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Dissertation Director:

Richard P. Martin

The constant reduction in cost and increase in the power of computing machinery has resulted in

an ever-increasing interest and deployment of Internet-enabled sensing systems. Such systems have

the distinctly difficult task of making use of noisy data sampled from dynamic environments. While

some natural processes may have very exact theoretical models, real actual data rarely holds to

the model, making the comparison, improvement and iterative development of sensing applications

extremely difficult. The inability to determine whether a sensing system’s error is the result of

noisy data or algorithmic miscomputation, or the prevalence and significance of signal errors in a

particular environment make the causes of the error inscrutable. In such cases strongly amortized

or very general probabilistic analysis is often used as a last resort resulting in conclusions that are

overly generic, heuristic, or strongly underdetermined. We present a systematic method that can be

used to construct a holistic synthetic error model for sensed data, the algorithms that process it and

the environment in which it is sampled. We demonstrate how this method can be applied to the

problem of laterative localization to construct deductive, analytic and evaluative mechanisms that

allow model misperception, algorithmic error and environmental character to be understood.
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Chapter 1

Introduction

Over the past decade the constant reduction in cost and increase in the power of computing ma-

chinery has made sensors widely available and the devices that mount them quite capable, cheap,

and long-lasting. Coupled with the ubiquity of wireless networks, Internet-enabled sensing systems

are more widely deployed and available than ever. Such systems have the distinctly difficult task of

making use of noisy data sampled from dynamic environments, in particular, radio signal strength.

While some natural processes may have very exact theoretical models, data sampled from a live

environment can diverge widely. The environment forms a noise manifold that distorts what the

process’ model would predict, making it necessary to model not only the process itself, but also the

way the environment affects it. In some cases, environmental effects can be particularly strong and

difficult to model, as is the case when modeling the radio signal strength to distance relation indoors

for 802.11 data radio.

Sampled data might contain any amount of noise of multiple types. In order to bound the effects

of the noise, both the noise type and its strength must be determined. The main complicating factor

is aliasing between these dimensions. Being able to determine the exact type and strength of noise

components is tantamount to being able to predict the configuration of the noise environment from

moment to moment, which is infeasible at best, if not impossible. The inability to gauge the amount

of noise in sampled radio signal strength data makes it difficult to determine whether a sensing

system’s error is the result of noisy data or algorithmic miscomputation. Since the environments that

such systems work on are often strongly underdetermined, interpreting, comparing and reasoning

about results is only done on a heuristic level.

Systems that compute on environmental data fall in to one of two general classes; pointwise and

model-based. Pointwise systems record data under known conditions, match live data against it,

and construe the governing conditions of the live data to be those that correspond to the recorded

data that is most similar to the live data. Such systems have error residuals that deal directly with

variations in sampling for each configuration of known conditions, which tends to make them readily

calculable. Pointwise systems however can not generalize beyond the points at which they were

sampled. We consider chiefly the second class, algorithms that are model-based.
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Model-based systems are a step more abstract. Such systems rely on a model that describes

the conditional relation between sampled data and some set of governing values or environmental

conditions. The first stage of such a system is to collect a descriptive set of data recorded under

known conditions. The model is then parameterized to produce the recorded conditions for each

recorded data sample with a minimum of error. The model is then assumed to be tuned to the

environment and is used to determine the conditions under which live data samples were collected.

Model-based algorithms can report conditions that were not included in the direct sample set. While

use of a model makes such algorithms much more flexible, it complicates the calculation of a residual

since the method of parameterizing the model is a source of error as well.

Due to this extra layer of estimation the precise cause any of model-based system’s result is

doubly obscured, causing such results to be, at best, unparameterized metrics. Not having a clear

and exact cause for each result has several deleterious effects. It is not clear how to improve model-

based algorithms since noise effects are inseparable from algorithmic error. It is not clear how to

compare results of algorithms computed in different environments, since the effect of the environment

on an algorithm’s results are unknown. It is not clear how to determine a reasonable a-priori error

bound for an algorithm’s performance in an environment, since the type, degree and strength of

distortion and noise processes is not readily estimable.

There has been a large amount of work done, based on reasonable assumptions an extrapola-

tions, to analyze the signal environment, identify signal distortions or benchmark algorithms, but as

isolated problems. To date there has been very little work done to construct a direct causal link be-

tween characteristics of the environment and algorithmic error, which requires an end-to-end model

describing not only all of these issues, but how they are linked. We define a series of mechanisms

that together can be used to construct a synthetic error model to address these shortcomings of

underdetermined model-based systems. We define a deductive method to determine the dominant

distortion type and strength from any signal vector. We define an analytic method to determine

how error types affect an algorithm. Finally we define an evaluative method to determine the type

and strength of error in an environment and bound system performance. In order to illustrate the

efficacy of these mechanisms, we apply them to the underdetermined model-based system of indoor

laterative radio localization.

Radio localization is the process of locating a device based on how its radio signals are affected

by its environment. Each physical location’s radio properties are distinctive, but these properties

fluctuate, making recorded signal information difficult to reason about. Being able to pair one group

of radio properties to one exact location would allow a system to locate any transmitter in an indoor

environment. The Received Signal Strength Indicator (RSSI) is a value determined by a wireless
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networking card that qualitatively describes how strong a signal is. This metric is often used for

localization since it is readily accessible for minimal effort, is computed by the card itself and is

related to the distance a signal has traveled.

Pointwise localization algorithms are referred to as ’scene-matching’ and model-based ones as

’laterative’. Scene-matching and laterative algorithms both have an offline training phase followed

by an online testing phase wherein devices are localized. During the training phase a training

device transmits from known locations. These transmissions are sensed by multiple landmark (LM)

devices. Landmarks are devices at other known locations that monitor the signal space and record

the strength of all transmissions they detect. A strength indicator from each LM that hears a given

transmission is arranged in a vector called a fingerprint. Fingerprints are the fundamental quanta

of information for localization algorithms. As part of the training or testing phase the algorithm

determines governing parameters from the fingerprints recorded during the training phase (training

data). During the testing phase the algorithm uses the computed parameters to determine the

location of the source of the fingerprint to be located (testing data) by either converting the testing

data directly to a vector of distances or using it as divergence indicators analogous to distances.

The signal-to-distance model lies at the heart of laterative localization, yet it is strongly under-

determined. Consumer data radios roughly estimate received signal strength (RSS) as a byproduct

of decoding a signal as they often do not need an exact measurement to meet data networking

standards. Each manufacturer’s device also reports a received signal strength indicator (RSSI) to

the user based on its own RSS discretization function, which may or may not resemble other manu-

factuers’ functions. Due the exigencies of its calculation, RSSI is naturally a particularly amorphous

value.

Further complicating the use of RSSIs is the indoor signal environment. The indoor signal envi-

ronment is very fluid, containing many objects and events that cause non-uniform signal propagation

that can vary quickly in intensity and character. The range of frequencies outlined in the 802.11

standards are fairly high, causing their corresponding wavelengths to be similar to the size of many

of the objects that commonly occur indoors. The size and number of such objects causes the radio

energy to scatter, bounce and recombine rather than penetrate or be fully occluded. While this

effect is excellent for coverage of an area, it is particularly deleterious when using a signal’s strength

to determine distance as it is extremely likely that the signal did not travel directly from the trans-

mitter to the receiver in a straight line, free of obstructions, losing power only while propagating

freely through space.

Since RSSI is an inexact measure and the true conditions that caused a given live RSSI are un-

known, it is not clear if a laterative localization algorithm’s error is due to model parameterization
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or algorithmic error, clearly demonstrating the first of the three shortcomings of underdetermined

model-based systems. Since algorithmic error can not be isolated from parameter estimation error,

algorithmic error is singular per experiment. Since error trends can not be determined, no reasoned

improvements can be made to laterative localization algorithms, demonstrating the second shortcom-

ing of underdetermined model-based systems. Since the influence of the environment on algorithmic

error can not be isolated, algorithmic results between environments can not be compared and no

a-priori estimates of algorithm performance can be made based on an environment’s characteristics,

demonstrating the third shortcoming of underdetermined model-based systems. The fundamental

cause of each shortcoming is the lack of an error model for the process in question.

Below we will demonstrate how to construct a synthetic error model that can serve to provide the

critical context in which to interpret and assess the results of different stages of laterative localization

systems. This model will enable the generation of deductive, analytic and evaluative mechanisms to

combat each shortcoming listed above, respectively.

1.1 Contributions

Without an understanding of the context in which values are computed it is not possible to determine

their significance. Laterative localization systems compute in such a rational vacuum as they rest on

a basis of solecistic presumption. It is the purpose of this thesis to systematically construct methods

to deduce, analyze and predict radio distortion parameters, the effect of distortion on localization

error and the average error of an algorithm in an environment, respectively.

In Chapter 3 we define the Discretely Distributed Log-Hölder Metric (DDLHM), which we use to

characterize the manner and degree of distortion in 802.11 signal strengths relative to the lognormal

path model. We then use these characterizations to detect the disposition of the dominant distortion

in an exhaustive suite of synthetic signal vectors. We then determine a reduced set of maximally

diagnostic distortion parameters. Using only 4% of the exhaustive set, our method detects the exact

distortion profile 76% of the time, and matches with a small degree of error 85% of the time, and

with an acceptable degree of error 95& of the time.

In Chapter 4 we construct and demonstrate an analytic process that we employ to benchmark

algorithmic performance in the presence of distortions. We verify our findings on both point-based

and laterative algorithms and identify unintuitive error trends in algorithmic response graphs. In

order to qualify algorithmic robustness we set forward rotated trilateration as a standard compar-

ative laterative localization algorithm that directly translates signal to distance estimation error to

localization error.
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In Chapter 5 we apply our techniques from Chapter 3 to identify distortion types in three

different physical environments and determine the likely performance of several algorithms based

on their benchmarks as computed in Chapter 4. For all environments and algorithms but our own

diagnostic algorithm specifically engineered to have extreme error sensitivity, we can predict the

average localization error to within 2 meters of the actual leave-one-out localization results, and in

most cases to within 1 meter.
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Chapter 2

Background and Previous Work

There are many systems developed for and continuing research into localization of a variety of objects

and events using many discretizing technologies, such as angle of arrival (AoA) [29], time of arrival

(ToA) [41], and connection [11, 25]. Laterative localization is a perennial favorite and has been

the basis of many systems. Lateraitve localization systems have employed several signal strength-

based ranging techniques, such as: ultrasound [30, 38], infrared [37], and various radio frequencies

[26, 4, 28]. Localization is hardly restricted to only 802.11 radio, however it remains extremely

popular as a ranging mechanic due to several distinct advantages.

Due to its nearly universal acceptance as an end user networking standard, 802.11 networks can be

presumed present in nearly any indoor environment whether it is a residence, business, or industrial

facility. Since it is so widely deployed, 802.11 hardware is readily available for many interface types

at consumer prices. Beyond computers, 802.11 is standard in many personal electronic devices like

tablets and smartphones, enabling tracking and workflow applications. Retail 802.11 networking

hardware can be easily re-purposed for RSS data collection. Many 802.11 wireless drivers can be

put into a ’monitor’ mode that enables a device to see any traffic on a given channel, not just traffic

addressed to the device. This mode makes sensing a client device’s transmissions trivial and requires

no collusion or cooperation on the part of the device being located, allowing very simple devices

or devices that no central authority has control over to be located with no impact on an existing

data network. Due to the low cost of the hardware, ease of repurposing and ubiquitous deployment

creating a large target community, indoor localization is often researched with 802.11 hardware.

Despite its distinct advantages, popularity and inclusion in many laterative localization sys-

tems, 802.11 signal strength ranging presents some unique difficulties. One of its most fundamental

problems is the disconnect between localization algorithm performance and the disposition of the

signal space. As P. Bahl and V. N. Padmanabhan stated in their seminal 2000 paper, RADAR: An

In-Building RF-Based User Location and Tracking System:

For a radio channel, signal propagation in an indoor environment is dominated by reflec-

tions, diffraction, and scattering of radio waves caused by structures within the building.
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The transmitted signal generally reaches the receiver via multiple paths ... since multi-

path within buildings is strongly influenced by the layout of the building, the construction

material used, and the number and type of objects in the building, characterizing the

radio channel in such an environment is challenging. ([9])

The signal model used is pivotal to any laterative localization system. Signal strength measures

are often the only indication of an unknown transmitter’s location. Being able to fully understand

why a given signal was sensed is tantamount to computing how the transmitter fits into the signal

and physical environments. Determining this relationship is certainly difficult because any movement

from a sampled point indoors to a new point is another twist of the kaleidoscope of propagation

mechanics. While it is convenient to presume that all indoor propagation paths will be mostly

lognormal with relatively little difference. We maintain that in reality this is largely untrue, as

recent investigations have begun to bear out. [32, 10, 7] Recently M. Ficco, C. Esposito and A.

Napolitano stated in their 2014 paper, Calibrating Indoor Positioning Systems with Low Efforts:

“Indoor signal propagation suffers from multipath fading effects, due to reflection, diffraction, and

refraction caused by met obstacles. Such effects cause severe consequences on the propagation char-

acteristics and on the model to be utilized.” ([22])

Noting, with almost the exact same language, the same difficulties that the authors of the

RADAR paper experienced. Despite 14 years of active research into localization algorithms, there

has been little real progress in determining why localization algorithms perform as they do. While

research is done based on reasonable assumptions and extrapolations, there is been precious little

work done not just to analyze the signal environment, identify signal distortions and benchmark

algorithms, but to build a direct causal link between characteristics of an environment and error.

Some of these necessary relations have been researched in isolation, but often not to the degree

necessary or combined to form a complete picture of the process. The areas researched fall into four

major categories, analysis of: propagation, algorithms, environments and system opimization.

Propagation Analysis

The first source of error in any laterative localization system is determining the distance some signal

has traveled. While a signal’s power will decay solely due to distance covered while propagating, it

can also incur losses by interacting with the environment. While it is quite easy to model power loss

due solely to distance propagated with a simple lognormal relation, it is a different matter to model
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the influence of all distorting elements. Being able to determine the exact model and parameters to

use would require extraordinary knowledge of the signal environment.

Different models are tuned to model different types of distortion interactions based on a particular

system’s design. An indoor environment is quite distinct from an outdoor one. Indoor environments

have a large number of reflective, absorptive and diffracting objects within them. To counter this,

indoor communication systems often have very short wavelengths so that signals are prone to shatter

and reflect when encountering an object, forming an incidental path by filling the entire space with

energy, increasing the likelihood that the signal will encounter multiple distortions. [39] There are

a plethora of propagation models used for mobile and indoor systems such as the Bullington model,

the model of Okumura et a1., the lTV (CCIR) model, the Hata model, the Ibrahim-Parsons model,

the Joint Radio Committee(JRC) model, the Ikegami method, to mention only a few. [3, 2] In

practice the simple lognormal model for power loss over distance is used in some manner in the

overwhelming majority of indoor laterative localization systems. [2, 16, 9, 40, 34, 10]

One popular method of determining parameters to the lognormal model is to assess the distortive

strength of different building materials, sum their effects over a straight line path from the trans-

mitter to receiver, and then solve for parameters that would correct for those objects’ influences.

[2] While this is a workable first-order approximation it requires a detailed environmental survey.

The International Telecommunications Union generalized this parameterization process by assessing

the likely parameter sets for a series of generic indoor scenarios and averaging them to establish an

expected parameter range given an environment’s general disposition. [33] Other methods employ

machine learning, statistical analysis, averaging or other such amoritizing mechanisms [16, 34, 40, 14]

One of the fundamental difficulties of such parameter estimation methods is predicting or an-

alyzing error. Using one set of parameters to represent the plurality of all possible paths that a

signal may take to a given LM already invites significant error. [7] Methods of determining distance

estimation error differ by algorithm and application. In cases of radio tomography, only detecting

a signal power different enough than an expected value is enough to indicate an event. [27, 15]

While many analyses of distance estimation error for laterative localization algorithms have been

done, they are often too far removed from actual data to yield actionable results. An error metric

often used is the Cramer-Rao Lower Bound. It however requires continuous relations to compare

against, which can not be obtained by measuring at discrete locations in an actual environments.

In order to analyze distance prediction error using such common techniques researchers will often

either alter the metric, amortize the data, use simulated data or use a related but entirely different

ranging modality, like time of arrival. [41, 6, 8, 5] The fundamental difficulties in assessing distance

estimation error are having a metric that: can be applied to discrete signal data sampled from a
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physical environment and clearly determines the degree to which the signal data differs from the

lognormal model in such a way as to estimate the likely resulting distance misestimation.

Algorithm Analysis

The second source of error in laterative localization systems is the localization algorithm itself.

