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ABSTRACT OF THE DISSERTATION  

Understanding the Physiology in Continuum:  

Integration of Information from Multiple ñ-omicsò Levels 

By KUBRA KAMISOGLU  

Dissertation Director:  

Ioannis P. Androula kis  

 

One of the most fascinating aspects of biomedical sciences is searching for the links 

between the observed phenotypic changes with the underlying causes linked to known 

biological functions at the molecular level. These functions, however, are observe d at 

different physiologic levels interacting physically, spatially, and/or temporally. 

Systems biology fundamentally studies the interactions taking place at genomic, 

proteomic and metabolomic levels under homeostatic conditions or in response to 

patholog ic or pharmacologic stimuli. Each of these data -rich ñ-omicsò fields have 

instrumental contributions to describe biological phenomena at their complementary 

levels. Integration of the knowledge from one or more such levels gives us opportunity 

to determine  causal links more thoroughly and rationalize the focused question from 

initiating source to the observed end point. This dissertation is centered on extracting 

information from the data provided by the -omics analyses, as well as interconnecting 

the infor mation gained at different levels through bioinformatics and modeling 

approaches. We applied these approaches to understand the impact of systemic 

inflammation and anti - inflammatory therapy on the metabolism in two distinct studies.  

Our first focus was on  the major changes arising in plasma metabolome during the 

response to systemic inflammation, and how these changes affect the transcriptome 
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of immune cells, in turn. We defined the dominant metabolic dynamics in the plasma 

of humans administered with bact erial endotoxin, as a surrogate for reproducing the 

pathophysiology of systemic inflammation. Subsequently, we integrated this analysis 

with transcriptional response of leukocytes to understand how their gene expression 

might have been affected from the me tabolic landscape of the fluid environment in 

which they circulate. We hypothesized that the drastic changes in the immediate 

environment of the leukocytes might have an adaptive effect on shaping their 

transcriptional response in conjunction with the init ial inflammatory stimuli.  

Secondly, we explored the interplay between transcriptional and translational 

dynamics in liver in response to an anti - inflammatory drug administration. This 

involved the integration of temporal gene and protein expression patter ns extracted 

from the livers of rats injected with a synthetic corticosteroid (methylprednisolone, 

MPL); long term use of which is associated with many metabolism related side effects. 

Our approach involved both combining and contrasting the same gene prod ucts in two 

different expression levels, in essence, pursuing the best integration approach yielding 

most useful mechanistic information. The significant disparity between the proteome 

and corresponding transcriptome in this study suggested that additional  translational 

or post - translational implications of CSs are very plausible in addition to their direct 

effects on transcription; while also cautioning against the use of transcriptional data 

for deciphering the regulation of the functional pathways which they represent.  
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Chapter 1  Introduction  

The life is complex , at all scales . From a single cell to the  whole body, there are  

thousands of  intricate mechanisms that control every aspect of this complexity . The 

ultimate aim of biomedical sciences is to establish a  thorough understandin g of how 

these  control  mechanisms  function  when weôre healthy, and how th e control is lost (or 

shifted  to a new mode ) when we display  symptoms of a di sease, in order to explain 

the  observed phenotypic changes with the known paradigms at the molecular level . 

Our ability to collect information on the molecular events taking place in our bodies 

have been tremendously increased with  the great adv ancements in technology, 

however we still have a long way to go for find ing the best ways to  fully utilize  this 

information.   

Today we have tens of ñïomics ò tools available, each of which makes it possible to 

observe the  physiologic  response s at their complementary level. They enable the 

examination of a broad array of cellular or systemic  elements and  functio ns through 

the use of vast amounts of quantitative or semi -quantitative data from various levels 

of biological organizations  (Richards et al., 2010 ) . Systems biology rises on  these new 

technologies and currently its biggest challenge is to  devise methods to integrate the  

produced vast amount of information into a conceptual framework that is holistic, 

quantitative and predictive (Kritikou et al., 2006 ) . The prospect  is to reach a thorough 

understanding of the biological mechanisms driving different processes in our bodies  

and get insights into how we could manipulate these processes  for our benefits .  

Inflammation is one of those core processes through which we produce responses 

against various stressors, such as pathogens or trauma. It is a complex and multiscale 

biologica l phenomenon that needs to be orchestrated under tight regulation (Laroux, 

2004 ) . Factors inducing physiological stress are sensed and translated into biological 
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cues that transmit signals throughout the organs and down to the cellular level. These 

incoming signals are then recognized and processed to produce a response in a 

dynamic and highly regulated manner. Collective responses of the cells are reflected 

at the individual organ level, and ultimately in the whole body, by changing dyn amics 

of biological metrics ( Figure 1-1).  

Under normal conditions, the outcome of inflammation is the mounting of required 

immune response for pathogens or regeneration after injury; however, in any instance 

 

Figure 1-1: Multiscale nature of inflammatory response.  
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of dysregulation of this complex process, it is very likely to become a prolonged course 

that can damage the body further or lead to an uncontrolled systemic disease state 

and eventual multiple organ failure (Figure 1-2) (Bone, 1996 ) .  

