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The first essay studies the roles of trading speed and hidden orders in limit order markets.

We develop a model where liquidity suppliers differ in speed of revising their limit orders

and have an option of hiding their orders. The model predicts that fast liquidity suppliers

bear lower adverse selection risk and therefore submit orders with narrower bid-ask spreads.

Slow liquidity suppliers may overcome their speed disadvantage by using hidden orders. We

also provide empirical results that support the model. We find that non-high frequency

trading firms account for 70% of liquidity provision in hidden executions, and hidden orders

have significantly narrower spreads and lower adverse selection risk than visible orders. Our

theoretical model and empirical findings suggest that high frequency technology and hidden

orders are substitutes in reducing adverse selection risk.

The second essay investigates market quality breakdowns in equity markets. A break-

down occurs when an order book thins to the point where extreme price movements are

observed. These are frequently reversed as the market learns that nothing fundamental

has occurred. The daily average breakdown frequency from 1993-2011 is 0.64%, with av-

erages in 2010-11 below this amount. Controlling for microstructure effects, breakdowns
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have fallen significantly since Reg NMS. Spikes in market correlation and high frequency

trading (HFT) surges make breakdowns more likely. Exchange traded funds (ETFs) break

down more often than non-ETFs. Both ETFs and HFT Granger cause market correlation.

Breakdowns are predictable for up to two days.

The third essay analyzes HFT activity in equities during U.S. Treasury permanent open

market (POMO) purchases by the Federal Reserve. We construct a model to study HFT

quote and trade behavior when private information is released. We estimate that HFT

firms reduce their inside quote participation by up to 8% during POMO auctions. HFT

firms trade more aggressively, and they supply less passive liquidity to non-HFT firms.

Market impact also rises during Treasury POMO. Aggressive HFT trading becomes more

consistently profitable, and HFT firms earn a higher return per share. We also estimate

that HFT firms earn profits of over $105 million during U.S. Treasury POMO events.
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Chapter 1

Introduction

The equity markets in the U.S. have changed dramatically over the past two decades. With

the advancement of technologies for submitting and executing orders, the markets have

evolved from primarily manual trading to highly automated algorithmic trading (AT) sys-

tems. Hendershott, Jones, and Menkveld (2011) define AT as the use of computer algorithms

to make trading decisions and manage orders. High frequency trading (HFT) is a subset

of AT and uses advanced, high-speed technology for order submission, cancellation, and

execution in milliseconds. The Securities and Exchange Commission (SEC, 2010) describes

HFT as ”professional traders acting in a proprietary capacity that engage in strategies that

generate a large number of trades on a daily basis.” HFT has grown, since the adoption of

the Regulation National Market System (Reg. NMS) in 2005, and now represents the ma-

jority of equity trading volume. HFT has received lots of attention in academic, regulatory,

and public media, and there is an active debate on whether HFT is beneficial or harmful

to market quality.

This thesis starts with studying the role of trading speed in reducing adverse selection

risk. A substitutional tool to decrease the amount of adverse selection by using hidden

orders is also examined in Chapter 2. Chapter 3 analyzes the trend of market quality in

the recent decades from 1993-2011 and shows the benefits from AT on market quality. We

then explore changes in market structure and market correlation that may have effect on

market quality. The last chapter of the thesis investigates the effect of HFT activity in

stressful market conditions. It provides a different portrait of HFT from their contribution

to market quality in normal times. All these findings help to answer questions about the
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social value of HFT and may provide policy implications for regulation of HFT activities.

Chapter 2 contributes to the literature by jointly examining the roles of trading speed

and hidden orders in limit order markets. We first develop a theoretical model by introduc-

ing the speed characteristics of market participants into the Glosten and Milgrom (1985)

model. Liquidity suppliers in the model submit bid and offer quotes competitively to the

limit order book, and may cancel their limit orders when market condition changes. When

fast and slow traders compete to provide liquidity in the market, slow liquidity suppliers

are in a worse situation because their limit orders have wider spreads and therefore a lower

execution probability. By including hidden orders in the model, We find that slow liquidity

suppliers may overcome their speed disadvantage by using hidden orders.

The empirical results provide support for the model. Using NASDAQ TotalView-ITCH

and HFT data, We find that non-HFT firms account for nearly 70% of liquidity provision

in hidden executions, and their hidden orders have significantly narrower spreads and lower

adverse selection costs than visible orders. In contrast, HFT firms who are able to reduce

the adverse selection risk by updating their limit orders quickly are less likely to hide orders.

Our theoretical model and empirical findings suggest that high-speed technology and hidden

orders play equivalent roles for liquidity suppliers to reduce adverse selection risk.

Traditional market quality measures, such as bid-ask spread, may not capture some

aspects of today’s market. In the third chapter, we develop a new market quality metric

that is motivated by events like the Flash Crash on May 6, 2010 and the Twitter hack on

April 23, 2013 where stock prices dropped sharply and rebounded. A stock is identified as

having a market quality breakdown if its intraday prices experience (1) decline: the best bid

prices fall 10% or more below the 09:35 price; (2) recovery: the low price on (09:35,15:55)

must be 7.5% lower than the 15:55 price; and (3) non-fleeting: the low tick must be repeated

at least once in a subsequent calendar second. Our measure relies on quotes rather than

trades because breakdowns in market quality impede trading, and that the consolidated

quotes provide the best real time portrait of the market. We focus on the best bid and
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offer from the listing exchange. In addition, we look at movements in the time frame from

09:35-15:55, given the fact that opening and closing procedures vary across exchanges and

may not be comparable.

We find that the daily average breakdown frequency is 0.64% throughout the sample

period from 1993-2011, an average of 44 stocks per day. The trend of market quality

breakdowns shows one peak in 2000 and another one in 2008 during the financial crisis.

After 2009 the breakdown frequency has returned to the level in the late 1990s. By 2011

it has fallen to 0.39%, half the rate in 1998 when humans provided the majority of quotes.

Controlling for microstructure effects, breakdowns occur 41.87% less frequently since Reg.

NMS was fully in place in 2007. Despite the Flash Crash, 2010 has the fewest breakdowns

of any year since 2007. These findings show that market quality is not becoming worse more

recently. Indeed the Reg. NMS market structures that have facilitated HFT have produced

improvements in market quality. However, this does not mean that HFT activities are all

benign to the market.

The academic literature on HFT’s impact on market quality has focused on its liquid-

ity provision, contribution to price discovery, influence on bid-ask spread and volatility.

Menkveld (2013) analyzes the arrival of the Chi-X high frequency platform in Europe and

concludes that HFT firms act as market makers in the new market. Brogaard, Hendershott

and Riordan (BHR, 2014) find that HFT increases price efficiency through their marketable

orders. Hasbrouck and Saar (2013) identify HFT activity by linked orders and suggest that

HFT lowers short-term volatility and bid-ask spreads, and increases displayed depth.

Although HFT firms are passive liquidity providers in most trades, it does not indicate

that they always act as market makers. A key part of market makers is that they have

affirmative obligations to contribute liquidity not only in good times but more importantly in

bad ones, and also not front-running by trading for their own accounts ahead of completing

customers’ orders. Non-AT systems have suffered similar limitations. Christie and Schultz

(1994) provide evidence on the implicit collusion by NASDAQ market makers to maintain
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artificially wide bid-ask spreads. This price-fixing case leads to the introduction of the SEC

Order Handling Rules. Ellis (2010) documents that NYSE specialists engaged in widespread

misconduct between 1999 and 2003, including inter-position, front-running, and freezing.

Their violations result in a subsequent NYSE reform and further regulations on securities

markets. Although regulations that promoted HFT have narrowed spreads, it does not

mean that regulation of specific HFT activities is unnecessary.

For this purpose, we provide evidence in Chapter 4 that HFT firms behave quite differ-

ently when the market is under uncertainty. Using the same NASDAQ high frequency data

set as BHR, we are able to identify whether an HFT firm initiated or filled a trade. The

data set also tells whether an HFT firm is providing liquidity at each tier of the order book.

We study HFT activity in a period of potential market stress, the U.S. Treasury Permanent

Open Market Operations (POMO) by the Federal Reserve starting in late 2008 as part of its

quantitative easing program. We find that HFT firms scale back from inside quotes during

POMO auctions. They also trade more aggressively and provide less passive liquidity to

non-HFT market participants. HFT firms make more consistent profits in aggressive trad-

ing from non-HFT firms during POMO events than normal times, with profits per share

rise 300%. They are profitable 88% of the time on aggressive trades and 100% of the time

on passive trades. We estimate that HFT firms earn profits of over $105 million during U.S.

Treasury POMO events. These findings indicate that studying the average effect of HFT

firms may provide a misleading conclusion of their contribution to market quality.
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Chapter 2

Strategies to Reduce Adverse Selection Risk: Are Speed and

Hidden Orders Equivalent?

2.1 Introduction

High frequency trading (HFT) and market transparency are two crucial aspects in the

regulation of equity market structure. HFT has grown since the adoption of the Regulation

National Market System (Reg. NMS) in 2005, and now represents the majority of equity

trading volume. HFT firms use high speed technology for order submission, cancellation,

and execution. There is an active and ongoing debate on the impact of HFT on market

quality. In a speech given in June 2014 the Securities and Exchange Commission (SEC)

Chairman Mary Jo White discussed the importance of addressing the concern about HFT

and promoting fairness for investors. 1 Pre-trade opacity is another concern for regulators

and policy makers. Many exchanges allow traders to submit hidden orders that are not

visible to the market. The impact of hidden liquidity remains an open question. Studies

on HFT and hidden orders are two isolated strands in the academic literature. This paper

contributes to the literature by analyzing the roles of trading speed and hidden orders

jointly.

In a limit order market, buyers and sellers submit orders into a limit order book. A

buy limit order specifies the highest price the trader is willing to pay for a given amount

of the security. A sell limit order specifies the lowest price the trader is willing to accept

1Mary Jo White, “Enhancing Our Equity Market Structure,”http://www.sec.gov/News/Speech/Detail/
Speech/1370542004312.
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for a given amount. Buy and sell limit orders are called bids and asks respectively. The

difference between the best bid and the best ask price is called the bid-ask spread. Incoming

orders are matched directly with orders that are already present in the limit order book. A

trade occurs if a newly entered order cross the spread. The trade initiators are often called

liquidity demanders, and traders on the passive side of trades are called liquidity suppliers.

Copeland and Galai (1983) note that buy and sell limit orders are respectively put and

call options for liquidity demanders. When new information arrives at the market, liquidity

suppliers face the risk of being picked off by liquidity demanders if they are delayed to cancel

or update their orders. In this situation limit orders may get unfavorable executions, which

is often referred to as the adverse selection problem. In this paper, we study the effects of

HFT and hidden orders on adverse selection.

HFT is indeed a general term that includes a variety of trading strategies. The SEC

(2010) discusses four types of HFT strategies: passive market making, arbitrage, structural,

and directional trading. Biais and Foucault (2014) note the HFT heterogeneity and classify

HFT strategies into five categories ranging from market making to manipulation. Despite

differences among HFT strategies, what’s in common is that they all rely on advanced

high speed technology. Speed plays an important role for participants in equity markets.

Liquidity suppliers who submit bid and ask quotes to the limit order book actively monitor

the market and update their limit orders accordingly. The use of high speed technology

enables them to incorporate real-time information quickly into their quotes and therefore be

better protected against unfavorable executions. As fast liquidity suppliers face lower risk of

being adversely selected, they are generally willing to narrow the bid-ask spread and provide

more liquidity. Both theoretical and empirical studies suggest that HFT liquidity supplying

activities generally improve market quality. Jovanovic and Menkveld (2012) propose a model

in which high frequency traders may reduce adverse selection costs by acting as middlemen

in limit order markets.They also find empirical evidence from the Dutch equity markets

that the effective bid-ask spread declined by 15% and the adverse selection cost fell by 23%
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on the entry of a large, passive HFT firm. Hasbrouck and Saar (2013) find that increased

low-latency activity improves liquidity by lowering bid-ask spreads and increasing displayed

depth. Malinova, Park, and Riordan (2013) find that bid-ask spreads and adverse selection

costs rise in Canadian equity markets after an increase in regulatory fees that affected HFT

market making activities. Hagströmer and Norden (2013) find that the majority of HFT

volume at NASDAQ OMX Stockholm (NOMX-St) comes from market making activities

and HFT market making reduces short-term volatility. Brogaard, Hagströmer, Norden,

and Riordan (2014) find that there is an increase in the share of liquidity provision by

traders who upgrade colocation subscriptions at NOMX-St and a decrease in their adverse

selection costs.

Speed also matters for liquidity demanders because those who have fast technology

may access news quickly and trade before others. Martinez and Roşu (2013) model HFT

participants as informed traders who observe news stream and trade quickly. They find that

HFT generates trading volume and volatility and decreases liquidity. Foucault, Hombert,

and Roşu (2013) argue that the ability of HFT firms to receive news faster creates additional

information asymmetry and thus reduce liquidity. Biais, Foucault, and Moinas (2013)

suggest that differences in speed increase adverse selection costs and thus HFT generates

negative externalities. Carrion (2013) and Brogaard, Hendershott, and Riordan (2014)

analyze a data set from NASDAQ that identifies HFT firms and find that HFT firms act

as aggressive liquidity demanders in more than 50% of their trading activities. Brogaard,

Hendershott, and Riordan (2013) use the 2008 short sale ban as an exogenous shock and

find that HFT firms decrease liquidity and increase volatility. Gao and Mizrach (2013)

find that HFT firms decrease their market making activity and increase their aggressive

trades during Federal Reserve Treasury purchases. Hirschey (2013) notes that HFT firms

anticipate the order flow from non-HFT investors and their aggressive trades are highly

correlated with future returns. Breckenfelder (2013) finds that competition among HFT

firms is associated with an increase in their liquidity demanding activities that lead to a
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decline in liquidity and a rise in short-term volatility.

Therefore, the net effect of speed improvement on market quality relies on its relative

contribution to liquidity suppliers and demanders. In this paper, we first develop a theoret-

ical model by introducing the speed characteristics of market participants into the Glosten

and Milgrom (1985) model. Liquidity suppliers in our model submit bid and ask quotes

competitively to the limit order book, and may choose to cancel their limit orders when

market condition changes. We assume that there are two types of liquidity demanders in the

market: informed traders and noise traders. Informed traders know the fundamental value

of the security and want to trade quickly using high speed technology. Noise traders trade

for exogenous reasons other than the fundamental and do not rely on high speed. Whether

liquidity suppliers are able to cancel their limit orders depends on their relative speed to

liquidity demanders. We find that fast liquidity suppliers bear lower risk of being adversely

selected and therefore submit limit orders with narrow bid-ask spreads. In contrast, slow

liquidity suppliers are less likely to cancel their limit orders on news arrival and charge wide

bid-ask spreads. The model predicts that adverse selection costs fall and spreads narrow

when the relative speed of liquidity suppliers increases.

We then empirically examine the effect of trading speed on adverse selection costs and

spreads using NASDAQ TotalView-ITCH data. Our initial sample consists of the 120

stocks that are studied by Carrion (2013) and Brogaard, Hendershott, and Riordan (2014).

We excluded delisted stocks during our sample period from 2008-2013. The final sample

contains 108 stocks that are stratified by market capitalization and listing exchanges. We

find that the speeds of both liquidity suppliers and demanders on NASDAQ have increased

significantly over the sample period. We measure the relative speed of liquidity suppliers

to demanders by the ratio of the 5th percentile life of executed orders to that of cancelled

orders. Controlling for volatility, trading volume, price, and market capitalization, we find

that quoted and effective spreads narrow and adverse selection costs fall when the relative

speed of liquidity suppliers to demanders increases. We also find that HFT participation in
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either the liquidity supplying or demanding side has been rising from 2008-2013. The share

of HFT cancellations increases from 19% in 2008 to nearly 30% in 2013. The proportion of

HFT aggressive executions rises from 17% in 2008 to more than 23% in 2013.

Our model also predicts that limit orders of slow liquidity suppliers are less likely to be

executed in the presence of fast liquidity suppliers. Slow liquidity suppliers face the choice

of exiting the market or using some other strategy to compete with fast liquidity suppliers.

Many stock exchanges allow traders to hide part or all of the quantity of their limit orders.

We find that slow liquidity suppliers may use hidden orders as a tool to overcome their

speed disadvantage.

Empirical studies show that hidden orders account for a large proportion of liquidity

on exchanges. Aitken, Berkman, and Mak (2001) report that undisclosed orders represent

about 28% of trading volume on the Australian Stock Exchange. Pardo and Pascual (2006)

find that 18% of trades in the Spanish Stock Exchange involve hidden order executions.

Bessembinder, Panayides, and Venkataraman (2009) study hidden liquidity on Euronext

Paris and find that hidden orders account for 44% of volume. Frey and Sand̊as (2012)

analyze DAX-30 stocks on Deutsche Börse’s electronic trading platform Xetra and find

that the average share of iceberg orders is 9% of all non-marketable orders and 16% of

overall volume. Yao (2012) finds that about 11% of trades on NASDAQ are executed

against hidden orders in 2010 and 2011.

We study the sample of 108 stocks during the period from 2008-2013 using the ITCH

data. Over the sample period, 13% of executions on NASDAQ involve hidden orders. The

proportion of hidden executions is 17% in 2008 and then falls below 11% during the period

from 2009-2011. The frequency of hidden executions gradually rises in more recent years.

Hidden executions occur nearly 15% of time in 2013.

The academic literature provides some possible explanations for the use of hidden orders.

Aitken, Berkman, and Mak (2001) as well as Pardo and Pascual (2006) suggest that the

use of hidden orders is mainly a way for liquidity suppliers to reduce the option value of
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limit orders. Buti and Rindi (2013) present a theoretical model where traders who have

no private information on asset values may rationally use reserve orders to reduce adverse

selection costs. Tuttle (2006) studies hidden order usage in the SuperSOES system and

finds that hidden liquidity reduces the adverse selection risk for limit order submitters.

De Winne and D’Hondt (2007) also find empirical evidence that traders use hidden orders

to manage picking off risk. An alternative explanation for hidden order usage comes from the

information exposure problem of displayed orders. Harris (1997) argues that order exposure

could reveal trader’s intentions which other traders may respond to. He discusses that other

traders may either withdraw from trading or front-run limit order traders. Therefore, hidden

orders provide a way for traders to reduce the informational impact.

The relationship between hidden orders and market quality remains an open question.

Moinas (2010) develops a theoretical model in which informed traders use hidden limit

orders to conceal their private information and trading intentions. Her model predicts that

the introduction of hidden orders improve market liquidity and total welfare. However,

Anand and Weaver (2004) find that market quality neither improved nor deteriorated after

the Toronto Stock Exchange abolished hidden limit orders in 1996. They also find that

the re-introduction of hidden orders in 2002 had no effect on spreads or visible depth.

Other studies suggest that the strategic use of hidden orders may reduce market liquidity

and harm price discovery. Foley, Malinova, and Park (2013) find that the introduction of

hidden orders on the Toronto Stock Exchange in 2011 resulted in wider quoted spreads

and higher trading costs. Cebirog̃lu, Hautsch, and Horst (2014) suggest that hidden orders

generate trading frictions and thus reduce price efficiency and lead to excess volatility.

We model the use of hidden orders by liquidity suppliers with heterogeneous speeds.

When fast and slow traders compete to provide liquidity in the market, slow liquidity sup-

pliers are in a worse situation because their limit orders have wider spreads and therefore

lower execution probabilities. Our model suggests that slow liquidity suppliers may over-

come their speed disadvantage by using hidden orders. Hidden orders reduce the risk of
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being picked off by informed traders and therefore enable slow liquidity suppliers to submit

quotes that are competitive with fast liquidity suppliers. Given that hidden orders also

reduce the chance of trading with uninformed noise traders, fast liquidity suppliers have

less incentive to hide their orders than slow ones. Our empirical results provide support

for the model. We find that hidden orders have significantly lower adverse selection costs

and narrower spreads than visible orders, and non-HFT firms account for 70% of liquidity

provision in hidden executions. HFT liquidity suppliers who are able to reduce the adverse

selection risk by updating their limit orders quickly are less likely to hide limit orders.

Our results suggest that hidden orders and speed technology are substitutes to manage the

adverse selection risk.

This chapter is organized as follows. We develop a theoretical model in Section 4.3 to

study the roles of speed and hidden orders in reducing adverse selection risk. Section 4.4

describes the NASDAQ HFT data set and the TotalView-ITCH data. We present in Section

2.4 empirical results on speed improvement over time and its impact on adverse selection

and spreads. We then analyze hidden orders in Section 2.5 and show that non-HFT firms

use hidden orders to compete with HFT firms in liquidity provision. Section 4.7 concludes.

2.2 The Model

We introduce the speed characteristics of liquidity suppliers into the Glosten and Milgrom

(1985) model. Liquidity suppliers may use high speed technology to monitor the market and

revise their limit orders after submission. In this section, we first develop a baseline model

with homogeneous liquidity suppliers. We then study the case in which liquidity suppliers

have different speeds. Finally, we extend this framework by including hidden orders in the

model.
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2.2.1 Primitives

Consider a limit order book for a risky security with its fundamental value Vt that follows

Vt+1 = Vt + εt+1, (2.1)

where εt+1 is the value change due to information arrival and can take three values: εt+1 =

+σ > 0 if the news is positive, εt+1 = −σ if negative, and εt+1 = 0 if no news occurs. We

assume that information about the fundamental arrives with probability γ and it could be

positive or negative with equal probability. With the complementary probability 1 − γ no

information arrives.

There are two types of agents who demand liquidity in the market: noise traders and

informed traders. Noise traders submit market orders to trade for liquidity reasons that are

not related to information about the security value. A noise trader could be a buyer or a

seller with equal probability. Informed traders know the fundamental value of the security.

They trade immediately upon information arrival and maximize their profits by trading up

to the fundamental value using marketable limit orders.

Liquidity in the limit order book is provided by risk-neutral traders who place bid and

ask quotes competitively. Liquidity suppliers in our model differ from traditional market

makers in the aspect that they do not have obligations to maintain liquidity. In other words,

they want to cancel limit orders as quickly as possible when the adverse selection risk is

high. The success of order cancellation relies on their investment in high speed technology.

Liquidity suppliers in our model are not informed of the fundamental value. However,

they may infer the informedness of an incoming order by analyzing order flow information.