Ever since the widely-regarded RADAR paper in 2000, many different studies have been done to

determine how to improve the accuracy of 802.11 signal strength-based localization systems. [9]

RADAR is a scene-matching algorithm that uses a nearest-neighbor strategy to assign locations

to RSS fingerprints based on its training data. Training interpolation, environment gridding and

tiling were later introduced as improvements over RADAR in the SPM and Rice University’s algo-

rithms. [16, 19]. In order to increase localization accuracy, probability-matching algorithms were

engineered. These algorithms still match testing fingerprints against a training set, however the

matching mechanics are based on probabilistic mechanisms rather than a more direct comparison of

signal strengths. Such techniques are more resilient to the ever-present random signal fluctuations

and pertubations of indoor environments. The Nibble algorithm was one of the first to implement

probability-matching, using a neural net to match fingerprints to locations. [12] The ABP algorithm

and the HORUS system built on this design. [16]

Fully probabilistic algorithms followed. These algorithms still use some training data, but need

significantly less than matching-type algorithms before their estimators are saturated. Probabilistic

algorithms directly compute coordinates for a fingerprint probabilistically rather than by selecting

a set of coordinates from a pre-measured list. Algorithms such as M1 and M2 directly compute

a fingerprint’s likely coordinates after generating a series of attenuation and bias corrections to a

lognormal signal model based on training data and using it to translate testing data into ranges

to laterate on. [16, 24] While these and other algorithms have different methods of computation,

error performance is often strikingly similar when tested in the same environment, with no clear

improvement. [16]

While all reasonable attempt at improvement based on rational expectations or statistical argu-

ments, localization algorithms can only be improved heuristically at best. The difficulty in engineer-

ing localization algorithms is that there is no clear relation between a set of distance measures and

positioning error. Since the error context in which the algorithm is computing can not be exactly

known, the only reasonable solution is to attempt to amortize the effect of error, be it environment

gridding, averaging or statistical solving. These mechanisms act appropriately, but serve to further

muddy the waters by blending good data with bad to raise the localization error floor. Some at-

tempts at dealing with this problem involve constraining the range of possible solutions by using
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only connection-oriented localization. Connection-oriented localization determines that if one node

can see another, they must be closer than some maximal distance, reducing the localization model

to a signal power threshold based on radial range. [11] While this does reduce the complexity of the

model, it hides the very effects of the environment that caused the error that may provide useful

clues. Rather that direct thresholding, one improvement is to base detecting-oriented ranging on

maximal relative difference between subsequent signals as a measure of link quality. [14] Such models

however lose the ability to position absolutely and can only determine the likely relative distance

between nodes. Another improvement is to add additional information by instrumenting link quality

along with signal strenth. [35] Such an alteration is far from exact since link quality is an uncertain

metric that can often be an informational measure of decoding error, and may rely on noise power,

chip rate and modulation rather than only signal strength. [35]

Environmental Analysis

Compared to algorithmic and propagation analysis, environmental studies are often very narrow,

particular to a given environment or algorithm. The environment is often investigated only tangen-

tially while evaluating the general disposition of an area and the average efficacy of the lognormal

model. [20, 7] In order to auto-correct for lognormal model error, some studies have estimated com-

mon estimation error scenarios and have prepared basic heuristics to smooth over them. In so doing

however they have necessarily generated an expected environmental distortion map and identified

distortion scenarios, but did not not take the conceptual step to generalize from error in the lognor-

mal model to a parameterization of signal environment itself. [32] Other studies have followed the

ITU model and have computed lognormal propagation parameters over certain environment areas,

but rather than defining their areas based on floorplan data, they define their areas as concentric

ranges from LMs within a variability threshold. [31] Such a construction is all but a defacto general

distortion model of the environment itself, but is put forward solely as a lognormal model parameter

estimation aid.

Systems based around radio tomography often track closely to the ITU environmental model,

assessing radio behavior in a few different environments and averaging results. Some such studies

have demonstrated useful general parameters like optimal antenna separation to detect a break in

a link or the capability to recognize a particular slice of the signal environment. [1, 21] While these

are not conclusions on the disposition of distortion in an environment, they are useful insights into

the expected amount of deviation per square foot of monitored area; a volumetric estimation of

environmental noise. Similar work has been even more exact, automatically assessing parameters
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to the lognormal model and estimating error area, but not generalizing these mechanisms to draw

conclusions about the environment at large. [15, 27]

While all informative, such studies define the problem much too narrowly. Most consider only

bounding or improving accuracy for a given algorithm, or determining propagation parameters for

a given environment. Few have attempted to form a systematic basis of comparison in order to

understand the entire problem, as it would require a solution for any environment, algorithm and

distortion type simultaneously. We propose just such a solution. We will present a method to detect

systemic distortions common to radio indoors in the 802.11 band, a method to benchmark algorithm

performance in the presence of these distortions and a method to decompose an environment into

a series of distortion profiles. By so doing we will specify how anyone can construct a synthetic

error model for any environment, algorithm and distortion suite that is evaluative, analytic and

diagnostic.
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Chapter 3

Quantifying Ranging Error

Signal power is conditionally dependent on the distance the signal traveled. If there were no dis-

tortions, the opposite would be true as well. While it is impossible to know all the effects that

have contributed to a specific RSSI, the propagation mechanics of radio are thoroughly studied, and

several classes of distortion have been identified. Laterative localization algorithms compute based

on the assumption that their signal-to-distance model can correctly convert RSSIs to ranges. If all

ranges are free of distortions and errors, the lateration stage should result in the exact coordinates of

the transmitter. Bounding, analyzing and understanding deviation in signal to distance translation

is tantamount to determining the expected degree of laterative localization algorithm performance.

While we do not claim to be able to deduce all the subtle effects acting on a single signal, we assert

it is quite eminently possible to determine the single dominant distortion type, how strong it is, and

how much of the signal it affects.

3.1 Distortion Detection Metric

When calculating ranging error it is a simple matter to correlate RSSI with the true, recorded

distance to a sample point. Such a measurement is compelling due to its straightforward examination

of the lognormal path model, however it forces the assumption that the lognormal model represents

the sum total of all influences on RSSI. Given that the lognormal model is parameterized by several

values, it is preferable to instead regard estimation of the parameters themselves as the source

of the error and to treat the difference between the lognormal model that would result from a

given parameterization and the physical environment as itself the error model. The difficulty with

such a construction is determining a method to measure this difference. The Cramer-Rao Lower

Bound (CRLB) is often used to assess how well a model fits a given process and is often applied to

localization systems. We will demonstrate that the CRLB is in fact fundamentally unfit to analyze

this data and present a similar novel metric that can compare models, and/or a discrete sets of data

in order to detect and classify well-known types of systemic radio propagation distortions.
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3.1.1 The Cramer-Rao Lower Bound

(a) Joint Distribution - X depen-
dent on Θ

(b) Joint Distribution - X indepen-
dent of Θ

(c) Marginalized Dependent Dis-
tribution:
PDFs on X with Θ = 4 and -4

(d) Marginalized Independent Dis-
tribution:
PDFs on X with Θ = 4 and -4

Figure 3.1: Probability Spaces of Variables with Varying Conditial Dependance

The Cramer-Rao Lower Bound (CRLB) is a method that determines the minimal achievable

standard deviation of an unbiased estimator of a random variable. It functions by determining the

expected rate of change in the likelihood function of the random variable’s estimator conditioned on

a value of the random variable. The central argument of the CRLB is that if some parameter, Θ is a

good estimator of X, then by definition selecting a certain Θ will result in a probability distribution

on X with a very low standard deviation. X and Θ can both vary though, so if X is strongly

conditioned on Θ then each Θ should result in a very different distribution on potential values of

X, as is illustrated in figures 3.1c and 3.1d below for propositional distributions in which there is

strong and no conditional dependence of X on Θ, respectively. Instead of fixing Θ and varying X to

generate a distribution on X, fixing X and varying Θ would result in a likelihood function on values

of Θ. The resulting likelihood function on Θ should have a clearly dominant value, the value that

would result in the distribution X with the highest likelihood of that given x = X occurring.

The Cramer-Rao Lower Bound is defined by computing derivatives across the space of expected

values. These derivatives impose necessary regularity conditions that make them particularly unsuit-

able for use with sampled radio data. It is patently not possible to sample signal power at an infinite
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number of discrete physical locations. Even if it were possible, distortions are applied when the

signal encounters an object at random places in the environment, so any signal magnitudes sampled

at regular distance intervals, describing a signal/distance vector, will have jump discontinuities in it

wherever an object was encountered, causing the resulting data to be undifferentiable. Due to the

non-continuous and discrete distortive nature of an actual environment, the CRLB can not be used

without modification. One possible such modification is to determine a differentible function that

approximately describes the signal data. [41, 35] Such solutions strongly beg the modeling question

further.

Approximating signal data with some function in order to make it comparable using the CRLB

covers up the discontinuities caused by the irregular propagation environment. Such approximations

in effect remove the very aspects of the signal data that make it difficult to fit to the lognormal

model and cause ranging misestimation. Such approaches also require an estimate of how well

the approximating function itself fits the sampled data, a problem that is reducible to the original

problem of determining how well the lognormal model fits the sampled data in the first place. Such

approaches, while of academic interest, still do little to determine how well the lognormal model

describes a set of discrete data samples. We assert that in order for any ranging error estimator

to be feasible, it must not obscure sampled data, or must at least be parameterizable to such a

degree that it can compare sampled data directly to a model. If the data is not complete enough to

supply the metric, then the rigor of the metric needs to be relaxed. We find the CRLB a compelling

metric because it compresses a large range of measurements to a single probabilistic indicator that

is related directly to a proposed model, or a particular parameterization of the model.

3.1.2 The Discretely Distributed Log Hölder Metric

While the exact mechanics of a radio environment can not be known precisely nor be tested exhaus-

tively, it is necessary to be more sparing in what is evaluated at the cost of a less precise result.

Sampling RSSIs at regular intervals from a single straightline path provides a snapshot of the effect

of the radio environment at each step. Since a signal-to-distance model defines the expected sensi-

tivity of RSSI to distance, the first goal is to assess the signal-to-distance sensitivity from the actual

environment. Once that is computed, we next have to convert the assessment into a form that is

readily comparable to the suggested lognormal model and compress the result to a single parameter,

so that multiple propositional lognormal models can be evaluated. We define a method similar to

the CRLB by computing the discrete distribution of the logarithm of the Hölder Metric (DDLHM)

of a sequence of adjacent signal strengths sampled at regular distance intervals from a landmark.
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Computing the DDLHM

Let di be the distance from the landmark at point i

Let RSSi be the ith scalar signal power magnitude, sampled at range step i from a given landmark

Compute the Hölder Metric between each adjacent pair of scalar signal powers: HMi =
∥∥∥RSSi+1−RSSi

di+1−di

∥∥∥
2

• The Hölder Metric is used in this case for completeness and universality of the metric’s defi-

nition. In this case however, even though the Hölder Metric does indeed include a matrix

norm, it is computed on a scalar quantity and results in a scalar quantity.

Compute the logarithm of each Hölder Metric: LHMi = loge(HMi)

Compute the discrete distribution of the Log-Hölder Metrics for the vector being analyzed: DDLHM =

DD

(
LHM

∣∣∣∣n
1

)
The resulting discrete distribution tabulates the sensitivities of RSSI to distance traveled at a

series of steps through a signal environment. Evaluating a proposed lognormal model at the same

distances and applying the same process would result in a similar discrete distribution. The degree

of similarity between the two discrete distributions determines the degree of similarity between the

predicted RSSI to distance sensitivity predicted by the model and experienced in the environment.

Determining Model Distance with the DDLHM

The DDLHM results in a discrete distribution and not a single comparative value. In order to judge

distribution similarity, we compute the Jensen-Shannon Distance (JSd) between the DDLHM of two

signal sample sets. The JSd is the average of the Kulbeck-Leibler Divergence (KLd) between each

of the distributions and their average.

x: A value that can occur

A(x): Probability of value x occurring in distribution A

B(x): Probability of value x occurring in distribution B

N : Number of distributions being compared, equal to 2 below

KLd(A||B): Kullback-Leibler Divergence of distribution B from A

KLd(A||B) =

n∑
i=i

(
A(xi)

B(xi)

)
∗A(xi) (3.1)
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Although a popular and well-defined metric, the KLd is fundamentally unfit to measure the dif-

ferences between discrete distributions of samples from a real environment or propositional, possibly

incomplete, distributions or models. The KLd requires that the histograms compared be defined

over the same range of values. If either histogram compared has no (0) occurrences of a certain

value where the other does not, the KLd will collapse to Infinity or Not-a-number. All the distribu-

tions compared here are expressly expected to contain discontinuities and distortions and must still

be comparable to distributions calculated directly from a proposed lognormal model. A technique

used to compensate is to substitute a 0 for the KLd of degenerate outcomes, however this technique

discards large amounts of data and results in incongruous measures.

The KLd is also directional. It determines the bits of difference of one distribution from another,

not the bits of difference between both. This directionality works well if one distribution is known

to be exact and the other is known to cover at most only a subset of the total possible values.

Our analysis requires that we compare multiple hypothetical distributions to live data, making it

impossible to have a single fundamental distribution to compare against. The very issue we address

is that we can not know the precise signal-to-distance model.

The Jenson-Shannon Distance (JSd) solves these difficulties at the cost of a less intuitive measure.

JSd computes the average of the KLd between each distribution and the average of all distributions

being measured. This solves the degenerate distribution problem since each distribution is compared

to the average of all distributions being measured, which includes itself, so zeros are contained in the

numerator. The JSd determines the informational distance between all the distributions compared,

not the divergence of a specific one from another. The JSd’s measurement is a normalized ratiometric

informational distance between the distributions measured.

Figure 3.2: JSds of Gaussian PDFs only varying mean
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JSd(A||B): Jensen-Shannon Distance between A and B

M =

(
A + B

N

)
(3.2)

JSd(A||B) = (.5 ∗KLd(A||M)) + (.5 ∗KLd(B||M)) (3.3)

The JSd varies from 0 exactly to 1 asymptotically. Since JSd is computed as the difference

between a distribution and its average, the JSd between any distribution and null would be 0.5,

so any reasonable match should be below 0.5 at minimum. Figure 3.2 depicts the JSD between a

Gaussian PDF with standard deviation 1 and mean 0 and several others whose means have been

shifted enough to have the JSd between the two to settle on tenth-JSD increments. For our purposes,

we’ll define a good match between signal-to-distance DDLHMs as 0.25 JSd or less, a very good match

as 0.2 JSd or less and an excellent match as 0.15 JSd or less.

The DDLHM and the JSd provide us with the desired characteristics of the CRLB, but without

a reliance on continuous and differentiable functions that can describe our data. We first need

only sample RSSI values from our environment over a straight line at fixed distance intervals and

compute the DDLHM to summarize the actual RSSI to distance senitivities. We can then generate

any number of possible lognormal models with different parameters, compute the expected RSSI

values at the same distances sampled in the physical environment, and compute the DDLHM of

that data. It is then a simple matter to compute the JSd between the DDLHM of the physical data

and the DDLHM of each hypotetical lognormal model to determine which parameterization matches

best. If we carefully choose parameters to the hypothetical lognormal models to reflect the measured

behavior of common indoor distortions, we can conclude that the parameters that resulted in the

best match most accurately describe the dominant type of distortion along that sampled path in the

environment. What is needed is a reasoned and measured approach to generate such parameters to

the lognormal model.

3.2 Distortion Types

Nearly all laterative localization algorithms use the lognormal path-loss model: a∗−10∗ log( dd0 )+ b.

[17, 18, 22, 7, 9, 16, 3] The ’a’ and ’b’ parameters are referred to as the ’attenuative’ and ’bias’

parameters, respectively. Any algorithm that uses the lognormal model must decide upon a value

for these parameters, as they govern the behavior of the model. Computing the lognormal path-loss

model over a series of distances with an ’a’ value of 1 and a ’b’ value of 0 results in RSSI values free

of distortion, or ’freespace’ values, dipicted in Figure 3.3a. Varying ’a’ and ’b’ results in the first
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two systemic distortion types, attenuation and bias, respectively. Bias is a RSSI amount that shifts

the output of the model by some set amount.

Beyond attenuation and bias, which are directly addressed as lognormal model parameters,

we also consider multipath propagation. The indoor environment consists of many highly radio-

reflective elements like glass, structural elements, ductwork, and metal shelving. If two strong signal

components destructively interfere, they can cancel each other. The result is very large drop in signal

power at a specific point even with no apparent obstruction. Figure 3.3e depicts such a multipath

scenario. We only consider two multipaths with the interfering component bouncing at a point

equidistant between the transmitter and receiver.

Distortion Parameters

Beyond the type of distortion, we identify two other qualities to detect: the strength of the distortion

and the range at which it started affecting the signal. Distortion strength ranges differ per distortion

type. The bias distortion type is a single additive parameter to the lognormal path-loss function

as it models signal loss due to a single, largely opaque object. No bias, or a bias of 0 dBm, is

the result of perfect, unobstructed propagation. Being that only integer values are reported, the

minimal bias value is 1. We select 30 as a maximal value since the entire parameter space spans

from approximately -40 dBm at 1 meter to -99 dBm, beyond which signal gains are due to coding

only. [39] Given that the entire parameter range is nearly 60 dBm, we take half of that as a maximal

deviation from the expected value. A drop of 30 dBm, or half the entire parameter space, is quite

a striking drop and well beyond what should need to be tested for difficulty of detection. Since the

vast majority of RSSIs are reported as whole numbers, we will consider integer dBm values only.

We consider the valid range of bias parameter powers to be an integer between -1 and -30, for 30

possible strength values.

The attenuation distortion type is a single multiplicative parameter to the lognormal path-loss

function as it models the effect caused by a series of small obstructions or propagation through

a single, large, semi-permeable medium that reduces signal power gradually over distance. An

attenuation parameter of 1 represents absolutely no additional attenuation, and accounts only for

power loss due to propagation over distance. In their analysis of attenuation parameters caused

by common building materials, the ITU recommends an attenuation parameter between 2.5 and 3,

with the maximum being 5. [33] Many localization systems tend to pick a value within this range.

[36, 20, 23, 3, 31] We consider values from 1.05 to 3.5 in steps of .05, for 50 possible strength values.

