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ABSTRACT OF THE DISSERTATION

Topics in compositional, seasonal and spatial-temporal

time series

by Kun Chang

Dissertation Director: Professor Rong Chen

This dissertation studies several topics in time series modeling. The discussion on sea-

sonal time series, compositional time series and spatial-temporal time series brings new

insight to the existing methods. Innovative methodologies are developed for model-

ing and forecasting purposes. These topics are not isolated but to naturally support

each other under rigorous discussions. A variety of real examples are presented from

economics, social science and geoscience areas.

The second chapter introduces a new class of seasonal time series models, treating

the seasonality as a stable composition through time. With the objective of forecasting

the sum of the next ` observations, the concept of rolling season is adopted and a

structure of rolling conditional distribution is formulated under the compositional time

series framework. The probabilistic properties, the estimation and prediction, and the

forecasting performance of the model are studied and demonstrated with simulation

and real examples.

The third chapter focuses on the discussion of compositional time series theories in

multivariate models. It provides an idea to the modeling procedure of the multivariate

time series that has sum constraints at each time. It also proposes a joint MLE method

for threshold vector-error correction models. This chapter interprets the methodologies

ii



with an real example of the U.S. household consumption expenditures data. Threshold

cointegration effects are analyzed on the U.S. real GDP growth rate. The estimation

of TVECM is compared by the current two-step estimation method and the proposed

joint MLE approach.

Sensor allocation problem is studied in Chapter 4 under spatial-temporal models

in Gaussian random fields. Given observations from existing sensors, the problem is

solved by minimizing the integrated conditional variance based on different forecasting

purposes. In this chapter, the time series are measured at different locations with

both spatial and time series correlations. The spatial-temporal covariance structure

is extensively discussed under both separable and nonseparable cases. The model is

finally applied to the ozone level measurements in Harris County, Texas.
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Chapter 1

Overview

1.1 Linear Time Series Models

We first consider a class of linear time series models that has been popular for several

decades in time series analysis. The era of time series modeling began with linear

models in Yule (1927) where the autoregressive (AR) model was first introduced in

the study of sunspot numbers. After that, there are three main approaches to time

series analysis, the exponential smoothing model, the linear stochastic model by Box

and Jenkins (1994), and the spectral analysis, which is the time series analysis in the

frequency domain (Priestley (1983) and Brockwell and Davis (1991)).

Among all models for scalar time series, the well-known autoregressive and moving

average (ARMA) model by Box and Jenkins (1994) is a landmark of the mature devel-

opment of statistical theory and methods for linear time series analysis. An ARMA(p, q)

model is defined as

xt = φ0 + φ1xt−1 + · · ·+ φpxt−p + εt + θ1εt−1 + · · ·+ θqεt−q,

where xt is a stationary time series and εt is a white noise with mean zero and variance

σ2
ε . The model parameters (φ0, φ1, . . . , φp; θ1, θ2, . . . , θq;σε) can be estimated by the

maximum likelihood estimation or least squared procedures together with the Durbin-

Levinson Algorithm and Innovations Algorithm. The estimation procedure and model

properties are extensively introduced in Brockwell and Davis (1991).

For the scalar nonstationary time series that has unit roots, the autoregressive inte-

grated moving average (ARIMA) model builds an ARMA structure on the differenced

time series to achieve stationarity. Moreover, seasonal random walks and seasonalities

can be included in the model as well. The seasonal ARIMA model has a general form
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of

Φ(Bs)∆s
Dxt = Θ(Bs)εt.

The seasonal ARIMA model is well-accepted in real applications. Moreover, it has

been using as the baseline model for some innovative time series forecasting models.

For example, Chen and Fomby (1999) proposed the stable seasonal pattern model and

compared it with the seasonal ARIMA model on forecasting of the monthly tourists

visiting Hawaii. More recently, Liu et al. (2015) compares the prediction power of the

proposed functional-coefficient seasonal time series model with the seasonal ARIMA

model on the Hawaii tourism forecasting problem as well.

The linear models are still popular since they are simple yet easy to explain. In

addition, The models always have good approximation to the mean structure of real

time series data. Various examples can be found in Shumway and Stoffer (2006) and

Tsay (2010). Furthermore, this theory can been extended to the multivariate vector

ARMA models, unit root and cointegration models. More details are provided in the

subsequent sections.

1.2 Vector Time Series Models

1.2.1 Linear Vector Time Series Models

Multivariate time series analysis plays an substantial role in econometrics and finance

recently. As extension of the univariate time series models, multivariate time series

models investigate interrelations among different time series. It reflects the dynamic

change of the full system and has great applications in topics such as stock return

prediction, term structure models and a series of econometric analysis.

The vector autoregressive (VAR) model is a well-developed and the most often used

model for interpreting the dynamic structure in multivariate time series analysis. It is

a natural extension of the univariate autoregressive models but incorporates the casual

relationship between the variables. For a stationary k-dimensional random vector yt,

it follows a VAR(p) model if it satisfies

yt = φ0 + φ1yt−1 + · · ·+ φpyt−p + εt, p > 0, (1.1)
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where φj , j = 1, . . . , p are the k × k coefficient matrices, φ0 is the mean vector. The

error process εt is a k-dimensional white noise with zero mean and covariance matrix

E(εtε
′
t) = Σε.

The model has a companion matrix φ∗ defined as

φ∗ =



0 I 0 0 · · · 0

0 0 I 0 · · · 0

...
...

...

0 0 0 0 · · · I

φp φp−1 φp−2 φp−3 · · · φ1


. (1.2)

The weak stationary condition of the VAR(p) model in (1.1) is to ensure that all eigen-

values of the companion matrix in (1.2) are bounded by 1 in modulus.

The model building process starts from a cross-correlation analysis between the

random vectors and confirms the necessity of VAR models. Then the order p is identified

by model selection criterion such as AIC, BIC and HQ (Hannan and Quinn (1979)),

or by chi-squared tests on models with consecutive orders. By gaussian assumption

on the error process εt, the model can be estimated using least square estimation

or conditional maximum likelihood estimation, which are asymptotically equivalent.

Multivariate Portmanteau tests are used for model checking of VAR models. The VAR

model is natural for forecasting purposes if properly fitted. The application of VAR

models are quite popular and universal. People can find more details and application

examples in Reinsel (2003), Tsay (2010), Lütkepohl (2009) and Tsay (2013).

The vector autoregressive moving average (VARMA) models are generalized from

ARMA models to multivariate cases. VARMA appear to be preferable from a theoret-

ical viewpoint, however, they are scarcely used due to estimation difficulties. In fact,

VAR models are much more widely employed because they are easier to implement

by least squares methods, while VARMA models typically require nonlinear methods.

Lütkepohl (2005) introduces the estimation methods of VARMA in details.

As a summary, linear VAR models will continue to be a powerful statistical model

for multivariate time series. Nevertheless, many econometric and financial applications

involve nonlinear dynamics, and linear time series models cannot capture the nonlinear
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phenomena such as asymmetry, regime-shifts or jumps. Therefore, nonlinear time series

models are of strong interests and will be introduced as one of the main topics in this

dissertation.

1.2.2 Threshold VAR Models

As noted above, nonlinear features are more and more notable in many applications.

Over the last three decades, nonlinear time series analysis has been advancing rapidly.

Threshold model is a common type of nonlinear time series models. In univariate cases,

threshold autoregressive model describes the regime switching behavior of the series.

The current state of the variable depends on the past value of some weak stationary

threshold variable. If the threshold variable is the series itself, the model is referred

as self-exiting threshold autoregressive model (SETAR) by Tong and Lim (1980), Tong

(1990) and Chan and Tong (1990). The threshold variable can be an exogenous variable

and it is referred to the threshold autoregressive (TAR) model (Tong (2011)).

Similarly, the VAR models can also be generalized to capture the regime switching

pattern to some threshold variables. For a k-dimensional time series yt, the TVAR(p)

model with threshold variable γt and delay d is specified as,

yt = µ(j) +φ
(j)
1 yt−1 +φ

(j)
2 yt−1 + · · ·+φ(j)

p yt−p + ε
(j)
t , when γj−1 < γt−d ≤ γj , (1.3)

where j is the number of regimes. This model is widely used in econometrics, for

example, Fazzari et al. (2011) discussed the asymmetric fiscal policy shocks on the U.S.

economic activities using threshold vector models.

Threshold tests are preliminary before the modeling process. The arranged autore-

gression method by Tsay (1998) is one of the most widely test for TVAR model. It

is an extension of the univariate threshold test by Tsay (1989). With a pre-specified

VAR order p and a given threshold variable γt, the arranged regression can detect the

threshold pattern among possible values of γt−d by an F -test in univariate case and

chi-squared test in multivariate case. The delay d corresponding to the most significant

test statistic. The threshold value is located by concentrated LS method. It is picked

to minimize the overall SSE, AIC or log-likelihood values by grid search among sorted
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threshold values. The t-ratio plots of the recursive regression coefficients versus the

ordered threshold values are informative in detecting threshold pattern and threshold

location as well. Once the threshold value and regimes are determined, the other pa-

rameters can be estimated by OLS within each regime. Moreover, some extreme values

in the sorted threshold variable are trimmed out to ensure the number of observations

in each regime. This approach is both powerful and easy to understood, and it will be

extensively used in the remaining of the dissertation in both univariate and multivariate

cases.

Beyond Tsay’s method, Hansen (1997) used an alternative testing approach for

two-regime threshold models. It gives the threshold value and the model estimation

simultaneously with the test result and allows a test on more than two regimes. The

distribution properties of the threshold estimator are discussed in Hansen (1999) and

Hansen (2000). There are other threshold tests such as the portmanteau test in Petruc-

celli and Davies (1986), the quasi-likelihood ratio test in Chan (1990), Chan and Tong

(1990) and Ling and Tong (2005).

1.3 Cointegration Models

1.3.1 Linear Cointegration and Tests

Traditionally VAR models are suitable for stationary time series and the trends can be

included as deterministic terms. Later in 1980s people discovered the stochastic trends

and cointegration effects between the variables, indicating that new models are desired

to separate the long-run relations in the traditional VAR model.

Cointegration is a statistical property that reflects the long-run relations between

the multivariate time series variables. First of all, people need stationarity as the

fundamental property in the modeling of time series. However, many series are non-

stationary with trends or unit-roots. The unit-roots type non-stationarity is the one of

particular interests, and people call the series is integrated. In case of unit-roots, we

need to take differences on the original series to avoid the so-called spurious regression,

which gives fake significance and therefore false regression results.
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While it is common to achieve stationarity by taking differences on the original se-

ries for unit-root non-stationary series, the cointegration is the phenomenon that the

linear combination of two or more non-stationary series is stationary. The concept of

cointegration was first introduced by Engle and Granger (1987), describing the long-run

equilibrium between the multivariate time series variables in economics. With presence

of cointegration, there is a common trend between the series and taking differences

on the original levels will result in a overdifferenced model. The existence of cointe-

gration determines the necessity of the vector error correction model (VECM). The

VECM was stated by the Granger representation theorem. For a general k-dimensional

VARMA(p, q) model with m (m < k) cointegrating vectors, the error correction repre-

sentation is

∆yt = ΓDt + αβ
′
yt−1 +

p−1∑
i=1

Φ∗
i∆yt + εt −

q∑
j=1

Θ∗
jεt−j, (1.4)

where t = 1, 2, . . . , T , and εt are independent k-dimensional Gaussian variable with

mean zero and given variance structure. Here β
′
yt−1 is the error correction term that

denotes the deviation from the equilibrium. The deterministic effects are represented by

Dt. The error correction term β
′
yt−1 is unit-root stationary because of cointegration;

and the vector α is the adjustment coefficient that measures how fast the deviation move

to the long-run equilibrium. The matrices Φ∗i and Θ∗j are the adjusted coefficients of

the VARMA(p, q) model. The system of VECM is stationary and the typical modeling

procedure of the vector time series models are similar to apply.

Cointegration is a natural concept in economics. The purchasing power parity and

the expected hypothesis of term structures are typical examples of cointegration. The

former has cointegration between the nominal exchange rate and foreign and domestic

prices, and the latter describes the common trend between the nominal interest rates

at different maturities. In financial area, cointegration arises between the prices of the

same stock but trading on different markets. Such an example is discussed on Tsay

(2010). In high frequency trading area, cointegration effect is extensively discussed

for statistical arbitrage opportunities. This dissertation focus on the application of

cointegration in economics, where it is considered as a long-run equilibrium relationship.
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Johansen’s Cointegration Test

There are two main methods for testing of cointegration and estimation of cointe-

grating vectors. The Engle-Granger two-step method (1987) is straightforward as it

assumes the cointegration relationship is known between two unit-root nonstationary

time series, and the cointegrating vector can be estimated by OLS between the two. The

cointegrating residual from the OLS is formed in the first step, and the null hypothesis

of no cointegration can be tested by the unit root test on the residual series. In the

same time, due to the spurious regression under the null hypothesis of no cointegration,

the distributions for the cointegrating residual based unit-root tests are not standard

Dickey-Fuller distributions. Phillips and Ouliaris (1990) gave the critical values of the

distribution by simulation.

Engle-Granger’s two-step method has the major restriction that it only allows the

estimation of one cointegrating vector and assumes the cointegration between specific

variables in advance. The test inJohansen (1991) is the maximum likelihood approach

that allows the testing and estimation of multiple cointegrating vectors in the system.

It is the major tool we use in this dissertation for cointegration analysis.

Johansen’s test applies on the matrix Π = αβ
′

and the cointegration relations are

determined by the matrix Π in the following schemes,

1) Π = 0, which means there is no cointegration, and the model is built on the differ-

enced levels of ∆yt.

2) rank(Π) = k. In this case equation 3.1 can be arranged into the VARMA model

on original levels, which means that the components of yt are all stationary and no

difference is needed.

3) rank(Π) = m < k. Now we have decomposition that both α and β are k by m full

rank matrices, representing that there are m cointegration relations in the system.

With this formulation, the existence of cointegration can be tested by analyzing the

rank of Π. Moreover, the specific number of cointegration relations in multivariate

models can be detected by sequentially using the nested tests

H(0) ⊂ H(1) ⊂ · · · ⊂ H(m) ⊂ · · · ⊂ H(k)
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where m is an integer between 0 and k − 1. The likelihood ratio test results in two

types of rank tests including the trace test and the maximum eigenvalue test. It is

proved that the two test statistics are not chi-squared distributed due to the existence

of unit roots. The limiting distribution of the test statistics are functions of Brownian

motion and the critical values can be derived by simulation. The details of the testing

methodology and procedure are described in Appendix.

1. Trace Test

It corresponding to the hypothesis testing

H0 : rank(Π) = m vs H1 : rank(Π) > m

where m is an integer between 0 and k − 1. The trace test statistic is defined as

LR = −T
k∑

i=m+1

log(1− λi).

2. Maximum eigenvalue Test

It corresponding to the hypothesis testing

H0 : rank(Π) = r vs H1 : rank(Π) = r + 1

where m is an integer between 0 and k − 1. The test statistic is defined as

LR = −T log(1− λm+1).

It is understood that in Johansen’s trace test, if the rank is m, then the eigenvalues

of λm+1, · · · , λk should be zero, and the value of the test statistic should be small;

otherwise, one rejects the null. The same rationale applies to the maximum eigenvalue

test.

1.3.2 Threshold Cointegration

Balke and Fomby (1997) proposed the concept of threshold cointegration. They are

motivated that with cointegration, the movement toward the long-run equilibrium may

not occur in every period. In many economic situations, the system will move back to

equilibrium only when the deviations from the equilibrium exceed some threshold. For
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example in the financial markets, the asset returns are free to diverge within a band

due to the transaction cost, and result in arbitrage possibilities. In economics, the

government will not make interventions in the foreign exchange markets until the ex-

change rate fluctuates out of the band. In other words, the adjustment of the deviations

from equilibrium is discrete and it can be modeled in terms of threshold cointegration.

Mathematically, it means that the error correction term in the VECM model follows

the SETAR model. The three regime threshold cointegration model is ,

zt = β
′
yt =


ρ

(1)
0 + ρ(1)(L)zt−1, when zt−d < γ1,

ρ
(2)
0 + ρ(2)(L)zt−1, when γ1 ≤ zt−d < γ2.

ρ
(3)
0 + ρ(3)(L)zt−1. when γ2 ≤ zt−d < γ3.

(1.5)

where ρ(2)(L) are lag polynomials, d is the delay in the error correction process and

u
(j)
t is the innovation process with mean zero and standard deviations σ(j), j = 1, 2, 3.

The threshold variable is the error correction term itself, though, it can be generalized

to be an exogenous weak stationary variable γt. The stationarity conditions for the

univariate threshold model when lag order is 1 can be found in Chan et al. (1985).

As suggested by Balke and Fomby, the testing of threshold cointegration involves

two parts. The testing of cointegration and threshold effects are performed separately.

We can first test the cointegration, which is called the global behavior. The available

cointegration tests such as the Engle-Granger procedure and Johansen’s procedure are

ready to use. Once the cointegration relationship is confirmed, the error correction term

is estimated and assumed to be known for the threshold test on it, which is referred as

the local behavior. The arranged autoregression approach by Tsay (1989) or Sup-Wald

test by Hansen (1999) can be applied. The latter allows testing for more than one

threshold values and hence is more general than Tsay’s method.

