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ABSTRACT OF THE THESIS 

Anomaly Detection in Network Using Non-negative Matrix 

Factorization Techniques 

By YUNYI KANG 

Thesis Advisor: Prof. Myong K. Jeong 

Anomaly detection is becoming an important problem in graph mining. This is because 

people are eager to find out unusual objects or patterns in a network, which may results in 

possible damages, emerging trends, or even creations in different types of graphs or 

networks. For example, the transaction occurs in out-of- hometown area with high amount 

may indicate credit card fraud in a bank transaction network; a substantial high frequency 

of connectivity in the network may infer possible web attack. The discoveries of these 

activities are important for people’s life and personal information security, and thus are 

important tasks for relevant institutions. There are mainly three kinds of anomalies in a 

graph data: node, edge and subgraph anomaly. This thesis presents new graph anomaly 

detection algorithms that provide scoring functions on detecting both node anomalies and 

edge anomalies based on non-negative matrix factorization techniques. The experiments 

on real life data verify that the suggested method could provide better performance in 

finding meaningful anomalies. 
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1. Introduction 

Graphs are serving as powerful tools in many situations, containing a group of objects and 

describing the interdependent relationship or connectivity among the elements in the 

graphs visually. Therefore, graphic data appears widely in areas such as social networks, 

brain connectivity graphs, transportation networks, the Internet and other fields. On one 

hand, the graph data shows explicitly how components are connected and formed, i.e. 

product flows are shown clearly in the transportation network. On the other hand, with the 

help of data mining techniques, implicit patterns could also be found to have better 

understanding of the behaviors in the graphic data, i.e. the connectivity between different 

nodes could infer how the level of education could influence on friends making in social 

networks. In the recent years, many research work on mining patterns from graph data (Zou, 

Li, Gao, & Zhang, 2010; Washio & Motoda, 2003). 

 

Apart from finding frequent patterns and trends, such as clustering, link prediction and 

frequent data mining, anomaly detection (also called as outlier detection) has become 

important, aiming at finding abnormal behaviors or irregular information. The anomalous 

data, according to Hawkins (1980), refers to observations “that deviate so much from other 

observations as to arouse suspicion that it was generated by a different mechanism”. 

However, anomaly is only a general concept and no standard concepts or consensus have 

been reached on defining anomalies. Instead, researchers define anomalies based on the 

problems they study. Specifically, in graphic data, anomalies could be reflected from the 

irregular structure compared with other nodes. For example, a new employee in an 
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organization’s human resource network could be treated as an anomaly because she knows 

a few people in that organization while the edge of such network is built on whether two 

people in the network get recognized with each other. Generally speaking, people may pick 

up different anomalies from a graph based on specific searching targets in different 

situations.  

 

Detecting anomalies in a network becomes very important because it could discover hidden 

information from graphs, which may contribute to better decision making. For example, 

the transaction occurs in a strange area with high amount may indicate credit card fraud in 

a bank transaction network; a substantial high frequency of connectivity in the network 

may infer possible web attack. The discoveries of these activities are important for people’s 

life and personal information security, and thus could be applied to some institutions. 

Moreover, some people would like to find some irregularities from the graph. Such task is 

called anomaly detection. Detecting graphic anomalies can be applied in many different 

types of network, such as auction networks (Chau, Pandit, & Faloutsos, 2006), social 

networks (Gao, Chen, Lee, Palsetia, & Choudhary, 2012), accounting networks 

(McGlohon, Bay, Anderle, Steier, & Faloutsos, 2009), opinion networks (Xie, Wang, Lin, 

& Yu, 2012), etc.  

 

Many researchers have successfully developed methods to detect the node anomalies in 

given graphs; however, seldom have they found effective methods on detecting edge 

anomalies. Moreover, it is also very difficult for researchers to suggest both node anomaly 

and edge anomaly detection methods thoroughly and provide meaningful interpretations. 
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Therefore, in this paper, we introduce new node and edge anomaly detection algorithms 

using matrix factorization techniques. We will factorize the node adjacency matrix and the 

edge-node incident matrix generated from the given graph separately in different methods, 

find relevant subgraphs and weight nodes/edges. By doing so, we could score the nodes or 

edges, which will help evaluate the likelihood of given nodes or edges compared with 

others. 

 

The contribution of our work is that we introduce node anomalies scoring function using 

nonnegative matrix factorization approach in directed graph. Besides, we introduce scoring 

functions to detect edge anomalies. Our result enables powerful interpretations in real life 

data set compared to existing anomaly detection methods.   

 

The structure of our work is as the following. Section 1 is the introduction; Section 2 will 

review the relevant literatures on graphic data anomaly detections considering graph 

structures; Section 3 will be an introduction to matrix factorization and non-negative matrix 

factorization; the main methods for edge anomalies will be discussed in Section 4 with 

examples; Section 5 contains the novel scoring functions and algorithms for node 

anomalies in directed graph; several experiments, comparisons and discussions will be 

made in Section 6; finally, in Section 7, conclusion will be reached. 
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2. Literature Review on Anomaly Detection in Graph Data 

The graph anomaly detection problem (GADP) could be divided in many ways with 

different understandings by researchers. Considering the attributes of graph structures, 

GADP could be categorized into three parts: node anomaly detection problems, edge 

anomaly detection, and subgraph anomaly detection; GADP could also be divided into 

plain graph anomaly detections and attributed graph anomaly detection by considering 

whether attributes of the nodes are given or not; moreover, if we consider time series, the 

problem will become dynamic while on the other hand it will be static anomaly detections. 

Therefore, techniques are developed to meet with the needs under different requirements. 

 

Some researchers have made contributions in doing overall surveys on anomaly detections 

topics (Aggarwal, 2013; Chandola, Banerjee, & Kumar, 2009; Hodge & Austin, 2004; 

Akoglu, Tong, & Koutra, 2014). In this thesis, we focus on the literatures related to the 

topics related to anomaly detections from the graphic data considering only graphic 

structures. This section consists of three parts: reviewing topics related to node anomaly 

detection problems, edge anomaly detection, and subgraph anomaly detection.  

 

2.1 Node Anomaly Detection 

Different literatures have different definitions on node anomalies. Generally speaking, if 

nodes are dissimilar from their neighbors, such nodes are likely to be anomalies. The 

neighbors are not limited to the adjacent nodes; they can be one-step, two steps or multi-

steps from given nodes according to different definitions. The dissimilarities could be the 
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differences of occurrence in probabilistic graphs, the distinctions in structural features, or 

the variance in predefined proximity measures predefined. 

 

2.1.1 Probabilistic Distribution Approach  

This approach could be treated as transformations between connectivity and proper 

distributions so that the nodes with the different structures could be picked out since they 

have different probabilistic values. Brin and Page (1998) proposed one method of 

constructing a distribution through random walk. They built up directed graphs showing 

the directory of webpages: the webpages are nodes and a directed edge exists between 

nodes u and v if webpage u has a forward link to webpage v. The walk is performed 

randomly and in each step, the probability of jumping from one node to one of its adjacent 

nodes equals to the inverse value of the node’s degree. The stable outcome, or the 

distribution generated, could reflect the influence among all the nodes. Brin and Page’s 

idea has also been revised by later researchers by considering the different probabilities of 

jumping and specific requirement in real needs (Broder, et al., 2000; Takács, Pilászy, 

Németh, & Tikk, 2008; Haveliwala, 2003). 

 

2.1.2 Feature-based Approaches 

The intuitive of this approach is simple: find the rules that most nodes follow and filter out 

the nodes violating the rules. 

  

Many existing researches related to graph theory provided helpful definitions and terms in 

describing the level of node connectivity in given graphs, which could also be used as 
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measures on node anomaly detection. For example, betweeness of a node is used to 

describe the number of all paths passing through the node in graph theory (Lewis, 2011). 

In anomaly detection techniques, the nodes with lower betweeness value are more likely 

to be anomalies (Freeman, 1997). Similarly, radius (Kang, Tsourakakis, Appel, Faloutsos, 

& Leskovec, 2011), eigenvectors (Bonacich & Lloyd, 2001), and other concepts (Chandola, 

Banerjee, & Kumar, 2009; Akoglu, Tong, & Koutra, 2014) could also be found in 

literatures related to anomaly detections. 

 

Besides, some researchers have defined new structure features to improve anomaly 

detection performance. Akoglu et al. (2010) developed the algorithm Oddball with a egonet 

which refers to the expanded subgraph with a node and the neighboring nodes of the 

corresponding node. Then patterns are selected based on the features that most of the 

egonets follow and anomalies are the nodes that do not follow the observed patterns.  

 

The others studied on how to extract better features by considering both the node-based 

(local) features and the egonet-based features. Henderson et al. (2011) created features 

named recursive structural features through the means and sums of node-based features 

and egonet features. The collection of recursive structural features and local features are 

called regional features, through which the information of more nodes other than the 

neighbors are considered. 

 

2.1.3 Proximity-based Models 

The main idea in proximity-based methods is to regard anomalies as points which could 
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not be grouped with other nodes. This type of models perform through either Clustering 

method or Density-based measurements. 

 

Clustering method (also refers to community-based method) finds anomalies through 

grouping similar nodes into clusters (or communities). The anomalies come from nodes 

that do not belong to any cluster. For example, Xu et al. (2007, August) proposed an 

algorithm, SCAN, with a similarity measure which is calculated as the percentage of 

common neighbors. For any node u, v in the node set V and the edge set E, the number of 

neighbors node u has is defined as 𝛤(𝑢) = { 𝑤 ∈  𝑉|(𝑢, 𝑣) ∈ E} ∪ {u}. Then the number of 

common neighbors two nodes is |𝛤(𝑢) ∩ 𝛤(𝑣)|. Then the structural similarity for two nodes 

is measured as: 

𝜎(𝑢, 𝑣) =  
|𝛤(𝑢) ∩ 𝛤(𝑣)|

√|𝛤(𝑢)||𝛤(𝑣)|
 

If the adjacent nodes meet the predetermined requirement of similarity score, the number 

of common neighbors is grouped into clusters. Finally, nodes could not be grouped into 

any cluster and connect to only one other clusters are anomalies.  