Since multipath is a quality of propagation that is not accounted for in the common lognormal

model, we calculate it separately and compute a weighted average between the powers applied to
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the two paths. No multipath, or 0%, is only the lognormal model computed with no obstructions

(attenuation 1 and bias 0). Full multipath, or 100%, splits the power equally between each path,

with half the power going to the direct path (lognormal propagation), and half the power going to

the multipath. We consider percentage amounts of multipath ranging from 2.5 up to 100 in steps of

2.5 for 40 possible strength values.

The range at which a distortion starts affecting a signal is quite important since, in the absence

of such a measurement, the effect of a distortion is averaged over the entire length of the path of

propagation, rather than being applied only to the point at which it began affecting the signal.

Figure 3.3b depicts attenuation at different strengths over 20 meters, while Figure 3.3c depicts

attenuation under the same conditions, bit only after encountering some object after 10 meters.

For our initial exhaustive tests we sample at half the wavelength in order to be sure of detecting

all distortions on order of the size of the wavelength and consider all distances ranging from 1 meter

from the transmitter to 20 meters in steps of half the wavelength of 802.11 channel 6, or .0615

meters, for 309 possible incident distance values. [39]

In order to detect distortion type and parameters, all that is necessary is to generate a hypo-

thetical version of the lognormal model for each distortion type and parameter to be considered,

apply the DDLHM to reduce it to a sensitivity distribution and to compare that distribution to the

DDLHM of RSSI samples from the physical environment using the JSd. Each hypothetical set of

parameters would result in some JSd value. While this allows the fitness of the different parame-

ters to be measured, it does so at the cost of a less apparently analyzable metric. Below we will

investigate the operating tolerances of the DDLHM and JSd on an exhaustive and complete range

of propagation parameters. While there may be more subtle types of radio distortion or more than

one type of distortion applied to the same group of RSSI samples, we only attempt to identify the

single dominant distortion type from the range we’ve defined.

3.3 Properties of the Exhaustive Distortion Parameter Set

3.3.1 Exhaustive Distortion Parameter Set

Above we have defined how one can translate the degree of similarity of a certain parameterization

of the lognormal model to data sampled from the physical environment into a DDLHM JSd value.

Based on the definition of the JSd, a smaller value indicates a better match, so determining the fitness

of a single set of parameters is straightforward. We however intend to determine the parameters that

best describe the dominant distortion over a set of samples by examining the DDLHM JSd between

those samples and propositional samples computed using an exhaustive set of parameters for each
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distortion type. The range of possible distortion powers and incident ranges for each of the three

distortion types identified above describe a state space of 37080 different possible parameterizations:

(30 bias strengths * 309 incident distances)+(40 multipath strengths * 309 incident distances) +

(50 attenuation strengths * 309 incident distances). While a single DDLHM JSd’s meaning may

be apparent, it may not be apparent in what context to judge an ensemble of 37080 DDLHM JSds

resulting from an exhaustive analysis.

3.3.2 Baseline DDLHM JSd behavior

Attenuation

It would be reasonable to presume that JSd would increase as distortion strength increases and as

incident distance decreases. Encountering an attenuating obstacle earlier in the path of propagation

rather later also increases the DDLHM JSd, for the most part. As can be seen in Figure 3.4

attenuation factors from 1.25 to 1.5 result in a smaller DDLHM JSd value if they are incurred

before 8 meters from the transmitter, steadily increasing and peaking at 8 meters, after which the

values begin to decrease. Since the DDLHM JSd measures the overall number of differences in

signal strength to distance sensitivities over two sets of samples and not absolute difference in signal

power. Certain configuration of parameters can conceivably result in a lower DDLHM JSd even if

they indicate a stronger distortion. Early in the first few meters of propagation signal power drops

drastically per unit distance. Some distortion parameterizations can more closely mirror this natural

signal decay than others, even if, and especially, they result in stronger distortions than others.

The relationship between incident distance of a distortion and DDLHM JSd value is also not

linear, but varies less than the attenuation strength value demarcating ranges of JSd. As can be seen

in Figure 3.7, no attenuation that is applied after 16 meters is particularly detectable, no matter

how strong it is. At that point the 802.11 signal power is so low the attenuation effect is significantly

diminished. Another general rule that can be extracted is that only very strong attenuations (above

2.5) are detectable beyond 10 meters. Due to the JSd depression effect for extremely dissimilar

distributions, no attenuating obstacle that is encountered beyond 10 meters will result in a JSd

over 3.75. These peculiarities together mean that most detectable attenuations will have a strength

parameter between 1.25 and 3 and will occur within the first 8 to 10 meters.

Bias

The aliasing between distortion strength and JSd can be seen more sharply in bias distortions.

In Figure 3.9 a -15 dBm drop can result in either a DDLHM JSd of 0.4 up to 0.65 inside of 7
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meters. Bias is a one-time application of a shift in the signal power, so it is often immune to

the extending sensitivity JSd aliasing of attenuation. This displays another effect of the DDLHM

JSd. This shift can quickly push the resulting discrete distribution well past the range of the

unobstructed lognormal’s DDLHM. Since we do not clip any elements of the discrete distributions,

the degree of distortion for high values of bias cause relatively few samples to fall into the same

discrete distribution bin. The JSd metric often results in large differences when comparing discrete

distributions with very different values for the same range, but when comparing any number of

values in one distribution against a bin that the other distribution has none in, the JSd is capped

at 0.5, resulting in a depression of JSD values the more out of phase two discrete distributions are.

Incident distance is more directly diagnostic to bias JSd rather than attenuation due to this shifting

effect, as can be seen in Figure 3.11.

Bias distortions behave in a manner similar to attenuation in other respects. When the bias occurs

fairly close to transmitter it may be somewhat difficult to detect. Since the DDLHM determines the

point to point change in signal-to-distance sensitivity and the signal power drops very, very quickly

over the first few meters a strong bias distortion may cause a change in signal sensitivity very

similar to unobstructed propagation at short ranges as can be seen in Figure 3.12. Even though bias

distortions with a signal drop of -15 dBm may be harder to directly inside of 9 meters, the DDLHM

JSd is at or exceeds 0.5 over the entire range, indicating an extremely bad match at all points.

Multipath

Multipath distortions are considerably more noisy than bias or attenuation types as they fluctuate

strongly throughout their propagation, from increasing signal power by a factor of 4 to reducing

down to nearly 0. As decidable as the DDLHM JSd of attenuation and bias distortions are based on

distortion strength and incident distance, multipath is distinctly less so. Even though each multipath

profile is very noisy and is quite unlike unobstructed lognormal, they are all unlike it in the same

manner. This can cause multipath DDLHM JSds to be very similar. While bias and attenuation can

cause maximal DDLHM JSd values above 0.9, multipath distortions maximize at just under 0.25,

as seen in the scale of Figure 3.14.

Multipath distortions behave quite differently than bias and attenuation. The most disruptive

effects of multipath propagation are the occasional nulls that can occur due to signal cancellation.

Somewhat counterintuitively, a small multipath component can skew the distribution of signal-

to-distance sensitivities more than a very strong multipath component since stronger multipath

components result in deeper cancellations. The larger number of deeper cancellations begin to look

proportionally similar to common lognormal propagation, where there are very fast rates of changes
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of sensitivity over the first few meters. This can be seen in Figure 3.14, multipath scenarios where

the multipath component is less than 40% the strength of the direct path component causes maximal

dispersion of the DDLHM. Another difference between multipath and the other two distortion types

are the characterizing effect of these nulls. Nearly any multipath encountered before propagating 12

meters causes a DDLHM JSd of at least 0.14, while nearly all encountered afterward do not.
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(a) Freespace Propagation (b) Attenuation Distortion

(c) Attenuation Distortion at 10m (d) Bias Distortion at 10m

(e) Multipath Distortion at 10m

Figure 3.3: Systemic Radio Distortion Types
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Figure 3.4: DDLHM JSd between Exhaustively Attenuated Lognormal and Unobstructed Lognormal

Figure 3.5: DDLHM JSd between Exhaustively Attenuated Lognormal and Unobstructed Lognor-
mal: Marginalized on Distortion Strength
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Figure 3.6: DDLHM JSd between Exhaustively Attenuated Lognormal and Unobstructed Lognor-
mal: Marginalized on Incident Distance

Figure 3.7: DDLHM JSd between Exhaustively Attenuated Lognormal and Unobstructed Lognor-
mal: JSd per Attenuation Parameter
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Figure 3.8: DDLHM JSd between Exhaustively Attenuated Lognormal and Unobstructed Lognor-
mal: JSd per Incident Distance

Figure 3.9: DDLHM JSd between Exhaustively Biased Lognormal and Unobstructed Lognormal
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Figure 3.10: DDLHM JSd between Exhaustively Biased Lognormal and Unobstructed Lognormal:
Marginalized on Distortion Strength

Figure 3.11: DDLHM JSd between Exhaustively Biased Lognormal and Unobstructed Lognormal:
Marginalized on Incident Distance
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Figure 3.12: DDLHM JSd between Exhaustively Biased Lognormal and Unobstructed Lognormal:
JSd per Attenuation Parameter

Figure 3.13: DDLHM JSd between Exhaustively Biased Lognormal and Unobstructed Lognormal:
JSd per Incident Distance
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Figure 3.14: DDLHM JSd between Exhaustively Multipathed Lognormal and Unobstructed Log-
normal

Figure 3.15: DDLHM JSd between Exhaustively Multipathed Lognormal and Unobstructed Log-
normal: Marginalized on Distortion Strength
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Figure 3.16: DDLHM JSd between Exhaustively Multipathed Lognormal and Unobstructed Log-
normal: Marginalized on Incident Distance

Figure 3.17: DDLHM JSd between Exhaustively Multipathed Lognormal and Unobstructed Log-
normal: JSd per Attenuation Parameter
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Figure 3.18: DDLHM JSd between Exhaustively Multipathed Lognormal and Unobstructed Log-
normal: JSd per Incident Distance
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Limits of the Exhaustive Parameter Set

In order to determine the significance of the DDLHM JSd between two different parameterizations

it is necessary to know how sensitive the DDLHM JSd is to changes in the parameter values. Since

we have enumerated the entire parameter space, it is possible to exhaustively compute the DDLHM

JSd between each of the 37080 different parameterizations of each distortion type to every parame-

terization of all other types. Analysis of the behavior of the DDLHM JSd will determine how well

the process can discriminate between different instances of the same distortion, directly informing

the construction of a confidence interval to be applied to future measurements. The computational

cost of such an exercise is infeasible. Since the JSd is symmetric, two parameterizations need only

be computed once. The attenuation feature space, for instance, consists of 15450 distinct distortion

power, incident distance pairs. Computing the DDLHM JSd between the first parameterization

pair and every other would require 15449 computations. If the DDLHM JSd between each other

pair were computed in sequence, the final parameter pair would require only one calculation; the

DDLHM JSd between itself and itself, as the DDLHM JSd between the final parameter pair and

every other pair would have already been computed. This results in 119343525 possible configura-

tions to test for attenuation alone. Testing bias would require computing 42961815 permutations

and multipath 75147670. These sum to 237453010 total configurations to test only each distortion

type against itself, and not against each other. Given that each permutation computes in roughly a

tenth of a second, a full evaluation would take three quarters of a year. Due to such a computational

load exploring the full parameter space is infeasible. It is necessary to build a representative set of

parameters that is a fraction of the size of the exhaustive set that can identify distortion parameters

with acceptable additional error.

3.4 Properties of the Reduced Parameter Set

In reducing the state space of parameters we first chose to reduce the granularity of the incident

distance values. Reducing the granularity of the incident distances may cause some loss in identifi-

cation accuracy, although since the DDLHM catalogues rates of change and the lognormal function

is fairly smooth, reduction in sample granularity is unlikely to result in very large estimation errors.

Many localization systems work on data sampled at the meter- or foot-level. [16, 36, 20, 23, 3, 31]

We have also identified that the lognormal model is extremely sensitive to distortion within the

first few meters as it is losing power very quickly per unit distance. Taking this into account we

propose an ensemble of at most 25 distinct range values are necessary, 1 sample per foot starting

at one meter from the transmitter for the first 20 feet and then every 5 feet up to 50 feet, with one
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additional sample at 60 feet. This arrangement puts a premium on close samples when the signal is

degrading quickly at a granularity common in the literature and less on farther samples when the

signals are extremely similar. We also cap measurements at 60 feet since few indoor laterative local-

ization systems expect to see usable signals out past 20 meters. This results in a drastic reduction

in the number of configurations to test, reducing the convolution of the total parameter space from

237453010 to 1561000. Even given this reduction we found computation times to be extensive and

set about to reduce the state space even further by limiting the range of distortion strength values

considered.

Given our investigation of the behavior of the JSd between the DDLHM of unobstructed log-

normal and lognormal with a particular distortion parameterization, we chose a series of 20 distinct

distortion strength values for each type of distortion to span the parameter space as much as possible

and be as diagnostic as possible. It is clear from Figures 3.4 and 3.5 that attenuation strength has

the greatest effect on DDLHM JSd from the lowest parameter tested up to 2.25. We use attenuation

strength parameter from 1.05 to 1.5 in 0.05 steps, and then from 1.8 to 2.25 in 0.05 steps. We leave

a gap between 1.5 and 1.8 since at 1.5 the DDLHM JSd maximizes near 0.8. For the bias distortion

we use -1 dBm, from -5 to -15 dBm by steps of -1, and from -17 to -24 dBm by steps of -1 as well.

We leave out the values from -2 to -4 since they have a very small effect on the DDLHM JSd, as

is apparent from Figures 3.9 and 3.10, spanning a 0.18 JSD range. We also leave out -16 dBm and

stop at -24 dBm since -16 lies in a short JSd plateau and -24 dBm is far enough in the parameter

space to see maximal JSd values. For the multipath distortion we use 7.5% multipath strength in

steps of 2.5% up to 12.5% and from 30% to 62.5%. We also use 17.5, 22.5 and 27.5 precent strength

multipath in 5% steps as those ranges span the worst DDLHM matching areas, resulting in all but

universally higher values with little useful discriminating differences, as is evident from Figures 3.14

and 3.15. The additional pruning of distortion strengths results in a much smaller parameter space,

down to 1500 possible configurations, 4% of the extensive set’s original total of 37080 different con-

figurations. This reduces the convolutions of the non-redudant parameter space down to 239400.

Before embarking on a full test of this reduced set, it is necessary to first determine if the reduced

set is still diagnostic after such a sharp culling of potential parameters

3.4.1 Diagnostic Capability of the Reduced Parameter Set

In order to assess the efficacy of the reduced parameter set, we will evaluate it against the exhaustive

parameter set, attempting to match parameterizations from the exhaustive set against the reduced

set. Due to the aforementioned extensivity of the exhaustive set, we universally randomly selected

10000 parameter configurations to match. Since the reduced parameter set covers only 4% of the
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exhaustive set, it is extremely likely that parameter configurations that do not match exactly will be

drawn. We computed the JSd between the DDLHM of each of the 1500 lognormal parameterizations

that make up the reduced set and each of the randomly-selected parameterizations from the exhaus-

tive set. We will regard the reduced set parameterization that results in the absolute lowest JSd as

the best possible match for the randomly-selected parameterization being tested. The goals of this

test are threefold: determining how well the metric works with incomplete information, informing

us how to interpret a large number of DDLHM JSd results and the degree of error between improper

classifications and the correct ones and how often they occur.

General Distinctiveness

Figure 3.19: CDF on JSd between DDLHM of best match
in reduced set and match made

Of the randomly-generated 10000 parameter configurations 7346, or 74%, had their distortion

type correctly identified. Of those, the exact distortion strength was correctly identified in 2113

configurations and the exact incident distance in 604. Given that these calculations were done using

4% of all the available data, we find this level of matching acceptable. These results also demonstrate

the capability of the DDLHM metric to correctly identify distortion types using a very small slice of

available data. Beyond exact matches however, we found the DDLHM to be particularly resilient.

In order to place these measurements in context we determined the configuration of the reduced

parameter set that was the most like each of the randomly-generated test configurations, the best
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one that could have been chosen, and computed the JSd between the DDLHM of the best available

match and the actual match made for all matches. Figure 3.19 depicts the CDF of these values.

Even in the face of errors in distortion type, strength and incident distance, 95% of all matches

made were at most 0.1 JSd away, and 85% were at most 0.05 JSd away from the best possible match

afforded by the reduced set. Referring to Figure 3.2 can put these values into further context; a JSd

of 0.1 is approximately the difference between two Gaussian distributions with a standard deviation

of 1 and means that differ by 1. We find this level of estimation accuracy reasonable given the

extreme reduction in the parameter space and consequent reduction in time to compute a match.

Now that we have a reasonably diagnostic parameter set of a reasonably computable size, we must

next determine the bounds of its behavior.

Parameter Distinctness per Distortion Type

While it is well enough to relate JSd measures to the Normal Gaussian for gross judgments, more

textured knowledge is necessary in order to understand how the DDLHM relates to changes in the

lognormal model directly. Without an understanding of the sensitivity of the JSd to changes in

parameter values, it is difficult to judge what a particular JSd means. In order to determine what

JSd range indicates a good match, we will match each parameter pair from the reduced set against

every other parameter pair for the same distortion type and record the JSd between their DDLHMs.

Since a change in either parameter can cause a change in JSd, it is necessary to analyze both in terms

of the other. To do so, we will hold one parameter fixed and vary only the other, noting and dividing

the absolute change in JSd by the absolute change in the free parameter, resulting in a collection

of JSd per free parameter sensitivities. We will then compute the CDF on these sensitivities and

systematically move to the next value for the fixed parameter. This will result in a CDF per value

of the fixed parameter on the JSd per free parameter sensitivity. These CDFs together will describe

the behavior of the JSd sensitivity in relation to the parameter held fixed, so that an expectation of

the variability of JSd sensitivity can be determined for a given parameter and distortion.

