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Large datasets in phylogenetics—those with a large number of taxa, e.g. DNA 

barcode data sets, and those with a large amount of sequence data per taxon, 

e.g. data sets generated from high throughput sequencing—pose both exciting 

possibilities and interesting analytical problems. The analysis of both types of 

large datasets is explored in this dissertation. First, the use of DNA barcodes in 

phylogenetics is investigated via the generation of phylogenetic trees for known 

monophyletic clades. Barcodes are found to be useful in shallow scale 

phylogenetic analyses when given a well-supported scaffold on which to place 

them. One of the analytical challenges posed by large phylogenetic datasets is 

the selection of appropriate partitioned models of molecular evolution. The most 

commonly used model partitioning strategies can fail to characterize the true 

variation of the evolutionary process and this effect can be exacerbated when 

applied to large datasets. A new, scalable algorithm for the automatic selection 
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of partitioned models of molecular evolution is proposed with an eye toward 

reducing systematic error in phylogenomics. The new algorithm is tested on a 

range of empirical datasets and found to provide a better fit of the model to the 

data as measured by information theoretic metrics like AICc. Indeed, the 

algorithm is found to perform particularly well when applied to a phylogenomic 

dataset consisting of ultra-conserved elements (UCEs). Finally, the phylogeny of 

Phryganeidae is estimated using a large dataset generated using targeted 

enrichment and high throughput sequencing. Trees generated from different 

modeling strategies give incongruent, but strongly supported results. The 

differences between the trees are examined and a new hypothesis for the 

relationships among the genera within Phryganeidae is posited. 
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INTRODUCTION TO DISSERTATION 

Humans have long held the desire to classify and name things. This inclination is 

both experimental and practical. We are curious creatures and our world holds 

much to fear, consume, and learn about. The classification of the living things 

around us fulfills our innate desire to put things in order. It also fulfills a practical 

need in helping us to identify organisms that can be useful and to avoid those 

that are harmful. In the early 18th century, the process of naming living things 

was formalized with Linnaeus' publication of the 10th edition of Systema 

Naturae (Linnaeus 1758) and corresponding invention of the system of binomial 

nomenclature. These conventions have survived and, despite a decline in the 

hiring of taxonomists (Wheeler 2014), taxonomy is still a robust science, 

producing many new species descriptions every year. A natural extension of 

taxonomy is to contextualize named living things into the framework of groups, 

or classifications. Linnaeus did this by grouping similar creatures together by 

type into genera and other higher groupings such as families and orders. 

However, the nature of these hierarchical groupings were not fully understood 

until Charles Darwin posited the underlying relationships among all living things 

and their corresponding common ancestry, giving context to all of comparative 

biology (Darwin 1859). Following the widespread acceptance of evolution 

among scientists, the hierarchical structure gained meaning as a grand tree of 

life with common ancestors begetting the subsequent branches and leaves of 

the tree. 
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The German dipterist, William Hennig, formalized our phylogenetic system of 

classification by defining the cladistic convention of naming only monophyletic 

groups and establishing the evolutionary context behind this new discipline of 

phylogenetic systematics (Hennig 1966). Since then, the science of systematics 

and phylogenetics has undergone a revolution brought on by DNA sequencing 

technology. Many of the top 100 cited scientific papers of all time are molecular 

phylogenetics methods papers (Van Noorden, Maher, and Nuzzo 2014; Saitou 

and Nei 1987; Felsenstein 1985; Tamura et al. 2007; Posada and Crandall 2001; 

Ronquist and Huelsenbeck 2003). With the advent of high throughput DNA 

sequencing, phylogenetics has also become increasingly important for methods 

development in the nascent field of genomics. Phylogenetics has entered its 

adolescent phase, and it has debuted in a significant way. 

 

Although the science of organizing and classifying living organisms has 

undergone major revolutions with incredibly powerful new tools available 

capable of producing more data than we could have previously imagined, we 

are still a long way from resolving the tree of life. Systematics, the science of 

classifying organisms; phylogenetics, the science of building a tree to put those 

classifications into an evolutionary context; and taxonomy, the science of 

naming things, must work hand in hand to reconstruct a comprehensive view of 

the evolutionary history of organisms on earth. Each field relies heavily on the 

others. After all, how might we organize the evolutionary tree of life without the 

discovery of the organisms we wish to classify? 
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This dissertation delves into the phylogenetics and evolutionary history of one 

order of insects, the caddisflies (Insecta: Trichoptera). Although taxonomy isn't 

the focus of this dissertation, there can be no evolutionary context for a set of 

organisms if those organisms have not yet been discovered. Therefore, none of 

this research could have been possible without the tireless efforts and expertise 

of a slew of Trichoptera taxonomists. 

 

The generation of large amounts of molecular data is changing the way 

phylogenetics is conducted. Both DNA barcoding and the new era of high 

throughput sequencing represent areas where “big data” is being generated. In 

the case of DNA barcodes, a small amount of data is being generated for an 

enormous amount of individuals, while high throughput sequencing is 

generating large amounts of data for fewer individuals. Both cases offer exciting 

avenues to explore and set the theme for the following research. 

 

I begin this dissertation with work related to the DNA barcoding effort (Chapter 

1). This ambitious program has worked toward collecting and sequencing the 

DNA barcoding gene for as many living things as possible (Hebert et al. 2003). 

From a practical standpoint, no serious effort is put into the barcoding of a 

particular group without a dedicated expert in charge. From 2007-2010, Xin 

Zhou led the Trichoptera barcode of life initiative, handling samples from his 

own collecting in China and Canada, as well as receiving samples from the 
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collections of the University of Minnesota, the Smithsonian collection, and 

worldwide collaborators. I focus on this massive effort within Trichoptera and 

give recommendations on how these data can be used in phylogenetics when 

given an evolutionary scaffold. I then provide a real world example of how tree 

building with DNA barcodes can unveil interesting findings for museum 

collections. This anecdote is written in an informal style to convey the 

importance of stories and collaborations in scientific training and discovery. 

 

During the course of my dissertation, I spent the majority of my effort toward 

understanding the mathematical models used to infer phylogenetic trees. In 

chapter 2, I outline a new bioinformatics algorithm that I developed to help 

researchers automatically select partitioned models of molecular evolution for 

their data. I show that, when evaluated using information theoretic metrics, 

automatically selected phenomenological models can contain more information 

than the more commonly used, mechanistic models that rely on simplified 

assumptions of the biological process. I also point out an inherent bias in 

previous studies that used a single starting tree to estimate site rates for 

partitioning—that such partitioning strategies can bias the final tree toward the 

starting tree. 

 

Finally, I investigate the phylogenetic history of the caddisfly family 

Phryganeidae using recent technological advances in targeted enrichment and 

high throughput sequencing (Chapter 3). I also explore the use of partitioned 
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models and data exclusion with a large phylogenetic dataset. As the field 

crosses into the "big data" era of phylogenetics, we must spend time examining 

current phylogenetic methods and explore the reasons that we recover highly 

supported, conflicting answers using different methods. Every scientific 

enterprise experiences growing pains as it transitions into a data rich 

environment and these periods allow for the exploration of many important and 

potentially transformative questions. This exciting time is the state of the field of 

phylogenetics as I complete my PhD research. 
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CHAPTER 1: USING DNA BARCODE DATA TO ADD LEAVES TO THE 

TRICOHPTERA TREE OF LIFE 

Abstract 

The Trichoptera barcode of life initiative has gathered barcodes for a large 

portion of Trichoptera species diversity. Although the primary use of these data 

is species identification, they can also be used to generate species-level 

phylogenetic hypotheses. In order to ameliorate the well-documented difficulties 

of resolving deep divergences with the COI barcode fragment, we used a 

method of defining well-supported nodes from other data sources and filling out 

the “leaves” within these defined nodes of the Trichoptera tree of life with trees 

generated from the barcode fragment. We demonstrate the potential of this 

approach with the generation of a tree for Xiphocentronidae + Psychomyiidae. 

Using this example, we present two suspicious clades that warranted a more 

careful analysis, and demonstrate that a simple analysis of barcodes can 

generate and help answer other, related questions. We find that Zelandoptila is 

supported as belonging to Ecnomidae rather than Psychomyiidae, and we 

placed an unidentified specimen from the Smithsonian National Museum of 

Natural History collection as sister to Beraeidae.  

 

Introduction 

A large, multidisciplinary effort has gone into DNA barcoding since the 

recommendation by Hebert et al. (2003a), to use a portion of the mitochondrial 

cytochrome oxidase subunit 1 (COI) gene as the standard “barcode” for 
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animals. The purpose of the barcode of life is to aid in species-level 

identification (Hebert et al. 2003b), which is important for identifying trichopteran 

larvae, and particularly useful for non-specialists. The barcode initiative does not 

advance at random, and one of the administrative requirements for the selection 

of target groups is the dedication of a specific taxonomic expert, and a 

community of researchers who are willing to help. Xin Zhou worked for four 

years at the Biodiversity Institute of Ontario in Guelph, Canada, leading the 

Trichoptera Barcode of Life initiative (http://trichopterabol.org/). Our community 

has dedicated countless hours of collecting, identifying, imaging, curating, and 

sequencing toward making Trichoptera among the best-characterized taxa on 

Earth. 

Biodiversity distributions at every taxonomic level follow hollow curve 

distributions (Willis & Yule 1922), with a relatively few abundant taxa, such as 

Coleoptera, or Hydropsychidae, or Hydropsyche, and many that are rare, such 

as Embioptera, or Barbarochthonidae, or Barbarachthon. In other words, 

wherever you are in the world, you are more likely to be able to collect a 

hydropsychid than a barbarachthonid. The Barcode of Life Data systems (BOLD, 

http://www.boldsystems.org) contain over 44,000 specimen records for 

Trichoptera, including >4,800 species, representing all 48 families (accessed 17 

Jan. 2013). With approximately 2/3rds of all genera, and 1/3rd of all described 

species, most species, randomly encountered, are already represented in the 

database, because the abundant species have been collected. Although 

seemingly counter-intuitive, 1/3rd of the species represent the majority of species 
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we encounter. The ability to identify Trichoptera is particularly important for 

freshwater biomonitoring (Resh & Unzicker 1975). Many larvae have not been 

associated with their adult counterparts and species identification of larvae can 

be difficult or impossible. Enabled with barcodes, however, researchers can 

place larvae within a species and improve the resolution of biomonitoring data 

(Ruiter et al. 2013; Sweeney et al. 2011; Zhou et al. 2007). Barcodes can also 

confirm morphological hypotheses of species distinctiveness, as shown by Flint 

& Kjer (2011). As useful as barcode data can be, these sequences can only be 

associated to biological data if they are tied to a species name that has been 

provided by a taxonomic expert.  

 

Although clearly useful for biomonitoring, barcodes have seldom been utilized 

for phylogenetics. One of its problems can be illustrated by the following 

comparison. Completely discreet characters are both ideal and rare for 

morphological phylogenetics. However, all characters in DNA are discreet, and 

there are only 4 of them. This means that with time, the same sites are likely to 

experience multiple changes, with reversals and parallel changes being 

indistinguishable from synapomorphies. If you wish to explore deep nodes in a 

molecular phylogeny, it is important to select a gene that has not experienced 

multiple superimposed substitutions. Different genes evolve at different rates, 

and an ideal barcode gene, with measurable variation even among populations 

within the same species is, by nature, a particularly poor gene for deep level 

phylogenetics. This was confirmed by Kjer et al. (2001; Figs. 3, 4, and 9), who 
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showed that pairwise sequence differences (the percent of nucleotides that 

differ between 2 taxa) are already at a maximum level within trichopteran 

suborders, and do not increase, even as you compare between orders. If 

change is occurring at some rate over time, the fact that the pairwise difference 

between a philopotamid and a hydropsychid is as great as the pairwise 

difference between a philopotamid and a mecopteran means that the same sites 

are changing over and over again, and the COI is not an ideal marker for 

estimating the relationships among trichopteran suborders. Therefore, some 

strategy is necessary for using barcode data to generate phylogenies.  

 There is a tradeoff between the amount of data available, and the number 

of taxa for a particular set of genes. Through the 1000 Insect Transcriptome 

Evolution initiative (1KITE, http://1kite.org/), we are developing transcriptomes 

for about 25 of the 48 trichopteran families. These data will be used to infer the 

relationships among suborders, with particular reference to the five 

“spicipalpian” families. At the next level, we have about 8000 nucleotides, from 

5 genes (18S, 28S, EF1a, CAD, and COI) for 250 taxa representing all of the 

families, and most of the genera. Next, we have approximately 1000 nucleotides 

of 28S ribosomal RNA data for over 1200 individuals. Then we have the 658 

nucleotides of barcode data from 40,000 individuals. Our strategy is to 

subdivide the order into well established clades, as close to the tips as possible, 

using the more conservative markers, and then use the barcode data to fill out 

the leaves of the tree, while leaving the trunk and basal branches to other, more 

appropriate markers. This strategy is based upon the observation that COI is 
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variable among recent divergences, and homoplastic as divergences go deeper. 

