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Energy security and sustained supply of power are critical for community welfare and economic 

growth. In the face of the increased frequency and intensity of extreme weather conditions which 

can result in power grid outage, the value of micro-grids to improve the communities’ power 

reliability and resiliency is becoming more important. Micro-grids capability to operate in islanded 

mode in stressed-out conditions, dramatically decreases the economic loss of critical infrastructure 

in power shortage occasions. More wide-spread participation of micro-grids in the wholesale 

energy market in near future, makes the development of new investment models necessary. 

However, market and price risks in short term and long term along with risk factors’ impacts shall 

be taken into consideration in development of new investment models.  
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This work proposes a set of models and tools to address different problems associated with micro-

grid assets including optimal portfolio selection, investment and financing in both community and 

a sample critical infrastructure (i.e. wastewater treatment plant) levels. The models account for 

short-term operational volatilities and long-term market uncertainties. A number of analytical 

methodologies and financial concepts have been adopted to develop the aforementioned models 

as follows. 

 Capital budgeting planning and portfolio optimization models with Monte Carlo stochastic 

scenario generation are applied to derive the optimal investment decision for a portfolio of 

micro-grid assets considering risk factors and multiple sources of uncertainties.  

 Real Option theory, Monte Carlo simulation and stochastic optimization techniques are 

applied to obtain optimal modularized investment decisions for hydrogen tri-generation 

systems in wastewater treatment facilities, considering multiple sources of uncertainty.   

 Public Private Partnership (PPP) financing concept coupled with investment horizon 

approach are applied to estimate public and private parties’ revenue shares from a 

community-level micro-grid project over the course of assets’ lifetime considering their 

optimal operation under uncertainty.  
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1 INTRODUCTION  

1.1 Objectives 

This thesis intends to address and tackle the following problems.  

 Development of a framework for sustainable and resilient planning for a portfolio of micro-

grid assets, which enforces hedging mechanisms for risks due to infrastructure failure 

attributed to natural disasters or major technical issues. The considered micro-grid portfolio 

includes purchase from the grid, wind turbine, photovoltaic cell, combined heat and Power 

(CHP), electricity storage and gas-fired generation. 

 Taking into consideration regional risk factors in the micro-grid long-term planning which 

alters the micro-grid optimal portfolio selection and capital budgeting decisions.   

 Optimal incremental investment decisions in recently introduced “hydrogen tri-generation” 

distributed energy generation system and hydrogen dispensing hardware for energy 

consumptive wastewater treatment plants, using Monte Carlo simulation for compound 

real options. The model considers stochasticity in capital costs of hydrogen tri-generation 

and hydrogen dispensing hardware, hydrogen price and natural gas price. Operational 

savings from hydrogen tri-generation and onsite hydrogen dispensing system are estimated 

based on optimal control of these assets with stochastic electricity demand and electricity 

spot price. 

 Development of a Public-Private Partnership (PPP) financing model for micro-grids in 

which public entity transfers responsibility and risk of designing, building, operating and 

maintaining (DBOM) of the project to the private sector while maintaining the project 
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ownership. We are specifically interested to demonstrate how both public and private 

parties can collaborate and have profit shares from large scale micro-grid projects. 

1.2 Brief Overview of Thesis Accomplishments 

In chapter 2, we developed a comprehensive framework for micro-grid long-term investment 

which takes into consideration regional risk factors in planning decisions. To ensure feasibility of 

these plans, long-term and short-term planning problems of a micro-grid are merged into a single 

framework with resiliency, economics and reduced carbon footprints as main drivers. The model 

accounts for short-term savings, costs and penalties that are weighted according to the priorities of 

existing or planned industrial, residential and commercial sectors within the community in stressed 

out occasions. It is demonstrated that the proposed model is most valuable once applied for regions 

with high vulnerability to extreme conditions which results in power failure or/and with many 

critical sectors. 

Chapter 3 extends the current state of art in compound real option approach to incremental 

investment in hydrogen tri-generation and onsite hydrogen dispensing systems for a wastewater 

treatment plant. Hydrogen tri-generation which is one of the most recent developments in the 

context of integrated conversion systems can be fed by a mixture of natural gas price and waste 

biogas generated from wastewater treatment processes. The overall savings are estimated using a 

stochastic operation optimization model developed for hydrogen tri-generation systems that takes 

into account stochastcity of the facility’s heat and power demands and electricity spot price. From 

a practical point of view, the proposed model could have enormous impact on how decisions are 

made for large-scale facilities, such as wastewater treatment plants, where, on one hand, the owner 

must be concerned with power resiliency of the facility specifically in rare events of extremely 
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high impacts, and on the other hand, be able to generate maximum revenue under normal operating 

conditions. 

In chapter 4, we develop a Public-Private Partnership (PPP) financing model for micro-grids in 

which public entity transfers responsibility and risk of designing, building, operating and 

maintaining (DBOM) of the project to the private sector while maintaining the project ownership. 

The private sector owns the micro-grid’s revenue till the investment horizon; however, the revenue 

ownership will be transferred to the public entity after the investment horizon till a finite after- 

horizon period. Public entity incentivizes the private sector by providing an initial senior debt 

opportunity (through issuing zero coupon municipal bonds) and possibility of annual junior debts. 

Here, the (DBOM – PPP) financing model is merged with micro-grid short-term operation 

optimization into a single framework under host of short-term and long-term stochastic variables. 

An illustrative example is presented in which optimal financial activities and optimal micro-grid 

incremental portfolio over the course of investment horizon are defined for a vulnerable 

community located in 100-year flood zone region of city of Hoboken in New Jersey. From a 

practical point of view, the proposed model could have enormous impact on building a 

collaborative environment for public and private entities, which will facilitate implementation of 

micro-grid projects. 

1.3 Synopsis of Contributions  

1.3.1 Chapter 2:  Incorporating Risk in Micro-Grid Portfolio Optimization and Planning 

In this chapter we develop a power outage risk based comprehensive framework for micro-grid 

long-term capital planning and portfolio optimization. The presented work extends the current 

state of art in micro-grid planning and control as follows: (i) Incorporating resiliency as an 
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objective in micro-grid planning and present risk-based estimate of micro-grid saving which 

includes monetary value of enhanced resiliency, (ii) Long-term capital budgeting plan and 

incremental portfolio selection for micro-grids incorporating regional power failure risk (iii) 

Merging short-term and long-term micro-grid planning problems in a single and decomposable 

framework. 

1.3.2 Chapter 3: Investment in Hydrogen Tri-generation for Wastewater Treatment Plants 

under Uncertainties 

In this chapter, we propose a methodology for optimal investment in hydrogen tri-generation and 

onsite hydrogen dispensing system for a wastewater treatment plant.  Investment in hydrogen tri-

generation has the objective of increasing the power resiliency of the facility, however, the 

expansion option is considered to provide additional source of revenue. The problem is formulated 

as a compound real option each investment stage under two sources of uncertainty. This work 

extends the current state of investment modeling within the context of hydrogen tri-generation 

distributed energy generation by considering: (i) Modular investment plan for hydrogen tri-

generation and dispensing systems, (ii) Multiple sources of uncertainties along with more realistic 

probability distributions, (iii)  Optimal operation of hydrogen tri-generation is considered, which 

results in more realistic saving estimation. 

1.3.3 Chapter 4: Public Private Partnership (PPP) Financing Model for Micro-Grids 

Since the focus of many recent researches in the micro-grids domain has been the micro-grid’s 

design, implementation and operation, there is a lack in comprehensive models which solve the 

problem of financing such projects. Many of recent micro-grid projects have not been expanded 

from pilot scale to massive scale capable of supplying considerable portion of the communities’ 

power demands, due to existence of no clear financial plan that takes the project from the financing 
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step out to the end of the micro-grid’s lifetime. In this chapter, we extend the current state of art in 

Public Private Partnership (PPP) financing approach to community scale micro-grid projects. The 

developed (PPP) model which takes into account all operational and financial modeling details, 

can be a starting point for a collaborative environment for public and private parties that eases the 

implementation of large scale micro-grid projects. 

1.4 Motivation 

Energy security and sustained supply of power are critical for community welfare and economic 

growth. The aging power grid and higher than normal frequency of occurrence of natural disasters 

in recent years and their subsequent high societal costs have been driving many communities to 

re-evaluate their energy infrastructure plans and investment policies. Some communities and 

towns, especially in coastal regions, are turning to micro-grids to ensure that at the time of power 

outage, they are able to provide power to, at least, critical functions and services in their 

communities. This trend demonstrates the potentials of micro-grids to increase communities’ 

power resiliency. Micro-grid is a concept characterized by low voltage distribution network, micro 

generators, loads and storage devices with locally coordinated functions []. A typical micro-grid 

includes renewable (solar PVs and wind turbines) and non-renewable generation assets (e.g., gas-

fired generation) [5].  There are already many studies in the literature on the topic of micro-grid 

planning and control. However, we are not aware of any prior work, which interlinks the micro-

grid configuration and operation to the level of protection and resiliency that it can provide to its 

community under stressed out conditions. In order to incorporate resiliency in the micro-gird 

planning objective, regional power failure risk factors shall be necessarily taken into consideration.  

With this background in mind, we are particularly interested to develop tools to optimally 

incorporate regional power failure risk characteristics in micro-grid long-term portfolio selection 
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and capital budgeting plans. In addition, we take into consideration uncertainty in natural gas price, 

micro-grid assets capital costs of investment, electricity spot price, heat and electricity demands 

and forecasts of renewable energy resources. 

Narrowing down the subject of community resiliency to the level of critical infrastructure power 

reliability, we consider wastewater treatment plants among critical infrastructures for energy 

resiliency for the following reasons. 

i. Wastewater treatment facilities are necessarily located close to the waterfront to discharge 

the treated wastewater and also for more efficient sludge handling. This waterfront 

geographical requirement increases likelihood of being affected and damaged during 

extreme weather conditions. 

ii. High economic loss and possible health problems in case of wastewater treatment plants 

temporary shutdown  

iii. Generation of considerable amount of waste energy through treatment processes  

Recently introduced hydrogen tri-generation systems which are fed by a mixture of natural gas 

and waste biogas from treatment processes can significantly enhance the resiliency of wastewater 

treatment plants and provide additional source of revenue [2]. Along with profit from onsite 

supplying heat and power demands, additional profit could be achieved from hydrogen tri-

generation through onsite hydrogen dispensing for local hydrogen vehicles use. We are particularly 

motivated to build necessary tools to optimally make investment decisions including timing and 

investment thresholds to invest in hydrogen tri-generation and hydrogen dispensing systems 

considering various sources of uncertainty rising from capital costs of hydrogen tri-generation and 

onsite hydrogen dispensing hardware, hydrogen price and natural gas price.  
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In spite of many ongoing research works on control, planning and investment in micro-grids, the 

answer to the practical question of “Where shall the funding come from for these large scale 

projects?” is still not clear. High cost and risk of investment in micro-grid assets and lack of proper 

regularization are barriers towards wide-spread installation of micro-grids. However, collaboration 

between public and private sectors through Public Private Partnership (PPP) contracts could pave 

the road for micro-grids. The advantages of such agreements are making the project a possibility 

in the first place and sooner completion of the project as well as transfer of risk from public entity 

to the private sector over the life of the project In these contracts, public sector provides some 

incentives for the private sector such as loans proportionate to the level of risk the implementer 

bears, reduction in loan fees or/and transparent communication, collaboration and less political 

behavior to carry out the project. On the other hand, we can benefit from the private sector’s 

expertise and experience in carrying out such large scale projects. The project revenue will be split 

between two parties based on the contract. 

1.5 Brief Introduction to Micro-Grids 

Micro-grid is a localized grouping of electricity micro generators, loads and storage devices that 

normally operate connected to the power grid. A typical micro-grid includes wind turbines, solar 

panels, fuel cells, gas fired generators or other generation resources. Micro-grid can be isolated 

from the macro power grid and run on its own resources. Optimal operation of micro-grids in 

average normal conditions decreases the cost of supplying energy demands and has the potential 

to generate revenue.  It is no secret that micro-grids can also increase the power resiliency of 

communities by continuous operation in stressed out conditions in which the grid is disconnected 

due to extreme environmental conditions or technical issues. 
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Micro-grids can significantly change the electricity market dynamics in future, since these assets 

can act as either generator or customer in the power market. As a generator, micro-grid can sell 

electricity in the wholesale electricity market if it makes economic sense. On the hand, micro-grid 

can buy electricity from the power grid if its internal generation cannot satisfy power demand. 

Although micro-grids reduce the volatility to high peak demands, these systems add their own 

risks to the market. For this reason, new modeling approaches and tools are required to capture the 

behavior of micro-grids with respect to the power grid. 

1.6 Brief Introduction to Hydrogen Tri-generation 

Hydrogen tri-generation which is an efficient high temperature fuel cell capable of simultaneous 

production of heat, electricity and hydrogen is one of the most recent developments in the context 

of integrated conversion systems. Hydrogen tri-generation system has internal reformers and heat 

from electricity-production efficiency losses is used to produce hydrogen. Most important benefits 

of hydrogen tri-generation are as below. 

i. Near zero emission 

ii. Co-generated hydrogen is a more valuable product than thermal energy 

iii. Efficient generation of hydrogen and electricity reduces the overall operating cost 

iv. Can be fed by a mixture of fuels such as natural gas and waste biogas generated in 

wastewater treatment plants 

v. Hydrogen tri-generation might be a solution to overcome the challenge of initial investment 

cost of hydrogen early infrastructure deployment 

vi. Hydrogen scales well for long storage times and large amounts of energy 
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Although, hydrogen tri-generation is in its infancy and is not fully commercialized, it seems that 

such a technology can play an important role in energy market as a cost effective and reliable 

distributed resource of energy in near future.  
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2 INCORPORATING RISK IN MICRO-GRID PORTFLIO 

OPTIMIZATION AND PLANNING 

It is no secret that micro-grids increase the power resiliency of communities by continuous 

operation in stressed out conditions in which the grid is disconnected due to extreme environmental 

conditions or technical issues. In recently developed “Sustainable and Resilient Community 

Planning” concept, micro-grids are considered to ensure power availability for critical functions 

at the times of power outage. Optimal development of such a planning framework requires 

considering power failure risk in micro-grid long-term decisions. In this chapter, we develop a 

framework for resilient and sustainable planning of micro-grids with hedging mechanisms for risks 

due to infrastructure failures. To ensure feasibility of these plans, micro-grid’s long-term and short-

term planning problems are merged into a single framework with resiliency, economics and 

reduced carbon footprints as main drivers. The model accounts for short-term savings, costs and 

penalties that are weighted according to the priorities of existing residential and commercial 

sectors within the community in stressed out occasions. The presented work extends the current 

literature as follows: (i) Incorporating resiliency as an objective in micro-grid planning, (ii) Long-

term capital budgeting plan and incremental portfolio selection for micro-grids considering power 

failure risk (iii) Merging short-term and long-term micro-grid planning problems in a single 

framework.  

2.1 Introduction 

Energy security and sustained supply of power are critical for community welfare and economic 

growth. The aging power grid and higher than normal frequency of occurrence of natural disasters 

in recent years and their subsequent high societal costs have been driving many communities to 

re-evaluate their energy infrastructure plans and investment policies. Some communities and 
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towns, especially in coastal regions, are turning to micro-grids to ensure that at the time of power 

outage, they are able to provide power to, at least, critical functions and services in their 

communities [1]. This trend demonstrates the potentials of micro-grids to increase communities’ 

power resiliency. With energy resiliency as an objective, the policy makers and planners are slowly 

but surely turning to adopting the concept of “Sustainable and Resilient Community Planning”. A 

sustainable and resilient community, by definition, is a community, which is capable of fast 

recovering from and of mitigating the economic and societal costs of natural or human-made 

disasters [2]. Micro-grid planning for such a community will utilize risk-based monetary value of 

enhanced resiliency along with normal operational savings for its optimization. To ensure that 

these plans are economically feasible and sustainable, planning decisions must ensure that both 

short-term and long-term operations of the community’s micro-grid assets are optimized. In this 

chapter, we develop such a framework for resilience and sustainability that simultaneously 

optimizes short-term day-to-day volatile operation (under normal and stressed out conditions) of 

the community’s micro-grid assets, and investment decisions that are subject to long-term 

uncertainties and power failure risks. We merge the problems of long-term and short-term planning 

into a single framework with resiliency, economics and reduced carbon footprints at the core. This 

framework enforces hedging mechanisms for risks due to infrastructure failures, market and price 

risks in short-term and long-term, load fluctuations, and such externalities as weather. At the same 

time, every community may pledge to reduce risks of its own macro-grid by providing power to 

its surrounding communities at the peak times or at the times of natural disasters. The model 

accounts for short-term savings, costs and penalties that are weighed according to the priorities of 

existing or planned industrial, residential and commercial sectors within the community in stressed 

out occasions. The model provides capital plans that are subject to day-to-day optimal operation 
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of the energy assets within the community, including the optimal allocation of energy resources 

over average normal and stressed out conditions. We will demonstrate that this investment 

approach usually incurs more capital investment on assets, but results in more micro-grid overall 

savings and higher cash flow position for the investors. We also demonstrate that the differences 

in optimal portfolios and capital budgeting decisions for micro-grids with and without resiliency 

criterion become more significant in more risky regions with high probability of power failure or 

subsequent economic loss. This work builds on the basis of our earlier works [3] on micro-grid 

planning and control, with the caveat that the concept of resiliency was not considered there and 

that the overall optimization was decomposed into two separate problems [4]. The decomposability 

advantage of the aggregate operation optimization and capital budgeting model presented in this 

work makes this model a generic framework which could be applied for various applications of 

distributed energy resources with different objectives.  

There are already many studies in the literature on the topic of micro-grid planning and control. A 

typical micro-grid in these studies includes renewable (solar PVs and wind turbines) and non-

renewable generation assets (e.g., gas-fired generation), each with its own underlying uncertainties 

[5]. However, we are not aware of any prior work, which interlinks the micro-grid configuration 

and operation to the level of protection and resiliency that it can provide to its community under 

stressed out conditions. This observation is also echoed by [6] which described Distributed Energy 

Resources Customer Adoption Model (DER-CAM) developed by Lawrence Berkley National Lab 

[7]. DER-CAM software links the operation schedule of distributed generation equipment on 

hourly basis to the optimal investment choice decisions. However, it neglects underlying 

stochasticity and solves the scheduling and investment problem as a non-stochastic mixed Integer 

Linear Optimization Program (MILP). DER-CAM lacks an investment model, which can evaluate 
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incremental capacity installment decisions. As reported in [6], DER-CAM will incorporate the 

concept of power reliability and resiliency in micro-grid planning in the future. In addition to DER-

CAM, Hybrid Optimization Model for Electric Renewable (HOMER) [8] tool designed by the 

National Renewable Energy Laboratory interlinks the configuration and operation of the micro-

grids. However, this model does not include an operational optimization; different design 

configurations are evaluated by comparing their operating benefits and investment costs. The long-

term resiliency consideration has not been incorporated in this tool yet. [9] formulates the similar 

problem as a deterministic nonlinear integer program which minimizes the sum of the total capital, 

operational, maintenance and replacement costs of a stand-alone micro-grid including photovoltaic 

cell, wind turbine, battery storage and fuel cell. The approach is similar to ours; it merges operation 

and investment models into a single framework while only considering deterministic impacts of 

resiliency measured on the basis of total hours of power outage. Moreover, the model does not 

consider incremental capacity installment of micro-grid assets and does not provide a capital 

budgeting plan.  [10] focuses on deterministic optimal sizing and operation of standalone wind 

turbine and battery storage as well as tilt and capacity of photovoltaic panels with reliability as a 

constraint to meet. The underlying concept in this study differs from ours in terms of long-term 

planning perspective and resiliency consideration in the modeling approach. [11] considers 

reliability in standalone micro-grid from perspective of impact of stochastic generation on 

reliability. In this study, instead of modeling the generation and load independently, a combined 

generation-to-load ratio is modeled as a Markov process which illustrates the impact of stochastic 

behavior on reliability in a transparent manner. The reliability benefits of increasing local 

generation capacity are also evaluated in this research. [12] extends this work by introducing an 
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evaluation methodology for islanded micro-grids with stochastic resources, to examine the 

influence of supply-to-load correlation on reliability. 

The rest of the chapter is organized as follows. In section (2.2) problem statement and preliminaries 

are provided. Section (2.3) presents the problem formulation. In section (2.4), illustrative results 

and sensitivity experiments are presented. Eventually, conclusion and future work are presented 

in section (2.5).   

