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Incentive Schemes For Privacy-Sensitive
Consumers
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Abstract. Businesses (retailers) often wish to offer personalized ad-
vertisements (coupons) to individuals (consumers), but run the risk of
strong reactions from consumers who want a customized shopping experi-
ence but feel their privacy has been violated. Existing models for privacy
such as differential privacy or information theory try to quantify privacy
risk but do not capture the subjective experience and heterogeneous ex-
pression of privacy-sensitivity. We propose a Markov decision process
(MDP) model to capture: (i) different consumer privacy sensitivities via
a time-varying state; (ii) different coupon types (action set) for the re-
tailer; and (iii) the action-and-state-dependent cost for perceived privacy
violations. For the simple case with two states (“Normal” and “Alerted”),
two coupons (targeted and untargeted) model, and consumer behavior
statistics known to the retailer, we show that a stationary threshold-
based policy is the optimal coupon-offering strategy for a retailer that
wishes to minimize its expected discounted cost. The threshold is a func-
tion of all model parameters; the retailer offers a targeted coupon if their
belief that the consumer is in the “Alerted” state is below the threshold.
We extend this simple model and results to consumers with multiple
privacy-sensitivity states as well as coupon-dependent state transition
probabilities.

Keywords: Privacy, Markov decision processes, retailer-consumer in-
teraction, optimal policies.

1 Introduction

Programs such as retailer “loyalty cards” allow companies to automatically track
a customer’s financial transactions, purchasing behavior, and preferences. They
can then use this information to offer customized incentives, such as discounts
on related goods. Consumers may benefit from retailer’s knowledge by using
more of these targeted discounts or coupons while shopping. However, in some
cases the coupon offer implies that the retailer has learned something sensitive
or private about the consumer. For example, a retailer could infer a consumer’s
pregnancy [1]. Such violations may make consumers skittish about purchasing
from such retailers.

However, modeling the privacy-sensitivity of a consumer is not always straight-
forward: widely-studied models for quantifying privacy risk using differential
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privacy or information theory do not capture the subjective experience and het-
erogeneous expression of consumer privacy. The goal of this paper is to introduce
a framework to model the consumer-retailer interaction problem and better un-
derstand how retailers can develop coupon-offering policies that balances their
revenue objectives while being sensitive to consumer privacy concerns. The main
challenge for the retailer is that the consumer’s responses to coupons are not
known a priori ; furthermore, consumers do not “add noise” to their purchasing
behavior as a mechanism to stay private. Rather, the offer of a coupon may pro-
voke a reaction from the consumer, ranging from “indifferent” through “partially
concerned” to “creeped out.” This reaction is mediated by the consumer’s sensi-
tivity level to privacy violations, and it is these levels that we seek to model via
a Markov decision process. These privacy-sensitivity states of the consumers are
often revealed to the retailer through their purchasing patterns. In the simplest
case, they may accept or reject a targeted coupon. We capture these aspects in
our model and summarize our main contributions below.

Main Contributions: We propose a partially-observed Markov decision
process (POMDP) model for this problem in which the consumer’s state encodes
their privacy sensitivity, and the retailer can offer different levels of privacy-
violating coupons. The simplest instance of our model is one with two states for
the consumer, denoted as “Normal” and “Alerted,” and two types of coupons:
untargeted low privacy (LP) or targeted high privacy (HP). At each time, the
retailer may offer a coupon and the consumer transitions from one state to
another according to a Markov chain that is independent of the offered coupon.
The retailer suffers a cost that depends both on the type of coupon offered and
the state of the consumer. The costs reflect the advantage of offering targeted
HP coupons relative to untargeted LP ones while simultaneously capturing the
risk of doing so when the consumer is already “Alerted”.

Under the assumption that the retailer (via surveys or prior knowledge)
knows the statistics of the consumer Markov process, i.e., the likelihoods of
becoming “Alerted” and staying “Alerted”, and a belief about the initial con-
sumer state, we study the problem of determining the optimal coupon-offering
policy that the retailer should adopt to minimize the long-term discounted costs
of offering coupons. The simple model above is extended to multiple consumer
states and coupon-dependent transitions. We model the latter via two Markov
processes for the consumer, one for each type (HP or LP) of coupon such that a
persnickety consumer who is easily “Alerted” will be more likely to do so when
offered an HP (relative to LP) coupon. Our main results can be summarized as
follows:

1. There exists an optimal, stationary, threshold-based policy for offering coupons
such that an HP coupon is offered only if the belief of being in the “Alerted”
state at each interaction time is below a certain threshold; this threshold
is a function of all the model parameters. This structural result holds for
multiple states and coupon-dependent transitions.

