
HYBRID QUANTITATIVE STRUCTURE-ACTIVITY RELATIONISHIP MODELING 

OF HUMAN CYTOCHROME P450 ISOFORM 2C9 INHIBITION 

by 

DANIEL C. PINOLINI 

A thesis submitted to the 

Graduate School-Camden 

Rutgers, the State University of New Jersey 

In partial fulfillment of the requirements 

For the degree of 

Master of Science 

Graduate Program in Computational and Integrative Biology 

Written under the direction of 

Dr. Hao Zhu 

And approved by 

______________________________ 

Dr. Hao Zhu 

______________________________ 

Dr. Kwangwon Lee 

______________________________ 

Dr. Sunil Shende 

______________________________ 

Camden, New Jersey, May 2015 

 



 
 

ii 
 

ABSTRACT OF THE THESIS 

Hybrid Quantitative Structure-Activity Relationship Modeling of Human Cytochrome 

P450 Isoform 2C9 Inhibition 

by DANIEL C. PINOLINI 

Thesis Director: 

Dr. Hao Zhu 

 

Purpose   Human Cytochrome P4502C9 is a vital enzyme in human drug metabolism. 

Inhibition of P450 2C9 can cause critical Drug Drug Interactions (DDI). Great resources 

can be saved if the potential inhibition of new compounds (e.g. new drugs) can be 

evaluated before chemical synthesis. Computational models are promising tools to realize 

this goal. Previous Quantitative Structure Activity Relationship (QSAR) modeling works 

performed on this enzyme were not significant due to limitation of available data as 

training sets, and all suffer from shortcomings of traditional QSAR approaches, 

especially the issue of active cliffs. A successful large scale model that incorporates 

biological response data would be beneficial to future drug discovery. 

Methods   In this study, QSAR modeling approaches were employed to develop multiple 

computational models for P450 2C9 inhibition. A training set of 20,839 compounds and 

an external set of 20,655 compounds were compiled from PubChem assay data. After 

chemical descriptors were generated for each compound, random forest and support 

vector machine algorithms were used to develop QSAR models based on the training set. 

The results of individual models were averaged as consensus predictions. Individual and 
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consensus models were first validated using five-fold cross-validation. Then the validated 

models were used to predict the external sets. 

Results   The predictivity of external set compounds for developed models was 

acceptable for QSAR modeling (Consensus model statistics: Sensitivity = 67.3%, 

Specificity = 71.3%, Correct Classification Rate = 69.3%). Incorporation of biological 

response data as extra descriptor information into traditional QSAR approaches improved 

predictivity of the associated models (Sensitivity = 67.1%, Specificity = 75.8%, Correct 

Classification Rate = 71.5%). These improvements were shown to be statistically 

significant. 

Conclusions   In this study, QSAR models of CYP2C9 inhibition were successfully 

developed for a large set of compounds. Biological response data was successfully 

incorporated into traditional QSAR modeling procedure, leading to improvement in 

predictivity. This development could be used to more successfully predict the potential 

DDI of new compounds. 
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Introduction 

 Human Cytochromes P450 (CYPs) are a group of hemoproteins belonging to the 

enzyme superfamily of monooxygenases, and are, in general, the terminal oxidase 

enzymes in electron transfer chains.
1
 CYPs contain a heme group which is tethered to the 

hemoprotein by a cysteine thiolate ligand
2
. They are largely found embedded in the 

endoplasmic reticulum, and have been identified in all domains of life, including 

viruses.
1-3

 These monooxygenase enzymes are best known for the catalysis of the 

oxygenation of an enormous number and variety of both endogenous and xenobiotic 

substrates including lipids, steroidal hormones, drugs, and toxic substances.
4
 Most of this 

oxidative activity is due to hydroxylation reactions in which the reducing agent 

Nicotinamide adenine dinucleotide phosphate (NADPH) facilitates the insertion of one 

atom of oxygen into the aliphatic position of an organic substrate (RH), while the other 

oxygen atom is reduced to water, according to the stoichiometric equation
1
: 

