Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 1 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

Line	Time	Speaker	Transcript
7.0.1	2:33 S	T/R 1:	Good morning! Are you all as awake as I am?
7.0.2	2:39	Meredith:	Yeah.
7.0.3	2:40	T/R 1:	I don't know if that is good or bad, Meredith. Let me shut this [the overhead projector fan] off. [Holding up Mark's diorama] I was thinking when I was looking at Mark's model, and I noticed many of you made models, also for projects for another class. I was thinking about this model because we were talking about models the other day, weren't we. Remember that? And I, remember I asked you to think about something about the models that you built. Remember what I asked you to think about? Does anyone remember, Andrew?
7.0.4	3:12	Andrew:	Um, is one-half bigger, uh is one half bigger than one fourth, by how much?
7.0.5	3:21	T/R 1:	Does anyone else remember anything in our discussion about models? Andrew remembered something. Is your hand up Audra?
7.0.6		Audra:	No.
7.0.7	3:32	T/R 1:	Audra's yawning. Does anyone remember anything in our discussion about models? We talked about models, we asked some questions about them. Think for a minute. Do you remember Meredith?
7.0.8	3:45	Meredith:	Um, what's bigger, one half or one quarter and by how much?
7.0.9	3:50	T/R 1:	That's what Andrew said. Right, which is bigger. But we also were talking about models in general. We asked ourselves some questions about models. Did you all build the same model?
7.0.10	4:04	Students:	No.
7.0.11	4:04	T/R 1:	To answer that question?
7.0.12	4:05	Students:	No, no.
7.0.13	4:07	T/R 1:	Some of you built different models. [Erik raises his hand] Erik?
7.0.14	4:10	Erik:	Some of us built the same models and some of us built different.

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 2 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

7.0.15	4:12	T/R 1:	Some of you built different models, and I asked you a question about that. Do you remember?
7.0.16	4:18	Erik:	[Raising his hand] Oh!
7.0.17	4:19	T/R 1:	Erik?
7.0.18	4:20	Erik:	Could you get different answers
7.0.19		Michael:	Using barred models?
7.0.20		Erik:	if you use different models.
7.0.21	4:27	T/R 1:	Yeah, can you get different answers, right Michael and Erik? - if you use different models. What did you think? How many of you thought you shouldn't get different answers? [Some hands are raised] How many of you are not sure? [Few more hands are raised] It's okay not to be sure. Have you been thinking about that at all since then? Maybe not much. Michael, have you been thinking about that a little bit?
7.0.22	4:48	Michael:	Um, well, I figured that it couldn't be because our answer that we got, me and Brian, was that it was bigger by one fourth because it will always take two, it will always take four quarters to equal up
7.0.23	5:03	Erik:	Yeah, because four is an even number and you can divide it by two.
7.0.24	5:04	Michael:	In half
7.0.25	5:08	Erik:	So there will always be one fourth and two fourths, three fourths, four fourths and two fourths is always going to be a half, a half in fourths.
7.0.26	5:16	T/R 1:	What do you think about that? There are a lot of good ideas in what you are saying. [Picking up Mark's diorama] I was thinking that maybe it would help you, it sort of helped me to look at Marks' model. Sometimes it helps to look at a model that's a little different. Maybe this is a model that doesn't use the Cuisenaire rods, but in a sense it's a model. Um, I found out a little bit from Mark about a book he read, he was telling me. This [pointing into diorama] was supposed to be a sea monster and this was supposed to be [again pointing into the diorama] two friends. And I looked at, I looked at what he built here[still pointing to diorama] to represent some of the story and I thought by looking at this model that I couldn't really tell of the boy and the girl who was taller by looking at them, I wasn't really sure, and I didn't know really if Mark

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 3 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