2.2 Problem Statement and Preliminaries 

We assume a micro-grid asset portfolio that includes photovoltaic cells (PV), wind turbines (WT), 

combined heat and power (CHP), gas fired generation (GF), electricity storage (ST) and purchase 

form power grid. Micro-grid power generation along with electricity purchased from the grid 

supply the community’s power demand. The option to sell-back the excess electricity to the grid 

is not considered. Heat generated by boiler and CHP supply the community’s heat demand. The 

problem of interest is to construct a planning and capital budgeting model of micro-girds, which 

accounts for risk factors that are driven by geographical, weather and market conditions of the 

community that these micro-grids are intended to serve. Both short-term and long-term risk factors 

and volatilities must be taken into account. In particular, the results from the model must clearly 

demonstrate sensitivity of the micro-grid design to the risks factors that are attributed to its 

community, in particular, to its resiliency requirements. 

To evaluate the feasibility and sustainability of planning decisions, we simultaneously optimize 

short–term operation (under normal and stressed out conditions) of the community’s distributed 

energy resources and long-term investment decisions in a single framework. The model accounts 

for short-term savings, costs and penalties that are weighed according to the resiliency priorities 
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set for various community sectors. Under both normal and stressed out conditions, the objective 

for optimization is to maximize the savings from micro-grid operation; the savings are 

characterized differently under the two conditions. The micro-grid saving in average normal 

condition is the cost of supplying electricity and heat demands of the community without micro-

grid less the same cost with the micro-grid. However, the micro-grid saving in stressed out 

conditions is the incurred loss to the community without micro-grid less the incurred loss with 

micro-grid. The overall micro-grid saving is the aggregation of these two saving terms. Minimizing 

the micro-grid operation cost maximizes the saving amount in the average normal conditions. 

However, minimizing the incurred economic loss of unsupplied electricity via maximal onsite 

power generation and optimal allocation of the available power among different sectors maximizes 

the saving amount in the stressed out conditions. The long-term investment planning problem 

particularly aims at what capacity of each resource, if any, at each time period should be purchased 

within a planning horizon. This is a capital budgeting problem over the investment horizon and 

investor has the option to either invest on micro-grid assets or invest on an alternative investment 

with fixed rate of return. The objective is to maximize the cash flow at the end of horizon, which 

includes cash flow at the end of horizon and beyond the horizon projected investment cash flows. 

By developing such a comprehensive single framework, the loop between long-term and short-

term planning is closed and optimal operation and long-term planning decisions are interrelated.   

Having the problem stated, Table 2-1 presents the nomenclature of this work.  
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Table 2-1 : Nomenclature 

Indices 

𝑌 Year 

𝐽 Scenario 

𝑇 Time of day 

𝑆 Sector 

𝑀 Micro-grid asset 

𝐻 Stressed out days 

Parameters 

𝐽∗ Number of scenarios 

𝑆∗ Number of sectors 

𝑀∗ Number of micro-grid assets 

ϕ Number of stressed out days 

𝜏 Investment horizon 

gwt WT power generation 

wt_o&m WT operation and maintenance cost 

wssq Squared wind speed 

wssqmax Maximum operational  wind speed square 

wssqmin Minimum operational  wind speed square 

gwt_dis WT power generation in stressed out conditions 

𝑔𝑝𝑣 PV power generation 

pv_o&m PV operation and maintenance cost 

SI Solar radiation intensity 

gpv_dis PV power generation in stressed out conditions 

𝑔𝑔𝑓 GF power generation 

cfuel Natural gas price 

Gthr GF gas to heat ratio 

ggf_dis GF power generation in stressed out conditions 

𝑔𝑐ℎ𝑝 CHP power generation 

Fur CHP fuel utility ratio 

gchp_heat CHP heat generation 

gchp_total CHP total generation 

chp_total_eff CHP total efficiency 

phr CHP power to heat ratio 

gchp_dis CHP power generation in stressed out condition 

charge ST charge 

discharge ST discharge 

stavail Available electricity in storage 

stdur Electricity storage duration 
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charge_dis ST charge in stressed out condition 

discharge_dis ST discharge in stressed out condition 

gboiler Boiler heat generation 

boiler_eff Boiler efficiency 

boiler_o&m Boiler operation and maintenance cost 

spirce Electricity spot price 

gbuy Electricity purchase from the grid 

demand Total electricity demand 

heat_demand Total electricity demand 

𝑑𝑒𝑚𝑎𝑛𝑑_𝑠𝑒𝑐𝑡𝑜𝑟 Each sector electricity demand 

unsp Total unsupplied electricity demand in stressed out condition 

sf_dis Micro-grid electricity generation in stressed out condition 

loss Economic loss of total unsupplied electricity 

𝑢𝑛𝑠𝑝_𝑠𝑒𝑐𝑡𝑜𝑟 Each sector unsupplied power demand in stressed out condition 

𝑙𝑜𝑠𝑠_𝑠𝑒𝑐𝑡𝑜𝑟 Each sector economic loss of 1 (MW) unsupplied power, ($) 

𝑙𝑜𝑠𝑠_𝑛𝑜𝑚𝑔 Economic loss without micro-grid 

𝑙𝑜𝑠𝑠_𝑚𝑔 Economic loss with micro-grid 

𝑝𝑣𝑐𝑎𝑝 PV capacity 

𝑤𝑡𝑐𝑎𝑝 WT capacity 

𝑠𝑡𝑐𝑎𝑝 ST capacity 

𝑔𝑓𝑐𝑎𝑝 GF capacity 

𝑐ℎ𝑝𝑐𝑎𝑝 CHP capacity 

𝑏𝑜𝑖𝑙𝑒𝑟𝑐𝑎𝑝 Boiler capacity 

𝑎𝑠𝑠𝑒𝑡_𝑐𝑎𝑝𝑖𝑡𝑎𝑙 Capital cost per unit capacity of each asset 

𝑎𝑠𝑠𝑒𝑡_𝑒𝑥𝑝 Added capacity of each asset in each year 

𝑎𝑠𝑠𝑒𝑡_𝑐𝑎𝑝𝑖𝑡𝑎𝑙 Capital cost per unit capacity of each asset 

𝑝𝑣_𝑙𝑝 Rent of land for PV installation 

𝑤𝑡_𝑙𝑝 Rent of land for WT installation 

𝑏𝑜𝑟𝑟𝑜𝑤_𝑙𝑖𝑚𝑖𝑡 Borrow limit 

B Borrowed fund 

B.fc Finance charge on borrowed fund 

𝐹𝐶 Finance charge 

𝐹𝑇 Finance term 

𝑠𝑎𝑣𝑖𝑛𝑔_𝑜𝑝𝑒𝑟_𝑛𝑜𝑟𝑚𝑎𝑙 
Annual expected micro-grid saving in average normal 

conditions 

𝑠𝑎𝑣𝑖𝑛𝑔_𝑜𝑝𝑒𝑟_𝑠𝑡𝑟𝑒𝑠𝑠 Annual expected micro-grid saving in stressed out conditions 

𝑠𝑎𝑣𝑖𝑛𝑔 Annual expected saving of micro-grid 

𝑎𝑐𝑐_𝑠𝑎𝑣𝑖𝑛𝑔(𝜏) Accumulated saving at τ 

𝑛𝑒𝑡_𝑐𝑓(𝜏) Net cash flow at τ 

𝑛𝑒𝑡_𝑐𝑓̂
(𝜏) Beyond horizon cash flow 

𝑠𝑎𝑣𝑖𝑛𝑔̂ (𝜏) Beyond horizon saving 
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𝐵. 𝑓𝑐̂(𝜏) Beyond horizon finance charge 

𝑐𝑜𝑠𝑡_𝑛𝑜𝑚𝑔 Total yearly cost without micro-grid 

𝑐𝑜𝑠𝑡_𝑚𝑔 Total yearly cost with micro-grid 

operation_cost Annual expected  operation cost of micro-grid 

capital_cost Annual expected capital cost of micro-grid 

𝑅𝐶𝐴 Invested cash plus its return in an alternative investment 

C Cash spent to purchase assets 

CA Cash spent on alternative investment 

bhp Beyond horizon period 

 

2.2.1 Distributed Generation Components 

The power generated by photo voltaic cell (PV) is conserved by following equation. 

𝑔𝑝𝑣 =    𝑝𝑣𝑐𝑎𝑝 ∗  𝑝𝑣𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗  𝑆𝐼    (2.1) 

where 𝑔𝑝𝑣 is power in watt, 𝑝𝑣𝑐𝑎𝑝 is the PV capacity, 𝑝𝑣𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 is a constant related to PV type 

and 𝑆𝐼 is the solar radiation. The power generated by wind turbine is given by: 

𝑔𝑤𝑡 =    𝑤𝑡𝑒𝑓𝑓 ∗  𝑤𝑡𝑐𝑎𝑝 ∗  𝑤𝑠𝑠𝑞   (2.2) 

where 𝑔𝑤𝑡 is the generated power in watt, 𝑤𝑡𝑒𝑓𝑓 is the wind turbine efficiency as a function of 

with wind speed (obtained from wind turbine efficiency curve) , 𝑤𝑡𝑐𝑎𝑝 is the wind turbine capacity 

and 𝑤𝑠𝑠𝑞 is wind speed squared. Gas fired power generation system provide reliable power flow 

and unlike wind turbine and PV cells, is a controllable power generation asset. Battery storage 

operation is fundamentally based on economic gain through charging and discharging based on 

electricity spot prices. Battery storage is mainly used for peak shaving and demand charge 

avoidance. Combined heat and power (CHP) is another asset in the micro-grid designs which is 

capable of efficient bi-generation of heat and power. The heat to electricity generation ratio is 

defined by the “Power to Heat Ratio” related to CHP type. 
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2.2.2 Dynamics of Uncertainty 

Our approach accounts for existing short-term volatilities and long-term uncertainties. Long-term 

uncertain variables in the model are: (i) Natural gas price, (ii) WT, ST and PV capital costs of 

investment. Short-term volatile variables in the model are: (i) Heat and electricity demands of the 

community, (ii) Electricity spot price, (iii) Wind speed, (iv) Solar radiation.  

The long-term behavior of natural gas prices has been studied extensively in the literature [13], 

[14], [15], [16]. Natural gas price is modeled by either mean reverting or non-mean reverting 

stochastic processes. Geometric Brownian Motion (GBM) is the most applied non mean-reverting 

stochastic process [17] and stationary Ornstein-Uhlenbeck (OU) Brownian motion is the most 

popular mean reverting stochastic process to model natural gas price [18]. We model natural gas 

price by mean reverting (OU) process. (OU)  is a special case of a Hull-White-Vasicek (HV) model 

with constant volatility. The constant volatility guarantees the process tendency to return to its 

global mean. The general Hull-White-Vasicek (HV) model is in form of: 

𝑑𝑆𝑡  =  𝛥 (𝐿 −  𝑆𝑡)𝑑𝑡 +  𝑉𝑡 𝑑𝑊𝑡    (2.3) 

where  𝑆𝑡 is vector of process variables, Δ is mean reversion speeds (the rate of mean reversion), 

L is mean reversion levels (long-run mean or level), V is an instantaneous volatility rate matrix 

(constant in case of (OU) model) and 𝑑𝑊𝑡  is a Brownian motion vector [19]. (OU) process is the 

analogue of the AR (1) model in the continuous space. In case of natural gas price, the reversion 

rate and mean level are calculated from the coefficients of a linear fit between the log natural prices 

and their first difference scaled by the time interval parameter. Thereafter, using the defined 

parameters of (OU) model, several sample paths of natural gas price are generated using Monte 

Carlo sampling technique. In this technique, random vectors of a parameter from given probability 
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distribution are generated repeatedly. For large number of generated scenarios, the sampled 

discrete probability distribution approaches the initial continuous distribution [20].   

It is generally believed that the prices of technology for photovoltaic cells (PV), wind turbine (WT) 

and storage (ST) are decreasing. Therefore, we assume that the underlying processes follow a 

decreasing trend and assign a binomial probability mass function to the annual rate of decrease. 

                     𝑎𝑠𝑠𝑒𝑡_𝑐𝑎𝑝𝑖𝑡𝑎𝑙 (𝑌) =  𝜓 ∗  𝑎𝑠𝑠𝑒𝑡_𝑐𝑎𝑝𝑖𝑡𝑎𝑙 (𝑌−1)        𝑓𝑜𝑟 {𝑊𝑇, 𝑃𝑉 𝑎𝑛𝑑 𝑆𝑇}      (2.4)   

where 

𝜓 =  {
𝜓1    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃1

 𝜓2  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃2
             (2.5) 

As stated earlier, micro-grid is subject to four short-term variations namely; variations in demand, 

solar intensity, wind speed and electricity spot price. Hourly wind speed and solar intensity are 

multivariate normal variables with negative correlation.  The popular approach to sample from a 

multivariate normal distribution is the Cholesky decomposition. In this method, a positive definite 

Hermitian matrix is decomposed into a product of a lower triangular matrix and its conjugate 

transpose. This technique is very useful for numerical solution and Monte Carlo simulations [21]. 

Applying this technique, several paths of correlated solar intensity and wind speed can be 

generated. Moreover, the short term cost saving of the distributed generation assets is highly 

dependent on the grid electricity price. It is assumed that the peak electricity price on each day is 

correlated to natural gas price as follows [4]: 

𝑃𝑒𝑎𝑘 𝑒𝑙𝑒𝑐𝑡𝑟𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒 = 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 ∗ 𝑅𝑎𝑡𝑖𝑜 ∗  𝜖𝐺𝑟𝑖𝑑  (2.6) 
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where 𝑅𝑎𝑡𝑖𝑜 accounts for transmission cost at grid level and 𝜖𝐺𝑟𝑖𝑑 is the grid average rate for 

electricity generation from natural gas. Assuming a daily profile for daily electricity spot price as 

a percentage of peak prices, hourly electricity prices over the course of a day is obtained.  

2.3 Problem Formulation 

This section is organized as follows. First, the short-term operation optimization formulation is 

presented which includes operation in average normal days and stressed out conditions. Then, we 

explain how we link the short-term and long-term decision variables. Finally, we present the 

capital budgeting formulation. 

2.3.1 Short-term Operation Optimization 

In order to calculate micro-grid savings in average normal days, we consider similar days over a 

year which is an abstraction of reality and it only simplifies our computations. Therefore, the yearly 

saving from normal operation is simply (365 - 𝜙)  times the daily saving ( 𝜙 is the number of days 

in a year in which stressed out conditions are experienced). For normal day operation optimization, 

the objective is to maximize the expected micro-grid savings which is the expectation of difference 

between cost of supplying power and heat demands with and without micro-grid. Expected cost of 

supplying heat and power without micro-grid is the expected summation of cost to supply heat and 

power demands of the community by boiler and electricity from the grid over a period of 𝑇 hours 

(i.e. 24 hours). Therefore, the annual expected cost without micro-grid is as follows. 

𝑐𝑜𝑠𝑡𝑛𝑜𝑚𝑔(𝑌)
=  𝑝𝑟𝑜𝑏 ∗ (365 −  𝜙(𝑌)) ∗  ∑ ∑ 𝑑𝑒𝑚𝑎𝑛𝑑(𝑌,𝐽,𝑇) 

𝑇∗

𝑇=1
𝐽∗

𝐽=1 ∗ 𝑠𝑝𝑟𝑖𝑐𝑒(𝑌,𝐽,𝑇)   (2.7) 

+  𝑑𝑒𝑚𝑎𝑛𝑑_ℎ𝑒𝑎𝑡(𝑌,𝐽,𝑇) 
∗ (

𝑐𝑓𝑢𝑒𝑙(𝑌)

𝑏𝑜𝑖𝑙𝑒𝑟𝑒𝑓𝑓
)          
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where 𝑝𝑟𝑜𝑏 is the probability of each scenario equals to (1
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠⁄ ) on the 

discrete sampling plan. The expected cost of micro-grid in average normal days is the expected 

summation of micro-grid cost to satisfy heat and electricity demands of the community over a 

period of 𝑇 hours (i.e. 24 hours). The cost of electricity and heat to satisfy the demands has the 

following components. 

i. Purchase cost of electricity from the grid, 𝑠𝑝𝑟𝑖𝑐𝑒(𝑌,𝐽,𝑇)  

ii. Cost of electricity generation from gas fired, 𝑐𝑓𝑢𝑒𝑙(𝑌) 

iii. Cost of electricity and heat generation by CHP , 
𝑐𝑓𝑢𝑒𝑙(𝑌)

𝑐ℎ𝑝_𝑡𝑜𝑡𝑎𝑙_𝑒𝑓𝑓
 

iv. Cost of heat generation by boiler, 
𝑐𝑓𝑢𝑒𝑙(𝑌)

𝑏𝑜𝑖𝑒𝑙𝑟_𝑒𝑓𝑓
 

v. Operation cost of WT, 𝑤𝑡_𝑜&𝑚 (𝑌) 

vi. Operation cost of PV , 𝑝𝑣_𝑜&𝑚(𝑌) 

Therefore, the annual micro-grid expected cost is as follows. 

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡(𝑌) =  𝑝𝑟𝑜𝑏 ∗ (365 −  𝜙(𝑌) ) ∗  ∑  
𝐽∗

𝐽=1 ∑ ( 𝑔𝑔𝑓(𝑌,𝐽,𝑇) ∗ 𝑐𝑓𝑢𝑒𝑙(𝑌) + 𝑇∗

𝑇=1 𝑔𝑟𝑖𝑑𝑏𝑢𝑦(𝑌,𝐽,𝑇) ∗

 𝑠𝑝𝑟𝑖𝑐𝑒(𝑌,𝐽,𝑇) + 𝑔𝑤𝑡(𝑌,𝐽,𝑇) ∗ 𝑤𝑡_𝑜&𝑚 (𝑌) + 𝑔𝑝𝑣(𝑌,𝐽,𝑇) ∗  𝑝𝑣_𝑜&𝑚(𝑌)+ 𝑔𝑏𝑜𝑖𝑙𝑒𝑟(𝑌,𝐽,𝑇) ∗ (
𝑐𝑓𝑢𝑒𝑙(𝑌)

𝑏𝑜𝑖𝑒𝑙𝑟𝑒𝑓𝑓
)  +

  𝑔𝑐ℎ𝑝𝑡𝑜𝑡𝑎𝑙(𝑌,𝐽,𝑇) ∗ (
𝑐𝑓𝑢𝑒𝑙(𝑌)

𝑐ℎ𝑝𝑡𝑜𝑡𝑎𝑙𝑒𝑓𝑓

)                                                                                                         (2.8)                                                                                          

Therefore, the expected yearly micro-grid operational savings in normal conditions is as below. 

𝑠𝑎𝑣𝑖𝑛𝑔_𝑜𝑝𝑒𝑟_𝑛𝑜𝑟𝑚𝑎𝑙(𝑌) =  𝑐𝑜𝑠𝑡_𝑛𝑜𝑚𝑔(𝑌) −  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑠𝑡(𝑌)        (2.9) 

Constraints 

The operation optimization of the micro-grid is subject to several constraints. For energy balance 

at year𝑌 , time period 𝑇  and scenario 𝐽 , the total micro-grid power output consisting of battery 
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discharge, WT generation, GF generation, PV and CHP generation less the battery charge must 

collectively satisfy the demand. 

𝑔𝑤𝑡(𝑌,𝐽,𝑇) +  𝑔𝑝𝑣(𝑌,𝐽,𝑇) +  𝑔𝑔𝑓(𝑌,𝐽,𝑇) +  𝑔𝑏𝑢𝑦(𝑌,𝐽,𝑇) +  𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑌,𝐽,𝑇) − 𝑐ℎ𝑎𝑟𝑔𝑒(𝑌,𝐽,𝑇) ≥

 𝑑𝑒𝑚𝑎𝑛𝑑(𝑌,𝐽,𝑇)                         (2.10)              

Heat demand of the community must be supplied by boiler and CHP generated heat. 