NADPH + O2 + RH + H+ → NADP
+
+ ROH + H2O    

 (1) 

Among the human Cytochrome P450 family, one of the most important in terms 

of both functionality and research potential is the isoform 2C9 (CYP2C9).
5
 CYP2C9 

makes up approximately 15-20 percent of the total CYP protein in liver microsomes and 

metabolizes roughly one fifth of commercially prescribed drugs, usually those with a 

narrow therapeutic index.
6-8

 Such examples include, but are not limited to warfarin 

(anticoagulant), phenytoin (anticonvulsant), tolbutamide (potassium channel blocker), 

losartan (angiotensin II channel receptor antagonist), and glipizide (high blood pressure), 
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other non-steroidal anti-inflammatory drugs, and endogenous compounds such as 

arachidonic and linoleic acid.
9,10

 The majority of substrates for the CYP2C9 tend to be 

acidic, polar molecules containing an aromatic ring.
11-13

 The prominence of the CYP2C9 

isoform in the human metabolic system, as well as the wide range of drugs it metabolizes, 

makes the research into inhibition of the enzyme critical to avoiding potential drug-drug 

interactions.
14

  

In recent years, quantitative structure-activity relationship (QSAR) approaches 

have become an integral part of the drug discovery process.
15

 QSAR models are 

regression or classification models that relate a set of predictor variables, or descriptors, 

to the potency or the categorical value of a response variable. These descriptors consist of 

physico-chemical properties or theoretical molecular properties of chemicals. QSAR 

models aim to summarize a supposed relationship between chemical structures and 

biological activity within a data set of compounds, and to predict the activities of new 

chemicals. While initially useful, however, the QSAR hypothesis that chemically similar 

compounds tend to have similar activities has proven to be insufficient for accurate 

predictivity involving complex biological systems.
16

 Systems involving such things as 

drug metabolizing enzymes expose this weakness in QSAR, as there is no mechanism 

built into the methodology to handle “activity cliffs,” a phenomenon where compounds 

that are chemically dissimilar, yet elicit the same biological response.
17

  

In this study, not only is there an attempt to model the chemical inhibition of a 

human cytochrome P450 enzyme on a much larger scale than any previously attempted 

studies, but also an attempt to rectify the innate problems of the QSAR modeling 

approach through the integration of bioassay data. It is expected that by using publicly 
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available bioassay data to create a hybrid model, improvements to traditional modeling 

techniques will lead to a more successful modeling approach. 

 

Materials and Methods 

CYP2C9 Inhibition Data Set 

 The CYP2C9 inhibition data set was curated from several PubChem bioassay sets, 

including AIDs 777, 1020, 1851, 344535, and 349322 . Ultimately, the CYP2C9 

inhibition set used in this study was compiled from the PubChem AID 777, a high 

throughput screening (HTS) assay for the inhibition of CYP2C9 in an NADPH 

regenerating system which utilizes glucose-6phosphate dehydrogenase (G6PDH), as this 

assay possessed more strict criteria for activity compared to other inhibition assays.
18

 For 

the modeling purpose of this study, compounds were considered inhibitors of the enzyme 

(“actives”) if they exhibited more than 50 percent inhibition of the conversion of 

luciferin-H to luciferin at a concentration of 5 µM, and non-inhibitors (“inactive”) if 

inhibition was less than 50 percent. Originally the data set consisted of 18,731 active 

compounds and 77,129 inactive compounds, for a total of 95,860 compounds. Following 

selection of this data set, the results were compared to a second assay, AID 1020, a 

counter screen to the original assay. This assay assessed compounds for the inhibition of 

G6PDH. Compounds that showed a positive result in both assays would be considered 

false positive results in AID 777, since it utilized a system dependent on G6PDH.
18

