
 

 

 

 

 

 

 

 

 

 

©2015 

 

Kubra Kamisoglu 

 

 

 

 

ALL RIGHTS RESERVED 

 



UNDERSTANDING THE PHYSIOLOGY IN CONTINUUM: 

INTEGRATION OF INFORMATION FROM MULTIPLE “-OMICS” LEVELS 

by 

KUBRA KAMISOGLU 

 

 

A Dissertation submitted to the 

Graduate School-New Brunswick 

Rutgers, The State University of New Jersey 

in partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy 

Graduate Program in Chemical and Biochemical Engineering 

written under the direction of 

Ioannis P. Androulakis 

and approved by 

 

 

 

________________________ 

________________________ 

________________________ 

________________________ 

________________________ 

New Brunswick, New Jersey 

October, 2015 



 

 

ii 

 

ABSTRACT OF THE DISSERTATION 

Understanding the Physiology in Continuum: 

Integration of Information from Multiple “-omics” Levels 

By KUBRA KAMISOGLU 

Dissertation Director: 

Ioannis P. Androulakis 

 

One of the most fascinating aspects of biomedical sciences is searching for the links 

between the observed phenotypic changes with the underlying causes linked to known 

biological functions at the molecular level. These functions, however, are observed at 

different physiologic levels interacting physically, spatially, and/or temporally. 

Systems biology fundamentally studies the interactions taking place at genomic, 

proteomic and metabolomic levels under homeostatic conditions or in response to 

pathologic or pharmacologic stimuli. Each of these data-rich “-omics” fields have 

instrumental contributions to describe biological phenomena at their complementary 

levels. Integration of the knowledge from one or more such levels gives us opportunity 

to determine causal links more thoroughly and rationalize the focused question from 

initiating source to the observed end point. This dissertation is centered on extracting 

information from the data provided by the -omics analyses, as well as interconnecting 

the information gained at different levels through bioinformatics and modeling 

approaches. We applied these approaches to understand the impact of systemic 

inflammation and anti-inflammatory therapy on the metabolism in two distinct studies.  

Our first focus was on the major changes arising in plasma metabolome during the 

response to systemic inflammation, and how these changes affect the transcriptome 
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of immune cells, in turn. We defined the dominant metabolic dynamics in the plasma 

of humans administered with bacterial endotoxin, as a surrogate for reproducing the 

pathophysiology of systemic inflammation. Subsequently, we integrated this analysis 

with transcriptional response of leukocytes to understand how their gene expression 

might have been affected from the metabolic landscape of the fluid environment in 

which they circulate. We hypothesized that the drastic changes in the immediate 

environment of the leukocytes might have an adaptive effect on shaping their 

transcriptional response in conjunction with the initial inflammatory stimuli.  

Secondly, we explored the interplay between transcriptional and translational 

dynamics in liver in response to an anti-inflammatory drug administration. This 

involved the integration of temporal gene and protein expression patterns extracted 

from the livers of rats injected with a synthetic corticosteroid (methylprednisolone, 

MPL); long term use of which is associated with many metabolism related side effects. 

Our approach involved both combining and contrasting the same gene products in two 

different expression levels, in essence, pursuing the best integration approach yielding 

most useful mechanistic information. The significant disparity between the proteome 

and corresponding transcriptome in this study suggested that additional translational 

or post-translational implications of CSs are very plausible in addition to their direct 

effects on transcription; while also cautioning against the use of transcriptional data 

for deciphering the regulation of the functional pathways which they represent. 
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Chapter 1 Introduction 

The life is complex, at all scales. From a single cell to the whole body, there are 

thousands of intricate mechanisms that control every aspect of this complexity. The 

ultimate aim of biomedical sciences is to establish a thorough understanding of how 

these control mechanisms function when we’re healthy, and how the control is lost (or 

shifted to a new mode) when we display symptoms of a disease, in order to explain 

the observed phenotypic changes with the known paradigms at the molecular level. 

Our ability to collect information on the molecular events taking place in our bodies 

have been tremendously increased with the great advancements in technology, 

however we still have a long way to go for finding the best ways to fully utilize this 

information.  

Today we have tens of “–omics” tools available, each of which makes it possible to 

observe the physiologic responses at their complementary level. They enable the 

examination of a broad array of cellular or systemic elements and functions through 

the use of vast amounts of quantitative or semi-quantitative data from various levels 

of biological organizations (Richards et al., 2010). Systems biology rises on these new 

technologies and currently its biggest challenge is to devise methods to integrate the 

produced vast amount of information into a conceptual framework that is holistic, 

quantitative and predictive (Kritikou et al., 2006). The prospect is to reach a thorough 

understanding of the biological mechanisms driving different processes in our bodies 

and get insights into how we could manipulate these processes for our benefits. 

Inflammation is one of those core processes through which we produce responses 

against various stressors, such as pathogens or trauma. It is a complex and multiscale 

biological phenomenon that needs to be orchestrated under tight regulation (Laroux, 

2004). Factors inducing physiological stress are sensed and translated into biological 
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cues that transmit signals throughout the organs and down to the cellular level. These 

incoming signals are then recognized and processed to produce a response in a 

dynamic and highly regulated manner. Collective responses of the cells are reflected 

at the individual organ level, and ultimately in the whole body, by changing dynamics 

of biological metrics (Figure 1-1). 

Under normal conditions, the outcome of inflammation is the mounting of required 

immune response for pathogens or regeneration after injury; however, in any instance 

 

Figure 1-1: Multiscale nature of inflammatory response. 
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of dysregulation of this complex process, it is very likely to become a prolonged course 

that can damage the body further or lead to an uncontrolled systemic disease state 

and eventual multiple organ failure (Figure 1-2) (Bone, 1996).  

Considering its critical role in our survival, inherent complexity and intricate 

relationships with other essential physiologic processes; inflammation and 

inflammatory diseases are among the top research fields that can benefit from 

adapting the systems approach. In this respect, the emerging -omics tools are very 

promising, since they offer the advantage of observing the inflammatory response at 

a much broader level together with the ability to analyze multiple variables 

 

Figure 1-2: Inflammatory response is a complex process which has to be tightly regulated in 

order to balance the defense mechanisms of the host with the severity of infection/tissue 

damage. Loss of this control in favor of either side may have fatal consequences (adapted 

from (Laroux, 2004)). 
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simultaneously which empowers the application of systems analysis for rationalizing 

and modeling the course of physiologic events.  

Comprehending the continuum of physiologic responses to pathologic stimuli is 

essential for making sense of how molecular level changes develop to induce 

observable symptoms of a particular disease. Drugs, i.e. pharmacologic stimuli, are 

intended to reverse this disease progression and reduce the symptoms. For most cases 

the physiologic effects of drugs are also complex, involving re-directing the physiologic 

responses to alleviate the symptoms of a particular pathologic condition as well as 

inducing adverse-effects associated with off-target reactions. Analyses of the 

physiologic effects of drugs by monitoring a handful of markers for the targeted effects 

has been used for building models for drug’s action for many years. Extensive –omic 

analyses done at multiple physiologic levels, however, also impacted this research area 

tremendously and initiated a shift from classic pharmacokinetic/pharmacodynamic 

modeling (PK/PD) towards a systems approach, named as quantitative systems 

pharmacology (QSP) (Jusko, 2013, Androulakis, 2015, Iyengar et al., 2012). The 

ultimate directions for this field are the realization of personalized and precision 

medicine by building progressively more accurate drug action models. However, the 

first steps towards these goals involve devising methods to fully utilize the wealth of 

information produced by the extensive analyses of pharmacologic responses. 

This dissertation is centered on integrating information from multiple relevant 

physiologic levels in order to investigate the relationship between the inflammation 

and metabolism. We focused on how this critical relationship is shaped over time 

during the development of response to a systemic inflammatory stimuli in the human 

endotoxemia model as well as in response to a corticosteroid treatment in an animal 

model. The systems approach allowed us to track the continuum of physiologic 

responses; through their evolution over time and in relation to multiple dynamics 
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running in harmony. We extracted the coherent dynamic responses represented in the 

-omics analyses at multiple physiologic levels and integrated them through multiple 

approaches. 

Chapter 2 and Chapter 3 are concerned with understanding the ways in which systemic 

inflammation shifts the metabolic balances and how these shifts feedback to shape 

inflammatory response, in turn. The analyses described in these chapters include 

metabolic and transcriptional responses to endotoxemia, which is an experimental 

model in humans that recapitulates the dynamics of systemic inflammatory response 

in a reproducible and safe manner in healthy subjects. In Chapter 4, we discuss the 

relevance of this experimental model to clinical cases of systemic inflammation and 

sepsis. We compare and contrast the metabolic changes observed in the subjects 

participated in endotoxemia study with those observed in patients battling with sepsis 

and systemic inflammatory response syndrome (SIRS). In Chapter 5, we switch from 

progression of inflammatory response to the anti-inflammatory therapy side and focus 

on the effects of a commonly-used corticosteroid in liver and consequently, the whole 

body metabolism. This analysis represents a more direct integration approach, in 

which we evaluate the concordance of the hepatic response to the drug treatment at 

gene and protein expression levels. Finally in Chapter 6, we discuss perspectives and 

approaches by which these studies can be advanced in the future. These include adding 

a stress component to endotoxemia model by continuous infusion of cortisol to make 

it even more relevant to clinical cases, and a network-based approach that integrates 

our insights from the bi-level hepatic response the corticosteroids with the existing 

pharmacokinetic/pharmacodynamic models. 
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Chapter 2 Temporal Metabolic Profiling of Plasma in 

Experimental Human Endotoxemia  

Elective administration of bacterial endotoxin (lipopolysaccharide; LPS) to healthy 

human subjects has been used as a reproducible experimental procedure providing 

mechanistic insights into how cells, tissues and organs respond to systemic 

inflammation. Low doses of LPS transiently alter many physiologic and metabolic 

processes in a qualitatively similar manner to those observed after acute injury and 

systemic inflammation (Lowry, 2005, Calvano and Coyle, 2012); thus allowing the 

analysis of the responses to infectious stress at multiple physiological levels. This 

model has been extensively employed for the development and assessment of rational 

clinical therapies to prevent or attenuate systemic inflammatory response syndrome 

(SIRS) (Calvano and Coyle, 2012).  

Response to endotoxemia is closely associated with alterations in metabolism.  

Inflammatory processes change the direction of the substrate flow from the periphery 

towards splanchnic organs while also triggering the release of catabolic signals in order 

to meet increased energy and substrate demands (Fong et al., 1990, Khovidhunkit et 

al., 2004); and hence, considerably altering the levels of plasma metabolites. 

Individual changes in the major metabolites, such as some lipids, amino acids and 

glucose, has been previously documented for the case of human endotoxemia (Fong 

et al., 1990). However, an untargeted, bioinformatics empowered approach to 

elucidate the effects of endotoxemia on the plasma metabolite levels is lacking.  

Analysis of the complete metabolic response to systemic inflammation is of special 

interest since metabolic composition of a tissue is uniquely altered in response to 

stimuli due to collective effects of the regulations at various levels of cellular processes 

including transcription, translation and signal transduction. Concentrations of 
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metabolites in a sample at a given time, i.e. the “metabolome” (Nicholson and Lindon, 

2008), can be thought of as the metabolic fingerprint representative of the state of 

body at that time and provide information on the dominant regulatory mechanisms. 

The emerging field of metabonomics, combines this unique metabolic information with 

bioinformatics approaches to provide an integrated temporal picture of the interactions 

in the system (Nicholson, 2006, Holmes et al., 2008). Since the ultimate phenotype is 

determined by eventual production of metabolites through the complex cellular 

processes trickling down from transcription, translation and signal transduction, this 

field offers promise in advancing the knowledge in many clinical conditions. For 

endotoxemia, understanding the alterations in plasma metabolome is critical; since, 

metabolite levels impacts the regulation of anti-inflammatory defenses, in turn, 

through steering critical cellular processes in immune cells (Pearce and Pearce, 2013). 

This study constitutes the first attempt of a complete metabonomic analysis describing 

the alterations in plasma metabolite composition following exposure to LPS. 

2.1 Methods 

2.1.1 Human Plasma Samples 

Archived blood plasma samples which had been flash frozen were used in this proof-

of-principle study. These samples had been collected from 19 healthy subjects, 

between ages 18-40, who provided written, informed consent under guidelines 

approved by the Institutional Review Board (IRB) of Robert Wood Johnson Medical 

School. 15 of the subjects (11 males and 4 females; mean age of 22.7) had been 

administered National Institutes of Health (NIH) Clinical Center Reference Endotoxin, 

at a bolus dose of 2 ng/kg body weight as previously described (Alvarez et al., 2007, 

Jan et al., 2009, Jan et al., 2010). 4 control subjects (3 males and 1 female; mean 

age of 22.2) had been administered placebo (saline). During the protocol, subjects 

had received a solution of 5% dextrose and 0.45% saline crystalloid. Blood draws had 
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been conducted sequentially at t=1, 2, 6, and 24 hr from both groups, samples had 

been inventoried and stored at -80°C until the analysis. 

2.1.2 Biochemical Profiling of Plasma Samples 

Metabolomic analysis was performed by Metabolon (Durham, NC, USA) according to 

previously published methods (Evans et al., 2009). Briefly, samples were prepared by 

using a proprietary series of organic and aqueous extractions to attain the maximum 

recovery of small molecules while eliminating the protein fractions in plasma. The 

resulting extracts were subjected to either liquid chromatography (LC) or gas 

chromatography (GC) followed by mass spectroscopy (MS) analysis.  

The data extraction of the raw MS data files yielded information that were loaded into 

a relational database in which the information was examined and appropriate QC limits 

were imposed. Peaks were identified using Metabolon’s proprietary peak integration 

software, and component parts were stored in a complex data structure. Compounds 

were identified by comparison to library entries of purified standards or recurrent 

unknown entities. Identification of known chemical entities was based on comparison 

to metabolomic library entries of purified standards. The combination of 

chromatographic properties and mass spectra gave an indication of a match to the 

specific compound or an isobaric entity. For the samples which took multiple days to 

analyze, a data normalization step was performed to correct variation resulting from 

instrument inter-day tuning differences. The quality control and curation processes 

were used to ensure accurate and consistent identification of true chemical entities, 

and to remove those representing system artifacts, misassignments, and background 

noise.  
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2.1.3 Data analysis 

After identification of the metabolites, the complete dataset of 366 metabolites with 

temporal profiles was rigorously analyzed through multiple steps. These included 

filtering for differential metabolites, principal component analysis (PCA) and clustering. 

Imputed and scaled (to set the median equal to 1) datasets were investigated to 

identify the metabolites which show differential temporal profiles between LPS and 

placebo groups by using software for the extraction and analysis of gene expression 

(EDGE) (Leek et al., 2006). The significance threshold for this test was set as q value 

<0.1 and p value <0.05. Using these differential metabolites, PCA was performed and 

the averages of first principal component (PC1) for each treatment group were plotted 

against time. One way ANOVA was performed to evaluate the significance of PC1 

variance over time for each treatment group. Then, to compare PC1 values at each 

time point, Wilcoxon rank sum test is used (with 1% significance level). Finally, the 

datasets containing differential metabolites were concatenated to form one single 

matrix, which was then clustered through consensus clustering (Nguyen et al., 2009) 

(with p-value = 0.05) with the goal to identify the subsets of metabolites with coherent 

temporal profile in LPS and placebo groups. Interpretation of the biological significance 

these profiles demonstrate were based on the individual metabolite identities and 

curated metabolic pathways obtained from publicly available Kyoto Encyclopedia of 

Genes and Genomes (KEGG) (Lissauer et al., 2009) and Human Metabolome Database 

(Wishart et al., 2013) as well as Ingenuity Knowledge Base (Calvano et al., 2005). 

2.2 Results 

This study aimed to identify the major coherent patterns in human plasma metabolome 

within the 24 hours after systemic LPS exposure. The study design, a flowchart of 

which is shown in Figure 2-1, involved two groups of healthy subjects treated either 

with a bolus dose of 2 ng/kg body weight LPS or placebo (saline) injection at t=0. The 
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blood samples were collected from the subjects at 4 time points throughout 24 h post-

treatment and the response was determined via non-targeted biochemical profiling 

through MS analysis. 

Global biochemical profiles obtained by GC-MS and LC-MS/MS platforms represented 

temporal information on 366 metabolites including amino acids, short peptides, 

carbohydrates, lipids, nucleotides, cofactors and vitamins, xenobiotics and 

intermediate products of major energy production pathways. We first filtered the data 

through an algorithm originally designed for gene microarray experiments, Extraction 

 

Figure 2-1: Study flowchart illustrating sample acquisition, biochemical profiling through MS, 

and data analysis steps. Diagrams below each data symbol display empirical cumulative 

distribution of the corresponding dataset, with the number of elements indicated below the 

data symbols. 
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of Differential Gene Expression (EDGE). EDGE procedure utilizes an optimal discovery 

procedure that uses relevant information from all the elements in the dataset in order 

to test each for differential expression (Leek et al., 2006). By applying this algorithm 

to metabolome dataset we first identified metabolites with differential temporal profiles 

between LPS and placebo groups. 60 out of the 366 metabolites showed differential 

profiles which met p-value < 0.05 and q-value < 0.1 cut-offs of EDGE software. The 

utility of this filtering step was also evident from the change in cumulative distributions 

of data before and after EDGE as shown in Figure 2-1. While both treatment groups 

have almost uniform distributions when the complete metabolome dataset is used, 

LPS treatment group became distinguishable from placebo at certain time points when 

only the differential metabolites were included in the analysis. 

To identify the dominant patterns among the temporal profiles of these differential 

metabolites, PCA was performed. The averages of the first two principal components 

(PC1 and PC2) for the two treatment groups were plotted against time and against 

each other in Figure 2-2 a-c. As shown in the bar chart in Figure 2-2 d, although much 

of the variance (63%) was captured by the PC1, PC2 had also contributed in explaining 

the variability between the subjects in two experimental groups. In average, subjects 

treated with LPS were clearly separated in both PC1 and PC2; while saline treated 

subjects showed less variation in PC2, but even lesser in PC1. 

Average PC1 was analyzed as a function of time in a one way between subjects analysis 

of variance (ANOVA) and  results indicated that variation of PC1 over time for LPS 

groups is significant (p-value = 1.38x10-37) whereas for saline group it is not (p > 

0.01). Significance analysis of the PC1 at each time point by Wilcoxon rank sum test 

identified the most significant difference between the two groups at 6h (p-value = 

0.00065), which separated the development and recovery phases of the LPS induced 
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metabolic changes. As shown in Figure 2-2 a, at 24h, average PC1 was still significantly 

different for the two groups, indicating that the recovery is still in progress. 

To identify the subsets of metabolites with common coherent profiles, we applied 

consensus clustering (Nguyen et al., 2009) to the metabolites having differential 

temporal profiles in between LPS and placebo groups. Clustering is an essential tool 

for the analysis of high-content data based on organization of the signals with similar 

behavior. Identification of the coherent patterns which intensify and weaken over time 

 

Figure 2-2: (a) Temporal changes in averaged PC1 for LPS and placebo treated subjects. (b 

and c) Trajectory averages in PC1-PC2 coordinates (b) and time-PC1-PC2 space (c). (Star 

sign indicates significance (p<0.01) measured by Wilcoxon rank sum test and error bar 

indicate standard error of the mean). (d) Per cent of the variance captured by each principal 

component. 
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allows us to focus on closely associated interactions within the elements of the data. 

It also facilitates the recognition of temporal relationships between the sub-clusters of 

elements, which might imply regulatory hierarchy (Nguyen et al., 2009). It is 

worthwhile to note the refinement in the content of the data by comparing the 

difference between the empirical cumulative distributions of the clustered dataset from 

distributions in the previous datasets (Figure 2-1). In the clustered data, the 

distributions of LPS group became distinctly separated from the placebo group at each 

time point. Furthermore, in agreement with the PCA, distribution of the 6h data for 

LPS group displays an easily recognized divergence from the rest of the data. 

 

Figure 2-3: Heat map displaying the differential patterns of metabolic response to LPS. Two 

clusters of plasma metabolites reflect two distinct patterns with opposing temporal 

directionality. Clustered metabolites and their associations with the metabolic pathways are 

also listed in Table 2.1. 
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Consensus clustering of the differential metabolites further refined the data and 

returned 37 of the total of 60 differential metabolites, classified into one of the two 

clusters with opposing temporal directionality as shown in Figure 2-3. Metabolites in 

each cluster and their associations with the metabolic pathways are listed in Table 2.1. 

The first cluster (16 metabolites) was up-regulated within the first 6h; down-regulated 

by the end of 24h and was mostly composed of metabolites from pathways related to 

lipid metabolism. The second cluster (21 metabolites), in contrast, was down-

regulated within the first 6h post-LPS; then up-regulated by the 24h. Strikingly 14 out 

of 21 metabolites in this cluster were amino acids or their derivatives and an additional 

2 were dipeptides indicating a significant regulatory shift in the protein metabolism. 

 

2.3 Discussion 

This study identified the coherent changes in temporal patterns of plasma metabolite 

levels in response to low dose LPS exposure by using untargeted analytical 

methodology and unsupervised data analysis techniques. Most striking differences 

between treatment and control groups were observed in amino acid and lipid levels 

which displayed self-resolving patterns with different directionality forming two distinct 

clusters. While amino acids and amino acid derivatives were steadily cleared out from 

plasma; lipids, mostly mono- and poly-unsaturated fatty acids, accumulated within the 

first 6h following LPS administration, after which the direction of the response was 

reversed for these two distinct patterns indicating recovery. 
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Among the first cluster of metabolites; 13 out of total 16 were lipids, more 

specifically, essential and non-essential long chain fatty acids (FAs) including 4 omega-

3 FAs, docosahexaenoate (DHA), docosapentaenoate (DPA), eicosapentaenoate (EPA), 

stearidonate; and 2 omega-6 FAs, dihomo-linoleate (eicosatrienoate) and 

docosadienoate; and a major saturated FA, stearate, in addition to 3 pregnenolone 

Table 2.1: Distribution and classification of the differential metabolites to the clusters shown 

in Figure 2-3. 