Here we present an example of how our strategy could work. 

 

Materials and Methods 

We sifted through all 40,000 trichopteran haplotypes in the barcode of life 

database (BOLD), and generated trees for well-supported, monophyletic nodes 

within the trichopteran phylogeny. In the process of constructing these trees and 

generating hypotheses about the relationships among trichopteran taxa, we can 

gain insights into ways to improve on the existing classification and solve 

difficult taxonomic problems. We highlight two such circumstances that 

occurred as we worked to generate hypotheses about the Trichoptera tree of 

life. 

 

We decided to conduct a test of our strategy of filling out the leaves of the 

Trichoptera tree with two relatively small families, Xiphocentronidae and 

Psychomyiidae. These families have been proposed to be sister taxa by multiple 

studies, using both molecular and morphological data (Frania & Wiggins 1997; 

Holzenthal et al. 2007; Kjer et al. 2001, 2002; Kjer et al., this symposium 

volume). Sequences for Psychomyiidae and Xiphocentronidae were downloaded 

from the BOLD website. The datasets were filtered to include only sequences 

greater than 350 bp, lacking stop codons and those that were not flagged as 

contaminants or misidentifications as applied by the BOLD website. Identical 

haplotypes were combined so that each terminal on the tree represented a 
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unique haplotype. The resulting sequences were imported into Seaview (Gouy et 

al. 2010) and aligned using MUSCLE (Edgar 2004). Alignments were then 

inspected by eye. 

 

A pseudoreplicate site-specific rate model was used to partition the data 

described by Kjer (Kjer et al. 2001; Kjer & Honeycutt 2007). Character partitions 

were constructed in PAUP* 4.0 (Swofford 2003). All analyses were run using 

RAxML 7.4 (Stamatakis et al. 2005). 1,000 rapid bootstraps were performed 

followed by a maximum likelihood tree search using the GTRGAMMA model. 

Trees were viewed and exported using FigTree (Rambaut 2012) then edited 

using Adobe Illustrator CS5 (2010). Suspect sequences were checked for 

contaminants against the GenBank database using nucleotide BLAST (Altschul 

et al. 1990). Other datasets were analyzed in the same fashion as the 

Psychomyiidae and Xiphocentronidae dataset. 

 

Results and Discussion 

Our phylogeny is shown in Fig. 1. However, this final result could not have been 

recovered in an automated analysis without careful data curation. When 

analyzing the initial tree output from the Psychomyiidae + Xiphocentronidae tree, 

the extreme branch lengths associated with the two “Xiphocentronidae sp.” taxa 

and the six Zelandoptila taxa were conspicuous (Fig. 2). Long branches are 

often indicative of a contaminant. Whenever such apomorphic sequences are 

observed, it is wise to search through GenBank for a close match with a  
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Figure 1. Phylogram from RAxML for the final analysis of the Psychomyiidae and 

Xiphocentronidae dataset. 
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Figure 2. Phylogram from RAxML of the analysis of the output from BOLD for Xiphocentronidae 

and Psychomyiidae. Two unusually long branch lengths are present for “Xiphocentronidae sp.” 

and Zelandoptila. 
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“BLAST” search. For example, if an unusual sequence in a Trichoptera study is 

an identical match to human DNA, then it is likely that you are looking at your 

own DNA. The BLAST search in this case returned several Trichoptera that were 

closely related to both taxa so the possibility of a non-trichopteran contaminant 

was ruled out. Since there were replicates of both taxa, it also seemed 

improbable that the differences were the result of a misidentification or a 

labeling error. The “Xiphocentronidae” came from the collection at the 

Smithsonian National Museum of Natural History curated by Dr. Oliver Flint Jr. 

The collection at the Smithsonian is organized by family, and alphabetically 

ordered. “Xiphocentronidae” is at the end, and when Kjer sampled the 

collection, he pulled legs from the undetermined caddisflies in the “X” case at 

the end. When we saw the unusual results from these taxa (Fig. 2), Frandsen 

wrote to Dr. Flint to see if he could help solve the mystery. He did. Flint had 

simply put these undetermined specimens in the last box where he knew he 

could find them. They were not xiphocentronids. Dr. Flint suggested that these 

taxa belong in the Sericostomatoidea so we performed a further analysis with 

the “mystery taxon” and other Sericostomatoidea. In this analysis, the 

“Xiphocentronidae sp.” came out at sister to Beraeidae (Fig. 3). Through further 

communication, the identification was confirmed as Beraeidae similar to a 

species of Ernodes described by Nozaki & Kagaya (1994). 

 

Through this analysis, we were able to place an enigmatic taxon, and fix an error 

in the barcode of life database for future identification accuracy. The other  
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Figure 3. Phylogram generated in RAxML. Sericostomatoidea, dark branch represents the 

placement of “Xiphocentronidae sp.” 
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problematic taxon in Fig. 2 was the New Zealand endemic, Zelandoptila. Since 

these appeared to be so different from the other xiphocentronids and 

psychomyiids, they were included in a larger analysis including representatives 

from all annulipalpian families. This analysis placed the Zelandoptila within 

Ecnomidae sister to Daternomina + Ecnomina zealandica (Fig. 4) which occur in 

nearby Australia in the case of Daternomina and New Zealand in the case of 

Ecnomina zealandica. This makes sense biogeographically as the only other 

member of Psychomyiidae in the Australian region is Tinodes abberans from 

New Guinea (Neboiss 1986). Upon the presentation of this material at the 14th 

International Symposium on Trichoptera, Dr. Flint also commented, anecdotally, 

that one of his past students had worked with the morphology of Zelandoptila 

and came to the same conclusion, that it belongs in Ecnomidae. Upon further 

investigation into the literature, Johanson & Espeland (2010) found a similar 

result that Zelandoptila was either a member of Ecnomidae or sister to 

Ecnomidae including Pseudoneureclipsis. Errors are inevitable in the barcode 

database, and arise from many possible sources. Here we demonstrate that 

barcodes are problematic without expert help in checking the voucher 

specimens. However, we also show that with thoughtful analysis, the problems 

can be solved. 

 

After the problem taxa were removed, the question remains about the utility of 

our phylogeny of Xiphocentronidae plus Psychomyiidae (Fig. 1). There is much 

evidence that single gene phylogenies need not track species trees (Avise 1994),  
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Fig. 4. Phylogram generated from RAxML for Psychomyioidea; Zelandoptera is represented by 

the dark branch nested within Ecnomidae. 
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because ancestral polymorphisms can sort independently of speciation. And 

Kjer et al. (2001) show that the COI is homoplastic for deep level Trichoptera 

phylogenetics. Where the problems begin to materialize is unknown. We are not 

saying that these results are ideal. But they do provide testable hypotheses for 

further analysis, and that is all any phylogeny can be. It seems a shame to us to 

have this mass of data available, and ignore what it has to say about phylogeny 

because we fear the answer may not be perfect. If we understand the limitations 

of the data, then we can take what we can from the phylogeny. For example, if 

one were to work on a generic revision, and there were no generic-level 

phylogenies available, we think that even a tentative but species-rich phylogeny 

from barcode data would be useful for selecting potential outgroups.  

  

Although we take the moral “high ground” in stating that our phylogenies are 

merely “testable hypotheses,” we may be on shaky philosophical grounds in 

selecting ingroups as close to the tips as possible, in order to mediate the 

problems with homoplasy in COI. The tree generated is based on the 

assumption that Xiphocentronidae plus Psychomyiidae is a “fact.” Systematists 

often do this in their selection of ingroups and outgroups. If a phylogenetic 

analysis of Xiphocentronidae lacked representatives of Coleoptera, or even 

Echinodermata, there would be no objection because we have accepted that 

coleopterans and echinoderms are not trichopterans. Similarly, if we can 

corroborate the monophyly of Xiphocentronidae plus Psychomyiidae, as has 

been proposed by multiple studies (Frania & Wiggins 1997; Holzenthal et al. 
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2007; Kjer et al. 2001, 2002; Kjer et al., this symposium volume), as well as with 

our own data, then we should be safe to conduct an analysis of the two, with 

one family rooting the other. In addition, we have shown that our own analysis 

can locate those taxa that do not belong within the analysis, and recover a 

reasonable hypothesis that can be updated with additional data (Fig. 1).  

 

These examples represent a few of the interesting outcomes of a phylogenetic 

analysis of the Trichoptera barcodes. In both of these cases, a molecular 

understanding of the specimens didn’t replace the classical methods; rather, it 

enhanced and improved our understanding of the classification of these insects. 

We expect that further research using Trichoptera barcodes will yield similar 

new avenues to refine our taxonomic understanding of Trichoptera. 
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CHAPTER 2: AUTOMATIC SELECTION OF PARTITIONING SCHEMES FOR 

PHYLOGENETIC ANALYSES USING ITERATIVE K-MEANS CLUSTERING OF 

SITE RATES 

Abstract 

Background 

Model selection is a vital part of most phylogenetic analyses, and accounting for 

the heterogeneity in evolutionary patterns across sites is particularly important. 

Mixture models and partitioning are commonly used to account for this 

variation, and partitioning is the most popular approach. Most current 

partitioning methods require some a priori partitioning scheme to be defined, 

typically guided by known structural features of the sequences, such as gene 

boundaries or codon positions. Recent evidence suggests that these a priori 

boundaries often fail to adequately account for variation in rates and patterns of 

evolution among sites. Furthermore, new phylogenomic datasets such as those 

assembled from ultra-conserved elements lack obvious structural features on 

which to define a priori partitioning schemes. The upshot is that, for many 

phylogenetic datasets, partitioned models of molecular evolution may be 

inadequate, thus limiting the accuracy of downstream phylogenetic analyses.  

 

Results 

We present a new algorithm that automatically selects a partitioning scheme via 

the iterative division of the alignment into subsets of similar sites based on their 

rates of evolution. We compare this method to existing approaches using a wide 
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range of empirical datasets, and show that it consistently leads to large 

increases in the fit of partitioned models of molecular evolution when measured 

using AICc and BIC scores. In doing so, we demonstrate that some related 

approaches to solving this problem may have been associated with a small but 

important bias. 

 

Conclusions 

Our method provides an alternative to traditional approaches to partitioning, 

such as dividing alignments by gene and codon position. Because our method 

is data-driven, it can be used to estimate partitioned models for all types of 

alignments, including those that are not amenable to traditional approaches to 

partitioning. 

 

Background 

The accuracy of phylogenetic inference often relies on the use of an appropriate 

model of molecular evolution (Sullivan and Joyce 2005; Steel 2005). Inaccurate 

tree reconstructions can be the result of both stochastic and systematic error. 

Stochastic error is the inevitable consequence of using finite datasets, and 

decreases as datasets grow in size. Systematic error results from biases such 

as the failure to adequately model the patterns of molecular evolution that 

generated the data (model misspecification) (Phillips, Delsuc, and Penny 2004; 

Felsenstein 2004; Yang and Rannala 2012), and can be amplified in large 

datasets, often resulting in strong support for the incorrect tree topologies 
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(Phillips, Delsuc, and Penny 2004; Felsenstein 1978; Jeffroy et al. 2006; 

Nishihara, Okada, and Hasegawa 2007; Rodríguez-Ezpeleta et al. 2007; Kumar 

et al. 2012). Improving approaches to model selection, even within existing 

phylogenetic frameworks, can help to reduce systematic error and improve the 

reliability of phylogenetic inference. 

 

Accounting for the heterogeneity in the rates and patterns of evolution among 

sites in a DNA sequence alignment is an important part of selecting a model of 

molecular evolution (Yang 1996b; Buckley, Simon, and Chambers 2001; 

Lemmon and Moriarty 2004; Revell, Harmon, and Glor 2005; Bull et al. 1993). 

Among the methods proposed to account for this are mixture models (Pagel and 

Meade 2004; Le, Lartillot, and Gascuel 2008; Lartillot, Lepage, and Blanquart 

2009) and partitioning (Nylander et al. 2004; Brandley, Schmitz, and Reeder 

2005; Brown and Lemmon 2007; Kjer and Honeycutt 2007). Mixture models 

account for among-site heterogeneity by combining estimates of the likelihood 

of each site in the alignment under more than one model of molecular evolution. 

Partitioning accounts for among-site heterogeneity by splitting an alignment into 

several groups of sites (subsets) and estimating model parameters 

independently for each subset. Although mixture models are an elegant way to 

account for among-site heterogeneity, partitioning remains more popular, more 

widely implemented, and is currently the only approach that is computationally 

efficient enough to work on very large datasets (Stamatakis 2014; Guindon et al. 

2010; Zwickl 2006; Ronquist et al. 2012; Drummond et al. 2012; Blair and 
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Murphy 2011; Lanfear et al. 2014b). Thus, our focus in this manuscript is on 

developing methods to improve the selection of partitioning schemes for 

phylogenetic analyses, with a view to improving the inference of phylogenetic 

trees from large datasets. 

