 — (4.22, we have a more explicit expression.

<l

R

(e; CC), if D = (e;C),D’" =(e;C),
_ (F; cm), if D' = (o,C),F # o,
DoD’ = (4.35)
(F’; cm’), if D=(e,C),F" £,
(FoF ;mem'), ifF +eF #e.

We can describe even more explicitly in terms of the standard decomposstian

Eq. @.30 of D = (F; m) andD’ = (F’; m’) for pure tensorst andm’:
D= (F’ m) = (Tla ml) uul (T2, m2) uUZ e Uub_l (Tba mb)’

D’ = (F'; ') = (Tg;m) Uy (Tpi ) Uy - Uy (Thi mip).

Then by Eq.4.19 — (4.22 and Eq. 4.33 — (4.39), it is easy to see that the product
< can be defined by induction on the sum of the depths d(F) and d = d(F’)
as follows: If d+ d = 0, thenF = o andF’ = e"I fori,j > 1. If i = 1, then
D = (F;m) = (e;C) = c(e; 1) and we definddsD’ = cD’ = (F’; cnt’). Similarly
defineDeD’ if j = 1. Ifi > 1andj > 1, then &;m) = (e; 1) Ly, - - - Ly, , (o; 1) with

Up, -+ ,Usq € M. Similarly, (F’; ') = (e; 1) Ly -+ Uy, (e; 1). Then define

(F;m)o (Fm’) = (05 1) Ly, -+ Uy, (031) Uy -+ Ly, (o51).



45

Supposed ¢ D’ has been defined for d = (F; m) andD’ = (F’; m’) with d(F) +
d(F’) < kand consideb andD’ with d(F) + d(F’) = k+ 1. Then we define

DoD’ = (Ty;my) Uy, -+ Uy, ((To; mp)o(Tg; my)) Ly, -« Uy, (Ty,;my)  (4.36)

where
(To; mp)o(Ty; my) (4.37)
(e; 1), if To=T] =e(som, =mj =1),
(Th, M), if T/ =oTy#e,
. (T3, m), if T/ #0,Ty=o,
L(Fo; mo)o(T; mp)] + L(Fy; my)s(To; mp) ), if Ty = [Fyl # 0, Tp = [Fo # o

In the last case, we have applied the induction hypothesi§e)+ d(F’) to define
the terms in the brackets on the right hand side. Furthe(Fpin) € M®F, define
L(F; m)] = (LF1; m). This is well-defined sinc&(F) = ¢(LF]).

The produck is clearly bilinear. So extending it biadditively, we olrta binary
operation

S (M) @ NS (M) — mINC(M).

For (F; m) € M®F, define

Pu(F;m) = [(F;m)] = (LF];m) € MEFL (4.38)

As commented above, this is well-defined. THyg defines a linear operator on

mN®(M). Note that the right hand side is alsBs(F); m) with Ps defined in
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Eq. @.29). Let
im 1 M = mN(M) (4.39)

be thek-module map sendinge M to (e LI e; ).
Theorem 4.14.Let M be ak-module.

(a) The pair(inN®(M), 3) is an associative algebra.
(b) The triple(1N°(M), 5, Py) is a symmetric Rota—Baxter algebra.

(c) The quadruplgIiiN®(M),s, Py, ju) is the free symmetric Rota—Baxter alge-
bra on the module M. More precisely, for any symmetric Rotett®& alge-
bra (R, P) and module morphism f M — R, there is a unique symmetric

Rota—Baxter algebra morphisﬁ: 111N¢(M) — R such that f= fo M-

Proof. (a) By definition, (e, 1) is the unit of the multiplicatio®. For the associa-

tivity of < on 1N“(M) we only need to prove

(DsD’)sD” = D3(D'sD”)

for any angularly decorated foredbs= (F; m) € M®F, D’ = (F’;m’) € M®F and

D” = (F”;m”) € M®™". Then by Eq.4.33, we have

(DoD’)eD” = ((F  F’) o F”; (mem’)em”),

D3(D’sD”) = (F o (F’ o F”); ma&(m'@m”)).

The first components of the two right hand sides agree sireprtbducte is asso-

ciative by Theoren®.8. The second component of the two right hand sides agree
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because the produgtin Eq. @.32 for the tensor algebra(M) := & __, M®" is

n>0
also associative. This proves the associativity.of
(b). The symmetric Rota—Baxter relation jof on 111N¢(M) follows from the sym-
metric Rota—Baxter relation of | onk & in Theorem4.8. More specifically, it is
the last equation in EGH37).
(0). Let (R, P) be a symmetric Rota—Baxter algebra. kdie the multiplication in
R and letlg be its unit. Letf : M — R be ak-module map. We will construct a
k-linear mapf : N°(M) — R by definingf(D) for D = (F;m) € M%F. We will
achieve this by induction on the depthHJ(of F.
If d(F) = 0, thenF = " for somei > 1. If i = 1, thenD = (e; ), ¢ € k. Define
RD) = clg. In particular, define‘_(o; 1) = 1g. Then f sends the unit to the unit. If
i >2,thenD = (F;m)withm =a; ® --- ® a, € M®" wheren + 1 is the number of
leafs¢(F). Then we define‘_(D) = f(ap) =---x f(ay). In particular,f_o jm = f.
Assume thatf(D) has been defined for ad = (F;m) with d(F) < k and let
D = (F;m) withd(F) = k+ 1. SOF # e. LetD = (Ty; my) Uy, -+~ Uy, , (Tp; Mp)
be the standard decomposition@fyiven in Eq. ¢.30. Foreach I<i < b, Tjisa
tree, so it is eithes or is of the form|F; | for another foresF;. By Lemma4.12, if
T; = o, thenb > 1 andm; = 1. We accordingly define

TUE I (4.40)

P(f(Fi; my)), if Ti = LFil.

In the later case,R;; m;) is a well-defined angularly decorated forest sifGédas

the same number of leafs as the number of leafs cdind thenf_(fi; ;) is defined
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by the induction hypothesis sincefd) = d(T;) — 1 < k. Therefore we can define
f(D) = f(Ty;my)* f(Uy) * -« % f(Up1) * F(Tp; mo). (4.41)

For anyD = (F;m) € M®", we havePy(D) = (LFJ;m) € mN°(M), and by the
definition of f in Eq. @.40 and @.41), we have

f(LDJ) = P(f(D)). (4.42)

So f commutes with the symmetric Rota—Baxter operators.

Further, Eq. 4.40 and @.41) are clearly the only way to definkin order for f to
be a symmetric Rota—Baxter algebra homomorphism that égtien

It remains to prove that the mef?)defined in Eg.4.4)) is indeed an algebra homo-

morphism. For this we only need to check the multiplicagivit
f(DsD’) = f(D) = f(D’) (4.43)

for all angularly decorated foresBd = (F; m),D’ = (F’; m’) with pure tensorsn

andm’. Let
(F;m) = (Tq; my) Uy, (T2;mp) Uy, -+ Uy (T Mp)

and

(Fsm') = (Timg) U (Toms) U - U (Thimy)

be their standard decompositions.
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We first note that, sincé sends the identitys( 1) of IIIN®(M) to the identitylg of
R, the multiplicativity is clear if either one dD or D’ is in (e; k), that is, if either
one ofF or F’" is e. So we only need to verify the multiplicativity whéh # e and
F' #oe.

We further make the following reduction. By Ed..41) and Eq. 4.36), we have

f(DSD) = f(Ty;my) # f(Ug) * - % f(Upa)

T ((Tos mo)S(TL M) % F(UY) 5 - 5 F(U,_y) * (T m)

and

f(D)* f(D) = f(Ty;my)* F(Uy)* - f(Up_y)

s (T mp) # F(TLmG) s FQUY) # - % F(U,_y) * F(TL,; mp).
We thus have
F((F; m3(F/;m) = f(F;m) « f(F/;m) (4.44)

if and only if
F((Tow; mo)o(Ty; mp) = F(To; mp) * F(T7; my). (4.45)

So we only need to prove Egt.@5. For this we use induction on the sum of depths
n := d(T,) + d(T;) of T, andT;. Thenn > 0. Whenn = 0, we haveT, = T; = e.
So by Lemmat.12 we haveb > 1,b" > 1, and

(Th; mp) = (T3;m3) = (To; mp)o(T1;my) = (o; 1).
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Then
f(To; mp) = F(T;mY) = F((To; mp)a(Ty; M) = 1r.

Thus Eq. .45 and hence Eq4(44) holds.
Assume that the multiplicativity holds f@ andD’ in M®” with n = d(T},)+d(T;) <
k and takeD, D’ € M®¥ with n = k+ 1. Son > 1. Then at least one of @) and
d(T;) is not zero. If exactly one of them is zero, so exactly on@pandT] is e,
then by Eq. 4.37),

(To;mp), ifT] =0Ty #e,

(To; mp)o(Ty; my) =
(Ty;my), T #eTy=0e.

Then

— _ RTb; mb), if T, = O,Tb * e,
f(To; mpyo(T;my) =4 !
f(Ty;my), if T]#e,Ty=e.

Then Eq. ¢.49 and hence4.44) holds since one factor if(Ty; my) * f(T7; m}) is
1r.

If neither d{Ty) nor d(T;) is zero, thery, = | Fp,] andT; = |F, | for some forest&,
andF; in 5. Then [Tp; mp) = L(Fy; my)l and (T}; m)) = [(Fy;mf)]. We will take

care of this case by the following lemma.

Lemma 4.15. Let (R, P;) and (R, P,) be not necessarily associatikealgebras
R; and R together withk-linear endomorphismsRPand P, that each satisfies the
symmetric Rota—Baxter identity in ER.{). Let g: R, —» R, be ak-linear map
such that

goP;=Pyogq. (4.46)
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Let xy € R, be such that

g(xPy(y)) = 9(x) - g(P1(¥)). 9(yP1(x)) = g(y) - 9(P1(x)). (4.47)

Here we have suppressed the product jraRd denote the product in,Ry -. Then

g(P1(x)P1(y)) = 9(P1(x)) - 9(P1(y))-

Proof. By the symmetric Rota—Baxter relationsRfandP,, Eq. @.46 and Eq. ¢.47),

we have

g(P1(X¥)P1(y)) = 9(Pi(xPw(y)) + P1(yP1(X)))
= g(P1(xPw(y))) + 9(P(yP1(X)))
= Pa(g(xP(y))) + P2(9(yP1(X)))
= P2(9(x) - 9(P1(¥))) + P2(a(y) - 9(P1(x)))
= P2(9(X) - P2(a(y))) + P2(a(y) - P2(9(x)))
= P2(9(x)) - P2(a(y))
= g(P1(x)) - 9(P1(y))-

O

Now we apply Lemmat.15to our proof with Ry, P1) = (IIN(M), | [), (Rx, P,) =
(R,P) andg = f. By the induction hypothesis, Eq4.¢7) holds forx = (Fp; my,)
andy = (E’l; m}). Therefore by Lemm4.15

F((To; Mo)3(Ty; ) = F(L(F; mo) [SL(F; my) 1) = F(L(Fo; mp) )= F(LF s m)I) = F(To)=f(TY).
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Thus Eq. 4.44) holds forn = k+ 1. This completes the induction and the proof of
Theorend.14 O

4.2.6 Free symmetric Rota—Baxter algebras on a set

Here we use the tree construction of free symmetric RotateBailgebra on a mod-
ule above to obtain a similar construction of a free symrmo@ota—Baxter algebra
on a set and display a canonical basis of the free symmetta{Baxter algebra in

terms of forests decorated by the set.