The application of threshold cointegration has been discussed extensively in eco-

nomics. The empirical study of purchasing power parity has been one of the hot topics.

Economists had great discussions of the nonlinearities such as threshold effect in the

PPP theory, and proceeded to discover the threshold cointegration feature. For exam-

ple, Heimonen (2006) found the evidence of threshold cointegration in the purchasing



10

power parity based on the asymmetry due to the sign of deviation, and the dependency

of the asymmetry to the exchange rate regime. Similarly, the threshold cointegration

among effective nominal exchange rates and import prices are studied in Al-Abri and

Goodwin (2009) and Nakagawa (2010).

1.4 Compositional Time Series

Compositional data are data where the elements of the composition are non-negative

and sum to unity. They usually arise from non-negative data such as counts, area,

weights and expenditures that scaled by the total, describing the parts of the whole

quantitatively. Compositional time series are the compositional data that changes by

time. For a specific time t, we have a composition xt consists of D elements and satisfies

xt = (x1t, x2t, . . . , xDt) , x1t > 0, . . . , xDt > 0, x1t+x2t+. . .+xDt = 1, t = 1, . . . , T.

Notice that the composition is completely specified by the components of a (D − 1)-

dimension sub vector by the sum constrain. We could define d = D − 1 for simplicity.

The compositional data usually comes in the original measurements such as counts

and lengths. Mathematically we call this original measurements as a basis z. It is

a D × 1 vector of positive components (z1t, . . . , zDt) that all recorded on the same

measurement scale. And the components in a composition are determined by

xit = zit/(z1t + · · ·+ zDt), i = 1, 2, . . . , D, t = 1, . . . , T. (1.6)

Aitchison (1986a) has developed simple statistical methodologies for compositional data

analysis. He provided detailed information on the statistical properties, the estimation

procedures and the applications of some compositional models. Normality is achieved

by several transformation methods on original compositional data. Logratio transfor-

mations are the most popular ones that include the isometric logratio transformation

(ILR), the centred logratio transformation (CLR) and the additive logratio transforma-

tion (ALR).

The isometric logratio transformation introduced by Egozcue et al. (2003) is a trans-

formation from simplex SD into the real space Rd but with more complex vectors and

hence is hard to interpret.
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The centred logratio transformation is defined as

yt = clr(xt) =

(
log

(
x1t

g(xt)

)
, log

(
x2t

g(xt)

)
, . . . , log

(
xD,t
g(xt)

))
; (1.7)

where g(xt) is the geometric mean. Quintana and West (1988) was the first to use the

CLR transformation to analyze the compositional time series data. Because of its re-

tained singularity problem, people incorporate kinds of methods to solve the singularity

under the CLR transformation such as Dirichilet approach.

The additive logratio transformation is the most widely used one because of its sim-

plicity. For a composition xt = (x1t, x2t, . . . , xDt), the additive logratio transformation

is defined as

yt = alr(xt) =

(
log

(
x1t

xDt

)
, log

(
x2t

xDt

)
, . . . , log

(
xD−1,t

xDt

))
. (1.8)

This is a transformation from the data sample space in the simplex SD into the real

space Rd by assign a base component xDt. More important, the choice of base compo-

nent xDt is flexible due to the invariance property of the transformation. Finally, yt

is shown to be multivariate normally distributed in Aitchison (1986a), and standard

multivariate models such as VARIMA can be directly applied. This approach is widely

used in compositional time series analysis. For example, Brunsdon and Smith (1998)

used the log-normal based ARIMA model on the additive logratio transformation of

UK poll data on vote intentions. A regression model with VARMA errors was fitted

to illustrate the compositional time series of mortality events in Los Angeles in Ravis-

hanker et al. (2001). Mills (2010) tried to predict UK GDP components through VAR

model under compositional transformations. In this paper we apply this approach to

analyze the compositions from US household expenditures data.

1.5 Spatial-Temporal Models

Spatial-temporal models arise when data are collected across time as well as space. It

has been widely used in environmental sciences since environmental data usually have

both spatial and temporal components. The history of spatial-temporal analysis dates

back to 1980s when Bilonick (1985) started to build the model for the acid rainfall data
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in in a series of his papers. Another example would be the monitoring sensor network

where data are collected at equally spaced time intervals and fixed sensor locations.

Then data analysis has to take into account of spatial dependence among the monitors

as well as the temporal correlations. Until recently, researchers in diverse areas such

as climatology, ecology, catastrophe insurance institutes and real estate marketing are

developing increasing interests in analyzing the spatial-temporal models.

A spatial-temporal process Y (s, t) is defined as

{Y (s, t) : s ∈ Ω, t ∈ R} ,

where Ω ⊂ Rd and t is discretized in R. The key probabilistic properties of the process

are stationarity and separability.

Weak stationarity

The process Y (s, t) is weak stationary if it satisfies

• E(Y (s, t)) = µ, µ is a constant;

• Cov(Y (s, t), Y (s+ h, t+ u)) = C(h, u), for h ∈ Rd, u ∈ R.

The weak-stationarity guarantees the shift invariance of the process. A stronger form

is the strong stationarity but implies the weak stationarity in Gaussian assumption.

Separability

The process is separable if

Cov(Y (s, t), Y (s+ h, t+ u)) = Cs(h)Ct(u), h ∈ Rd, u ∈ R.

It indicates that the covariance structure is the multiplication of the pure spatial and

pure time covariance. Separability gives lots of advantage to the model such as the Kro-

necker product representation of the covariance structure, and it can greatly reduce the

computational complexity if Y (s, t) is high-dimensional. Moreover, the conditional in-

dependence property in separable covariance structures can reduce the spatial-temporal

process to a pure spatial case. The latter will be discussed in details in Chapter 4.

The separable covariance structure is convenient, however, real data are usually not

separable and more complex nonseparable structures are embedded. Actually, most of
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the spatial-temporal covariance functions have a interaction parameter that controls the

separability of the model. Therefore, separability tests are desirable in the procedure.

Fuentes (2006) designs a separability test by spectral analysis, while Mitchell et al.

(2005) proposes the likelihood ratio test on the admissible covariance families by Cressie

and Huang (1999) and Gneiting (2002). The latter is discussed further in Genton (2007)

and Li et al. (2008).

With measurements from locations s and time t, Y (s, t) has a typical model struc-

ture as,

Y (s, t) = µ(s, t) + ε(s, t), (1.9)

where µ(s, t) is the mean structure and ε(s, t) is the error process. The error process is

usually assumed to be Gaussian ε(s, t) ∼ N(0,Σ(s, t)). The random vector Y (s, t) is

multivariate normally distributed so that a lot of statistical theories such as maximum

likelihood estimation and likelihood ratio test are available for use.

As can be seen, the key issue for spatial-temporal modeling will be the modeling of

the covariance structure in the error process. Difficulties happen in using an admissible

covariance function to model the interactions between spatial and time correlations.

An admissible covariance function should be positive definite and stationary. People

have been researched in this topic for decades and make great contributions in building

admissible covariance function families.

In the early stage, literatures concentrate on spatial statistics in Matern (1986)

and Cressie (1993). Cressie and Huang (1999) proposed a generic approach to develop

parametric models for spatial-temporal processes. The method relies heavily on spectral

representations for the theoretical space-time covariance structure as generalization re-

sults of Matern (1986) for pure spatial processes. This approach is powerful but depends

much on Fourier transform yet not trivial for applications. Gneiting (2002) provides

a general class of valid spatial-temporal covariance models based on the approach of

Cressie and Huang (1999). The popularity of this topic keeps inspiring more advances

in Mitchell et al. (2005) and De Luna and Genton (2005). Recent contributions to

admissible covariance families are reviewed in Gneiting et al. (2007).
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Among the valid covariance functions, Gneiting (2002)’s model worths more atten-

tion since it is more general and more practical to apply. In his model, the completely

monotone function φ(t) and positive functions ψ(t) with a completely monotone deriva-

tive can be modeled as the spatial and temporal covariance structure separately. Then

a valid spatial-temporal covariance function is constructed as

C(h;u) =
σ2

φ(|u|2)d/2
ψ

(
‖h‖2

φ(|u|2

)
, (h, u) ∈ Rd × R, (1.10)

where σ2 is the variance of the random process, a, c > 0 and the smoothness parameters

α and γ are both restricted on (0, 1]. Furthermore, Gneiting (2002) provides lists of

valid examples for φ(t) and ψ(t). Generally, the model has many favored features for

modeling the real data and it will be employed in this dissertation as well.
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Chapter 2

Prediction-Based Adaptive Compositional Model For

Seasonal Time Series Analysis

2.1 Background

Seasonal time series are encountered in a wide range of applications. Traditionally,

there are three general classes of seasonal time series models, namely, the seasonal

ARIMA models (Box and Jenkins, 1994), the trend-and-seasonal models (Franzini and

Harvey, 1983) and the stable seasonal pattern models (Oliver, 1987; Chen and Fomby,

1999). All these models provide different perspectives in dealing with seasonality. In

particular, standard seasonal ARIMA models are in a multiplicative form while trend-

and-seasonal models are in an additive form. There is a vast literature on seasonal

time series analysis and seasonal adjustment, for instance, Cleveland and Tiao (1976);

Zellner (1978); Balchin (1995); Bell and Hillmer (1984); Findley et al. (1998); Ghysels

and Osborn (2001) and Box and Jenkins (1994).

On the other hand, compositional models of Aitchison (1986b) concentrate on the

proportion of each component relative to the whole. Compositional models, by mod-

eling ratios of proportions, successfully release the unit-sum constraint which makes

it possible to apply standard statistical methodologies. This type of models has been

used in many applications. For example, statistical analysis of percentages by weight

of major oxides in rock specimens can be used to identify new type of rock specimens,

as shown in a series of research by Thomas and Aitchison (2006). Another example is

the study of budget pattern of a household reflected by the proportions of total expen-

ditures allocated to several commodity groups. Aitchison (1986b) had analyzed such

an example on five commodity groups.

The seasonality in a time series can often be viewed as a certain type of regular
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composition of seasons over time. For example, for a monthly time series with an

annual seasonality, the twelve months can be seen as twelve components of the year (the

composition), and the seasonality can be seen as certain systematic distributive pattern

of the measurements among twelve months with respect to the total measurement of

the year. In the sales industry, the percentage of sales amount in each quarter out of

the year is often stable across different years while the yearly total may vary. Chen and

Fomby (1999) touched upon this observation and introduced a stable seasonal pattern

model, by assuming that the proportion (composition) of each part in a period remains

the same (probability-wise) across seasons.

In this chapter we introduce a class of seasonal time series model using the com-

positional principle to deal with seasonality. This class of models has the flexibility

in adapting to different forecasting objectives. Tiao and Xu (1993) first proposed the

adaptive idea using different estimation criteria for different forecasting horizons (ob-

jectives). This is a powerful idea and has been used by Tiao and Tsay (1994), who

proposed an adaptive scheme to approximate certain long-memory processes, and Tong

(1997), who gave further discussions on adaptive procedures. Here we adopt this idea

to adaptively choose different models for different forecasting objectives. Specifically,

in this chapter we consider the objective of forecasting the next `-season’s total for

different ` in a seasonal time series. Such forecasting tasks are often encountered in

many applications. For example, for certain industry, an accurate prediction of the

total quantity (e.g., sales, production) of next several months is important for better

inventory management and marketing strategy. See, for example, Kilger and Wagner

(2010).

The rest of the chapter is organized as follows. In section 2.2 we introduce a class of

compositional seasonal time series model based on the theory of compositional analysis.

Section 2.3 discusses the estimation, model checking and prediction procedures of the

model. Section 2.4 contains two simulation studies and section 2.5 for three real data

examples, including the forecasting comparison with standard seasonal ARIMA mod-

els. Finally, a predictive distribution approach is utilized to provide prediction with

certainty in any confidence levels.
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2.2 The Model

Seasonal time series, in some sense, is a form of compositional data. Suppose we have

a seasonal time series

X1, X2, . . . , Xt, . . .

with period d. Each seasonal cycle can be viewed as a basis. More specifically, the

observations of {Xt+1, Xt+2, . . . , Xt+d} comprise the basis of a d-parts composition.

This feature can be used to model the seasonal behavior of the time series.

The use of compositional analysis can be flexible. For example, in the seasonal time

series analysis, there are several different ways to construct the seasonal components.

Given monthly observations, the annual total can also be viewed as the sum of a four-

part composition of four quarters total, or the sum of a two-part composition of two

semi-annual totals. In this paper, we concentrate on the objective of forecasting the

next `-observations with ` varying from 1 to d.

Under this objective, we are motivated to partition the seasonal total into a two-

part composition that consisting of the sum of the first d − ` measurements and the

remaining ` measurements within one cycle. The seasonal time series of Xt can be

viewed as

. . . ;|Xt−d+`+1, . . . , Xt−1, Xt︸ ︷︷ ︸
Y1,t

, Xt+1, . . . , Xt+`︸ ︷︷ ︸
Y2,t

; |

Xt+`+1,, . . . , Xt+d−1, Xt+d︸ ︷︷ ︸
Y1,t+d

, Xt+d+1, . . . , Xt+d+`︸ ︷︷ ︸
Y2,t+d

; | . . .

Under this setting, at each time t, one complete season is formed by the previous

d− ` measurements including Xt and the next ` measurements in a rolling basis. Then

we can construct a rolling two-component (d− `, `) partition:

Y1,t =
d−`−1∑
i=0

Xt−i and Y2,t =
∑̀
i=1

Xt+i.

Following Aitchison (1986b), we assume that the ratio Y2,t/Y1,t follows the lognormal

distribution. That is,

Zt = log

(
Y2,t

Y1,t

)
∼ N

(
µt + β

′
rt, σ

2
t

)
, (2.1)
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where rt = (r1t, r2t, . . . , rmt)
′

is a set of exogenous variables and β = (β1, β2, . . . , βm)
′

is the coefficient vector. Let εt = Zt − µt − β
′
rt and εt = σtet. Model (3.4) can be

written as

Zt = µt + β
′
rt + σtet.

Compared with the traditional d-parts compositional model, this (d − `, `) partition

avoids the excessive estimation of the high-dimensional parameters that are not essential

in dealing with seasonality. Moreover, it is designed for the objective of forecasting the

next `-observations total. It provides a much simpler forecasting scheme following the

objective-based adaptive model selection principle.

As Zt, Zt+d, Zt+2d, . . . are constructed with the same partition of non-overlapping

periods (i.e.∑d−`−1
i=0 Xt−i+kd,

∑`
i=1Xt+i+kd), it is reasonable to assume that this subseries is station-

ary with same mean and variance. On the other hand, Zt and Zt+1 are from different

partitions, and hence would have different mean and variance.

As a result, with period d, we assume

Zt = µs(t) + β
′
rt + σs(t)et, s(t) = t mod d. (2.2)

The intercept µs(t) and error variance σs(t) reflect the variation of the proportions in the

season. Note that the time series Y1,t and Y2,t both consist of partial sums of overlapping

windows, which results in strong autocorrelations in Zt. In addition, it is natural for

a time series to possess serial correlations. To accommodate serial correlation beyond

the seasonal components, we introduce an ARMA(p, q) structure to the standardized

error in the compositional model. That is,

et =
Zt − µs(t) − β

′
rt

σs(t)
=
θ(B)

φ(B)
at, at ∼ N(0, σ2

a). (2.3)

Here B is the back-shift operator BXt = Xt−1 and θ and φ are MA and AR polynomials,

θ(z) = 1 + θ1z + θ2z
2 + · · ·+ θqz

q, φ(z) = 1− φ1z − φ2z
2 − · · · − φpzp.

Jointly (2.2) and (2.3) are referred to as a compositional seasonal component time series

model with (d− `, `) partition, denoted as CSC(`) model.
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Remark 1: The major advantage of the CSC model is its flexibility in the assump-

tions of the process Xt. This model is designed to analyze the proportions of seasonal

components instead of individual observations, allowing nonstationarity in the process

Xt. Moreover, the observations in Xt can be inferred from Zt once the latter is realized.

This fact introduces the simulation of CSC(`) in subsequent sections.

Remark 2: There are several ways of using CSC model for the prediction of the next

`-observations total. The next `-observations total can be predicted by a (d − `, `)

partition in the CSC(`) model. Or alternatively, it can be done by the summation of

the one to `-step ahead predictions from a CSC(1) model, a special class of CSC(`).

Remark 3: By combining (2.2) and (2.3), we have

φ(B) log Y2,t = φ(B)
(

log Y1,t + µs(t) + β
′
rt

)
+ θ(B)σs(t)et.

It shows that this model is a special case of a transfer function model, with the sum

of the preceding seasons as an input variable. For transfer function modeling, see, for

example, Box and Jenkins (1994).

Remark 4: To ensure uniqueness, we impose the constraint σs(t) = 1 when s(t) = 0.

This constraint is slightly easier to meet than the more natural constraint of Var(at) = 1.

Figure 2.1 shows a simulated series from CSC(1) model with d = 12. Details of

this series are given in section 2.4.1. A strong seasonality is seen together with certain

nonstationarity. Figure 2.2 shows the sample ACF and PACF of the series. It is seen

that those features can be easily misspecified as a seasonal ARIMA model.