𝑔𝑏𝑜𝑖𝑙𝑒𝑟(𝑌,𝐽,𝑇) +  𝑔𝑐ℎ𝑝_ℎ𝑒𝑎𝑡(𝑌,𝐽,𝑇) ≥  ℎ𝑒𝑎𝑡_𝑑𝑒𝑚𝑎𝑛𝑑(𝑌,𝐽,𝑇)    (2.11) 

There are also operational constraints for the micro-grid assets. Power generation from WT is 

restricted by the operational range of the equipment. WT operates for a range of wind speeds. Two 

binary variables are defined namely; “𝑤𝑡_𝑚𝑖𝑛” (equals 1 if wind speed is upper than the lower 

operational limit; 0 otherwise) and “𝑤𝑡_𝑚𝑎𝑥” (equals 1 if wind speed is lower than upper 

operational limit; 0 otherwise). We use “Big-M” method to define when both "𝑤𝑡_𝑚𝑖𝑛" and 

"𝑤𝑡_𝑚𝑎𝑥" equal one. “Big-M” method is a variation of the simplex method designed for solving 

problems encompassing either “less-than” or “greater-than” constraints. The “Big-M” is assumed 

to be an extremely large number associated with artificial variables represented by "𝑏𝑖𝑔𝑀". [22] 

Lower operational limit 

𝑤𝑠𝑠𝑞(𝑌,𝐽,𝑇) −  𝑤𝑠𝑠𝑞𝑚𝑖𝑛 <  𝑏𝑖𝑔𝑀 ∗  𝑤𝑡m(𝑌,𝐽,𝑇)     (2.12) 

𝑤𝑠𝑠𝑞𝑚𝑖𝑛 −  𝑤𝑠𝑠𝑞(𝑌,𝐽,𝑇)  <  𝑏𝑖𝑔𝑀 ∗  (1 − 𝑤𝑡_𝑚𝑖𝑛(𝑌,𝐽,𝑇) )     (2.13) 

Upper operational limit 

𝑤𝑠𝑠𝑞(𝑌,𝐽,𝑇) −  𝑤𝑠𝑠𝑞𝑚𝑎𝑥 <  𝑏𝑖𝑔𝑀 ∗  (1 − 𝑤𝑡_𝑚𝑎𝑥(𝑌,𝐽,𝑇) )        (2.14) 

𝑤𝑠𝑠𝑞𝑚𝑎𝑥 −  𝑤𝑠𝑠𝑞(𝑌,𝐽,𝑇)  <  𝑏𝑖𝑔𝑀 ∗ 𝑤𝑡_𝑚𝑎𝑥(𝑌,𝐽,𝑇)                     (2.15) 



24 
 

 
 

We also introduce "𝑤𝑡𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟"  binary indicator as below. 

𝑤𝑡𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟  (𝑌,𝐽,𝑇) =    𝑤𝑡_𝑚𝑖𝑛(𝑌,𝐽,𝑇)  + 𝑤𝑡_𝑚𝑎𝑥(𝑌,𝐽,𝑇) − 1          (2.16)     

𝑤𝑡𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟  (𝑌,𝐽,𝑇) is WT availability at year 𝑌, time 𝑇 and scenario 𝐽; 𝑤𝑡𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟  (𝑌,𝐽,𝑇) = 1 if wind 

speed is in the operational range, otherwise 𝑤𝑡𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟  (𝑌,𝐽,𝑇) = 0. Therefore, the WT power 

generation is constrained as below. 

𝑤𝑡𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟(𝑌,𝐽,𝑇) ∗  (𝑤𝑡𝑒𝑓𝑓 ∗  𝑤𝑡𝑐𝑎𝑝(𝑌,𝐽) ∗  𝑤𝑠𝑠𝑞(𝑌,𝐽,𝑇)) ≤    𝑔𝑤𝑡(𝑌,𝐽,𝑇)  ≤    𝑤𝑡𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟(𝑌,𝐽,𝑇) ∗

 (𝑤𝑡𝑒𝑓𝑓 ∗  𝑤𝑡𝑐𝑎𝑝(𝑌,𝐽) ∗  𝑤𝑠𝑠𝑞(𝑌,𝐽,𝑇))             (2.17)  

We also need a set of constraints for the electricity storage device. Charge and discharge of 

electricity can be very beneficial when electricity spot price varies during different times of a day. 

Available electricity in battery at end of each time period (i.e. Hour) is conserved by: 

𝑠𝑡𝑎𝑣𝑎𝑖𝑙((𝑌,𝐽,𝑇)=    𝑐ℎ𝑎𝑟𝑔𝑒(𝑌,𝐽,𝑇) −  𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑌,𝐽,𝑇)   +  𝑠𝑡𝑎𝑣𝑎𝑖𝑙(𝑌,𝐽,𝑇−1)     𝑓𝑜𝑟 𝑇 > 1   (2.18) 

Charge of battery cannot exceed battery capacity less available electricity in the storage left from 

previous hour of operation. 

 𝑐ℎ𝑎𝑟𝑔𝑒(𝑌,𝐽,𝑇) ≤   
( 𝑠𝑡𝑐𝑎𝑝(𝑌,𝐽,𝑇)∗𝑠𝑡𝑑𝑢𝑟 )− 𝑠𝑡𝑎𝑣𝑎𝑖𝑙(𝑌,𝐽,𝑇−1) 

𝑠𝑡𝑑𝑢𝑟
                 𝑓𝑜𝑟  𝑇 > 1      (2.19) 

Also discharge cannot exceed the amount of electricity available in the battery. 

 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑌,𝐽,𝑇) ≤    
𝑠𝑡𝑎𝑣𝑎𝑖𝑙(𝑌,𝐽,𝑇−1)

𝑠𝑡𝑑𝑢𝑟
                    𝑓𝑜𝑟  𝑇 > 1    (2.20) 

Eventually, the amount of electricity stored in battery cannot exceed the maximum energy limit. 

𝑠𝑡𝑎𝑣𝑎𝑖𝑙(𝑌,𝐽,𝑇) ≤   𝑠𝑡𝑐𝑎𝑝(𝑌,𝐽,𝑇) ∗ 𝑠𝑡𝑑𝑢𝑟     (2.21) 

Regarding the CHP operation, hourly electricity generation is correlated to heat generation as 

follows [23].  

𝑔𝑐ℎ𝑝(𝑌,𝐽,𝑇) =   𝑔𝑐ℎ𝑝_ℎ𝑒𝑎𝑡(𝑌,𝐽,𝑇) ∗ 𝑝ℎ𝑟     (2.22) 
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In addition, the sum of electricity and heat generation must be equal to the total CHP power output. 

𝑔𝑐ℎ𝑝(𝑌,𝐽,𝑇) +   𝑔𝑐ℎ𝑝_ℎ𝑒𝑎𝑡(𝑌,𝐽,𝑇) =   𝑔𝑐ℎ𝑝_𝑡𝑜𝑡𝑎𝑙(𝑌,𝐽,𝑇)    (2.23) 

Now, we proceed to the micro-grid operation optimization in stressed out conditions in which 

power grid is totally disconnected. We assume that the number of days with stressed out conditions 

and duration of each grid outage are random variables with known distribution and parameters. 

Therefore, for random number 𝜙 of days in each year, grid is disconnected for a random number 

of hours. In order to simulate such a condition, we define a binary variable (𝑠𝑡𝑟𝑒𝑠𝑠(𝐻,𝑌,𝐽,𝑇)) for 

hour  𝑇 of 𝐻-th stressed out day in scenario 𝐽 and year 𝑌 that take 1 when the grid is out and 0 

otherwise.  Therefore, the micro-grid saving is maximized by minimization of micro-grid cost (as 

explained before) when  𝑠𝑡𝑟𝑒𝑠𝑠(𝐻,𝑌,𝐽,𝑇) is 1 (i.e. normal condition) and by minimization of micro-

grid loss when  𝑠𝑡𝑟𝑒𝑠𝑠(𝐻,𝑌,𝐽,𝑇) is 0 (i.e. stressed out condition). The expected micro-grid savings in 

stressed out conditions is defined as below. 

𝑠𝑎𝑣𝑖𝑛𝑔_𝑜𝑝𝑒𝑟_𝑠𝑡𝑟𝑒𝑠𝑠(𝑌) =  𝑙𝑜𝑠𝑠_𝑛𝑜𝑚𝑔(𝑌) −  𝑙𝑜𝑠𝑠𝑚𝑔(𝑌)
     (2.24) 

where  

𝑙𝑜𝑠𝑠_𝑛𝑜𝑚𝑔(𝑌) = 𝑝𝑟𝑜𝑏 ∗ ∑ ∑ ∑ ∑ 𝑑𝑒𝑚𝑎𝑛𝑑_𝑠𝑒𝑐𝑡𝑜𝑟(𝑆,𝑌,𝐽,𝑇) ∗  𝑙𝑜𝑠𝑠_𝑠𝑒𝑐𝑡𝑜𝑟(𝑆,𝑌,𝐽,𝑇)
𝑇∗

𝑇=1
𝐽∗

𝐽=1
𝑆∗

𝑠=1
𝜙(𝑌)

𝐻=1    

(2.25) 

where 𝑑𝑒𝑚𝑎𝑛𝑑_𝑠𝑒𝑐𝑡𝑜𝑟(𝑆,𝑌,𝐽,𝑇) is the demand of sector 𝑆, in year 𝑌, scenario 𝐽, time 𝑇 and in 𝐻-th 

stressed out day. Moreover, 

𝑙𝑜𝑠𝑠_𝑚𝑔(𝑌) = 𝑝𝑟𝑜𝑏 ∗ ∑ ∑ ∑ ∑ 𝑢𝑛𝑠𝑝_𝑠𝑒𝑐𝑡𝑜𝑟(𝑆,𝑌,𝐽,𝑇) ∗  𝑙𝑜𝑠𝑠_𝑠𝑒𝑐𝑡𝑜𝑟(𝑆,𝑌,𝐽,𝑇)
𝑇∗

𝑇=1
𝐽∗

𝐽=1
𝑆∗

𝑠=1
𝜙(𝑌)

𝐻=1  (2.26) 

where 𝑢𝑛𝑠𝑝_𝑠𝑒𝑐𝑡𝑜𝑟(𝑆,𝑌,𝐽,𝑇) is the unsupplied demand of sector 𝑆, in year 𝑌, scenario 𝐽, time 𝑇 and 

in 𝐻-th stressed out day. In order to minimize the 𝑙𝑜𝑠𝑠_𝑚𝑔 , micro-grid power generation and 

battery discharge is maximized and the available power is allocated among community sectors 
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based on the criticality of their operation. Each sector’s operation criticality is defined as the 

economic loss of one unit of unsupplied power. For hours of grid disconnection, the amount of 

micro-grid power is as follows.  

𝑠𝑓_𝑑𝑖𝑠(𝑌,𝐽,𝑇) =    𝑔𝑝𝑣_𝑑𝑖𝑠(𝑌,𝐽,𝑇) +   𝑔𝑤𝑡_𝑑𝑖𝑠(𝑌,𝐽,𝑇)+ 𝑔𝑔𝑓_𝑑𝑖𝑠(𝑌,𝐽,𝑇) +  𝑔𝑐ℎ𝑝_𝑑𝑖𝑠(𝑌,𝐽,𝑇)+  

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒_𝑑𝑖𝑠(𝑌,𝐽,𝑇) −    𝑐ℎ𝑎𝑟𝑔𝑒_𝑑𝑖𝑠(𝑌,𝐽,𝑇)                (2.27) 

Therefore, the amount of unserved power is calculated as follows. 

𝑢𝑛𝑠𝑝(𝑌,𝐽,𝑇) =    𝑑𝑒𝑚𝑎𝑛𝑑(𝑌,𝐽,𝑇) −    𝑠𝑓_𝑑𝑖𝑠(𝑌,𝐽,𝑇)    (2.28) 

In stressed out conditions, each asset’s operational constraints are similar to those in average 

normal days. However, the constraint of satisfying power and heat demand does not hold. 

Allocating the available power based on sectors criticality decreases the total economic loss of 

unsupplied power. We assume constant economic loss of unsupplied unit power for each sector. 

The total amount of unsupplied power in each hour is the sum of all sectors unsupplied power. 

𝑢𝑛𝑠𝑝(𝑌,𝐽,𝑇) =    ∑ 𝑢𝑛𝑠𝑝_𝑠𝑒𝑐𝑡𝑜𝑟(𝑆,𝑌,𝐽,𝑇)

𝑆∗

𝑠=1

     (2.29) 

Unsupplied demand of each sector cannot exceed that sector’s demand. 

𝑢𝑛𝑠𝑝_𝑠𝑒𝑐𝑡𝑜𝑟(𝑆,𝑌,𝐽,𝑇) ≤    𝑑𝑒𝑚𝑎𝑛𝑑_𝑠𝑒𝑐𝑡𝑜𝑟(𝑆,𝑌,𝐽,𝑇)      (2.30) 

Before, proceeding to next section, we present the expected operational savings of micro-grid asset 

in each year as below. 

  𝑠𝑎𝑣𝑖𝑛𝑔(𝑌) =  𝑠𝑎𝑣𝑖𝑛𝑔_𝑜𝑝𝑒𝑟_𝑛𝑜𝑟𝑚𝑎𝑙(𝑌) +  𝑠𝑎𝑣𝑖𝑛𝑔_𝑜𝑝𝑒𝑟_𝑠𝑡𝑟𝑒𝑠𝑠(𝑌)    (2.31) 

Loop between Short term and Long term Decisions 
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In order to link short-term operational decisions to long-term planning following constraints must 

hold which ensure proper linkage between capacity (i.e. long term decision variable) and hourly 

operation of each asset in both average normal and stressed out conditions (i.e. short term decision 

variable). 

Average normal days 

𝑔𝑝𝑣(𝑌,𝐽,𝑇) =    𝑝𝑣𝑐𝑎𝑝(𝑌,𝐽) ∗ 𝑝𝑣𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  ∗ 𝑆𝐼(𝑌,𝐽,𝑇)      (2.32) 

𝑔𝑤𝑡(𝑌,𝐽,𝑇) =    𝑤𝑡𝑒𝑓𝑓 ∗  𝑤𝑡𝑐𝑎𝑝(𝑌,𝐽) ∗  𝑤𝑠𝑠𝑞(𝑌,𝐽,𝑇)    (2.33) 

𝑔𝑏𝑜𝑖𝑙𝑒𝑟 (𝑌,𝐽,𝑇) ≤    𝑏𝑜𝑖𝑙𝑒𝑟𝑐𝑎𝑝(𝑌,𝐽)     (2.34) 

𝑔𝑔𝑓 (𝑌,𝐽,𝑇) ≤    𝑔𝑓𝑐𝑎𝑝(𝑌,𝐽)      (2.35) 

𝑔𝑐ℎ𝑝(𝑌,𝐽,𝑇)  ≤   𝑐ℎ𝑝𝑐𝑎𝑝(𝑌,𝐽)   (2.36) 

Stressed-out conditions 

𝑔𝑝𝑣_𝑑𝑖𝑠(𝑌,𝐽,𝑇) =    𝑝𝑣𝑐𝑎𝑝(𝑌,𝐽) ∗ 𝑝𝑣𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  ∗ 𝑆𝐼(𝑌,𝐽,𝑇)      (2.37) 

𝑔𝑤𝑡_𝑑𝑖𝑠_(𝑌,𝐽,𝑇) =  𝑤𝑡𝑒𝑓𝑓 ∗  𝑤𝑡𝑐𝑎𝑝(𝑌,𝐽) ∗  𝑤𝑠𝑠𝑞(𝑌,𝐽,𝑇)   (2.38) 

𝑔𝑏𝑜𝑖𝑙𝑒𝑟_𝑑𝑖𝑠 (𝑌,𝐽,𝑇) ≤    𝑏𝑜𝑖𝑙𝑒𝑟𝑐𝑎𝑝((𝑌,𝐽)    (2.39) 

𝑔𝑔𝑓_𝑑𝑖𝑠 (𝑌,𝐽,𝑇) ≤    𝑔𝑓𝑐𝑎𝑝(𝑌,𝐽)   (2.40) 

𝑔𝑐ℎ𝑝_𝑑𝑖𝑠(𝑌,𝐽,𝑇)  ≤   𝑐ℎ𝑝𝑐𝑎𝑝(𝑌,𝐽)  (2.41) 

2.3.2 Capital Budgeting 

Capital budgeting (or investment appraisal) is a finance terminology, which aims at deciding 

whether or not to undertake an investment project. In other words, it is the process of allocating 

resources for major capital or investment. In this section, we are aiming at finding out optimal 

capital capacity of each asset to be purchased and installed in each year. Net Present Value (NPV) 

is a common approach to decide whether to undertake a project or to refuse it. The basic idea is to 
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maximize the discounted value of the net cash flow stream over the course of investment horizon. 

Once dealing with multiple investment options, calculating the discount factor in (NPV) approach 

is not straight forward. In addition, criticism to the (NPV) approach has been introduced once 

considering outside investments. Investment horizon approach is an alternative method to evaluate 

the economic value of investment projects. In the horizon models, the objective function to be 

maximized is accumulated cash flow at the time of horizon plus the value of post horizon cash 

flows [24]. A number of conceptual issues such as proper choice of discount factor could be 

avoided using this approach.  In this work investment horizon approach is applied to evaluate the 

capital budgeting problem and by incremental investment decisions, micro-grid portfolio is 

constructed during the course of investment horizon. We assume that at each time period, 

borrowing opportunity with constant finance charge for a fixed finance period exists and borrowed 

fund must be invested only on the micro-grid assets. It is also assumed that any available cash in 

each period could be either invested in alternative investment opportunity or spent to purchase 

assets. The following preliminary assumptions are made to develop the model. 

i. Cash inflow from the micro-grid’s saving will be added to the available cash in the same 

period. 

ii. Beyond the horizon period is assumed to be finite (15 years).  

iii. Each asset will be available at the purchase time period. 

iv. There would be initial cash available in the first period 

v. We assume a fixed maximum borrowing limit at each time period. 

vi. Required land for WT and PV installation is rented with fixed fee per unit of area. 

vii. Rate of return for investment in the alternative investment opportunity is less than the 

finance charges. 
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As stated earlier, the objective is to maximize the end of horizon cash flow plus the horizon time 

value of any cash flows beyond the horizon. The end of horizon net cash flow is calculated as 

below. 

𝑛𝑒𝑡_𝑐𝑓(𝜏)  =   ( 𝑠𝑎𝑣𝑖𝑛𝑔(𝜏) + 𝑅𝐶𝐴(𝜏) + 𝐵(𝜏) −  𝐵. 𝑓𝑐(𝜏) −  𝐶(𝜏) − 𝐶𝐴(𝜏)   )        (2.42)  

where: 

𝑠𝑎𝑣𝑖𝑛𝑔(𝜏) : Micro-grid saving at the end of horizon  

𝑅𝐶𝐴(𝜏) : Invested cash plus return on invested cash in an alternative investment in the previous 

period 

𝐵(𝜏) : Borrowed fund in the investment horizon period 

𝐵. 𝑓𝑐(𝜏):  Finance charge on the borrowed fund at the horizon 

𝐶(𝜏) :  Cash spent to purchase asset at horizon 

𝐶𝐴(𝜏) :  Cash spent on alternative investment at horizon 

Finance charge of the borrowed fund at each period is calculated as below. 

𝐵. 𝑓𝑐 (𝑌)= 𝐵(𝑌−1) ∗ (1 + 𝐹𝑇)     (2.43) 

Return on cash invested in an alternative investment opportunity in the previous period is as below. 

𝑅𝐶𝐴(𝑌) =  𝐶𝐴(𝑌−1) ∗ (1 + 𝑅𝑂𝐼)     (2.44) 

Beyond horizon cash flows include discounted cumulative savings from micro-grid (𝑠𝑎𝑣𝑖𝑛𝑔̂ (𝜏)) 

from the after horizon time period until the end of finite beyond horizon period. 

𝑠𝑎𝑣𝑖𝑛𝑔̂ (𝜏) = ∑
𝑆𝑎𝑣𝑖𝑛𝑔(𝜏+1)

(1 + 𝐷𝐹)𝑌

𝑏ℎ𝑝

𝑌=1

     (2.45) 

The finance charge of fund borrowed in last period (𝑏𝑜𝑟𝑟𝑜𝑤_𝑓𝑐̂
(𝜏)) and return on cash invested in 

the alternative investment in the last period (𝑅𝐶𝐴(𝜏)
̂  ). Each of these terms is calculated below. 
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𝑏𝑜𝑟𝑟𝑜𝑤. 𝑓𝑐̂
(𝜏) =  

𝑏𝑜𝑟𝑟𝑜𝑤.𝑓𝑐 (𝜏+1)

(1+𝐷𝐹)
    (2.46)   

𝑅𝐶𝐴̂(𝜏) =  
𝑅𝐶𝐴 (𝜏+1)

(1+𝐷𝐹)
    (2.47) 

Where DF is discount factor which is computed as a weighted average of debt and equity 

financing. 

Therefore, beyond horizon cash flows is as follows. 

𝑛𝑒𝑡𝑐𝑓̂(𝜏)
=   𝑠𝑎𝑣𝑖𝑛𝑔̂ (𝜏) +  𝑅𝐶𝐴̂(𝜏) − 𝑏𝑜𝑟𝑟𝑜𝑤. 𝑓𝑐̂

(𝜏)      (2.48) 

Consequently, the objective function is as below. 

𝑀𝑎𝑥 {  𝑛𝑒𝑡𝑐𝑓(𝜏)
+   𝑛𝑒𝑡𝑐𝑓̂(𝜏)

}         (2.49) 

Constraints 

Borrowed fund at each period cannot exceed a pre-defined limit. 