 

An inherent obstacle in partitioned phylogenetic analyses is the choice of an 

appropriate partitioning scheme. One approach would be to evaluate every 

possible partitioning scheme for a given dataset and choose the best scheme, 

perhaps according to one of the commonly used information theoretic metrics 

such as the AICc (Hurvich and Tsai 1989) or BIC (Schwarz 1978) or by some 

measure of biological features in the data. However, comparing all possible 

partitioning schemes is practically impossible because the number of 

partitioning schemes is astronomical even for very small alignments (Li, Lu, and 

Ortí 2008; Lanfear et al. 2012). For example, some of the smallest alignments 

used today, associated with DNA barcoding studies, contain ~658 base pairs 

(Hebert et al. 2003), which can be grouped into more than 1.0 × 10!"# possible 

partitioning schemes: well beyond anything that can be feasibly analyzed by 

brute force. A related approach is to allow the data inform the assignment of 

sites to subsets, and to integrate out the uncertainty in these assignments in a 

Bayesian framework (Wu, Suchard, and Drummond 2013). Although this method 

is elegant, it has a high computational burden that renders it impractical for all 

but modestly sized datasets.  
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The most commonly used method for partitioning alignments, and the only one 

currently suited to very large datasets, is to define subsets according to 

structural features of the sequences in the alignment, such as gene boundaries, 

codon positions, structural components of rRNAs (such as stems and loops), or 

some combination of these. We call this ‘traditional’ partitioning throughout this 

manuscript. This approach is also known as mechanistic modeling because it 

describes known biological or mechanistic processes and is motivated by the 

biological observation that different molecular structural features can have 

different patterns of molecular evolution (Leavitt et al. 2013; Best and 

Stachowicz 2013; Springer et al. 1999; Brandley, Schmitz, and Reeder 2005; 

Brown and Lemmon 2007; E Biffin 2007; Bofkin and Goldman 2007; Liò and 

Goldman 1998; Hu, Shen, and Wang 2011; Huelsenbeck and Crandall 1997). 

Recently, various methods have been proposed to algorithmically refine 

traditional partitioning schemes by grouping together similar subsets of sites (Li, 

Lu, and Ortí 2008; Lanfear et al. 2012; Lanfear et al. 2014b). One example of this 

method is the PartitionFinder greedy algorithm (Lanfear et al. 2012), which works 

by joining a pre-defined subset with every other pre-defined subset and then 

selecting the grouping that most improves the AICc or BIC score. This is done 

iteratively until no more groupings improve the score. Using this method can 

result in large improvements in model fit. However, despite their popularity, all 

traditional partitioning approaches make an important assumption that is rarely 

questioned: that all of the sites in each of the pre-defined subsets (e.g. a 
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particular codon position in a particular gene) have evolved under a single 

evolutionary model. 

 

A number of recent studies have suggested that traditional approaches to 

partitioning can be inadequate. Evidence suggests that there can be substantial 

heterogeneity of the evolutionary process within a single codon position of a 

single gene (Stergachis et al. 2013; Chris Simon et al. 1994; Chris Simon et al. 

2006; Kjer and Honeycutt 2007; Yang 1996a; Lartillot and Philippe 2004) and 

within a single stem or loop of rRNA (Pagel and Meade 2004; Chris Simon et al. 

2006; C Simon et al. 1996; Letsch and Kjer 2011). If this is true, then traditional 

approaches to partitioning may fail to adequately account for the variation in 

patterns of molecular evolution within each traditionally defined subset of sites. 

For smaller datasets, these limitations can be overcome by applying newer 

methods (Wu, Suchard, and Drummond 2013; Lartillot, Lepage, and Blanquart 

2009), but for larger datasets the limitations of traditional partitioning remain a 

problem.  

 

Another limitation of traditional partitioning involves its application to new types 

of molecular markers. Many of the latest methods for assembling phylogenomic 

datasets result in large alignments that consist either entirely or largely of non-

protein coding DNA (e.g. introns and ultra-conserved elements (UCEs)) (Faircloth 

et al. 2012; Lemmon, Emme, and Lemmon 2012; McCormack et al. 2012; 

Crawford et al. 2012). It can be difficult to determine a good partitioning scheme 
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for these datasets with traditional approaches because we understand little 

about the molecular evolution of the sequenced regions, and the datasets lack 

convenient features such as codon positions on which subsets can be defined a 

priori. Thus, we face the problem that we lack adequate ways to model 

molecular evolution for some of the largest and most promising empirical 

datasets in our field. 

 

One approach to choosing a partitioning scheme for large datasets is to group 

sites into subsets using estimates of site rates (Kjer and Honeycutt 2007; Kjer, 

Blahnik, and Holzenthal 2001; Ellingson et al. 2013; Cummins and McInerney 

2011). Kjer and Honeycutt (Kjer and Honeycutt 2007) showed that partitioning 

an alignment in this way resulted in a mammal mitochondrial genome phylogeny 

that was better supported and more congruent with phylogenies based on 

nuclear data. Ellingson et al. (Ellingson et al. 2013) showed that this approach 

improved both topologies and node support for a phylogeny of fish. However 

despite their promise, these methods have not been widely adopted. This is 

perhaps because they are difficult to use and require various decisions (such as 

the appropriate number of subsets into which to divide the data) to be made 

before the analysis is conducted.  

 

In this study, we develop a new algorithm that automatically defines partitioning 

schemes using site rates to cluster similar sites together into subsets.  Our 

approach improves on previous work in three important ways. First, while 
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previous approaches (Kjer, Blahnik, and Holzenthal 2001; Kjer and Honeycutt 

2007; Ellingson et al. 2013; Cummins and McInerney 2011; Misof et al. 2014) 

have required the user to choose the number of subsets before the analysis is 

carried out, our method estimates the optimal number of subsets directly from 

the data. This is important, because the optimal number of subsets may be 

difficult to predict in advance, and is influenced by several variables: e.g. the 

variation in substitution patterns among sites, the range of GTR submodels that 

can be selected for each subset, and by the method used to evaluate the fit of 

the model to the subset (e.g. AICc, BIC). Second, our method scales to work 

with the large datasets being produced today. Third, we explicitly test for, and 

address, the presence of a suspected bias in previous implementations of this 

approach: that the partitioning scheme selected by the method may be biased 

towards the phylogenetic tree from which the site-rates were calculated (Kjer, 

Blahnik, and Holzenthal 2001). 

 

We demonstrate our approach on a wide range of datasets. Our results show 

that our method can be used to select partitioning schemes for the full range of 

datasets used in phylogenetics: from small barcoding datasets to large 

phylogenomic datasets consisting of ultra-conserved elements. In all cases, our 

method finds partitioning schemes that outperform those selected with 

traditional approaches to partitioning, when measured by metrics such as AICc 

and BIC. 
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Methods 

Terminology 

We follow the terminology established in other studies on partitioning (Lanfear et 

al. 2012; Li, Lu, and Ortí 2008; Lanfear et al. 2014b) in which a ‘subset’ refers to 

a set of sites for which parameters of a nucleotide substitution model will be 

independently estimated. Each site can only be assigned to one subset. In the 

phylogenetics community, a subset is often referred to as a ‘partition’; we avoid 

using the word ‘partition’ because it has conflicting definitions in other fields 

(Lanfear et al. 2014b; Lanfear et al. 2012). A ‘partitioning scheme’ constitutes a 

collection of subsets that include every site in the alignment once and only once. 

 

Iterative k-means partitioning algorithm 

We present an algorithm (Fig. 1) that automatically selects a partitioning scheme 

for a given alignment without the need for pre-defined subsets. We first give an 

overview, and then expand on each step below:  

1. Estimate a starting tree topology from the multiple sequence alignment; 

2. Start with a partitioning scheme that has all sites assigned to a single 

subset, and choose the best-fit substitution model for that subset;  

3. Calculate the information theoretic score of the current partitioning 

scheme; 

4. For each subset in the current partitioning scheme, test whether that 

subset should be further divided: 

a. Generate site rates for the focal subset; 
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b. Divide the focal subset into two subsets using k-means clustering; 

c. Choose the best-fit substitution model for each of the two new 

subsets; 

d. Calculate the information-theoretic score of the partitioning 

scheme in which the two new subsets from 4c replace the focal 

subset; 

e. If the information theoretic score improves, label the focal subset 

for division. 

5. If no subsets have been labeled for division, terminate the algorithm. 

Otherwise, define a new partitioning scheme in which each labeled 

subset in the list is replaced by the two correspondingly smaller subsets 

defined in step 4b and return to step 4.  

 

In step 1, we estimate a tree topology with branch lengths for the dataset. All 

likelihood calculations require a topology with branch lengths and a substitution 

model. Optimizing the tree topology at each step would be computationally 

intensive, particularly for large phylogenomic datasets. For this reason, we use a 

fixed tree topology throughout the course of the algorithm. In principle, any 

method to estimate a starting tree could be used since it has been argued that a 

non-random tree is likely to be sufficient for model selection (Abdo et al. 2005; 

Posada and Crandall 2001; Minin et al. 2003); in our implementation of the 

algorithm, we use the BioNJ algorithm implemented in PhyML (Guindon et al. 
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2010) to estimate a neighbor joining starting tree, then re-optimize the branch 

lengths of this tree in PhyML using the GTR+I+G model. 

 

In step 2, we define a partitioning scheme in which all sites in the alignment are 

assigned to a single subset, and we then select a best-fit model of molecular 

evolution for this subset. The model selection step uses an information theoretic 

metric (e.g. the AICc or the BIC) to choose a substitution model from a list of 

candidate models. Here we select the best model from the set of 56 submodels 

of the GTR model available in PartitionFinder v1.1.1 (Lanfear et al. 2014b). These 

include the GTR and some of the most popular submodels implemented in 

PhyML, along with the model extensions using discrete GAMMA distributed site 

rates (+G) and/or a proportion of invariant sites (+I). During the model selection 

step, PartitionFinder provides two options for estimating branch lengths: ‘linked’ 

or ‘unlinked’. When the branch lengths are ‘unlinked’, all branch lengths are re-

estimated for each model in the list. When branch lengths are ‘linked’, the 

relative branch lengths are determined by the tree estimated in step 1, and each 

model is afforded a single rate multiplier, which can stretch or shrink all branch 

lengths in tandem. Although ‘unlinked’ branch lengths allow users to better 

account for heterotachy (variation in relative branch lengths among subsets), in 

practice, they add so many parameters to the overall substitution that they are 

rarely preferred. For that reason, in what follows, we use ‘linked’ branch lengths 

in all of our analyses, although the option to use ‘unlinked’ branch lengths 

remains. 
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Figure 1. This figure illustrates the progress of a hypothetical run of the iterative k-means 
algorithm. The algorithm commences with an alignment that is treated as a single subset, and 
for which the AICc score has been calculated (step 3 in the description in the main text; 
represented by the red sequence alignment at the top). During this step, each of 56 GTR+I+G 
submodels is fit to the alignment and the model that returns the best AICc score is chosen. 
Next, the algorithm calculates TIGER site rates for each site (step 4a in the description in the 
main text), and uses these rates to classify the sites of the alignment into fast (red) and slow 
(blue) sites using the k-means algorithm (step 4b in the description in the main text). The AICc 
score of a model in which these two subsets are treated independently is then calculated (steps 
4c-d in the description in the main text). If the score improves, the split is accepted. The fast 
(red) and slow (blue) sites are then used to create two new alignments, and the process is 
repeated with each new subset. This continues until no more subset splits are accepted. The 
final step combines all splits that improved the AICc score to create a single partitioning scheme 
for the dataset. 
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In step 3 we calculate one of two information theoretic scores (the AICc and the 

BIC (Lanfear et al. 2012)) of the current partitioning scheme. At the start of the 

algorithm, when all sites are assigned to a single subset, this score is equal to 

that of the initial best-fit substitution model in our iterative algorithm. 

 

In step 4, we decide whether to subdivide each of the subsets in the current 

partitioning scheme. In step 4a, we fit a GTR+GAMMA model of molecular 

evolution to the subset, conditioned on the tree and its relative branch lengths 

estimated during step 1 using maximum likelihood in PhyML (Guindon et al. 