Considering its critical role in our survival, inherent complexity and intricate 

relationships with other essential  physiologic processes;  inflammation and 

inflammatory diseases are among the top  research  fields that can benefit from 

adapting the systems approach.  In this respect, the emerging -omics tools are very 

promising, since they offer the advantage of observing  the inflammatory response at 

a much broader level together with the ability to analyze mu ltiple variables 

 

Figure 1-2: Inflammatory response is a complex process which has to be tightly regulated in 

order to balance the defense mechanisms of the host with the severity of infection /tissue 

damage. Loss of this control in favor of either side may have fatal consequences  (adapted 

from (Laroux, 2004 ) ) . 
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simultaneously which empowers the application of systems analysis for rationalizing 

and modeling the course of physiologic events.   

Comprehending the  continuum of physiologic responses to pathologic stimuli is 

essential for making sense of how molecular level changes develop to induce 

observable symptoms of a particular disease. Drugs, i.e. pharmacologic stimuli , are 

intended to reverse this  disease pr ogression and reduce the symptoms . F or most cases 

the physiologic effects of  drugs are also complex, involving re -directing the physiologic 

responses to alleviate the symptoms  of a particular pathologic condition as well as 

inducing adverse -effects associa ted with off - target reactions.  Analyses of the 

physiologic effects of drugs by monitoring a handful of markers for the targeted effects 

has been used for building models for drugôs action for many years. Extensive  ïomic 

analyses done at multiple physiologi c levels, however, also impacted this research area  

tremendously  and initiated a shift from classic pharmacokinetic/pharmacodynamic 

modeling (PK/PD) towards a systems approach, named as quantitative systems 

pharmacology (QSP)  (Jusko, 2013 , Androulakis, 2015 , Iyengar et al., 2012 ) . The 

ultimate directions for this field are the realization of pers onalized and precision 

medicine  by building progressively more accurate drug action models . However , the 

first steps towards these goals involve  devising methods to fully utilize the wealth of 

information produced by the extensive analyses of pharmacologic responses.  

This dissertation is centered on integra ting information from multiple relevant 

physiologic levels in order to investigate  the relationship between the inflammation 

and metabolism. We focused on how this critical relationship is shaped over time 

during the development of response to a systemic inflammatory stimuli in the human 

endotoxemia model as well as in response to a corticosteroid treatment in an animal 

model.  The systems approach allowed us to track  the continuum  of physiologic 

response s; through the ir  evolution  over time and in relation to multiple dynamics 
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running in harmony. We extracted the co herent dynamic responses represented in the 

-omics analyses at  multiple physiologic levels and inte grated  the m through multiple 

approaches.  

Chapter 2  and Chapter 3  are concerned with understanding the ways in which systemic 

inflammat ion shifts the metabolic bal ances and how these shifts feed back  to shape 

inflammatory response, in turn.  The analyses described in these chapters include 

metabolic and transcriptional responses to endotoxemia, which is an experimental 

model in humans that recapitulates the dynamics of systemic inflammatory response  

in a reproducible and safe manner  in healthy subjects . In Chapter 4 , we discuss the 

rel evance of th is experimental model to clinical cases of systemic inflammation and 

sepsis . We compare and contrast the metabolic changes observed in the subjects 

participated in endotoxemia study with those observed in patients battling with sepsis 

and syste mic inflammatory response syndrome (SIRS).  In Chapter 5 , we switch from 

progression  of inflammatory response  to the anti - inflammatory therapy side and focus 

on the effects of a commonly -used corticosteroid  in liver and consequently, the whole 

body metabolism. This analysis represents a more direct integration approach, in 

which we evaluate the concordance of the hepatic response to the d rug treatment at 

gene and protein expression levels. Finally in Chapter 6 , we discuss perspectives and 

approaches by which these studies can be adv anced in the future.  These include adding 

a stress component to endotoxemia model by continuous infusion of cortisol  to make 

it even more relevant to clinical cases , and a ne twork -based approach that integrates 

our insights from the bi - level hepatic respon se the corticosteroids with the existing 

pharmacokinetic/pharmacodynamic models.  
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Chapter 2  Temporal Metabolic Profiling of Plasma in 

Experimental Human Endotoxemia   

Elective administration of bacterial endotoxin (li popolysaccharide; LPS) to healthy 

human subjects has been used as a reproducible experimental procedure providing 

mechanistic insights into how cells, tissues and organs respond to systemic 

inflammation. Low dose s of LPS transiently alter many physiologic and metabolic 

processes in a qualitatively similar manner to those observed after acute injury and 

systemic inflammation (Lowry, 2005 , Calvano and Coyle, 2012 ) ; thus allowing the 

analysis of the responses to infectious stress at multiple physiological levels. This 

model has been extensively employed f or the development and assessment of rational 

clinical therapies to prevent or attenuate systemic inflammatory response syndrome 

(SIRS) (Calvano and Coyle, 2012 ) .  

Response to endotoxemia is closely associated with alte rations in metabolism.  

