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ABSTRACT OF THE DISSERTATION

TECHNIQUES AND TOOLS FOR SECURE WEB BROWSER
EXTENSION DEVELOPMENT

by REZWANA KARIM

Dissertation Director: Vinod Ganapathy

Many modern application platforms support an extensible architecture that allows the appli-

cation core to be extended with functionality developed by third-parties. This bootstraps a

developer community that works together to enhance and customize the basic functionality of

those platforms. To ease development of such extensions, these platforms expose an API that

third-parties can use to implement their functionality. For instance, Web applications make

use of the browser’s Document Object Model (DOM) API, smart phone applications use the

mobile platform’s SDK and browser extensions use the extension API. These APIs usually

endow extension developers with privileges to access various system resources. However, to

isolate the platform from any new security threats caused by these untrusted extensions, the

API must ideally restrict extensions’ authority. Thus, an important challenge is to simplify ex-

tension programming for the third-party developers while ensuring that these extensions do not

compromise the security of the application core.

This dissertation seeks to address the above issues in the context of Web browser extensions.

It presents algorithms and tools to facilitate secure Web browser extension development. In

particular, it makes the following two contributions.
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First, it studies and characterizes the security of a modern Web browser extension architec-

ture, the Mozilla Jetpack framework — proposes solutions to improve the security of the archi-

tecture and extensions developed on top of it. It presents Beacon, which leverages JavaScript-

level information flow technique to detect unsafe programming practices in browser extensions.

Upon analyzing 68000 lines of JavaScript code from modern extension framework and real

world extensions, Beacon found 36 instances of potentially unsafe programming practices.

Second, it addresses the problem of porting unsafe legacy extensions to modern, privilege-

separated extension architectures. It presents Morpheus, which applies program analysis and

software engineering techniques that refactor legacy vulnerable extensions for use with modern

extension frameworks, the Jetpack framework in particular. Morpheus also enables fine-grained

control over extensions via a runtime policy enforcement engine. Morpheus has been applied

to successfully port 52 legacy Mozilla extensions to the Jetpack framework.
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Chapter 1

Introduction

This dissertation considers the problem of building secure Web browser extensions. In particu-

lar, it makes two contributions. First, it studies and characterizes security problems in Jetpack,

the modern Web browser extension framework by Mozilla, and proposes a solution to improve

the security of modern extensions by automatically detecting unsafe programming practices.

Second, it develops methods to assist extension developers build code that adheres to security

principles. Violations of these principles could lead to exploitable vulnerabilities. To further

strengthen the security of modern extensions built atop Jetpack, it proposes runtime policy en-

forcement that allows fine-grained access control and blocks potentially dangerous information

flows. The methods developed in this dissertation have been prototyped in two tools, Beacon

and Morpheus. Beacon detects unsafe programming practices in real world JavaScript-based

browser extensions and the extension framework itself. Morpheus is designed to automatically

transform legacy extensions by porting them to the Jetpack framework that provide stronger

security guarantees.

1.1 Extensibility of the Web Browser

The Web browser has evolved into a complex computing platform, and in certain cases has be-

come the ”de-facto” operating system for Web applications. Part of the credit can be attributed

to its extensible architecture that allowed third party developers to continuously enhance and

customize the basic functionality of the browser via applications that are known as browser ex-

tensions. Some of the popular extensions eventually became integral parts of the browser itself.

Not surprisingly, most modern browsers support such third-party extensions and nurture an

extension developer community to escalate development of extensions that enrich the browser

ecosystem. Browser extensions offer a wide range of functionality, for example, customizing
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Web page look and feel, debugging Web applications, intercepting and analyzing network traf-

fic, manipulating security and privacy sensitive data and interacting with a remote Web service

like Google Translate. Such extensibility popularizes the browser to end-users, thereby attract-

ing more developers to embrace the platform. Extensions come in a variety of flavors, such

as executable plugins to interpret specific MIME formats (e.g., PDF readers, ActiveX, Flash

players), browser helper objects, and scriptable extensions. This dissertation focuses on script-

able extensions for the Mozilla Firefox browser. Such scriptable extensions, written mostly

in JavaScript, are widely available, and have contributed in large part to the popularity of the

Firefox browser and related tools, such as the Thunderbird mail client. As of July 2015, around

14000 extensions, supporting a wide variety of functionalities, are available for Firefox via the

Mozilla extensions gallery [14] with popular extensions often used by millions of users.