𝑏𝑜𝑟𝑟𝑜𝑤(𝑌) ≤   𝑏𝑜𝑟𝑟𝑜𝑤_𝑙𝑖𝑚𝑖𝑡    (2.50) 

There is a constraint for cash invested in alternative investment based on the availability of cash: 

𝐶𝐴(1) ≤ 𝐼𝐶0 −  𝐶(1)     𝑓𝑜𝑟 𝑌 =  1       (2.51) 

𝐶𝐴(𝑌) ≤ 𝑅𝐶𝐴(𝑌) +  𝑠𝑎𝑣𝑖𝑛𝑔(𝑌) −  𝐶(𝑌)     𝑓𝑜𝑟 𝑌 ≠ 1  (2.52) 

Borrows funds are not allowed to be invested in the alternative investment. Therefore, the total 

investment on micro-grid in each time period equals to borrowed fund plus the amount spent from 

available cash: 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙_𝑐𝑜𝑠𝑡(𝑌) =  𝐵(𝑌) + 𝐶(𝑌)       𝑓𝑜𝑟 1 ≤ 𝑌 ≤ 𝜏   (2.53) 

where 
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𝑐𝑎𝑝𝑖𝑡𝑎𝑙_𝑐𝑜𝑠𝑡(𝑌) = [ ∑ 𝑎𝑠𝑠𝑒𝑡_𝑐𝑎𝑝𝑖𝑡𝑎𝑙(𝑀.𝑌)
𝑀∗

𝑀=1 ∗  𝑎𝑠𝑠𝑒𝑡_𝑒𝑥𝑝(𝑀,𝑌)]+ 𝑤𝑡_𝑙𝑝(𝑌) +  𝑝𝑣_𝑙𝑝(𝑌)  (2.54) 

where 𝑎𝑠𝑠𝑒𝑡_𝑐𝑎𝑝𝑖𝑡𝑎𝑙 is the capital cost of unit capacity of each micro-grid asset in year 𝑌, 

𝑎𝑠𝑠𝑒𝑡_𝑒𝑥𝑝 is the added capacity of each asset in year 𝑌 , 𝑤𝑡_𝑙𝑝 and 𝑝𝑣_𝑙𝑝 are the rental fees for 

the land to install WT and PV respectively.  

As mentioned earlier, it is assumed that assets purchased at each time period is active at the same 

time period. Therefore, the available capacity of each asset time T and scenario J and year Y is as 

follows. 

𝑎𝑠𝑠𝑒𝑡_𝑐𝑎𝑝(𝑀,𝑌,𝐽) =  𝑎𝑠𝑠𝑒𝑡_𝑐𝑎𝑝(𝑀,𝑌,𝐽) + 𝑎𝑠𝑠𝑒𝑡_𝑒𝑥𝑝(𝑀,𝑌,𝐽)            𝑓𝑜𝑟  1 < 𝑇 ≤ 𝜏     (2.55) 

𝑎𝑠𝑠𝑒𝑡_𝑐𝑎𝑝(𝑀,1,𝐽) =  𝑎𝑠𝑠𝑒𝑡_𝑒𝑥𝑝(𝑀,1,𝐽)                                              𝑓𝑜𝑟 𝑌 =  1            (2.56) 

We also assume that the PV and WT capacities are restricted with the available land to install 

assets. Therefore, 

𝑝𝑣𝑐𝑎𝑝(𝑌) ∗ 𝑢𝑛𝑖𝑡. 𝑝𝑣. 𝑙𝑎𝑛𝑑 +   𝑤𝑡𝑐𝑎𝑝(𝑌) ∗ 𝑢𝑛𝑖𝑡. 𝑤𝑡. 𝑙𝑎𝑛𝑑 ≤ 𝑎𝑣𝑎𝑖𝑙. 𝑙𝑎𝑛𝑑    (2.57) 

Moreover, the capacities of CHP and gas fired assets are restricted. We assume that each of these 

assets shall not provide more than half of the maximum power demand of the community.  

To apply such a model and also account for uncertainty in our problem; the above illustrated 

investment horizon model is solved under different stochastic scenarios of natural gas price and 

capital costs of PV, ST and WT over the investment horizon. The overall model is solved as a 

mixed-integer non-linear stochastic optimization problem. Lingo optimization software is used to 

solve the problem and obtain global optimal solution.  

2.4 Illustrative Results 

Here, we intend to show the following factors through a number of numerical experiments. 
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i. Dependency of micro-grid incremental optimal portfolios on risk factors (i.e. probability 

and  consequences of power outage) 

ii. Dependency of optimal capital budgeting plans on risk characteristics 

iii. Higher value for proposed model in more risky regions 

iv. Impact of stochastic process applied to model natural gas prices over the course of 

investment horizon 

This section is organized as follows: first, necessary inputs to set up the model will be explained. 

Second, numerical results for sensitivity experiments will be provided. 

2.4.1 Input Data  

In order to generate paths of hourly electricity spot price, it is assumed that the peak electricity 

price on each day is correlated to natural gas price as explained earlier. By assuming a profile for 

daily electricity spot price as a percentage of peak prices, we obtain the hourly electricity prices 

over the course of a day. Figure 2-1 shows the daily spot price profile as a percentage of daily 

electricity peak prices. 

 

Figure 2-1 : Electricity spot price profile as percentage of peak price 
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Wind speed and solar radiation are correlate random variables with negative correlation. Solar 

radiation and wind speed data is extracted from the National Renewable Energy Laboratory 

datasets for a sample day in 2005 [25]. It is assumed that the correlation matrix is a follows.  

Table 2-2 : Solar intensity and wind speed correlation matrix 

 Solar intensity Wind speed 

Solar intensity 1 -0.5 

Wind speed -0.5 1 

 

Figure 2-2 represents a sample path of normalized wind speed and solar radiation along a sample 

day. 

 

Figure 2-2 : Sample Monte Carlo simulated path for correlated wind speed and solar radiation 

Natural gas price is modeled using (OU) mean reverting stochastic process. The reversion rate and 

mean level are calculated from the coefficients of a linear fit between the log natural prices and 

their first difference scaled by the time interval parameter. Using historical data, the (OU) model 

parameters are defined and presented in Table 2-3. 

Table 2-3 : (OU) process parameters for natural gas price 

Volatility 0.74 

Mean reversion 1.71 

Mean reversion speed 1.77 
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Gas fired, boiler and CHP investment costs are considered to be deterministic. Table 2-4 presents 

the annual investment cost of these assets over the course of investment horizon (i.e. 4 years). 

Table 2-4 : Deterministic investment costs of gas fired, CHP and boiler 

 Year 1 Year 2 Year 3 Year 4 

Gas fired (S/MW) 100,000 100,100 100,200 100,300 

CHP ($/MW) 1,200,000 1,210,000 1,220,000 1,230,000 

Boiler ($/MW) 600 700 800 900 

The parameters of binomial probability mass function assigned to PV, WT and ST capital costs 

decline rate are presented in Table 2-5. 

Table 2-5 : Parameters of Binomial distributions 

Asset 𝛙𝟏  𝛙𝟐 𝐏𝟏 𝐏𝟐 

PV 0.8 0.6 0.33 0.67 

WT 0.8 0.6 0.33 0.67 

Storage 0.8 0.6 0.33 0.67 

 

Land needed for unit capacity (MW) of PV and WT installment are 4 and 10 acres respectively. 

The rent of land is assumed to be 10000 (
$

𝑎𝑐𝑟𝑒
). 

We assume that state space of the number of days with stressed out conditions is {0, 1, and 2} with 

a trinomial probability mass function as follows. 

𝜙(𝑌) =  {

0              𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑜𝑓       0.33
1               𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓     0.33
2               𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓     0.33

          (2.58) 

In addition, the total power demand of the community is broken down to the constituent sectors’ 

demand. We rank the sectors based on criticality for optimal power allocation is stressed out 

conditions. Table 2-6 presents the sectors criticality ranking.  
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Table 2-6 : Sectors criticality ranking 

Rank 1 2 3 4 5 6 7 

Sectors Health Office Retail Education Warehouse Residential Leisure 

 

In addition, financial parameters applied in the model are as below. 

Table 2-7 : Financial parameters 

𝛕  (year) 4 

ROI 0.02 

FC 0.04 

FT(year) 1 

𝐛𝐨𝐫𝐫𝐨𝐰_𝐥𝐢𝐦𝐢𝐭   (M$) 3 

𝐈𝐂𝟎 (M$) 1 

𝐚𝐯𝐚𝐢𝐥. 𝐥𝐚𝐧𝐝(𝐚𝐜𝐫𝐞) 25 

lifetime (year) 15 

 

2.4.2 Illustrative Example (I): Micro-Grids with and without Resiliency Criterion 

Not taking into account the economic value of resiliency caused by micro-grids underestimates the 

value of these assets specifically in risky regions. Considering resiliency criterion in micro-grid 

planning results in higher savings and hence alters the long-term investment decisions including 

incremental micro-grid optimal portfolios and capital budgeting decisions. Figure 2-3 

demonstrates how average optimal incremental micro-grid portfolios differ for two micro-grids 

with resiliency criterion (MG-I) and without resiliency criterion (MG-II). 
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Figure 2-3 : Micro-grid optimal incremental portfolios with resiliency criterion (MG-I) and without resiliency criterion 

(MG-II) 

Comparing assets incremental capacities for micro-grids MG-I and MG-II, following observations 

are made. 

i. In MG-I, higher capacities of PV are purchased. 
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ii. In MG-I, higher capacities of GF are purchased in first two years. However, in both cases 

maximum allowable capacities of GF are installed in year 3.  

iii. In MG-II, tiny higher capacities of CHP are installed. 

iv. Higher overall capacity of assets is installed in MG-I to reduce the loss of unsupplied power 

in stressed out conditions. 

We are also interested to see how capital budgeting decisions (i.e. average financial activities 

including borrowing fund, investment in alternative investment and yearly spent cash) are different 

for MG-I and MG-II micro-grids. Figure 2-4 represents the average financial activities along with 

expected savings for MG-I and MG-II over the course of investment horizon. 

 

Figure 2-4 : Average financial activity over the course of investment horizon (MG-I and MG-II) 

Comparing the average financial activities for MG-I and MG-II following observations are made. 
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i. More cash is invested in MG-I to purchase higher capacities of micro-grid assets.  

ii. Higher savings with MG-I compared to MG-II in spite of higher cost of capital for MG-

I. Higher savings are acquired for MG-I due to inclusion of avoided loss in stresses out 

conditions in calculation of savings. 

iii. Higher savings with MG-I let the investors to invest more in alternative investment in 

year 4 to increase the cash in-flow. In order to compare the financial values of MG-I 

and MG-II, the expected cash flow positions at the end of horizon (including beyond 

horizon projected cash flow) for both cases are presented in Figure 2-5. 

 

Figure 2-5 : Expected cash flow position at τ (including beyond horizon projected cash flow) (MG-I and MG-II) 

 

2.4.3 Illustrative Example (II): Impact of Risk Characteristics  

According to the risk based structure of the model, we conjecture higher value for this model in 

more risky regions in which value of added resiliency by micro-grid is significant. Therefore, using 

this model is most valuable for investments in vulnerable geographic regions (such as coastal 

towns) and/or regions where many critical sectors (e.g. hospitals and offices) are located. In this 

section, we check the sensitivity of our model to risk factors (i.e. consequent economic loss and 

probability of power failure). In order to examine our model results sensitivity to loss due to power 
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outage, we define three categories of loss values for sectors in the community as presented in Table 

2-8. The loss values are defined based on the range of estimated direct costs of outage for different 

sectors customers available in US Environmental Protection Agency (EPA) report [26]. 

Table 2-8 : Loss values of unsupplied unit power for different sectors 

 
Loss categories and loss values 

(
𝑳𝒐𝒔𝒔 ($) 

  𝑼𝒏𝒔𝒖𝒑𝒑𝒍𝒊𝒆𝒅 𝒑𝒐𝒘𝒆𝒓(𝒌𝑾𝒉)
) 

Sector 𝑳𝟏 𝑳𝟐 𝑳𝟑 

Health 22 44 66 

Office 20 40 60 

Retail 15 30 45 

Education 10 20 30 

Warehouse 10 20 30 

Residential 5 10 15 

Leisure 5 10 15 

By increasing the loss index from 1 to 3, power grid outage incurs higher economic loss to the 

community sectors. Figure 2-6 demonstrates the average micro-grid incremental capacities for 

different loss scenarios. 
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Figure 2-6 : Average micro-grid assets optimal capacity for different loss categories 

Following observations are made from Figure 6. 

i. Higher loss incurs investment on higher overall capacity of micro-grid assets over the 

course of investment horizon.  
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ii. Higher loss values makes investment in GF more attractive and in CHP less attractive in 

initial two years of investment.  

iii. Higher loss values forces the investors to install higher capacities of PV. Additional PV 

capacity mitigates the loss incurred by power outage specifically in middle hours of day 

when solar radiation and PV efficiency are maximized.  

Moreover, Figure 2-7 demonstrates the annual borrowed fund, investment in alternative 

investment and micro-grid annual saving considering different loss categories.  

 

Figure 2-7 : Average annual borrowed fund, investment in alternative and micro-grid savings for different loss categories 

Following observations are made. 
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i. Higher loss yields in more savings from micro-grid. 

ii. More cash is spent to purchase assets when loss is higher, 

iii. Highest micro-grid saving at τ and highest investment in alternative project is observed for 

L3 category. 

Now, we proceed to examine the sensitivity of our model results to the probability of power failure 

which can also be interpreted as regional vulnerability to extreme conditions which yields to power 

outage. We assume two scenarios (V1 and V2) for probabilities of stressed out days in each year as 

follows.  

Table 2-9 : Vulnerability scenarios 

 Vulnerability scenarios 

 𝑽𝟏 𝑽𝟐 

𝐏𝐫(𝝓(𝒀) = 𝟎) 0.66 0.165 

𝐏𝐫(𝝓(𝒀) = 𝟏) 0.165 0.165 

𝐏𝐫(𝝓(𝒀) = 𝟐) 0.165 0.66 

 

Vulnerability scenario V2 can be interpreted as a community located in a coastal area, while 

scenario V1 could represent a not coastal region. The loss category for both scenarios is L3. Figure 

2-8 demonstrates the average micro-grid incremental capacities for V1 and V2 regions. 
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Figure 2-8 : Average micro-grid assets optimal capacity for different vulnerability scenarios 

Comparing the micro-grids assets incremental capacities in V1 and V2 regions, following 

observation is made. 

i. Higher capacity of PV and CHP capacities are installed for the more vulnerable region.  

ii. Tiny higher capacity of GF is installed in more vulnerable region at year 2. 
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The average financial activities for the two vulnerability scenarios are demonstrated in Figure 2-

9. 

 

Figure 2-9 : Average financial activity over the course of investment horizon (regions V1 and V2) 

Following observations are made. 

i. Higher vulnerability (i.e. V2) yields in more savings from micro-grid. 

ii. More cash is spent to purchase assets in V2, 

iii. Highest micro-grid saving and highest investment in alternative project is observed for V2. 
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2.4.4 Illustrative Example (III): Impact of Natural Gas Price Stochastic Process (Mean-

reverting vs. Non Mean-reverting) 

Natural gas price plays an important role in our investment results and modeling this uncertain 

variable with different stochastic processes, modifies the long-term decisions.  We already 

modeled the natural gas price with mean reverting stochastic (OU) process. In this section, we 

model the natural gas price by non-mean reverting Geometric Brownian Motion (GBM) process 

with deterministic positive mean growth rate and random volatility. The GBM process satisfies 

the following stochastic differential Equation.  

𝑑𝑆𝑡 = µ 𝑆𝑡 + 𝜎𝑆𝑡 𝑑𝑊𝑡     (2.59) 

where 𝑆𝑡 is natural gas price ($/mmBtu), µ is natural gas yearly drift, 𝜎 is the natural gas yearly 

volatility and 𝑊𝑡 is standard Brownian Motion and 𝑑𝑊𝑡  = 𝑒√𝑑𝑡 and 𝑒 is standard normally 

distributed. We assume that natural price follows a (GBM) with following parameters.  

Table 2-10 :  GBM parameters 

Natural gas price drift (µ) 0.06 

Natural gas price volatility (𝝈) 0.04 

We are interested to see how modeling natural gas price with (GBM) and (OU) processes, differs 

the micro-grid assets optimal capacities. In this section, we make the following assumption; (i) 

investment region is 𝑉1 (ii) loss category is 𝐿3 (iii) electricity price and natural gas price are 

independent. Figure 2-10 demonstrates the average micro-grid incremental capacities for (GBM) 

and (OU) processes used to model natural gas price. 
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Figure 2-10 : Average micro-grid assets optimal capacity; gas price modeled by (OU) and (GBM) 

Comparing the micro-grids assets incremental capacities, following observations are made. 

i. Modeling natural gas price by (GBM) process with positive mean growth rate increases 

attraction of PV and decreases attraction of gas fueled CHP due to higher input fuel cost. 
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ii. GF has similar capacities in both cases, which can be justified by GF low capital cost. 

Moreover, the average financial activities are presented in Figure 2-11. 

 

Figure 2-11 : Average financial activity over course of investment horizon; natural gas price modeled by (OU) and (GBM) 

Comparing the results for (OU) and (GBM) processes, the following observations are made. 

i. Due to the independency between gas and electricity prices in this section, savings from 

micro-grid decreases when average gas price has increasing trend (GBM process). 

ii. More cash is spent and more funds are invested in alternative project when gas price is 

modeled by (OU). 
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2.5 Conclusion 

In this work, a framework was developed for planning decisions for a portfolio of micro-grid 

assets, which enforces hedging mechanisms for risks due to infrastructure failure. The proposed 

framework uniquely merges and optimizes short-term day-to-day volatile operation (under normal 

and stresses out conditions) of the community’s distributed energy resources, and long-term 

investment decisions that are subject to price and market uncertainties and power failure risks. It 

was shown that the model is more valuable once applying for regions with higher risk of power 

failure.  Sensitivity of capital budgeting decisions and incremental micro-grid portfolio capacity 

enhancements to the probability of power failure and economic loss due to power outage are 

demonstrated. Moreover, it was shown that using mean reverting (OU) and non-mean reverting 

(GBM) stochastic processes to model natural gas price yields in different micro-grid assets 

capacity selection and cash flow position at the investment horizon. 
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3 Investment in Hydrogen Tri-generation for Wastewater Treatment Plants 

under Uncertainties 

In this article, we present a compound real option model for investment in hydrogen tri-generation and 

onsite hydrogen dispensing systems for a wastewater treatment plant under price and market uncertainties. 

The ultimate objective is to determine optimal timing and investment thresholds to exercise initial and 

subsequent options such that the total savings are maximized. Initial option includes investment in a 1.4 

(MW) Molten Carbonate Fuel Cell (MCFC) fed by mixture of waste biogas from anaerobic digestion and 

natural gas, along with auxiliary equipment. Produced hydrogen in MCFC via internal reforming, is 

recovered from the exhaust gas stream using Pressure Swing Adsorption (PSA) purification technology. 

Therefore the expansion option includes investment in hydrogen compression, storage and dispensing 

(CSD) systems which creates additional revenue by selling hydrogen onsite in retail price. This work 

extends current state of investment modeling within the context of hydrogen tri-generation by considering: 

(i) Modular investment plan for hydrogen tri-generation and dispensing systems, (ii) Multiple sources of 

uncertainties along with more realistic probability distributions, (iii) Optimal operation of hydrogen tri-

generation is considered, which results in realistic saving estimation. 

3.1 Introduction 

Wastewater treatment facilities are necessarily located close to the waterfront in order to discharge 

the treated wastewater and also for more efficient sludge handling. This waterfront geographical 

requirement increases likelihood of being affected and damaged during extreme weather 

conditions. It is no secret that during the super-storm Sandy, many wastewater treatment plants 

were shut down for several days due to power failure, creating major safety problems for the 

surrounding communities [27]. Along with high risk of failure during extreme weather conditions,  

other factors such as need for reliable power supply for continues normal operation and generation 
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of considerable amount of waste energy through treatment processes especially anaerobic 

digestion are the main motivations to consider wastewater treatment plants for energy resiliency. 

As demonstrated in a number of recent research works, hydrogen tri-generation technology can be 

a proper solution towards achieving these goals, and can significantly enhance resiliency of 

wastewater treatment plants and provide additional source of revenue [28]. Hydrogen tri-

generation system which simultaneously produces heat, power and hydrogen can be fed by a 

mixture of natural gas and facility’s waste products. Along with profit from onsite supplying heat 

and power demands, additional profit could be achieved through onsite hydrogen dispensing for 

local hydrogen vehicles use. Therefore, hydrogen tri-generation might be also a solution to 

overcome the challenge of initial investment cost of hydrogen early infrastructure deployment 

[29]. Given the aforementioned distributed energy generation asset, this article develops tools and 

models that can be used to optimally plan for investing in energy resilient wastewater treatment 

facilities that can also generate revenue. The particular problem addressed in this chapter is to 

define the optimal investment timing and thresholds to invest in a hydrogen tri-generation system 

and option for expansion to provide onsite hydrogen dispensing. The model optimally enforces 

hedging mechanisms for risks against existing market and price uncertainties, under optimally 

planned operation of assets.  