Remark 4.2. Either by the general principle of forgetful functors or byeasy di-
rect check, the free symmetric Rota—Baxter algebra on 4 sethe free symmetric
Rota—Baxter algebra on the freemoduleM = k X. Thus we can easily obtain a
construction of the free symmetric Rota—Baxter algebradoy decorated forests

from the construction oftiN®(M) in § 4.2.5

For anyn > 1, the tensor powelM®" has a natural basi" = {(Xg, -+, X)) | % €

X, 1 <i < n}. Accordingly, for any rooted forest € F, with £ = ¢(F) > 2, the set

XF = {(F; (e, - %) = (F; % ® @ X)) | X e X, 1<i<f—1)

form a basis oM®F defined in Eq.4.29. Note that wherf(F) = 1, M®F =k F

has a basiX" := {(F; 1)}. In summary, every®", F € F, has a basis

XF = {(F; %) | X e X{P1y, (4.48)
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with the convention thaX® = {1}. Thus the disjoint union

X7 = X (4.49)

FeF

forms a basis of

NC(X) := N (Mm).

We call X7 the set ofangularly decorated rooted forests with decoration set

X. As in Sectiord.2.4 they can be pictured as rooted forests with adjacent leafs
decorated by elements frok

Likewise, for F; X) € X7, the decompositior4(30 gives thestandard decompo-
sition

(F;X) = (T1; X1) Uy, (T2; %) Uy, -+ - Uy, (T %) (4.50)

whereF = T, U --- U Ty is the decomposition df into trees and is the vector
concatenation of the elementsxaf uy, X, - - - , Up_1, X, Which are not the unit. As

a corollary of Theorem.14, we have

Theorem 4.16.For D = (F; (Xq, -+ , X)), D' = (F/; (X}, - -+ , X)) in X7, define

(0; 1), ifF=F=e,
— D, If F’ = .’ F ;é .’
DeD’ = (4.51)
D, ifF=oF %o,
(FOF/;(Xl,’“,Xb’X&""’Xé)/))’ ifF;&.,F’;é.,
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whereo is defined in Eq.4.20 and @.22). Define

Py 1 N(X) — m"(X),  Px(F; (X, -+, %)) = (LFJ; (%1, - X)),

and

jx : X = mN(X), jx(X) = (eLie:(X), xeX

Then the quadrupl@iN©(X), s, Px, jx) is the free symmetric Rota—Baxter algebra

on X.

Proof. The product in Eq. @4.5]) is defined to be the restriction of the prodigct

in Eq. @.39 to X”. SinceX” is a basis of1iN°(X), the two products coincide. So
1IN¢(X) andiN¢(M) are isomorphic as symmetric Rota-Baxter algebras. Then as
commented in Remark.2, 11N¢(X) is the free symmetric Rota—Baxter algebra on

X. O
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5 Symmetric Dendriform Algebras

5.1 Rota-Baxter algebras and dendriform algebras

5.1.1 Dendriform algebras and tridendriform algebras

The concept of a dendriform algebra was introduced by Lod&yih 1995 with
motivation from algebrai&-theory.

Definition 5.1. ([46]) A dendriform k-algebra (previously also called a dendri-
form dialgebra) is &-moduleD with two binary operations and> that satisfy the

following relations.

x<y)<z = x<(y<z+y>2,
x>y)<z = x>(<2, XYV,zeD, (5.1)
X<y+X>y)>z = X>(y>2.

Dendriform algebras have been further studied with conmesto several areas in
mathematics and physics, including operads, homologigabaa, Hopf algebra,
Lie and Leibniz algebra, combinatorics, arithmetic andqusn field theory.

A few years later, Loday and Ronco defined the tridendrifotgelara in their

study (48] of polytopes and Koszul duality.

Definition 5.2. ([4€]) A tridendriform k-algebra (previously also called a dendri-
form trialgebra) is &-moduleT equipped with three binary operatiors> and-

that satisfy the following relations.

(X<y)<z = x<(Yx2,
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(x>y)<z = x>(y<2,
(x*y)>2z = x>(y>2,
(x>y)-z = x>(-2, xY.zeT, (5.2)
(x<y)-z = x-(y>2)

x-y)<z = x-(y<2,

(x-y)-z = x-(y-2.

Here we have used the notation

* =<+ >+-. (5.3)

Proposition 5.3. [37]

(@) Let(D, <, >) be a dendriform algebra. The operatiagn:= xp on D defined

by
XkY:=X<Yy+X>Yy, XVyeD, (5.4)

iS associative.

(b) Let (T, <,>,-) be a tridendriform algebra. The operation := xt on T
defined by
X*kY:=X<Y+X>Y+Xy, XYeT, (5.5)

iS associative.

Thus, a dendriform algebra and tridendriform algebra skti@@eproperty that the
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sum of the binary operations :=< + > for a dendriform algebra ok :=< + > +
for a tridendriform algebra is associative. Such a propiertalled a “splitting the

associativity”.

Proof. We just prove Itena. The proof of Itemb is similar.

Adding the left hand sides of Eqs.() , we obtain

(X<yY)<Z+(X>yY)<Z+(X<Yy+X>Yy)>2Z
=(X<Y+X>Y)<Z+(X<Yy+X>Yy)>2Z
=(X*xYy)<zZ+(XkxYy)>2Z

=(X*xYy) *xZ

Similarly, adding the right hand sides of these equatiomspltainx x (y x ). Thus

we have proved the associativity of m|

5.1.2 From Rota-Baxter algebras to dendriform algebras

Theorem 5.4. (a) [3] A Rota-Baxter algebréR, P) of weight zero defines a den-

driform algebra(R, <p, >p), where

X <py=XPYy), x>py=P(X)y, YX,ye R (5.6)

(b) [19] A Rota-Baxter algebréR, P) of weight1 defines a tridendriform algebra

(R <p,>p,-p), Where

X<py=XP(y), Xx>py=P(X)y, X-py=24axy, VX,ye R (5.7)
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Proof. It is straightforward to verify5.1and 5.2 under the definitions ob6.6 and

5.7 |

5.1.3 Introduction to non-symmetric operad theory

Operad theory was originating from work in algebraic toggldy Boardman and
Vogt, and J. Peter May (to whom their name is due). It has mecently found
many applications, drawing for example on work by Maxim Ksawich on graph
homology.

For details on binary quadratic non-symmetric operads|&&€5]. The following
materials are partially from the class notes of the advatm@d class of algebra at
Rutgers-Newark in 2014 Spring.

The concept of operads is similar to the concept of algelu@ik be a field and/

be ak-vector space. TheHom(V, V) is ak-vector space with a composition opera-
tor under associativity rule, which is actuallkalgebra. Generalizing this, we call
anyk-vector spacé\ a k-algebra ifA has a binary operation satisfied associativity.
Meanwhile, we calV a representation &4 if there is ak-algebra homomorphism
f: A - HomV,V). AndV is actually also called aA-module. This is the
equivalent definition for a module. We will check this later the operad case.
Then what will happen if we have multi-linear mapsHom(V®", V)? And what is
the composition rule betweenftiirent dimensions of multi-linear maps?

We have the following analogue.

Definition 5.5. [3Z7]Partial composition Let &, := &y, := Hom(V®",V),n > 1, for
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ueémveyand 1<i < m, define the composition

(/J Oi V) = (/,l Omn’i V) . V®(m+n—1) — V

by

(/J Oj V)(Xl’ X2? Tt ern—l) = /’L(Xl’ e Xi—l’ V(Xi’ e Xi+m—1), Xi+m, Tt Xm+n—1)-

So we have the composition betweeffelient dimensions of multi-linear maps

Oi 8m® 8n — 8m+n_1,1s I S m.

Further, fora € &, u € €y andv € &, we have
Proposition 5.6. [3Z]Associativities for higher dimentions

(1) (Aoju)oi_1+jv = Aoj(uojv), 1<i<¢{,1<|<m (Sequential composition)

(i) (Aoju)okrzmv =(Aoxv)oiu, 1<i<k<{. (Parallel composition)

(iii) Thereis anelementl € £; suchthatdou = panduocid = uforu € €,,n> 0.

(Identity)

Definition 5.7. [3Z]Non-symmetric operad

Letk be a field,

(a) Agraded vector spaces a sequenc® := {P,}n-0 Of k-vector space$,, n >

0;
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(b) A non-symmetric (ns) operads a graded vector spage= {P,}-0 equipped

with partial compositions:
Oi = Omn’i . ‘:Pm® ‘:Pn S ‘:Prn.\\_n_l, 1 S I S m (5.8)

such that, fonl € P,, u € P, andv € P,,, Propositiorb.6 hold.

Definition 5.8. Suboperad

LetP = EBkzl P« be a non-symmetric operad,

(a) A graded vector space = @kzl Qy Is called a graded subspace Bfif
Q € P

(b) A graded subspace = (P, , O is called a sub-operad 6f = P, Px if
Q is closed under partial compositiorig, . Or equivalently, PropositioB.6

holds foroj|g,.

Definition 5.9. Generated suboperad_et B ¢ P(= @kzl Px), the suboperad of
P generated byB denoted aOp(B) = Opy(B) is the smallest suboperad &f
containingB. And Op(B) = MNgcs<y B.

Note: B C P, sO(\gcpp B # 9.

Definition 5.10. Operad idealA suboperad) of P is called an operad ideal 6t
if

Omoi Pn € Omen-1, Pm i Qn € Qmun-1, YM N, P € P, Q€ Q.
Definition 5.11. Generated operad idealAn operad ideaB of P is called to be

generated b C P if B is the smallest ideal df containingB denoted byD pld(B),
whereOpld(B) = Ngca<p B.



61

Definition 5.12. Binary operad A non-symmetric opera® = {P,}so is called
binary if P, = k.id and®,,n > 3 are induced fronP, by partial compositions and

is denoted a® = Opp(P,).

Definition 5.13. Free binary operadLet V(= P,) be a vector space. A binary

operadP(V) = @kzl Pr(V) is calledfree binary operad onV withi : V — P, if

the diagram
Vv )
Q
commutes.

In another wordy binary operadl = @kzl Qy and linear mapf : V — Q,, d!

operad homomorphisrﬁ: PV) - Q,sit.f = foi.

Note: Free binary operad is also called Magma Operad.

We will construct the free binary operad by binary planaesteand denote it as
M(V).

Let V be ak-vector space of binary operations. We consider binarygslarees
with vertices decorated by elements\of Here are the first few of them without

decoration.

