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ABSTRACT OF THE DISSERTATION

Similarity Detection Techniques for Mobile Platform Artifacts

by Amruta Gokhale

Dissertation Director: Dr. Vinod Ganapathy

There has been a tremendous increase in availability and use of mobile apps in recent years.

Two dominant mobile platform providers, Apple and Google, have over 1.4 million applications

(apps) each in their app markets as of May 2015. Such huge number of available apps gives

rise to problems in managing app repositories. Also, a peculiar set of challenges is faced by the

large community of mobile app developers.

This dissertation describes novel solutions to two problems in the space of mobile apps. The

first problem is that of fragmentation of mobile app development across multiple platforms. To

accelerate the native development of same app across multiple platforms, mobile app devel-

opers need tools to better navigate across different platforms. The second problem is that of

keeping app repositories free of plagiarized apps. It is in the best interest of users, developers

as well as app repository owners to get rid of plagiarized apps in the app markets, which often

carry malicious software with them, and thus pose a threat.

Every mobile app interacts with the platform, taking advantage of the functionalities ex-

posed by the platform. The behavior of an app can be described at a high level in terms of its

interaction with the underlying platform. By monitoring the app and collecting such interaction

in the form of API method invocations, we can record its high level behavior. We use this obser-

vation to build two new systems. The first system provides assistance in cross-platform mobile

app development. The second system detects plagiarized mobile apps in app repositories. The
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proposed techniques intercept the interactions between mobile apps and the underlying plat-

form and utilize the interactions to infer likely resemblances between two mobile platform

APIs or between mobile apps.
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Chapter 1

Introduction

This dissertation describes novel solutions to two similarity detection problems in the space of

mobile apps. The first problem is inferring similarities between API methods of two mobile

platforms. The second problem is finding similarities between mobile apps of a single platform

with application to detecting plagiarism in them.

1.1 Motivation

In the last few years, we have been witnessing the gradual decline of desktop computers and the

rapid rise of mobile devices for accessing a majority of digital content. According to the recent

statistics [24], mobile traffic to websites will overtake desktop traffic by March 2017. Fueling

this growth in the adoption of mobile devices is the huge number of mobile apps being made

available on mobile platforms. The two most popular mobile platforms, iOS and Android, have

more than one million apps each in their app markets.

If you compare the landscape of development of mobile apps with that of desktop software,

you will find many differences. The differences are visible in categories such as the affiliation

and skill set of developers, the size of developers’ community, the kind of repositories to up-

load software, and the functionalities provided by the platform. To give an example, Apple

announced in June 2015 [14] that the iOS app store had 1.5 million apps available, with 100

billion number of downloads of apps from the app store and that $30 billion has been paid out

to developers to date. As per the data released by app figures in 2014 [4], Google Play has over

350,000 registered developers where as iOS App store attracted over 250,000 developers. This

is at an unprecedented scale, in terms of the size of developers’ community, the number of apps

available at the app market and the total number of downloads of the software. Let us look at

these differences in greater details.
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Until a few years ago, the task of developing applications was largely confined to teams of

software engineers, either in the open-source community or at IT companies. Most of these

engineers were professional programmers employed by IT firms, with an exception of small

number of developers of open source software. Almost all of the commercial software devel-

opment was done in-house. For example, the software applications for Microsoft’s Windows

operating system were written by employees and contractors employed by Microsoft and could

never be done by third-party developers.

In contrast, the development of mobile apps is usually driven by small teams consisting

of one or two developers, as noted in [82]. Many of these developers are either individual

contributors or employees of small IT firms. These developers write apps for a platform which

is owned and released by a company different than the one they are affiliated with. For example,

it is not uncommon for individual contributors or programmers employed by small IT firms to

write apps for Microsoft’s Windows Phone platform, even though their parent IT firm does

not own the platform. Such teams (or individuals) may lack the expertise and experience of a

large team of in-house developers. Mobile app developers therefore tend to rely heavily on the

functionality provided by the underlying mobile platform [82]. It is imperative for the mobile

platforms to come equipped with a rich set of APIs so as to make the development easier for

the third-party app developers.

The concept of app stores was non-existent until the arrival of mobile devices. The com-

pany that would make commercial software would distribute it via it’s own distribution channel.

Since the software was being developed in-house, and was usually closed to third-party devel-

opers, the company would have complete control over the distribution channel. As a result,

managing the distribution channel or the software repository owned by the company was rel-

atively easy. For example, although the issue of plagiarism of desktop software was rampant,

such plagiarized software could never gain an entry on the software repository owned by the

maker of original software. The in-house desktop software development also limited the scale

at which software applications were uploaded and distributed. This made the management of

software repositories easier. In case of mobile platforms, the humongous number of apps being

deployed to the app stores gave birth to various issues associated with the management of large

software repositories. Among these issues, we will look at detecting plagiarized mobile apps.
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This dissertation is divided into two parts. In the first part, we are focusing our attention

on mobile app development and the challenges faced by the developers of mobile apps. In the

second part, we will look at how to detect plagiarized mobile apps.

One challenge in mobile app development is the fragmentation of app development process

across multiple mobile platforms. Development on different mobile platforms differs on many

fronts such as use of different programming languages, support for specific development envi-

ronments and different Software Development Kits (SDKs). Fragmentation also exists within

the same platform in the form of different screen sizes, various screen resolutions and differ-

ent flavors or versions of the same operating system. This requires maintaining different code

bases, thus leading to increased maintenance overhead. Mobile app developers also need to

have better support for monitoring, analysis and testing of mobile apps. Joorabchi et al. con-

ducted an exploratory study [51] to understand the current practices and difficulties in native

mobile app development. Among all the different challenges expressed by developers, 76% of

survey participants expressed concerns over app development for multiple mobile platforms.

As per the survey, “One type of challenge mentioned by many developers is learning more lan-

guages and APIs for the various platforms”. We have attempted to address this challenge by

developing a tool that would help developers to familiarize themselves with the API of a newer

platform.

Every mobile platform is shipped with APIs which the programmers can use to perform

common tasks in the implementation of the business logic of the app. For example, in Android,

drawRect() can be used to draw a rectangle on the screen. setColor() can be invoked

to set the color of the palette. These methods provide abstractions for common tasks, thus

freeing the programmers from writing low level code. Programmers therefore find it easy and

convenient to use the platform libraries to build apps on top of the respective platform. Hence,

it is reasonable to expect that almost all mobile apps will interact with the underlying platform

during their execution in the form of invocations to the library methods.

The interaction of the app with the underlying platform serves as a useful resource. We

can observe this interaction and use it as an abstract representation for the behavior of the app.

We use this interaction as an asset to solve two problems in the space of mobile apps. The

first problem is how to automatically infer mappings between API methods of two platforms.
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The second problem is how to detect plagiarized mobile apps that have been produced by

fraudulently copying other apps. Next, we describe the two problems in more detail and the

different techniques that we have employed to generate and use the interaction of the app with

the platform.

1.2 Detecting Similarities or Mappings between Mobile Platform APIs

Today’s mobile market is dominated by three major platforms, namely iOS, Android and Win-

dows Phone. Developers often wish to make their apps available across as many of these

platforms as possible so as to increase their user base. These developers face the challenge of

developing apps separately for each new platform. Small teams of developers cannot afford to

allocate separate resources to develop apps for each individual platform. Thus, we need tools

to help such developers who are looking to develop apps across multiple platforms.

One solution for app development across multiple platforms is to develop cross-platform

mobile apps. There are a number of ways to achieve the goal of developing cross-platform

mobile apps. One approach is to develop apps using portable frameworks, such as HTML5

or JavaScript, which are supported by most mobile platforms. These apps can be augmented

with hybrid frameworks (e.g., PhoneGap [19], Sencha [21], and MobileFirst [16]) to allow

access to local resources on the mobile devices. While the resulting apps are portable, their

reliance on the underlying machinery to parse and render HTML5 and JavaScript, impacts

their runtime performance. Thus, app developers eager to ensure low performance overheads

often prefer native app development, in which apps are developed using each platforms API. In

this dissertation, we are focusing our attention only on solutions to develop native apps.

Porting apps from one platform to another is one method that makes apps available across

platforms, yet allows to develop apps natively on each platform. However, similar to the task of

porting desktop software to different desktop platforms, porting a mobile app across different

mobile platforms is challenging. To illustrate, let us assume that we want to port an iPhone app

to Android platform. Various aspects of the app that need to be changed are: (1) Programming

language (Objective-C vs. Java) (2) Structure of source code (Model-View-Controller design

in iOS vs four components in Android consisting of Activities, Services, Content Providers and
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Broadcast Receivers) (3) Platform-specific APIs (iOS API vs Android API), and (4) Platform-

specific customization. Among these, let us focus our attention on platform-specific APIs. We

must modify the app to use Android API (target API) in place of iOS API (source API). To

accomplish this task, we need to identify Android API methods that perform the same function

as iOS API methods.

However, identifying functionally equivalent methods between two APIs is difficult. It

can be done manually by consulting the documentations of both the APIs. But the manual

process is time consuming and error-prone. One solution to this problem is to automatically

build a database of mappings between the source and target APIs. The database contains

mappings consisting of each source API method paired with a target API method implementing

the same functionality. It is possible to have each source API method mapped to multiple

target API methods, representing various different ways in which the same functionality can be

implemented on the target platform. Developers who wish to port their iPhone apps to Android

would lookup this database to find equivalent Android methods that can replace existing iOS

methods in the source code of the app.

The goal thus is to automate the process of inference of mappings between APIs of two

mobile platforms. What is the right form of input that would enable us to find API mappings?

Previous work [95] that mined API mappings between APIs of two languages used aligned

source code of same projects that were available in both the languages as input. They assumed

the existence of same projects being available in both the languages, where one of the projects

was most likely produced by translation from the other. We chose to use actual API usages in

the app as input. These API usages are nothing but invocations to API methods made by the

app to achieve the desired functionalities. We describe two approaches to solve the problem of

automatically inferring API mappings. At a high level, both the techniques use the following

approach:

1. Generate API usages for each set of apps on the two platforms

2. Use an inference technique to establish likely mappings between individual API elements

in the API usages

The two approaches differ in the methods they follow to generate the API usages, including
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the kind of apps they use as input and also in the techniques employed to infer the mappings.

The first approach involves dynamically executing the apps and relies on availability of apps

on two platforms that offer the same functionality to the end user. The second approach works

statically and does not have this requirement.

1.2.1 Dynamic Approach to Infer Mappings

We develop Rosetta (Chapter 2), a novel approach to infer mappings between APIs of a source

and a target platform. It is built on the assumption that there exist pairs of independently

developed applications on both the platforms which offer similar functionality at a high level.

For example, two TicTacToe games, both of which may have been developed independently on

two mobile platforms, would constitute one such pair. The key observation we make is that the

developers of these applications exercised knowledge of the corresponding APIs while building

these applications. We develop a technique to systematically harvest this knowledge and infer

likely mappings between the APIs of the source and target platform.

We take a pair of apps offering same functionality on both platforms, execute them by

providing the same input, and collect the execution traces. The traces contain API method

invocations made by the apps while interacting with the respective platforms. The idea is to

collect multiple such trace pairs from sets of apps on the two platforms, build a graphical model

of possible API mappings and their likelihoods, and use a probabilistic inference algorithm to

find mappings that are most likely to be true.

1.2.2 Static Approach to Infer Mappings

We propose another approach DDR (Section §2.6), that infers mappings between APIs of a

source and a target platform by static analysis of apps. This approach is inspired by a technique

in natural language processing (NLP) domain which extracts a translation dictionary from non-

parallel corpora of two natural languages. The NLP technique infers mappings between words

of two languages by taking sentences of two languages as input. We apply the technique to

the domain of mobile apps, treating software code in the same light as NLP text. We first

create program paths containing API method usages, constructed by static analysis of the apps.

These program paths become sentences of some hypothetical language. The words in this
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language are individual API methods. A collection of program paths becomes the text corpus

of the language. We feed two such collections to the NLP tool to infer mappings between API

methods.

1.3 Detecting Similarities between Mobile Apps

Many industries have been plagued by plagiarized work, including the world of books, art and

music. In software industry, code plagiarism has been a known problem and several solutions

have been proposed ([27, 31, 52, 56]) to detect it. Code plagiarism is the act of copying software

code written by others without obtaining their permission. Mobile software industry is no

exception to the existence of plagiarized artifacts. With an exponential growth in the number of

mobile apps being made available in popular app markets, plagiarized mobile apps are plentiful

in the app markets as shown by previous studies ([99, 98]). A plagiarized mobile app is an

app that was copied from another app without obtaining the necessary permission from the

developer of the original app.

Plagiarized apps present in the app markets are a nuisance to users and may often lead to

unwanted consequences such as data breach or loss of private information. Since plagiarized

apps look and feel exactly the same as original apps, and could be offered for free as opposed to

the paid original apps, users are lured into downloading them. From the perspective of devel-

opers of original apps, plagiarized apps may result in loss of potential user base and possibly

revenue loss [43]. Moreover, plagiarized apps have recently been used as a carrier for infecting

the mobile devices with malware [99]. Developers of such malicious apps first obtain a copy

of the original app, then modify the reverse engineered app to inject the malware, and then

upload this repackaged app as a new app on the app market. Unsuspecting users download the

plagiarized app and become victims of this attack.

It is therefore important to detect plagiarized apps in the app markets. Identifying such apps

requires us to create a unique representation of apps which is short enough for comparison yet

carry sufficient description of high level behavior of the app. Following two conditions are

desirable for a unique representation of an app that can be used to detect plagiarism:



8

• If two apps are not plagiarized, their unique representations should be different. Like-

wise, if two apps are plagiarized, their representations should be similar.

• It should be feasible to measure similarity between the chosen representations of two

apps by some quantitative measure.

One way to detect plagiarized apps is to deploy anti-malware tools that would detect the

possibly malicious nature of such apps. Mobile anti-malware tools work in the same way as

that for desktops. The most common technique used by these tools is signature matching in

which signature of the given app is compared against those of known malware in the signature

database. However, such signature-based malware detection can be easily defeated by using

simple transformations [33]. Such transformations include variable and function renaming,

and code reordering, which alter the syntactic structure of the code, so that it no longer matches

the known signatures.

In response, the community has proposed many techniques that detect plagiarized mobile

apps even in the presence of transformations ([47], [98] and [97]). Most of these techniques

statically analyze the app to compute syntactic features such as unique code hash [98] or the

set of permissions requested by the app [97]. We show that such syntactic similarity detection

techniques can be defeated by building Androcrypt (Section §3.2), an obfuscator that uses

simple code encryption to produce obfuscated apps. Inspired by prior work [68] to create

unique fingerprints of desktop programs, we develop a robust, dynamic approach to detect

plagiarized mobile apps (Section §3.3). The key idea is that an app can affect the state of the

mobile device only by interacting with the platform. Thus, similar apps must interact with the

platform in similar ways. We capture this interaction and build what is called as API birthmark

of the app. We use this representation for similarity detection.

1.4 Summary of Contributions

The thesis this dissertation supports is:
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The interactions of mobile apps with the underlying platform can be leveraged to

infer likely resemblances among platform APIs or apps.

This dissertation supports the above thesis statement and makes the following contributions:

• We present two approaches to automatically infer mappings between API methods of two

mobile platforms. Rosetta (Chapter 2) infers likely mappings between APIs of two mo-

bile platforms by using a few independently developed applications on the two platforms

that implement same functionality. As output, it produces a ranked list of mappings in-

ferred for each source API method seen in the input trace. DDR - Data Driven Rosetta

- (Section §2.6) is a tool to infer mappings between two APIs by using a technique in

NLP domain that has been successfully applied to infer mappings between words of two

natural languages. DDR uses this technique in the domain of mobile apps to infer API

mappings.

• We demonstrate our approaches to infer API mappings automatically by building two

prototype tools. We design and implement Rosetta, a tool that infers mappings between

JavaME and Android graphics APIs. We implement DDR, a tool to infer mappings

between iOS and Android API.

• We show that static similarity detection techniques which use syntactic features of the

app as the basis for comparison can be defeated by use of simple code encryption. We

show the failure of these tools to detect similarity between an original app and the same

app transformed by Androcrypt, a proof-of-concept obfuscator that uses code encryption.

• We propose a dynamic technique to detect similarity based on constructing API birth-

marks which are nothing but unique fingerprints of the app constructed by intercepting

the runtime interaction between the app and its underlying platform.