Since hydrogen tri-generation technology is in its infancy, there is a lack of comprehensive 

research on capital planning and investment in these assets. Li and Ogden [30] developed an 

analytic tool to identify the optimal design and evaluate the economic and environmental 

performance of hydrogen tri-generation systems for home and neighborhood scale hydrogen 

refueling, and power and heat demand supply. Their approach for economic evaluation of the 

hydrogen tri-generation is to estimate the levelized cost of one energy product such as electricity 
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while calculating the value of other energy products based on market price. The levelized cost of 

electricity is the cost of each power unit that would be incurred during the hydrogen tri-generation 

system life time. In order to find out when a tri-generation system is comparative with conventional 

systems, the levelized cost of electricity is compared to the price of grid electricity. Li and Ogden 

[31] extend their work by modeling operation, capacity design and economic analysis of 

commercial building tri-generation systems for big box store businesses.  

Moreover, the U.S. Department of Energy (DOE) has been carrying out research on financial 

benefits of deploying tri-generation in large scale facilities other than wastewater treatment plants 

such as hotels and university campuses. A released report of this study includes spread sheet 

software to deterministically calculate the Net Present Value (NPV) of deploying tri-generation to 

supply heat and power demands of energy intensive sectors along with hydrogen demand of the 

local hydrogen vehicles [31, 32]. Their model does not account for any type of short-term 

volatilities or long-term uncertainties.  

In this work, we decompose the similar investment problem and formulate it as a two stage risk 

based investment plan and solve for optimal timing of each investment stage using compound real 

option approach by which you can account for uncertainties. The first stage investment aims at 

self-sustainability and power resiliency of the wastewater treatment facility; however, the 

objective of the subsequent expansion investment is to create additional revenue stream via onsite 

hydrogen dispensing for transportation or other applications. The first option includes investment 

in Molten Carbonate Fuel Cell (MCFC) as a common hydrogen tri-generation system without 

utilizing hydrogen by-product in a downstream operation. In this stage, along with MCFC stacks, 

required auxiliary equipment such as hydrogen purification, safety, mechanical, electrical and 

piping systems are installed. The second option (i.e. expansion option) includes investment in an 
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onsite hydrogen refueling station, which uses hydrogen by-product of the plant to generate 

additional revenue. In this stage, compression, storage and dispensing (CSD) hardware is added to 

the facility by which the produced hydrogen will be sold onsite at retail price. Significant 

difference between hydrogen retail price (as a system output) and natural gas price (as a system 

input), makes utilization of natural gas to generate hydrogen economically profitable in spite of 

additional operational cost and natural gas feedstock cost. The initial and expansion options 

exercise timing is dependent on behavior of stochastic variables and investment options are 

exercised once the stochastic variables are most favorable to the investor. Initial option exercise 

time is assumed to be dependent on two stochastic variables as shown below. 

[X1: Natural Gas Price, X2: MCFC technology cost] 

MCFC technology cost includes MCFC stacks cost along with required auxiliary equipment costs. 

The expansion option exercise time depends on the two following stochastic variables. 

[X1
’: Hydrogen Price, X2

’: Expansion capital cost (CSD hardware)] 

Hydrogen price and natural gas price are factors which drive the operational dynamics. By 

formulating the problem as a compound real option, we are particularly interested in the perpetual 

American option with exchange a bundle of “n” stochastic costs against a bundle of “m” assets in 

both initial and expansion options. The right time to exercise the so called option is classified as 

an (n, m) exchange problem [33]. The (1,1) exchange model also referred as “the price and cost 

uncertainty” was initially developed by McDonald and Siegel [34]. Using the same notation, our 

initial investment problem is an extended (1,1) exchange problem, where we seek to determine the 

right time to exercise the investment option with one stochastic cost (i.e. MCFC capital cost in our 

case), and one stochastic project value (i.e. operational savings of micro-grid in our case). Note 
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that the value of the project is driven by natural gas price, thus it is stochastic. The expansion 

problem is also an (1,1) exchange where we seek to determine the right time to exercise the 

expansion option with one stochastic cost (i.e. expansion capital cost in our case), and one 

stochastic variable (i.e. hydrogen  price in our case) defining the project value. In the exchange 

(1,1) problem, the investment trigger is presented by a line in a 2-D space of stochastic variables 

(i.e. natural gas price and MCFC technology capital cost for initial option and hydrogen price and 

expansion capital cost for expansion option in our case).  

In order to solve the real option problems, three methods are commonly used: finite difference 

methods which directly deal with PDE’s (e.g. [35]), lattice methods (e.g. [36]), and Monte Carlo 

simulation based methods (e.g. [37]). Based on [38], closed-form solutions for real option 

embedded in capital budgeting problems are rarely available. On the other hand, lattice methods 

for real option valuation suffer the curse of dimensionality. Therefore, simulation is commonly 

applied to solve the real option problems. Longstaff and Schwartz [39] proposed a simulation 

based approach for simple real option evaluation namely Least Squares Monte Carlo (LSM). 

Gamba [38] developed an extension to LSM approach to solve the complex real options with many 

interacting options. This approach can be applied to solve three main categories of multi-option 

problems namely mutually exclusive, compound and independent options. In this work, we adopt 

this methodology to solve our compound real option problem.  

This chapter is organized as follows. Section (3-2) presents a brief description of hydrogen tri-

generation systems. In section (3-3) problem statement and preliminaries are provided. In section 

(3-4) dynamics of uncertainty along with details of calculation of hydrogen tri-generation 

operational saving are presented. Section (3-5) presents details of the investment approach. 
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Moreover, an illustrative example and sensitivity experiments are presented in sections (3-6) and 

(3-7). Eventually, conclusion is presented in section (3-8).  

3.1.1 Brief Description of Hydrogen Tri-generation  

Hydrogen tri-generation which is an efficient high temperature fuel cell capable of simultaneous 

production of heat, electricity and hydrogen is one of the most recent developments in the context 

of integrated conversion systems. Key benefits of hydrogen tri-generation include, (i) Near zero 

emission, (ii) Co-generated hydrogen is a more valuable product than thermal energy, (iii) Efficient 

generation of hydrogen and electricity reduces the overall operating cost, (iv) Can be fed by a 

mixture of fuels such as natural gas and waste biogas generated in wastewater treatment plants. 

Molten Carbonate Fuel Cell (MCFC) is a recent hydrogen tri-generation system introduced to the 

market [40]. The MCFC has internal reformers and heat from electricity-production efficiency 

losses is used to produce hydrogen. Hydrogen produced via internal reforming which is not utilized 

to generate electricity exits the anode in the exhaust stream. This stream contains𝐶𝑂, 𝐻2 and 𝐻2𝑂. 

The stream is cooled by using Pressure Swing Adsorption (PSA) exhaust and enters the shift 

catalyst which recovers about 75% of the hydrogen in the gas stream. Then hydrogen is 

compressed and stored for mainly transportation application. In spite of availability of other 

hydrogen separation technologies (e.g. electrochemical hydrogen pumping), we consider PSA 

according to its expected use in first hydrogen tri-generation systems and also market availability 

[41]. Figure 3-1 schematically demonstrates the concept of MCFC hydrogen tri-generation 

systems. 
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Figure 3-1 : Schematic of MCFC hydrogen tri-generation concept 

Moreover, Figure 3-2 is a generalized schematic of the MCFC system including detailed processes. 

 

Figure 3-2 : Schematic of modeled MCFC system with detailed processes [41] 

3.2 Problem Statement and Preliminaries 

In this work, we assume that the facility’s electricity demand is supplied by grid and hydrogen tri-

generation system. Moreover, the option to sell back the electricity to the grid exists. Boiler and 

hydrogen tri-generation supply heat demand of the facility. Generated hydrogen is sold onsite at 

retail price, if hydrogen dispensing hardware is installed; otherwise, hydrogen is transported to 

demand point and sold at wholesale market price. We find that the optimal investment strategy for 
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such a hydrogen tri-generation system and onsite hydrogen dispensing hardware for a wastewater 

treatment plant under several sources of uncertainty. We consider the investment as a two stage 

plan including initial investment option (i.e. purchasing and installation of hydrogen tri-generation 

and required auxiliary equipment) and expansion option (i.e. purchasing and installation of onsite 

hydrogen dispensing system). The initial and expansion investment options are categorized as 

exchange (1,1) problems each under two sources of uncertainties. It is assumed that the capacity 

configurations of initial and expansion investments are parametrically fixed. However, according 

to the stage-wise structure of the proposed solution approach, the model is capable to consider 

capacity enhancement of hydrogen tri-generation as another subsequent option if required.  The 

proposed investment approach, particularly defines optimal investment timing and thresholds to 

exercise the investment options with pre-defined capacities based on facility and hydrogen 

demands.   

Table 3-1 presents the nomenclature of this work. 

Table 3-1 : Nomenclature 

Indices 

𝑌 Year 

𝐽 Scenario 

𝑇 Time of day 

Parameters 

𝐽∗ Number of scenarios 

𝑌∗ Investment horizon 

𝑔𝑝 Natural gas price ($/MWh) 

ℎ2_𝑟𝑝 Hydrogen retail price ($/MWh) 

𝐸𝑥𝑝_𝐶𝑜𝑠𝑡 Expansion (Onsite refueling station) capital cost ($) 

𝑀𝐶𝐹𝐶_𝐶𝑜𝑠𝑡 MCFC stack capital cost ($) 

𝑆𝑎𝑣𝑖𝑛𝑔𝑎𝑛𝑛𝑢𝑎𝑙 Yearly saving of onsite generation ($) 

𝑆𝑎𝑣𝑖𝑛𝑔𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 Cumulative discounted savings during life time of assets ($) 
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𝑟 Risk free rate of return 

𝑔𝑝∗ Natural gas price trigger threshold ($/mmBtu)    

𝑀𝐶𝐹𝐶_𝑆𝑡𝑎𝑐𝑘_𝐶𝑜𝑠𝑡∗ MCFC stack cost trigger threshold (S) 

ℎ2_𝑟𝑝∗ Hydrogen price trigger threshold ($/MWh)      

𝐸𝑥𝑝_𝐶𝑜𝑠𝑡∗ Expansion (Onsite refueling station) capital cost trigger threshold ($) 

𝐸𝑙𝑒𝑐𝐷𝑒𝑚𝑎𝑛𝑑 Electricity demand (MWh) 

𝐻𝑒𝑎𝑡𝐷𝑒𝑚𝑎𝑛𝑑 Heat demand (MWh) 

𝑆𝑝𝑟𝑖𝑐𝑒 Electricity spot price ($/MWh) 

𝑆𝑏𝑝𝑟𝑖𝑐𝑒 Electricity sell back price ($/MWh) 

𝑛𝑔𝐼𝑛𝑝𝑢𝑡 Inlet natural gas to MCFC (MWh) 

𝑀𝐶𝐹𝐶𝑜𝑢𝑝𝑢𝑡 Cumulative power output of MCFC (MWh) 

𝑀𝐶𝐹𝑜&𝑚 MCFC operation and maintenance cost ($/MWh) 

𝐻2𝑜𝑢𝑝𝑢𝑡 Hydrogen output of MCFC (MWh) 

𝐵𝑜𝑖𝑙𝑒𝑟𝐸𝑓𝑓 Boiler efficiency 

𝐵𝑜𝑖𝑙𝑒𝑟𝐺𝑒𝑛 Boiler heat generation (MWh) 

𝐺𝑏 Electricity bought from grid (MWh) 

𝑆𝑏 Electricity sold back to grid (MWh) 

𝑛𝑔_𝑖𝑛𝑙𝑒𝑡 Input natural gas (MWh) 

𝑛𝑔_𝑛𝑜𝑟𝑚 Input natural gas used for normal operation (MWh) 

𝑛𝑔_𝑒𝑥𝑐𝑒𝑠𝑠 Input natural gas used for hydrogen over-production (MWh) 

𝑀𝐶𝐹𝐶𝑀 Maximum energy required for normal operation (MWh) 

𝑂𝑣𝑒𝑟𝐻2𝑃_𝑖𝑛𝑙𝑒𝑡 Energy used for hydrogen over-production (MWh) 

𝐵𝑔_𝑖𝑛𝑙𝑒𝑡 Input biogas (MWh) 

𝑀𝐶𝐹𝐶_𝑛𝑜𝑟𝑚_𝑖𝑛𝑙𝑒𝑡 Input energy to MCFC for normal operation (MWh) 

𝐴𝐻 Heat before conversion to heat and hydrogen (MWh) 

𝑀𝐶𝐹𝐶𝑒𝑔 MCFC electricity generation (MWh) 

𝑀𝐶𝐹𝐶ℎ𝑒𝑎𝑡 MCFC heat generation (MWh) 

𝑀𝐶𝐹𝐶ℎ2 MCFC hydrogen production (MWh) 

𝑀𝐶𝐹𝐶ℎ2𝑂𝑝 MCFC hydrogen over-production (MWh) 

𝑀𝐶𝐹𝐶𝑐𝑎𝑝 MCFC capacity (MW) 

𝐻2_𝑑𝑐 Hydrogen storage discharge (MWh) 

𝐻2_𝑐 Hydrogen storage charge (MWh) 

ω Hydrogen over production efficiency 

𝜆 Maximum hydrogen over-production to hydrogen production ratio 

𝐿𝐹 MCFC loading fraction 

𝜃 Heat to hydrogen conversion efficiency 

𝜁 Maximum fraction of heat convertible to hydrogen 

𝐴𝐶𝑒𝑓𝑓 MCFC power efficiency 

𝑇𝑂𝑇𝑒𝑓𝑓 MCFC total efficiency 
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3.2.1 Dynamics of Uncertainty 

There are four sources of long term uncertainty in our model namely (i) Natural gas price, (ii) 

Hydrogen price, (iii) MCFC stack capital cost, and (iv) Expansion capital cost including hydrogen 

compression, storage and dispensing (CSD) system. Modeling the long-term behavior of natural 

gas price has been extensively studied in the literature. Commonly speaking, natural gas price is 

modeled by Geometric Brownian Motion (GBM) stochastic process with deterministic mean and 

random volatility. GBM model exploits the tendency of price to revert around a long-term average 

cost of production.  In order to model the price, either one or two factor schemes can be applied. 

In the two-factor scheme, the short-term variation of price is also included and therefore a more 

accurate form of historical data is presented. However, [42] demonstrates that the one factor model 

(GBM) is accurate enough for long-term investment decisions. Also [43] argues that long-term 

factors are more effective elements in the long-term decisions. The GBM process to model natural 

gas price satisfies the following stochastic differential Equation. 

𝑑𝑆𝑡 = µ 𝑆𝑡 + 𝜎𝑆𝑡 𝑑𝑊𝑡    (3.1)        

where 𝑆𝑡 is natural gas price ($/mmBtu), µ is natural gas yearly drift, 𝜎 is the natural gas yearly 

volatility and 𝑊𝑡 is standard Brownian Motion and 𝑑𝑊𝑡  = 𝑒√𝑑𝑡 and 𝑒 is standard normally 

distributed. In order to estimate the process parameters, the model is fitted to the historical data 

and a linear regression is fitted to the logarithm of the natural gas price and its first difference to 

find out the drift and volatility values of the GBM process.  

Hydrogen price is another stochastic variable in the model. Hydrogen price can also be modeled 

by Geometric Brownian Motion (GBM) process with increasing trend [44]. Since we did not have 

access to proper real data, we made our best guesstimates on the drift and volatility of the hydrogen 
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GBM process. The capital cost of investment on recently developed Molten Carbonate fuel cell 

(MCFC) and hydrogen refueling station hardware are subject to great uncertainty. Due to lack of 

data on capital cost of these assets, we assume a decreasing trend according to a GBM. Monte 

Carlo sampling technique is applied to generate samples of the stochastic variables.  

Moreover, it is assumed that the distributed energy system is subject to two sources of short-term 

variation: (i) variation in electricity spot price, (ii) variation in demand. It is assumed that the peak 

electricity price on each day is correlated to natural gas price as follows. 

𝑃𝑒𝑎𝑘 𝑒𝑙𝑒𝑐𝑡𝑟𝑐𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒 = 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 ∗ 𝑅𝑎𝑡𝑖𝑜 ∗  𝜖𝐺𝑟𝑖𝑑   (3.2) 

where Ratio accounts for transmission cost at grid level and 𝜖𝐺𝑟𝑖𝑑 is the grid average rate for 

electricity generation from natural gas. Assuming a daily profile for daily electricity spot price as 

a percentage of peak prices, hourly electricity prices over the course of a day is obtained. Figure 

3-3 shows the electricity spot price profile as percentage of peak price. 

 

Figure 3-3 : electricity spot price profile as percentage of peak price 

Moreover, it is assumed that electricity and heat demands of the facility in each hour have 

distributions with known mean and variance.  
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3.3 Operational Saving Estimation: Stochastic Operation Optimization Model 

Savings are estimated for two modes; hydrogen tri-generation with and without onsite hydrogen 

dispensing. The difference of these two modes is selling procedure of the generated hydrogen. 

Once the initial investment option is exercised, the produced hydrogen will be transported to the 

demand point by truck and sold at wholesale market price. Hydrogen delivery cost is the fuel and 

labor cost of driving to and from the station [45]. However, by exercising the expansion option, 

hydrogen will be sold onsite at retail price. Thereafter, the operational saving for hydrogen 

dispensing system is the difference between these two saving values. In order to calculate the 

savings, a short term operation optimization framework is developed based on “Fuel Cell Power” 

model released by National Renewable Energy Laboratory (NREL). The “Fuel Cell Power” model 

simulations for tri-generation systems are created using a two-step process. In the first step, 

thermodynamically correct tri-generation system designs are developed using ASPEN Plus (i.e. 

optimization software for chemical processes). Then these models are used to develop simplified 

linear models of system performance. It has been demonstrated that under certain conditions, “Fuel 

Cell Power” results approximate the ASPEN Plus results [41]. In our work, the “Fuel Cell Power” 

model is modified to a generic stochastic operation optimization model. We assume that MCFC 

could be fed with a mixture of biogas and natural gas and the optimization model is solved under 

different scenarios of demand and prices of hydrogen, natural gas and electricity which are 

generated using Monte Carlo sampling technique. Thereafter, the path-wise savings of the system 

is calculated and fed to the investment model. In order to calculate operational savings, we consider 

similar days over a year which is an abstraction of reality and it only simplifies our computations. 

Therefore, the yearly saving is simply 365 times the daily saving.  
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As stated earlier, MCFC systems capable of production of electricity, heat and hydrogen can be 

fed by natural gas and/or waste biogas. The capacity of MCFC system could be selected such that 

the generated biogas would be sufficient for its operation. However, we select MCFC with a higher 

capacity which is close to the average daily power demand of the plant under consideration to be 

fed by mixture of biogas, and natural gas according to the following reasons. 

i. Our main objective of installing MCFC is energy resiliency and power reliability of 

wastewater treatment plants, especially in stressed out conditions (i.e. natural 

disasters/technical issues occurrence which results in power grid failure). Therefore we 

select the MCFC capacity such that the produced electricity maximally supplies the plant’s 

electricity demands. Typically, the amount of generated biogas in the wastewater treatment 

plants is not sufficient to satisfy electricity demands of the plant if solely used in MCFC 

system. Hence, we consider natural gas as another component in the feedstock for the 

MCFC system. It is also worth noting that MCFC systems operate with higher efficiency 

once the loading fraction is higher, therefore the addition of natural gas to the system 

inputs, increases the overall efficiency. 

ii. According to existence of the opportunity to sell electricity back to the grid, utilizing 

natural gas for extra electricity generation and selling it back to the grid, is economically 

profitable. It is worth noting that assuming positive correlation between the natural gas 

price, peak electricity price, consequently hourly electricity purchase and sell-back prices 

maintains a profit margin for natural gas usage in MCFC regardless of natural gas price 

fluctuations. 

iii. From the hydrogen economy point of view, although extra hydrogen generation with higher 

capacity MCFC has very low profit margin if sold in wholesale price; however, hydrogen 
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becomes a very economically profitable output from the MCFC system once the onsite 

hydrogen dispensing is installed. Onsite hydrogen dispensing systems creates the 

opportunity to sell hydrogen in retail price which is much higher than natural gas price. 

