
SFT-BASED DOA DETECTION

ON CO-PRIME ARRAY

BY GUANJIE HUANG

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Athina Petropulu

and approved by

New Brunswick, New Jersey

October, 2015



ABSTRACT OF THE THESIS

SFT-BASED DOA DETECTION

ON CO-PRIME ARRAY

by Guanjie Huang

Thesis Director: Athina Petropulu

In the thesis, we propose a direction of arrival (DOA) estimation method with co-prime sensor

arrays based on the Sparse Fourier Transform (SFT). A co-prime array is composed of two

uniform linear arrays (ULAs) whose inter-sensor spacings are Mλ/2 and Nλ/2, respectively,

where M and N are co-prime integers and the λ represents the signal wavelength. The co-

prime array is adopted here because it can extend the degrees of freedom thus benefiting DOA

detection. Assuming that there are not many targets in the array far field, the array snapshot

is sparse in the spatial frequency domain. Since the spatial frequencies of the array snapshot

contain DOA information, the DFT is traditionally used to obtain DOA information. In the

thesis, the SFT is employed to estimate the DOA instead of the DFT. Compared to the DFT,

the SFT only needs a small subset of snapshot samples to estimate the significant coefficients.

Owing to this advantage, we design a new method to estimate DOA, using a subset of sensors.

Both analytical and computer simulations confirm the validity of the proposed approach.

ii



Acknowledgements

I would never have been able to finish my thesis without the guidance of my committee members,

the inspiration of previous publications, and the help from friends.

I would like to express my deepest gratitude to my advisor, Prof. Athina Petropulu, for her

excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing

research. I would also like to thank Bo Li for guiding my research for the past one year and

helping me to develop my background in radar system.

And many thanks to Shunqiao Sun, Valerie Yang, who was always willing to help and give best

suggestions. It would have been a lonely lab without them.

Finally, I would like to thank my parents. They were always supporting me and encouraging

me with their best wishes.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Basic Concepts of Discrete Fourier transform . . . . . . . . . . . . . . . . . . . 3

2.1. The Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. The Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. Sparse Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1. Single Frequency Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2. Randomly Binning Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3. Estimate Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4. Compute the Residual and Repeat . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4. SFT-based DOA Detection on Sensor Array . . . . . . . . . . . . . . . . . . . . 12

4.1. Phased Array Based on SFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2. Coprime Array Based on SFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. DOA Detection Based on Fixed SFT . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1. Pesudorandom Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iv



5.2. Saving Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



List of Tables

4.1. The value of k = ±(Nm−Mn) when M = 3 and N = 4 . . . . . . . . . . . . . 18

vi



List of Figures

2.1. The number of arithmetical operation required for DFT and FFT . . . . . . . . . 6

4.1. Model for phased array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2. The SFT output when we have 3 targets . . . . . . . . . . . . . . . . . . . . . . . 14

4.3. The result of DOA detection when we have 3 targets . . . . . . . . . . . . . . . . 15

4.4. The success rate in different SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.5. Model for co-prime arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.6. The result of DOA detection when we have 5 targets . . . . . . . . . . . . . . . . 20

4.7. The Succedd Rate of the SFT-based DOA Detection Using Coprime Array . . . 20

4.8. The result of DOA detection when we have 127 targets . . . . . . . . . . . . . . . 21

5.1. The success rate in different SNR using 23+38 sensors. . . . . . . . . . . . . . . . 24

5.2. Spatial spectrum for SFT-based DOA estimation on co-prime array . . . . . . . . 25

5.3. The success rate for sensor-saving co-prime array in different SNR. . . . . . . . . 25

5.4. The percentage of saving sensors in different number of targets. . . . . . . . . . . 26

5.5. The percentage of saving sensors using different number of virtual sensors. . . . . 27

vii



1

Chapter 1

Introduction

The Discrete Fourier Transform (DFT) can convert the discrete time signal samples from the

original domain (often time or position along a line) to the sampled frequency domain. The

DFT is obtained by decomposing a list of values into components of different frequencies. The

DFT coefficients represent magnitude and phase of the different frequency components. This

operation is useful in many applications but computing it directly from the definition is often

too slow to be practical. The FFT is a algorithm to compute the same result more quickly and

efficiently; computing the DFT of N points using the definition takes O(N2) complex multipli-

cations, while an FFT can compute the same DFT in only O(N2 log2N) complex multiplications.

The difference in speed can be enormous, especially for long data sets where N may be in the

thousands or millions.

Recently, a new tool known as the Sparse Fourier Transform (SFT), has been developed by

[1, 2, 3] to compute the frequency content of signals which are sparse in the frequency domain.