1.5 Statement of Contributions

The following is a list of people who co-authored papers from which material was used in this

dissertation. My dissertation advisor Professor Vinod Ganapathy was involved in the design,
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implementation and evaluation of all three projects. Yogesh Padmanaban was involved in the

implementation of Rosetta. Specifically, he collected traces of a subset of Android apps in our

dataset. Daeyoung Kim from Rutgers and Abhinav Srivastav from AT&T Labs were my col-

laborators in the API birthmark project. Daeyoung Kim implemented Androcrypt obfuscator,

collected traces of Android apps using the monkey tool and contributed in the experimentation

and evaluation. Daeyoung Kim was also involved in the DDR project. He implemented the

trace collection module for iOS apps.
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Chapter 2

Detecting Mappings between Mobile Platform APIs

We present an approach to detect similarities between APIs of two mobile platforms in this

chapter. The similarities are nothing but the mappings between methods or method sequences

of two mobile platform APIs that result in similar output when provided with the same input.

The idea is to build a database of inferred API mappings. This database will serve as a useful

resource in cross-platform app development to mobile app developers who are proficient on one

platform but ignorant on the other. Such developers can lookup this database of mappings to

retrieve the API methods of the unknown platform. We present a prototype tool called Rosetta

that infers mappings between Java Platform, Micro Edition graphics API and Android graphics

API.

2.1 Motivation

Software developers often wish to make their applications available on a wide variety of com-

puting platforms. The developer of a gaming app, for instance, may wish to make his app

available on smart phones and tablets manufactured by various vendors, on desktops, and via

the cloud. The key hurdle that he faces in doing so is to port his app to these software and

hardware platforms.

Why is porting software a difficult problem? Consider an example: suppose that we wish

to port a Java Platform Micro Edition (Java ME)-based game to an Android-powered device.

Among other tasks, we must modify the game to use Android’s API [45] (the target platform)

instead of Java ME’s API [72] (the source platform). Unfortunately, the process of identifying

the API methods in the target platform that implement the same functionality corresponding to

that of a source platform API method is cumbersome. We must manually examine the SDKs

of the source and target APIs to determine the right method (or sequence of methods) to use.
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To add complexity, there could be multiple ways in which a source API method can be imple-

mented using the target’s API methods. For example, the fillRect() method in Java ME’s

graphics API, which fills a specified rectangle with color, can be implemented using either one

of these two sequences of methods in Android’s graphics API: setStyle();drawRect() or

as moveTo();lineTo(); lineTo();lineTo();lineTo();drawPath() (we have omitted

class names and the parameters to these method calls).

One way to address this problem is to populate a database of mappings between the APIs of

the source and target platforms. In this database, each source API method (or method sequence)

is mapped to a target API method (or method sequence) that implements its functionality. The

database could contain multiple mappings (possibly ranked) for each source API method in

cases where its functionality can be implemented in different ways by the target API. The map-

ping database significantly eases our task. We need only consider the mappings in this database

to find suitable target API methods to replace a source API method, instead of painstakingly

poring over the SDKs and their documentation. Such mapping databases do exist, but only

for a few source/target API pairs (e.g., Android, iOS and Symbian Qt to Windows 7 [87] and

iOS to Qt [76]), and they are populated by domain experts well-versed in the source and target

APIs.

Our contribution. We present an approach to automate the creation of mapping databases for

any given source/target API pair. To bootstrap our approach, we rely on the availability of a

few similar application pairs on the source and target platform. A source platform applica-

tion S and a target platform application T , possibly developed independently by different sets

of programmers, constitute a similar application pair if they implement the same high-level

functionality. For example, both S and T could implement the TicTacToe game on Java ME

and Android, respectively. This situation is not uncommon in modern app markets, where

independently-developed versions of popular apps are available in markets hosted by differ-

ent vendors. Our approach builds upon the observation that in implementing S and T , their

developers exercised knowledge about the APIs of the corresponding platforms. We provide a

systematic way to harvest this knowledge into a mapping database, which can then benefit other

developers porting applications from the source to the target platform. Our approach works by
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recording traces of S and T executing similar tasks, structurally analyzing these traces, and ex-

tracting likely mappings using probabilistic inference. Each mapping output by our approach

is associated with a probability, which indicates the likelihood of the mapping being true. The

intuition is that the more evidence we see of a mapping, e.g., the same pair of API methods

being used across many traces to implement the same functionality, the higher the likelihood of

the mapping. The output of our approach is a ranked list of mappings inferred for each source

API method.

We demonstrate our approach by building a prototype tool called Rosetta (in reference to

the legendary Rosetta Stone) to infer likely mappings between the Java ME and Android graph-

ics APIs. We chose Java ME and Android because both platforms use the same language for

application development. However, this requirement is not germane to our approach, and it may

be possible to adapt Rosetta to work with source and target APIs that use different languages

for application development. We evaluated Rosetta with a set of twenty-one independently-

developed Java ME/Android application pairs. Rosetta was able to find at least one valid map-

ping within the top ten ranked results for 71% of the Java ME API methods observed in our

traces. Further, for 42% of Java ME API methods, the top-ranked result was a valid mapping.

2.2 Approach Overview

We present the workflow of our approach (Figure 2.1), tailored to Java ME and Android as the

source and target platforms, respectively. We only provide informal intuitions here, and defer

the details to §2.4. The workflow has four steps.

STEP 1: Collection of application pairs. The first step is to gather a database of applications

in both the source and target platform. For each source application in the database, we require

a target application that implements the same high-level functionality. For example, if we have

a TicTacToe game for Java ME, we should locate a TicTacToe game for Android that is as

functionally and visually (GUI-wise) similar to the Java ME game as possible.

Given the popularity of modern mobile platforms, and the desire of end-users to use sim-

ilar applications across platforms, such application pairs are relatively easy to come by. Of

course, given that the games were independently developed for these two platforms, there may
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Figure 2.1: Workflow of our approach to inferring likely API mappings.

be minor differences in functionality. For example, the Android game may offer menu options

that are different from those of the Java ME game. However, as we discuss in Step 2, we can

restrict ourselves to inducing functionally similar execution paths in these applications. Any

functional differences that still make their way into these execution paths will manifest as inac-

curacies during probabilistic inference in Step 3. However, the effect of these inaccuracies can

be mitigated by combining inferences across multiple applications pairs and their executions in

Step 4.

STEP 2: Execution and collection of trace pairs. In this step, we take each application pair,

and execute them in similar ways, i.e., we provide inputs to exercise similar functionality in

these applications. As we do so, we also log a trace of API calls invoked by the applications.

This gives a trace pair, consisting of one trace each for the source and target applications.

Figure 2.2 presents a snippet from a trace pair that we gathered for TicTacToe games on the

Java ME and Android platforms. They were collected by starting the game, waiting for the

screen to display a grid of squares, and exiting.

Since the traces in each pair were obtained by exercising similar functionality in the source

and target applications, these traces must contain some API calls that can be mapped to each

other. This is the key intuition underlying our approach. Of course, an application can be

invoked in many ways, and in this step, we collect several trace pairs for each application pair.

The output of this step is a database of functionally equivalent trace pairs (TraceS, TraceT )

across all of the application pairs collected in Step 1.

STEP 3: Trace analysis and inference. In this step we analyze each trace pair to infer likely

API mappings implied by the pair. Our inference algorithm relies on various attributes that
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Java ME Trace Android Trace
Graphics.setColor() Paint.setStyle()

Graphics.fillRect() Color.parseColor()

Graphics.setColor() Paint.setStyle()

Graphics.fillRect() Color.parseColor()

Graphics.fillRect() Canvas.drawLine()

Graphics.fillRect() Canvas.drawLine()

Canvas.drawLine()

Canvas.drawLine()

Canvas.drawLine()

Note: Each trace snippet shows the method invoked, and the class in which
the method is implemented. Java ME and Android classes are prefixed with
javax/microedition/lcdui and android/graphics, respectively. For brevity,
we only refer to method names and not their classes.

Figure 2.2: Snippets from traces of similar executions of Java ME and Android-based TicTac-
Toe games.

.

are determined by the structure of the traces. We cast the attributes as inputs to a proba-

bilistic inference algorithm (§2.4). The output of this step is a probability for each pair of

source and target API calls A()/a() that indicates the likelihood of A() mapping to a() (de-

noted here as A()→a()). Our algorithm can also infer mappings between method sequences

(e.g., A()→a();b() and A();B()→a()).

We now discuss the attributes used by our approach using our running example. Our aim

is to find likely mappings for the Java ME calls setColor() and fillRect(). For simplicity,

we restrict our discussion to the snippets of the traces shown in Figure 2.2. In reality, our

analysis considers the entire trace.

(1) Call frequency. If A() in the source API maps to a() in the target API, then the fre-

quency with which these method calls occur in functionally-similar trace pairs must also

match. The trace pairs may differ in the absolute number of method calls that they contain,

so we focus on the relative count of each method call, which is the raw count of the num-

ber of times that a method is called, normalized by trace length. The table below shows the

raw and relative counts of various method calls based upon the snippets in Figure 2.2. Us-

ing this attribute, the following API mappings appear likely, setColor()→parseColor(),

setColor()→setStyle(), fillRect()→drawLine(), while the others appear unlikely.

In fact, our approach works on method sequences as well using the same reasoning as above,
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and infers that setColor()→setStyle(); parseColor() is a mapping.

API Call Raw Count Relative Count

setColor() 2 0.33

fillRect() 4 0.67

setStyle() 2 0.22

parseColor() 2 0.22

drawLine() 5 0.56

(2) Call position. The location of method calls in a trace pair provides further information

to determine likely mappings. Since the traces exercise the same application functionality,

method calls that map to each other should appear at “similar” positions in the trace pair. The

table below shows the position of each of the method calls in our running example, roughly

categorized as belonging to the first half or the second half of the corresponding traces. We can

therefore reinforce the beliefs about API mappings inferred using call frequencies.

API Call First Half Second Half

setColor() X ×

fillRect() × X

setStyle() X ×

parseColor() X ×

drawLine() × X

(3) Call context. The context in which a method call A() appears is defined to be the

set of API methods that appears in its vicinity in the execution trace (e.g., within a

pre-set threshold distance, preceding or following A() in the trace). For example, both

setColor() calls appear in the preceding context of fillRect() calls in the Java ME

trace (using a threshold distance of 2 calls). Likewise, parseColor() and setStyle() ap-

pear in the preceding context of drawLine() in the Android trace. In fact, the sequence

setStyle(); parseColor() appears in the preceding context of the first drawLine().

From this, we can infer that if fillRect()→drawLine() holds, then the mapping

setColor()→setStyle();parseColor() is likely to hold.

(4) Method names. While trace structure, as captured by the attributes above, contributes to

inference, method (and class) names also contain useful information about likely mappings, and
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we leverage this attribute as well. We use Levenshtein edit distance to compute the similarity

of method names. Using this attribute, for instance, we can lend credence to the belief that

setColor() maps to parseColor().

Our approach combines these attributes to output likely mappings, each associated with a

probability. We can rank the results using the corresponding probabilities, and use thresholds

to limit the number of results that are output.

STEP 4: Combining inferences across traces. The inference algorithm of Step 3 works by

analyzing a single trace pair. In the final step, we combine inferences across multiple traces.

During combination, we weight inferences obtained from the analysis of individual trace pairs

using the confidence of each inference. Intuitively, more data we have about an inferred map-

ping from a trace pair, the stronger our confidence in that inference. Thus, our confidence in

mapping A()→a() obtained from a trace pair where these calls occur several times is stronger

than the same mapping obtained from a trace pair where these calls occur infrequently. We use

this heuristic to combine inferences across trace pairs.

2.3 Framework to Represent and Infer Mappings

We now describe the framework used to represent and infer likely mappings between APIs. We

restrict ourselves to identifying likely mappings between methods of the source and target APIs.

We do not currently consider the problem of determining mappings between arguments to these

methods; that is a related problem that can be addressed using parameter recommendation

systems (e.g., [93]). Let S = {A, B, C, . . .} and T = {a, b, c, . . .} denote the sets of methods in the

source and target APIs, respectively. Our goal is to determine which methods in T implement

the same functionality on the target platform as each method in S on the source platform.

To denote mappings, our framework considers a set of Boolean variables Xst, where s ∈ S

and t ∈ T . The Boolean variable XAa is set to true if the method call A() maps to the method

call a(), and false otherwise.

This framework extends naturally to the case where a method (or sequence of methods) in

S can be implemented with a method sequence in T . For example, suppose that the method A()

is implemented using the sequence a();b() in the target. We can denote this by assigning true
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to the Boolean variable XA
ab

. Likewise, we can also denote cases where the functionality of a

sequence of methods A();B() in the source platform is implemented using a method a() on the

target platform by setting the Boolean variable XABa to true. Although our framework theoreti-

cally supports inference of mappings between arbitrary length method sequences (e.g., XABC...
abc...

=

true), for performance reasons we configured Rosetta to only infer mappings between method

sequences of length two.

We approach the problem of inferring API mappings by studying the structure of execution

traces of similar applications on the source and target platforms. We use the trace attributes in-

formally discussed in §2.2 to deduce API mappings. Our approach is inherently probabilistic.

It cannot conclude whether a call A() definitively maps to a call a(); rather it determines the

likelihood of the mapping. Thus, it infers Pr[XAa = true] for each Boolean variable XAa. As it

observes more evidence of the mapping XAa being true, it assigns a higher value to this prob-

ability. Therefore, our framework treats each Boolean variable XAa as a random variable, and

our probabilistic inference algorithm determines the probability distributions of these random

variables.

Each application trace has several method calls, and the inference algorithm must leverage

the structure of these traces to determine likely mappings. The inference algorithm draws

conclusions not just about individual random variables, but also about how they are related.

For example, consider a trace snippet TraceS = (. . .; A();A();B();B(); . . .) of an application

from the source API, and a snippet TraceT = (. . .; a();a();b();b(); . . .) from the corresponding

execution of a similar application on the target. Suppose also that these are the only occurrences

of A(), B(), a() and b() in TraceS and TraceT , respectively, and that these execution traces have

approximately the same number of method calls in total. By just observing these snippets, and

relying on the frequency of method calls, each of the following cases is a possibility: XAa =

true, XA
b

= true, XBa = true, XB
b

= true. However, if XA
b

= true, then because of the relative

placement of method calls in these traces (i.e., call context), it is unlikely that XBa = true. Now

suppose that by observing more execution traces, we are able to obtain more evidence that XA
b

= true, then we can leverage the structure of this pair of traces to deduce that XBa is unlikely to

be a mapping. Intuitively, the structure of the trace allows us to propagate the belief that if XA
b

is true, then XBa is false. Our probabilistic inference algorithm uses factor graphs [57, 89] for
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Figure 2.3: Factor graph of J

belief propagation.

Factor Graphs. Let X = {x1, x2, . . ., xn} be a set of Boolean random variables and J(x1, x2,

. . ., xn) be a joint probability distribution over these random variables. J assigns a probability

to each assignment of truth values to the random variables in X. Given such a joint probability

distribution, it is natural to ask what the values of the marginal probabilities Mk(xk) of each

random variable xk in X are. Marginal probabilities are defined as

Mk(xk) =
∑

i,k,i∈[1..n],xi∈{true,false}

J(x1, x2, . . . , xn)

That is, they calculate the probability distribution of xk alone by summing up J(. . .) over all

possible assignments to the other random variables. Mk(xk) allows us to compute Pr[xk =

true]. Factor graphs allow efficient computation of marginal probabilities from joint prob-

ability distributions when the joint distribution can be expressed as a product of factors,

i.e., J(x1, x2, . . . , xn) =
∏

i fi(Xi). Each fi is a factor, and is a function of some subset of

variables Xi ⊆ X.

For example, consider a probability distribution J(x, y, z). Let this distribution depend on

three factors f(x, y), g(y, z) and h(z), i.e., J(x, y, z) = f(x, y).g(y, z).h(z), defined as follows:1

f(x, y) = 0.9 if x ∨ y = false, 0.1 otherwise.

g(y, z) = 0.9 if y ∨ z = true, 0.1 otherwise.

h(z) = 0.9 if z = true, 0.1 otherwise.

A factor graph denotes such joint probabilities pictorially as a bipartite graph with two kinds

of nodes, function nodes and variable nodes. Each function node corresponds to a factor, while

1Because J is a probability distribution, the product J(x, y, z) is in fact Z. f (x, y).g(y, z).h(z), where Z is a normalization
constant introduced to ensure that the probabilities sum up to 1. In the rest of this paper, the normalization constant is implied,
and will not be shown explicitly.
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each variable node corresponds to a random variable. A function node has outgoing edges to

each of the variable nodes over which it operates. Figure 2.3 depicts the factor graph ofJ . The

AI community has devised efficient solvers [57, 89] that operate over such graphical models to

determine marginal probabilities of individual random variables. We do not discuss the details

of these solvers, since we just use them in a black box fashion.