1.2 Browser Extension Security

To support rich functionality in extensions, most modern Web browsers export privileged APIs

allowing extension developers to access many sensitive resources, for example file system,

password, cookies, network and browser cache. These JavaScript based extensions are funda-

mentally different from Web applications that execute JavaScript code in front-end. Code that

executes within a Web page is often tightly sandboxed by the browser, e.g., using the same-

origin policy [18], and does not have access to privileged browser APIs whereas JavaScript

code in extensions run with the privilege of hosting principals i.e., a Web browser. Unfortu-

nately, browser extensions do not undergo the same quality control as the rest of the browser,

and are riddled with vulnerabilities. Hence, such capability i.e., unfettered privileged access

to resources, can be misused by attacks directed against vulnerable ones. As a consequence,

compared to Web applications, these extensions pose more threat to end-users — the benign-

but-buggy extensions can be exploited by remote attackers to take control over the entire Web

browser, and steal sensitive end-user data.

Foreseeing threats to browser security, vendors have maintained a site requiring authoriza-

tion, somewhat equivalent to a marketplace for mobile apps, where the developers can make

their extension available for users to download. Users are strongly recommended to install the
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extensions that are only available in the marketplace as the browser vendors can monitor them

for performance and security as they are uploaded to the gallery. Browser vendors typically

perform a security review of extensions to check adherence to vendor-prescribed security best

practices before being featured in the marketplace. If an extension fails the review process,

it is returned to the developer to fix the reported issues, and hence the entire process involves

a development-review-development cycle before being finally released for public use. How-

ever, this review process is often conducted manually and adds additional delays in publishing

extensions which can be frustrating for developers. Moreover, the process largely depends on

developers’ expertise and meticulous effort. Extension security thus becomes a double-edged

sword for browser vendors — it is strictly required to safeguard the browser platform from

extension vulnerabilities, on the contrary, it raises the barrier of adoption of the extension ar-

chitecture among the third-party developers. Thus, it is desirable to develop faster review pro-

cess, automated to the extent possible. Providing the extension developer with tools to detect

vulnerabilities upfront can further speed up the process.

1.3 Two Models of Extension Development

Since its inception, scriptable extensions for the Firefox browser have been primarily developed

using open technologies such as HTML, CSS, JavaScript and XUL [20]. In general, extensions

can be developed using two different models : (1) legacy and (2) modern.

Extensions following the legacy model make heavy use of XUL and invoke low-level XP-

COM [66] APIs to access sensitive system resources. These legacy extensions have a mono-

lithic architecture, where extension code and code interacting with Web page content execute

in a unified JavaScript heap. The legacy API lacks high-level abstractions and extension au-

thors are required to write their code from scratch, directly accessing the XPCOM interface

to perform privileged actions. Such an approach, although lacking modularity, endows devel-

opers with the flexibility of implementing diverse functionalities. On the flip side, it provides

too much authority to each extension. The unified JavaScript heap raises the risk of shared

references that could easily lead to privilege escalation. An exploitable vulnerability anywhere

in the extension typically exposes the entire XPCOM interface to the attacker.
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Several solutions, both using offline analysis [23, 24] and runtime detection [35, 37], have

previously been proposed to detect vulnerabilities in legacy extensions. These solutions mainly

attempts to diagnose and, if possible, restrict certain sets of information flows which potentially

leak sensitive data. The offline analysis based solutions, which predominantly employ a static

analysis of the extension JavaScript code, emphasize detecting unsafe code patterns that are

likely to leak sensitive data. Besides being unsound and imprecise, static analysis alone is not

sufficient to track flow of data at a fine-grained level. Runtime detection based solutions, in

contrast, aim to restrict potentially dangerous information flow based on security policies and

employ a runtime policy enforcement. However, in the absence of any defense-in-depth mech-

anism and properly structured modular code, achieving an adequate level of security requires

extensive policy enforcement in legacy extensions. This approach effectively increases the run-

time overhead and deteriorates the perceived performance at the user end (not to mention being

difficult to implement correctly). Moreover, enforcing fine-grained security policies in legacy

extensions is non-trivial and the intricacies include modifications of the actual extension code,

the extension API and often the browser itself [67, 74]. The underlying reason is the monolithic

structure of legacy extensions that leads to an undesirable mix of program logic with security

logic. With a unified heap and lack of any isolation primitives in the JavaScript language, exten-

sion developers must consciously and carefully restrict access to critical functionality. Weaving

policies requires a thorough understanding of the extension code and implications of security

policies, and expertise to reason about placement of checks. The non-modular structure is

particularly unfavorable for deploying a modular, extensible policy checker framework, where

extension code can be oblivious of addition or removal of security policies. Finally, browser

level support would be required to accommodate any policy that necessitates distinction of

objects coming from different trust origins.