 

Sun et al. (2010, December) applied SCAN (Xu et al, 2007) to weighted graph. Instead of 

using the number of common neighbors, they use the weight of edges between common 

neighbors to measure the similarity between two nodes.  

 

It is also well-noticed that some researchers detect the anomalies with the algorithms 

finding clusters first (Akoglu, Tong, & Koutra, 2014). Therefore, the quality of the clusters 

found could have significance on the quality of anomalies detected. Meanwhile, the other 
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researchers use nonnegative matrix factorization to find communities in graphs and 

following the similar idea for node anomaly detection, thus creating algorithms called 

CDNMF (Cao, Wang, Jin, Cao, & He, 2013). 

 

Density-based measurements are used to measure how similar nodes are with each other, 

and the resulted scores could be ranked to compare such closeness. For one node, if it is 

“closer” to similar neighbors than others, then it will have high closeness score and is less 

likely to be an anomaly. Such measurement could be found in (Jeh & Widom, 2002, July), 

in which they introduced a measure named Simrank, representing the similarity score of a 

node by adding up the similarity score of all its adjacent nodes and updating through 

iteration processes. For example, with two nodes a and b in the given graph, the similarity 

between these two nodes is defined as:  

𝑠(𝑎, 𝑏) =
𝐶

𝐼(𝑎)|𝐼(𝑏)|
∑ ∑ 𝑠(𝐼𝑖(𝑎), 𝐼𝑗(𝑏)),

|𝐼(𝑏)|

𝑗=1

|𝐼(𝑎)|

𝑖=1

 

where Ii(a) and Ij(b) belongs to set I(a) and I(b), representing in-neighbors of node a and b 

respectively, and C is a constant. Initially, s(a,b) = 1 if and only if a = b. Thus the iteration 

process to calculate the Simrank score for the pair of nodes a and b, with the notation of 

R(a,b),   expressed as: 

𝑅𝑘+1(𝑎, 𝑏) =
𝐶

𝐼(𝑎)|𝐼(𝑏)|
∑ ∑ 𝑅𝑘(𝐼𝑖(𝑎), 𝐼𝑗(𝑏)),

|𝐼(𝑏)|

𝑗=1

|𝐼(𝑎)|

𝑖=1

 

with 

𝑅0(𝑎, 𝑏) = {
1                 𝑤ℎ𝑒𝑛 𝑎 = 𝑏  
0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

   

 



9 

 

 

 

Such measure then are updated by (Antonellis, Molina, & Chang, 2008) and (Zhao, Han, 

& Sun, 2009), discussing the weight of in degree nodes and out degree nodes.  

 

2.2 Edge Anomaly Detection 

Edges in a given graph could be anomalies. To find the anomalies, two methods could be 

used, either revising the approaches from node anomaly detections, or using the matrix 

factorization method. 

2.2.1 Intuitive Approaches from Node Anomaly Detections  

Some methods applied in node anomaly detection could also be used in detecting edge 

anomalies, like ODDBALL (Akoglu, McGlohon, & Faloutsos, 2010) and Simrank (Jeh & 

Widom, 2002, July). In their algorithms, the measure of each edge is represented as the 

measure of similarity between the nodes on the two sides of that edge. Therefore, the edge 

could be ranked and compared following the approaches in the node anomaly detection. 

 

Besides, some researchers gave their own understanding on edges anomalies, and specified 

the edges with the help of found node anomalies or clusters. One way to interpret is that 

the edges connecting anomalous nodes are treated as edge anomalies. For example, if two 

nodes are identified as anomalies, then the edge connecting them could be anomaly edge; 

if the edges connects anomaly parts comparted with regular patterns, they are more likely 

to be anomaly edges (Aggarwal, Zhao, & Yu, 2011, April; Noble & Cook, 2003); if an 

edge connects two clusters or one cluster and an anomalous node, such edge could be 

treated as an anomaly.  
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2.2.2 Matrix Factorization/Spectral Methods 

Tong and Lin (2011) introduced nonnegative residual matrix factorization method to detect 

link anomalies in a bipartite graph. According to their approach, the residual matrix shows 

the deviations of low rank factorization from the original matrix. Thus they require the 

entries of the residual matrix to be nonzero in their matrix factorization algorithm, giving 

a meaningful and intuitive view on the significance of the deviation. They argued that the 

edges having large value in the residual matrix are more likely to be anomalies. 

 

Aggarwal (2013) introduced a spectral method to complement the matrix factorization 

method. The matrix node-link adjacency matrix could be augmented into a positive semi-

definite matrix, which could be decomposed further using the singular value decomposition 

methods. The author then follows the residual matrix idea introduced above and finds the 

anomaly links. 

 

2.3 Sub-graph/Query-based/Personalized Anomaly Detection  

Anomalous subgraphs, according to Aggarwal (2013), are the special or unusual subsets or 

partitions in the graph. One intuitive thinking with the review in Section 2.1 and 2.2 is that, 

if anomaly nodes or anomaly edges could be found, then the connected subgraphs 

containing those anomalies could be the desired the subgraph. 

 

Besides, under one definition of anomalous subgraphs, if a large graph could be partitioned 

into different subgraphs, among which several patterns could be found with high frequency 

of occurrence; then the subgraphs with low frequency of occurrence or with patterns other 
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than the selected ones are the candidate of anomaly subgraphs. For example, (Noble & 

Cook, 2003) created a formula to score the subgraphs by considering the large frequently 

repeated patterns with the concept Minimum description length (MLD). They finalized the 

formula with two components, the pattern frequency described by MLD and the nodes 

appearance frequency in that pattern. The subgraphs with low scores tend to be anomalies, 

because either the pattern is not frequently reoccurred, or the nodes are not appeared in the 

same pattern. The method introduced (Noble & Cook, 2003) are helpful in the information 

network or even dynamic network, where repeated pattern usually occurred. 

 

Anomaly subgraphs could also be customized to meet with users’ requirement. Thus, in 

anomaly detections area, researchers are building algorithms including users’ concerns. 

Gulpta (Gupta, 2013) used query-based techniques to find anomalies defined as 

Association-Based Clique Outliers (ABCOutliers), which are “rare and surprising 

associations” in the information network. They found the anomaly cliques according to 

predefined cliques provided by the customers.    



12 

 

 

 

3. Matrix Factorization  

In this section, we will introduce background knowledge of matrix factorization. Section 

3.1 provides an overview of matrix factorization and its applications. Section 3.2 will focus 

on non-negative matrix factorization. 

 
3.1 Matrix Factorization 

Matrix factorization, or matrix decomposition, is a term from the field of linear algebra. 

An intuitive understanding of this term is that the original matrix is factorized into two or 

more matrixes so that the multiplications of factorized matrixes equals to the original 

matrix. Common types of matrix factorizations include QR factorization, LU factorization, 

rank factorization, Cholesky factorization, and SVD (Singular Value Decomposition) 

factorization/eigenvalue decomposition. 

 

One of the most popular matrix factorization methods applied in the literature is the SVD 

method and/or with PCA. The general expression of SVD is as following. A given q-by-p 

matrix Q could be factorized as: 

 

 Q = FMRT (1) 

 

where U is a q×p orthogonal matrix (FTF = I), M is a p×p diagonal matrix, and R is a q×p 

orthogonal matrix (RTR = I ). The diagonal entries of the matrix M (or Mii for the integer 

l in [1, p]) are called the singular values for matrix Y. If smaller singular values are removed, 

leaving the major proportion of the singular values, then lower rank matrix could receive. 
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The principle component analysis (PCA) uses such idea so that the quality of data 

representation and the error in misrepresentation are both well-traded.   

 

From the perspective of application, matrix factorization is used to explore the latent 

features through combining different types of entities. The reason is that matrix 

factorization is a process of decomposing a matrix into different matrix, indicating linear 

combinations of entries in different matrices with different representations. For example, 

the expression in (1) indicates that every element of Q is reached from the linear 

combinations of rows or columns in matrices F, M and R. If let Q be an image matrix, F 

be the matrix of different patterns, M be a weight matrix, and R be the matrix of colors; 

then the image matrix Y could be expressed as combinations of patterns with colors under 

different weights. Such idea is well applied into the area such as recommender systems 

(Koren, Bell, & Volinsky, 2009), dictionary Learning (Mairal, Bach, Ponce, & Sapiro, 

2010), and Collaborative Prediction (Rennie & Srebro, 2005).  

 

Furthermore, for the situation in which more than two kinds of entities are considered, 

tensor factorization are applied to reach more complicated while more adaptable matrix 

factorization (Cichocki, Zdunek, Phan, & Amari, 2009).  

 

3.2 Non-negative Matrix Factorization 

Non-negative matrix factorization (NMF) is a specific factorization method under matrix 

decomposition. A matrix is factorized into usually two lower rank matrices, with the 
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property that the factorized matrices contain no negative elements. One purpose of NMF 

is to find good approximation to the original matrix (Cai, He, Wu, & Han, 2008).   

 

 

However, the problem could be difficult to solve and find the global minimum. Lee and 

Seung (2001) have suggested an iterative algorithm and proven that their approach could 

find a local optimal value. Their update process have been proved to be non-increasing 

iterative rules for the Euclidian distance, which will turns out local optimal solutions. 