 
Biochemical Sub-pathway Super 

pathway 

C
lu

s
te

r
 1

 

2-hydroxybutyrate (AHB) 
Cysteine, methionine, SAM, taurine 
metabolism 

Amino acid 

3-methyl-2-oxobutyrate 
Valine, leucine and isoleucine 
metabolism 

Docosahexaenoate (DHA; 22:6n3) 

Essential fatty acid 

Lipid 

Docosapentaenoate (DPA; 22:5n3) 

Eicosapentaenoate (EPA; 20:5n3) 

Tetradecanedioate Fatty acid, dicarboxylate 

Stearidonate (18:4n3) 

Long chain fatty acid 

Dihomo-linoleate (20:2n6) 

Docosadienoate (22:2n6) 

10-nonadecenoate (19:1n9) 

Eicosenoate (20:1n9 or 11) 

Stearate (18:0) 

21-hydroxypregnenolone disulfate 

Sterol/Steroid Pregn steroid monosulfate 

Pregnen-diol disulfate 

Phenolphthalein beta-D-glucuronide Detoxification metabolism Xenobiotics 

C
lu

s
te

r
 2

 

Asparagine Alanine and aspartate metabolism 

Amino acid 

Cysteine Cysteine, methionine, SAM, taurine 
metabolism Methionine 

Glycine Glycine, serine and threonine 
metabolism Serine 

Histidine Histidine metabolism 

Lysine Lysine metabolism 

Tyrosine Phenylalanine & tyrosine metabolism 

Tryptophan Tryptophan metabolism 

Citrulline Urea cycle; arginine, proline 
metabolism Ornithine 

Isobutyrylcarnitine 

Valine, leucine and isoleucine 
metabolism 

Isoleucine 

Leucine 

Valine 

Phosphate Oxidative phosphorylation Energy 

Taurolithocholate 3-sulfate Bile acid metabolism 

Lipid Deoxycarnitine Carnitine metabolism 

Choline Glycerolipid metabolism 

Gamma-glutamylleucine 
Gamma-glutamyl Peptide 

Gamma-glutamyltyrosine 
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derivatives taking part in steroid hormone biosynthesis. Coherent up-regulation 

pattern observed in these plasma FAs at 6h is consistent with the lipolysis, a well-

known adaptive response to inflammation (Fong et al., 1990). The peripheral 

mobilization of lipid stores in the form of free FAs was initially considered as a result 

of catecholamine release in response to infection or injury; however increased 

biosynthesis and decreased oxidation in liver together with increased whole-body 

lipolysis are results of complex signaling interactions initiated by stress hormones such 

as catecholamines, as well as produced cytokines and LPS itself, collectively giving rise 

to accumulation of FAs in plasma. Since toll-like receptor 4 (TLR4) signaling initiated 

with recognition of LPS on the cell surface is responsible for expression of many 

cytokines, all of which have major downstream effects on metabolism, teasing apart 

individual direct and indirect effects of each on lipid homeostasis requires further 

research (Glass and Olefsky, 2012).  

More pronounced increase in omega-3 FAs compared to omega-6 FAs may be related 

to their differential roles in the inflammatory response. These two fatty acid groups 

have opposing physiological functions: While omega-6 FAs give rise to pro-

inflammatory prostaglandin and leukotriene synthesis, omega-3 FAs compete with 

omega-6 FAs to modulate this response by inducing the production of less 

inflammatory derivatives (De Caterina and Basta, 2001). Although, speculative at this 

level of global metabonomic analysis, selective concentration of omega-3 FAs in 

plasma in the initial 6h of response might have contributed to the resolution and 

recovery in the following hours. Since dietary supplementation of omega-3 FAs are 

shown to be associated with a moderate quenching effect on inflammation, this 

speculation based on the observed selective increase of omega-3 FAs might not be far 

from truth and might have served as an endogenous adaptive mechanism to suppress 

inflammation (Simopoulos, 2002). Interestingly, although increasing levels of free FAs 
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in plasma has been associated with insulin resistance (Agwunobi et al., 2000), glucose 

levels or associated metabolites in clustering analysis did not reflect a significant  

perturbation in any of the time points. This might have been related to the relatively  

fast and subtle kinetics of those metabolites.  

Elevated 2-hydroxybutyrate (or α-hydroxybutyrate; AHB) levels usually point towards 

increased oxidative stress because AHB is a by-product in the pathway leading to 

glutathione synthesis from methionine. The activity of this pathway (from methionine 

 

Figure 2-4: Pathway associations illustrating the conversion of methionine to one of the major 

anti-oxidants, glutathione. Metabolites captured in the clustering analysis are indicated with 

a the name of the cluster and a color bar representing up-(red) or down-regulation (green) 

at 6h and 24h time points. 
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 cystathionine  cysteine  glutathione as shown in part of Figure 2-4) varies in 

response to the demands against elevated cellular oxidative stress (Lord and Bralley, 

2008, Gall et al., 2010).  

Increased oxidative stress shifts the flow of homocysteine away from transmethylation 

to methionine toward transulfuration to cystathionine, increasing the flow towards 

glutathione synthesis. Glutathione is one of the most important antioxidant proteins 

and plays a crucial role in mitigating the oxidative damage of reactive oxygen species, 

formation of which in liver is potently triggered by inflammation (Jaeschke, 2011). 

Therefore, increased AHB levels at 6h post-LPS coinciding with plummeting levels of 

methionine, serine, cysteine and glycine at the same time point can be interpreted as 

an indication of increased activity of hepatic oxidative defense mechanisms to 

effectively regulate the inflammatory response induced by LPS. Reverse of the first 

conversion in this pathway (homocysteinemethionine) is possible with incorporation 

of methyl groups to methionine. One source of the methyl groups for this reaction is 

betaine, which is derived from choline (Niculescu and Zeisel, 2002). Choline is in the 

second cluster which shows similar kinetics with the opposite direction of the first 

cluster, consistent with the opposing directionality in the reactions in this pathway.  

3-methyl-2-oxobutyrate (or α-ketoisovaleric acid, KIV) is a branched chain keto-acid 

(BCKA) and a degradation product of valine which is formed in the initial step of 

branched chain amino acid (BCAA) catabolism. This conversion exclusively takes place 

in skeletal muscle due to relatively high activity of BCAA aminotransferase and it is an 

essential part of the BCAA-BCKA cycling between liver and muscle (Mattick et al., 

2013, Holeček, 2002). Increase in KIV levels following LPS exposure occurs at the 

same time where valine concentrations are decreased in plasma, indicating an increase 

in BCAA catabolism to meet the increased metabolic demands of liver, which can utilize 
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KIV for transamination to other BCAAs for incorporation into acute phase proteins, or 

complete their degradation for energy production. 

The accumulation of intermediates in the steroid hormone biosynthesis pathways such 

as 21-hydroxypregnenolone, pregnenolone sulfate, pregnanediol in LPS treated 

subjects may suggest an increased capacity for steroid biogenesis which is required 

for the production of hormones to regulate glucose homeostasis and suppress 

inflammation. Increase in various derivatives of corticosteroid hormones were 

anticipated considering the primary roles of these hormones in regulation of 

inflammatory response and metabolism, and also were consistent with earlier studies 

(Fong et al., 1990, Agwunobi et al., 2000). 

The second cluster displayed a response pattern almost exactly in the opposite 

direction of the first cluster. Concentrations of the metabolites in this cluster gradually 

decreased until 6h after LPS administration, preceding a recovery period in the 

following 18h. 14 out of 21 metabolites within this cluster were amino acids, strongly 

indicating their primary role in the immediate response to inflammatory insult. These 

14 amino acids include 12 proteinogenic amino acids (asparagine, cysteine, 

methionine, glycine, serine, histidine, lysine, tyrosine, tryptophan, isoleucine, leucine 

and valine) and 2 core members of urea cycle (citrulline and ornithine). Presence of 

members of the urea cycle together with amino acid degradation pathway 

intermediates (isobutyryl carnitine and deoxycarnitine) indicates that amino acids are 

not only used as the building blocks for the acute phase proteins in liver, but also 

utilized as the substrates for energy production. Compensation for this rapid clearance 

of amino acids from plasma starts after 6h and is achieved possibly by the breakdown 

of protein reserves in skeletal muscle. Presence of proteolytic breakdown products 

(gamma-glutamylleucine, gamma-glutamyltyrosine) in this cluster might be 

associated with this process being incomplete.  
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Taurolithocholic acid 3-sulfate is a product of bile acid sulfation, which is a minor 

pathway under normal conditions. In the presence of intrahepatic cholestasis, 

associated with inflammation (Khovidhunkit et al., 2004), this reaction escalates, 

increasing the aqueous solubility and, consecutively, renal clearance of these 

compounds (St-Pierre et al., 2001). Therefore, an increase in the plasma concentration 

of these sulfated bile acids might indicate a decline in the renal function in response 

to LPS-induced inflammation. Furthermore, increased phosphate levels have also been 

suggested as a potential risk factor linked to renal failure (Voormolen et al., 2007). 

These two independent markers of declined renal function also being associated with 

the same temporal pattern, therefore, might be suggestive of an impairment of normal 

renal function in the LPS treated subjects. 

2.3.1 Limitations 

It should be emphasized that, although experimental model of human endotoxemia 

simulates systemic inflammation fairly well, it can be best described as a TLR4 agonist 

induced systemic inflammation (Calvano and Coyle, 2012). In this experimental 

model, the subjects are pre-screened medically to confirm normal general health; 

therefore care should be taken when extrapolating the implications of the results to 

clinically more complex conditions, such as sepsis. Another limitation of the study is 

related to the utilized data filtering and clustering procedures. Although these 

techniques ensure that subsets of metabolites with coherent temporal profiles are 

captured; at the same time, they might have masked some subtle changes which 

might be significant but not necessarily correspond to the observed dominant patterns. 

Metabolites which have a quickly resolving perturbation early in the time course, such 

as lactate (Michaeli et al., 2012), can be an example to this limitation. Furthermore, 

there is limited number of time points in the study and that the last two time points 

are considerably far from each other. We observe significant changes in the 
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metabolites starting at 6h which mostly resolve by 24h; however it is likely that some 

metabolites with different kinetics and show perturbations between these two time 

points might have been overlooked. 

2.4 Conclusion 

LPS administration in healthy humans significantly alters the homeostasis of lipid and 

protein metabolism in humans in the first 6h. Within 24h post-treatment, metabolite 

balances are mostly restored. Perturbation observed in the levels of plasma lipids may 

well be associated with the established lipolytic effect of inflammation, whereas amino 

acid deficiency observed early in response is likely due to increased hepatic uptake to 

meet the higher substrate demand for the synthesis of acute phase proteins and anti-

oxidant defenses. Increase in some of the markers associated with renal failure later 

in the time course suggested that kidney function may have been deteriorated in 

subjects treated with LPS. 
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Chapter 3 Integration of Plasma Metabolomics and 

Leukocyte Transcriptomics in Response to 

Endotoxemia 

Global transcriptomic studies of circulating leukocytes in experimental human 

endotoxemia previously elucidated the intricate regulatory schemes governing the 

inflammatory response (Calvano et al., 2005, Nguyen et al., 2011). However, 

inflammatory response is also closely associated with alterations in metabolism. In 

Chapter 2, we discussed the drastic effect of a mild inflammatory stimulus on the 

homeostasis of the whole-body metabolism (Kamisoglu et al., 2013b). This single level 

analysis uncovered the temporal patterns in the host metabolism reflecting collective 

impacts of regulations at various organs and at multiple levels of cellular processes 

including transcription, translation and signal transduction. For endotoxemia, 

understanding the alterations in plasma metabolome is critical, since metabolite levels 

impact the regulation of anti-inflammatory defenses, in turn, through directing critical 

cellular processes in immune cells (Pearce and Pearce, 2013). 

Building on this knowledge; we integrated the transcriptional response of leukocytes 

with systemic metabolic response to understand how inflammation-induced changes 

in the composition of plasma, in turn, affects the transcriptional processes in the 

leukocytes. We hypothesized that the drastic changes in the immediate environment 

of the leukocytes might have an adaptive effect on shaping their transcriptional 

response in the regulation of metabolism in conjunction with the initial inflammatory 

stimuli.  
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3.1 Methods 

This is a meta-study aiming to integrate biological insights gained from two levels of -

omics analyses on the response to systemic inflammation induced by LPS in humans. 

The designs of both transcriptomic and metabonomic studies are shown in Figure 3-1.  

For the transcriptomic study, 4 subjects (1 female and 3 male) had received LPS at a 

bolus dose of 2 ng/kg body weight and 4 subjects (1 female and 3 male) had received 

saline. Blood samples were collected before (t=0h) and 2, 4, 6, 9 and 24h after LPS 

administration. Leukocytes were recovered by centrifugation; total cellular RNA was 

isolated from the leukocyte pellets and hybridized onto Hu133A and Hu133B 

oligonucleotide arrays (Affymetrix). Further details about the experimental design are 

presented in the original analysis (Calvano et al., 2005). The transcriptional analysis 

generated expression measurement data of over 44000 probesets in total, which is 

also publicly available through the GEO Omnibus Database 

(http://www.ncbi.nlm.nih.gov/geo/) under the Accession No: GSE3284. Complete 

 

Figure 3-1: Designs of the transcriptomic and metabolomic studies. 
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details of the profiling of plasma metabolome has previously been described in Chapter 

2. 

3.1.1 Data analysis 

Data analysis for both transcriptomic and metabolomic datasets started first by 

filtering for differential expression over time. Transcripts and metabolites with 

differential temporal profiles were determined by using EDGE software (Leek et al., 

2006). The significance cut-off for the transcriptomic dataset were p<0.05 at 0.10 

false discovery rate. To determine the potential co-regulatory relationships, 

differentially expressed transcripts and metabolites with differential temporal profiles 

were hierarchically clustered using clustergram function in the Bioinformatics toolbox 

of MATLAB (Mathworks, Natick MA). The two clusters were obtained by using 

correlation as the distance metric. 

Pathway enrichment analysis of genes in the clusters were done in Enrichr (Chen et 

al., 2013) using the gene-set libraries of Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (Kanehisa and Goto, 2000). Three types of enrichment scores are calculated 

by Enrichr to assess the significance of overlap between the input list and the gene 

sets in each gene-set library for ranking a term’s relevance to the input list. These are 

Fisher exact test, z-score of the deviation from the expected rank by the Fisher exact 

test, and a combined score that multiplies the log of the p-value computed with the 

Fisher exact test by the z-score. The pathways which have a combined score higher 

than 1.0 were called significant. The combined score had been devised since Fisher 

exact test had a slight bias that affects the ranking of terms solely based on the length 

of the gene sets in each gene-set library (Chen et al., 2013). 

The goal in the current analysis was to reveal transcriptional regulation of leukocyte 

metabolic processes, specifically, then to assess if these regulatory patterns might 
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have been affected by concurrent fluctuations of metabolite levels in the surrounding 

plasma along with the initial stimuli. For this purpose, we opted to focus the 

transcriptional analysis to the genes that are associated with metabolic processes only. 

Therefore, any differential transcripts which code for genes that are not associated 

with any of the metabolic pathways were filtered out. Gene set libraries and pathway 

classifications in KEGG database were used as reference at this filtering process. Then, 

clustering analysis was repeated for the remaining transcripts. Clustered metabolism 

associated genes were functionally annotated through Enrichr similar to the complete 

transcriptome described above.  

3.2 Results 

This study aimed to integrate the biological insights gained from two levels of -omics 

analyses on the response to systemic inflammation induced by LPS in humans. We 

integrated the analyses of transcriptional data obtained from circulating leukocytes 

and metabolomic data from plasma considering that the inflammatory processes 

considerably affect levels of plasma metabolites through collective impacts of 

regulations at various organs and at multiple levels of cellular processes including 

transcription, translation and signal transduction; and the responses of inflammatory 

cells might have been affected from the metabolic landscape of the fluid environment 

in which they circulate.  

3330 of the transcripts, coding for 2562 unique genes, were differentially expressed 

based on p<0.05 and q<0.1 cut-offs applied on EDGE. Hierarchical clustering of these 

differentially expressed transcripts forms three characteristic patterns of response as 

discussed in the complete transcriptional analysis previously. These three patterns 

reflect early up-regulation, late up-regulation, and down-regulation of genes in 

response to LPS stimulus (Foteinou et al., 2009). Profiles of these three clusters are 
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shown in Figure 3-2 (on the right) together with the heat map of corresponding 

transcripts (on the left).  

Simultaneously with these changes in leukocyte transcription, metabolite 

concentrations in the plasma also drastically change due to the effects of inflammatory 

signaling in the whole body. The metabolomic dataset included temporal concentration 

data of 366 plasma metabolites, and 60 out of these 366 had differential temporal  

 

Figure 3-2: All differential transcripts clustered into three, displaying early up-regulated, late 

up-regulated and down-regulated profiles. Heat map on the left shows the transcriptional 

expression of all differential transcripts in these three clusters while diagrams on the right 

display the average expression profiles for all transcripts in each cluster (vertically in the same 

order as the heat map). Horizontal yellow lines on the heat map designate the limits of each 

cluster. 
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profiles from control (at p<0.05 and q<0.05). These profiles displayed two distinct 

patterns of metabolomic changes, as shown in Figure 3-3 (right). 

The two clusters of metabolites showed either strong up- or down-regulation within 

the first 6 hour post-LPS, and changed direction to move toward resolution then on. 

The metabolite groups which showed the highest deviation were peaking lipids 

(essential and long chain fatty acids, lysolipids, sterols/steroids) and plunging amino 

Table 3.1: Functional annotation of all differentially expressed genes in the three clusters 

displayed in Figure 3-2. 

 Pathway Genes 
E

a
r
ly

 U
p

 

Toll-like Receptor Signaling Pathway 
IL1B, MAP2K6, MAPK3, CCL3, NFKBIA, CCL4, MAP2K3, NFKB2, 

TICAM1, TNF, IL8 

Hematopoietic Cell Lineage IL1B, IL1A, CSF2, IL1R2, TNF, MME, GP1BB, CD24, ITGA1, CD55 

Adipocytokine Signaling Pathway NFKB2, CAMKK2, IRS2, IRS1, TNF, NFKBIE, NFKBIB, NFKBIA 

Cytokine-Cytokine Receptor Interaction 
IL1R2, BMP2, CXCL1, CSF2, CXCL3, CXCL2, CCL20, IL8, IL17RA, IL1B, 
IL1A, CCL3, CCL4, ACVR1B, IFNGR2, TNF 

MAPK Signaling Pathway 
MAP2K6, MAPK3, IL1R2, MAP2K3, NFKB2, CACNG5, GADD45B, 

DUSP2, PDGFA, IL1B, IL1A, MAP4K4, MAPKAPK2, CACNA1S, ACVR1B, 

TNF 

Apoptosis NFKB2, IL1B, IL1A, BID, TNF, NFKBIA, CFLAR 

FCε RI Signaling Pathway MAP2K6, PRKCD, MAPK3, CSF2, TNF, MAP2K3 

Arachidonic Acid Metabolism PTGS2, GGT1, GPX3, CYP4F3, CYP4F2 

L
a
te

 U
p

 

Toll-like Receptor Signaling Pathway  
TLR1, TLR2, TLR4, TLR5, CXCL11, TLR8, PIK3CG, RELA, MAPK8, SPP1, 
TOLLIP, NFKB1, NFKB2, IFNAR1, STAT1, MAPK14, IRF7, CD14 

Jak-STAT Signaling Pathway  
IL6ST, STAT5B, CSF3R, PIK3CG, SOCS3, PIM1, GRB2, IL4R, CSF2RB, 

IL13RA1, IFNAR1, OSM, IL10RB, SOS2, IL2RG, STAT1, STAT3, CISH, 

STAT2, IRF9, JAK3 

Apoptosis 
NFKB1, NFKB2, IL1RAP, CSF2RB, FAS, PIK3CG, IRAK2, RELA, 

TNFRSF10C, IL1R1, TNFRSF1A, IRAK3, CFLAR, TNFSF10 

Adipocytokine Signaling Pathway  
NFKB1, NFKB2, SOCS3, RELA, MAPK8, NFKBIB, TNFRSF1A, ACSL1, 

ACSL4, ACSL3, STAT3, JAK3 

Cytokine-Cytokine Receptor Interaction 
IL6ST, FAS, IL1R1, HGF, IL4R, IL1RAP, IL13RA1, TNFRSF10C, CCR1, 

IL10RB, IL18R1, IL18, CXCL11, IL17RA, CSF3R, TNFSF10, CSF2RB, 

IL18RAP, IFNAR1, OSM, TNFSF13B, TNFRSF1A, IL2RG 

Hematopoietic Cell Lineage 
CD44, IL4R, CSF3R, IL1R1, ITGAM, FCGR1A, CD24, CR1, CD55, CD59, 
CD14 

FCε RI Signaling Pathway PIK3CG, LYN, MAPK8, LCP2, GRB2, SOS2, FCER1G, VAV1, MAPK14 

MAPK Signaling Pathway  
FAS, MAPK8, IL1R1, NFKB1, NFKB2, CACNG3, MAP3K13, MKNK1, 
SOS2, DUSP5, DUSP3, RPS6KA2, MAPK14, CD14, STK3, ARRB2, 

GRB2, CACNA1A, TNFRSF1A 

 B Cell Receptor Signaling Pathway NFKB1, NFKB2, PIK3CG, LYN, LILRB3, NFKBIB, VAV1 

 T Cell Receptor Signaling Pathway NFKB1, NFKB2, PIK3CG, LCP2, GRB2, NFKBIB, SOS2, PTPRC, VAV1 

D
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Ribosome 

RPL36A, RPL19, RPL14, RPL13, RPL11, RPL12, RPL35A, RPS16, 

RPS12, RPS13, RPS10, RPS11, RPS25, RPS29, RPL7, RPL6, RPL9, 

RPL8, RPS20, RPL10A, RPS21, RPS23, RPS24, RPL23A, RPS6, RPS5, 

RPS8, RPS7, RPL18A, RPL37A, RPS2, RPS3, RPS3A, RPL35, RPS15A, 
RPL37, RPL38, RPL30, RPL32, RPL31, RPL27, RPL24, RPL28, RPL29, 

RPL13A, RPL21 

Hematopoietic cell lineage 
FLT3LG, CD3G, CD3D, CD3E, CD36, CD33, HLA-DRA, HLA-DRB1, 

IL7R, CD4, CD5, CD7, CSF1R, CD1C, ITGA4, ITGA6, IL5RA 

T Cell receptor signaling pathway 
AKT3, CD3G, CD3D, CD3E, CD40LG, LCK, RASGRP1, ZAP70, PPP3CC, 
CD4, NFATC2, NFATC3, PIK3R1, NFATC1, ITK, VAV2, FYN 

Cell Cycle 
CDC16, CUL1, ANAPC1, ANAPC5, RBL1, WEE1, ANAPC10, CHEK2, 

ATR, CDKN1C, PCNA, MAD1L1, TP53, CDK6, MCM6, CCND2, BUB3, 

YWHAQ 

 N Glycan Biosynthesis 
GANAB, FUT8, ALG1, STT3B, RPN2, MGAT4A, ST6GAL1, MAN2A1, 

MGAT2 
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acids. All metabolites with differential temporal profiles grouped in two clusters are 

listed in Table 3.2 together with their molecular classifications.  