W=t =N =N

W DN
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Then,
My (V) = kid = kY, = k|;

NMy(V) = k{Yo|VV € V};
Mi3(V) = k{Y3|Vvy, v, € V};

Ma(V) = k{YalVVi, Vo, v3 € V};

Ma(V) = k{Yn | Ve, -,V € V]

Then, defin@i(V) = @kzl M (V). Natually, we havéiy,oi M, = NMmen_1, YM,n >

1,1 <i < mwhich satisfies Proposition 6.

Theorem 5.14. Free binary treed)i(V) withi : V — {Y, | Vv € V} = M, is the

free binary operad generated by V in terms of planar trees.

Proposition 5.15. For any non-symmetric binary operal = @kzl Pk, there is a
vector space Y& P,) and an operad idealR) of the free binary opera®(V)(=
NM(V)) such thatP? = P(V)/(R).

Here,V is called the space of generators &g called the space of relations. And

P =P(V)/(R) is thus determined by R).

Example 5.16. Associative operatletV = k.x, andR = Y,1-Y,2, thenFass{V)/(R)
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is the Associative Operad.

Definition 5.17. P-algebralLet P = @MT be an operad, and I&t be a vector
space withk-nary operatory (e HomU® U)). Then,U = {U, «} is called a

P-algebra ifd an operad homomorphism

f: P — 5 Homu®", v),

n>1

where _, Hom(U®", U) is naturally an endomorphism operad from the begin-

n>1

ning of this section.

Note: U is also called a representation of the opePad his is similar toR-module

as a representation Bfalgebra.

Example 5.18. Associative algebrdet U = {U,a} be a vector space with bi-
nary operatotr, andy be an operad homomorphism frafMss{V)/(R) (defined in

Example5.16to . _, HomU®",U). Then,U = {U, a} is an associative algebra.

n>1

Definition 5.19. Binary quadratic operad A binary operad? = F(V)/(R) is called
quadratic ifR € F3(V) whereds = Fo0,558550,F, = Vo VeVo,V = VE2g V2,

k
Note: A typical element ofv®? is of the form, ol ® o with o, 0® € V,1 <
i=1

i < k. Thus a typical element 6f*2 @ V*? is of the form

k m
YoPeo? Y o¥eel?|, oo ol e’evici<ki<jzmkm>1
i—1 -1

Here, the )" in the parenthesis means mirfus’, and the first part means to do the

first operation firstly and the second part means to do thenskeaperation firstly.
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Corollary 5.20. Binary Quadratic Algebras
U = {U,a} is called a binary quadratic algebra ifl a linear map f: V —

Hom(U®2, U) s.t. f(R) = 0. Here f is induced by f f(u o; v) := f(u) o f(v).

5.1.4 From Rota-Baxter algebras to dendriform algebras reisited

In this section, we consider an inverse of Theoferin the following sense. Sup-

pose R P) is a Rota-Baxter algebra and defines binary operations

X <py:=XP(y), Xx>py = P(x)y.

By Theorenb.4, the two operations satisfy the dendriform algebra retetio Def-
inition 5.6. Our inverse question is, what other relations colgd<g, >p) satisfy?
By the non-symmetric operad theory, we can make the queptirise. We then

determine all relations that are consistent with the Ra&t& operator.

Theorem 5.21.Let V = k{<, >} be the vector space with badis, >} and letP =
P(V)/(R) be a binary quadratic non-symmetric operad. The followitagesnents

are equivalent.

(a) For every Rota-Baxter algebi@, P) with weight 0, the tripl€T, <p, >p) is a
P-algebra.

(b) The relation space R &f is contained in the subspace ofA& V&2 spanned

by

(< ® <, < ®%),

(*® >, > ® >),
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(>®<>8<), (5.9)
wherex =< + >. More precisely, anyP-algebra A satisfies the relations

X<y)<z=x<(yx2, (X*xy)>z=x>(y>2,

X>y)<z=x>(y<2. (5.10)

Note: We call the operad® defined by the relations in E§.9 Rota-Baxter den-
driform operad, and call a triplgT, <, >} satisfying Eq5.10a Rota-Baxter den-

driform algebra, which actually corresponds to the general dendriformiaige

Proof. With V = k{<, >}, we have

VE2 g V2 = @ k(01 ® ©2, O3 ® Oa).

©1,02,03,04€{<,>}

Thus any elementof V®? @ V*? is of the form

ro= a(<x®<,0)+a(<x®>0)+a3(>®<,0)+as(> ® >,0)

+b1(0, < ® <) + (0, > ® <) + b3(0, < ® >) + by(0, > ® >),

where the cofficients are irk.

(a= b) LetP = P(V)/(R) be an operad satisfying the condition in ItemLet r

be inR expressed in the above form. Then for any Rota-Baxter adg@hP), the
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triple (T, <p, >p) is aP-algebra. Thus

a(X<py) <pZ+a(X<py)>pZ+a(X>py) <pZ+au(X>py)>pz

+hiX<p (Y<p2 +hboX>p (Y<p 2 +hbsX<p(Y>p2) +byX>p (Y>p 2 =0,VX Y,z T.

By the definitions okp, >p in EQ.(5.6), we have

a1XP(y)P(2) + a;P(xP(y))z + azP(X)yP(2) + asP(P(X)y)z

+h1XP(YP(2)) + b2P(X)(yP(2) + bsxP(P(y)2) + bsP(X)(P(y)2) = 0.

SinceP is a Rota-Baxter operator, we further have:

a1XP(P(y)2) + a1xP(yP(2)) + a;P(xP(y))z + asP(X)yP(2) + asP(P(X)y)z

+by XP(YyP(2)) + b,P(X)(yP(2)) + bsxP(P(y)2) + b4P(P(X)y)z + bsP(xP(y))z = 0.

Collecting similar terms, we obtain

(a1 + b1)xP(yP(2) + (a1 + b3)XP(P(y)2) + (a2 + ba) P(xP(y))z

+(ag + b2) P(X)YP(2) + (a4 + bs)P(XP(y))z = 0

Now we take the special case wh@nP) is the free Rota-Baxter algebrié(T (M)), Prw))
defined in Corollaryt.5for our choice ofM = k{Xx,y, z} andPr()(u) = [u]. Then

the above equation is just

(a1 + by)xlylzl] + (a1 + ba)XLLylz] + (a2 + ba) [ XLy])zZ
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+(az + by)LxJylz] + (a4 + bs) XLy]]z= 0

Note that the set of elements

XIylzl], xLLylz], [xLyl]z LxIylz], [xLy]]z

is a subset of the basig, of the free Rota-Baxter algebFe-(T(M)) and hence is

linearly independent. Thus the dieients must be zero, that is,

& = —by = -bs, 8 =as = -by, a3 = -y

Substituting these equations into the general relatiove find that the any relation

r that can be satisfied byp, >p for all Rota-Baxter algebrag (P) is of the form

r = al((x<y)<z—x<(y>z)—x<(y<z))
+a3((x>y)<z—x>(y<z))

—b4(x>(y>z)—(x<y)>z—(x>y)>z),

whereay, ag, by € k can be arbitrary. Thusis in the subspace prescribed in Itém

as needed.

(b= a) We check directly that all the relations in BdlLOare satisfied byT, <p, >p)
for every Rota-Baxter algebrd (P).
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() To check the first relation in Eh.(LO, we have

xP(y)P(2)

xP(yP(2)) + xP(P(y)2)

(X<pY) <p 2

X<p(Y<p2)+X<p(y>p2,

(b) For the second relation in Ecp.(0), we similarly have

P(X)P(y)z

P(xP(y))z + P(P(x)y)z

X>p (Y >p 2

(X<pY)>pZ+(X>pY) >p Z

(c) For the third relation in Eq5(10, we have

(x>py)<pz = (P(XY)P(2 = PX)(YP(2) = X>p (Y <p 2.

Thus if the relation spade of an operad® = P(V)/(R) is contained in the subspace
spanned by the vectors in E8.9, then the corresponding relations are linear com-
binations of the equations in Ef.10and hence are satisfied by, &p, >p) for each
Rota-Baxter algebral( P). Therefore T, <p, >p) is aP-algebra. This completes

the proof. O
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5.2 *“Classical” definition of symmetric dendriform algebras

Definition 5.22. (Classical definition) A symmetric dendriform k-algebra is a

k-moduleD with two binary operations and<’ that satisfy the following relations:

(x<y)<z = x<(y<z+y< 2,
(x<'y)<z = x<'(y<2, xY,zeD, (5.11)
x<y+x<'y)<z = x<(y< 2,

where<’:=> .

Corollary 5.23. Let (D, <, <) be a symmetric dendriform algebra. The operation

* .= %p on D defined by

Xxy:=X<y+x<y, XxyeD, (5.12)

iS associative.

Proof. Adding the left hand sides of Eq%.(1) , we obtain

X<y <z+(x<y)<z+(x<y+x<y <z
=(X<y+x<y)<z+(xX<y+x<y <z
=(XxYy)<z+(X*xy) < z

=(X*xY) *xz

Similarly, adding the right hand sides of these equatiomspltainx x (y x z). Thus

we have proved the associativity ©f O
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Theorem 5.24. From symmetric Rota-Baxter algebra to symmeic dendri-
form algebras
A symmetric Rota-Baxter algeb(§, P) of weight zero defines a symmetric dendri-

form algebra(S, <p, <p), where
X<pY=XP(y), x<py=yP(X),¥XyeS. (5.13)

Proof. We will check Eq5.11under Eg5.13and use the symmetric Rota-Baxter
identity.

(x<y) <z=xPy)P(2 = xP(yP(2) + zRYy)) = x< (y<z+y < 2;

(x<"y) <z2=yP(X)P(2) = yP@P(X) = (y < 9P(x) = x <" (y < 2);

(X <y+x<y) < z=(xPy) +YP(X)) <" z=zZRxP(y) + YP(x)) = ZRX)P(y) =
zR(y)P(x)

=z<y<x=(y< 2<x=x<'(y< 2, VYxy,zeD. O
Remark 5.25. Itis important to note that: x <, y =y <p X.

Remark5.25tells that<’ is the permutation ok under the context of symmetric

Rota-Baxter algebras. In terms of symmetric group activax(? .

Example 5.26. (A concrete example)

a
LetkMyo(E) = k{( } wherea, b € E andE is a symmetric dendriform algeljra
b a

with the redefined matrix multiplication operatiefnthenk M,y (E) is a symmetric

dendriform algebra.
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5.3 Introduction to symmetric operad theory

Symmetric binary operads theory is to some extent paralléhé non-symmetric
case and we will mainly use binary trees to describe its dafimand free prop-
erties. For more details on this, seé&[45]. This section is also partially from
the class notes of the advanced topic class of algebra aeRupwark in 2014
Spring.

Note: Section5.1.3will be treated as the background of this section.

By replacing graded vector spacBswith gradedS,-modules and adding the sym-

metry compatibilities, we have
Definition 5.27. [45]Symmetric operad A symmetric operad is at—moduleP :=
{Pnln=0 €quipped with partial compositions:

Oi : Omn’i ?m@ j)n g j)rn_\\_n_l, 1 S I S rrl, (514)

such that, font € P,, u € P, andv € Py, the following relations hold.