Factor graphs cleanly represent how the random variables are related to each other, and can

influence the overall probability distribution. One of the key characteristics of factor graphs,

which led us to use them in our work, is that they were designed for belief propagation, i.e., in

transmitting beliefs about the probability distribution of one random variable to determine the

distribution of another.

To illustrate this, consider the probability distribution J(x, y, z), discussed above. J can

be interpreted as denoting the probabilities of the outcomes of an underlying Boolean formula

for various assignments to x, y, and z. Under this interpretation, we could say that the Boolean

formula evaluates to true for those assignments to x, y and z for which the value of J(x, y, z)

is above a certain threshold, e.g., if the threshold is 0.6, and J(true, true, false) is 0.7, we

say that the formula is true under this assignment. Now suppose that y is likely to be false,

i.e., Pr[y = false] is above a threshold. We are asked to find under what conditions on x and

z the Boolean formula still evaluates to true, i.e., J(x, y, z) is above the threshold. From the

definitions of the factors f, g, and h, we know that J obtains values that are likely to exceed

the threshold if x ∨ y = false, y ∨ z = true and z is true. Given that y is likely to be false false,

these factors lead us to deduce that x is also likely to be false (giving f(x, y) a high value) and z

is likely to be true (giving g(y, z) and h(z) high values), thereby pushing the value of J above

the threshold. Intuitively, the factor graph allows us to propagate the belief about the value of y

into beliefs about the value of x and z. §2.4 shows how we cast the problem of inferring likely

API mappings using factor graphs, thereby allowing us to transmit beliefs about one mapping

into beliefs about others.
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2.4 Design and Implementation of Rosetta

We now describe in detail the Rosetta prototype, which currently infers mappings between the

Java ME and Android graphics APIs. Specifically, we focus on the machinery that enables

Steps 2-4 discussed in §2.2.

2.4.1 Infrastructure for Trace Collection

To record execution traces, we instrumented Java ME programs via bytecode rewriting. We

used the ASM toolkit [34] to insert logging functionality that records the name of each

method call (and class name), prior to invocation. During runtime, this results in a trace

of all methods invoked. We then filter out just those methods that derive from the class

javax/microedition/lcdui— the Java ME graphics API. In all, this API has 281 distinct

methods. Rosetta infers mappings for those methods that appear in application traces.

We did not employ bytecode rewriting for Android applications because of the lack of

publicly-available tools to rewrite Android’s dex bytecode. Instead, we leveraged the Dalvik

virtual machine (v2.1r1) to record the names of all methods invoked by an application. We

record all method and class names, and then filter methods in the following classes (prefix:

android/) graphics, text, view, widget, content/DialogInterface, app/Dialog,

app/AlertDialog, app/ActionBar. This API has 3,837 distinct methods. The difference

in the sizes of these APIs illustrates in part the difficulties that a programmer manually porting

an application would face.

With this infrastructure, a Rosetta user can collect traces for a pair of similar applications

on both platforms. As discussed in §2.2, the user must exercise similar functionality in both ap-

plications, thereby collecting a pair of traces that record this functionality. This process can be

repeated multiple times for the same application, exercising different functionalities, thereby

resulting in a database of trace pairs. Although it is hard to provide concrete guidelines to

“exercise similar functionality,” we found that it was relatively easy to do so for gaming appli-

cations. Given similar games, they will likely have the same logic and similar GUIs on both

applications. We simply performed the same moves on games in both platforms, avoiding sit-

uations that involve randomness where possible (e.g., choosing the two-user mode to avoid the
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computer picking moves at random). However, randomness is not always avoidable, e.g., some

games only support user versus computer modes, and this randomness may manifest in the cor-

responding portions of the traces as well. Despite this, Rosetta infers high-quality mappings

because its inference algorithm prioritizes method mappings that persist both across the entirety

of each trace pair, and across multiple trace pairs.

2.4.2 Trace Analysis and Inference

In this step, Rosetta analyzes each trace pair collected in the previous step and draws inferences

about likely API mappings implied by that trace pair. Recall from §2.3 that we use a Boolean

random variable XAa to denote a mapping between A() and a() (likewise XA
ab

etc., for method

sequences). In this step, Rosetta uses factor graphs to compute Pr[XM
m = true], for each such

random variable, where M and m denote individual methods or method sequences from the

source and target APIs, respectively. The value of this probability determines the likelihood

that the corresponding mapping holds.

The intuition behind Rosetta’s use of factor graphs is as follows. The set of random vari-

ables XM
m implicitly defines a joint probability distribution J over these random variables:

J(XAa, XA
b
, . . ., XBa, XB

b
, . . . XA

ab
, XB
ab

, . . .). As in §2.3, we can assign J a Boolean interpretation.

That is, we treat J as a probability distribution that estimates the likelihood of an underlying

Boolean formula being true, under various truth assignments to the random variables XAa, XA
b
,

etc. From this joint distribution, our goal is to find the probability distributions of the individual

random variables. Under this Boolean interpretation, if Pr[XAa = true] acquires a high value, it

means that the Boolean formula underlyingJ is likely to be true if XAa is true, thereby leading

us to conclude that A() is likely to map to a(). Likewise, if Pr[XAa = true] acquires a low value,

A() is unlikely to map to a().

The main challenge in directly realizing this intuition within an inference tool is that the

Boolean formula underlying J is unknown (for if it were known, then any satisfying assign-

ment to it would directly yield an API mapping!). As a result, the joint probability distribution

J cannot be explicitly computed. However, the attributes described in §2.2 determine the

conditions that are likely to influence J . Thus, we formalize each of these attributes as fac-

tors, and estimate the joint probability distribution as the product of these factors. Of course,
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Input : A trace pair (TraceS, TraceT ).
Output : Pr[XM

m = true] for each XM
m , where M and m are methods and sequences in

TraceS, TraceT , respectively.
MethSeqS = set of methods and method sequences that appear in TraceS (sequences up
to length 2 in our prototype)
MethSeqT = set of methods and method sequences that appear in TraceT
foreach (M ∈ MethSeqS and m in MethSeqT ) do

ffreq(XM
m ) = simCount(M, m, TraceS, TraceT )

fpos(XM
m ) = simPos(M, m, TraceS, TraceT )

fname(XM
m ) = simName(M, m)

foreach (M, N ∈ MethSeqS and m, n in MethSeqT ) do
fctxt(X

M
m , XN

n ) = simCtxt(M, N, m, n, TraceS, TraceT )
fctxt(X

M
n , XN

m) = simCtxt(M, N, n, m, TraceS, TraceT )
Let the set F denote the factors gathered above.
Let J(XAa, XA

b
, . . ., XBa, XB

b
, . . . XA

ab
, XB
ab

, . . .) =
∏

f∈F f .
Use factor graph-based inference to obtain marginal probabilities for each XM

m from J .
Algorithm 1: Inferring likely mappings.

these factors are not comprehensive, i.e., there may be other factors that influence the value of

J . Rosetta can naturally accommodate any new factors; they are simply treated as additional

factors in the product, and passed to the factor graph solver.

Rosetta’s trace analysis computes four families of factors, one each for the four attributes.

It combines them and uses them for probabilistic inference of likely mappings as shown in

Algorithm 1.

(1) Call frequency (ffreq). The intuition underlying this factor is that if M maps to m (where

M and m are individual methods or method sequences), then the frequency with which they

appear in functionally similar traces must match. Thus, we compute the relative count of M

and m as the number of times that they appear, normalized by the corresponding trace length.

We then use the ratio of relative counts of M and m to compute ffreq. This is described in the

subroutine simCount, shown in Algorithm 2.

(2) Call position (fpos). We observed in our experiments that certain API methods and se-

quences appear only at specific positions in the trace. For example, API methods that initialize

the screen or game state appear only at the beginning of the trace. To identify such methods and

sequences, we use a similarity metric that determines the relative position of the appearance

of the method call or call sequence in the trace, i.e., its offset from the beginning of the trace,

normalized by the trace length. Of course, there may be multiple appearances of the method
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simCount(M, m, TraceS, TraceT )
begin

relCount(M) =
#Occurences of M in TraceS

Length(TraceS)

relCount(m) =
#Occurences of m in TraceT

Length(TraceT )

Return min[ relCount(M)
relCount(m)

, relCount(m)
relCount(M)

]

end
simPos(M, m, TraceS, TraceT )
begin

relPos(M)[.] = relative positions of M in TraceS
relPos(m)[.] = relative positions of m in TraceT
avgRP(M) = average of values in relPos(M)[.]
avgRP(m) = average of values in relPos(m)[.]
if (the values in the array relPos(M)[.] are within a threshold (1% of the trace
length) of avgRP(M) and likewise for relPos(m)[.] and avgRP(m)) then Return

min[avgRP(M)
avgRP(m)

, avgRP(m)
avgRP(M)

]
else Return undecided (the value of undecided is 0.5)

end
simName(M, m)
begin

if (M and m are individual methods) then Return levenshtein.ratio(M, m)
else Return undecided

end
simCtxt(M, N, m, n, TraceS, TraceT )
begin

relCount(M, N) =
#Occurences of M in preceding context of N in TraceS

Length(TraceS)

relCount(m, n) =
#Occurences of m in preceding context of n in TraceT

Length(TraceT )

relCount(N, M) =
#Occurences of N in preceding context of M in TraceS

Length(TraceS)

relCount(n, m) =
#Occurences of n in preceding context of m in TraceT

Length(TraceT )
if ApproxMatch(relCount(M, N), relCount(m, n)) and ApproxMatch(relCount(N,
M), relCount(n, m)) then Return high (we configued high to be 0.7), else Return (1 -
high).

end
Algorithm 2: Subroutines invoked by Algorithm 1.



25

call or sequence in the trace, so we average their relative positions.

In this factor, we restrict ourselves only to calls and sequences that are localized in a certain

portion of the trace, i.e., if the relative positions are not within a threshold (1% of the trace

length) of the average, this factor does not contribute positively or negatively to the likelihood

of the mapping (undecided is a probability of 0.5). This is described in the subroutine simPos

in Algorithm 2.

(3) Method names (fname). We use the names of methods in the source and target APIs to

determine likely mappings. Unlike the other factors, which are determined by trace structure

(i.e., program behavior), this is factor relies on a syntactic feature. The simName subroutine in

Algorithm 2 uses a ratio based upon the Levenshtein edit distance, computed using a standard

Python library [75]. This ratio ranges from 1 for identical strings, to 0 for strings that do not

have a common substring. simName only returns a valid ratio for individual methods; for

sequences, it returns undecided.

(4) Call context (fctxt). We define the context of a method call A() in a trace as the set of

method calls that appear in the vicinity of A(). Likewise, the context of a sequence A();B()

is the set of method calls that appear in the vicinity of this sequence (if it exists in the trace).

Considering context allows us to propagate beliefs about likely mappings. Recall the exam-

ple presented in §2.3, where considering the frequency of the method calls A(), B(), a(), and

b() alone does not allow precise inference of mappings. In that example, the context of the

calls allows us to infer that if XA
b

is true, then XBa is unlikely to be true. Of the four factors

that we consider, fctxt is the only one that relates pairs of random variables; the others assign

probabilities to individual random variables.

We define the context of a method call or sequence M in the trace as the set of method calls

and sequences that appear within a fixed distance k of M in the trace; in our prototype, k=4.

When computing the context of M, we also consider whether the entities its context precede M

or follow M. To compute context as a factor, we use the function simCtxt, which considers all

pairs of methods and method sequences (M, N) that appear in the source trace, and all pairs (m,

n) that appear in the target trace. We then count the number of times M appears in the preceding

context of N in the source trace (i.e., within k=4 calls preceding each occurence of N) and

normalize this using the trace length (relCount(M,N)); likewise we compute relCount(N,M),
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and the corresponding metrics for the target trace. We then check whether relCount(M,N)

“matches” relCount(m,n), and relCount(N,M) “matches” relCount(n,m) We do not require the

relative counts to match exactly; rather their difference should be below a certain threshold

(10% in our prototype); ApproxMatch encodes this matching function.

If both the counts match, then the factor fctxt(X
M
m , XN

n ) positively influences the inference

that if XM
m is true, then XN

n is also true, and vice-versa. The simCtxt function ensures this

by returning a high probability value. Likewise, if the counts do not match, fctxt(X
M
m , XN

n )

would indicate that XM
m and XN

n are unlikely to be true simultaneously. Note that this does

not preclude XM
m or XN

n from being true individually. Intuitively, the Boolean interpretation of

fctxt(X
M
m , XN

n ) is (XM
m ∧ XN

n ). In our prototype, we set the value of high as 0.7. We conducted a

sensitivity study by varying the value of high between 0.6 and 0.8, and observed that it did not

significantly change the set of likely mappings output by Rosetta.

To illustrate the context factor, consider again the example from §2.3. There, simCtxt(A, B,

a, b) would be high, while simCtxt(A, B, b, a) would be 1-high (using exact matches for relCount

instead of ApproxMatch, to ease illustration). Therefore, we can infer that XAa and XB
b

could both

be true, but that XA
b

and XBa are unlikely to be true simultaneously.

We implemented Rosetta’s trace analysis and factor generation algorithms in about 1300

lines of Python code. We used the implementation of factor graphs in the Bayes Net Toolbox

(BNT) [66] for probabilistic inference. Rosetta generates one factor for each Boolean XM
m

for each of the three factor families ffreq, fpos, fname. Letting S and T denote the number

of unique source and target API calls observed in the trace, there are O(S 2T 2) such Boolean

variables (because M and m include individual methods and method sequences of length two).

Likewise, Rosetta generates two fctxt factors for each pair (M, N) and (m, n), resulting in a

total of O(S 4T 4) factors. We restricted Rosetta to work with method sequences of lengths

one and two because of the rapid growth in the number of factors. Future work could consider

optimizations to prune the number of factors, thereby allowing inference of mappings for longer

length method sequences.
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2.4.3 Combining Inferences Across Traces

As discussed so far, we apply probabilistic inference to each trace pair, which results in dif-

ferent values of Pr[XM
m = true] for each Boolean variable XM

m . In this step, we combine these

inferences across the entire database of trace pairs. One way to combine these probabilities is

to simply average them. However, if we do so, we ignore the confidence that we have in our

inferences from each trace pair. Intuitively, the more occurrences we see of a method call or

sequence M in a source trace, the more confidence we have in the values of Pr[XM
∗ = true].

Therefore, we compute a weighted average of these probabilities, with the relative count of

each source call as the weight.

Pr[XM
m = true]

∣∣∣∣combined
=

∑
Traces relCount(M) × Pr[XM

m = true]∑
Traces relCount(M)

We chose this approach because of its modularity. As we collect more trace pairs and inferences

from them, we can combine them with mappings inferred from other traces in a straightforward

way using the weighted average approach. Alternatively, we could have chosen to concatenate

individual traces (in the same order for both components of each trace pair) to produce a “super-

trace,” and perform probabilistic inference over this super-trace. However, if we do so, then we

would have to reproduce the super-trace after each new trace pair that is collected, and execute

the inference algorithm over the ever-growing super-trace. This approach is neither memory-

efficient nor time-efficient. In contrast, our weighted average approach provides more modular

support to add inferences from new trace pairs as they become available.

This weighted average is presented to the user as the output from Rosetta. We present the

output of Rosetta to the user in terms of the inferred mappings for each source API call. For

each source API method or method sequence, we present a list of mappings inferred for it,

ranked in decreasing order of the likelihood of the mapping.

2.5 Evaluation

2.5.1 Methodology

To evaluate Rosetta, we collected a set of 21 Java ME applications for which we could find

functionally-equivalent counterparts in the Android market. In particular, we chose board
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games, for two reasons. First, many popular board games are available for both the Java ME

and Android platforms. Checking the functional equivalence of two games is as simple as play-

ing the games and ensuring that the moves of the game are implemented in the same way on

both versions. Second, the use of board games also eases the task of collecting trace pairs.

Moves in board games are easy to remember and can be repeated on both game versions to

produce functionally-equivalent traces on both platforms.

To collect traces, we ran Java ME games using the emulator distributed with the Sun Java

Wireless Toolkit, version 2.5.1 [73]. For Android games, we used the emulator that is dis-

tributed with the Android 2.1 SDK. Table 2.1 shows the games that we used, the number of

trace pairs that we collected for each game, and the sizes of the traces for the Java ME and

Android versions.

We ran Rosetta on these traces to obtain a set of likely mappings. This set is presented to

the user as a ranked list of mappings inferred for each Java ME method (or method sequence).

To evaluate the list associated with each Java ME method, we consulted the documentation

of the Java ME and Android graphics APIs to determine which members of the list are valid

mappings.