2010). Then we use one of two methods to calculate site-specific rates for each 

site in the subset, (i) likelihood-based site rates or (ii) Tree Independent 

Generation of Evolutionary Rates (TIGER) site rates (Cummins and McInerney 

2011). Likelihood site-rates are estimated in PhyML with GTR+G and using the 

“--print_site_lnl” option. Likelihood site-rates depend on the branch lengths and 

therefore have to be recomputed for subsets that have been divided. Similarly, a 

changing composition of site patterns in subsets as they are divided requires 

the TIGER rates to be recomputed since they depend on other sites in the 

subset alignment.  TIGER site rates are calculated using a non-tree based 

method that estimates the similarity among site patterns as a surrogate for 

evolutionary rates (Cummins and McInerney 2011). This method relies on the 

construction and comparison of set partitions for each alignment pattern. For 

example, if a given alignment pattern is “AACGGA”, the resulting set partition 
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would be ! !  = {{1, 2, 6}, {3}, {4, 5}}. We call ! !  the “character partition” of 

site i. ! !  consists of a set of at most four sets, that contain the sequence 

numbers in the alignment pattern that have, respectively, the nucleotides A, C, 

G, or T at site i. The number of non empty sets, which we denote by !(!)  is 

equal to the number of different nucleotides found in site pattern i. The character 

partition of each site is then compared to the character partition of every other 

site. The sites are evaluated for agreement with every other site using a 

“partition agreement score”, (!"(!, !)), which is defined as: 

!" !, ! = !(!,! ! )!∈!(!)
!(!)  

where ! !,! !  is equal to 0 or 1 depending on whether x is compatible with 

the character partition of site i, i.e. if x is a subset of one of the sets in !(!): 

! !,! ! = 1 !" ! ⊆ ! !"# !"#$ ! ∈ !(!)
0  

The rate (!!) for the alignment pattern at site i is then obtained by computing the 

mean partition agreement score across all sites: 

!! =
!"(!, !)!!!
! − 1  

where n is equal to the number of sites in the alignment. The sites that are more 

similar to the pool of sites in the alignment are considered slow with rates 

approaching 1.0 (invariant sites always return a rate of 1.0), while the sites that 

are less similar to the pool of sites in the alignment are considered fast with 

rates approaching 0. It is important to note that this method ignores the 

character state in an alignment pattern when the set partitions are compared, 
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e.g. the set partition and resulting site rate of “AACGGA” would be identical to 

that of “TTGAAT”. Although software exists to calculate TIGER site rates 

(Cummins and McInerney 2011), we found the existing implementation to be too 

slow to be useful. Instead, TIGER site rates are calculated using a fast, C++ 

based program that we developed (Paul Frandsen and Christoph Mayer, n.d.).  

 

In step 4b, we use the k-means clustering algorithm to divide the sites in the 

focal subset into two clusters based on one or more of the site-wise parameter 

estimates from step 4a. K-means is a fast clustering algorithm capable of 

handling large datasets with high dimensionality (MacQueen 1967; Lloyd 1982). 

It clusters data points by minimizing the within-cluster sum of squares measured 

between each data point and its closest cluster ‘centroid’. The goal of k-means 

is to minimize the function: 

min
{!!,…,!!}

||! − !!||!
!∈!!

!

!!!
 

Where k is the number of clusters, μ is the cluster centroid, and x is any given 

data point, in the case of this study, the site rates, and !  is the !! norm, or 

Euclidean length, of !. The algorithm proceeds through two steps: 

1. The assignment step, in which each point is assigned to a cluster with its 

closest centroid. 

2. The update step, in which cluster centroids are moved to the center 

(mean) of their new clusters. 
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The number of clusters (k) is chosen a priori and fixed at 2 in our case, and then 

k centroids are placed within the sample space. The initial placement of 

centroids is an important step; poor placement can result in an unsatisfactory 

exploration of the sample space and, although the algorithm may converge, it 

may only reach a local optimum. To avoid this, we use the k-means++ centroid 

initialization method, which has been shown to be superior when compared to 

other centroid seeding techniques such as random placement (Ostrovsky et al. 

2006; Arthur and Vassilvitskii, n.d.). We perform 100 initializations of the k-

means algorithm, selecting the initialization that best minimizes the within-

cluster sum of squares. Following initialization, Euclidean distances between 

each data point and the centroids are calculated and each data point is 

assigned to a cluster based on its nearest centroid. The centroids are then 

moved to the mean of their respective clusters (the k-mean) and distances are 

recalculated. This process is repeated until the centroids no longer move 

beyond a threshold at the end of the iteration. We used the k-means algorithm 

from the scikit-learn package implemented in Python (Pedregosa et al. 2012). In 

theory, any statistic that can be estimated on a site-specific basis could be used 

for clustering. In what follows, we compare the performance of likelihood site 

rates and TIGER site rates. 
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In steps 4c and 4d, we use the output of the k-means algorithm to create two 

new subsets, and then use an information-theoretic metric to decide whether 

splitting the focal subset improves the overall model of molecular evolution. To 

do that, we first (step 4c) estimate the best model for each of the two new 

subsets from our set of candidate models as described above. We then (step 

4d) calculate the information-theoretic score of two partitioning schemes: one in 

which the focal subset is retained as a single subset, and one in which the focal 

subset is divided into two new subsets. If the overall information theoretic score 

of the latter partitioning scheme is better, we label the focal subset as one that 

should be divided. 

 

Once step 4 has been applied to all of the subsets in the current partitioning 

scheme, we ask whether there are any subset divisions that improved the 

overall information theoretic score (step 5). If there are none, then the algorithm 

terminates, since we are unable to find a partitioning scheme better than the 

current scheme. Otherwise, we divide all of the subsets that are labeled for 

division in step 4. Then the algorithm iterates. 

 

Empirical considerations 

The algorithm above makes the assumption that likelihoods can be calculated 

for any collection of sites in an alignment. During the development of the 

algorithm, we found some cases in which PhyML was unable to analyze some 

subsets. This was usually because the alignments were too small or contained 
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only sites with identical site patterns. Since our aim is to produce partitioning 

schemes that can be used to estimate phylogenetic trees with programs like 

PhyML, and since these problematic subsets are likely to occur during any 

approach similar to the one we describe here, we designed the following 

solution. First, we flag the problematic subsets as the algorithm proceeds, and 

make the conservative assumption that their site-likelihoods will be identical to 

their site-likelihoods in the larger subset from which they were generated. This 

allows us to estimate conservative information theoretic scores for partitioning 

schemes as the algorithm proceeds. At the end of the algorithm (i.e. after step 

5), we combine each of the problematic subsets with their nearest neighbor 

subset, defined as the non-problematic subset with the centroid (estimated in 

step 3a) that has the shortest Euclidean distance to the centroid of the 

problematic subset. This process is repeated until there are no problematic 

subsets, i.e. until PhyML can successfully analyze all of the subsets in the 

partitioning scheme. 

 

Empirical evaluation 

To evaluate the performance of the iterative k-means algorithm, we compared 

ten partitioning scheme selection approaches on ten different datasets (Table 1). 

The approaches comprise five different partitioning methods, each of which was 

applied with both the BIC and AICc (Table 2). The five methods we compared 

were: (i) no partitioning (i.e. treating all sites as belonging to a single subset); (ii) 

partitioning by gene and codon position/rDNA stems and loops (all); (iii)  
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Table 1. Names, references, and clade information for the datasets used in empirical analyses 
Dataset Name Clade (latin) Clade (common) Paper Reference Dataset Reference 

Anderson 2014 
Cephalopoda: 
Loliginidae 

pencil squids (Anderson et al. 2014) (Anderson et al. 2013) 

Cognato 2001 
Coleoptera: 
Scolytinae 

bark beetles 
(Cognato and Vogler 
2001b) 

(Cognato and Vogler 
2001a) 

Grande 2013 Paracanthopterygii paracanthopterygian fish (T. Grande 2013) 
(Grande, Borden, and 
Smith 2013) 

Kang 2013a Xiphophorus swordtail fish (Kang et al. 2013) N/A 

Kawahara 2013 Hyposmocoma 
Hawaiian fancy-cased 
caterpillar 

(A Y Kawahara and 
Rubinoff 2013) 

(Akito Y. Kawahara and 
Rubinoff 2013) 

Kjer 2007 Mammalia mammals 
(Kjer and Honeycutt 
2007) 

N/A 

Leavitt 2013 Acridoidea grasshoppers (Leavitt et al. 2013) N/A 

McCormack 2013 Neoaves birds 
(McCormack et al. 
2013a) 

(McCormack et al. 
2013b) 

Oaks 2011 Crocodylia crocodilians (Oaks 2011b) (Oaks 2011a) 

Sharanowski 2011 Braconidae parisitoid wasps 
(Sharanowski, Dowling, 
and Sharkey 2011b) 

(Sharanowski, Dowling, 
and Sharkey 2011a) 
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optimizing the partitioning scheme from (ii) using the greedy algorithm 

implemented in PartitionFinder 1.1.1; (iv) iterative k-means with likelihood site-

rates; (v) iterative k-means with TIGER site-rates.  

 

During the empirical evaluation, one dataset, McCormack 2013 (McCormack et 

al. 2013a), was too large and partitioned into too many pre-defined subsets to 

analyze with PartitionFinder’s greedy algorithm in a reasonable amount of time. 

For this dataset, we used the relaxed clustering algorithm (Lanfear et al. 2014a) 

in PartitionFinder 1.1.1. Relaxed clustering is optimized for large datasets and 

uses RAxML (Stamatakis 2006) for all likelihood calculations. Since only two 

nucleotide substitution models are implemented in RAxML (GTR+G and 

GTR+I+G) we used a two-step approach. First, the optimal partitioning scheme 

was selected using the relaxed clustering algorithm for the two RAxML models, 

and second, we reselected models for each subset of the initial partitioning 

scheme with the ‘user’ option in PartitionFinder 1.1.1, but this time with PhyML 

and considering the full set of models used in every other treatment. This 

allowed us to directly compare the information theoretic scores of this 

partitioning scheme with those selected by the other methods. 

 

Starting tree bias evaluation 

Although it has been shown that a starting tree topology is unlikely to negatively 

affect model selection as long as it is non-random (Posada and Crandall 2001), 

it was unclear whether this was true when using the iterative k-means method 
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we develop here. Specifically, we were unsure whether site rates calculated 

under the assumption that the starting tree is true would bias our partitioning 

schemes toward recovering the starting tree during downstream phylogenetic 

analyses. Thus, we designed a simple test to assess whether this introduced a 

bias.  

 

To test whether the starting tree introduced bias into the estimation of the 

partitioning scheme, we used a five-step process. First, we estimated a 

neighbor-joining (NJ) tree for the data. Second, we created twenty new trees, 

where each new tree was a single subtree-prune and regraft (SPR) move away 

from the NJ tree, giving a set of 20 plausible non-random trees for the dataset. 

Third, we used these 20 trees as starting trees from which we estimated 20 

partitioning schemes for each dataset using three methods: the PartitionFinder 

greedy algorithm, iterative k-means with likelihood site-rates, and iterative k-

means with TIGER site rates (i.e. 60 partitioning schemes in total, for each 

dataset). Fourth, we estimated a maximum-likelihood phylogenetic tree using 

RAxML for all 60 partitioning schemes for each dataset. For each of the three 

methods we compared, the process resulted in a collection of 20 distinct 

starting trees, and 20 estimated ML trees. The final step in the process involved 

statistically testing whether the starting trees are more similar to their 

corresponding ML trees than would be expected by chance. To do this, we 

used a bootstrap test in which the observed test statistic is the sum of the 

Robinson-Foulds (Robinson and Foulds 1981) distances between each starting 



 
44 

tree and the corresponding ML tree (i.e. the ML tree estimated from the 

partitioning scheme that assumed the corresponding starting tree). For example, 

in the most extreme case, where each ML tree is identical to its corresponding 

starting tree, the observed test statistic would be zero. The null distribution of 

this test statistic is then estimated by re-calculating the test-statistic 999 times 

after randomly shuffling the list of ML trees each time. If the starting tree biases 

the estimation of the ML tree, then we expect the observed test statistic to be in 

the lower tail of the null distribution. We calculate the one-tailed p-value from 

the position of the observed test statistic in a ranked list of the values of the test 

statistic from the null distribution. 

 

Simulation example 

While the primary purpose of this paper was to evaluate the efficacy of the 

iterative k-means algorithm on empirical datasets by comparing the relative fit of 

each model using information theoretic metrics like AICc and BIC, we also 

evaluated our method with a simple simulation. First, we simulated a tree under 

the Yule (pure-birth) process in INDELible v1.03 (Fletcher and Yang 2009). We 

chose a rooted tree and specified the following parameters for the simulation: 

number of tips-100, birth-0.1, and death-0 with a tree depth of 0.1. We then 

simulated a 1,000 bp alignment using the Jukes Cantor (Jukes and Cantor 1969) 

model. Next, we scaled the tree from the first run to a tree depth of 1.0 and 

simulated another 1,000 bp alignment using Jukes Cantor. Finally, we 

concatenated the alignments (total: 2,000 bp) and estimated a partitioning 
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scheme for it using iterative k-means with TIGER rates. Each step, from tree 

simulation through partitioning scheme selection was repeated 20 times. These 

conditions were chosen to explicitly test whether the iterative k-means algorithm 

would 1) assign alignment sites to subsets containing other sites generated from 

the same model, and 2) find the correct number of subsets. 

 

Results and Discussion 

The primary purpose of this study was to evaluate the performance of the 

iterative k-means algorithm on empirical data and compare those results to 

other commonly used partitioning strategies. To do this, we selected partitioning 

schemes for existing empirical datasets using several different methods and 

compared the relative fit of each partitioning scheme using AICc and BIC. 