 

The NMF method is in contrast to other algorithms, such as vector quantization (VQ) and 

principal component analysis (PCA), because NMF enables parts-based representation, not 

subtractive combinations. Moreover, one advantage of NMF method is that the result it 

returns is intuitive and thus feasible in interpretation. Since the observations and quantified 

features in many applications are non-negative, the factorized matrices could be compatible 

to relevant features or combination of different patterns through linear combinations. The 

latent features or patterns could be given meanings with regards to the original matrices 

and the research studying. 

 

Therefore, NMF could be applied into many real world problems such as face analysis 

(Wang, Jia, Hu, & Turk, 2005), computer vision (Lee & Seung, 1999), document clustering 

(Kuang & Park, 2013), graph role discovery (2013), and DNA gene expression analysis 

(Wang, Wang, & Gao, 2013). 
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Apart from the general expression of the NMF, researchers have been building up different 

types of matrix factorization methods by adding constraints on the factorized matrices. 

Symmetric NMF requires that the factorization results should be the multiplication of one 

matrix and its transpose, thus showing advantage in factorizing symmetric matrices (Cao, 

Wang, Jin, Cao, & He, 2013); sparse NMF adds regularizations to the objection function, 

limiting the number of non-zero entries in factorized graph (Kim & Park, 2008); 

asymmetric nonnegative matrix factorization (ANMF) method has been developed , which 

shows possible applications in handling the graph problems (Wang, Li, Wang, X., & Ding, 

2011). One main purpose of the modification on NMF is to match the characters of certain 

matrix factorization methods with the characters of the dataset so that useful patterns could 

be found through matrix factorization. 
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4. Edge Anomaly Detection Using Non-negative Matrix 

Factorization  

In this section we will introduce our proposed edge anomaly detection techniques. Section 

4.1 will introduce the notations and concepts used in designing the new methods, Section 

4.2 will focus on scoring node anomaly with non-negative matrix factorization. Section 4.3 

will be examples. 

 

4.1 Definitions and Notations 

In this thesis, we study static graph G with a set of nodes V and a set of edges E, written as 

G = (V; E). We use n and m to represent the sizes of V and E respectively, that is, n =|V| 

and m = |E|.  There is no requirement on whether the graph is connected or not. 

 

The graph in section is undirected. Besides, the algorithm could also be applied to the graph 

that are weighted. Weighted graph could be formed to count multiple numbers of 

connections between two nodes (i.e. the times of emails sending between two people) or 

using predefined measurements to represent the attributes of  nodes on each side of an edge 

(i.e. the percentage of common friends of two persons in a network).  

 

To describe the graph, we use node-edge incident matrix with notation B.  Nodes are 

represented in rows and edges are represented in columns, and the entries of matrix B 

indicate the nodes that an edge connecting to. For unweighted graphs, all entries are either 

0 or 1, with 1’s in the entries indicating the existence of an edge. For weighted graphs, the 

entries in the adjacency matrix are the weights.  
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Besides, there are other symbols used in the matrix factorization process, and we 

summarize the symbols in Table 4.1. 

 

Table 4.1 Table of symbols used in notation 

Symbol Description 

G Graph representation of the given datasets 

V, n set of nodes, number of nodes 

E, m set of edges, number of edges 

B n x m node-edge incident matrix  

W,H,D Lower rank factorized matrix used in NMF 

H* Matrix for detecting anomalies 

r Factorization rank 

AE(o) Anomaly score for edge e 
  

 

4.2 New Scoring Functions for Edge Anomaly Detection  

In this section, we propose both node and edge anomaly detection methods through new 

non-negative matrix factorization approaches, which could provide more stable results. 

First, further decomposed each of the two factorized matrices using the NMF approaches 

introduced in Section 3 so that every factorized matrix could be expresses into two new 

matrices- one normalized matrix and the other diagonal matrix.  Then we leave along only 

the first normalized matrix and multiple the remaining together. The multiplication results 

could be helpful in determining anomalous scores for edges. In this section, we desire to 

define edge anomaly score function and pick out anomaly edges through the given node-

edge incident matrix B.  

 

First, using the NMF idea, our problem could be formulated using as 

Given matrix B (m×n dimension), factorization rank r  
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Minimize Euclidean distance ‖𝐁 − 𝐖𝐇‖𝐅
𝟐 

such that all entries in Wand H are non-negative  

Find matrix W and H  

 

Applying the algorithm proposed by Lee (1999), we could get two factorized matrices, 𝐖 

and 𝐇 such that 𝐁 ≈ 𝐖 ∗ 𝐇. The integer r meets the requirement that 0 ≤ r ≤ min (m, n). 

Therefore, matrix 𝐁 is decomposed into two low-dimension matrix. 

 

Second, we will normalize the W matrix in column-wise. To do this, we need to find matrix  

𝐖(𝟏) and 𝐃𝟏 , satisfying:  

(1) 𝐖 = 𝐖(𝟏) ∙ 𝐃𝟏,  

(2) 𝐃𝟏  is a diagonal matrix, and  

(3) ∑ Wkj
(1)n

k=1 = 1, for any integer j in the range [0, r].  

 

The diagonal matrix 𝑫𝟏 then could also be treated as weight for every column of the 

matrix 𝐖(𝟏).  Similarly, the H matrix will be normalized in row-wise. We also need to 

find matrix  𝐃𝟐  and 𝐇(𝟏) satisfying: 

(1)  𝐇 = 𝐇(𝟏) ∙ 𝐃𝟐,  

(2) 𝐃𝟐  is a diagonal matrix, and  

(3) ∑ Hjk
(1)m

k=1 = 1, for any integer j in the range [0, r].  
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The diagonal matrix 𝐃𝟐 could also be treated as weight for every row of the matrix 𝐇(𝟏). 

Therefore, matrix 𝐖 and 𝐇 are factorized into two new matrices respectively, and matrix 𝐁 

could be expressed as multiplication of four matrices: 

𝐁 ≈  𝐖(𝟏)  ∙  𝐃𝟏 ∙ 𝐃𝟐 ∙ 𝐇
(𝟏) 

Third, we define a matrix 𝐻𝑟×𝑚
∗ , which could be expressed as: 

𝐇∗ = 𝐃𝟏 ∙ 𝐃𝟐 ∙ 𝐇
(𝟏) 

Therefore, we split the 𝐁 matrix into normalized matrix and weight matrix.  

 

Next, we find the anomaly score function for edges in the graph. For each edge e, in 

𝐁 matrix, it is represented by the number in a certain column, say column k. Then the 

anomaly score equals to the summation of the value in the kth column of matrix 

𝐇∗,  or AE(e) = ∑ Hrk
∗r

k=1 . 

 

Finally, after finding the AE(e) value for every edge, we rank the value from low to high. 

The edges with lower AE(e) scores are more likely to be anomalies because they tend to 

have lower weights. 

 

The summary of all the steps are shown in the following table (Table 4.2): 

 

 

Table 4.2 Algorithms for detecting edge anomaly 

Given:  
 

          Node-edge incident matrix 𝐁, factorization rank r 
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Do: 

 

(1) Use the NMF algorithm to get factorized matrices, 𝐖  and  𝐇 , two rank r 

matrices. 

 

(2) Normalize 𝐖  to get  𝐖(𝟏) ∙ 𝐃𝟏 , where  𝐖(𝟏) is a column-wised normalized 

matrix and 𝐃𝟏  is a diagonal matrix;  

 

Normalize  𝐇 to get 𝐃𝟐 ∙ 𝐇
(𝟏), where 𝐇(𝟏) is a row-wised normalized matrix 

and 𝐃𝟐  is a diagonal matrix. 

 

(3) Find 𝐇∗ such that  𝐇∗ = 𝐃𝟏 ∙ 𝐃𝟐 ∙ 𝐇(𝟏).  

 

(4) Calculate node anomalous score for node with  𝐴𝐸(𝑒) = ∑ Hrk
∗r

k=1 , where k 

refers to the column number which edge e is represented in 𝐵𝑛×𝑚  

 

(5) Rank the AE(e) scores for all edges from low to high 

 

Find: 

 

 Edges with low AE(e) scores are anomalies 

 

 

 

Since both 𝐃𝟏 and 𝐃𝟐 are diagonal matrices and used to adjust the weight for the purpose 

of normalizing 𝐖 and 𝐇; for interpretation purpose, we may use matrix 𝐃 to represent 𝐃𝟏 ∙

𝐃𝟐 . Thus, the original matrix 𝐁 could be expressed as: 

𝐁 ≈  𝐖(𝟏) ∙ 𝐃𝟏 ∙ 𝐃𝟐 ∙ 𝐇
(𝟏) 

                                                          = 𝑾(𝟏) ∙ 𝑫 ∙ 𝑯(𝟏)  

                                                          = ∑ �̃�𝑘 ∙ d𝑘 ∙ �̃�𝑘
T𝑟

𝑘=1   

where, �̃�𝑘 is the 𝑘𝑡ℎ  column vector in the matrix  𝐖 , �̃�𝑘  is the 𝑘𝑡ℎ  row vector in the 

matrix 𝐇, and d𝑘𝑘 is the 𝑘𝑡ℎ diagonal term in matrix D. 
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It can be found that we decompose the incident matrix into three component, weight of 

nodes in the graph (normalized 𝐖(𝟏)), weight of edges in the graph (normalized 𝐇(𝟏)), and 

the coefficient matrix for balancing the equation (diagonal matrix 𝐃). 

 

4.3 An Illustrative Example  

A numerical example is given to illustrate how the method works. Suppose we are given 

the following graph (Figure 4.1) and the task is to find edge anomalies. 

 

 

Figure 4.1 Graph example to illustrate the algorithms 

 

Suppose this is a weighted graph, meaning that weight will be given to the edges and the 

node edge incidence matrix is represented as: 

 

𝐁 =

[
 
 
 
 
 
 
 
5 1 0 0 0 0 0 0 0
5 0 2 0 0 0 0 0 0
0 0 2 3 0 0 0 0 0
0 1 0 3 1 0 0 0 0
0 0 0 0 1 4 4 0 0
0 0 0 0 0 4 0 5 0
0 0 0 0 0 0 0 5 5
0 0 0 0 0 0 4 0 5]
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To factorize the matrix, the variable r, the factorization rank, should be determined ahead. 