We assume that with probability α they make correct inference on the identity of an arriving

liquidity demander. With probability 1 − α they are wrong. In this setting α is large

when liquidity suppliers have superior speed to monitor the market at high frequency and

process order flow information quickly. Liquidity suppliers are perfectly informed of order
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flow if α = 1, and absolutely uncertain about the informedness of an incoming order if

α = 1/2. Liquidity suppliers would choose to cancel their limit orders when they infer that

an incoming order is from a informed trader, and decide not to cancel when an order is

from a noise trader.

The use of high speed technology also provides liquidity suppliers with more chance to

withdraw their liquidity when they anticipate a high risk of adverse selection. It is important

to note that whether a liquidity supplier succeeds in cancelling a limit order depends on

her relative speed to liquidity demanders. We assume that speed is not a primary concern

for noise traders so that a liquidity supplier is always able to cancel her existing limit order

when a noise trader arrives. In contrast, informed traders also invest in speed technology

to ensure immediate execution. Therefore, on the arrival of a informed trader, a liquidity

supplier is faster and able to cancel her limit order with probability λ, but being picked off

with probability 1− λ.

The timing for traders arriving at the limit order market has the following sequence. In

stage 1 liquidity suppliers submit limit orders. In stage 2 either a noise trader or a informed

trader arrives, and liquidity suppliers choose whether to cancel existing limit orders based

on their inference on the identity of the liquidity demander. If a liquidity supplier decides to

cancel a limit order, the success of the request depends on her relative speed to the liquidity

demander. The value of the security is then realized after stage 2.The trading game repeats

from stage 1. The tree presented in Figure 1 describes the trading process.

[INSERT Figure 1 HERE]

The occurrence of an information event is selected by nature. If an event occurs, in-

formed traders buy on positive news and sell on negative news. If no event occurs noise

traders arrive to buy or sell with equal probability. Liquidity suppliers are not informed of

information events and make inference on the identity of liquidity demanders. They choose

to cancel limit orders when inferring the arrival of informed traders and able to do so only
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if they are faster. Liquidity suppliers would decide not to cancel limit orders when inferring

that noise traders arrive.

To simplify the analysis we assume that each order submitted by traders is for one unit

of the security. Due to symmetry it suffices to analyze only one side of the limit order

market. Without loss of generality we study the decision problem of liquidity suppliers on

the ask side of the book while liquidity demanders submit buy orders.

2.2.2 Order submission strategy of liquidity suppliers

Suppose a liquidity supplier places a ask quote at At and define st = At − Vt as the half-

spread on the ask side. With probability (1− γ)/2 a market buy order from a noise trader

arrives at the order book. In this case the liquidity supplier recognizes the noise trader with

probability α and chooses to stay in the market to earn a profit of st. With probability

1 − α the liquidity supplier cancels the ask quote due to her wrong belief that a informed

trader arrives.

A informed trader buys in the occurrence of a positive news with probability γ/2. The

liquidity supplier chooses to cancel the ask quote with probability α and not to cancel with

probability 1 − α given her inference on the order flow information. In the case that the

liquidity supplier chooses to cancel her limit order, she is not able do so with probability

1−λ when slower than the informed trader. Therefore, the expected profit for the liquidity

supplier is

πt =
1− γ

2
[αst + (1− α) · 0] + γ

2
[α(λ · 0 + (1− λ)(st − σ)) + (1− α)(st − σ)]

=
1

2
[(1− γ)αst + γ(1− αλ)(st − σ)]. (2.2)

This shows that the probability of being adversely selected for a liquidity supplier is

γ(1−αλ)/2, which is a decreasing function of α and λ. This is consistent with the intuition

that the adverse selection risk is lower if liquidity suppliers are better informed of order
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flow or faster to cancel their limit orders. The equivalent role of α and λ in the expression

suggests that order flow information and cancellation speed have the same effect on reducing

the adverse selection risk for liquidity suppliers.

Let s∗t (α, λ) be the competitive half-spread given that liquidity suppliers are informed of

order flow with probability α and faster than informed traders with probability λ. s∗t (α, λ)

is obtained when the zero expected profit condition is satisfied, i.e. πt = 0.

s∗t (α, λ) =
γ(1− αλ)

(1− γ)α+ γ(1− αλ)
σ. (2.3)

It is straightforward to show that ∂s∗t (α, λ)/∂α < 0 and ∂s∗t (α, λ)/∂λ < 0, that is, the

competitive spread decreases in α and λ. Other things being equal, the bid-ask spread will

become narrower when liquidity suppliers are better informed of order flow. Similarly, the

spread will be smaller when liquidity suppliers are faster and more likely to cancel limit

orders on the arrival of informed traders. This result is consistent with the finding by

Hendershott, Jones, and Menkveld (2011) that algorithmic trading narrows spreads.

The result in (2.3) also suggests that different combinations of α and λ may result in

the same competitive spread. For example, when α = 1 and λ = 0, liquidity suppliers are

able to identify noise and informed traders perfectly but cannot cancel outstanding limit

orders successfully when informed traders arrive. In this case the competitive half-spread

is s∗t (1, 0) = γσ. In another case of α = 1/2 and λ = 1, when liquidity suppliers are always

able to cancel limit orders when recognizing informed traders but completely uninformed of

order flow, the competitive half-spread is the same, i.e. s∗t (1/2, 1) = γσ. In general, when

λ = 1/α−1, the competitive half-spread of liquidity suppliers reduces to s∗t (α, λ) = γσ that

is exactly the same as the result from the Glosten and Milgrom (1985) model.
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2.2.3 Liquidity suppliers with heterogeneous speeds

The competitive half-spread s∗t in (2.3) is derived when liquidity suppliers are all identical

with respect to cancellation speed and order flow information. We then consider the case

that technology innovation enables a group of liquidity suppliers to have greater advantage

than others. Given that order flow information is equivalently effective with cancellation

speed to reduce the risk of adverse selection, we assume that all liquidity suppliers have the

same capability of processing order flow information but only differ in cancellation speed. In

other words, α is the same for all liquidity suppliers but λ is not. Let λF be the probability

that fast liquidity suppliers are able to cancel limit orders on the arrival of informed traders,

and λS be the probability for slow liquidity suppliers with λS < λF .

From (2.3) we know that the competitive half-spread is narrower for liquidity suppliers

who have higher speed. Since the existence of slow liquidity suppliers does not affect the

expected profit of fast ones, the competitive half-spread for fast liquidity suppliers would

be

s∗F = s∗t (α, λF ) =
γ(1− αλF )

(1− γ)α+ γ(1− αλF )
σ. (2.4)

In contrast, the order submission strategy of slow liquidity suppliers may change in the

presence of fast ones. Slow liquidity suppliers have opportunities to trade with noise or

informed traders only when fast liquidity suppliers cancel their outstanding limit orders. In

specific, the probability that slow liquidity suppliers are contacted by noise trader falls to

(1 − γ)(1 − α)/2, and the probability of being contacted by informed traders decreases to

γαλF /2. Therefore, the expected profit for slow liquidity suppliers is given as

πS =
1

2
[(1− γ)(1− α)αst + γαλF (1− αλS)(st − σ)]. (2.5)

The competitive half-spread for slow liquidity suppliers is then obtained by setting πS =
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0.

s∗S =
γλF (1− αλS)

(1− γ)(1− α) + γλF (1− αλS)
σ. (2.6)

We see that s∗S could be different the competitive half-spread for slow liquidity suppliers

in the absence of fast ones, s∗t (α, λS). Suppose that s∗t (α, λS) = γσ, so we have λS =

(1 − α)/α and λF > (1 − α)/α. In this case, s∗S > s∗t (α, λS), which suggests that slow

liquidity suppliers will widen their spreads when they are not able to adopt more advanced

speed technology to compete with fast liquidity suppliers. In particular, the case of α = 1 in

which both fast and slow liquidity suppliers are perfectly informed of order flow information

results in s∗S = σ, which means that slow liquidity suppliers submit competitive ask quotes

at Vt−1 + σ in the presence of fast ones. Although slow liquidity suppliers will not suffer

any loss at this price, their orders indeed have little execution probability. This suggests

that slow liquidity suppliers may be driven out of the market by fast ones.

2.2.4 Model with hidden orders

We now extend the above framework to allow liquidity suppliers to hide their limit orders

in the book. Hidden orders are not visible to other market participants but have lower time

priority to be executed than the displayed orders at the same price. By choosing hidden

orders instead of displayed ones, liquidity suppliers reduce the risk of being picked off by

informed traders upon the arrival of news. We assume that with probability θ a hidden

limit order is executed by informed traders even if there is no visible limit order in the book.

Under this assumption liquidity suppliers reduce the probability of trading with informed

trader by 1− θ if submitting hidden orders. However, when placing hidden orders liquidity

suppliers also have a lower chance to trade with noise traders to earn profits. We assume

that noise traders are less likely to submit market orders in the absence of visible orders, and

with probability η they still choose to trade. Noise traders generally trade for exogenous

reasons and are less sensitive to the visibility of orders than informed traders. Therefore we

assume in the model that θ < η.
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Liquidity suppliers have an option to choose between visible and hidden orders. There

are five possible equilibria in which both fast and slow liquidity suppliers have zero expected

profits. We present them in Table 2.1.

[INSERT Table 2.1 HERE]

Visible orders submitted by slow liquidity suppliers have wider competitive spreads than

those by fast liquidity suppliers and therefore have lower execution probability. Hidden

orders provide a tool for slow liquidity suppliers to reduce the adverse selection risk so that

they may improve their quote prices. By using hidden orders slow liquidity suppliers are

able to compete with fast ones at the top of the queue. As a result, the optimal strategy

for slow liquidity suppliers is to use hidden orders.

Fast liquidity suppliers are able to manage the adverse selection risk by updating their

limit orders quickly. They are less likely to submit hidden orders because it reduces their

chance to trade with noise traders to earn profits. Therefore, fast liquidity suppliers will

choose visible orders as their optimal strategy to attract high trading volume.

2.2.5 Empirical predictions

The theoretical model suggests that the speed of liquidity suppliers would affect their order

placement strategies in limit order markets. It has several empirical predictions that we

summarize as follows.

H1 : Adverse selection costs fall when the relative speed of liquidity suppliers to deman-

ders increases.

H2 : Spreads narrow when liquidity suppliers improve their relative speed.

H3 : Hidden orders are used more frequently by slow liquidity suppliers than fast ones.

H4 : Hidden orders bear lower adverse selection risk than visible orders.

H5 : Hidden orders have narrower spreads than visible orders.

We then use NASDAQ data to test these hypotheses.
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2.3 Data

The main data sets used in this paper are NASDAQ HFT database and TotalView-ITCH

data. In addition, we obtain the number of outstanding shares from the Center for Research

in Security Prices (CRSP) to calculate firms’ market capitalization.

2.3.1 HFT database

The NASDAQ HFT database provides information about trades and quotes on 120 ran-

domly selected stocks with half of the firms listed on NASDAQ and the other half on New

York Stock Exchange (NYSE). The sample consists of three market capitalization groups:

large, mid, and small. Each group contains 40 stocks. Stocks in the large-cap group are

selected from the largest market capitalization stocks. The mid-cap group is composed of

stocks around the 1000th largest stocks in the Russell 3000, and the small-cap group con-

sists of stocks stocks around the 2000th largest stocks in the Russell 3000. We list in Table

2.2 the ticker symbols in the HFT database.

[INSERT Table 2.2 HERE]

The trade data set contains all trades on NASDAQ during regular trading hours from

January 2008 to December 2009, plus the week of February 22-26, 2010. For each trade,

the data set contains the following fields: ticker symbol of stock, date, timestamp, shares,

price, buy/sell indicator, and type. The timestamps are in milliseconds. The buy/sell

indicator tells whether the trade is initiated by a buyer or a seller. The type variable

captures whether traders are HFT or non-HFT firms at both sides of a trade. Accordingly,

trades are classified into four types: HH, HN, NH, and NN, where the first letter refers

to the liquidity demander and the second to the liquidity supplier. NASDAQ identifies

26 HFT firms based on the trading styles of firms. As noted by Brogaard, Hendershott

and Riordan (2014), it is possible that some HFT activities are not identified in this data

set. For example, HFT firms that route their orders through large integrated firms, such as
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Goldman Sachs and Morgan Stanley, cannot be clearly identified and therefore are excluded.

Despite the limitation, this is the only data set that directly classify HFT activities in the

U.S. equity markets.

2.3.2 ITCH

TotalView-ITCH is a direct data feed that NASDAQ provides to market participants. It

consists of sequenced messages for order addition, cancellation, replacement, and execution

for securities traded on NASDAQ. The order level data enables us to construct the limit

order book with all price tiers at any given time. The timestamps in the ITCH data are in

milliseconds before August 10, 2009, and in nanoseconds afterward.

Messages in ITCH are marked by different symbols for their types. An “A” or an “F”

message indicates that a new order has been added into the book. The difference between

the two types “A” and “F” is that the market participant identifier (MPID) is associated

with the entered order for “F” messages while “A” messages are anonymous. Each add

order message has a unique order reference number, so that we may track the life of each

order when it is removed from the book.

A limit order leaves the book if it get cancelled, executed, or replaced by another order.

We see a “D” message when the entirety of an order is cancelled so there is no remaining

shares available. An “X” message indicates that an order is partially deleted. When an

order on the book is executed there is an “E” message. An order may be executed in whole

or in several parts, so it is possible to see multiple execution messages for the same order

reference number. An order is occasionally executed at a different price from the original

quote, and these executions are designated with a “C”. A “U” message indicates than an

order is cancelled and replaced by another one.

The ITCH data also provides a trade message “P” for a match involving a hidden order.

This message tells the price and size of a hidden execution and whether the original hidden

order is a buy or a sell order.
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The ITCH sample covers the period from 2008-2013. We analyze the 120 stocks that are

selected for the HFT database. Two stocks, BZ and MAKO, do not exist at the beginning

of the sample period. 10 stocks are delisted during our sample period: ABD, BARE, BW,

CHTT, GENZ, KNOL, KTII, MFB, PPD, and RVI. To maintain a balanced panel, we

exclude these stocks. The final sample consists of 108 stocks with half listed on NASDAQ

and the other half on NYSE. Among the 108 stocks there are 39 large-cap, 38 mid-cap, and

31 small-cap stocks.

To retrieve the HFT status in hidden and visible executions separately, we match each

trade in the NASDAQ HFT database with the corresponding one in the ITCH data. This

enables us to analyze the proportion and characteristics of hidden liquidity supplied by

HFT and non-HFT firms respectively.

2.4 Speed

Speed matters for both liquidity suppliers and demanders in the limit order market. For

liquidity suppliers investment on speed technology enables them to reduce the latency of

their messages being processed by the exchange. As their existing limit orders are more

likely to be cancelled when new information arrives, liquidity suppliers get better protection

against the risk of being picked off. However, informed liquidity demanders who have higher

speed are able to pick off stale limit orders more quickly. Therefore, the overall effect of speed

improvement on market quality depends on its relative contribution to market participants

who try to avoid being adversely selected with respect to those who trade against stale

quotes. In this section we first present the trend of speed improvement over our sample

period from 2008-2013. We then study the impact of speed on adverse selection and market

liquidity.
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2.4.1 Summary statistics

We cannot directly observe the trading speed of market participants. The ITCH data

tracks each limit order by a unique reference number so that we are able to determine the

life of an order when it leaves the book. The order life provides a proxy for the latency of

accessing market by traders. A shorter order life indicates a higher trading speed. We use

the 5th percentile life of cancelled orders τC as a proxy to measure the latency of liquidity

suppliers, and the 5th percentile life of executed orders τE as a proxy to measure the latency

of liquidity demanders. 2 We plot in Figure 2.2 the 5th percentile order lives across all

sampled stocks from 2008-2013.

[INSERT Figure 2.2 HERE]

Across all stocks in the sample, the 5th percentile life of cancelled orders has fallen

significantly from 1 millisecond in 2008 to 0.05 milliseconds in 2013. There is a remarkable

drop in cancellation latency from 2009-2011. This is consistent with the finding by Gai,

Yao, and Ye (2014) of NASDAQ system upgrade and traders’ speed improvement in 2010.

The cancellation latency stays relatively stable in 2012 and 2013, the last two years of our

sample.

The 5th percentile life of executed orders shows a similar decreasing trend with cancelled

orders during the period from 2008-2013. It falls significantly from 1 millisecond in 2008 to

0.07 milliseconds in 2013. The execution latency is lower than the cancellation latency in

2009 and 2010, but becomes higher afterward.

The falling trend of trading latency over the period is associated with the rise of HFT.

HFT firms make extensive infrastructure investments to increase their speed on order sub-

mission, cancellation and execution. Following Hasbrouck and Saar (2013), Hasbrouck

(2013), and Gai, Yao, and Ye (2014), we define a high frequency message as any order chain

with less than 50 millisecond link. In specific, if a limit order is cancelled or executed in

2The results are robust to using the minimal and the 1st percentile of order lives.
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less than 50 milliseconds after it is added to the order book we attribute this activity to

an HFT firm. Only HFT firms are able to operate with this latency that is more than 20

times faster than the reaction of a human trader.

We first look at HFT participation in the liquidity supplying side. We measure the share

of HFT cancellations as the number of cancelled orders with less than 50 millisecond life

divided by the total number of cancelled orders. Table 2.3 summarizes the proportion of

HFT cancellations.

[INSERT Table 2.3 HERE]

Panel A shows the summary statistics for HFT cancellations with orders pooled across

all stocks on each day. We report the results for each year during the period from 2008-

2013. HFT liquidity suppliers account for an average of 19% of cancellations in 2008. The

proportion falls a little to 16% in 2009 and starts to rise afterward. In 2012 and 2013 nearly

30% of cancellations are made in less than 50 milliseconds. The daily variation that is

measured by the standard deviation is smaller in 2012 and 2013 than in 2008, suggesting

that the rise of HFT cancellation in more recent years is persistent. The median percentage

shows a similar trend as the average from 2008-2013.

We sort stocks into three groups based on market capitalization: large, mid, and small.

Panels B-D present the summary statistics for each group respectively. The share of HFT

cancellations in each group shows a similar time trend over the period from 2008-2013.

However, the proportion is quite different among market capitalization groups. In general,

HFT cancellations occur the most frequently in large cap stocks. This suggests that HFT

liquidity supplying activities are the most active in large cap stocks. Compared to small

cap stocks, mid caps have a larger proportion of HFT cancellations before 2009 but a lower

share afterward. For example, in 2011 and 2012 the share of HFT cancellations in small cap

stocks is 8% higher than that in mid caps and reaches to the level in large caps. It indicates

that HFT liquidity suppliers engage more in small cap stocks in recent years. In addition,
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large cap stocks often have the smallest daily variation in the share of HFT cancellations,

suggesting that HFT liquidity provision is relatively persistent in large caps.

We then analyze HFT aggressive liquidity taking activities by computing the proportion

of executed orders with less than 50 millisecond life. The summary statistics are presented

in Table 2.4.

[INSERT Table 2.4 HERE]

Panel A reports the proportion of HFT aggressive executions with orders pooled across

all stocks on each day. The average share of HFT executions has risen steadily from 17%

in 2008 to more than 23% in 2013. The daily variation has fallen in more recent years. The

standard deviation in 2013 is less than half of that in 2008. The median HFT share is close

to the average and has a similar time trend over the period from 2008-2013.

Panels B-D contain the summary statistics for large, mid, and small cap stocks respec-

tively. The proportion of HFT executions in each group shows a consistently increasing

trend from 2008-2013. In every year during the sample period, the percentage of HFT

executions is the highest in large cap stocks and the lowest in small cap stocks. However,

the differences among the three groups have reduced along time. In 2013 the difference in

the average HFT share between large and small cap stocks is less than 1%.

2.4.2 Impact of speed on adverse selection

The academic literature is divided on the effects of speed on adverse selection. We follow

Hendershott, Jones, and Menkveld (2011) and measure adverse selection by the signed

change in the midpoint of the best bid and ask prices 5 minutes after the time of the initial

trade. For trade t in stock i, the cost of adverse selection ASi,t is defined as

ASi,t =
xi,t(mi,t+5min −mi,t)

mi,t
, (2.7)
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where xi,t is an indicator variable for the trade direction and equals 1 for buyer-initiated

trades and −1 for seller-initiated trades. The trade direction is explicitly provided in the

ITCH data. mi,t is the prevailing midpoint of quotes at the time of the trade, i.e. mi,t =

(pbi,t+pai,t)/2, where p
b
i,t and pai,t are the best bid and the best ask price respectively. mi,t+5min

is the quote midpoint 5 minutes after the trade.

We also use the price impact from the Hasbrouck (1991) model as an alternative measure

of adverse selection. We compute the permanent price impact of executions based on

the cumulative impulse response of the quoted price to a unit shock in trade. Following

Hasbrouck (1991) we use the vector autoregressive (VAR) model that provides a framework

to infer the informational content of trades from observed quote revisions. For stock i, let

ri,t be the log return in the quote midpoint between trades, i.e. ri,t = logmi,t − logmi,t−1.

The time index t is based on trade events, not clock time. The VAR model with 10-lag

order flow dependence is given as

ri,t = cr,0 +

10∑
j=1

αr,jri,t−j +

10∑
j=0

βr,jxi,t−j + εr,i,t, (2.8)

xi,t = cx,0 +

10∑
j=1

αx,jri,t−j +

10∑
j=1

βx,jxi,t−j + εx,i,t. (2.9)

We use Hasbrouck’s identifying assumption that the current trade has an impact on

the current quote, but not vice versa. After estimating the model by seemingly unrelated

regressions (SUR), we invert the VAR to obtain the vector moving average (VMA) repre-

sentation: ⎡⎢⎣ ri,t

xi,t

⎤⎥⎦ =

⎡⎢⎣ A(L) B(L)

C(L) D(L)

⎤⎥⎦
⎡⎢⎣ εr,i,t

εx,i,t

⎤⎥⎦ (2.10)

where A(L), . . . , D(L) are lagged operators. The VMA representation provides an easy way

to present the cumulative impulse response of price to a unit shock in trade. We compute

the cumulative impulse response up to 50 transactions after the shock, which is equal to∑50
j=0Bj . The model is estimated for each stock on each day.
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We report in Table 2.5 the average 5-minute adverse selection cost and price impact in

each year from 2008-2013. Both measures are expressed in basis points (bps).

[INSERT Table 2.5 HERE]

Each of the adverse selection measures exhibits a downtrend over the period from 2008-

2013, though the decline is not monotonic. Panel A presents the measures across all sample

stocks. The average adverse selection cost is 7.5 bps in 2008. It rises to 8.2 bps in 2009,

falls significantly to 5.5 bps in 2010, and then stays relatively stable afterwards. The price

impact has a similar trend during the sample period.