2.3 Estimation, Model Checking and Prediction

2.3.1 Estimation

Define a set of indicator variables δj,t, δj,t = 1 if j = s(t) and δj,t = 0 otherwise.

Equation (2.2) can be rewritten as

Zt =

m∑
i=1

βiri,t +

d−1∑
j=0

µjδj,t + σs(t)et,

if there are m exogenous variables.
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Figure 2.1: Original data plot of simulated series (I) from model CSC(1).
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Figure 2.2: ACF and PACF of the simulated series (I).
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This is essentially a regression problem with time series errors that can be formulated

as

Zt = β
′
rt + µ

′
δt + σs(t)et and et =

θ(B)

φ(B)
at,

with at ∼ N(0, σ2
a) and σ0 = 1. Conditional maximum likelihood estimation proce-

dures can be used to estimate the parameters Θ =
(
β,µ, σs(t), φ1, . . . , φp, θ1, . . . , θq, σ

2
a

)
.

Specifically, the likelihood function can be written as,

L(Θ) =
(
2πσ2

a

)−T−p−d+1
2 ×

exp

− T−∑̀
t=p+d−`

(et − φ1et−1 − · · · − φpet−p − θ1at−1 − · · · − θqat−q)2

2σ2
a

 ,

where et = Zt−µ
′
δt−β

′
rt

σs(t)
and at can be iteratively calculated by

at = et − φ1et−1 − . . . φpet−p − θ1at−1 − · · · − θqat−q, t = p+ d− `, . . . , T − `,

conditional on the assumptions that ap+d−`−1 = · · · = ap+d−`−q = 0.

To find good initial values for MLE, we perform several iterations of the following

steps:

1. Given variance σ2
a and ARMA coefficients for et, parameters in (β,µ) can be es-

timated with standard regression estimators with known error covariance matrix.

In the first iteration, we can assume et are i.i.d.

2. Form residuals from the first step with estimated coefficient ε̂t = Zt− β̂
′
rt− µ̂′δt.

The seasonal residual variance can be estimated as

s2
j =

1

bt/dc

bt/dc∑
k=1

ε̂2j+kd, j = s(t) = 0, 1, . . . , d− 1

where bt/dc is the floor function and σ̂2
j =

s2j
s21

, σ̂2
0 = 1.

3. The ARMA coefficients φ̂(B) and θ̂(B) are estimated using the standardized

residual time series {et : et = ε̂t/σ̂s(t)}.
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2.3.2 Model Checking

We focus on the following aspects of model checking and validation.

1. Residual analysis

For model building procedures that involve time series analysis, the residual autocor-

relation analysis is an important step. Specifically, let

ât =
φ̂(B)

θ̂(B)
êt =

φ̂(B)

θ̂(B)

ε̂t
σ̂s(t)

=
φ̂(B)

θ̂(B)

Zt − µ̂s(t) − β̂
′
rt

σ̂s(t)

be the estimated residual series for CSC(`) model. A standard white noise test such as

the Box-Ljung test can be used. Normality tests such as marginal univariate distribution

test, bivariate angle distribution test and radius test can be used as well.

2. Out-of-sample forecasting performance

With the objective of making predictions, the prediction procedure and performance

measure are determined. The out-of-sample rolling forecast is implemented for predict-

ing the next `-observations total Y2,t =
∑`

j=1Xt+j for given observations X1, . . . , XT .

In the rolling forecast procedure, we define the starting point of the rolling forecast as

K, the value of Y2,t is predicted for each time t between K + 1 and T − ` + 1. The

prediction can be done with least square criterion or least absolute deviation criterion

described in section 2.3.3.

Denote the predicted value of Y2,t as Ŷ2,t. We use the mean squared forecasting

error (MSFE) as the performance measure, denoted as Q`

Q` =
1

T − `−K + 1

T−`+1∑
j=K+1

(Y2,j − Ŷ2,j)
2, (2.4)

where ` varies from 1 to d. The criterion of Q` is measured for both the seasonal

ARIMA model and the CSC model.

2.3.3 Prediction

Here we discuss the prediction procedure for the next `-observations total
∑`

j=1Xt+j ,

under both the least square criterion and the least absolute deviation criterion.
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Prediction under CSC(`) model

The CSC(`) model is relatively straightforward in forecasting of the next `-observations

total. Suppose we currently have the observations of Xt up to time t, the prediction

of next `-observations total Y2,t =
∑`

j=1Xt+j can be realized by noting that Y2,t =

Y1,t exp {Zt}, where Y1,t is observed at time t and Zt can be predicted using the joint

model (2.2) and (2.3). Note that at time t, the time series Zs is observed only up to

time t− `. In other words, we will need to predict Zt−`+1, . . . , Zt.

Let Ft be the sigma field generated by {ei, i = 1, . . . , t}. The least square prediction

is the conditional mean

Ŷ2,t = E [Y2,t | Y1,t,Ft−`] = Y1tE [exp {Zt} | Ft−`]

= Y1,tE
[
exp{µs(t) + β′rt + σs(t)et} | Ft−`

]
.

Here Y1,t is completely known as of time t, and et is the random part that follows a

stationary ARMA process with normal errors in (2.3). Hence

Ŷ2,t = Y1,t exp{µs(t) + β′rt + σs(t)êt|t−` + 0.5σ2
s(t)σ

2
t|t−`},

where êt|t−` = E [et | Ft−`] is the `-step ahead forecast from ARMA process of et, and

σ2
t|t−` = Var [et | Ft−`] is the prediction variance.

On the other hand, the prediction under the absolute deviation criterion is the

conditional median. Since the exponential function is a monotone function and, for

normal distribution, the median equals the mean, we have

Ỹ2,t = median [Y2,t | Y1,t,Ft−`] = Y1,t exp{µs(t) + β′rt + σs(t)êt|t−`},

where êt|t−` is the same `-step ahead prediction as above.

Prediction under CSC(1) model

Alternatively, the CSC(1) model can be used for the prediction of next `-observations

total, and in certain cases, it is more convenient than the CSC(`) model and yields

more accurate predictions in many cases. In this setting, the prediction of the next

`-observations total can be done by the summation of each individual season that is
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predicted by the CSC(1) model. Specifically, the prediction of Y2,t =
∑`

j=1Xt+j in-

volves the prediction for each single Xt+j . In the CSC(1) model,

Xt+1 = Y1,t exp{µs(t+1) + β′rt+1 + σs(t+1)et+1},

where Y1,t = Xt−d+2 + · · ·+Xt is known up to time t. Under the least square criterion,

the one-step forecast of Xt+1 is the conditional expectation

X̂t(1) = E [Xt+1 | Y1,t,Ft] = Y1,t exp{µs(t+1) +β′rt+1 +σs(t+1)êt+1|t + 0.5σ2
s(t+1)σ

2
t+1|t},

where êt+1|t and σ2
t+1|t are the one-step prediction and its prediction variance under

model (2.3). Here we assume rt+1, . . . , rt+` are observable at time t.

The two-step ahead least square forecast is also the conditional expectation,

X̂t(2) = E [Xt+2 | Y1,t,Ft]

= E
[
(Xt−d+3 + · · ·+Xt+1) exp{µs(t+2) + β′rt+2 + σs(t+2)êt+2} | Ft

]
=
(
Xt−d+3 + · · ·+ X̂t(1)

)
exp{µs(t+2) + β′rt+2 + σs(t+2)êt+2|t + 0.5σ2

s(t+2)σ
2
t+2|t},

which is based on the two-step ahead forecast of et+2, as well as the one-step forecast

of Xt+1 from the previous step. Similarly, we can get the `-th step forecast X̂t(`),

X̂t(`) =
(
Xt−d+`+1 + · · ·+Xt + X̂t(1) + · · ·+ X̂t(`− 1)

)
× exp{µs(t+`) + β′rt+` + σs(t+`)êt+`|t + 0.5σ2

s(t+`)σ
2
t+`|t}.

Then the prediction of Y2,t is Ŷ2,t = X̂t(1) + · · ·+ X̂t(`).

Prediction is simpler under the absolute deviation criterion. The one-step prediction

is

X̃t(1) = median [Xt+1 | Y1,t,Ft] = Y1,t exp{µs(t+1) + β′rt+1 + σs(t+1)êt+1|t},

and the `-th step prediction is

X̃t(`) = median [Xt+` | Y1,t,Ft]

=
(
Xt−d+`+1 + · · ·+Xt + X̃t(1) + · · ·+ X̃t(l − 1)

)
× exp{µs(t+`) + β′rt+` + σs(t+`)êt+`|t},

where êt+`|t is the `-step ahead least square forecast of et+` from the ARMA process.
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2.4 Numerical Examples and Forecasting Performance Comparison

Here we present two simulated examples and three real examples to demonstrate the

prediction power of CSC models. We focus on out-of-sample forecasting performance

comparisons between CSC(`), CSC(1) and seasonal ARIMA models.

2.4.1 Simulation Examples

Simulation Example (I)

As described in section 2.2, the data generating process produces Zt based on model

(1), and the observations in Xt can be inferred from Zt. The first simulated series in

Figure 2.1 is generated by a CSC(1) process with white noise errors et ∼ N(0, 0.022).

No exogenous variables are assumed in this simulation example.

The parameters are set as σ = (σ0, . . . , σd−1)′ with σ0 = · · · = σd−1 = 1 and

µ = (µ0, . . . , µd−1)′ = (−2.45 − 2.50 − 2.38 − 2.50 − 2.40 − 2.38

−2.25 − 2.20 − 2.40 − 2.50 − 2.40 − 2.45)′.

Based on various selection criteria, the seasonal ARIMA model is selected as

(1−B)(1−B12)Xt = (1− θ1B − θ2B
2)(1− θ3B

12)εt,

and the standard rolling forecast procedure is applied.

We perform out-of-sample predictions using the three models respectively and ob-

tained Q` defined in (2.4) for different prediction horizons, `. The values of Q` are

plotted in Figure 2.3. It can be seen that, the ARIMA model performs worse than

CSC models for larger `. As the true model, CSC(1) performs the best among the

three models.

Simulation Example (II)

The second simulated series is generated from a CSC(1) model with AR(1)(φ = 0.8)

errors. The mean vector is the same as the previous example but its variance is larger.

Figure 2.4 shows the time series plot. It shows certain non-stationarity and strong

seasonality in the series. The ACF and PACF plots (Figure 2.5) are very similar to what
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Figure 2.3: ′∗′ denotes Q`,ARIMA; ′∇′ denotes Q`,CSC(1);
′4′ denotes Q`,CSC(`).

we commonly see for seasonal time series so that such series can be easily misspecified

by seasonal ARIMA models. In addition, the seasonal pattern is clearly seen through

the boxplots shown in Figure 2.6.

According to various criteria including the rolling forecast performance, the best

seasonal ARIMA model for the simulated series is

(1−B)(1−B12)Xt = (1− θ1B)(1− θ2B
12)εt.

The values of Q` for seasonal ARIMA, CSC(1)+AR(1) and CSC(`)+ARMA(p`, q`)

models are listed in table 2.1 and the rolling forecast starts at point K = 168. The

CSC(`) + ARMA(p`, q`) model gives a poor performance and the forecasting perfor-

mance of the seasonal ARIMA is not as good as CSC(1) +AR(1).

We also compare the yearly-total prediction performance of seasonal ARIMA and

CSC(1) + AR(1) by comparing the values of MSE at different lead time ` = 1, . . . , 12

(table 2.2). The CSC(1)+AR(1) model gives better predictions than seasonal ARIMA

for moderate prediction horizons.
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Figure 2.4: Original data plot of simulated series (II) from model CSC(1) +AR(1).
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Figure 2.5: ACF and PACF of the simulated series (II).
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Figure 2.6: Boxplots of logratio for simulated series (II).

Table 2.1: Comparison of forecasting performance: Q`,A for seasonal ARIMA model,
Q`,C(1) for CSC(1) +AR(1) model and Q`,C(`) for CSC(`) +ARMA(p`, q`) model for
simulated series (II).

Lead ` 1 2 3 4 5 6

Q`,A 0.89 3.88 8.67 15.34 24.45 34.81

Q`,C(1) 0.84 3.56 7.82 13.78 22.27 32.29

Q`,C(`) 0.88 4.08 9.44 18.05 28.97 39.65

Lead ` 7 8 9 10 11 12

Q`,A 45.69 57.27 71.66 91.07 115.45 145.84

Q`,C(1) 43.24 55.29 70.32 89.79 114.15 144.09

Q`,C(`) 48.80 51.44 70.30 102.06 130.05 187.99

Table 2.2: Comparison of yearly-total forecasting performance for simulated series
(II): MA for seasonal ARIMA, MC(1) for CSC(1) +AR(1), and ‘Chge’ denotes percent
of change(%) between the two.

Lead ` 12 11 10 9 8 7

MA 104.11 114.20 143.04 103.97 63.79 66.72

MC(1) 107.26 117.47 138.62 104.49 59.34 60.24

Chge 3.03 2.87 -3.09 0.50 -6.97 -9.71

Lead ` 6 5 4 3 2 1

MA 53.56 30.00 8.84 5.53 2.82 0.70

MC(1) 49.86 29.04 7.78 5.60 3.11 0.66

Chge -6.91 -3.20 -11.99 1.34 10.16 -6.25
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2.4.2 Real Examples

Real Example (I)

In this real example, the monthly number of applications for a certain type of govern-

ment benefit is analyzed. There are 167 observations in total and the analyzed series

is transformed in such a way that the models used are not affected. The prediction is

performed for the total application volumes of the next `-months for ` = 1, 2, . . . , 12.

The original series has known outliers at observations 105, 106 and 107. With the focus

of seasonality in this paper, we smooth these three observations with historical means of

the corresponding months in order to keep an objective discussion of the CSC model.

The transformed series after outlier smoothing is shown in Figure 2.7. The data is

analyzed by the seasonal ARIMA, CSC(`) and CSC(1) model, respectively.

The series has a strong seasonality as observed in the ACF and PACF plots (Figure

2.8). Beyond this, the application numbers for another type of benefit have strong

linear effect on the target series. We include the exogenous variable as rt in the seasonal

ARIMA model. Based on model selection criteria, the following seasonal ARIMA model

is analyzed for comparison,

(1− φ1B − φ2B
2)(1− Φ1B

12)(Xt + βrt) = (1 + Θ1B
12)εt.

For CSC(`), the components are constructed by the value of ` that varies from 1 to

12. Figure 2.9 gives the boxplots of logratio series Zt for ` = 3 and ` = 6 respectively.

The patterns in the boxplots show that the logratio series captures the seasonality in

the original series by the seasonal-dependent mean µs(t) and variance σ2
s(t). We use

period d = 12 for ` = 1, . . . , 8 and d = 24 for ` = 9, . . . , 12. The standardized error

process et follows strong autoregressive patterns, but the AR orders are not identical

for different `. Table 2.4 summarizes the coefficients and standard errors for the AR

estimation of the error process.

In the same time, the prediction of the next `-months total can be achieved by

taking summation of `-steps prediction from the CSC(1) model, as described in section

2.3.3. The CSC(1) + AR(1) model is fitted based on the evident AR(1) structure of

the error process.
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Figure 2.9: Boxplots of logratio for application volume. Left: ` = 3, Right: ` = 6.

Table 2.3: Model estimation for CSC(1) (upper panel) and CSC(3) (lower panel):
µs(t) is the seasonal mean and σs(t) is the seasonal standard deviation.

s(t) 0 1 2 3 4 5

µ1,s(t) -2.535 -2.449 -2.539 -2.698 -2.477 -2.434

σ1,s(t) 1 0.877 0.867 0.694 0.690 0.458

µ3,s(t) -1.198 -1.169 -1.212 -1.270 -1.288 -1.245

σ3,s(t) 1 1.134 1.255 1.031 0.997 0.732

s(t) 6 7 8 9 10 11

µ1,s(t) -2.095 -2.233 -2.289 -2.383 -2.443 -2.370

σ1,s(t) 0.471 0.410 0.687 0.444 0.454 0.423

µ3,s(t) -0.995 -0.900 -0.839 -0.968 -1.056 -1.100

σ3,s(t) 0.615 0.500 0.544 0.610 0.578 0.620
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Table 2.4: Model estimation for AR structrue of et. φ̂j : AR coefficients, se(φ̂j):
Standard errors. Notation ‘–’ for unavailable results due to different AR structrues.

` 1 2 3 4 5 6

φ̂1 0.72 1.27 1.19 1.23 1.26 1.32

se(φ̂1) 0.056 0.079 0.079 0.077 0.077 0.078

φ̂2 – -0.63 -0.23 -0.15 -0.16 -0.30

se(φ̂2) – 0.119 0.123 0.125 0.127 0.130

φ̂3 – 0.18 -0.17 -0.27 -0.29 -0.21

se(φ̂3) – 0.080 0.080 0.078 0.078 0.079

` 7 8 9 10 11 12

φ̂1 1.25 1.22 1.52 1.59 1.54 1.58

se(φ̂1) 0.077 0.077 0.067 0.062 0.066 0.063

φ̂2 -0.19 -0.18 -0.58 -0.65 -0.60 -0.64

se(φ̂2) 0.127 0.124 0.067 0.062 0.066 0.063

φ̂3 -0.26 -0.25 – – – –

se(φ̂3) 0.079 0.079 – – – –

The performance of the seasonal ARIMA, CSC(`) and CSC(1) models are com-

pared for the forecasting of the next `-months total application volume. The rolling

forecast starts from K = 134. Table 2.5 shows the square root of forecasting measure Q`

of the models. From table 2.5, it is seen that both CSC(`) and CSC(1) outperform sea-

sonal ARIMA significantly in relatively short term prediction when ` = 1, 2, . . . , 7. They

do not do as well as the ARIMA model in longer term predictions when ` = 9, 10, 11, 12.