(1) (Aoju)oi_1sjv = Aoi(uojv), 1<i<{,1<]<m (Sequential composition)

(i) (Aojpu) ogcremv = (Ao v)oju, 1<i<k< . (Parallel composition)

(i) Thereisanelementid P, suchthatidu = yanducid = uforu € P,,n > 0.
(Identity)

(iv) Foro € 8p, uoiv7 = (uoij v)”, 0" € Smini;

for o € 8m, u” 01 v = (1 0y iy V)", 0" € Smin-1. (Symmetry compatibility)
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Definition 5.28. [45]Free symmetric operadd.et M be as-module, the free sym-

metric operad generated b¥ is denoted a§ (M) equipped with ag-module mor-

phismnp(M) : M — F(M) which satisfies the following universal condition: for any

8-modulef : M — P, where® is any symmetric operad, extends uniquely into an

operad morphisni : F(M) — P :

Now let’s use binary trees to construct the free operads.

Definition 5.29. Labeled Treed et T denote the set of planar binary trég¥>, Y3, Ya, - -

If t € T hasn leaves, we calt ann-treedenoted as$,. For each vertex of t, let

In(v) denote the set of inputs of

Definition 5.30. Decorated Treed.et V be a set and let be ann-tree. t(V)="t
with vertices decorated by elements in V and with leaves idd¢ed by inputs.” We
callt(V) a labelech-tree andI' (V) = | s t(V). And we letVin(t) denote the set of

labels of the vertices dfandLin(t) denote the set of labels of leavest of

Corollary 5.31. Let V be a set of binary operations: ¥ V,. Then thefree non-

symmetric binary operad generated by V is given by the vector spdggV) =

.

.., t[V], where {V] is the non-symmetric treewise tensor module associated to t

and is given by[\V] := ®vevm(t) Vinw-
Here,t1[V] = {|} is trivial. t)[V] = {Yolv € V}. t3[V] = {Y3lvL, V2 € V} = (5[V] ®
t[V]) ®(t[V]®ta[V]) = VE2eV®2. Thus, dim(;[V])=8 whenV only has two binary

operations.
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For symmetric case, we replace planar binary trees by binegeg “in space”.

Definition 5.32. (In space Let T =“binary trees in 3-D space” {|; Y1; Yo;---}

where each vertex can rotate 360

So in this case,[V] = t,[V] and so on. For more details, see Section 5.8.54i. [

Similary, we define

Definition 5.33. Let V be a set of binary operation¥: = V, andk be a field. Then
thefree symmetric binary operad generated by is given byT(V) = @teT(t(V)@a

k) wheret(V) is the symmetric treewise tensor module associateéd to

Note: We not only consider the rotation of the vertices but alsortitation of the
inputs. This is why it is hard to draw(V).

Here,t;(V) is trivial also.t5(V) = V ®s, k = {Y1, xylv € V, andx, y € k}, whereS,
acting on inputs, y cancels the rotation of the only vertex.

The complicated case is abay{V). SupposeV has only two binary operations
<, <.

Claim thattz(V) = V ®s, ((V ® k) ® (k® V)) ®s, k[S3] and dim¢s(V)) = 12.

Proof. For the non-symmetric case, we already know thattdiMj = 8. Now we
have to consider the rotation of vertices and the rotatiompéits which makes
things a little more complicated. For 3 inputs, we have 6 saseler permutations.
Then, we have X 2 x 6 for one pieceY o; Y and totally 48 cases. But the rotation
of two vertices partially cancel the permutation of 3 inp@s the final dimension

should be 482/2 = 12. |

Explicitly, we have three types of elements which genergates
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For an operad where the space of generatbis equal tok[S,] = uk & u'.k

with 1.(12) = w’, we will adopt the convention inf] [p. 199]and denote the 12

elements off(V)(3) byv;,1 <i < 12 in the following table.

Vi

por o (xy)z

Vs

oy 1< (ZXY

Vg

pon o (Y2x

Vo

W ooy uo X(y2)

Ve

W oo p e Z(Xy)

V1o

JTECTT TR ¢4

V3

K oon 1 e X(zy)

V7

Hoorp < 2y

Vi1

oo (e Y(X2

Vy

pom 1 < (X2y

Vg

pon 1 e (ZY)X

Vi2

porp < (yNz

Now, we are good enough to proceed to next two sections.

5.4 Operadic definition of symmetric dendriform algebras

The dendriform algebra is introduced by Lodays]. The concept of symmetric

dendriform algebras can be modified in a similar way.

Definition 5.34. A symmetric dendriform algebra E overK is aK-vector space

E equipped with two binary operations

<:E®E—>E,

<"E®E—>E,

which satisfy the following axioms:

(X<y)<z = x<(yx2,
(xxy)<'z = x<' (y<' 2,
Y<2)<Xx = y<(zxX),

(5.15)
(5.16)

(5.17)
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Yyx2)<'x = y<'(z<' X, (5.18)
(z<X)<y = z<(xXxYy), (5.19)
ZzxxX)<'y = z< (x<'Yy), (5.20)

where<’:=<?), K is a commutative ring, anél =< + <’,¥x,y,z€ E.

Remark 5.35. Here, the order of arguments does matter. And we call ther @fde

(xy2 Type I, the order of yzX Type Il and the order ofaxy) Type llI .

Proposition 5.36. This definition gives the following properties:

x<y)<z = (x<2 <y, (5.21)
Yy<2)<x = (y<x <z (5.22)
(z<xX)<y = (z<y <x (5.23)

Proof. Eg.5.15and Eq.5.18gives Eq.5.21 Similarly,Eq.5.17and Eq.5.20gives
Eq.5.22and Eg5.16and Eq.5.19gives Eq.5.23 |

Corollary 5.37. The symmetric dendriform algebra automatically has thie¥ahg

three normal relations derived from its definition:

x<'y)<z = x<'(y<2, (5.24)
Y<'2<x = y<' (z<Xx), (5.25)
(z<' X<y = z<' (x<y). (5.26)
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Proof. By observation and since’=<1?, Eq.5.20and Eq.5.17gives Eq.5.24

xX<'y)<z=z< (xX<'Y=2ZxX) < y=y<(@ZxX)=(y<2 <x=x<'(y< 2.

Similarly, Eq.5.16 and Eqg.5.19gives Eq.5.25 and Eq.5.18and Eqg.5.15gives
Eq.5.26

(Y<"2<x=x<"(y<'2=(x*xy) <" z=z< (Xxxy) = (< X)<y=y < (z<X);

Z< XN <y=y< < X)=(y*x2) < x=xX<(yx2 =(x<y)<z=z< (X<Y).

Proposition 5.38. Any symmetric dendriform algebra E is an associative algebr

under the operatiosk defined by x y:= x<y+ x<"y.

Proof. By adding up the three equalities Ej15 Eq5.16 and EQq.5.24 we get
(X*y) x zon the left hand side andx (y x z) on the right hand side as Type I, and

similarly for Type Il and Type lll, whence the statement. O

Symmetric dendriform algebras share similar propertiegesral dendriform al-
gebras. Except the theorem above that they are both asgectae next theorem
is an analogue of the results of Ebrahimi-F&id]that a Rota-Baxter algebra gives

a dendriform algebra or a tridendriform algebra.

Theorem 5.39.A symmetric Rota-Baxter algeb(8&, P) defines a symmetric den-

driform algebra(S, <p, <5), where x<p y := XP(y) and x<p y := YP(X).
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Proof. We only check Type | which are E§.15 Eq5.16and Eqg.5.24 and Type
Il and Type Il are similar by changing the order of arguments

(X <pYy) <p Z=XxP(Y)P(2) = xP(yP(2) + zF(y)) = X <p (Y <p Z+ Y <p 2) = X <p
(Y *p 2);

(X<pY) <p 2= YP(X)P(2) = YPQP(X) = (Y <p DP(X) = X <, (Y <p 2);

(x*kpY) <p Z= (X <p y+X <p ) <p Z=ZR(xP(y)+YP(X)) = ZRX)P(y) = ZRy)P(x)

=(y<p 2P(X) = x <p (Y <p 2). |

5.5 From symmetric Rota-Baxter algebras to symmetric den-

driform algebras revisited

In this section, we consider an inverse of Theorgrd9 in the following sense.

Suppose$, P) is a symmetric Rota-Baxter algebra and defines binary tipesa

X<py:=XP(y), X<pVy:=YyP(X).

By Theorem5.39 the two operations satisfy the symmetric dendriform algeb
relations in Definition5.34 Our inverse question is, what other relations could
(S, <p, <p) satisfy? By the symmetric operad theory, we can make thetigue
precise. We then determine all relations that are congistéh the symmetric

Rota-Baxter operator.

Theorem 5.40.Let V = k{<, <’} be the vector space with badig, <’} and let
P = P(V)/(R) be a binary quadratic symmetric operad. The following staats

are equivalent.
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(a) For every symmetric Rota-Baxter algeb{@, P), the triple (S, <p, <p) is a

P-algebra.

(b) The relation space R &f is contained in the subspace ofA& V®2 spanned

by

(< ® <, < ®*),

(<’ ® <, <" & <),

(*® <, <" ® <), (5.27)
wherex =< + <" and i € {I,II,11l'}. More precisely, anyP-algebra A

satisfies the relations

(X<y)<z=x<(yx2, (X<'y<z=x<'(y<2, (Xxy)<z=x<(y< 2,
(Y<2)<x=y<(zxX), (Y<2<x=y<'(z<X), (Y*x2< x=y< (z<' X,
z<X)<y=z<(xXxy), (@< X)<y=z<"(x<y), @Z*xx)<y=z< (x<"Yy).

(5.28)

Note: We call the opera® defined by the relations in E§.27 symmetric Rota-
Baxter dendriform operad, and call a tripl€S, <, <’} satisfying Eq.5.28a sym-
metric Rota-Baxter dendriform algebra, which actually corresponds to the gen-

eral symmetric dendriform algebra.
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Proof. With V = k{<, <’}, we have

VE2 g /o2 = @ k(01 ® @2, O3 ® Oa).

01,02,03,04€{<,<"}

Thus any elementof V&2 @ V®? is of the form

ro= a(<x9<,0)+a(x®<,0)+a3(< ®<,0)+a< ® <,0)

+b1(0, < ® <) + (0, <" ® <) + b3(0, < ® <’) + (0, <’ ® <)

where the cofficients are irk.