Attenuation

In Figures 3.22 and 3.23, we held incident distance fixed and varied distortion strength only. Atten-

uation strength varies in JSd sensitivity from 0.22 to 1.5 JSd per attenuation multiplier on average.

Since the average difference in the attenuation strength parameters is approximately 0.05, in real

terms these sensitivity values mean that any change in attenuation strength will result in an average

increase in JSd ranging from 0.011 to 0.075. As can be seen in 3.22, the decrease in JSd sensitivity

is approximately linear in relation to incident distance from the transmitter, which stands to reason.
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Figure 3.20: Self-Sensitivity of Attenuation Reduced Set Parameterizations: CDF on JSd per Meter
of Incident Distance

Figure 3.21: Self-Sensitivity of Attenuation Reduced Set Parameterizations: CDF on JSd per Meter
of Incident Distance: alt. view
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Figure 3.22: Self-Sensitivity of Attenuation Reduced Set Parameterizations: CDF on JSd per Distort
Power Parameter

Figure 3.23: Self-Sensitivity of Attenuation Reduced Set Parameterizations: CDF on JSd per Distort
Power Parameter: alt. view
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Since the attenuation distortion continuously alters the lognormal model it is reasonable to presume

that the longer the distortion is applied, at any strength, the larger the resulting JSd difference

would be. Since 80% of all JSd per distortion strength values are below 2, any match of 0.1 JSd or

lower on attenuation incident distance is likely to be a good match.

In Figures 3.21 and 3.20, we held distortion strength fixed and varied incident distance instead.

Attenuation incident distance varies in JSd sensitivity from 0.01 to 0.05 JSd per meter, on average.

Since the average difference in incident distance in the reduced parameter set is 0.72 and the median

incident distance is 0.31, we will use 0.40 as an incident distance to compare against. Given an

incident distance of approximately 0.40, we expect that any change in incident distance will result

in a JSd change of 0.004 to 0.02. From Figure 3.21 it is apparent that a JSd sensitivity of 0.05 is

a definite upper limit and fairly characteristic for higher attenuation strengths. From Figure 3.20,

we can see that the very low sensitivities only apply to very low attenuation strengths and converge

to 0.05 as the distortion strengths increase. We will then prefer the upper edge of the expected

sensitivity range. From these ranges we can determine that distortion strength has a much greater

effect on the JSd than incident distance when matching DDLHM profiles. An attenuation parameter

match can be incorrect by up to two meters of incident distance and still fall within the criteria of

a good match for distortion strength. Since incident distance is much less sensitive the attenuation

strength, we will maintain that a match of 0.1 JSd or less is a good match, based on the behavior of

attenuation distortions, while a match of 0.2 JSd or less is reasonable, based on the general behavior

of the JSd metric.

Bias

In Figures 3.26 and 3.27, we held incident distance fixed and varied distortion strength only for bias

distortions. Bias strength varies in JSd sensitivity from 0.25 to 0.37 but for a few outliers that occur

at extreme distances only. The bias distortion strengths in the reduced set almost all differ by 1,

so in this case the JSd sensitivity per distortion strength is itself the resulting JSd change. Given

that 0.5 JSd results from comparing a distribution to a null distribution, and that 80% of all JSd

sensitivities are below 0.43, we can presume bias distortions are extremely sensitive to the distortion

strength, at nearly any incident distance. Any bias match that is in any way reasonable should have

a very low JSd since we can expect a very large difference whenever the strength value is changed.

Due to the sensitivity of bias to distortion strength, we will regard any match with less than 0.25

JSd as exact on the distortion parameter.

In Figures 3.25 and 3.24, we held distortion strength fixed and varied incident distance instead.

Very much like attenuation, bias JSd sensitivities per meter over all distortion strengths range
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Figure 3.24: Self-Sensitivity of Bias Reduced Set Parameterizations: CDF on JSd per Meter of
Incident Distance

Figure 3.25: Self-Sensitivity of Bias Reduced Set Parameterizations: CDF on JSd per Meter of
Incident Distance: alt. view
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Figure 3.26: Self-Sensitivity of Bias Reduced Set Parameterizations: CDF on JSd per Distort Power
Parameter

Figure 3.27: Self-Sensitivity of Bias Reduced Set Parameterizations: CDF on JSd per Distort Power
Parameter: alt. view
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Figure 3.28: Self-Sensitivity of Multipath Reduced Set Parameterizations: CDF on JSd per Meter
of Incident Distance

from 0.02 to 0.05, but for one outlier. Unlike attenuation, bias sensitivities per meter behave more

consistently, bringing the median and mean performance closer together, narrowing the 80% range

of sensitivities to span between 0.04 and 0.05 for bias. Using our incident distance granularity

of 0.40, we can expect a JSd increase of between 0.016 and 0.02 for each 0.4 meters of incident

distance beyond an exact match. Due to the extreme difference between distortion strength and

incident distance sensitivities, it is quite likely that all of a JSd on a bias match below 0.25 JSd is

attributable to incident distance error entirely. Since bias strength is so much more sensitive and

descriptive than incident distance, we will regard any bias match with a JSd below 0.25 JSd as a

good match.

Multipath

In Figures 3.30 and 3.31, we held incident distance fixed and varied distortion strength only for

multipath distortions. Multipath Strength varies in JSd sensitivity from 0.25 to 0.56 on average,

although the tail of the CDF widens considerably with the 80th percentile spanning a range from

approximately 0.5 up to 1.5, so we will use 1.2 as an approximate expected JSd sensitivity bound.

The multipath distortion strengths in the reduced set differ by 0.025 except for three that differ by

0.05, so we will use 0.027 as an approximate expected granularity of strength parameter difference.

These sensitivity parameters would result in an expected increase in JSd of 0.032 per parameter
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Figure 3.29: Self-Sensitivity of Multipath Reduced Set Parameterizations: CDF on JSd per Meter
of Incident Distance: alt. view

Figure 3.30: Self-Sensitivity of Multipath Reduced Set Parameterizations: CDF on JSd per Distort
Power Parameter
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Figure 3.31: Self-Sensitivity of Multipath Reduced Set Parameterizations: CDF on JSd per Distort
Power Parameter: alt. view

difference. While the parameter sensitivity is fairly high, the absolute difference of each parameter

is so low that multipath distortions seem to have relatively little sensitivity to the strength parameter

no matter which incident distance parameter is chosen. Multipath incident distance varies in JSd

sensitivity between some extremely low values, with 80% of all values in Figure 3.29 falling below

a sensitivity of 0.0125 JSd per multipath strength parameter, resulting in an expectation bound of

0.005 JSd per incorrectly-matched incident distance quanta. Both multipath parameters seem to be

fairly insensitive to overall match performance.

Multipath proves to be particularly recalcitrant to analyze in such a manner, although it is not

unexpected. As can be seen in Figures 3.17 and 3.18, there are only a few very distinct configurations

of multipath parameters that result in very large, easily-detectable departures from unobstructed

lognormal. Since most multipath distortion parameter sets result in propagation patterns very

similar to unobstructed lognormal, it stands to reason that most multipath distortion parameter

sets would result in propagation patterns very similar to each other. Hence, there is very little

informational difference between the DDLHMs that result from most multipath parameter sets, and

the total sensitivity seems quite low even though some particular configurations result in very strong

deviations from unobstructed lognormal. We will then regard a JSd of 0.25 or better a reasonable
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match to a multipath configuration, although a very low JSd of 0.05 or less would be necessary to

indicate a good parameter match.

Overall

From the above we can conclude that distortion strength is a much more descriptive parameter than

incident distance for all distortion types considered. Bias parameterizations are the most distinctly

identifiable, with the highest sensitivities for both distortion strength and incident distance amoung

all distortion types, and a good parameter match indicated by a JSd of 0.25 or less. Attenuation

is less exactly distinguishable, with a good parameter match indicated by a JSd of 0.1 or less,

although attenuation configurations are much more distinct than multipath. Due to the strikingly

marginal JSd differences between multipath and unobstructed lognormal DDLHMs, multipath has

a particularly pacific sensitivity range. Since nearly any multipath parameter configuration is fairly

difficult to tell apart from most others, a very low JSd of 0.05 or lower is necessary to indicate a solid

match. We find these values compelling since when testing the matching capability of the reduced

versus the extensive parameter set in subsection 3.4.1 we found 85% of all matches were within

0.05 JSd of the best possible match. Since this value bound is well below or within the necessary

matching criteria for attenuation, bias and multipath parameter configurations, we presume that

most parameter matches will be fairly unambiguous on physical data once the dominant distortion

type has been identified.

While we have established the JSd bounds to ensure identifiablility and distinctness between

different parameterizations of the same distortion type, we have not determined how different we

expect the distortion types to be from each other. It could be the case that some range of pa-

rameterizations of one distortion type are very similar to a range of another. Since the dominant

distortion type is not known a priori when analyzing physical data sampled from a live environment,

it is necessary to identify it first, in which case we must know how similar all parameterizations of

all distortion types are to each other in order to inform a confidence judgment based on JSd values

between the DDLHM of the sampled data set and all distortion parameterizations of the reduced

set.

Parameter Distinctness across Distortion Type

Due to the much stronger JSd sensitivity of distortion strength determined above in subsection

3.4.1, and we want to determine how similar two different distortions’ parameterizations can be,

we will compute the JSd between all distinct distortion strength pairs for two different distortions

at the same incident distance. In order to determine how distinct each pair of distortion strengths
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are across all incident distances, we will compute the entropy of the discrete distribution of all JSd

values computed per distinct distortion strength pair. If two different distortions at some strength

have extremely similar JSd values between their DDLHMs across all incident distances, the entropy

of the distribution of the JSd values will be very low, indicating that it would be difficult to tell

the distortions apart by JSd alone in live data. If they have very different JSd values instead, the

entropy will be much higher, and it would be quite likely that they would be very distinct and fairly

easy to discriminate between in live data.

Figure 3.32: Distinguishability of Distortion Types: Entropy between Bias and Attenuation

Overall, most configurations of the reduced parameter set had very high entropies across distor-

tion type. As can be seen in Figures 3.34 and 3.35, only a thin slice consisting of the lowest atten-

uation strength parameters indicates JSd performance anywhere similar to multipath distortions,

with only a very small range between 10 and 15% multipath strength and 1.05 to 1.15 attenuation

strength has an entropy of approaching 2.5. This is due to the fact that very low multipath strength

results in several shallow dips below unobstructed lognormal rather than deep fades. The sum total

of these small dips is approximated by the effect of very low additional attenuation. Beyond these

very low values, the two distortion types quickly assert their distinctive behaviors. making attenu-

ation and multipath distortions fairly easy to differentiate between. Multipath and bias distortions

have a wider similarity range, from Figures 3.36 and 3.37, we can see that bias distortions below -4

dBm and multipath strengths below 1.5 have entropies that range between 2.1 and 2.5. This is due
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Figure 3.33: Distinguishability of Distortion Types: Entropy between Bias and Attenuation: alt.
view

to the fact that a small, immediate loss in signal power caused by a bias distortion has a similar

effect on the DDLHM as the sum total of a few shallow multipath fades. Beyond this single region,

both distortion types decorrelate quickly, becoming much more distinct.

Attenuation and bias distortion types have a much more interesting interaction. From Figures

3.32 and 3.33, we can see a strip running across all bias strength values occasionally reaching entropies

of almost 0, indicating the two distortions have nearly identical behavior at those strengths over all

incident distances. This does not mean that the JSd between the DDLHMs of the propagation

patterns generated by the chosen parameters are low, only that they are nearly identical. Since

these configurations have nearly identical performance, it would be extremely difficult to distinguish

between them in live data. Additionally, of the 26% of distortion types misidentified in 3.4.1, over

82% came from this range of bias and attenuation parameters. Since a bias distortion is a one-time

drop in signal power at a given incident distance, and an attenuation distortion begins applying a

depressed version of unobstructed lognormal propagation at a given incident distance, the immediate

drop in signal power caused by encountering an attenuating object can seem very much like a single

drop due to bias, especially if the rest of the attenuative effect is fairly mild.

Except for very low strengths of the distortions and several pairs along the similarity line between

attenuation and bias, all JSd distributions had an entropy above 2.5 along their least sensitive
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Figure 3.34: Distinguishability of Distortion Types: Entropy between Multipath and Attenuation

dimension, incident distance. Demonstrating that, for the vast majority of cases, that different

distortion types of the reduced parameter sets are quite distinctive and result in very different

patterns of JSd values. Given that this is the case, the strongest distortion applied to live data

should be quite eminently identifiable by comparing its DDLHM to the entire reduced parameter

set and selecting the distortion and parameter configuration with the minimal JSd.
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Figure 3.35: Distinguishability of Distortion Types: Entropy between Multipath and Attenuation:
alt. view

Figure 3.36: Distinguishability of Distortion Types: Entropy between Multipath and Bias
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Figure 3.37: Distinguishability of Distortion Types: Entropy between Multipath and Bias: alt. view
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Chapter 4

Localization Algorithm Analysis

There is no standard method to gauge laterative localization performance that is environmentally

and algorithmically agnostic. The common method to determine the capabilities of a localization

algorithm is to test it on live data. This indelibly ties the error results to a given algorithm and

environment. This makes it impossible to compare two algorithms without testing them in the same

environment. Since the data captured is a momentary snapshot of what the radio environment was

at the time, any results computed are momentary and may not be characteristic of the environment.

Even so, it would be unclear if a given algorithm’s performance is due to some peculiarity of the

data or of the algorithm itself. This lack of a diagnostic metric forces any changes to a localization

algorithm to be either heuristic or dependent only on general statistical arguments. Since a modifi-

cation of an algorithm can itself be viewed as a separate algorithm, and by our reasoning above any

localization result is singular, it is not possible to determine why a given modification or algorithm

produced a particular result, only that it does. The reverse is also true. While localization results

can be tabulated, it is not clear if the algorithm or the environment caused the result. Such a

situation makes any type of reasoned and duplicatable improvement impossible.

All laterative localization error can be cast as ranging error since, if there were no error in the

ranging mechanism, a localization algorithm should compute each location exactly. By generating

synthetic data with known amounts of error and systematically altering the amount and type of

radio distortion applied through a representative set of error configurations, the sensitivity and error

trends of an algorithm in relation to precise characterizations of ranging error can be gauged. Such

an analysis would provide an evaluative benchmark to determine an algorithm’s expected behavior

when confronted with different types and amounts of ranging error. While this information would

be useful to inform the improvement of a particular algorithm, such measurements lack context.

Laterative localization algorithms are often built on statistical or machine learning principles,

each reducing error in its own way. Due to this singular nature of localization algorithms, sensitivity

to ranging error is unlikely to indicate the same degree of location accuracy between algorithms. To

establish a common context to determine how well a given algorithm localizes in the face of a precise
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amount of ranging error it is necessary to compare it against an algorithm with not only a closed-

form error function, but with no inherent error reduction, so that each and every quanta of ranging

error directly contributes a predictable and exact amount of localization error. An algorithm’s

location accuracy per ranging error parameter can then be compared to the closed-form algorithm,

determining precisely how much better it performs. Two algorithms can be contrasted by comparing

their relative efficacy ratios vs the closed-form algorithm.

4.1 Benchmarking Localization Algorithms

The statistical nature of most localization algorithms’ laterative engines render them largely inca-

pable of being described in closed form or even bounded effectively since the a-priori values of the

distributions they estimate are unknowable. One such common rationale is to cast RSS as condi-

tionally dependent on the distance a signal has traveled and then apply Bayes’ Rule to reverse the

causal direction. While this results in a convenient formulation with much prior work that can be

applied, computing an error model for such a process would require the distribution on all possible

transmitter locations and RSS values to be known for all environments a-priori. Localization can

easily be cast as an instance of any of a number of other common classification or matching problems

much to the same effect; they enable straightforward computation of results, but cause the relation

between the results and data to be uninspectable. This relegates the improvement of laterative

localization algorithms to general improvements on statistical algorithms.

Applying common statistical and machine learning techniques without investigating the unique

cast of the laterative localization problem can lead to close modeling and analysis of data in a manner

that does not reflect the conditional relation between the data and localization error. While general

conclusions can be drawn about the error trends when using data collected from a live environment,

the inherent opacity of the signal data makes it impossible to determine the algorithmic significance

of the results. Localization algorithms depend on two major assumptions: that signal data sampled

per point is diagnostic of that point, and that the ranging process, built on the lognormal model,

is correct. While it is a simple matter to collect more data at a point and compute the average of

data, refining the expected value, determining the fitness of the ranging process and the suitability

of the lognormal model is less apparent.

Since we can not know the exact reason for each signal value and, consequently, each localization

result, a laterative localization algorithm can only be rationally examined by exercising it on struc-

tured data. Using the parameters determined during the construction of the DDLHM evaluation

process above, it is possible to engineer a test process using a suite of propositional sample vectors
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with specific error characteristics in order to inform a direct conditional relation between aspects of

signal sample data and trends in algorithmic accuracy.