The SFT has a ability to use partial time domain samples to estimate the significant Fourier

coefficients, as opposed to computing all Fourier coefficient and then determining the largest

values. So this algorithm can greatly reduce the computation time and the required storage as

compared with FFT.

In this thesis, the SFT is applied to detect direction of arrival (DOA) on a sensor array. In the

DFT of the array snapshot (spatial frequency domain), the location of the peaks are directly

related to DOAs of the targets. An array snapshot contains the array measurements at a specific



2

time. If there is a small number of targets as compared to the number of receive sensors, the

array snapshot will be sparse in the spatial frequency domain. Thus, the SFT can be used on

the snapshot to detect the spatial frequencies corresponding to targets. Since the SFT only

needs to use partial samples, just a subset of the sensors are need. That is to say, we can save

some sensors by using SFT-based DOA detection.

The co-prime array consists of two ULAs which have N and 2M − 1 sensors, respectively.

Their inter-sensor spacing are Mλ/2 and Nλ/2, where M and N are co-prime integers and

λ represents the transmit signal wavelength. The co-prime array can improve resolution by

achieving higher degrees of freedom (DOFs). There are two kinds of approaches: sum co-prime

array and difference co-prime array. The difference co-prime array can achieve 2MN + 1 DOFs

by using N + 2M − 1 physical sensors. The sum co-prime array only achieves 2MN − 2M −N

DOFs [4]. In this thesis, the difference co-prime array is employed to increase the resolution

of the DOA detection. Since the samples for DOA estimation are randomly generated, the

saving sensors are different in each estimation. Hence, we try to implement the SFT-based

DOA estimation with pseudorandom samples to make the saving sensors fixed.

In the next chapter, we review the basic concepts and theorems which are necessary to under-

stand the how the SFT benefits us. In Chapter 3, we introduce the SFT algorithm to show

how it works and how fast it is. Chapter 4 introduces the sensor array and the implementation

of the SFT-based DOA detection using a co-prime array. Then we introduce the SFT with

pseudorandom samples in chapter 5. Chapter 6 concludes the paper.



3

Chapter 2

Basic Concepts of Discrete Fourier transform

In this chapter, we introduce the useful concepts and theorems required to understand what

the Discrete Fourier Transform and Sparse Fourier Transform aim to do. Also, we will briefly

speak about the Fast Fourier Transform, which is an algorithm to compute the DFT and inverse

DFT.

2.1 The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) converts the discrete time signal samples from their

original domain to the sampled frequency domain. The DFT coefficients represent magnitude

and phase of the different frequency components.

The Discrete Fourier Transform of a signal x is defined by

X[k] ,
1

N

N−1∑
n=0

x[n]e−2πikn/N , k = 0, 1, 2, 3, . . . , N − 1, (2.1)

where , means ”is defined as” or ”equals by definition”, k is used to represent the frequency

domain ordinal, and n is used to denote the time domain ordinal. The N is the length of the

sequence to be transformed. X[k] is the Fourier coefficient of x[n] at frequency k.

The inverse DFT is given by

x[n] =

N−1∑
k=0

X[k]e2πikn/N , n = 0, 1, 2, 3, . . . , N − 1. (2.2)

It can be shown that there is a one-to-one relationship between the two kind of representations.



4

We write

X[k]
F←→x[n]. (2.3)

Also, the DFT is almost an isometric map:

CN F←→CN , (2.4)

enjoying several properties:

1. Time Shifting

x[n− n0]
F←→X[k]e−2πikn0/N ; (2.5)

2. Time Scaling

x[an]
F←→ 1

|a|
X[a−1k]; (2.6)

2.2 The Fast Fourier Transform

The FFT is a popular algorithm to compute the DFT and its inverse. The traditional DFT

implementation takes O(N2) arithmetical operations to compute the N coefficients, while the

FFT can compute the same coefficients in only O(N2 logN). Obviously, the FFT can make a

big difference when the data is very long.

There are many algorithmic variants of the FFT. The widespread one is the Cooley-Tukey

(CT) Algorithm. And the most common form of the CT algorithm is the radix-2 decimation-

in-time (DIT) FFT. For Equation (2.1), the radix-2 DIT FFT firstly computes the DFT of

the even-indexed data (x[2m] = x[0], x[2], . . . , x[N − 2],m ∈ N+) and of the odd-indexed data

(x[2m+ 1] = x[1], x[2], . . . , x[N − 1],m ∈ N+), respectively. Then combining the two results,



5

we obtain the DFT of the whole data, as follow:

X(k) =

N/2−1∑
m=0

x[2m]e−2πi(2m)k/N +

N/2−1∑
m=0

x[2m+ 1]e−2πi(2m+1)k/N (2.7a)