It is worth noting that metabolomic alterations require more time to display distinct 

separation from the normal levels compared to transcriptional changes. In the heat 

map of metabolites shown in Figure 3-3 (left) we did not observe strong metabolic 

response until 6h post-LPS while the transcriptional profiles of treatment and control 

groups (Figure 3-2) display a clear distinction starting from the first data point. This is 

also highlighted in Figure 3-4, which qualitatively displays the temporal associations 

between the transcriptomic and metabolomic clusters. The profile of early up-regulated  

 

Figure 3-3: Differential patterns of response to LPS in plasma metabolite levels form two 

clusters reflecting distinct patterns with opposing temporal directionality. Heat map on the 

left displays temporal changes in plasma concentrations of all differential metabolites and 

diagrams on the right shows the average concentration profiles for all metabolites in each of 

those two clusters (vertically in the same order as the heat map). Horizontal yellow lines on 

the heat map designate the limits of each cluster. 
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Table 3.2: Classification of metabolites in the two clusters displayed in Figure 3-3. 

 Biochemical Sub-pathway Super pathway 

C
lu

s
te

r
 1

 
2-hydroxybutyrate (AHB) Cysteine, methionine, SAM, taurine metabolism 

Amino acid 
3-methyl-2-oxobutyrate Valine, leucine and isoleucine metabolism 

xylose Nucleotide sugars, pentose metabolism Carbohydrate 
docosapentaenoate (n3 DPA; 22:5n3) 

Essential fatty acid 

Lipid 

docosahexaenoate (DHA; 22:6n3) 

eicosapentaenoate (EPA; 20:5n3) 

tetradecanedioate Fatty acid, dicarboxylate 

2-hydroxydecanoic acid Fatty acid, monohydroxy 

stearate (18:0) 

Long chain fatty acid 

10-nonadecenoate (19:1n9) 

dihomo-linoleate (20:2n6) 

eicosenoate (20:1n9 or 11) 

docosadienoate (22:2n6) 

stearidonate (18:4n3) 

1-oleoylglycerophosphoethanolamine Lysolipid 

pregnen-diol disulfate 

Sterol/Steroid 21-hydroxypregnenolone disulfate 

pregn steroid monosulfate 

phenolphthalein beta-D-glucuronide Detoxification metabolism 
Xenobiotics 

quinate Food component/Plant 

C
lu

s
te

r
 2

 

asparagine Alanine and aspartate metabolism 

Amino acid 

2-aminobutyrate Butanoate metabolism 

methionine 
Cysteine, methionine, SAM, taurine metabolism 

cysteine 

betaine 

Glycine, serine and threonine metabolism serine 

glycine 

histidine Histidine metabolism 

pipecolate 
Lysine metabolism 

lysine 

tyrosine 
Phenylalanine & tyrosine metabolism 

phenyllactate (PLA) 

tryptophan betaine  
Tryptophan metabolism 

tryptophan 

citrulline 
Urea cycle; arginine-, proline-, metabolism 

ornithine 

isobutyrylcarnitine 

Valine, leucine and isoleucine metabolism 
leucine 

valine 

isoleucine 

methyl-beta-glucopyranoside 
Fructose, mannose, galactose, starch, and 

sucrose metabolism Carbohydrate 

heme Hemoglobin and porphyrin metabolism 

Cofactors and vitamins pantothenate Pantothenate and CoA metabolism 

beta-tocopherol Tocopherol metabolism 

phosphate Oxidative phosphorylation Energy 
taurolithocholate 3-sulfate Bile acid metabolism 

Lipid 

3-dehydrocarnitine 
Carnitine metabolism 

deoxycarnitine 

choline Glycerolipid metabolism 

1-eicosadienoylglycerophosphocholine 

Lysolipid 1-heptadecanoylglycerophosphocholine 

1-arachidonoylglycerophosphocholine 

7-alpha-hydroxy-3-oxo-4-cholestenoate (7-
Hoca) Sterol/Steroid 

5alpha-pregnan-3beta,20alpha-diol disulfate 

gamma-glutamylleucine 
Gamma-glutamyl Peptide 

gamma-glutamyltyrosine 

4-ethylphenylsulfate Benzoate metabolism 

Xenobiotics 
desmethylnaproxen sulfate Drug 

homostachydrine 
Food component/Plant 

ergothioneine 
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cluster (shown in yellow color) in the transcriptomic dataset indicates the immediate 

effects of LPS administration in the gene expression of leukocytes, whereas the earliest 

changes in the metabolomic data becomes significant after first couple of hours, and 

coincides with the late-upregulated transcriptomic cluster (shown in red color). 

Immediately following LPS administration, the transcriptional landscape became 

overcrowded with the elements of signaling cascades required for the healthy onset 

and resolution of the inflammatory response. In accordance with our main objective 

of assessing the transcriptional regulation of metabolic processes specifically, we 

followed a method that functionally narrows down the focus so as to uncover 

metabolism associated transcripts that might have been otherwise masked by the 

overwhelming majority of inflammatory genes dominating transcriptional landscape.  

General classification information of the KEGG Pathway database was used as the 

reference for this purpose, and any of the differentially expressed transcripts which 

were not associated with any metabolic processes in the database were removed, then 

clustering analysis was repeated for the remaining transcripts. After this functional 

change in the focus of analysis, 264 differential metabolite-associated transcripts 

remained which code for 214 unique proteins. Three dominant transcriptional patterns 

shown in Figure 3-2 previously were retained in this subset of metabolism associated 

genes as shown in Figure 3-5. Significantly enriched metabolism-associated pathways 

obtained from functional annotation of these three clusters are listed in Table 3.3. 
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3.3 Discussion 

We observed the most drastic changes in metabolism occuring later in the time course 

compared to transcriptomic alterations in response to LPS. The reason for this is that 

the alterations in the metabolome reflect the collective response of peripheral organs 

which may be distal to the initial inflammatory stimulus. This lag in the responsiveness 

at metabolic level relative to gene expression also becomes obvious when the temporal 

profiles of clusters from both analyses are overlaid as shown in Figure 3-4.  

Functional annotation of the early up-regulated genes in leukocytes (Table 3.1) gives 

us information about immediate inflammatory actions of the leukocytes, which are also 

accompanied by the alterations of intracellular metabolic processes which are subject 

to transcriptional regulation. We do not expect a significant effect of plasma 

metabolites at this very early stage of leukocytes’ response since the deviation of 

metabolite concentrations from normal is relatively moderate then. A good example 

 

Figure 3-4: Qualitative representation of the temporal differences between observed response 

patterns in gene expression and metabolite concentrations. 
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for this is arachidonic acid metabolism pathway, the key link between fatty acids and 

eicosanoid family of inflammatory mediators. These mediators, most importantly, 

include prostaglandins, thromboxanes, leukotrienes and lipoxins which are not only  

essential for initial phases of the inflammation but also participate in the programming 

of the termination of it at the local sites of inflammation (Serhan and Savill, 2005). 

This immediate up-regulation is followed by another group of genes up-regulated 

around 4-6h post-LPS (shown in Figure 3-2 and listed in Table 3.1 as Late Up). This 

 

Figure 3-5: Subset of differentially expressed transcripts associated with metabolic processes 

display very similar patterns to the original clusters shown in Figure 3-2. Heat map on the left 

shows these early upregulation, late upregulation and downregulation patterns while 

diagrams on the right display the average expression profiles for all transcripts in each cluster 

(vertically in the same order as the heat map). Horizontal yellow lines on the heat map 

designate the limits of each cluster. 
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later response also coincides with the time period at which plasma metabolites show 

the highest deviation from their normal levels (shown in Figure 3-3 with metabolites 

listed in Table 3.2). Temporally, we observed the most significant divergence between 

the treatment and control groups at 6h post-LPS, when lipids (essential and long chain 

fatty acids, lysolipids, sterols/steroids) reached their peak concentration and amino 

acids plummeted. In other words, at this time period, leukocytes were circulating 

within lipid-rich and amino acid-depleted environment. We hypothesized that; this 

altered environment can have an effect on the gene expression of leukocytes, in 

conjunction with the inflammatory signaling initiated by LPS.  

Adipocytokine signaling pathway is an important cross-road where inflammatory 

signaling and metabolic effects intersect. The late-up cluster of genes (Table 3.1) 

include many elements playing role in this pathway such as ACSL (Acyl-CoA 

Synthetase Long-Chain) family of enzymes (ACSL1, ACSL3, ACSL4) in addition to 

many inflammatory elements (NFKB1, NFKB2, SOCS3, RELA, TNFRSF1A, STAT3, 

JAK3). ACSL enzymes esterify long chain fatty acids and convert them to intracellular 

free fatty-acids. This is a pre-requisite step for any down-stream metabolic reactions 

of fatty acids. Increase in the gene expression of these enzymes may reflect an 

adaptation response of the leukocytes to the high lipid concentration of plasma. 

Furthermore, ceramide produced down-stream of these enzymes have been shown to 

mediate synergistic effects with LPS, stimulating the cytokine production (Rubinow et 

al., 2013).  

The final groups of differential transcripts are distinguished by strong-down regulation 

starting early after LPS delivery and recovering steadily after around 9h post-LPS 

(Figure 3-2, upper right diagram). As the expression of these transcripts was lowered, 

the plasma concentrations of amino acids were also moving in parallel and reaching 

their trough around 6h post-LPS. Perhaps the most striking transcriptional response 
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to altered plasma composition is observed in this cluster, as numerous ribosomal 

proteins, translation initiation factors and signaling elements are included here. As 

listed in Table 3.1 (Down), ribosome appears at the top of the list with the highest 

enrichment score. Although translational control is recognized as a well-known 

beneficial mechanism to shut-off inflammatory processes before they become 

detrimental (Mazumder et al., 2010), the role of plasma composition as an 

environmental factor on this is not clear. 

It is worth emphasizing that the proteins which regulate inflammatory processes 

dominate the transcriptome after LPS stimulus, which is fundamental for the 

development and resolution of the inflammatory response naturally. However, co-

current shifts in metabolism are also essential to accommodate the material and 

energy demands of these inflammatory processes (Khovidhunkit et al., 2004). 

Presumably, these metabolic shifts are also happening in response to the 

environmental changes imposed on the circulating leukocytes. Therefore, to facilitate 

the extraction of the transcriptional information related to metabolic changes in 

leukocytes and draw meaningful associations with their environment described by the 

metabolomic data, we opted to filter the entire transcriptome after this global 

characterization to focus exclusively on metabolite-associated regulations for the rest 

of the analysis. Table 3.3 lists the pathways which differential subsets of metabolite-

associated genes in the three clusters shown in Figure 3-5 are enriched in. This 

“supervised” enrichment analysis allowed us to uncover and inter-relate the most 

important regulatory changes in leukocyte metabolic processes happening at the 

transcriptional level. 
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As in the case of global transcriptome analysis, after filtering for the association with 

metabolic pathways, arachidonic acid metabolism again appeared as the immediate 

responder to LPS stimuli. Immune cells including monocytes, macrophages, and 

neutrophils utilize arachidonic acid as the precursor for the production of inflammatory 

mediators which substantially contribute to the clinical presentation of systemic 

Table 3.3: Functional annotation of metabolism related subset of genes in the three clusters 

displayed in Figure 3-5. 

 Pathway Genes 
E

a
r
ly

 U
p

 

 
Arachidonic Acid Metabolism  PTGS2, GGT1, GPX3, CYP2C9, CYP4F3, CYP4F2 

Glutathione Metabolism GGT1, GSR, OPLAH, GPX3, G6PD 

Pentose Phosphate Pathway  TKT, G6PD, PGM1 

Phosphatidylinositol Signaling System  ITPKA, DGKD, DGKG, PLCD1 

Starch and Sucrose Metabolism  PGM1, GBA, GBE1, PYGL 

Cyanoamino Acid Metabolism GGT1, GBA 

Glycan Structures Degradation GALNS, GBA 

Sphingolipid Metabolism GBA, DEGS1 

Glycan Structures Biosynthesis 1 B4GALT4, NDST1, GALNT13 

Androgen and Estrogen Metabolism HSD17B3, CYP19A1 

Inositol Phosphate Metabolism ITPKA, PLCD1 

L
a
te

 U
p

 

 

Glycan Structures Biosynthesis 1 
ST3GAL2, ST3GAL4, C1GALT1C1, EXT1, B4GALT5, NDST2, 

CHSY1, GALNT1, GALNT14 

O Glycan Biosynthesis GALNT1, ST3GAL2, GALNT14, B4GALT5, C1GALT1C1 

Sphingolipid Metabolism SGPP2, GALC, SPTLC2, UGCG 

Galactose Metabolism HK3, MGAM, UGP2 

Glycan Structures Biosynthesis 2 ST3GAL2, ST3GAL4, UGCG, PIGV 

Ppar Signaling Pathway ACSL1, ACSL4, ACSL3, GK 

Fructose and Mannose Metabolism PFKFB3, PFKFB2, HK3 

Fatty Acid Metabolism ACSL1, ACSL4, ACSL3 

Pyrimidine Metabolism CANT1, PNPT1, UPP1, UPB1 

Inositol Phosphate Metabolism PTEN, PIK3CG, INPP5A 

Tryptophan Metabolism AFMID, TDO2, CYP1B1 

D
o

w
n

 

 

N Glycan Biosynthesis 
GANAB, FUT8, ALG1, STT3B, RPN2, MGAT4A, ST6GAL1, 

MAN2A1, MGAT2 

Glycan Structures Biosynthesis 1 
HS2ST1, RPN2, MGAT2, MGAT4A, ST6GAL1, ALG1, XYLT1, 
CHST12, MAN2A1, GANAB, FUT8, GALNT6, STT3B, GALNT12 

Oxidative Phosphorylation 
NDUFAB1, COX5A, COX6C, ATP5C1, COX7C, NDUFV1, ATP5D, 

UQCRH, ATP5G2, ATP5G3, ATP6V0A1, ATP6V0A2 

Propanoate Metabolism LDHB, ALDH3A2, ACSS1, MCEE, ALDH6A1, SUCLG2 

Purine Metabolism 
NUDT5, NME7, ADSL, ZNRD1, PDE7A, POLD2, PDE8A, POLR1D, 

POLR2K, ATIC, PAPSS2 

Glycerolipid Metabolism AGPAT3, ALDH3A2, DGKA, DGKE, PPAP2A, LIPA, AKR1B1 

Pyruvate Metabolism LDHB, ALDH3A2, ACSS1, GLO1, AKR1B1, MDH1 

Lysine Degradation ALDH3A2, AASDHPPT, HADH, SHMT2, EHMT2, RDH11 

Pyrimidine Metabolism POLR1D, NME7, POLR2K, ZNRD1, DCTD, AK3, POLD2 

Valine Leucine and Isoleucine Degradation BCAT1, ALDH3A2, MCEE, HADH, ALDH6A1 

Glycerophospholipid Metabolism PHOSPHO1, AGPAT3, DGKA, GPD1L, DGKE, PPAP2A 

Phosphatidylinositol Signaling System PIK3C2A, INPP4B, INPP4A, DGKA, DGKE, INPP5B 

One Carbon Pool By Folate SHMT2, MTHFR, ATIC, MTR 

Glycan Structures Biosynthesis 2 PIGL, B3GALNT1, PIGB, PIGX, PIGT 

Glycolysis and Gluconeogenesis LDHB, ACSS1, FBP1, ALDH3A2, GPI 

Glycosylphosphatidylinositol Anchor 
Biosynthesis 

PIGX, PIGT, PIGL, PIGB 
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inflammation. PTGS2 (prostaglandin endoperoxide 2, also known as inducible form of 

cyclooxygenase) is the key enzyme in the synthesis of prostaglandins and 

thromboxanes, some downstream effects of which include analgesia, hyperalgesia, 

osmoregulation, febrile response, and antithrombosis depending on the synthesized 

and secreted final form and the cell type receiving this signal (Andreasen et al., 2008).  

Arachidonic acid metabolism is also closely related to the free radical generation and 

oxidative stress in the immune cells. It is known to directly stimulate NADPH oxidase, 

an enzyme complex in leukocytes, (notably in neutrophils) that leads too free radical 

production for microbicidal activity (Pompeia et al., 2000). Moreover, arachidonic acid 

pathway is coupled with glutathione (GSH) metabolism through two shared enzymes: 

gamma-glutamyltransferase 1 (GGT1) and glutathione peroxidase 3 (GPX3). GSH 

metabolism is a critical pathway for the inflammatory response since GSH is the master 

regulator of the intracellular redox state in close association with inflammatory 

processes (Gaté et al., 1999). GGT1 is the enzyme that initiates the catabolism of 

GSH, therefore increasing levels of GGT1 leads to reduced GSH concentrations and 

higher oxidative stress (Motley et al., 2004). On the other hand, GPX3 utilize GSH to 

detoxify hydrogen peroxide, therefore act as an antioxidant (Urbanska et al., 2014).  

During the detoxification of hydrogen peroxide, glutathione disulfide (GSSG) is 

produced. Replenishment of GSH resources from GSSG requires NADPH and glucose-

6-phosphate dehydrogenase (G6PD) which is a key component for the antioxidant 

defenses while also being the rate limiting enzyme of pentose phosphate pathway 

(Chandra et al., 2008). Essentially, glutathione metabolism appears to be activated in 

conjunction with arachidonic acid pathway and a number of other pathways associated 

with carbohydrate metabolism.  

Genes associated with carbohydrate metabolism appear in all three clusters indicating 

active modulation of energy strategies throughout the response. Enzymes favoring the 
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energy production from glycolysis (PGM1, HK3) are upregulated while those 

channeling the reactions away from pentose phosphate pathway and citric acid cycle 

(GPI, LDHB) are downregulated. Along with these regulations, downregulation of quite 

high number of mitochondrial elements (NDUFAB1, COX5A, COX6C, COX7C, NDUFV1, 

ATP5D, UQCRH, ATP5C1, ATP5G2, ATP5G3, ATP6V0A1, ATP6V0A2) point towards a 

shift of energy production from oxidative phosphorylation to glycolysis. This 

phenomenon is named as Warburg effect that is first observed in tumor cells (Warburg, 

1956). For the inflammatory cells, a high energy demand exists, similar to that of 

tumor cells, due to increased biosynthetic activity. To meet this demand cells incline 

towards glycolysis rather than oxidative phosphorylation although it is not as efficient 

in terms of ATP production yield. This is likely because glycolysis can be strongly up-

regulated and it can generate biosynthetic intermediates from the pentose phosphate 

pathway required for the generation of inflammatory products (Liu et al., 2012a, 

Maciver et al., 2008). This early initiation phase of inflammation therefore has been 

termed as anabolic which progressively transforms into adaptation phase associated 

with catabolism requiring fatty acid oxidation until the restoration of homeostasis (Liu 

et al., 2012b, Liu et al., 2012a). This phenomenon is also clearly observed in the 

current model of systemic inflammation. Within 6 hours of LPS administration there is 

a strong upregulation of the genes associated with lipid metabolism, primarily ACSL-

1, -3 and -4, as previously pointed out. In parallel, there is a surge of plasma lipid 

concentrations. These observations nicely confirm previous studies defining the 

changes in bioenergetics during initiation and adaptation phases within the 

inflammatory cells as well as throughout the body. However, a chicken and egg 

question still remains pertaining to initiating factor of these homeostasis recovery 

mechanisms. 
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Amino acid metabolism also displays an adaptation response to the changing plasma 

conditions. Genes functioning in the degradation pathways of amino acids (ALDH3A2, 

AASDHPPT, HADH, SHMT2, EHMT2, RDH11, BCAT1, MCEE, ALDH6A1) are found in the 

cluster which is downregulated. Since this response coincides with the strong depletion 

of circulating amino acids in the plasma, it might be speculated as precautious 

response to prevent exhaustion of intracellular amino acid resources during this so-

called adaptation phase.  

A group of pathways related to the degradation and biosynthesis of glycans is enriched 

in all clusters. Glycan biosynthesis is an essential process for the immune system since 

the newly produced protein messengers as well as cell-surface receptors require 

glycosylation as a post-translational modulation mechanism for functioning properly. 

From the enrichment analysis of the metabolism related genes, we observed that, in 

general, biosynthesis of O-glycans were upregulated while that of N-glycans were 

downregulated. Since both types of biosynthesis would likely be involved in the 

numerous elements that immune cells need to produce during inflammatory response 

(Haslam et al., 2008), answering why these genes would display disparate dynamics 

is out of the scope of this article and possibly be answered in the near future through 

studies focusing in human immune system in the newly emerging fields of glycomics 

and glycoproteomics.  

3.3.1 Limitations 

One limitation of our study was the fact that transcriptomic and metabolomic data 

were derived from different subject populations. This was related to the inherent 

nature of a meta-analysis and we believe that while a comparison performed on the 

plasma and leukocyte samples collected from same subjects would be stronger, this 

does not invalidate the work presented. The results obtained from the original 

transcriptomic analyses performed on whole blood have been supported by others who 
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have examined the transcriptome of leukocyte subsets, also utilizing the human 

endotoxemia model (Talwar et al., 2006). This indicates that the global transcriptome 

changes observed in this model are reproducible and represent a valid data set with 

which to perform the comparison with the metabolomic data discussed in this work. 