Panels B-D contain the results for each of three market capitalization groups respectively.

The adverse selection cost and price impact are the lowest in large cap stocks and the highest

in small cap stocks. The time trend in each group is similar to the full sample. In particular,

both measures drop significantly in 2010 and stay relatively flat afterwards.

We then analyze the impact of speed on adverse selection using econometric models.

Given that both liquidity suppliers and demanders may use high speed technology to trade,

it is their relative speed that matters. For stock i on day d, we define the relative speed of

liquidity suppliers to demanders as

rel spdi,d = τEi,d/τ
C
i,d. (2.11)

where τEi,d and τCi,d are the 5th percentile life of executed and cancelled orders respectively.

We regress each adverse selection measure on the relative speed variable and control for

other effects. Since adverse selection varies across stocks and along time, we run panel data

regression with stock and year fixed effects as follows.

Yi,d = β0 + β1rel spdi,d + controlsi,d +

107∑
k=1

φkstocki,d +

5∑
j=1

κjyeari,d + εi,d, (2.12)

where the dependent variable Yi,d is the average adverse selection cost or the price impact
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for stock i on day d. The control variables include volatility, log of trading volume, price,

and log of market capitalization. stocki,d is a set of dummy variables that are used to

capture unobserved stock fixed effects. We also include year dummy variables yeari,d to

control for time effects. The regression results are reported in Table 2.6.

[INSERT Table 2.6 HERE]

We find that both the 5-minute adverse selection cost and the price impact are negatively

associated with the relative speed. This suggests that adverse selection costs decline when

liquidity suppliers have superior speed advantage. The results confirm the first prediction

H1 from our theoretical model. The coefficients of relative speed in both regressions are

statistically significant at the 1% level. Quantitatively, an 10% increase in the speed of

liquidity suppliers to demanders is associated with a 1.48 bps decrease in adverse selection

costs, and a 0.80 bps decline in price impact. Based on the fact that the average estimate

across all stocks over the sample period is 6.22 bps for adverse selection costs and 5.78 bps

for price impact, the results reflect that adverse selection costs decrease by 24% and price

impact by 14%.

2.4.3 Impact of speed on spreads

Spreads are important indicators of market liquidity. Our theoretical model predicts that

fast liquidity suppliers charge narrow spreads because of low adverse selection risk. There-

fore, spreads would narrow when the relative speed of liquidity suppliers to demanders

increases. We test this hypothesis using two spread measures: quoted half-spreads and

effective half-spreads. Both measures are normalized by the prevailing quote midpoint, and

expressed in basis points.

The quoted half-spread is half of the difference between the best bid and the best ask

price. The effective half-spread is the signed difference between the actual trade price and

the midpoint of the best bid and ask when the trade takes place. For trade t in stock i, we
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calculate the normalized effective spread ESi,t as

ESi,t =
xi,t(pi,t −mi,t)

mi,t
, (2.13)

where xi,t is the buy/sell indicator variable that equals 1 for buys and −1 for sells, pi,t is

the trade price, and mi,t is the prevailing midpoint of the best bid and ask quotes.

We report in Table 2.7 average quoted half-spreads and effective half-spreads in each

year from 2008-2013.

[INSERT Table 2.7 HERE]

The results show that both spread measures have similar time trend with adverse se-

lection. Panel A presents the measures across all sample stocks. The average quoted

half-spread is 8.6 bps in 2008. It rises to 9.4 bps in 2009, falls significantly to 6.1 bps in

2010, and then stays relatively stable afterwards. The effective half-spreads exhibit similar

trend during the period from 2008-2013.

Panels B-D contain the results for each of three market capitalization groups respectively.

Both quoted and effective spreads are the lowest in large cap stocks and the highest in small

cap stocks. The time trend in each group is similar to the full sample.

We then analyze the impact of speed on spreads by running panel regression with stock

and year fixed effects as specified in (2.12). The dependent variable Yi,d is respectively the

average quoted and effective half-spreads for stock i on day d. We report the regression

results in Table 2.8.

[INSERT Table 2.8 HERE]

The results validate the second hypothesis H2 that spreads narrow when liquidity sup-

pliers have superior speed advantage. We find that both quoted and effective spreads are

negatively associated with the relative speed. The coefficients of relative speed in both

regressions are statistically significant at the 0.1% level. Quantitatively, an 10% increase in
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the speed of liquidity suppliers to demanders is associated with a 1.03 bps decline in quoted

half-spreads, and a 0.77 bps decline in effective half-spreads. Based on the fact that the

average estimate across all stocks over the sample period is 7.11 bps for quoted half-spreads

and 5.62 bps for effective half-spreads, the results suggest that both quoted and effective

half-spreads decrease by 14%.

2.5 Hidden Orders

Our theoretical model predicts that limit orders of slow liquidity suppliers are less likely to

be executed in the presence of fast liquidity suppliers. Therefore, slow liquidity suppliers

face the choice of exiting the market or using some other strategy to compete with fast

liquidity suppliers. Hidden orders have lower adverse selection risk and thus provide a tool

for slow liquidity suppliers to improve their competitive spreads. Fast liquidity suppliers

are less likely to use hidden orders because they are able to manage the adverse selection

risk by revising limit orders quickly and hidden orders reduce their trading volume. In this

section, we first provide summary statistics of hidden order executions on NASDAQ based

on the ITCH data. We then compare adverse selection costs and spreads between hidden

and visible orders. Finally, we study whether HFT or non-HFT firms use hidden orders

more frequently.

2.5.1 Summary statistics

Our analysis of hidden liquidity is based on the ITCH data that provides trade messages for

executions involving hidden orders. Each of these messages tells us the price of the hidden

order and whether it is a buy or sell order. We calculate the proportion of hidden execu-

tions as the number of executions involving hidden orders divided by the total number of

executions during regular trading hours on each day. Table 2.9 presents summary statistics

of hidden executions on NASDAQ from 2008-2013.

[INSERT Table 2.9 HERE]
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Panel A summarizes the share of hidden executions across all stocks in each year over the

sample period. The average share of hidden executions is 17% in 2008, and falls below 11%

during the period from 2009-2011. It then gradually rises to 15% in 2013. The daily variation

in the proportion of hidden executions is relatively stable from 2008-2013. Our results are

consistent with the finding by Yao (2012) who analyzes all NASDAQ-listed common stocks

from 2010-2011 and reports that 11% of trades involve hidden orders executions.

We report summary statistics for large, mid, and small cap stocks respectively in Panels

B-D. The average percentage of hidden executions shows a similar time trend in each group.

Hidden executions occur more frequently in small cap than large cap stocks from 2008-2010;

however, their difference becomes smaller from 2011-2013. In 2013 large and small cap stocks

have the same share of hidden executions.

2.5.2 Adverse selection of hidden orders

We test the hypothesis that hidden orders bear lower adverse selection risk than visible

orders. Consistent with Section 2.4.2, we use two measures for adverse selection: 5-minute

adverse selection costs and price impact from the VAR model. We use (2.7) to compute

adverse selection costs of visible and hidden executions respectively. For price impact, we

extend the VAR model in (2.8) and (2.9) to a three-equation model that separate visible

and hidden executions.

ri,t = cr,0 +

10∑
j=1

αr,jri,t−j +

10∑
j=0

βr,jx
H
i,t−j +

10∑
j=0

γr,jx
V
i,t−j + εr,i,t, (2.14)

xHi,t = ch,0 +

10∑
j=1

αh,jri,t−j +

10∑
j=1

βh,jx
H
i,t−j +

10∑
j=1

γh,jx
V
i,t−j + εh,i,t, (2.15)

xVi,t = cv,0 +

10∑
j=1

αv,jri,t−j +

10∑
j=1

βv,jx
H
i,t−j +

10∑
j=1

γv,jx
V
i,t−j + εv,i,t, (2.16)

where ri,t is the percentage change in the midpoint of the best bid and ask prices, xHi,t is

the buy/sell indicator for hidden executions, and xVi,t for visible executions. The indicator
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variables equal 1 for buys and −1 for sells. If a hidden execution occurs in the absence of

a visible one, xVi,t is set to 0, and vice versa if a visible execution occurs in the absence of a

hidden one, xHi,t is set to 0. For both hidden and visible executions, the current trade has

an impact on the current quote, but not vice versa. We then invert the VAR to obtain the

VMA representation:

⎡⎢⎢⎢⎢⎢⎣
ri,t

xHi,t

xVi,t

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
A(L) B(L) C(L)

D(L) E(L) F (L)

G(L) H(L) I(L)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
εr,i,t

εh,i,t

εv,i,t

⎤⎥⎥⎥⎥⎥⎦ (2.17)

where A(L), . . . , I(L) are lagged operators. We compute the price impact of hidden and

visible executions respectively based on the cumulative impulse response of the quoted

price to a unit shock in trade. We calculate the cumulative impulse response up to 50

transactions after the shock. It is equal to
∑50

j=0Bj for hidden executions and
∑50

j=0Cj for

visible executions.

Over our sample period from 2008-2013, the average adverse selection cost across all

stocks is 1.35 bps for hidden and 7.19 bps for visible executions. The average price impact

is 4.70 bps for hidden and 5.92 bps for visible executions. To capture whether hidden

and visible executions differ significantly in adverse selection, we estimate the following

regression model.

Yi,d = β0 + β1hiddeni,d + controlsi,d +
107∑
k=1

φkstocki,d +
5∑

j=1

κjyeari,d + εi,d, (2.18)

where Yi,d is the average adverse selection cost or the price impact for stock i on day

d, hiddeni,d is a dummy variable that equals 1 for hidden executions and 0 for visible

executions, and the control variables include volatility, log of trading volume, price, and

log of market capitalization. Similar to the regression model in the speed section, we also
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include stock and year fixed effects as adverse selection varies across stocks and along time.

stocki,d is a set of stock dummy variables and yeari,d is a set of year dummy variables. We

report the regression results in Table 2.10.

[INSERT Table 2.10 HERE]

The estimated coefficient of the hidden variable captures the differential adverse selec-

tion between hidden and visible executions. We find that hidden orders bear statistically

significantly lower adverse selection risk than visible ones. The 5-minute adverse selection

cost of hidden executions is 5.84 bps lower than visible executions, and the price impact of

hidden executions is 1.22 bps weaker. The results validate the theoretical prediction that

hidden orders have lower adverse selection risk than visible orders.

2.5.3 Spreads of hidden orders

Given that hidden orders are less likely to be adversely selected, liquidity suppliers may

use hidden orders to improve their quotes and charge a narrower spread. We test this

hypothesis using two spread measures: quoted half-spreads and effective half-spreads. Both

measures are normalized by the prevailing quote midpoint, and expressed in basis points.

We compute these two metrics for hidden and visible executions respectively.

Over the sample period the average quoted half-spread across all stocks is 6.30 bps

for hidden and 6.87 bps for visible executions. The average effective half-spread is 1.92

bps for hidden and 6.37 bps for visible executions. To determine the significance of the

spread difference between hidden and visible orders, we estimate the regression model that

is specified in (2.18). The results are presented in Table 2.11.

[INSERT Table 2.11 HERE]

We find that hidden orders have significantly narrower spreads than visible ones. The

quoted half-spread of hidden orders is 0.58 bps narrower than visible orders, and the effective
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half-spread of hidden orders is 4.45 bps narrower. The results suggest that liquidity suppliers

use hidden orders to improve their quote prices.

2.5.4 Who uses hidden orders more frequently?

We find in our model that slow liquidity suppliers are worse off in the presence of fast ones

because their limit orders have lower execution probability. Hidden orders provide a way for

slow liquidity suppliers to reduce the adverse selection risk so that their competitive quotes

have narrow spreads. Fast liquidity suppliers are less likely to use hidden orders because

it reduces their profits from trading with uninformed liquidity demanders. Based on this

reasoning, we conjecture that non-HFT firms submit hidden orders more frequently than

HFT firms. We test this hypothesis using the NASDAQ HFT data set and the ITCH data.

The HFT data set tells us whether traders are HFT or non-HFT firms at both sides of a

trade. However, it does not include information on whether a trade involves a hidden or a

visible order. By matching ITCH with the HFT data trade by trade, we obtain the HFT

status at both sides in every hidden execution.

We analyze whether HFT or non-HFT firms supply more hidden liquidity. Among all

executions HFT firms provide liquidity in HH and NH trades, while non-HFT firms in HN

and NN trades. Therefore, the share of liquidity supplied by non-HFT firms ωnon-HFT is

calculated as the number of HN and NN trades divided by the total number of trades during

regular trading hours on each day, i.e.

ωnon-HFT =
HN+NN

HH+HN+NH+NN
. (2.19)

Accordingly, the HFT share is ωHFT = 1−ωnon-HFT. We compare the share of liquidity

provided by HFT and non-HFT firms in hidden and visible executions respectively and

present the results in Table 2.12.

[INSERT Table 2.12 HERE]
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The results show that 70% of liquidity in hidden executions is supplied by non-HFT

firms across all stocks. In contrast, HFT firms supply more than 50% liquidity in visible

executions. The difference between non-HFT and HFT shares is much more significant in

hidden executions than in visible executions. The results suggest that non-HFT liquidity

suppliers use hidden orders to reduce their adverse selection risk. In contrast, HFT liquidity

suppliers who have speed advantage may manage the adverse selection risk by updating their

limit orders quickly, and therefore use hidden orders less frequently.

2.6 Conclusion

We study in this paper two strategies that may reduce the adverse selection risk: investment

in speed technology and use of hidden orders. Liquidity suppliers who use high speed

technology are able to update their orders quickly and therefore face lower adverse selection

risk. Our theoretical model reveals that adverse selection costs fall and spreads narrow

when liquidity suppliers become faster. However, slow liquidity suppliers are worse off in

the presence of fast ones because their limit orders have wider competitive spreads and

therefore lower execution probabilities. The model predicts that hidden orders provide a

tool for slow liquidity suppliers to reduce the adverse selection risk and compete with fast

liquidity suppliers.

Our empirical results on speed and hidden order usage on NASDAQ validate the pre-

dictions from the model. We find that both adverse selection costs and price impact decline

and spreads narrow, when liquidity suppliers have superior speed advantage. We also find

that non-HFT firms account for 70% of liquidity provision in hidden executions, while HFT

firms supply more liquidity in visible executions. Hidden orders have significantly lower

adverse selection risk and narrower spreads than visible orders. Our findings suggest that

speed and hidden orders have equivalent roles for liquidity suppliers to reduce the adverse

selection risk.
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Table 2.2: Stocks in NASDAQ HFT Database
This table lists the 120 ticker symbols in NASDAQ HFT database. Stocks are stratified
by listing exchanges and market capitalization. 60 stocks are listed on NASDAQ and the
other 60 on NYSE. Stocks are sorted into three market capitalization groups: large, mid,
and small. Each group contains 40 stocks. Stocks in the large-cap group are selected from
the largest market capitalization stocks. The mid-cap group is composed of stocks around
the 1000th largest stocks in the Russell 3000, and the small-cap group consists of stocks
around the 2000th largest stocks in the Russell 3000.

Large-cap Mid-cap Small-cap

AA EBAY AMED FCN ABD IMGN
AAPL ESRX ARCC FL AINV IPAR
ADBE GE AYI FMER ANGO KNOL
AGN GENZ BARE FULT APOG KTII
AMAT GILD BRE GAS AZZ MAKO
AMGN GLW BXS ISIL BAS MDCO
AMZN GOOG CBT JKHY BW MFB
AXP GPS CCO LANC BZ MIG
BHI HON CETV LECO CBEY MOD
BIIB HPQ CHTT LPNT CBZ MRTN
BRCM INTC CKH LSTR CDR MXWL
CB ISRG CNQR MANT CPSI NC
CELG KMB COO MELI CRVL NXTM
CMCSA KR CPWR NSR CTRN PBH
COST MMM CR NUS DCOM PPD
CSCO MOS CRI PNY DK RIGL
CTSH PFE CSE PTP EBF ROCK
DELL PG CSL ROC FFIC ROG
DIS PNC ERIE SF FPO RVI
DOW SWN EWBC SFG FRED SJW



37

Table 2.3: Percentage of HFT Cancellations
This table reports mean, standard deviation (SD), the 10th (P10) percentile, median, and
the 90th percentile (P90) of the proportion of HFT cancellations. We define an HFT
cancellation as any limit order that is cancelled in less than 50 milliseconds based on the
NASDAQ TotalView-ITCH data. The percentage is calculated as the number of HFT
cancellations divided by the total number of order cancellations during regular trading
hours on each day. The full sample consists of 108 stocks over the period from 2008-2013.
Stocks are sorted into three market capitalization groups: large, mid, and small. Panel B-D
present summary statistics for each group.

Year 2008 2009 2010 2011 2012 2013

Panel A: Full sample
Mean 19.05% 16.23% 17.50% 22.58% 29.80% 29.46%
SD 3.46% 2.00% 2.00% 3.71% 2.38% 3.40%
P10 14.49% 13.59% 15.48% 18.38% 28.38% 25.87%
Median 19.47% 15.90% 16.95% 21.64% 29.72% 28.64%
P90 22.53% 18.12% 19.42% 28.18% 31.66% 34.83%

Panel B: Large-cap stocks
Mean 19.60% 17.00% 17.64% 23.58% 31.11% 31.58%
SD 3.40% 2.23% 2.35% 4.09% 2.25% 3.30%
P10 15.32% 14.15% 15.10% 19.07% 29.42% 27.55%
Median 19.89% 16.70% 17.07% 22.65% 31.06% 31.09%
P90 22.91% 19.01% 20.44% 29.65% 33.45% 36.60%

Panel C: Mid-cap stocks
Mean 15.81% 12.85% 16.01% 15.91% 21.48% 19.40%
SD 5.52% 2.47% 2.40% 2.15% 6.16% 3.29%
P10 9.25% 9.80% 13.25% 13.24% 16.72% 14.75%
Median 14.91% 12.72% 15.55% 15.25% 20.45% 19.60%
P90 23.50% 15.77% 18.10% 19.10% 29.04% 22.81%

Panel D: Small-cap stocks
Mean 14.07% 11.36% 18.44% 23.90% 29.69% 20.13%
SD 4.41% 3.16% 4.91% 8.42% 6.32% 3.46%
P10 10.21% 8.44% 13.79% 15.70% 22.80% 16.08%
Median 12.48% 10.23% 16.90% 23.41% 28.32% 19.96%
P90 19.62% 15.41% 22.80% 36.16% 37.75% 24.41%



38

Table 2.4: Percentage of HFT Executions
This table reports mean, standard deviation (SD), the 10th (P10) percentile, median, and
the 90th percentile (P90) of the proportion of HFT executions. We consider an execution
as an HFT activity if a limit order is executed in less than 50 milliseconds based on the
NASDAQ TotalView-ITCH data. The percentage is calculated as the number of HFT
executions divided by the total number of executions during regular trading hours on each
day. The full sample consists of 108 stocks over the period from 2008-2013. Stocks are
sorted into three market capitalization groups: large, mid, and small. Panels B-D present
summary statistics for each group.

Year 2008 2009 2010 2011 2012 2013

Panel A: Full sample
Mean 16.92% 18.09% 21.95% 23.36% 22.49% 23.63%
SD 1.76% 0.91% 1.69% 1.88% 0.89% 0.84%
P10 14.29% 17.27% 20.11% 21.39% 21.23% 22.72%
Median 17.42% 17.93% 22.09% 22.88% 22.63% 23.64%
P90 18.60% 19.08% 24.11% 26.18% 23.35% 24.51%

Panel B: Large-cap stocks
Mean 17.22% 18.33% 22.62% 23.93% 22.84% 23.71%
SD 1.85% 0.98% 1.77% 1.94% 0.89% 0.94%
P10 14.48% 17.54% 20.82% 21.98% 21.66% 22.82%
Median 17.82% 18.15% 22.71% 23.31% 23.03% 23.64%
P90 19.07% 19.51% 25.06% 26.65% 23.64% 24.81%

Panel C: Mid-cap stocks
Mean 14.57% 17.12% 17.19% 19.50% 20.28% 23.16%
SD 1.53% 1.53% 1.08% 2.00% 1.57% 1.22%
P10 12.89% 15.28% 15.82% 17.47% 18.59% 21.64%
Median 13.97% 17.07% 17.07% 18.90% 20.20% 23.06%
P90 16.48% 19.05% 18.58% 22.69% 22.19% 24.55%

Panel D: Small-cap stocks
Mean 11.44% 10.93% 14.06% 17.35% 18.17% 22.74%
SD 1.21% 1.12% 1.53% 3.06% 1.45% 2.01%
P10 9.62% 10.01% 11.88% 13.40% 16.74% 20.58%
Median 11.50% 10.70% 14.04% 17.68% 18.38% 22.59%
P90 12.56% 12.42% 15.72% 21.29% 19.88% 25.48%
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Table 2.5: Adverse Selection Measures
This table reports the average adverse selection cost and price impact for a sample of 108
stocks over the period from 2008-2013. The adverse selection cost is defined as the signed
change in the midpoint of best bid and ask prices 5 minutes after the time of the trade, and
calculated using (2.7). The price impact is computed based on the Hasbrouck (1991) vector
autoregressive (VAR) model with 10-lag order flow dependence as specified in (2.8) and
(2.9). The cumulative price impact captures the permanent price change in response to a
unit shock in trade. Both measures are reported in basis points. The stocks are sorted into
three market capitalization groups: large, mid, and small. Panels B-D present the results
for each group respectively.