Inflammatory processes change the direction of the substrate flow from the periphery 

towards splanchnic organs while also triggering the release of catabolic signals in order 

to meet increased energy and substrate demands (Fong et al., 1990 , Khovidhunkit et 

al., 2004 ) ; and hence, considerably altering the levels of plasma metabol ites. 

Individual changes in the major metabolites, such as some lipids, amino acids and 

glucose, has been previously documented for the case of human endotoxemia (Fong 

et al., 1990 ) . However, an untargeted, bioinformatics empo wered approach to 

elucidate the effects of endotoxemia on the plasma metabolite levels is lacking.  

Analysis of the complete metabolic response to systemic inflammation is of special 

interest since metabolic composition of a tissue is uniquely altered in r esponse to 

stimuli due to collective effects of the regulations at various levels of cellular processes 

including transcription, translation and signal transduction. Concentrations of 
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metabolites in a sample at a given time, i.e. the ñmetabolomeò (Nicholson and Lindon, 

2008 ) , can be thought of as the metabolic fingerprint representative of the state of 

body at that time and provide information on the dominant regulatory mechanisms. 

The emerging field of metabonomics, combines this uniq ue metabolic information with 

bioinformatics approaches to provide an integrated temporal picture of the interactions 

in the system (Nicholson, 2006 , Holmes et al., 2008 ) . Since  the ultimate phenotype is 

determined by eventual production of metabolites through the complex cellular 

processes trickling down from transcription, translation and signal transduction, this 

field offers promise in advancing the knowledge in many clinical  conditions. For 

endotoxemia, understanding the alterations in plasma metabolome is critical; since, 

metabolite levels impacts the regulation of anti - inflammatory defenses, in turn, 

through steering critical cellular processes in immune cells (Pearce and Pearce, 2013 ) . 

This study constitutes the first attempt of a complete metabonomic analysis  describing 

the alterations in plasma metabolite composition following exposure to LPS.  

2.1  Methods  

2.1.1  Human Plasma Samples  

Archived blood plasma samples which had been flash frozen were used in this proof -

of -principle study. These samples had been collected from  19 healthy subjects, 

between ages 18 -40, who provided written, informed consent under guidelines 

approved by the Institutional Review Board (IRB) of Robert Wood Johnson Medical 

School. 15 of the subjects ( 11 males and 4 females; mean age of 22.7) had been  

administered National Institutes of Health (NIH) Clinical Center Reference Endotoxin, 

at a bolus dose of 2 ng/kg body weight as previously described (Alvarez et al., 2007 , 

Jan et al., 2009 , Jan et al., 2010 ) . 4 control subjects (3 males and 1 female; mean 

age of 22.2) had been administered placebo (saline). During the protocol, subjects 

had received a solution of 5%  dextrose and 0.45% saline crystalloid. Blood draws had 
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been conducted sequentially at t=1, 2, 6, and 24 hr from both groups, samples had 

been inventoried and stored at -80°C until the analysis.  

2.1.2  Biochemical Profiling of Plasma Samples  

Metabolomic analysis was performed by Metabolon (Durham, NC, USA) according to 

previously published methods (Evans et al., 2009 ) . Briefly, samples were prepared by 

using  a proprietary series of organic and aqueous extractions to attain the maximum 

recovery of small molecules while eliminating the protein fractions in plasma. The 

resulting extracts were subjected to either liquid chromatography (LC) or gas 

chromatography ( GC) followed by mass spectroscopy (MS) analysis.  

The data extraction of the raw MS data files yielded information that were loaded into 

a relational database in which the information was examined and appropriate QC limits 

were imposed. Peaks were identifi ed using Metabolonôs proprietary peak integration 

software, and component parts were stored in a complex data structure. Compounds 

were identified by comparison to library entries of purified standards or recurrent 

unknown entities. Identification of known  chemical entities was based on comparison 

to metabolomic library entries of purified standards. The combination of 

chromatographic properties and mass spectra gave an indication of a match to the 

specific compound or an isobaric entity. For the samples wh ich took multiple days to 

analyze, a data normalization step was performed to correct variation resulting from 

instrument inter -day tuning differences. The quality control and curation processes 

were used to ensure accurate and consistent identification of  true chemical entities, 

and to remove those representing system artifacts, misassignments, and background 

noise.  
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2.1.3  Data analysis  

After identification of the metabolites, the complete dataset of 366 metabolites with 

temporal profiles was rigorously analyzed  through multiple steps. These included 

filtering for differential metabolites, principal component analysis (PCA) and clustering. 

Imputed and scaled (to set the median equal to 1) datasets were investigated to 

identify the metabolites which show different ial temporal profiles between LPS and 

placebo groups by using software for the extraction and analysis of gene expression 

(EDGE) (Leek et al., 2006 ) . The significance threshold for this test was set as q value 

<0.1 and p value < 0.05. Using these differential metabolites, PCA was performed and 

the averages of first principal component (PC1) for each treatment group were plotted 

against time. One way ANOVA was performed to evaluate the significance of PC1 

variance over time for eac h treatment group. Then, to compare PC1 values at each 

time point, Wilcoxon rank sum test is used (with 1% significance level). Finally, the 

datasets containing differential metabolites were concatenated to form one single 

matrix, which was then clustered through consensus clustering (Nguyen et al., 2009 )  

(with p -value = 0.05) with the goal t o identify the subsets of metabolites with coherent 

temporal profile in LPS and placebo groups. Interpretation of the biological significance 

these profiles demonstrate were based on the individual metabolite identities and 

curated metabolic pathways obtai ned from publicly available Kyoto Encyclopedia of 

Genes and Genomes (KEGG) (Lissauer et al., 2009 )  and Human Metabolome Database 

(Wishart et al., 2013 )  as well as  Ingenuity Knowledge Base (Calvano et al., 2005 ) . 