2. The threshold for offering a targeted HP coupon increases in the following
cases:
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(a) once “Alerted,” the consumer remains so for a while – the retailer is
more willing to take risks since the consumer takes a while to transition
to “Normal”;

(b) the consumer is very unlikely to get “Alerted”;
(c) the cost of offering an untargeted LP coupon is high and close to the

cost of offering a targeted HP coupon to an “Alerted” consumer; and
(d) when the retailer does not discount the future heavily, i.e., the retailer

stands to benefit by offering HP coupons for a larger set of beliefs about
the consumer’s state.

3. For the coupon-dependent Markov model for the consumer, the threshold
is lower than for the non-coupon dependent case which encapsulates the
fact that highly sensitive consumers will force the retailers to behave more
conservatively.

Our results use many fundamental tools and techniques from the theory of MDPs
through appropriate and meaningful problem modeling. We briefly review the
related literature in consumer privacy studies as well as MDPs.

Related Work: Several economic studies have examined consumer’s atti-
tudes towards privacy via surveys and data analysis including studies on the
benefits and costs of using private data (e.g., Aquisti and Grossklags in [2]). On
the other hand, formal methods such as differential privacy are finding use in
modeling the value of private data for market design [3] and for the problem
of partitioning goods with private valuation function amongst the agents [4]. In
these models the goal is to elicit private information from individuals. Venkita-
subramaniam [5] recently used an MDP model to study data sharing in control
systems with time-varying state. He minimizes the weighted sum of the util-
ity (benefit) that the system achieves by sharing data (e.g., with a data collec-
tor) and the resulting privacy leakage, quantified using the information-theoretic
equivocation function. In our work we do not quantify privacy loss directly; in-
stead we model privacy-sensitivity and resulting user behavior via MDPs to
determine interaction policies that can benefit both consumers and retailers. To
the best of our knowledge, a formal model for consumer-retailer interactions and
the related privacy issues has not been studied before; in particular, our work fo-
cuses on explicitly considering the consequence to the retailer of the consumers’
awareness of privacy violations.

Markov decision processes (MDPs) have been widely used for decades across
many fields [6,7]; in particular, our model is related to problems in control with
communication constraints [8,9] where state estimation has a cost. Our costs are
action and state dependent and we consider a different optimization problem.
Classical target-search problems [10] also have optimal policies that are thresh-
olds, but in our model the retailer goal is not to estimate the consumer state but
to minimize cost. The model we use is most similar to Ross’s model of product
quality control with deterioration [11], which was more recently used by Laourine
and Tong to study the Gilbert-Elliot channel in wireless communications [12], in
which the channel has two states and the transmitter has two actions (transmit
or not). We cannot apply their results directly due to our different cost struc-
ture, but use ideas from their proofs. Furthermore, we go beyond these works to
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study privacy-utility tradeoffs in consumer-retailer interactions with more than
two states and action-dependent transition probabilities. We apply more general
MDP analysis tools to address our formal behavioral model for privacy-sensitive
consumers.

While the MDP model used in this paper is simple, its application to the
problem of revenue maximization with privacy-sensitive consumers is novel. We
show that the optimal stationary policy exists and it is a threshold on the proba-
bility of the consumer being alerted. We extend the model to cases of consumers
with multiple states and consumers with coupon-dependent transition probabil-
ities. In the conclusion we describe several other interesting avenues for future
work.

2 System Model

We model interactions between a retailer and a consumer via a discrete-time
system (see Fig. 1). At each time t, the consumer has a discrete-valued state
and the retailer may offer one of two coupons: high privacy risk (HP) or low
privacy risk (LP). The consumer responds by imposing a cost on the retailer
that depends on the coupon offered and its own state. For example, a consumer
who is “alerted” (privacy-aware) may respond to an HP coupon by refusing to
shop at the retailer. The retailer’s goal is to decide which type of coupon to offer
at each time t to minimize its cost.

2.1 Consumer Model

Modeling Assumption 1 (Consumer’s state) We assume the consumer is
in one of a finite set of states that determine their response to coupons – each
state corresponds to a type of consumer behavior in terms of purchasing. The
consumer’s state evolves according to a Markov process.