Year 2008 2009 2010 2011 2012 2013

Panel A: Full sample
Adverse selection cost 7.518 8.173 5.533 5.600 5.432 5.078
Price impact 7.191 7.927 4.869 5.246 4.754 4.557

Panel B: Large-cap stocks
Adverse selection cost 2.494 2.868 2.384 2.544 2.321 2.185
Price impact 2.507 2.478 1.954 2.127 1.997 2.012

Panel C: Mid-cap stocks
Adverse selection cost 7.116 6.781 4.803 5.252 5.218 4.707
Price impact 7.203 6.788 4.478 5.010 4.773 4.700

Panel D: Small-cap stocks
Adverse selection cost 14.330 16.554 10.391 9.870 9.608 9.172
Price impact 13.369 16.468 9.461 10.064 8.886 8.170
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Table 2.6: Impact of Speed on Adverse Selection
This table presents estimates from regressions of adverse selection measures on the relative
speed of liquidity suppliers to demanders. The sample consists of 108 stocks over the
period from 2008-2013. We run panel data regressions with the stock and year fixed effect:
Yi,d = β0+β1rel spdi,d+controlsi,d+

∑107
k=1 φkstocki,d+

∑5
j=1 κjyeari,d+εi,d. The dependent

variable Yi,d is the average 5-minute adverse selection cost for stock i on day d in the first
column, and the price impact based on the Hasbrouck (1991) model in the second column.
The relative speed of liquidity suppliers to demanders, rel spdi,d, is defined as the ratio
of the 5th percentile life of executed orders to that of cancelled orders for stock i on day
d. The control variables include volatility, log of trading volume (logvol), price, and log of
market capitalization (logcap). stocki,d is a set of dummy variables that are used to capture
unobserved stock fixed effects, and yeari,d is a set of year dummy variables that are used to
control for time effects. Numbers in parentheses are t-statistic.

Adverse selection cost Price impact

rel spd -0.148 -0.080
(-11.68) (-2.57)

volatility 52.266 51.112
(42.29) (70.28)

logvol 0.541 0.450
(5.63) (9.34)

price 0.011 0.007
(5.46) (7.54)

logcap -2.397 -1.796
(-12.67) (-19.56)

constant 31.855 24.063
(10.42) (15.81)

R2 0.203 0.424
Stock Fixed Effects Yes Yes
Year Fixed Effects Yes Yes
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Table 2.7: Spread Measures
This table reports the average of quoted and effective half-spreads respectively for a sample
of 108 stocks over the period from 2008-2013. The quoted half-spread is calculated as the
half difference between the best bid and ask prices. The effective half-spread is the signed
difference between the actual trade price and the midpoint of the best bid and ask prices
when the trade takes place, as specified in (2.13). Both spread measures are normalized
by the prevailing midpoint price and reported in basis points. The stocks are sorted into
three market capitalization groups: large, mid, and small. Panels B-D present the results
for each group.

Year 2008 2009 2010 2011 2012 2013

Panel A: Full sample
Quoted half-spread 8.614 9.431 6.131 5.978 6.143 6.386
Effective half-spread 6.460 7.291 4.916 4.961 5.052 5.052

Panel B: Large-cap stocks
Quoted half-spread 2.912 2.871 2.003 2.041 1.979 1.992
Effective half-spread 2.194 2.372 1.769 1.793 1.722 1.670

Panel C: Mid-cap stocks
Quoted half-spread 8.492 7.823 4.640 4.996 5.155 5.471
Effective half-spread 6.132 5.950 3.842 4.253 4.343 4.448

Panel D: Small-cap stocks
Quoted half-spread 15.936 19.653 13.154 12.135 12.594 13.037
Effective half-spread 12.229 15.123 10.192 9.815 10.111 10.050
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Table 2.8: Impact of Speed on Spreads
This table presents estimates from regressions of spread measures on the relative speed of
liquidity suppliers to demanders. The sample consists of 108 stocks over the period from
2008-2013. We run panel data regressions with the stock and year fixed effect: Yi,d = β0 +
β1rel spdi,d+controlsi,d+

∑107
k=1 φkstocki,d+

∑5
j=1 κjyeari,d+εi,d. The dependent variable Yi,d

is the average of quoted half-spread for stock i on day d in the first column, and the average
of effective half-spread in the second column. The relative speed of liquidity suppliers to
demanders, rel spdi,d, is defined as the ratio of the 5th percentile life of executed orders to
that of cancelled orders for stock i on day d. The control variables include volatility, log of
trading volume (logvol), price, and log of market capitalization (logcap). stocki,d is a set of
dummy variables that are used to capture unobserved stock fixed effects, and yeari,d is a set
of year dummy variables that are used to control for time effects. Numbers in parentheses
are t-statistic.

Quoted half-spread Effective half-spread

rel spd -0.103 -0.077
(-3.97) (-3.99)

volatility 61.620 48.728
(99.45) (105.62)

logvol 0.132 0.023
(3.13) (0.73)

price 0.008 0.006
(9.38) (9.44)

logcap -1.837 -1.402
(-22.31) (-22.87)

constant 28.886 23.143
(21.32) (22.95)

R2 0.579 0.594
Stock Fixed Effects Yes Yes
Year Fixed Effects Yes Yes
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Table 2.9: Proportion of Hidden Executions on NASDAQ
This table reports mean, standard deviation (SD), the 10th (P10) percentile, median, and
the 90th percentile (P90) of the proportion of hidden executions, based on the NASDAQ
TotalView-ITCH data. The percentage is calculated as the number of executions matched
with hidden orders divided by the total number of executions during regular trading hours
on each day. The full sample consists of 108 stocks over the period from 2008-2013. Stocks
are sorted into three market capitalization groups: large, mid, and small. Panels B-D
present summary statistics for each group.

Year 2008 2009 2010 2011 2012 2013

Panel A: Full sample
Mean 16.55% 10.53% 10.01% 10.70% 12.21% 14.72%
SD 2.32% 2.05% 2.00% 0.81% 1.74% 0.85%
P10 13.63% 8.62% 7.47% 9.85% 9.74% 13.86%
Median 16.37% 9.85% 9.61% 10.63% 12.26% 14.76%
P90 19.59% 13.73% 12.49% 11.52% 14.18% 15.37%

Panel B: Large-cap stocks
Mean 16.44% 10.11% 9.85% 10.86% 12.33% 14.78%
SD 2.43% 2.05% 2.09% 0.86% 1.79% 0.88%
P10 13.37% 8.31% 7.28% 9.82% 9.71% 13.93%
Median 16.20% 9.34% 9.39% 10.77% 12.49% 14.74%
P90 19.72% 13.35% 12.64% 11.85% 14.24% 15.71%

Panel C: Mid-cap stocks
Mean 17.69% 13.75% 10.76% 9.00% 10.70% 14.15%
SD 2.20% 2.85% 2.47% 1.31% 2.05% 1.60%
P10 14.86% 10.95% 8.66% 7.71% 8.50% 12.15%
Median 18.25% 12.93% 10.20% 9.00% 10.21% 14.39%
P90 20.11% 17.40% 12.02% 10.09% 13.48% 16.33%

Panel D: Small-cap stocks
Mean 18.01% 15.34% 12.43% 10.89% 12.75% 14.78%
SD 1.40% 2.18% 1.83% 2.08% 1.90% 2.48%
P10 16.32% 12.64% 9.64% 9.04% 10.43% 11.70%
Median 18.21% 15.21% 12.90% 10.54% 12.63% 14.47%
P90 19.36% 17.93% 14.33% 13.42% 14.51% 17.96%
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Table 2.10: Adverse Selection of Hidden Orders
This table presents the regression results for difference in adverse selection between hid-
den and visible executions. The sample consists of 108 stocks over the period from
2008-2013. We run the following regression with the stock and year fixed effect: Yi,d =
β0+β1hiddeni,d+controlsi,d+

∑107
k=1 φkstocki,d+

∑5
j=1 κjyeari,d+ εi,d. The dependent vari-

able Yi,d is the average 5-minute adverse selection cost for stock i on day d in the first
column, and the price impact based on the Hasbrouck (1991) model in the second column.
The variable hiddeni,d is a dummy that equals 1 for hidden executions and 0 for visible
executions. The control variables include volatility, log of trading volume (logvol), price,
and log of market capitalization (logcap). stocki,d is a set of dummy variables that are used
to capture unobserved stock fixed effects, and yeari,d is a set of year dummy variables that
are used to control for time effects. Numbers in parentheses are t-statistic.

Adverse selection cost Price impact

hidden -5.841 -1.223
(-51.95) (-7.03)

volatility 38.657 54.239
(29.94) (24.83)

logvol 0.227 1.226
(2.15) (7.22)

price 0.006 0.013
(2.68) (3.58)

logcap -1.457 -1.705
(-6.90) (-5.19)

constant 23.588 12.318
(6.97) (2.31)

R2 0.228 0.111
Stock Fixed Effects Yes Yes
Year Fixed Effects Yes Yes
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Table 2.11: Spreads of Hidden Orders
This table presents the regression results for difference in spreads between hidden and visible
executions. The sample consists of 108 stocks over the period from 2008-2013. We run the
following regression with the stock and year fixed effect: Yi,d = β0+β1hiddeni,d+controlsi,d+∑107

k=1 φkstocki,d+
∑5

j=1 κjyeari,d+εi,d. The dependent variable Yi,d is the average of quoted
half-spread for stock i on day d in the first column, and the average of effective half-spread in
the second column. The variable hiddeni,d is a dummy that equals 1 for hidden executions
and 0 for visible executions. The control variables include volatility, log of trading volume
(logvol), price, and log of market capitalization (logcap). stocki,d is a set of dummy variables
that are used to capture unobserved stock fixed effects, and yeari,d is a set of year dummy
variables that are used to control for time effects. Numbers in parentheses are t-statistic.

Quoted half-spread Effective half-spread

hidden -0.575 -4.446
(-12.37) (-81.37)

volatility 64.870 46.673
(121.50) (74.38)

logvol -0.137 -0.145
(-3.14) (-2.83)

price 0.007 0.0003
(7.58) (0.23)

logcap -1.668 -0.319
(-19.10) (-3.11)

constant 28.988 10.078
(20.72) (6.13)

R2 0.758 0.576
Stock Fixed Effects Yes Yes
Year Fixed Effects Yes Yes
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Table 2.12: Proportion of Liquidity Supplied by HFT and Non-HFT Firms
This table presents the shares of HFT and non-HFT participation in the liquidity supplying
side for hidden and visible executions respectively. The HFT (non-HFT) share is calculated
as the number of trades where an HFT (non-HFT) firm participates in the liquidity sup-
plying side divided by the total number of trades. The first column reports the HFT and
non-HFT shares in hidden liquidity, and the second column reports their shares in visible
liquidity. Only trades during regular trading hours are used. T -statistics test the null that
non-HFT firms provide an equal proportion of liquidity with HFT firms. The full sample
consists of 120 stocks during the period from 2008-2009 and the week of February 22-26,
2010. Stocks are sorted into three market capitalization groups: large, mid, and small.
Panels B-D report the results for each group.

Hidden Visible

Panel A: full sample
Non-HFT 69.84% 49.34%
HFT 30.16% 50.66%
Non-HFT−HFT 39.68% -1.32%
t-stat 45.41 3.85

Panel B: Large-cap stocks
Non-HFT 67.92% 46.41%
HFT 32.08% 53.59%
Non-HFT−HFT 35.84% -7.18%
t-stat 37.90 21.42

Panel C: Mid-cap stocks
Non-HFT 80.97% 69.72%
HFT 19.03% 30.28%
Non-HFT−HFT 61.95% 39.45%
t-stat 123.75 67.94

Panel D: Small-cap stocks
Non-HFT 85.92% 83.07%
HFT 14.08% 16.93%
Non-HFT−HFT 71.84% 66.13%
t-stat 195.38 131.97



47

Figure 2.1: Event Tree of Trading Process
This figure presents the structure of trading process. γ is the probability of news arrival
that affects the fundamental value. α is the probability that liquidity suppliers make correct
inference on whether a liquidity demander is a noise trader (NT) or a informed trader (IT). λ
is the probability that liquidity suppliers are able to cancel their limit orders on the arrival of
informed traders. R (UR) denotes that liquidity suppliers make correct (incorrect) inference
and recognize (un-recognize) the identity of liquidity demanders. C represents cancellation
of limit orders. EB (ES) represents execution of limit orders with respect to buy (sell)
market or marketable orders.
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Figure 2.2: Cancelled and Executed Order Lives
This figure demonstrates the improvement in trading speed on NASDAQ for a sample of
108 stocks from 2008-2013. The blue line represents the 5th percentile life of cancelled
orders that is used to measure the latency of liquidity suppliers. The red line shows the
5th percentile life of executed orders that is used as a proxy for the latency of liquidity
demanders.
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Chapter 3

Market Quality Breakdowns in Equities

Joint with Bruce Mizrach

3.1 Introduction

The collapse and sudden rebound of market indices and nearly 2, 000 equity prices during

the May 6, 2010 “Flash Crash” was a singular event in the history of the equity markets.

The Securities and Exchange Commission (SEC) and Commodity Futures Trading Com-

mission (CFTC) both launched full-scale investigations into the causes of the collapse, and a

growing body of academic literature has also examined causal mechanisms behind the crash.

Although the regulators have implemented a set of rules after the Flash Crash, including

single stock circuit breakers and a ban on stub quotes, trading glitches are still happening.

These serious errors in 2012, such as BATS Global Markets’ initial public offering (IPO)

failure on March 23, Facebook’s IPO miscue on May 18, and Knight Capital’s erroneous

order flood on August 1, are merely the latest in a series of breakdowns. These events were

not confined to a single stock exchange and the effect of each of these incidents was not

transitory: BATS withdrew their IPO, NASDAQ faces billions of dollar in lawsuits from

market making firms, and Knight nearly went bankrupt. The run of technology snafus

have raised the concern that they could rattle investor’s confidence and result in reduced

liquidity of the equity market.

The new circuit breakers now trip at a 10% movement intra-daily. Many of these move-

ments will be due to information released about individual stocks. To filter these out, we
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isolate stocks where prices recover to at least 2.5% below the 09:35 price. Using this defi-

nition, we find that the “Flash Crash” is not an isolated event. For example, on April 4,

2000, more than 1, 500 stocks fall more than 10% intra-day before recovering most of their

losses. These breakdowns occur by more than 30, 000 events in 2000.

We ask a simple and straightforward question: how frequently do these breakdowns in

market quality occur. We analyze every change in the listing exchanges’ best bid and offer

for 1993-2011. In total, we examine more than 30 million files of intra-day bid and offer

quotes. What we find is that market quality breakdowns have been endemic to the equity

markets. The daily average breakdown frequency is 0.64% throughout our sample period,

an average of 44 stocks per day.

There is an uptrend in breakdown frequency from 1993-2000. This trend reverses from

2000-2006 but then begins to rise again in late 2007, in the early stages of the financial crisis.

Breakdowns continue to rise through 2008, a particularly volatile period for the market. In

2009 though and continuing through 2010, the breakdown frequency is declining. Despite

the Flash Crash, 2010 has the fewest breakdowns of any year since 2007. The breakdown

frequency is 0.39% in 2011, half the rate of 1998 when humans provided the majority of

quotes. Breakdowns in 2010-2011 occur less than once per year in a typical stock.

The academic literature has suggested a number of possible explanations for market

quality breakdowns: (1) regulatory changes; (2) fragmentation; (3) excessive correlation;

(4) exchange traded funds (ETFs); and (5) high frequency trading (HFT). We develop an

explanatory model, with controls for volume and volatility, to assess the marginal effects of

these potential causes of breakdowns. Also, by looking at a longer historical time frame,

we hope to identify which explanations are robust.

Changes in the regulatory environment have dramatically effected quote and trade be-

havior. In 1996, the SEC adopted the display rule which placed electronic trading networks

on an even playing field with dealers. Many others have suggested that the SEC’s regula-

tions governing the equity national market system has led to market quality deterioration.
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The biggest change was the adoption of Reg. NMS in April 2005. The new regulations were

extended in stages and were fully in place by October 15, 2007. One of our most striking

findings is that market quality breakdowns are 41.78% less frequent after Reg. NMS. This

implies that approximately 4, 000 fewer stocks are breaking down each year compared to

the prior period.

Bennett and Wei (2006) claim that order flow consolidation improves market quality.

Golub, Keane, and Poon (2012) attribute mini-Flash crash episodes in the period 2006-11

to the use of inter-market sweep orders in fragmented markets. Madhavan (2012) suggests

that fragmentation from equity market structure changes has made markets more fragile

and may have contributed to the Flash Crash. Jiang, McInish, and Upson (2014) take the

contrary view, noting that order routing away from the primary exchange may result in

better executions. O’Hara and Ye (2011) find that the volume share in off-exchange venues

does not impact market quality. We use two measures of fragmentation in our analysis. The

first is the Herfindahl index of each equity market’s contribution to the national best bid

and offer and the second is the market share of off-exchange volume. We do not find that

either measure of fragmentation helps explain the frequency of breakdowns for the market

as a whole.

Even though market structure differences have been reduced, exchanges still matter.

Controlling for market capitalization, price, as well as volume and volatility, New York

Stock Exchange (NYSE) stocks break down 20.03% less frequently than NASDAQ stocks,

43.91% less frequently than American Stock Exchange (AMEX) listings, and 69.04% less

frequently than Archipelago (ARCA) listings.

Since we find that market structure changes appear not to be a primary factor in mar-

ket breakdowns, we then consider the effects of rising security correlations. Acharya and

Schaefer (2006) have noted that individual stocks become more highly correlated during

financial crises. There has also been an uptrend in market correlation in recent years. The

average correlation among the Fama-French industry portfolios rises from 37.16% in 1993
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to 76.32% in 2011.

We construct a theoretical model with correlated liquidity shocks based on Sand̊as

(2001). This model helps us to unify a number of factors in the literature which appear to

operate through cross-equity correlation, including both ETFs and HFT.

A market maker in stock A responds to a liquidity shock in stock B, and the limit order

books thins to a larger degree when the shocks are more highly correlated. We confirm the

model empirically, finding that correlation does spike during market quality breakdowns,

raising the frequency of breakdowns by almost 25.62%.

Ben-David, Franzoni, and Moussawi (2014) note that ETFs exacerbate the volatility

of the underlying stocks through a propagation mechanism of liquidity shocks. We find

that ETFs break down 90.33% more frequently than non-ETFs. ETF trading activity

unidirectionally Granger causes the market correlation, revealing that ETFs are a source of

stronger individual stock correlation and not vice versa.

The impact of HFT remains a widely debated issue. Brogaard (2011) analyzes a high-

quality data set that identifies the trade and quote activity of high frequency trading firms.

He shows that high frequency traders have become a dominant fraction of market activity,

with approximately 70% of dollar volume in 2009. They also engage in highly correlated

trading strategies. Several academic papers have suggested that HFT firms generally en-

hance market quality. Hasbrouck and Saar (2013) find that low-latency activity improves

liquidity and dampens short-term volatility. Brogaard, Hendershott, and Riordan (2014)

argue that HFTs increase the efficiency of prices through their marketable orders.

Other papers suggest that HFT activity might be more harmful. Gao and Mizrach (2013)

find that, when markets experience stressful events, HFT firms tend to scale back their

liquidity provision. For example, during the Federal Reserve large scale auction purchases

of Treasuries, HFT firms were 8% less likely to be providing the inside bid or offer. Zhang

(2010) observes that HFT is positively correlated with stock price volatility and hinders

the ability of the market prices to reflect fundamental information. Sornette and Von der
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Becke (2011), in a report prepared for the U.K. Office of Science, argue that HFT has led

to crashes and can be expected to do so more and more in the future. We find that HFT

trading activity has a significantly positive impact, raising the breakdown frequency by

18.33%.

We also analyze breakdown frequency using a predictive model. Two lagged breakdown

probabilities are statistically significant. Along with volatility at the market open, these

factors improve upon a constant forecast by nearly 50%.

We examine the robustness of our results. Rapid increases in offer prices, which we

call “breakups”, are also positively related to correlation shocks. Restricting the sample to

stocks with a market cap of over $10 billion, we confirm the explanatory model for aggregate

breakdown frequency. Large caps breakdown only 1/6 as often as other stocks, and only

118 large caps have broken down in the period 2009-11.

We also consider alternative microstructure definitions of breakdowns. We look at the

national best bid and offer (NBBO) rather than just the primary exchange. These results

are very similar to our original specification. Secondary markets reduce breakdowns by

31.96% in 2008-11. We also show that our model fits breakdowns using trade prices rather

than quotes. Finally, when we look at the worst bid or offer in the market place, all of our

models fit poorly.

Section 4.4 introduces our definition of market quality breakdowns and compares it to the

Flash Crash. Section 3.3 measures the unconditional daily average breakdown frequency.

We develop a baseline model for the aggregate breakdown frequency in Section 3.4 and

test the impact of changes in market structure including Reg. NMS, fragmentation and

exchange effects. We then construct, in Section 4.3, a theoretical model to study the effects

of cross-security correlation on the limit order book. The empirical results in Section 3.6

confirm our model of correlated liquidity shocks. We analyze the impact of ETFs in Section

3.7 and HFT activity in Section 3.8. Section 3.9 builds a predictive model. We conduct

robustness checks in Section 4.6 before concluding.
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3.2 Data and Definitions

Our empirical analysis relies on quotes rather than trades. This, of course, increases the

computational burden, but we feel breakdowns in market quality impede trading, and that

the consolidated quotes provide the best real time portrait of the market. Our focus is on

the best bid and offer from the listing exchange, but we examine alternative definitions1 in

our robustness section.

We analyze stocks that are in both the Center for Research in Security Prices (CRSP)

and the New York Stock Exchange Trade and Quote Database (TAQ). Stocks from all three

major exchanges are available from April 6, 1993 forward. Our sample ends on December

30, 2011.

We look at movements in the time frame 09:35-15:55. We do this because opening and

closing procedures vary across exchanges and may not be comparable.

A stock is identified as having a market quality breakdown if the best bid prices fall 10%

below the 09:35 price. 10% is a natural metric because that is where circuit breakers are

now placed. In addition, the tick must be repeated at least once in a subsequent calendar

second. This avoids fleeting quotes or errors.

We want to try to filter out news driven price declines. We do this by looking at stocks

that rebound to within 2.5% of the 09:35 price at 15:55.

We have a symmetric definition for break ups, using the best offer price.

1The high frequency data provider Nanex has been analyzing mini-flash crashes for several years now.
Nanex (2011) used the following criteria: “to qualify as a down-draft candidate, the stock had to tick down
at least 10 times before ticking up – all within 1.5 seconds and the price change had to exceed 0.8%.” They
have a symmetric definition for up-drafts. We attempted to replicate their results, but we eventually used
an alternative framework. Many Nanex breakdowns occur away from the primary exchange. It also does
not work particularly well during the flash crash. In 2010, they identify 1, 041 down-draft events, fewer than
we find on the single day of May 6, 2010. Nanex does confirm our main message. Up and down drafts have
been trending down since 2008.
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3.2.1 Market quality metrics for the Flash Crash

On May 6, 2010, major U.S. stock indices, stock index products, and individual stocks

experienced a sudden price drop of more than 5% followed by a rapid recovery within

minutes. The unusual and severe event, commonly known as the Flash Crash, occurred in

both futures and spot markets. The price of E-Mini S&P 500 futures fell in excess of 5%

between 14:41 and 14:46. The Dow Jones Industrial Average (DJIA) plunged 998.5 points,

the largest intraday point decline in history. Many individual stocks reached lows that

exceeded 10%, and some were even traded down to a penny, e.g. Accenture.