2.2  Results  

This study aimed to identify the major coherent patterns in human pla sma metabolome 

within the 24 hours after systemic LPS exposure. The study design, a flowchart of 

which is shown in Figure 2-1, involved two groups of h ealthy subjects treated either 

with a bolus dose of 2 ng/kg body weight  LPS or placebo (saline) injection at t=0. The 
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blood samples were collected from the subjects at 4 time points throughout 24 h post -

treatment and the response was determined via non - tar geted biochemical profiling 

through MS analysis.  

Global biochemical profiles obtained by GC -MS and LC -MS/MS platforms represented 

temporal information on 366 metabolites including amino acids, short peptides, 

carbohydrates, lipids, nucleotides, cofactors and vitamins, xenobiotics and 

intermediate product s of major energy production pathways. We first filtered the data 

through an algorithm originally designed for gene microarray experiments, Extraction 

 

Figure 2-1: Study flowchart illustrating sample acquisition, biochemical profiling through MS, 

and data analysis steps. Diagrams below each data symbol display empirical cumulative 

distribution of the corresponding dataset, with the number of elements indicated below the 

data symbols.  
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of Differential Gene Expression (EDGE). EDGE procedure utilizes an optimal discovery 

procedure that uses relevant information from all the elements in the dataset in order 

to test each for differential expression (Leek et al., 2006 ) . By applying this algorithm 

to metabolome dataset we first identified metabolites with differential tem poral profiles 

between LPS and placebo groups. 60 out of the 366 metabolites showed differential 

profiles which met p -value < 0.05 and q -value < 0.1 cut -offs of EDGE software. The 

utility of this filtering step was also evident from the change in cumulativ e distributions 

of data before and after EDGE as shown in Figure 2-1. While both treatment groups 

have almost uniform distributions when the complete metabolome dataset is used, 

LPS treatment group became distinguishable from placebo at certain time points when 

only the differential metabolites were included in the analysis.  

To identify the dominant patterns among the temporal profiles of these differen tial 

metabolites, PCA was performed.  The averages of the first two principal components 

(PC1 and PC2) for the two treatment groups were plotted against time and against 

each other in Figure 2-2  a-c. As shown in the bar chart in Figure 2-2 d, although much 

of the variance (63%) was captured by the PC1,  PC2 had also contributed in explaining 

the variability between the subjects in two experimental groups. In average, subjects 

treated with LPS were clearly separated in both PC1 and PC2; while saline treated 

subjects showed less variation in PC2, but even lesser in PC1.  

Average PC1 was analyzed as a function of time in a on e way between subjects analysis 

of variance (ANOVA) and  results indicated that variation of PC1 over time for LPS 

groups is significant (p -value = 1.38x10 -37) whereas for saline group it  is not (p > 

0.01). Significance analysis of the PC1 at each time point by Wilcoxon rank sum test 

identified the  most significant difference between the two groups at 6h (p -value = 

0.00065), which separated the development and recovery phases of the LPS in duced 
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metabolic changes. As shown in Figure 2-2 a, at 24h,  average PC1 was still significantly 

different for the two groups, indicating that the recove ry is still in progress.  

To identify the subsets of metabolites with common coherent profiles, we applied 

consensus clustering (Nguyen et al., 2009 )  to the metabolites having differential 

temporal profiles in between LPS and placebo groups . Clustering is an essential tool 

for the analysis of high -content data based on organization of the signals with similar 

behavior. Identification of the coherent patterns which intensify and weaken over time 

 

Figure 2-2: (a) Temporal changes in averaged PC1 for LPS and placebo treated subjects. (b 

and c) Trajectory averages in PC1 -PC2 coordinates (b) and time -PC1-PC2 space (c). (Star  

sig n indicates significance (p< 0.01) measured by Wilcoxon rank sum test and error bar 

indicate standard error of the mean). (d) Per cent of the variance captured by each principal 

component.  
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allows us to focus on closely associated interactions within the elements of the data. 

It also facilitates the recognition of temporal relationships between the sub -clusters of 

elements, which might imply regulatory hierarchy (Nguyen et al., 2009 ) . It is  

worthwhile to note the refinement in the content of the data by comparing the 

difference between the empirical cumulative distributions of the clustered dataset from 

distributions in the previous datasets ( Figure 2-1).  In the clustered data, the 

distributions of LPS group became distinctly separated from the placebo group at each 

time point. Furthermore, in agreement wit h the PCA, distribution of the 6h  data for 

LPS group displays an easily recognized divergence from the rest of the data.  