=

N/2−1∑
m=0

x[2m]e
−2πimk
N/2 + e

−2πik
N

N/2−1∑
m=0

x[2m+ 1]e
−2πimk
N/2 (2.7b)

= Feven[k] + e
−2πik
N Fodd[k], k = 0, 1, . . . , N − 1. (2.7c)

Here Feven[k] and Fodd[k] represent the Fourier transform of the even-indexed and odd-indexed

part of x[n], respectively. Since Feven[k] and Fodd[k] are periodic with period N/2, we have

F [k + N/2] = F [k]. In addition, the factor e
−2πi(k+N/2)

N = −e−2πik
N . So Equation (2.7) can be

written as

X[k] = Feven[k] + e
−2πik
N Fodd[k], k = 0, 1, . . . ,

N

2
− 1, (2.8)

X[k +N/2] = Feven[k]− e
−2πik
N Fodd[k], k = 0, 1, . . . ,

N

2
− 1. (2.9)

Now we only need to take 2(N/2)2 + N/2 complex multiplications instead of N2 by splitting

N -points DFT into two N/2-points DFTs. Then doing the split recursively until we have the

2-points DFTs. So the number of complex multiplications is:

M(N) = 2M(
N

2
) +

N

2
(2.10a)

= 2(2M(
N

4
) +

N

4
) +

N

2
(2.10b)

= 4M(N/4) +
N

2
(2.10c)

. . . (2.10d)

= NM(1) +
N

2
log2N (2.10e)

=
N

2
log2N, (2.10f)

Where M [N ] denotes the the number of complex multiplications needed for N -points DFT.

For each 2-points DFT no multiplication is required, i.e., M(1) = 0. Hence, we can achieve

O(
N

2
logN) at last. As shown in Figure 2.1, FFT only takes few operations compared with

DFT. Already for N = 210 = 1024, FFT makes a big difference.



6

Figure 2.1: The number of arithmetical operation required for DFT and FFT

Fewer complex multiplications always translates to less computation time. So FFT is much

faster than traditional DFT. Currently, it is broadly applied to various fields, such as signal

processing and image/audio/video compression. Hence, if there exists one algorithm, which is

even faster than the FFT, it will cause a significant impact in applications. The next chapter

will introduce such an algorithm, named Sparse Fourier Transform.



7

Chapter 3

Sparse Fourier Transform

As we described before, the Discrete Fourier Transform can be written as Equation (2.1).

However, in many cases, most of these Fourier coefficients are zero. To obtain the significant

coefficients, we have to compute all Fourier coefficients. For computing each coefficient, all the

input data will be used. Even when using the FFT, this wastes time. Hence, the FFT is not

fast enough in the sparse Fourier coefficients case, especially for the big data applications where

the data size can easily go beyond terabytes.

The Sparse Fourier Transform (SFT), to be discribed next, applies to signals that are sparse in

the frequency domain. It uses a small fraction of the data to estimate the Fourier coefficients

of the non-zero frequencies. A simple method, proposed by [3], to implement SFT, is presented

next. The method consists of 4 steps:

1) Implement random binning and identify the non-zero frequencies ω in each bin.

2) Estimate the Fourier coefficient, cω, of each frequency, identified in the first step.

3) Out of all pairs (ω, cω), and retain them pairs whose coefficients have the greatest magnitude.

(m is the number of frequency components in the signal, assumed to be know apriori.)

4) Compute the residual data and go to step 1.

Obviously, the most significant advantage of SFT is that it is very fast for processing big data,

which are sparse in the frequency domain. This is because it uses only a small number of data

samples and estimates the non-zero Fourier coefficients only. That is to say, the SFT does not

waste time to compute the zero coefficients.



8

3.1 Single Frequency Identification

Assuming that the input data is a vector of the following form:

x[t] = cωe
2πiωt/N , t = 0, 1, 2, 3, . . . , N − 1, (3.1)

where cω represents the Fourier coefficients. Then considering a single frequency case, we fix a

frequency ω ∈ {0, 1, . . . , N − 1}.

The frequency position can be represented in binary format and its length is log2(N). We

employ the bit-testing algorithm to find the frequencies bit by bit. To estimate the bit value of

the frequency, we apply the frequency mask filters [3]:

gevenb [n] =
1

2
(δ[n] + δ[n−N/2b+1]), (3.2)

goddb [n] =
1

2
(δ[n]− δ[n−N/2b+1]), (3.3)

where n = 0, 1, . . . , N − 1 and δ[n] is the unit impulse

δ[n] =


0 n6=0

1 n=0

(3.4)

and b represents the digit of the binary number. The filter gevenb only allows the even frequencies

to pass. Similarly, the filter goddb only allows the odd frequencies to pass. Since the representation

of the frequency position is binary, it can only be 0 or 1 for each bit. Assuming the magnitude

of the output of filter goddb and filter gevenb are H1 and H0 respectively, then our decision rule

can be expressed as

|H1|
ε=1
≷
ε=0
|H0|, (3.5)

where the ε assigns the bit value. Hence, if the output of the filter goddb is larger than gevenb , we

can decide that this digit is 1 (i.e., ε = 1), and vice versa. Next, we demodulate the signal with