			cared about that. But I looked at the sea monster, okay, and I looked at the boat, okay, and I was thinking about their sizes a little bit, right? What are you, why are you smiling about Mark?
7.0.27	6:27	Mark:	Uh, well I wasn't thinking about the sizes. I made the sea monster bigger than the boat.
7.0.28	6:33	T/R 1:	Did you want the sea monster to be bigger than the boat?
7.0.29	6:36	Mark:	No.
7.0.30	6:36	T/R 1:	You really didn't. What about the boat and the children?
7.0.31	6:42	Mark:	Those too. The children are bigger.
7.0.32	6:43	T/R 1:	The children are bigger than the boat. Did you want that? [Mark, still smiling, shakes his head sideways, indicating negation.] No.
7.0.33	6:48	Michael:	Maybe he was trying to focus on the children and instead of just the boat.
7.0.34	6:52	Erik:	Yeah, he was probably trying maybe to make them look bigger, like you're looking at the children, not the boat
7.0.35	6:55	T/R 1:	I, I
7.0.36	6:58	Erik:	like he doesn't, he just put the boat in
7.0.37	7:01	T/R 1:	Yeah
7.0.38	7:03	Erik:	Cause they're at the dock. Yeah, but he wasn't just focusing on the boat.
7.0.39	7:04	T/R 1:	Maybe the boat wasn't intended to be so close, but that he could make it, you know, the dock, not as far out as those things. Or maybe he didn't think about it, all those things. That wasn't what he was focusing on, but I think suppose changed this, suppose we took this story and made it a math problem. Suppose we changed it for a different purpose. And I said to all of you, I want you to go and make me a model of two children, right, and they're sitting at a dock and they're fishing, and they just caught a fish, right? Let's not make it a sea monster and let's change it a little bit, they're fishing and then their boat is docked somewhere, do you understand? If I asked you to do that and it mattered now what sizes they were. What would you expect to be the largest object and the next and the next? What would you expect if you were really worrying about the size, you had two children at a dock and

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 4 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

			you have a boat and you have a fish, now we're not going to go with sea monsters. Mark?
7.0.40	8:09	Mark:	Uh, the boat's the biggest.
7.0.41	8:10	T/R 1:	The boat's the biggest. Do you agree?
7.0.42	8:12	Students:	Mm, hmm [nods of affirmation from various students].
7.0.43	8:13	T/R 1:	You think the boat's the biggest. okay.
7.0.44	8:15	Mark:	And then the children, um, and then the fish.
7.0.45	8:20	T/R 1:	Would be the smallest. You all agree with that?
7.0.46	8:23	Students:	Um, hmm.
7.0.47	8:24	T/R 1:	Ok. Is there anyone who disagrees with that? Now suppose we said okay. We're all agreeing that that's our assignment and you're all supposed to go home and do that. Would you all make the same model?
7.0.48	8:37	Students:	No
7.0.49	8:38	T/R 1:	But, now what would be the same about all of your models? What wouldn't change about all of your models, Beth?
7.0.50	8:45	Beth:	We'd have the same idea.
7.0.51	8:46	T/R 1:	And what's that idea that would be the same?
7.0 .52	8:48	Beth:	That two people, fish and...[inaudible]... and the boat [inaudible]
7.0.53	8:58	T/R 1:	Okay, is that enough? Because we have that here.
7.0.54	9:02	Beth:	Their sizes are, the boat's biggest and then the children
7.0 .55	9:12	T/R 1:	And then, and then the fish. Okay so you agree with that, that there are certain things that all of you would have in your model. You have these four principal players right or things. The boat, two children and you have the fish. What size will you make them will that necessarily be the same? Meredith?
7.0.56	9:33	Meredith:	Well, maybe not because everybody can't have the same because they don't have, they're not like copying each other
7.0.57	9:41	T/R 1:	Yeah. You make your children. some of you might use little dolls or something, right or bigger dolls, or
7.0.58	9:47	Meredith:	You're not measuring the same.
7.0.59	9:48	T/R 1:	You wouldn't measure them the same. But one thing that would be the same is the relative, one thing you have to be careful each of you in your own models would be the sizes in relation to the other sizes, right? And if somebody came in now with a fish bigger than the boy, [laughing] that would have missed the point, right?

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 5 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

7.0.60	$10: 06$	Michael:	No, because a fish could be bigger than a boy. 7.0.61 $10: 10$ T/R 1:
That's true, ok, that's true. But we really mean two children			
fishing at a little dock, not out in the ocean somewhere where			
we expect the fish to be smaller, but you're right, you're			
absolutely right Michael, it could be. But we'd have to agree			
on some things, on some constraints, here. Obviously if we			
changed it and we were deep sea fishing right, and we could			
be catching some whales or whatever. Some very, very big			
fish. That would change things. Now, what does that have to			
do with the models you made and some of the comments that			
Michael and Erik made about the models you made? What			
does that have to say about it? Or anything? Thank you very			
much Mark [returns his diorama to Mark at his desk]. I'm			
glad I saw that lovely model. Does it have anything to do			
with the models we make in order to make an argument.			