 

Figure 2-3: Heat map displaying the differential patterns of metabolic response to LPS. Two 

clusters of plasma metabol ites reflect two distinct patterns with opposing temporal 

directionality. Clustered metabolites and their associations with the metabolic pathways are 

also listed in Table 2.1. 
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Consensus clustering of the differential metabolites further refined the data and 

returned 37 of the total of 60 differential metabolites, classified into one of the  two 

clusters with oppos ing temporal directionality as shown in Figure 2-3. Metabolites in 

each cluster and their associations with the metabolic pathways are listed in Table 2.1. 

The first cluster (16 metabolites) was up - regulated within the first 6h ; down - regulated 

by the end of 24h and was mostly composed of metabolites  from pathways related to 

lipid metabolism. The second cluster (21 metabolites), in contrast, was down -

regulated within the first 6h post -LPS; then up - regulated by the 24h. Strikingly 14 out 

of 21 metabolites in this cluster were amino acids or their deriv atives and an additional 

2 were dipeptides indicating a significant regulatory shift in the protein metabolism.  

 

2.3  Discussion  

This study identified the coherent changes in temporal patterns of plasma metabolite 

levels in response to low dose LPS exposure by using untargeted analytical 

methodology and unsupervised data analysis techniques. Most striking differences 

between treatment and control groups were observed in amino acid and lipid levels 

which displayed self - resolving patterns with different directiona lity forming two distinct 

clusters. While amino acids and amino acid derivatives were steadily cleared out from 

plasma; lipids, mostly mono -  and poly -unsaturated fatty acids, accumulated within the 

first 6h following LPS administration, after which the dir ection of the response was 

reversed for these two distinct patterns indicating recovery.  
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Among the first cluster of metabolites; 13 out of total 16 were lipids, more 

specifically, essential and non -essential long chain fatty acids (FAs) including 4 omega -

3 FAs, docosahexaenoate (DHA), docosapentaenoate (DPA), eicosapentaenoate (EPA) , 

stearidonate ;  and 2 omega -6 FAs, dihomo - linoleate (eicosatrienoate)  and 

docosadienoate;  and a major saturated FA, stearate,  in addition to 3 pregnenolone 

Table 2.1: Distribution and classification of the differential metabolites to the clusters shown 

in Figure 2-3. 

 
Biochemical  Sub - pathway  Super 

pathway  

C
lu

s
te

r 
1

 

2-hydroxybutyrate (AHB)  
Cysteine, methionine, SAM, taurine 
metabolism  

Amino acid  

3-methyl -2-oxobutyrate  
Valine, leucine and isoleucine 
metabolism  

Docosahexaenoate (DHA; 22:6n3)  

Essential fatty acid  

Lipid  

Docosapentaenoate (DPA; 22:5n3)  

Eicosapentaenoate (EPA; 20:5n3)  

Tetradecanedioate  Fatty acid, dicarboxylate  

Stearidonate (18:4n3)  

Long chain fatty acid  

Dihomo - linoleate (20:2n6)  

Docosadienoate (22:2n6)  

10 -nonadecenoate (19:1n9)  

Eicosenoate (20:1n9 or 11)  

Stearate (18:0)  

21 -hydroxypregnenolone disulfate  

Sterol/Steroid  Pregn steroid monosulfate  

Pregnen -diol disulfate  

Phenolphthalein beta -D-glucuronide  Detoxification metabolism  Xenobiotics  

C
lu

s
te

r 
2

 

Asparagine  Alanine and aspartate metabolism  

Amino acid  

Cysteine  Cysteine, methionine, SAM, taurine 
metabolism  Methionine  

Glycine  Glycine, serine and threonine 
metabolism  Serine  

Histidine  Histidine metabolism  

Lysine  Lysine metabolism  

Tyrosine  Phenylalanine & tyrosine metabolism  

Tryptophan  Tryptophan metabolism  

Citrulline  Urea cycle; arginine, proline 
metabolism  Ornithine  

Isobutyrylcarnitine  

Valine, leucine and isoleucine 
metabolism  

Isoleucine  

Leucine  

Valine  

Phosphate  Oxidative phosphorylation  Energy  

Taurolithocholate 3 -sulfate  Bile acid metabolism  

Lipid  Deoxycarnitine  Carnitine metabolism  

Choline  Glycerolipid metabolism  

Gamma -glutamylleucine  
Gamma -glutamyl  Peptide  

Gamma -glutamyltyrosine  
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derivatives taking part in steroid hormone biosynthesis. Coherent up - regulation 

pattern observed in these plasma FAs at 6 h is consisten t with the lipolysis, a well -

known adaptive response to inflammation (Fong et al., 1990 ) . The peripheral 

mobilization of lipid stores in the form of free FAs was initially considered as a result 

of catecholamine release in response to infection or injury; however increased 

biosynthesis and decreased oxidation in liver together with increased whole -body 

lipolysis are results of complex signaling interactions initiated by stress hormones such 

as catecholamines, as well as prod uced cytokines and LPS itself, collectively giving rise 

to accumulation of FAs in plasma. Since toll - like receptor 4 (TLR4) signaling initiated 

with recognition of LPS on the cell surface is responsible for expression of many 

cytokines , all of which have m ajor downstream effects on metabolism, teasing apart 

individual direct and indirect effects of each on lipid homeostasis requires further 

research (Glass and Olefsky, 2012 ) .  