 

The iterative k-means algorithm substantially outperformed all other partitioning 

approaches for each of the ten datasets we analyzed, regardless of the details 

of the k-means approach or the information theoretic metric we used (Table 2, 

Figures 2 and 3). The set of alignments that we used to test the algorithm 

comprised a wide range of lengths, number of taxa, and types of molecular 

markers, confirming the utility of our new algorithm for a wide range of 

phylogenetic analyses. 

 

Figures 2 and 3 show comparisons of the AICc and BIC scores achieved by five 

partitioning methods: using a single partition; partitioning according to structural  



 
46 

Figure 2. BIC scores for partitioning schemes estimated during empirical testing (lower is better). 
The k-means methods presented here outperform traditional methods. “None” is no partitioning, 
“All” is the user partitioning scheme, “PF-G” is the PartitionFinder greedy algorithm, “TIGER” is 
iterative k-means using TIGER site rates, “Likelihood” is iterative k-means using likelihood site 
rates. Note: The “PF-G” score for the McCormack 2013 dataset was obtained using the 
PartitionFinder relaxed clustering followed by model selection with PhyML as described in the 
methods, not the greedy algorithm. 
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Figure 3. AICc scores for partitioning schemes estimated during empirical testing. (lower is 
better). The k-means methods presented here outperform traditional methods. “None” is no 
partitioning, “All” is the user partitioning scheme, “PF-G” is the PartitionFinder greedy algorithm, 
“TIGER” is iterative k-means using TIGER site rates, “Likelihood” is iterative k-means using 
likelihood site rates. Note: The “PF” score for the McCormack 2013 dataset used the 
PartitionFinder relaxed clustering followed by model selection with PhyML as described in the 
methods, not the greedy algorithm. 
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Table 2. AICc and BIC scores for every partitioning scheme selected for each dataset. 

Dataset Name no partitioning user greedy TIGER site rates likelihood site rates 

AICc 

Anderson 2014 36721 34972 34972 32584 28681 

Cognato 2001 39373 37172 37172 36262 32216 

Grande 2013 111819 108501 108501 105300 96616 

Kang 2013 34157 33699 33682 30091 19490 

Kawahara 2013 32238 29940 29940 28385 23488 

Kjer 2007 1120392 1075872 1075749 1059594 1008180 

Leavitt 2013 445052 423826 423389 410220 371585 

McCormack 2013 972461 963551 961143 828180 690645 

Oaks 2011 80550 74814 74686 69278 58947 

Sharanowski 2011 218188 213696 213696 211251 198268 

BIC 

Anderson 2014 38444 36820 36820 34590 30649 

Cognato 2001 39890 38067 38056 37168 32701 

Grande 2013 112673 109862 109741 107929 100751 

Kang 2013 34578 34650 34364 31617 30448 

Kawahara 2013 33057 31052 30989 29561 25020 

Kjer 2007 1121793 1081392 1079270 1065998 1020447 

Leavitt 2013 445625 429638 425574 413343 379692 

McCormack 2013 973122 992389 967479 830140 748946 

Oaks 2011 81673 77190 76316 71117 58988 

Sharanowski 2011 219937 215953 215872 214802 202707 
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features of the sequences; optimizing a partitioning scheme based on structural 

features using PartitionFinder; iterative k-means partitioning with likelihood-

based site rates; and iterative k-means partitioning based on site rates 

estimated using the TIGER method. Figures 2 and 3 show that both k-means 

methods we describe here consistently outperform all of the other methods. The 

figures also suggest that the likelihood-based method is superior, as it 

consistently outperforms the method based on TIGER rates, achieving lower 

AICc and BIC scores. However, the apparent superiority of the likelihood-based 

method comes at a cost – it is also frequently associated with a bias: 

phylogenetic trees estimated from partitioning schemes derived from the 

likelihood-based approach were often more similar to the starting trees than 

would be expected by chance (Table 3). In 4 out of 9 datasets (Table 3), our test 

for starting tree bias returned a statistically significant result for the likelihood-

based method.  

 

In contrast, when using the TIGER based rates we found no evidence for 

starting tree bias in any of the datasets that we examined. We attribute the 

difference between these two methods to the fact that the likelihood-based 

approach relies on a particular starting tree to calculate rates of evolution, 

whereas the TIGER method calculates rates without assuming a particular tree 

(Cummins and McInerney 2011). It appears that the dramatic gains in AICc and 

BIC scores achieved using the likelihood-based k-means approach are partially 

attributable to overfitting the partitioning scheme to the starting tree, and that  
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Table 3. P-values and effect sizes for each dataset from starting tree bias analysis. Analyses with p-values 
of less than .05 were found to have significant starting tree bias. 
Dataset Partitioning method p-value effect size 
Anderson_2013 greedy algorithm 1 0 
Anderson_2013 lnL rates k-means 0.03 -0.604 
Anderson_2013 TIGER rates k-means 1 0 
Cognato_2001 greedy algorithm 1 0 
Cognato_2001 lnL rates k-means 0.006 -0.424 
Cognato_2001 TIGER rates k-means 0.202 -0.152 
Grande_2013 greedy algorithm 1 0 
Grande_2013 lnL rates k-means 0.047 -0.225 
Grande_2013 TIGER rates k-means 1 0 
Kang_2013a greedy algorithm 1 0 
Kang_2013a lnL rates k-means 0.391 -0.105 
Kang_2013a TIGER rates k-means 1 0.14 
Kawahara_2013 greedy algorithm 0.397 -0.095 
Kawahara_2013 lnL rates k-means 0.008 -0.348 
Kawahara_2013 TIGER rates k-means 0.828 0.051 
Leavitt_2013 greedy algorithm 1 0 
Leavitt_2013 lnL rates k-means 1 0 
Leavitt_2013 TIGER rates k-means 1 0 
McCormack_2013a greedy algorithm 0.409 -0.116 
McCormack_2013a lnL rates k-means 0.52 -0.048 
McCormack_2013a TIGER rates k-means 0.158 -0.084 
Oaks_2011 greedy algorithm 1 0.094 
Oaks_2011 lnL rates k-means 1 0.019 
Oaks_2011 TIGER rates k-means 1 0 
Sharanowski_2011 greedy algorithm 1 0 
Sharanowski_2011 lnL rates k-means 0.056 -0.304 
Sharanowski_2011 TIGER rates k-means 0.069 -0.222 
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this overfitting can then bias subsequent phylogenetic analyses. One symptom 

of this overfitting is that the likelihood-based rates method often selected 

subsets of sites that consisted entirely of invariant sites of a single nucleotide 

state. Such subsets are difficult if not impossible to justify on biological grounds. 

Together, these characteristics suggest that the likelihood method is 

problematic, and should be avoided. For the remainder of the paper, we focus 

only on the results from our study that used rates calculated with the TIGER 

method, which do not show these undesirable characteristics. 

 

One of the primary motivations for this study was to develop a method to select 

partitioning schemes for datasets that are very large and/or that comprise 

molecular markers that are not amenable to traditional partitioning approaches, 

both of which are increasingly common (Faircloth et al. 2012; McCormack et al. 

2012; Crawford et al. 2012). It is encouraging, therefore, to note that the iterative 

k-means algorithm performed particularly well on the phylogenomic bird dataset 

(Table 1, Figures 2 and 3) (McCormack et al. 2013a), which was both very large 

and comprised solely of UCE’s, for which traditional approaches to partitioning 

are difficult to apply. For example, when each UCE was placed in its own 

subset, the BIC score was worse than when all UCE’s were grouped into a 

single subset (BIC scores of 992,389 and 973,121 respectively (Table 2)). When 

the partitioning scheme was selected using the relaxed clustering algorithm in 

PartitionFinder, the BIC score improved to 967,478 (Fig. 2, Table 2), but when 

using the iterative k-means method with TIGER rates, the BIC score improved to 



 
52 

830,140. This represents a substantial improvement to the partitioning schemes 

selected using traditional methods (Fig. 2, Table 2).  

 

The iterative k-means clustering also worked well for datasets consisting of 

protein coding genes from the standard phylogenetic toolbox. A close 

examination of the partitioning schemes reveals that the algorithm chooses 

subsets that reflect the traditional biological partitioning boundaries such as 

genes and codon positions (Figs. 4-5). For example, in the partitioning schemes 

selected for the Hawaiian fancy-case caterpillar dataset consisting of three 

genes (A Y Kawahara and Rubinoff 2013), the k-means approach resulted in one 

large subset that contained almost all first and second codon position sites 

across all three genes along with some third codon position sites (Fig. 4, subset 

1, Fig. 5), and eleven smaller subsets which consisted primarily of third codon 

positions sites from the three loci (Fig. 4, subsets 2-12, Fig. 5). Insofar as it 

broadly combines first and second codon positions, and separates out third 

codon positions, this partitioning scheme is similar to a popular traditional 

approach to partitioning that does the same (Shapiro, Rambaut, and Drummond 

2006). Although some of the structure of the classical partitioning boundaries 

exists in the subsets chosen by k-means, other subsets include sites from a 

wide range of genes and codon positions (Fig. 4 subsets 1-4, 6, 8). These 

results confirm that there is biological value to partitioning by genes and codon 

positions, but also suggest that relying solely on such boundaries may often fail  
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Figure 4. Assignment of codon position by gene to subsets selected using the iterative k-means 
algorithm clustered using TIGER site rate estimates on the Kawahara 2013 dataset. Subsets are 
ordered by the mean site rate from slowest to fastest. Sites from each codon position are spread 
throughout the subsets with the majority of variation among sites in the 3rd codon position. 
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Figure 5. Subset assignments for the sites from each codon position using the iterative k-means 
algorithm clustering using TIGER site rate estimates on the Kawahara 2013 dataset. Each row 
corresponds to a single gene and each column corresponds to a different codon position. The 
dotted red line represents the total number of sites in each codon position. In each chart, 
subsets are ordered by the mean site rate from slowest to fastest. First and second codon 
positions most closely align with “traditional partitioning”, while substantial variation exists 
among the 3rd codon position sites. 
  

CAD_pos1 CAD_pos2 CAD_pos3

COI_pos1 COI_pos2 COI_pos3

EF1a_pos1 EF1a_pos2 EF1a_pos3

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

S
ub

1
S

ub
2

S
ub

3
S

ub
4

S
ub

5
S

ub
6

S
ub

7
S

ub
8

S
ub

9
S

ub
10

S
ub

11
S

ub
12

S
ub

1
S

ub
2

S
ub

3
S

ub
4

S
ub

5
S

ub
6

S
ub

7
S

ub
8

S
ub

9
S

ub
10

S
ub

11
S

ub
12

S
ub

1
S

ub
2

S
ub

3
S

ub
4

S
ub

5
S

ub
6

S
ub

7
S

ub
8

S
ub

9
S

ub
10

S
ub

11
S

ub
12

Subset

N
um

be
r o

f S
ite

s

Codon position subset assignments, Kawahara 2013



 
55 

to capture some of the complex patterns of molecular evolution among sites, 

potentially limiting the accuracy of downstream phylogenetic analyses. 

 

The iterative k-means algorithm provides a powerful data-driven method to 

account for complex patterns of variation in rates of molecular evolution among 

sites. This is primarily because it tends to group together sites that evolve at 

similar rates of evolution, reducing the need for additional parameters to 

describe variation in rates across sites within a given group of sites (Fig. 6). For 

example, in the crocodilian dataset [71], although 15 subsets were selected in 

the partitioning scheme chosen with TIGER rates for a dataset with just over 

7,000 sites, models with the GAMMA model of rate heterogeneity were never 

chosen, and the proportion of invariable sites model was chosen for only three 

subsets. In contrast, the partitioning scheme chosen with the greedy algorithm 

included 11 subsets with seven that chose GAMMA or proportion of invariable 

sites for among site rate variation correction. Out of 168 total subsets selected 

using iterative k-means with TIGER rates and evaluated with BIC during our 

empirical evaluation, 77 (45.8%) required the additional parameters of gamma, 

proportion of invariable sites, or both. In contrast, of the 92 subsets chosen with 

the PartitionFinder greedy algorithm, 86 (93.5%) of the models included gamma, 

proportion of invariable sites, or both. These results support recent observations 

that more flexible models of variation in rates among sites tend to fit the data 

much better than those that rely on distributional assumptions (Soubrier et al. 