For this paper, we primarily focus on the two-state case; the consumer may be
Normal or Alerted. Later we will extend this model to multiple consumer states.
The consumer state at time t is denoted by Gt ∈ {Normal,Alerted}. If a consumer
is in Normal state, the consumer is very likely to use coupons to make purchases.
However, in the Alerted state, the consumer is less likely to use coupons, since
it is more cautious about revealing information to the retailer. The evolution
of the consumer state is modeled as an infinite-horizon discrete time Markov
chain (Fig. 1). The consumer starts out in a random initial state unknown to
the retailer and the transition of the consumer state is independent of the action
of the retailer. A belief state is a probability distribution over possible states in
which the consumer could be. The belief of the consumer being in Alerted state
at time t is denoted by pt. We define λN,A = Pr[Gt = Alerted|Gt−1 = Normal]
to be the transition probability from Normal state to Alerted state and λA,A =
Pr[Gt = Alerted|Gt−1 = Alerted] to be the probability of staying in Alerted state
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when the previous state is also Alerted. The transition matrix Λ of the Markov
chain can be written as

Λ =

(
1− λN,A λN,A
1− λA,A λA,A

)
. (1)

We assume the transition probabilities are known to the retailer; this may come
from statistical analysis such as a survey of consumer attitudes. The one step
transition function, defined by T (pt) = (1 − pt)λN,A + ptλA,A, represents the
belief that the consumer is in Alerted state at time t + 1 given pt, the Alerted
state belief at time t.

Modeling Assumption 2 (State transitions) Consumers have an inertia in
that they tend to stay in the same state. Moreover, once consumers feel their
privacy is violated, it will take some time for them to come back to Normal state.

To guarantee Assumption 2 we consider transition matrices in (1) satisfying
λA,A ≥ 1 − λA,A, 1 − λN,A ≥ λN,A, and λN,A ≥ 1 − λA,A. Thus, by combining
the above three inequalities, we have λA,A ≥ λN,A.

2.2 Retailer Model

At each time t, the retailer can take an action by offering a coupon to the
consumer. We define the action at time t to be ut ∈ {HP, LP}, where HP denotes
offering a high privacy risk coupon (e.g. a targeted coupon) and LP denotes
offering a low privacy risk coupon (e.g. a generic coupon). The retailer’s utility
is modeled by a cost (negative revenue) which depends on both the consumer’s
state and the type of coupon being offered. If the retailer offers an LP coupon,
it suffers a cost CL independent of the consumer’s state: offering LP coupons
does not reveal anything about the state. However, if the retailer offers an HP
coupon, then the cost is CHN or CHA depending on whether the consumer’s
state is Normal or Alerted. Offering an HP (high privacy risk, targeted) coupon
to a Normal consumer should incur a low cost (high reward), but offering an HP
coupon to an Alerted consumer should incur a high cost (low reward) since an
Alerted consumer is privacy-sensitive. Thus, we assume CHN ≤ CL ≤ CHA.

Under these conditions, the retailer’s objective is to choose ut at each time
t to minimize the total cost inccured over the entire time horizon. The HP
coupon reveals information about the state through the cost, but is risky if the
consumer is alerted, creating a tension between cost minimization and acquiring
state information.

2.3 The Minimum Cost Function

We define C(pt, ut) to be the expected cost acquired from an individual consumer
at time t where pt is the probability that the consumer is in Alerted state and
ut is the retailer’s action:

C(pt, ut) =

{
CL if ut = LP
(1− pt)CHN + ptCHA if ut = HP

. (2)
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Fig. 1: Markov state transition model for a two-state consumer.

Since the retailer knows the consumer state from the incurred cost only when an
HP coupon is offered, the state of the consumer may not be directly observable
to the retailer. Therefore, the problem is actually a Partially Observable Markov
Decision Process (POMDP) [13].

We model the cost of violating a consumer’s privacy as a short term effect.
Thus, we adopt a discounted cost model with discount factor β ∈ (0, 1). At each
time t, the retailer has to choose which action ut to take in order to minimize the
expected discounted cost over infinite time horizon. A policy π for the retailer
is a rule that selects a coupon to offer at each time. Thus, given that the belief
of the consumer being in Alerted state at time t is pt and the policy is π, the
infinite-horizon discounted cost starting from t is

V π,tβ (pt) = Eπ

[ ∞∑
i=t

βiC(pi, Ai)|pt
]
, (3)

where Eπ indicates the expectation over the policy π. The objective of the retailer
is equivalent to minimizing the discounted cost over all possible policies. Thus,
we define the minimum cost function starting from time t over all policies to be

V tβ (pt) = min
π
V π,tβ (pt) for all pt ∈ [0, 1]. (4)

We define pt+1 to be the belief of the consumer being in Alerted state at time
t+ 1. The minimum cost function V tβ (pt) satisfies the Bellman equation [13]:

V tβ (pt) = min
ut∈{HP,LP}

{V tβ,ut(pt)}, (5)