The power efficiency of the MCFC system is a function of loading fraction and is defined as the 

ratio of generated power to inlet fuel power. Moreover, the total efficiency of the MCFC system 

is defined as the aggregate outlet heat and power divided by the total energy inlet. The system is 

also capable of hydrogen over-production which is achieved by inletting extra fuel. The efficiency 

of hydrogen over-production is defined as the ratio of hydrogen overproduction to the excess fuel 

input.  

The inlet natural gas is expressed as aggregation of two terms namely “𝑛𝑔_𝑒𝑥𝑐𝑒𝑠𝑠" and 𝑛𝑔_𝑛𝑜𝑟𝑚" 

that define the amount of natural gas input utilized for the normal operation and hydrogen 

overproduction respectively. 

𝑛𝑔_𝑖𝑛𝑙𝑒𝑡(𝑌,𝐽,𝑇) =   𝑛𝑔_𝑛𝑜𝑟𝑚(𝑌,𝐽,𝑇) + 𝑛𝑔_𝑒𝑥𝑐𝑒𝑠𝑠(𝑌,𝐽,𝑇) (3.3) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24   

Generally, two operational conditions could occur as below. 

1 - Available energy from biogas exceeds the maximum energy required for normal operation;  

(i) MCFC works in its maximum fuel input mode: 

𝑀𝐶𝐹𝐶_𝑛𝑜𝑟𝑚_𝑖𝑛𝑙𝑒𝑡(𝑌,𝐽,𝑇)  = 𝑀𝐶𝐹𝐶𝑀   (3.4) 

    𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24 

where 𝑀𝐶𝐹𝐶𝑀 is the maximum energy required for normal operation. 

(ii) No natural gas is utilized for normal operation: 

𝑛𝑔_𝑛𝑜𝑟𝑚(𝑌,𝐽,𝑇) = 0           (3.5) 
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𝑌 = 1, … , 𝑌∗ &   𝐽 = 1, … , 𝐽∗ &  𝑇 = 1, … , 24 

(iii) Excess biogas energy and natural gas are available for hydrogen overproduction: 

𝑂𝑣𝑒𝑟𝐻2𝑃_𝑖𝑛𝑙𝑒𝑡(𝑌,𝐽,𝑇) =   𝐵𝑔_𝑖𝑛𝑒𝑙𝑡(𝑌,𝐽,𝑇) − 𝑀𝐶𝐹𝐶𝑀 +  𝑛𝑔_𝑒𝑥𝑐𝑒𝑠𝑠(𝑌,𝐽,𝑇)      (3.6) 

 𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24     

2 - Available energy from biogas is less than the energy required for normal operation;  

(i) Mixture of biogas and natural gas are fed to MCFC for normal operation: 

𝑀𝐶𝐹𝐶_𝑛𝑜𝑟𝑚_𝑖𝑛𝑙𝑒𝑡(𝑌,𝐽,𝑇)  =  𝐵𝑔_𝑖𝑛𝑙𝑒𝑡(𝑌,𝐽,𝑇) +  𝑛𝑔_𝑛𝑜𝑟𝑚(𝑌,𝐽,𝑇)     (3.7)  

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24     

(ii)  Hydrogen overproduction will take place if excess natural gas is fed to the system:  

𝑂𝑣𝑒𝑟𝐻2𝑃_𝑖𝑛𝑙𝑒𝑡(𝑌,𝐽,𝑇) = 𝑛𝑔_𝑒𝑥𝑐𝑒𝑠𝑠(𝑌,𝐽,𝑇)  (3.8)  

𝑌 = 1, … , 𝑌∗& 𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24 

In this work the capacity of MCFC is selected such that its maximum input fuel is always greater 

than the generated waste biogas. Therefore, natural gas is the main input fuel and case (1) never 

happens.  In both cases (1) and (2), 𝑀𝐶𝐹𝐶_𝑖𝑛𝑙𝑒𝑡 is the amount of energy that is used just for 

normal operation, hence should not be greater than the maximum energy input to the system for 

normal operation which is specified by the manufacturer. 

𝑀𝐶𝐹𝐶_𝑛𝑜𝑟𝑚_𝑖𝑛𝑙𝑒𝑡(𝑌,𝐽,𝑇) ≤  𝑀𝐶𝐹𝐶𝑀         (3.9) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24 

The MCFC system can overproduce hydrogen, if the system is already in the full capacity mode. 

To ensure that the system will not overproduce hydrogen when it is not in the full capacity mode 

the following constraints are added using “Big M” method. The “Big M” method is a variation of 

the simplex method designed for solving problems encompassing either “less-than” or “greater-
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than” constraints. The “Big M” is assumed to be an extremely large number associated with 

artificial variables represented by M. More details of this method are presented in chapter 2.  

𝑛𝑔_𝑛𝑜𝑟𝑚(𝑌,𝐽,𝑇) − [ 𝑀𝐶𝐹𝐶𝑀 − 𝐵𝑔𝑖𝑛𝑙𝑒𝑡(𝑌,𝐽,𝑇)  ] ≤ 𝑏𝑖𝑛(𝑌,𝐽,𝑇)  ∗ 𝑀                 (3.10) 

𝑛𝑔_𝑛𝑜𝑟𝑚(𝑌,𝐽,𝑇) − [ 𝑀𝐶𝐹𝐶𝑀 − 𝐵𝑔𝑖𝑛𝑙𝑒𝑡(𝑌,𝐽,𝑇)  ] > ( 𝑏𝑖𝑛(𝑌,𝐽,𝑇)  − 1) ∗ 𝑀      (3.11) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24    

where 𝑏𝑖𝑛 is a binary variable and 𝑀 is big positive number. The binary variable 𝑏𝑖𝑛 takes zero 

once the system is in normal operation mode and takes one when system is in hydrogen over-

production mode. Using 𝑏𝑖𝑛 and adding the following constraint, the energy from natural gas used 

for hydrogen overproduction would be zero if system is working under full capacity mode. 

𝑛𝑔_𝑒𝑥𝑐𝑒𝑠𝑠(𝑌,𝐽,𝑇) ≤ 𝑏𝑖𝑛(𝑌,𝐽,𝑇) ∗ 𝑀        (3.12) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24    

The amount of hydrogen over-production is calculated by multiplying the available energy for 

hydrogen over-production in hydrogen over-production efficiency (ω). 

𝑀𝐶𝐹𝐶ℎ2𝑂𝑝(𝑌,𝐽,𝑇) = 𝑂𝑣𝑒𝑟𝐻2𝑃_𝑖𝑛𝑙𝑒𝑡(𝑌,𝐽,𝑇) ∗ ω     (3.13) 

𝑌 = 1, … , 𝑌∗ & 𝐽 = 1, … , 𝐽∗& 𝑇 = 1, … , 24 

Hydrogen overproduction is constrained based on the fuel cell specifications. Hydrogen over-

production cannot exceed a defined ratio of produced hydrogen (𝜆). Therefore,  

𝑀𝐶𝐹𝐶ℎ2𝑂𝑝(𝑌,𝐽,𝑇)  ≤  𝜆 ∗  𝑀𝐶𝐹𝐶ℎ2(𝑌,𝐽,𝑇)    (3.14) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24 
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where 𝜆 is the maximum ratio of hydrogen over-production to production ratio.  

Since the MCFC power and overall efficiency at each time step is dependent on the portion of the 

full capacity which is loaded, we calculate the loading fraction (LF) as below. 

𝐿𝐹(𝑌,𝐽,𝑇) =  
𝑀𝐶𝐹𝐶_𝑛𝑜𝑟𝑚_𝑖𝑛𝑙𝑒𝑡(𝑌,𝐽,𝑇) 

𝑀𝐶𝐹𝐶𝑀
      (3.15) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24      

By defining LF, overall and power efficacies could be extracted from the tables provided by “Fuel 

Cell Power” model (i.e. overall and power efficacies vs. loading fraction). Then MCFC electricity 

generation is calculated as below.  

𝑀𝐶𝐹𝐶𝑒𝑔(𝑌,𝐽,𝑇) =  𝐴𝐶𝑒𝑓𝑓(𝑌,𝐽,𝑇) ∗  𝑀𝐶𝐹𝐶𝑛𝑜𝑟𝑚𝑖𝑛𝑙𝑒𝑡 (𝑌,𝐽,𝑇)
    (3.16) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24 

Moreover, according to fuel cell operational constraints, generated electricity in each time step 

cannot vary more than a defined limit from previous time step electricity production. The 

electricity variation limit is defined by multiplication of a ratio namely “AC Response Time 

(ACRT)” in the MCFC capacity. Therefore, 

𝑀𝐶𝐹𝐶𝑒𝑔(𝑌,𝐽,𝑇) ≤   𝑀𝐶𝐹𝐶𝑒𝑔(𝑌,𝐽,𝑇−1)    +  𝐴𝐶𝑅𝑇 ∗   𝑀𝐶𝐹𝐶𝑐𝑎𝑝         (3.17) 

𝑀𝐶𝐹𝐶𝑒𝑔(𝑌,𝐽,𝑇) ≥   𝑀𝐶𝐹𝐶𝑒𝑔(𝑌,𝐽,𝑇−1)   −  𝐴𝐶𝑅𝑇 ∗   𝑀𝐶𝐹𝐶𝑐𝑎𝑝         (3.18) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 2, … , 24    

By calculating the MCFC electricity generation and overall efficiency of the system, the amount 

of available energy (𝐴𝐻) which can be either outlet as heat or used to generate hydrogen in fuel 

cell is defined.  
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𝐴𝐻(𝑌,𝐽,𝑇) =  [𝑇𝑂𝑇𝑒𝑓𝑓(𝑌,𝐽,𝑇)  ∗  𝑀𝐶𝐹𝐶𝑛𝑜𝑟𝑚𝑖𝑛𝑙𝑒𝑡 (𝑌,𝐽,𝑇)
   ]  − 𝑀𝐶𝐹𝐶𝑒𝑔(𝑌,𝐽,𝑇)   (3.19) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24 

According to “Fuel Cell Power” model, there is a maximum fraction of heat convertible to hydrogen 

(ζ). Therefore, 

𝑀𝐶𝐹𝐶ℎ2(𝑌,𝐽,𝑇)

𝜃
≤  𝐴𝐻(𝑌,𝐽,𝑇) ∗  𝜁                 (3.20) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24 

where 𝜃 is the heat to hydrogen conversion efficiency and 𝜁 is the maximum fraction of heat 

convertible to hydrogen.   

Similar to electricity hourly production, hourly hydrogen generation is constrained by a limit 

which is defined by multiplication of a ratio namely “Hydrogen Response Time (HRT)” in the 

MCFC capacity. Therefore, 

𝑀𝐶𝐹𝐶ℎ2(𝑌,𝐽,𝑇) ≤   𝑀𝐶𝐹𝐶ℎ2(𝑌,𝐽,𝑇−1)    + ( 𝐻𝑅𝑇 ∗   𝑀𝐶𝐹𝐶𝑐𝑎𝑝 )        (3.21) 

𝑀𝐶𝐹𝐶ℎ2(𝑌,𝐽,𝑇) ≥   𝑀𝐶𝐹𝐶ℎ2(𝑌,𝐽,𝑇−1)   − ( 𝐻𝑅𝑇 ∗   𝑀𝐶𝐹𝐶𝑐𝑎𝑝 )        (3.22) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 2, … , 24    

Therefore, the available energy can be expressed as aggregation of heat and hydrogen produced as 

below. 

𝐴𝐻(𝑌,𝐽,𝑇) =  
𝑀𝐶𝐹𝐶ℎ2(𝑌,𝐽,𝑇)

𝜃
+ 𝑀𝐶𝐹𝐶ℎ𝑒𝑎𝑡(𝑌,𝐽,𝑇)      (3.23) 

𝑌 = 1, … , 𝑌∗ & 𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24   
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Moreover, the hourly generated electricity by MCFC along with the electricity bought from the 

grid must meet the demand plus any possible electricity sellback to the grid. 

𝑀𝐶𝐹𝐶𝑒𝑔(𝑌,𝐽,𝑇) +  𝐺𝑏(𝑌,𝐽,𝑇) ≥  𝑆𝑏(𝑌,𝐽,𝑇) + 𝐸𝑙𝑒𝑐𝐷𝑒𝑚𝑎𝑛𝑑(𝑌,𝐽,𝑇)     (3.24) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24 

Boiler and heat from MCFC must meet the heat demand of the facility.  

𝑀𝐶𝐹𝐶ℎ𝑒𝑎𝑡(𝑌,𝐽,𝑇)+𝐵𝑜𝑖𝑙𝑒𝑟𝐺𝑒𝑛(𝑌,𝐽,𝑇) ≥   𝐻𝑒𝑎𝑡𝐷𝑒𝑚𝑎𝑛𝑑(𝑌,𝐽,𝑇)     (3.25)   

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24      

In addition, once the hydrogen dispensing system is installed, the generated hydrogen at each time 

step could be either used to fuel hydrogen vehicles or charged to the hydrogen storage. Stored 

hydrogen could also be discharged to fuel hydrogen vehicles if required. Therefore, 

𝑀𝐶𝐹𝐶ℎ2(𝑌,𝐽,𝑇) + 𝑀𝐶𝐹𝐶ℎ2𝑂𝑝(𝑌,𝐽,𝑇) + 𝐻2𝑑𝑐(𝑌,𝐽,𝑇) ≥   𝐻2𝑐(𝑌,𝐽,𝑇)    + 𝐻2𝐷𝑒𝑚𝑎𝑛𝑑(𝑌,𝐽,𝑇)   (3.26) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24 

If hydrogen refueling station is not in place, there is no constraint to meet hydrogen demand. 

The initial investment path-wise annual saving (𝑆𝑎𝑣𝑖𝑛𝑔𝑎𝑛𝑛𝑢𝑎𝑙(𝑌,𝐽)
) is defined as the difference 

between savings with and without hydrogen tri-generation system in each scenario. 

𝑆𝑎𝑣𝑖𝑛𝑔𝑎𝑛𝑛𝑢𝑎𝑙(𝑌,𝐽)
= 365 ∗ ∑  (𝐶𝑛ℎ,(𝑌,𝐽,𝑇) −  𝐶𝑤ℎ,(𝑌,𝐽,𝑇)) 24

𝑇=1    (3.27) 

where 𝐶𝑛ℎ is the total cost of supplying heat and power demands with no hydrogen tri-generation 

capacity and 𝐶𝑤ℎ is the total cost of supplying heat and demand by hydrogen tri-generation 

capacity less the revenue from selling hydrogen and selling back electricity to the grid. 

Mathematically speaking 𝐶𝑛ℎ(𝑌,𝐽,𝑇) is as calculated as below. 
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𝐶𝑛ℎ(𝑌,𝐽,𝑇) = 𝐸𝑙𝑒𝑐𝐷𝑒𝑚𝑎𝑛𝑑(𝑌,𝐽,𝑇) ∗ 𝑆𝑝𝑟𝑖𝑐𝑒(𝑌,𝐽,𝑇) + 𝐻𝑒𝑎𝑡𝐷𝑒𝑚𝑎𝑛𝑑(𝑌,𝐽,𝑇) ∗  
𝑔𝑝(𝑌,𝐽)

𝐵𝑜𝑖𝑙𝑒𝑟𝐸𝑓𝑓⁄   

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24       (3.28) 

Also, 𝐶𝑤ℎ in scenario J and time T and Year Y is defined as below. 

𝐶𝑤ℎ,(𝑌,𝐽,𝑇) =  𝑛𝑔𝐼𝑛𝑝𝑢𝑡(𝑌,𝐽,𝑇) ∗  𝑔𝑝(𝑌,𝐽) −  𝑆𝑏(𝑌,𝐽,𝑇) ∗  𝑆𝑏𝑝𝑟𝑖𝑐𝑒(𝑌,𝐽,𝑇) +  𝐺𝑏(𝑌,𝐽,𝑇) ∗  𝑆𝑝𝑟𝑖𝑐𝑒(𝑌,𝐽,𝑇) +

 𝑀𝐶𝐹𝐶𝑜𝑢𝑝𝑢𝑡(𝑌,𝐽,𝑇) ∗  𝑀𝐶𝐹𝐶𝑜&𝑚 − 𝐻2𝑜𝑢𝑡𝑝𝑢𝑡(𝑌,𝐽,𝑇) ∗  𝐻2𝑃𝑟𝑖𝑐𝑒(𝑌,𝐽,𝑇)  +𝐵𝑜𝑖𝑙𝑒𝑟𝐺𝑒𝑛(𝑌,𝐽,𝑇) ∗

 
𝑔𝑝(𝑌,𝐽)

𝐵𝑜𝑖𝑙𝑒𝑟𝐸𝑓𝑓⁄    𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24                    (3.29)             

Where 𝑀𝐶𝐹𝐶𝑜&𝑚 includes MCFC and hydrogen purification operation and maintenance cost [46]. 

Moreover: 

𝑀𝐶𝐹𝐶𝑜𝑢𝑝𝑢𝑡(𝑌,𝐽,𝑇) = 𝑀𝐶𝐹𝐶𝑒𝑔(𝑌,𝐽,𝑇) + 𝑀𝐶𝐹𝐶ℎ2(𝑌,𝐽,𝑇) + 𝑀𝐶𝐹𝐶ℎ2𝑂𝑝(𝑌,𝐽,𝑇) + 𝑀𝐶𝐹𝐶ℎ𝑒𝑎𝑡(𝑌,𝐽,𝑇) 

(3.30)  

𝐻2𝑜𝑢𝑡𝑝𝑢𝑡(𝑌,𝐽,𝑇) =  𝑀𝐶𝐹𝐶ℎ2(𝑌,𝐽,𝑇) +  𝑀𝐶𝐹𝐶ℎ2𝑂𝑝(𝑌,𝐽,𝑇)     (31) 

𝑌 = 1, … , 𝑌∗ &  𝐽 = 1, … , 𝐽∗ & 𝑇 = 1, … , 24                     

Following similar logic for calculation of savings, the expansion investment path-wise annual 

saving is defined as the difference between savings with and without a hydrogen dispensing system 

in each scenario. In the case of initial investment the produced hydrogen is sold as whole sale 

price; however, by the addition of an onsite dispensing system hydrogen is sold at a retail price. 

Therefore, in the initial case the 𝐻2𝑃𝑟𝑖𝑐𝑒  equals the wholesale hydrogen price less the transport 

cost; however, in the expanded case, the 𝐻2𝑃𝑟𝑖𝑐𝑒 equals the hydrogen retail price. 

The path-wise initial and expansion savings along with simulated sample paths of the initial and 

expansion capital costs are used in the long-term investment model which defines optimal timing 
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to invest in the assets. In the investment model, the optimal investment timing strategy is the one 

which maximizes the discounted cumulative cash flows over the life time of the assets. Hence, the 

present value of hydrogen tri-generation and onsite hydrogen dispensing savings during their 

lifetimes at the time of investment is calculated by discounting the savings cash flow with a 

discount rate of r, as shown below. 

𝑆𝑎𝑣𝑖𝑛𝑔𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =  ∑
    𝑆𝑎𝑣𝑖𝑛𝑔𝑎𝑛𝑛𝑢𝑎𝑙

(1+𝑟)𝑌−1

𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
𝑌=1      (3.32) 

where 𝑆𝑎𝑣𝑖𝑛𝑔𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 is the present value of total savings during lifetime of the asset. We use this 

formula for both initial and expansion investments.  

3.4 Monte Carlo Simulation for Real Option 

This section includes a short synopsis of real option and methodology, followed by representation 

of the algorithm. Since traditional Net Present Value (NPV) approach is not capable to handle 

uncertainty, the real option approach adopted from option theory in finance is applied to solve 

capital budgeting problems under uncertainty. Formally speaking, “Real option” is the right 

(option) to undertake certain business initiatives such as contracting an investment, abandoning, 

expanding and deferring [46]. The main advantage of real option approach is the opportunity to 

delay an investment by which more information for better decisions would be revealed. Therefore, 

the investors will make the investment if the stochastic variables values are favorable, otherwise 

the option to invest would not be exercised [47, 48]. 

Longstaff and Schwartz introduced Least Squares Monte Carlo (LSM) technique to solve the real 

option problems by simulation [40]. Using this method, at each exercise time, the option holder 

decides whether to keep the option alive or to immediately exercise the option. The exercise 
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strategy is determined by comparing the immediate payoff from exercising the option and the 

conditional expectation of payoff from keeping the option alive. The conditional expectation is 

estimated from the cross sectional information in the simulated paths using least squares 

regression. To do so, the subsequent realized payoffs from continuation are regressed on the values 

of state variables. This function is then applied to determine the conditional expectation of 

continuation at each exercise time. Backward dynamic programming is applied to solve for the 

optimal investment timing. The calculation is carried out for each sample path and conditional 

distributions of investment thresholds are determined.  