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 6 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

big [she holds her thumb and forefinger approximately one inch apart]. Would it be okay to put Audra's fish in Danielle's box? No.
7.0.67 12:44 Michael: It would look like a shrimp
7.0.68 12:46 T/R 1: It would look like a shrimp. Why wouldn't it be okay? What would probably happen if you did that? Graham?
7.0.69 12:52 Graham: Well it wouldn't fit.
7.0.70 12:54 T/R 1: It wouldn't fit in it. That's exactly right, it probably wouldn't even fit in. Maybe it would but it might not, right? And what would happen, Meredith?
7.0.71 13:02 Meredith: Well you could put the Audra's fish and you could put Danielle's fish into Audra's box, because it's small and it could fit in.
7.0.72 13:14 T/R 1: \quad It could be a shrimp [laughing]
7.0.73 13:19 Meredith: but you can't put Audra's fish into Danielle's box because it's [the box] too small
7.0.74 13:27 T/R 1: Ok, it raises some interesting questions doesn't it? We're sort of, you know, making up some hypothetical things and imagining some things. But do you get the idea? That once you've built your model and you decide what you are going to call one, right? You've chosen to make your other principal players in relationship to that one, right? So in this case if, if your one is going to be the size of this little stage, if you like [gestures in the air a rectangle approximately one and one half feet by one foot], your players are made the boy the girl the fish the boat in relationship to this stage isn't it.
7.0.75 14:06 Erik: Mm, hmm [agreeing]
7.0.76 14:07 T/R 1: But if you've made your one a much bigger stage, if you like[gestures a rectangle approximately three feet by two feet] your players are going to be in relationship to that stage, isn't that right? And as long as you stay within your stage, right, you show your relationships and if they may or may not work when you switch stages right? And that's like switching candy bars right? Isn't that right?
7.0.77 14:24 Erik: Yup.
7.0.78 14:33 T/R 1: So I want you to think about that for models. Would you expect if you were building a brand new model that what you showed to be true with your first model, should it still work?

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 7 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

Should it still work with the new model, the relationships you showed with your old model? Would you expect it to work if your-

7.0 .79	$14: 45$	Meredith:
7.0.80	$14: 50$	T/R 1:

7.0.81	15:02	Michael:	Well, your old model, say your old model, you decided it was too little and you couldn't see all the figures in it. So you make a bigger model and you try to take the fish from that little model because you decide that you don't want to make another one, you put it in and you wouldn't be able to see it there.
7.0.82	15:19	T/R 1:	Okay, but that's not my question now. Suppose in your little stage you showed the people and the boat and the fish, right? And you showed the fish were smaller than the people who were smaller than the boat. Right?
7.0.83		Michael :	Yeah, mmm, hmm [agreeing]
7.0.84		T/R 1:	Would you expect, let's say in Audra's model, which is a different model that her fish was smaller than the people and smaller than the boat?
7.0.85	15:44	Michael:	You'd have bigger people, bigger boat and a bigger fish.
7.0.86	15:50	T/R 1:	But should those relationships hold?
7.0.87	15:51	Michael:	Yeah.
7.0.88	15:52	Others:	Yes [simultaneous to Michael's reply]
7.0.89	15:54	T/R 1:	Yeah is that right?
7.0.90	15:55	Michael:	Yeah.
7.0.91	15:55	T/R 1:	Or if we had sort of a medium size model like Mark's and he were trying to make these fit, would you expect the fish to be smaller than the people than the boat?
7.0.92	16:04	Michael:	Yeah.
7.0.93	16:05	T/R 1:	So in each of your models would have those relationships holding, right?
7.0.94	16:07	Students:	Yeah.
7.0.95	16:08	T/R 1:	But they wouldn't all be built the same way and they wouldn't all be the same size

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: $\mathbf{8}$ of $\mathbf{2 0}$
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

7.0.96 16:11 Erik: \quad So it'd be, it's standard that the fish would be smaller than the boat and the people, except the fish would be different sized and the people different sized and the boat different sized.
7.0.97 16:20 T/R 1: Right. Is that like what you're doing when you make models to compare fractions?
7.0.98 16:23 Students: Yeah.
7.0.99 16:24 T/R 1: In what way is it the same or different? [some students raise their hands] Meredith?
7.0.100 16:28 Meredith: Well if you have the same question asked and you do it right then you're going to wind up with the same answer and some of the models could be bigger and some of them could be smaller.
7.0.101 16:40 T/R 1: What do the rest of you think? How many of you agree with what Meredith said? [some hands are raised]How many of you disagree? [no additional hands raised, at least in what was visible] How many of you are still not sure? [more hands are raised] You know we have to help the people who are not sure to understand. they don't disagree, but they're still not following. Can someone help? Let's talk about this a little bit more to help them? Who wants to give it a try? [Meredith's hand goes up] Or the people who aren't sure want to tell us what they are confused about. Do you want to talk a little bit? Audra? Jackie? What bothers you and then maybe the people here will try to help, ok? Do you know what the question is? What do you think the question is?
7.0.102 17:33 Jacquelyn: Um, is the mod- is different models bigger than others and um...
7.0.103 17:44 T/R 1: Do you want to say that one more time?
7.0.104 17:47 Jacquelyn: You can use different models that are, they're the same.
7.0.105 17:51 T/R 1: Is that the question? What do you think, Audra, is that your question? You think it's a different question? Maybe we are answering a different question. Let's see what Audra thinks the question is and then we can hear from those of you who can try to help.
7.0.106 18:06 Audra: [hesitantly] It's that we um, it's about, ah, there are different sizes of, just like the candy bar that we did before. Um, you were asking, um if we thought what sizes can fit into each