V tβ,ut(pt) = βtC(pt, ut) + V t+1
β (pt+1|pt, ut). (6)

An optimal policy is stationary if it is a deterministic function of states, i.e.,
the optimal action at a particular state is the optimal action in this state at
all times. We define P = {[0, 1]} to be the belief space and U = {LP,HP} to
be the action space. In the context of our model, the optimal stationary policy
is a deterministic function mapping P into U . Since the problem is an infinite-
horizon, finite state and finite action MDP with discounted cost, by [14], there
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exists an optimal stationary policy π∗ such that starting from time t,

V tβ (pt) = V π
∗,t

β (pt). (7)

Thus, only the optimal stationary policy is considered because it is tractable
and achieves the same minimum cost as any optimal non-stationary policy.

By (5) and (6), the minimum cost function evolves as follows: if an HP coupon
is offered at time t, the retailer can perfectly infer the consumer state based on
the incurred cost. Therefore,

V tβ,HP(pt) = βtC(pt,HP) + (1− pt)V t+1
β (λN,A) + ptV

t+1
β (λA,A). (8)

If an LP coupon is offered at time t, the retailer cannot infer the consumer state
from the cost since both Normal and Alerted consumer impose the same cost CL.
Hence, the discounted cost function can be written as

V tβ,LP(pt) = βtC(pt, LP) + V t+1
β (pt+1)

= βtCL + V t+1
β (T (pt)). (9)

Correspondingly, the minimum cost function is given by

V tβ (pt) = min{V tβ,LP(pt), V
t
β,HP(pt)}. (10)

3 Optimal Stationary Policies

The first main result is a theorem providing the optimal stationary policy for
the two-state basic model in Section 2.

Theorem 1. There exists a threshold τ ∈ [0, 1] such that the following policy is
optimal:

π∗(pt) =

{
LP if τ ≤ pt ≤ 1
HP if 0 ≤ pt ≤ τ . (11)

More precisely, assume that δ = CHA − CHN + β(Vβ(λA,A)− V (λN,A)),

τ =

{
CL−(1−β)(CHN+βVβ(λN,A))

(1−β)δ T (τ) ≥ τ
CL+βλN,A(CHA+βVβ(λA,A))−(1−β(1−λN,A))(CHN+βVβ(λN,A))

(1−(λA,A−λN,A)β)δ T (τ) < τ
,

(12)
where for λN,A ≥ τ ,

Vβ(λN,A) = Vβ(λA,A) =
CL

1− β (13)

and for λN,A < τ ,

Vβ(λN,A) = (1− λN,A)[CHN + βVβ(λN,A)] + λN,A[CHA + βVβ(λA,A)], (14)

Vβ(λA,A) = min
n≥0
{G(n)}, (15)
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where

G(n) =
CL

1−βn
1−β + βn[T̄n(λA,A)(CHN + C(λN,A)) + Tn(λA,A)CHA]

1− βn+1[T̄n(λA,A)
λN,Aβ

1−(1−λN,A)β + Tn(λA,A)]
, (16)

Tn(λA,A) =
(λA,A − λN,A)n+1(1− λA,A) + λN,A

1− (λA,A − λN,A)
(17)

T̄n(λA,A) = 1− Tn(λA,A) (18)

C(λN,A) = β
(1− λN,A)CHN + λN,ACHA

1− (1− λN,A)β
. (19)

The proof of Theorem 1 and supporting lemmas are in the Appendix. An
immediate consequence of this result is an upper bound on pt for offering an HP
coupon.
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Fig. 2: Threshold τ vs. β for different values of λA,A and λN,A

Corollary 1. A sufficient condition for offering an HP coupon when transition
probabilities (λN,A, λA,A) are unknown to the retailer is pt ≤ CL−CHN

CHA−CHN .

The proof of Corollary 1 is provided in the Appendix. The ratio

κ =
CL − CHN
CHA − CHN

. (20)
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represents the ratio between the gain from offering an HP coupon to a Normal
consumer and the loss from offering an HP coupon to a consumer whom the
retailer thinks is Normal but is actually Alerted.