 All 

compounds that showed a false positive result according to the counter screen were 

removed from the data set. The duplicate compounds, inorganic compounds, and 
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mixtures were also removed since the descriptor generators used cannot deal with these 

compounds. This data set is too large and out of the scope of the current QSAR 

approaches due to the limitation of the calculation power of computers. In order to make 

a QSAR modeling study feasible for the data set, the size of the set was reduced by 

randomly selecting 50 percent of the compounds.
14

 Furthermore, the data set was heavily 

biased due to many more inactive compounds than active compounds, so an equivalent 

number of inactive compounds to active compounds were randomly selected, bringing 

the data set to a balanced ratio of active to inactive compounds.
14

 The final modeling set 

consisted of 9,376 active compounds and 11,463 inactive compounds, for a total of 

20,839 compounds. 

 The external set was organized using the remaining 50 percent of the compounds 

that were not included for the modeling set. Using random selection as described above, a 

balanced external set was created consisting of 9,292 active compounds and 11,361 

inactive compounds, for a total of 20,653 compounds. Both data sets were larger than 

most previously used CYP2C9 inhibition datasets for modeling. 

Chemical Descriptors 

 For the purpose of model creation in this study, two sets of chemical descriptors 

were generated. The first set of descriptors was generated using Molecular Operating 

Environment (MOE) Version 2011, and included topological indices, structural keys, E-

state indices, physical properties (e.g. logP, molecular weight, molecular refractivity, 

etc.), and topological polar surface area. A total of 192 MOE descriptors were originally 

generated. The descriptors were normalized, and redundant descriptors were identified 
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and removed, leaving a total of 142 MOE descriptors for modeling implementation. In 

addition to the MOE descriptors, a second set of descriptors were generated using Dragon 

(DRAG) Version 6.0 (Talete SRL, Milano, Italy), which included E-state values, E-state 

counts, constitutional descriptors, walk and path counts, connectivity and information 

indices, 2D autocorrelations, Burden eigenvalues, molecular properties (e.g. hydrophilic 

factor), Kappa, hydrogen bond acceptor and donor counts, molecular distance edge, and 

molecular fragment counts. Following data normalization and removal of redundant 

descriptors, 1,108 Dragon descriptors fulfilled the criterion and were used for modeling. 

Modeling Approaches 

 The chemical descriptors generated were used in the machine learning algorithms 

Random Forest (RF)
19

 and Support Vector Machine (SVM).
20-23

 Both the RF and SVM 

algorithms were implemented with R 3.0.2.
24

  

 RF is an ensemble learning method developed by Leo Breiman and Adele Cutler 

that generates multiple decision trees based on input variables from a data set for 

purposes of classification or regression modeling.
19

 These decision trees are created by 

selecting with replacement n samples from a training set of N compounds. From M 

variables at each data point, m variables are selected at random, and the best split from 

these m variables is used.  Each new data point is pushed down the tree, and the predicted 

output is averaged for a final predicted value.  

 SVMs are supervised learning models with associated learning algorithms 

developed by Vapnik et al that analyze data and recognize patterns for classification and 

regression analysis.
20-23

  An SVM model works by representing elements of the training 



6 
 

 
 

set as points in n-dimensional space, mapped such that examples of separate categories 

are divided by as wide a gap as possible, known as a hyperplane. New examples are then 

mapped in the same space as the training set, and predicted to belong to a category, 

usually active or inactive, based on which side of the hyperplane they fall on. 

Classification with the largest marginalization possible is sought. 

Modeling Workflow 

 Each individual model was developed using a combination of Dragon or MOE 

descriptors, and one of the modeling algorithms (RF or SVM). The use of both sets of 

descriptors and both modeling algorithms resulted in the development of four individual 

models: RF_MOE, RF_DRAG, SVM_MOE, and SVM_DRAG. Each individual model 

was validated using 5-fold cross-validation, a method in which the data set is partitioned 

into five complimentary subsets, and one subset is used as a test set, with the other four 

serving as a training set. This is repeated five times until each subset has been used as a 

test set. The prediction values from all four individual models for each compound were 

then averaged together, generating a consensus prediction model.
25,26

 Models were then 

revised using a novel in-house tool discussed below for implementing biological 

similarity data into current QSAR modeling approaches. 