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 9 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

7.0.113 21:11
7.0.112 19:59
7.0.113 21:11
box, what sizes should be that we are going to get confused that the fish can fit into a box.
T/R 1: Who else is confused, what you think the problem is? There

$$
\begin{array}{ll}
& \begin{array}{l}
\text { are a some other people who are confused, or aren't sure. } \\
\\
\\
\text { Laura? Are you in this category of not being sure? [Laura } \\
\text { nods affirmatively] What do you think the question is? } \\
\text { Laura: } \\
\text { T/R 1: not sure. } \\
\text { You're not sure what the questions is. Okay, well, that's a } \\
\text { start. Maybe if we got the question, if we understood the }
\end{array} \\
& \text { question, that might help us. Who's going to try with the } \\
\text { question? [Erik's hand is raised.] Go ahead Erik, give it a try, } \\
\text { because we also have some people coming in } \\
\text { It has to do with the model that Mark made. Can the fish, the } \\
\text { fish should be smaller than the people in the boat, but the } \\
\text { people should be bigger than the boat, or, no, they should be } \\
\text { bigger than the fish, but they shouldn't be bigger than the } \\
\text { boat either. And how does that, how do those models [pause] } \\
\text { help us understand the models we're building [models of }
\end{array}
$$

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 10 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

7.0.114 21:28
7.0.115 21:29

Meredith: Yes.
T/R 1:
Does anybody want to add to that? Sarah, Beth, okay, well it's something to think about isn't it, as we make, uh, different models. Um I remember that you wrote about the models that you worked on and I, I'm looking forward to reading them and, um, knowing more about they way you think about them. Let's try a different one. Ok, let's try a different one. Let's see what happens here. So this is the problem I would like you to think about. I'm wondering which is bigger, one half or two thirds. [pauses] Now before you model it you might think in your head, before you begin to model it what you is bigger and if so, if one is bigger, by how much. Why don't you work with your partner and see if you can figure it out.
7.0.368
7.0.369
7.0.370
7.0.371
7.0.372

Camera picks up some conversation/desk work from Audra, Michael and Brian, and Graham
T/R 2: [Michael and Brian build a model using the dark green rod as one. T/R 2 speaks to them about their model but most of conversation is inaudible] But while you're doing that, could you also be thinking about another model, at least, that could show this? Ok? [Brian and Michael begin to build another model]
T/R 1: [Graham has the model using the dark green rod on his desk. He builds the next largest model] What do you think? Which is bigger?
Graham: Um, two thirds.
T/R 1: You agree with that, Caitlyn? You agree with him? What did you build here? Can you show me what you built? Can you show me what one is? That's one, ok. [continues to speak to Caitlyn, but her side of the conversation is inaudible. Meanwhile, Graham builds a third model using the yellow and white as one]... Can you write that up for me? And I see Graham is building some more models and I know he's going to want to draw them for me. That's very lovely. See if you can find another. Write that one up first. [to Graham, pointing to his third model] Ah! That looks like this one. Oh, no it's not, it looks a little different, but yet it looks the same. That's interesting. Why? [Graham shows that the dark green

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 11 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

rod and the yellow and white train are equal in length, inaudible] That's another name for one. You're giving me two different names for one, right? Two different ways of building one?
7.0.373
7.0.374

Brian and Michael: One, two three four five. Five
7.0.375
7.0.376

T/R 1: Did the relationship hold?
Michael: Yeah we got one sixth.
T/R 1: Did you expect that to happen?
7.0.377
7.0.378
7.0.379
7.0.380
7.0.381
7.0.382
7.0.383
7.0.384
7.0.385
7.0.386
7.0.387
7.0.388
7.0.389
7.0.390
7.0.391
7.0.392
7.0.393
7.0.394