More pronounced increase in omega -3 FAs compared to omega -6 FAs may be related 

to their differential roles in the inflammatory response. These two fatty acid groups 

have opposing physiologic al functions: While omega -6 FAs give rise to pro -

inflammatory prostaglandin and leukotriene synthesis, omega -3 FAs compete with 

omega -6 FAs to modulate this response by inducing the production of less 

inflammatory derivatives (De Caterina and Ba sta, 2001 ) . Although, speculative at this 

level of global metabonomic analysis, selective concentration of omega -3 FAs in 

plasma in the initial 6h of response might have contributed to the resolution and 

recovery in the following hours. Since dietary su pplementation of omega -3 FAs are 

shown to be associated with a moderate quenching effect on inflammation, this 

speculation based on the observed selective increase of omega -3 FAs might not be far 

from truth and might have served as an endogenous adaptive m echanism to suppress 

inflammation (Simopoulos, 2002 ) . Interestingly, although increasing levels of free FAs 
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in plasma has been associated with insulin resistance (Agwunobi et al., 2000 ) , glucose 

levels or associated metabolites in clustering analysis did not reflect a significant  

perturbation in any of the time points. This might have been related to the relatively  

fast and subtle kinetics of those metabolites.  

Elevated 2-hydroxybutyrate  (or Ŭ-hydroxybutyrate; AHB) levels usually point towards 

increased oxidative stress because AHB is a by -product in the pathway leading to 

glutathione synthesis from methionine. The activity of this pathway (from methionine 

 

Figure 2-4: Pathway associations illustrating the conversion of methionine to one of the major 

anti -oxidants, glutathione. Metabolites captured in the clustering analysis are indicated with 

a the name of the cluster and a color bar representing up - (red) or down - regu lation (green) 

at 6h and 24h time points.  
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Ą cystathionine Ą cysteine Ą glu tathione as shown in part of Figure 2-4) varies in 

response to the demands against elevated cellular oxidative stress (Lord and Bralley, 

2008 , Gall et al., 2010 ) .  

Increased oxidative stress shifts the flow of homocysteine away from transmethylation 

to methionine toward transulfuratio n to cystathionine, increasing the flow towards 

glutathione synthesis. Glutathione is one of the most important antioxidant proteins 

and plays a crucial role in mitigating the oxidative damage of reactive oxygen species, 

formation of which in liver is pote ntly triggered by inflammation (Jaeschke, 2011 ) . 

Therefore, increased AHB levels at 6h post -LPS coinciding with plummeting levels of 

methionine , serine,  cysteine  and glycine  at the same time point can be interpreted as 

an indication of increased activity of hepatic oxidative defense mechanisms to 

effectively regulate the inflammatory response induced by LPS. Reverse of the first 

conversion in this pathway (homocysteine Ąmethio nine) is possible with incorporation 

of methyl groups to methionine. One source of the methyl groups for this reaction is 

betaine, which is derived from choline  (Niculescu and Zeisel, 2002 ) . Choline is in the 

second cluster which shows similar kinetics with the opposite direction of the first 

cluster, consist ent with the opposing directionality in the reactions in this pathway.   

3-methyl -2-oxobutyrate  (or Ŭ-ketoisovaleric acid, KIV) is a branched chain keto -acid 

(BCKA) and a degradation product of valine which is formed in the initial step of 

branched chain am ino acid (BCAA) catabolism. This conversion exclusively takes place 

in skeletal muscle due to relatively high activity of BCAA aminotransferase and it is an 

essential part of the BCAA -BCKA cycling between liver and muscle (Mattick et al., 

2013 , Holeļek, 2002). Increase in KIV levels following LPS exposure occurs at the 

same time where valine  concentra tions are decreased in plasma, indicating an increase 

in BCAA catabolism to meet the increased metabolic demands of liver, which can utilize 
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KIV for transamination to other BCAAs for incorporation into acute phase proteins, or 

complete their degradation fo r energy production.  

The accumulation of intermediates in the steroid hormone biosynthesis pathways such 

as 21 -hydroxypregnenolone , pregnenolone sulfate , pregnanediol  in LPS treated 

subjects may suggest an increased capacity for steroid biogenesis which is  required 

for the production of hormones to regulate glucose homeostasis and suppress 

inflammation. Increase in various derivatives of corticosteroid hormones were 

anticipated considering the primary roles of these hormones in regulation of 

inflammatory re sponse and metabolism, and also were consistent with earlier studies 

(Fong et al., 1990 , Agwunobi et al., 2000 ) . 