Between the two CSC models, CSC(1) +AR(1) gives even better performance. As an

additional forecasting measure, the mean absolute forecasting errors (MAFE) in table

2.6 validate the better performance of CSC models in prediction lengths between 2 and

8.

To avoid the misleading conclusion from potential large prediction outliers, we show

the boxplots of the prediction errors (%) from the rolling forecast by ARIMA and

CSC(`) model in Figure 2.10. It provides clear evidence that the CSC(`) model per-

forms better than the ARIMA model with moderate prediction horizons.

Real Example (II)

In this example we analyze the U.S. industrial production index of energy (1997=100)
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Table 2.5: Comparison of forecasting performance for benefit application: Q`,A(×102)
for seasonal ARIMA model, Q`,C(`)(×102) for CSC(`) + AR(p`) model, Q`,C(1)(×102)
for CSC(1) +AR(1) model and ‘Chge’ denotes percent of change(%) between the two.

Lead ` 1 2 3 4 5 6

Q`,A 1.45 4.42 9.91 17.91 29.25 44.26

Q`,C(`) 1.27 3.12 6.18 14.01 27.89 39.93

Q`,C(1) 1.27 3.07 6.67 11.45 18.69 29.18

ChgeC(`) -11.95 -29.40 -37.69 -21.77 -4.66 -9.78

ChgeC(1) -11.95 -30.56 -32.66 -36.06 -36.11 -34.07

Lead ` 7 8 9 10 11 12

Q`,A 55.58 55.43 54.04 49.57 40.78 38.13

Q`,C(`) 51.58 57.61 65.69 77.81 65.98 112.96

Q`,C(1) 42.59 48.50 58.31 63.88 60.57 67.70

ChgeC(`) -7.19 3.93 21.57 56.97 61.78 196.21

ChgeC(1) -23.37 -12.50 7.90 28.87 48.51 77.54

Table 2.6: Comparison of forecasting performance for benefit application: MAFE`,A
for seasonal ARIMA model, MAFE`,C(`) for CSC(`) + AR(p`) model, MAFE`,C(1) for
CSC(1) +AR(1) model and ‘Chge’ denotes percent of change(%) between the two.

Lead ` 1 2 3 4 5 6

MAFE`,A 7.40 5.78 6.42 6.33 6.41 6.63

MAFE`,C` 7.85 5.84 5.11 5.49 6.18 6.22

MAFE`,C(1) 7.85 5.75 5.55 5.32 5.41 5.37

ChgeC(`) 6.06 1.06 -20.33 -13.28 -3.60 -6.07

ChgeC(1) 6.06 -0.62 -13.47 -15.90 -15.62 -18.88

Lead ` 7 8 9 10 11 12

MAFE`,A 6.39 5.73 4.87 4.35 3.83 3.57

MAFE`,C` 5.61 5.53 5.58 5.61 4.62 5.48

MAFE`,C(1) 5.56 5.33 5.16 5.04 4.72 4.67

ChgeC(`) -12.28 -3.47 14.48 29.01 20.68 53.67

ChgeC(1) -13.01 -7.11 5.81 15.81 23.19 30.76
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Figure 2.10: Boxplots of forecasting errors for `-months total, ` = 1, 2, . . . , 12.

from January 1977 to December 2002, with 312 observations, from the website

www.economagic.com.

The time series plot (Figure 2.11) shows strong seasonality with an upward trend.

Based on ACF and PACF plots (Figure 2.12) and a model selection procedure, the

seasonal ARIMA model

(1− φB)(1−B12) log(Xt) = (1− θ1B − θ2B
2)(1− θ3B

12)εt,

is used for comparison purpose.

Using a model selection procedure and detailed residual analysis, CSC(1) +AR(3)

is selected to model the series. Rolling forecast starts from K = 168. Table 2.7 presents

detailed forecasting performance comparison of the two models. The values of Q` and

the percentage change of Q` between the two models suggest that CSC(1) + AR(3)

performs better for longer prediction horizons such as ` = 6, . . . , 12.

Table 2.8 contains the values of MSE from the forecasting of yearly-total by both

seasonal ARIMA and CSC(1) +AR(3) models. It further shows that CSC(1) +AR(3)
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Figure 2.11: The total industrial production index of energy (1997=100) (US) (1977-2002).
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Figure 2.12: ACF and PACF of US industrial production index of energy.
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Table 2.7: Comparison of forecasting performance for US industrial production index
of energy: Q`,A for seasonal ARIMA model, Q`,C(1) for CSC(1) + AR(3), and ‘Chge’
denotes percent of change(%) between the two.

Lead ` 1 2 3 4 5 6

Q`,A 2.15 8.62 20.61 39.27 64.64 97.44

Q`,C 2.84 11.95 27.92 47.53 69.88 95.43

Chge 32.11 38.61 35.46 21.02 8.11 -2.06

Lead ` 7 8 9 10 11 12

Q`,A 138.60 187.35 243.86 301.48 360.56 427.87

Q`,C 129.40 171.72 221.49 267.72 302.87 342.13

Chge -9.17 -11.20 -16.00 -20.04 -6.64 -8.35

Table 2.8: Comparison of yearly-total forecasting performance for US industrial pro-
duction index of energy: MSEA for seasonal ARIMA, MSEC(1) for CSC(1) + AR(3),
and ‘Chge’ denotes percent of change(%) between the two.

Lead ` 12 11 10 9 8 7

MSEA 633.22 433.95 409.85 290.68 189.02 93.81

MSEC(1) 347.28 276.26 300.51 223.44 209.64 118.51

Chge -45.16 -36.34 -26.68 -23.13 10.91 26.34

Lead ` 6 5 4 3 2 1

MSEA 72.94 49.55 43.67 23.74 13.40 1.33

MSEC(1) 78.16 86.24 62.49 27.99 15.45 1.64

Chge 7.16 74.03 43.08 17.93 15.32 23.60

outperforms seasonal ARIMA in long horizon forecasting.

Real Example (III)

In this example we analyze the U.S. retail inventories/sales ratio for furniture, home

furnishing, electronic and appliance, with totally 132 observations from January 1992 to

December 2002, obtained from the website www.economagic.com. It is a nonstationary

time series with strong seasonality as shown in Figure 2.13.

The seasonal ARIMA model (1−φB)(1−B12) log(Xt) = εt, and CSC(1) +MA(3)

are selected to model the series. Rolling forecast starts from K = 72. The comparison

of forecasting performance is shown in table 2.9. It demonstrates that CSC(1)+MA(3)

outperforms seasonal ARIMA for almost all prediction horizons except for very short
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Figure 2.13: US retail inventories/sales ratio for furniture etc. (1992-2002).
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Figure 2.14: ACF and PACF of US retail inventories/sales ratio for furniture, etc.
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Table 2.9: Comparison of forecasting performance for US retail inventories/sales ratio
for furniture etc: Q`,A(×102) for seasonal ARIMA, Q`,C(1)(×102) for CSC(1)+MA(3),
and ‘Chge’ denotes percent of change(%) between the two.

Lead ` 1 2 3 4 5 6

Q`,A 0.29 1.21 2.62 4.61 7.54 11.89

Q`,C(1) 0.32 1.23 2.52 4.48 6.88 10.11

Chge 9.90 1.72 -3.85 -2.72 -8.83 -14.97

Lead ` 7 8 9 10 11 12

Q`,A 17.25 22.76 28.41 35.04 41.99 49.28

Q`,C(1) 14.21 18.75 23.81 29.21 34.49 40.98

Chge -17.67 -17.62 -16.19 -16.63 -17.86 -16.85

terms when ` = 1 and 2. In addition, the improvement of prediction is more significant

for longer forecasting horizons.

2.4.3 Predictive Distribution

The CSC model we proposed here is a prediction-based model, and it shows the supe-

rior forecasting power in previous sections. In this section, we are going to explore the

predictive distribution on the CSC model to give more insight of the prediction with

confidence levels. The method comes from the theory of confidence distribution in a

series of eminent work in Singh et al. (2007). Traditionally, people construct confidence

intervals or regions at some given confidence level based on some specific distribu-

tion assumptions. By the predictive distribution approach, we are able to analyze the

forecasting certainty at any confidence levels. For complex prediction models such as

the CSC model, it is attractive to apply this approach to get more certainty of the

predictions.

Note that we are able to construct prediction distribution for any prediction length

` and for any starting time t. The algorithm for deriving the predictive distribution is

described as follows,

1. Construct the series of Zt based on the CSC model, and get estimation of µ̂s(t)

and σ̂s(t) respectively.
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2. Construct êt from the previous step as,

êt =
Zt − µ̂s(t)
σ̂s(t)

.

Then perform standard ARMA procedure on êt to get estimations(
φ̂1, · · · , φ̂p; θ̂1, · · · , θ̂q

)
,

and their standard errors(
se(φ̂1), · · · , se(φ̂p); se(θ̂1), · · · , se(θ̂q)

)
.

3. Simulate one observation from N
(
φ̂i, se(φ̂i)

)
for each i = 1, · · · , p, denoted as

φ̂∗i . Similarly, simulate one observation from N
(
θ̂j , se(θ̂j)

)
for each j = 1, · · · , q,

denoted as θ̂∗j .

4. Iteratively get `-step prediction of êt,

ê∗t (`) = φ̂∗1ê
∗
t (`− 1) + · · ·+ φ̂∗pê

∗
t (`− p).

5. Derive the predicted value of Y2,t as

Ŷ
(1)

2,t = Y1,t exp
(
µ̂s(t) + σ̂s(t)ê

∗
t (`)

)
.

6. Perform Step 3 to Step 5 for n = 1000 times, get a series of predictive values,

Ŷ
∗
2,t =

(
Ŷ

(1)
2,t , Ŷ

(2)
2,t , . . . , Ŷ

(n)
2,t

)
,

then distribution of Ŷ
∗
2,t is referred as the predictive distribution of the predicted value

for the next `-months total starting at time t.

We apply this method to the first empirical example in section 2.4.2. The algo-

rithm is performed for three months total application volume prediction with ` = 3.

The histograms of Ŷ
∗
2,t are showed in Figure 2.15 for predictions that start from

t = 154, 155, 156 and 157 respectively.

The method of predictive distribution provides us the flexibility to have insight on

the prediction certainties. Take the simulation for t = 156 for example, we are able to

get answers for questions such as,
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Figure 2.15: Predictive distribution of CSC model on real example (I) when ` = 3. Prediction
starts from t = 154, 155, 156 and 157 respectively.
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1. What is the predictive interval at 90% confidence level?

Answer: The predictive interval is (334, 348).

2. How confident that the total application volume from t = 156 to t = 158 will be

greater than 340, 345 and 350?

Answer: The confidence is 60.5%, 25.6% and 2.1% respectively.

3. What is the lowest expectation of the application volume at 90% confidence level?

Answer: There is 90% confidence that the application volume will exceed 336.

The sample questions above provide us more indications of what we can get from the

prediction. With predictive distributions, we can stress the certainty of prediction at

any confidence levels in need.

2.5 Summary

While seasonal time series has been extensively discussed in a lot of literatures, this

chapter offers an innovative perspective of seasonality by combining the stable seasonal

pattern and compositional approach. The well-constructed compositional seasonal com-

ponent model is introduced in details about the model setting, estimation and prediction

procedures.

Compared with the Box-Jenkins seasonal ARIMA model, we provide a new model

with more general assumptions and better forecasting performance as well. Stationarity

is always a desirable property for most of the time series models. The nonstationary

patterns such as unit-roots and trends are usually modeled by differencing and co-

variate terms. Therefore, nonstationarity significantly increases the model complexity

especially in seasonal time series models where higher-order seasonal terms are pre-

sented. The proposed CSC model has the substantial advantage that it does not

require stationarity of the original seasonal time series so that the modeling process

will be simplified in this sense. In the other aspect, the compositional approach gives

the normally of the logratio series and allows us to model the non-seasonal error process

by pure ARMA procedures, which is much easier to deal with.



42

As a prediction-based model, the application of CSC model is flexible as well. It is

designed to predict the next `-seasons total numbers while ` can vary in a feasible range.

This feature is highly desirable in many applications such as inventory management,

marketing planing or operation management. The superior prediction power of the

model has been demonstrated by a series of empirical studies that covers government

operation, retail and energy production industries.
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Chapter 3

Compositional Time Series Analysis with Threshold

Cointegration Patterns

3.1 Background

The household consumption expenditure is an important topic that researchers and

economists are keeping heated interests in. As the major component of the Gross Do-

mestic Product in the United States, the household consumption expenditure takes

seventy percent of the total Gross Domestic Product. It significantly reflects the eco-

nomic health condition of the nation in tax, fiscal policy, inflation and purchasing

powers. Numerous literatures appear in the analysis of household consumption behav-

iors. Krueger and Perri (2006) discussed the effects of income inequality on household

consumption behaviors. Stephens Jr. (2004) examines the link between expectations

of future job losses and the subsequent impact on household consumption behavior.

The growth rate of household expenditures is a key factor in the model of asset pricing

kernel for evaluating the aggregate risk in Perri et al. (2008).

The household expenditures can be naturally categorized by different research pur-

poses. For example, it can be differentiated as durable and nondurable goods by major

type of products. It also can be recorded by different consumption functions such as

foods, education, health or transportation. In recent years, researchers are more and

more interested in applying quantitative methods to household expenditure analysis.

Barigozzi et al. (2012) try to find the statistical distribution properties of both the

aggregated and disaggregated household consumption data. They take attention to the

distribution of each component, but fail to consider the sum constrain in the individual

analysis. Del Boca and Flinn (2012) take into account the endogenous interactions

between the components and improve the prediction of household budget allocation by
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adding a list of participating constraints.

Among various categorical methods, the budget allocation by consumption functions

is of particular interests as they are substantial to reflect people’s daily life. This paper

focus on the cross-correlations between different consumption functions. as well as

the evolution of the household budget pattern on exogenous economic factors. We

release the sum constraint on the consumption category proportions by compositional

time series theories and build a VAR model on the logratio series. Then we find the

cointegration effect which describes the long-run equilibrium between the transformed

variables. Furthermore, threshold effects arise in the system when analyzing the model

tendency by exogenous variables. Therefore, the threshold cointegration model by

Balke and Fomby (1997) is studied on the cointegrating vector from the household

consumption data, and the threshold vector error-correction model is explored as well.

The discussion is organized as follows. The preliminary study on the household

data and the compositional transformation are introduced in section 3.2. The vector

error-correction model is also introduced based on the cointegration pattern in the VAR

model. The threshold effects are discussed extensively in this section. We also propose

a joint maximum likelihood estimation to the threshold VECM model as an extension of

the existing estimation method in section 3.3. Section 3.4 shows the model estimation

on the household data under joint MLE, and the model comparison results between the

linear VECM model and the threshold VECM models. The rolling forecast performance

are compared in section as well.

3.2 Preliminary Study on Household Consumption Data

3.2.1 The Data

The data are downloaded from the U.S. Bureau of Economic Analysis website. It is

annually data from 1947 to 2012 and measured in billions of real dollars. The data

is recorded for 13 consumption functions respectively in each year: Food and bever-

ages purchased for off-premises consumption; Clothing, footwear, and related services;

Housing, utilities, and fuels; Furnishings, household equipment, and routine household
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maintenance; Health; Transportation; Communication; Recreation; Education; Food

services and accommodations; Financial services and insurance; Other goods and ser-

vices; Net foreign travel and expenditures abroad by U.S. residents. We refer the

consumption functions as sectors in the remaining discussion.

Figure 3.1 shows the time series patterns of the expenditures in each sector. The

expenditures are strictly increasing in raw quantities, reflecting the overall improvement

of the economic condition since 1950’s. However, the expenditures for each sector have

different behaviors in percentages. In contrary to the substantial drop in food, clothing

and furnishing, the proportions of health, commutation, recreation and education have

readily increased over the past sixty years. The fact reveals that people have been

allocating more and more budget in their demand for cultural life. The sharp drop for

the transportation sector after 1980 is resulted from the rapid burgeon of computers

and internet. As can be seen, the patterns of proportions give us the intuition that the

household budget pattern has gradually moved its focus away from the basic needs in

foods and clothing, and gets into the higher level needs such as health, education and

recreations.

The 13 sectors cover almost all aspects of people’s life. However, it is infeasible

and unnecessary to simultaneously model 13 sectors. In this case, we aggregate similar

sectors together, trying to reduce the model into a reasonable dimension. Finally, five

components are defined with abbreviated names for convenience,

• z1: Aggregation of food and clothing, footwear, and related services. Note as food

and clothing later.