2.5.2 Quality of Inferred Mappings

Table 2.2 presents the results of running Rosetta on the traces that we collected. This figure

shows the number of distinct Java ME methods that we observed in the trace, grouped by the

parent Java ME class to which they belong. Thus, for example, there were four unique Java ME

methods belonging to the Alert class in our traces, namely, Alert.setCommandListener,

Alert.setString(), Alert.setType(), and Alert.setTimeout(). In all, there were 83

unique Java ME methods in our traces.

For each of these 83 Java ME methods, we determined whether the top ten ranked mappings

reported for that method contained a method (or method sequence) from the Android API that

would implement its functionality. As reported in Table 2.2, we found such valid mappings for

59 of these Java ME methods (71%). Figure 2.4 depicts in more detail the rank distribution of

the first valid mapping found for each of these 59 Java ME methods. As this figure shows, the

top-ranked mapping for 35 of these methods was a valid one (42% of the observed Java ME
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Game (#Traces) Java ME Traces Android Traces Factor graphs
AvgLen MaxLen AvgLen MaxLen MaxNodes MaxEdges

Backgammon (2) 11,523 33,733 214,311 445,861 15,230 13,435
Blackjack (5) 658 1,181 136 369 11,408 10,256
Bubblebreaker (4) 858 2,033 2,366 7,377 2,844 2,358
Checkers (1) 111,790 111,790 1,014 1,014 4,923 4,191
Chess (5) 52,869 259,491 2,278 8,157 7,562 9,664
Four in a Row (3) 4,828 8,764 12,757 23,450 19,868 16,021
FreeCell (4) 12,926 15,271 407 746 128,128 96,096
Hangman (3) 3,715 4,282 3,477 3,481 10,319 11,263
Mahjongg V1 (5) 35,632 150,206 11,494 22,025 8,891 7,062
Mahjongg V2 (5) 3,652 18,321 16,831 49,887 4,703 4,806
Memory (5) 164,809 481,754 19,569 35,382 15,387 16,399
Minesweeper (5) 1,890 5,396 928 1,939 11,675 10,900
Roulette (5) 5,003 6,232 185 227 26,580 19,935
Rubics Cube (3) 16,521 19,343 131 159 21,840 16,380
Scrabble (4) 13,957 14,358 114 184 105,300 78,975
SimpleDice (5) 654 965 581 593 37,152 27,864
Snake (2) 33,399 63,104 11,681 20,372 1,528 1,356
Soltaire (3) 3,436 12,471 8,146 20,805 21,714 20,228
Sudoku (5) 3,897 9,968 17,347 42,567 16,306 24,317
Tetris (2) 486 916 6,116 11,991 13,105 14,520
TicTacToe (4) 154 475 183 418 3,840 4,690

Table 2.1: Statistics of traces and factor graphs for various Java ME and Android games. The
actual runtime traces of the games are filtered to leave only Java ME and Android graphics

API calls. We report the average and maximum lengths of these filtered traces. For each game,
we also show the size of the largest factor graph across all its traces.

Figure 2.4: This figure shows the rank distribution of the first valid mapping found for each
Java ME method. In all, for each of 59 Java ME methods, a valid Android mapping appeared
within the top ten results reported for that method. For 35 Java ME methods, the top-ranked
mapping was a valid one.



30

Java ME class #Methods #Top-10 (#TotValid) #Top-1
Alert 4 3 (11) 3
Canvas 8 5 (18) 4
ChoiceGroup 3 0 (0) 0
Command 2 2 (5) 0
Display 7 5 (13) 3
Displayable 6 4 (12) 3
Font 5 4 (12) 1
Form 4 2 (8) 1
game.GameCanvas 5 5 (12) 2
game.Layer 3 3 (8) 2
game.Sprite 4 3 (13) 2
Graphics 21 19 (69) 12
Image 4 4 (8) 2
List 1 0 (0) 0
TextField 6 0 (0) 0
Total 83 59 (189) 35

Table 2.2: Results of applying Rosetta to the traces obtained from the games shown in
Table 2.1. We have shown the number of unique Java ME methods (categorized by class) for

which Rosetta inferred at least one valid mapping in the top ten (#Top-10), and the total
number of valid mappings found in the top ten (#TotValid). Also shown is the number of Java

ME calls for which Rosetta’s top-ranked inference was a valid mapping (#Top-1). See also
Figure 2.4 and Figure 2.5 for a more detailed rank distribution of mappings.

methods).

Recall that a Java ME method can possibly be implemented in multiple ways using the

Android API. Thus, the ranked list associated with that method could possibly contain multiple

valid mappings. Rosetta’s output contained a total of 189 valid mappings within the top ten

results of the 59 Java ME methods. Figure 2.5 depicts the rank distribution of all the valid

mappings found by Rosetta. Below, we illustrate a few examples of mappings inferred by

Rosetta:

(1) The Graphics.clipRect()method in Java ME intersects the current clip with a specified

rectangle. Rosetta correctly inferred the Android method Canvas.clipRect() as its top-

ranked mapping.

(2) In Java ME Graphics.drawChar() draws a specified character using the current font

and color. In Rosetta’s output, the sequence Paint.setColor();Canvas.drawText(),

which first sets the color and then draws text, was the second-ranked mapping for
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Figure 2.5: This figure shows the rank distribution of all valid mappings found by Rosetta. For
each rank, it shows the number of valid mappings that appear at that rank across all Java ME
API methods observed in our traces. In all, we found 189 valid mappings ranking in the top
ten.

Variant %Valid
ffreq 62.2%
fname 44.0%
fpos 44.0%
ffreq×fctxt 95.6%
ffreq×fname 69.8%
ffreq×fpos 77.0%

Figure 2.6: Studying the impact of various combinations of factors.

Graphics.drawChar().

(3) The Graphics.drawRect() Java ME method was mapped to the Android methods

Canvas.drawRect() (rank 1) and Canvas.drawLines() (rank 7), all of which can draw

rectangles.

2.5.3 Impact of Individual Factors

Rosetta’s output is the result of combining all the four factors discussed in §2.4.2. We also

evaluated the extent to which each of these factors contributes to the output. To do so, we

constructed factor graphs (using the traces in Table 2.1) individually with ffreq, fpos, and

fname. Because fctxt correlates two mappings, we did not consider it in isolation. We also

considered a few combinations of factors, to study how the mappings change as factors are

added.

We inferred mappings with these factor graphs, and compared the resulting mappings with
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those obtained by Rosetta. For each factor graph variant in Figure 2.6, we report the fraction

of Rosetta’s 189 valid mappings that correspond to a valid mapping inferred by the variant.

As we did with Rosetta, we only report valid mappings that rank in the top ten in the output

of these factor graph variants. As Figure 2.6 shows, the addition of more factors generally

improves the accuracy of the reported mappings. This is because the addition of more factors

incorporates more trace features into the probabilistic inference algorithm, thereby removing

spurious mappings from the top ten.

2.5.4 Runtime Performance

We ran Rosetta on a PC with an Intel Core2 Duo CPU, running at 2.80Ghz and 4GB memory,

running Ubuntu 10.04. For each of the traces reported in Table 2.1, Rosetta took between 2–

55 minutes to analyze traces and output mappings. On average, approximately 80% of this

time was consumed by the algorithms in §2.4.2 which produce factor graphs, and 20% was

consumed by the factor graph solver. The solver consumed 2GB memory for the largest of our

factor graphs.

As discussed, Rosetta currently supports inference on method sequences of length up to

two. We also configured Rosetta to work with longer method sequences, which would produce

larger factor graphs. However, the factor graph solver ran out of memory in these cases.

2.5.5 Experiments with MicroEmulator

There have been some recent efforts [65, 25, 69] to allow the execution of legacy Java ME

applications on the Android platform. MicroEmulator [65] is one such open-source tool that

works on Java ME applications. It rewrites Java ME API calls in the input application with the

corresponding Android API calls. The implementation of MicroEmulator therefore implicitly

defines a mapping between the Java ME and Android graphics APIs. However, MicroEmulator

does not translate the entire Java ME graphics API, and only allows Java ME applications with

rudimentary GUIs to execute on Android devices. Nevertheless, the mappings that it does

implement provide a basis to evaluate Rosetta.

We considered a subset of five Java ME games from Table 2.1 that MicroEmulator could
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successfully translate (Chess, Minesweeper, Snake, Sudoku, TicTacToe), executed them, and

collected the corresponding traces of Java ME API calls. We then repeated the same set of

experiments on the MicroEmulator-converted versions of these applications and collected the

corresponding traces of Android API calls, and fed these trace pairs to Rosetta. In our evalu-

ation, we determined whether the API mappings inferred by Rosetta contained the mappings

implemented in MicroEmulator.

Across the Java ME traces for these five games, we observed 18 distinct Java ME graphics

API methods translated by MicroEmulator. In Rosetta’s output, we found at least one valid

mapping for 17 of these Java ME methods within the top ten ranked results for the corre-

sponding Java ME method. Rosetta only failed to discover an API mapping for the Java ME

method Alert.setString(). Out of 17 Java ME methods with valid mappings, 8 methods

had valid top-ranked mappings to their Android counterparts. MicroEmulator also contains

multiple mappings for several of the translated Java ME methods. For the 18 distinct meth-

ods in our traces, MicroEmulator contains a total of 26 mappings. Of these, Rosetta’s output

contained 20 valid mappings within the top ten results for the corresponding Java ME methods.

2.5.6 Threats to Validity

There are a number of threats to the validity of our results, which we discuss now. First, al-

though we attempted to find Java ME and Android games that are functionally equivalent, dif-

ferences do exist in their implementations. This is because Java ME is an older mobile platform

that does not support as rich an API as Android; many Android calls do not even have equiv-

alents in Java ME. Together with randomness that is inherent in certain board games (§2.4.1),

this could result in traces which contain Android calls implementing functionality unseen in the

source application. They may mislead the attributes used by our inference algorithm (e.g., fre-

quency of calls), leading to both invalid mappings as well as valid mappings being suppressed

in the output.

Second, there is no “ground truth” of Java ME to Android mappings available to evaluate

Rosetta’s output (the mappings in MicroEmulator aside), as a result of which we are unable

to report standard metrics, such as precision and recall. We interpreted Rosetta’s results by

consulting API documentation. Such natural language documentation is inherently ambigious
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and prone to misinterpretation. We mitigated this threat by having two authors independently

cross-validate the results.

Finally, a threat to external validity, i.e., the extent to which our results can be generalized,

comes from the fact that we only inferred mappings using board games. It is unclear how many

mappings we would have inferred using other graphical applications (e.g., office applications).

2.5.7 Limitations

In this chapter, we addressed the problem of inferring mappings between API methods of two

different mobile platforms using independently developed mobile applications (apps). The intu-

ition behind our approach is that if two apps are implementing the same high-level functionality

(e.g., both are TicTacToe games), the developers of the two apps must have used functionally

equivalent API methods while implementing the same high-level functionality. If we exercise

similar functionality while running the apps, the two apps will take similar execution paths and

thus will invoke similar API methods. The traces generated should therfore contain some of

the functionally equivalent API methods that map to each other.

While we had some success with this approach with a small set of apps, we realized that

it has a number of shortcomings. First, the technique requires independently developed app

pairs such that they not only implement the same high-level functionality on two platforms

but also should have GUIs with similar visual appearance. During the app search, satisfying

the former condition is easy given the huge size of mobile app markets for popular platforms.

But satisfying the later condition is time-consuming, since there are quite a large number of

different apps, developed by different third-party app developers, all of which have the same

high-level functionality but differ in terms of features’ richness and GUI. e.g., A simple search

for TicTacToe game on Google Play app market and Apple iTunes app store returns over 100

TicTacToe games on each. Picking a pair of TicTacToe games from this dataset of 100x100

games such that the two games have similar GUIs is time consuming. Second, the technique

requires the user of Rosetta to manually execute the apps for generating the runtime traces.

The state-of-the-art in automatic execution of mobile apps is not advanced enough to drive the

execution of apps in controlled fashion. e.g., The best tool available at present to automatically

execute Android apps, namely Monkey [23], uses a random sequence of input events rather than
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Figure 2.7: Design of the system to identify API mappings using a static approach

allowing the user to feed a specific sequence of input events. Thus, it is practically infeasible

to drive the two apps on two different mobile platforms in similar fashion without any user

involvement. As a result, this technique has limitations with resepect to the number of apps that

can be experimented with. This directly affects the number of mappings that can be inferred,

since the inferred mappings are only for those API methods that appear in the traces. The larger

the set of apps, more is the number of API methods appearing in the traces and greater is the

number of inferred mappings.

In order to overcome these drawbacks, we develop a new technique that relies neither on

manual execution of apps nor dynamic analysis to generate the apps’ data and does not have the

restriction of using functionally equivalent app pairs as the dataset. We describe this technique

in the next section.

2.6 Proposing a Static Approach to Infer API Mappings

In this section, we propose a new technique based on static analysis that overcomes the draw-

backs of dynamic analysis based technique. We have implemented a prototype tool called Data

Driven Rosetta (DDR) [44] that infers mappings between iOS and Android APIs. In theory,

the proposed technique has the potential to scale well with the huge number of apps available

in the app stores, since it uses static analysis. Our evaluation results are for a small subset of

apps and hence not comprehensive. We present the technique as a potential direction to infer
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Figure 2.8: Control flow graph of an iPhone app.

API mappings at scale.

2.6.1 Motivation

We propose a technique that is easily scalable to a large number of apps, comparable to the size

of the today’s app market. Thus emerged our prototype tool, Rosetta (Data-Driven Rosetta),

which we propose as a possibly scalable approach to infer API mappings of two mobile plat-

forms. The new approach analyses the apps’ data statically using the decompiled binaries of

apps. Moreover, it works on as many apps’ data as possible, with no particular requirement

about the nature of apps (except apps’ categories). At a high level, the technique first generates

apps’ data on both the platforms by analysing the app binaries statically. This data is treated

in the same light as the text from two different natural languages. In natural language pro-

gramming (NLP) literature, there has been a lot of research devoted to deciphering an unknown

language or inferring translations between different languages. We use a method employed

previously in NLP domain to infer a translation dictionary between non-parallel text corpora of

two different natural languages. The output is a set of mappings between API methods of two

platforms. We will explain the technique in more detail in section 2.6.2.

2.6.2 Methodology

The overall system design is shown in figure 2.7 tailored to iPhone and Android as the source

and target platforms, respectively. We now describe the design in more details.

Our approach takes two sets of apps developed for two different mobile platforms as input.
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Figure 2.9: Control flow graph of an Android app.

We leverage the notion of category of apps in the mobile app markets to ensure that the fraction

of apps belonging to each category is approximately the same across two platforms. This is

easy to ensure since app markets of all popular mobile platforms have similar catgories of apps

because of expectations from the users to have these apps available across each platform. Using

such a dataset of apps helps to ensure that the generated program path data comes from related

domains of apps rather than completely unrelated domains.

(1) Extract program paths. Given the apps for two platforms, the next step is to collect

the program paths. We first decompile the apps’ binaries using the available decompiling

tools for the respective platforms to obtain bytecode representation of the apps. We then

construct a control flow graph (CFG) from the decompiled bytecode representation using

static code analysers for the respective languages. The next step is to traverse the CFG to

produce static program paths of apps. For each function in the source code, we first construct

its CFG representation that contains only the platform API methods, filtering out everything

else. Figure 2.8 shows the generated CFG of an iPhone app. We then convert the CFG into a

directed acyclic graph (DAG) by removing back edges. This step ensures that we do not run

into infinite number of paths. Here’s how the program path generation would work on the CFG

given in figure 2.8:

(a) Identify all the entry and exit nodes in the graph. There is a single entry node I1 and there

are two exit nodes, I3 and I4.

(b) For each pair of (entry, exit) nodes, compute all paths that start at entry and end at exit. You
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S (iPhone corpus):

S1: CGGeometry.CGRectGetWidth() CGGeometry.CGRectGetHeight()

CGGeometry.CGRectMake() CGContext.CGContextFillRect()

S2: CGGeometry.CGRectGetWidth() CGGeometry.CGRectGetHeight()

CGGeometry.CGRectMake() CGContxt.CGContextStrokeRect()

T (Android corpus):

T1: Rect.height() Rect.width() Paint.setStyle() Canvas.drawRect()

T2: Rect.height() Rect.width() Canvas.drawRect()

Note: iPhone and Android classes are prefixed with /System/Library/Frameworks/
CoreGraphics.framework/CoreGraphics/ and android/graphics, respectively. For
brevity, we only refer to method names and not their classes.

Figure 2.10: iPhone corpus and Android corpus

can use any standar graph algorithm to find all paths between two nodes of a DAG. For the pair

(I1, I3), there is a single path in between them that goes via I2. Similarly for the pair (I1, I4),

only one path exists in between them which goes through I2.