Securing legacy extensions is thus a challenging task for all involved parties – developers,

security tools designers and browser vendors. The fundamental problem lies in the extension

architecture itself — extensions implemented using heterogeneous technologies and containing

code from different trust levels execute in the same program heap. The monolithic architecture

not only leads to vulnerabilities in legacy extensions due to unsafe programming practices, but

the mishmash of technology is also intimidating to novice developers.
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Web browser vendors have therefore recently developed new extension frameworks export-

ing better abstractions, and aimed at better isolating extensions while still allowing them access

to privileged browser state. Extensions that run on top of these modern frameworks follow a

different programming model compared to legacy extensions. Examples of such frameworks

include the Google Chrome extension architecture and Mozilla’s Jetpack extension framework

for Firefox.

The Jetpack framework focuses on easing the extension development process with an em-

phasis on modular development and security. In Jetpack, each extension is a hierarchical col-

lection of modules where each module explicitly requests the capabilities that it requires, e.g.,

access to specific sensitive resources. Jetpack therefore aims to confine the effect of a vulnera-

bility to an individual module by (1) structuring extensions as a collection of isolated modules

that communicate via clearly defined interfaces and (2) attempting to enforce security prin-

ciples like privilege separation and the principle of least authority (POLA) [70], violation of

which could trigger privilege escalation. In other words, Jetpack adopts the strategy of defense-

in-depth — a thorough arsenal of isolation between extension code and untrusted Web content,

a hierarchical collection of isolated modules, and adherence to security principles. The respon-

sibility to secure extensions is distributed in this layered defense mechanism. Jetpack takes an

architectural approach to guarantee the first layer of defense — process-level isolation between

JavaScript running in the Web page context and in the extension context. The next two layers

— hierarchical organization of isolated modules and adherence to security principles, form the

second line of defense and are dictated by the structure of the extension code. Additionally,

satisfying structural requirements eases reviewing modern Jetpack extensions through static

reasoning about security properties at the module level.

Despite the introduction of modern extension frameworks, legacy extensions are still sup-

ported by Firefox due to their large user-base, with the popular ones being actively used by

millions of users on a daily basis. Moreover, some developers continue to favor the legacy

model due to their long familiarity with the programming model and the flexibility of perform-

ing privileged actions without being restricted by constraints imposed in modern extension

frameworks.
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1.4 Motivation

Adherence to the security principles in Jetpack extensions, which follows a modern model of

extension development, can give a stronger security guarantee compared to legacy extensions.

However, structuring extensions to conform to these security principles requires developers’

expertise and a deep understanding of the security implications triggered by violations of secu-

rity principles. As shown by our study of more than 600 Jetpack modules, obtained from the

Jetpack codebase and 359 real-world Jetpack extensions, such violations are quite common.

There are several instances where the recommended programming principles are not followed

by developers resulting in capability leaks through the module interface. Such leaks, often in-

advertent and hard to detect via manual inspection, induce overprivileged modules that violate

security principles. This nullifies the benefit that Jetpack attempts to provide in limiting the ef-

fect of vulnerabilities via module isolation and static reasoning about capabilities at the module

level. Given that most developers are not security experts and even the highly skilled devel-

opers can make mistakes that can thwart security of the browser, modern extensions too have

to undergo a security review at the reviewer’s end. As highlighted earlier, it would be more

pragmatic to automatically detect security violations. However, existing solutions to statically

detect unsafe programming practices in extensions are only applicable to legacy extensions,

and that too to uncover leaks of sensitive data, and cannot be directly leveraged to detect mod-

ule level capability leaks in modern extensions. Casting the solutions for legacy extensions to

make them amenable for analyzing modern extensions would require a substantial amount of

effort. It would necessitate modelling a different set of APIs, tracking capability instead of data

and finally addressing the core structural differences between legacy and modern extensions

as discussed later in this chapter. Further, additional analysis would be required to identify

instances of modules that ask for privileges but never utilize them in the code.

While adherence to recommended best practices can contain the effects of vulnerabilities

in a modern extension, these best practices do not safeguard against attacks such as confused

deputy [47] attacks. To mitigate such attacks, extensions must be protected with another layer

of defense in the form of fine-grained control over the actions of extensions. Security policies

can further attenuate the authority of extension code in case the attacker tries to misuse the
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privileges given to the compromised extension. The modular structure of modern extensions

facilitates embedding the policy checker without affecting the actual extension code. Note

that runtime policy enforcement can possibly degrade the end-user experience by introduc-

ing runtime performance overhead. However, we show that overhead can be minimized by

strategically crafting the policy and inserting checks only at limited number of program points.

Together with runtime policy enforcement, conformance to security principles can improve the

security guarantee of modern extensions compared to legacy extensions.