According to the composite structure of our investment strategy, simple real option models are not 

applicable and the investment problem can be categorized as a compound real option. Compound 

real options are combination of real options, where an exercise of a real option opens another real 

option and are mostly used in research and development [49]. In order to solve for compound real 

options, Gamba [38] presents an extension to the Least Squares Monte Carlo (LSM) approach 

which is based on the concept that in the compound real option, the value of the initial claim also 

depends on the value of the subsequent one.  

3.4.1 Methodology 

Assume that there are two states variables defined by X = (𝑋𝑔𝑝, 𝑋𝑀𝐶𝐹𝐶_𝑆𝑡𝑎𝑐𝑘_𝐶𝑜𝑠𝑡) , where 𝑋𝑔𝑝 is the 

natural gas price and 𝑋𝑀𝐶𝐹𝐶_𝑆𝑡𝑎𝑐𝑘_𝐶𝑜𝑠𝑡 is the MCFC stack capital cost. The investor has the option to 

invest in hydrogen tri-generation, with maturity date of T and payoff 𝛱 (𝑇, 𝑋𝑡)  . Let 𝐹 (𝑇, 𝑋𝑡)  be 

the value of the option at 𝑡 ≤ 𝑇. In case of the American option we have: 

𝐹(𝑡, 𝑋𝑡) =  𝑚𝑎𝑥𝜁𝜖Ґ(𝑡,𝑇){𝑒−𝑟(𝜁−𝑡)𝐸𝑡
∗[𝛱(𝜁, 𝑋𝜁)]}       (3.33)  
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where 𝐸𝑡
∗[. ] is the expectation conditional on available information at time step t and Ґ(𝑡, 𝑇) is the 

set of possible stopping times. Given the valuation problem of an American claim contingent on 

X and expiration date of T, an approximation of the value is defined by selecting an integer number 

N and dividing the time span [0,T] to N intervals, with the length of an interval equal to 𝛥𝑡 =  𝑇 𝑁⁄ . 

Afterwards, we generate K simulated paths of stochastic process {𝑋𝑡} and denote 𝑋𝑡(𝜔) the value 

of the process at time t along the 𝜔-th path and 𝜁(𝜔) the path-wise stopping time with respect to 

the information generated by {𝑋𝑡}. The objective is to find the optimal exercise date restricted to 

the following set. 

{𝑡0 = 0, 𝑡1 = 𝛥𝑡, … , 𝑡𝑁 = 𝑁𝛥𝑡}    (3.34) 

The optimal policy regarding exercising the option is determined using backward dynamic 

programming. If at time 𝑡𝑁, along the path ω, the option is still alive, the decision is made by 

comparing the payoff 𝛱(𝑡𝑁 , 𝑋𝑡(𝜔)) with (𝑡, 𝑋𝑡(𝜔)) . In case of our problem, the initial option 

payoff is defined as the discounted saving of hydrogen tri-generation over the life time of the asset 

minus the initial capital cost (i.e. cost of MCFC stacks and required auxiliary equipment).  

𝛱 (𝑡𝑛, 𝑋𝑡(𝜔) ) =  𝑆𝑎𝑣𝑖𝑛𝑔𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 −  𝑋𝑀𝐶𝐹𝐶_𝑆𝑡𝑎𝑐𝑘_𝐶𝑜𝑠𝑡𝑡
(𝜔)     (3.35) 

Likewise, expansion investment payoff is defined as the discounted savings from onsite hydrogen 

dispensing over the life time of the system less the initial capital cost of investment. Expansion 

investment payoff will be used later in the expansion investment payoff consideration. Thereafter, 

the stopping time is defined as below. 

𝜁 = 𝑖𝑛𝑓  {𝑡|𝐹(𝑡, 𝑋𝑡) =  𝛱(𝑡, 𝑋𝑡)}   (3.36) 

Using the Bellman equation 𝐹(𝑡, 𝑋𝑡) is calculated as below. 
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𝐹(𝑡, 𝑋𝑡) = max{𝛱(𝑡𝑛, 𝑋𝑡𝑛
), 𝑒−𝑟(𝑡𝑛+1−𝑡𝑛)𝐸𝑡𝑛

∗ [𝐹(𝑡𝑛+1, 𝑋𝑡𝑛+1
)]}     (3.37) 

The path-wise optimal policy restricted to given dates can be computed by comparing the 

continuation value. 

𝜃(𝑡𝑛, 𝑋𝑡𝑛
) =  𝑒−𝑟(𝑡𝑛+1−𝑡𝑛)𝐸𝑡𝑛

∗ [𝐹(𝑡𝑛+1, 𝑋𝑡𝑛+1
|𝐹𝑡𝑛

)]    (3.38) 

with the payoff  𝛱(𝑡𝑛, 𝑋𝑡𝑛
). For the case of our problem, 𝜃(𝑡𝑛, 𝑋𝑡𝑛

) is the expected value of 

savings less capital cost of investment, if the investor invests in one of the following years of 𝑡𝑛. 

The decision rule to find out the stopping time for a simple real option problem denoted  𝜁(𝜔)  at 

𝑡𝑛 on the 𝜔 -th simulated path is as follows.   

If  𝜃 (𝑡𝑛, 𝑋𝑡𝑛
(𝜔) ) ≤  𝛱 (𝑡𝑛, 𝑋𝑡𝑛

(𝜔) )  the  𝜁 (𝜔) =  𝑡𝑛      (3.39) 

At 𝑡𝑛 = 𝑇 , since the option is expiring, 𝜃 (𝑡𝑛, 𝑋𝑡𝑛
) = 0 and the rule is to exercise the option if the 

payoff is positive. At any 𝑡𝑛, the optimal stopping time is found by recursively applying the 

decision rule in (3.38), from 𝑡𝑛 = 𝑇  back to 𝑡𝑛. If at some previous step of this procedure,  (𝜔) >

 𝑡𝑛 , and condition (3.38) holds at the current step, then the stopping time along the path is updated: 

𝜁 (𝜔) =  𝑡𝑛. At 𝑡𝑛 = 0, when the optimal stopping times along all paths are determined, the value 

of the option is estimated by averaging the path-wise values: 

𝐹 (0, 𝑋) =  
1

𝐾
∑ 𝑒−𝑟𝜁(𝜔)

𝐾

𝜔=1

𝛱 (𝜁(𝜔), 𝑋𝜁(𝜔)(𝜔))      (3.40) 

In order to find the continuation value at (𝑡, 𝑋𝑡) , we apply Least Square Monte Carlo method. The 

intuition behind this method is as follows: if at the option is still available, the continuation value 

is the expectation, conditional on the information available at that date, of future optimal payoffs 
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from the contingent claim. Let 𝛱 (𝑡, 𝑠, 𝜁, 𝜔) be the cash flow from optimal exercise of the option 

at time s (with respect to the stopping time (𝜔)), conditional on not being exercised at 𝑡 < 𝑠, along 

the ω-path .Hence: 

𝛱(𝑡, 𝑠, 𝜁, 𝜔) =  {
𝛱(𝑠, 𝑋𝑠(𝜔))          𝑖𝑓 𝑠 = 𝜁(𝜔) 

0                             𝑖𝑓 𝑠 ≠ 𝜁(𝜔)
      (3.41) 

The continuation value at 𝑡𝑛 is the present value of all future expected cash flows from the 

contingent claim: 

𝜃 (𝑡𝑛, 𝑋𝑡𝑛
) = 𝐸𝑡𝑛

∗  [ ∑ 𝑒−𝑟(𝑡𝑖−𝑡𝑛)𝛱(𝑡𝑛, 𝑡𝑖, 𝜁, . )

𝑁

𝑖=1+𝑛

]      (3.42) 

In order to calculate the expected conditional continuation value, future realized payoffs are 

regressed on state variables.  Taking this approach, the expectation of continuation at each exercise 

time for initial investment in our problem is as follows.  

𝐸 [𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑡|𝑔𝑝(𝑡−1), 𝑀𝐶𝐹𝐶_𝑆𝑡𝑎𝑐𝑘_𝐶𝑜𝑠𝑡(𝑡−1)]

=  𝛽0,𝑡−1 + 𝛽1,𝑡−1𝑔𝑝(𝑡−1) +  𝛽2,𝑡−1𝑀𝐶𝐹𝐶_𝑆𝑡𝑎𝑐𝑘_𝐶𝑜𝑠𝑡(𝑡−1) + 𝛽3,𝑡−1𝑔𝑝(𝑡−1)
2

+ 𝛽4,𝑡−1𝑀𝐶𝐹𝐶_𝑆𝑡𝑎𝑐𝑘_𝐶𝑜𝑠𝑡(𝑡−1)
2                   (3.43) 

where 𝑔𝑝 and 𝑀𝐶𝐹𝐶_𝑆𝑡𝑎𝑐𝑘_𝐶𝑜𝑠𝑡 , are gas price and MCFC stack capital cost respectively.  

For the case of our problem with one embedded interdependent option, we use the following 

algorithm. We apply the described method to determine the optimal investment timing for the 

second option in each path. Therefore, the two state variables are 𝑋ℎ2_𝑟𝑝 (Hydrogen price) and 

𝑋𝐸𝑥𝑝_𝐶𝑜𝑠𝑡 (Expansion capital cost).  Thereafter, we carry out all the explained steps. We also define 

the expectation of continuation at each exercise time for expansion investment as below. 
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𝐸 [𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑡|ℎ2_𝑟𝑝(𝑡−1), 𝐸𝑥𝑝_𝐶𝑜𝑠𝑡(𝑡−1)] =  𝛼0,𝑡−1 + 𝛼1,𝑡−1ℎ2_𝑟𝑝(𝑡−1) +

 𝛼2,𝑡−1𝐸𝑥𝑝_𝐶𝑜𝑠𝑡(𝑡−1)+ 𝛼3,𝑡−1ℎ2_𝑟𝑝(𝑡−1)
2 + 𝛼4,𝑡−1𝐸𝑥𝑝_𝐶𝑜𝑠𝑡(𝑡−1)

2                     (3.44)             

where ℎ2_𝑟𝑝 and 𝐸𝑥𝑝_𝐶𝑜𝑠𝑡 are hydrogen retail price  and expansion investment cost respectively. 

Thereafter, we determine the optimal stopping time in each path for the initial option using 

Bellman equation as follows.  

𝐹1(𝑡𝑛, 𝑋𝑡𝑛
) = max  {𝛱1(𝑡𝑛, 𝑋𝑡𝑛

) + 𝐹2(𝑡𝑛, 𝑋𝑡𝑛
) , 𝑒−𝑟(𝑡𝑛+1−𝑡𝑛)𝐸𝑡𝑛

∗ [𝐹1(𝑡𝑛+1, 𝑋𝑡𝑛+1
)]}      (3.45) 

where 𝐹1 is the value of the initial option, 𝐹2 is the value of the second option and 𝛱1 is the payoff 

of initial investment option. We then compute the stopping time 𝜁1(𝑤) for initial investment option 

at 𝑡𝑛 on the ω-th path is as follows.  

If    𝜃1(𝑡𝑛, 𝑋𝑡𝑛
(𝑤) ≤  𝛱1 (𝑡𝑛, 𝑋𝑡𝑛

(𝑤)) + 𝐹2  (𝑡𝑛, 𝑋𝑡𝑛
(𝑤))      𝑡ℎ𝑒𝑛     𝜁1(𝑤) =  𝑡𝑛        (3.46) 

where 𝜃1 is the continuation value and 𝜁1 is the stopping time for the initial option. 

3.5 Illustrative Example  

In this, section we present a numerical example to demonstrate how the investment model works. 

This section is organized as follows; firstly, we present the input parameters and data, secondly, 

we present the results of the investment model.  

3.5.1 Input Data 

According to the Molten Carbonate Fuel Cell manufacturer, MCFC systems are available in 350 

kW (DFC-300), 1.4 MW (DFC-1500) and 2.8 MW (DFC-3000) capacities [50]. We select 1.4 

(MW) MCFC which is close to the average daily power demand of the facility under consideration.  

The hydrogen dispensing hardware includes compression, storage and dispensing. We consider 
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0.5 (MW) hydrogen storage and 2 dispensers. More details of required auxiliary instruments are 

available in “Fuel Cell Power” model report [32, 41]. In order to find out the initial costs of MCFC 

stack, auxiliary equipment and hydrogen dispensing equipment, data presented in Table 3-2 has 

been used.  

Table 3-2: MCFC and hydrogen dispensing equipment capital costs breakdown [31] 

Component Cost ($) Notes 

MC fuel cell 179256.2 * 0.85 * 𝑃𝑚𝑎𝑥
0.33 

𝑃𝑚𝑎𝑥(𝑘𝑊)is rated maximum power of the FC stack, 

0.85 is production volume discount factor 

Heating system 200 * 𝑃𝑚𝑎𝑥 
𝑃𝑚𝑎𝑥(𝑘𝑊) is rated maximum power of the MCFC 

stack 

𝑯𝟐 purification 

87058*( 
𝐻𝑝𝑢𝑟𝑖𝑓

4.167
 )0.5* 

(
𝑥

10
) 

𝑙𝑛 (0.85)

𝑙𝑛 (2)  

𝐻𝑝𝑢𝑟𝑖𝑓 is the 𝐻2 purification rate in kg h-1, 0.5 is a size 

scaling factor, and 0.85 reflects production volume 

discount 

Storage system 1026* 𝐻𝑆𝑡𝑜𝑟𝑎𝑔𝑒
1.081* a 

𝐻𝑆𝑡𝑜𝑟𝑎𝑔𝑒 is hydrogen stored in kg, a = 0.95 is 

production volume discount factor 

Compressor 
26913 * 

𝑃𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟
0.5202* b 

𝑃𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 is the Compressor flow rate in kg h-1, b =  

0.91 is production volume discount factor 

Dispenser 55073 * n * c 
n is the number of dispenser, c = 0.77 is production 

volume discount factor 

Electrical 

equipment 
170.63 * 𝑃𝑚𝑎𝑥 𝑃𝑚𝑎𝑥(𝑘𝑊)is rated maximum power of the MCFC stack 

Safety 

equipment 
40 * 𝑃𝑚𝑎𝑥 𝑃𝑚𝑎𝑥(𝑘𝑊)is rated maximum power of the MCFC stack 

Mechanical and 

piping 
80 * 𝑃𝑚𝑎𝑥 𝑃𝑚𝑎𝑥(𝑘𝑊)is rated maximum power of the MCFC stack 

 

The parameters of GBM processes for stochastic variables are either estimated from historical data 

(dataset at Henry Hub from 2000 to 2008 is used to estimate GBM parameters for natural gas 

price) or based on our best guesstimates. Table 3-3 gives the initial value along with annual drift 

and volatility of stochastic processes. 
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Table 3-3 : Stochastic parameters of GBM processes 

 Gas price Hydrogen price MCFC stack cost Expansion cost 

Initial value 7 ($/mmBtu) 365 ($/Mwh) 1450000 ($) 561616 ($) 

Drift (µ) 0.045 0.045 -0.03 -0.03 

Volatility (σ) 0.2 0.5 0.03 0.03 

Similar to “Fuel Cell Power” model, we assume a deterministic daily profile for hydrogen demand 

as percentage of total daily demand for standard high volume refueling as shown in Figure 3-4 

[45]. We also assume no annual increase in the total daily demand over the course of investment 

horizon. The profile is as below. 

 

Figure 3-4 :  Daily hydrogen demand as percentage of total daily demand 

3.5.2 Results 

The probability of exercising the initial investment option in each year (𝑃𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙) over the course 

of planning horizon (i.e.4 years) is obtained using the optimal investment timing results over the 

Monte Carlo simulated paths. According to the general rule of option analysis, higher uncertainty 

results in exercising the option with delay in higher number of Monte Carlo sample paths and vice 

versa.  𝑃𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙 results are presented in Table 3-4. 
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Table 3-4 : Probabilities of exercising the initial option 

 Year 1 Year 2 Year 3 Year 4 

𝑷𝒓𝒊𝒏𝒊𝒕𝒊𝒂𝒍 0.22 0.31 0.47 0 

The probability of exercising the expansion option conditional on exercising the initial option in 

each year is presented in Table 3-5. 

Table 3-5 : Probabilities of exercising the expansion option 

 Year 2 Year 3 Year 4 

Expansion|initial @ year 1 0.04 0.12 0.75 

Expansion|initial @ year 2 0 0.12 0.79 

Expansion|initial @ year 3 0 0 0.98 

High probability of exercising the expansion option in year 4 regardless of initial option exercise 

year, demonstrates a high magnitude of uncertainty in exercising the expansion option which 

results in a delay in investment. The impact of level of uncertainty on optimal investment timing 

will be demonstrated using sensitivity analysis experiments in section 7. Moreover, Figure 3-5 

represents the linear relationship between natural gas price and MCFC stack cost trigger 

thresholds.  

 

Figure 3-5 : Thresholds line to exercise the initial investment option 
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Proper investment timing is when two stochastic variables intercept under the threshold line. 

Similar plots can be generated for expansion thresholds conditional on initial option exercise at 

years 1, 2 and 3. The expectation of optimal thresholds is calculated from conditional distribution 

function presented below. 

𝐸(𝑋∗) =  ∑ 𝐸(

4

𝑖=1

𝑋∗| 𝜁 = 1 )𝑃(𝜁 = 𝑖)     (3.47) 

where 𝑋∗ is the threshold value for stochastic variable X in the initial and expansion investments. 

Table 3-6 represents the expected thresholds to exercise the initial option. 

Table 3-6: Initial options trigger thresholds 

𝐄 [𝐠𝐩∗] 7.25 ($/mmBtu) 

𝐄 [𝐌𝐂𝐅𝐂_𝐒𝐭𝐚𝐜𝐤_𝐂𝐨𝐬𝐭∗] 1377507.23    ($) 

In addition, Figure 3-6 shows the expected thresholds to exercise the expansions option conditional 

on exercising the initial option.  

 

Figure 3-6 : Expected thresholds to exercise the expansion investment option 
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We observe lower trigger value for lower expansion capital costs and higher lower trigger value 

for hydrogen price as delay in investment is increased. This observation is in line with decreasing 

trend of expansion capital cost and increasing trend of hydrogen price. 

3.6 Sensitivity Analysis 

In this section, we validate our model through a number of sensitivity experiments.  A general 

result of the real option evaluation is that higher volatility and uncertainty results in higher value 

of waiting for more information about the uncertainty. Therefore, higher uncertainty increases the 

expected investment threshold of stochastic variables with increasing trend and decreases the 

expected exercise threshold of stochastic variables with decreasing trend [51].  

3.6.1 Impact of MCFC and Expansion Capital Costs Decline Rate 

We are interested in examining the sensitivity of investment thresholds to MCFC and expansion 

the capital costs decline rates according to immaturity of these technologies. Our conjecture is to 

delay investment decisions by increasing the absolute value of decline rates of both MCFC and 

expansion capital costs. Figure 3-7 represents MCFC cost expected thresholds for different levels 

of annual decline rate (i.e. -0.09, -0.07, -0.05 and -0.03). 
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Figure 3-7 : MCFC cost expected threshold sensitivity to decline rate 

In addition, Figure 3-8 shows the expansion costs expected thresholds conditional on initial 

investment, for different levels of expansion cost decline rate. 

 

Figure 3-8 : Expansion cost expected threshold sensitivity to decline rate 
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Therefore, by increasing the absolute value of MCFC stack cost and expansion capital costs decline 

rates, investment thresholds decrease, meaning that the decision maker shall wait for lower cost to 

invest.  

3.6.2 Impact of MCFC Cost Volatility 

MCFC cost volatility is a crucial factor in our initial investment timing decision. Our conjecture 

is delay in initial option exercise once the volatility of MCFC capital cost increases. Figure 3- 9 

shows how the initial investment decisions are modified for three levels of MCFC stack cost 

volatility (i.e. 0.01, 0.05 and 0.1).  