(c) For each path, print the sequence of API methods inside each of the node, in the same order

as the nodes appear in the path. For the given graph, we extracted two node sequences: I1 I2 I3

and I1 I2 I4. These would yield two program paths: S1 and S2 as shown in figure 2.10.

Similarly, for Android platform, program paths would be T1 and T2 shown in figure 2.10.

(2) Infer mappings. The next step is to feed these program paths composed of sequences

of API methods to the inference engine which gives mappings between API methods. We

directly rely on the MCCA method [46] as our inference engine which uses a statistical machine

learning technique. The MCCA method takes two text corpora, one in source lanaguage and

the other in target language as input. The two corpora can be completely unrelated and can

be from different domains. At a high level, the method defines a generative model over the

observed data which consists of the feature vectors of words in the corpora and the mappings

generated so far. The generative model explains the observed data in terms of vectors in a

common, hidden space. Their model is based on canonical correlation analysis [26]. If we

view the generated source and target API program paths as belonging to two unknown source

and target languages, we can feed the program paths to MCCA method to obtain mappings

between API methods.

Let S and T denote the iPhone corpus and Android corpus shown in figure 2.10. We feed

/System/Library/Frameworks/CoreGraphics.framework/CoreGraphics/
/System/Library/Frameworks/CoreGraphics.framework/CoreGraphics/
android/graphics
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these two corpora to MCCA method. The method outputs a set of mappings between the

elements of the corpora which are API methods in our case. In MCCA model, the objective is to

maximize the log-likelihood of the observed data (feature vectors and the mappings generated

so far). It casts this optimization problem as a maximum weighted bipartite matching problem

over a graph consisting of source words and target words. The weight on the edge between a

source word and target word denotes confidence in the mapping. The default model outputs at

most one mapping for each API method. We modified the default model so as to output top 10

mappings for each source API method corresponding to top 10 weights on edges originating

from the given source API method. We consider all non-negative weights on edges, in case the

given API method does not have 10 mappings in the final bipartite matching output.

2.6.3 Implementation

We now describe the implementation details of our tool DDR which currently infers mappings

between iOS and Android APIs.

iOS program paths generation. For the analysis of iOS apps, we first automatically download

iOS apps on a Mac OS device from Apples App Store by using AppleScript [5]. After synchro-

nizing, iOS apps are installed on the iOS device. And then we can get the unencrypted binary

code for its analysis using some cracking iOS app tools such as Clutch. In order to disassemble

the binary of iOS, we use a popular disassembler called IDA Pro [13]. It supports the Mach-O

binary format of iOS executables, but it does not fully provide method names that we need. In

Objective-C, method calls are carried out using the dispatch function objc msgSend. The first

argument of this function refers to the object name and the second one refers to the method

name. However, IDA pro does not resolve the actual targets of method calls to the objc -

msgSend due to its limitation. Thus, in order to get all the method names of the binary, we

use backward slicing [86] which tracks the related instructions backwards. We use IDAPython

which is an IDA Pro plugin that allows scripts run in IDA Pro, and also use NetworkX library

[17] for graph supports to make CFG. And then we traverse the CFG to make program paths.

If necessary, we limit ourselves to generate paths upto a certain length for practical reasons.

Android program paths generation. To analyse Android apps’ binaries statically, we need

tools capable of processing reverse engineered Dalvik bytecode of apps. It is easier to analyse
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Java bytecode though than Dalvik bytecode due to plenty of static anlaysers develoepd for Java.

We therefore retarget Android apps’ dalvik bytecode to Java bytecode using dare [10] tool. For

analysing the resultant Java bytecode, we use a popular static analyser for Java programs called

Soot [22]. Soot requires as input either the given program’s entry point or the list of classes to

be analysed. Because of lack of a single entry point (such as main() method in Java programs)

in event-driven Android apps, we need to give the list of classes declared in the bytecode as

input to Soot. But not all classes in the app’s package are of interest to us. An Android app

uses a number of external APIs (e.g., various advertisement APIs such as Google Ads, location

services API etc.) which are not part of the core platform API and hence can be neglected for

analysis purposes. We therefore need to identify the core classes that belong only to the app

and not to the external APIs. With the help of android-apktool [1], we first identify the classes

belonging only to the app. This list of classes is given as input to Soot. We make use of Soot’s

API to construct intra-procedural control flow graph (CFG) of functions defined in the app. We

then traverse the CFG to produce program paths.

Inference engine. We use MCCA as our inference engine. We adapted MCCA in order to work

with the dataset of API methods and modified the source code in many ways. We mention here

the major modifications we did: (1) We changed edit-distance function to consider only the

method name instead of the entire method signature that forms the word in our corpus. (2)

We modified the tool so as to output a list of top 10 mappings for each iOS API method. The

MCCA tool finds a solution to bipartite graph matching problem. The mappings given as output

have a score corresponding to the weight of the edge between the source API method node and

target API method node. Instead of emitting a single edge with the highest edge, we find top 10

edges for the same source API method in decreasing order of the edge weights. The mappings

associated with such top 10 edges are given as output by our tool DDR. In case the source API

method node does not have 10 edges with non-negative weights, we consider all the edges with

non-negative edges.
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2.7 Summary

In this chapter, we present two approaches to detect similarities between the APIs of a source

and target mobile platform. The inferred similarities are in the form of mappings between

functionally similar methods or method sequences of the two APIs. We first present a generic

approach based on dynamic analysis that uses functionally similar apps on two platforms. Our

Rosetta prototype uses this approach to infer likely mappings between the Java ME and Android

graphics APIs. As a future direction, we propose another approach based on static analysis to

infer mappings between API methods of two mobile platforms. Our prototype tool uses a

technique from NLP domain to infer mappings between iOS and Android API methods and

can potentially scale to a larger input dataset of apps.
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Chapter 3

Detecting Similarities in Mobile Apps

This chapter gives an overview of a technique to detect similarities in mobile apps on a single

platform. With the proliferation of mobile apps available on the app markets, plagiarised apps

also make their way through these app markets. Plagiarised apps often carry malware with

them. They may deprive the developers of original apps from the revenue in the form of in-app

purchases or advertisements. Previous approaches proposed by researchers to detect plagiarised

apps are based on static analysis. We show that these techniques can be defeated if the process

of plagiarising uses strong obfuscation. We present a dynamic analysis based technique that

can detect plagiarised apps even in presence of obfuscated code. We show that our approach is

effective in detecting plagiarism in mobile apps.

3.1 Introduction

In recent years, smart phone app markets have witnessed explosive growth. Popular app mar-

kets, such as those of Apple and Google, now have in excess of a million apps. With such large

numbers, and an equally diverse and large developer community, malpractices in app develop-

ment should come as no surprise. We focus on app plagiarism, the practice of using another

developer’s code, without permission or payment, to build and deploy mobile apps.

Plagiarism has long been a problem in traditional software development. It especially af-

fects developers who wish to protect intellectual property embedded in their software. In re-

sponse, the community has been actively researching techniques to detect plagiarism ([28],

[54], [30], [56], [52], [39], [60]). In the mobile app space, plagiarism is of particular concern.

Recent work has shown that plagiarised apps divert advertising revenue as well as the user base

from the developers of the original apps [43]. More importantly, most mobile malware are

repackaged (i.e., plagiarized) versions of otherwise benign mobile apps [99]. Malicious mobile
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apps are often distributed via third-party app stores, which lure victims by promising free ver-

sions of apps that would otherwise require payment on official app stores. The developers of

these mobile apps typically obtain a copy of the original app from the official app store, modify

the app with their own malicious functionality, and repackage and distribute it via these third-

party app stores. The malicious functionality may include displaying unwanted advertisements

to victims, monitoring the activities of victims, or even exfiltrating sensitive data to malicious

web sites ([41, 99, 97]).

The rise of mobile malware has also spurred the development of anti-malware tools, a vari-

ety of which are available through official app markets. These tools use a number of techniques

to detect malware, the most common of which is to use simple signature-based scanning to

detect malicious apps. Signatures encode code or data patterns seen in malicious apps but not

in benign ones. Anti-malware tools scan a new app upon download, and attempt to match them

against their signature database. However, it has long been known in the security community

that signature-based malware detection tools can easily be evaded using simple transforma-

tions [33]. Such transformations include variable and function renaming and code reordering,

which alter the syntactic structure of the code, so that it no longer matches the signatures used

by anti-malware tools. Indeed, recent work has shown that most commercially-available tools

to detect mobile malware can easily be evaded using simple transformations [85].

In response, there have been a number of efforts to develop techniques that detect malicious

mobile apps even in the presence of transformations, focusing primarily on detecting plagia-

rized mobile apps [98], [97], [35], [47]. To date, these techniques have used static analysis and

follow the same basic recipe: Obtain and disassemble a suspect app, and use sophisticated sim-

ilarily detection algorithms to detect plagiarism. The similarity detection algorithms studied in

the literature have primarily been syntactic in nature, ranging from detecting code clones [47],

using fuzzy hashing to detect similar code fragments [98], and using machine learning tech-

niques to detect apps that share similar syntactic features [97].

In this paper, we take the position that such static approaches towards detecting plagiarism

that rely on syntactic features fundamentally fall short, and can easily be defeated using code

obfuscation. We argue that a more robust app plagiarism detection technique is needed, and

present such an approach. Our main contributions are two-fold:
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(1) Obfuscation defeats syntactic similarity detection. We show that the use of simple en-

cryption techniques defeats previously-proposed similarity detection tools. These tools rely on

syntactic features of the code, and the use of encryption obfuscates these features, making it

possible to easily evade detection by these tools. §3.2 presents the results of this study, in which

we also study the effectiveness of several off-the-shelf obfuscation tools.

(2) API birthmarks provide robust plagiarism detection. We develop a robust approach for

detecting mobile app similarity. Our approach was inspired by prior work [80] to create unique

fingerprints of desktop programs. This approach works by observing the execution of a mo-

bile app—it is therefore dynamic in nature—and recording its interactions with the underlying

mobile platform via the API that it exposes. The key idea is that an app can affect the mo-

bile device only by interacting with the platform via its API. Thus, similar apps must interact

with the platform in similar ways. We capture “similarity” via the notion of API birthmarks,

which are subsequences of API calls that are unique to a particular app. In our experiments, we

show that the API birthmarks of plagiarized apps substantially resemble those of the original

apps. Further, API birthmarks are robust to code obfuscation and encryption because a running

app must issue API calls to interact with the platform, and these calls themselves cannot be

obfuscated. Thus, our approach provides a robust way to detect app plagiarism.

3.2 Obfuscating Mobile Apps

Obfuscating a mobile app is the process of transforming the original source code of the app so

that resulting code is hard for humans to interpret or read. App developers obfuscate code for

a number of reasons, such as to prevent easy interpretion of the reverse-engineered code, or to

protect the code from tampering by others. However, obfuscation can also be used to disguise

plagiarism, e.g., when a copyrighted app’s source code is being reused without obtaining the

appropriate permissions. By obfuscating the plagiarized app, the attacker reduces the proba-

bility of the new app being identified as similar to the original app. As we will demonstrate,

obfuscated apps can easily evade a number of off-the-shelf code similarity detection tools.
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Transformations→ Renaming Dead code Control flow String Code
Obfuscators ↓ removal obfuscation encryption encryption

ProGuard X X × × ×

Allatori X X X X ×

DashO X X X X ×

Androcrypt × × × × X

Table 3.1: Comparison of different obfuscators in terms of their transformation capabilities.
The last row lists the transformations employed by Androcrypt, the obfuscator that we have

built.

3.2.1 Comparison of Obfuscators

There are a number of commercial or free off-the-shelf code obfuscators. Some of these ob-

fuscators target only the traditional desktop software, e.g., DashO [11] and Allatori [2], while

obfuscators such as ProGuard [20] have been ported to work for Android apps as well. These

obfuscators use a number of algorithms to transform the original code:

• Name obfuscation: This technique subtitutes randomly-chosen character sequences in place

of the original, human-readable names for a number of code artifacts. For example, the obfusca-

tion may transform source code file names, line numbers, field names, method names, argument

names and variable names.

• Control flow obfuscation: This technique changes the code of an app (either source code

or bytecode) to obscure the control-flow structure of the original app. For example, the trans-

formation may target selection and looping constructs and replace them with goto statements.

When such transformed code is analyzed using a decompiler, it produces code that is diffi-

cult to read and understand. Direct jumps may be replaced with indirect ones, which further

complicates even basic decompilation tasks, such as constructing a control-flow graph of the

program.

• String encryption: In this technique, string literals in the code are encrypted and code to

decrypt these strings is added to the source code. Examples of such string literals include the

text of error and exception messages, and the text of the labels or other GUI components such

as dialog boxes, buttons, and drop-down menus.

Table 3.1 shows the transformation techniques used by three off-the-shelf obfuscation tools

that can be applied to Android apps. Given the capabilities of these obfuscation tools, we
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wanted to evaluate their effectiveness. One way to evaluate obfuscators is to feed the original

code and obfuscated code to a code similarity detection tool. Code similarity detection tool

would report low similarity for strongly obfuscated code, whereas similarity would be high for

weakly obfuscated code. Below we describe our experiment.

We randomly chose ten Android apps from a repository of open-source Android apps [12].

The randomly selected apps and the sizes of the corresponding .apk files are shown in the table

3.2. We then applied ProGuard, Allatori and DashO to each of these apps so as to obtain their

obfuscated versions. To compare the original app with its obfuscated counterpart, we used

two different code similarity detectors: a popular off-the-shelf tool called Androguard [3] and

a state-of-the-art code similarity detector, Juxtapp [47], that was developed in an academic

setting.

App’s Name Size of .apk file
Zxing 720 KB

Connectbot 858 KB
Stardroid 2,188 KB

OpenSudoku 211 KB
Pedometer 46 KB

Reddit 759 KB
Amazed 15 KB

Wikinotes 119 KB
Photostream 134 KB

Mileage 366 KB

Table 3.2: Size statistics of apps chosen for the experiment to compute similarity measures
shown in 3.3. The first column shows name of the app and second column gives size of the

.apk file.

We observed that the similarity scores reported by both the tools were almost the same.

For brevity, Table 3.3 presents the results of this experiment for Androguard (see also 3.6

for experiments with more apps). Androguard reports a number between 0 and 100 to report

similarity: a pair of similar apps will receive a score of 100, and a pair of apps with no similarity

will get a score of 0. We converted these numbers suitably to a range between 0 and 1. As

Table 3.3 shows, off-the-shelf obfuscators are somewhat effective at defeating Androguard’s

similarity detection algorithm. Among the three obfuscators and ten apps that we tested, we

found that Allatori was the least effective at obfuscating apps. We repeated the same experiment

on a larger dataset of 50 apps downloaded randomly from the same repository [12] and found
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similar results, as shown in the 3.6 .

App Name ProGuard Allatori DashO Androcrypt
Zxing 0.61 0.93 0.56 0

Connectbot 0.60 0.76 0.57 0
Stardroid 0.53 0.82 0.54 0.51

OpenSudoku 0.83 0.82 0.59 0.01
Pedometer 0.84 0.67 0.52 0.03

Reddit 0.47 0.94 0.37 0
Amazed 0.44 0.89 0.75 0.1

Wikinotes 0.92 0.86 0.67 0.28
Photostream 0.77 0.92 0.64 0.03

Mileage 0.72 0.85 0.56 0.56

Table 3.3: Results of similarity measure (between 0 to 1) reported by a popular similarity
detection tool, Androguard. the Android app’s binary executable file. Each column

corresponds to app pairs in which obfuscated apps have been obtained by running the
corresponding obfuscator.

3.2.2 Androcrypt: An Encrypting Obfuscator for Android Apps

Given the results with the three off-the-shelf obfuscation tools, we asked whether it was pos-

sible to build an obfuscator that would be even more effective at transforming an app, so that

tools such as Androguard would be rendered ineffective. Drawing on the ideas used to create

polymorphic and metamorphic malware [92], we built Androcrypt, an encrypting obfuscator for

Android apps. Androcrypt takes a .apk file corresponding to an Android app as input, encrypts

the app and packages it as the payload for a new, obfuscated app.