To illustrate the performance of the proposed threshold policy, we compare
the discounted cost resulted from the threshold policy with the greedy policy
which minimize the instantaneous cost at each decision epoch as well as a lazy
policy which a retailer only offers LP coupons. We plot the discounted cost av-
eraged over 1000 independent MDPs w.r.t. time t for different decision policies
in Fig. 3. The illustration demonstrates that the proposed threshold policy per-
forms better than the greedy policy and the lazy policy. Fig. 2a shows the optimal
threshold policy with respect to λN,A for three fixed choices of λA,A. It can be
seen that the threshold is increasing when λN,A is small, this is because for a
small λN,A, the consumers is less likely to transition from Normal to Alerted.
Therefore, the retailer tends to offer an HP coupon to the consumer. When λN,A
gets larger, the consumer is more likely to transition from Normal to Alerted.
Thus, the retailer tends to play conservatively by decreasing the threshold for
offering an LP coupon. When λN,A is greater than κ, the retailer will just use κ
to be the threshold for offering an HP coupon. One can also observe that with
increasing λA,A, the threshold τ decreases. On the other hand, for fixed CHN
and CHA, Fig 2b shows that the threshold τ increases as the cost of offering an
LP coupon increases, making it more desirable to take a risk and offer an HP
coupon.

The relationship between the discount factor β and the threshold τ as func-
tions of transition probabilities is shown in Fig. 4. It can be seen in Fig. 4a
that the threshold increases as β increases. This is because when β is small,
the retailer values the present rewards more than future rewards. Therefore, the
retailer tends to play conservatively so that it will not “creep out” the consumer
in the present. Fig. 4b shows that the threshold is high when λA,A is large or
λN,A is small. A high λA,A value indicates that a consumer is more likely to
remain in Alerted state. The retailer is willing to play aggressively since once the
consumer is in alerted state, it can take a very long time to transition back to
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Normal state. A low λN,A value implies that the consumer is not very privacy
sensitive. Thus, the retailer tends to offer HP coupons to reduce cost. One can
also observe in Fig. 4b that the threshold τ equals to κ after λN,A exceeds the
ratio κ. This is consistent with results shown in Fig. 2.

The effect of an LP coupon cost on the threshold for different discount factors
is plotted in Fig. 5. It can be seen that a higher CL will increase the threshold
because the retailer is more likely to offer an HP coupon when the cost of offering
an LP coupon is high.
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4 Consumer with Multi-Level Alerted States

In this section, the case that the consumer has multiple Alerted states is studied.
We define Gt ∈ {Normal,Alerted1, . . .AlertedK} to be the consumer state at time
t. If the consumers is in Alertedk state, it is even more cautious about coupons
than in Alertedk−1 state.

The transition matrix is defined to be

Λ =


λN,N λN,A1

. . . λN,AK
λA1,N λA1,A1 . . . λA1,AK

...
...

. . .
...

λAK ,N λAK ,A1 . . . λAK ,AK

 . (21)

We denote ēi to be the ith row of the transition matrix (21). At each time t, the
retailer can offer either an HP or an LP coupon. We define CHN , CHA1

, . . . , CHAK
to be the costs of the retailer when an HP coupon is offered while the state of
the consumer is Normal, Alerted1, . . . ,AlertedK , respectively. If an LP coupon is
offered, no matter in which state, the retailer gets a cost of CL. We assume
that CHAK ≥ · · · ≥ CHA1 ≥ CL ≥ CHN . The belief of the consumer being in
Normal, Alerted1, . . . ,AlertedK state at time t is defined by pN,t, pA1,t, . . . , pAK ,t,
respectively. The expected cost at time t has the following expression:

C(p̄t, ut) =

{
CL if ut = LP
p̄Tt C̄ if ut = HP

, (22)

where p̄t = (pN,t, pA1,t, . . . , pAK ,t)
T and C̄ = (CHN , CHA1 , . . . , CHAK )T . Assume

Fig. 6: Markov state transition model for a consumer with three states.

that the retailer has perfect information about the belief of the consumer state,
the cost function evolves as follows: by using an LP coupon at time t,

V tβ,LP(p̄t) = βtCL + V t+1
β (p̄t+1) = βtCL + V t+1

β (T (p̄t)), (23)
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where T (p̄t) = p̄Tt Λ is the one step Markov transition function. By using an HP
coupon at time t,

V tβ,HP(p̄t) = βtp̄Tt C̄ + p̄Tt


V t+1
β (ē1)

V t+1
β (ē2)

...
V t+1
β (ēK+1)

 . (24)

Therefore, the minimum cost function is given by (10). In this problem, since

Fig. 7: Optimal policy region for three-state consumer. (Parameters: λN,N =
0.7, λN,A1

= 0.2, λN,A2
= 0.1;λA1,N = 0.2, λA1,A1

= 0.5, λA1,A2
= 0.3;λA2,N =

0.1, λA2,A1 = 0.2, λA2,A2 = 0.7;β = 0.9, CL = 7, CHN = 1, CHA1 = 10, CHA2 =
20).

the instantaneous costs are nondecreasing with states when the action is fixed
and the evolution of belief state is the same for both LP and HP, the existence
of an optimal stationary policy with threshold property for finite many states is
guaranteed by Proposition 2 in [15]. The optimal stationary policy for a three-
state consumer model (Fig. 6) is illustrated in Fig. ??. For fixed costs, the plot
shows the partition of the belief space based on the optimal actions and reveals
that offering an HP coupon is optimal when pN,t, the belief of the consumer
being in Normal state, is high.