 

Figure 3-9 : Initial investment decision sensitivity to MCFC cost volatility 

As demonstrated, by increasing the MCFC cost volatility, waiting for more information and 

therefore delay in investment becomes more significant. In addition, delay in initial investment 

results in lower MCFC cost and higher gas price thresholds according to decreasing MCFC 

expected cost and increasing natural gas expected price. Figure 3-10 shows how MCFC capital 

cost volatility impacts the expected investment thresholds. 
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Figure 3-10 : Initial investment expected thresholds sensitivity to MCFC stack cost volatility 

3.6.3 Impact of Hydrogen Price Volatility  

According to the immaturity of hydrogen generation technologies and the uncertainty of the 

hydrogen future market, we are interested in demonstrating how uncertain hydrogen price 

influences the timing of investment in onsite hydrogen dispensing systems. We examine the impact 

of hydrogen price volatility on expansion investment timing for three levels of hydrogen price 

volatility (i.e. 0.1, 0.3 and 0.5). Figure 3-11 shows that delay in expansion investment becomes 

more significant by increasing hydrogen price volatility, which is in line with the general rule of 

real option evaluation that higher volatility results in delayed investment.  
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Figure 3-11 : Expansion investment decision sensitivity to hydrogen price volatility 

Delay in expansion investment results in lower expansion cost and a higher hydrogen price 

expected thresholds according to decreasing expansion expected cost and increasing hydrogen 

expected price.  Expected thresholds to exercise the expansion option for aforementioned levels of 

hydrogen volatility are presented in Figure 3-12.  
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Figure 3-12 : Expansion investment expected thresholds sensitivity to hydrogen price volatility 

We are also interested to see how expansion investment uncertainty impacts the initial option 

exercise timing. We intuitively anticipate that the initial investment option exercise date is brought 

forward once the hydrogen price volatility is lower which causes a less volatile expansion 

investment payoff. Our anticipation is based on the fact that the expansion option payoff is taken 

into consideration in defining the optimal timing in order to exercise the initial option. Figure 3-

13 shows how delay in initial investment becomes less significant by decreasing the hydrogen 

volatility.   
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Figure 3-13 : Initial investment decision sensitivity to hydrogen price volatility 

3.6.4 Impact of Natural Gas Price Volatility  

We are interested to investigate the impact of natural gas price volatility on the initial investment 

thresholds. Our conjecture is delay in investment by increasing the natural gas price volatility. 

Delay in initial investment results in triggering the initial investment option in lower MCFC stack 

cost and higher natural gas price as shown in Figure 3-14.  
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Figure 3-14 : Initial investment expected thresholds sensitivity to natural gas price volatility 

3.6.5 Impact of Hydrogen Demand Increase Rate 

In the previous cases hydrogen demand is assumed to be a constant over the investment horizon. 

However, in order to investigate the impact of hydrogen demand increase rate on the investment 

decisions, we define three levels for annual total hydrogen demand increase rate (i.e. 0.1, 0.2 and 

0.3). Figure 3-15 shows that by increasing the annual hydrogen demand increase rate, delay in the 

expansion investments become more significant.  
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Figure 3-15 :  Expansion investment decisions sensitivity to hydrogen demand annual increase rate 

This observation indicates the value of real option in hedging the risk of larger projects in the face 

of uncertainty. Once the hydrogen demand rate increases, impact of hydrogen price volatility is 

amplified. Therefore, the investment becomes more risky which results in postposing the 

investment.  

3.7 Conclusion and Future Work 

The work presented in this article tackles the problem of optimal two stage investment in hydrogen 

tri-generation with fixed capacity and addition of onsite hydrogen dispensing systems under 

uncertainties. To handle multiple uncertain variables, a simulation based approach with least 

squares regression is applied. The sensitivity of investment decisions to a number of parameters 
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are examined and the results are in line with the general result of the real option that delay in 

investments becomes more significant as volatility increases.  

This work can be extended by relaxing the assumption of fixed capacity of MCFC system. 

Thereafter, incremental investment in MCFC system can be taken into consideration as another 

subsequent option. This modification enables us to enhance the capacity of MCFC by addition of 

the required number of MCFC stacks to the existing system, if it is economically attractive. In this 

manner, installation of the initial MCFC system provides the option to expand the system in future.  
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4 Public-Private Partnership (PPP) Financing Model for Micro-Grids  

In this chapter, we develop a Public-Private Partnership (PPP) financing model for micro-grids in 

which public entity transfers responsibility and risk of designing, building, operating and 

maintaining (DBOM) of the project to the private sector while maintaining the project ownership. 

The private sector owns the micro-grid’s revenue till the investment horizon; however, the revenue 

ownership will be transferred to the public entity after the investment horizon till a finite after- 

horizon period. Public entity incentivizes the private sector by providing an initial senior debt 

opportunity (through issuing zero coupon municipal bonds) and possibility of annual junior debts. 

Here, the (DBOM – PPP) financing model is merged with micro-grid short-term operation 

optimization into a single framework under host of short-term and long-term stochastic variables. 

An illustrative example is presented in which optimal financial activities and optimal micro-grid 

incremental portfolio over the course of investment horizon are defined for a vulnerable 

community located in 100-year flood zone region of city of Hoboken in New Jersey. From a 

practical point of view, the proposed model could have enormous impact on building a 

collaborative environment for public and private entities, which will facilitate implementation of 

micro-grid projects. 

4.1 Introduction 

Optimal operation of micro-grids in average normal conditions decreases the cost of supplying 

energy demands of the communities and has the potential to generate revenue.  It is no secret that 

micro-grids can also increase the power resiliency of communities by continuous operation in 

stressed out conditions in which the power grid is disconnected due to extreme environmental 

conditions or technical issues. With this background, micro-grid projects have gained popularity 

in long-term plans for “Sustainable and Resilient Communities”. A sustainable and resilient 
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community by definition is a community, which is structurally developed to mitigate the economic 

and societal cost of disasters, and also have the capability to recover quickly [52]. Since the focus 

of many recent researches has been on the micro-grid’s design, implementation and operation, 

there is a lack in comprehensive models which solve the problem of financing such projects. Many 

of recent micro-grid projects have not been expanded from pilot scale to massive scale capable of 

supplying considerable portion of the communities’ power demands, due to existence of no clear 

financial plan that takes the project from the financing step out to the end of the micro-grid’s 

lifetime. In this chapter, we are aiming to develop a long-term financing plan for incremental 

investment in community level micro-grids, which is based on the Public-Private Partnership 

(PPP) financing model. The (PPP) is a business relationship between a private sector entity and a 

government agency for the purpose of carrying out a project which will serve the public [53]. 

These contractual agreements are used to finance, build, operate and maintain large scale projects 

such as wastewater treatment plants, public transportation networks and convention centers. The 

advantages of such agreements are making the project a possibility in the first place and sooner 

completion of the project as well as transfer of risk from public entity to the private sector over the 

life of the project [54].  The (PPP) contracts come in a wide range of forms which are basically 

different in the degree of involvement of the private entity in the project. In this research, we take 

DBOM (Design- Build- Operate- Maintain) type of (PPP) models abbreviated as (DBOM-PPP) 

for micro-gird projects financing in which the private sector is responsible for design, build, 

operate and maintain the project over the course of a specified period, however public sector 

maintains the ownership of the project [55]. These project components are procured from the 

private entity in a single contract with financing secured by public sector. In all (PPP) contracts, 

public sector provides some incentives for the private sector such as loans proportionate to the 
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level of risk the implementer bears, reduction in loan fees or/and transparent communication, 

collaboration and less political behavior [56]. We consider the public sector’s incentive in our 

model in the form of a “Senior debt” in initial year and possibility of annual “Junior debts” over 

the course of investment horizon [57]. The rest of the chapter is organized as follows. In section 

(4.2), brief explanation of the developed model is presented. In section (4.3), the model is 

demonstrated through an illustrative example. Finally, conclusion is presented in section (4.4).  

4.2 Public Private Partnership (PPP) model for Micro-Grids 

We will use the recent micro-grid’s operation and (DBOM–PPP) financing model as in chapter 2. 

In our (DBOM–PPP) model, the public sector provides a specified amount of fund for the private 

entity in the initial year of contract in the form of “Senior debt” through issuing sufficient number 

of zero coupon municipal bonds with face value 𝐹 and maturity at the investment horizon. In 

addition, public sector provides the private sector opportunity to borrow defined amount of funds 

in form of “Junior debts” with fixed rate of return in each year. “Junior debt” is either unsecured 

(i.e. do not require collateral behind the debts) or has a lower priority than of other debts claim on 

the same asset. It is worth noting that municipal bonds are tax exempted bonds issued by entities 

such as states, cities, counties, special-purpose districts or any other governmental entity under the 

state level, with the purpose of financing large scale infrastructural projects which could include 

micro-grid. Municipal bonds are categorized as (I) General obligation bonds and (II) Revenue 

Bonds. In our model, we consider Revenue bonds in which the principal and interest rate are 

secured by the revenue from the project (i.e. micro-gird). Therefore, in order to build our long-

term (DBOM –PPP) finance model, we need to accurately estimate annual savings/revenue from 

micro-grid operation under operation optimality condition. In our model, we merge the micro-grid 

short-term operation optimization and the (DBOM–PPP) financing model into a single framework 
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under a host of short-term and long-term stochastic variables and solve it as a mixed integer 

stochastic optimization problem.  The micro-grid’s operation optimization accounts for short-term 

savings, costs and penalties that are weighed according to the priorities of existing or planned 

residential and commercial sectors within the community in stressed out occasions. Hence, micro-

grid saving is calculated in both average normal and stressed out conditions (i.e. power gird outage) 

with the objective of savings maximization. The power allocation between different sectors in case 

of stressed out conditions is based on criticality rank of each sector. The (DBOM –PPP) model is 

on the basis of cash flow reflecting the actual outflows and inflows of monetary values. The 

(DBOM –PPP) is formulated as a stochastic model for financial planning which defines the 

following:  

i. Optimal annual average financial activities over the course of investment horizon. 

ii. Optimal annual micro-grid incremental portfolio under capacity constraints and available 

area limitation for micro-grid assets.  

The objective of (DBOM –PPP) is to maximize the end of horizon cash flow plus the horizon time 

value of beyond the horizon cash flows till a finite beyond horizon period. We assume that the 

private entity can use the cash inflow resulting from micro-grid’s operational savings along with 

the senior debt and junior debts to purchase micro-grid assets. The private sector owns the micro-

grid’s revenue till the investment horizon; however, the revenue ownership will be transferred to 

the public entity after the investment horizon till a finite after horizon period. The (DBOM –PPP) 

model captures the long-term market and price uncertainties such as natural gas price and capital 

cost of micro-grid assets. Taking Monte Carlo simulation approach, several sample path 

realizations over the course of project investment horizon are generated, and the deterministic 

(DBOM –PPP) is solved for each sample path and expected results are estimated.  
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4.3 Illustrative Example  

In this section, we are aiming to demonstrate how the (DBOM –PPP) model works for a 

community level micro-grid project through an illustrative example. We assume that micro-grid 

portfolio includes gas fired generators (GF), combined heat and power (CHP), photovoltaic cells 

(PV), electricity storage (ST), wind turbine (WT) and boiler. Therefore, we are considering this 

portfolio to supply as much as possible of electricity and heat demands of the community under 

study. We select the 100-year flood zone region (i.e. region with 0.01 probability of flooding in 

each year) in city of Hoboken, New Jersey, for micro-grid implementation. This specific region is 

selected according to the following reasons: (I) High vulnerability to extreme weather condition 

and power gird outage; as this region was extremely affected by super-storm Sandy in 2012, (II) 

Two super critical sectors (i.e. Health service and Information technology) are located in this 

region whose economic loss due to power outage are significant. In addition this region has high 

density of residential and retail units, which can be classified as medium critical sectors. Figure 4-

1 shows the 100-year flood zone area in Hoboken along with land use classification in this region 

extracted using GIS (Geographic Information System) land use data. 
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Figure 4-1 : Land use classification in 100-year flood zone, Hoboken, NJ 

Table 4-1 shows approximate number of units and total roof area of each sector in the region.  Roof 

area can be partially used for installation of PV panels.  

Table 4-1 : Sectors' quantity and total area 

Sector Number of units Total roof area (acre) 

Health service 10 11.38 

Information technology (IT) 21 9.37 

Retail 72 98.77 

Leisure 8 28.69 

Residential 1500 339.71 
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We also make the following assumptions regarding available area to install renewable power 

generation assets in our micro-grid portfolio: 

i. Half of the roof area of each sector can be used to install PV panels. 

ii. WT installation is not practical in this region, since area under study is located in a dense 

municipal region with no available land to install massive wind turbine hardware.  

Sine, we do not have access to hourly heat and electricity demand data for each of the units in this 

region, we use daily profiles for typical health service, information technology (IT), retail, leisure 

and residential sectors, as shown in Figure 4-2 [58, 59 and 60].  

 

Figure 4-2 : Typical electricity demand profile for each sector 
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We approximate the heat demand (supplied by gas fueled boiler and CHP) to electricity demand 

ratio for all sectors to be 0.4 [61]. We also assume that natural gas prices follow a Geometric 

Brownian Motion (GBM) with drift and volatility estimated using historical data (Henry Hub from 

2000 to 2008) as demonstrated in Table 4-2.  

Table 4-2 : Parameters of natural gas price GBM process 

Natural gas initial price ($/mmBtu) Drift Volatility 

7 0.045 0.2 

 

PV, ST and WT capital costs are assumed to be stochastic. We assume a decreasing trend and 

assign a binomial probability mass function to the rate (ψ) by which the capital cost decreases in 

each year. Table 4-3 demonstrates the parameters of assigned binomial probability mass functions. 

Table 4-3 : Parameters of Binomial distributions 

Asset 𝛙𝟏  𝛙𝟐 𝐏𝐫𝐨𝐛𝐚𝐛𝐥𝐢𝐭𝐲 (𝛙𝟏 ) 𝐏𝐫𝐨𝐛𝐚𝐛𝐥𝐢𝐭𝐲 (𝛙𝟐 ) 

PV 0.8 0.6 0.33 0.67 

WT 0.8 0.6 0.33 0.67 

ST 0.8 0.6 0.33 0.67 

  

GF, CHP and boiler investment costs are considered to be deterministic according to maturity of 

these technologies. Table 4-4 shows the annual investment cost of these assets over the course of 

investment horizon. 

Table 4-4: Deterministic investment costs of GF, CHP and boiler over the course of investment horizon 

 Year 0 Year 1 Year 2 Year 3 

GF (S/MW) 100,000 100,100 100,200 100,300 

CHP ($/MW) 1,200,000 1,210,000 1,220,000 1,230,000 

Boiler ($/MW) 600 700 800 900 
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As stated earlier, we assume that the public entity provides a senior debt to the private sector via 

issuing sufficient number of municipal bonds (i.e. 500 in our case). In order to price zero-coupon 

floating rate municipal bond with maturity at investment horizon with face value 𝐹 , we use the 

binomial lattice method which is a popular approach to model one-factor Markov processes [35]. 

The binomial lattice weakly converges to Geometric Brownian Motion (GBM) stochastic process. 

In the binomial lattice, a binomial step of 𝛥𝑡  is considered such that 𝑢 and 𝑑 are multipliers 

associated to up and down movements of variable in each step with risk neutral probabilities of 𝑝 

and 1 − 𝑝 respectively. We start with constructing a binomial lattice structure for the floating 

short-term interest rate. The risk neutral probabilities are set to 0.5, and each step’s up and down 

multipliers are set to be1.25 and 0.9 respectively. Short term interest rate binomial lattice is 

demonstrated in Figure 4-3.   

 

Figure 4-3 : Short term interest rate lattice 

Thereafter, we construct a binomial lattice for zero coupon municipal bond with terminal states’ 

values all equal to the bond’s face value. Working backwards on the binomial lattice and using 

risk neutral probabilities and floating interest rates, price of the zero coupon bond  is calculated. 
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Applying this methodology, we calculate the price of a municipal bond with maturity at year 3 and 

face value of $5,000 (i.e. common face value of municipal bonds) to be $4145.61 as demonstrated 

in Figure 4-4. 

 

Figure 4-4 : Municipal bond pricing ($) lattice 

We assume that the annual junior debt is also limited to be no more than 2M$. We also assume 

that the public entity has a revenue stream from micro-grid operation for a finite after-horizon 

period (i.e.15 years). Now, we proceed to the results of the devolved (DBOM –PPP) model. The 

average financial activities (i.e. annual junior debts, initial senior debt, annual cash from micro-

grid savings spent to purchase micro-grid assets along with annual micro-grid savings) of the 

private sector in the context of (DBOM-PPP) model are presented in Figure 4-5. 
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Figure 4-5 : Optimal annual financial activities averaged over all scenarios 

The private sector is using the fund supplied by the public entity in the form of a senior debt along 

with the junior debts and cash inflows gained from micro-grid savings to install assets and 

maximize the cash flow position of both public and private entities in the investment horizon. The 

private sector cash flow position at the investment horizon includes the net cash flow at horizon. 

However, according to the fact that the public entity governs the project revenue right after the 

investment horizon, its cash flow position at the investment horizon includes beyond the horizon 

discounted cash inflows minus the issued municipal bonds principal payments to the bond holders 

(i.e. principal payment of 500 issued bonds with 5000$ face value). Table 4-5 presents the public 

and private entities cash flow position at the investment horizon.  

Table 4-5: Public and private entities cash flow at the investment horizon 

Entity Expected Cash flow position (M$) at the investment horizon 

Public 28.78 

Private 1.69 
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Results show how both public and private sectors can considerably benefit from a (PPP) financing 

model. We are also interested to define the optimal micro-grid incremental portfolio in each year. 

Figure 4-6, demonstrates the optimal micro-grid portfolio averaged over all scenarios.  

 

 

Figure 4-6 : Optimal incremental portfolio averaged over all scenarios 

The results show that investing on GF and CHP are most desirable among micro-grid electricity 

generator assets, which can be explained by low capital cost of GF and high efficiency of CHP in 

producing both heat and electricity. In addition, small investment on PV and no investment on ST 

can be justified by high capital cost of these assets. Investment in WT is not possible, according to 

spatial limitations. Boiler with very low capital cost is also in place to supply heat demands.  

4.4 Conclusion  

The model results clearly show how a Public-Private Partnership (PPP) model can be utilized to finance 

and implement a micro-grid project while both private and public entities’ profits are significant. The 

developed (DBOM-PPP) model guarantees a revenue stream for the public entity over the course of a finite 

horizon, while provides an opportunity for the private sector to apply its expertise and generate revenue for 
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its own. Development of such a (PPP) model can be a forward step towards closer collaboration of public 

and private entities for more widespread micro-grid implementation.  
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5 APPLICATIONS AND FUTURE WORK 

The results from chapter 2, 3 and 4 can be integrated into a single framework/software for portfolio 

selection, capital budgeting, operation optimization and investment strategy of traditional micro-

grid assets along with hydrogen tri-generation systems.  

In this work, we developed analytics to make optimal decisions for a portfolio of micro-grid assets 

taking into consideration the regional risk factors in chapter 2. Chapter 3 focuses on possibility of 

installation of hydrogen tri-generation systems in a sample critical infrastructure (i.e. wastewater 

treatment plant). In chapter 4, a micro-grid project financing scheme based on Public Private 

Partnership is developed. We shall notice that in designing analytical tools to support decision 

making in planning of distributed energy generation, many elements must be modeled in tandem. 

The next section, gives our vision on the future extensions of this work.  

5.1 FUTURE WORK 

5.2 Enhancement of micro-grid’s portfolio (Chapter 2)  

In the near future, micro-grid’s activities will not be limited to local power supply but also micro-

grids can provide power to the surrounding communities at the peak times or at the times of natural 

disasters. Moreover, interaction between micro-grids to maximize the economic benefits will be 

considered. Having this said, presented model in chapter 2 can be extended to include multiple 

micro-grids which interact with each other especially in the times of stressed out conditions to 

lower the overall loss of power outage. In addition, we can expand the micro-grid’s portfolio to 

consider recent technologies such as thermal storage and tri-generation. 
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5.3 Enhancement of demand side model (Chapter 2) 

In chapter 2, we assumed that different sectors of the sample community have exactly similar 

power demands in either average normal or stressed out condition. This assumption is not in line 

with available historical data which shows that the overall demand is stressed out occasions is 

lower than that in average normal conditions. We can relax this assumption and develop more 

advanced demand model which captures the dynamics of demand in stressed out occasions. 

5.4 Enhancement of Investment model (Chapter 3) 

As previously stated, a practical extension of real option model introduced in chapter 3 is to relax 

the assumption of parametrically fixed initial (i.e. investment on hydrogen tri-generation) capacity. 

Thereafter, the expansion of hydrogen tri-generation can be included as a subsequent option in the 

compound real option structure.  

5.5 Enhancement of hydrogen vehicles demand model (Chapter 3) 

In chapter 3, a fixed daily profile for hydrogen vehicles demand is assumed. A more complicated 

model could be developed to replace the current simple model. This requires a model which is able 

to capture the dynamics of hydrogen vehicles demand taking into consideration several economic, 

geographical and demographic variables. Such model will result in more realistic decision in the 

investment side. 

5.6 Enhancement of Public Private Partnership (PPP) model (Chapter 4) 

The PPP model developed in chapter 4 is a Design, Build. Operating and Maintaining (DBOM) 

contract. Possible extension of this work includes comparison of different PPP contracts for micro-
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grid projects and selecting the most economical one. The model could be also extended from the 

financing side by considering different types of bonds which yield to different revenue streams 

from the project. 
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