3.4 Conclusion 

This study was focused on the metabolic processes which were controlled at the 

transcriptional level to develop an understanding on the associations with the altered 

conditions in the immediate environment of leukocytes. At the global transcriptome 

level, we observed that lipid associated metabolic pathways were being activated while 

protein translation machinery was being slowed down in parallel with the peaking lipid 

and plunging amino acid levels in plasma. We hypothesized that drastic changes in the 

immediate environment of the leukocytes might have an adaptive effect in this 

response in conjunction with the initial stimuli. Furthermore, focusing exclusively only 

on metabolism associated transcripts uncovered alterations in bioenergetics and 

defenses against oxidative stress that can shed light into the mechanisms underlying 

mitochondrial dysfunction and shifts in energy production observed during 

inflammatory processes. 

Besides describing the metabolic response of human body to a basic inflammatory cue 

at the systemic level together with affected immune mechanisms, this study can 

inspire future translational studies as the -omics analyses becomes routine in clinical 

practice. Because blood is the biological sample fastest and the least invasive to collect 

from patients while yielding most useful information about the state of the body. 

Therefore, benchmarking the metabolic state of the system and transcriptional state 

of the immune cells by single biological sample may expedite clinical decision making 

and help reduce mortality in critical cases. 
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Chapter 4 Relevance of Endotoxemia Model to the 

Clinical Cases of Sepsis and SIRS  

Sepsis is defined as the combination of an infection with multiple features of “systemic 

inflammatory response syndrome” (SIRS) (Levy et al., 2003) and is one of the oldest 

and most enigmatic conditions in medicine. There are more than a million cases of 

sepsis per year in United States (Hall et al., 2011) and it is estimated to be 19 million 

cases per year worldwide (Angus and van der Poll, 2013, Lagu et al., 2012). According 

to the Center for Disease Control,  the cost of hospitalization is in the order of $15 

billion, with an anticipated further increase in the future (Reinhart et al., 2012). 

Despite several decades of intensive research and efforts to bring new therapies to the 

bedside, the number of cases and sepsis-associated deaths are still soaring (Angus 

and van der Poll, 2013, Rittirsch et al., 2007). Current treatment guidelines include 

cardiorespiratory resuscitation and non-specific protocols aimed to mitigate immediate 

threats of uncontrolled infection (Angus and van der Poll, 2013). A significant barrier 

to progress is the perceived inadequacy of experimental models that can reproduce 

the pathophysiology of the disease in humans.  

The high degree of variability among patients and multiple aspects of the disease, 

including patient gender, age and comorbidities complicate the design of relevant 

experimental models and clinical studies. Moreover, the initiating cause of infection 

and the physiologic responses that follow are also highly variable (Deitch, 1998). All 

these factors explain, at least in part, the difficulty in translating experimental results 

to the clinic and consequently, the lack of success in development of effective therapies 

(Rittirsch et al., 2007).  

Endotoxemia model has served as a valuable experimental venue for more than six 

decades (Wolff, 1973, Andreasen et al., 2008, Lin and Lowry, 1998). It is a model of 



41 

 

 

systemic inflammation, rather than a true mimic of sepsis. Nonetheless, early transient 

physiochemical changes and biochemical pathway activation in this model are 

strikingly similar to those observed during early hyperdynamic phase of resuscitated 

injury and infection (Lowry, 2005). The LPS challenge triggers chills, myalgias, nausea, 

increase in core body temperature and heart rate, most of which begin to abate within 

6-8 h (Lowry, 2005, Calvano and Coyle, 2012, Andreasen et al., 2008). Genome-wide 

analyses of circulating leukocytes revealed transcriptional signatures indicative of 

changes in protein translation and glycolysis (Haimovich et al., 2010), which shared 

similar characteristics with those observed in trauma patients (Calvano et al., 2005). 

These studies helped elucidate the intricate regulatory schemes governing the 

response to endotoxemia (Nguyen et al., 2011, Calvano et al., 2005) and provided the 

foundations for in silico models of systemic inflammation (Foteinou et al., 2009, 

Foteinou et al., 2011, Scheff et al., 2011, Foteinou et al., 2010, Scheff et al., 2012b, 

Scheff et al., 2010, Scheff et al., 2012a). In Chapter 2, we discussed the effects of 

LPS-induced inflammation on the whole body metabolism in humans (Kamisoglu et al., 

2013b). In contrast with other methods applied to the endotoxemia model, 

metabolomics reflects the combined output of all tissues in the body (Kosmides et al., 

2013). Unsupervised multivariate analyses identified prominent changes in lipid and 

protein metabolism, which peaked at 6 hours post LPS infusion. Subsequently, to 

better understand how the inflammatory responses at the level of cells and whole body 

correlate in humans, we integrated the analysis of plasma metabolome with that of 

leukocyte transcriptome as discussed in Chapter 3. 

Recently, Community Acquired Pneumonia and Sepsis Outcome Diagnostic study 

(CAPSOD) (Langley et al., 2013) provided an integrated analysis of clinical features, 

plasma metabolome and proteome, describing the patterns of metabolic perturbations 

in critically ill patients presenting with symptoms of systemic inflammatory response 
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syndrome (SIRS) or sepsis. This study, the first of its kind, examined clinical features 

as well as the plasma metabolome, and proteome, of patients upon arrival at the 

emergency department (ED) and 24 hours later. An important and novel outcome of 

the study was the realization that metabolic differences could ultimately be used as 

markers predicting survival. 

Since the endotoxemia model utilizes LPS as stimulus, rather than intact bacteria, 

there is an ongoing concern that the data derived from this model are of limited 

relevance to our understanding of sepsis-induced inflammatory mechanisms, although 

recent analyses of the leukocyte transcriptome seemed to argue otherwise (Haimovich 

et al., 2010). The availability of new metabolomic data (Kamisoglu et al., 2013b, 

Langley et al., 2013) offered the opportunity to compare responses detected in LPS-

challenged subjects to those of critically ill patients at the level of the entire organism. 

In this retrospective study we aimed to objectively determine the relevance of the 

information content gained by parallel analyses of LPS-challenged subjects (Kamisoglu 

et al., 2013b) and patients with or without community-acquired sepsis (Langley et al., 

2013).  

4.1 Methods 

4.1.1 Metabolic Data  

This is a retrospective analysis utilizing metabolomes obtained from subjects who 

participated in experimental endotoxemia study and from patients with or without 

community-acquired sepsis. Experimental protocol for human endotoxemia model has 

been previously described in Section 2.1 and in (Kamisoglu et al., 2013b). 

Metabolomic data for the clinical cases of systemic inflammation were obtained from 

Community Acquired Pneumonia and Sepsis Outcome and Diagnostics (CAPSOD) study 

(Langley et al., 2013). Approval for this study was obtained by institutional ethics 
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committees and details were filed at ClinicalTrials.gov (NCT00258869). Protocols and 

identified clinical features in the different classes of patients were previously published. 

The study (Langley et al., 2013) included 1152 individuals with suspected, community-

acquired sepsis (acute infection and ≥2 SIRS criteria) in the emergency departments 

at three urban, tertiary-care hospitals in the United States between 2005 and 2009. 

Each patient or their legal designates provided informed consent. Medical history, 

physical examination, and acute illness scores (APACHE II and SOFA) were recorded 

at enrollment (t0,clinical) and 24 hours later (t24,clinical). Infection status and outcome 

through day 28 were independently adjudicated by board-certified clinicians. Clinical 

care given for the patients was not standardized and was determined by individual 

providers. After independent audit of infection status and outcomes, 150 patients were 

chosen for derivation studies. Non-targeted mass spectrometry based analyses of the  

 

Figure 4-1: Schematic description of the experimental and clinical sources of data. 
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patient’s blood samples were done by Metabolon similarly with endotoxemia study. 

Figure 4-1 represents the overall structures of the two studies.  

150 patients chosen for derivation studies within CAPSOD cohort were classified to 

represent cases of uncomplicated sepsis (n=27), severe sepsis (n=25), septic shock 

(n=38), non-infected SIRS (“ill” controls, indicated as SIRS, presumed septic at 

enrollment but later determined to have noninfectious reasons for SIRS; n=29), or 

sepsis non-survival (SNS, n=31) (Figure 4-1, bottom). No significant difference among 

subgroups of sepsis survivors (uncomplicated sepsis, severe sepsis, septic shock) were 

reported for plasma metabolites (Langley et al., 2013). Therefore, the data from these 

patients were collapsed into a single group referred to as sepsis survivors (SS, n=90) 

for the purposes of this study. Furthermore, in the first part of the analysis, metabolic 

data from sepsis survivors (SS) and sepsis non-survivors (SNS) were pooled to assess 

the similarities and differences between sepsis and non-infected SIRS, and referred to 

as the Sepsis group (n=121). In the subsequent analysis, data from SS and SNS 

groups were used individually to investigate the association of metabolic changes in 

endotoxemia with those observed in either surviving or non-surviving sepsis patients. 

4.1.2 Data Analysis 

MS analysis of plasma samples from the human endotoxemia study provided temporal 

information on 366 metabolites at five time points. Previous results of the principal 

component analysis on this dataset showed that the 6h time point (t6) was the most 

critical since the maximum difference between control and treatment groups was 

observed at this time point (Kamisoglu et al., 2013b). This agreed well with prior 

transcriptional studies indicating that the maximal change in leukocyte gene 

expression was observed 6h after the LPS administration (Calvano et al., 2005, Talwar 

et al., 2006). Therefore, this data point was considered to represent the peak of 

metabolic response to endotoxemia and used as reference for the assessment of 



45 

 

 

concordance between experimental and clinical data in this study. MS analysis of the 

samples from CAPSOD study, on the other hand, had identified 370 metabolites at 

t0,clinical (time of hospital admission) and 401 metabolites at t24,clinical (24 h after 

admission). In this study, both clinical and experimental datasets were individually 

normalized by setting the median equal to 1. Missing values were imputed with the 

observed minimums after normalization. The metabolite lists were consolidated. Only 

the metabolites commonly identified in the endotoxemia (Kamisoglu et al., 2013b) and 

clinical (Langley et al., 2013) studies were analyzed further. The final dataset included 

177 common metabolites from both studies (Kamisoglu et al., 2013b, Langley et al., 

2013). Outliers were removed using the median absolute deviation,  MAD = 1.4826 ×

 |(xi –  Medianj(xj)|, of each metabolite, determined in each individual group (Leys et al., 

2013, Hampel, 1974). Subsequently score for each data point was calculated zi =

 |xi−Medianj(xj)|

MAD
 and data points with score above 3 were removed from the dataset. 

The number of removed outliers for each group is reported in the appendix, Table A. 

1. 

The baseline of the human endotoxemia study, i.e., samples collected before LPS 

administration (t0,LPS), defined the “baseline” in this study. We identified the 6h time 

point as the peak of metabolic response in endotoxemia model in our previous 

metabolomics study (Kamisoglu et al., 2013b), as well as transcriptomic analysis 

(Foteinou et al., 2009, Nguyen et al., 2011), and hypothesized that this time point 

represents the point of transition from the development and recovery phases of the 

response. For the clinical data collection, the starting point was the time of hospital 

admission (t0,clinical), whereas the second clinical time point was 24 hours later 

(t24,clinical). Since the data obtained for the clinical patients lacks internal controls, for 

obvious reasons, the responses of each group of patients, as well as endotoxemia 
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subjects, were compared independently to the healthy baseline (t0,LPS). For comparing 

the means of metabolites in each condition relative to the healthy baseline, Welch’s t-

test was used without assuming equal variances (α=0.05). The number of subjects in 

experimental endotoxemia group (n=15) was much smaller than the number of 

patients in the clinical groups to assume normal distribution required for t-test. 

However at both t0,LPS and t6,LPS the data passed Kolmogorov-Smirnov test for each 

metabolite allowing the application of t-test. Q-values were calculated according to 

Benjamini and Hochberg procedure (Benjamini and Hochberg, 1995) and metabolites 

having a p- and a q-value less than 0.05 are called significant. We also evaluated how 

dispersed the data for each metabolite is in clinical cases with respect to those at the 

baseline. Variances of the significant metabolites in each condition were also plotted 

relative to the variances at the baseline, and shown in Figure A. 1 in appendix. 

We lastly focused on changes in metabolites within subpopulations of sepsis patients 

who ultimately survived, and those who did not. For this purpose, dynamics within 

sepsis group were examined using the data from SS and SNS groups. Metabolites that 

statistically differed between these groups at either time point were determined by t-

test as described earlier. The magnitude of changes in plasma metabolites relative to 

t0,LPS were calculated for each group. These changes were compared between the SS 

and SNS groups at both time points and with the endotoxemia group at t6,LPS. 

4.2 Results and Discussion 

Endotoxemia induced by elective administration of LPS to healthy subjects has served 

as an invaluable tool for obtaining mechanistic insight into homeostatic inflammatory 

responses. Previous studies compared transcript- and protein- expression patterns in 

immune cells obtained from LPS treated subjects and trauma patients, revealing 

significant overlap (Visser et al., 2012, Haimovich et al., 2010). More recently, 

metabolomics analyses in both LPS administered subjects (Kamisoglu et al., 2013b) 
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and patients with symptoms of systemic inflammation at time of presentation to 

emergency departments were published (Langley et al., 2013, Glickman et al., 2010). 

Building on these prior studies, here we aimed to objectively compare metabolic 

indices obtained from experimental studies and clinical sources. 

The inherent dynamics of a clinical and an experimental study are obviously disparate 

although they focus on related physiologic phenomena. The first time point in a clinical 

study is generally at a point that had already deviated from what can be called a 

“healthy state”, whereas experimental studies usually measure divergence from the 

“healthy state” under controlled conditions. In this study, we aimed to evaluate the 

significance of observed metabolic perturbations in endotoxemia and how they relate 

to corresponding changes observed in patients with symptoms of community-acquired 

sepsis at time of presentation to the emergency departments. In line with our 

objective, we chose to evaluate each condition and each time point based on its 

deviation from one common baseline that reflects a healthy state (t0,LPS). Table 4.1 

shows the number of metabolites which had significantly different concentration 

compared to t0,LPS at each time point available for each condition. The first column in 

Table 4.1, shows the total information content of the final consolidated dataset with 

total number of metabolites associated with each metabolic super-pathway. Complete 

list of metabolites, their pathway classification, and extent of changes from baseline 

are provided in Table A. 2, in appendix. 

At the peak of the response to LPS, i.e., at t6,LPS, there were 83 metabolites (47% of 

the total 177 common metabolites) which significantly deviated from baseline. In 

contrast, the number of metabolites that significantly differed from baseline for the 

clinical groups was considerably smaller (varying between 19-26 metabolites, or 11-

15% of the total 177 common metabolites). 
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Table 4.1: Number of significantly changed metabolites and metabolic super-pathways that they 

belong to; determined for LPS-challenged subjects and patient groups. Significance was 

determined by comparing responses of each group of patients, as well as endotoxemia by 

comparing responses of each group of patients, as well as endotoxemia subjects, to the healthy 

baseline (t0,LPS) individually. Welch’s t-test was used and with correction for multiple 

comparisons by Benjamini and Hochberg procedure. (α=0.05). Metabolites having a p- and a q-

value less than 0.05 are called significant. (Complete list is available in Appendix, Table A. 2) 

We hypothesize that much larger number of metabolites that changed significantly in 

response to endotoxin as compared to the clinical cases reflects, at least in part, the 

fundamental difference between physiologic variability of responses elicited in subjects 

who participated in the controlled endotoxemia study and patients. The endotoxemia 

study cohort included relatively young and healthy subjects whereas the patient cohort 

that participated in the CAPSOD study was variable, in terms of age and comorbidities 

among others. In addition, the trigger itself, i.e., LPS, activates a single TLR4-

dependent signaling pathway, whereas infectious agents and trauma activate multiple 

ones, leading to greater variability in responses. In order to evaluate the level of 

dispersion in the clinical data with respect to the experimental; variance of each 

significant metabolite at each clinical condition was calculated and plotted against the 

corresponding variance at the baseline. These plots are shown in Figure A. 1 in 

  LPS 
(n=15) 

Sepsis 
(n=121) 

SIRS 
(n=29) 

Super pathway Total t6 t0 t24 t0 t24 

Amino acid 55 28 3 5 3 4 

Carbohydrate 16 4 1 2 2 2 

Cofactors and Vitamins 7 3 2 1 2 1 

Lipid 75 36 10 16 12 16 

Energy 4 4 0 1 1 1 

Nucleotide 8 3 0 0 1 0 

Peptide 3 3 0 0 0 0 

Xenobiotics 9 2 3 1 0 1 

Total 177 83 19 26 21 25 
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appendix. As highlighted in these plots, variances of the metabolites measured in the 

patients were statistically higher than those measured in endotoxemia study 

participants at the baseline, t0,LPS, reflecting the fundamental differences in variability 

between the two groups. 

Next, we sought to determine the similarities and differences among the subsets of 

significant metabolites that changed significantly in sepsis and SIRS groups which were 

also significant in endotoxemia. Our intention was to be maximally inclusive of the 

clinically observed changes. Therefore, we focused on metabolites that were 

significantly different from the baseline at either one of the two clinical time points as 

well as in endotoxemia. Table 4.2 A lists the metabolites common to endotoxemia and 

sepsis and Table 4.2 B lists those common to endotoxemia and SIRS. Metabolites that 

are common to both lists A and B are typed in bold. Triangles depict the direction (apex 

up: increase, apex down: decrease) and magnitude (1 triangle: less than 2 fold 

change, 2 triangles: more than 2 fold change) of the difference relative to the baseline 

(t0,LPS). Although the total number of metabolites in common with endotoxemia is close 

for the two clinical cases (16 in Table 4.2 A and 18 in Table 4.2 B), the agreement 

between the directions of change was strikingly different. Bilirubin, docosapentaenoate 

(DPA) and palmitolate were the only three metabolites common to LPS, sepsis and 

SIRS groups, which changed in the same direction. Of the 16 metabolites common to 

LPS and sepsis (Table 4.2 A), 15 changed in the same direction. Only one, xylose, 

changed in an opposite direction. In marked contrast, of the total 18 metabolites 

common to the endotoxemia and SIRS groups, 10 changed in the opposite direction 

(Table 4.2 B).  
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Table 4.2: Metabolites which are significantly different than the heathy baseline (t0,LPS) in 

the experimental condition and either of the two time points in the clinical conditions. A lists 

the metabolites common for endotoxemia and sepsis; B lists those common for endotoxemia 

and sepsis; B lists those common for endotoxemia and SIRS.  (=: no significant difference 

from t0,LPS. /: less than 2 fold difference from t0,LPS; /: more than 2 fold 

difference from t0,LPS; metabolite name in bold: common to both lists A and B). 

A  LPS Sepsis 

metabolite name super pathway t6 t0 t24 
2-hydroxybutyrate (AHB) Amino acid  = 

mannose Carbohydrate  = 

xylose Carbohydrate  = 

hexanoylcarnitine (C6) Lipid   

bilirubin Cofactors and vitamins   

docosapentaenoate (DPA; 22:5n3) Lipid  = 

palmitoleate (16:1n7) Lipid   

pregnen-diol disulfate Lipid   

citrulline Amino acid   

histidine Amino acid  = 

serine Amino acid  = 

threonine Amino acid   = 

2-palmitoyl-GPC (16:0) Lipid   

uridine Nucleotide  = 

gamma-glutamyltyrosine Peptide  = 

catechol sulfate Xenobiotics   = 

B  LPS SIRS 

metabolite name super pathway t6 t0 t24 

alpha-ketobutyrate Amino acid  = 

N-acetylglycine Amino acid  = 

xylose Carbohydrate  = 

citrate Energy   

arachidonate (20:4n6) Lipid   

docosahexaenoate (DHA; 22:6n3) Lipid   = 

eicosapentaenoate (EPA; 20:5n3) Lipid  = 

octadecanedioate (C18) Lipid  = 

bilirubin Cofactors and vitamins   = 

3-hydroxybutyrate (BHBA) Lipid  = 

docosapentaenoate (DPA; 22:5n3) Lipid   = 

hexadecanedioate (C16) Lipid   

palmitoleate (16:1n7) Lipid   

5-oxoproline Amino acid   = 

proline Amino acid  = 

serine Amino acid   = 

1-linoleoyl-GPC (18:2) Lipid   

1-oleoyl-GPC (18:1) Lipid  = 
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Scatter plots shown in Figure 4-2 A and B highlight this distinction in response. The 

axes of the scatter plots indicate the log2 fold changes in metabolite concentrations. 

The x-axes show the change at t6,LPS from baseline, t0,LPS. The y-axes show the 

maximum change in the clinical data at either t0,clinical or t24,clinical, relative to t0,LPS (if 

the changes at both time points were significant, the higher of the two values is 

shown). Positive direction shows an increase in concentration, while negative shows a 

decrease. Accordingly, the concentrations of metabolites in the first and third 

quadrants change in parallel with the observations in endotoxemia; while the ones in 

the second and fourth quadrants change in opposite direction. The response reflected 

by the direction and magnitude of change in septic patients agrees well with response 

to LPS within this common subset. However, for SIRS group, the directions of change 

are not in agreement with those in endotoxemia for more than half of the metabolites. 

This suggests that, at the whole body metabolome level, SIRS elicits a unique response 

with distinctive features. One such feature is the marked decrease in sulfated 

androgenic hormones (epiandrosterone sulfate, androsterone sulfate, 

dehydroisoandrosterone sulfate (DHEA-S), 5alpha-pregnan-3beta,20alpha-diol 

disulfate) (Table A. 2, in appendix).  

Lower plasma concentration of one of these metabolites, DHEA-S, has previously been 

associated with other systemic inflammatory diseases such as systemic lupus 

erythematosus and inflammatory bowel disease (Straub et al., 1998). This supports 

the idea that the inflammatory response without apparent infectious stimuli might elicit 

distinctive features not shared with sepsis or endotoxemia. It has been previously 

suggested that acute inflammatory stresses from different etiologies result in highly 

similar responses in humans at the genomic level (Seok et al., 2013). The observed 

distinct metabolomic responses to systemic inflammation with or without confirmed 

infection, however, suggests that metabolome is much better at differentiating and 
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understanding the various pathophysiologies of the different systemic inflammatory 

responses. Identified unique features of the inflammatory response in different 

contexts may aid in improving the diagnosis or the development of more targeted 

therapies. 