(a= b) Let P = P(V)/(R) be an operad satisfying the condition in ItemLet r
be inR expressed in the above form. Then for any symmetric RotdeBatgebra
(S, P), the triple 6, <p, <p) is aP-algebra. Thugx,y, z € S which will cover three

types of the order ox,y, z,

a(X<pyY) <pzZ+a(X<py) <pZ+as(X<py) <pZ+au(X<py) <pZz

+iX<p (Y<p 2) + boX <p (Y<p2) + baX <p (Y<p 2 + byx <5 (Y<p 2 =0
By the definitions okp, <}, in Theoremb.39 we have

a1xP(y)P(2) + a,zR(xP(y)) + asyP(X)P(2) + auzR(yP(X))

+b XP(YyP(2)) + boyP(2)P(X) + bsxP(zF(y)) + byzP(y)P(X) = 0.
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SinceP is a symmetric Rota-Baxter operator, we further have

a1xP(yP(2)) + a1 xP(zR(Y)) + a:zR(xP(y)) + asyP(xP(2)) + asyP(zR(x)) + a;zRyP(x))

+h1XP(YP(2)) + by P(zR(X)) + by P(XP(2)) + bsxP(zRy)) + bazR(yP(X)) + bszR(xP(y)) = 0.

Collecting similar terms, we obtain

(a1 + b1)XP(yP(2) + (a1 + b3)XP(zP(y)) + (a2 + ba)zP(xP(y))

+(ag + b2)yP(xP(2)) + (a3 + br)yP(zR(X)) + (a4 + ba)ZRyP(X)) = 0

Now we take the special case whe&) P) is the free symmetric Rota-Baxter alge-
bra FsT(M), Prqv)) defined in Corollaryt.5 for our choice ofM = k{x,y, z} and

Prow(u) = Lul. Then the above equation is just

(a1 + by)xLylz]] + (ag + bs)xLzly]] + (a2 + ba)Z| XLy]]

+(az + b)yLX[z]] + (as + bo)ylZ X]| + (a4 + bs)ZLylX|] = O

Note that the set of elements

Xylzl], X[zLyl], ZL XLy ), yLx[z]), iz x1 ], ZLyLx] |

is a subset of the basls, of the free symmetric Rota-Baxter algeltr&(T(M)) and

hence is linearly independent. Thus thef@ieeents must be zero, that is,
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ay=-by=-bs,a=a,=-bs,a3=-h

Substituting these equations into the general relatiove find that the any relation
r that can be satisfied by, <, for all symmetric Rota-Baxter algebraS, f) is of

the form

ro= a((x<y)<z-x<({y<2-x<(y<2)
+ag((x <" y) < 2= X< (Y < 2))

+b4(x <Y< 2-(x<y) < z-(x<y< z),

whereay, ag, by € k can be arbitrary. Thusis in the subspace prescribed in Itém

as needed.

(b = a) We check directly that all the relations in E§.Z8 are satisfied by, <p

, <p) for every symmetric Rota-Baxter algeb@ P).

(&) To check the first relation in Ec.289), we have

xP(y)P(2)

XP(yP(2)) + xP(P(y)2)

(X<py) <pz

X<p(Y<p2)+X<p(y>p2,
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(b) For the second relation in Ecp.28), we similarly have

P(X)P(y)z
P(xP(y))z + P(P(x)y)z

(X<pY)>pZ+(X>pY) >p Z

X>p (Y >p 2

(c) For the third relation in Eq5(29, we have

(x>py)<pz = (P(XY)P(2 = PX)(YP(2) = x>p (¥ <p 2.

Thus if the relation spade of an operad® = P(V)/(R) is contained in the subspace
spanned by the vectors in Ecp.27), then the corresponding relations are linear
combinations of the equations in E§.Z9 and hence are satisfied I, &p, <) for
each symmetric Rota-Baxter algebf ). Therefore §, <p, <;) is aP-algebra.

This completes the proof of TheoremQ O

5.6 Free symmetric dendriform algebras
5.6.1 Case I: One generator

Let V = k{x} be the generator space with only one generatandk is a field.
Definex < x = x < X = XP(X) = x| x| whereP is the symmetric Rota-Baxter

operator. Since’=<®2), we will stick to < in this case.

Definition 5.41. Symmetric dendriform words are words generated kyx, |, |},

and are defined recursively &= X, X1 = X < X = X[ X].
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For any two symmetric dendriform wordg, and x,, definex, < X, = CmnXmin
whereC,,, is a codficient. We will find this is well-defined later as Corollaty54

in Case Il
Lemma 5.42. Cmn = Cm_l’n + Cn’m_l.

Proof. ¥, < Xn = XmlXal = X Xm-1[Xn] = XP(Xm-1)P(%) = XP(Xm-1P(Xn) +
X P(Xm-1)) = X < (Xm-1 < Xn + X1 < Xm-1) = X < (Co-pnXmin-1 + Com-1Xmin-1) =
(Cm—l,n + Cn,m—l)x < Xmin-1 = (Cm—l,n + Cn,m—l)xm+n-

SinceXn < X, = CnXmin, We are done by recursion. O
Corollary 5.43. Cyp=1and G, = m.

Proof. By definition abovex,,1 = X1 < Xy = C1nXg4n, SOCy = 1.

Cm1:Cm1+C1,m:Cm1+1:"':C1,1+m:1+m:m+1. O

This property is similar to Pascal triangle. we have theofelihg corollary and

matrices.

Corollary 5.44. Let B denote the symmetric Pascal matrix consisting of biabm
cogficients as follows. Then the matrix C formed hy,Gs a submatrix of B by

deleting the first column of B. Thusp&= Bmns1-

We take a 5¢< 5 symmetric Pascal matrix as an example:

1 1 1

10 20 3§

N

1
2
3 6 10 13.
4
5

15 35 7
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Lemma 5.45. Symmetric Pascal Matrix44] Let B,,, denotes thém, n)-entry of

m+n-2
the symmetric Pascal matrix of binomial gegents, B,, =

m-1

m+n-1
Corollary 5.46. Cyn = Byne1 =

m-1

Theorem 5.47.C,, holds for any symmetric dendriform algebra.

Proof. Let D be any symmetric dendriform algebra aaé D. Definea; = a and
a1 = & < & = ala]. Then for anya, anda, in D, definea,, < a, = Cynamin-
Since

am <& =(@<ami) < =a <(@n1<ah+an1< &) =& < (Cnrn@min-1+
Chm-18min-1)

= (Cm-1n + Cam-1)&1 < @min = (Cm-1n + Crm-1)@min, @Ndam < @1 = CrynXmin,

we haveCp,1n = Cn + Cm @gain. O

Theorem 5.48.The space of symmetric dendriform words denoted as @DW a

symmetric dendriform algebra.

Proof. We only need to verify the relationxg < X,) < X = Xm < (Xn < X+ X < Xp)
for any xm, Xn, andx, € sDWMV). By Cor5.46and Lemméeb.42,

men=1 || mn+-1 _ (m+n-1)! (m+n+l-1)!

LHS=CmnnXmin < X = CmnCrnini Xminsl = Xmnsl = (M-l (men—D)1! ’

m-1 m+n-1

while
RHS=Xm(ChiXas1 + CinXisn) = (Chj + Cin)Xm < Xnet = (Cry + Cin)Crunet Xmensl =

nl | mens=1 () (mensl—1)!

Cn+1,|Cm,n+| Xnan+l = Xminel = memmﬂ-

n m-1

By comparing the two sides cfirients, we find the two sides equal. O
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Theorem 5.49. Free symmetric dendriform algebrasDW(V) is a free symmetric
dendriform algebra over \& k{x} with a set map | V — sDWV) such that, for
any symmetric dendriform algebra D and any set map ¥ — D, there is a
unique symmetric dendriform algebra homomorphi‘gmsDW(V) — D such that

foj=f:

Vv . SDWV).

\fl

D

Proof. We have verified thasDW(V) is a symmetric dendriform algebra by Theo-
rem5.48 We only need to definé and provef_is a symmetric dendriform homo-
morphism and it is unique.

Define f_(x) =aec Dandleta; = aanda,; = a; < a. Then definef_(xk) = &.
Note this is the only way to definkto be a symmetric dendriform homomorphism.
On one hand, we havB(Xm < X,) = f(CmnXmen) = Cminf (Xmin) = Crmn@men; ON the
other hand, we havé_(xm) < ﬁxn) = 8n < @&, = Cyn@min by Theorenb.47. So f

commutes withs and thus is a symmetric dendriform algebra homomorphism.

SinceCy,, holds for any symmetric dendriform algebra, we can give astrabt
definition for the free symmetric dendriform algebra whidsmo relation with
symmetric Rota-Baxter identity. Defire = @kzl X, Over one generatox; with

the recursionk,; = X; < X and the defined operatiog, < X, = CynXmin-

Theorem 5.50.(F, <, <’) is a free symmetric dendriform algebra over one genera-

tor X;.

Proof. The proof is similar to Theorer.49 O
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Example 5.51. (A natural example)

(A special Polynomial algebra): L&fx] be a general polynomial algebra, and re-

1
define its product ag™- x" = " X™N Then{k[X], -} is a symmetric dendriform
m-1

algebra.

5.6.2 Case II: Multiple generators

Given a sekX, letV = kX be the generators space dnig a field. DefineX,, k > 1
by recursion:X; = X, Xi;1 = X < X = XP(Xk) = X[ X]. Then, any element
X € X is in the form ofxy [ X[ Xsl. .. [ X]] . . .], wherex; € X. And we letm = [(X)

be the length of the wordl.

Definition 5.52. Multiple symmetric dendriform words(msDW) are words gen-
erated byk{X, [, |}, and are defined recursively B¢ = X and X1 = X < X, =
X[ Xl

Definition 5.53. The products in the symmetric dendriform algebra
vymn>1,letX € X,, andY € X,, define

< Xm® Xpn = Xmun

<"t Xm® Xy = Xmin

by induction orm > 1.
Form=1, defineX <Y =x;1 <Y =x|Y]
ForX <Y =x <Y =Y< X, weuseinductionon=1(Y) > 1L

Forn=1x < Y=x <y =Yy <X =YXt ].
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Suppose fon = I(Y) < t,t > 1 X3 < Y = Yl x¢] is defined, then when = [(Y) =
t+1,
Xt <" Y=Y <X =yilY] < % =yl Ilxal = yal9'1xad + xal 1] = ya(lxa <
Y| + % < Y’]). For now, we are good ah = 1.
Next, supposel < Y andX <’ Y is defined form = [(X) < s,s > 1, then we
consider the case when= s+ 1.
X <d=xlX1<Y=XlX Y] = X[ X1+ YLX ] = x| X" <Y+ X" < Y]
ForX <Y =Y < X, we use induction on = I(Y) > 1 again.
Forn=1 X<y =y1 <X =w[X].
Suppose fon=1(Y) <t,t > 1,X <’ Yis defined. Then, when=1(Y) =t + 1,
X<Y=Y <X =yl IX] =yl IX]+ X=X <Y +X<Y]
By now, we are good fom = s+ 1.
Therefore, we are done for the whole induction process andefieed forym, n >
1,

X<Y=xX<Y+X <"Y]

X<LY=ynX<Y+X< YL
Corollary 5.54. sDW(V) in Case | is well defined where=x{x}.

Theorem 5.55.(msDWV), <, <’) is a symmetric dendriform algebra.

Proof. We will check the first relation <y) <z=x< (y < z+2z<Y) by
induction on the sum of the lengths of any three words. X.&{, Z be any three
words with the sum of their lengths> 3.