The discussion on the using the appropriate r value will be discussed in section 5. In this 

example, to show comprehensive procedures, we will show four situations where r = 1, 2, 

3, and 8 respectively.  

 

Situation 1: when r = 1, 

Matrix B could be factorized in the following way: 

 

𝐁 ≈

[
 
 
 
 
 
 
 
. 1020
. 0702
. 1020
. 2258
. 2258
. 1020
. 0702
. 1020]

 
 
 
 
 
 
 

× [15.9778] ×

[
 
 
 
 
 
 
 
 
. 0702
. 1337
. 0702
. 1337
. 1842
. 1337
. 1337
. 0702
. 0702]

 
 
 
 
 
 
 
 
T

=

[
 
 
 
 
 
 
 
. 1020
. 0702
. 1020
. 2258
. 2258
. 1020
. 0702
. 1020]

 
 
 
 
 
 
 

×

[
 
 
 
 
 
 
 
 
1.1224
2.1362
1.1224
2.1362
2.9432
2.1362
2.1362
1.1224
1.1224]

 
 
 
 
 
 
 
 
T

= �̃�1 ∙ d1 ∙ �̃�1
T  

      

Matrix 𝐁, based on the factorization result in above, could be treated as combining the 

weights of nodes and edges. When r = 1, the 𝐁 matrix is divided into vectors and such 

division could be treated as linear combination of weights on nodes and edges. 

 

Situation 2: when r = 2, 

𝐁 ≈

[
 
 
 
 
 
 
 
. 2215 0
. 1906 0
. 2215 0
. 3240 . 0425
. 0425 . 3240

0 . 2215
0 . 1906
0 . 2251]

 
 
 
 
 
 
 

× [
9.3035 0

0 9.3035
] ×

[
 
 
 
 
 
 
 
 
. 1836 0
. 2431 0
. 1836 0
. 2431 0
. 1466 . 1466

0 . 2431
0 . 2431
0 . 1836
0 . 1836]

 
 
 
 
 
 
 
 
T
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                          =

[
 
 
 
 
 
 
 
. 2215 0
. 1906 0
. 2215 0
. 3240 . 0425
. 0425 . 3240

0 . 2215
0 . 1906
0 . 2251]

 
 
 
 
 
 
 

×

[
 
 
 
 
 
 
 
 
1.7085 0
2.2614 0
1.7085 0
2.2614 0
1.3637 1.3637

0 2.2614
0 2.2614
0 1.7085
0 1.7085]

 
 
 
 
 
 
 
 
T

 =�̃�1 ∙ d1 ∙ �̃�1
T + �̃�2 ∙ d2 ∙ �̃�2

T 

  

It can be found that in �̃�1, the weight for node 6, 7 and 8 are zero; while in �̃�1
T, the weight 

for edge 6, 7, 8 and 9 are all zero. Therefore, in the expression �̃�1 ∙ d1 ∙ �̃�1
T, the calculation 

is only related to node 1, 2, 3, 4 and 5, and edge 1, 2, 3, 4, 5. Similarly, expression  �̃�2 ∙

d2 ∙ �̃�2
T is also determined by the weight value of partial nodes and edges. Therefore, the 

matrix factorization of 𝐁 could be treated as factorization of the adjacency matrices of the 

following subgraphs (Figure 4.2). 

 

 

      Figure 4.2 Factorized subgraph with r = 2 

 

It may be noticed that the subgraphs are not totally complementary; there are overlapping 

components. By calculating the column sum of the 𝐻2×9
∗  matrix,  
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H∗ = [
10.7232 1.0873 2.4634 0.5229 0.0523 0.0032 0.0032 0 0

0 0.0070 0 0.0222 0.5707 5.9633 5.9633 11.1310 11.1310
] 

 

The edge anomaly score could be found as expressed in AE matrix 

 

AE = [10.7232 1.0943 2.4634 0.5251 0.6230 5.9665 5.9665 11.1310 11.1310] 

 

Therefore, it can be found that edge 4 tends to be the most likely edge to be anomaly since 

it has the least weight among the nine edges.  

 

Situation 3: when r = 3, 

 

𝐁 ≈

[
 
 
 
 
 
 
 
. 1532 . 2579 0

0 . 4841 0
. 1532 . 2579 0
. 5421 0 0
. 1514 0 . 2830

0 0 . 2426
0 0 . 2319
0 0 . 2426]

 
 
 
 
 
 
 

× [
5.8480 0 0

0 4.6492 0
0 0 8.7089

] ×

[
 
 
 
 
 
 
 
 

0 . 4344 0
. 3155 . 0656 0

0 . 4344 0
. 3155 . 0656 0
. 3096 0 . 0938
. 0297 0 . 2365
. 0297 0 . 2365

0 0 . 2166
0 0 . 2166]

 
 
 
 
 
 
 
 
T

 

 

    =

[
 
 
 
 
 
 
 
. 1532 . 2579 0

0 . 4841 0
. 1532 . 2579 0
. 5421 0 0
. 1514 0 . 2830

0 0 . 2426
0 0 . 2319
0 0 . 2426]

 
 
 
 
 
 
 

×

[
 
 
 
 
 
 
 
 

0 2.0196 0
1.8452 0.3051 0

0 2.0196 0
1.8452 0.3051 0
1.8104 0 0.8167
0.1736 0 2.0599
0.1736 0 2.0599

0 0 1.8862
0 0 1.8862]

 
 
 
 
 
 
 
 
𝑇

  

     

                               = �̃�1 ∙ d1 ∙ �̃�1 + �̃�2 ∙ d2 ∙ �̃�2 + �̃�3 ∙ d3 ∙ �̃�3 
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Similar to the situation on r =2, the expression �̃�1 ∙ d1 ∙ �̃�1 + �̃�2 ∙ d2 ∙ �̃�2 + �̃�3 ∙ d3 ∙

�̃�3 suggest that three subgraphs could be found by partitioning the original graph with 

consideration on the weight in the factorized matrices (Figure 4.3). 

 

 

Figure 4.3 Factorized subgraph with r = 3 

 

Situation 4: when r = 8, 

 

What if we factorize the matrix into three matrices with the same size as the original matrix? 

Under this situation, the NMF factorization results is similar to that with SVD approach.  

 

𝐁 ≈

[
 
 
 
 
 
 
 
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0]

 
 
 
 
 
 
 

×

[
 
 
 
 
 
 
 
2 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2]

 
 
 
 
 
 
 

   

 

            ×

[
 
 
 
 
 
 
 
 

0 0 0 . 5000 . 5000 0 0 0
0 0 0 0 . 5000 . 3333 0 0
0 0 0 . 5000 0 0 0 . 5000
0 0 0 0 0 . 3333 0 . 5000
0 . 3333 0 0 0 . 3333 0 0

. 5000 . 3333 0 0 0 0 0 0
0 . 3333 0 0 0 0 . 5000 0

. 5000 0 . 5000 0 0 0 0 0
0 0 . 5000 0 0 0 . 5000 0 ]

 
 
 
 
 
 
 
 
T
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     =

[
 
 
 
 
 
 
 
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0]

 
 
 
 
 
 
 

×

[
 
 
 
 
 
 
 
 
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1
0 1 0 0 0 1 0 0
1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0]

 
 
 
 
 
 
 
 
T

 

 

Therefore, under this situation, the factorization results could be the incident matrix itself, 

since the factorization result of 𝐖(𝟏) could be transformed into an identity matrix easily, 

leaving along the 𝐇∗ matrix which is exact the incident matrix. Therefore, when r = 8, the 

decomposition only reflects the original node-link property and may not be helpful in 

finding anomaly scores. 
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5. Node Anomaly Detection in Direct Graph Using Asymmetric 

Non-negative Matrix Factorization 

In this section, we are using the Asymmetric Nonnegative Matrix Factorization (ANMF) 

approach to factorize the adjacency matrix in given graph data and define our anomaly 

detection functions. Section 5.1 will be the definition used in this section. Section 5.2 will 

be algorithms for scoring and detecting nodes. Section 5.3 will be examples. 

 

5.1 Definitions and Notations 

The graph in this section is directed and unweighted. The matrix used is the adjacency 

matrix with notation A.  Nodes are represented in rows and columns, and the entries of A 

indicate the existence of edges. For unweighted graphs, all entries in matrix A are either 0 

or 1.  

Aij = {
1,    if there is a directed link from node 𝑖 to 𝑗  
 0,    otherwise                                                              

 

 

In directed graph, the connectivity of two nodes may not be in bi-relationship due to the 

direction of edges. For the easiness of interpretation, we define two behaviors, “link” and 

“linked”. Node i is said to “link” with node j if a path exists from the node i to node j. One 

the other hand, we could say node j is linked to node i vice versa. It is well noticed that 

such “link” behavior may not be interchangeable, i.e., node i links to node j, but node j may 

not links to node i due to the direction of edges. 