Next we compared the trends of changes in metabolites within subgroups of clinical 

patients who ultimately survived (SS) or did not survive (SNS), and how they related 

with those in endotoxemia. In total, there were 78 differential metabolites between SS 

and SNS groups at either t0 or t24. Among these, 23 were also differential for 

endotoxemia group at t6. The direction and magnitude of changes in these 23 

metabolites are shown in Table 4.3. When comparing the number of differential 

 

Figure 4-2: Scatter plots show the direction and extent of changes in the metabolites that 

were significantly deviated from baseline in sepsis (A) and SIRS (B) groups in relation to 

corresponding trends in endotoxemia. For the clinical data, plots reflect the maximum 

observed change from the baseline if that particular metabolite found to be significant in both 

time points, t0,clinical and t24,clinical. 
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metabolites at either t0 and t24 of the SS and SNS groups, it is clear that the difference 

in metabolites becomes substantially more pronounced with time. Alignment of trends 

in SS and SNS groups at t24 with those in endotoxemia at t6 revealed that the peak 

response to LPS is in line with the sepsis survivor metabolic response, especially at the  

first day into their treatment. In Chapter 2, we identified the 6h time point as the peak  

of metabolic response in endotoxemia model, stating that this time point represents 

the point of transition from the development and recovery phases of the response. The 

Table 4.3: The subset of metabolites having significantly different concentrations between SS 

and SNS groups at either clinical time points. (Changes from the healthy baseline, t0,LPS: /: 

less than 2 fold change; /: more than 2 fold change, -: there was not a significant 

difference between SS or SNS groups). 

  
Sepsis 

Survivors 
(n=90) 

Sepsis Non-
Survivors 

(n=31) 

LPS 
(n=15) 

metabolite name 
super 
pathway 

t0 t24 t0 t24 t6 

2-hydroxybutyrate (AHB) Amino acid  -  - 

N-acetylglycine Amino acid     

xylose Carbohydrate -  -  

malate Energy -  -  

10-nonadecenoate 
(19:1n9) Lipid -  -  

2-hydroxypalmitate Lipid  -  - 

hexanoylcarnitine (C6) Lipid     

pregn steroid monosulfate Lipid  -  - 

3-hydroxybutyrate 
(BHBA) Lipid -  -  

2-methylbutyroylcarnitine 
(C5) Amino acid     

3-indoxyl sulfate Amino acid -  -  

5-oxoproline Amino acid -  -  

histidine Amino acid -  -  

isobutyrylcarnitine (C4) Amino acid -  -  

N-acetylornithine Amino acid -  -  

tryptophan Amino acid -  -  

threitol Carbohydrate -  -  

phosphate Energy     

1-linoleoyl-GPC (18:2) Lipid -  -  

1-oleoyl-GPC (18:1) Lipid -  -  

2-palmitoyl-GPC (16:0) Lipid     

propionylcarnitine (C3) Lipid     

allantoin Nucleotide     
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fact that the metabolic changes in the recovering patients shift towards this response 

pattern strengthens the notion that the metabolic, as well as transcriptional responses, 

characteristic to the endotoxemia model represent necessary and “healthy” responses 

to an infectious stimuli. This is further evidence of likely allostatic response for 

survivors, i.e., placing the host at the appropriate level of distress required for graceful 

resolution parallel to the one develop in the LPS model, versus the systemic 

maladaptation observed in non-survivors (Langley et al., 2013). Based on this 

rationale, the endotoxemia model could be classified as a model of “normal, healthy 

responses”. It is interesting to note that Matzinger (Matzinger, 2002) more than a 

decade ago proposed that the Toll-like receptors, including TLR4, evolved to serve as 

host defense mechanisms against major injury and trauma. Matzinger also proposed 

that the bacteria evolved to use this receptors system to its own advantage. This idea 

begins to explain why, when sufficiently controlled, LPS induced responses might be 

protective and necessary rather than harmful. 

The major goal of the CAPSOD study was to identify metabolite changes at sepsis 

presentation that predicted survival or death. Upon stratification of sepsis patients 

based on 28-day survival, the direction of change of 21 of 23 metabolites was the 

same in endotoxemia and sepsis survival (Table 4). The most important metabolite 

group that differentiated surviving and non-surviving CAPSOD patients was acyl-

carnitines (Langley et al., 2013). In our analysis, we observed a similar trend with all 

significantly changed acyl-carnitines exclusively higher than the t0,LPS baseline at both 

time points in sepsis non-survivors (Table A. 3), whereas for the surviving patients, 

around half of the acyl-carnitines were below the baseline. For the endotoxemia group, 

the direction of change in acyl-carnitine concentrations at t6,LPS were the same as that 

of sepsis survivors (4 of total 12 acyl-carnitines were significant at t6,LPS).  
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4.2.1 Limitations 

Firstly, the timing of the data collection, and therefore the phase of the response that 

is being studied, can vary greatly depending on the lag time from the initiating event 

to the presentation to an emergency department. Secondly, the nutritional input, being 

non-controlled either before or after the hospital admission, could have affected the 

plasma metabolite concentrations as an independent factor. Thirdly, some of the 

CAPSOD patients either had prior comorbidities were likely to affect the metabolome, 

such as diabetes mellitus; or, were also developing conditions which further 

exacerbated response, including compromised renal function, a likely major 

contributor to the observed metabolome.  

4.3 Conclusion 

Therapeutic strategies that are successfully translated into the clinic are very few and 

mostly non-specific in the field of critical care. This is due, in part, to the complex and 

dynamic physiological processes involved. Heterogeneity of the patient populations 

and consequent challenges in performing insightful clinical studies also have 

contributed to the lack of progress in this realm of medicine (Angus and van der Poll, 

2013, Cain et al., 2014). Emerging -omics tools that are capable of examining 

physiologic responses at the systems level are promising especially for complex 

conditions such as sepsis and SIRS (Maslove and Wong, 2014). The major caveat 

related to these tools is that; since the biological processes are analyzed at a higher 

level, inter-species differences become as relevant to the response as the sought-after 

question itself. Therefore utility of the animal models has been questioned recently in 

the scientific community (Osuchowski et al., 2014, Seok et al., 2013).  

The human endotoxemia model has been serving as a useful experimental platform 

for gaining insight into the mechanisms governing systemic inflammation. It is a 

recognized fact that this model does not fully replicate the magnitude of physiologic 
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stress created by trauma or infection (Lowry, 2005, Calvano and Coyle, 2012); 

however it gives researchers the opportunity to study the mechanisms underlying the 

response to systemic inflammation and relevant therapy options without the inter-

species differences obscuring the interpretation of the results. 

Progression of response to systemic inflammation induced by endotoxemia in immune 

cells has been described at the genomic level (Talwar et al., 2006, Calvano et al., 

2005). Moreover, comparison of the response to experimental stimuli and 

traumatic/infectious insults revealed significant overlap of common features both at 

the gene (Haimovich et al., 2010) and protein expression levels (Visser et al., 2012). 

In the light of these observations, the current study aimed at an objective evaluation 

of the concordance between experimental and clinical cases of systemic inflammation 

and benchmarked endotoxemia against sepsis of various origins at the level of 

metabolic response. Plasma metabolome can be thought of as the metabolic fingerprint 

representative of the state of body at any given time and provide information on the 

dominant regulatory mechanisms at various levels of cellular processes including 

transcription, translation, and signal transduction. For effective provision of critical 

care, understanding the alterations in plasma metabolome is crucial, because 

metabolite levels impact the regulation of anti-inflammatory defenses, in turn, through 

steering critical cellular processes and immune mechanisms. Therefore, we think that 

the assessment of the relevance of endotoxemia as an experimental model 

representing critical illness is important.  

We believe that the observed concordance between the responses of LPS treated 

subjects and sepsis patients at the metabolome level despite observed variability in 

clinical data strengthens the relevance of endotoxemia to clinical research as an 

elementary tool and gives valuable insights into the metabolic changes necessary for 

proper response to inflammatory stress at the systemic level. 
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Chapter 5 Integration of Liver Transcriptomics and 

Proteomics in Response to Anti-

Inflammatory Treatment 

Our studies in systemic inflammation showed us that even a benign inflammatory 

stimulus such as LPS can drastically affect our metabolic homeostasis. We further 

showed that changing metabolite levels in response to the inflammatory processes in 

the body impact the regulation of anti-inflammatory defenses, in turn, through 

directing critical cellular processes in immune cells. This is because the metabolite 

levels in plasma reflect the available supplies of immune cells and drastic shifts in 

these levels have potential to alter the cellular processes where these supplies are 

utilized. Evaluating the changes in metabolic processes is also critical for assessing the 

overall effect of a therapy. Although the drugs are designed to provide a therapeutic 

benefit to the patient by specifically acting on their biological targets, in most cases 

the drug molecules themselves or their metabolic products have certain side effects 

that require thorough evaluation. Since inflammatory processes are intricately 

connected to many physiologic functions, this issue becomes significantly important in 

the design of anti-inflammatory therapies. In this chapter, we focused on 

understanding the effects of one of the most commonly used anti-inflammatory drug 

on liver. Liver is the master regulator of the metabolism, therefore evaluating the 

effects of a drug on hepatic processes is critically important to understand and caution 

against its potential undesirable effects on whole body metabolism. 

The specific drug which was the focus of our analyses was methylprednisolone (MPL), 

which is a synthetic corticosteroid (CS) shown in Figure 5-1. CSs are widely used as 

anti-inflammatory and immunosuppressive agents in the treatment of a variety of 

inflammatory and auto-immune conditions including organ transplantation, 
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rheumatoid arthritis, lupus erythematosus, asthma and allergic rhinitis (Barnes, 1998, 

Swartz and Dluhy, 1978). 

The mechanism of action of CS drugs is basically magnifying the physiological actions 

of the endogenous glucocorticoid hormones, which have anti-inflammatory properties 

depending on their secretion level and the time at which they are secreted. These 

hormones also have diverse effects on a variety of physiological processes including 

carbohydrate, lipid and protein metabolism, immune-regulation, bone homeostasis 

and developmental processes (Vegiopoulos and Herzig, 2007, Barnes, 1998). 

Although short-term use of CSs are beneficial for reducing the inflammation in the 

short-term, their long-term use is associated with serious side-efffects because of their 

diverse effects on other physiological functions, especially in hepatic processes 

(Morand and Leech, 1999, Andrews and Walker, 1999).  

The well-established molecular mechanisms of action for CS (illustrated in Figure 5-2)  

include the passive diffusion of the highly lipophilic CS molecule through the cell 

membrane and binding to the cytosolic glucocorticoid receptor, which is held inactive 

through the association with heat shock proteins (Schaaf and Cidlowski, 2002). Binding 

of the drug to the receptor causes conformational changes, phosphorylation and 

 

Figure 5-1: Structure similarity of methylprednisolon (MPL) and endogenous glucocorticoid 

hormone cortisol. 
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activation of receptor resulting in the formation of a homodimer of the drug receptor 

complex (Oakley and Cidlowski, 2011, Schaaf and Cidlowski, 2002). This activated 

complex translocates into the nucleus and binds to regulator sites, glucocorticoid 

regulatory elements (GREs) in the DNA, resulting in the regulation of transcription 

rate.  

However, in addition to direct binding, the activated complex can regulate gene 

expression by other mechanisms including tethering and composite binding to other 

transcription factors, activators, or repressors (Barnes, 1998, Schaaf and Cidlowski, 

2002). Some of the critical transcription factors that are affected by CS include NF-κB, 

 

Figure 5-2: Mechanism of action of corticosteroids, adapted from (Jin et al., 2003). 
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AP-1 and STAT. In addition to these genomic mechanisms, studies have shown that 

CS can regulate pathways by signaling through its receptor in a transcription-

independent manner, although the exact mechanisms for the non-genomic effects are 

still unclear (Schaaf and Cidlowski, 2002).  

Because of the diverse effects of CS and different molecular mechanisms potentially 

involved in these actions, an “-omics” approach can be effective in gaining better 

understanding of the effects of CS on different pathways and functions (Nguyen et al., 

2010). Previous studies used gene microarrays to profile temporal changes in mRNA 

expression in multiple tissues following CS administration in rats (Almon et al., 2007a, 

Almon et al., 2003, Almon et al., 2007b, Almon et al., 2005). These studies 

characterized global dynamics of the system that are regulated by CS at the 

transcriptional level. Although this information is useful and highly relevant, direct 

profiling of the protein expression changes and integrating the information from the 

genomic and proteomic response will provide deeper insights into CS actions, given 

their diverse and complex mechanisms. Recently, a high-throughput methodology was 

developed that uses an ion current-based liquid chromatography/mass spectrometry 

(LC/MS) strategy, allowing comprehensive and accurate profiling of the tissue 

proteome (Tu et al., 2012). Using this methodology the temporal changes in the 

expression of thousands of proteins in rat liver after MPL administration has been 

characterized (Nouri-Nigjeh et al., 2014a). With this new information from the protein 

expression level, it is possible to evaluate complementarities across transcription and 

translation of the target genes and get a more complete understanding about the 

mechanisms of action of this drugs. With this objective, this study describes the 

tandem analysis of rich time-series transcriptomic and proteomic data in rat liver in 

response to MPL. 
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5.1 Methods 

5.1.1 Animal experiments 

All animal experiments were performed at the University of Buffalo and protocols 

adhered to “Principles of Laboratory Animal Care” (NIH publication 85-23, revised in 

1985) and were approved by the University at Buffalo IACUC committee. 

Proteomics: Sixty adrenalectomized (ADX) Wistar rats were injected with 50 mg/kg 

methylprednisolone (MPL) intramuscularly and sacrificed at 12 different time points 

between 0.5 and 66 h post-dosing (5 animals / time point). Five animals, injected with 

saline and sacrificed at random time points in the same time window, served as 

controls. In order to remove the high concentrations of blood protein, it was necessary 

to use perfused tissue for proteomic analyses, which precluded the use of the same 

tissues employed for transcriptomics (below). Proteins from perfused and flash frozen 

livers were extracted, digested and analyzed using a nano-LC/LTQ/Orbitrap 

instrument. The Nano Flow Ultra-high Pressure LC system (nano-UPLC) consisted of a 

Spark Endurance autosampler (Emmen, Holland) and an ultra-high pressure Eksigent 

(Dublin, CA) Nano-2D Ultra capillary/nano-LC system, with a LTQ Orbitrap mass 

spectrometer (Thermo Fisher Scientific, San Jose, CA) used for detection. Protein 

quantification was based on the area under the curve (AUC) of the ion-current-peaks. 

A more extensive description of the experimental setup and the analytical methodology 

can be found in the previously published study (Nouri-Nigjeh et al., 2014b). 

Transcriptomics: Forty-three ADX Wistar rats were given a bolus dose of 50 mg/kg 

MPL intravenously. Animals were sacrificed at 16 different time points between 0.25 

and 72 h post-dosing. Four untreated animals sacrificed at 0 h served as controls. The 

mRNA expression profiles of the liver were arrayed via Affymetrix GeneChips Rat 

Genome U34A (Affymetrix, Inc.), which contained 8800 full-length sequences and 
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approximately 1000 expressed sequence tag clusters (Jin et al., 2003). This dataset 

was previously submitted to the GEO (GSE490). 

5.1.2 Computational Analysis 

Hierarchical Clustering of Concatenated Dataset 

Data analysis for both proteomic and transcriptomic datasets started first by filtering 

for differential expression over time. Proteins and transcripts with differential temporal 

profiles were determined by using EDGE software. We employed within-class 

differential expression to extract profiles that have a differential expression over time 

(Storey et al., 2007, Leek et al., 2006, Storey et al., 2005). Integration of these two 

datasets for any further analysis required matching the object identifiers which was 

achieved through running a comparison between two filtered datasets in Ingenuity 

Pathway Analysis (IPA, Ingenuity® Systems, www.ingenuity.com). This analysis 

helped us identify the genes which were differentially expressed both at the 

transcriptional and translational levels. In order to find potential co-regulatory 

relationships at these two levels, hierarchical clustering was used for first-pass 

analysis. For this purpose, temporal transcriptomic and proteomic data for the 

common genes were first concatenated and then clustered using the clustergram 

function in the Bioinformatics toolbox of MATLAB (Mathworks, Natick MA). The two 

clusters obtained by using correlation as the distance metric.  

Two-way Sequential Clustering of Individual Proteomic and Transcriptomic 

Datasets 

While hierarchical clustering analysis described above identifies the potential co-

regulatory schemes for the genes in the intersection of transcriptomic and proteomic 

datasets; it fails to capture the dynamics in the rest of the genes which may also show 

differences in expression over time, although they may not co-exist in both datasets. 
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In order to evaluate the overall dynamic patterns and extract the most useful 

information integrating these two dataset, a consensus clustering (Nguyen et al., 

2009) method was applied to these two datasets separately. First, proteins with 

differential temporal profiles were clustered using p-values of 0.05 for significant 

clusters and an agreement level of 0.70 for the genes in each cluster. Then, probe sets 

corresponding to the proteins in each cluster were identified through the comparison 

function in IPA as before. Temporal profiles of these probe sets corresponding to the 

proteins were compiled and separately sub-clustered through the less stringent 

hierarchical clustering method, again using clustergram function in MATLAB. 

The reverse of the same procedure was also performed - starting from transcriptional 

analysis and continuing with the corresponding proteomic analysis. Here, differential 

transcriptional profiles were first determined and then clustered using the same 

procedures described above. As with the previous analysis, proteins that were coded 

by the probesets within each of these clusters were then identified and sub-clustered.  

5.1.3 Biological Interpretation 

Functional annotations of proteins and transcripts at each level of analysis were 

conducted in IPA by running a core analysis for each cluster and evaluating the 

enriched canonical pathways (at p-value threshold of 0.05) and predicted upstream 

regulators obtained in IPA.  

5.2 Results 

Studies focused on understanding the relationship between global mRNA transcription 

and protein translation have produced mixed results, many of which concluded that 

the transcriptomic and proteomic data is far from being easily described as 

complementary (Greenbaum et al., 2003, Haider and Pal, 2013, Waters et al., 2006, 

Hegde et al., 2003, Nicholson et al., 2004). This study aimed to compare and contrast 
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the transcriptional and translational changes in liver induced by the exposure to a 

synthetic CS at a pharmacological dose. Although high-throughput -omics analyses 

have been obtained from samples collected from two independent studies; the strain 

of experimental animals, dose and type of pharmacologic agent, sampled tissue, 

sampling procedures, and most of the time points for sample collection were the same 

for these studies. These conditions allowed us to assume that the experiments are 

similar enough to conduct individual and integrated bioinformatics analyses. The 

preprocessing before performing the first-pass analysis involved identifying the 

significant genes whose both transcripts and proteins existed in the individual 

datasets. The followed procedure is schematically shown in Figure 5-3. Differential 

expression analysis through EDGE identified that 475 out of 959 proteins and 1624 

out of around 8800 transcripts had temporal profiles that significantly varied over time 

(meeting p-value < 0.05 and q-value < 0.01 cut-offs). After this filtering step, both 

datasets were fed into IPA in order to match distinct identifiers used (Swiss-Prot IDs 

for proteins and Affymetrix IDs for transcripts). A comparison between two datasets 

indicated that 163 genes were commonly found in both transcriptomic and proteomic 

datasets; i.e., both mRNAs and proteins corresponding to these genes were 

differentially expressed over time.  

 

Figure 5-3: Workflow for hierarchical clustering of the concatenated transcriptomic-proteomic 

dataset. 
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5.2.1 Hierarchical Clustering of Concatenated Datasets: 

Temporal transcriptional and protein expression data for 163 common genes were 

concatenated and clustered through hierarchical clustering by using correlation as the 

distance metric. Overall, this analysis identified two dominant patterns as shown in 

Figure 5-4. Cluster 1 was populated with 80 genes for which corresponding mRNA and 

protein expression profiles were essentially parallel in direction, while for 83 genes in 

Cluster 2 the directionality was reversed. For both clusters, the first 8 hours is 

seemingly the most critical time period during which mRNA and protein expression 

profiles change direction. Genes in Cluster 1 display up-regulation for both mRNA and 

protein expression profiles in the first 8 hours, after which down-regulation 

predominates, markedly in the transcriptional profiles. In the second cluster, early 

down-regulation predominates for transcriptional profiles; however corresponding 

protein expression profiles are not complementary. While down-regulation is observed 

in these transcripts most notably in the first 8 hours; expression of the same proteins 

seems to be up-regulated in the same time frame. After the 8th hour; both 

transcriptional and protein expression profiles approach basal levels, though from 

opposite directions; elevated mRNA levels start to be down-regulated and reduced 

protein levels start to be up-regulated.  

Functional annotation of the genes in these two clusters, obtained through enrichment 

analysis in IPA, is shown in Cluster 1 (where direction of regulation is similar) included 

a number of genes coding for heat shock proteins, which take part in the negative 

regulation of CS signaling through direct protein-protein interaction with glucocorticoid 

receptor to prevent its translocation to nucleus (Chrousos and Kino, 2005). 

Complementary transcriptional and proteomic profiles of these genes indicated that 

this is a negative feed-back control induced by MPL which is regulated at the 

transcriptional level. Proteins functioning in the regulation of protein degradation and 



66 

 

 

translation machinery were also among the genes in Cluster 1 (including PSMCs, HSPs, 

EIFs, RPLs and RPSs), implying that these processes are also controlled at the 

transcriptional level after CS exposure. In contrast, functions enriched by the genes in 

Cluster 2 appear to be regulated at post-transcriptional levels, likely through control 

of mRNA processing, initiation of protein translation or protein stability, since the 

transcriptional profiles are not emulated by protein expression (Waters et al., 2006). 

Among these functions most notable are the modulation of oxidative stress, lipid 

metabolism and bile acid biosynthesis. 