Universal Statistical Evaluation of Model Performance 

 In order to create the models for this study, a variety of approaches and descriptor 

sets were used. Because of this, a universal statistical metric for comparison was needed 

to meaningfully assess the performance and predictive capability of each model. Thus, 

three statistical parameters were used for performance evaluation; sensitivity (percentage 
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of active compounds predicted correctly), specificity (percentage of inactive compounds 

predicted correctly), and correct classification rate (CCR, average of sensitivity and 

specificity).  These statistical parameters are all defined as percentages according to the 

following equations: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
) 𝑥100   (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = (
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
) 𝑥100   (3) 

𝐶𝐶𝑅 = (
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
) 𝑥100     (4) 

Biological Similarity Analysis to Integrate Extra Biological Data as Descriptors 

 Following model creation and statistical analysis, improvement of modeling 

results was sought through the rectification of certain shortcomings of current QSAR 

techniques.
25,27-30

  Presently used QSAR methods construct models based solely on 

chemical descriptors, which are only based on chemical structures of compounds, but 

give little to no consideration to the biological data that the chemicals elicit.
25,27-30

 To 

remedy this shortcoming, a novel approach was developed to integrate biological assay 

and/or biological response data to current QSAR modeling approaches. The first part of 

the novel approach was to develop a metric of similarity search to use in the evaluation of 

biological data. This was accomplished in two parts. Before bioassay data could be 

applied to modeling, it was necessary to create a biological response profile of the 

compounds used for modeling by filtering redundant and noisy data. A profiling tool was 

developed to compile response data from bioassays available through PubChem.
23
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Compounds were assigned a binary score of 1, -1, or 0 based on assay response data, 

corresponding to active, inactive, or inconclusive response or missing value, 

respectively.
23

 The number of responses of each type was recorded for each assay 

evaluated, and the top or most relevant assays were selected based on largest number of 

active responses and largest number of overall responses. Once this profile was 

constructed, it was used to calculate the weighted estimate of biological similarity 

(WEBS) score between every two compounds in the data set. The WEBS score was 

calculated based on inputted in vitro assay responses, as shown in the following equation: 

∑(𝑝 + (𝜔)𝑛)

∑(𝑝 + (𝜔)𝑛 + 𝑑)
 

where p is the number of assays in which both compounds showed the same response, n 

is the number of assays in which both compounds showed a different response, d is the 

number of assays in which comparison was impossible due to an inconclusive response, 

and ω is the negative response balancing weight, a variable that balances the ratio of 

active and inactive responses in the biological profile. In addition to similarity, the 

WEBS calculation also showed a confidence value, or a measure of how meaningful the 

similarity score is. When isolated, the top portion of the above equation can be compared 

to the total number of assays used to determine the confidence of the calculated similarity 

score. Following calculation of both similarity and confidence, the top five biological 

nearest neighbors (compounds with highest biological similarity score value) with an 

acceptable confidence value (20% of the number of assays manually selected) were 

identified for each compound in the modeling set. The experimental activity of each 

compound was compared to that of each of the aforementioned nearest neighbors, and 
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compounds with at least three of five nearest neighbors with different activities were 

removed from the modeling set, and performance statistics were recalculated (e.g. 

Compound CID 324 has an experimental activity of 1, or active, and has three nearest 

neighbors with experimental activities of -1, or inactive. Compound CID 324 is 

removed). 

Results 

Dataset Overview 

 The chemical space occupied by the compounds used in this study was analyzed 

by performing a Principle Component Analysis (PCA) using the MOE chemical 

descriptor values. Using the 142 MOE descriptors, principal components were calculated 

for the modeling set compounds. The three most important principal components, 

representing approximately 60% of the variance in the database, were selected to 

generate a three dimensional plot (Figure 1) of the 20839 compounds present in the 

modeling set. This plot is a visual representation of the chemical space occupied by the 

compounds comprising the modeling set. 