 

Besides, there are other symbols used in the matrix factorization process, and we 

summarize the symbols in Table 5.1. 
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Table 5.1 Table of symbols used in notation 

Symbol Description 

A n x n adjacency matrix with entries Aij 

X,C,U,V,P Lower rank factorized matrix used in ANMF 

𝐎𝟏 , 𝐎𝟐 ,O Matrix used to calculate anomaly score 

k Factorization rank 

AN(i) Anomaly score for node i 

 

5.2 New Scoring Function for Node Anomaly Detection Using ANMF 

ANMF is a specific factorization method that can be used on adjacency matrix of directed 

graph. The formulation of ANMF is as follows: 

Given adjacency matrix A (n×n dimension) and factorization k 

Minimize Euclidean distance ‖𝐀 − 𝐗𝐏𝐗
𝐓‖

F
2
 

   such that all entries in X (n×k dimension) and P (k×k dimension) are non-

negative  

Find matrix X and P 

 

Furthermore, matrix X could be normalized by columns and 𝑿𝑻 normalized by row 

respectively with the following formula: 

 

𝐗𝐏𝐗𝐓 = (𝐗𝐂−𝟏)(𝐂𝐏𝐂𝐓)(𝐗𝐂−𝟏)𝐓 =  𝐔𝐕𝐔𝐓, 

where 𝑼 = 𝑿𝑪−𝟏 and 𝑉 = 𝑪𝑷𝑪𝑻. 

 

The algorithm introduced by Wang et.al (2011) provided application way to solve the 

ANMF problem using iteration approach, and thus we will use their algorithm to get matrix 

U and V.  
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The U matrix could provide k clusters of the original graph and the members of each cluster 

are decided by the non-zero entries in each column of matrix U. However, since this thesis 

mainly deals with anomaly detection, the exact clustering methods and the quality of 

clustering are not discussed in details. Rather, we simply group all the nodes with 

corresponding entries larger than a predetermined value in each column of one column into 

a cluster.  

 

Moreover, the entries in U matrix represent the normalized weight of each node within one 

cluster, showing the “link” behavior. For example, if 𝑈𝑖𝑗 is large, then node i links to other 

nodes within cluster j and such “link” behavior is stronger compared with that of other 

nodes in the same cluster. The 𝐔𝐓 matrix, on the other hand, reflects the “linked” behavior. 

The V matrix value represents connectivity, or the nodes’ “link” behavior between two 

clusters. For example, if 𝑉𝑖𝑗 ≠0, then some node can be found in cluster i  links to some 

nodes in cluster j. Higher value means that such link is strong, i.e., an edge (1-step path) 

exits between the nodes of two clusters. Besides, the diagonal terms in V matrix could 

represent the important of a cluster in terms of the whole graph. Therefore, if we only 

consider such “link” behavior, the importance of one node in the graph is determined by 

how the node links other nodes both within one cluster and between clusters.  

 

Thus, we could calculate the scores for each from the expression 𝐎𝟏= U*V. The row 

element gives the score value of one node in each community, and we will use the row sum 

as the score function for the “link” behavior, or 
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O1_score (i) =∑ [𝐎𝟏]𝒊𝒋
𝑘
𝑗=1  

The nodes with less score values in this scenario tend to be anomalous. 

 

Nevertheless, in directed graph, considering only the “link” behavior is not sufficient 

because it only describe the behavior of edges that points from one nodes to other nodes. 

Due to the possibly asymmetric adjacency matrix and the asymmetric edge directions 

between two nodes in directed graph, may also be necessary to consider the linkage of 

edges pointing from other nodes to a given node, or the “linked” behavior. Instead of U 

matrix, 𝐔𝐓  matrix will be used to describe how one node is linked to other nodes. 

Following the similar idea as above, the expression 𝐎𝟐 = 𝐕𝐔𝐓could be used to score the 

“linked” behavior, and the row sum could be used to represents the scoring function for 

each nodes, or 

O2_score (j) =∑ [𝐎𝟐]𝒊𝒋
𝑘
𝑖=1 . 

To keep the format as in the O1_score(i), we take the transpose of 𝐎𝟐 matrix, 

O2_score(i) =∑ [𝐎𝟐]𝒊𝒋
𝑘
𝑗=1 , where 𝐎𝟐  = (𝐕𝐔𝐓)𝐓 = 𝐔𝐕𝐓. 

The nodes with less score values in this scenario tend to be anomaly. 

 

Based on the discussion above, the connectivity, or the structure of the original graph could 

be decomposed into “link” behavior and “linked” behavior. Both behaviors are important 

for finding detecting anomaly. The sum of the O1_score(i) and O2_score(i) could give a 

simple overall score function. However, the importance of these two behaviors may not be 

the same in different graphs with the actual needs of anomaly types. For example, in patent 

citation network, the patents are more likely to be anomalies if they are cited by few other 
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patents so that the “linked” behavior may be more important in this situation; for email 

contact network, an email address keeping sending high volume of emails to other users 

may be treated as anomalous/spam source so that the “link” behavior could be more 

important. To separate the importance, we introduce the weighted scoring function for node 

anomaly detection, denoted as:  

AN (i) =∑ [𝐎]𝒊𝒋
𝑘
𝑗=1 , where 𝐎 =  α𝐔𝐕 + (1 − α)𝐔𝐕𝐓, 0≤α≤1. 

 

Table 5.2 shows the algorithm for detecting node anomalies and our algorithm is named as 

“ANMFG”. 

 

Table 5.2 Algorithm for ANMFG 

Given:  
 

          Adjacency matrix 𝐀, factorization rank k, weight α, threshold δ,  

(1) Use ANMF method to factorize A matrix and get the output matrix X and P 

following the algorithm introduced by Wang et al. (2011). 

(2) Normalize the X matrix in terms of columns to obtain U matrix and V matrix 

(3) Find the O matrix for anomaly scoring using 𝐎 =  α𝐔𝐕 + (1 − α)𝐔𝑽𝑻 

(4) Find the anomaly score for each node by sum the row values of O matrix, or 

AN (i) =∑ [𝐎]𝒊𝒋
𝑘
𝑗=1  

(5) Sort the AN (i) score in ascending order 

(6) Lock the score values smaller or equal to a predetermined threshold δ and 

pick out the respect nodes as anomalies. 

 

Output: 

 

 Anomaly nodes 
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5.3 An Illustrative Example 

To better illustrate our idea, consider the following artificial example. The graph is shown 

as in Figure 5.1 and the adjacency matrix could be formulated accordingly. By using the 

ANMF method with factorization rank 4, we could get the following factorization results, 

matrix U and V: 

 

 

 

Figure 5.1 Graph of the artificial example 

 

 

The ANMF method suggests that four clusters can be formulate with regards to the non-

zero values, or values larger than a predetermined threshold in each column in the U matrix 
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considering the preciseness of matrix factorization. For example, in the first column, the 

eighth to the thirteenth entries are nonzero values. Thus node eight to thirteen are grouped 

into one community. Following the same idea, we could find and mark the four clusters in 

the graph, and the results are shown in Figure 5.2. It is worth noticing that even though 

nodes in one cluster may not be directly connected, they are grouped based on the 

factorization results of the adjacency matrix, which reflects the structural information of 

the original graph. 

 

 

Figure 5.2 Four clusters obtained based on the matrix factorization result 

 

From the four clusters obtained, some interesting relationship could be observed. By 

looking at the elements of the green cluster and the red cluster, it can be found that there 
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exists paths merely from some nodes in the green cluster to the nodes in the red clusters, 

i.e., node 1 to node 2 and 5. Similarly, for the red cluster and the purple cluster, if we ignore 

the overlapping terms, there are only paths from nodes in red cluster to nodes in purple 

cluster in the directed graph. Such kind of relationship could be explained by the values in 

H matrix. For example, 𝑽𝟒𝟏 is 5.81, which indicates strong connecting behavior from the 

purple cluster to the blue cluster. Thus explanation could be tested from the graph, since it 

can be observed that nodes in purple clusters links to nodes in blue clusters and five direct 

edges can be found (i.e., line form node 3 to node 8). 

 

The anomaly scores will be calculated using the factorization results. Since the α value in 

the score function is a predetermined parameter that could influence on the scoring ranking 

of the nodes, we provide the results with α value at different level, 0, 0.25, 0.5 and 1. The 

anomaly scores and ranking are shown in  Table 5.3. 

 

 Table 5.3 Anomaly score comparison with different α values in scoring function  

α 0 0.25 0.5 0.75 1 

Rank Node Score Node Score Node Score Node Score Node Score 

1 1 0.0000 10 0.1144 10 0.0852 10 0.0559 10 0.0266 

2 10 0.1437 4 0.3575 8 0.3434 8 0.2254 8 0.1073 

3 4 0.3108 8 0.4615 9 0.3434 9 0.2254 9 0.1073 

4 3 0.5242 9 0.4615 4 0.4043 12 0.2888 12 0.1375 

5 8 0.5795 1 0.4883 12 0.4401 4 0.4510 13 0.4196 

6 9 0.5795 12 0.5914 3 0.6817 3 0.7605 4 0.4977 

7 12 0.7427 3 0.6030 1 0.9766 13 0.8813 3 0.8392 

8 2 0.7479 2 0.9050 2 1.0621 2 1.2192 11 1.1096 

9 6 1.0398 6 1.1983 13 1.3429 1 1.4649 2 1.3763 

10 5 1.1738 5 1.4247 6 1.3568 6 1.5152 6 1.6737 

11 7 1.4322 7 1.6481 5 1.6756 11 1.6274 1 1.9532 

12 13 2.2662 13 1.8046 7 1.8639 5 1.9264 5 2.1773 

13 11 3.1806 11 2.6629 11 2.1451 7 2.0798 7 2.2956 
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When α = 0, the score shows merely how one node is linked by nodes both within one 

cluster and among different clusters. Since in the green cluster, node 1 is the only member 

in the cluster and could not be linked by other nodes because it has edges with directions 

pointing only to other nodes, thus the score value for node 1 is zero. The value for node 10 

is also smaller because the “linked” behavior mainly from the nodes within the same cluster 

(node 8 and 9) since an edge exists between node 10 and 8 or 10 and 9. Even though a path 

exists from the nodes from other clusters to node 10, it requires two or more steps, thus the 

influence on scoring function may be weak.  

 

One clearly phenomenon is that when α ≠ 0, node 1 will have larger values and drops down 

in the score ranking. This is because in these scenarios, the “link” behavior is considered. 