 

 

Figure 5-4: Heat map of clustered concatenated dataset. Red color indicates increase in 

expression while green indicates decrease. 
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Possible upstream regulators that can explain the observed changes in gene/protein 

expression are also identified through IPA core analysis based on the prior knowledge 

of expected effects between the upstream regulators and target genes/proteins in the 

dataset. Definition of upstream regulator, however, is used rather loosely here, as 

almost any type of molecule that affects the expression of other molecules can be 

upstream regulators whether they are transcription factors, kinases or hormones. The 

analysis first examines how many known target genes of each candidate upstream 

regulator are present in the dataset. It then compares the direction of change in those 

targets with what is expected from the literature in order to predict relevant upstream 

regulators. If the observed direction of change is consistent with a particular activation 

state (i.e., activated or inhibited) of that candidate regulator then a prediction is made 

about the activation state. Using the genes coexisting in both transcriptomic and 

proteomic datasets, a number of upstream regulators were identified for each time 

point and predicted results are shown in Table 5.2. Two clusters obtained through 

hierarchical clustering were examined separately; however there are common 

Table 5.1: Functional annotation of differentially expressed genes in both transcriptional and 

translational levels. 

Cluster 1 Cluster 2 

mRNA expression is essentially parallel 
with protein expression 

mRNA expression and protein 
expression moves in opposite directions 

Functional Annotation 

CS signaling Xenobiotic metabolism, Oxidative stress 
modulation, Hormone degradation 

 Cytochrome p450 family 
 Sulfo-transferases 
 Glutathione S-transferases 

 Aldehyde dehydrogenases 
 Catalase 

Protein ubiquitination 
 Proteasome 
 Heat shock proteins 

Protein translation 

 Eukaryotic translation factors 
and ribosomal proteins  

Urea cycle enzymes 
Fatty acid oxidation, Valine-tryptophan 
degradation, Ketolysis 

Hormone degradation 
 Sulfo- and glucuronyl-

transferases 
Bile acid biosynthesis 
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predicted regulators of the elements in different clusters. Reliability of a predicted 

element increases as the number of times it is identified from consecutive datasets 

and also if there is a coherent pattern in its predicted state (i.e., whether it is activated 

or inhibited). Based on this, Nuclear Factor Erythroid-Derived 2-Like 2 (NFE2L2) seems 

to reliably contribute to the observed gene/protein expression patterns by inducing 

early up-regulation and late down-regulation. 

Two other important genes are solute carrier family 13 (sodium/sulfate symporter), 

member 1 (SLC13A1) and leptin (LEP), both of which seem to have an inhibitory effect 

on gene/protein expression throughout the time course of the study. 

5.2.2 Two-way Sequential Clustering of Individual Proteomic and 

Transcriptomic Datasets: 

The approach followed for the first part of the analysis described above imposes the 

stringency that a gene has to be differentially expressed both in the transcriptional 

Table 5.2: Predicted upstream regulators and their activation states (green: activated, red: 

inhibited) based on the gene groups obtained by hierarchical clustering. 
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and translational levels to be included in the final hierarchically clustered dataset. To 

fully characterize the temporary patterns of protein translation induced by MPL and to 

get additional insights into how that process is connected with the transcriptional 

events during the corresponding time frame, we also followed a sequential approach 

as schematically shown in Figure 5-5. What is distinct about the sequential approach 

is that it allows focusing on each dataset independently of the other, i.e., regardless 

of the complementary dataset being also differentially expressed. This increases the 

number of elements in clustering analysis. Consensus clustering, on the other hand, 

is an inherently more stringent approach compared to hierarchical clustering, eliciting 

the most coherent expression patterns in the dataset. Therefore this second approach, 

with stringency in coherent expression at one level rather than commonality at both 

levels, aims to identify the dominant patterns in one level of regulation (transcription 

or translation) and to check how closely it is associated with the patterns in the other 

level.  

First, an in-depth analysis of the proteomic dataset was done in order to capture the 

dynamics of protein expression in liver following MPL dosing. EDGE identified 475 out 

of 959 proteins to be differentially expressed over time. Consensus clustering revealed 

5 coherent temporal profiles containing 217 of the 475 regulated proteins. The detailed 

distribution of these 5 clusters is given in Table 5.3. The first two clusters (Figure 5-6 

a-b) show early up-regulation within the first 5.5 hours after MPL, followed by a 

recovery period. Proteins in Clusters 3 through 5 (Figure 5-6 c-e) display later increase 

in expression, peaking at 5.5, 8 and 18 hours following the MPL dose.  
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Hierarchical clustering of the corresponding probesets for each protein cluster was 

used to investigate the dependency of protein translation (or lack of it) on 

transcription. Of the 217 clustered proteins, 158 showed regulation of its mRNA as 

well. Interestingly, this analysis showed that, while a small number of the transcripts 

roughly correlate with expression of corresponding proteins, in most of the clusters a 

greater number of transcripts displayed the opposite pattern. This is consistent with 

the observations in hierarchical clustering of the concatenated dataset and emphasizes 

the prominent role of post-transcriptional regulation in establishing the pharmacologic 

effects of MPL in liver. 

 

 

Figure 5-5: Workflow for sequential clustering analysis carried out in both forward and reverse 

directions between proteomic and transcriptomic datasets. 
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Table 5.3: Distribution of elements after clustering and sub-clustering of data in two-way 

analysis. 

Proteomics  Transcriptomics 

 # of proteins 
Corresponding # of probesets in the transcriptomic 

dataset 

Cluster 1 44 34 

Cluster 2 30 27 

Cluster 3 72 45 

Cluster 4 42 29 

Cluster 5 29 23 

Transcriptomics  Proteomics 

 # of probesets 
Corresponding # of proteins in the proteomic 

dataset 

Cluster 1 413 66 

Cluster 2 155 30 

Cluster 3 92 25 

Cluster 4 334 85 

Cluster 5 138 11 

 

In addition, this analysis was repeated in the reverse direction; i.e., starting from the 

transcriptomic dataset and progressing to the proteomic dataset. 1624 of the probe 

sets were differentially expressed, 1132 of those were in 5 clusters obtained by 

consensus clustering. Only 217 of these 1132 probe sets had corresponding proteins 

in the proteomic dataset. Distribution of these 217 proteins to their correspondent 

transcript clusters is shown in Table 5.3. Two of the clusters were considerably more 

densely populated than the others. The transcriptional profiles of these clusters are 

shown in Figure 5-7 a and d (left side), and they can be considered as the most 

dominant early-up/late-down-regulation and early-down/late-up-regulation patterns. 

Heat maps on the right display the expression patterns of corresponding proteins for 

each cluster. Compared to the first part of sequential clustering analysis, considerably 

fewer proteins actually correlate with the transcriptional profile of their respective 

clusters. Especially for the most densely populated cluster, Figure 5-7 d, only a couple 

of proteins show early-down/late-up-regulation pattern in parallel with the 

corresponding temporal pattern of the first cluster. The only cluster in which 
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expression of the majority of proteins go more or less in parallel with the temporal 

profile of the corresponding transcriptional cluster is the first cluster (Figure 5-7 a).  

Considering that protein expression is a more reliable predictor of function, the 

annotation analysis was based on the proteomic data in this part of the analysis. The 

proteins included in the clusters shown in Figure 5-6 were functionally annotated 

through core analysis in IPA, pathways with an enrichment score higher than 0.05 

were considered significant and obtained results are shown in Table A. 4. The protein 

clusters were numbered according to the time at which the peak activity was observed. 

Four clusters displayed increasing activity sequentially within the first 8h and one 

showed a relatively delayed activity, around 18h after MPL dosing. 

5.3 Discussion 

Characterization and analysis of global gene expression changes has become an 

integral part in studying mechanisms of actions of various pharmacological agents 

(Butte, 2002). Developments in high-throughput methodologies such as microarrays 

allowed relatively affordable and faster characterization of gene expression. These 

genomic approaches offer a powerful tool in understanding drug effects at the 

molecular level and aid in target and biomarker discoveries and in gaining insights into 

modulation of relevant pathways. Previous studies with microarrays (Almon et al., 

2007a, Almon et al., 2003, Almon et al., 2005) helped in understanding of various 

pathways modulated by CS at the transcriptional level that are either common across 

tissues or unique to certain tissue types (Yang et al., 2009, Nguyen et al., 2010). 

Through clustering and other bioinformatic analyses of time series; genes sharing 

similar expression patterns across different dosing regimens and gene clusters 

showing distinct temporal profiles were identified and related to drug effects/side-

effects (Nguyen et al., 2010). 
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Figure 5-6: Five clusters of proteins obtained by consensus clustering (a-e, left side), and 

heat maps of corresponding hierarchically clustered probesets (a-e, right side). Canonical 

pathways enriched by the proteins in these clusters are given Table A. 4. 
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Although information on mRNA expression changes helps in understanding 

mechanisms of drug action, some studies show that message expression changes may 

not correlate well with protein changes and hence might not accurately reflect drug 

effects (as the majority of pathway modulators and drug targets are proteins) 

(Nishizuka et al., 2003, Shankavaram et al., 2007). Hence characterization of changes 

in protein expression at the proteome level (along with gene expression profiling) will 

not only reveal the dynamic and temporal features of drug-induced protein changes, 

but will also provide rich biological information which may lead to improved 

understanding of diverse drug effects at both transcriptional and translational levels.  

Comprehensive, accurate, and reliable profiling of protein expression remains highly 

challenging because of the extreme diversity of the chemical and physical properties 

of proteins, the large dynamic ranges in concentrations in most proteomes, and the 

fact that drug-responsive proteins are often low-abundance. Recently developed 

robust and highly sensitive label-free quantification strategy allowed accurate 

expression profiling of complex tissue proteomes, with the capacity for analyzing large 

numbers of biological samples (Tu et al., 2012). This strategy was utilized to 

characterize the temporal changes in expression of thousands of proteins after a single 

dose of MPL.  

Availability of rich time-series datasets for changes in both mRNA and protein 

expression after single-dose administration of MPL allowed us to integrate both 

transcriptional and translational states and enabled us to perform a unique analysis to 

compare and contrast the two. With this analysis we developed an algorithm to 

compare temporal changes in both gene and protein expression. This allowed us to 

examine the relationship between the two and to differentiate the transcriptional and 

translational effects of CS dosing. These drugs affect a wide range of pathways that 

are involved in metabolism (carbohydrates, lipids and proteins), immune-regulation  
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Figure 5-7: Five clusters of transcripts obtained by consensus clustering (a-e, left side), and 

heat maps of corresponding hierarchically clustered protein datasets (a-e, right side). 
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and other critical cellular functions (Swartz and Dluhy, 1978, Bialas and Routledge, 

1998). Because CS regulate diverse sets of genes and proteins, the dynamic effects of 

these drugs provide a relevant system to compare, contrast, and integrate both the 

genomic and proteomic data. Although the data were obtained from different but very 

similar animal studies, it is reasonable to integrate the two for the following reasons: 

both studies were performed in the same strain of rats (Wistar) that were 

adrenalectomized and maintained under similar conditions; MPL was given in both 

studies and identical doses of 50 mg/kg were used. The only major difference between 

the two studies is that the gene expression analysis were performed in animals that 

were given an intravenous dose of the drug and the proteomic measurements were 

performed in rats given an intramuscular injection of MPL. However, our previous 

studies comparing the two routes of MPL dosing indicated that though there are some 

early differences in the pharmacokinetic profiles of MPL, the pharmacodynamics of an 

important biomarker tyrosine aminotransferase (TAT) expressed in liver were 

comparable (Hazra et al., 2007).  

 

With the hierarchical clustering of the concatenated genomic and proteomic data we 

identified two dominant patterns, one of which showed up-regulation of expression at 

both mRNA and protein levels (Cluster 1, Figure 5-4). Most of the genes and proteins 

in this cluster show similar temporal patterns (with peak expression occurring at 

similar times) or with a slight delay in the peak expression time of the protein 

compared to the gene profiles. Some of the classic pharmacodynamics markers for CS 

actions, including tyrosine aminotransferase (TAT) and aspartate aminotransferase 

(GOT1), fall into this category with up-regulation of both the mRNA and protein 

expression after MPL dosing. Similarly, this group includes genes/proteins involved in 
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glucocorticoid signaling confirming the direct pharmacological action of MPL at both 

the genomic and proteomic levels (Hazra et al., 2008). 

One of the primary effects of CS in liver is to stimulate gluconeogenesis (production of 

glucose) from amino acids released by protein breakdown in muscle (because of CS 

action) through deamination and utilization of the carbon backbone for glucose 

production in the liver. As a result, the excess amines are removed through the urea 

cycle to maintain proper homeostasis (Hazra et al., 2008, Bialas and Routledge, 1998). 

As shown in Table 5.1, Cluster 1 includes genes and proteins involved in the urea cycle 

that are up-regulated after MPL dosing and both gene and protein expression share 

similar temporal profiles.  

The other functions that are enriched in Cluster 1 include those involved in protein 

translation and processing (Table 5.1). Ribosomal proteins and translational factors 

that play critical roles in protein translation and heat shock proteins that help in proper 

chaperoning of newly formed proteins show up-regulation at both gene and protein 

levels (Warner and McIntosh, 2009). All genes/proteins in Cluster 1 represent direct 

transcriptional effects of CS, resulting in temporal expression changes in mRNA that 

translate to concurrent or slightly delayed protein expression changes. Since mRNA 

profiling is more straightforward, well established, and cheaper than the protein 

counterpart, an important point to note here is that mRNA expression markers can be 

representative of their corresponding proteins in assessing the effects of CS actions 

for genes/proteins populated in Cluster 1. 

Genes and protein expression profiles in Cluster 2 are more intriguing and we have 

very limited understanding of the biology and mechanisms behind this observation. 

Although previous studies have been conducted in identifying differences in the 

changes at the transcriptional and translational levels for one or selected few proteins, 
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global assessment through high throughput methodologies have never tried to address 

this issue (Nouri-Nigjeh et al., 2014b, Sukumaran et al., 2011, Qu et al., 2006). 

Studies that have characterized and compared genomic and proteomic data have 

almost always been single time-point studies that do not provide the relevant temporal 

information necessary to identify and characterize transcriptional and translational 

differences (Gry et al., 2009, de Godoy et al., 2008). These single time-point high 

throughput studies showed poor correlation between mRNA and protein expression 

data (Gry et al., 2009). Analysis from our study shows that some of the functional 

pathways involved in lipid, protein and xenobiotic metabolism that are important 

pharmacological targets of CS showed different temporal expression patterns for 

mRNA and proteins. This suggests that in addition to the direct transcriptional effects 

of CS, there could be additional translational or post-translational effects that result in 

different protein expression temporal patterns compared to the mRNA profiles. Factors 

including regulation of microRNAs (which can alter protein translation) and direct or 

indirect translational controls could produce the different mRNA and protein profiles 

(He and Hannon, 2004). Whatever the mechanisms that control the difference between 

gene and protein expression are, mRNA profiles in Cluster 2 cannot be directly used 

for deciphering the regulation of the functional pathways they represent. 

5.4 Conclusion 

The results of present study elicited both expected and unexpected relationships 

between mRNA transcription and protein translation in liver after single CS dose. 

Roughly half of the genes commonly found in both transcriptomic and proteomic 

datasets had complementary temporal profiles indicating regulation at the 

transcriptional level. Some of the functions that these genes are associated with were 

regulation of corticosteroid signaling, protein degradation and translation machinery. 

The lack of complementarity between message and protein expression profiles in the 
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other half of genes was intriguing. Although our understanding of the involved 

mechanisms is limited at this point, this result suggested additional translational or 

post-translational impacts of CS in addition to their direct transcriptional effects.  

Independent from the corresponding profiles, we also examined the rich time-series 

data through stringent two-way clustering and sub-clustering approach. We used 

proteomic data, to portray the cellular landscape after CS dose due to its higher priority 

in representing the actual phenotype. This allowed us to define the prominent temporal 

shifts in protein expression and to determine associated cellular functions. 
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Chapter 6 Summary and Future Perspectives 

6.1 Summary 

This dissertation is centered on extracting physiologic information from time-course 

data provided by the -omics analyses and integrating multiple levels of analyses in 

relevant biological context. Underlying theme in the included work is pathogenesis and 

treatment of inflammation, though examined at two different host species due to the 

very nature of available in vivo models. Specifically, our work involved the assessment 

of self-limited systemic response to inflammation in an experimental endotoxemia 

model in healthy humans; and hepatic response to corticosteroid therapy in a murine 

model. 

Elective administration of bacterial endotoxin to healthy human subjects has long been 

used as a reproducible experimental procedure providing mechanistic insights into how 

cells, tissues and organs respond to systemic inflammation. This response is closely 

associated with alterations in metabolism, since inflammatory processes considerably 

affect the levels of plasma metabolites. We performed the first complete metabonomic 

analysis in human endotoxemia model by describing the temporal alterations of plasma 

metabolites within the first day of LPS treatment. Dominant temporal patterns of 

metabolite concentrations extracted by principal component analysis pointed out to 

the critical time point which separated the development and recovery phases of LPS 

induced metabolic changes. Clustering approach identified the metabolite subsets with 

common coherent profiles exhibiting closely associated interactions while also 

facilitating the recognition of temporal relationships between the clusters of elements. 

Prominent roles of lipid and protein metabolism in regulating the response to systemic 

inflammation and their dynamics displaying opposing directionality were highlighted. 

Overall, this single level analysis uncovered the temporal patterns in the host 
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metabolism reflecting collective impacts of regulations at various organs and at 

multiple levels of cellular processes including transcription, translation and signal 

transduction.  

Building on this knowledge; we integrated the transcriptional response of leukocytes 

with plasma metabonomics to understand how their gene expression might have been 

affected from the metabolic landscape of the fluid environment in which they circulate. 

We hypothesized that the drastic changes in the immediate environment of the 

leukocytes might have an adaptive effect on shaping their transcriptional response in 

conjunction with the initial inflammatory stimuli. In line with this hypothesis, we 

observed that the regulation of oxidative stress and selection of bioenergetic routes 

displayed parallel changes with associated metabolite levels in plasma. Besides 

describing the metabolic response of human body to an inflammatory cue at the 

systemic level together with affected immune mechanisms; this study can inspire 

future translational studies as the -omics analyses becomes routine in clinical practice. 

Because blood is the biological sample fastest and the least invasive to collect from 

patients while yielding most useful information about the state of the body. Therefore, 

benchmarking the metabolic state of the system and transcriptional state of the 

immune cells by single biological sample may expedite clinical decision making and 

help reduce mortality in critical cases. 

In the context of human endotoxemia model, we have previously published on the 

effects of altered glucocorticoid levels and rhythms on immune function reflected by 

the human leukocyte transcriptome. This study was concerned with hypercortisolemia 

frequently observed after severe traumas and highlighted the prominent role of 

glucocorticoids in priming the circulating leukocytes against an impending infectious 

threat closely associated with their role as endogenous stress hormones. This single-

level –omics study is described in the following future perspectives section to serve as 
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a primer for a prospective metabolomic study with the objective of identifying the 

impact of stress component to the systemic inflammatory response at the whole body 

level. 

Having studied the human endotoxemia model extensively, we were interested in 

objectively assessing the relevance of this model to what is actually observed in clinical 

cases of systemic inflammation, most importantly in sepsis patients. For this purpose, 

we evaluated the relevance of changes observed in plasma metabolites of subjects 

who participated in the endotoxemia study with those of sepsis and SIRS patients. 

Response to endotoxemia at the metabolome level elicited changes that agree well in 

direction and magnitude with those observed in sepsis patients, and gave insight into 

metabolic changes that constitute a homeostatic response. Observed concordance 

strengthened the relevance of endotoxemia to clinical research as a physiological 

model of sepsis. 

On the therapy side, we focused on the effects of synthetic corticosteroids (CS) which 

are extensively used for their anti-inflammatory and immunosuppressive agents in the 

treatment of a variety of conditions. Long term use of these drugs are associated with 

many side-effects including metabolic syndrome, dyslipidemia and muscle atrophy 

because of their strong effects on the metabolism. Liver is one of the primary targets 

of CS action and almost all its functions, critical for the maintenance of metabolic 

homeostasis, are strongly influenced by CSs. To investigate the changes in hepatic 

processes, we analyzed the temporal proteomic expression of livers from CS 

administered adrenalectomized rats. Taking advantage of the complementary 

transcriptional analysis in the same animal model, we pursued an integrated approach 

for expression analysis at both transcriptional and translational levels. Our approach 

involved both combining and contrasting the same gene products in two different 

datasets, in essence, pursuing the best integration approach yielding most useful 
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mechanistic information. The significant disparity between the actual proteome and 

corresponding transcriptome in this study suggested that additional translational or 

post-translational implications of CSs are very plausible in addition to their direct 

effects on transcription; while also cautioning against the use of transcriptional data 

for deciphering the regulation of the functional pathways which they represent. This 

study also provided the foundation for new generation 

pharmacokinetic/pharmacodynamics (PK/PD) models of these drugs. Current models 

of CS actions reflect the dynamics at the gene expression level. We have built a 

preliminary network-based model, described in the following future perspectives 

section, to augment these models with the new insights gained from functional 

analyses at the proteomic level. The ultimate objective of this modeling effort in the 

future is to devise a mathematical framework that can reflect the identified drug-

responsive gene and protein expression patterns and accurately represent the 

physiological actions of CSs. 

6.2 Adding the Stress Component to Endotoxemia Model 

Our metabolomic study on human endotoxemia described in Chapter 2 points out 

significant changes in the whole body metabolism in response to LPS, which was later 

integrated with the transcriptional response as described in Chapter 3 and implied that 

these metabolic changes affect the transcriptional programming of leukocytes, in turn. 

As we further discussed in Chapter 4, this model is a valuable experimental platform 

reflecting the necessary and healthy physiological response to systemic inflammation, 

the core component of sepsis. However, in addition to the presence of this core 

response to pathogens; major physical and psychological traumas, such as those 

experienced by sepsis patients, are also associated with hypercortisolemia, which 

emerges due to the disruption of the cortisol secretion rhythm and the increase in total 

cortisol concentration (Deuschle et al., 1997, Vaughan et al., 1982, Frayn, 1986, 
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Boonen et al., 2013). Understanding how this alteration challenges the immune system 

and its function is of great clinical interest, and is particularly relevant to the 

management of critically ill or injured patients, in order to prevent complications.  