• z2: Aggregation of housing, utilities, fuels and furnishings. Note as housing and

furnishing later.

• z3: Aggregation of health, recreation and education,

• z4: Aggregation of communication and transportation,

• z5: Aggregation of all services and net foreign travels. Note as services later.
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Figure 3.1: US household consumption expenditures by sector: real US dollars (1947-2012).
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expenditure (1947-2012).
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The observations in zt are measured in US dollars, we can directly get the composi-

tions xt defined in Equation 1.6. Figure 3.3 shows the basic features of the compositions.

By aggregation, it is clearer that the household budget allocation to food, clothing and

related services keeps decreasing since 1947, and the consumption in health, educa-

tion and recreation has a steady increase in recent years. The consumption on other

categories are relatively stable with a slightly increase in services.

Based on Equation 1.8, we get the logratio series yt by choosing x1 as the base

series,

y1t = log

(
x2t

x1t

)
, y2t = log

(
x3t

x1t

)
, y3t = log

(
x4t

x1t

)
, y4t = log

(
x5t

x1t

)
.

Note that the choice of base series will not affect the model features due to the invariant

property of additive logratio transformation in Aitchison (1986a).

3.2.2 Cointegration: Vector Error-Correction Model

The upward pattern in Figure 3.4 indicates that the logratio series are not stationarity.

We further validate the existence of unit-roots by the exponentially decay patterns in

Figure 3.5 and the unit-root test. Given the unit-roots in yt, we apply the rank tests by

Johansen (1991) to find the cointegration effect and further determine the cointegrating
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Figure 3.4: The time series after additive logratio transformation of US Household Consump-
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Table 3.1: Johansen’s Trace Test Statistic and corresponding critical values

Test Statistic 10% Level 5% Level 1% Level

m ≤ 3 4.06 6.50 8.18 11.65

m ≤ 2 11.46 15.66 17.95 23.52

m ≤ 1 32.55* 28.71 31.52 37.22

m = 0 62.43 45.23 48.28 55.43

vectors. We assume a VAR(2) model on the differenced random vector ∆yt based on

evidences from previous sections. Both the trace test and maximum eigenvalue test

results are summarized in table 3.1 and table 3.2. They strongly support the fact that

there is one cointegration relation between the four random variables in yt.

Cointegration is the phenomenon that the linear combination of two or more unit-

root non-stationary series is stationary. With presence of cointegration, there is a

common trend between the series and taking differences on the original levels will

result in an over-differenced model. The linear vector error correction model (VECM)

is introduced as,

∆yt = µDt + αβ
′
yt−1 +

p−1∑
i=1

φ∗
i∆yt + εt −

q∑
j=1

θ∗jεt−j, (3.1)
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Figure 3.5: The logratio series and the corresponding ACF plot. Upper: Time series plots of
the four logratio series from LR1 to LR4. Lower: ACF plots of the logratio series.

Table 3.2: Johansen’s Maximum Eigenvalue Test Statistic and corresponding critical
values

Test Statistic 10% Level 5% Level 1% Level

m = 3 4.06 6.50 8.18 11.65

m = 2 7.40 12.91 14.90 19.19

m = 1 21.09* 18.90 21.07 25.75

m = 0 29.89 24.78 27.14 32.14
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Figure 3.6: Pattern comparison of y1t, y2t, y3t, y4t and the error correction term zt (1948-2011).

where t = 1, 2, . . . , T , zt−1 = β
′
yt−1 is the the error correction term and εt is a k-

dimensional Gaussian random variable such that εt ∼ N(0,Σ). The term of Dt stands

for the deterministic effects and the matrices φ∗i and θ∗j are the adjusted coefficients of

the VARMA(p, q) model. The error correction term zt is unit-root stationary based on

cointegration feature. Combind with the stationarity of ∆yt, Model 3.1 is stationary.

Applying Model 3.1 to the household data, the cointegration coefficient vector and

the rate of cointegration are estimated by Johansen’s MLE as,

α̃
′

= (−0.08,−0.04, 0.02, 0.26)
′
, β̃

′
= (1, 0.31, 0.13,−1.38)

′
.

The estimated error correction term z̃t needs to be unit-root stationary as proposed,

and we can validate this by a unit-root test with p-value of 0.01. Figure 3.6 shows the

behavior of the original series in yt and z̃t. It is clearly seen that stationarity is achieved

by linear combination of four unit-root pattern series. While z̃t fixed, the estimation of

µt and φ∗1 in model 3.1 are shown in table 3.3 with significance indicated by standard

errors .
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Table 3.3: Linear VECM model estimation on US household expenditures data

∆y1t ∆y2t ∆y3t ∆y4t

µt 0.013 0.024 0.013 0.010

(0.005) (0.005) (0.014) (0.005)

ECTt−1 -0.150 -0.068 -0.540 -0.021

(0.039) (0.042) (0.109) (0.043)

∆y1,t−1 0.227 -0.142 -0.202 0.200

(0.152) (0.164) (0.428) (0.169)

∆y2,t−1 0.182 0.544 1.047 0.244

(0.151) (0.163) (0.426) (0.168)

∆y3,t−1 0.024 -0.043 -0.159 -0.077

(0.047) (0.051) (0.133) (0.053)

∆y4,t−1 0.054 -0.062 0.199 0.095

(0.126) (0.136) (0.355) (0.140)

3.2.3 Threshold Cointegration

The previous section validates the cointegration effect and gives the stationary part as

z̃t = β̃
′
yt−1 = y1t + 0.31y2t + 0.13y3t − 1.38y4t.

With stationarity, we can proceed with further research on z̃t for its economic behaviors.

The household consumption is directly related to the household income level, the tax

levels, and the national GDP condition. We explored the statistical connections between

the long-run equilibrium z̃t and these key economic indicators, and found attractive

pattern between z̃t and the U.S. GDP growth rate.

GDP is one of the most widely discussed economic indicators. It is the key criterion

for policy makers to judge the economical condition of the nation and identify the im-

pact of factors such as the fiscal and tax policies. As the largest component, personal

consumption keeps contributing around 70% to the total US GDP. Therefore, we are

interested in the influence of US real GDP change on the household consumption pat-

terns. In particular, the threshold effect of US real GDP growth rate on the adjustment

process z̃t is identified and will be discussed extensively in this section. The annual US

real GDP growth rate (1947-2012) is shown in Figure 3.7. It is a stationary time series

that is eligible to be a threshold variable in the subsequent models.

Given the estimated cointegrating vector, we try the arranged autoregression test
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by Tsay (1989) for the threshold effect of GDP growth rate γt on z̃t. An AR(2) model

is imposed on z̃t and the threshold test is performed on lags 1 and 2 respectively. The

threshold pattern in γt−1 is stronger with p-value of 0.0045 hence it is picked as the

threshold variable. The Sup-Wald test by Hansen (1999) is a widely-used threshold test

as well. It allows testing for more than two regimes and is more general than Tsay’s

arranged autoregression model. Due to the length of our data, we do not expect more

than two regimes in the threshold model and Tsay’s test is straightforward in our case.

On the other hand, the threshold cointegration model by Balke and Fomby (1997) is

introduced to describe the threshold effect in the long-run equilibrium in cointegration

models. It identifies the threshold effect on itself but it can be generalized to use ex-

ogenous variable as the transition variable. Generally, a threshold cointegration model

is defined as

zt = µj + ρj,1zt−1 + ρj,2zt−2 + · · ·+ ρj,pzt−p + et, when θj−1 < rt−d ≤ θj , (3.2)

where j = 1, 2, . . . ,m denotes the state of the model if there are m regimes. The

coefficients in ρj depend on the state of rt from d time lags ago. The transition variable

rt can be the error correction term itself, or a weak-stationary exogenous variable.

As suggested by Balke and Fomby, the testing of threshold cointegration can be done

separately for cointegration and threshold effect. In previous discussions, we confirmed

the cointegration pattern with Johansen’s method, and discovered the threshold pattern

in the estimated error correction term z̃t using Tsay’s threshold test. In Tsay’s test, we

produced recursive least square estimates on arranged autoregression that is ordered on

the transition variable γt−1. The threshold value is identified to be 4.1 by minimizing

the overall AIC. The t-ratio plots in Figure 3.8 provide solid evidence for the threshold

effect of γt−1 on z̃t. The discontinuities at γt−1 = 4.1 in the t-ratio plots suggest that

a linear model on the error correction term is inappropriate whereas the two-regime

threshold model is strongly recommended.

The following equation gives the estimation of the threshold model on z̃t with US

real GDP growth rate at time lag 1 as threshold variable. We assume an AR(2) model

for each regime since all the coefficients are significant. The roots of the characteristic
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Figure 3.7: US real GDP growth rate in percentage (1947-2012).

Table 3.4: Comparison of the linear and threshold model on ECT

Criteria SSE AIC

Linear Model 0.074 -411.38

Threshold Model 0.056 -422.76

function for the outer regime are 1.147 and 5.25 and they ensure the stationarity of

the threshold model. A comparison of SSE and AIC between the linear model and the

threshold model on z̃t is summarized in table 3.4. It fits the process better than the

linear model with smaller SSE and AIC values.

z̃t =


0.147 + 0.874z̃t−1 − 0.526z̃t−2 + ut, if γt−1 ≤ 4.1,

0.030 + 0.682z̃t−1 + 0.166z̃t−2 + ut. if γt−1 > 4.1.

3.3 Joint Maximum Likelihood Estimation for TVECM

The classic threshold cointegration model by Balke and Fomby concentrates on the

threshold pattern of the cointegrating vector only, but the threshold effect may also exist

in the multivariate structure since the cointegrating vector is a linear combination of
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Figure 3.8: The t-ratio of arranged regression coefficients versus the ordered US real GDP
growth rate at time lag 1. From left: the tratio of intercept, AR(1) coefficient and AR(2)
coefficient.

them. Hansen and Seo (2002) provides the maximum likelihood estimation for the two-

regime threshold vector error-correction model (TVECM). The model with unrestricted

mean is defined as,

∆yt =


µ

(1)
t +α(1)β

′
yt−1 + Φ

(1)
1 ∆yt−1 + · · ·+ Φ

(1)
p−1∆yt−p+1 + εt, if γt−d ≤ γ0,

µ
(2)
t +α(2)β

′
yt−1 + Φ

(2)
1 ∆yt−1 + · · ·+ Φ

(2)
p−1∆yt−p+1 + εt. if γt−d > γ0.

(3.3)

The parameters of the model are (θ1,θ2; Σ1,β, γ) where θj =
(
µ

(j)
t ,α(j),Φ

(j)
1 , . . . ,Φ

(j)
p−1

)
,

with j = 1, 2.

It worths attention that the linear estimation of the cointegrating vector is likely

to be inaccurate due to the embedded nonlinearities. Hansen and Seo (2002) suggest

updating the linear cointegration by maximum likelihood estimation of the threshold

vector error-correction model, and the threshold value will be located simultaneously.

The threshold variable is defined as the error correction term itself, but it can be an

exogenous variable as long as it is stationary.

In the estimation of TVECM, Hansen’s approach concentrates on the threshold

structure in the vector error-correction model but ignores the threshold pattern in the

cointegrating vector. While most of the literatures focus on the empirical analysis

of two-dimensional yt where only one cointegrating vectors might appear, multiple

cointegration relations are common in higher dimensional cases. Hansen’s method will

lose information if there are multiple cointegrating vectors in the model. In this section,
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we propose the joint maximum likelihood estimation of the threshold vector error-

correction model and the threshold cointegration model on zt together.

Also, the two-regime threshold model for the error correction term zt is stated as

zt = β
′
yt−1 =


ρ

(1)
0 + ρ

(1)
1 zt−1 + · · ·+ ρ(1)

` zt−` + ut, when γt−d ≤ γ0,

ρ
(2)
0 + ρ

(2)
1 zt−1 + · · ·+ ρ(2)

` zt−` + ut. when γt−d > γ0.

(3.4)

Assume that the errors εt and ut are both i.i.d Gaussian random variable, and εt and

ut are independent. With this assumption, we propose the estimation of model (3.3)

and model (3.4) simultaneously by joint maximum likelihood estimation. The joint

log-likelihood is

L(θ1,θ2,ρ1,ρ2; Σ1,Σ2,β, γ)

= −n− p
2

log |Σ1| −
1

2

n∑
t=p+1

εt(θ1,θ2,β, γ)
′
Σ−1

1 εt(θ1,θ2,β, γ) (3.5)

−n
∗

2
log |Σ2| −

1

2

n∑
t=p+`

ut(θ1,θ2,β, γ)
′
Σ−1

2 ut(θ1,θ2,β, γ),

where n∗ = n − p − ` + 1, εt(θ1,θ2,β, γ) is the error of model (3.3) with embedded

parameters (θ1,θ2,β, γ), and ut(ρ1,ρ2,β, γ) is the error of model (3.4). The joint max-

imum likelihood estimation of (3.3) and (3.4) is realized by maximizing the objective

equation in (3.5).

Note that for threshold models defined above, we could first fix (β, γ) and get

least square estimation for the linear coefficients in (θ̂1, θ̂2, ρ̂1, ρ̂2). Then the estimated

covariance matrices can be easily obtained as

Σ̂1(β, γ) =
1

n− p
ε
′
t(β, γ)εt(β, γ), Σ̂2(β, γ) =

1

n∗
u
′
t(β, γ)ut(β, γ).

Thus the log-likelihood function in (3.5) reduces to

L(β, γ) = −n− p
2

log |Σ̂1(β, γ)| − n∗

2
log |Σ̂2(β, γ)|. (3.6)

Then we perform the following algorithm to get (β̂, γ̂),

1. Get initial value β0 from linear cointegration estimation, and derive its confidence

region based on the discussion in Johansen (1991). Form a grid on [γ`, γu] such
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that P (γ` ≤ γ ≤ γu) is constraint to a proper level. (Tsay (1998), Hansen and

Seo (2002)).

2. For fixed β0, get (θ̂1, θ̂2, ρ̂1, ρ̂2) and Σ̂1(β, γ), Σ̂2(β, γ) for each grid value of

γ ∈ [γ`, γu]. Find γ̂ that maximizes (3.6).

3. For fixed γ̂ from step 2, perform nonlinear maximization on β within its confidence

region and get optimal estimation β̂. Note that the initial value can be flexible

but should be within the confidence region.

4. Fix (β̂, γ̂), record the corresponding estimation in
(
θ̂1, θ̂2, ρ̂1, ρ̂2, Σ̂1, Σ̂2

)
.

Then we get the estimation of all parameters for the joint MLE approach.

3.4 Real Example: Household Consumption Data

3.4.1 Model Estimation

In the preliminary study we had confirmed the threshold pattern in the error correction

term, it is natural to check the threshold behavior of Model 3.1 on the same threshold

variable as well. With the estimated cointegrating vector from linear model, we try the

multivariate threshold test in Tsay (1998) to confirm the threshold effect of US real

GDP growth rate to Model 3.1.

We first apply Hansen’s approach on Model 3.3 to the household consumption data

with US real GDP growth as the threshold variable. The modeling results are summa-

rized in table 3.5. The proposed joint maximum likelihood estimation is then applied

to the household consumption data as well. By the procedure in section 3.3 on the

household consumption data, the updated cointegrating vector in threshold model is

estimated as,

ẑt = β̂
′
yt−1 = y1t − 0.42y2t + 0.002y3t − 0.027y4t.

The updated threshold value is located as γ̂ = 4.1. As the linear combination of yt, ẑt
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Table 3.5: TVECM estimation (Hansen’s) with γt−1 as threshold variable: lower
regime when γt−1 ≤ 4.1 and higher regime when γt−1 > 4.1.

Lower ∆y1t ∆y2t ∆y3t ∆y4t Higher ∆y1t ∆y2t ∆y3t ∆y4t

µt 0.008 0.021 0.010 0.002 µt 0.005 0.022 -0.019 0.027

(0.005) (0.006) (0.013) (0.006) (0.008) (0.008) (0.020) (0.010)

ECTt−1 -0.088 -0.062 -0.455 -0.076 ECTt−1 0.004 0.049 0.139 0.081

(0.026) (0.028) (0.066) (0.031) (0.064) (0.059) (0.151) (0.075)

∆y1,t−1 0.763 0.405 1.593 0.224 ∆y1,t−1 -0.236 -0.812 -1.181 0.263

(0.194) (0.204) (0.489) (0.227) (0.245) (0.226) (0.578) (0.287)

∆y2,t−1 -0.217 0.279 -1.138 0.288 ∆y2,t−1 -0.032 0.250 0.874 -0.179

(0.204) (0.214) (0.513) (0.238) (0.223) (0.206) (0.525) (0.261)

∆y3,t−1 0.003 -0.086 -0.389 -0.115 ∆y3,t−1 0.155 0.216 0.008 -0.022

(0.053) (0.056) (0.134) (0.062) (0.113) (0.104) (0.266) (0.132)

∆y4,t−1 0.240 -0.018 1.239 0.228 ∆y4,t−1 0.263 0.212 0.530 -0.114

(0.176) (0.185) (0.443) (0.206) (0.186) (0.172) (0.439) (0.218)

is stationary by unit-root test. For the threshold cointegration model of ẑt, we have,

ẑt =


0.042 + 1.590ẑt−1 − 0.761ẑt−2 + ut, if γt−1 ≤ 4.1,

0.019 + 1.103ẑt−1 − 0.179ẑt−2 + ut. if γt−1 > 4.1.