The second cluster  displayed a response pattern almost exactly in the opposite 

direction of the first cluster. Concentrations of the metabolites in this cluster gradually 

decreased until 6h after LPS administration, preceding a recovery period in the 

following 18h. 14 out o f 21 metabolites within this cluster were amino acids, strongly 

indicating their primary role in the immediate response to inflammatory insult. These 

14 amino acids include 12 proteinogenic amino acids ( asparagine, cysteine, 

methionine, glycine, serine, hi stidine, lysine, tyrosine, tryptophan, isoleucine, leucine 

and  valine ) and 2 core members of urea cycle ( citrulline  and ornithine ). Presence of 

members of the urea cycle together with amino acid degradation pathway 

intermediates ( isobutyryl carnitine  and deoxycarnitine ) indicates that amino acids are 

not only used as the building blocks for the acute phase proteins in liver, but also 

utilized as the substrates for energy production. Compensation for this rapid clearance 

of amino acids from plasma starts aft er 6h and is achieved possibly by the breakdown 

of protein reserves in skeletal muscle. Presence of proteolytic breakdown products 

(gamma -glutamylleucine , gamma -glutamyltyrosine ) in this cluster might be 

associated with this process being incomplete.  
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Taur olithocholic acid 3 -sulfate  is a product of bile acid sulfation, which is a minor 

pathway under normal conditions. In the presence of intrahepatic cholestasis, 

associated with inflammation (Khovidhunkit et al., 2004 ) , this reaction escalates, 

increasing the aqueous solubility and, consecutively, renal clearance of these 

compounds (St -Pierre et al., 2001 ) . T herefore, an increase in the plasma concentration 

of these sulfated bile acids might indicate a decline in the renal function in response 

to LPS - induced inflammation. Furthermore, increased phosphate  levels have also been 

suggested as a potential risk fact or linked to renal failure (Voormolen et al., 2007 ) . 

These two independent markers of declined renal function also being associated with 

the same temporal patt ern, therefore, might be suggestive of an impairment of normal 

renal function in the LPS treated subjects.  

2.3.1  Limitations  

It should be emphasized that, although experimental model of human endotoxemia 

simulates systemic inflammation fairly well, it can be bes t described as a TLR4 agonist 

induced systemic inflammation (Calvano and Coyle, 2012 ) . In this experimental 

model, the subjects are pre -screened medically to confirm normal general health; 

therefore care should be taken  when extrapolating the implications of the results to 

clinically more complex conditions, such as sepsis. Another limitation of the study is 

related to the utilized data filtering and clustering procedures. Although these 

techniques ensure that subsets of  metabolites with coherent temporal profiles are 

captured; at the same time, they might have masked some subtle changes which 

might be significant but not necessarily correspond to the observed dominant patterns. 

Metabolites which have a quickly resolving perturbation early in the time course, such 

as lactate (Michaeli et al., 2012 ) , can be an example to this limitation. Furthermore, 

there is limited number of time points in the study and that the last two time points 

are considerably far from each other. We observe significant changes in the 
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metabolites starting at 6h which mostly r esolve by 24h; however it is likely that some 

metabolites with different kinetics and show perturbations between these two time 

points might have been overlooked.  

2.4  Conclusion  

LPS administration in healthy humans significantly alters the homeostasis of lipid  and 

protein metabolism in humans in the first 6h. Within 24h post - treatment, metabolite 

balances are mostly restored. Perturbation observed in the levels of plasma lipids may 

well be associated with the established lipolytic effect of inflammation, wherea s amino 

acid deficiency observed early in response is likely due to increased hepatic uptake to 

meet the higher substrate demand for the synthesis of acute phase proteins and anti -

oxidant defenses. Increase in some of the markers associated with renal fail ure later 

in the time course suggested that kidney function may have been deteriorate d in 

subjects treated with LPS.  
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Chapter 3  Integration of Plasma Metabolomics  and 

Leukocyte Transc riptomics  in Response to 

Endotoxemia  

Global transcriptomic studies of circulating leukocytes in experimental human 

endotoxemia previously elucidated the intricate regulatory schemes governing the 

inflammatory response (Calvano et al., 2005 , Nguyen et al., 2011 ) . However, 

inflammatory response is also closely associated with alterations in metabolism . In 

Chapter 2 , we discussed  the drastic effect of a mild inflammatory stimulus on the 

homeostasis of the whole -body metabolism (Kamisoglu et al., 2013b ) . This single level 

analysis uncovered the temporal patterns in the host metabolism reflecting c ollective 

impacts of regulations at various organs and at multiple levels of cellular processes 

including transcription, translation and signal transduction. For endotoxemia, 

understanding the alterations in plasma metabolome is critical, since metabolite levels 

impact the regulation of anti - inflammatory defenses, in turn, through directing critical 

cellular processes in immune cells (Pearce and Pearce, 2013 ) .  

Building on this knowledge; we integrated the transcriptional response of leukocytes 

with systemic metabolic response to understand how inflammation - induced changes 

in the composition of plasma, in turn, affect s the transcriptional processes in the 

leukocytes. We hypothesized that the drastic changes in the immediate environment 

of the leukocytes might have an adaptive effect on shaping their transcriptional 

response in the regulation of m etabolism in conjunction with the initial inflammatory 

stimuli.  
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3.1  Methods  

This is a meta -study aiming to integrate biological insights gained from two levels of -

omics  analyses on the response to systemic inflammation induced by LPS in humans. 