In the experimental human endotoxemia model, we analyzed the effects of 

hypercortisolemia, concentrating exclusively on leukocyte transcriptional response 

(Kamisoglu et al., 2013a). In this study, natural circadian rhythm of cortisol was 

blunted in healthy volunteers by continuous cortisol infusion for 30h at a concentration 

that mimics hypercortisolemia induced by a major physiologic stressor. At the 24th 

hour of this infusion period, LPS is administered as a bolus injection and transcriptional 

responses of leukocytes within 24h periods both before and after the LPS challenge 

were investigated by gene expression analysis. Figure 6-1 illustrates the details of the 

design of this study. 

 

Figure 6-1: Study design for studying the effects of hypercortisolemia coupled with infectious 

stimuli, mimmicking the high stress experienced by sepsis patients. Nine healthy subjects 

received continuous cortisol (or saline) infusion starting 24h before the bolus LPS injection 

and continuing until 6h after the injection. Blood samples were collected and leukocytes were 

isolated at multiple time points over 24h both before and after LPS administration. 
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We observed that in the control subjects, plasma cortisol levels showed the expected 

circadian pattern (Yeager et al., 2011) and rapidly increased following LPS 

administration. In cortisol infused subjects, cortisol levels were steady throughout the 

30h infusion period around twice the normal daily peak level of control subjects (~35 

μg/dL) and did not show any further increase upon LPS administration (Figure 6-2 a). 

Cortisol concentration returned to normal levels within 12h in both groups. This pattern 

showed us that the followed dosing strategy successfully blunted the natural rhythm 

of cortisol and clamped the concentration at a level associated with stress-induced 

physiologic conditions. 

 

Figure 6-2: Change in the level of plasma cortisol (a) and total number of white blood cells 

(WBCs) (b) and percentage of WBC subpopulations (c-e) in response to continuous cortisol 

infusion and LPS administration (dashed line: saline + LPS; solid line: cortisol +  LPS). 
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As a result of this change in the natural cortisol rhythm and exerted hypercortisolemia, 

there were significant alterations in both the total number of leukocytes (white blood 

cells, or WBCs), and the WBC differentials. The total number of cells at 0h (before LPS 

administration) was at a level comparable to that observed after LPS administration 

for the saline infused control group with a relative increase in the percentage of 

neutrophils, and a significant decrease in the percentage of lymphoctyes and 

monocytes (Figure 6-2 c-e). Following LPS administration, both groups demonstrated 

an increase in the number of WBCs at a similar rate (Figure 6-2 b). Interestingly, the 

 

Figure 6-3: Transcriptional responses of leukocytes to cortisol prior to endotoxin 

administration in time period between -24h and 0h. 
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leukocyte subpopulations as a percentage of the total leukocyte count were not 

significantly different by 3h post LPS administration.  

Besides the total number of leukocytes and differential counts, their transcriptional 

programming were also significantly affected from the hypercortisolemia. In cortisol 

treated group, 120 transcripts were up-regulated and 80 probesets were down-

regulated compared to control group as shown Figure 6-3. Table A. 5 lists 

representative genes from the up- and down-regulated groups of clusters together 

with the functional groups that they are associated with, in the context of this study. 

As a consequence of the continuous cortisol infusion, we observed enhanced 

expression of genes encoding for a number of pattern recognition and cytokine 

receptors, receptor regulatory elements and signal transduction elements; as well as, 

reduced expression of the genes encoding for elements of protein translation process, 

and mitochondrial proteins.  

Increased receptor and signal transduction protein expression were indicative of a 

priming effect of the cortisol on the immune function, where cells were sensitized to 

recognize potential infectious threats or endogenous danger signals. These 

observations agree well with the previous studies investigating the effects of stress or 

direct cortisol delivery on the immune function and response to LPS challenge which 

demonstrated amplified pro-inflammatory receptor expression and function on 

immune cells (Shieh et al., 1993, Hawrylowicz et al., 1994, Zhang and Daynes, 2007) 

and subsequently enhanced inflammatory response to LPS (Yeager et al., 2009, Lim 

et al., 2007, Frank et al., 2010, Johnson et al., 2002, Gundersen et al., 2006, Galon 

et al., 2002).  

Up-regulation of cytoskeletal proteins and extracellular matrix degradation enzymes 

also imply an increased mobility and enhanced ability for extravasation to penetrate 
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the tissues or engulf pathogens. These are key events for the inflammatory function 

of leukocytes and the enhancing effect of cortisol on these functions supports its 

permissive role on inflammatory response as supported by earlier studies (Galon et 

al., 2002, van der Goes et al., 2000) 

Tuning down the protein translation process can also be regarded as part of the priming 

effect since it points toward re-prioritization of cellular resources and energy which 

would presumably allow better energy management when the anticipated threat is 

encountered. Decreased protein synthesis together with the increased expression of 

protein degradation enzymes indicates a catabolic state which is characteristic of 

cortisol action and in line with its role as a stress hormone (Sapolsky et al., 2000, Shah 

et al., 2000, Shah et al., 2002).  

Despite the significant transcriptional program changes in leukocytes prior to 0h the 

overall response to LPS did not significantly differ between cortisol and saline treated 

groups for the majority of the genes involved, as reflected in the clusters obtained 

from differentially expressed genes throughout the full study period. Both cortisol and 

saline treated groups displayed similar up- and down-regulation responses as reflected 

in the 0– 24h periods of the heat map shown in Figure 6-4 b and c. These groups of 

clusters correspond well to the first part of the study, and are therefore named 

according to the observed response to cortisol as: Cortisol enhanced and cortisol 

suppressed. However, the magnitude of the up-regulation response observed after LPS 

administration was higher in the cortisol-pretreated group compared to control. The 

cluster shown in Figure 6-4 a displays a unique pattern where the overall response 

seems to be driven predominantly by LPS, which was reflected as strong up-regulation 

within the first 2h of LPS administration; and had a higher intensity for the cortisol 

treated group. The fact that LPS response was much higher for this cluster in the 

cortisol group when compared to control suggests that while cortisol might not have 
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directly affected transcription of the genes in this cluster, it may have had an indirect 

affect, perhaps through the modulation of up-stream signaling cascades. The net result 

is that the response to the subsequent inflammatory challenge (i.e. LPS) was 

intensified. 

Table A. 6 lists the functional classifications of the genes included in the clusters shown 

in Figure 6-4. The probesets associated with the LPS dominant cluster include the 

major players known to regulate the inflammatory response such as: Cytokines and 

chemokines (Il1B, CCl20, CCL3, and IL1RN), signal transduction elements that 

 

Figure 6-4: Overall differential response to LPS between cortisol+LPS and saline+LPS groups. 

5 clusters obtained by consensus clustering were grouped into 3 based on response to cortisol 

between -24h and 0h as: (a) LPS dominated (17 probesets), (b) cortisol enhanced (74 

probesets), and (c) cortisol suppressed (66 probesets). 
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negatively regulate pro-inflammatory signaling (NFKBIA and TNFAIP3) and receptors 

mediating recruitment of leukocytes to sites of inflammation (ICAM, THBS1). 

Results of this study showed us that hypercortisolemia associated with major 

physiologic stress significantly affected the response of leukocytes to an impending 

infectious stimuli. Coupled dose and rhythm manipulation of plasma cortisol levels 

promoted the priming of circulating leukocytes associated with sensitization of their 

surveillance function and tuning down of energy-intensive processes which may be 

linked to increasing their efficiency in responding to subsequent infectious threats. 

Specifically related to cellular metabolism, we observed significant downregulation of 

ribosomal and mitochondrial proteins, as well as the defenses against oxidative stress.  

The insights gained from this study regarding the permissive effect of cortisol on 

subsequent inflammatory response, together with earlier studies focused on cortisol 

delivery prior to acute inflammatory challenge (Yeager et al., 2011, Yeager et al., 

2008, Yeager et al., 2009, Smyth et al., 2004, Barber et al., 1993, Frank et al., 2010), 

has also been used in building a mathematical model of acute inflammatory response 

that reflects the time of day dependence related to the secreted cortisol levels 

(Mavroudis et al., 2015). 

In the future, it would be of great interest to integrate the information from metabolic 

alterations in the extended version of experimental human endotoxemia model since 

hypercortisolemia is also closely associated with hypermetabolic response observed in 

traumatic conditions (Brillon et al., 1995). Establishing the detailed definitions of 

hormonal and metabolic controls on the inflammatory response through the use of –

omic tools in a model highly relevant to clinical cases of systemic inflammation is not 

only important for deciphering the regulatory mechanisms in control during acute 

inflammation but may also provide insights about more subtle connections between 

stress, metabolic and inflammatory diseases. 
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6.3 Enhancing PK/PD Models of MPL with Information from 

Multiple Levels of “–omics” 

Modeling the responses of the body to a drug is a fundamental process in the drug 

development and it helps us to quantitatively reflect the time-course of the effects of 

drug on the body. Building and successful utilization of these models allow 

quantification of drug-system interactions and prediction of both therapeutic and 

adverse effects (Felmlee et al., 2012, Mager et al., 2003).  

Diverse physiological effects of synthetic glucocorticoids has been the subject of many 

of these pharmacokinetic and pharmacodynamic modeling efforts. A series of models 

have been developed to explain the dynamics of receptor regulation and enzyme 

induction following MPL administration (Ramakrishnan et al., 2002, Sun et al., 1998). 

The models progressively enhanced to capture the effects of the drug under several 

doses and dosing regimens. However, these models were based on the data generated 

by traditional message quantification methods that only allow measurements of single 

end points. Together with the analysis of MPL effects on various tissues via high-

throughput technologies such as gene microarrays (Almon et al., 2007a, Almon et al., 

2007b), the diversity of the available models have been increased. The fifth-generation 

model that described the simple gene induction by MPL has been expanded to several 

pharmacogenomics models that may explain the response of all the hepatic genes with 

various dynamic patterns (Jin et al., 2003). Error! Reference source not 

found.Figure 6-5 shows the suggested mechanism for the effect of MPL on 

glucocorticoid receptor down-regulation in the liver, while Figure 6-6 lists various 

mechanistic scenarios of how MPL could drive the different expression patterns 

observed in the gene microarrays. 
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Importantly, all these models concentrate on the effects observed at the gene 

expression level. The next quest in the development of more comprehensive models 

is the incorporation of information from the protein expression levels. This information 

made available by a novel high-throughput and reproducible method that allows the 

temporal profiling of tissue proteome (Nouri-Nigjeh et al., 2014a). In Chapter 5, we 

described multiple approaches to integrate this temporal information from the 

proteome level with the corresponding dynamics in the transcriptomic level through 

data-driven approaches. A future direction that we envision is to achieve integration 

of these available information from complementary studies in a model-driven 

approach. With this, the current PK/PD models of MPL response could be augmented 

to reflect the physiological response observed at the protein expression level. 

 

Figure 6-5: Mechanism of receptor downregulation in liver in response to MPL administration. 

Starting from the kinetics of drug concentration in the plasma (D), the differential equations 

below the schematic define and interrelate the rates of changes in the individual elements 

such as the receptor mRNA (Rm), receptor protein (R), drug-receptor complex in the 

cytoplasm (DR) and in the nucleus (DR(N)). 
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As our results demonstrated in Chapter 5, transcriptional and proteomic expression 

patterns roughly correlate for some of the genes, yet for others, the dynamics were 

more unexpected. One way to work with the existing PK/PD models would be teasing 

out the protein counterparts of the transcriptional clusters that are described by the 

dynamics shown in Figure 6-6 and examining the potential mechanisms that could 

explain the observed protein expression profiles corresponding to the same genes. 

Another approach is considering the physiologic response as a systems response 

composed of dynamics of individual elements.  

 

Figure 6-6: Diverse pharmacogenomic models and accompanying differential equations to 

describe various mechanisms of MPL’s effects on hepatic gene expression (adapted from (Jin 

et al., 2003)). 
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We have done a preliminary study applying this second approach. In our study, the 

driver of the response is the drug-receptor complex in the nucleus; transcripts and 

proteins, the nodes of the network, are the individual elements with diverse dynamics. 

The observed phenotype reflects the systems response arising from the dynamics of 

these individual elements, and these elements include all of the genes affected by the 

MPL. Figure 6-7 illustrates this idea schematically only with two representative target 

genes. Number of target genes to be included in the network depends on the available 

biological data, literature information about the interaction of the nodes, as well as the 

desired complexity level. Because, as more nodes are added into the network, the 

 

Figure 6-7: Schematic representation of the network-based indirect response model to MPL 

(D). Glucocorticoid receptor (R) downregulation part of the model (on the left) has already 

been modeled. Once the drug-receptor complex translocates into the nucleus (DR(N)), drug 

induces its effects on the transcription of its target genes (mRNA1, mRNA2) either by 

stimulating it (white rectangle) or by inhibiting it (black rectangle). When transcribed 

messages are translated to the active proteins (Protein1, Protein2), they can also have effects 

(either stimulatory (green) or inhibitory (red)) on the transcription of target genes affected 

by MPL. All these effects are considered as indirect as there might be additional biological 

processes in between.  
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direct and indirect interactions between the elements of the network as well as the 

number of parameters to be estimated increases. 

6.3.1 Building the response network 

As described in Section 5.2.1, we had 163 genes that had both mRNA and protein 

expression data. An interaction database for all these 163 genes were constructed 

(Nguyen, T, unpublished work). This database was curated from 4 popular pathway 

databases (KEGG, NCI, Biocarta, Reactome) combined with text mining from Pubmed 

abstracts with sentences that satisfy a strict syntax to infer if A activates or inhibits B. 

This database for the whole common dataset included 1956 interaction links. In order 

to reduce the number of network elements to a more manageable size, we followed a 

functional approach. 

We first determined the most important functions affected by MPL administration 

through functional enrichment analysis of both transcriptional and proteomic level 

data. Starting from the functions of all differential transcripts and proteins, we focused 

on most important common pathways. Then the genes in these pathways were 

 

Figure 6-8: Network of MPL responsive genes determined through functional enrichment 

analysis of transcriptional and proteomic data, and interaction database curated from 

literature. 
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examined, and any gene with missing either the mRNA or protein expression data were 

removed. Then, regulatory relationships between the remaining genes were 

determined from the initial curated interaction database. This approach yielded a 6 

node-16 edge network associated with 4 physiological functions as shown in Figure 

6-8. 

6.3.2 Integrating the network with existing PK/PD model for MPL 

The elements of the network were determined in a data-driven way, starting from the 

MPL responsive genes at the transcriptional and proteomic levels. Therefore the driving 

force for the initial network activity was the drug bound receptor translocated in the 

nucleus (DR(N)). With this in mind, DR(N) was introduced as the driving force for the 

each element in the network, and the rest of the regulatory relationships were kept 

the same. Figure 6-9 illustrates the integration of gene and protein expression network 

with the existing receptor-downregulation model of MPL.  

The system of differential equations describing the relationships are given in Eqn. 6-1 

to Eqn. 6-10. The parameters for the receptor downregulation model (Eqn. 6-1 to Eqn. 

6-7) was used as in the previous studies (Ramakrishnan et al., 2002, Jin et al., 2003).  

The simulation results of the receptor-downregulation part of the model is shown in 

Figure 6-10. MPL plasma concentration (D) exhibit a biexponential decline. Following 

the binding of the drug to the glucocorticoid receptor (DR), this complex translocate 

into the nucleus (DR(N)) and act as the driving force for the MPL induced response 

patterns. Firstly, this effect is observed as inhibition of mRNA expression for the 

glucocorticoid receptor (Rm), and consecutively the receptor protein (R). DR(N) is also 

introduced as a stimulatory factor to all of the nodes in the network. Level of mRNA 

expression is modeled to be controlled by the presence of drug-receptor complex in 

the nucleus together with all other indirect interactions between the proteins of the 
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network. Degradation of mRNA, protein translation from mRNA and protein 

degradation were all modeled as linear processes. 

Figure 6-11 shows the simulation results for this preliminary network. The 

experimental data is indicated with the dashed blue lines, and model simulations are 

overlaid with black solid lines. For GPX1 and MYL9 genes, the experimentally observed 

dynamics are very well captured. This is also true for the early dynamics of PRDX6 and 

GSTM1 protein levels. In general, for the most network elements early dynamics are 

seem to be represented well compared to later fluctuations in the response. 
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Especially for the elements which has more pronounced dynamics later in the time 

course, such as GSTK1 and ACACA, the model does not even come close to the 

experimental data. As stated before, this was the preliminary step to the bi-level model 

building approach and further enhancements in the model will allow better 

representation of the experimental data. 

 

Figure 6-9: Gene and protein expression network (bottom) integrated into the receptor 

downregulation part (top) of the MPL PK/PD model. Black rectangle indicates an inhibition 

whereas white rectangles indicate stimulation by DR(N). The edges of the network are color-

coded to indicate activating (green) and inhibiting (red) interactions of the nodes. 
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Some of these efforts might include introducing time delays to the elements which 

demonstrate more pronounced dynamics in the later phase of the response. The 

synthesis of the network mRNAs currently involve linear relationships. Michaelis-

Menten kinetics can be introduced to allow self-limiting responses. Finally, the network 

structure can also be reshaped by eliminating the nodes that are not insightful as well 

as introducing new nodes that carry important regulatory information about the 

existing parts of the network. Once the model is matured to fully capture the 

experimental data, then it can be utilized to make predictions about long-term effects, 

or different delivery kinetics.  

This preliminary work introduces an approach for bridging the classic PK/PD modeling 

efforts with the multi-level systems response. This allows us to explore the paths of 

utilizing the vast amount of information made available by new -omic profiling tools. 

These tools make it possible to evaluate the response as a whole at a certain biological 

 

Figure 6-10: Dynamics of the response to MPL in the first part of the model that defines the 

regulatory effect of MPL on the glucocorticoid receptor that it binds. 
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level over time. The model-based integration approach discussed here ultimately aims 

to connect this valuable information coming from multiple layers in a useful framework 

which reflects the continuity of biological events in response to the pharmacological 

stimuli. 

Another layer of information that can be incorporated into this model in the future is 

the metabolome layer. As we have previously pointed out, gene expression signatures 

gives information about the lowest level of organization, shedding light on the origin 

 

Figure 6-11: Simulation results for all mRNA and proteins taking part in the network of the 

MPL response model. Blue dashed lines indicate the experimental data and black solid lines 

show the simulation results. 
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of a specific phenotype. Proteomics provide information about the abundance of 

proteins, elucidating the next level up from gene expression data. The integration of 

these fields provides a unified picture of cellular-level responses from transcription 

through translation. However, there are multiple other levels of processes that control 

the sequence of events from the translation of a protein until it becomes a fully 

functional piece of the organism that can shape processes affecting the ultimate 

phenotype. Metabolomics complements these more traditional -omics techniques by 

allowing the investigation of properties that cannot be directly assessed through gene 

and protein expression. Integration of metabolomics with transcriptomics and 

proteomics can help make the relationship between the levels of information produced 

by each technique more clear. Changes in gene expression levels and protein 

concentrations can be linked to physiological changes and interpreted in the biological 

context.  

Future metabolomic studies in the same animal model can elicit the metabolic shifts 

occurring in response to MPL administration that ultimately cause the development of 

the adverse effects. Careful assessment of the connections of these shifts with the 

defined alterations in hepatic gene and protein expression levels can help identify the 

critical nodes that control these metabolism associated adverse effects of the drug. 

Importantly, the indirect effects of the drug on whole body metabolism through 

altering the microbiome would have to be considered here as well, since the symbiotic 

organisms might have tremendous influence on shaping the metabolic response to the 

drug. Nevertheless, integration of information from the whole-body metabolism with 

existing information on the hepatic response to MPL can be useful in multiple ways. 

Firstly, alterations in the critical nodes that are linked to long-term adverse effects can 

be identified and adjunct therapies that can alleviate these alterations can be devised. 

Secondly, patient populations which would be more susceptible for experiencing those 
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adverse effects or be better responders to the drug can be pre-determined based on 

their genomic profiles. Thirdly, more realistic models of drug response can be designed 

integrating information from this ultimate phenotypic level and be used to evaluate 

different scenarios, helping in the design and development of better therapies. 
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Appendix 

Table A. 1: Number of outliers removed from the metabolomic data in endotoxemia (LPS) and 

in CAPSOD studies (Sepsis and SIRS) before any statistical analysis. 

 LPS Sepsis SIRS 

t0 t6 t0 t24 t0 t24 

Outliers 117 118 1836 1476 469 348 

Data points in total 2655 2655 21417 18939 5133 4425 

% removed 4.4 4.5 8.5 7.8 9.1 7.9 

 

 

Figure A. 1: Comparison of the variances of significant metabolites in the clinical groups with 

respect to those in the baseline (t0,LPS).  
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Table A. 2: Full list of the metabolites included in the assessment of the relevance of 

endotoxemia with clinical cases of systemic inflammation, together with the significance in each 

condition, direction and magnitude of the changes relative to the baseline (t0,LPS). 