Evidences show that the threshold model on ẑt is stationary as well. The roots of

the characteristic function for the higher regime are 1.104 and 5.052, indicating the

stationarity of the threshold model. The estimation of threshold vector error-correction

model by joint MLE is summarized in table 3.6.

3.4.2 Model Comparison

In section 3.2 we discussed the cointegration effect in the multivariate compositional

model of US Household consumption data with the linear vector error-correction model

fitted. Then we identified the threshold effect on an exogenous variable and then apply

the threshold vector error-correction model by Hansen’s approach. Finally, we extended

Hansen’s approach to include the threshold effect of the error correction term on the

same threshold variable. In this section, we compare the model performance of the

linear VECM, the threshold VECM by Hansen’s estimation and the threshold VECM

by the joint MLE approach. The models are compared in two aspects. We first compare
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Table 3.6: TVECM estimation from Joint MLE with γt−1 (US real GDP growth rate)
as threshold variable: lower regime when γt−1 ≤ 4.1 and higher regime when γt−1 > 4.1.

Lower ∆y1t ∆y2t ∆y3t ∆y4t Higher ∆y1t ∆y2t ∆y3t ∆y4t

µt 0.075 0.079 0.235 0.050 µt 0.003 -0.019 -0.074 -0.013

(0.015) (0.015) (0.050) (0.019) (0.026) (0.022) (0.060) (0.029)

ECTt−1 -0.244 -0.212 -0.826 -0.172 ECTt−1 0.010 0.180 0.225 0.170

(0.050) (0.052) (0.167) (0.065) (0.111) (0.095) (0.262) (0.128)

∆y1,t−1 0.781 0.417 1.684 0.239 ∆y1,t−1 -0.232 -0.714 -1.176 0.303

(0.173) (0.180) (0.577) (0.225) (0.249) (0.213) (0.588) (0.286)

∆y2,t−1 -0.326 0.162 -1.276 0.232 ∆y2,t−1 -0.038 0.115 0.776 -0.275

(0.185) (0.192) (0.617) (0.240) (0.242) (0.207) (0.571) (0.278)

∆y3,t−1 -0.053 -0.141 -0.509 -0.148 ∆y3,t−1 0.156 0.217 0.030 -0.005

(0.050) (0.052) (0.167) (0.065) (0.110) (0.094) (0.259) (0.126)

∆y4,t−1 0.253 0.004 1.156 0.225 ∆y4,t−1 0.264 0.224 0.593 -0.082

(0.156) (0.163) (0.522) (0.204) (0.182) (0.156) (0.431) (0.210)

the behavior of the estimated cointegrating vectors from the three models, and then

compare the model adequacy of the fitted vector error-correction models.

The time series plots of the estimated error correction term are shown in Figure

3.10. The updated cointegrating vectors by threshold effect are more smooth than the

linear estimation. The joint MLE estimation looks even more smooth than the other

two plots. As discussed in section 4, all the three estimated cointegrating vector are

free of unit-roots, and the univariate threshold models are stationary as well.

Next we compare the model adequacy of the vector error-correction models based

on multiple criterion. The comparison is summarized in table 3.7. It suggests that the

threshold vector error-correction model by the joint MLE estimation is the best fitting

to the data. The model estimation results after significance selection are presented in

table 3.8.

3.4.3 Prediction Performance

An important purpose of the threshold vector error-correction model is prediction.

Based on the available household consumption data, we performed out-of-sample one-

step rolling forecast for 10 years. We compare the forecasting performance of the linear
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Figure 3.9: The time series plots of the estimated error correction terms.

Table 3.7: Comparison of the linear VECM, the TVECM by Hansen’s and the TVECM
by Joint MLE.

Model Linear VECM TVECM: Hansen TVECM: Joint MLE

Unit-roots in ECT No No No

Stationarity of TAR(zt) Yes Yes Yes

SSE of TAR(zt) 0.028 0.089 0.008

SSE of V ECM 0.206 0.109 0.121

Total SSE 0.234 0.298 0.129

Loglik of TAR(zt) 151.92 115.09 187.82

Loglik of V ECM 548.57 630.57 618.08

Total Loglik 700.49 745.66 805.90
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Figure 3.10: The t-ratio plots for the threshold AR(2) model of the estimated ECT.
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Table 3.8: Reduced Threshold VECM estimation from joint maximum likelihood
estimation with γt−1 (US real GDP growth rate) as threshold variable: lower regime
when γt−1 ≤ 4.1 and higher regime when γt−1 > 4.1.

Lower ∆y1t ∆y2t ∆y3t ∆y4t Higher ∆y1t ∆y2t ∆y3t ∆y4t

µt 0.063 0.079 0.222 0.055 µt – – -0.025 –

(0.013) (0.012) (0.045) (0.015) (–) (–) (0.018) (–)

ECTt−1 -0.208 -0.208 -0.813 -0.187 ECTt−1 – 0.124 – 0.093

(0.045) (0.048) (0.157) (0.059) (–) (0.022) (–) (0.014)

∆y1,t−1 0.728 0.529 1.727 0.361 ∆y1,t−1 – -0.745 -1.316 –

(0.163) (0.145) (0.565) (0.185) (–) (0.188) (0.395) (–)

∆y2,t−1 -0.273 – -1.342 – ∆y2,t−1 – – 1.053 –

(0.179) (–) (0.607) (–) (–) (–) (0.438) (–)

∆y3,t−1 – -0.145 -0.519 -0.169 ∆y3,t−1 0.079 0.256 – –

(–) (0.048) (0.164) (0.061) (0.056) (0.083) (–) (–)

∆y4,t−1 0.210 – 1.218 0.328 ∆y4,t−1 0.290 0.212 0.604 –

(0.149) (–) (0.513) (0.177) (0.108) (0.152) (0.411) (–)

VECM, threshold VECM by Hansen’s approach and threshold VECM by joint MLE

approach. The performance criterion is the root of mean squared forecasting error that

defined as

RMSEj =

√√√√ 10∑
i=1

(
ypredj,i − ytruej,i

)2
, j = 1, . . . , k.

The rolling forecast starts from 2003 to 2012. The prediction behavior of the four

logratio series are compared separately due to their different measurements scales. Table

3.9 summarizes the RMSE values from three different models respectively for ∆yj , j =

1, 2, 3, 4. From the values we concludes that the joint MLE approach has the best

rolling forecasting performance for ∆yj , j = 1, 2, 4 and Hansen’s method gives smaller

RMSE for ∆y3t. Both the threshold models outperform the linear model, validating

the nonlinearities in the vector error-correction model for household consumption data.

Figure 3.11 visually compares the true values of yt and the predicted values by

rolling forecast. In general, the prediction for ∆y1t and ∆y2t are more accurate than the

other two. In fact, the model estimation results indicate that ∆y1t and ∆y2t are more

significance than the other two random variables in the multivariate model. In other

words, the categories corresponding to housing and utilities (y1t), health, recreation and
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Table 3.9: Comparison of RMSE by 1-step rolling forecast.

Models ∆y1 ∆y2 ∆y3 ∆y4

Linear VECM 0.015 0.023 0.049 0.017

TVECM: Hansen 0.013 0.019 0.063 0.013

TVECM: Joint MLE 0.012 0.017 0.073 0.012

education (y2t) play more important roles in modeling and forecasting the household

consumption data.

So far we have been working in the compositional framework, the modeling process is

built on the transformed data by additive logratio transformation. With the prediction

of the logratio series, we derive the predicted numbers of the original percentages for

each category in table 3.10.

3.5 Summary

In this chapter we aim to analyze the U.S. household consumption patterns between

different consumption functions and how they change based on historical US real GDP

change. The functions are categorized with similar functions and finally five major

consumption category are formed for further discussion. With the fixed total amount

of budget at each year, the percentages allocated to each category form a compositional

time series. The transformed data have unit-roots pattern, though, we find cointegra-

tion effect between the vectors, and stationarity can be achieved by linear combination

of the lograio vectors. The linear vector error-correction model is fitted to the data as

an initial exploration.

Then we are more interested in the household consumption pattern change with

exogenous economic factors. We find that the U.S. real GDP growth rate affects the

consumption pattern through a threshold model. Tsay’s threshold test confirms the

phenomenon. With annually data, the level of real GDP change from the previous year

determines the transition pattern of household budget allocation in the current year.

To incorporate the threshold effect, we fit a threshold vector error-correction model

based on Hansen’s method. Furthermore, we believe that Hansen’s method ignores the
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Figure 3.11: Comparison of rolling forecast performance from 2003 to 2012.
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threshold structure in the error correction term. Information will be lost for situations

that are more than two dimensions. We thus extend the method by joint maximum

likelihood estimation on both threshold structures. The estimation results by the joint

MLE approach provides smaller SSE and larger log-likelihood values than the other two

models. In addition, the joint MLE approach gives better rolling forecast performance

on the household consumption data as expected.
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Chapter 4

Sensor Allocation under Separable and Nonseparable

Models

4.1 Background

4.1.1 Spatial-Temporal Models

Spatial-temporal models are extensively discussed in the past decades. It was proposed

to analyze the geographical patterns that usually have both spatial and temporal com-

ponents. The applications of spatial-temporal models in environmental sciences are

quite popular and conventional. The history of spatial-temporal analysis dates back to

1980s when Bilonick (1985) started to build the model for the acid rainfall data in New

York. Recent examples can be found in Huerta et al. (2004) who applies the model

for analyzing the ozone levels in Mexico city, and in Reich et al. (2011) who developed

a covariate-dependent spatial-temporal model for the daily ozone levels in Southeast

United States. Another typical example is the Irish wind data that was initially in-

troduced by Haslett and Raftery (1989) and then being referred frequently in Gneiting

(2002), Stein (2005) and De Luna and Genton (2005) for demonstration purposes.

One interesting application of the spatial-temporal model is the monitoring sensor

network where data are collected at regular time and fixed sensor locations. The data

possesses spatial dependence among the monitors as well as the temporal correlations.

Until recently, researchers in diverse areas such as climatology, ecology, catastrophe

insurance institutes and real estate marketing are raising increasing interests in this

topic.

In the same time, there is a rapid development in sensor allocation problems. Sensor

network has a wide range of applications including environmental monitoring, industrial
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control and security problems. The goal is to efficiently allocate the sensors in a random

field and in the same time best utilize the limit resources. People are interested in

allocating the sensors one by one instead of allocating them simultaneously. Such

examples exist in the environmental sciences where people construct sensor stations

to measure the pollution level, wind speed or to manage the wild life and agriculture.

There are several well-developed approaches for the sensor allocation problem that

concentrates on different aspects of the problem. In the computer experiment area, the

eminent work by Sacks et al. (1989) and Williams (2000) propose a sequential design

by optimizing the expected improvement from a bayesian view. This area has been

nourished greatly by recent work such as Hung et al. (2009) and Hung et al. (2010).

The sensor allocation problem also worths attention from a machine learning approach,

for example, Krause et al. (2008) and Das and Kempe (2008). Compared with these

approaches that concentrate on higher dimension with pure spatial correlations, the

spatial-temporal models provide a different perspective of view to the problem and will

be a main focus in this chapter.

4.1.2 Sensor Allocation Problem

A lot of work has been done in proposing different forms of constraints to the sensor

allocation problem. In our case, prediction is a primary topic hence a natural objective

is to optimize the prediction performance of all sensors including the existing ones. Take

the environmental monitoring for instance, a set of sensor stations are built over the

region to measure the temperatures. They are not designed for temperature forecasting

of their own locations only, but the temperatures at any other locations need to be

efficiently predicted by nearby stations. In Gaussian random field, the predicted value

has a conditional normal distribution and the correlation structure is well defined and

convenient to model with. Moreover, since the observations are also recorded by time,

time correlation plays a substantial role in forecasting as well. The criterion for new

sensor allocation is naturally introduced by minimizing the overall prediction standard

error, which is the integrated prediction variance.
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To make the problem well-formulated, we first define a two-dimensional spatial re-

gion Ω ⊂ R2, and the random process Y (s; t) is generated over the region (s; t) ∈ Ω×R+.

Suppose we have n different sensor locations in the region Ω, time series observations

are recorded for each station. Both spatial correlations with respect to s and temporal

correlation on t are considered in forecasting. The objective for allocating snew is to

minimize the expected overall prediction error in Ω, and we denote snew by sk+1 for sim-

plicity in the following discussions. Conditional on observations Y (s1; t1), . . . , Y (sk; tn)

and the intended new sensor located at snew, the predicted value for any other locations

s ∈ Ω at the current time t is defined as

Ŷ (s; t) = E
(
Y (s; t) | ~Y (s1; t), ~Y (s2; t), . . . , ~Y (sk; t); ~Y (snew; t)

)
.

where ~Y (sj ; t) = (Y (sj ; t), Y (sj ; t− 2), . . . , Y (sk; t− n)) , j = 1, . . . , k. The prediction

is based on the given k stations and the new station snew that is to be located. Com-

paring with the predicted values, we are more interested in the expected prediction

variance for sensor allocation purpose. For a fixed location s and time t, the expected

prediction variance of Ŷ (s; t) is defined as,

E(Ŷ (s; t)− Y (s; t))2.

As s varies in Ω, the integrated conditional variance over the entire region Ω should

be minimized to efficiently allocating snew. Denote snew as sk+1 for simplicity in the

following discussions. The objective function is,

f (sk+1; s1, . . . , sk) =

∫
Ω

E(Ŷ (s; t)− Y (s; t))2ds.

Specifically, it is,

f (sk+1; s1, . . . , sk)

=

∫
Ω

Var
(
Y (s; t) | ~Y (s1; t), ~Y (s2; t), . . . , ~Y (sk; t); ~Y (sk+1; t)

)
ds,

(4.1)

where ~Y (sj ; t) are observed for j = 1, 2, . . . , k and t = 0, 1, . . . , n. In the objective

function, Y (sk+1; t) is unknown and sk+1 is the new sensor location that is to be

determined by minimizing equation (4.1) on sk+1. Notice that the above objective
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function is built under the goal of concurrent prediction; if the purpose concentrates

more on future time predictions, the objective function can be generalized as,

fm (sk+1; s1, . . . , sk)

=

∫
Ω

Var
(
Y (s; t+m) | ~Y (s1; t), ~Y (s2; t), . . . , ~Y (sk; t); ~Y (sk+1; t)

)
ds,

(4.2)

if the prediction horizon is m ∈ R+. Both situations will be discussed in this chapter.

This chapter is organized as follows. Section 4.1 introduces the motivation and the

objective function for the sensor allocation problem. Section 4.2 discusses the objec-

tive function under separable spatial-temporal models. The objective function based

on future time prediction is introduced as well. Section 4.3 introduces the full covari-

ance structure under nonseparable models, which usually involves a spatial-temporal

interaction parameter. A positive-definite nonseparable covariance family is discussed

in details. We compare the difference between separable and nonseparable assumptions

on the sensor allocation problem by several empirical examples in section 4.4. Finally,

an real example of the ozone level measurement in Texas is extensively analyzed in

section 4.5.

4.2 Separable Spatial-Temporal Models

In spatial-temporal models, we are given observations at different locations over a reg-

ular time period so that we have

{Y (s; t) : s ∈ R2; t ∈ R+},

where t takes value in a regularly lattice, s is located irregularly in a region Ω ⊂

R2. Given a stationary process Y (s; t), separability means that the spatial-temporal

covariance can be the multiplication of the two. Specifically, it requires the assumptions

that Y (s; t) needs to be weak stationary w.r.t both space s and time t, and on top of

this,

Cov(Y (s, t), Y (s+ h, t+ u)) = Cs(h)Ct(u), h ∈ Rd, u ∈ R.

Separability is such a favored property that it is always assumed in real applications. It

brings convenience to the modeling process from many aspects. In addition, We found

the conditional independence property for separable spatial-temporal models (4.A.1).
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Equation (4.17) gives the conclusion that, given all available information at location

sj , the current observation at si is uncorrelated with the past observations at location

sj for i 6= j. This directly implies conditional independence when Gaussian. Therefore,

the objective function in (4.1) can be simplified as,

f(sk+1; s1, . . . , sk)

=

∫
Ω

Var(Y (s; t) | Y (s1; t), . . . , Y (sk; t);Y (sk+1; t))ds.

4.2.1 Allocation for Concurrent Prediction

If the objective is concurrent prediction, the cost function above can be further simpli-

fied by ignoring the temporal correlations, and the new sensor can be located by a pure

spatial model. With a pure spatial model, the cost function is formed as,

f(sk+1; s1, . . . , sk) =

∫
Ω

Var(Y (s) | Y (s1), Y (s2), . . . , Y (sk), Y (sk+1))ds. (4.3)

Given the simple structure in spatial only models, we can try to get the explicit

form for f(sk+1; s1, . . . , sk) to simplify the optimization procedure and possibly derive

an analytical solution. From the multivariate normal distribution in Gaussian, the

conditional distribution of Y (s) given Y (s1), Y (s2), . . . , Y (sk) and Y (sk+1) is,

Y (s) | (Y (s1), Y (s2), . . . , Y (sk), Y (sk+1)) ∼ N(µ,σ2),

where

σ2 =C(s, s)− (C(s, s1), C(s, s2), . . . , C(s, sk)C(s, sk+1))

×



C(s1, s1) C(s1, s2) · · · C(s1, sk+1)

C(s2, s1) C(s2, s2) · · · C(s2, sk+1)

...
...