9

e−2πi2
bεt/N

x[t] = cωe
2πiωt/N × e−2πi2

bεt/N (3.6)

= cωe
2πi(ω−2bε)t/N . (3.7)

The frequency of the demodulated signal is ω − 2bε. Then input the demodulated signal to

the frequency mask filters to do the next bit-test. For example, the frequency is 13 Hz, can be

written as 1101 in binary. When b = 0, we plug b = 0 into Equation (3.2) and (3.3). Then we

have

gevenb [n] =
1

2
(δ[n] + δ[n−N/2])

F←→Gevenb (k) =


1 k=0,2,4,. . . ,N-2,

0 k=1,3,5,. . . ,N-1,

(3.8)

goddb [n] =
1

2
(δ[n]− δ[n−N/2])

F←→Goddb (k) =


0 k=0,2,4,. . . ,N-2,

1 k=1,3,5,. . . ,N-1,

(3.9)

where Gevenb and Goddb are the Fourier transform of the gevenb and goddb , respectively. k denotes

the frequency domain ordinal. In the frequency domain, we can easily find that Gevenb only

passes the even frequency and Goddb only passes the odd frequency. By convolving the input

data with the filters, we have |H1| > |H0| (i.e., ε = 1). Because 13 is a odd number. Then

demodulate the signal with e−2πi2
0εt/N . Applying next bit-testing to the demodulated signal,

we have the |H1| < |H0| (i.e., ε = 0 ) when b = 1. Similarly, we have |H1| > |H0| (i.e., ε = 1 )

when b = 2 and b = 3. So the frequency value is equal to 23× 1 + 22× 1 + 21× 0 + 20× 1 = 13.

Note that the estimated results of bit-testing probably also contain the frequencies of noise and

interference. So, later, we will talk about how to decide the true frequencies in Section 3.3 and

Section 3.4.



10

3.2 Randomly Binning Frequencies

3.2.1 Random Sampling and Random Permute

If the input data have multiple frequency components, we need to filter the data to isolate the

frequencies. Before filtering, we make the frequencies well separated by random sampling and

random permuting the data. The easiest way to do random sampling and random permuting

is to utilize the basic properties of Fourier transform (see Equation (2.5) and (2.6)) and create

x[(σ(k − 1) + t) mod N ], (3.10)

where σ ∈ {1, 3, 5, . . . , N − 1}, τ ∈ {0, 1, 2, . . . , N − 1}. k represents the sample ordinal and

k = 1, 2, . . . ,K, where K is the size of the sample set. Here, σ is used to make the frequency

components well separated. t is used to decide the sample locations randomly.

3.2.2 Filtering to Isolated Frequencies

After random sampling and random permuting, we apply a sub-band decomposition filter bank

(e.g., boxcar filter: h[t] =
√
N
K , t = 0, 1, 2, . . . ,K − 1) to create K signals that each carries a

chunk of the permuted spectrum. The K is a constant and represents the number of taps of the

filter bank. It is recommended in [3] to take K equal to 7 times the number of the frequency

components. Each component only contains one signifucant frequency with high probability.

Then each isolated frequency can be identified by the approach described in Section 3.1.

3.3 Estimate Coefficients

The simplest approach to estimate the coefficients is [1]

ĉω =
1

K

K∑
k=1

x[tk]e−2πiωtk/N (3.11)

where K is the size of the random sample set, with K�N . x[tk] is the random sample which is

defined in Section 3.2.1, and the ω is the frequencies which are identified by bit-testing. Note



11

that only K samples are used to estimate the coefficients ĉω, instead of using all N samples.

Then we compare all the ĉω and retain the m coefficients with the largest magnitude.

3.4 Compute the Residual and Repeat

Assume we have the ω and ĉω, then we compute the residual by

x[t]−
∑

all ω and ĉω

ĉωe
2πiωt/N (3.12)

The residual will be used in subsequent repetition. One primary purpose of repetition is to

avoid mistakenly identifying insignificant frequencies as being significant [1]. The spurious

Fourier coefficients can be removed in subsequent repetition. Hence, the repetition process can

correct the error estimation efficiently. In the end of each repetition loop, we should compare

the old m coefficients with the new ĉω and find the new m largest coefficients.