Whenn = 3, (x <y) < z= xP(y)P(2) = xP(zRy) + YP(2)) = X< (z<y+Yy < 2).

Suppose the relation holds for= k, then whem = k + 1, we have by definition
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(X<YPN<Z=x(X"<Y+Y<X)<Z=x("<Y+Y<X)<Z2+2Z< X<
9+Y<X)) =

<X <Y< +x<((UY<X)<D+x<@Z <X <PYP+x0 <2< Y=<
X));
X<MU<Z2+2<Y)=x<X<{U<2+2Z<PN+{HU<2+2Z<Y)<X)=
XI<(X'<UY<Z+Z<YPY+x<((Y=<2)<X)+x1<(Z<Y)<X).
Comparing the two equations,

<Y <2=X<{U=<2+2Z<Y)andZ < (Y <X) =(Z <Y) < X" since the
sum of the lengths dX’, Y andZ is n and therefore we can use inductionmn
and Y <X') <Z=(Y < 2) <X by Corollary5.36

This completes our proof. O

Proposition 5.56. (msDWYV), <, <’) is a free symmetric dendriform algebra over
V = kX with a set map jV — msDWYV) such that, for any symmetric dendriform
algebra D and any set map fV — D, there is a uniqgue symmetric dendriform

algebra homomorphisrﬁ_: msDWV) — D such thatf o j=f:

Vv . sDWV).
f f_J,
\ |
Proof. Leta = f(x) for x € X. Define f(x) = a, and f(X) = f(x, < X') = a; <
RDC’) inductively. Then, we will checH_(DC <Y = f_(DC) < f_(‘j) by induction on
the sum of lengtha of X andY € msDWYV).
Whenn = 2, f_(DC <Y = f_(x <y) = f(x) < f(y) for x,y € X as defined.

Suppose fon = k > 2, the homomorphism holds. Then, foe k + 1,
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<) = foa< (0 <Y+Y <X = fla <@ <Y+ fla=<y<x)=
flx) < FOU < Y)+Fa) < F(Y <) = Fx) < (FQ) < FU)+ F(x) < (F(Y) <
f) =

(f(x) < FQ) < F(¥) = (20 < f(Y).

This completes our induction and théiss an symmetric dendriform algebra ho-

momorphism. m|
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6 Symmetric Differential Rota-Baxter Algebras

6.1 Introduction
6.1.1 Motivation

As an analogy to the study offéerential Rota-Baxter algebras, we study the sym-
metric diferential Rota-Baxter algebras by mainly completing thestmction of
the free symmetric dierential algebra and the free symmetri€feliential Rota-
Baxter algebras. Again, we only consider the non-comnugatse.

We first briefly introduce the idea of fierential Rota-Baxter algebras]. The
differential Rota-Baxter algebra is the algebraic structuteating the relation be-
tween the dterential operator and the integral operator as in the FustieBmental
Theorem of Calculus.

As is well-known, the two principal components of calculus ¢he diterential
calculus which studies theftierential operatod(f)(x) = 3—L(x) and the integral cal-
culus which studies the integral operaR{if )(x) = fax f(t)dt. The discrete versions
of these two operators are thdfdrence operator and summation operator.

The abstraction of the fierential operator and filerence operator led to the de-
velopment of diferential algebra and filerence algebrall, 43]. Likewise, the
integral operatoP and summation operator have been abstracted to give tranoti
of Rota-Baxter operators and Rota-Baxter algebras4, 55].

In the last few years, major progress has been made in bidéneditial algebra and
Rota-Baxter algebra, with applications in broad areas itheraatics and physicg [

5, 14, 10, 20, 24, 26, 27, 35, 58, 59). For instance, both operators played im-

portant roles in the recent developments in renormalimadifoquantum field the-
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ory [10, 11, 29].
The diferential operator and the integral operator are relatechéy-trst Funda-

mental Theorem of Calculus stating that (under suitablelitimms)

di'x( f ' f(t)dt) = £(x). (6.1)

Thus the integral operator is the right inverse of th@edential operator, so that
(d o P)(f) = f. A similar relation holds for the dlierence operator and summation
operator (see Examplg1(e)). It is therefore natural to introduce the notion of
differential integral algebra, or more generally the notionfiédential Rota-Baxter
algebra, that provides a framework to puffelientialdifference algebra and Rota-
Baxter algebra together in the spirit of E§.J).

Quite often, problems on filerential equations andftiérential algebra are studied
by translating them into integral problems. This transiticses in disguise the un-
derlying structure of dferential Rota-Baxter algebra. In fact, Baxtet flefined
his algebra and gave an algebraic proof of the Spitzer igeintprobability guided
by such a point of view for first order linear ODEs. This viewsAarther stressed
by Rota p5] in connection with findingj-analogues of classical identities of spe-
cial functions. The framework introduced iij] should provide a natural setting to
study such problems. The reader is also invited to conselp#per $7], where a
similar structure was independently defined underfiedint context and was ap-
plied to study boundary problems for linear ODE iteiential algebras. Similar

situations might happen for symmetric cases.
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6.1.2 Definitions and preliminary examples

We now introduce the concept of dl@irential symmetric Rota-Baxter algebra con-
sisting of an algebra with both a symmetrid¢fdrential operator and a symmetric

Rota-Baxter operator with a compatibility condition beemehese two operators.
Definition 6.1. Letk be a unitary commutative ring.
(&) A symmetric differential k-algebra is an associativ&-algebraR together

with a linear operatod : R — R such that

d(xy) = d(X)y +d(y)x. ¥ x.y € R, (6.2)

and

d(1) = 0. (6.3)

Such an operator is calledsgmmetric differential operator or asymmetric
derivation. Let (R, d) and §, €) be any two symmetric éierential algebras.
Thenf : (Rd) — (S,e) is asymmetric differential algebra homomor-
phismif f : R — Sis ak-algebra homomorphism armff (x)) = f(d(x)) for

allxe R

(b) A symmetric Rota-Baxter k-algebrais an associativk-algebraR together

with a linear operatoP : R — R such that

P(X)P(y) = P(xP(y)) + P(yP(X)),Y X,y € R (6.4)

Such an operator is calledsgmmetric Rota-Baxter operator.
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(c) A symmetric differential Rota-Baxter k-algebrais an associativie-algebra
R together with a symmetric flerential operatod and a symmetric Rota-

Baxter operatoP such that

doP = idg. (6.5)

Note: Any commutative dterential algebras in the usual sense are symmetrical
differential algebras. So through the whole chapter or evempépsr, we will only
consider non-communtative cases.

We next give some simple examples offdiential, Rota-Baxter and ftierential
Rota-Baxter algebrasf]. By Theorem6.4, every symmetric dferential algebra

naturally gives rise to a symmetricfiirential Rota-Baxter algebra.

Example 6.1. (a) A O-derivation and a O-fferential algebra is a derivation and

differential algebra in the usual sengé][

(b) Leta € R, 2 # 0. LetR = ContR) denote theR-algebra of continuous
functionsf : R — R, and consider the usual 'f&erence quotient” operator

d, onRdefined by
(da(F))(X) = (F(x+ ) - f(X)/A. (6.6)

Then it is immediate thad, is a A-derivation onR. Whena = 1, we obtain
the usual dierence operator on functions. Further, the usual deriwvatio

do:=limd,.
1-0
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(c) A difference algebralf] is defined to be a commutative algetiRdogether
with an injective algebra endomorphispnon R. It is simple to check that

¢ —id is a differential operator of weight 1.

(d) By the First Fundamental Theorem of Calculus in Bgl) (ContR), d/dx, fox)

is a diferential Rota-Baxter algebra of weight O.

(e) Let0< 1 € R. LetR be anR-subalgebra of Conk) that is closed under the

operators

Po(f)(X) = — f CHmdt Py(f)09 = -~ f(x+na).

n>0

For exampleR can be taken to be thHe-subalgebra generated by*: R =
Y1 Re®. ThenP, is a Rota-Baxter operator of weightand, for thed, in
Eq. 6.6),

dyoP,=idg, VO # A€R,

reducing to the fundamental theorafyo Py = idg when goes to 0. So

(R, d,, P,) is a diferential Rota-Baxter algebra of weight

6.2 Symmetric differential algebras

We first give some basic properties of symmetrigeatiential algebras, followed by

a study of free symmetric fierential algebras.
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6.2.1 Basic properties for symmetric diferential operators

Some basic properties offtBrential operators can be easily generalized to sym-
metric diferential operators. The following proposition generaittee power rule

in differential calculus and the well-known result of Leibniz[p.60].
Proposition 6.2. Let (R, d) be a symmetric gierentialk-algebra of weighD.

(@) Let xe Rand ne N,. Then

d(x") = nd(x)x"*.

(b) Let xy € R, and let nre N*. Then

4™ (xy) = Z((’i‘)di“(x)d”-‘ 0) + (?)d‘*l(y)d”-‘ SN CN)
i=0

Proof. (2) Whenn = 1, itis trivial. Suppose the equation holds for 1, then apply
Eg. 6.2, we haved(x™?!) = d(x"X) = d(x")x + d(X)(x") = nd(x)x""1x + d(X)(x") =
(n+ 1)d(x)x".

(b) We proceed the proof by induction on

Whenn = 1, by using Eg6.2twice, we haveal?(xy) = d(d(xy)) = d(d(X)y+d(y)X) =
d(d(x)y) +d(d(y)x) = d*(X)y+d(y)d(x) + d*(y)x+d(x)d(y) = d(x)d(y) +d*(x)d°(y) +
d(y)d(x)+d?(y)d°(x) satisfied Eq6.7for n = 1 and we use the conventidf(x) = x.

Suppose Ed6.7 holds forn > 1, then for the case + 1, we have
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d™2(xy) = d(d™}(xy) = d(ZTo(()d*H9d™ () + ()d*H(y)d™ (X)) by the as-
sumption.
We also have™?(xy) = 2 (")d 1 (d™ - (y)+("H)d 2 (y)d™ 1 (%)) by Eq.6.2
We will prove the first half pard(Z L (7)d" 1 (x)d™(y)) = Z¥ (") d*(x)d™ - (y)
by Eq.6.2, changing variables and Pascal r(fle+ (", ) = (";*), and the second half
part is the same process.
d(Zo (M) d™ (y)) = T (7)d*209d™ (y)+ Z Lo (7)d™ 2 (y)d*1(x) =(by Eq.6.2)
2 ()@ 09d™ 4 (y) + 20, (D)@ (d™ i (y)) = (lett := n—i and] := i +1)
()@ 09dm i (y) + B (7)(d(d™ i (y) = (leti = j =t)
(M)d™2(9d°(y)+ 2Ly (i1 9d™ = () +(5)d (™ )+ 2Ly (7)) d™ 2 (y) =
(mr)dm2(9d°y) + (") + (D +2e9d™(y) + ("5 (x)d™Hy) =
Yo (")dHdm ).