Brian and Michael: Yes
T/R 1: Yes and you're absolutely convinced that will happen?
Brian and Michael: Yes. [laugh]
T/R 1: Ok. You can write about that?
Brian and Michael: Yes.
T/R 1: That's good. I can't wait to read it.
[T/R 1 tells class about writing more than one solution]
Brian: Because it takes six sixths to equal one whole [holding dark green rod]. And there are two sixths [holds two white rods and puts on top of the red rod], there are two sixths, in each, in each, in each third
Michael: Hey! That may be right! Because a third for this one, a sixth for this one is one, [starts placing white rods alongside the second model that is 6 cm in length]
Brian: And it takes, and it takes three sixths to equal up to one half. , but, but, um
Michael: And this would be red, it takes two of them to equal that. Hey, that's neat!
Brian: Sixths! That's what I did before
Michael: It takes two sixths to equal a third! Wow! That's a neat thing to figure out fractions with.
Brian: So what are we going to write?
Michael: Well, first let's write our answer. And then we'll write why.
Brian: I just did that. Um, what could we write? Because
Michael: Because, well, just write what you just said to me.

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 12 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

7.0.396
7.0.397
7.0.398
7.0.399
7.0.400
7.0.401
7.0.402
7.0.403
7.0.404
7.0.405
7.0.406
7.0.407
7.0.408
7.0.409
7.0.410
7.0.411
7.0.412
7.0.413
7.0.414
7.0.415
7.0.416
7.0.417
7.0.418
7.0.419
7.0.420
7.0.421
7.0.422
7.0.395 Brian: Does that make sense?

Michael: Yeah. They'll know it makes sense. You think these people are teachers for nothing? [laugh]
Jackie: Yeah, but it could also be, if you put whites up against it, it could be one twelfth.
T/R 1: Ok, the white would have the number name one twelfth. But what would the red have a number name?
Jackie: One sixth.
T/R 1: One sixth. Now I'm going to ask you the question. What did you call one, what did you call one in this model?
Jackie: Orange and red
T/R 1: The orange and red. And what did you call one third? [Jackie points] What did you call two thirds [points again]? What did you call one half?
Jackie: Dark green
T/R 1: Ok, and which did you say is bigger?
Jackie: [inaudible, points]
T/R 1: Two thirds. By how much?
Jackie: By one seventh.
T/R 1: By one seventh? And why did you say one seventh?
Jackie: [points to red rods, inaudible]
T/R 1: Because the red has the number name one seventh?
Jackie: [nods] Mmm hmm.
T/R 1: One two three four five six.
Jackie: I mean one sixth
T/R 1: You mean one sixth. Do you agree with that, Erin?
Erin: Yes.
T/R 1: What number name does red have in this model?
Jackie: One third
T/R 1: One third. Why? Why is it one third here and why is it one sixth here?
Michael: It takes, it takes two sixths to equal a third
Brian: [inaudible] equal a third, no a half a half. That's what I wrote: 'Because it takes six sixths to equal one whole and, and
Michael: And a sixth is always half of a third.
Brian: Oh! [Michael laughs] And it takes, and there, and a sixth is a half of a third.

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 13 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

7.0.423
7.0.424
7.0.425
7.0.426
7.0.427
7.0.428
7.0.429
7.0.430
7.0.431
7.0.432
7.0.433
7.0.434
7.0.435
7.0.436
7.0.437
7.0.438
7.0.439
7.0.440
7.0.441
7.0.442
7.0.443
7.0.444

Michael: Yeah!
Brian: [after writing] Wait, what did I just say? Two sixths
Michael: And two sixths, and it takes two sixths, two sixths, no, one sixth is half, is half of one third
Brian: One sixth is ... by one third, so it takes, so it takes three
Michael: So it takes six, because there's two in every one so there's two four six. So it takes
Brian: So it takes, should we write, so it takes three sixths to equal one half?
Michael: No, it takes two, oh yeah, right, three equal one half.
Brian: Two equal, two sixths equal one third, and three equal
Brian and Michael: One half
Brian: So it takes three, oh I got it! So it takes three sixths to equal one half, but, so it takes three sixths to equal one half, but two thirds equal four sixths [Michael nods]. So it [back to writing] Wait, so it takes
Michael: Three sixths to equal a half, but it takes
Brian and Michael: four sixths to equal two thirds. [laugh]
Brian: And there's one extra. Yeah, and there's one sixth, look, look.
Michael: Four, one two three four
Brian: Look. See these, see these [Brian shows a light green rod and two red rods, and then places three white rods on the red rods.]? Ok, now, you see there are three of them that are equal up to it, but
Michael: There's one more
Brian: Yeah
Michael: To make two thirds
Brian: Yeah, so there's one extra and it makes it bigger! So it takes three sixths to equal... and it takes, and it takes
Michael: Four
Brian: Four sixths, and it takes four sixths to equal two thirds, two thirds. And there's one [continues talking as he writes] Ok. This is what I wrote. So it takes three sixths to equal one half, but it takes four sixths to equal two thirds. But it needs, but it needs
Michael: But it needs?