Modeling Results 

 During modeling creation, four individual models and one consensus model were 

developed using 9,376 CYP2C9 inhibitors (“actives”) and 11,463 non-inhibitors 

(“inactives”).  Following individual model creation, a consensus model was generated by 

averaging the prediction values of each compound from each individual model into a 

single value, and then classifying the averaged value.  
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 The five-fold internal cross validation results for all models are shown in Figure 

2a. The sensitivity, specificity, and CCR values for this validation ranged from 65-68%, 

68-73%, and 66-70% respectively. The best overall performance when ranked by CCR 

value was shown when using the Random Forest algorithm (RF_MOE and RF_DRAG 

models). The consensus model showed performance comparable or slightly superior to 

the aforementioned individual models in all three categories, with sensitivity, specificity 

percentages of 67%, 71%, and 69%, respectively.  

 Once the model was developed and underwent preliminary testing with internal 

cross-validation, it was used to predict an external set of 20,655 compounds (9,294 

actives, 11,361 inactives). These compounds were randomly selected from the original 

assay, but were not part of the subset of compounds used to train the model, and thus 

were considered as unknown to the model. The model performance of this external 

validation is shown in Figure 2b. The ranges of the percentage values of the sensitivity, 

specificity, and CCR for the external validation were 63-68%, 68-73%, and 66-70% 

respectively. It is notable that despite the compounds being “unknown” to the model, 

model performance did not suffer as compared to the internal validation. 

 Using the biological similarity data to augment the QSAR modeling approach 

through the developed WEBS equation, the model performance statistics saw 

improvement. As seen in Table 2, the improvement shown in the models was 

demonstrated to be statistically significant by using an F-test. For each individual model, 

the FCalculated value was greater than the FCritical value, confirming statistical significance of 

results. Figure 3 shows the model performance improvement as compared to 

performance using only QSAR modeling. On average, models showed an overall 
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improvement of approximately three percent. This is likely due to the fact that systematic 

removal of compounds based on aforementioned criteria from the modeling statistics 

results in less compounds with activities opposite of that of their nearest neighbors. This 

in turn results in a model with fewer compounds with uncertain predictivity. 

Discussion 

Evaluation of Initial Model Performance 

 Prior to the start of this study, most QSAR modeling work concerning human 

cytochrome P4502C9 was performed on a relatively small scale. As the 2C9 isoform of 

CYP450 is a vital enzyme to human drug metabolism
5,26,30

, high percentage statistical 

performances was desired, however this required a sacrifice of the scope of the work, as 

high percentage performance depended on small modeling sets creating through 

meticulous selection. In addition to the standard hope for high percentage model 

performance, one of the primary goals of this study was to expand the scope of modeling 

work done on CYP2C9. Relative to datasets previously modeled, both the modeling set 

and the external validation set were enormous, and as a result possessed a much more 

extensive chemical space, chemical variance, and coverage. Given the size of the dataset 

used, as well the fact that greater compound diversity can complicate or reduce the 

effectiveness of QSAR modeling techniques, the performance of the individual models 

developed in this study is more than acceptable. The CCR range of 66-70% indicates that 

the results are as good as can be hoped for given the scope of the modeling attempted.  

Inclusion of Biological Data 
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 The 2C9 isoform of CYP450 acts on several diverse substrates, and is part of the 

complex biological pathway that is human drug metabolism. As such, the predictive 

success of models created using only traditional QSAR methods suffers.
25,28-30

 

Traditionally, QSAR techniques are applied using only chemical descriptors obtained 

through MOE or some other source.
15

 This becomes problematic, however, when these 

same modeling approaches are applied to biological systems, as the use of only chemical 

data renders it impossible for such a model to make a distinction between compounds that 

are structurally very similar, but exhibit a very different biological response.
25,28-30

 These 

“activity cliffs” limit the predictive power and application of the QSAR techniques.  