The Flash Crash raises questions about the quality of U.S. financial markets. The

CFTC and the SEC2 jointly explored the market events of May 6, 2010 and identified

the evaporation of liquidity in both the E-Mini and individual stocks. By analyzing the

aggregate order books they found that reductions in liquidity may lead some stocks to trade

at severe prices.

When we apply our filter to the Flash Crash day, we get very similar conclusions to the

academic and policy literature. Our sample consists of 6, 527 securities for May 6, 2010.

Among them, 1, 857 stocks experienced market quality breakdowns on the listing exchange.3

The breakdown frequency differs on each of the four primary exchanges, as shown in Table

3.1.

[INSERT Table 3.1 HERE]

ARCA is affected more than any other exchange with more than 60% of stocks crashed,

while AMEX has the lowest frequency of 12.73%. The breakdowns on NYSE and Nasdaq

are close to the average level of the market.

2Commodity Futures Trading Commission and Securities and Exchange Commission (2010).

3It is shown in the CFTC-SEC report that approximately 14% of stocks traded at lows that are more
than 10% away from the 14:40 prices. Given the fact that we analyze 10% price decline below the 09:35
price and our study relies on quotes instead of trades, it makes sense that our filter gives a higher frequency
of 28.45%.
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We then analyze in more detail the distribution of percentage decline in the best bid

prices on the Flash Crash day. We want to compare our results to the CFTC-SEC finding,

so we use the same stock filter here, i.e. a share price of more than $3.00 and a market

capitalization of at least $10 million. The results are illustrated in Figure 3.1 Panel A.

[INSERT Figure 3.1 HERE]

The distribution displays a similar pattern to the finding in the CFTC-SEC report.4 In

particular, 227 stocks have the lowest best bid that are almost 100% below the 09:35 price

on the listing exchange. The number is a little greater than that given in the CFTC-SEC

report since we analyze quotes rather than trades.

Figure 3.1 Panel B presents a scatter plot of the time and percentage decline of the best

bid for all stocks during the period from 14:00-15:00 on May 6, 2010. Each point on the

graph represents a stock. The result is consistent with the finding by the CFTC and the

SEC.5 A few stocks began to crash shortly after 14:00 and the number of stocks increased

steadily over the one hour interval. Many of the lows in the best bid occurred after 14:45,

as represented by a dense area between −20% and 0% and a thick line around −100%.

Our results also suggest the same conclusions about ETFs as discussed in the CFTC-SEC

report. ETFs were affected the most among all types of securities on May 6, 2010. Based

on our filter, 559 out of 893 ETFs experienced market quality breakdowns. The number

accounts for nearly one-third of the crashed stocks on the day. We present in Figure 3.2 the

distribution of ETF lows measured by the best bid from the listing exchange. The spike of

the left-most column in the figure indicates that a large portion of ETFs had almost 100%

quality deterioration.

[INSERT Figure 3.2 HERE]

4Commodity Futures Trading Commission and Securities and Exchange Commission (2010), Figure 8,
p.18.

5Commodity Futures Trading Commission and Securities and Exchange Commission (2010), Figure 10,
p.24.
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The timing of ETF lows by our filter, as shown in Figure 3.2 Panel B, is consistent with

the finding in the CFTC-SEC report6 as well. The number of ETF crashes started to rise

after 14:40. Beginning about 14:45 a great number of ETFs experienced 100% price drops,

which is represented by a dense line around −100%.

Since our filter works for the Flash Crash, we then apply it to the full TAQ sample of

1993-2011. The natural question is how often do events like this occur.

3.3 Unconditional Breakdown Frequency

We analyze the unconditional probability of a random stock experiencing a market quality

breakdown. The breakdown frequency is calculated by the number of broken stocks divided

by the total number of traded stocks. We report results for all exchanges and all types of

stocks in Figure 3.3 Panel A.

[INSERT Figure 3.3 HERE]

The daily average breakdown frequency is 0.64% throughout our sample period. There

is an uptrend in breakdown frequency from 1993-2000 followed by a downtrend from 2000-

2006. Breakdowns begin to rise again in late 2007 with the onset of the financial crisis and

peak in 2008 during the near collapse of the financial system. As the market stabilizes in

the second half of 2009, the breakdown frequency returns to the level in the late 1990s. By

2011, the breakdown frequency has fallen to 0.39%, half the rate in 1998. In 2010 and 2011,

a typical stock will break down less than once per year.

On average, 44 stocks per day experience breakdowns. Figure 3.3 Panel B shows the

number of breakdown events by year from 1993-2011. It presents a similar trend with the

breakdown frequency in Panel A. The breakdowns reached their peak in 2000 with more

than 30, 000 events, and there is a significant rise in 2008 as well.

6Commodity Futures Trading Commission and Securities and Exchange Commission (2010), Figure 16,
p.39.



58

Even including the Flash Crash, there are fewer market quality breakdowns in 2010 than

in 1998. Excluding the Flash Crash day, the breakdown frequency in 2010 is the fourth

lowest in our sample.

When there are a large number of breakdown events in a year, it could be the case that

some particular stocks break down more frequently or that stocks are essentially equally

likely to break down. To distinguish between the two cases, we measure the distribution of

breakdown incidence by the Gini coefficient in Figure 3.4.

[INSERT Figure 3.4 HERE]

The Gini coefficient of 0.52 implies that stocks are not equally likely to break down

during our sample period. We show below that non-NYSE stocks are more likely to break

down, and large capitalization stocks are less likely. Even though breakdown frequencies

vary substantially year-by-year, the distribution across stocks is relatively stable during the

period from 1993-2011.

3.4 Market Structure

We plan to explore the various theories in the literature by first developing a baseline model

for the frequency of breakdowns. We will then extend this baseline model to see the time

series impact of changes in market structure, both regulatory and competitive.

3.4.1 Baseline model

We now model the frequency of market quality events conditional on volatility and aggregate

volume. We calculate the breakdown frequency on day t, πt, by dividing the number of

broken stocks by the total number of traded stocks. We measure market volatility using the

opening value of the Chicago Board Options Exchange volatility index (VIX), σV IXopen
t .

The daily aggregate volume, vt, is the sum of trading activity on each exchange in its own
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listings. In the model, we use a dummy variable, ṽt, to represent volume spikes.

ṽt = Iα=0.05

(
vt −

∑20
j=1 vt−j/20

σv
t

)
, (3.1)

where I (·) is an indicator function and σv
t is the standard deviation of the volume over the

proceeding 20 days. In other words, ṽt is set as 1 if the volume becomes significantly higher

than the average of proceeding 20 days at the 5% level, and is 0 otherwise.

Given the fact that the breakdown frequency in most times is close to zero and not

normally distributed, we use a generalized linear model with the assumption of πt ∼ Γ(k, θ),

where k and θ are respectively the shape and scale parameter of the gamma distribution.

The baseline model is written as

log(E[πt]) = α+ β1σ
V IXopen
t + β2ṽt. (3.2)

The model is estimated by quasi-maximum likelihood method using robust standard errors,

and the results are shown in Table 3.2.

[INSERT Table 3.2 HERE]

All the estimated coefficients are statistically significant. The market volatility affects

positively the aggregate breakdown frequency, which is consistent with intuition. The ag-

gregate volume is positively associated with the breakdown frequency as well.

We measure goodness-of-fit using McFadden’s measure, R2
M , which is defined as

R2
M = 1− logL(Mf )

logL(Mi)
(3.3)

where logL(Mf ) is the log-likelihood of the full model and logL(Mi) is the log-likelihood of

the model with just an intercept. Since the log-likelihood is non-positive, R2
M ranges from

0 to 1 and has a higher value for the model with better fit. Our baseline model shows a

42.22% improvement over the intercept-only model to explain the breakdown frequency.
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Next we examine whether breakdowns have increased since Reg. NMS.

3.4.2 Reg. NMS

On April 6, 2005, the Securities and Exchange Commission (SEC), in a 3-2 vote, adopted

Regulation National Market System (Reg. NMS). The SEC rules were adapting the na-

tional market system concept to the modern electronic marketplace. There are four major

provisions: (1) Rule 610, which provides equal access to markets; (2) Rule 611, which pro-

hibits trade-throughs of displayed and accessible quotations; (3) Rule 612, which prohibits

subpenny quotations except in limited circumstances; (4) Rule 600, 601 and 603, which set

up rules for market data.

We model whether breakdowns increased after the rules were fully adopted on October

15, 20077, by including a dummy variable dNMS
t into the baseline model. The result in Table

3.2 shows that breakdowns become significantly less frequent after Reg. NMS, despite the

Flash Crash. Quantitatively, breakdowns have fallen −41.78% = e−0.5410 − 1 since the

passage of Reg. NMS. With approximately 7, 000 U.S. equity listings, this implies that 18

fewer stocks each day are experiencing breakdowns or approximately 4, 500 fewer market

quality breakdowns each year.

3.4.3 Market fragmentation

The academic literature is divided on the effects of fragmentation. We follow Madhavan

(2012) and use the Herfindahl index as a measure of fragmentation.8

We first compile the national best bid and offer (NBBO) across all exchanges using the

consolidated quotes from the TAQ database. The Herfindahl index is then computed as

7Reg. NMS was implememted in steps from 2005 to 2007. Our result is robust to the choice of a break
point. Even if we break at the beginning of Reg. NMS in 2005, breakdowns have fallen significantly.

8The only difference from Madhavan (2012) is the way that we count the number of times for an exchange
with the national best bid or offer. For example, if two exchanges have the best national quote at the same
time, he counts one for each, while we assign one half to each to reflect the fact of their competition for
orders.
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the sum of squared frequencies of the best national bid or offer that each exchange posts.

Mathematically, the Herfindahl index for stock i on day t is expressed as

Hi,t =
M∑
j=1

(f j
i,t)

2, (3.4)

where the frequency f j
i,t is calculated as the proportion of times exchange j is the national

best bid or offer on day t, and M is the total number of exchanges where stock i has

quotation activity. If multiple venues are the best bid or offer at the same time, we give an

equal weight to each of these venues since they are competing to attract order flows. The

market fragmentation on day t is measured by the average of Herfindahl index values across

all stocks,

Ht = N−1
t

Nt∑
i=1

Hi,t, (3.5)

where Nt is the total number of stocks on day t. It is worth noting that the Herfindahl

index is smaller when the market is more fragmented.

Consistent with the volume variable defined by (3.1) in our baseline model, we use

a dummy variable, H̃t, to represent spikes of market fragmentation. The dummy is set

as 1 if the Herfindahl index Ht is significantly lower than the average of proceeding 20

days at the 5% level, and is 0 otherwise. Since the market quality breakdown is defined

using the bid price, the Herfindahl index in the breakdown model is based on the best

bid. When we add the Herfindahl measure to our baseline regression, its coefficient is not

statistically significant, as shown in Table 3.2. Therefore, we conclude that fragmentation

is not associated with the breakdown frequency for the market as a whole.9

Since March 5, 2007, the SEC has required that all off-exchange trades must report to a

9We also explored the impact of fragmentation for individual stocks on the Flash Crash day, as Madhavan
(2012) did. We include as control variables of opening price, market capitalization, volatility, and volume.
The estimated coefficient for the Herfindahl index is negative (−0.6542) and statistically significant at the
1% level. Our result is consistent with Madhavan’s conclusion about fragmentation for the Flash Crash.
However, we do not find this measure helps explain the breakdown frequency at the aggregate level for a
longer historical period.
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trade reporting facility (TRF). O’Hara and Ye (2011) have suggested using the share of off-

exchange volume as an alternative measure of fragmentation. We use a similar metric in our

analysis as well. The TAQ database provides aggregate information of trades reported to the

Financial Industry Regulatory Authority (FINRA).10 We re-estimated the baseline model

for the period from March 5, 2007 to December 30, 2011, and then explored the impact of

this alternative measure of fragmentation. We find in Table 3.2, similar to O’Hara and Ye

(2011), that the share of TRF volume is not a statistically significant contributor to market

quality breakdowns.

3.4.4 Do exchanges still matter?

We now ask whether exchanges influence the frequency of breakdowns. We investigate it

by modeling the number of breakdown occurrences of individual stocks, ni,t. We analyze

breakdowns at the monthly frequency, because the number of daily breakdowns is generally

very small.

Since the time of the NASDAQ price fixing case (see e.g. Christie and Schultz (1994)),

there has been an ongoing dialog of market quality across exchanges. The conclusion of the

early literature was that the NYSE, despite having a monopoly market making specialist,

typically had higher market quality. The debate continues to this day, especially involving

the role and importance of market makers, e.g. Menkveld and Wang (2011). Recently

some exchanges have proposed to offer market makers financial incentives to provide more

liquidity in illiquid stocks. In December 2011 BATS filed and later was approved for the

Competitive Liquidity Provider program that was designed to encourage market makers to

post tight quoting spreads11. The NASDAQ filed a revised plan with the SEC in December

10The FINRA trades include those from the Nasdaq TRF, the NYSE TRF and the Alternative Display
Facility (ADF). The TRF data sample in O’Hara and Ye (2011) also includes trades reported to National
Stock Exchange (NSX) TRF. However, based on their results, it accounts for only 2.46% of consolidated
volume, compared to the total share of 24.75% in the sources captured by the FINRA.

11See e.g. “BATS Gets SEC Approval for Liquidity Provider Program,” Traders Magazine, February 6,
2012.
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2012 that would pay market makers in thinly traded ETFs12.

Figure 3.5 presents the breakdown frequency on each of the four primary exchanges from

1993-2011.

[INSERT Figure 3.5 HERE]

We see that breakdowns occur less frequently on the NYSE than any other exchange.

Even in 2008, the frequency is less than 0.9%, and the frequency in 2011 is very close

to the levels in early 1990s. The breakdown frequency on the NASDAQ shows a similar

trend to the result for all exchanges, but the magnitude is higher. Interestingly, the ARCA

experiences a breakdown frequency as high as 2.6% in 2007 when the frequency is relatively

low on other exchanges. After that, there is a substantial improvement of market quality

for ARCA and it is the second best exchange in 2011.

The unconditional probabilities are not by themselves indications of exchange related

effects. Stocks differ across exchanges, and we must control for these in our market quality

inferences. To test for marginal effects from exchange structure, we include the covariates

from the baseline model and add the log opening price of the stock, popeni,t , and its log market

capitalization, κi,t. Since the dependent variable is the number of market quality events for

stock i in month t, we use Poisson regression with the assumption of ni,t ∼ Pois(λ),

log(E[ni,t]) = α+ β1p
open
i,t + β2κi,t + β3σi,t + β4ṽi,t. (3.6)

The model is estimated by the quasi-maximum likelihood method using robust standard

errors. The results in Table 3.3 show that all the estimated coefficients are statistically

significant. At the individual stock level, the opening price and market capitalization are

negatively associated with the number of breakdowns, while volatility and volume13 are

12See e.g. “Nasdaq Seeks Approval for Revised ‘Paid-for-Market-Making’ Plan,” Traders Magazine Online
News, December 10, 2012

13Volume here is the trading activity on the primary exchange, as calculated from the TAQ data.
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positively related to breakdowns.

[INSERT Table 3.3 HERE]

We then add three dummy variables, dNY SE for the NYSE, dNASD for the NASDAQ,

and dARCA for the ARCA to (3.6), using AMEX as the omitted listing exchange. The

results in Table 3.3 indicate that the exchange listing significantly affects the number of

breakdowns for individual stocks. Even though the NYSE has lost market share in its own

issues, NYSE listed stocks break down approximately 20.03% less frequently than NASDAQ

stocks, 43.91% less frequently than AMEX listings, and 69.04% less frequently than ARCA

listings.

We now turn from issues of market and regulatory structure to examine whether cross-

security correlation might be explaining market quality breakdowns.

3.5 The Theoretical Model

The model presented in this section follows Sand̊as (2001). We extend Sand̊as’ model

to include two risky equities and their corresponding limit order books. Our model con-

tributes to the literature by introducing the correlation between securities and analyzing

the cross-equity impact on limit order books. The theoretical results discussed here provide

a framework for the subsequent empirical analysis.

3.5.1 Model setup

We consider two risky equities, A and B, in the model. Equity i, i = A or B, has a

fundamental value Xi
t in period t, which incorporates all information available up to period

t. The fundamental value for security i in the next period is

Xi
t+1 = Xi

t + μi + εit+1, (3.7)
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where μi represents the expected change in the fundamental value and εit+1 is a random

innovation in period t+ 1.

There are two types of agents, market makers and traders. Market makers provide

liquidity by placing limit orders on one or both assets. They are risk neutral and profit

maximizing. Traders are risk averse and their trades may be due to exogenous reasons,

e.g. margin calls, rather than their best estimate of the fundamental value. Therefore, they

want to trade quickly at the current price.

There are three stages in each period t. In the first stage, market makers submit new

limit orders on one or both equities. They repeat the process until no market maker finds

it optimal to place an additional order. Then a trader arrives and submits market orders

on either security or both. The market order quantity on each equity may rely on the

correlation between the two. Finally, market makers update their expectation about the

fundamental values of the assets given the size of incoming trades and the process starts

over.

For each limit order book we use a discrete pricing grid as follows. The bid prices in

the book of equity i are denoted by
{
pi1, p

i
2, . . . , p

i
k

}
, where pi1 is the best bid price. Let{

Qi
1, Q

i
2, . . . , Q

i
k

}
denote the order quantities associated with each price. The variables for

the offer side may be denoted analogously, but we focus on the bid side only for market

quality breakdowns. The market order quantity for equity i is denoted by mi. It is positive

for buy orders, and negative for sell orders.

3.5.2 Traders

Suppose that a trader buys or sells with equal probability. Following Sand̊as (2001) we

assume that the market order quantities are exogenous and are exponentially distributed

for simplicity. We focus on sell orders only when modeling market quality breakdowns. To

incorporate the correlation between the two equities into the model, we use the bivariate
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exponential distribution14 with the following joint density function,

f
(
mA,mB

)
=

1

λAλB
e

mA

λA
+mB

λB

[
1 + 4ρ

(
1− 2e

mA

λA

)(
1− 2e

mB

λB

)]
, mA ≤ 0 and mB ≤ 0.

(3.8)

It is not difficult to show that the marginal distributions of mA and mB are exponential

with mean λA and λB respectively, and the correlation between mA and mB is ρ, where

−1 ≤ ρ ≤ 1. We then mainly concentrate on the decision problem of the market makers.

3.5.3 Market Makers

Market makers observe trades on both equities and then update their best estimates of

the fundamental values based on the market order quantities. Since equity A and B are

symmetric in our model, only security A’s fundamental value in the next period is given

below,

E
[
XA

t+1|XA
t ,m

A,mB
]
= XA

t + μA + h
(
mA,mB

)
, (3.9)

where h
(
mA,mB

)
is a non-decreasing price impact function. It captures the market order

impact of both equities on the fundamental value of securityA. We assume that the price

impact function is linear with respect to the market order quantity of each of the equities,

i.e.

h
(
mA,mB

)
= αmA + βmB, (3.10)

where α and β represent respectively the marginal price impact of market orders on security

A and B. Since buy (sell) orders typically contain positive (negative) information about

the fundamental value of the asset, both α and β are expected to be positive.

To simplify the analysis, we assume that market makers face a quantity-invariant order

processing cost c. Then the profit of a limit order at the best bid price level pA1 of equity A

14We use one of the Gumbel (1960) versions of the bivariate exponential distribution because it clearly
identifies the effect of the cross-asset correlation.
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is given by

πA
1 = pA1 − c− E

[
XA

t+1|XA
t ,m

A,mB
]
. (3.11)

Under this setup, we can calculate the expected profit of a limit order placed on equity A’s

last unit qA given a market order on equity B.

E
[
πA
1 |mB

]
= E−mA≥qA

[
pA1 − c− E

[
XA

t+1|XA
t ,m

A,mB
]]

(3.12)

=

∫ −qA

−∞

(
pA1 − c−XA

t − αmA − βmB
) 1

λAλB
e

mA

λA
+mB

λB[
1 + 4ρ

(
1− 2e

mA

λA

)(
1− 2e

mB

λB

)]
dmA

=
1

λB
e
− qA

λA
+mB

λB [
(
pA1 − c−XA

t + α
(
qA + λA/2

)− βmB
)

(
1 + 4ρ

(
1− 2e

mB

λB

)(
1− e

− qA

λA

))
+

αλA

2

(
1 + 4ρ

(
1− 2e

mB

λB

))
].

A zero-profit condition in (4.6) will characterize equilibrium.

3.5.4 Equilibrium

The model is in equilibrium if no market maker can profit by submitting an additional limit

order at any price level. Therefore, the quantity placed at any price level must satisfy that

the last unit breaks even, i.e. the expected profit of the marginal limit order at the end

must be zero. From (4.6) we can obtain the quantity QA
1 submitted at the best bid price

level pA1 by solving the equation.

(
pA1 − c−XA

t + α
(
QA

1 + λA/2
)− βmB

)(
1 + 4ρ

(
1− 2e

mB

λB

)(
1− e

−QA
1

λA

))
+
αλA

2

(
1 + 4ρ

(
1− 2e

mB

λB

))
= 0. (3.13)

We are more interested in the cross-equity effect of market orders on the limit order
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book. To analyze it we take the derivative of QA
1 with respect to mB,

∂QA
1

∂mB
=

β + 4ρC

α+ 4ρD
, (3.14)

where

C = β

(
1− 2e

mB

λB

)(
1− e

−QA
1

λA

)
+ α

λA

λB
e

mB

λB

+
2

λB
e

mB

λB

(
1− e

−QA
1

λA

)(
pA1 − c−XA

t + α
(
QA

1 + λA/2
)− βmB

)
D = α

(
1− 2e

mB

λB

)(
1− e

−QA
1

λA

)
+

1

λA
e
−QA

1
λA

(
1− 2e

mB

λB

)(
pA1 − c−XA

t + α
(
QA

1 + λA/2
)− βmB

)
.