Since node 1 links to other nodes in different clusters closely, i.e. node 1 directly links to 

node 2 and 5, it will have large score values for “link” behavior. This could also be 

explained that when α = 1, node 1 owns rank 11 in the anomaly score ranking. Besides, 

since node 10 and its cluster members are at the bottom of the graph with few links to other 

clusters. Thus the “link” behavior score is also very low. 

 

Thus, by considering both the link and inked behavior with different α value, we may get 

different rank and score functions. But node 10 have high possibility in these cases as node 

anomaly. 
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6. Experiments 

In this section, we will test the performance of our algorithms by using both artificial data 

and the real-world data. Section 6.1 will test the performance of edge anomaly scoring 

algorithm with NMF and Section 6.2 will test the performance of node anomaly scoring 

algorithm with ANMF. Moreover, we will discuss the possible updates and challenges of 

our algorithms for future research in Section 6.3 

 

6.1 Test of Edge Anomaly Detection Algorithms 

Two sets of data are provided to evaluate the performance of our algorithms. Section 6.1.1 

will use the Amazon Co-purchase data and Section 6.1.2 will use the patent citation 

network dataset. Moreover, we will discuss the possible updates and challenges of our 

algorithms for future research in Section 5.3 

 

6.1.1 Amazon Co-purchase Network 

In this section, we will use the co-purchase network generated from the data of online book 

seller Amazon1. In the network, the vertices represent the book and the edges represent the 

behaviors called “co-purchase” by customers. Therefore, if a customer bought one book 

while at the same time bought another book, then the two nodes representing these two 

books are connected. The dataset we use is a subgraph with all books categorized into the 

field “Disney”, with 124 nodes and 334 edges, both of which are unweighted. The structure 

of the graph could be seen in Figure 6.1and the histogram of the degree distribution in 

Figure 6.2. 

                                                      
1http://www.ipd.kit.edu/~muellere/GOutRank/ 
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Figure 6.1 Structure of amazon co-purchase network 

 

 
Figure 6.2 The histogram of degree in amazon co-purchase network 
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We will apply our algorithms first to find the scores of edges that are likely to be anomalous. 

Here, we decide to select the factorization rank r = 50 for both the adjacency matrix We 

show up the score for the top 20% edge anomalies with the node-edge adjacency matrix in 

Table 6.2. 

 

Table 6.1 Edge anomaly ranking with scores-amazon data 

Ranking Edge_Id Score Ranking Edge_Id Score 

1 141 0.2239 25 36 1.5494 

2 302 0.5201 26 158 1.5566 

3 24 0.6538 27 254 1.5719 

4 282 0.6542 28 210 1.5768 

5 19 0.6711 29 120 1.5812 

6 180 0.7111 30 200 1.5815 

7 69 0.7985 31 74 1.5939 

8 33 0.8010 32 42 1.5958 

9 306 0.8449 33 91 1.6039 

10 194 0.8473 34 265 1.6123 

11 44 0.8879 35 124 1.6169 

12 68 1.0517 36 320 1.6225 

13 267 1.0936 37 96 1.6333 

14 30 1.1045 38 285 1.6353 

15 140 1.1980 39 154 1.6443 

16 159 1.2909 40 26 1.6481 

17 294 1.3363 41 287 1.6488 

18 195 1.3538 42 310 1.6531 

19 57 1.3775 43 335 1.6563 

20 127 1.4026 44 198 1.6601 

21 63 1.4859 45 281 1.6692 

22 261 1.5007 46 144 1.6697 

23 130 1.5330 47 151 1.6749 

24 181 1.5488 48 148 1.6770 
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Moreover, we could also visualize the position of the anomaly nodes and edges. We will 

pick out top 20 edge anomalies and plot them onto one figure with red color. The results 

are shown in Figure 6.3. 

 

Figure 6.3 Plot of edge anomalies-amazon data 

 

From the plot, it can be found that the edges which connect to two nodes with high degrees 

are more likely to be anomalous.  Since there are many combinations of subgraphs by the 

two nodes with high degree, therefore the weight for the subgraphs with the edge 

connecting these two nodes are lower. In real life, such edge anomalies are valuable 

because it connects two possible groups of nodes which have high average degrees, or 

highly concentrated. Therefore, by detecting these nodes, people could separate the nodes 

into different groups and predict the future development of graphs. For example, if book A 

and book B are very popular in co purchase while seldom do people buy them together, 
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then the manager may have to categorize the books co-purchased with book A into a new 

group, say group A and recommend the books in that category to customers when customer 

co-purchase with A. While at the same time, the books co-purchased with book B may not 

be recommend with books in group A so that the recommendation effectiveness may 

improve. 

 

Moreover, since the factorization rank r needs to be predetermined before running the 

algorithm, selection of r is necessary to discuss. It has been shown that the selection of r 

could influence the quality of the matrix factorization; thus some researchers have 

suggested different methods to find the optimal value of r to achieve the overall matrix 

factorization performance, such as the residual sum squares (Brunet, Tamayo, Golub, & 

Mesirov, 2004; Hutchins, Murphy, Singh, & Graber, 2008; Frigyesi & Höglund, 2008). 

However, for different criteria, the r value may not be the same; on the other hand, there is 

a big difference in our algorithm that we need only the top lowest value for detecting 

anomalies. Therefore, it will be important for us to find stable results first to avoid high 

fluctuation in score ranking, especially among the top lowest scores. 

 

To test the stability of the factorization results, we use the node edge incident matrix as an 

example. We test the factorization rank r from 1 to 124, with 50 runs for each r.  After 

collecting the scores for 50 runs given an r value, we sort the scores from low to high for 

each individual run. Then we collect the lowest score from each run, and calculate the 

variance for these 50 scores. We repeat this process for calculating the variance of the 

second lowest scores in 50 runs, until getting the variance of the highest scores in the 50 
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runs. After getting all the variance values, we add them up to represent the variance for the 

whole variance given an r value. Moreover, since anomaly selection may not involve those 

nodes with higher score, we also test the variance for the data among the top 20 lowest 

value. The logic of our testing method is that if the performance of NMF is stable, then the 

variance of the scores located in the same ranking position should be similar. In other words, 

there should not be high fluctuations in scoring edges.  

  

The result of our testing is plotted in Figure 6.4. The blue dot line shows the sum of 

variance for scores in all ranking positions, while the red line is only the data with top 20 

rankings. 

 

 
Figure 6.4 Plot of factorization rank with the total variance of 50 runs 

 

 

It can be found that when r is larger than 25, the results tends to be stable, especially for 

the score of top 20 nodes. This method may be used a guideline for suggesting proper r 

value for matrix factorization, combining with other approaches for better judgments. 
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6.1.2 Patent Citation Network Data  

In this section, we test the performance of our algorithms with the patent citation network 

data1. The dataset is a directed and unweighted graph consisting 4241 nodes and 18385 

edges. To provide an intuitive understanding, the plot of the graphic data and the histogram 

of degrees of nodes could be found as the following in  

Figure 6.5 and Figure 6.6. The nodes represent different patents with a unique patent id. 

Since for each patent, it may cite another patent as a reference. Therefore, if one patent is 

cited by another patent, a directed edge connects the two nodes representing these two 

nodes, pointing from cited patents to the citing patent.  

 

 
Figure 6.5 Plot of the patent citation network data 

 

 

                                                      
1 http://dme.rwth-aachen.de/de/gamer 



43 

 

 

 

 
 

Figure 6.6 Degree distribution of the patent citation network 

 

Different from the dataset in section 6.1.1, the patent citation network is an acyclic graph 

because only the patent invented later could cite the former patent, or the time order. It can 

also be found in Figure 6.6 that the range of degrees is larger than that in section 6.1.1, 

with extreme amount of nodes having very large degree number. This is a special character 

of the patent network because the patents at the beginning years in the database tend to 

have more citations than those in later years. 

 

In this dataset, we will use factorization rank r= 1250 to detect edge anomalies. The scoring 

results for the top 60 edges anomalies are shown in Table 6.2. 

 

 

Table 6.2 Edge anomalies ranking with scores-patent citation data 

Ranking Edge_Id Score Ranking Edge_Id Score 

1 15144 0.4077 31 8012 1.1738 

2 10910 0.4196 32 4875 1.176 

3 3191 0.7856 33 1179 1.1772 
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4 4354 0.7932 34 6729 1.1799 

5 13524 0.8274 35 11831 1.1896 

6 7346 0.8429 36 9545 1.1900 

7 5693 0.8704 37 13124 1.1908 

8 9928 0.8892 38 1377 1.1913 

9 3172 0.9141 39 3383 1.1972 

10 6199 0.9210 40 8218 1.2051 

11 11321 0.9927 41 9744 1.2100 

12 4878 1.0539 42 1010 1.2118 

13 8687 1.0623 43 10915 1.2145 

14 11636 1.0636 44 4066 1.2156 

15 2990 1.0870 45 11328 1.2173 

16 2694 1.1023 46 3743 1.2182 

17 12390 1.1215 47 3406 1.2192 

18 12254 1.1219 48 786 1.2245 

19 1409 1.1239 49 2275 1.2280 

20 2730 1.1283 50 2257 1.2284 

21 12227 1.1416 51 2206 1.2296 

22 3226 1.1515 52 3162 1.2297 

23 5089 1.1564 53 13592 1.2297 

24 243 1.1570 54 1963 1.2328 

25 2627 1.1574 55 13906 1.2366 

26 1161 1.1584 56 2932 1.2376 

27 9722 1.1617 57 1011 1.2422 

28 12961 1.1665 58 8217 1.2427 

29 3154 1.1707 59 4710 1.2445 

30 7662 1.1718 60 7445 1.2494 

 

For large graph, it is not easy to mark out the edges in the graph visually. However, the 

edge anomalies can be found between one node having large amount of in-neighbors and 

another node having a large number of out-neighbors. As shown in Figure 6.7, such edge 

anomalies may provide useful information for the information user and the following 

situation is one possible explanation. Patent A owns a lot of in-neighbors may indicate that 

such patent owns a lot of common features among different areas. However, patent A was 
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cited only by a few other patents, i.e., patent B, implying the applicability of patent A. 