...

C(sk+1, s1) C(sk+1, s2) · · · C(sk+1, sk+1)



−1



C(s, s1)

C(s, s2)

...

C(s, sk)

C(s, sk+1)


,

(4.4)

and C(si, sj) is the spatial covariance function imposed in the random field. For exam-

ple, the exponential distance correlation exp(−‖si − sj‖) is frequently used.

Remark When Ω ∈ R, the correlation is ρ(si, sj) = exp(−|si − sj |). We have shown

through calculations that in one-dimensional case,
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1. If the new sensor is to be located between existing ones, it needs to be located in

the middle of the largest interval by given sensors.

2. If the new sensor is located on an interval that no sensor is given at one of the

endpoints, it will be closer to the endpoint without given sensors.

The conclusions in 1-D are practical that they provide an inspiration of the effectiveness

of model (4.1) for more complex discussions later.

4.2.2 Allocation for Future Prediction

Suppose now we are more concerning about the prediction at time t + m instead of t,

the new sensor will be located differently since the model needs to take into account of

the time correlation between Y (s, t + m) and the current observations at time t, thus

it cannot be reduced to a spatial-only model as in section 4.2.1. However, the Markov

property still exists in this situation. The joint covariance structure will be changed,

and hence the conditional variance and the cost function to be considered.

The conditional distribution of Y (s; t+m) is given as,

Y (s; t+m) | (Y (s1), Y (s2), . . . , Y (sk), Y (sk+1)) ∼ N(µ,σ2),

and the corresponding covariance matrix is,

σ2 =C(s, s;m)− (C(s, s1;m), C(s, s2;m), . . . , C(s, sk;m)C(s, sk+1;m))

×



C(s1, s1;m) C(s1, s2) · · · C(s1, sk+1;m)

C(s2, s1;m) C(s2, s2;m) · · · C(s2, sk+1;m)

...
...

...

C(sk+1, s1;m) C(sk+1, s2;m) · · · C(sk+1, sk+1;m)



−1



C(s, s1;m)

C(s, s2;m)

...

C(s, sk;m)

C(s, sk+1;m)


,

(4.5)

and C(si, sj ;m) is the spatial-temporal covariance function. More details about C(si, sj ;m)

will be discussed in the subsequent sections.
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4.3 Nonseparable Spatial-Temporal Models

Separable spatial-temporal models are commonly assumed in applications; however,

many real examples present obvious nonseparable patterns. Nonseparable spatial-

temporal models are highly demanded to better fit the empirical covariance structure.

The conclusions in the previous section states that under separable covariance struc-

tures, the problem of minimizing the integrated conditional variance reduces to a pure

spatial case. If the assumption of separability fails, the cost function has have the

general form as in (4.1) for concurrent time prediction and in (4.2) for future time pre-

diction purposes. They have different covariance structures, though, both structures

need to take the full spatial-temporal model into consideration, and the former can be

treated as a special case of the latter by setting m = 0. Let’s revisit the general form

of the objective function in(4.2),

f (sk+1; s1, . . . , sk,m)

=

∫
Ω

Var
(
Y (s; t+m) | ~Y (s1; t), ~Y (s2; t), . . . , ~Y (sk; t); ~Y (sk+1; t)

)
ds,

where ~Y (sj ; t) = (Y (sj ; t), Y (sj ; t− 2), . . . , Y (sk; t− n)) , j = 1, . . . , k.

In this general equation, the time series observations are measured for the whole

time horizon from 1 to n; however, the time lag can be restricted to u under proper

constraints on time series correlations. Therefore, the objective function is a function

of locations sj , time lag u and forecasting horizon m,

f (sk+1; s1, . . . , sk,m, u)

=

∫
Ω

Var
(
Y (s; t+m) | ~Y (s1; t), ~Y (s2; t), . . . , ~Y (sk; t); ~Y (sk+1; t)

)
ds,

(4.6)

and ~Y (sj ; t) = (Y (sj ; t), Y (sj ; t− 2), . . . , Y (sk; t− u)) , j = 1, . . . , k. Note that

Var
(
Y (s; t+m) | ~Y (s1; t), ~Y (s2; t), . . . , ~Y (sk; t); ~Y (sk+1; t)

)
= 1− bΣ−1bT ;

where

b =
(
C(s, s1,m), C(s, s1,m+ 1), . . . , C(s, s1,m+ u); . . . ;

C(s, sk+1,m), . . . , C(s, sk+1,m+ u)
)
,
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and

Σ =

 [A(si, sj)]
k
i,j=1 [A(si, sk+1)]ki=1

[A(si, sk+1)]k
′

i=1 A(sk+1, sk+1)

 , (4.7)

and

A(si, sj) =



C(si, sj ;m) C(si, sj ;m+ 1) · · · C(si, sj ;m+ u)

C(si, sj ;m+ 1) C(si, sj ;m+ 2) · · · C(si, sj ;m+ u− 1)

. . . . . .

. . . . . .

. . . . . .

C(si, sj ;m+ u) C(si, sj ;m+ u− 1) · · · C(si, sj ;m)


where C(si, sj ;m + u) is the stationary covariance function of Y (si; t) and Y (sj ; t −

m− u).

4.3.1 Positive-Definite Covariance Functions

It worth notice that the choice of covariance structure C(hij , t) is not arbitrary, it needs

to be a permissible function that guarantees the positive-definiteness of A(si, sj) and

Σ(si, sj). It is always hard to verify one particular covariance function is valid; however,

a more conventional approach is to apply the well-developed classes of positive-definite

covariance functions.

There has been a lot of research in nonseparable spatial-temporal covariance mod-

els. Evidently, Cressie and Huang (1999) provided an important family of positive-

definite space-time covariance functions by spectral decomposition approach. Gneiting

(2002) proposed a larger class of such models. He gave several examples of completely

monotone function φ(t) and a list of positive functions ψ(t) with completely mono-

tone derivative, both for t ≥ 0. Moreover, φ(t) and ψ(t) can be separately modeled

as the spatial and temporal covariance structures, which provides great convenience in

practice. Then a valid spatial-temporal covariance function is given as

C(h;u) =
σ2

φ(|u|2)d/2
ψ

(
‖h‖2

φ(|u|)2

)
, (h, u) ∈ Rd × R,

In particular, among the lists of φ(t) and ψ(t) in table 1 and table 2 in Gneiting (2002),

if take ψ(t) = exp(−ctγ) and φ(t) = (atα + 1)β, a valid space-time covariance family
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will be specified as

C(h;u|β) =
σ2

(a|u|2α + 1)d/2
exp

(
− c‖h‖2γ

(a|u|2α + 1)βγ

)
, (h, u) ∈ Rd × R, (4.8)

where σ2 is the variance of the random process, a, c > 0 and the smoothness parameters

α and γ are both restricted on (0, 1].

Gneiting’s model is structured by two parts. The first part preserves the temporal

correlation and the second part describes the spatial correlation. The interaction be-

tween spatial and temporal correlations are modeled by β, which is confined between

0 to 1. A larger β indicates a stronger spatial-temporal interaction. The extreme

case when β = 0 provides a separable spatial-temporal model with a lot of appealing

properties, for which reason, the separability test is always necessary in modeling.

4.3.2 Numerical Form for Optimization

As can be seen, the objective function in (4.6) is highly nonlinear. It involves the inverse

of a complicate matrix (4.7). The matrix has an unknown variable sk+1, making it

impossible to be decomposed for numerical convenience under nonseparable case. In

addition, each entry of the matrix, C(hij , t), is highly nonlinear itself. Furthermore,

we need to take integration of the nonlinear term over the region Ω ∈ R2. All the facts

indicate that there is no explicit form or fast calculation methods for the objective

function, hence numerical approximation is a practical method for evaluating equation

(4.6).

Let’s consider equation (4.7), the sub covariance matrix [A(si, sj)]
k
i,j=1 is completely

known given s1, s2, . . . , sk and

[A(si, sk+1)]k
′

i=1 =
(
C(s1, sk+1), C(s2, sk+1), · · · , C(sk, sk+1)

)
,

with the unknown variable sk+1 to be located. When Ω ∈ R2, the integrand in (4.6)

is a function of unknown location sk+1 = (s1, s2) with all other parameters known as

either pre-fixed or pre-estimated. Therefore, the integrand in (4.6) can be denoted as,

g (s | sk+1) = Var
(
Y (s; t+m) | ~Y (s1; t), ~Y (s2; t), . . . , ~Y (sk; t); ~Y (sk+1; t)

)
.
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For evaluating the integral, we can have some regularized grids on Ω to get a numerical

approximation. Take R2 for example, assume a rectangle region,

Ω = [0, a]× [0, b],

for some a, b ∈ R. We write

[0, a] =
N−1⋃
i=0

[ai, ai+1], with ai =
ia

N
, i = 0, . . . , N,

and

[0, b] =

M−1⋃
j=0

[bj , bj+1], with bj =
jb

N
, j = 0, . . . ,M.

Then we can write

Ω =
⋃

i=0,...,N−1
j=0,...,M−1

[ai, ai+1]× [bj , bj+1].

By taking this partition of the domain Ω, for any integrable continuous function ϕ(x),

we take the “central point approximation”. That is,∫
Ω
ϕ(x)dx ≈ ab

NM

N∑
n=1

M∑
m=1

ϕ

(
(2n− 1)a

2N
,
(2m− 1)b

2M

)
,

where
(

(2n−1)a
2N , (2m−1)b

2M

)
is the center of the rectangle

[
(n−1)a
N , naN

]
×
[

(m−1)b
M , mbM

]
.

Therefore, equation (4.6) becomes

f (sk+1) ≈ ab

NM

N∑
n=1

M∑
m=1

g

(
(2n− 1)a

2N
,
(2m− 1)b

2M
| sk+1

)
, (4.9)

and this is the numerical form that is to be implemented in the subsequent examples.

4.4 Empirical Examples

Two empirical examples are shown for demonstration purposes. In particular, the first

example is presented to show the effectiveness of the objective function we proposed.

The second example is repeatedly attempted in order to show the difference in sensor

allocation under different assumptions. Given k different nodes si ∈ R2, i = 1, . . . , k,

the new location sk+1 is derived by minimizing (4.9) using grid search over the region.

The grid lattice for numerical integration and the lattice for grid search are imposed
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Figure 4.1: New sensor given four symmetric sensors.

differently on purpose. In the figures, the blue dots represent the given sensor locations

and the new location sk+1 is labeled by red plus signs.

Example 1

The first example is given in the spatial-only case when no time correlation is preserved.

The exponential correlation is imposed. In R2, assume {Ω = [0, 10] × [0, 10]} and

four sensors are symmetrically located around (5, 5): {s1 = (0, 5), s2 = (10, 5), s3 =

(5, 10), s4 = (5, 0)}. The new sensor is then ideally located at sk+1 = (5, 5), and the

corresponding integrated conditional variance is f(sk+1; s1, s2, s3, s4) = 95.0046. See

Figure 4.1.

Example 2

Given another region {Ω = [0, 40]× [0, 60]} and five locations randomly distributed as

{s1 = (10, 20); s2 = (30, 19); s3 = (28, 25); s4 = (25, 10); s5 = (40, 40)}. We assume

a spatial-temporal covariance structure in (4.8) for the random field we considered.

Specifically, we consider the following spatial-temporal covariance,

C(h;u|β) =
1

0.2|u|1.5 + 1
exp

(
− 0.4‖h‖

(0.2|u|1.5 + 1)β/2

)
, (h, u) ∈ Rd × R,

here h is given by the existing nodes and u is taken as 2 for temporal correlations.

Under this structure, we further impose distinctive assumptions on the model to see
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the potentially different sensor allocation results. Four situations are considered:

1. Separable for concurrent prediction: β = 0 and m = 0;

2. Separable for future prediction: β = 0 and m = 6;

3. Nonseparable for concurrent prediction: β = 1 and m = 0;

4. Nonseparable for future prediction: β = 1 and m = 6.

The corresponding sensor allocation results are: 1). sk+1 = (13.60, 41.53) with ob-

jective function minimized at fmin(sk+1) = 2345.2; 2). sk+1 = (13.60, 41.53) with

fmin(sk+1) = 2395.1; 3). sk+1 = (10.47, 40.53) with fmin(sk+1) = 2339.7 and 4).

sk+1 = (12.00, 42.60) with fmin(sk+1) = 2380.3. See Figure 4.2.

The results have great instructive purposes. The sensor allocation for case 1 and

case 2 are identical, indicating that the sensor allocation problem is indifferent with

the prediction horizons under separable spatial-temporal models. Actually, the condi-

tional independence property under separability guarantees that all future predictions

are based on the current observations. The objective function values have an overall

increasing as greater forecasting horizons, though, they always achieve the same global

minimum for each m.

In contrast, the sensor allocation problem is sensitive to the length of prediction

horizons under nonseparable models. Case 3 and case 4 have different new sensor

locations, and a longer prediction horizon yields greater prediction variance as expected.

It also makes sense that nonseparable models always give smaller prediction variances

than separable models since in this case, the interaction between spatial and temporal

correlations helps the overall correlation to reduce less rapidly than in the separable

case. By intuition, more information is utilized from earlier observations and hence the

smaller prediction variance in the nonseparable case.

4.5 Real Example: Ozone Levels in Harris County, Texas

In this section we apply the method in section 4.3 on the ozone level measurements in

Harris county. Harris county is the most populous county in the U.S. state of Texas. Its
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Figure 4.2: New sensor given five sensors under different assumptions.

county seat is Houston, the largest city in Texas and fourth-largest city in the United

States. Hourly measurements of the ozone levels in Harris County were recorded at the

11 monitoring stations in 1993. The data was initially used in Carroll et al. (1997) for

analyzing the pattern of population density to ozone exposures. They built a model

on the spatial-temporal structure to predict the ozone levels in locations other than

the sensor stations. Figure 4.3 shows the geographical distribution of the existing

monitoring stations, and the predicted ozone levels over Harris county.

In this project, our purpose is to build a new monitoring station in addition to the

11 existing ones. Instead of the full dataset, we utilize the hourly data from 10 stations

since the majority observations of station 4 are missing in year 1993. It is time series

data with length 8760 for 10 different stations. Following Carroll (1997), square root

transformation of the original ozone data is implemented to stabilize the variance. In

addition, the trend part is taken out to make the residual process ε(t, s) a real-valued

stationary Gaussian random field with mean zero. Figure 4.4 shows the behavior of

de-trend hourly ozone level measured by station 3 and station 6.

Before the spatial-temporal covariance model is fitted, a strong seasonal pattern

exhibits from the ACF plot of residual series after de-trend process. Take station 3 and

station 8 for example, the ACF of de-trend residual series are presented in the Figure
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Figure 4.3: Locations of existing monitoring sensors in Harris County, Texas.
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Figure 4.4: De-trend time series plots of the square root of hourly ozone level measured by
station 3 and station 6.
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Figure 4.5: ACF of detrend time series for hourly ozone level measured by station 3 and
station 8.

4.5.

Figure 4.5 shows a seasonal period of 24 hours, which coincides with the real condi-

tion of hourly data. Based on the autocorrelation pattern, SAR(1) is fitted in order to

remove seasonality. Figure 4.6 shows the autocorrelation pattern of the residual from

SAR(1). The seasonal patterns are alleviated significantly with small fluctuations for

large time lags. Although higher order seasonal model is available, they fail to refine

the small fluctuations better than SAR(1). In other words, models such as SAR(2) or

SAR(3) doesn’t perform better than SAR(1). On the other hand, the spatial-temporal

analysis concentrates on small time lag only. Most of the spatial-temporal models claim

that the time lags should be small to ensure the accuracy of model fitting since the infor-

mation from large time lags cannot differentiate between separable and non-separable

models efficiently. Therefore, SAR(1) is sufficient to remove the seasonality for further

analysis.

Take SAR(1) for further discussion, the time correlations of hourly ozone level fall
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Figure 4.6: ACF of SAR(1) residuals for hourly ozone level measured by station 3 and station
8.

off rapidly and are getting extremely small for time lags larger than 12. The residual

series after de-seasonal are taken as Y (s; t) for discussion of the spatial-temporal model.

Note that t varies from 1 to 8736 and s varies among the given 10 monitoring sensor

locations.

4.5.1 Spatial-Temporal Structure

As introduced in section 4.4, it is necessary to restrict attention to the well-accepted

classes of positive-definite functions in R2 × R for the ozone data. The covariance

function family by Gneiting (2002) is utilized here. In particular, model (4.8) is a very

popular one that fits well for the ozone data.