12

Chapter 4

SFT-based DOA Detection on Sensor Array

As we said before, we hope that the Sparse Fourier Transform can save physical antennas,

and achieve the same target estimation performance as the DFT. First, we tested the SFT on

a phased array and found that the resolution was not good enough with a small number of

antennas. So we tried to employ the coprime array to obtain higher resolution.

4.1 Phased Array Based on SFT

4.1.1 Phased Array model

As shown in Figure 4.1, N is the number of sensors in a phased array. d represents the distance

between two antennas, and is here taken as half of signal wavelength λ/2. θ is the direction

of arrival (DOA). The target is in the far field of the phased array. First, we suppose there

is one target. The case of multiple targets can be easily obtained as an extension. The main

assumption here is that the number of targets is much smaller than N.



13

Figure 4.1: Model for phased array

The received signal of the qth sensor can be expressed as

yq(t) = m(t)e2πi
q·d sin(θ)

λ , q = 0, 1, . . . , N − 1, (4.1)

where m(t) represents a narrow-band signal and λ is the signal wavelength. t denotes time.

The array snapshot at time t is

y(t) = [y0(t), y1(t), . . . , yN−1(t)]T (4.2)

= m(t)a(θ), (4.3)

where

a(θ) = [e2πi
0·d sin(θ)

λ e2πi
1·d sin(θ)

λ . . . e2πi
(N−1)·d sin(θ)

λ ]T (4.4)

is the steering vector of the array corresponding to DOA θ.

4.1.2 Applying SFT to DOA Detection

Let us compare Equations (3.1) and (4.1), and draw the following equivalences:

(4.1) ←→ (3.1) (4.5)

s(t) ←→ cω (4.6)

l ←→ t (4.7)



14

(spatial frequency)
d sin(θ)

λ
←→ ω

N
(4.8)

By taking the SFT of the array snapshot, we can identify the d sin(θ)
λ corresponding to the target,

thus obtaining DOA information. For the traditional DFT, all the snapshot samples should be

used to compute the DFT coefficients. For the SFT, only a subset of samples need to be used

and only the significant coefficients will be computed. Hence, we only need to use a subset of

the antennas to detect the DOA by implementing SFT.

4.1.3 Performance of the SFT-based DOA Detection on Phased Array

Assume that we employ 128 sensors in a 3 target senario. Then the SFT output is shown in

Figure 4.2 and the detection result is shown in Figure 4.3.

Figure 4.2: The SFT output when we have 3 targets



15

Figure 4.3: The result of DOA detection when we have 3 targets

Figure 4.2 shows the output of the SFT. By drawing the equivalences, we can obtain the Figure

4.3, which shows the result of SFT-based DOA detection. The DOAs are identified. In this

result, we only use 83 antennas to detect the 3 targets. Hence, we can turn off the other unused

sensors to save power.

Figure 4.4: The success rate in different SNR



16

As the Figure 4.4 shows, the success rate is almost 100% if the SNR is larger than 5 dB. Each

SNR was tested for 1000 times. The SFT-based DOA detection can keep high success rate

when the SNR is larger than 5 dB, even if only part of the sensors is used. The success rate is

shown in Figure 4.4. However, the resolution of sin(θ) is proportion of λ
Nd with λ and d being

constant. Hence, if we want to increase the resolution, we have to use more sensors. However,

the cost would increase in that case.

4.2 Coprime Array Based on SFT

Since we want higher resolution with using few sensors, we employ the coprime array, introduced

in [5], to greatly extend the degrees of freedom (DOFs).

4.2.1 The Co-prime Array Model

Figure 4.5 shows that the co-prime array contains two uniform linear arrays (ULAs) with N

and 2M sensors respectively. d is half of the wavelength of the signal. M and N are coprime

integers. The two ULAs share the first sensor.

Figure 4.5: Model for co-prime arrays



17

That is, the locations of the sensors are given by the set [5]

S = SULA1 ∪ SULA2 (4.9)

SULA1 = {Mnd, 0≤n≤N − 1} (4.10)

SULA2 = {Nmd, 1≤m≤2M − 1} (4.11)

The steering vector of the sensor located at q corresponding to one particular DOA, θ, is:

a(q, θ) = ej
2π
λ q sin(θ), q ∈ S, θ ∈ [−π

2
,
π

2
). (4.12)

Then the steering vector of the array corresponding to one particular DOA is

a(θ) = [a(0Md, θ), . . . , a((N − 1)Md, θ), a(1Nd, θ), . . . , a((2M − 1)Nd, θ)]T (4.13)

= [e2πi
0Md sin(θ)

λ , . . ., e2πi
(N−1)Md sin(θ)

λ , e2πi
Nd sin(θ)

λ , . . . , e2πi
(2M−1)Nd sin(θ)

λ ]T (4.14)

Next, assuming we have L targets, the received signal can be written as

y[t] = Vs[t], (4.15)

where V = [a(θ1),a(θ2), . . . ,a(θL)] represents the (N + 2M − 1)×L steering matrix , t denotes

the tth time, and s[t] = [s1[t], s2[t], . . . , sL[t]]T represents the L× 1 narrow-band signal vector.