4.1.1 Parameters of the Benchmark Environment

As noted above, we can not know why an algorithm produced a given result, only that it did. The

difficulty comes in not knowing the exact environmental properties that cause any given signal. In

order to have an environment whose parameters are directly and exactly decidable, we constructed

a synthetic one. Due to the size of most indoor environments, we limited the size of our synthetic

environment to a 20 by 20 meter square, with the LMs located outside the sample area at rows 0

and 21. Since most localization algorithms’ data is sampled on a granularity of feet to meters, we

generated samples per meter. We arranged the first LM bisecting the square horizontally and the

other two at the extreme corners opposite the central LM, forming an equilateral triangle. This

organization is known to be quite stable and error-reducing for localization algorithms using three

LMs. [13] We then computed the RSSI for each LM, and fed that data as testing data to be located,

inducing errors only the bisecting LM’s testing data. We then used the parameters decided upon

for the reduced parameter set above as a basis to generate testing data with a known amount

of each identified major distortion type. For algorithms that require training data, we calculated

the RSSI for the entire environment with no error except for the column of coordinates the LM

bisecting the space lies on. For all these coordinates, we generated training data with distortions

applied to coordinates appropriate to the parameters and will tested the algorithm using a leave-

one-out method, so that the algorithm can make use of distorted training data to better classify and

reduce consequent error. Any resulting localization is then solely an aspect of only the localization

algorithm.

4.1.2 Algorithms Evaluated

We will evaluate a suite of algorithms characteristic of model-based laterative localization and lo-

calization in general. We will test both pointwise and laterative algorithms. Pointwise algorithms

directly relate the signal values recorded during training to the coordinates where they were sampled.

While they do not incur the model dependence of laterative algorithms directly, their error model is

just as impenetrable. RADAR, Simple Point Matching (SPM) and Area Based Positioning (ABP)

are all pointwise algorithms. The laterative algorithms will we consider are M1 and M2. Laterative

algorithms include at their core a lognormal model that is parameterized by some process to convert

sampled training and testing data into ranges during their ranging phase. These ranges are then
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used to compute transmitter coordinates during the lateration phase. In some cases, the ranging

and lateration phases are computed at the same time.

Pointwise Algrithms

The RADAR Algorithm

The RADAR algorithm is a pointwise algorithm. [9] Training data is collected at known coordinates.

Testing data is compared numerically to the training data and the training data fingerprint that

has the smallest sum total signal difference is determine to be a match. The coordinates where the

matching fingerprint was sampled are reported as the coordinates of the transmitter. We include the

RADAR algorithm as a control since it makes no attempt whatsoever to model the relation between

sampled data and location.

The SPM Algorithm

The SPM algorithm is an extension on the RADAR algorithm. [16] It functions in a similar manner,

but addressed a particular deficiency or RADAR, namely that it can not localize a signal to any

coordinates that were not included in the training data. This strongly limits the potential accuracy

of RADAR. SPM addresses this issue by first imposing a grid on the environment and populating

unsampled grid tiles with data based on the interpolation of data in the sampled tiles. It then

matches testing data against all tiles, interpolated or sampled, and returns the center of the tile

with the most similar signal fingerprint as the transmitter’s location. While SPM computes in a

pointwise method, the addition of interpolation makes it at least partially model based. The SPM

algorithm makes the presumption that Delaunay Interpolation correctly models the propagation of

802.11 between tiles in the environment.

The ABP Algorithm

The ABP algorithm is similar to SPM. [16] It uses the same environmental gridding and interpolation,

however it computes location differently. It makes a further presumption that error is due mainly to

environmental noise, and adjusts its reckoning process accordingly. Instead of matching tiles by value

directly, ABP regards the training data per-grid as the mean of a Gaussian distribution. It then

computes the likelihood that the testing data came from that tile using a preset standard deviation,

per LM. The top-k tiles per LM are then matched across LMs. The probabilities across the selected

group of tiles is renormalized, the tiles are sorted by their distance from a preset confidence bound,

and center of the best-matching tile is returned as the transmitter location.
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Laterative Algorithms

The M1 and M2 Algorithms

The M1 algorithm is a laterative algorithm. [16] It seeks to use Bayes’ Rule to reverse the conditional

dependence and cast signal as causing distance. The difficulty it address is that in order to calculate

in such a direction, the likelihood of the testing data being transmitted from any coordinate in

the environment must be known. Since any location is equally probable across the plurality of all

environments, this likelihood is described by a universal distribution, making the final equation

incalculable. The M1 algorithm then estimates probabilities proportional to the actual ones by

using a modification of slice sampling in order to determine the most likely distance to cause a given

signal. The parameterization to the lognormal path model that would result in such a distance is

then recorded, and the parameters that would result in the minimal error across all training data

recorded are estimated and applied to the testing data to determine range. The M2 algorithm is

a modification of the M1 algorithm that uses unsupervised learning. Rather than tagging each

signal sampled from the environment with the location where it was recorded, the M2 algorithm

draws propositional values for each parameter from a distribution, all that is required are enough

distinct signal samples from the environment. The rationale being that, if the lognormal model does

indeed describe the relation between signal and distance, given enough random parameterizations

the correct set should be drawn. Since there are any number of parameterizations that could describe

a single sample, the parameters that best describe a plurality of samples should be close to correct.

After calculating the most apparent set of parameters, the algorithm can laterate on any of the data.
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4.2 Algorithm Error Characteristics

Having carried out the indicated computations for all algorithms described over the parameter set

enumerated, we recorded the resulting meters of localization error. We organized and analyzed the

results in a distortion-major manner. All results are presented in three dimensions, with height

always depicting each of the 20 distinct points along the bisecting central column of points. Point

1 is one meter away from the central LM and point 20 is 20 meters away. Localization error is

indicated by both the size and color of each point, and is always measured in meters. Distortion

strength and incident distance are always the bottom two axes, although per graph these rotate in

order to display more faces of the graph.

Figure 4.1: Localization Error per Descriptive Set Parameter per Point for Attenuation Distortions:
Rotated Trilateration
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Figure 4.2: Localization Error per Descriptive Set Parameter per Point for Attenuation Distortions:
RADAR

Figure 4.3: Localization Error per Descriptive Set Parameter per Point for Attenuation Distortions:
Area Based Positioning
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Figure 4.4: Localization Error per Descriptive Set Parameter per Point for Attenuation Distortions:
Rotated Trilateration: alternate view

Figure 4.5: Localization Error per Descriptive Set Parameter per Point for Attenuation Distortions:
RADAR: alternate view
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Figure 4.6: Localization Error per Descriptive Set Parameter per Point for Attenuation Distortions:
Area Based Positioning: alternate view

Figure 4.7: Localization Error per Descriptive Set Parameter per Point for Attenuation Distortions:
Simple Point Matching
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Figure 4.8: Localization Error per Descriptive Set Parameter per Point for Attenuation Distortions:
M1

Figure 4.9: Localization Error per Descriptive Set Parameter per Point for Attenuation Distortions:
M2
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Figure 4.10: Localization Error per Descriptive Set Parameter per Point for Attenuation Distortions:
Simple Point Matching: alternate view

Figure 4.11: Localization Error per Descriptive Set Parameter per Point for Attenuation Distortions:
M1: alternate view
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Figure 4.12: Localization Error per Descriptive Set Parameter per Point for Attenuation Distortions:
M2: alternate view
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Figure 4.13: Localization Error per Descriptive Set Parameter per Point for Bias Distortions: Ro-
tated Trilateration
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Figure 4.14: Localization Error per Descriptive Set Parameter per Point for Bias Distortions:
RADAR

Figure 4.15: Localization Error per Descriptive Set Parameter per Point for Bias Distortions: Area
Based Positioning
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Figure 4.16: Localization Error per Descriptive Set Parameter per Point for Bias Distortions: Ro-
tated Trilateration: alternate view

Figure 4.17: Localization Error per Descriptive Set Parameter per Point for Bias Distortions:
RADAR: alternate view
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Figure 4.18: Localization Error per Descriptive Set Parameter per Point for Bias Distortions: Area
Based Positioning: alternate view

Figure 4.19: Localization Error per Descriptive Set Parameter per Point for Bias Distortions: Simple
Point Matching
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Figure 4.20: Localization Error per Descriptive Set Parameter per Point for Bias Distortions: M1

Figure 4.21: Localization Error per Descriptive Set Parameter per Point for Bias Distortions: M2
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Figure 4.22: Localization Error per Descriptive Set Parameter per Point for Bias Distortions: Simple
Point Matching: alternate view

Figure 4.23: Localization Error per Descriptive Set Parameter per Point for Bias Distortions: M1:
alternate view
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Figure 4.24: Localization Error per Descriptive Set Parameter per Point for Bias Distortions: M2:
alternate view
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Figure 4.25: Localization Error per Descriptive Set Parameter per Point for Multipath Distortions:
Rotated Trilateration
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Figure 4.26: Localization Error per Descriptive Set Parameter per Point for Multipath Distortions:
RADAR

Figure 4.27: Localization Error per Descriptive Set Parameter per Point for Multipath Distortions:
Area Based Positioning
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Figure 4.28: Localization Error per Descriptive Set Parameter per Point for Multipath Distortions:
Rotated Trilateration: alternate view

Figure 4.29: Localization Error per Descriptive Set Parameter per Point for Multipath Distortions:
RADAR: alternate view
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Figure 4.30: Localization Error per Descriptive Set Parameter per Point for Multipath Distortions:
Area Based Positioning: alternate view

Figure 4.31: Localization Error per Descriptive Set Parameter per Point for Multipath Distortions:
Simple Point Matching
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Figure 4.32: Localization Error per Descriptive Set Parameter per Point for Multipath Distortions:
M1

Figure 4.33: Localization Error per Descriptive Set Parameter per Point for Multipath Distortions:
M2
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Figure 4.34: Localization Error per Descriptive Set Parameter per Point for Multipath Distortions:
Simple Point Matching: alternate view

Figure 4.35: Localization Error per Descriptive Set Parameter per Point for Multipath Distortions:
M1: alternate view
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Figure 4.36: Localization Error per Descriptive Set Parameter per Point for Multipath Distortions:
M2: alternate view
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4.2.1 Analysis of Algorithm Behavior per Distortion Type

We examined the results for all algorithms over a given distortion type in order to determine if there

are common behaviors or trends across all algorithms tested for each distortion type.

Attenuation

As can be seen in Figures 4.2 and 4.5, RADAR’s error very steadily increases as more distortion

strength is added and as incident distance decreases, causing more of the points to have attenuation

applied to them. The only exceptions are the final three points, the farthest, point 20, in particular.

Point 20 experiences at most 12 meters of error throughout all tests while the other points experience

up to 16. This is likely because at 20 meters distant from the central LM, the 20th point is closer

to the other two LMs that are experiencing no distortion, and the signal from the central LM is so

low that even strong attenuations change its signal value very little.

ABP behaves much like RADAR in the presence of attenuation, which is to be expected. Al-

though their methods of computation are quite different, they rely on the same fundamental princi-

ples. RADAR selects locations by numerical distance, while ABP calculates the most likely location

by similarity to a distribution parameterized by the samples recorded. If the samples recorded are

indeed diagnostic of the location, it stands to reason the most likely locations should be the locations

whose signal values are most similar to the recorded samples. ABP’s attenuation performance is

more measured and gradual than RADAR’s. ABP does have a much larger 6 to 7 meter region

than RADAR, however its other error regions are smaller. ABP also has in particular a region of

parameters it solves for exactly, even in the presence of error, resulting in a clear swath of very small

dots in Figure 4.3.

M1 behaves quite a bit differently than RADAR and ABP, which is to be expected as it is a

laterative algorithm, and ABP and RADAR are pointwise. M1’s error performance seems to point

to certain distinct configurations that cause it significant difficulty, which we can see from Figures

4.8 and 4.11. It appears that attenuations whose incident distances are approximately 10 meters

from the point being localized cause M1 significant difficulty, as can be seen in the large error stripes

for points 15 to 20 at incident distances 6 through 15 in Figure 4.11. This error stripe continues

across all attenuation strengths, as is visible in Figure 4.8. This is all the more significant because

we found that incident distance resulted in the smallest JSd sensitivity universally for the DDLHM

metric. Even though the propagation mechanics would lead one to believe strength of distortion

would be the most diagnostic of algorithmic error, it is not the case for the M1 laterative algorithm.

Even more to the point, it seems the points just before and just after the troublesome areas result
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in some, but markedly less error. We can see in direct evidence the puzzling ’long tail’ in the error

of laterative localization algorithms.

The M2 and SPM algorithms elicited some very surprising behavior, each behaving unlike their

algorithmic class. M2’s error sensitivity to attenuations looks incredibly similar to ABP’s. In partic-

ular, Figures 4.9 and 4.3 are extremely similar, down to the swath of exactly computed coordinates.

By the same token, SPM’s behavior in Figures 4.7 and 4.10 more directly compares to M1 than

ABP or RADAR, even though SPM is a straightforward modification of RADAR. We believe these

differences are due to the fact that SPM computes on interpolated data directly and M2 scores likely

parameters.

Since the M1 algorithm statisically computes the best set of propagation parameters to describe

training data that it later applies to translate the testing data into ranges direction, it is in effect

interpolating. M1 doesn’t necessarily compute its interpolation for the entire environment, but

the degree of interpolation is not the issue. It suffices that the algorithm does parameterize a

propagation model based on samples from the environment and applies it to data from an unknown

point. The algorithm is based on the presumption that the lognormal model can properly describe

each point’s propagation. Likewise, even though the ABP algorithm does in fact apply interpolation

to its data, ABP matches tiles of interpolated data and testing data numerically. Its relation is

a Gaussian likelihood function rather than Euclidean Distance in signal space or Earth Mover’s

Distance, however method of reckoning aside, ABP computes a ’score’ or ’goodness of fit’ for each

tile, rather than applying a model to convert signal to distance. Likewise, while M2 does compute

parameters to a lognormal function to convert signals to distances, it does so by picking the set of

parameters that best describe the training data. M2 runs through many random selections and picks

the ’best’ ones, in effect scoring all the possible interpretations of the collection of values it localizes.

While it may not be evident from the algorithms’ description of operation, the benchmarking process

quite clearly demonstrates that the way the data is represented, as pointwise or laterative, has little

to no bearing on algorithm performance. It is how locations are reckoned, either model-based

translation or score-based comparison, that decides the general behavior and patterns of error with

regard to attenuation distortions.

Bias

As can be seen in Figure 4.17, RADAR’s error increases in stages as bias’ distortion strength in-

creases. It is however entirely insensitive to incident distance, as can be seen across the back of Figure

4.14. This stands to reasons since RADAR matches its results numerically. Given the meter-wide

separation between the point in our synthetic environment, it should take some minimal amount of
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distortion to cause RADAR to shift the best-matching location from one point to another. Incident

distance should have fairly little effect on RADAR since the distorted point will look more like other

distorted points (which are close to the true location) than the others. RADAR also has the benefit

of precise data from the two undistorted LMs, which should always indicate the correct point exactly,

pushing it toward a correct conclusion.

ABP seems to handle bias distortions extremely well, resulting in a small, circular error wedge

in Figure 4.15. Although its maximal error at 10 meters exceeds RADAR at 8, its overall error area

is much smaller, resulting in a much smaller average error. ABP does however incur some error

at very low distortion strengths, as can be seen for points 1 to 3 for distortion strengths 1 to 7 at

all incident distances. These points are the points closest to the distorted LM and farthest from

the exact LMs. This would cause the distorted LM to have a much stronger signal than the exact

LMs. It seems that a small amount of bias is enough to push ABP to an incorrect location if it is

applied to a close, strong signal without nearby correcting influences. This is direct consequence of

its numeric reckoning. A small change to a strong signal can easily drown out the influence of exact,

but weak signals.

In bias as well we see evidence of the reckoning method governing error sensitivity to distortion.

As we can see in Figures 4.20 and 4.19, M1 and SPM look much more similar than SPM and

ABP. Figure 4.22 depicts some interesting behavior of SPM. A series of stirations curve through

distortion strength and are the same for all incident distances of bias for SPM. These are likely

aliasing behavior. As we can see the error starts relatively low for a given point and strength, and as

the strength and point localized more farther from the central LM error increases steadily, although

not for all pairs of points and distortion strength. It is likely the bad points lie on a computational

boundary between interpolated tiles and the clear areas of very low error in between do not and are

able to tolerate significant error and still be localized with a fair amount of accuracy. M1’s behavior

is very similar to SPM. As can be seen in Figures 4.19 and 4.20, it has the same general shape and in

Figures 4.22 and 4.23, the same degree. Although M1 does not have the same stirations through its

error benchmark as SPM, the same general area, points 12 through 20 at bias strengths 10 through

20, cause them both significant difficulty.

M2’s behavior resembles ABP’s, although much less so than ABP and SPM. In Figures 4.24 and

4.18, we can see that ABP and M2 both have their highest errors mostly confined to the strongest

distortion strength and the farthest points, while M1 and SPM both have error trends that increase

directly as the bias strength increases. M2 and ABP both are much less sensitive to the point

selected and are much more sensitive to the strength of the bias distortion. M1 and SPM seem to

have difficulty only with certain points over a wide range of distortion strengths. It stands to reason
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that since the SPM and M1 use model-based translation of data, that certain points would result in

configurations that are more fragile and sensitive to distortion. ABP and M2, which make conclusions

about data based on numeric comparison, are fairly agnostic to where in the environment the point

is, and are very sensitive to the degree of distortion, which would confuse their comparisons. ABP

and M2 also have the same exception to point location governing error sensitivity in their similar

early error strips over the lowest distortion strengths and only for the closest points, clearly visible

in 4.15 and 4.21.