In more detail, Androcrypt operates as follows. Every Android project consists of a col-

lection of files and directories, in which source code files, binary files and resource files

are organized into directories such as src, bin, res, assets etc. Typically, raw data files

are stored in the assets directory which then can be read as a byte-stream using the an-

droid.content.res.AssetManager class in Android. AssetManager class provides lower-level

API to open and read the raw files. When supplied an input .apk file as input, Androcrypt first

creates an empty Android project with all the relevant directories. It then uses the Java cryp-

tography library (we used the AES/CBC/PKCS5Padding mode) to encrypt the input .apk file,

and places it in the assests directory. Androcrypt incorporates a new Activity class in the new

Android project that first reads the encrypted app stored in assets directory using AssetManager
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API and decrypts it using the Java cryptography library. The Activity then dynamically loads the

classes from the DEX bytecode of the decrpyted app using the dalvik.system.DexClassLoader

class. Androcrypt replaces all the original source code files of the application that reside in

src directory with the single source file of the above Activity class. This Android app is then

packaged as an .apk file and distributed as the obfuscated app. When the app is started, the first

component that executes is the new Activity class, which decrypts the original app and loads its

classes.

While the steps described above suffice to obfuscate a majority of Android apps, there are

a few categories of apps that fail to start up when obfuscated this way. Such apps contain

classes inherited from either one of two Android classes: android.content.ContentProvider or

android.app.Application In Android, the ContentProvider class manages the sharing of data

between multiple apps, and is used by apps that share data with other apps. For example, a

texting app might use this class if it shares data with the contacts list on the phone. Likewise,

the Application class is used by Android apps to store any global application state. An Android

application using any one of these two classes declares its use in its manifest file. When the

Android runtime system executes an Android app, it scans the manifest to determine whether

these classes are being used by the app, and first loads these classes before launching the main

Activity class.

Androcrypt packages the original app and includes the decryption functionality in the main

Activity class of the repackaged app, which must start first. As a result, the obfuscator cannot

extract the individual ContentProvider or Application classes, thereby breaking the app’s func-

tionality. For such apps, Androcrypt uses a hybrid strategy: it obfuscates the ContentProvider

and Application classes using ProGuard, while using encryption on the rest of the .apk file.

ProGuard Androcrypt
Mean 0.68 0.07

Median 0.72 0.02

Table 3.4: Mean and median of the similarity measures (between 0 to 1) reported by
Androguard for the dataset of 53 apps. Each column corresponds to app pairs in which

obfuscated apps have been obtained by running the corresponding obfuscator.

The last column of Table 3.3 shows the results of obfuscating apps using Androcrypt. We
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Figure 3.1: Distribution of similarity measures reported by Androguard when two different
obfuscators were used. Box on left corresponds to using ProGuard as the obfuscator whereas
box on right corresponds to use of Androcrypt as obfuscator. The values used to draw the plots
are taken from the columns labeled as (PG, AG) and (AC, AG) in 3.6.

observe that majority of the apps had low similarity scores when Androcrypt was used as com-

pared to any of the three obfuscation tools. Two exceptions were Stardroid and Mileage apps.

These two apps used classes inherited from the ContentProvider and Application classes; these

classes were not encrypted, which explains why these apps had a higher Androguard-similarity

score than the other apps. Thus, Androcrypt’s encryption-based approach to obfuscating An-

droid apps is more effective than the techniques used by ProGuard, Allatori and DashO.

We repeated the same experiment on a larger dataset of 53 apps. The complete results are

given in 3.6. For brevity, we report the mean and the median of the scores in Table 3.4, and

the box plots of the scores is shown in Figure 3.1. As is evident from the plot, the similarity

measures reported by Androguard on app pairs in which Androcrypt was used as the obfuscator

dropped significantly as compared to the values reported on the same app pairs when off-the-

shelf obfuscator, ProGuard, was used. The results demonstrate that simple encryption as used

in Androcrypt can easily defeat existing similarity detectors.
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3.3 Methodology

3.3.1 API Birthmark

There are many off-the-shelf program transformation tools available that can modify the source

code of the program without affecting the program’s functionality. As discussed in section

§3.2, obfuscators are capable of transforming the program so as to evade a popular similarity

detection tool for Android.

More generally, a large majority of existing similarity detection tools that have been pro-

posed in the research literature (for Android) rely on simple static properties of the program.

Such static properties can be, for example, a unique hash of the executable binary code ([98]), a

feature vector comprising the set of permissions requested by the application and the set of API

methods present in the source code of the application ([97]). An encrypting obfuscator such as

Androcrypt completely transforms the syntatic structure of the application, so that any attempt

to recover such static properties can be defeated by suitably encrypting the files of the appli-

cation. Such transformed programs can easily be passed off as the originals, thereby allowing

app plagiarism.

In this paper, we develop a robust approach that detects plagiarised mobile apps. Our ap-

proach was inspired by an effective technique to uniquely identify desktop programs by creating

their software birthmarks [83] dynamically. Such a birthmark represents a unique fingerprint

of the program that characterizes its runtime behavior. Two programs that have the same birth-

mark are likely to implement similar functionality, and are likely to have originated from the

same source code.

In this approach, birthmarks are dynamic in nature and are computed by observing the

runtime behavior of the program. As long as there are no significant high-level changes in the

behavior of the original and the obfuscated program, the dynamic birthmark of both versions

will be similar. Thus, dynamic birthmarks are more robust to program transformation attacks

and are more likely to be preserved during obfuscating transformations.

Since a dynamic birthmark is determined by the runtime behavior of the program, it is

important that the birthmark captures program properties that constitute the core functionality

of the program. If the program’s functionality changes, the birthmark of the resulting program
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must be distinct from that of the original version. However, minor changes in the functionality

of the program, as would be expected when an attacker adds new functionality to a plagiarized

program, must not cause large deviations in the value of the birthmark.

A desktop program interacts with the environment in which it is run (i.e., operating system)

to meet the desired functionality. Similarly, an Android app must interact with the Android

and Java runtimes in order to achieve functional goals. These interactions are in the form of

the Android and Java API methods invoked by the app. We log these method invocations and

collect them in a trace when the app is executed. We leverage prior work (Schuler et al. [80])

to define an API birthmark of the app over the sequence of method invocations by the app. Any

new functionality introduced into the app (or old functionality deleted from the original) will

likely introduce changes into the sequences of API methods invoked by the app and hence will

result in a different birthmark.

3.3.2 API Birthmark Algorithm

We now describe in more detail the birthmark-based approach for plagiarism detection. Our

approach works on a pair of Android apps, and uses birthmarks to compute a similarity coeffi-

cient between 0 and 1 (as was the case with Androguard). As explained in §4, we use Jaccard

index to calculate the similarity coefficient. A value closer to 1 indicates high similarity in the

observed behavior of apps where as a value closer to 0 signals low similarity in the observed

behavior. Although we describe the approach for Android apps, we hypothesize that it will

be applicable to other mobile platforms as well. In the description below, A is an unmodified

Android app, and Aob f s is an app that we suspect is an obfuscated variant of A.

3.3.2.1 Trace Collection

The first step is to run both the apps A and Aob f s independently, exercising as much functionality

as possible, and collect the execution traces. We then filter the trace so as to retain only those

method calls that are invoked on objects whose classes belong to the Android API. We do

this filtering because we are interested in observing only the interaction between the app and

the underlying Android API. Figure 2.2 shows snippets TraceA and TraceAob f s of two traces

obtained by running A and Aob f s respectively, by using the Monkey tool [23] as described in
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3.5.10 and filtering the corresponding traces. We will use these snippets in our explanation

below, although our approach works on the entire trace.

3.3.2.2 Computing the Similarity Coefficient

In this step, we compute whether the two apps A and Aob f s are similar, using the two traces

TraceA and TraceAob f s . This step can be broken down into four sub-steps.

(1) Collecting object-level API method calls. In an object-oriented language such as Java, a

trace of a program is a global sequence of API method calls invoked on objects in the pro-

gram. We split this global sequence into different object-level sub-sequences. Each one of such

sequences contains all the API method calls that were invoked on a single object. Such a divi-

sion avoids to a certain extent the effect of reordering of method calls between different traces

introduced by changes in thread scheduling in multi-threaded programs [80].

Let us now turn to the sample trace snippets TraceA and TraceAob f s to compute object level

API method calls. In these two snippets, we will assume that there is only one object of each

of the class types Activity and View. In general, there could be multiple objects of the same

class type, and the sequence of function calls will be collected for each of them individually,

based on the object IDs. Let’s use the class name itself as the object ID for further simplicity.

We accumulate the sequence of function calls invoked on each of the two objects individually.

Thus, we get two method sequences each from each of the two traces TraceA and TraceAob f s .

Each of the method calls is prefixed with the full class name such as android/app/Activity and

android/view/View in our actual calculation. We are omitting the class name prefix here for

brevity.

API method calls grouped together by objects in TraceA

Activity.onCreate();

Activity.setContentView();

Activity.findViewById();

View.setVisibility();

View.setOnClickListener()
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API method calls grouped together by objects in TraceAob f s

Activity.onCreate();

Activity.setContentView();

Activity.findViewById();

Activity.getWindow()

View.setVisibility();

View.setOnClickListener()

(2) Generating k-length sequences. The object-level API method call sequences are long and

hence are not easy to compare between different program runs. Schuler et al. [80] proposed the

idea of chopping up these sequences using a sliding window to generate a set of smaller method

sequences, and we use this idea as well. Let us assume that for the sample trace snippets TraceA

and TraceAob f s , the length of sliding window is 2. So we can break up the object-level sequences

obtained in the above step into a set of sub-sequences, each of length 2 as shown in the table

below. From here on, we are omitting the class names which we use in our actual computation.

2-length sequences from TraceA

onCreate(); setContentView()

setContentView(); findViewById()

setVisibility(); setOnClickListener()

2-length sequences from TraceAob f s

onCreate(); setContentView()

setContentView(); findViewById()

findViewById(); getWindow()

setVisibility(); setOnClickListener()

(3) Calculating birthmarks. Finally, we compute birthmark as the union of all 2-length se-

quences of all objects. The following table shows the birthmarks computed for the two apps A

and Aob f s. In this case, the union operation merely combines the two sets of sequences without

any deletions. But in general, the union will result in deletions of common sequences present

among the different sets.

Birthmark BA for the app A

onCreate(); setContentView()

setContentView(); findViewById()

setVisibility(); setOnClickListener()
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Birthmark BAob f s for the app Aob f s

onCreate(); setContentView()

setContentView(); findViewById()

findViewById(); getWindow()

setVisibility(); setOnClickListener()

(4) Computing similarity coefficient. We use Jaccard index [15] as a measure of similarity

between two apps. Given two birthmarks BA and BAob f s of two apps A and Aob f s, the similarity

coefficient between two apps is therefore given by Jaccard index of the two sets BA and BAob f s .

S im(A, Aob f s) =

∣∣∣∣BA∩BAob f s

∣∣∣∣∣∣∣∣BA∪BAob f s

∣∣∣∣
Thus, for our running example of the two apps, the similarity coefficient is equal to:

S im(A, Aob f s) = 3
4 = 0.75. Once we have computed the similarity coefficient between two apps,

we use a threshold to decide whether the two given apps should be categorized as plagiarized.

Explanation of how a threshold is chosen is given in section 3.5.3.

3.4 Implementation

Our implementation of the birthmark-based similarity detection approach consists of two parts.

The first part is the system that profiles applications and collects execution traces and is de-

scribed below. The second part is the implementation of the birthmark algorithm described in

the previous section, and we do not describe it in further detail here.

The Android SDK ships with a default method profiling tool [8], which can be used to col-

lect execution traces of an application running either on an Android device or on the Android

emulator. We used this tool to collect run-time traces of apps executing in the Android emula-

tor. We worked with Android SDK 2.3.7 (Gingerbread). In this section, we will describe the

changes we made to the Android framework for trace collection and filtering.

• Using default Android profiler: Dalvik Debug Monitor Server (DDMS) [8] is a debug-

ging tool provided in Android’s SDK that also offers the ability to trace apps. Users can

leverage DDMS to trace the execution of a running app as it performs arious activities

using a simple user interface. The resulting file is a concatenation of data in binary for-

mat and textual information about mappings between the binary identifiers in the data

and the corresponding method names [9]. We wrote a C program to parse the trace file
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Input : A trace T consisting of a sequence of (thread-id, method-signature,
ob ject-id) entries

Output : Birthmark B containing a set of sequences of function calls
Assign window-length = 4
Lob j = list of sequences, each of length window-length, of function calls invoked on a
particular object ob j
Cob j = current sequence, whose length ¡= window-length, of function calls invoked on a
particular object obj
lenCob j = length of Cob j

foreach entry (thread-id, method-signature, ob j) in the trace do
Add ob j to the set of unique object-ids uniq-ob js

foreach ob j in uniq-ob js do
Initialize the list Lob j to empty
Initialize current sequence Cob j to empty
Initialize current sequence’s length lenCob j to be zero

foreach entry (thread-id, method-signature, ob j) in the trace do
Append method-signature to Cob j

Increase value of lenCob j by 1
if lenCob j == window-length then

Add the sequence Cob j to the list Lob j

Decrease value of lenCob j by 1
Delete the first element from Cob j

foreach ob j in uniq-ob js do
if lenCob j > 0 then Add the sequence Lob j to the list Lob j

Initialize birthmark to empty set {}
foreach ob j in uniq-ob js do

birthmark = union of (birthmark, Lob j)

Algorithm 3: Computing Birthmark

and output the sequences of methods invoked in the trace.

• Modifications to the profiling code: We modified the source code of the default profiler

to make two changes to the trace generation:

(1) Tracing app-specific method calls. The default profiler in Android profiles all the

method calls in the call hierarchy including those invoked by the application as well as the

methods executed by the underlying Android framework and the Dalvik virtual machine.

We are interested in logging only the method calls invoked by the application. So we

modified the source files of the Android framework, so that the profiler logs a method

call, only if the return address of the calling function falls within the memory boundaries

at which the application is loaded. This ensures that the method call being logged was
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Input : Birthmarks B and Bob f s of two apps, A and Aob f s respectively
Output : A similarity coefficient between the two apps, A and Aob f s

I = B ∩ Bob f s

U = B ∪ Bob f s

Similarity Score =
|I|
|U |

Algorithm 4: Calculating Similarity

invoked from within the application and does not include method calls invoked outside

from the application such as those made by the Android API.

(2) Emitting object ID: For calculating API birthmarks, we need the ID of the object

on which each method call is invoked during the application run, so as to segregate API

method calls based on the respective invoked objects. Hence we modified the Android

source so as to emit the object ID in each record of the generated trace. We log the

following fields in the final trace: thread ID, method name, method arguments and return

type, class name, object ID.

• Trace Filtering:

There are three types of APIs that an Android application interacts with:

(1) Android framework API: Set of methods provided by the underlying Android frame-

work

(2) Java standard API: Set of methods provided by the standard Java language imple-

mentation

(3) APIs that are part of the application package (including various advertisement li-

braries)

During birthmark computation, we want to include only those method calls that are in-

dispensable to the Android application. Hence we decided to log the interaction of the

application with the underlying Android framework. We decided not to keep track of

the interaction of the application with the libraries that come as part of the application

package (such as advertisement libraries). Such APIs being internal to the application,

are easy to replace with other equivalent APIs. For example, consider a free mobile ap-

plication that uses multiple advertisement libraries to display advertisements to the users.
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An attacker can easily remove one of these APIs and repackage the application, without

changing the application’s functionality. Also, one can easily change the methods’ names

declared inside one of these APIs. The discussion about exclusion of Java API methods

is given later in Section 3.5.8.

3.5 Evaluation

3.5.1 Goals

To evaluate the API birthmark algorithm, we need to answer the following question: What are

the essential characteristics of a birthmark of a mobile app?

A birthmark should be able to detect high similarity between identically behaving copies of

the same program, even if the source code of the two programs differs significantly (e.g., be-

cause of applying various program transformations). As a corollary, if a large portion of the

source code of two programs is the same, the birthmark should detect them as copies. Addi-

tionally, when given two dissimilar programs as input, it should be able to distinguish between

them by giving low value of similarity. We conducted different experiments to evaluate the

API birthmark algorithm on these three factors. We first present our evaluation setup which is

followed by a description of these experiments.

3.5.2 Evaluation Setup

The very first step in our evaluation was creation of the required dataset of app pairs. To assess

the resilience of the birthmark against program transformations, we need a dataset consisting

of two types of apps, a corpus of apps that implement a variety of functionalities, and the

same apps, obfuscated using semantics-preserving transformations on the original apps. As

explained in §3.2, we designed our own obfuscator, named Androcrypt, that would encrypt the

app’s binary, store the decryption logic as the first statement to be executed in the new app and

thus produce an identically-behaving obfuscated app. We collected a corpus of Android apps,

and obfuscated them using Androcrypt. We then ran the API birthmark algorithm on execution

traces of all possible (A, A
′

ob f uscated) pairs of apps from this dataset. Each pair consists of an

original app A and an app A
′

ob f uscated obtained by obfuscating an original app A
′

. Here, two
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cases are possible: either A
′

= A i.e., A
′

is the same app as A or A
′

, A i.e., A
′

is a different

app than A. In the first case when we run the algorithm on traces of (A, Aob f uscated) types of

pairs, consisting of an original app A and its obfuscated counterpart Aob f uscated, we are testing

the resilience of the API birthmark against obfuscations. In the second case when pairs are of

type (A, A
′

ob f uscated) where A
′

ob f uscated is obfuscated counterpart of an app A
′

which is different

than A, we are testing the ability of API birthmark to distinguish between distinct apps.