Hence, y[t] is a (N + 2M − 1)× 1 vector.

4.2.2 The Mathematical Theory of Co-prime Arrays

The reason why we choose to use N and 2M sensors respectively can be found as follows [6]:

Theorem 1. Assume M and N are coprime numbers with M < N . Given an integer k in

the range 0 ≤ k ≤ MN , there exist integers n and m in the ranges 0 ≤ n ≤ N − 1 and

0 ≤ m ≤ 2M − 1 such that k = Nm−Mn. The corresponding k is produced by the same choice

of m and n by considering the negative of this difference.

Proof.

∵ k = Nm−Mn



18

∴ Nm = k +Mn

∵ 0 ≤ n ≤ N − 1 and 0 ≤ k ≤MN

∴ 0 ≤ Nm ≤ 2MN −M

∴ 0 ≤ m ≤ 2M − M
N

∵M < N, i.e., MN < 1 and m is integer

∴ 0 ≤ m ≤ 2M − 1

Hence, Theorem 1 ensures that all integers from 1 to MN are generated consecutively as follows:

{1, 2, . . . ,MN} ∈ {Nn−Mm, 0 ≤ n ≤ N − 1, 0 ≤ m ≤ 2M − 1}. (4.16)

For example, m = 3 and n = 4. Then we can find {−12,−11,−10, . . . ,−2,−1,

1, 2, . . . , 10, 11, 12} ∈ {±(4n− 3m), 0 ≤ n ≤ 3, 0 ≤ m ≤ 5}.

Table 4.1: The value of k = ±(Nm−Mn) when M = 3 and N = 4

m n k = Mn−Nm m n k = Nm−Mn

3 0 -12 1 1 1

5 3 -11 2 2 2

4 2 -10 3 3 3

3 1 -9 1 0 4

2 0 -8 2 1 5

4 3 -7 3 2 6

3 2 -6 4 3 7

2 1 -5 2 0 8

1 0 -4 3 1 9

3 3 -3 4 2 10

2 2 -2 5 3 11

1 1 -1 3 0 12



19

4.2.3 DOA Detection Using Co-prime Array

To increase the DOFs, we first compute the autocorrelation matrix [5]:

Ryy = E[y[t]yH [t]]. (4.17)

Then vectorizing the Ryy, we have

z = vec(Ryy). (4.18)

The phase part of elements at (N + m,n) and (n,N + m) of Ryy are e−j(Mn−Nm)d 2π
λ sin(θ)

and e−j(Nm−Mn)d 2π
λ sin(θ), respectively, where n = 0, 1, . . . , N − 1 and m = 1, 2, . . . , 2M − 1.

±(Mn−Nm) belongs to {−MN,−(MN − 1), . . . , (MN − 1),MN} due to Theorem 1. Hence,

we can build the z by including the elements at (N +m,n) and (n,N +m) of Ryy sequentially.

Then sorting the rows of z from −MNd to MNd, we can obtain

z = B · p, (4.19)

where

B =



e−jMNd 2π
λ sin(θ1) e−jMNd 2π

λ sin(θ2) · · · e−jMNd 2π
λ sin(θL)

e−j(MN−1)d 2π
λ sin(θ1) e−j(MN−1)d 2π

λ sin(θ2) · · · e−j(MN−1)d 2π
λ sin(θL)

...
...

. . .
...

ej(MN−1)d 2π
λ sin(θ1) ej(MN−1)d 2π

λ sin(θ2) · · · ej(MN−1)d 2π
λ sin(θL)

ejMNd 2π
λ sin(θ1) ejMNd 2π

λ sin(θ2) · · · ejMNd 2π
λ sin(θL)



, (4.20)

p = [s21[t] s22[t] . . . s2L[t]]T . (4.21)

z is called the virtual array output. B can be considered as the steering matrix with 2MN + 1

virtual sensors located at qd, −MN ≤ q ≤ MN and can implement the DOA estimation with

this virtual array which evidently gives 2MN +1 DOFs as opposed to the physical array, which

provides only N + 2M − 1 DOFs [5]. We can apply the SFT-based DOA detection on z as the

process discribed in the Section 4.1.2, and hence the resolution increases.



20

We measure the success rate when n = 9 and m = 7 without noise and let the quantity of

targets be equal to 5.