We see that both C > 0 and D > 0 if 1−2e
mB

λB > 0 and pA1 − c−XA
t +α

(
QA

1 + λA/2
)−

βmB > 0. Therefore, when mB < min
{−λB log 2, β−1

(
pA1 − c−XA

t + α
(
QA

1 + λA/2
))}

,

we have ∂QA
1 /∂m

B > 0. Since mB ≤ 0, it suggests that an increase in the quantity of a

market sell order on equity B will also reduce the depth at the best bid price level of equity

A.

In addition, (4.9) indicates the impact of the correlation ρ on the order book depth.

When ρ increases, ∂QA
1 /∂m

B becomes greater, so the cross-equity effect of a market sell

order is even stronger.

The condition of zero expected profit also satisfies for the price levels deeper in the

limit order book. We obtain the same conclusions for the cross-equity effect of market

orders and for the impact of the correlation as well. When the limit order book thins to

the extreme price level, a market quality breakdown occurs. If the trades are based on

exogenous reasons rather than the expected fundamental value, the market would learn

later nothing fundamental has happened and therefore the price movements are reversed.
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3.6 Market Correlation

The critical parameter in the model is the cross-equity correlation ρ. We first try to measure

how the correlation across stocks has changed during our sample period.

Since 2008, there have been instruments15 that directly measure the market’s implied

correlation. These instruments are not available for our entire sample, so we construct our

own measure using daily returns of 30 industry portfolios from Fama and French’s website.

We calculate the 20-day rolling correlation pairwise and use the median as measure of the

market correlation.

We plot the market correlation over the sample period in Figure 3.6.

[INSERT Figure 3.6 HERE]

We include the median correlation in our explanatory model

log(E[πt]) = α+ β1σ
V IXopen
t + β2ṽt + β3d

NMS
t + β4ρ̃t. (3.15)

and present the results in Table 3.2. We construct our correlation variable, ρ̃t, as a dummy

variable that represents spikes in market correlation, just as we did with volume in (3.1).

The results suggest that it does explain a higher frequency of market quality events.

Spikes in market correlation raise the breakdown frequency by 25.62%.

3.7 Exchange Traded Funds

The growing volume of trading in ETFs has changed the character of the market. ETFs

broke down more frequently during the Flash Crash. We confirm, after controlling for

individual equity and exchange effects, that ETFs suffer substantially more market quality

breakdowns.

15The Chicago Board Options Exchange began to disseminate an implied correlation measure for the
S&P 500 options basket and its components. There are also instruments which use this correlation as an
underlying.
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It is an open question whether ETFs make other stocks unstable. We find they do

contribute to market-wide equity breakdowns through their effects on market correlation.

We investigate whether ETFs as an equity class break down more often by including

a dummy variable for ETFs, dETF
i into the individual stock model (3.6). We control for

market capitalization, opening price, individual stock volume and volatility. We also want

to ensure that our ETF results are not simply proxying for the effects of exchanges, so

we include dummies variables for the NYSE, Nasdaq, and AMEX. As shown in Table 3.3,

ETFs exhibit significantly higher likelihood of breakdowns, after controls, than non-ETFs.

ETFs break down 90.33% more frequently. If the market consisted exclusively of ETFs,

there would be greater than 9, 000 more breakdowns per year.

We also explore the relationship between market correlation and the trading activity of

ETFs. We use the Granger causality test to study whether an increase in trading volume

of ETFs causes a change in market correlation, or the other way around. In order to do

the test, we first fit the correlation and aggregate ETF volume into a vector autoregressive

model,

ρ̃t = aρ,0 +

M∑
i=1

aρ,iρ̃t−i +

M∑
i=1

bρ,iṽ
ETF
t−i + ερ,t, (3.16)

ṽETF
t = av,0 +

M∑
i=1

av,iρ̃t−i +
M∑
i=1

bv,iṽ
ETF
t−i + εv,t,

where ρ̃t and ṽETF
t are dummy variables that represent spikes of market correlation and

aggregate ETF volume respectively. The number of lags M = 4 is determined by the

Akaike Information Criterion. Based on this specification, we obtain the Granger causality

test results which are reported in Table 3.4 Panel A.

[INSERT Table 3.4 HERE]

There is a statistically significant causation of aggregate ETF volume for market cor-

relation, but the reverse is not true. Because ETFs cause correlation spikes, they increase
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the probability that other stocks will break down the next day. A lagged ETF volume spike

raises the probability of a correlation spike by as much as 73.60%.

3.8 High Frequency Trading

To examine whether HFT activity helps explain the market quality breakdowns, we use the

data set analyzed by Brogaard, Hendershott, and Riordan (2014) and Carrion (2013). The

HFT data set includes all trades on the NASDAQ exchange for 120 stocks on each trading

date in 2008 and 2009, as well as one week in February 2010. We focus only on 2008 and

2009 in our analysis. The data tells whether an HFT firm is a liquidity taker or a provider

in each trade. We measure HFT activity as the share of volume executed by HFT firms in a

trading day, either at the liquidity seeking side or at the passive side. We analyze the HFT

effect using a dummy variable ˜HFT t that measures spikes in the HFT share of trading

volume, constructed in the same way as volume and correlation. We assume that HFT

firms have similar trading activity in other stocks that we do not observe in this sample,

and extrapolate the measure to the broader equity market.16

The impact of HFT activity on market quality breakdowns may operate through the

correlation channel. Our theoretical model predicts that a high correlation between market

orders will result in a larger cross-equity effect, thus contributing to a higher breakdown

frequency. We investigate this possibility by the Granger causality test in the framework of

the following vector autoregressive model,

ρ̃t = aρ,0 +

M∑
i=1

aρ,iρ̃t−i +

M∑
i=1

bρ,i˜HFT t−i + ερ,t, (3.17)

˜HFT t = ah,0 +

M∑
i=1

ah,iρ̃t−i +

M∑
i=1

bh,i˜HFT t−i + εh,t,

where ρ̃t and ˜HFT t are dummy variables representing spikes of market correlation and HFT

16We test the assumption by estimating the model using only the 120 stocks in the data set for which we
observe volume directly. The effects of HFT are similar to the extrapolated sample.
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activity respectively. The number of lags M = 4 is determined by the Akaike Information

Criterion (AIC). The results in Table 3.4 Panel B suggest that HFT activity Granger causes

market correlation significantly, but the reverse is only marginally significant. A lagged HFT

volume spike raises the probability of a correlation spike by as much as 297.2%.

We re-estimate the explanatory model for the period from 2008 to 2009, controlling for

correlation as our theoretical model suggests,

log(E[πt]) = α+ β1σ
V IXopen
t + β2ṽt + β3˜HFT t + β4ρ̃t. (3.18)

The results in Table 3.5 indicate that HFT activity has a significantly positive impact on

market quality breakdowns, even when we include the effects of market correlation.

[INSERT Table 3.5 HERE]

The marginal effect of correlation spikes is 31.31% in 2008-2009, and spikes in HFT

activity raise the breakdown frequency an additional 18.33%. If both variables trigger in a

trading day, the breakdown frequency rises nearly 50%.

3.9 Prediction

We examine whether breakdowns are predictable. We take the only lagged variable from

the explanatory model (3.15), the 09:30 opening value of the VIX, and then add the two

prior days’ breakdown probabilities πt−j , j = 1, 2,

log(E[πt]) = α+ β1σ
V IXopen
t +

2∑
j=1

ηjπt−j . (3.19)

The results in Table 3.6 demonstrate that the breakdown frequency is positively autocor-

related.

[INSERT Table 3.6 HERE]
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Both lags are statistically significant.17 The breakdown frequency rises by 25.26% if

the frequency last day doubles the average. Following two days of breakdowns at twice

the average rate, the breakdown frequency becomes 52.35% higher. The R2
M in the pre-

dictive model of breakdowns is 49.36%, slightly higher than 46.24% that we found in the

explanatory model which included contemporaneous variables.

3.10 Robustness Checks

We recognize that researchers might use alternative definitions of a market quality break-

down. They might want to use 15% rather than 10% or have the day close flat rather than

down 2.5%, etc. While not reported, our results are quite robust to perturbations in these

values.

Order book breakdowns can also occur on the offer side of the book. This section studies

these “breakups.”

Menkveld and Wang (2011) note that liquidity risks are particularly acute for small

cap stocks. We want to make sure that our results are not being driven solely by a set

of volatile, low-liquidity securities. We repeat our explanatory models for a purely large

market capitalization sample.

We also consider here alternative microstructure definitions of our 10% decline by looking

first at the NBBO. We also look at a less familiar but related concept, the worst bid or offer

(WBO). Our results are quite strong and similar for the NBBO, but the WBO appears to

be a challenge for any model.

In addition, we analyze market quality events using trade data rather than quotes. The

results confirm our explanatory model.

17The AIC suggests including up to 8 lags, but the lags beyond the second are not statistically significant.
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3.10.1 Breakups

Market quality deterioration also results in rapid increases in offer prices. These are sur-

prisingly as frequent as the breakdowns and tend to follow the same pattern over time in

Figure 3.7.

[INSERT Figure 3.7 HERE]

The average breakup frequency is 0.63% in our sample from 1993-2011.

We effectively split the sample on October 15, 2007 using a dummy variable dNMS for

the full implementation of Reg. NMS. Breakups are more frequent than breakdowns after

2002, and we do not find a statistically significant decrease after Reg. NMS in Table 3.7.

[INSERT Table 3.7 HERE]

The effect of market correlation spikes is qualitatively similar to the results we found in

Table 3.2. The results are not as strong as they are for breakdowns, with correlation spikes

raising the breakup probability by 8.915%. The estimated effect is statistically significant

at the 6% level.

3.10.2 Large caps

The literature often focuses on large cap stocks when studying equities. We want to explore

whether our conclusions would change if we include only large caps in our sample. We

construct a sub-sample that contains stocks with market capitalization of more than $10

billion. On average, there are 246 stocks per day in this category.

We plot the aggregate breakdown frequency in Figure 3.7. On average during 1993-2011,

the large cap daily breakdown frequency is 0.11% versus 0.64% for all stocks. Large caps

break down at a lower frequency in each year of the sample. Only 118 large caps have

broken down in the period 2009-11. 77 of these occur during the Flash Crash.
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Our explanatory model explains the breakdown frequency of large caps as well. The

results are reported in Table 3.7. Adding the Reg. NMS dummy variable to the model

reveals a significant reduction in breakdown frequency of 91.81% since October 15, 2007. A

correlation spike raises large cap breakdowns by 121.9%.

3.10.3 NBBO

We plot the frequency of breakdowns based on the NBBO in Figure 3.7. 18 After 2007, the

NBBO breakdown frequency averages 31.96% lower than the frequency based on the listing

exchange.

Market quality breakdowns in the NBBO are less frequent in 2011 than they were in

1993 when exchanges dominated liquidity in their own listings. From 2008-11, secondary

exchanges were able to provide a liquidity buffer in cases where the primary exchange was

experiencing a breakdown. This supports the conclusion of Jiang, McInish, and Upson

(2014) that competition could enhance market quality.

With our explanatory model, the change in definition confirms, in Table 3.7, our previous

conclusions. NBBO breakdowns have decreased significantly since Reg. NMS by 60.61%.

A correlation spike raises the NBBO breakdown frequency by 17.62%.

We feel that looking at the primary listing exchange for market quality effects is quite

natural, but these results show that using the NBBO would result in nearly identical con-

clusions.

3.10.4 Trading events

We also apply our filter to trade prices as another robustness check. Specifically, we look

at trade price movements from 09:35-15:55 in the listing exchange. A stock is identified to

experience a breakdown if the trade prices fall 10% below the 09:35 price and rebound to

18Because the national best bid price may be higher than the listing exchange price at 09:35 or 15:55, the
NBBO breakdown frequency can be larger than the same measure computed solely on the listing exchange.
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within 2.5% of the 09:35 price by 15:55. In addition, the trade with the lowest price must

be repeated at least once in a subsequent calendar second.

Figure 3.7 presents the frequency of trading breakdowns on the primary listing exchange.

The trading events occur relatively more frequently in the 1990s. Consistent with the results

based on the NBBO, breakdowns are less frequent in 2011 than they were in 1993.

The results using our explanatory model are shown in Table 3.7. Trading breakdowns

have decreased significantly since Reg. NMS by 79.91%. A correlation spike raises the

trading breakdown frequency by 31.19%.

3.10.5 WBO

There is a lot more exchange competition in the latter half of our sample, but that does

not mean that every exchange plays an active role in liquidity provision for every stock. In

particular, the presence of stub quotes of $0.01 is important on the non-primary exchanges.

These come into play on many days, not just on the Flash Crash.

Breakdown frequencies grow virtually monotonically in Figure 3.8 between 1997 and

2006.

[INSERT Figure 3.8 HERE]

The frequencies are also nearly 100 times higher. In 2010, stocks on the primary listing

exchange break down 0.36% of the time, whereas the WBO breaks down nearly 35% of the

time.

Not surprisingly, our model offers no explanatory power for these events. In Table 3.7,

volume and correlation offer no improvement to the likelihood of the breakdown frequency.

We don’t feel that the WBO is a proper measure of overall market quality, but we still

think it provides some perspective on quote activity away from the listing exchange or the

NBBO.
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3.11 Conclusion

Market quality, in our view, should be assessed using quotes as well as trade prices. We

analyze the intra-daily consolidated bids and offers of every security in CRSP and TAQ

during the period of 1993-2011. We examine stocks which fall more than 10% between

09:35 and 15:55 but recover within the day. These market quality breakdowns have a daily

average frequency of 0.64%, approximately 44 stocks per day. Breakdowns in 2010-2011

average 0.38%, which is less than once per year in a typical stock.

Volume and volatility are still the prime causes of market quality breakdowns in our

explanatory model, improving the likelihood by more than 40% over a model with just a

constant term. Market quality has improved since the passage of Reg. NMS. A stock is

41.78% less likely to breakdown after mid-October 2007. We find no impact on breakdowns

from a Herfindahl index of quote fragmentation or the market share of off-exchange volume.

The NYSE, despite many changes and losses of market share, still has the highest market

quality. ETFs break down 90.33% more frequently than non-ETFs.

We confirm our theoretical model of correlated liquidity shocks. Breakdowns are 25.62%

more frequent when correlation between market sectors spikes. ETF and HFT trading vol-

ume Granger cause this correlation. Surges in HFT activity raises the breakdown frequency

by 18.33%.

Breakdown effects are persistent up to two days. Lagged factors improve upon a constant

forecast by up to 50%.

Stocks with market capitalization of more than $10 billion have an average daily break-

down frequency of only 0.11%. During 2009-11, only 118 large cap stocks break down.

In 2008-11, NBBO quote activity away from the listing markets lowers the average

breakdown frequency by 31.96%. This suggests that exchange competition may be beneficial

to market quality.
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Table 3.1: Market Quality Breakdowns on May 6, 2010
This table gives the number of breakdowns in market quality on listing exchanges on May
6, 2010. Our sample is selected from all securities listed on the NYSE, NASDAQ, ARCA,
and AMEX. We remove the securities that are not included in the Center for Research
in Security Prices (CRSP) on May 6, 2010. Those include preferred, warrants, and units
bundled with warrants. We apply our filter, as discussed in section 4.4, to identify market
quality breakdowns for individual stocks.

Listings Breakdowns Frequency

Total 6,527 1,857 28.45%
NYSE 2,382 691 29.01%
NASDAQ 2,821 582 20.63%
ARCA 829 521 62.85%
AMEX 495 63 12.73%
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Table 3.2: Aggregate Breakdown Frequency Models 1993-2011
This table presents estimates from the aggregate breakdown frequency models and shows
the impact of changes in market structure and correlation on breakdowns. The dependent
variable πt is the daily breakdown frequency from April 6, 1993 to December 30, 2011.
Given the fact that it is close to zero and not normally distributed, we use the generalized
linear model with the assumption that πt follows the gamma distribution. The models are
estimated by quasi-maximum likelihood method using robust standard errors. Column (1)
shows estimates for the baseline model: log(E[πt]) = α+β1σ

V IXopen
t +β2ṽt. σ

V IXopen
t is the

opening value of the VIX. ṽt represents volume spikes, and equals 1 if the volume becomes
significantly higher than the average of proceeding 20 days at the 5% significance level and
0 otherwise. The volume is measured as the sum of trading activity on each exchange in
its own listings. R2

M denotes McFadden’s R-squared. Column (2) displays the effect of
Reg. NMS after the rules were fully adopted on October 15, 2007, by including a dummy
variable dNMS

t . We measure fragmentation in two ways, the Herfindahl index and the
share of consolidated volume executed in trade reporting facilities (TRFs), as discussed in

section 4.3. Consistent with the volume variable, H̃t and ˜TRF t represent spikes of market
fragmentation, respectively. They equal 1 if the market is significantly more fragmented
compared to the proceeding 20 days and 0 otherwise. The Herfindahl index is in column
(3) and the TRF volume in column (4). The TRF data are available from March 5, 2007 to
December 30, 2011. The R2

M for the baseline model in this sub-sample is 0.5168. Column
(5) shows the impact of market correlation on the breakdown frequency. We calculate
the 20-day rolling correlation pairwise by using daily returns of 30 Fama-French industry
portfolios and then use the median as a measure of the market correlation. Consistent with
the volume variable and fragmentation measures, ρ̃t represent spikes of market correlation.

(1) (2) (3) (4) (5)
Baseline Reg. NMS Herfindahl TRF%† Correlation

σV IXopen
t 0.0749 0.0845 0.0845 0.0668 0.0841

(47.66) (49.97) (50.19) (27.35) (50.02)
ṽt 0.5396 0.5932 0.5936 0.9207 0.5412

(4.44) (4.23) (4.23) (3.32) (4.48)
dNMS
t -0.5410 -0.5416 -0.5463

(-13.27) (-13.37) (-14.36)

H̃t -0.0137
(-0.27)

˜TRF t 0.1706
(1.61)

ρ̃t 0.2281
(3.21)

constant -2.2814 -2.3848 -2.3843 -2.5000 -2.3947
(-70.07) (-71.74) (-71.37) (-36.58) (-72.07)

R2
M 0.4222 0.4587 0.4587 0.5185 0.4624

t-statistics in parentheses.
† denotes sample period from March 5, 2007 to December 30, 2011.
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Table 3.3: Models for Individual Stocks 1993-2011
This table contains estimates from pooled panel regression models at the individual stock
level. We analyze monthly data and the dependent variable ni,t is the number of breakdowns
on stock i in month t. The sample period is from April 1993 to December 2011. We
estimate the models by Poisson regression with robust standard errors using quasi-maximum
likelihood method. Column (1) shows estimates for the baseline model: log(E[ni,t]) =
α + β1p

open
i,t + β2κi,t + β3σi,t + β4ṽi,t, where i is the subscript representing each stock and

t is the subscript for each month. popeni,t is the log opening price of the stock, κi,t is the
log market capitalization, σi,t is the monthly volatility, and ṽi,t is volume spikes on the
listing exchange. Column (2) presents the exchange effects on breakdowns by including
three dummy variables, dNY SE

i,t for the NYSE, dNASD
i,t for the NASDAQ, and dARCA

i,t for the
ARCA. The AMEX is used as the basis in the model. Column (3) shows market quality
breakdowns in ETFs by including a dummy variable dETF

i . The estimates for the model
with both exchange listing and ETFs are reported in column (4). R2

M denotes McFadden’s
R-squared.

(1) (2) (3) (4)
Baseline Exchange ETF All

popeni,t -0.3466 -0.3567 -0.4105 -0.3803

(-51.71) (-53.91) (-59.33) (-54.30)
κi,t -0.3193 -0.2942 -0.2782 -0.2792

(-30.53) (-26.79) (-27.38) (-25.25)
σi,t 0.2557 0.2546 0.2475 0.2514

(9.97) (9.76) (9.49) (9.60)
ṽi,t 0.2146 0.2264 0.2026 0.2195

(38.35) (28.28) (27.11) (27.37)
dNY SE
i,t -0.5783 -0.5305

(-44.47) (-39.43)
dNASD
i,t -0.3548 -0.3072

(-34.71) (-27.76)
dARCA
i,t 0.5942 0.0680

(18.02) (1.55)
dETF
i 1.0071 0.6436

(38.02) (15.50)
constant -0.8051 -0.8949 -1.0329 -0.9826

(-17.60) (-19.06) (-22.45) (-20.33)
R2

M 0.1974 0.2035 0.2016 0.2043

t-statistics in parentheses.
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Table 3.4: Granger Causality Tests
This table demonstrates the relationship between market correlation, exchanged traded
funds (ETFs) and high frequency trading (HFT) by Granger causality tests. Panel A shows
the test results for ETFs during the sample period from 1993 to 2011. The tests are based
on the vector autoregressive model in (4.18). Panel B presents the test results for HFT.
The sample period is from 2008 to 2009 and the tests are based on the vector autoregressive
model in (4.20).

Panel A: Exchange Traded Funds

H0: ETF volume does not Granger cause market correlation.
F -stat 7.20 p-value 0.0000

H0: market correlation does not Granger cause ETF volume.
F -stat 1.36 p-value 0.2446

Panel B: High Frequency Trading

H0: HFT% does not Granger cause market correlation.
F -stat 3.65 p-value 0.0058

H0: market correlation does not Granger cause HFT%.
F -stat 2.07 p-value 0.0833



82

Table 3.5: Aggregate Breakdown Frequency Models 2008-2009
This table presents estimates from the aggregate breakdown frequency models from 2008-
2009, the period covered in the HFT data set. The dependent variable πt is the daily
breakdown frequency. We use the generalized linear model with gamma probability distri-
bution and estimate models by quasi-maximum likelihood method using robust standard
errors. Column (1) re-estimates the baseline model over the period from 2008-2009. Column
(2) shows the impact of market correlation spikes ρ̃t over the period from 2008-2009. Col-
umn (3) reports the estimates when both HFT activity and market correlation are included

in the model, log(E[πt]) = α + β1σ
V IXopen
t + β2ṽt + β3˜HFT t + β4ρ̃t. The HFT activity is

measured by the share of volume executed by HFT firms. Consistent with the volume and

correlation variables, ˜HFT t is a dummy variable measuring spikes in HFT activity. R2
M

denotes McFadden’s R-squared.

(1) (2) (3)
Baseline Correlation HFT

σV IXopen
t 0.0526 0.0528 0.0532

(19.75) (19.40) (19.26)
ṽt 0.5700 0.4766 0.4408

(3.87) (4.22) (3.80)

˜HFT t 0.1683
(2.15)

ρ̃t 0.2324 0.2427
(2.59) (2.65)

constant -1.7866 -1.8082 -1.8366
(-19.14) (-18.68) (-18.24)

R2
M 0.2316 0.2330 0.2340

t-statistics in parentheses.