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 14 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

7.0.445 Brian: Yeah, but it needs, but it needs four sixths. But it needs... to equal
7.0.447 T/R 1: [Jackie, Erin, and Jessica have built two models at the OHP] I'm going to have to have to stop you for a minute, I know that, I hate to do this because I know you're working all so hard, but I would like to spend ten minutes, uh, just have us think about a few things, and you can finish this, is that ok, Mrs. Phillips if they can finish writing this up for us when we come back on Wed? Ok, so you really have today and maybe some time tomorrow to finish writing this up. I, I would like all of you though to sort of give me your attention for a minute, um, because I'm wondering about a few things. I need you to help me straighten out some things in my head, and if you can help me straighten them out in my head, you may be helping out other people straighten them out also. So I'm going to ask you some, some important questions, are you all listening to my questions? If you could stop what you're doing for a moment, I know it's hard, and listen to my questions. How many of you made one model and absolutely are convinced, that you know by your model, which is bigger one half or two thirds? How many of you did that with one model and you are absolutely convince with your model you know which is bigger, one half or two thirds. Would you please raise your hand if you made one model, you could have made more than one but you made at least one. If you made at least one model, girls, and you're absolutely convinced [All visible hands raised] No one could persuade you otherwise that you know which is bigger, one half or two thirds. Alright, so tell me, which is bigger?
7.0.448 Students: Two thirds.
7.0.449 47:59 T/R 1: Again?
7.0.450 48:36 Students: Two thirds!!
7.0.451 T/R 1: And you also know how much bigger. How many of you are convinced you know how much bigger and no one can persuade you otherwise that two thirds is not only bigger than a half but it is how much bigger?
7.0.452 Students: One sixth.

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 15 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

7.0.453 48:40 T/R 1: How many of you believe one sixth? [All visible hands raised] That's what I thought Walking around I thought that...that is what I believe that everyone has done. How many of you made a second model?
7.0.454 Meredith: Oh, Oh! [eagerly]
7.0.455 T/R 1: You could have made more than two, but you made at least two models. And in your second model you got a different answer. You got an entirely different answer, you no longer have two thirds bigger than one half, you showed something else. Are you watching? Some of you got a second model that showed something different. Meredith? Let's listen to what Meredith says. Girls [Jackie, Erin, and Jessica], why don't we stop that for just a moment and then we'll make some more. Listen, listen. You [Meredith] think you showed something else in your second model? [Meredith goes to the overhead projector and places twelve white rods beneath the two dark green rods in the girls' second model - two of the other girls help her find and position the white rods] I am really confused. I have no ideas what Meredith is going to do. Because I thought I understood this and I thought she was going to tell me she got the same answer. Did you think that? And now she's telling me no. [Meredith is smiling.] I'm going to get so confused. You are all going to have to help me. [Pause.] How many of you built a second model that looks like that model up there that Meredith is fiddling with? How many of you have a model that looks like that? [Many hands are raised.] By the way, what was one in that model? What did you call one in that model? Amy?
7.0.456
7.0.457
7.0.458 50:53
7.0.459 50:56

Amy: Ah, the orange and red.
T/R 1: How many of you called 'one' orange and red in that model?
Yeah, you did that model. Did you get to have two thirds bigger than a half?

No. [Michael raises his hand, shaking his head from side to side, signifying dissent.]
T/R 1: Amy got two thirds bigger than a half in that model, how many of you got two thirds bigger than a half in that model, where the orange and the red were one. Michael didn't, Meredith did. You didn't Michael?