Figure 4.6: The result of DOA detection when we have 5 targets

In Figure 4.6, it shows that the DOAs are identified. In no noise circumstances, we can find

that the detected DOAs match to the angles of the targets. Then we run this test for 400 times

with noise with SNR = −4dB to SNR = 10dB and compute its accuracy.

Figure 4.7: The Succedd Rate of the SFT-based DOA Detection Using Coprime Array

In Figure 4.7, it shows that the success rate is close to 100% when the SNR is larger than 7.

Then we try to use 9 + 2× 7− 1 = 22 sensors to detect 2× 9× 7 + 1 = 127 targets in order to

confirm that the coprime array can give 2MN + 1 degrees of freedom when the physical array



21

provides only N + 2M − 1 degrees of freedom as shown in Figure 4.8. The detected DOAs

match to the angles of the targets. Hence, the resolution greatly increases, because the DOFs

increase.

Figure 4.8: The result of DOA detection when we have 127 targets

Since we assume there is a small number of targets, we focus on the 5 targets case which is

shown in Figure 4.6. In that case, we only use a subset of virtual sensors. But we have to use

all physical sensors. In next chapter, we will introduce how to save physical sensors in coprime

arrays.



22

Chapter 5

DOA Detection Based on Fixed SFT

Since the sample locations are random as we discribed in Equation (3.10), the spared sensors

are different in each implementation. This chapter will introduce how to execute the SFT based

on a fixed set of spared sensors.

5.1 Pesudorandom Sampling

Due to the advantage of the Sparse Fourier Transform, we are able to only utilize a subset of

the elements in virtual array, which is derived from the coprime array, to estimate the DOA. As

we discribed in Equation (3.10), the traditional SFT algorithm can identify the frequency (e.g.

DOA in radar system) and estimate its Fourier coefficients using random sampling, i.e., using

x[(σ(k − 1) + t) mod N ], (5.1)

where σ ∈ {1, 3, 5, . . . , N−1} and t ∈ {0, 1, 2, . . . , N−1}. The sample set does not depend on the

input data or the progress of the algorithm. That is, the sample locations can be decided before

implementation [3]. Hence, the σ and t can be generated pesudorandomly before execution to

make the virtual sample locations fixed.

5.2 Saving Sensors

We can build the sample set by picking the elements pseudorandomly and apply it to detect

any signals. The scheme to build the sample set is pseudorandomly picking the virtual sam-

ples, which are generated from just part of physical sensors. The virtual samples located at



23

Ψ = {±(Ni−Mn)d, 0≤n≤N − 1} are generated by the ith physical sensor in the second ULA.

Hence, if we want to save the ith physical sensor, we should not use the virtual samples located

at Ψ. The steps for the SFT-based DOA estimation using the pseudorandom sample set are:

1) Determine the ith sensor of the second ULA to spare.

2) Randomly generate the virtual sample set.

3) If none of the samples of the virtual sample set are located in Ψ = {±(Ni−Mn)d, 0≤n≤N − 1},

keep the sample set. Otherwise, regenerate it.

4) Apply the Sparse Fourier Transform algorithm to estimate the frequencies “ω”.

5) Make the analogies to obtain the estimated DOAs θ.

Similarly, we can save a bunch of physical sensors. The number of spared sensers is affected

by the number of source signals and the SNR. We will show this via simulation in the next

section. In addition, in Table 4.1, two values of parameter k will be generated if m = 5. That

is, the last physical sensor always generates the fewest virtual sensors which are located from

−MNd to MNd. Hence, we recommend to save the physical sensors sequentially from the end

of the array.

For example, we can only use 23+38 sensors of the 23+43 sensors to detect 5 DOAs based on SFT

in a coprime array. In other words, we try to spare the last 5 sensors. Then we can adjust the

parameters, σ and t, and find a appropriate sample set Ω = {x(ξ)|ξ = (σ(k − 1) + t) mod N, σ ∈

{1, 3, 5, . . . , N − 1}, t ∈ {0, 1, 2, . . . , N − 1}}. Then we should decide if any sample of the sample

set is in Ψ = {±(Ni−Mn)d, 0≤n≤N − 1, i = 39, 40, 41, 42, 43}. If it is not in Ψ, we can keep

the sample set. Otherwise, we should regenerate it. Next, we can do SFT-based DOA detection

by using this sample set Ω. Its performance is shown in Figure 5.1. The algorithm works well

when SNR > 0 dB.



24

Figure 5.1: The success rate in different SNR using 23+38 sensors.

5.3 Simulation Results

In this part, we provide three examples of our proposed DOA estimation method. The first one

is to show the ability of SFT-based DOA estimation and the second one is to show the sensor

savings in co-prime arrays. The third example shows the relationship between the percentage

of sensor savings and the number of physical sensors. The SFT-based DOA estimation needs

the number of targets as prior knowledge. We applied the Akaike information criterion (AIC)

to estimate the number of targets before implementing the proposed DOA estimation [7].