Table 3.6: Predictive Models
This table contains estimates from a predictive models of breakdowns. We include the
prior days’ breakdown probabilities along with the opening value of the VIX, log(E[πt]) =
α+ β1σ

V IXopen
t +

∑2
j=1 ηjπt−j . R

2
M denotes McFadden’s R-squared.

Breakdown

σV IXopen
t 0.0388

(10.64)
πt−1 0.3519

(3.74)
πt−2 0.3059

(3.33)
constant -1.9544

(-48.12)
R2

M 0.4936

t-statistics in parentheses.
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Table 3.7: Robustness Checks for Aggregate Frequency Models
This table presents estimates for a variety of robustness checks for our explanatory model
(3.15). Column (1) examines “breakups,” rapid increases in offer prices from the listing
exchange that are subsequently reversed. Columns (2)-(5) look at breakdown frequency.
Column (2) is a sample of stocks with market capitalization of more than $10 billion. In col-
umn (3), the breakdown frequency is based on the NBBO rather than the listing exchange.
Column (4) uses trades rather than quotes as the breakdown measure. In column (5), the
frequency is based on the WBO on any exchange. We use the generalized linear model with
gamma probability distribution, and the models are estimated by quasi-maximum likelihood
method using robust standard errors. R2

M denotes McFadden’s R-squared.

(1) (2) (3) (4) (5)
Breakups Large Caps NBBO Trades WBO

σV IXopen
t 0.0686 0.1325 0.0836 0.0804 0.0039

(47.86) (13.69) (51.86) (40.67) (2.76)
ṽt 0.2094 1.9653 0.5138 0.6829 0.0623

(4.70) (4.32) (5.30) (4.30) (1.19)
dNMS
t 0.0100 -2.5028 -0.9316 -1.6050 0.6200

(0.33) (-10.05) (-30.12) (-36.46) (28.36)
ρ̃t 0.0854 0.7971 0.1623 0.2715 0.0584

(1.94) (2.99) (3.16) (2.84) (1.33)
constant -2.1231 -5.3716 -2.3821 -2.2085 2.5283

(-73.12) (-27.01) (-78.69) (-58.91) (72.74)
R2

M 0.3721 0.6466 0.5442 0.6095 0.0111

t-statistics in parentheses.
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Figure 3.1: Market Quality Metrics on May 6, 2010
This figure presents the market quality metrics on May 6, 2010 by our filter. For comparison
with the CFTC-SEC results, we apply the same stock filter here, i.e. a share price of more
than $3.00 and a market capitalization of at least $10 million. Panel A shows the distribution
of the percentage decline in the best bid prices on the Flash Crash day. Panel B displays
the time and percentage decline of the best bid from 14:00 to 15:00. Each point on the
graph represents a stock.

Panel A: Distribution of % Decline in the Best Bid

Panel B: Timing of Lows in Best Bid 14:00-15:00
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Figure 3.2: Market Quality of ETFs on May 6, 2010
This figure presents the market quality of ETFs on May 6, 2010 by our filter. Panel A
shows the distribution of the percentage decline in the best bid prices for a sample of all
ETFs. Panel B displays the time and percentage decline of the best bid from 14:00 to 15:00.
Each point on the graph represents an ETF.

Panel A: Distribution of ETF % Decline in the Best Bid

Panel B: Timing of ETF Lows in Best Bid 14:00-15:00
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Figure 3.3: Breakdown Frequency 1993-2011
This figure presents market quality breakdowns from 1993 to 2011. Panel A shows the
breakdown frequency, which is calculated by the number of breakdowns divided by the
total number of securities. Panel B plots the number of breakdowns in each year.

Panel A: Market Quality Breakdown Frequency

Panel B: Number of Market Quality Breakdowns
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Figure 3.4: Breakdown Inequality by Gini Coefficient 1993-2011
This figure demonstrates the inequality of breakdown incidence among individual stocks by
the Gini coefficient. For each year we include the securities that experience at least one
breakdown in market quality.
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Figure 3.5: Market Quality Breakdown Frequency by Exchange 1993-2011
This figure presents the breakdown frequencies from 1993 to 2011 on each of the four listing
exchanges, NYSE, NASDAQ, AMEX, and ARCA. ARCA becomes a listing exchange in
2006 after its merger with NYSE. The breakdown frequency on each exchange is calculated
by the number of breakdowns divided by the total number of securities on that exchange.
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Figure 3.6: Rolling Correlation of Industry Portfolios 1993-2011
This figure illustrates the market correlation from 1993 to 2011. We calculate the 20-day
rolling correlation pairwise using daily returns of 30 Fama-French industry portfolios, and
then use the median as a measure of the market correlation.
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Figure 3.7: Robustness Checks for Breakdown Frequency 1993-2011
This figure presents event frequencies from 1993 to 2011 for alternative measures of market
quality. We plot “breakups,” rapid increases in offer prices from the listing exchange that
are subsequently reversed. We also plot three breakdown frequencies: (1) a sample of stocks
with market capitalization of more than $10 billion, “Large caps”; (2) the national best bid
or offer (NBBO); and (3) trade prices (“Trading events”).
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Figure 3.8: WBO Breakdown Frequency 1993-2011
This figure presents market quality breakdown frequencies in the worst bid or offer (WBO)
from 1993 to 2011.
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Chapter 4

High Frequency Trading in the Equity Markets During U.S.

Treasury POMO

Joint with Bruce Mizrach

4.1 Introduction

High frequency trading (HFT) represents more than 70% of equity market trading volume,

according to industry estimates from Sussman, Tabb, and Iati (2009). The impact of

HFT on the equity markets has become a central question in the policy debate about

market structure and in the academic literature on market microstructure. The policy

debate has been motivated in part by the “Flash Crash” of May 6, 2010 when over 200

stocks traded down to a penny bids before the market quickly rebounded. The Commodity

Futures Trading Commission and Securities and Exchange Commission (2010) task force

report analyzed HFT activity from the 12 largest firms during the crash. Half significantly

curtailed their trading activity during the crash including two firms that stopped trading

for the rest of the day.

The academic literature has focused on the effect of HFT firms on liquidity provision.

Brogaard (2011) analyzes a data set that explicitly identifies HFT activity. He concludes

that HFT firms improve market quality on average. Hasbrouck and Saar (2013) suggest that

HFT activity improves traditional market quality measures such as short-term volatility,

spreads, and displayed depth in the limit order book. Brogaard, Hendershott, and Riordan

(2014) argue that HFT increases price efficiency through their marketable orders. Menkveld
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(2013) analyzes the arrival of the Chi-X high frequency platform in Europe and concludes

that HFT firms act as market makers in the new market. Zhang (2010) finds more harmful

effects. He observes that HFT is positively correlated with stock price volatility and hinders

the ability of the market prices to reflect fundamental information. Cvitanic and Kirilenko

(2010) provide a theoretical perspective and show that HFT activity effects volume and

the distribution of transaction prices. Hirschey (2013) provides evidence that HFT firms

anticipate the order flow from non-HFT investors and their aggressive trades are highly

correlated with future returns.

While HFT firms are generally deemed to be passive liquidity providers, we find that

they act as trade initiators in nearly 47% of trades in normal times. High frequency traders

appear to have superior information. Whether they are at the active or passive side, the

trades are more profitable when the counterpart is a non-HFT firm rather than a HFT firm.

The “Flash Crash” helps to clarify why reporting the average effect of HFT firms on the

market may provide a misleading portrait of their contribution to market quality. Analyzing

their impact when the market is under stress or reacting to news needs to be isolated from

their contribution during less turbulent periods.

Brogaard (2011) does find that HFT firms reduce their liquidity provision during volatile

times of the trading day. He claims that they increase their trading activity during periods of

exogenous volatility. He looks at days surrounding firms’ quarterly earnings announcements

and the week of the Lehman Brothers failure. Both approaches show HFTs tend to increase

their trading during times of exogenous volatility. We re-examine Brogaard’s claim by

looking at another period of potential market stress, the U.S. Treasury purchases made by

the Fed beginning in late 2008 as part of its quantitative easing program.

The Federal Reserve’s asset purchase program began in November 2008 with $600 billion

of GSE debt and mortgage backed securities. In March 2009, the Federal Open Market

Committee enlarged these programs and authorized purchases of $300 billion in long-term

Treasuries.
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The goal of the large-scale asset purchases was “an effort to drive down private borrowing

rates, particularly at longer maturities.” Using an event study, Gagnon, Raskin, Remache,

and Sack (2011) conclude that 10-year Treasury bond yields fell 91 basis points and that

10-year agency debt yields declined 156 basis points. Joyce, Lasaosa, Stevens, and Tong

(2011) find that a program of similar scale in the U.K. lowered gilt yields by 100 basis

points.

Central bank asset purchases can also have impact on related asset markets. Neely (2010)

and Joyce, Lasaosa, Stevens, and Tong (2011) have both emphasized the portfolio balance

channel in which declining exposure to Treasury also raises other asset prices. Neely (2010)

shows that announcements related to the U.S. asset purchase program also lowered 10-

year government bond yields in Australia, Canada, Germany, Japan and the U.K. between

19 and 78 basis points. Krishnamurthy and Vissing-Jorgensen (2011) estimate that U.S.

corporate bond yields fell between 43 and 130 basis points. Neely (2010) also finds evidence

for reallocation into the U.S. stock market: the S&P 500 index rises a cumulative 3.42%.

Even though the size of Fed’s overall program was largely known by to the market by

March 2009, the specific securities they would buy and the bids they would accept at each

auction were not. The participation levels and prices paid, just like any auction, reveal

information to the markets.

We develop a theoretical model in which high frequency trading firms receive valuable

private information before other traders. This information can lead HFT firms to temporar-

ily abandon their role as liquidity providers and trade aggressively in the direction of the

news.

Our model predicts that HFT firms should reduce their inside quoting activity. We find

that during Treasury POMO auctions HFT firms reduce their inside bid participation by

8%.

The model also predicts that HFT firms should trade more aggressively against non-

HFT participants in the direction of the news. We do find that HFT firms buy (sell) more
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frequently using aggressive trades with positive (negative) news. We also find that HFT

firms are less likely to supply liquidity passively to non-HFT firms trading in the direction

of news. These results are even stronger once we control for microstructure effects.

Consistent with Biais, Foucault, and Moinas (2013), we find that the release of pri-

vate information raises market impact. A 1, 000 share order moves the market on average

$0.0318, but on POMO days this rises to $0.0341.

High frequency traders are able to generate the most profit from private information

because of their ability to trade quickly. HFT firms are consistently profitable trading

during POMO events. They are profitable 88% of the time on aggressive trades and 100%

of the time on passive trades. We estimate a daily average profit per stock of $1, 300.35

which rises to $1, 895.37 on POMO days. The profits per share from aggressive trading rise

300%. Extrapolating these results to the market as a whole, we estimate profits of more

than $105 million.

This chapter is organized as follows. Section 4.2 examines the POMO purchases by the

Federal Reserve. We develop a theoretical model to explain HFT behavior when private

information is released in Section 4.3. Section 4.4 describes the HFT data set. In Sections

4.5, we provide empirical support for the model by examining HFT quote and trade activ-

ities, market impact and profits during POMO. We perform robustness checks in Section

4.6, and Section 4.7 concludes.

4.2 Permanent Open Market Operations (POMO)

Economists renewed their interest in the zero interest rate lower bound during Japan’s pro-

longed slump. Krugman (1998) revived discussion of the liquidity trap, and Ben Bernanke,

as a Governor on the Federal Reserve Board, considered the effectiveness of a money-

financed tax cut,1 earning the nickname, “Helicopter Ben.” Eggertsson andWoodford (2003)

1Remarks by Governor Ben S. Bernanke Before the National Economists Club, Washington, D.C. Novem-
ber 21, 2002.
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have suggested that the zero-lower bound could be combated by expectations. Their pre-

scription, a commitment to a long-term lowering of interest rates, has influenced the Fed’s

pledge to keep interest rates low for an “extended period.”

The use of asset purchases to lower long-term interest rates was used in the 1960’s as part

of “Operation Twist,” a U.S. effort to shorten the average maturity of the government debt.

Roley (1982) found that the program lowered yields on both government and corporate debt.

The Bank of Japan also dramatically expanded its balance sheet. Between 2001 and 2006,

Shiratsuka (2010) reports, the central bank progressively added 35 trillion yen (roughly

$350 billion) to its reserves through asset purchases.

The Federal Reserve implements its monetary policy targets through the purchase and

sale of Treasury securities. The unconventional policies it pursued after the Lehman

bankruptcy were different in both size, scope and duration. The Fed increased reserve

bank credit from $893 billion on September 4, 2008 to $2, 298 billion on March 25, 2010

during (what turned out to be) the first round of quantitative easing (QE1). The Fed-

eral Reserve not only purchased U.S. Treasuries as it normally would, it also bought GSE

mortgage backed securities and debt. Because these assets were intended to remain on the

balance sheet for an extended period, they were called “permanent” open market opera-

tions (POMO). The history and motivation of the Federal Reserve program is analyzed in

Gagnon, Raskin, Remache, and Sack (2011).

We focus on U.S. Treasury purchases because Treasury securities play a unique role in

the asset markets. We are motivated by the work of Lou, Yan, and Zhang (2013) who

find that regularly scheduled Treasury auctions have price impacts on the Treasury, repo

and equity markets. They link these effects to the limited risk bearing capacity of the

primary dealers and fund flows influenced by temporary price distortions. Krishnamurthy

and Vissing-Jorgensen (2010) highlight the unique role of Treasuries and note that changes

in their supply effect the equilibrium price of liquidity and safety.
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4.2.1 U.S. Treasury Market Purchases

U.S. Treasury security purchases began in March 2009. The Fed purchased $295.4 billion

in 57 auctions in which dealers offered $1, 137 billion for sale. Maturities ranged from 2 to

30 years for 160 different CUSIPs. This represented about 3% of the outstanding Treasury

debt, and about 8% of the available Treasury supply. There are three purchases of Treasury

Inflation Protected securities (TIPS) totaling $4.5 billion, but we did not include them in

our analysis.

D’Amico and King (2010) provide details on the implementation of the Treasury pur-

chases. On every other Wednesday, the Open Market Desk at the Federal Reserve Bank of

New York would announce the range of the yield curve they were purchasing and the dates

on which bids could be submitted. At 10:15 AM on each auction day, the Fed would publish

a list of CUSIPs that it would consider purchasing. Most days, the bidding would com-

mence at 10:30 AM. Shortly after bidding closed at 11:00 AM, the Fed used a confidential

algorithm to determine which bids to accept.

Table 4.1 provides details on the first Treasury purchase on March 25, 2009. The Federal

Reserve announced that it would consider purchasing securities with maturities between

February 29, 2016 and February 15, 2019.

[INSERT Table 4.1 HERE]

It listed 18 CUSIPs in this maturity range, but excluded one security, the 5.125% note,

maturing on June 15, 2016. On March 25, they accepted bids on 13 of the securities, buying

$7.5 billion overall. This was 31% of the $21.9 billion submitted.

These auctions results show that while the total amount of assets to be purchased was

known prior to the auction, the maturity composition of Treasury purchases did provide

news to the market. We then try to model in the next section how HFT firms might alter

their trading activity upon receipt of this news.
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4.3 The Model

4.3.1 Model Setup

Consider a risky security, with the terminal value V , that changes from its initial value V0

based on random innovations ε ∼ N(0, σ2) and fundamental information,

V = V0 + ε+ η. (4.1)

η is the expected change in the fundamental value due to the information arrival of POMO

auctions. η is assumed to be independent from ε and can take three values: η = +δ > 0 if

the news is positive, η = −δ if the news is negative, and η = 0 if no information arrives.

There are three types of traders in our model: noise traders (NTs), limit order traders

(LOTs), and high frequency traders (HFTs). NTs submit orders for liquidity reasons and

use market orders that hit the bid or offer on the limit order book. We assume that a noise

trader arrives exogenously with probability θ, and will submit a buy order with probability

γ or a sell order with probability 1− γ.

LOTs provide liquidity by placing bid and offer quotes competitively. HFTs are profit

maximizing. They trade either passively to earn the bid-ask spread by submitting limit

orders or aggressively to realize a positioning profit using marketable limit orders. We

assume in our model that HFTs trade faster than NTs and LOTs in the sense that they are

more quickly informed of the value of η than noise traders and limit order traders.

To simplify the analysis we assume that all orders by each type of traders are for one

unit of the security. Because the order flow of noise traders is exogenous, we only need to

focus on two players: LOTs and HFTs. We then analyze their decision problems under

different market conditions.
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4.3.2 Limit Order Traders

LOTs do not observe the value of η, but they infer its value based on trading activity. Their

conjecture about the probability distribution of η: η = +δ with probability α, η = −δ

with probability β, and therefore η = 0 with probability 1 − α − β. The unconditional

expectation of η is calculated as η = δ (α− β). LOTs post bid and offer quotes at B and A

respectively, and are aware that HFTs have superior information about η. Following Glosten

and Milgrom (1985), we consider buys and sells separately. Given that other traders buy,

the expected profit of LOTs is

E [πLOT |Buy] = A− E [V |Buy] = A− V0 − E [η|Buy] . (4.2)

To calculate the expectation of η given that the trade is a buy, we first compute the

conditional probabilities of η.

Pr (η = +δ|Buy) =
Pr (η = +δ,Buy)

Pr (Buy)
=

α(1 + θγ)

α+ θγ
,

Pr (η = −δ|Buy) =
Pr (η = −δ,Buy)

Pr (Buy)
=

βθγ

α+ θγ
. (4.3)

We assume that competition among LOTs drives their expected profit to a positive

amount cLOT . Therefore, the best offer is set as

A = V0 + E [η|Buy] + cLOT = V0 + η +
δα (1− α+ β)

α+ θγ
+ cLOT . (4.4)

Similarly, we can obtain the best bid by LOTs. The conditional probabilities of η given

that other traders sell is

Pr (η = +δ|Sell) =
Pr (η = +δ, Sell)

Pr (Sell)
=

αθ(1− γ)

β + θ(1− γ)
,

Pr (η = −δ|Sell) =
Pr (η = −δ, Sell)

Pr (Sell)
=

β (1 + θ (1− γ))

β + θ(1− γ)
. (4.5)
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If the expected profit is driven to cLOT by competition, the best bid is set as

B = V0 + E [η|Sell]− cLOT = V0 + η − δβ (1 + α− β)

β + θ(1− γ)
− cLOT . (4.6)

The bid-ask spread is

A−B =
δ [2αβ + θ (α (1− γ) (1 + β − α) + βγ (1 + α− β))]

(α+ θγ) (β + θ(1− γ))
+ 2cLOT . (4.7)

It is not hard to show that the spread is always positive. As seen in (4.7), the bid-ask

spread can be decomposed into two components for LOTs. The first term captures the

adverse selection risk and the second one covers the inventory cost.

In the symmetric case that LOTs’ conjecture on positive or negative news has equal

probability, i.e. 0 ≤ α = β ≤ 1
2 , the bid-ask spread reduces to

A−B =
δα (2α+ θ)

(α+ θγ) (α+ θ(1− γ))
+ 2cLOT . (4.8)

4.3.3 High Frequency Traders

HFTs maximize their profit using either limit orders or marketable limit orders. They

can expect to earn the bid-ask spread on passive trades by placing limit orders. By using

marketable limit orders HFTs must pay the spread. A trader may want to do so because

valuable limit orders can disappear quickly given the competition from other HFTs and the

cancellation of limit orders. In this way they expect to gain trading profits. We assume that

HFTs are informed of the value of η under news release and have the same conjecture as

LOTs about the distribution of η when no information arrives. We then study the optimal

order placement decision of HFTs based on different market conditions.

When there is no news expected on POMO auctions, HFTs’ conjecture about the ter-

minal security value is

E [V |non-POMO] = V0 + η. (4.9)
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Since it lies between the best bid and offer quotes by LOTs, they could expect a loss if they

submit marketable limit orders by crossing the spread. For example, the expected profit

for a buy marketable limit order would be

E [V |non-POMO]−A = −δα (1− α+ β)

α+ θγ
− cLOT < 0. (4.10)

Instead, HFTs are better off under no expected news if they provide liquidity by posting

bid and offer quotes and earn the bid-ask spread on passive trades.

HFTs place their quotes at the same bid and offer prices as the limit order traders. They

are not adversely selected by other traders, so they would earn a higher expected profit than

LOTs at the bid and offer quotes specified in (4.6) and (4.4). At the bid side HFTs expect

to have a profit of

cBHFT =
δβ (1 + α− β)

β + θ(1− γ)
+ cLOT , (4.11)

and their expected profit at the offer side would be

cAHFT =
δα (1− α+ β)

α+ θγ
+ cLOT . (4.12)

When a positive information of POMO auctions is expected, HFTs’ conjecture about

the terminal security value is

E [V |positive] = V0 + δ. (4.13)

For a marketable limit order purchase, their expected profit is

E [πHFT |positive] = V0 + δ −A = δ (1− α+ β)− cAHFT . (4.14)

It is positive when δ > cAHFT / (1− α+ β). This suggests that HFTs would take the prof-

itable opportunity to buy the security at the offer quote A by LOTs when they are informed

of a good news with a relatively big rise of the equity value. Although they pay the spread
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in this way, HFTs can earn trading profits because of their superior information about the

news.

It also indicates that in this situation HFTs would withdraw their liquidity provision at

the inside offer and then post a higher offer quote at V0 + δ + cAHFT .

The analysis for HFTs’ order strategy with a negative expected information is similar.

Their expected profit for a sell marketable limit order is

E [πHFT |negative] = B − (V0 − δ) = δ (1 + α− β)− cBHFT , (4.15)

which is greater than zero when δ > cBHFT / (1 + α− β). It suggests that HFTs would sell

the security to LOTs at the bid quote B when they expect a bid drop of the equity value.

In this case they would choose to scale back from the inside bid and then post a lower bid at

V0− δ− cBHFT . The theoretical results on HFTs’ order placement decision are confirmed by

our empirical analysis of their quoting and trading activities during the period of Treasury

POMO auctions.

4.4 HFT Database

We utilize the same data set provided by NASDAQ OMX as in Chapter 2. The data tracks

120 stocks,2 and has information at different intervals and samples about quotes and trades

from 26 HFT firms.