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 16 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

7.0.460 51:04	Michael:	No, they can't do that. [He begins to stand.] Because um, the, the two thirds are bigger than the half by a red. So they can't use those whites to show it.
7.0.461 51:08	T/R 1:	Oh, but you're saying that, you're saying that two thirds, what's a third?
7.0.462 51:21	Michael:	A third is the purple [He begins to approach the overhead projector.]
7.0.463 51:31	T/R 1:	And what's two thirds? Just tell us.
7.0.464 51:37	Michael:	[He returns to his seat.] Um, two thirds is two purples.
7.0.465 51:39	T/R 1:	Did you all do that? Did you get two thirds to be two purples? [She addresses Michael] And what did you get to be one half?
7.0.466 51:42	Michael:	Uh, dark green.
7.0.467 51:43	T/R 1:	[She addresses the class.] Did you get dark green to be a half? [Mutterings of assent occur.] And you got two thirds to be bigger than one half?
7.0.468 51:49	Michael:	[Politely impatient] Yes.
7.0.469 51:51	T/R 1:	By how much?
7.0.470 51:56	Michael:	[Deliberately, again almost impatiently] By one sixth.
7.0.471 51:57	Meredith:	Or, or two twelfths.
7.0.472 51:58	Michael:	[Shaking his head sideways] No.
7.0.473 52:00	:	[Mutterings in the classroom of no.]
7.0.474 52:02	T/R 1:	Tell us Meredith. Aha! How many of you got one sixth? [Most hands are raised.] And what rod did you use to represent one sixth? What color rod?
7.0.475	Students:	Red.
7.0.476 52:04	T/R 1:	How many of you used a red rod to represent one sixth in that model and you showed it was bigger by one sixth? And Meredith says she did it a little differently and she didn't get one sixth. And what did you get Meredith?
7.0.477 52:15	Meredith:	Two twelfths.
7.0.478 52:15	T/R 1:	What do you think about that?
7.0.479 52:26	Students:	Well, in a way. No. Uh, uh [negatively].
7.0.480 52:29	T/R 1:	Well, she showed it's bigger by the two whites, she shows two whites bigger.
7.0.481 52:32	Michael:	Yeah, but then she would have to call the two whites together one sixth.
7.0.482 52:35	Erik:	Yeah, exactly.

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 17 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

7.0.483 52:40	Michael:	She's calling the whites, one white one sixth.
7.0.484 52:44	Erik:	Yeah, she said
7.0.485 52:45	T/R 1:	She's calling one white one sixth?
7.0.486 52:46	Meredith:	No I'm not, I'm calling it one twelfth.
7.0.487 52:50	T/R 1:	She's calling one white one twelfth.
7.0.488 52:52	Erik:	Yeah, but see just the whites together. That'd be right, it would be two twelfths. But you have to combine them. You can't call them, you can call them separately, but you could also call them combined and if you combine them it would be uh, one sixth.
7.0.489 52:53	T/R 1:	Ok, but she didn't combine them and she's calling the two whites together, again, Meredith?
7.0.490 52:53	Meredith:	One twelfth, two twelfths.
7.0.491 53:11	T/R 1:	Two twelfths. She's calling [Michael, still seated, shakes his head sideways in dissent and fingers some rods.] Do you all agree that one white has a, the number name for the white rod is one twelfth? Someone told me that when I was walking around, it might have been Audra. And some other people told me a white would be one twelfth? Is that true? And two white rods would be
7.0.492 53:15	Students:	Two twelfths.
7.0.493 53:17	T/R 1:	Two twelfths. And one red would be
7.0.494 53:31	Students:	One sixth.
7.0.495 53:32	T/R 1:	One sixth. So, so what is Meredith saying here?
7.0.496 53:35	Meredith:	There's two answers.
7.0.497 53:37	T/R 1:	Are there two answers?
7.0.498 53:41	Michael:	[simultaneously with Erik] No, they're the same answer.
7.0.499 53:43	Erik:	No, they're the exact same thing, except she, she took the red and divided it into half, she divided it into halves, into half and called, and called each half one twelfth. They're the exact same answer except they're just in two parts.
7.0.500 53:44		[Note all written notation will be enclosed in [...] as it is recorded by the teacher.]
7.0.501 53:47	T/R 1:	[Joins the four girls at the overhead projector] Let me write this down. This, what you are saying here is so important, here. Let me see if I can write this down. You're saying that you're calling the red, you're giving red the number name,

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 18 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