2012; Galtier et al. 2006), and suggest that the iterative k-means approach to  
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Figure 6. Average number of parameters per subset for different partitioning scheme estimation 
methods using BIC. Each line represents a different empirical dataset. “None” is no partitioning, 
“All” is the user partitioning scheme, “PF-G” is the PartitionFinder greedy algorithm, “TIGER” is 
iterative k-means using TIGER site rates, “Likelihood” is iterative k-means using likelihood site 
rates. The parameters per subset decrease for the k-means methods. 
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partitioning may be particularly useful when the variation in rates across sites 

cannot be adequately modeled using a combination of traditional partitioning 

(e.g. using genes and codon positions) and gamma-distributed rates (Kjer and 

Honeycutt 2007; Galtier et al. 2006). Methods for accounting for this kind of 

heterogeneity exist and include the CAT model, implemented into the program 

Phylobayes (Lartillot, Lepage, and Blanquart 2009; Lartillot and Philippe 2004; 

Lartillot and Philippe 2006; Lartillot, Brinkmann, and Philippe 2007; Quang, 

Gascuel, and Lartillot 2008) and a “spike and slab” model recently described by 

Wu et al. (Wu, Suchard, and Drummond 2013) that has been implemented into 

BEAST 2 (Bouckaert et al. 2014). Our method provides a scalable, maximum 

likelihood based alternative to these approaches. 

 

We evaluated the partitioning schemes chosen by the iterative k-means with 

TIGER rates for the simulated alignments based on the criteria that, 1) alignment 

sites generated under the same model would be assigned to the same subsets, 

and 2) the correct number of subsets would be chosen. Our results show that 

most subsets consisted primarily of sites generated from the same model (Fig. 

7). For example, when we searched for subsets that consisted of 95% or more 

sites generated under the same model, we found 263 of 289 (91%) that met the 

95% cutoff (Table 4). However, the number of subsets varied from 12-24 (Table 

4), far more than the two subsets under which the data were simulated. To 

further understand this behavior, we examined the partitioning schemes 

generated after each iteration of the algorithm. We found that the first split often  
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Table 4. The number of subsets selected using the iterative k-means algorithm for 20 simulated 
alignments in which 2 independent subsets were simulated. 

 

Simulation Replicate k-means subsets 
Number of subsets consisting of 
>=95% sites from same model 

 1 14 12 
 2 12 12 
 3 16 15 
 4 14 13 
 5 13 12 
 6 16 14 
 7 15 15 
 8 13 12 
 9 14 13 
 10 13 12 
 11 14 12 
 12 15 13 
 13 14 12 
 14 12 11 
 15 14 13 
 16 15 13 
 17 14 14 
 18 24 20 
 19 13 12 
 20 14 13 
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closely approximated the true model, but due to continual increases in the BIC 

score, many more splits were accepted. This result suggests that the inability to 

recover the true number of subsets could be due to the nature of the metrics for 

the evaluation of model fit. Whatever the underlying reason for the over-

partitioning of simulated datasets, these results suggest that when using 

methods like these to select partitioning schemes for empirical studies, it would 

be prudent to estimate phylogenetic trees under a range of intermediate 

partitioning schemes as well as the final partitioning scheme. An important next 

step in investigating these and other approaches to partitioning is a full-scale 

simulation study which examines a broad range of simulation conditions, and 

which assesses the effects of each not only on recovering the correct model, 

but also on recovering the correct tree. 

 

Despite the failure of the k-means method to recover the correct number of 

subsets in simulated data, three factors suggest that this finding is unlikely to 

severely compromise the method. First, previous studies have shown that 

defining too many partitions may have negligible impact on downstream 

phylogenetic inferences such as tree topologies, bootstrap support, or branch 

lengths (Brown and Lemmon 2007; Li, Lu, and Ortí 2008). Second, on empirical 

datasets, the k-means method tends to select a relatively modest number of 

subsets – never more than double the number of features in the dataset itself 

(e.g. individual codon positions in individual genes), and often many fewer. For 

example, for the McCormack et al. dataset (McCormack et al. 2013a; 
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McCormack et al. 2013b), there were 416 individual UCE’s, and the k-means 

method selected just 18 subsets of sites. Third, the k-means method selects 

partitioning schemes that make biological sense with respect to what we already 

know about variation in rates and patterns of evolution (Figs. 4-5).  

 

It is important to note that the iterative k-means algorithm represents a heuristic 

search for an optimal partitioning scheme. As such, it cannot be guaranteed to 

find the optimum partitioning scheme for any given dataset. Furthermore, the k-

means algorithm itself is somewhat stochastic in nature, and so it is likely that 

repeated analyses of the same dataset might lead to the estimation of 

partitioning schemes with very minor differences. Although we have focused on 

DNA sequence alignments in this study, the approach we describe can also be 

applied to amino acid alignments. 

 

Our research suggests that the iterative k-means algorithm is an improvement 

over traditional approaches to partitioning. Accounting for variation of rates 

among sites has long been viewed as a vital part of modeling in phylogenetics 

(Yang 1994; Yang 1996b; Kjer, Blahnik, and Holzenthal 2001; Kjer and 

Honeycutt 2007; Chris Simon et al. 1994; Chris Simon et al. 2006; Lartillot and 

Philippe 2004), and we have shown that using site rates to inform subset 

assignments results in substantial improvements in the AICc and BIC scores of 

partitioning schemes, when compared to more commonly used methods. 

Perhaps most importantly, the iterative k-means algorithm provides a data 



 
62 

driven method for modeling patterns of molecular evolution in markers such as 

UCE’s that have been difficult to model with traditional approaches. 

 

Conclusion 

Partitioning remains the most commonly used method for accounting for 

variation in the rates and patterns of molecular evolution among sites in 

phylogenetic analyses. As the size and number of phylogenomic datasets 

grows, it is increasingly important to fit more realistic partitioned models to 

those datasets. The algorithm we present in this paper does this by 

automatically selecting a partitioning scheme for datasets of variable size and 

type without the need of an a priori determination of partition boundaries or 

number of desired subsets. Although we identified potential pitfalls of using 

such algorithms (such as a starting tree bias when using likelihood site rates), 

we also showed how these pitfalls could be overcome. These methods provide 

an important step forward in improving our approaches to modeling molecular 

evolution, particularly for very large datasets, as well as suggesting fruitful 

directions for further improvements. 
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CHAPTER 3: PHYLOGENY OF PHRYGANEIDAE GENERA 

Introduction 

Phryganeidae biology and systematics 

The giant case making caddisflies (Trichoptera: Phryganeidae) are some of the 

world’s largest and most colorful caddisflies. Phryganeidae comprise roughly 80 

described species in 15 genera (Morse 2009). Like all Trichoptera, their larvae 

are strictly aquatic. As part of the suborder Integripalpia, the larvae construct 

portable tube cases and can be found in cool streams and rivers, lakes, 

ephemeral pools, and even brackish environments (Holzenthal et al. 2007; 

Wiggins 1998). Phryganeidae are solely Holarctic, primarily occurring in northern 

latitudes (Holzenthal et al. 2007; Wiggins 1998). Some of the earliest caddisfly 

fossils belong to the Phryganeidae, dating back to the Lower Cretaceous 

(Sukatsheva 1968). 

 

The history of taxonomic research on Phryganeidae has been rich, beginning 

with Linnaeus, who placed 15 caddisfly species in the genus Phryganea in his 

order Neuroptera (Wiggins 1998), three of which remain in the family 

Phryganeidae: Phryganea grandis (type species), P. phalaenoides (now Semblis 

phalaenoides), and P. striata (now Oligotricha striata) (Linnaeus 1758). Efforts to 

classify Phryganeidae continued through the work of Trichoptera experts such 

as Silfvenius (Silfvenius 1902; Silfvenius 1903; Silfvenius 1904), Martynov 

(Martynov 1924a; Martynov 1924b), Banks (Banks 1904; Banks 1914; Banks 

1951), Schmid (Schmid 1962; Schmid 1965; Schmid 1968), and Wiggins 
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(Wiggins 1956; Wiggins 1960b; Wiggins 1960a; Wiggins 1972; Wiggins and 

Larson 1989) culminating in Wiggins’ book written entirely about the family as 

we know it today (Wiggins 1998)—the only treatise of its kind published for a 

trichopteran family. In it, Wiggins described phryganeid life history, posited 

ideas about their historical biogeography, and proposed a hypothesis for their 

phylogeny based on pupal morphology. This phylogeny included what he 

considered strong evidence for some relationships, but the placement of a 

number of genera were more difficult to establish. Wiggins’ phylogeny stands as 

the most recent phylogenetic hypothesis (Fig. 1).  

 

Previous research on Phryganeidae suggests that the family consists of two 

subfamilies, Yphriinae comprised solely of the enigmatic species, Yphria 

californica, and Phryganeinae, which includes the other 14 genera (Wiggins 

1962; Wiggins 1998). Phryganeid genera are relatively small in species diversity 

when compared with some of the other trichopteran genera. Four of the genera 

are monotypic and include Beothukus, Fabria, Trichostegia, and Yphria. The 

largest genus is Agrypnia, with 18 species (Morse 2009). In contrast, some of 

the largest genera in Trichoptera, e.g. Chimarra and Rhyacophila, contain over 

700 and 400 species respectively (Morse 2009). 

 

Some of the oldest caddisfly fossils are thought to belong to Phryganeidae. 

They consist of wing impressions from Mongolia dating back to the Lower  
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Figure 1. Phylogenetic hypothesis estimated by Wiggins (1998) using pupal morphology 
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Cretaceous (144-100 Ma) (Sukatsheva 1992) and larval case fossils with the 

characteristic spiral construction dating to the Upper Cretaceous (100-95 Ma) 

(Sukatsheva 1980). This indicates that the lineage may be at least that old and 

could have arisen following the rifting of Pangaea during the Jurassic, confining 

Phryganeidae to Laurasia. This is further supported by the absence of 

phryganeid fossils in the southern hemisphere (Wiggins 1998). 

 

Three general morphological conditions exist for the larval cases within 

Phryganeidae: spiral cases, ring cases, and irregular cases (Fig. 2). The spiral 

and ring cases are considered to be the more derived states within the family 

since the genera with irregular cases, Yphria and Trichostegia, have been found 

to be basal with respect to the rest of the family (Wiggins 1998). Spiral and 

ringed case morphology is rare within Trichoptera (Hinchliffe and Palmer 2010; 

Wiggins 1998), and the remaining genera within Phryganeidae can be split into 

two groups according to their case construction behavior. However, some 

confusion exists as to the origin of the ring and spiral cases. Classification 

based on this morphological characteristic is not strongly supported due to the 

fact that Phryganea (which make spiral cases) and Beothukus (which make ring 

cases) share other morphological characteristics that are thought to be 

apomorphic, such as the compressed lateral lobes of the sub genital plate 

(Wiggins 1998). Wiggins hypothesized that the similarities in the morphology of 

the sub genital plate could be explained if ring cases were derived from spiral 

cases with Phryganea as sister to all ring cased genera. However, this  
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Figure 2. Illustrations of the three case morphologies for genera within Phryganeidae. Figure 
modified and reproduced from (Merritt, Cummins, and Berg 2008) with permission from the 
artist. 
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hypothesis conflicted with the morphology-derived parsimony tree he 

presented. While a close affinity between Phryganea and Beothukus seems 

plausible due to shared morphological characteristics, the disparity between 

their case morphology seems to suggest it is equally plausible that they share 

an evolutionary affinity with genera that possess the same case morphologies. 

Wiggins also expressed confusion over the placement of Trichostegia. Although 

Trichostegia lack a ring or spiral case, they share many other morphological 

characteristics with the genera within the subfamily Phryganeinae. To further 

complicate matters, Yphria, Trichostegia, and Beothukus are all monotypic, 

which can complicate the identification of shared morphological characteristics 

within the genera, rendering the classification of such groups difficult (Williams 

2013). Thus, Phryganea, Beothukus, and Trichostegia remain unresolved in 

regards to their placement within Phryganeidae. We aim to test these conflicting 

hypotheses in the present study. 

 

Targeted enrichment and high throughput sequencing 

High throughput sequencing of short reads of DNA has revolutionized the 

generation of molecular data by massively decreasing the cost of producing 

data while simultaneously exponentially increasing the amount of molecular data 

that researchers can generate for their taxon of interest (Metzker 2010; Mardis 

2013; van Dijk et al. 2014). Studies that have leveraged these technologies for 

phylogenetics have generally relied upon three main techniques: whole genome 

sequencing, transcriptome sequencing, and the selected enrichment of 
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preselected loci through the use of capture probes often referred to as “targeted 

enrichment”. 

 

The use of RNAseq—the collection of total mRNA and subsequent construction 

and sequencing of cDNA libraries to generate transcriptomes—represents a 

powerful and comparatively inexpensive alternative to whole genome 

sequencing for phylogenetic data. Misof et al. found that when comparing 

across Arthropoda, the number of genes that can be recovered and identified as 

single copy orthologs using transcriptomes was similar to the number of single 

copy orthologs that could be found across genomes (Misof et al. 2014). Thus, 

the use of transcriptomes can potentially generate the same amount of 

phylogenetic data as genomes for a fraction of the cost. Several insect 

phylogenetic studies have taken advantage of this new technology with great 

success (Peters et al. 2014; Misof et al. 2014; Kawahara and Breinholt 2014). 