The trade information is most complete. It includes all trades on the NASDAQ exchange

during regular market hours, apart from the opening and closing crosses, from January

2008 to December 2009, plus the week of February 22-26, 2010. We begin our analysis

in December 2008 with the onset of POMO activity by the Federal Reserve. This sample

covers the entire time first round of asset purchases by the Federal Reserve. The data set

tells whether an HFT firm initiated or filled a trade. These 26 firms are involved in 76% of

2The symbols of stocks are listed in Table 2.2.
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all the trading activity during the period January 2008 through February 2010.

There are detailed NASDAQ order book data snapshots sampled from the first week of

each quarter from January 2008 to December 2009, and then February 22-26, 2010. We

observe whether an HFT firm is providing liquidity at each tier of the order book. To

supplement the HFT data for our market impact analysis, we make use of the ITCH data

set. ITCH provides full order book level detail for the NASDAQ market, but it does not

provide any HFT information. We only analyze inside quote activity in both data sets

though.

Market participants3 and regulators4 have been concerned about the size and scope of

HFT activity in recent years. Our data set documents a growing role for HFT activity.

Figure 4.1 plots the monthly average percentage of HFT trades. HFT trading activity

appears to trend up in 2008, back down in 2009, before stabilizing in early 2010.

[INSERT Figure 4.1 HERE]

Another measure of HFT liquidity is the extent to which HFT firms make up the inside

quote. We also graph this frequency in Figure 4.1. Inside quote activity continues to

uptrend in 2009, unlike the trade series.

We will control for these trends in our analysis of the POMO auctions.

4.5 Empirical Results

We analyze HFT quote and trade activities during U.S. Treasury POMO auctions. We

find that (1) HFT firms pull back as market makers during periods of information release;

(2) HFT firms use information to trade aggressively in the direction of the news; (3) HFT

firms provide less passive liquidity on the opposite side of the news; (4) market impact rises

3See e.g. Christopher Matthews, “High Frequency Trading: Wall Street’s Doomsday Machine?”, Time
Magazine, August 8, 2012.

4SEC Chairman Mary Jo White, in testimony before the Senate Banking Committee on March 13, 2013,
noted “..high frequency trading, complex trading algorithms, dark pools, and intricate new order types raise
many questions and concerns.”
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during U.S. Treasury POMO auctions; (5) HFT profits rise during POMO events. The

empirical evidence provides support to our theoretical model.

4.5.1 HFT Firms Pull Back from the Inside Quote

Our model implies that, around the release of news, market makers should become more

cautious. Admati and Pfleiderer (1988) have emphasized that the risk of trading against

valuable private information is higher, and market makers should widen spreads and reduce

their depth.

To examine this empirically, we estimate how frequently HFT firms participate in the

inside quote on the NASDAQ market. Our order book overlaps with U.S. Treasury POMO

auctions on 5 trading days.

We calculate the percentage of ticks in which the HFT firms is at the inside bid or offer.

Interpreting this raw percentage requires some care. First, we have to account for the trend

in the data that we noted in Figure 4.1. We find that a quadratic trend fits the data well.

The data are also seasonal intra-daily. The vast majority of POMO auctions occur

between 10:30 and 11:00 AM. This is a relatively quiet time during the day in which HFT

participation tends to fall off. Therefore, we include a time dummy for the period from

10:30-11:00 AM in the model.

We also need to control for the typical microstructure factors that influence order aggres-

siveness. These include realized volatility, which we measure as a ten-tick moving average,

trade volume, and the order imbalance of buyer less seller initiated trades. These variables

are all lagged one period.

We estimate the model in the probit form with robust standard errors on a pooled

cross-section of the 120 stocks, using maximum likelihood. We report the result for the

bid and offer side respectively. Table 4.2 shows that the participation rate of HFT firms

in the inside quote falls significantly during Treasury purchases, whether it is a positive or

negative news. The result is consistent with our model.
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[INSERT Table 4.2 HERE]

HFT firms are almost 8% less likely to quote on the inside bid and 5% less frequently

on the inside offer during U.S. Treasury POMO auctions. This contrasts with Brogaard,

Hendershott, and Riordan (2014) finding that HFT participation increases on high volatility

days.

4.5.2 HFT Firms Trade More Aggressively in the Direction of News

Given the fact that the HFT firms tend to withdraw liquidity from the inside quotes during

POMO auctions, the other question to ask is whether they demand more liquidity from

other non-HFT market participants. The trade data set tells us whether traders are HFT

or non-HFT firms at both sides of a trade. We treat the HFT firms as a group and focus

particularly on HN and NH trades, where the first letter refers to the liquidity seeker and

the second to the liquidity provider. We study the trading behavior of the HFT firms when

they expect a positive and a negative news respectively.

We report, in Table 4.3, the average difference of the number of HFT buyer and seller

initiated trades between 10:30-11:00 AM and the rest of the day, at a 1-minute frequency.

[INSERT Table 4.3 HERE]

We divide U.S. Treasury purchases into positive and negative news events based on the

1-hour equity return after the start of the auction. The event is treated as positive news if

the average return across the 120 stocks is greater than zero, and a negative one otherwise.

Among 57 Treasury purchases, there are 32 positive and 25 negative news events.

We compute the average difference on non-POMO days and on days with positive and

negative news from U.S. Treasury auctions. We then test the differences in these net buy

counts during event and non-event periods. We find a statistically significant reduction

in buyer initiated trades on negative news days, with a reduction of 345 net buy trades
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during the POMO period. There is an increase of 482 net buy trades on positive news days,

although this result is only significant at the 10% level.

POMO announcements days are volatile periods for the market, and this should lead

to a less aggressive trading posture for HFT firms. To confirm and perhaps strengthen the

results in Table 4.3, we need to then control for microstructure factors. We add lagged

returns, realized volatility, volume and order imbalances as before, as well as a seasonal

time dummy. We also include two dummy variables for positive and negative news.

The dependent variable is the 1-minute net differential between buyer and seller initiated

trades. We then estimate a least squares model for HN net buyer counts trades in Table

4.4.

[INSERT Table 4.4 HERE]

We estimate a significantly positive effect of U.S. Treasury POMO events on HN trades,

indicating the more aggressive stance of the HFT firms during the auctions. Once we control

for microstructure factors, HFT firms increase their net buying by 600 trades on good news

days and decrease their net buying by 891 trades when there is bad news.

4.5.3 HFT Firms Reduce Their Passive Liquidity Supply

We then do the same comparison in Table 4.3 for NH trades in which HFT firms are the

passive liquidity suppliers. We find that non-HFT firms reduce their net buys by 273 trades

on positive news days and increase their net buys by 229 trades on bad news days. This

indicates that HFT firms have become more reluctant to supply passive liquidity to noise

traders trading in the direction of the news. Neither of these results is significant at the

10% level though.

Introducing microstructure variable controls helps to isolate the effects predicted by our

model. When we regress NH net buyers counts, the effect of the POMO auctions becomes

much more strongly significant. Non-HFT firms decrease their net buying by 478 trades on
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good news days and increase their net buying by 490 trades with bad news.

We have now confirmed three of the primary predictions of the model. HFT firms become

less active participants in the inside market on either the bid or offer. HFT firms increase

their net buying activity on good news days and decrease on bad news days. Finally, we

show that non-HFT firms are not able to trade as aggressively as HFT firms in the direction

of the news because the HFT firms reduce their passive liquidity supply.

4.5.4 Market Impact of Trades by HFT Firms Becomes Higher

Another measure of liquidity is the market impact of trades. This is a dynamic indicator

which incorporates the bid-ask spread, market depth, the persistence in order flow, and the

resiliency of the order book.

Let ri,t be the change in the midpoint of the bid-ask spread, (pbi,t + pai,t)/2 − (pbi,t−1 +

pai,t−1)/2. xi,t ∈ {−1,+1} is an indicator variable which measures the trade direction. It is

assigned as +1(−1) if the transaction is a buy(sell). Let Vi,t denote the size of the trade.

We follow Hasbrouck (1991) using a vector autoregressive (VAR) model of their dynamic

interaction. We also use Hasbrouck’s identifying assumption that the current trade can

effect the current quote, but not vice versa,

ri,t = ar,0 +

10∑
j=1

ar,jri,t−j +

10∑
j=0

br,jxi,t−jVi,t−j + εr,t, (4.16)

xi,tVi,t = ax,0 +
10∑
j=1

ax,jri,t−j +
10∑
j=1

bx,jxi,t−jVi,t−j + εx,t. (4.17)

We use 10 lags in the VAR. The estimates are not sensitive to this choice.

Market impact is a dynamic process

∂ri,t+j/∂xtVt (4.18)

which we will now compute during POMO and non-POMO intervals. We sum the aggregate
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effect

Λ =
1

120

120∑
i=1

50∑
j=1

∂ri,t+j/∂xi,tVi,t (4.19)

arbitrarily after 50 trades, filtering out negative impacts.

The number of POMO days we can include is limited by the availability of our NASDAQ

inside quote data. We have only 5 U.S. Treasury POMO days to contrast with 14 non-

POMO days. To do reasonable comparisons, we expand the sample to 14 POMO days

using NASDAQ ITCH data.

Our HFT data set classifies trades into four categories. The trade has an aggressor and

a passive supplier. Either can be a HFT or not. We report the comparison of average

market impact by HFT trades, xt ∈ {xHH
t , xHN

t , xNH
t }, across the 120 stocks in Table 4.5.

[INSERT Table 4.5 HERE]

We find, as our quote analysis indicated, that market impact from HFT is significantly

higher during U.S. Treasury POMO auctions than the corresponding period on non-POMO

days. A 1, 000 share order moves the market on average $0.0318, but on POMO days

this rises to $0.0341. The rise in market impact of trades could make the trading costs of

non-HFT firms even higher.

4.5.5 HFT Firms Make More Profits During POMO

Menkveld (2013) makes a useful division of trading profits for an HFT firm. On passive

trades, designated NH in our sample, they can expect to earn the bid-ask spread. On

aggressive trades, designated HN, they must pay the spread, hoping to realize a positioning

profit.

Under some assumptions, we can estimate the profitability of the HFT firms as a group

using our trade data. We assume that HFT firms try to end the day flat and assess their

profits by valuing any position at the day’s average price. By construction, we consider

only HN and NH trades.
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The HFT daily profits for stock i are estimated as,

πHFT
i =

T∑
t=1

[DS
i,tpi,tqi,t −DB

i,tpi,tqi,t] +

∑T
t=1 pi,tqi,t∑T
t=1 qi,t

T∑
t=1

[DB
i,tqi,t −DS

i,tqi,t], (4.20)

where DB and DS are buy and sell indicators respectively, pi,t is the price of stock i at time

t, and qi,t is the quantity. It closes out open positions at the end of the day using the daily

volume weighted average price. The method for calculating profits is similar to Brogaard,

Hendershott, and Riordan (2014) and Baron, Brogaard, and Kirilenko (2014).

Profits per stock for POMO U.S. Treasury days are compared to profits on non-POMO

days in Table 4.6.

[INSERT Table 4.6 HERE]

On non-POMO days, we estimate profits of $1, 300.35 per stock for the entire sample

of trading days between December 2008 and February 2010. This compares to Brogaard,

Hendershott, and Riordan (2014) estimate of $2, 484.28 for the entire trading sample back

to January 2008. We find that HFT firms increase their average daily profits by 46% on U.S.

Treasury POMO days. The increase in profit of $595.02 per stock is marginally significant

at 10% level.

To approximate returns from HFT activity, we also estimate in Table 4.7 the profits per

share πHFT
i,ps from their aggressive and passive trades,

πHFT
i,ps =

πHFT
i∑T

t=1 qi,t/2
. (4.21)

[INSERT Table 4.7 HERE]

Given an average share price of around $30, the returns are quite modest. The trades,

however, are very short term and rarely lose money. On U.S. Treasury POMO days, profits

per share are positive 96.49% of the time. On the 2 days where the HFT firms lose money,
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they lose only 2/10 and 3.6/10 of one cent per share respectively, compared with the largest

gain of nearly $0.04 per share on April 30, 2009.

In HN trades, HFT firms also rarely lose money on Treasury POMO days. They make

profits 87.72% of the time. Crossing the spread on non-POMO days is much more risky.

Profits are positive on only 60.63% of non-POMO trading days. The average profit per

share when crossing the spread is typically small, only $0.0032 per share, but this rises by

a statistically significant 300% during POMO auctions.

In NH trades where HFT firms are passive liquidity providers, profits per share are

always positive on U.S. Treasury POMO days. Compared to their performance on non-

POMO days, HFT firms increase the average profits per share by 38% on U.S. Treasury

POMO days, and the effect is statistically significant.

On POMO days, HFT firms became more aggressive. While this should raise the profits

on their passive activity, it should actually reduce their profits on aggressive trades unless

their positioning profits are higher. This is evidence that HFT firms receive valuable private

information during the POMO auctions because their profits per share rise despite the wider

spreads.

Extrapolating the daily profit estimates to the broader market requires an estimate of

the percentage of high frequency trading in the market captured by our sample. We present

an estimate here in based on the 12.3% of total market capitalization represented by the

firms in our sample. We sum daily profits across the 120 stocks, the 57 U.S. Treasury

POMO days, and we assume similar activity in the sample we do not observe. We estimate

profits of over $105 million during U.S. Treasury POMO auctions.
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4.6 Robustness Checks

4.6.1 Time Window

We analyze the HFT firm behavior in the half-hour after U.S. Treasury POMO as a robust-

ness check. In terms of inside quote frequency by the HFT firms, we use a similar model

described in Section 5.1 but replace the variable U.S. Treasury Purchase with a dummy

variable indicating the half-hour after purchases. The results for the HFT inside bid and

offer participations are reported in Table 4.8. The effect is not statistically significant for

either bids or offers during the half-hour after U.S. Treasury POMO auctions.

[INSERT Table 4.8 HERE]

The market impact of HFT trades in the half-hour after U.S. Treasury POMO is not

significantly different from the same period of non-POMO days either. The result is shown

in the second set of columns in Table 4.5.

4.6.2 FOMC Days

We also contrast our results with the behavior of HFT firms on the eight Federal Open

Market Committee (FOMC) dates in our sample listed in the third set of columns in Table

4.5.

We compare the market impact of HFT trades during the period from 13:45-14:15, the

half-hour before the Fed announces its policy intentions. We felt this period was analogous

to our half-hour before the release of POMO Treasury purchases. We used trades from the

HFT database and quotes from the NASDAQ ITCH feed. This limits our analysis to the

60 NASDAQ stocks in the sample. For the 60 stocks, the market impact on FOMC and

non-FOMC days is little changed. From this, we conclude that the POMO auctions were

more important events for the market.
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4.7 Conclusion

Federal Reserve operations provide an unusual lens on the primary dealers, many of whom

are also HFT firms. We document that the POMO auctions provide valuable private in-

formation to the HFT participants. We find evidence of larger permanent price impact

and higher profits and profitability, particularly for aggressive trades. HFT firms perform a

dual role as market makers, which the academic literature has extensively studied. During

the POMO auctions though, our model predicts that they may shift their focus from being

liquidity providers to trading aggressively. We find that HFT firms reduce their presence

at the inside quote and less frequently provide liquidity to non-HFT firms. Studying HFT

activity in event windows like POMO may give us a better indication of how HFT firms

will perform in stressful market conditions.
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Figure 4.1: Trade and Inside Quote Activity of HFT Firms
This figure presents the share of HFT firm participation in trades and inside quotes respec-
tively from January 2008 to December 2009 as well as one week in February 2010.
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Table 4.1: U.S. Treasury Purchase Detail for March 25, 2009
This is the first of 214 Treasury purchases between March 2009 and June 2011. Details can
be found on the New York Federal Reserve web site, http://www.newyorkfed.org/markets
/pomo/display/index.cfm

Release Time: 10:30
Close Time: 11:00
Settlement Date: March 26, 2009
Maturity/Call Date Range: 02/29/2016 - 02/15/2019
Total Par Amt $ Submitted 21,937,000,000

Accepted 7,500,000,000

CUSIP Coupon Maturity Par Amt Accepted ($)

912828KS8 2.6250 2/29/2016 2,836,000,000
912810DW5 7.2500 5/15/2016 115,000,000
912828FQ8 4.8750 8/15/2016 1,031,000,000
912828FY1 4.6250 11/15/2016 739,000,000
912810DX3 7.5000 11/15/2016 147,000,000
912828GH7 4.6250 2/15/2017 35,000,000
912828GS3 4.5000 5/15/2017 950,000,000
912810DY1 8.7500 5/15/2017 238,000,000
912828HA1 4.7500 8/15/2017 702,000,000
912810DZ8 8.8750 8/15/2017 159,000,000
912828HH6 4.2500 11/15/2017 0
912828HR4 3.5000 2/15/2018 0
912828HZ6 3.8750 5/15/2018 0
912810EA2 9.1250 5/15/2018 23,000,000
912828JH4 4.0000 8/15/2018 0
912828JR2 3.7500 11/15/2018 0
912810EB0 9.0000 11/15/2018 193,000,000
912828KD1 2.7500 2/15/2019 0
912810EC8 8.8750 2/15/2019 332,000,000
Exclusions:
912828FF2 5.125 6/15/2016 0
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Table 4.2: HFT Inside Quote Frequency During U.S. Treasury POMO
The table reports estimates of a model for the inside quote participation of the 26 HFT
trading firms. We control for the growth in HFT activity using a linear and quadratic
trend. We also include standard regressors for market making aggressiveness, past returns,
volatility, volume, and order imbalance. We also include a time dummy for the quiet
period from 10:30-11:00. Finally, we measure the effect of U.S. Treasury (UST) POMO
auctions using two dummy variables, one for positive news and the other for negative. The
classification of positive and negative news events is based on the 1-hour equity return after
the start of the auction.

Variable Bid Offer

Trend 0.0022 0.0017
(62.38) (50.34)

Trend2/1000 -0.0012 -0.0008
(-16.00) (-10.93)

Returnst−1 0.0206 -0.0368
(1.92) (-3.55)

Realized Volt−1 -0.0146 -0.0121
(87.94) (-77.25)

Volumet−1/1000 0.0745 0.0401
(221.70) (158.12)

Order Imbalancet−1/1000 1.6756 -1.1129
(13.36) (-10.29)

S10:30-11:00 -0.0266 -0.0335
(-4.62) (-5.92)

Positive UST News -0.0763 -0.0450
(-4.00) (-2.43)

Negative UST News -0.0772 -0.0458
(-6.87) (-4.16)

Constant -0.4383 -0.3251
(-107.41) (-82.64)

R
2

0.1450 0.1155

t-statistics in parentheses.
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Table 4.3: Unconditional HFT Net Buy Counts
This table presents the average HFT net buy counts per minute in aggressive HN and passive
NH trades respectively during U.S. Treasury POMO auction periods and non-POMO times.
The HFT net buys are computed as the difference between the number of HFT buyer and
seller initiated trades. U.S. Treasury purchases are classified into positive and negative news
events based on the 1-hour equity return after the start of the auction.

Positive UST News Negative UST News non-POMO
HN NH HN NH HN NH

Avg. 16.08 -9.11 -11.51 7.63 2.34 -1.71
SD 46.46 36.70 36.76 33.66 35.57 33.91
H0: cPOMO = cNon

t-stat 1.94 -1.48 -2.10 1.68

Table 4.4: HFT Net Buy Counts During U.S. Treasury POMO
The table reports estimates of models for HFT net trade counts in aggressive HN and
passive NH trades respectively. We include standard regressors for trading aggressiveness,
past returns, volatility, volume, and order imbalance. We also include a time dummy for
the quiet period from 10:30-11:00. Finally, we measure the effects of positive and negative
U.S. Treasury auctions using two dummy variables respectively.

Variable HN NH

Returnst−1 -80.3836 -54.0185
(-30.40) (-18.46)

Realized Volt−1 -0.0332 -0.0526
(-2.90) (-3.04)

Volumet−1/1000 -0.0020 0.0021
(-2.21) (1.86)

Order Imbalancet−1/1000 0.0553 -0.0674
(33.03) (-32.03)

S10:30-11:00 0.0471 -0.0317
(3.61) (-2.04)

Positive UST News 0.1667 -0.1328
(5.40) (-3.65)

Negative UST News -0.2476 0.1360
(-7.59) (3.50)

Constant -0.0235 0.0075
(-4.64) (1.31)

R
2

0.0024 0.0031

t-statistics in parentheses.
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Table 4.6: HFT Daily Profits Per Stock
This table presents estimated average profits per stock by 4.20 during U.S. Treasury POMO
and non-POMO days.

UST POMO non-POMO

Mean $1,895.37 $1,300.35
SD 2,736.70 3,642.63
H0: π

HFT
POMO = πHFT

Non

t-stat 1.65

Table 4.7: HFT Daily Profits Per Share
This table presents estimated average profits per share by 4.21 during U.S. Treasury POMO
and non-POMO days.

Total HN NH
UST non-POMO UST non-POMO UST non-POMO

Mean $0.0178 $0.0129 $0.0099 $0.0032 $0.0341 $0.0298
SD 0.0085 0.0105 0.0132 0.0158 0.0149 0.0177
Min -$0.0036 -$0.0254 -$0.0235 -$0.0594 $0.0064 -$0.0084
Max $0.0385 $0.0422 $0.0550 $0.0484 $0.0897 $0.1002
% Days>0 96.49% 88.13% 87.72% 60.63% 100.00% 96.88%
H0: π

HFT
ps,POMO = πHFT

ps,Non

t-stat 3.86 3.42 2.11
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Table 4.8: HFT Inside Quote Frequency After U.S. Treasury POMO
The table reports estimates of a model for the inside quote participation of the 26 HFT
firms in the half-hour after U.S. Treasury POMO auction periods.

Variable Bid Offer

Trend 0.0013 0.0011
(32.88) (28.59)

Trend2/1000 -0.0007 -0.0006
(-8.26) (-7.06)

Returnst−1 0.0348 -0.0561
(2.95) (-4.83)

Realized Volt−1 -0.0088 -0.0078
(48.18) (-44.28)

Volumet−1/1000 0.0394 0.0323
(116.47) (109.12)

Order Imbalancet−1/1000 1.3817 -1.1281
(10.45) (-8.93)

Inside Quotet−1 1.6012 1.6150
(465.57) (473.96)

S11:00-11:30 0.0006 -0.0035
(0.08) (-0.52)

After UST Purchases -0.0235 0.0076
(-1.67) (0.54)

Constant -1.0536 -1.0210
(-220.77) (-217.52)

R
2

0.4211 0.4118

t-statistics in parentheses.
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