Staff View
Application of the electroosmotic effect for thrust generation

Descriptive

TitleInfo
Title
Application of the electroosmotic effect for thrust generation
Name (type = personal)
NamePart (type = family)
Hansen
NamePart (type = given)
Thomas Edward
NamePart (type = date)
1989-
DisplayForm
Thomas Edward Hansen
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Shan
NamePart (type = given)
Jerry
DisplayForm
Jerry Shan
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Diez
NamePart (type = given)
Francisco Javier
DisplayForm
Francisco Javier Diez
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Cook-Chennault
NamePart (type = given)
Kimberly
DisplayForm
Kimberly Cook-Chennault
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Zadeh
NamePart (type = given)
Shahab Shojaei
DisplayForm
Shahab Shojaei Zadeh
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (encoding = w3cdtf); (qualifier = exact)
2015
DateOther (qualifier = exact); (type = degree)
2015-10
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2015
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
The present work focuses on demonstrating the capabilities of electroosmotic pumps, (EOP) to generate thrust. An underwater glider was successfully propelled by electroosmosis for the first time published - at 0.85 inches per second. Asymmetric AC voltage pulsing proved to produce higher flow rates then equivalent DC pumps for the same average voltage. Ultra-short pulsing proved 100 nanosecond rise times in EOP are possible, which surpassed published predictions by three orders of magnitude. Theories behind efficiency losses of high power EOP were investigated. Direct measurement of effective voltage at the face of a membrane is the most accurate way to determine voltage drop across the electrolyte of an EOP. Forced convection lowered efficiency of the EOP for low voltages by preventing capacitance charging, but proved to prolong pump life during high power application.
Subject (authority = RUETD)
Topic
Mechanical and Aerospace Engineering
Subject (authority = ETD-LCSH)
Topic
Electro-osmosis
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_6626
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xiii, 56 p. : ill.)
Note (type = degree)
M.S.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Thomas Edward Hansen
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T33X88N6
Genre (authority = ExL-Esploro)
ETD graduate
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Hansen
GivenName
Thomas
MiddleName
Edward
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2015-07-17 17:48:02
AssociatedEntity
Name
Thomas Hansen
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024