Example 1: In this example, we consider the co-prime array consisting of 11 physical sensors.

It is composed of two ULAs with N = 6 and M = 5. That is, we use 6+9 sensors. The sensor lo-

cations of the two ULAs are respectively [0, 5, 10, 15, 20]d and [0, 6, 12, 18, 24, 30, 36, 42, 48, 54]d.

The first sensor is shared by both ULAs and the inter-sensor spacing d is equal to the half

wavelength. We assume there are m = 25 narrowband source signals with DOAs distributed in

[−π2 ,
π
2 ). The autocorrelation matrix Ryy is estimated using 500 snapshots. The SNR is chosen

as 15 dB. Figure 5.2 shows the spatial spectrum obtained from the SFT-based DOA estimation

method. As we can see, all DOAs are identified.



25

Figure 5.2: Spatial spectrum for SFT-based DOA estimation on co-prime array

This example shows the ability of our proposed method to estimate the DOAs of many more

targets than the number of the physical sensors, which is not possible using traditional ULA

with N+2M−1 physical sensors. As we said before, the co-prime array gives evidently 2MN+1

DOFs with N + 2M − 1 physical sensors. Hence, it has a ability to achieve very high resolution

of DOA estimation.

Example 2: Here we consider the co-prime array consisting of 66 physical sensors and N = 23

and M = 22. Then we suppose there are m = 5 narrowband source signals with DOAs

distributed in [−π2 ,
π
2 ). Our proposed DOA estimation method does not need to use all the

samples from all the sensors, we try to reduce the number of sensors and observe what happens.

Figure 5.3: The success rate for sensor-saving co-prime array in different SNR.



26

Figure 5.3 shows that the success rate of DOA estimation decreases when the SNR goes down.

The success rate does not drop sharply when we reduce the number of physical sensors. Since

we have to provide enough samples to implement the SFT process, we can save 11 sensors at

most. In addition, the more DOAs we want to estimate, the more samples we need in order

to keep the success rate good enough as shown in Figure 5.4. In the figure, the percentage of

saving sensors is obtained when the SNR is −5 dB and success rate is approximately 90%. So

we might save less sensors when the number of targets increases.

Figure 5.4: The percentage of saving sensors in different number of targets.

Example 3: Now we want to estimate the DOA of 2 source signals and achieve approximately

90% success rate. The SNR is chosen as −5 dB. The autocorrelation matrix is estimated using

500 snapshots. The angle of source signals is distributed in [−π2 ,
π
2 ). Here we try to use the

co-prime arrays with different number of virtual sensors to estimate the DOAs. The relationship

between percentage of physical sensors we can save and the number of virtual sensors is shown

in Figure 5.5.



27

Figure 5.5: The percentage of saving sensors using different number of virtual sensors.



28

Chapter 6

Conclusion

In this thesis, we studied a new algorithm to compute the DFT, known as Sparse Fourse

Transform. The SFT applies to signals which are sparse in the frequency domain, and has the

ability to compute the DFT of a signal with only using a subset of the signal samples. The

sample set does not depend on the input data or the progress of the algorithm [3]. So the

sample set can be fixed before the implementation.

We appiled the SFT on co-prime arrays for fast and high resolution DOA estimation using fewer

physical snesor. The high performance of the proposed DOA estimation method was verified

using simulation results.



29

Bibliography

[1] A. Gilbert, P. Indyk, M. Iwen, and L. Schmidt, “Recent developments in the sparse fourier

transform: A compressed fourier transform for big data,” IEEE Signal Processing Magazine,

vol. 31, no. 5, pp. 91–100, 2014.

[2] A. C. Gilbert, S. Muthukrishnan, and M. Strauss, “Improved time bounds for near-optimal

sparse fourier representations,” in Optics & Photonics 2005, 2005, pp. 59 141A–59 141A.

[3] A. C. Gilbert, M. J. Strauss, and J. A. Tropp, “A tutorial on fast fourier sampling,” IEEE

Signal processing magazine, vol. 25, no. 2, pp. 57–66, 2008.

[4] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers and arrays,” IEEE

Transactions on Signal Processing, vol. 59, no. 2, pp. 573–586, 2011.

[5] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the music algorithm,” in 2011

IEEE Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop

(DSP/SPE), 2011, pp. 289–294.

[6] P. Vaidyanathan and P. Pal, “Sparse sensing with coprime arrays,” in 2010 Conference

Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers

(ASILOMAR). IEEE, 2010, pp. 1405–1409.

[7] M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,” IEEE

Transactions on Acoustics, Speech and Signal Processing, vol. 33, no. 2, pp. 387–392, 1985.