Nevertheless, patent B has been cited by many other patents so that patent B has made a 

lot of inspirations in terms of invention. Therefore, there may be possible technology 

updates and from patent A to patent B. Thus, by focusing on the anomaly edges (marked 

in red), the information user may focus on possible new technology or areas that are 

beneficial. 

 

 
Figure 6.7 Edge anomalies example for patent citation data 

 

6.2 Test of node anomaly detection algorithms ANMFG 

In this section, we will use both artificial examples and real world data set to test the 

performance of our algorithm. To show better performance, we will compare the results of 

our algorithm with two other types of algorithms, Outrank and Oddball, which could also 

pick up node anomalies. Three sets of data will be used in the test: the artificial data using 

as example in section 5; 20 nodes patent citation network data from real data set; 250 nodes 

patent citation network. 

 

6.2.1 Testing with 13-node Artificial Data 
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The information of the data has been described in Section 5.3 and in Figure 5.1. In this 

section, we will show the testing results of our algorithm ANMFG with factorization rank 

k = 4 and α= 0.8. Table 6.3 shows the scores of different approaches for detecting node 

anomalies. For the methods OutRankB (Moonesinghe & Tan, 2006), CDNMF (Cao, Wang, 

Jin, Cao, & He, 2013) and Oddball (Akoglu, McGlohon, & Faloutsos, 2010), we need to 

transform the adjacency matrix for directed graph into that for undirected graph due to their 

philosophy of algorithm design.  

 

Table 6.3 Computation results of different algorithms on 13-node artificial data 

 OutRankB Oddball CDNMF ANMFG 

Rank Node Score Node Score Node Score Node Score 

1 4 0.0434 4 0.0819 12 1 10 0.0500 

2 10 0.0460 12 0.0819 1 0 8 0.2017 

3 12 0.0483 5 0.1355 2 0 9 0.2017 

4 2 0.0604 1 0.2766 3 0 12 0.2585 

5 8 0.0646 8 0.2766 4 0 4 0.4603 

6 9 0.0646 9 0.2766 5 0 3 0.7762 

7 1 0.0734 10 0.2766 6 0 13 0.7889 

8 3 0.0851 11 0.3463 7 0 2 1.2506 

9 11 0.0899 13 0.7187 8 0 11 1.5238 

10 13 0.0903 2 0.7987 9 0 6 1.5469 

11 5 0.0934 3 0.7987 10 0 1 1.5626 

12 7 0.1203 6 0.9853 11 0 5 1.9766 

13 6 0.1203 7 1.0821 13 0 7 2.1229 

 

In Section 5.2, we have discussed that our algorithm could provide meaningful results. In 

comparisons, the CDNMF method could provide only binary results. It may pick out some 

anomalies, but show no distinctions between different anomalies. For OutRankB and 

Oddball methods, the results provided are meaningful if we neglect the direction of the 

edge. Nodes 4 and nodes 12 are more likely to be anomalous in these methods because 
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node 4 and 12 connect to one node. However, our algorithms enables synthesis scoring of 

the link nodes and linked nodes, making use of the direction information of the directed 

graph. Thus, our method is more meaningful in this case. 

 

6.2.2 20-node from Patent Citation Network Data 

In this section, we test the performance of our algorithms with a small example from the 

patent citation network data1. The original dataset is a directed and unweighted graph 

consisting 4241 nodes and 18385 edges, and we pick out 20 nodes from them. The structure 

of the dataset could be clearly observed from Figure 6.8. The nodes refer to different 

patents with a unique patent id. Since for each patent, it may cite another patent as a 

reference; thus the edges shows this kind of citation relationship: if one patent is cited by 

another patent, a directed edge connects the two nodes representing these two nodes, 

pointing from cited patent to the citing patent.  

 

 

                                                      
1 http://dme.rwth-aachen.de/de/gamer 
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Figure 6.8 Plot of the 20-node patent citation data set 

 

Ahead from testing the performance of using the different algorithms, some ground truth 

could be observed based on the plot of the dataset in Figure 6.. It is found that patent id 

“20”,”7”,”16”,”19” (We ignore the “X” in front of the id and only use the number) are 

more likely to be anomalies for two reasons: they only cite one patent, having only one in-

degree; they are two or more steps further from the patents “3”,”1”,”8”,”17”, which are 

cited by many different patents and have larger probability to be the center if clustering is 

performed. 

 

With these understanding of the graph, we perform our algorithms with α = 0.8 and r = 4. 

We also test the performance of CDNMF with factorization rank 4, Outrank and Oddball. 

The results are shown in Table 6.4. 

 

Table 6.4 Computation results of different algorithms on 13-node artificial data 
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 OutRankB Oddball CDNMF AMFG 

Rank Node Score Node Score Node Score Node Score 

1 20 0.0112 4 0.0018 4 1 7 0.0000 

2 7 0.0114 5 0.0018 5 1 16 0.0000 

3 16 0.0114 7 0.0018 7 1 19 0.0000 

4 19 0.0119 9 0.0018 19 1 20 0.0000 

5 18 0.0181 10 0.0018 1 0 18 0.0676 

6 2 0.0394 11 0.0018 2 0 9 0.2181 

7 4 0.0394 12 0.0018 3 0 10 0.2181 

8 5 0.0394 13 0.0018 6 0 11 0.2181 

9 6 0.0394 15 0.0018 8 0 12 0.2181 

10 9 0.0595 16 0.0018 9 0 13 0.2181 

11 10 0.0595 19 0.0018 10 0 14 0.2181 

12 11 0.0595 20 0.0018 11 0 15 0.2181 

13 12 0.0595 2 0.1796 12 0 2 0.2310 

14 13 0.0595 6 0.1796 13 0 4 0.2310 

15 14 0.0595 14 0.1796 14 0 5 0.2310 

16 15 0.0595 18 0.1796 15 0 6 0.2310 

17 3 0.0772 1 0.4099 16 0 17 0.5079 

18 8 0.0826 8 0.5230 17 0 8 1.9506 

19 1 0.0927 3 0.8909 18 0 1 4.9039 

20 17 0.1096 17 1.3727 20 0 3 7.4970 

 

It can be found from the results that our algorithm performs well and pick out the desired 

anomalies successfully. The results for Oddball and CDNMF method may not be 

satisfactory because even in the top 10 anomalies among the 20 nodes, they could not 

include the desires anomalies. Besides, the Outrank algorithm could also pick out the node 

anomalies correctly. However, it is used only for undirected graph and we have to 

transform the adjacency matrix and ignore the direct one. The result could show that our 

method is helpful in detecting anomalies in directed graph. 
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6.2.3 250-node Patent Citation Network Data  

Due to the number of nodes an edges in this case, it is difficult to visualize the results on 

graph. However, we could still use the score functions and pick out anomalies. The results 

are shown in Table 6.5. 

 

Table 6.5 Computation results of different algorithms on 250-node artificial data 

Rank Node Score Rank Node  Score 

1 58 0.0097 21 67 0.0627 

2 11 0.0101 22 210 0.0627 

3 95 0.0101 23 21 0.0714 

4 141 0.0101 24 48 0.0728 

5 89 0.0104 25 53 0.0758 

6 26 0.0142 26 213 0.0877 

7 227 0.0149 27 109 0.1013 

8 146 0.0214 28 125 0.1013 

9 22 0.0218 29 212 0.1013 

10 127 0.0275 30 232 0.1013 

11 62 0.0287 31 9 0.1671 

12 31 0.0292 32 4 0.1889 

13 126 0.0327 33 160 0.1905 

14 184 0.0327 34 118 0.2032 

15 231 0.0327 35 128 0.2032 

16 30 0.0460 36 139 0.2032 

17 32 0.0626 37 42 0.2047 

18 52 0.0626 38 168 0.2047 

19 173 0.0626 39 6 0.2174 

20 55 0.0627 40 18 0.2388 

 

The nodes detected by our algorithms could perform well in the large data set. 

 

 

6.3 Recommendations for Future Research 

In the future, it is suggested that our algorithms could be improved from the following two 

aspects: 
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First of all, more real life datasets are needed to test the performance of our algorithms. 

This may not only help compare the performance of different algorithms with different 

cases, but also accumulate more experience on the selection of factorization rank r. It is 

also suggested that a comparison can be made among different approaches of r selection. 

The relationship between the overall performance and the stability of the top scores could 

thus be discussed further, which will be benefit to improve the overall performance of the 

algorithms. 

 

Second, we did not consider the possible known attributes of the nodes and edges in graphs 

when design the algorithms. However, there are possible ways to make use of the node 

attributes, like the anomaly detection approaches for continuous or discrete data. Therefore, 

future discussions can be made on the performance of our algorithm and the updated 

version by considering the node attributes.  
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7. Conclusion 

In this thesis, we suggest new node and edge anomaly detection algorithms using the non-

negative matrix factorization techniques.  

 

Experimental results have shown that our edge anomaly detection algorithm has 

successfully detected the anomalies with given Amazon book co-purchase network and 

patent citation network. Moreover, by plotting and studying the graph with anomalies, 

meaningful interpretations have been found, which have provided real meaning on the 

results. The selection of factorization rank r has also been discussed, and it is suggested 

that different criteria should be used on the selection of r to ensure the stability of the 

factorization result. For the node anomaly detection algorithms, ANMFG, comparison 

results indicate that our algorithm shows well performance in anomaly scoring and 

detection on direct graph compared to some existing methods. 