First, the purely spatial correlations are fitted for 45 pairs of stations. As discussed

in Carroll (1997), a strong linear pattern is observed in the log spatial correlations for

fixed time. In Figure 4.7, the log correlations versus distance for time lags fixed at 0,

2, 4, 6 are shown with a linear fitted line in each time lag. The scatter plot of spatial
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Figure 4.7: Spatial correlations: log-correlation versus distance for time lags fixed at 0, 2, 4,
6.

correlations shows a solid linear pattern for each time lag, and moves down as distance

increases. Thus an exponential correlation model is strongly indicated and fitted as

C(h; 0) =


1, h = 0,

0.751 exp (−0.627‖h‖), otherwise,

(4.10)

with h ranges in [0.036, 0.652].

Then we fit the pure temporal correlations by a Cauchy model. Since the distinction

between separable and nonseparable covariance structures may not be feasible at higher

time lags, Gneiting (2002) chooses to use time lags up to 3 days. Here we choose to

fit time lags up to 12 hours since our samples consists of hourly measurements without

any aggregation of them. In the other aspect, the time correlations for lags higher than

12 become very small with slight fluctuations afterwards. The fluctuations may due

to variations of other environmental factors that cannot be modeled by usual seasonal

factors. Therefore, time lags of 12 hours is reasonable to model the pure temporal

correlation.

The pure temporal model below fits the empirical temporal correlations in the Ozone

data well,

ρ(0;u) =
1

0.05|u|1.875 + 1
, (4.11)

with u = 0, 1, 2, . . . , 12. Figure 4.8 gives examples of the time correlations between
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Figure 4.8: Time series correlations: log correlations versus time lag for fixed distances.

several pairs of stations, with fitted line added.

The pure spatial covariance and temporal covariance consist of the permissible para-

metric model,

C(h;u|β) =


(0.05|u|1.875 + 1)−1, h = 0,

0.751(0.05|u|1.875 + 1)−1 exp
(
− 0.627‖h‖

(0.05|u|1.875+1)β/2

)
, otherwise,

(4.12)

where β ∈ [0, 1] is the interaction parameter. The spatial-temporal interaction is con-

trolled by β. The separable model corresponds to β = 0, and β = 1 indicates an

extreme nonseparable case. As β increases, the overall correlation falls less rapidly

than the separable model for nonzero temporal lags.

For the estimation of β, we use maximum likelihood estimation in Gaussian. The

log-likelihood function from multivariate normal distribution is

logL(β|h;u) = −n|Σ|
2
− 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ).

Here the covariance matrix Σ is positive-definite and defined in (4.7). The sample vector
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Figure 4.9: Contour plot of C(h;u|β) in (4.12) versus h and u. The x-axis is the spatial lag,
y-axis is the temporal lag.

xi is the ith row in data matrix X, where X is constructed to match the structure of

the covariance matrix Σ. That is

X = (x1,0, . . . ,x1,u; . . . ;xi,j ; . . . ;xk,0, . . . ,xk,u) ,

where i = 1, . . . , k and k is the number of given sensor locations, j = 1, . . . , u and u is

the maximum time lag in the model. Here xi,j is the time series measurements from

1 + j to 8724 + j at station i. Since the trend part has been removed before modeling,

the mean vector µ for the random process Xi’s are assumed to be zero. Based on the

real observations, the maximum likelihood estimation of β is β̂ = 0.89. The contour

plot of the correlation function in (4.12) with β = 0.89 is shown in Figure 4.9.

4.5.2 Likelihood-Ratio Test for Separability

Separable covariance models are always preferable because of their advantages in com-

putation, especially in the prediction problem regarding a spatial-temporal process. In

prediction problem with k given sensor locations and u time lags, we need the inverse

of a (k+ 1)(u+ 1) by (k+ 1)(u+ 1) covariance matrix under a nonseparable covariance
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structure; however, this can be reduced to the inverse of a (k + 1) by (k + 1) matrix

if separability can be assumed. We has shown the conditional independence property

that can simplify the computational work by reducing the spatial-temporal model into

a spatial one. Although we got a nonzero estimation for β in this example, the sep-

arability test is always necessary to exclude the situation that the curve of likelihood

function on β̂ is too flat to support the opposite.

There isn’t an universal test for separability. Actually, the separability test is model-

dependent as introduced in Mitchell et al. (2005). The covariance is separable in one

model doesn’t necessarily mean that it is separable in a different one. Therefore, the

likelihood ratio test is a reasonable approach here to test the separability of the specific

model we use.

Specifically, the test aims at the value of the interaction parameter β in Gneiting’s

model on the Ozone data. Recall the model with d = 2 and γ = 1/2:

C(h;u|β) =
σ2

(a|u|2α + 1)
exp

(
− c‖h‖

(a|u|2α + 1)β/2

)
, (h, u) ∈ R2 × R, (4.13)

where a ≥ 0, c ≥ 0, 0 < α ≤ 1 and 0 ≤ β ≤ 1. The separable model corresponds

to β = 0, and the extreme nonseparable case occurs when β = 1. The hypothesis is

naturally constructed as

H0 : β = 0; H1 : β > 0.

As the data frame constructed in the estimation procedure, there is a group of

repeated measures of the spatial-temporal process (x1,x2, . . . ,xi, . . . ,xn), which are

i .i .d normal random vectors with the same covariance matrix defined in (4.7). Actually

xi is the ith row in data frameX, which is constructed to match the covariance structure

of (4.7):

X = (x1,0, . . . ,x1,u; . . . ;xi,j ; . . . ;xk,0, . . . ,xk,u) ,

with k and u being the number of given spatial locations and time lags respectively.

The log-likelihood function is

logL(β |X) = −n|Σ|
2
− 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ),
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and the test statistic from likelihood-ratio test is in the following form,

Λ(X) =
supH0

L(β |X)

supH0∪H1
L(β |X)

. (4.14)

In our case, L(β|X) cannot be analytically determined since the model construction

is complicate; however, it can be calculated numerically as it is a completely defined

function on β when X are observed. Therefore, the test statistic Λ(x) can be obtained

for observed X = x.

Although the sampling distribution of Λ(X) is hard to derive here, by the asymptotic

distribution of likelihood-ratio tests, the random variable −2 log Λ(X) follows χ2
1 when

n is large. This asymptotic property is appropriate in this test since the sample size

is large as n = 8724. Thus, the test statistic Λ̃(X) = −2 log Λ(X) is used to compare

with the Chi-squared critical value. We have

Λ̃(X) = 2 logL(β̂|X)− 2 logL(β̂0|X).

The restricted estimation of β under H0 is β̂0 = 0 and the unrestricted maximum

likelihood estimation of β is given in the previous section as β̂ = 0.89, with log-likelihood

value of -16968 and -16910 respectively.

Based on the asymptotic property, H0 is rejected at level α if Λ̃(x) > χ2
1,α. The value

of the test statistic is 116 comparing with the critical value 3.84 when α = 0.05. This

indicates that we will reject the null hypothesis β = 0. In other words, the covariance

structure in (4.14) is nonseparable for the ozone data, and hence the estimation for β

is acceptable.

4.5.3 New Station Allocation

Allocation by concurrent prediction

In the previous section, the spatial-temporal structure for ozone data is modeled as,

ρ(h;u) =


(0.05|u|1.875 + 1)−1, h = 0,

0.751(0.05|u|1.875 + 1)−1 exp
(
− 0.627‖h‖

(0.05|u|1.875+1)0.89/2

)
, otherwise.

To minimize the cost function (4.6), we use the grid search method to have the new

location sk+1 walking over the region to get the one that corresponds to the global
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Figure 4.10: Surface of the integrated conditional variance over Harris County, Texas.

minimum of the objective function. For different locations of sk+1, the surface for the

objective function is shown in Figure 4.10. The contour plot of the objective function

over this region is shown in Figure 4.11.

Observe from Figure 4.10 and 4.11 that the surface is convex with a global minimum

at [29.63,−95.72], the negative sign for longitude means it degrees to the west. The

location of the new station is shown on the two-dimensional region in Harris County

in Figure 4.12. The values of the objective function are high at locations in the south-

eastern part since there has been a lot of sensor stations given in that area. Therefore,

building a new station in the south-eastern area is meaningless since that the overall

prediction variance could be larger than building it in the area with fewer given sensors.

Figure 4.13 shows the final location of the new sensor together with the existing ones in

the real map of the region. Apparently, the new sensor is located out of the boundary

of Harris county since we take the whole rectangle region for numerical calculations. A

more rigorous calculation could be done by simply imposing a non-regular lattice that

fits perfectly around the county if needed.
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Figure 4.13: Sensor locations in real map of Harris County, Texas.

Allocation by future prediction

The previous section gives the new sensor location under the concurrent prediction

purpose, but we can also explore the problem by the objective of future time predic-

tions. The same procedure can be repeated on the objective function (4.6) for different

forecasting horizons m > 0. The local behavior of the objective function are compared

for m = 4, 8, 12, 24 hours respectively. See Figure 4.5.3. The local region is specified as

(−95.98,−95.76) by (29.63, 29.95) for longitude and latitude.

As expected, the new sensor will not be allocated to the same location under non-

separable models, especially for different prediction horizons. Different local behaviors

of the objective function in Figure 4.5.3 strongly support this conclusion again. On the

other hand, the allocation results are different though, they are all located closely to

each other at the south-western area, including the new sensor location for concurrent

prediction in section 4.5.3. It might be hard to differentiate if putting them all together

into the full map. This is also the reason to present the local behaviors instead of the

whole region.
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4.6 Summary and Future Work

Spatial-temporal models are widely applied in sensor allocation problem. In contrary

to other models, we focus on the minimization of overall prediction error in the spatial

region. In Gaussian random field, the overall prediction error is defined as an integral of

conditional variance given observations from existing sensors. The conditional variance

structure relies on both spatial and temporal correlations.

Under separable assumptions, the sensor allocation problem can be solved by the

observations from the current time. The conditional independence property says that

the spatial-temporal process will reduce to a spatial-only case if the covariance is sepa-

rable. If the covariance function is not separable, both spatial and temporal correlations

will be included in the covariance structure by an interaction parameter. An admissible

spatial-temporal covariance function is in need to guarantee the positive-definiteness
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of the covariance matrix. In the ozone data example, one valid nonseparable spatial-

temporal covariance model from Gneiting (2002) is well fitted. Further likelihood ratio

test on the interaction parameter in the model is implemented to convince the nonsep-

arability. The optimization of the integrated conditional variance gives the new station

location in Harris County, Texas. The new station can thus be used to monitor and

forecast environmental measures such as temperature, wind speed and ozone level for

any other locations in the county.

As an inspiration of future work, the discussion concentrates on the sensor allocation

problem for different prediction perspectives. It is demonstrated that the model gives

different results given different prediction horizons. However, the distinct results may

not be favored in practical use. People always need one final decision that can solve the

problem simultaneously for multiple prediction purposes. Given this concern, future

work can be done for an universal solution for the sensor allocation problem. One

potential method is to generalize the objective function as the sum of those for different

forecasting horizons. Or alternatively, when new locations are derived for each horizon

separately, the final decision can be located as the geographical center of them. Such

approaches are practical and anticipated to be explored further.

4.A Appendix

4.A.1 Appendix I

Conditional Independence Property

This section tries to show the conditional independence property of Gaussian random

field under separable spatial-temporal models. This property can be proved by solving

the conditional covariance of Y (si; t) and Y (sj ; t − u) given Y (sj ; t). Start to notice

that

Cov (Y (si; t), Y (sj ; t− u) | Y (sj ; t))

=E {[Y (si; t)− E(Y (si; t) | Y (sj ; t))] [Y (sj ; t− u)− E(Y (sj ; t− u) | Y (sj ; t))] | Y (sj ; t)} ,

(4.15)
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with conditional expectation

E (Y (si; t) | Y (sj ; t)) = ChY (sj ; t),E (Y (sj ; t− u) | Y (sj ; t)) = CuY (sj ; t),

so that we can reduce (4.15) to

Cov (Y (si; t), Y (sj ; t− u) | Y (sj ; t)) = E {Y (si; t)Y (sj ; t− u) | Y (sj ; t)}−ChCuY (sj ; t)
2.

Next, for solving E {Y (si; t)Y (sj ; t− u)|Y (sj ; t)}, we can perform the following decom-

position on Y (si; t) and Y (sj ; t− u):

Y (si; t) = ChY (sj ; t) + (Y (si; t)− ChY (sj ; t))

Y (sj ; t− u) = CuY (sj ; t) + (Y (sj ; t− u)− CuY (sj ; t)).

(4.16)

In this way, by the definition of Ch and Cu, the random variable Y (sj ; t) and Y (si; t)−

ChY (sj ; t) are independent given Y (sj ; t). Similarly, Y (sj ; t − u) − CuY (sj ; t) and

Y (sj ; t) are conditionally independent given Y (sj ; t), so the term of E [Y (si; t)Y (sj ; t− u)|Y (sj ; t)]

reduces to

E [Y (si; t)Y (sj ; t− u) | Y (sj ; t)]

=ChCuY (sj ; t)
2 + E[(Y (si; t)− ChY (sj ; t))(Y (sj ; t− u)− CuY (sj ; t)) | Y (sj ; t)].

With assumption of separability we have

Cov [Y (si; t)Y (sj ; t− u)] = ChCu,

A simple calculation leads to

E [Y (si; t)Y (sj ; t− u) | Y (sj ; t)] = ChCuE[Y (sj ; t)
2 | Y (sj ; t)].

Finally we get:

Cov (Y (si; t), Y (sj ; t− u) | Y (sj ; t)) = 0. (4.17)

In Gaussian random filed, this directly implies conditional independence and hence the

Markov property.
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4.A.2 Appendix II

This section tries to show some theoretical results for the sensor allocation problem in

the 1-D spatial-only case. Moreover, we assume the spatial correlation to be exponen-

tial: Corr(Y(si),Y(sj)) = exp(−|si − sj|). Suppose there are k different sensors given in

a bounded line l ⊂ R with order s1, s2, . . . , sk. These k points construct k− 1 intervals.

To determine the location of new sensor sk+1, it is reasonable to determine the location

of sk+1 inside each of the k − 1 intervals between si and sj , i, j = 1, 2, . . . , k. Next we

can decide which interval should sk+1 be located in order to minimize the integrated

conditional variance defined in (4.3).

First we can discuss the location of sk+1 inside the interval [si, sj ], with i, j =

1, . . . , k. Suppose the new sensor sk+1 is located between si and sj , si < sk+1 < sj , then

by the Markov property, the observations in [si, sk+1] is independent with observations

within [sk+1, sj ], the conditional variance of any other locations given si, ss+1 and sj is

Var[Y (s) | Y (si), Y (sk+1), Y (sj)] = Var[Y (s) | Y (sj), Y (sk+1)] + Var[Y (sk+1) | Y (sj)].

By the definition of objective function (4.3), we also have

f(sk+1; si, sj) = f(sk+1; si) + f(sk+1; sj).

The new sensor location sk+1 is derived by minimizing the above function to set

∂f(sk+1; si, sj)

∂sk+1
=
∂f(sk+1; si)

∂sk+1
+
∂f(sk+1; sj)

∂sk+1
.

It implies that

1− e−4α(sk+1−si) − 4α(sk+1 − si)e−2α(sk+1−si)(
1− e−2α(sk+1−si)

)2
=

1− e−4α(sj−sk+1) − 4α(sj − sk+1)e−2α(sj−sk+1)(
1− e−2α(sj−sk+1)

)2 ,

it proceeds to imply that sk+1−si = sj−sk+1, which results in the solution sk+1 =
si+sj

2

to this equation. The result concludes that in the one dimensional case, the new sensor

should be located in the middle of two given sensors within each interval.

Next we can compare the integrated conditional variance for different intervals to

decide which interval should sk+1 be located. Given two different intervals [si, sj ] and
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[sm, sn], with i, j,m, n = 1, . . . , k. Since sk+1 is to be located in one of these two intervals

with all other intervals unchanged, it is essentially to compare the objective function

f(sk+1; si, sj , sm, sn) with sk+1 ∈ [si, sj ] and sk+1 ∈ [sm, sn] respectively. When sk+1 is

located in [si, sj ], the objective function (4.3) is calculated as

f(sk+1; si, sj , sm, sn)

=

∫ sk+1

si

Var[Y (s) | Y (si), Y (sk+1)] +

∫ sj

sk+1

Var[Y (s) | Y (sj), Y (sk+1)]

+

∫ sn

sm

Var[Y (s) | Y (sm), Y (sn)]

= d2

(
1 +

2e−αd2

1− e−αd2

)
− d1

(
1 +

2e−αd1

1− e−αd1

)
,

where d1 = sj − si and d2 = sn − sm.

A similar equation holds when sk+1 is located in [sm, sn] with d1 and d2 exchanged

in place in the above equation. Compared these two equations, f(sk+1; si, sj , sm, sn)

would be smaller in [si, sj ] if d1 > d2 and similarly, it will be smaller in [sm, sn] if

d2 > d1. This concludes that the new sensor should be located in the larger interval.

There is another situation that the sensor would fall beyond the intervals confined

by s1, . . . , sk. In this case, one similar formula is derived to minimize the objective

function (4.3). The solution here is not necessarily to be in the middle of this interval.

For example, if we want to put a new sensor in the interval [0, 10], and there is one

given sensor at point 10, the new sensor will be located at point 2.9. If the interval

becomes [0, 5] instead of [0, 10], the location of sk+1 falls at point 1.36. This fact reveals

that the new sensor tends to be close to the end point 0 where no sensors are given.
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