However, because of the ephemeral nature of mRNA, the generation of RNAseq 

data requires the collection and preservation of live material. Many labs have 

collections of tissues from thousands of species resulting from decades of 

collecting efforts and often containing rare or old material, all unsuitable for 

RNAseq. Sequencing genomes still requires a large amount of quality DNA and 

is cost prohibitive for dense taxon sampling, rendering it difficult for old and rare 

tissues and studies requiring the assessment of many taxa. For the present 

study, because of the lack of fresh material and the impossibility of generating 

genomes, we decided to generate data using a targeted enrichment strategy. 
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Targeted enrichment strategies were originally developed in order to sequence 

full human exomes. Known as “exome capture”, it has been used since 2009 in 

human health studies (Ng et al. 2009; Choi et al. 2009), allowing researchers to 

inexpensively sequence the protein coding genes in humans (~1% of total DNA 

content) (Perkel 2013). Because of a paucity of data on which to design capture 

probes outside of humans and due to nascent improvements in multiplexed 

sequencing of short read DNA, this technique has only recently been adopted 

for research on other organisms (Faircloth et al. 2012; Lemmon, Emme, and 

Lemmon 2012; McCormack et al. 2013; Crawford et al. 2012). These methods 

rely on decreasing the volume of DNA being sequenced by designing capture 

probes that hybridize to targeted sections of DNA. The sections not captured 

are then discarded and only the DNA of interest is sequenced. In order to ensure 

a successful capture with a high rate of hybridization, highly conserved areas in 

genomes across taxa must be targeted. This technique has been successfully 

applied to ultra-conserved elements (Faircloth et al. 2012), highly conserved 

areas of protein coding genes (Lemmon, Emme, and Lemmon 2012), and on 

more divergent loci aided by multiple hybridization cycles during the capture 

process (Li et al. 2013). 

 

Here we use targeted enrichment techniques with probes designed based on 

conservative areas of protein coding genes from transcriptomes to estimate the 

phylogeny for Phryganeidae. We examine the utility and difficulties of designing 
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targeted enrichment probes from transcriptomes and discuss the challenges 

and opportunities that arise when estimating model-based phylogenies on large 

datasets. Finally we present a phylogeny of the genera within Phryganeidae. 

 

Materials and Methods 

Transcriptome generation and analysis 

High throughput sequencing of targeted enriched data requires the design of 

capture probes for the enrichment of the target data. The design of proper 

capture probes requires a template from which to design them. Since at the time 

of this research, no Trichoptera genomes were available and in order to maintain 

compatibility with the transcriptomes that we were simultaneously collecting, we 

used transcriptomes to design our probes. The ideal templates for probe design 

are well-annotated genomes, which contain information about the full suite of 

genomic features, including the location of introns. Using genomes, researchers 

can design probes that will capture UCE's, intron elements flanked by 

conserved regions, and other non-protein coding features. We had no such 

luxury so we generated transcriptomes from which to design our capture 

probes. Since we wished to use this probe set on families outside of 

Phryganeidae and since a high quality capture relies on successful hybridization 

of target DNA to the probes, we carefully selected 15 taxa for transcriptome 

sequencing from throughout the order to widen the scope of the probe set and 

increase the probability of success. 
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The methods for transcriptome collection, extraction, library prep, sequencing, 

assembly, and orthology prediction followed the pipeline designed by the 1KITE 

project (Misof et al. 2014). Specimens were collected and macerated in 

RNAlater and stored in a refrigerator until sequencing in order to avoid 

excessive freeze/thaw cycles. The identification of live Trichoptera can be 

problematic since many of the features used to delineate species are only visible 

once the genitalia have been removed and treated properly (Blahnik, Holzenthal, 

and Prather 2007). To deal with this limitation, if possible, we used a single 

trichopteran specimen. Species identification was confirmed by comparison of 

mitochondrial COI sequences with identified species from the barcode of life 

database (Ratnasingham and Hebert 2007). When this was not possible (for 

small specimens due to a lack of material), we carefully sorted specimens into 

morphospecies while alive on ice and pooled individuals from the same 

morphospecies together. 

 

After collection, total RNA extractions followed by cDNA library preparation and 

amplification was performed at BGI-Shenzhen. Following extraction and library 

prep, all samples were sequenced on an Illumina HiSeq 2000 with 150 bp paired 

end reads. The sequences were assembled using SOAPdenovo trans (Xie et al. 

2014). Following the assembly of the transcripts, we determined orthologs using 

a core ortholog set for holometabolous insects mined from OrthoDB and best 

reciprocal hit blast in a modified version of hamstr (Ebersberger, Strauss, and 

Haeseler 2009; Misof et al. 2014). 
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Targeted enrichment 

Since our transcriptomes mainly consisted of mRNA transcripts, we didn't have 

information about intron/exon splice sites. No Trichoptera genome had been 

sequenced at the time of this study and capture efficiency is compromised by 

poor hybridization for probes that span intron/exon splice sites. In an attempt to 

overcome this limitation, we used the genome annotations from the Giant 

Silkworm Moth (Bombyx mori) to map probable intron and exon boundaries onto 

the transcripts under the assumption that many of these intron sites would be 

shared between our Trichoptera specimens and Bombyx mori, a member of 

Lepidoptera, the sister order to Trichoptera. We then used a sliding window of 

10 bp across each exon to estimate sequence conservation among the 15 taxa 

in our alignments. We used this information to select a set of exons that 

contained highly conserved areas flanked by more variable areas, which are 

useful for determining phylogenetic relationships. Our final list included 989 

exons for which we designed probes within the Phryganeidae. Probes were 

manufactured by Agilent using the SureSelect protocol. 

 

We selected taxa from each genus for which we had available tissues within 

Phryganeidae. We were unable to secure tissues for one genus, Neurocyta. 

Every other genus in the family was represented in our sample. DNA was 

extracted from each specimen using a G-Biosciences OmniPrepTM extraction kit. 

All samples were measured for double stranded DNA concentration using the 
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Life Technologies Qubit® system. We then estimated DNA fragment size by 

adding loading dye to 4 µL of DNA and visualizing the samples on a 1% agarose 

gel run for 1 hour with 120 volts. 

 

For the library prep and targeted capture steps, we followed the protocol 

outlined by Meyer and Kircher (2010). In short, DNA was diluted to ~200-

500ng/50µL per sample, then sonicated into ~500 bp fragments followed by 

blunt end repair. Illumina adapters were then ligated to the DNA fragments 

followed by index addition via PCR. Illumina indices allow for multiplexed 

sequencing by appending a unique index to the DNA fragments from each 

sample. To avoid misassignment of reads due to sequencing error, each index 

differed by at least two base pairs from every other sample index. We then 

added biotinylated capture probes to hybridize to the target DNA. Magnetic 

streptavidin beads, which bind to the biotinylated probes, were added to the 

solution and target regions were extracted using a magnet. Non-target DNA was 

discarded. Target DNA was then amplified, pooled, and sequenced on an 

Illumina HiSeq 2000 with 150 bp paired end reads.  

 

Read assembly, orthology prediction, and alignment 

Reads were assembled to the probe sequences using a custom assembly 

method described by Lemmon et al. (Lemmon, Emme, and Lemmon 2012). 

Using the reference probe sequences, reads were first aligned to the reference 
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probe sequences, then additional reads were locally assembled to extend past 

the probe regions. 

 

When more than one ortholog was assembled to a reference probe within a 

single taxon, we selected the best ortholog by clustering contigs based on their 

pairwise distances. Using a pairwise distance matrix, a neighbor-joining tree 

was constructed to determine orthologous clusters. In the cases that orthology 

was difficult to assign because two orthologs were equally probable, we took 

the conservative measure of removing both, leaving the taxon without data for 

that particular locus. We also removed clusters that were missing more than 

50% of the species from all downstream analyses. 

 

Following assembly and orthology sorting, we constructed single locus multiple 

sequence alignments using MAFFT 7.2 (Katoh and Standley 2013). Since loci 

often contained sequences that extended past the exon boundaries and into the 

intron, the locus alignments often contained large stretches of data that were 

difficult to align. Since misaligned data is similar to random data, we used 

Aliscore (Misof and Misof 2009), which uses a Monte Carlo resampling along a 

sliding window to identify sites in the alignment that are found to be 

indistinguishable from random data. We used a 5 bp sliding window and the “-

N” option that treats gaps as missing data. Alternatively, gaps can be treated as 

a 5th character, which is sometimes applied for alignments that consist of rRNA 

where insertions and deletions are common and informative. Since all loci that 
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we targeted in this study were protein-coding genes and the introns were 

deemed to difficult to align, we treated gaps as missing data. Following the 

Aliscore step, we removed putative random sections with the Alicut 2.3 utility 

(Kueck 2013). Aliscore has been shown to successfully remove sections of the 

alignment that represent misalignments or random data, but it does not remove 

taxa that may contain data from a paralog or is otherwise misaligned, because 

Aliscore uses permutation to compare the data to randomized nucleotides of 

similar properties, and a single taxon or two would not be sufficient to 

“randomize” the otherwise informative data from other taxa. To check for taxa 

that were obviously misaligned or contained obvious paralogs, we examined 

each locus alignment, colored by translated amino acids, by eye in Geneious v. 

7 (Kearse et al. 2012) and removed problematic taxa. We then created a super-

matrix alignment by concatenating all loci using FASconCAT (Kück and 

Meusemann 2010). 

 

Phylogenetic model selection and data exclusion 

To select phylogenetic models of molecular evolution, we employed two 

different approaches. In the first, we selected models and a partitioning scheme 

using the relaxed clustering algorithm in PartitionFinder v. 1.1.0 (Lanfear et al. 

2012; Lanfear et al. 2014). The relaxed clustering algorithm begins with a large 

number of user-defined data blocks that are then evaluated to determine key 

model parameter values (relative evolutionary rate, transition/transversion ratios, 

and nucleotide composition). Data blocks that evolve under similar models are 
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then iteratively lumped together and evaluated for improvements in model fit 

using AICc. When the lumping results in an improved model fit, it is accepted. 

This process reduces the number of overall partitions and parameters reducing 

the risk of overparameterization. The time required for an algorithm run 

increases rapidly with an increasing number of predefined data blocks and 

recent research has found that predefining data blocks based on locus are likely 

to give a similar result as predefining data blocks based on locus and codon 

position (Kainer and Lanfear 2015). Given these findings and the additional, 

potentially unnecessary computational burden, we specified each locus as an 

individual data block. In our second approach, we selected the partitioning 

scheme using the iterative k-means algorithm that has been implemented into a 

development version of PartitionFinder (Frandsen et al. 2015). Iterative k-means 

does not require the a priori definition of data blocks; rather it estimates an 

optimal partitioning scheme directly from the data using rates estimated from 

individual sites. 

 

The most commonly used models in phylogenetics consist of continuous time 

Markov substitution models. The most generalized of these is the general time 

reversible (GTR) model (Tavaré 1986). GTR allows for different rates of 

transitions from each nucleotide state to every other. It also allows for unequal 

base frequencies. The only DNA substitution models currently available in 

RAxML are GTR models with either the discrete GAMMA mixture correction for 

among site rate variation (GTR+G) (Yang 1994; Yang 1996) or discrete GAMMA 
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plus an estimate of the proportion of invariable sites (GTR+I+G). GTR makes 

several important assumptions: time-reversibility, stationarity of processes, 

compositional homogeneity, and site-to-site independence. The assumptions of 

stationarity, reversibility, and homogeneity can be assessed using matched-

pairs tests of symmetry (Bowker 1948; Stuart 1955; Ababneh et al. 2006; Misof 

et al. 2014). These tests must be performed on multiple sites and have been 

used previously on individual loci, codon positions, or contiguous blocks of data 

using a sliding window. Motivated by the observation that individual sites may 

violate model assumptions when the surrounding sites do not, we took an 

alternative approach and performed the tests on the model subsets estimated 

during the iterative k-means selection of the partitioning scheme, which contain 

sites that have evolved under similar models. 