5 Consumers with Coupon-Dependent Transition

Generally, consumers’ reactions to HP and LP coupons are different. To be more
specific, a consumer is likely to feel less comfortable when being offered a coupon
on medication (HP) than food (LP). Thus, we assume that the Markov transition
probabilities are dependent on the coupon offered.

As shown in Fig. 8, if an LP coupon is offered, the state transition follows
the Markov chain

ΛLP =

(
1− λN,A λN,A
1− λA,A λA,A

)
. (25)
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Otherwise, the state transition follows

ΛHP =

(
1− λ′N,A λ′N,A
1− λ′A,A λ′A,A

)
. (26)

According to the model in Section 2, λA,A > λN,A, λ
′
A,A > λ′N,A. Moreover,

N A

λN,A

1-λN,A

1-λA,A

λA,A

N A

λ'N,A

1-λ'N,A
1-λ'A,A

λ'A,A

LP

HP

Fig. 8: Markov state transition model for a consumer with coupon dependent
transition probabilities.

we assume that offering an HP coupon will increase the probability of transition
to or staying at Alerted state. Therefore, λ′A,A > λA,A and λ′N,A > λN,A. The
minimum cost function evolves as follows: for an HP coupon offered at time t,

V tβ,HP(pt) = βtC(pt,HP) + (1− pt)V t+1
β (λ′N,A) + ptV

t+1
β (λ′A,A).

Otherwise,

V tβ,LP(pt) = βtCL + V t+1
β (pt+1) = βtCL + V t+1

β (T (pt)),

where T (pt) = λN,A(1−pt)+λA,Apt is the one step transition defined in Section 2.

Theorem 2. Given action dependent transition matrices ΛLP and ΛHP, the op-
timal stationary policy has threshold structure.

The proof is similar to the proof of Theorem 1 except that there are two
transition matrices correspond to two different coupons. Thus, it is omitted for
brevity.

Fig. 9 shows the effect of costs on the threshold τ . We can see that, for
fixed coupon costs, the threshold for offering an HP coupon to a consumer with
coupon dependent transition probabilities is lower than our original model with-
out coupon-dependent transition probabilities. The retailer can only offer an LP
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coupon with certain combination of costs; we call this the LP-only region. It can
be seen that the LP-only region for the coupon-independent transition case is
smaller than that for the coupon-dependent transition case since for the latter,
the likelihood of being in an Alerted state is higher for the same costs.

0
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NO COUPON DEPENDENT TRANSITIONS

τ

Fig. 9: Optimal policy threshold for consumer with/without coupon depen-
dent transition probabilities. (Parameters: λN,A = 0.2, λA,A = 0.8, λ′N,A =
0.5, λ′A,A = 0.9, β = 0.9).

6 Conclusion

We proposed a POMDP model to capture the interactions between a retailer
and a privacy-sensitive consumer in the context of personalized shopping. The
retailer seeks to minimize the expected discounted cost of violating the con-
sumer’s privacy. We showed that the optimal coupon-offering policy is a sta-
tionary policy that takes the form of an explicit threshold that depends on the
model parameters. In summary, the retailer offers an HP coupon when the Normal
to Alerted transition probability is low or the probability of staying in Alerted
state is high. Furthermore, the threshold optimal policy also holds for consumers
whose privacy sensitivity can be captured via multiple alerted states as well as
for the case in which consumers exhibit coupon-dependent transition. Our work
suggests several interesting directions for future work: cases where retailer has
additional uncertainty about the state, for example due to randomness in the
received costs, game theoretic models to study the interaction between the re-
tailer and strategic consumers, and more generally, understanding the tension
between acquiring information about the consumers and maximizing revenue.
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Appendix:

Lemma 1. The minimum cost when the decision horizon starts from t and only
spans m stages is defined to be V t,mβ . Given a time invariant action set Ai =

A = {LP,HP}, for any i = 0, 1, . . . , V t,mβ (p) = βV t−1,mβ (p).
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Proof. By (4) and Ai = A = {LP,HP} for any i = 0, 1, . . ..