This completes the induction. O

6.2.2 Free symmetric diferential algebras

Using the same construction as for frefetiential algebras of weight 0, we obtain

free symmetric dterential algebras.

Theorem 6.3. Let X be a set. Let
AX) = Xx N = {xX|xe X,n> 0.

Let kKNC{X} be the free noncommutative algebkgAX) on the setAX. Define

di© @ kNC{X} — kNC{X} as follows. Let w= uz---u,U € AX,1<i <k, bea
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noncommutative word from the alphabet 4€X). If k = 1, so that w= x™ e A(X),

define g(w) = x™V_ If k > 1, recursively define

dx (W) = dx(U)up - - - U + dx(Uz - - - U) . (6.8)

Further define (1) = 0and then extendydto k{X} by linearity. Ther(kN<{X}, d©)

is the free symmetric glerential algebra on the set X.

Proof. Let (R, d) be a noncommutative symmetricfidirential algebra and let :

X — Rbe a set map. We exterfdto a symmetric dterential algebra homomor-
phismf : kNC{X} — Ras follows.

Letw=u;---Ug, U € AX, 1 <i <k, be an noncommutative word from the alphabet

setAX. If k = 1, thenw = X" € AX. Define

f(w) = d"(f (x)). (6.9)

Note that this is the only possible definition in order fao be a diferential algebra

homomorphism. Ik > 1, recursively define

fw) = f(up)F(up--- ).

Further defineﬁl) = 1 and then extend to k{X} by linearity. This is the only
possible definition in order fof to be an algebra homomorphism.
Sincek{X} is the free noncommutative algebra aix, f is an algebra homomor-

phism. So it remains to verify that, for all noncommutativerdsw = uy - - - U
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from the alphabet setX,

f(d¥C(w)) = d(f(w)), (6.10)

for which we use induction ok. The case whek = 1 follows immediately from

Eq. 6.9). For the inductive step, by EQ6.Q):

FANCW) = FANC(ULUz---u) + FANC(Up - - - Ui)uy)

FANC(u)) F(Uz- - U + FARC(Uz - - - ) F ().

Then by Eq. 6.9), the induction hypothesis dnand the symmetric dierential al-
gebra relation fod, the last sum above equalstf_(w)):

F(AXCU)) f(Up - - U+ F(AC(Up -+~ u)) F () = d(F(Un)) F(Ua - - u)+(F (U -+ ) F (L)
= d(f(u) f (U~ ug) = d(F(w)). 0

6.3 Free symmetric diferential Rota-Baxter algebras

Theorem 6.4. Let (kNS{X}, dY©) = (k(AX), d{) be the free symmetric glrential
algebra on a set X, constructed in Theoréra Let1IN®(AX) be the free symmetric

Rota-Baxter algebra oA X, constructed in Theorerh14
(a) There is a unique extensiofi® of di° to TITNC(AX) so that(INC(AX), diC, P,x)

is a differential symmetric Rota-Baxter algebra.

(b) The symmetric gierential Rota-Baxter algebraiiN®(AX) thus obtained is

the free diferential Rota-Baxter algebra over X.

Proof. (a). We define a symmetric derivatiai_i;‘C on 1IIN¢(AX) as follows. Let

F € 3 and letD e (AX)F be the foresE with angular decoration by e (AX)“P)1,
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Let
D=(FY) = (T Y)Y (T2 ¥2)¥i, - - - Yip s (Tos Yb)

be the standard decomposition®fin Eq. @.30. We define(i'\(‘c by induction on
the breadttb = b(F) of F. If b = 1, thenF is a tree so eitheF = e or F = |F| for

a forestF. Accordingly we define

_ 0, ifF=oe,
di“(F:y) =< _ B (6.11)
(F;y), if F=F]

We note that this is the only way to defim@C in order to obtain a dierential
symmetric Rota-Baxter algebra sineés the identity andi; y) = |(F; ).
If b> 1, thenF = T, U F, for another foresk; = T, LI --- LU Fy, (t in F; stands for

the tail). So
D =(F;¥) = (T1; Yo)Yi.(Ft; Yt) = D1y, Dy

whereD; = (T1; 1) andD; = (T2; Yo)Yi, - - - Viy_. (Th; Yb). We then define

dY°(D) = dY(Ts; Ya)yis (Fii %) + X (i) (Fes 9 (T ¥a) + A (Fs o)y (T Y(B-12)

wheredNC(T;; ) is defined in Eq.§.11) andd}C(F;; yi) is defined by the induction
hypothesis. Note that by Eq}.@2),

(T2 YO, (Fes Y = (Ta; Ya)o(eyi @) o(Fi; V).

So if cﬂ?c were to satisfy the symmetric Leibniz rule E§.Z3) with respect to the
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producte, then we must have

df(D) = dYO(T1;yi)o(ey:, o)5(Fe; ¥i) + AXC(eyi, @)3(Fs; ¥)3(T; Yi) (6.13)

+d{C(Fy; Y)o(oyi, 0)3(Tx; V).
Sinced!C is to extendd}¢ : kNC{X} — kNC(X}, we have
diC(e yi,0) = AXC(jax (Vi) = Jax(AXC(¥:,)) = o dNC(yi,) @ .

So by Eq. £.22), Eq. 6.14 agrees with Eq.§.12). Thusd_>'\('C(D) is the unique map
that satisfies the symmetric Leibniz ruk&%).

We also have the short hand notation,
d}S(D) = d}°(Dy)y;, D; + d}(y, Dy)D; (6.14)

where

diC(yi,Dy) := d¥C(y;,)Dy + dYC(DYy;,

Similarly, we can also writ® = Dyy;, ,Dy, whereDy, (h stands for the head) is an

angularly decorated forest aiy is an angularly decorated tree. Then
dY°(D) = d¥°(Dnyi, ,)Dp + dX°(Dy) Dy, , (6.15)

In fact, write

D =viVo---Vayg,
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where

D(j+1)2. ] odd
Vj =
Yiion j even

Then using Eg.€.12 and an induction ofo, we obtain the “general symmetric

Leibniz formula” with respect to the concatenation product

d°(D) = > VVhea -+ Vap aVicaVko -+ Vi, (6.16)
ke[2b-1]

where [b-1] ={1,---,2b- 1} and

d¥(w), k € 1,k odd,

VI’( =
dy“(w), k € I, k even

We now prove thatﬂ_’)ﬁC is a symmetric derivation with respect to the prodeict et

D andD’ be angularly decorated forests and write

D=(F:y) = (T Y)Y (T2: ¥2)is - - * Yie1s(To: ¥b) = DnYiy . Db
and
D' = (F:y) = (Tu Y)Y, (T Yo)Ys, -+ Vi, (Teys Vi) = D1y, Dt

be as above with angularly decorated trBgsD’, angularly decorated foresi,,
Dt andy;, ,.¥;, € AX. Then by Eq. 4.22) (see P4] for further details),DoD" has

the standard decomposition

DD’ = (T ¥l Yoo (Toi IS (TE VW - ¥, (T4 Vo)
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= Dnyi,,(Dp o DY), Dy (6.17)
where
DpoD = (Th; Yo)o(T1; V1) (6.18)
(o; 1), if To=T; =e(so}h =V, = 1),
] (Toi Vo), if T/ =oTy#e,
(T3 V), if T/ #0,Ty=,
L(Fo; 3T )+ LF L Y)o(Tos N, if T, = [Fyl # 0, Ty = [Fol # o.

By Eq. 6.17) and Eq. 6.16, we have

dYS(D3D’) = dYS((Dnyi, ,)(Db3DY)(Y, DY)
dX (DnYi, ,)(DseD)(Y,, D}) + dX(DyD7)(Y,, D;)(Dnyi, ($.19)

+d¥(y;, D})(D5D;) (D, »)

Using Eq. 6.19, we have
dX°(DyoDy) = d}(Dp)oD; + d¢(D})5Dy, (6.20)

Applying this to Eq. 6.19, we find that the resulting expansion fd_;TC(DED’)

agrees with the expansion of
dN(D)sD’ + diS(D’)sD

after applying Eq.§.14) to dY°(D) and applying Eq.&.15 to dY¢(D").
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As an example, from Eg4(34), we have

dj'}'c(/}\. EI):d_)'}'C(Q +/)I<\‘):0XI+./>\.. (6.21)

This agrees with
dX°( e, Vo L+ dRCDT A, -

(b). Let (R *,d, P) be any diferential symmetric Rota-Baxter algebra anddet
X — R be any function. SinceN“(AX) is a free symmetric Rota-Baxter al-
gebra, there exists a unique symmetric Rota-Baxter algetnaomorphismy™:
(INC(AX), Pox) — (R, P) such thaty = & o jx. We next showis a symmetric dif-
ferential algebra map. That is to sha(@(D)) = &(dN°(D)) for anyD € NC(AX).
Case |:If D = (T;V), whereT is atree, the = e or T = | T] for a forestT.
WhenT = e, d(@(e;y)) = d(1) = 0 sinceg is a homomorphism. By Edf.11],
G(dNC(e; ) = $(0) = 0. So the trivial case holds.

WhenT = [T, by the decompostion in Eg.41, the definition in Eq4.42and
Eq.6.11,

d(@(D)) = d@(T;¥) = dP@G(TL; ) = BUTLY) = BAT;¥).  (6.22)

Casell: If D =(F;¥) = (T, Y1)Yi, - - - Vio.. (To; Vb), WhereF is a forest with breadth
greater than one, then by the general Leibniz equaibfand Eq.6.22 we have
d(@(D)) = d(@((T1; )iy - - - Vi (To: ¥6))) = A(@(T1; Y1) * @(¥iy) # - - &(To; Yb))

= d(Vy s+ % Vap 1) = DR d(VR) # Vi s+ % Vap 1 % Vieg # -+ 5 Vg,

and
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FAYE(D) = FAY((T2: VadYi -+ Yo 1 (Tt YB)) = BT ARE(VI) © Vi -+ 0 Va1 ©
Vicp oo Vq) = Tt QZ(CTQC(Vk)) # P(Visn) * -+ % @(Vap-1) * @(Vi1) * - - - % @(Va).
The two above equations agree. So we have provedi(GéD)) = gE(JQC(D)). This

shows thatyis a symmetric dterential algebra homomorphism. |
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Appendix