To compute the API birthmark of an original app A or its obfuscated counterpart Aob f uscated,

we need the corresponding runtime trace. Executing each app manually is time consuming and

would impede the detection of plagiarized apps in a large collection (e.g., at app market scale),

thereby limiting the scalability of the approach. Therefore, we decided to automate the process

of Android app execution. For running Android apps without any manual intervention, we used

a tool called Monkey [23] that drives the app automatically by generating input events such as

clicks and touches, as described in §3.5.10. We then collected the execution trace using DDMS

[8] as explained in section 3.4. From our dataset of (A, A
′

ob f uscated) pairs of original apps and

their obfuscated counterparts, the automatic execution succeeded for a total of 350 app pairs

(downloaded randomly from Google’s official Android app market).

We divided our dataset into two, a smaller set of 50 apps was used as the training set and

the remaining apps formed an evaluation set. The training set was used to set the threshold for

the similarity measure. Using this threshold, we evaluated the birthmark algorithm on the apps

in the evaluation set. We also did a number of experiments on this dataset such as verifying the

credibility of the API birthmark.

All our experiments were done on Linux machine with Intel i5 quad-core 3.10GHz proces-

sor, 8 GB RAM and running Ubuntu 12.04. On an average, it took 0.2 seconds to filter two

traces and run API birthmark algorithm on one pair of apps.

3.5.3 Choosing a Threshold Value

Prior to performing the experimental evaluation, we first need to set the threshold for the simi-

larity coefficient that is used to determine whether an app is plagiarized. As described in §3.5.2,

we used the smaller training set of 50 apps to set the threshold. The 50 original apps and 50

obfuscated counterparts of these apps formed 50×50 (A, Aob f uscated) app pairs. On every pair in
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this set, we ran the API birthmark algorithm. We experimented with different values of thresh-

old and calculated the number of false positives and false negatives, as reported in 3.5. The

total number of wrong classifications is equal to the sum of false positives and false negatives,

as shown in the last column of 3.5. One could choose to minimize the number of false positives

alone or the number of false negatives alone. We chose to minimize the total number of wrong

classifications, and hence decided to set the threshold value to 0.5, which gives the least number

of wrong classifications as shown in the last column of 3.5.

Threshold False negatives False positives False negatives
+ false positives

0.2 2 87 89
0.3 5 46 51
0.4 13 9 22
0.5 16 2 18
0.6 18 2 20
0.7 21 0 21

Table 3.5: Evaluation for different values of threshold

We used this threshold to evaluate the API birthmark algorithm on the apps in the evaluation

set.

3.5.4 Setting the Window Size

Another parameter to be set for the API birthmark algorithm is the window size that is nothing

but the length of the API method sequences generated from the execution traces during the API

birthmark calculation, as explained in section 3.3. We used the training set to experiment with

different windows sizes and calculated the wrong classifications done by the API birthmark

algorithm. Table 3.6 shows the results.

These values show that choosing a smaller window size increases the number of false posi-

tives, which implies that the similarity between different programs increases where as a bigger

window size leads to a rise in the number of false negatives, which suggests that the similarity

between identical programs decreases. We chose to set the default window size to 3, so that

the API birthmark algorithm can distinguish between different programs (less false positives),

at the same time not having an unacceptable number of false negatives.
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Window length False negatives False positives False negatives
+ false positives

1 3 28 31
2 6 17 23
3 16 2 18
4 18 2 20

Table 3.6: Evaluation for different window lengths
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Figure 3.2: API birthmark results on pairwise comparisons for 300 apps (300x300 pairs). Diag-
onal shows the result of comparing an app and its obfuscated counterpart. Non-diagonal shows
comparisons between app and obfuscated counterpart of a different app.

3.5.5 Detecting Obfuscated Apps

We have 300 original apps and 300 obfuscated apps produced by using the encrypting obfus-

cator described in section 3.2. The total number of possible (A, Aob f uscated) pairs is therefore

300 × 300. We run the API birthmark algorithm for every pair, thus producing a matrix of

dimensions 300 × 300. The results are shown in figure 3.2. A point on the diagonal point

corresponds to similarity measure between an app and the obfuscated version of the same app,

and therefore should have a value closer to 1. A non-diagonal point corresponds to similarity

measure between an app and the obfuscated version of a different app, and should therefore

have a value closer to 0.

We evaluated the similarity measures produced by the API birthmark by calculating the
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Total apps False negatives False positives
300 45 (15%) 61 (20.3%)

Table 3.7: Evaluation of API birthmark algorithm for the results in Figure 3.2

number of false positives and false negatives as shown in table 3.7. The number of false nega-

tives is nothing but the number of apps, A, for which the similarity coefficient produced by API

birthmark for the pair (A, Aob f uscated) is less than the threshold and Aob f uscated is the obfuscated

counterpart of the same app as A (we chose a threshold value of 0.30; we discuss the compu-

tation of this threshold in §3.5.3). The number of false positives is the number of apps, A, for

which similarity coefficient produced by API birthmark for the pair (A, Aob f uscated) is greater

than the threshold and Aob f uscated is the obfuscated counterpart of a different app than A.

There are three cases in which the dynamic API birthmark reports a large similarity coeffi-

cient between apps of a certain category in spite of the apps being distinct.

(1) Customized apps: It is a common practice among app developers to release the same app

multiple times, each one built under different package name, such that the core functionality

of all packages is the same but the input configuration files are different for each package. An

example would be different packages of the app, each one built to display the text in the app in

a different language. Such apps have identical source code and differ only in the resource files

such as text files or image files. As a result, the execution traces generated during execution of

two such apps are nearly identical. API birthmark algorithm therefore detects high similarity

between such apps. In our dataset, we found 16 apps in total that fall under this category. An

example of one app is given below. This app is a puzzle game, released under three different

packages, each one showing different quiz questions, but having identical structure.

App name Package name

How I Met Your Mother Trivia com.pbgames.q.himym

Gossip Girl Trivia com.pbgames.q.gg

Two and a Half Men Trivia com.pbgames.q.tahm

The classification of packages of two such apps as similar by the API birthmark is indeed

truthful. Therefore, we removed such cases from the count of false positives. The table below
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Figure 3.3: API birthmark results on pairwise comparisons for 300 apps (300x300 pairs). Di-
agonal shows the result of comparing two traces of the same app. Non-diagonal shows com-
parisons between traces of two different apps.

gives the number of false positives after this filtering.

Total apps False negatives False positives

300 45 (15%) 45 (15%)

(2) Use of programming framework: There are many programming frameworks such as

PhoneGap [19] that let developers write apps using web technologies. These frameworks inter-

act with the underlying mobile operating system such as Android. Hence apps developed using

such frameworks exhibit a common set of API method sequences that are part of this interac-

tion. On encountering this common set of method sequences in the traces of such apps, API

birthmark algorithm computes high similarity between them. To prevent such apps from being

detected as similar, we can collect the set of such commonly found API method sequences and

discard them during API birthmark calculation.

(3) Use of common libraries: Many Android apps use a common set of libraries, such as

Google’s advertisement library. Because of the interaction of the advertisement library with

Android, such apps also display a common API methods during their execution. A similar

approach as mentioned above can be used to filter out the common method sequences and thus

prevent the classification of the apps as similar.

We believe that the above two filtering techniques would further reduce the number of false

positives observed.
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3.5.6 Detecting Identical Apps

The goal of this experiment is to test the API birthmark’s ability to detect copies of the same

app. Since a birthmark of an app is its unique fingerprint, birthmarks of two identical copies

of the app (such copies have the same source code too) should be the same. We executed each

app twice, treating the resulting two traces as if generated by identical copies of the same app.

For each of the two executions of the app, we gave the same seed value to the event generator

of Monkey, thereby making sure that same input event sequences are generated for both runs

of the app. This is to simulate the execution of two copies of the same app with the same user

input.

We then ran the birthmark algorithm on the two traces of the same app, thereby computing

two birthmarks, and then calculated the similarity coefficient between them. We repeated this

procedure for every app in our dataset of 300 apps. The resultant values of similarity coef-

ficient are on the diagonal of figure 3.3. The number of false negatives for results in figure

3.3 is the number of apps which the API birthmark algorithm failed to detect as similar, even

though both the traces were generated from the same app. We observed that the number of

false negatives dropped to 12 as compared to the experiment in 3.5.5 in which it was 45. This

is an expected result, since we are comparing two traces of the same app here as opposed to

comparing an app and an obfuscated app shown in figure 3.2.

3.5.7 Detecting Distinct Apps

As much as a birthmark should detect copies of apps, it is important that it should be able to

distinguish between two different programs by indicating a low value of similarity between

them, thereby proving its credibility. We tested this aspect with our dataset of 300 apps. We did

a pairwise comparison for each pair (A, B) where A and B are two apps from our dataset and A

is different from B. The results are as shown on non-diagonal points of figure 3.3.

The number of false positives is the number of apps for which the API birthmark algorithm

produced similarity coefficient above the threshold during comparison of the app with at least

one other app. We observed that the number of false positives increased for this experiment

as compared to the experiment described in 3.5.5. It is equal to 115, and this number reduced
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Figure 3.4: API birthmark results on pairwise comparisons for 300 apps (300x300 pairs), keep-
ing the Java API method call in the execution traces. Diagonal shows the result of comparing
an app and its obfuscated counterpart. Non-diagonal shows comparisons between app and ob-
fuscated counterpart of a different app.

to 86 after filtering out the different customized versions of the same app. The reasons behind

this misclassification are same as those explained earlier in 3.5.5 such as presence of apps

developed using a common programming framework and apps using the same advertisement

library. Additional filtering techniques are needed to accommodate such apps.

3.5.8 Effect of Inclusion of Java API Methods

During the calculation of API birthmark, we are only observing the Android API method invo-

cations by the app. But an Android app makes use of Java API methods as well. We wanted

to evaluate the effect of including this usage of the Java API by the app. Figure 3.4 shows

the result of pairwise comparison of 300 apps and 300 obfuscated counterparts of the apps,

in which the collected traces have the Java API method calls in addition to the Android API

method calls.

Collecting the Java API methods makes the individual traces larger, which in turn adds

more items in the API birthmark calculation. As a result, the union of sets of method sequences

computed for calculating the Jaccard similarity becomes larger, and hence it results in lower

absolute value of similarity coefficient between two apps. For example, the median value of

similarity coefficient for an app and obfuscated counterpart of a distinct app is 0.03 without

Java and it is 0.04 with Java (the lower this value, the better it is). The median value of similarity
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Figure 3.5: Distribution of similarity measures reported by API Birthmark when two different
obfuscators were used. Box on left corresponds to using ProGuard as the obfuscator whereas
box on right corresponds to use of Androcrypt as obfuscator. The values used to draw the plots
are taken from the columns labelled as (PG, B) and (AC, B) in 3.6.

coefficient for an app and obfuscated counterpart of the same app is 0.73 without Java, and the

same value is 0.67 with Java.

We therefore concluded that inclusion of Java API methods doesn’t have an absolute ef-

fect on the birthmark computation. We decided not to include the Java API methods in our

birthmark computation, since it results in lower values similarity coefficient.

3.5.9 Experiments with ProGuard as Obfuscator

In our experiments so far, we used Androcrypt as the obfuscator to produce the obfuscated

counterparts of original apps. As shown in §3.2, Androcrypt is one of the strongest obfuscator

that we know of and hence produces strong obfuscated code. The stronger the obfuscation, the

lower the similarity measures reported by any similarity detector. As a corollary, the weaker

the obfuscation, the higher the similarity measures. Hence, if we use any other obfuscator

which is weaker than Androcrypt, the scores reported by our API birthmark technique should

only get higher. To confirm this hypothesis, we performed the following experiment. We took

the same set of 53 apps shown in the 3.6, and used off-the-shelf obfuscator – ProGuard – to

obfuscate the apps. We ran API birthmark technique on the pair of apps (A, Aob f uscated) where A

is an original app and Aob f uscated is same app obfuscated using ProGuard. We then ran the API

birthmark on each pair of apps. The results are shown in the column labelled as (PG, B) in 3.6.
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Figure 3.6: Similarity scores reported by two app similarity detectors, Androguard and API
Birthmark, when app and its obfuscated version are given as input. The first column lists the
category of the app. The second column gives the app package name. The last four columns
show results for different combinations of obfuscators and similarity detectors. The abbrevia-
tions in the four columns stand for the following:
(PG, AG): ProGuard as obfuscator, Androguard as similarity detector.
(AC, AG): Androcrypt as obfuscator, Androguard as similarity detector.
(PG, B): ProGuard as obfuscator, API Birthmark as similarity detector.
(AC, B): Androcrypt as obfuscator, API Birthmark as similarity detector.

Category App/Package name App size (PG, (AC, (PG, (AC,
(in KB) AG) AG) B) B)

Development alogcat 40 0.76 0.03 1.00 0.68
Games chessclock 92 0.78 0.09 1.00 0.74
Games tictactoe 1,963 0.24 0.01 0.93 0.57
Games solitaire 70 0.84 0.01 1.00 1.00
Games sokoban 109 0.82 0.07 1.00 0.88
Games kaesekaestchen 148 0.79 0.05 1.00 0.69
Games atomix 210 0.90 0.02 1.00 0.23
Games lexic 245 0.68 0.02 0.81 0.26
Games androc 539 0.79 0.01 1.00 0.17
Games games.memory 2,080 0.68 0.03 0.90 0.25
Games bomber 455 0.80 0.11 1.00 0.67
Games blockinger 801 0.48 0.01 1.00 0.17
Games blokish 421 0.71 0.02 1.00 1.00
Games amazed 15 0.44 0.10 1.00 0.67
Games opensudoku 211 0.95 0.01 1.00 0.75
Internet blitzmail 280 0.22 0.00 1.00 1.00
Internet connectbot 858 0.72 0.00 1.00 0.70
Internet reddit 759 0.47 0.00 1.00 0.50

Multimedia binauralbeat 965 0.63 0.02 1.00 0.41
Multimedia avs234 162 0.79 0.02 1.00 1.00
Multimedia zooborns 39 0.75 0.05 1.00 0.41
Multimedia zxing 720 0.61 0.00 1.00 0.95
Multimedia photostream 134 0.77 0.03 0.99 0.61
Navigation pedometer 46 0.97 0.03 1.00 0.39
Navigation stardroid 2,188 0.53 0.51 1.00 0.96

Office aarddict 1,852 0.29 0.00 1.00 0.65
Office babycaretimer 457 0.23 0.01 1.00 0.46
Office calculator 77 0.66 0.01 0.99 0.56
Office coinflip 422 0.67 0.04 0.99 0.97
Office birthdroid 79 0.78 0.08 1.00 0.85
Office Keyer 82 0.65 0.04 1.00 0.40
Office TeaTimer 216 0.77 0.04 1.00 0.51
Office aGrep 54 0.88 0.04 1.00 1.00
Office simplydo 64 0.73 0.03 1.00 0.56
Office tipitaka 502 0.49 0.00 0.99 0.77
Office mileage 366 0.72 0.56 1.00 0.96
Office wikinotes 119 0.92 0.28 1.00 0.31
SMS autoanswer 88 0.54 0.14 1.00 1.00
SMS autoawayy 112 0.69 0.03 1.00 1.00

Reading adsdroid 116 0.65 0.01 1.00 1.00
Reading andquote 38 0.88 0.06 1.00 0.24

Education antikythera 531 0.71 0.08 1.00 0.83
Education angulo 18 0.93 0.08 1.00 1.00

System airpushdetector 33 0.86 0.13 1.00 0.65
System autostarts 288 0.43 0.00 0.90 0.42
System appalarm.pro 121 0.80 0.01 1.00 0.22
System apptracker 140 0.57 0.02 0.94 0.46
System asqlitemanager 339 0.71 0.01 1.00 0.23
System batterydog 21 0.73 0.38 1.00 1.00
System httpmon 74 0.80 0.01 1.00 1.00
System adbWireless 378 0.36 0.00 1.00 0.92
System androsens 21 0.91 0.21 1.00 0.54
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Figure 3.7: API birthmark results on pairwise comparisons for 35 apps (35x35 pairs) with
traces generated manually. Diagonal shows the result of comparing an app and its obfuscated
counterpart. Non-diagonal shows comparisons between app and obfuscated counterpart of a
different app.
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Figure 3.8: API birthmark results on pairwise comparisons for 35 apps (35x35 pairs) with traces
generated automatically using Monkey, keeping the Java API method call in the execution
traces. Diagonal shows the result of comparing an app and its obfuscated counterpart. Non-
diagonal shows comparisons between app and obfuscated counterpart of a different app.