V t,mβ (p)

= min
π

Eπ

[
t+m−1∑
i=t

βiC(pi, Ai)|pt = p

]

= βmin
π

Eπ

[
t+m−2∑
i=t−1

βiC(pi, Ai)|pt−1 = p

]
= βV t−1,mβ (p).

(27)

By using induction on t, we can easily prove V t,mβ (p) = βV t−1,mβ (p) = · · · =
βtV 0,m

β (p).

Lemma 2. The minimum cost function V tβ (p) is a concave and non-decreasing
function of p.

Proof. We prove these properties by induction. We define V t,mβ to be the mini-
mum cost when the decision horizon starts from t and only spans k stages. For
k = 1,

V t,kβ (p) = min{CL, (1− p)CHN + pCHA}, (28)

which is a concave function of p. For k = n−1, assume that V t,kβ (p) is a concave

function. Then, for k = n, since V t,n−1β (p) is concave and V t,kβ,LP(p) = βtCL +

V t+1,n−1
β (T (p)), by the definition of concavity and Lemma 1, we can conclude

that V t,kβ,LP(p) is concave. Also, V t,kβ,HP(p) is an affine function of p, thus V t,kβ (p) =

min{V t,kβ,LP(p), V t,kβ,HP(p)} is a concave function of p. Taking k → ∞, V t,kβ (p) →
V tβ (p), which implies V tβ (p) is a concave function.

Next, we prove the non-decreasing property of the minimum cost function.
For k = 1, as shown in equation (28), it is a non-decreasing function of p. Assume

that V t,kβ (p) is a non-decreasing function for k = n− 1. For k = n, assume that
p1 ≥ p2,

V t,kβ,LP(p1)− V t,kβ,LP(p2) (29)

= β(V t,n−1β (T (p1))− V n−1β (T (p2))) (30)

= β(V t,n−1β ((λA,A − λN,A)p1 + λN,A)

− V t,n−1β ((λA,A − λN,A)p2 + λN,A))) (31)

≥ 0. (32)

By using the same technique, we can prove that given p2−p1 ≤ 0, CHN−CHA ≤
0 and V t,k−1β (λN,A)− V t,k−1β (λA,A) ≤ 0,

V t,kβ,HP(p1)− V t,kβ,HP(p2) ≥ 0. (33)
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Since V t,kβ (pt) = min{V t,kβ,LP(p), V t,kβ,HP(p)}, it is the minimum of two non-decreasing

functions. Therefore, V t,kβ (p) is non-decreasing. By taking k → ∞, V t,kβ (p) →
V tβ (p). Thus, V tβ (p) is a non-decreasing function.

Lemma 3. We define ΦHP to be the set of values of pt for which offering an HP
coupon is the optimal action at time t. Then, ΦHP is a convex set.

Proof. Since ΦHP = {p ∈ [0, 1], V tβ (p) = V tβ,HP(p)}, assume that pt = apt,1 + (1−
a)pt,2 in which pt,1, pt,2 ∈ ΦHP and a ∈ [0, 1], V tβ (pt) can be written as:

V tβ (pt) = V tβ (apt,1 + (1− a)pt,2) (34)

≥ aV tβ (pt,1) + (1− a)V tβ (pt,2) (35)

= aV tβ,HP(pt,1) + (1− a)V tβ,HP(pt,2) (36)

= a[(1− pt,1)[βtCHN + βV tβ (λN,A)] + pt,1[βtCHA + βV tβ (λA,A)]]

+ (1− a)[(1− pt,2)[βtCHN + βV tβ (λN,A)] + pt,2[βtCHA + βV tβ (λA,A)]]

(37)

= V tβ,HP(apt,1 + (1− a)pt,2). (38)

Thus, we have shown that:

V tβ (pt) ≥ V tβ,HP(apt,1 + (1− a)pt,1) = V tβ,HP(pt). (39)

By the definition of V tβ (pt) in (10), V tβ (pt) ≤ V tβ,HP(pt). Therefore, V tβ,HP(pt) =

V tβ (pt), which implies ΦHP is convex.

Proof of Theorem 1

Proof. We define pF be the stationary distribution of the Markov transition.
Thus, pF = λA,ApF +(1−pF )λN,A, which implies pF =

λN,A
1−λA,A+λN,A

. Remember

that the threshold τ is the solution to V tβ,LP(pt) = V tβ,HP(pt). Therefore, we have:

βtCL + V t+1
β (T (τ))

= (1− τ)[βtCHN + V t+1
β (λN,A)] + τ [βtCHA + V t+1

β (λA,A)].
(40)

By the definition of V tβ (pt), we know that V tβ (pt) = βtVβ(pt). Thus V tβ (λN,A) =

βtVβ(λN,A) and V tβ (λA,A) = βtVβ(λA,A).