The inclusion of bioassay response data into the modeling approach provides 

extra information about the target compounds that likely lead to the improvement shown 

in the modeling results. As shown in Table 4, there were many instances within the 

dataset where compounds that were chemically similar did not show similar biological 

response, and chemicals that showed similar biological response were not chemically 

similar. This is likely due to the nature of CYP2C9 as a key enzyme in drug 

metabolism.
5,6,8

 CYP2C9 metabolizes various types of drugs,
9,10

, which necessitates that 

an “active” biological response be elicited from compounds that are chemically 

dissimilar. An example of this is shown in Table 4, Set 2. Compounds CID 742428 and 

CID 2897066 are very chemically dissimilar, with a Tanimoto similarity coefficient of 

only 0.21, but exhibit an extremely similar biological response and are both active 

according to assay data.  

 The improved modeling performance shown after the incorporation of 

biological data reinforces that QSAR techniques alone are not sufficient for accurate 
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modeling of complex biological systems. This study demonstrates that while applying 

bioassay data in the form of a biological similarity score may not absolve QSAR of all 

fundamental shortcomings, it could lead to considerable progress in the resolution of the 

activity cliff problem that plagues computational modeling of biological system 

responses.
25,27-30

 Successful integration of biological similarity and bioassay data into 

traditional QSAR techniques will lead to the development of models that show 

consistently higher predictivity, and thus will be far more useful in the drug discovery 

process. 

Conclusion 

 In this study, a large and diverse data set of 9,376 CYP2C9 inhibitors and 11,463 

non-inhibitors was compiled. This data set was used to develop several different QSAR 

models, which were then validated by using an internal 5-fold cross-validation approach. 

The resulting models were then used to predict an external dataset of 9,294 inhibitors and 

11,361 non-inhibitors. In both the internal validation and external predictions, the 

consensus model showed similar predictivity to the best performing individual models, 

and the models as a whole showed excellent performance considering the scale of the 

data set as compared to previous studies. 

 Upon further examination of the dataset and the modeling results, it became 

apparent that attempted prediction of the response of a complex biological system on 

such a large and diverse dataset was resulting in a decreased predictivity due to activity 

cliff issues. In an attempt to resolve these issues, a novel approach was used to 

incorporate biological response and bioassay data into traditional QSAR modeling 
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approaches via a biosimilarity score. The resulting hybrid model showed improved 

performance as compared to the models created using only QSAR methods, and suggests 

the necessity of incorporating biological response data into future modeling approaches 

for optimal performance.  
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Figures 

  

Figure 1. Chemical space occupied by modeling set of 9,376 actives (CYP2C9 Inhibitors, shown in 

red) and 11,463 inactives (CYP2C9 non-inhibitors, shown in purple) shown using top 3 principle 

components of MOE descriptors. 
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(a) 

 

(b) 

Figure 2. Statistics for performance evaluation for the four individual models and the consensus 

model for (a) internal five-fold cross validation; (b) prediction results for 20,655 compound 

external validation set 
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(a) 

 

(b) 

Figure 3. (a) Comparison of statistical performance of models using only QSAR and models using 

QSAR supplemented with Biological Similarity data. (b) ROC Curve comparison of model 

performance using only QSAR (left) with using QSAR supplemented with Biological Similarity 

data (right) 
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Table One. Examples of sets of compounds from the data set. Included in each set is a predicted 

compound, the biological nearest neighbor of that compound, the chemical nearest neighbor of 

that compound, the biological and chemical similarity scores of each neighbor relative to the 

predicted compound, and the experimental assay activity of each compound. Biological 

Similarity was calculated using WEBS. Chemical similarity was calculated using Tanimoto 

Coefficient. 

 RF MOE SVM 

MOE 

RF Dragon SVM 

Dragon 

Consensus 
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FCalculated 5.442 2.337 6.059 2.112 3.892 

FCritical 1.026 1.026 1.026 1.026 1.026 

Table 2: Results of an F-test performed to evaluate if improvement seen in hybrid 

modeling approach were statistically significant. 
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