Multipath

RADAR handles mutipath fairly well, except for one point. As can be seen in Figure 4.26, RADAR

does incur some error at points 3 and 4, although the one that causes the most error by far is

point 12. This point roughly corresponds with a signal null, as does point 4. At all other points,

multipath does not affect the propagation overmuch, and results in very low error. SPM and M1

have very similar behavior, for much the same reason, as can be seen in Figures 4.31 and 4.32.

Beyond the deep signal nulls, multipath has fairly little effect on the algorithms that use model-

based data translation since, in most cases, the model is correct. ABP and M2 however with their

score-based comparisons have some difficulty with multipath with their score-based comparisons.

Since multipath propagation causes both signal peaks as well as troughs and nulls, there are many

more features that can cause numeric comparisons to come up with unexpectedly different values

than the model-based translations. As such, ABP and M2 both have similar benchmarks, as can be

seen in Figures 4.27 and 4.33.

4.2.2 Analysis of Algorithm Behavior across Distortion Type

We examined the results of each algorithm across all distortion types to determine if there are any

common factors or trends in error performance that are general enough to hold given any distortion.

RADAR

Across all distortion types, RADAR has fairly different sensitivity characteristics. When localizing

in the present of attenuation, it seems to perform reasonably well, incurring no more than 10 meters

of error until experiencing strong distortions over the last few points. It does however have a much

lower error floor, incurring at least 2 meters of error for nearly all attenuation parameterizations, as

can be seen in Figure 4.2. RADAR’s difficulty with late-edge distortions continues into bias, where

lateration point and distortion strength are much more stable predictors of error than incident
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distannce. Unlike its attenuation results however, RADAR has can localize farther points more

accurately when dealing with bias. As can be seen in Figure 4.14, RADAR can localize all points

rather well until distortion power increases to the 15th reduced set bias strength parameter and

above. RADAR is surprisingly resilient to multipath distortions. It sensitivity to localized point is

less remarkable due to the signal null behavior of multipath. In Figure 4.26 we can see that the first

null point causes it some difficulty, resulting in approximately 2.75 meters of error. The second null

point however see RADAR gracefully degrading across distortion strength thresholds. Multipath

strengths 3, 7, 11 and 17 all cause at least a 1 meter increase in error. From this we can conclude

RADAR can be expected to localize points up to 10 meters away with fairly little error no matter

the strength of attenuation, only up to 5 meters away or with less than a 15dbm drop when dealing

with bias, or with less than 30% multipath.

ABP

ABP has a very charactertistic shape to its error performance for both attenuative and bias distortion

types, as we can see in Figures 4.3 and 4.15. Its error has a particularly ovoid shape, the greatest

error centered on a distant point at strong distortion. ABP does however have an oddly distinctive

error bump at very low distortion strengths for very close points. The smoothness and graceful

degradation across all distortion types carries over to multipath as well, where ABP’s reaction

to the deep second signal null is fairly smooth, as seen in Figure 4.27, in sharp contrast to the

threshold behavior of RADAR. This does not however recommend ABP to multipath distortions,

as this graceful degradation causes it localize with greater error across many multipath scenarios

that even an extremely simple algorithm, like RADAR, can handle easily. The odd low-power error

bump can also been seen as a very large 5.3 meters of error for the first point localized, regardless of

the multipath strength or incident distance. From this we can see that ABP is often quite resilient

to both attenuation and bias, with an all but identical error benchmark per parameter, although it

is particularly susceptible to multipath. In particular, ABP’s difficulty localizing points close to a

LM causes additional error in all cases, making it apparent that ABP should be be used to localize

any point closer than 3 meters to an LM.

SPM

SPM, like ABP, handles both attenuation and bias similarly, although unlike ABP, it does not handle

the distortions in a particularly graceful. As can be seen in Figures 4.7 and 4.19, the general shape

and distribution of error is quite similar for both distortions. The overall shape of the benchmarking

error is also somewhat ovoid, although it is not centered on or consist of cohesive regions of error.
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SPM instead experiences a given amount of error based on point localized and distortion strength,

but only within a given incident distance bound. Beyond the bound, the error sharply decreases,

or disappears entirely. The generally ovoid shape of both SPM and ABP may be an artifact of the

interpolation that both use, while the cohesion of error regions is likely caused by their reckoning

method, as discussed above. SPM is unlike ABP in that it handles multipath extremely well, with

only a few configurations causing trouble around the first signal null and alternating strips of error

per multipath strength along the second, as can be seen in Figure 4.31.

M1

The laterative algorithms continue their trend of mirroring the performance of one of the two point-

wise methods between distortion types. M1 handles attenuation much better than attenuation, with

much less overall error, as can be see in Figure 4.8. The critical difference here may be interpolation.

SPM and ABP both have ovoid error regions across distortion types (to varying degrees of coher-

ence), and while the curve and degree of M1’s error benchmark is quite similar to the outer edge

of SPM’s performance, along the distant points to be localized, M1 does not have the same error

spread along close points at high attenuation values. In fact, M1 handles very strong attenuations

quite well, with very little error past the 15th attenuative strength parameter of the reduced set.

This trend of M1 continues through bias, with it performing quite well at high bias strengths, except

for distant points to localize, as can be seen in Figure 4.20. From its behavior over attenuation and

bias, it seems M1 has a certain error floor. At lower distortion strengths and at closer points to

localize, M1 isn’t as picky and spreads varying amounts of error out over wide regions. As the

distortion strengths increase and the points to localize get farther away, M1 compresses the same

amount of error into fewer configurations with much greater error. It seems that the 10 to 15 meter

area is exceptionally fraught with very strong errors when localizing distant points. M1 also handles

multipath fairly well, much like SPM. As can be seen in Figure 4.32, M1 handles the first signal

with middling error of about 5.2 meters, but is handles the second null quite well, localizing with

very little error until the multipth strength increases past the 9th parameter. From this we can

conclude localizing points closer than 10 meters with M1 should be fairly error-free, or points past

15 meters that contain very little multipath. Otherwise, strong error regions begin to monopolize

the benchmark area.

M2

M2 behaves very much like ABP, with an all but identical error performance for attenuation, as

can be seen in Figure 4.9, with the same peculiar ovoid error region, the same clear region below
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and a similar error segment over low-strength attenuation on close points. M2 has fairly different

performance for bias however, looking like a cross between RADAR and ABP. As we can see in Figure

4.21, M2’s benchmark has a fairly rhomboid shape, describing several regions that are bounded fairly

linearly along both bias strength and localized point. For nearly every 1 dBm increase in bias, the

error function seems to shift to a point 1 meter closer. This behavior marks out some dependency

within the M2 algorithm that can hopefully be tuned out, as it seems to be rather regular and

decidable. Out of all the algorithms, M2 handles multipath the worst, although with very different

error behaviors from the other algorithms. As we can see in Figure 4.33, M2 actually does not have

much trouble with the second signal null in particular, with a much lower maximal error and average

error at that point than any other algorithm. It does however seem to have ABP’s same difficulty

with low multipath strengths applied to close points, but to an extreme degree, resulting in errors

above 6 meters for very little multipath. From this we can conclude M2 has some type of algorithmic

defect that is exposed when localizing with bias disortions, that it should localize with little error

in the presence of attenuation if the attenuation is somewhat weak, and that it can handle fairly

strong multipath well, so long as it is localizing points more than 5 meters from the LM.

4.3 Closed-Form Algorithmic Benchmarking

An algorithm’s error results when computing on the synthetically distorted signal values generated

to exercise them fully for benchmarking purposes provide a practical relation between distortion

characteristics and localization error. These results however were generated purposefully and have

no larger context. While the test suites may indicate an algorithm is sensitive to a certain type of

distortion or parameters, it is not clear how much additional resolution is to be gained by improving

its handling of that particular feature. Since we have only compared algorithms’ benchmarks against

other algorithms’ benchmarks, we haven’t any way to judge the value or capability of a given

algorithm’s error characteristics beyond our chosen test suite. It could very well be the case that all

the algorithms we tested with have a particular flaw that cause a certain result that is not a direct

consequence of the distortion types and parameterizations. In order to regard our benchmarking

results as diagnostic rather than as a heuristic, we must determine the error-causing capability of

each distortion configuration tested in a direct manner that does not in any way reduce any of the

error. Moreover, while when benchmarking we have the distinct luxury of working with known

amounts and types of distortion. When examining localization results computed on live data we

have no such assurance. Much to the point, if we knew the precise amounts and types of distortions

applied to live data, given the benchmarking results, we could correct for them. What is necessary
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is a way to gauge how well an algorithm could compute on any signal data, with known or unknown

distortion parameterization.

An algorithm’s capacity to localize can be further judged by comparing it to the performance of

rotated trilateration; a laterative localization algorithm with a closed-form error expression, directly

linking ranging error with lateration error by geometrically computing a location based on ranging

alone. The resultant model provides a ready profile of how strongly different distortions directly

affect a particular laterative engine. While the behavior of rotated trilateration is not necessarily

generalizible to all algorithms, it is comparable in that it localizes as well. By comparing a given

algorithm’s performance metrics to rotated trilateration, especially for corresponding benchmarking

parameters or over the same live data, it can supply a ready context to judge algorithmic efficacy.

In particular, no algorithm should ever perform worse than rotated trilateration, as it has absolutely

no error reduction capabilities. The degree to which a given algorithm improves upon the results of

rotated trilateration can act as a judge of its capability.

4.3.1 Definition of Rotated Trilateration

Assuming that there are no distortions on sampled RSSIs, it is a simple matter to translate signal

values to ranges. The remaining difficulty is that we have only ranges from LMs, not the direction

from which the signal came. This leaves us with a radius per LM describing potential transmitter

locations about its circumference. If we again presume there is no error or distortion, then each

circle should coincide at one precise point. Admitting the possibility that the ranges may not be

exact however, we need a method that can directly compute the best possible point of intersection

that is closed-form and not statistical or error-reducing. If the ranges do not align on a single point

based on the locations of the LMs that recorded the signal values that we translated, we will devise

a coordinate system where we can not help but compute a proportionally correct position. We will

take one LM to be origin, and the distance from the origin LM to another as displacement along

the x axis of our new coordinate system. We will normalize that distance and consider it to be

our unit vector. We will then consider the last LM to lie on only the y axis of our new coordinate

system, and will compute its distance and coordinates in terms of our new unit vector. Once we

translate the ranges we computed into our new coordinate system, we can not help but compute

their intersection since each LM now lies along only one axis of our new 2-dimensional space. Since

we have three range measurements in two dimensions, we can calculate an exact solution for the

location. This location is computed in the new coordinate space, so once it is rotated back into

the original coordinate system, we have an exact localization computed in closed form built on the

presumption that ranging based on the lognormal equation is correct. No error is reduced and no
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statistical estimations are applied. The same error in ranging will have the exact same error in

location calculation every time.

Let LM0 be the coordinates of Landmark 0

Let LM1 be the coordinates of Landmark 1

Let LM2 be the coordinates of Landmark 2

Let RSSI0 be the RSSI sampled at Landmark 0 from the transmitter to be localized

Let RSSI1 be the RSSI sampled at Landmark 1 from the transmitter to be localized

Let RSSI2 be the RSSI sampled at Landmark 2 from the transmitter to be localized

Let r0 be the range from Landmark 0 to the transmitter to be localized

Let r1 be the range from Landmark 1 to the transmitter to be localized

Let r2 be the range from Landmark 2 to the transmitter to be localized

Compute ranges from RSSIs:

ri =

√
0.12302

16∗π2 ∗ 1

10
RSSIi

10

Compute distance between LM1 and LM0:

d0 = ‖LM1 − LM0‖2

Compute relative deviation of LM2fromLM0:

d1 = LM2 − LM0

Determine magnitude of directed difference between LM1 and LM0 relative to its norm, computing

the sensitivity of coordinates to distance in the space:

ex = LM1−LM0

d0

Standardize the deviation space by multiplying each dimension of the deviation of LM2 from LM0

by the ratios of coordinate to distance sensitivity in the space:

i = ex · d1

Compute the relative ratiometric sensitivity between the dimensional deviation sensitivity of the

LM2,LM0 leg and the LM1,LM0 leg:

ey = (d1−i∗ex)
‖(d1−i∗ex)‖2
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Multiply each dimension of the relative difference of LM2 from LM0 by the normed relative sensi-

tivity ratios between the LM2,LM0 leg and the LM1,LM0 leg:

j = ey · d1

Compute the vector orthonormal to both the relative sensitivities of the LM2,LM0 leg and the

LM1,LM0 leg, forming an orthonormal basis:

ez = ex × ey

Let ex be distance along the x axis in our new basis

Let ey be distance along the y axis in our new basis

Let ez be distance along the z axis in our new basis

We have now translated our ranges into a new coordinate system where each range lies along

one axis only by rotating the coordinates of the landmarks, zeroing out constraints that cause

too many dependencies to compute the location directly in closed form.

Compute the location of the transmitter in the relative coordinate system and rotate back into the

original one:

xrotated =
(r20−r

2
1+d

2
0)

2∗d0

yrotated =
(r20−r

2
2+i

2+j2)
2∗j −

(
x ∗ ij

)
zrotated =

√
r20 − x2 − y2

LocalizedCoordinates = LM0 + x ∗ ex + y ∗ ey + z ∗ ez

4.3.2 Rotated Trilateration Error Characteristics

We computed the same benchmarks for the Rotated Trilateration (RT) algorithm that we did for

each of the other algorithms we examined above. In many cases the errors were so large, that in order

to represent them compactly, we graphed only the logarithm of the error, base e. RT did experience

some small error in non-distorted cases due to the fact that even though our LMs coordinates are

in 3-space, they are same along the z axis, placing them essentially on a plane. When rotating the

computed coordinates back, very often the computation does not solve to exactly 0 along that single

axis, likely due to roundoff error in the multiple square roots. Even so, the small amount of error



86

induced by the floating z axis parameter was in all cases extraordinarily negligable in contrast the

massive error caused by even the smallest amount of distortion.

As can be seen in Figures 4.1 and 4.4, RT experienced essentially no error for non-distorted cases

and gradually increasing error as both distortion strength and localization point and, to a degree,

even incident distance increase. It may seem from the heatmap that RT’s error when dealing with

strong attenuations far from the transmitter are lower than ABP’s or RADAR’s, from their very

dark regions in Figures 4.3 and 4.2. This is not the case since the error value graphed in the RT

benchmark blocks is the logarithm of the algorithmic error, which in some cases hundreds of meters

greater than the 16 or 15 meters of maximal error for RADAR or ABP. In Figures 4.13 and 4.16 we

can see that RT handles bias type distortions much more regularly than it does attenuations. While

RT does perform better on some attenuation parameterizations than bias, some of the errors caused

by attenuations are incredibly large. RT handles multipath distortions in a similar manner, as we

can see in Figures 4.25 and 4.28. Error increases around the points that cause signal nulls, however

otherwise multipath performance strongly resembles bias performance.

These results offer an interesting perspective. In a pure sense, attenuations cause incredibly

high error values if the lognormal model is taken as directly correct, while bias results in much

more homogenous error. The other algorithms benchmarked reacted in some part similarly, in part

not. In all cases, for all algorithms, maximal error for bias was lower than that for attenuation,

indicating that, in general, any localization algorithm should handle bias better than attenuation.

There was difference in degree, and M1 in particular had an incredibly modest reduction in maximal

error between Figures 4.8 and 4.20, although it was a reduction. From these examples and the

performance of RT, we can conclude any localization algorithm that benchmarks with higher error

in bias than attenuation is experiencing some odd effect that is likely an artifact of its computation.

Another lesson we can draw is, comparatively, how well localization algorithms handle attenuations.

Attenuation distortions caused extremely high error for rotated trilateration, however no algorithm

had error anywhere near the extraordinary errors RT experiences. For multipath distortions we can

see that RT is a bit more indicative of the general trends. Maximal error is roughly the same and

RT has increased error around the null points, as do the other algorithms. One marked difference

however is that RT experiences fairly high error throughout all distorted configurations, while only

M2 comes close to the same performance, with any appreciable error outside of the null regions, as

can be seen in Figure 4.33.

From the above we can see that Rotated Trilateration provides a deterministic context between

algorithms by establishing a lowest common denominator. No algorithm performs as badly as RT

over any benchmark parameters. RT also illustrates some of the error trends similar in the other
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algorithms: the multipath nulls, the reduction in maximal error from attenuation to bias and again to

multipath. RT also is useful in that it demonstrates just how much error attenuation can cause if it is

not correctly handled. While such a context is not as directly necessary when comparing algorithmic

error across known parameters in a synthetic environment, it will become critical for establishing

performance expectations when computing on live data where the exact distortion parameters are

unknowable.
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Chapter 5

Localization Environment Analysis

While we have developed a method to gauge localization performance that is algorithmically agnostic,

there remains no method that is environmentally agnostic. In order to assess algorithms under the

influence of a precise amount of distortion we removed the unpredictability of the environment by

computing all tests in a synthetic one. The common method to deal with environmental distortion is

to test an algorithm in multiple environments and try to establish general trends in the error. If all

environments that are tested in result in similar localization error characteristics, it is reasoned that

the algorithm will have similar behavior in most environments. While this is certainly a reasonable

strategy, it is particularly fraught since the heterogeneity of signal effects, coupled with potentially

prohibitive set up and deployment times, makes sampling enough environments to be diagnostic

extremely unlikely. Due to these logistical difficulties, most algorithms are tested on a small group

of environments, if any more than one. While testing an algorithm in more than one environment

can grant additional perspective to its performance, such tests are far from diagnostic or conclusive.