A. Metabolites which are significantly different than the heathy basis (LPS_t0) in all conditions 
  LPS Sepsis Sepsis SIRS SIRS 

metabolite name 
super 
pathway t6 t0 t24 t0 t24 

2-hydroxybutyrate (AHB) Amino acid  =  = = 

alpha-ketobutyrate Amino acid  = = = 

N-acetylglycine Amino acid  = = = 

mannose Carbohydrate  =  = = 

xylose Carbohydrate  =  = 

citrate Energy  = =  

arachidonate (20:4n6) Lipid  = =  

docosahexaenoate (DHA; 22:6n3) Lipid  = =  = 

eicosapentaenoate (EPA; 20:5n3) Lipid  = = = 

hexanoylcarnitine (C6) Lipid    = = 

octadecanedioate (C18) Lipid  = = = 

bilirubin (E,Z or Z,E)* 
Cofactors and 
vitamins     = 

3-hydroxybutyrate (BHBA) Lipid  = = = 

docosapentaenoate (DPA; 22:5n3) Lipid  =   = 

hexadecanedioate (C16) Lipid  = =  

palmitoleate (16:1n7) Lipid     

pregnen-diol disulfate* Lipid    = = 

5-oxoproline Amino acid  = =  = 

citrulline Amino acid    = = 

histidine Amino acid  =  = = 

proline Amino acid  = = = 

serine Amino acid  =   = 

threonine Amino acid   = = = 

1-linoleoyl-GPC (18:2) Lipid  = =  

1-oleoyl-GPC (18:1) Lipid  = = = 

2-palmitoyl-GPC* (16:0) Lipid    = = 

uridine Nucleotide  =  = = 

gamma-glutamyltyrosine Peptide  =  = = 

catechol sulfate Xenobiotics   = = = 

       

       

B. Metabolites which are significantly different than the heathy basis (LPS_t0) in only clinical conditions 
  LPS Sepsis Sepsis SIRS SIRS 

metabolite name 
super 
pathway t6 t0 t24 t0 t24 

glutamine Amino acid = = =  = 

3-methylhistidine Amino acid =   = = 

3-hydroxy-2-ethylpropionate Amino acid = =  = 

tiglyl carnitine (C5) Amino acid = =  = = 

erythrose Carbohydrate =    

mannitol Carbohydrate = = =  = 

pantothenate (Vitamin B5) 
Cofactors and 
vitamins = = = = 

pyridoxate 
Cofactors and 
vitamins =  =  = 

taurocholate Lipid =   = = 

octanoylcarnitine (C8) Lipid =    = 

laurylcarnitine (C12) Lipid = = =  

decanoylcarnitine (C10) Lipid = =   = 

myo-inositol Lipid = =  = = 

1-eicosatrienoyl-GPC* (20:3) Lipid =   = = 
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1-palmitoleoyl-GPC* (16:1) Lipid =   = = 

1-oleoyl-GPE (18:1) Lipid =   = = 

1-palmitoyl-GPC (16:0) Lipid = = =  

1-arachidoyl-GPE* (20:4) Lipid = = = = 

1-stearoyl-GPC (18:0) Lipid = = = = 

epiandrosterone sulfate Lipid =  = = 

androsterone sulfate Lipid = = =  

dehydroisoandrosterone sulfate 

(DHEA-S) Lipid = = =  

5alpha-pregnan-3beta,20alpha-diol 
disulfate Lipid = = = = 

N6-carbamoylthreonyladenosine Nucleotide = = =  = 

p-acetamidophenylglucuronide Xenobiotics =   = 

piperine Xenobiotics =  = = = 

       
       

C. Metabolites which are significantly different than the heathy basis (LPS_t0) in only experimental 
condition 
  LPS Sepsis Sepsis SIRS SIRS 

metabolite name 
super 
pathway t6 t0 t24 t0 t24 

3-methyl-2-oxobutyrate Amino acid  = = = = 

pyruvate Carbohydrate  = = = = 

alpha-ketoglutarate Energy  = = = = 

malate Energy  = = = = 

10-nonadecenoate (19:1n9) Lipid  = = = = 

2-hydroxypalmitate Lipid  = = = = 

2-hydroxystearate Lipid  = = = = 

5-dodecenoate (12:1n7) Lipid  = = = = 

dihomolinolenate (20:3n3 or 3n6) Lipid  = = = = 

laurate (12:0) Lipid  = = = = 

linoleate (18:2n6) Lipid  = = = = 

margarate (17:0) Lipid  = = = = 

myristate (14:0) Lipid  = = = = 

myristoleate (14:1n5) Lipid  = = = = 

oleate (18:1n9) Lipid  = = = = 

pregn steroid monosulfate* Lipid  = = = = 

stearate (18:0) Lipid  = = = = 

hypoxanthine Nucleotide  = = = = 

biliverdin 
Cofactors and 
vitamins  = = = = 

10-heptadecenoate (17:1n7) Lipid  = = = = 

dihomolinoleate (20:2n6) Lipid  = = = = 

eicosenoate (20:1n9 or 1n11) Lipid  = = = = 

linolenate (18:3n3 or 3n6) Lipid  = = = = 

palmitate (16:0) Lipid  = = = = 

stearidonate (18:4n3) Lipid  = = = = 

2-methylbutyroylcarnitine (C5) Amino acid  = = = = 

3-indoxyl sulfate Amino acid  = = = = 

alanine Amino acid  = = = = 

arginine Amino acid  = = = = 

asparagine Amino acid  = = = = 

cysteine Amino acid  = = = = 

isobutyrylcarnitine (C4) Amino acid  = = = = 

isoleucine Amino acid  = = = = 

kynurenine Amino acid  = = = = 

leucine Amino acid  = = = = 

lysine Amino acid  = = = = 

methionine Amino acid  = = = = 

N-acetylornithine Amino acid  = = = = 

ornithine Amino acid  = = = = 

pipecolate Amino acid  = = = = 

tryptophan Amino acid  = = = = 
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tyrosine Amino acid  = = = = 

valine Amino acid  = = = = 

threitol Carbohydrate  = = = = 

threonate 
Cofactors and 
vitamins  = = = = 

phosphate Energy  = = = = 

choline Lipid  = = = = 

glycerol 3-phosphate (G3P) Lipid  = = = = 

propionylcarnitine (C3) Lipid  = = = = 

allantoin Nucleotide  = = = = 

gamma-glutamylleucine Peptide  = = = = 

gamma-glutamylphenylalanine Peptide  = = = = 

glycochenodeoxycholate Lipid  = = = = 

hippurate Xenobiotics  = = = = 

       

       

D. Metabolites which are NOT significantly different than the heathy basis (LPS_t0) in any condition 
  LPS Sepsis Sepsis SIRS SIRS 

metabolite name 
super 
pathway t6 t0 t24 t0 t24 

N-acetylalanine Amino acid = = = = = 

2-aminobutyrate Amino acid = = = = = 

creatine Amino acid = = = = = 

creatinine Amino acid = = = = = 

glutamate Amino acid = = = = = 

pyroglutamine* Amino acid = = = = = 

betaine Amino acid = = = = = 

glycine Amino acid = = = = = 

N-acetylthreonine Amino acid = = = = = 

3-(4-hydroxyphenyl)lactate (HPLA) Amino acid = = = = = 

3-methoxytyrosine Amino acid = = = = = 

p-cresol sulfate Amino acid = = = = = 

phenol sulfate Amino acid = = = = = 

phenylacetylglutamine Amino acid = = = = = 

phenylalanine Amino acid = = = = = 

indolelactate Amino acid = = = = = 

stachydrine Amino acid = = = = = 

urea Amino acid = = = = = 

3-methyl-2-oxovalerate Amino acid = = = = = 

4-methyl-2-oxopentanoate Amino acid = = = = = 

alpha-hydroxyisovalerate Amino acid = = = = = 

beta-hydroxyisovalerate Amino acid = = = = = 

isovalerylcarnitine (C5) Amino acid = = = = = 

erythronate* Carbohydrate = = = = = 

fructose Carbohydrate = = = = = 

1,5-anhydroglucitol (1,5-AG) Carbohydrate = = = = = 

glucose Carbohydrate = = = = = 

glycerate Carbohydrate = = = = = 

lactate Carbohydrate = = = = = 

arabinose Carbohydrate = = = = = 

arabitol Carbohydrate = = = = = 

gluconate Carbohydrate = = = = = 

xylonate Carbohydrate = = = = = 

heme* 
Cofactors and 
vitamins = = = = = 

alpha-tocopherol 
Cofactors and 
vitamins = = = = = 

glycocholate Lipid = = = = = 

taurochenodeoxycholate Lipid = = = = = 

taurolithocholate 3-sulfate Lipid = = = = = 

3-dehydrocarnitine* Lipid = = = = = 

acetylcarnitine (C2) Lipid = = = = = 

carnitine Lipid = = = = = 
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cis-4-decenoyl carnitine Lipid = = = = = 

deoxycarnitine Lipid = = = = = 

butyrylcarnitine (C4) Lipid = = = = = 

3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF) Lipid = = = = = 

glycerol Lipid = = = = = 

adrenate (22:4n6) Lipid = = = = = 

1-arachidoyl-GPC* (20:4) Lipid = = = = = 

1-arachidoyl-GPI* (20:4) Lipid = = = = = 

caprate (10:0) Lipid = = = = = 

caproate (6:0) Lipid = = = = = 

caprylate (8:0) Lipid = = = = = 

heptanoate (7:0) Lipid = = = = = 

pelargonate (9:0) Lipid = = = = = 

1-palmitoylglycerol (16:0) Lipid = = = = = 

1-stearoylglycerol (18:0) Lipid = = = = = 

7-alpha-hydroxy-3-oxo-4-
cholestenoate (7-HOCA) Lipid = = = = = 

cholesterol Lipid = = = = = 

cortisol Lipid = = = = = 

xanthine Nucleotide = = = = = 

adenosine 5'-monophosphate 
(AMP) Nucleotide = = = = = 

urate Nucleotide = = = = = 

pseudouridine Nucleotide = = = = = 

4-vinylphenol sulfate Xenobiotics = = = = = 

iminodiacetate (IDA) Xenobiotics = = = = = 

quinate Xenobiotics = = = = = 

erythritol Xenobiotics = = = = = 

caffeine Xenobiotics = = = = = 
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Table A. 3: Results of t-test for acyl-GPCs and acyl-carnitines, between SS and SNS groups at 

each time point, and between t0,LPS and t6,LPS in endotoxemia group, together with their direction 

of change from the common baseline t0,LPS. (Changes from the healthy baseline, t0,LPS: /: 

less than 2 fold change; /: more than 2 fold change). 

  

Significance of 
metabolites 

Direction of change from common 
baseline 

Metabolites 
significantly 

differ between 
SS and SNS at 

LPS at SS SNS LPS 

t0 t24 t6 t0 t24 t0 t24 t6 
1-arachidonyl-GPC (20:4) No Yes No -  -  - 

1-eicosatrienoyl-GPC (20:3) Yes Yes No     - 

1-linoleoyl-GPC (18:2) No Yes Yes -  -  

1-oleoyl-GPC (18:1) No Yes Yes -  -  

1-palmitoleoyl-GPC (16:1) Yes Yes No     - 

1-palmitoyl-GPC (16:0) No Yes No -  -  - 

1-stearoyl-GPC (18:0) No Yes No -  -  - 

2-palmitoyl-GPC (16:0) Yes Yes Yes     

2-methylbutyroylcarnitine 
(C5) Yes Yes Yes     

isobutyrylcarnitine (C4) No Yes Yes -  -  

isovalerylcarnitine (C5) No No No - - - - - 

tiglyl carnitine (C5) Yes Yes No     - 

deoxycarnitine No Yes No -  -  - 

hexanoylcarnitine (C6) Yes Yes Yes     

octanoylcarnitine (C8) Yes Yes No     - 

propionylcarnitine (C3) Yes Yes Yes     

acetylcarnitine (C2) Yes Yes No     - 

butyrylcarnitine (C4) Yes Yes No     - 

decanoylcarnitine (C10) Yes Yes No     - 

cis-4-decenoyl carnitine Yes Yes No     - 
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Table A. 4: Functional annotation of groups of proteins with distinct expression patterns in 

response to MPL as identified in clustering analysis (cluster profiles are shown in Figure 5.6). 

 Canonical Pathway Genes 
C

lu
s
te

r
 1

 

L-cysteine Degradation II CTH 

Citrulline Degradation OTC 

Formaldehyde Oxidation II (Glutathione-dependent) ADH5 

Fatty Acid β-oxidation I ACAA1,  ACAA2 

LPS/IL-1 Mediated Inhibition of RXR Function GSTM2,  Cyp2a2,  SULT1E1,  FABP1 

Methylglyoxal Degradation I HAGH 

Cysteine Biosynthesis/Homocysteine Degradation CTH 

Estrogen Biosynthesis CYP2C18,  HSD17B2 

Proline Biosynthesis II (from Arginine) OTC 

Phenylalanine Degradation I (Aerobic) QDPR 

CMP-N-acetylneuraminate Biosynthesis I (Eukaryotes) GNE 

PPARα/RXRα Activation ACAA1,  CYP2C18,  Cyp2c44 

Arginine Biosynthesis IV OTC 

Urea Cycle OTC 

Citrulline Biosynthesis OTC 

Acyl-CoA Hydrolysis Ces1e 

Glutathione Redox Reactions I GPX1 
   

C
lu

s
te

r
 2

 

Ketogenesis HADHB,  BDH1,  HMGCL 

Ketolysis HADHB,  BDH1 

Serotonin Degradation UGT2B17,  ADH1C,  UGT2B15 

Xenobiotic Metabolism Signaling 
ALDH1L2,   UGT2B17,   UGT2B15,   Gsta3,   

HSP90AA1 

Isoleucine Degradation I HADHB,  ACADSB 

Valine Degradation I HADHB,  ACADSB 

Thyroid Hormone Metabolism II (via Conjugation and/or 
Degradation) UGT2B17,  UGT2B15 

Sulfate Activation for Sulfonation PAPSS2 

Thiosulfate Disproportionation III (Rhodanese) TST 

Sorbitol Degradation I SORD 

Aryl Hydrocarbon Receptor Signaling ALDH1L2,  Gsta3,  HSP90AA1 

Nicotine Degradation UGT2B17,  UGT2B15 

Glutamate Degradation II GOT2 

Aspartate Biosynthesis GOT2 

Superpathway of Melatonin Degradation UGT2B17,  UGT2B15 

Glycogen Biosynthesis II (from UDP-D-Glucose) UGP2 

L-cysteine Degradation I GOT2 

Aspartate Degradation II GOT2 

LPS/IL-1 Mediated Inhibition of RXR Function ALDH1L2,  Gsta3,  PAPSS2 

Sucrose Degradation V KHK 

Leucine Degradation I HMGCL 

Colanic Acid Building Blocks Biosynthesis UGP2 

Mevalonate Pathway I HADHB 

Phenylalanine Degradation IV (Mammalian,  via Side Chain) GOT2 

Superpathway of Geranylgeranyldiphosphate Biosynthesis I (via 
Mevalonate) HADHB 

Glutaryl-CoA Degradation HADHB 
   

C
lu

s
te

r
 3

 

Mitochondrial Dysfunction 

HSD17B10,  SDHA,  NDUFA9,  XDH,  

CYB5R3,  COX5A,  NDUFS3,  MAOA,  

AIFM1 

TCA Cycle II SDHA,  SUCLA2,  ACO2,  ACO1 

Serotonin Degradation 
HSD17B10,  ALDH3A2,  PECR,  SULT1C3,  

MAOA 

Ethanol Degradation II HSD17B10,  ALDH3A2,  PECR,  ACSL1 

Noradrenaline and Adrenaline Degradation HSD17B10,  ALDH3A2,  PECR,  MAOA 

Tryptophan Degradation X (Mammalian,  via Tryptamine) ALDH3A2,  DDC,  MAOA 

Dopamine Degradation ALDH3A2,  SULT1C3,  MAOA 

LPS/IL-1 Mediated Inhibition of RXR Function 

ALDH3A2,  ACOX1,  ALDH8A1,  

Cyp2a12/Cyp2a22,  SULT1C3,  ACSL1,  

MAOA 



125 

 

 

Adenosine Nucleotides Degradation II XDH,  AOX1 

Urate Biosynthesis/Inosine 5'-phosphate Degradation XDH,  AOX1 

Guanosine Nucleotides Degradation III XDH,  AOX1 

Purine Nucleotides Degradation II (Aerobic) XDH,  AOX1 

Oxidative Ethanol Degradation III ALDH3A2,  ACSL1 

Phenylalanine Degradation IV (Mammalian,  via Side Chain) ALDH3A2,  MAOA 

Serotonin Receptor Signaling DDC,  MAOA 

Putrescine Degradation III ALDH3A2,  MAOA 

Ethanol Degradation IV ALDH3A2,  ACSL1 

γ-linolenate Biosynthesis II (Animals) CYB5R3,  ACSL1 

tRNA Charging DARS,  TARS 

Glutamine Biosynthesis I Glul 

Thyroid Hormone Biosynthesis CTSD 

GDP-glucose Biosynthesis PGM1 

4-aminobutyrate Degradation I SUCLG2 

Acetate Conversion to Acetyl-CoA ACSL1 

Fatty Acid β-oxidation I HSD17B10,  ACSL1 

Glucose and Glucose-1-phosphate Degradation PGM1 

Pentose Phosphate Pathway (Oxidative Branch) PGLS 

Heme Degradation BLVRB 

Serotonin and Melatonin Biosynthesis DDC 

Catecholamine Biosynthesis DDC 

Phenylethylamine Degradation I ALDH3A2 

Melatonin Degradation II MAOA 

Glutamate Degradation III (via 4-aminobutyrate) SUCLG2 

Glycogen Degradation II PGM1 

NAD Phosphorylation and Dephosphorylation NADK2 

Pentose Phosphate Pathway PGLS 

Glycogen Degradation III PGM1 

Leucine Degradation I MCCC2 

Purine Nucleotides De Novo Biosynthesis II ADSS 
   

C
lu

s
te

r
 4

 

EIF2 Signaling RPL3,  EIF4A2,  EIF4G1,  RPLP0 

Acetyl-CoA Biosynthesis III (from Citrate) ACLY 

4-hydroxybenzoate Biosynthesis TAT 

4-hydroxyphenylpyruvate Biosynthesis TAT 

Remodeling of Epithelial Adherens Junctions TUBB3,  ARF6 

Methylmalonyl Pathway MUT 

Histidine Degradation III FTCD 

2-oxobutanoate Degradation I MUT 

Tyrosine Degradation I TAT 

Aspartate Degradation II MDH1 

Tryptophan Degradation to 2-amino-3-carboxymuconate 
Semialdehyde TDO2 

NAD biosynthesis II (from tryptophan) TDO2 

Regulation of eIF4 and p70S6K Signaling EIF4A2,  EIF4G1 

Lipid Antigen Presentation by CD1 ARF6 

Bile Acid Biosynthesis,  Neutral Pathway CYP27A1 

Gluconeogenesis I MDH1 
   

C
lu

s
te

r
 5

 

Superpathway of Methionine Degradation CBS,  MAT1A,  GOT1,  MAT2A,  BHMT2 

Cysteine Biosynthesis III (mammalia) CBS,  MAT1A,  MAT2A 

S-adenosyl-L-methionine Biosynthesis MAT1A,  MAT2A 

Acute Phase Response Signaling HPX,  HP,  C3,  TF,  FGB 

LXR/RXR Activation HPX,  C3,  TF,  ACACA 

Methionine Degradation I (to Homocysteine) MAT1A,  MAT2A 

L-cysteine Degradation III GOT1 

Cysteine Biosynthesis/Homocysteine Degradation CBS 

Tyrosine Biosynthesis IV PAH 

Melatonin Degradation I POR,  Sult1a1 

1, 25-dihydroxyvitamin D3 Biosynthesis POR 

Methionine Salvage II (Mammalian) BHMT2 

Phenylalanine Degradation I (Aerobic) PAH 

Glutamate Degradation II GOT1 
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Aspartate Biosynthesis GOT1 

Superpathway of Melatonin Degradation POR,  Sult1a1 

Biotin-carboxyl Carrier Protein Assembly ACACA 

L-cysteine Degradation I GOT1 

Aspartate Degradation II GOT1 

TR/RXR Activation HP,  ACACA 

Glycine Betaine Degradation BHMT2 

Lipid Antigen Presentation by CD1 CANX 

Phenylalanine Degradation IV (Mammalian,  via Side Chain) GOT1 

 

 

Table A. 5:  Functional annotation and representative probesets associated with up- and down-

regulated clusters in response to continuous cortisol infusion in -24h to 0h time period. 

 

  

 Classification Molecules 

Up (a) 

Cytokine and pattern recognition 
receptors 

CSF2RA, IL10RB, IL13RA1, IL1R2, IL4R, 
TNFRSF10C, TNFRSF1A, TNFRSF9, TLR1, TLR8 

Receptor regulatory elements IL18RAP, GRB10, IRS2  

Signal transduction proteins 
NFKBIA, CAMK1D, LIMK2, MAP2K4, MAP2K6, 
PPP2R5A 

Transcription factors ATF6, FOS, STAT5B 

Negative regulators of complement 
system 

CD55, CD59, SERPINB1 

Cytoskeletal proteins IQGAP1, GIT2, TUBA1A 

Protein degradation enzymes UB2B, UBE2D1 

ECM degradation enzymes and their 
inhibitor 

MMP25, MMP9, TIMP2 

Amino acid degradation ARG1 

Down 
(b) 

Protein translation regulatory elements 
and translation machinery  

EEF2, EIF3H, CCNC, RPSs – 5 probesets–, RPLs – 8 
probesets–  

Mitochondrial proteins  NDUFs–3 probesets–, UQCRFS1  

Free radical scavenging SOD1 

Transcription factors LEF1, STAT4 

Antigen presentation HLA-DPB1 
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Table A. 6: Functional annotation and representative probesets associated with up- and down-

regulated clusters in response to continuous cortisol infusion within the full time period of the 

study (-24h to 24h). 

 Classification Molecules 

LPS 
dominated 

(a) 

Cell-cell and cell-ECM interaction ICAM1, THBS1 

Cytokines, chemokine, receptor 
antagonist 

IL1B, CCL20, CCL3, IL1RN 

Signal transduction elements NFKBIA, TNFAIP3 

Transcription regulator EGR1 

Cortisol 
enhanced (b) 

Cytokine, complement, scavenger 
receptors 

CXCR1, IFNGR2, IL13RA1, IL18R1, 
IL1R2, CD163 

Receptor regulatory proteins GAB2, IL1RAP, IRAK3, IRS2 

Signal transduction elements DUSP1, GRB10 

Transcription factors ATF6, BCL6, CEBPD, FOS 

Nucleotide metabolism ENTPD1, ENTPD7, MAK, UPP1 

Chaperone and stress response proteins FKBP5, GADD45A 

Amino acid degradation ARG1 

Anti-apoptotic proteins BCL2A1, NAIP 

Pro-apoptotic protein CASP5 

Acute phase protein HP 

Complement regulatory protein CD59 

Cortisol 
suppressed 

(c) 

Transcription and protein translation  
POLR1C, RPSs (5 probesets), RPLs (9 
probesets), EEF2, EIF3H 

Protein degradation PSMC5 

Mitochondrial proteins UQCRH, COX4I1, NDUFs (3 probesets) 

Antigen presentation HLA-DA1, HLA-DRA 

Antigen recognition LAT 

Free radical scavenging SOD1 

Receptors CD48, FPR3 

Nucleotide metabolism ADSL, NME1 

TCA cycle enzyme IDH3B 
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