 

The possible improvements on this thesis have also been discussed. It is hoped that in the 

future, the attribute of the nodes in a graph, if available, could also be considered for 

detecting the algorithm. It is also suggested more different kinds of datasets are selected to 

strengthen the computational evidence on factorization rank selection. Besides, in the age 

of big data, the method should be revised so that it could meet the requirement of large data 

processing and real time computing. 

 

  



53 

 

 

 

8. References 

Aggarwal, C. C. (2013). Outlier Analysis. Springer. 

Aggarwal, C. C., Zhao, Y., & Yu, P. S. (2011, April). Outlier detection in graph streams. 

Data Engineering (ICDE), 2011 IEEE 27th International Conference on (pp. 399-

409). IEEE. 

Akoglu, L., McGlohon, M., & Faloutsos, C. (2010). Oddball: Spotting anomalies in 

weighted graphs. In Advances in Knowledge Discovery and Data Mining. Berlin 

Heidelberg: Springer. 

Akoglu, L., Tong, H., & Koutra, D. (2014). Graph-based Anomaly Detection and 

Description: A Survey. Data Mining and Knowledge Discovery. 

Antonellis, I., Molina, H. G., & Chang, C. C. (2008). Simrank++: Query rewriting 

through link analysis of the click graph. Proceedings of the VLDB Endowment, 

1(1), 408-421. 

Bonacich, P., & Lloyd, P. (2001). Eigenvector-like measures of centrality for asymmetric 

relations. Social Networks, 23(3), 191-201. 

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search 

engine. Computer Networks, 30(1-7), 107-117. 

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., & Wiener, 

J. (2000). Graph structure in the web. Computer networks, 33(1), 309-320. 

Brunet, J. P., Tamayo, P., Golub, T. R., & Mesirov, J. P. (2004). Metagenes and 

molecular pattern discovery using matrix factorization. Proceedings of the 

national academy of sciences, 101(12), 4164-4169. 

Cai, D., He, X., Wu, X., & Han, J. (2008). Non-negative matrix factorization on 

manifold. . In Data Mining ICDM'08. Eighth IEEE International Conference on 

(pp. 63-72). IEEE. 

Cao, X., Wang, X., Jin, D., Cao, Y., & He, D. (2013). Identifying overlapping 

communities as well as hubs and outliers via nonnegative matrix factorization. 

Scientific reports,, 3, 1-8. 

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A survey. ACM 

Computing Surveys, 41(3), 15. 

Chau, D. H., Pandit, S., & Faloutsos, C. (2006). Detecting fraudulent personalities in 

networks of online auctioneers. In Knowledge Discovery in Databases: PKDD 

2006 (pp. 103-114). Berlin Heidelberg: Springer . 

Cichocki, A., Zdunek, R., Phan, A. H., & Amari, S. I. (2009). Nonnegative matrix and 

tensor factorizations: applications to exploratory multi-way data analysis and 

blind source separation. John Wiley & Sons. 

Freeman, L. C. (1997). A set of measures of centrality based on betweenness. 

Sociometry, 35-41. 

Frigyesi, A., & Höglund, M. (2008). Non-negative matrix factorization for the analysis of 

complex gene expression data: identification of clinically relevant tumor 

subtypes. Cancer informatics, 6, 275. 

Gao, H., Chen, Y., Lee, K., Palsetia, D., & Choudhary, A. N. (2012). Towards Online 

Spam Filtering in Social Networks. In NDSS.  

Gilpin, S., Eliassi-Rad, T., & Davidson, I. (2013). Guided learning for role discovery 

(GLRD): framework, algorithms, and applications. In Proceedings of the 19th 



54 

 

 

 

ACM SIGKDD international conference on Knowledge discovery and data 

mining (pp. 113-121). ACM. 

Gupta, M. (2013). Outlier detection for information networks. (Doctoral dissertation 

University of Illinois at Urbana-Champaign). 

Haveliwala, T. H. (2003). Topic-sensitive pagerank: A context-sensitive ranking 

algorithm for web search. Knowledge and Data Engineering, IEEE Transactions 

on, 15(4), 784-796. 

Hawkins, D. M. (1980). Identification of outliers (Vol. 11). London: Chapman and Hall. 

Henderson, K., Gallagher, B., Li, L., Akoglu, L., Eliassi-Rad, T., Tong, H., & Faloutsos, 

C. (2011). It's who you know: graph mining using recursive structural features. In 

Proceedings of the 17th ACM SIGKDD international conference on Knowledge 

discovery and data mining (pp. 663-671). ACM. 

Hodge, V. J., & Austin, J. (2004). A survey of outlier detection methodologies. Atificial 

Intelligence Review, 22(2), 85-126. 

Hutchins, L. N., Murphy, S. M., Singh, P., & Graber, J. H. (2008). Position-dependent 

motif characterization using non-negative matrix factorization. Bioinformatics, 

24(23), 2684-2690. 

Jeh, G., & Widom, J. (2002, July). SimRank: a measure of structural-context similarity. 

In Proceedings of the eighth ACM SIGKDD international conference on 

Knowledge discovery and data mining (pp. 538-543). ACM. 

Kang, U., Tsourakakis, C. E., Appel, A. P., Faloutsos, C., & Leskovec, J. (2011). Hadi: 

Mining radii of large graphs. ACM Transactions on Knowledge Discovery from 

Data (TKDD), 5(2), 8. 

Kim, J., & Park, H. (2008). Sparse nonnegative matrix factorization for clustering. 

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for 

recommender systems. Computer, 42(8), 30-37. 

Kuang, D., & Park, H. (2013). Fast rank-2 nonnegative matrix factorization for 

hierarchical document clustering. In Proceedings of the 19th ACM SIGKDD 

international conference on Knowledge discovery and data mining (pp. 739-747). 

ACM. 

Lee, D. L., & Seung, H. S. (1999). Learning the parts of objects by nonnegative matrix 

factorization. Nature, 401(6755), 788-791. 

Lee, D. L., & Seung, H. S. (2001). Algorithms for nonnegative matrix factorization. 

Advances in Nueral Information Processing Systems 13: Proceedings of the 2000 

Conferences (pp. 556-562). MIT Press. 

Lewis, T. G. (2011). Network science: Theory and applications. John Wiley & Sons. 

Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix 

factorization and sparse coding. The Journal of Machine Learning Research, 11, 

19-60. 

McGlohon, M., Bay, S., Anderle, M. G., Steier, D. M., & Faloutsos, C. (2009). Snare: a 

link analytic system for graph labeling and risk detection. In Proceedings of the 

15th ACM SIGKDD international conference on Knowledge discovery and data 

mining (pp. 1265-1274). ACM. 

Moonesinghe, H. D., & Tan, P. N. (2006). Outlier detection using random walks. In 

Tools with Artificial Intelligence, 2006. ICTAI'06. 18th IEEE International 

Conference on IEEE., (pp. pp. 532-539). 



55 

 

 

 

Noble, C. C., & Cook, D. J. (2003). Graph-based anomaly detection. In Proceedings of 

the ninth ACM SIGKDD international conference on Knowledge discovery and 

data mining (pp. 631-636). ACM. 

Rennie, J. D., & Srebro, N. (2005). Fast maximum margin matrix factorization for 

collaborative prediction. In Proceedings of the 22nd international conference on 

Machine learning. 713-719: ACM. 

Sun, H., Huang, J., Han, J., Deng, H., Zhao, P., & Feng, B. (2010, December). 

gskeletonclu: Density-based network clustering via structure-connected tree 

division or agglomeration. In Data Mining (ICDM), 2010 IEEE 10th International 

Conference on (pp. 481-490). IEEE. 

Takács, G., Pilászy, I., Németh, B., & Tikk, D. (2008). Matrix factorization and neighbor 

based algorithms for the netflix prize problem. In Proceedings of the 2008 ACM 

conference on Recommender systems (pp. 267-274). ACM. 

Tong, H., & Lin, C. Y. (2011). Non-Negative Residual Matrix Factorization with 

Application to Graph Anomaly Detection. SDM, 143-153. 

Wang, F., Li, T., Wang, X., Z. S., & Ding, C. (2011). Community discovery using 

nonnegative matrix factorization. Data Mining and Knowledge Discovery, 22(3), 

493-521. 

Wang, J. J., Wang, X., & Gao, X. (2013). Non-negative matrix factorization by 

maximizing correntropy for cancer clustering. BMC bioinformatics, 14(1), 107. 

Wang, Y., Jia, Y., Hu, C., & Turk, M. (2005). Non-negative matrix factorization 

framework for face recognition. International Journal of Pattern Recognition and 

Artificial Intelligence, 19(04), 495-511. 

Washio, T., & Motoda, H. (2003). State of the art of graph-based data mining. Acm 

Sigkdd Explorations Newsletter, 5(1), 59-68. 

Xie, S., Wang, G., Lin, S., & Yu, P. S. (2012). Review spam detection via temporal 

pattern discovery. In Proceedings of the 18th ACM SIGKDD international 

conference on Knowledge discovery and data mining (pp. 823-831). ACM. 

Xu, X., Yuruk, N., Feng, Z., & Schweiger, T. A. (2007, August). Scan: a structural 

clustering algorithm for networks. In Proceedings of the 13th ACM SIGKDD 

international conference on Knowledge discovery and data mining (pp. 824-833). 

ACM. 

Zhao, P., Han, J., & Sun, Y. (2009). P-Rank: a comprehensive structural similarity 

measure over information networks. In Proceedings of the 18th ACM conference 

on Information and knowledge management (pp. 553-562). ACM. 

Zou, Z., Li, J., Gao, H., & Zhang, S. (2010). Mining frequent subgraph patterns from 

uncertain graph data. Knowledge and Data Engineering,IEEE Transactions on, 

22(9), 1203-1218. 

 

 