Averaging localization results over several environments together or examining them in concert

under the assumption that they communicate qualitatively similar results that can be directly com-

pared is not sound. While all localization algorithms tested in an environment will all result in

some degree of error, those results are inseparably tied to the data which came from that particular

environment. Every signal strength recorded at a particular location in an environment is the result

of innumerable distinct propagation paths coinciding. Any movement to a new location is another

twist of the environmental kaleidoscope, with a distinct set of reflections, refractions, absorptions

and cancellations combining to create an entirely new gestalt effect. Likening any point to any other

devoid of a model to determine how these multiple effects change is an exercise in heuristics, at best.

Given that each point in any single environment experiences a set of signal effects distinct from each

other, attempting to compare localization results over a group of such points is unlikely to result in

any useful or distinct information. The problem with such techniques is that they do not address

the fundamental issue: what about the environment causes a given result?

It is not possible to determine from a single signal value what caused it. Any number of distortion

configurations could result in a given signal strength just as an infinite number of pairs of numbers
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could sum to 12. In order to determine why an algorithm performs as it does in a given environment

it is necessary to determine what type of difficulties the environment poses. Since we demonstrated

that the DDLHM can be used to identify and determine the type and parameters of common signal

distortions in 3 and that we can benchmark algorithm performance in order to determine how they

react to a given distortion type and parameterization, all that remains is to exploit both analyses in

order to determine the dominant type and parameters of signal distortions in the environment and

their expected effects. This process would extend our capabilities considerably. Firstly, we could

now determine what particular aspects of an environment would likely cause the maximal types of

localization error. Rather than making guesses based on conjecture and heuristics, equipped with

an algorithmic benchmark and an environmental assessment, it is possible to determine what types

of distortions are causing the worst of algorithmic error. Secondly, it would allow us to determine

an error expectation per environment and algorithm. As improvements are made, the algorithm

could be re-assessed, allowing reasoned, rational, exact and duplicatible development of localization

algorithms. Finally, we could generate an general expected degree of localization difficulty a-priori

by assessing the performance of the closed-form Rotated Trilateration algorithm, which would also

provide us with a common context in which to evaluate other algorithms, a-posteriori.

5.1 Environment Assessment

Localization is fundamentally a translation from a topological space to a metric space. Physical

space is metric; the distance between two points is a reflexive, constant quantity and any location’s

coordinates can be precisely measured to any granularity larger than Planck lengths. The indoor

signal space is topological; the signal strength may change between two points over time, might

not be reflexive, and signal strength may stay the same over a given region, enlarging ’points’ of

the same signal strength to cover a region. It is a simple matter to translate from a metric to a

topological space since a metric space is more strongly defined. The process of localization is the

opposite transformation; translating a series of measurements in the less well-defined topological

signal space into a precise set of coordinates in the metric physical space. If not for the distortion

manifold of the environment, radio signals would propagate precisely as described by the lognormal

model and the translation from signal space to physical space would be fairly error free. The act

of assessing the error-causing capacity of an environment is then the process of determining the

properties of this distortion manifold, and constructing an error model.

A common argument is that in order to determine the expected error when localizing some object

based on its signal data, the error model would have to determine the likelihood of the organization,
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materials, and disposition of people and objects in the environment, since they all affect the radio

signal received and therefore the localization result. Such an error model is patently impossible

to construct. While it is true that all of these factors do affect what happens to signals in the

environment, it is not our intention to determine the floorplan of the environment, but to assess the

degree to which the environment distorts our expectations of lognormal propagation. Predicting the

precise disposition of an environment is not possible, however determining how well our expectations

fit it is.

The key to doing so is judicious use of the DDLHM. As we demonstrated in Chapter 3, we can

determine the dominant distortion type and parameters present in a series of signal samples taken

along a straight line extending from a LM. By seeking such signal vectors in an actual environment

we can determine the characteristics of distortions applied to them. Not all environments are con-

structed of straightline paths, however we will use only that data that we can and will presume

the paths we have are indicative of the environment. Since people often tend to collect data along

hallways and walkways, nearly all environments have fairly long vectors of signal data. So long as

there is an LM near one of the ends, the data can be used to assess distortion characteristcs.

5.1.1 Environments Sampled

The Core environment is the third floor of the Computing Research and Education building on the

Rutgers University campus, consisting of several academic computer laboratories and offices arranged

around a rectangular arrangement of four hallways, as can be seen in Figures 5.1a and 5.1d. The

labs are filled with various electronic and computer equipment, metal shelving and wall-mounted

electrical conduit. Core has 6 collections of sampled points that are amenable to analysis since its

radio architecture is built to enhance coverage for the general 802.11 communication network. The

LM locations are represented by red points, locations of radio samples used for distortion vector

analysis as blue points, and all other data collected as black points in Figure 5.1f.

The WINLAB environment is the main working area of the Rutgers University Wireless Net-

woking Laboratory, consisting of a large area of half-height cubilces, glass-fronted offices, as well as

storage and service rooms containing electrical and computer equipment, as can be seen in Figures

5.1b and 5.1e. WINLAB has 6 sample paths as well. Unlike CoRE, WINLAB was instrumented

particularly for localization testing, so its paths extend for quite a long segment of the environment,

as can be seen in Figure 5.1g.

The Grid environment consists of the Orbit computing grid lab in WINLAB, as can be seen

in Figures 5.1c and 5.1h. The Orbit grid consists of a 20 by 20 meter square of 400 single-board

ITX form-factor computers suspended from the ceiling. Each computer is one meter away from its
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(a) CoRE building - external (b) WINLAB facility - external (c) ORBIT grid - experiment bay

(d) third floor of CoRE - floorplan (e) WINLAB facility - floorplan

(f) CoRE Test Vectors (g) WINLAB Test Vectors (h) Grid Test Vectors

Figure 5.1: Areas and environments sampled
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cardinal adjacent neighbors and and has two wireless cards. Since every single point has two wireless

cards, there is no need for a specific machine to be an LM. Since any of the wireless cards could

receive signals and any other broadcast, we recorded on nearly every row and column, resulting in

18 horizontal and 18 vertical paths.
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5.1.2 Distortion Characteristics of the Core Environment

Figure 5.2: Core Path 1 DDLHM JSds: Attenuation
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Figure 5.3: Core Path 1 DDLHM JSds: Bias

Figure 5.4: Core Path 1 DDLHM JSds: Multipath
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Figure 5.5: Core Path 2 DDLHM JSds: Attenuation

Figure 5.6: Core Path 2 DDLHM JSds: Bias
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Figure 5.7: Core Path 2 DDLHM JSds: Multipath

Figure 5.8: Core Path 3 DDLHM JSds: Attenuation
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Figure 5.9: Core Path 3 DDLHM JSds: Bias

Figure 5.10: Core Path 3 DDLHM JSds: Multipath
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Figure 5.11: Core Path 4 DDLHM JSds: Attenuation
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Figure 5.12: Core Path 4 DDLHM JSds: Bias

Figure 5.13: Core Path 4 DDLHM JSds: Multipath



100

Figure 5.14: Core Path 5 DDLHM JSds: Attenuation

Figure 5.15: Core Path 5 DDLHM JSds: Bias
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Figure 5.16: Core Path 5 DDLHM JSds: Multipath

Figure 5.17: Core Path 6 DDLHM JSds: Attenuation
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Figure 5.18: Core Path 6 DDLHM JSds: Bias

Figure 5.19: Core Path 6 DDLHM JSds: Multipath
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Figure 5.20: Core Best Distortion Matches per Distortion
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Figure 5.21: Core Best Distortion Matches Overall
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For each path of Core, we computed the JSd between the DDLHM of the path and the DDLHM

of the reduced set of distortion parameters defined in Section 3.4. We determined: in 3.4.1 that an

attenuation-type match of 0.1 JSd is very good, while a match of 0.2 JSd is reasonble, in 3.4.1 that a

bias-type match of 0.25 JSd or less is a good match, and in 3.4.1 that a multipath-type match of 0.25

JSd would be a reasonable match, while a match of 0.05 JSd or less would be very good. Keeping in

mind the JSd match breakpoints we determined above, we tabulated the minimal JSd per distortion

type in Figure 5.20. Path 1 and 2 both have fairly strong indications of bias. Path 1 more so, as

it matches below the JSd threshold, path 2 less so as it matches above. Since any signal could be

the combination of any number of distortion effects and noise, it is expected that in some cases no

distortion profile for any parameterization will match below the ’good match’ threshold. In such as

case we regard the absolute lowest JSd as the best possible match regardless. Paths 3 through 6 all

strongly indicate multipath over bias or attenuation, however all matches are at extremely high JSds,

indicating the signal data is highly distorted. From this we can conclude that the Core environment

likely has a few fairly low-strength bias distortions, but is dominated by heavy distortions that are

most similar to multipath types. Multipath-type distortions can be quite deleterious for localization

algorithms as they behave much like lognormal until reaching a signal null, quickly dropping off to

extremely low power levels unexpectedly. This type of environment would likely cause fairly few

weak errors, but would also cause a similar number of very strong errors.

5.1.3 Distortion Characteristics of the Grid Environment

For each path in the Grid environment, we computed the JSd between the DDLHM of the path’s

signals and the reduced parameter set. These JSds per distortion type, strength and incident distance

are in Figures 5.22 through 5.129. The Grid environment is distinct in that it contains very little

other than the Orbit Grid. Unlike the Core and WINLAB environments, the room is mainly empty

but for support beams and some tables and equipment against the walls. Since the environment is

rarely populated and does not have many structual elements or furniture and is floored entirely in

tile, it should have fairly distinct propagation behavior. Since each of the 400 nodes in the Orbit

Grid has two wireless cards on it, it is possible to have any node record signal strengths while any

other node transmits. Due to its unique structure, we recorded signal vectors over 18 of the 20

vertical vectors and 18 of the 20 horizontal vectors that had all networking cards operating. As can

be seen in Figure 5.130, the vast majority of best-matching distortions were of the multipath type.

In many cases, the multipath matches are much more strongly indicated than the attenuation and

bias types, even when the JSd value is not below that required for a good match. This can especially

be seen for paths 15 through 18, where the absolute minimum JSd value for both attenuation and
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bias distortion types are the same and 0.1 to 0.2 JSd higher than multipath’s. Only two paths,

36 and 23, match any distortion type other than multipath. Even so, path 25’s match is fairly

indecisive. The best JSd matches float between 0.2 and just above 0.4, with an average just above

0.3 JSd. Given the fact that nearly all distortions match quite distinctly as multipath, we expect

the Grid environment would actually present a significant problem to most localization algorithms.

Since multipath propagation causes a deep fade at points where the lognormal model would predict

a much stronger signal, it would be reasonable to presume that model-based localization algorithms

would experience significant difficulty localizing as one of their fundamental operating assumptions

would occasionally be quite incorrect.

Figure 5.22: Path 1 Attenuation DDLHM JSds
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Figure 5.23: Path 1 Bias DDLHM JSds

Figure 5.24: Path 1 Multipath DDLHM JSds
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Figure 5.25: Path 2 Attenuation DDLHM JSds

Figure 5.26: Path 2 Bias DDLHM JSds
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Figure 5.27: Path 2 Multipath DDLHM JSds

Figure 5.28: Path 3 Attenuation DDLHM JSds
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Figure 5.29: Path 3 Bias DDLHM JSds

Figure 5.30: Path 3 Multipath DDLHM JSds
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Figure 5.31: Path 4 Attenuation DDLHM JSds
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Figure 5.32: Path 4 Bias DDLHM JSds

Figure 5.33: Path 4 Multipath DDLHM JSds
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Figure 5.34: Path 5 Attenuation DDLHM JSds

Figure 5.35: Path 5 Bias DDLHM JSds
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Figure 5.36: Path 5 Multipath DDLHM JSds

Figure 5.37: Path 6 Attenuation DDLHM JSds
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Figure 5.38: Path 6 Bias DDLHM JSds

Figure 5.39: Path 6 Multipath DDLHM JSds
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Figure 5.40: Path 7 Attenuation DDLHM JSds
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Figure 5.41: Path 7 Bias DDLHM JSds

Figure 5.42: Path 7 Multipath DDLHM JSds
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Figure 5.43: Path 8 Attenuation DDLHM JSds

Figure 5.44: Path 8 Bias DDLHM JSds
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Figure 5.45: Path 8 Multipath DDLHM JSds

Figure 5.46: Path 9 Attenuation DDLHM JSds
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Figure 5.47: Path 9 Bias DDLHM JSds

Figure 5.48: Path 9 Multipath DDLHM JSds
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Figure 5.49: Path 10 Attenuation DDLHM JSds
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Figure 5.50: Path 10 Bias DDLHM JSds

Figure 5.51: Path 10 Multipath DDLHM JSds
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Figure 5.52: Path 11 Attenuation DDLHM JSds

Figure 5.53: Path 11 Bias DDLHM JSds
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Figure 5.54: Path 11 Multipath DDLHM JSds

Figure 5.55: Path 12 Attenuation DDLHM JSds



125

Figure 5.56: Path 12 Bias DDLHM JSds

Figure 5.57: Path 12 Multipath DDLHM JSds
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Figure 5.58: Path 13 Attenuation DDLHM JSds
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Figure 5.59: Path 13 Bias DDLHM JSds

Figure 5.60: Path 13 Multipath DDLHM JSds
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Figure 5.61: Path 14 Attenuation DDLHM JSds

Figure 5.62: Path 14 Bias DDLHM JSds
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Figure 5.63: Path 14 Multipath DDLHM JSds

Figure 5.64: Path 15 Attenuation DDLHM JSds
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Figure 5.65: Path 15 Bias DDLHM JSds

Figure 5.66: Path 15 Multipath DDLHM JSds
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Figure 5.67: Path 16 Attenuation DDLHM JSds
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Figure 5.68: Path 16 Bias DDLHM JSds

Figure 5.69: Path 16 Multipath DDLHM JSds
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Figure 5.70: Path 17 Attenuation DDLHM JSds

Figure 5.71: Path 17 Bias DDLHM JSds
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Figure 5.72: Path 17 Multipath DDLHM JSds

Figure 5.73: Path 18 Attenuation DDLHM JSds
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Figure 5.74: Path 18 Bias DDLHM JSds

Figure 5.75: Path 18 Multipath DDLHM JSds
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Figure 5.76: Path 19 Attenuation DDLHM JSds
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Figure 5.77: Path 19 Bias DDLHM JSds

Figure 5.78: Path 19 Multipath DDLHM JSds
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Figure 5.79: Path 20 Attenuation DDLHM JSds

Figure 5.80: Path 20 Bias DDLHM JSds
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Figure 5.81: Path 20 Multipath DDLHM JSds

Figure 5.82: Path 21 Attenuation DDLHM JSds
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Figure 5.83: Path 21 Bias DDLHM JSds

Figure 5.84: Path 21 Multipath DDLHM JSds
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Figure 5.85: Path 22 Attenuation DDLHM JSds
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Figure 5.86: Path 22 Bias DDLHM JSds

Figure 5.87: Path 22 Multipath DDLHM JSds
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Figure 5.88: Path 23 Attenuation DDLHM JSds

Figure 5.89: Path 23 Bias DDLHM JSds
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Figure 5.90: Path 23 Multipath DDLHM JSds

Figure 5.91: Path 24 Attenuation DDLHM JSds
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Figure 5.92: Path 24 Bias DDLHM JSds

Figure 5.93: Path 24 Multipath DDLHM JSds
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Figure 5.94: Path 25 Attenuation DDLHM JSds
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Figure 5.95: Path 25 Bias DDLHM JSds

Figure 5.96: Path 25 Multipath DDLHM JSds
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Figure 5.97: Path 26 Attenuation DDLHM JSds

Figure 5.98: Path 26 Bias DDLHM JSds
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Figure 5.99: Path 26 Multipath DDLHM JSds

Figure 5.100: Path 27 Attenuation DDLHM JSds
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Figure 5.101: Path 27 Bias DDLHM JSds

Figure 5.102: Path 27 Multipath DDLHM JSds
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Figure 5.103: Path 28 Attenuation DDLHM JSds
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Figure 5.104: Path 28 Bias DDLHM JSds

Figure 5.105: Path 28 Multipath DDLHM JSds
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Figure 5.106: Path 29 Attenuation DDLHM JSds

Figure 5.107: Path 29 Bias DDLHM JSds
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Figure 5.108: Path 29 Multipath DDLHM JSds

Figure 5.109: Path 30 Attenuation DDLHM JSds
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Figure 5.110: Path 30 Bias DDLHM JSds

Figure 5.111: Path 30 Multipath DDLHM JSds
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Figure 5.112: Path 31 Attenuation DDLHM JSds
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Figure 5.113: Path 31 Bias DDLHM JSds

Figure 5.114: Path 31 Multipath DDLHM JSds
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Figure 5.115: Path 32 Attenuation DDLHM JSds

Figure 5.116: Path 32 Bias DDLHM JSds
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Figure 5.117: Path 32 Multipath DDLHM JSds

Figure 5.118: Path 33 Attenuation DDLHM JSds
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Figure 5.119: Path 33 Bias DDLHM JSds

Figure 5.120: Path 33 Multipath DDLHM JSds
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Figure 5.121: Path 34 Attenuation DDLHM JSds
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Figure 5.122: Path 34 Bias DDLHM JSds

Figure 5.123: Path 34 Multipath DDLHM JSds
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Figure 5.124: Path 35 Attenuation DDLHM JSds

Figure 5.125: Path 35 Bias DDLHM JSds
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Figure 5.126: Path 35 Multipath DDLHM JSds

Figure 5.127: Path 36 Attenuation DDLHM JSds
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Figure 5.128: Path 36 Bias DDLHM JSds

Figure 5.129: Path 36 Multipath DDLHM JSds



166

Figure 5.130: Grid Best Matches per Distortion

Figure 5.131: Grid Best Distortion Matches Overall
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5.1.4 Distortion Characteristics of the WINLAB Environment

Figure 5.132: Path 1 Attenuation DDLHM JSds
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Figure 5.133: Path 1 Bias DDLHM JSds

Figure 5.134: Path 1 Multipath DDLHM JSds
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Figure 5.135: Path 2 Attenuation DDLHM JSds

Figure 5.136: Path 2 Bias DDLHM JSds
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Figure 5.137: Path 2 Multipath DDLHM JSds

Figure 5.138: Path 3 Attenuation DDLHM JSds
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Figure 5.139: Path 3 Bias DDLHM JSds

Figure 5.140: Path 3 Multipath DDLHM JSds
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Figure 5.141: Path 4 Attenuation DDLHM JSds
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Figure 5.142: Path 4 Bias DDLHM JSds

Figure 5.143: Path 4 Multipath DDLHM JSds
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Figure 5.144: Path 5 Attenuation DDLHM JSds

Figure 5.145: Path 5 Bias DDLHM JSds
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Figure 5.146: Path 5 Multipath DDLHM JSds

Figure 5.147: Path 6 Attenuation DDLHM JSds



176

Figure 5.148: Path 6 Bias DDLHM JSds

Figure 5.149: Path 6 Multipath DDLHM JSds
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Figure 5.150: WINLAB Best Distortion Matches per Distortion

Figure 5.151: WINLAB Best Distortion Matches Overall
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For each path defined in WINLAB , we computed the JSd between the DDLHM of the path’s

signals and the reduced parameter set. These JSds per distortion type, strength and incident distance

are in Figures 5.132 through 5.149. Paths 1, 3 and 5 all prefer multipath distortion types, with a

strong depression in JSd values along a segment of the multipath DDLHM distortion power range.