The designs o f both transcriptomic and metabonomic studies are shown in Figure 3-1.  

For the transcriptomic study, 4 subjects (1 female and 3 male) had received LPS at a 

bolus dose of 2 ng/kg body weight and 4 subjects (1 female and 3 male) had received 

saline. Blood samples were collected before (t =0h) and 2, 4, 6, 9 and 24h after LPS 

administration.  Leukocytes were recovered by centrifugation; total cellular RNA was 

isolated from the leukocyte pellets and hybridized onto Hu133A and Hu133B 

oligonucleotide arrays (Affymetrix). Further details about t he experimental design are 

presented in the original analysis (Calvano et al., 2005 ) . The transcriptional analysis 

generated ex pression measurement data of over 44000 probesets in total, which is 

also publicly available through the GEO Omnibus Database 

(http://www.ncbi.nlm.nih.gov/geo/) under the Accession No: GSE3284.  Complete 

 

Figure 3-1: Designs of the transcriptomic and metabolomic studies.  
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details of the profiling of plasma metabolome has pre viously been described in Chapter 

2.  

3.1.1  Data analysis  

Data analysis for both transcriptomic and metabolomic datasets started first by 

filtering for differential expression over time. Transcripts and metabolites with 

differential temporal profiles were determined by using EDGE software (Leek et al., 

2006 ) . The significance cut -off for the transcriptomic dataset were p<0.05 at 0.10 

false discovery rate. To determine the potential co - regulatory relationships, 

differentially expressed transcripts and metabolites with differential temporal profiles 

were hierarchically clustered using clustergram  function in the Bioinformatics toolbox 

of MATLAB (Mathworks, Natick MA). The two clusters were obtained by using 

correlation  as the distance metric.  

Pathway enrichment analysis of genes in the clusters were done in Enrichr (Chen et 

al., 2013 )  using the gene -set libraries of Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (Kanehisa and Goto, 2000 ) . Three type s of enrichment scores are calculated 

by Enrichr to assess the significance of overlap between the input list and the gene 

sets in each gene -set library for ranking a termôs relevance to the input list. These are 

Fisher exact test, z - score of the deviation  from the expected rank by the Fisher exact 

test, and a combined score that multiplies the log of the p -value computed with the 

Fisher exact test by the z -score. The pathways which have a combined score higher 

than 1.0 were called significant. The combined  score had been devised since Fisher 

exact test had a slight bias that affects the ranking of terms solely based on the length 

of the gene sets in each gene -set library (Chen et  al., 2013 ) .  

The goal in the current analysis was to reveal transcriptional regulation of leukocyte 

metabolic processes, specifically, then to assess if these regulatory patterns might 
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have been affected by concurrent fluctuations of metabolite levels i n the surrounding 

plasma along with the initial stimuli. For this purpose, we opted to focus the 

transcriptional analysis to the genes that are associated with metabolic processes only . 

Therefore, any differential transcripts which code for genes that are not associated 

with any of the metabolic pathways were filtered out. Gene set libraries and pathway 

classifications in KEGG database were used as reference at this filtering process. Then, 

clustering analysis was repeated for the remaining transcripts. Clu stered metabolism 

associated genes were functionally annotated through Enrichr similar to the complete 

transcriptome described above.  

3.2  Results  

This study aimed to integrate the biological insights gained from two levels of -omics  

analyses on the response t o systemic inflammation induced by LPS in humans. We 

integrated the analyses of transcriptional data obtained from circulating leukocytes 

and metabolomic data from plasma considering that the inflammatory processes 

considerably affect levels of plasma meta bolites through collective impacts of 

regulations at various organs and at multiple levels of cellular processes including 

transcription, translation and signal transduction; and the responses of inflammatory 

cells might have been affected from the metabol ic landscape of the fluid environment 

in which they circulate.  

3330 of the transcripts, coding for 2562 unique genes, were differentially expressed 

based on p<0.05 and q<0.1 cut -offs applied on EDGE. Hierarchical clustering of these 

differentially express ed transcripts forms three characteristic patterns of response as 

discussed in the complete transcriptional analysis previously. These three patterns 

reflect early up - regulation, late up - regulation, and down - regulation of genes in 

response to LPS stimulus (Foteinou et al., 2009 ) . Profiles of these three clusters are 
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shown in Figure 3-2 (on the right) together with the heat map of corresponding 

transcripts (on the left).  

Simultaneously with these changes in leukocyte transcription, metabolite 

concentrations in the plasma also drastical ly change due to the effects of inflammatory 

signaling in the whole body. The metabolomic dataset included temporal concentration 

data of 366 plasma metabolites, and 60 out of these 366 had differential temporal  

 

Figure 3-2: All differential transcripts clustered into three, displaying early up - regulat ed, late 

up - regulated and down - regulated profiles. Heat map on the left shows the transcriptional 

expression of all differential transcripts in these three clusters while diagrams on the right 

display the average expression profiles for all transcripts in each cluster (vertically in the same 

order as the heat map). Horizontal yellow lines on the heat map designate the limits of each 

cluster.  














































































































































































