If T (τ) ≥ τ , which is equivalent to pF ≥ τ , then V t+1
β (T (τ)) = V t+1

β,LP(T (τ)).
Therefore,

V tβ,LP(τ) = lim
n→∞

{
βt

1− βn
1− β CL + βnV t+1

β (Tn(τ))

}
(41)

where Tn(τ) = T (Tn−1(τ)) = pF (1−(λA,A−λN,A)n)+(λA,A−λN,A)nτ . Taking
n→∞, we have V tβ,LP(τ) = βt C

1−β . Substitute this into (40) yields:

CL
1− β = (1− τ)CHN + τCHA + β(τVβ(λA,A) + (1− τ)Vβ(λN,A)). (42)
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By rearranging terms in the above expression, we have

τ =

CL
1−β − CHN − βVβ(λN,A)

(CHA − CHN ) + β(Vβ(λA,A)− Vβ(λN,A))
. (43)

If pF ≤ τ , then T (τ) ≤ τ . Therefore V t+1
β (T (τ)) = V t+1

β,HP(T (τ)), which
implies

V tβ,LP(τ) = βtCL + V t+1
β (T (τ)) = βtCL + V t+1

β,HP(T (τ)) = V tβ,HP(τ). (44)

In this case,

CL + βVβ,HP(T (τ)) = Vβ,HP(τ). (45)

Substitute (8) and (1)into (45), we have

τ =
CL − (1− β(1− λN,A))(CHN + βVβ(λN,A))

(1− (λA,A − λN,A)β)(CHA − CHN + β(Vβ(λA,A)− V (λN,A)))

+
βλN,A(CHA + βVβ(λA,A))

(1− (λA,A − λN,A)β)(CHA − CHN + β(Vβ(λA,A)− V (λN,A)))
.

(46)

Next, we present how to compute Vβ(λN,A) and Vβ(λA,A).
Case 1: If λN,A ≥ τ , then by assumption, λA,A ≥ λN,A ≥ τ and pF ≥ λN,A ≥

τ . Thus, both λA,A and λN,A are in ΦLP, therefore,

Vβ(λN,A) = Vβ(λA,A) =
CL

1− β . (47)

Case 2: If λN,A ≤ τ , we have Vβ(λN,A) = Vβ,HP(λN,A). Therefore,

Vβ(λN,A) = (1− λN,A)[CHN + V 1
β (λN,A)] + λN,A[CHA + V 1

β (λA,A)]. (48)

Vβ(λA,A) = min
At∈{HP,LP}

Vβ,At(λA,A) (49)

= min{CL + V 1
β (T (λA,A)), VHP(λA,A)} (50)

= min{CL
1− βN
1− β , min

0≤n≤N−1
{CL

1− βn
1− β + V nβ,HP(Tn(λA,A))}}. (51)

Since N →∞ and 0 ≤ β ≤ 1,

Vβ(λA,A) = min
n>0

{
CL

1− βn
1− β + βnVβ,HP(Tn(λA,A))

}
. (52)

we have:

Vβ(λA,A)

= min
n≥0

CL
1−βn
1−β + βn[T̄n(λA,A)(CHN + C(λN,A)) + Tn(λA,A)CHA]

1− βn+1[T̄n(λA,A)
λN,Aβ

1−(1−λN,A)β + Tn(λA,A)]

 .

(53)
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where

Tn(λA,A) = T (Tn−1(λA,A)) =
(λA,A − λN,A)n+1(1− λA,A) + λN,A

1− (λA,A − λN,A)
, (54)

T̄n(λA,A) = 1− Tn(λA,A) (55)

C(λN,A) = β
(1− λN,A)CHN + λN,ACHA

1− (1− λN,A)β
. (56)

Proof of Corollary 1

Proof. By setting VLP(pt) ≥ VHP(pt), we have

βtCL + βV tβ (T (pt)) ≥
(1− pt)[βtCHN + βV tβ (λN,A)] + pt[β

tCHA + βV tβ (λA,A)].
(57)

According to Lemma 2, V tβ (pt) is a concave function. Thus,

V tβ (T (pt)) = V tβ (λN,A(1− pt) + λA,Apt)

≥ (1− pt)V tβ (λN,A) + ptV
t
β (λA,A).

(58)

By substituting (58) into (57), we can simplify inequality (57) to (1− pt)CHN +
ptCHA ≤ CL, which implies pt ≤ CL−CHN

CHA−CHN when V tLP(pt) ≥ V tHP(pt).
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