Path 4 is not particularly diagnostic, however bias has the lowest absolute JSd. Path 2 and 6 both

have fairly odd mechanics to very different ends. Path 2 has extremely similar JSd values for all

distortion types and configurations, making it extremely difficult to classify. The absolute lowest

JSd is a bias configuration, so we will accept it as the best possible fit given the distortion types

and parameterizations considered. Path 6 is quite distinct in that it has all but no similarity to any

distortion type but attenuation. It is of particular note that no distortion type or parameterization

matched well, with an average minimal overall JSd of nearly 0.4 for paths 1 through 5, with Path 6’s

best match well above 0.5 JSd. From this we can conclude the WINLAB environment would have

nearly universally inconsistent distortion characteristics, with some segments experiencing a range

of medium-strength distortions and other segments fairly unobstructed, with occasional very high

distortions. This behavior is expected due to the heterogeneity of the environment. Some sections

are unobstructed walkways that then pass cubicles, storage cabinets and other furniture, providing

both refelctive and absorptive obstructions.

5.2 Estimating Environmental Error Bounds

Some of the most significant barriers to the exact and precise development of localization algorithms

are the inability to compare algorithms’ performance across environments or to generate sound

a-priori error expectations. Without the ability to generate a hypothesis based on a testable, identi-

fiable cause for error any improvement on an algorithm would have to be either heuristic or a general

statistical argument. While there is nothing fundamentally incorrect about non-deterministic mod-

ifications to algorithms, it can not be known if a later test’s results are due to the alteration of the

algorithm or a change in the test environment. Given our environmental assessments computed above

in Section 5 we can determine the expected distortion types and parameters in a given environment.

Using our environmental assessments in conjunction with the algorithm benchmarks we computed

in Section 4.2, we can determine how much localization error would result from each parameterized

distortion type for a benchmarked algorithm when it localizes along a sampled environment path. In

order to effectively use these per-path error expectations to determine an average error expectation

for the entire environment, we will use two main metrics and a threshold calculation to determine

when to switch between them.
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5.2.1 Environmental Error Expectation Metrics

As noted in paragraphs 3.4.1 through 3.4.1, the JSd between the best-matching reduced set param-

eterization and a series of signal samples can be interpreted as a degree of confidence that the error

incurred when localizing points generated according to that parameterization will in fact mirror the

error when localizing the sampled points in the actual environment. We apply this metaphor di-

rectly to compute the Weighted Environmental Error Estimate by computing the weighted average

of all the paths’ benchmarked errors. The weight for each benchmark error is the JSd it matched

with divided by the sum of all paths’ minimal JSds. This calculation strongly weights paths very

high JSds, which may seem counter-intuitive since a high JSd indicates an inaccurate match. A

path whose best reduced set match has a very high JSd consists of signals that can not easily be

described by a single distortion type of any parameterization. If a signal path is not dominated by

a single distortion, it is then the result of several strong distortions or strong noise, making it even

more unlike a steady, lognormal propagation pattern and likely to cause very high localization error.

Since our aim to determine how much error would likely result based on the difference between a

lognormal propagation model, we find it natural to give more weight to algorithm benchmark error

that is included due to weak matches over very good ones.

While the Weighted Environmental Error Estimate works well in environments that normally

match reduced set parameterizations fairly well, it does not handle more noisy environments. Envi-

ronments that have universally high JSd path matches the calculated weights are quite similar and

the metric approaches a simple arithmetic mean. In such environments the collected benchmark

errors need to be scaled to an appropriate amount to reflect the fact that they come from imprecise

matches, resulting in the Scaled Environmental Error Estimate. We first compute the Weighted

Environmental Error Estimate and subtract from it the mean of all the environment’s paths’ bench-

mark errors. We then divide the difference of the maximal and minimal benchmark error by this

quantity to produce an error scale and multiply the mean of the benchmark errors by it.

In order to choose between the Weighted and Scaled Environmental Error Estimates, we examine

the mean of the JSds of all path matches. If the mean is relatively low, below 0.1, we presume

that there are relatively few high-JSd paths, and their error will be appropriately diagnostic, and

employ the Weighted Environmental Error Estimate. If the mean is relatively high, above 0.15,

we presume there are many high-JSd paths and that their error will not be particularly diagnostic,

and instead employ the Scaled Environmental Error Estimate. In all cases we will compare our

estimated environmental error to the average localization error when localizing all points in each

live environment. Since most of the test environments do not consist of only straightline paths, we
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will be using a subset of the total environment to draw conclusions about localization performance

over the rest of it.

5.2.2 CoRE Expected Error

Figure 5.152: Algorithm Error in CoRE: RT Error and Expectations
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Figure 5.153: Algorithm Error in CoRE: RADAR Error and Expectations

Figure 5.154: Algorithm Error in CoRE: ABP Error and Expectations
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Figure 5.155: Algorithm Error in CoRE: SPM Error and Expectations

Figure 5.156: Algorithm Error in CoRE: M1 Error and Expectations
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Figure 5.157: Algorithm Error in CoRE: M2 Error and Expectations
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Rotated Trilateration RADAR ABP SPM M1 M2
Error Estimate 10.24 1.57 1.92 0.59 2.55 3.21

Actual Mean Error 67.4 1.4 2.7 0.3 4.3 4
Difference 57.16 0.17 0.78 0.29 1.75 0.79

Table 5.1: Estimated and Actual Mean Error for Core

In Figures 5.152 through 5.157, we have graphed the individual benchmark error as well as

the error CDF that results from localizing across the entire environment, including points that

our paths did not cover. We also include both our Weighted and Scaled Environmental Error

Estimates as well as some diagnostic additional measurements to better determine the context of

the measurements. The mean of the JSds for all Core path matches is 0.0801, indicating that the

Weighted Environmental Error Estimate should be used. As can be seen in Table 5.1, all algorithms

but Rotated Trilateration have fairly solid estimates within 2 meters of their actual values, and

of those only M1’s estimate falls higher than 1 meter away from the overall environmental average

error. Since Rotated Trilateration is engineered to have very strong error responses, even a very small

deviation in parameter classification can cause a very large misprediction of error. These prediction

results are consistent with our expectations and analysis of the Core distortion characteristics in

paragraph 5.1.2 and the relatively low average match JSd. The relatively low average match JSd of

0.0801 indicates that many of the paths analyzed match quite well to a particular parameterization.

The standard deviation of distribution of match JSds is however 0.1974, indicating that the match

JSds are not definitely not uniformly low, but that there are a few matches with particularly high

JSds, which is borne out by the environmental path analysis in Subsection 5.1.2 above.

5.2.3 Grid Expected Error
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Figure 5.158: Algorithm Error in Grid: RT Error and Expectations

Figure 5.159: Algorithm Error in Grid: RADAR Error and Expectations
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Figure 5.160: Algorithm Error in Grid: ABP Error and Expectations

Figure 5.161: Algorithm Error in Grid: SPM Error and Expectations
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Figure 5.162: Algorithm Error in Grid: M1 Error and Expectations

Figure 5.163: Algorithm Error in Grid: M2 Error and Expectations
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Rotated Trilateration RADAR ABP SPM M1 M2
Error Estimate 117.83 2.06 4.51 1.55 6.05 5.54

Actual Mean Error 27.5 2 5.4 1.1 7.1 7.5
Difference 90.33 0.06 0.89 0.45 1.05 1.96

Table 5.2: Estimated and Actual Mean Error for Grid

In Figures 5.158 through 5.163, we have graphed the individual benchmark error as well as

the error CDF that results from localizing across the Grid environment. The Grid environment is

distinct from others in that it consists of a single, open room with occasional support beams as the

only obstructions. The room however represents a significant localization challenge as many of the

surfaces are strongly reflective; the floor is tiled, the ceiling made of a thin, corrugated metal and

one wall consists of mostly plate glass windows. All these materials can be highly radioreflective at

the correct incident angle. Given that nearly all points in the room have an unobstructed path to

these environmental features, it is quite likely that the signals sampled in the environment would

universally experience a high degree of distortion in comparison to other environments. The mean

of the JSds for all Grid path matches is 0.2851, indicating that the Scaled Environmental Error

Estimate should be used. As can be seen in Table 5.2, all algorithms but Rotated Trilateration have

fairly solid error estimates within 2 meters of the overall average error across the entire environment,

and of these only M2’s estimate exceeds 1 meter by an appreciable amount. We find these results

quite encouraging in the face of the Grid environment’s fairly high match JSd average of 0.2851,

indicating a large number of fairly imprecise matches. The standard deviation of the distribution

of JSd matches is 0.0639, indicating the relatively high mean is fairly stable across all matches.

This is fairly deleterious as a JSd of 0.2851 would lie outside the range of a ’good match’ as per

the criteria we established in Section 3.4. Even so, our estimation method has proven to be quite

robust even in such an environment for all algorithms but Rotated Trilateration, which we engineered

to be specifically incredibly sensitive to deviations from unobstructed lognormal. Given the high

average JSd and resultant misparameterizations, it is reasonable to presume Rotated Trilateration’s

performance would be difficult to estimate without a much more precise distortion assessment tool

and benchmarks.

5.2.4 WINLAB Expected Error
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Figure 5.164: Algorithm Error in WINLAB: RT Error and Expectations

Figure 5.165: Algorithm Error in WINLAB: RADAR Error and Expectations
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Figure 5.166: Algorithm Error in WINLAB: ABP Error and Expectations

Figure 5.167: Algorithm Error in WINLAB: SPM Error and Expectations
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Figure 5.168: Algorithm Error in WINLAB: M1 Error and Expectations

Figure 5.169: Algorithm Error in WINLAB: M2 Error and Expectations



192

Rotated Trilateration RADAR ABP SPM M1 M2
Error Estimate 42467774.87 2.52 2.67 1.36 2.33 3.72

Actual Mean Error 10.1 2.7 2.4 0.6 2.7 3.7
Difference 42467764.87 0.18 0.27 0.76 0.37 0.02

Table 5.3: Estimated and Actual Mean Error for WINLAB

In Figures 5.164 through 5.169, we have graphed the individual benchmark error as well as the

error CDF that results from localizing across the WINLAB environment. The WINLAB environ-

ment is distinct from others in that it consists of a mix of hallways and an room populated with

desks and half-height cubicle walls. The hallways resemble the Grid environment, as they are tiled

and have a corrugated metal ceiling. The cubicle area however is carpeted, but also has glass-fronted

offices. Even given the general similarities of the WINLAB environment to the Grid environment,

we expect much less distortion from it. In the cubicle area the carpeted floor, cubicle walls and desks

will likely handily absorb reflections. In the hallway areas the closer walls and support materials are

likely absorb, attenuate or reflect away signals, keeping non-line-of-sight signals from propagating

down the hallway and likely reducing the amount of noise or signal churn in the environment. The

mean of the JSds for all WINLAB path matches is 0.067, indicating that the Weighted Environ-

mental Error Estimate shoudl be used. As can be seen in Table 5.3, once again all algorithms but

Rotated Trilateration have very good error estimates. All are within half a meter of the overall

average across all points for their respective algorithm save for SPM and Rotated Trilateration,

with SPM’s estimated error average still falling under a meter of the actual. Rotated Trilateration’s

extraordinarily terrible performance can be wholly attributed to a single path whose match was

very bad. The bad match along with Rotated Trilateration’s extreme error sensitivity resulted in an

error estimation incorrect by nearly 42.5 million meters. This was the product of a rather short path

that had a fair amount of noise on it, resulting in a large amount of missing data, namely Path 2,

whose DDLHM JSds are detailed in Figures 5.135 through 5.137. These extremely flat JSd ranges

demonstrate how little information was available in the samples collected, as they barely matched to

any of the parameterizations considered. The standard deviation of the distribution of all the path

JSd matches is 0.1569, indicating that there are likely only one or two path estimates that are fairly

bad, while the others are mostly good. This is in direct correspondence with our other data and the

estimation performance. Even given the single bad estimate, we find our method to be particularly

capable, as it estimates the overall average error of all algorithms, save one, to less than a meter of

their actual values.
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Chapter 6

Conclusions

As wireless networks continue their inexorable spread into full ubiquity they enable a host of com-

puting applications powered by increasingly powerful, small, efficient computers and sensors. Given

the proliferation of personal communication and computation devices we are presented with a degree

of mobile computing undreamt of when many of the computing and communication systems and

standards we rely on daily were drafted. We are presented with the distinctly difficult task of build-

ing up new systems out of pieces not meant to support such operations or organizations. Location is

often a lynchpin that holds many context-based and sensor applications together. Other than time

and physical state, few sensing systems do not use location in some manner. Given the wide deploy-

ment of wireless networks it is particularly compelling to reuse our indoor communication networks

as location sensing systems as well, to immediately add a location context to any device we can

communicate with absolutely no additional software, hardware, cooperation or collusion on the part

of the device by using passive signal sensing. Without a measuring or compensating mechanism, it

is not possible to attribute localization error to the algorithm or the environment, making rational

analysis and precise improvements infeasible. Developing localization algorithms in the quantitative

vacuum of quantum probabilities and gestalt results halts any such progress, leaving us in the realm

of heuristic and analogy.

By rigorously applying the philosophical precepts of the metaphysic of artificial knowledge set

forward in Immanuel Kant’s Critique on Pure Reason, demonstrated how to: benchmark localiza-

tion algorithms’ performance in the presence of precise amounts of distortion, detect environmental

distortion and match it to our distortion scenarios, and then use these two processes to generate

extremely accurate error predictions for localization algorithms computing in a given environment.

Beyond prediction, our algorithmic benchmarking methods provide a tool to assess an algorithm’s

error response in order to inform development and to diagnose performance issues. Our environ-

mental assessment methods allow environments to be compared quantitatively and for localization

algorithms’ performance to be understood and analyzed in a common context.
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6.1 Future Work

While our synthetic error model does a good job of estimating environmental error, it does so by

considering only one of three dominant radio distortion types. Our method could be improved by

iterative reapproximation, estimating the strongest distortion type, removing its major components,

and then estimating again to gain an arbitrary degree of improvement, although each additional layer

of estimation requires exponentially more parameterizations to be considered, making a pruning

mechanism essential.

The real potential of this process is to generalize it beyond localization. There is no inherent part

of the process that ties it to localization, but the assumption of the distortion types. By replacing the

distortion type models with a typicality analysis and a curve fitting step, distortion models should

be extractable from the object data itself. The most typical sequence should mirror the presumed

model, so, in the case of localization, the best-fitting lognormal values would be subtracted from

a series of signal paths and the paths analyzed in order to isolate the next most typical sequence.

In this manner a series of distortions models could be directly estimated from the data. Since a

priori knowledge of the error types is not required, our processes could be potentially applied to any

data, model and environment, whether it be exact, estimated, physical, mathematical or simulated.

Currently, so long as the expected distortion types are known, our process can be applied to any

model or environment to construct a synthetic error model to describe a metaphysical relation

between input and output when the direct physical relation can not be known.



195

References

[1] A. Banerjee, D. Maas, M. Bocca, N. Patwari, S. Kasera. Violating privacy through walls by
passive monitoring of radio windows. In Proceedings of the ACM Conference on Security and
Privacy in Wireless and Mobile Networks, WiSec, pages 69–80. ACM, 2014.

[2] A. Borrelli, C. Monti, M. Vari, F. Mazzenga. Channel models for ieee 802.11b indoor system
design. In IEEE International Conference on Communications, pages 3701–3705, June 2004.

[3] A. Neskovic, N. Neskovic, G. Paunovic. Modern approaches in modeling of mobile radio systems
propagation environment. IEEE Communications Surveys Tutorials, pages 2–12, May 2000.
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