A. The Maple codes for Sectior8.2.1

solve({i*m+j*w=m+k)*i+n+D)*mi*n+j*p=m+k)*j+ n+10)*n k*m+I[1*w
=(m+k)*k+n+D)*w, k*n+1*p=m+k)*l+n+1)*p,a2 +b*c=2%a™2 +2%b
*u,a*b+b*d=2*%a*b+2*b*fa¥*c+d*c=2%a*c+2*b*g, c*b+d"2=2%a*d+2
*b*¥hyu™2 +f*g=2%g*a+2*h*u,u*f+f*h=2%g*b+2*h*fg*u+h*g=2%g*c
T2 h*g g*f+hM2=2%g*d +2%h"2, "2 +j*k=2%i"2 +2% ¥ m i*j+jF][=2%i*;+2
¥iEn, k¥ i+ I*¥k=2%i{%k+2%jFw, k¥ ]+ M2 =2%{* ]+ 2% *p m™2 +n¥*w=2%w*i+2
*p*¥momEFn +nFp=2* w*;j+2*p*pn wr*rm+pF*rw=2*wrk+2*w* w¥n +pr2=2%w
*p+2*p 2, a*u+b*g=(u+c)*a+ (f+d)*u,a*f+b*h=(u+c)*b+ (f+d)*f,c
*utd¥*g=(u+t+c)*c+ (f+d)*g c*f+d*h=(u+c)*d+ (f+d)*h b*k=u*j+k*i
terma*j+b*l=b* i+ +j*k+u*l,d k=g*j+k"2+w*Lc*j+d*I=i*d+j*h
+h*¥ I+ *putrm+fFw=w*a+tpF*utg*Fi+th*mu*n+fFp=w*b+p*f+g*;j+h
*n,g¥*¥m+h*w=w*c+p*g+g*k+h*w,g*n+h*p=w*d+p*h+g*l+h*p,a*m
+b*w=m*a+n*u-+c*i+d*ma*n+b¥p=m*b+n*f+c*;j+d¥*nc*m+d*¥w=m
*c+n*gtc*k+d*w,c*n+d¥*p=m*d+n*h+c*l+d*p,a*m+b*w=m*a—+n*u
+c*i+td¥*ma*n+b¥*p=m*b+n*f+c*;j+d*n,c*m+d¥*w=m*c+n*g+c*k+d
*w,c*n+d¥*p=m*d+n*h+c*l+d*p,u*i+f*k=k*a+I[*u-+g*¥i+h*mu*;j+f*I
=k*b+I1*f+g*j+h*n,g¥i+h*k=k¥c+Il*g+g*k+h*w, g*j+h*I=k*¥d+1*h+g

*I+h*p
Yh.{a,b,c,d,u,f. g, h,i,j, k I,mn,wp})
{a=0,b=0,¢=0,d=0,/=0,g=g,h=0,i=0,;=0,k=0,/=0,m=0,n=0,p=0,u=0,w )

2 3 2
~wh {a=-fib=be=-La-fr-fg- % =L i=0,j=0,k=0,1=0,m=0,n

2
:O,p=O,u=—%,w:O ,{a=0,b=b,¢=0,d=0,/=0,2g=0,h=0,i=0,;=/, k=0,
=0,m=0,n=0,p=0,u=0,w=0},{a=e,b=-e,c=e,d=-¢,f=-¢,g=e¢,h=-¢,i=
~e,j=e,k=-e,l=e,m=-e,n=e,p=ec,u=e,w=-e}

solve({a™2 +b*c=2%a™2 +b*u+c*i,a*b+b*d=2%a*b+b*f+c*j,c*a+d*c=2%a*c
+b*g+c*k,c*b+d2=2%a*d+b*h+c*Lu"2 +f*g=g*(a+m) + (h+u)*u,u*f
+fF*h=g*(b+n)+ (h+tu)*f,g¥ut+h*g=g*(c+w) +(h+u)*g, g*f+h2=g*(d
+p) + (h+u)*h,

M2 +j*¥k=j*a+1*i+i"2 +j*¥m, i*j+j*I=j*b+ (I+i)*j+j*n k*i+[*¥k=j*c+ ([ +i)
*h+j*w, k*j+1"2=j*d+ (I+i)*I+j*p,

m2 +n*w=n*u+w*i+2*p*mm*n+nF*p=n*f+w*;j+2*p*n,wE*rm+pr*tw=n*tg+w
*h+2*p*w,w*n +p"2=n*h+w*[l+2%*p"2

,a*u+g*b=u*a+ (a+f)*u,a*f+b*h=u*b+ (a+f)*fic*u+d*g=u*c+ (a +f)
*goe*f+d*h=u*d+ (a +f)*h,

a*i+b*k=(b+i)*a+j*u+d*i,a*j+b*l=(b+i)*b+j*f+d*j,c*i+d*k=(b+i)*c
+j*g+d*k c*j+d*¥I=(b+i)*d+j*h+d*|,

a*m+b*w=m*a—+ (b+n)*u+d*ma*n+b*p=m*b+ (b+n)*f+d*n,c*m+d*w=m
*c+(b+n)*g+d*w,c*n+d*p=m*d—+ (b+n)*h+d*p,

u*a+f*fe=u+c)*a+d*u+g*i,u*b+f*d=(u-+c)*b+d*f+g*j,g*¥a+h*c=(u-+c)
*c+d¥*g+g*k,g*b+h*d=(u+c)*d+d*h+g*l,

u*i+frk=(f+k)y*a+Il*u+h*i,u*j+f*I=(f+k)*b+I1*f+h*j,g*¥i+h*k=(f+k)*c
+i*¥g+h*k,g*¥i+h*I=(f+k)y*d+I1*h+h*],

u*m+frfw=w*a+ (f+p)*ut+h*mu*n+fF*p=w*b+ (f+p)*f+h*ng*m+h*w=w
*ct+ (ftp)*gth*w, g*n+h*p=w*d+ (f+p)*h+h*p,

Figure 1: The procedure to compute symmetric Rota-Baxteraiprs on 2x2 ma-
trices
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i*atj*c=i*a+ (k+a)*i+b*mi*b+j*d=i*b+ (k+a)*j+b*n k*a+1*c=i*c+ (k
+a)*k+b*w k*b+1*d=i*d+ (k+a)*1+Db*p,

futj*g=i*utu*i+ (k+f)*mi*f+j*h=i*f+u*j+ (k+f)*nk*u+l*g=i*g+u*k
+k+)*w k*f+ 1 h=i*h+u*l+ (k+f) *p,

*mAjr*w=j*ut+m*i+ (I+n)*mi*n+j*p=j*f+m*j+ ([+n)*nk¥m+[*w=j*g+m
i+ (U +n)*wk*n+1*p=j*h+m*[+ ([ +n)*p,

m*a+n*c=m*a+ wt+c)*¥i+d*mm*b+n*d=m*b+ (w+c)*j+d¥*n,w¥a+p*c=m
e+ (wte)*k+d*wow*b+p*d=m*d+ (w+c)*I+d*p,

m*ut+n*g=m*ut+g*i+ (wt+h)*mm*f+n*h=m*f+g*j+ (w+h)*nw*u+p*g=m
*grgtk+(wth)*wow*f+p*h=m*h+g*I+ (w+h)*p,

m*i+n*k=n*a+ (p+k)*i+*mm*j+n*l=n*b+ (p+k)*j+1*nw*i+p*k=n*c
+(p+hk)*k+1*w,w*j+p*l=n*d+ (p+k)*I+1*p}, {a,b,c,d,u, [, g h,i,j, k[, mn,
w,p})

{a=0,b=0,¢=0,d=0,/=0,g=0,h=0,i=0,j=/,k=0,/=L,m=0,n=0,p=0,u=0,w )
=0}, {a=0,b=0,¢=0,d=0,/=0,g=0,h=0,i=0j=/,k=0,1=0,m=0,n=0,p=0,u

b b b’

=0,w=0}, {a=0,b=b,c=0,d=—j,f=—j,g=0,h=2,i=0,j=j,k=0,l=—b,m

J

b b b
=0,n=—b,p=_,u=0,w=0], {a=,,b=b,c=0,d=0,f=—,,g=0,h=0,i=b,j
j j j
b? »
=j,k=0,l=0,m=—j,n=—b,p=0,u=—2,w=0], {a=0,b=0,c=0,d=0,/=0,g
j
=0,h=0,i=0,j=0,k=0,l=L,m=0,n=-1,p=0,u=0,w=0}, {a=0,b=0,c=0,d

=0,/=0,g=0,h=0,i=i,j=0,k=0,/=0,m=0,n=i,p=0,u=0,w=0}, ‘a=0,b=—i,

|7

2
¢=0,d=-kf=-kg=0.h=-~ ,i=i,j=0,k=k,l=0,m=k,n=0,p=0,u=0,w=]z}

,‘a—k,b—b,c—O,d—O,f——k,g—O,h—O,i—O,j—O,k—k,l—b,m—O,n—O,p——k,u
B R
?,w——? ,{a=0,b=0,c=-u,d=0,/=0,g=0,h=0,i=0,;=0,k=0,/=0,m
=0,n=0,p=0,u=u,w=0}, {a=0,b=0,c=h,d=0,/=0,g=0,h=h,i=0,j=0,k=0,1
=0,m=0,n=0,p=0,u=0,w=0}, {a=0,b=0,c=0,d=0,=0,g=g,h=0,i=0,/

=0,k=0,1=0,m=0,n=0,p=0,u=u,w=0},{a=0,b=0,c=0,d=0,/=0,g=g, h

=h,i=0,7=0,k=0,/=0,m=0,n=0,p=0,u=0,w=0}, {a=0,b=0,c=0,d=0, /=0,
g=0,1=0,i=0,7=0,k=0,[=0,m=0,n=0,p=0,u=w,w=w}, {a=0,b=0,c=0,d
=0,/=0,g=0,h=-w,i=0,7=0,k=0,1=0,m=0,n=0,p=0,u=0,w=w}

Figure 2: The procedure to compute Rota-Baxter operatoBx@matrices
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B. The Mathematica codesf(] for Section 3.2.2

Scl[x ] :=First[Flatten[x]]
Vec[x ] :=Flatten([x]

) [i2)
(&) [2)

MakeExpression[ RowBox[{x_, SubscriptBox["0", c_], y_}], StandardForm] :=

MakeExpression [

RowBox[{"CircleDot", "[", RowBox[{x, ",", ¢, ",", y}], "]1"}], StandardForm]

MakeBoxes[CircleDot[x , ¢ , y ], StandardForm] :=
MakeBoxes [RowBox [ {x, SubscriptBox["0", c], y}], StandardForm]

X Oy := Vec[xT.c.y]
e[i_, n_]:=List/@UnitVector[n, i]
With[{n -2},

Table[e[i, n]Ocelj, ] - ) cli, k, jlelk, n], {i,n}, {3, n}” // Flatten

k=1

RBA[p_, c_, X,y ] i= (p.X) O (p.y) -P. (YO (p.X)) -P. (X0 (p.y))
RBA[p , ¢ ] :=With[{n =Length[c // First]},

Flatten|[Table[Expand[RBA[p, ¢, e[i, n], e[], n]]],

{i,n}, {3, n}], 2]]
RBA[c ] :=With[{n = Length[c // First]}, With[{p = Array[Symbol["p"], {n, n}]},
{RBA[p, c], p}]]

RBA[c]
FindRBA[c ] := With[{sys =RBA[c]},

Solve[Map[# = 0 &, First[sys]], Flatten[Last[sys]]]]
FindRBA[c]
SGM[t ] :=With[{n = Length[t // First]},

Table[If[t[i, j] =k, 1, 0], {i, n}, {k, n}, {j, n}]]

Figure 3: The procedure to compute symmetric Rota-Baxteraiprs on semi-
group algebras
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