right? The length of the red, right? We'll give it the number name, what did you say?
7.0.502 Students: One sixth.
7.0.503 54:02 T/R 1: [R one sixth] One sixth. And two whites, can I write two 'w ' for two whites?
7.0.504_54:23 Students: Yeah.
7.0.505 54:25 T/R 1: And you're calling two whites
7.0.506 54:29 Students: Two twelfths.
7.0.507 54:31 T/R 1: [2W two twelfths] Two twelfths. But what Erik just told me, right?, is something about red and white.
7.0.508 54:33 Erik: Yeah. A red, one red equals, one red rod up here, one red equals two of the white ones.
7.0.509 54:36 T/R 1: $\quad[1 \mathrm{R}=2 \mathrm{~W}]$ So we're talking about the length of the red rod, the length of the red rod is the same as the length of the two white rods? [On the overhead projector, Meredith builds a model with one red rod as the base and places two white rods directly above it.] Is that true? Do you all agree to that?
7.0.510 54:43 Students: Yeah. Yes.
7.0.511 55:03 Erik: And since she's calling a white rod one twelfth and the other white rod one twelfth and the red rod is really one sixth. But, when she calls them two twelfths, the two twelfths are actually just two white rods put together to equal a red, so it should be really, it's really one sixth. Because two whites, two whites
7.0.512 55:12 T/R 1: \quad She says one white is a twelfth [1/12] and then if you put it together with another one twelfth [+1/12], she's saying you get two twelfths [= two twelfths].
7.0.513 55:12 Erik: And it's one sixth, it's one sixth.
7.0.514 55:39 T/R 1: And you're saying if you have, if you take one half that's all right? [1/2] If you're taking one half of one sixth [of one sixth], you're saying you get one twelfth [= 1/12]
You're saying that. That's the two things I'm hearing. Right? And you're saying that [one sixth], the length of one sixth is the same as the length of two twelfths. [= two twelfths] Is that what you are saying?
7.0.515 55:47 Erik: Yeah.
7.0.516 55:48 T/R 1: All those things, are they true?

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 19 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

7.0.517 56:15 Erik: Yeah. But I don't really think you could call, call them two twelfths because two twelfths equal exactly to the same size as one sixth. Well, if you want to you could call them, I guess. But I think it would be easier just to call them one sixth, then wouldn't want to exactly call them one twelfth and another twelfth. I'd just call them one sixth. Therefore I think you just really call them one sixth.
7.0.526 57:09 Jessica: What Erik said is that two whites equal one red, so it would
7.0.518 56:16
7.0.519 56:18
7.0.520 56:46
7.0.521 56:47
7.0.522 56:49
7.0.523 56:53
7.0.524 57:00
7.0.525 57:01
7.0.527 57:09
7.0.528 57:19
7.0.529 57:26

57:38
7.0.531 57:39

Student: Well, maybe you can call them
Erik: Well you can call them, if you want to, but
T/R 1: Well, we have different number names for these rods
Student: they're not different
Brian: There's just half of one, there's just half of one.
T/R 1: \quad So you're saying that one half of the one sixth is another way of saying one twelfth.
Brian: They're just two answers.
T/R 1: Well, you're saying if you took a twelfth, a rod that has length one twelfth, and another rod that has length one twelfth and put them together, right? That rod would have length two twelfths. Isn't that what you said? be the exact same thing.
T/R 1: \quad Or a rod that has length one sixth, that would be the red one in this problem, would also have length two twelfths. Is that what you said when you talk about the lengths of the rods? So are all of these [pointing to the recorded notations on the overhead projector] true statements?
Students: Yeah.
T/R 1: That's amazing. Look at all the fancy mathematics you're doing, that's amazing. That's something for us to think about, ok? So Meredith is still saying that, "I don't disagree with you when I say that it's a red bigger in this model," right?
Meredith: Um, hmm.
T/R 1: I'm just going to give this red a different number name. I could give it the number name one sixth, if I think about it when I compare it to the rod I call one, the orange and red, I could give it the number name one sixth. Or, if I'm thinking about the white rods, right? I could give it the number name two twelfths. And that's very interesting. Does that contradict

Description: Discovering Equivalent	Transcriber(s): Yankelewitz, Dina
Fractions and Introducing Fraction	Verifier(s): Yedman, Madeline
Notation (presentation view)	Date Transcribed: Spring 2009
Date: 1993-10-04	Page: 20 of 20
Location: Colts Neck Elementary	
School	
Researcher: Professor Carolyn Maher	

what you're doing? Or does it still work, what you're doing? It still works, Meredith thinks. That's something to think about, isn't it? That's very interesting, thank you for sharing that. Well, I think we've run out of time. Um, there's a lot of things to write about. We have a whole lot of new ideas, don't we? I really hope that you write to me about your different models and I hope when you write to me and show me as many models as you can. That you will also, you will also, think about, in your models. What is different about each of those models? Write a statement about each of those models that makes it a different model, okay? And then, what is alike about all of those models? Is that a good question, Meredith?
7.0.532 57:55 Meredith: Mm, hmm.
7.0.533 57:56 T/R 1: You can think about that question and write to me about it, I'd really like to know what you're thinking... What is different and what is alike. I can't wait to read what you write to me
7.0.534 59:19 End of class