For comparison, we also give values reported by API birthmark when Androcrypt was used

instead of ProGuard in the column labelled as (AC, B) in 3.6. We show box plot of the values

in Figure 3.5. As the plot shows, when an off-the-shelf obfuscator such as ProGuard is used,

API birthmark performs at least as good as or better, compared to the case when Androcrypt is

used.

3.5.10 Automated Execution using Monkey

The API birthmark is a dynamic birthmark that requires run-time trace generated during exe-

cution of the app. Since Android apps are interactive in nature, you need to provide user inputs

such as clicks, gestures and touch events to them on a continuous basis during their run. During
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manual execution of the app, the user of the app provides these inputs. But manual execution

is time consuming and limits the number of apps that one can experiment with. Therefore, we

wanted to automate the execution of Android apps.

In order to run the apps automatically, you need a tool that will generate events automati-

cally as opposed to manually supplying the events. We found that the Monkey [23] program

shipped with Android SDK is one of the best tools available for such purposes. The primary

purpose of Monkey is to stress-test the app by simulating the generation of various input events

such as clicks and touches. But by using this automatic generation of input events, you can

automate the execution of an Android app. Monkey can be configured to run with a number of

command line options. For our setup, we used the following options: the seed value of random

number generator, total number of input events to be generated and option to ignore the excep-

tions during app’s execution. For a given app and a seed value, monkey generates a particular

but random sequence of events. We give the same seed value for execution of both, the original

app and the plagiarized app, so that the exact same operations are exercised while executing the

pair of apps using monkey.

Using Monkey, we succeeded in automatic execution and trace collection for 350 apps.

Use of Monkey for more apps in our dataset failed due to a number of reasons. The events

supplied by Monkey may not be context-sensitive i.e.,they may not be relevant for the current

execution state of the app, resulting into the app’s crash, thereby producing no trace. Monkey

does not give any preference to frequently occurring events over infrequent ones during the

event generation. Moreover, it is hard to predict the right fraction of UI events and system

events needed to run the app exhaustively, that can be given as input to Monkey. This results in

poor coverage of the app’s functionality, thereby leading to poor quality of the generated traces.

The incomplete coverage of the app’s functionality in traces directly affects the computation of

the API birthmark. We conducted an experiment to study the impact of using Monkey for

the collection of execution traces of Android apps. We chose 35 apps randomly from our

dataset. In addition to the traces that were generated earlier using Monkey for these apps, we

manually executed these apps by interacting with the app as a user and collected another set

of traces. Figure 3.7 and 3.8 shows the results of pairwise comparisons of these apps and their

obfuscated counterparts, with manually generated traces and traces generated using Monkey,
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respectively. It is evident from the two graphs that the API birthmark algorithm gives more

accurate similarity coefficients when the traces have been generated manually. We therefore

believe that use of a more robust tool for automated execution of Android apps would give

better results. In future, we plan to repeat our experiments using other tools available such as

Dynodroid [63] which has better coverage of the app’s functionality than Monkey. However,

there are trade-offs of choosing each of these tools e.g.,Dynodroid suffers from a performance

penalty (Dynodroid is 5X slower than Monkey) and hence may not be suitable for app execution

at a large scale.

3.5.11 Attacks and Limitations

Let us now look at the possible attacks on the API birthmark. An attacker can inject random

API method calls in the source code of the app and thus skew the API birthmark. Such API

method call injection may be done by employing techniques used in the creation of polymorphic

viruses [92]. For this attack to be effective, each newly added method call or the method calls

added as a group should produce zero side effects. Inferring the dummy methods from the

API automatically is a hard problem. The attacker will have to resort to manual techniques

for finding such API methods or method sequences. Indeed, if discovery of such methods or

method sequences is an easy task, we can generate them ourselves, and filter them out from the

dynamic traces, before running the API birthmark algorithm. Moreover, the attacker will have

to insert at least 30 percent new sequences (since similarity threshold is 0.3), which leads to

increased code size and additional runtime cost. In general, the attacks on the API birthmark

have cost overhead and involve manual work which offer less incentives for the attacker to

implement them.

First limitation of our approach is its scalability. In Section 3.5.10, we explain the difficul-

ties faced in automating the execution of Android apps. Even the best tool among all of the

available ones, namely monkey ([23]), does not yield useful traces for a number of available

apps because of many reasons such as crashes in the middle of the execution or generation of

extremely short traces. Also, the encrypting obfuscator works only partially on apps that con-

tain certain classes such as ContentProvider, as described in section 3.2. These factors put a

limit on the number of apps with which we can experiment. Unless the automatic execution of



70

Android apps becomes pratical for large datasets, experimenting on them remains a subject of

future work. One practical solution could be to run the static analyses first on the larger dataset

of apps which would narrow down the suspected plagiarized apps. We can then run the API

birthmark algorithm on the smaller dataset.

Our setup includes automatic execution of apps by using the monkey program shipped with

Android SDK. The fact that we rely on monkey for generating input events has two implica-

tions.

1. Monkey generates a random sequence of input events corresponding to a seed value.

Greater the coverage of input events provided by monkey, better it is to compute similar-

ity using API birthmark algorithm. To increase the runtime test coverage, better tools are

needed for automatic testing of Android apps.

2. For a given seed value, monkey generates a stream of events such as clicks, touches or

gestures to stress test the app. We give the same seed value to both, the original and the

plagiarized app, so that the same sequence of events is generated while executing them.

However, if there are small UI tweaks in the plagiarized app, some of the generated events

would be impossible to operate on the plagiarized app. For example, if monkey has

generated an event of type Send touch-event-at-(x,y)=(1.0, 4.0), but the plagiarized app

has moved the button to a different location, then an attempt to execute this operation may

lead to unexpected consequences. Event generation in such cases may be accomplished

by coupling monkey with other powerful GUI automation approaches such as Sikuli

Script [90] which provides a mechanism to programmatically control GUI elements in the

automation scripts using their screenshots. Using Sikuli Scripts, one can use screenshots

of GUI elements in the testing tool rather using raw coordinates, thus eliminating the

scenarios where there are minor modifications in the GUI.

3.6 Summary

Code plagiarism is an important problem that plagues the mobile app development community,

and serves as a popular vehicle for the delivery of malicious apps. Although the community

has developed a number of code similarity metrics to combat plagiarism, they rely on syntactic
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features of the code to operate.

In this chapter, we show that such syntactic similarity measures are broken, because they

can easily be evaded using simple obfuscations. We develop a robust API birthmark-based

approach to detect code similarity. Our experiments on a dataset of Android apps shows that

the birthmark-based approach is effective at detecting code plagiarism even with obfuscated

apps.
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Chapter 4

Related Work

Birthmark-based software theft detection. The technique of constructing software birth-

marks was proposed earlier by other researchers in the context of traditional desktop programs.

To our knowledge, we are the first to use software birthmarks on mobile applications. Software

birthmarks can be categorized into two classes, dynamic and static. Myles and Collberg intro-

duced the whole-program-path dynamic birthmark [68]. Our approach of using dynamic API

birthmarks has been built upon the techniques proposed in [83] and [80]. In [83], Tamada et

al. proposed a dynamic API birthmark based on observations of the interaction of windows

application with its environment. Schuler et al. [80] put forward an improved version of dy-

namic API birthmark that is based on watching the program interaction at the level of objects

which results in shorter API sequences. These two projects were done in the context of tra-

ditional desktop software (Windows applications and Java programs, respectively). We have

applied those ideas to the domain of mobile apps, particularly for the problem of identifying

plagiarized mobile apps.

A slightly different problem of assessment of similarity between two algorithms was tar-

geted in [94] where they used two dynamic value-based approaches, namely N-version pro-

gramming and annotation.

Among different bodies of work that use static birthmarks, GPLAG [60] is a tool to detect

plagiarism in software by mining program dependence graphs. A birthmark for Java applica-

tions was developed by Lim et al. in [59] that identifies and uses possible stack patterns that

may be formed during program execution by analyzing the Java bytecode statically. Use of

opcode-level k-grams as software birthmarks was done in [67] by Myles and Collberg.

Code clone detection The problem of detecting clones in software code has been well

studied. A survey paper by Bellon et al. [78] gives a good comparison and evaluation of various
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clone detection tools for traditional software programs. Various techniques have been explored

to detect code clones that derive and use different type of information from the code such as

text and tokens [91], metric vectors [54], abstract syntax trees [30] and program dependency

graphs [56].

Detecting plagiarized mobile apps. The problem of identifying plagiarism in mobile apps

has attracted a lot of attention recently. In [98], the idea was to generate a unique hash of the

app from its Dalvik bytecode by using a fuzzy hashing technique. In [97], the authors use a

number of features of the application such as the android API methods, permissions requested

by the application etc. to construct a feature vector and then employ Jaccard distance to define

distance between two feature vectors. In [35], the approach is to first group together similar

apps based on certain features and then apply program-dependence-graph-based techniques to

detect cloning.

To summarize, the proposed approaches employ different techniques such as fuzzy hashing

[98], feature hashing [47], program dependence graph (PDG) [35], [50] and module decoupling

[97] for computing unique fingerprint of the app. These techniques rely on extracting static

properties of the application by analyzing the application’s source code. These can be defeated

easily by code obfuscations. We are proposing an effective plagiarism detection technique for

mobile apps based on dynamic analysis which is resilient to code obfuscations.

Mining API mappings. An upcoming survey article by Robillard et al. [77, §6] provides

a good overview of prior work on mining API mappings. Among these, the work most directly

related to ours is the MAM project [95]. MAM’s goal is the same as Rosetta’s, i.e., to mine

software repositories to infer how a source API maps to a target API. The MAM prototype was

targeted towards Java as the source API and C# as the target API. Despite sharing the same goal,

MAM and Rosetta differ significantly in the approaches that they use, each with its advantages

and drawbacks. To mine API mappings between a source and a target API, MAM relies on the

existence of software packages that have been ported manually from the source to the target

platform. For each such software package, MAM then uses static analysis and name similarity

to “align” methods and classes in the source platform implementation with those of the target

platform implementation. Aligned methods are assumed to implement the same functionality.

MAM’s use of static analysis allows it to infer a large number of API mappings (about
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25,800 mappings between Java and C#). It also allows MAM to infer likely mappings between

arguments to methods in the source and target APIs, which Rosetta does not currently do.

However, unlike Rosetta, MAM requires that the same source application be available on the

source and target platforms. MAM’s approach of aligning classes and methods across two

implementations of a software package does not allow the inference of likely API mappings if

there are similar, but independently-developed applications for the source and target platforms.

MAM’s approach is also limited in that it uses name similarity as the only heuristic to bootstrap

its API mapping algorithm. In contrast, Rosetta uses a number of attributes combined together

as factors, and can easily be extended to accommodate new similarity attributes as they are

designed. Most importantly, while MAM uses a purely syntactic approach to discover likely

API mappings, Rosetta’s approach uses similarities in application behavior.

Leveraging API mappings. Nita and Notkin [71] develop techniques to allow developers

to adapt their applications to alternative APIs. They provide a way for developers to specify a

mapping between a source and a target API, following which a source to source transformation

automatically completes the transformations necessary to adapt the application to the target

API. Rosetta can potentially complement this work by inferring likely mappings.

GUI APIs. Androider [81] is a tool to reverse-engineer application GUIs. Androider uses

aspect-oriented programming techniques to extract a platform-independent GUI model, which

can then be used to port GUIs across different platforms. While Androider provides a GUI for

a target platform by analyzing GUIs of a source platform at runtime, Rosetta instead infers API

mappings, and is not restricted to GUI-related APIs. Bartolomei et al. [29] analyzed wrappers

between two Java GUI APIs and extracted common design patterns used by wrapper devel-

opers. They focused on mapping object types and identified the challenges faced by wrapper

developers. Method mappings given by Rosetta can possibly be used along with their design

patterns to ease the job of writing wrappers.

API aids and learning resources. A number of prior projects provide tool support to

assist programmers working with large, evolving APIs (e.g., [36, 38, 64, 79, 88, 93, 96]). The

programmer’s time is often spent in determining which API method to use to accomplish a

particular task. These projects use myriad techniques to develop programming assistants that

ease the task of working with complex APIs. Rosetta is complementary to these efforts, in that
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it works with cross-platform APIs.

A related line of research is on resources for API learning (e.g., [32, 37, 48, 74, 84]). These

projects attempt to ease the task of a programmer by synthesizing API usage examples, evolu-

tion of API usage, and extracting knowledge from API documentation. Again, most of these

techniques work on APIs on a single platform. Rosetta’s cross-platform approach can possibly

be used in conjunction with these techniques to facilitate cross-platform API learning.

Factor graphs. Finally, Rosetta’s probabilistic inference approach was inspired by other

uses of factor graphs in the software engineering literature. Merlin [61] uses factor graphs

to classify methods in Web applications as sources, sinks and sanitizers. Such specifications

are useful for verification tools, which attempt to determine whether there is a path from a

source to a sink that does not traverse through a sanitizer. To infer such specifications, Merlin

casts a number of heuristics as factors, and uses belief propagation. Kremenek et al. [55] also

made similar use of factor graphs to infer specifications of allocator and deallocator methods in

systems code. Factor graphs are just one approach to mining specifications; a number of prior

projects have considered other techniques for data mining and inferring belief for specification

inference and bug detection (e.g., [40, 58, 62]). Future work could consider the use of these

inference techniques in Rosetta as well.

Using NLP techniques in software engineering research. Recently, researchers have

succcessfully applied techniques from natural language processing (NLP) field to some of the

software engineering tasks. In [49], authors argue that code found in software programs follows

repetitive patterns, similar to the natural language text and they used n-gram language models to

predict the likely next token to occur after a given sequence of tokens. Nguyen et al. proposed a

semantic language model ([70]) that extends the n-gram language model and provides improved

accuracy for code token prediction.

Haghighi et al. [46] proposed a solution to infer translation dictionary between two lan-

guages by using non-parallel text of the two languages. We use their method as our inference

engine and to our knowledge, we are the first to apply NLP technique for the problem of infer-

ring mappings between APIs. [42] and [53] are some of the older papers in NLP domain that

induce translation dictionary between non-parallel text.
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Chapter 5

Conclusion

The work described in this dissertation uses the interaction of mobile apps with the underly-

ing platform as an abstract representation for the high level behavior of the apps. Our work

demonstrates that this representation in the form of sequences of API methods invoked by the

mobile apps can be used as as a resource in detecting similarities between mobile apps or simi-

larities between mobile platform APIs. The systems we have developed can be used by mobile

app developers for cross-platform app development or by platform vendors in keeping the app

repositories free from plagiarized apps. These systems are one small piece in the bigger puzzle

of automating the tedious and time-consuming tasks in mobile application development and

maintenance. We now describe a few research questions in this area.

5.1 Future Directions

App development on multiple devices and platforms. Mobile app developers face many

challenges in the process of developing apps. Cross-platform app development is only one of

the problems. Another problem is the existence of a range of devices on a single platform,

each one having a different screen size and resolution. App developers have to ensure that

their apps show nicely and correctly for each of these devices available on the same platform.

Development tools that shield the programmers from some of the device-specific considerations

would be of great help.

A number of different computing platforms are emerging and would be deployed in the near

future. Car manufacturers have started offering either in-built apps in cars [7] or apps on other

wearable devices that work with connectivity systems in cars [6]. Apple, Samsung and other

vendors have introduced smart-watches loaded with apps. With Internet-of-Things, a plethora

of other devices will soon have apps installed on them. It would be interesting to see how apps
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are built for each of these computing platforms. As developers try to develop the same app for

every single such device, helper tools would be needed to make this development process more

manageable.

Productivity tools for programmers. An interesting fact about the ecosystem of mobile

apps is the huge scale at which it is growing. The two most popular platform vendors, Apple

and Google, each have over 1.4 million apps in their app stores as of May 2015. [18]. These

app stores attracted over 250,000 registered developers each in 2014 [4]. Thus, mobile apps

are being developed and deployed at a large scale by a growing community of developers. The

availability of mobile apps in huge numbers can be leveraged by applying statistical techniques

on these big codebases to develop new insights that would help in development of new mobile

apps. Systems such as recommendation engines for suggesting different pieces of the code

at different granularity levels and semi auto-completion systems that help fill in partial code

templates can be built in this manner to help app developers.
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