 

Phylogenetic tree estimation 

We generated three maximum likelihood (ML) trees to evaluate congruence 

among the different methods: (1) partitioned by locus following relaxed 

clustering partitioning selection with the GTR+G model applied to each subset, 

referred to as Tree 1, (2) partitioned by iterative k-means with the GTR+G model 

applied to each subset, referred to as Tree 2, and (3) partitioned by iterative k-

means with the exclusion of subsets found to be in violation of any of the three 

model assumptions that we tested, referred to as Tree 3. The GTR+G model 

was applied to the resulting subsets. ML trees were estimated in RAxML 8 

(Stamatakis 2014) with 5 independent thorough searches of each dataset. The  
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Table 1. Taxa used in this study 

Family Species Author/Date 

Brachycentridae Brachycentrus americanus Banks 1899 

Lepidostomatidae Lepidostoma hirtum Fabricius 1775 

Goeridae Goeracea oregona Denning 1968 

Uenoidae Farula praelonga Wiggins & Erman 1987 

Apataniidae Apataniana hellenica Malicky 1987 

Limnephilidae Annitella thuringica Ulmer 1909 

Limnephilidae Limnephilidae sp. N/A 

Phryganeidae Yphria californica Banks 1907 

Phryganeidae Trichostegia minor Curtis 1834 

Phryganeidae Beothukus complicatus Banks 1924 

Phryganeidae Phryganea bipunctata Retzius 1783 

Phryganeidae Phryganea grandis* Linnaeus 1758 

Phryganeidae Hagenella apicalis Matsumura 1904 

Phryganeidae Oligostomis ocelligera Walker 1858 

Phryganeidae Ptilostomis semifasciata* Leach 1815 

Phryganeidae Eubasilissa maclachlani White 1862 

Phryganeidae Semblis melaleuca McLachlan 1871 

Phryganeidae Semblis phalaenoides Linnaeus 1758 

Phryganeidae Banksiola crotchi Banks 1944 

Phryganeidae Oligotricha striata Linnaeus 1758 

Phryganeidae Agrypnia straminea Hagen 1873 

Phryganeidae Agrypnia obsoleta Hagen 1864 

Phryganeidae Agrypnia czerskyi# Martynov 1824 

*-indicates sample sequences were derived from transcriptomes, #-two specimens were 

included from this species 
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tree with the best likelihood was chosen as the ML tree. We used the RAxML 

rapid bootstrap algorithm and generated bootstrap trees from 100 bootstrap 

alignments for each data set. The bootstraps were then projected on the final 

ML tree to reflect support. 

 

Results 

Targeted enrichment results 

Of the 989 loci that we targeted within Phryganeidae, we recovered 892 loci that 

contained 13 or more taxa (out of 26 targeted) resulting in a roughly 90% 

recovery rate. For three samples, two taken from a single Fabria inornata 

specimen collected in the 1960s and one from an undetermined Banksiola 

species, we recovered only a handful of loci, which consisted almost entirely of 

non-trichopteran DNA. These taxa were removed, resulting in another missing 

genus (Fabria) from our study. Another taxon, Oligotricha spicata was 

determined to largely consist of contaminants and was also removed. We added 

the exon sequences from the transcriptomes of two species, Ptilostomis 

semifasciata and Phryganea grandis, from which we designed the target probes. 

This brought the total number of taxa to 24, including seven outgroup taxa 

(Table 1). In the final locus alignments, the average number of taxa recovered 

per locus was 22 of 24 (~91.6%). The average locus length was 650 bp (Fig. 3). 

Although the capture failed on one of our oldest specimens (Fabria inornata), we 

recovered DNA from several pinned museum specimens, including many that 

were over a decade old. 
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Figure 3. Histogram portraying the average locus length generated from the targeted enrichment 
sequencing. 
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After alignment masking using Aliscore (Misof and Misof 2009), some loci were 

found to include no sites that were distinguishable from random data. As a 

result, we removed 53 loci trimming the total number of loci to 839. Following 

concatenation, the final alignment included 24 taxa and 272,854 nucleotide 

positions. 

 

We generated three trees to compare model selection and data exclusion 

approaches. Two of these trees (Tree 1 and Tree 2) were estimated from the 

dataset described above each with a different partitioned model. Tree 1 was 

partitioned by locus then optimized with the PartitionFinder relaxed clustering 

algorithm. Tree 2 was partitioned using the PartitionFinder iterative k-means 

algorithm. The AICc score for the two partitioned models was 3,861,597 for the 

relaxed clustering partitioned model and 3,381,776 for the iterative k-means 

partitioned model (lower AICc scores indicate a better fit of the data to the 

model). AICc scores are based upon the maximum likelihood units and 

differences as small as 10 AICc units are considered enough to represent a 

large difference in the relative fit of each model. Therefore, the difference in AICc 

between these two datasets of 517,614 AICc units is a drastic improvement in 

the fit of the model to the data. The relaxed clustering algorithm found 333 

subsets while the iterative k-means algorithm found 61. Using matched pairs 

tests (Ababneh et al. 2006; Stuart 1955; Bowker 1948), we found 11 subsets 

selected by the k-means algorithm to be in violation of model assumptions. We 

removed these from our third dataset resulting in a trimmed alignment length of  
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254,070 bp (a difference of 18,784 bp). We generated Tree 3 from this trimmed 

data set. Due to the difference in alignment length, the model applied to this 

alignment cannot be compared to the others using information theoretic metrics 

like AICc. 

 

The branching patterns of Tree 2 and Tree 3  (both partitioned using the iterative 

k-means algorithm) were congruent, differing mainly in support (Fig. 4). Tree 3 

had the highest support with 100% bootstrap on every node. Tree 1 contained 

many nodes that were congruent with trees 2 and 3, but some important nodes 

were incongruent with the k-means trees (Fig. 4). All three methods recovered 

Yphria as the sister to the rest of Phryganeidae. In trees 2 and 3 Trichostegia is 

recovered as the next branch followed by a clade that includes the two 

Phryganea species as sister to Beothukus. Tree 1 differed at these nodes and 

included the two Phryganea species as the next bifurcation following Yphria with 

a clade containing Beothukus + Trichostegia recovered as sister to the rest of 

the genera in the family. All three methods recovered identical relationships for 

the remaining phryganeid genera (Fig. 4). Thus, the choice of partitioning 

scheme influenced the results. 

 

Discussion 

Targeted enrichment from transcriptomes 

Here, we presented a method for generating a large amount of data at a 

relatively low cost for a group of organisms for which no reference genome 



 
93 

exists. We showed that by generating transcriptomes and by targeting portions 

of the transcripts that show a high level of conservation, it is possible to 

successfully capture loci over wide divergences. Ideally, the technology involved 

with generating genomes will continue to improve in quality and decrease in 

price rendering the sequencing of whole genomes tractable for phylogenetic 

studies involving many taxa. However, despite the impressive progress that has 

been made over the past decade with the advent of high throughput 

sequencing, whole genome sequencing is still infeasible for most studies. In 

addition, the computational burden associated with the generation, storage, and 

analysis of whole genomes remains high, and will likely always be significant. 

We found targeted enrichment to be an ideal, low-cost alternative to some of 

the other methods that leverage the power of high throughput sequencing, 

including low coverage genome sequencing and RNAseq. 

 

We also showed that targeted enrichment could be successfully applied to 

sequence decade-old museum specimens. Many collections contain specimens 

that are rare and difficult to collect. Targeted enrichment provides an especially 

good opportunity to generate large amounts of data from these types of 

specimens. This is due to the serendipitous feature that the high throughput 

sequencing technology used relies on short fragments of DNA. Since degraded 

DNA is simply DNA that has already been fragmented, these technologies are 

well suited for old DNA. 
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Phylogeny of Phryganeidae 

We generated three phylogenetic trees from three different treatments of the 

alignment. The two trees generated from the datasets for which models were 

selected using the iterative k-means algorithm had fully congruent topologies, 

differing only in the level of bootstrap support of a handful of nodes (Fig. 4). The 

support was highest on the tree generated from the alignment with model 

violating subsets removed (tree 3, Fig. 4). Interestingly, the tree generated from 

the data modeled with the relaxed clustering partitioning scheme also had high 

bootstrap support, but for a conflicting branching pattern (Fig. 4). 

 

Phryganeidae was recovered as monophyletic in each analysis. All three trees 

also recovered Yphria as sister to the rest of Phryganeidae, confirming previous 

research (Wiggins 1962; Wiggins 1998) and providing further support for it’s 

placement in its own subfamily, Yphriinae, and distinct from other Phryganeidae. 

The next two branches in the tree are incongruent between the topologies 

estimated using partitioning schemes generated with the iterative k-means and 

relaxed clustering algorithms. The taxa that are placed differently between the 

topologies are Phryganea and the monotypic genera Beothukus and 

Trichostegia with tree 1 recovering Beothukus as sister to Trichostegia and trees 

2 and 3 recovering Phryganea as sister to Trichostegia. The analysis Wiggins 

conducted was also inconclusive regarding the placement of these taxa 

(Wiggins 1998). For example, he stated that there were some similarities that 

would suggest a sister relationship between Phryganea and Beothukus, such as 
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the compressed lateral lobes of the sub genital plate, which were determined to 

be an apomorphic condition. However, Wiggins also found strong support for 

Beothukus as sister to the rest of the ring case makers. None of our trees 

support the affinity of Beothukus to the ring case makers. Rather, we recover 

Beothukus as either sister to Phryganea or Trichostegia. 

 

Early Phryganeidae evolution falls into the category of classically difficult 

phylogenetic problems. Early in the evolution of the family, there was a rapid 

diversification, indicated by the extremely short internodes in the base of the 

tree. This was followed by the apparent extinction of much of the stem lineage 

with few relictual, monotypic taxa remaining. This is similar to other phylogenetic 

problems in Insecta such as the proliferation and subsequent extinction of 

Polyneoptera (Whitfield and Kjer 2008). As such it is perhaps unsurprising, but 

still disconcerting, that variations in the selection of the model would generate 

two incongruent, highly supported topologies. In large data sets such as the one 

used for this study, it is important to keep in mind that the support values 

generated by the non-parametric bootstrap are not the probability of a node 

being true, rather they are a measure of confidence in the robustness of the tree 

to perturbations in the data matrix due to random resampling. It is impossible to 

determine with certainty which hypothesis represents the “true tree”, however, 

we can examine other lines of evidence that may lend support to one hypothesis 

over the other. Given this stipulation, there are two reasons that we are more 

confident in the tree estimated from the k-means partitioning schemes: (1) the fit 
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of the model to the data for the k-means selected model (AICc of 3,381,776) 

was far superior to the fit of the model selected using the relaxed clustering 

algorithm (AICc of 3,861,597), indicating that the model is capturing more 

information about the evolutionary process, and (2) morphological evidence 

from previous research seems to better support a relationship between 

Beothukus and Phryganea than that between Beothukus and Trichostegia. 

 

The large improvement in the AICc score for the substitution model selected 

using iterative k-means when compared with the model selected using relaxed 

clustering suggests that for targeted enrichment datasets like these, using an 

automatic phenomenological model selection technique such as iterative k-

means is likely to improve the information in the model as opposed to more 

commonly used methods such as straightforward mechanistic modeling by 

locus. We have also shown that the iterative k-means method can be used to 

successfully identify groups of sites that are in violation of model assumptions. 

In this dataset, the removal of these sites resulted in improved support via the 

non-parametric bootstrap (Felsenstein 1985) suggesting that the resulting data 

matrix was less biased by model misspecification and more robust to the 

bootstrap resampling with replacement process. For example, we would expect 

that if false nodes are supported and misleading data is excluded support 

values would decrease. Conversely, if nodes are correct and misleading data is 

eliminated, bootstrap support should improve. 
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The method that we used for identifying sites that violate model assumptions 

has potential for widespread use in phylogenetic analyses. Previous studies that 

have used matched pairs tests to remove sites have all relied on evaluating 

groups of sites based on locus or codon boundaries, or on evaluating 

contiguous groups of sites with variable sliding window sizes (Jayaswal et al. 

2011; Ababneh et al. 2006; Misof et al. 2014). Using these methods to search for 

sites that violate model assumptions generalizes over a group of sites that could 

have evolved under very different patterns. In some cases, both 1st and 3rd 

codon positions failed matched pairs tests, resulting in 2/3 of the total data 

being removed (Misof et al. 2014), which at best resulted in too many sites being 

removed and at worst could bias the analyses (Lartillot and Philippe 2004; 

Kumar et al. 2012; Pagel and Meade 2004). In our approach, we applied the 

matched pairs tests to subsets of similar sites that were clustered together 

during the iterative k-means partitioning. Since the clustering algorithm treats 

sites individually (rather than on somewhat arbitrary sliding windows or 

locus/codon position boundaries), the subsets that were found to be in violation 

of the model assumptions are more likely to consist primarily of similar sites that 

are all in violation of model assumptions. By the same token, the iterative k-

means approach is likely to group sites that evolve under similar conditions, 

which could result in more accurate modeling and a better fulfillment of the 

assumptions of homogeneity and stationarity. Applying these tests for data 

exclusion to subsets of similar sites could result in fewer sites being excluded 
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from the analysis due to violations by neighboring sites, or sites from the same 

biological group. 

 

Conclusions and directions for future research 

We find that targeted enrichment is a tractable option for the generation of large 

molecular datasets for non-model organisms. We also find strong support for 

the relationships among genera in the caddisfly family Phryganeidae. Although 

conflicting trees were estimated from different modeling strategies, we place 

more confidence on the tree estimated from the iterative k-means partitioning. 

We find that differences in modeling can generate strongly supported, 

conflicting topologies and caution researchers to explore many methods of 

modeling when estimating phylogenetic trees. A further exploration of the role of 

bootstraps in analyses of large datasets is an important area of further research. 

We also find that clustering together similar sites can help identify groups of 

sites in violation of model assumptions. We show that the removal of such sites 

can result in stronger support for a given topology. 
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