Unfortunately, the current practice is to develop such modular extensions from the ground

up, adhering to the programming disciplines that the frameworks enforce. Legacy extensions

cannot directly execute atop modern extension frameworks and gain the benefit they provide

due to two key factors: (1) structural and architecture-level incompatibility and (2) differences

in support for various technologies (extension UI and binary components). Therefore, in or-

der to obtain the same security guarantees as in a modern extension, a legacy extension must

be ported to the new framework. However, doing so manually would be expensive and time-

consuming. The situation is exacerbated by the prevalence of thousands of popular, but unsafe,

legacy extensions and the persistent use of the legacy model by a section of extension develop-

ers. This huge corpus of legacy extensions must be ported to the modern Jetpack framework, not

only for security purposes, but also for design compatibility with future multi-process browser

architectures. Legacy extensions need to be transformed in a way that they conform to the rec-

ommended security principles while preserving program semantics. The underlying challenge

here can be attributed to the key differences between the programming models of legacy and

the Jetpack extension framework:

1. Structure of extension code: Legacy extensions offer a unified JavaScript program heap

for all extensions whereas Jetpack offers the abstraction of isolated heaps for individual

modules.

2. Nature of communication between different trust levels: In legacy extensions, both priv-

ileged extension code and unprivileged Web page content lies in same address space and

therefore can communicate with each other in a synchronous manner. In contrast, they

execute in two different processes in Jetpack extensions and interact via an asynchronous
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message passing protocol.

This dissertation addresses these challenges involved in developing secure extensions and

supports the following problem statement.

Problem Statement: To safeguard the browser from extension vulnerabilities, modern

extension frameworks highly depend on third-party extension developers’ expertise and

meticulous effort in adhering to certain programming and security principles.

1.5 Simplifying Secure Extension Development

This dissertation takes the above problem into consideration and proposes techniques and tools

for developing secure extensions. The target user of these tools are extension developers and

reviewers, not the end-user.

We study Jetpack, Mozilla’s modern extension framework, to characterize the problems

that lead to violations of POLA and privilege separation. We model this problem as a capability

leak detection problem. A leaked capability endows another module with privilege that it did

not explicitly ask for which clearly violates the recommended security principles. We present

Beacon, a capability flow analysis tool, to automatically detect such leaks and any violation

of these principles during extension development. The key idea is to statically analyze the

extension module code to track the flow of capability from its point of origination, i.e., sensitive

resource access to the module interface. Our extensive evaluation of the Jetpack framework

and the real-world Jetpack extensions detected 36 capability leaks. Often, these leaks are not

required for extension functionality and hard to detect via manual inspection. This observation

suggests that even heavily-tested production-quality code may contain capability leaks. Beacon

can help extension developers to uncover these leaks early in the development phase and ensure

that their code conforms to the recommended security principles. Similarly, reviewers can

utilize it in the extension vetting process before making them available to the public.

We address the significance of retargetting legacy extensions to modern frameworks and
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identify the challenges involved in it. These challenges, which mainly revolve around refac-

toring legacy extension code and constructing secure modules while retaining the UI and func-

tionality, stem from the differences in programming models and the necessity to conform to

certain security principles. We present Morpheus, a static analysis and transformation tool that

allows legacy Firefox extensions to be systematically ported to Mozilla’s Jetpack framework.

Morpheus statically analyze a legacy extension code and partition it into Jetpack modules that

satisfy POLA and privilege separation. Each module encapsulates objects corresponding to

sensitive XPCOM APIs and enables accessor methods which provide the required API func-

tionality. Morpheus empowers developers to automatically port their legacy extensions to Jet-

pack and preserve their earlier investment in developing them. It also allows extension devel-

opers to write legacy-style imperative code and systematically convert it to a Jetpack extension

in order to benefit from the enhanced security guarantee offered by the framework. We evaluate

Morpheus with a suite of 52 legacy extensions and show that the way Morpheus transforms the

legacy extensions greatly improves their security guarantee.

Transformations on legacy extensions, as applied by Morpheus, also allows enforcement

of fine grained security policies without any modification to the browser runtime or additional

instrumentation of the extension code. We propose a policy checker framework for Jetpack

which allows runtime policy enforcement at a fine-level of granularity to control sensitive re-

sources accesses. The modular and extensible architecture of a Jetpack extension, together with

the policy checker, allows the developers to seamlessly add or remove security policies without

affecting the rest of the code. Policies are designed and checks are inserted in such a way that

the policy enforcement does not incur any perceivable runtime overhead.

1.6 Summary of Contributions

The thesis this dissertation supports is:

Thesis Statement: Automated program analysis techniques can identify violations of se-

curity principles in extensions and extension framework code. Automated program trans-

formations can be used to port legacy browser extensions to modern extension frame-

works.
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In light of the above thesis statement this dissertation makes the following contributions:

• We study Jetpack, Mozilla’s modern extension framework, to characterize the problems

that lead to violations of POLA and privilege separation (Chapter 3). We model this

problem as a capability leak detection problem. We present Beacon, a capability flow

analysis tool to automatically detect such leaks and any violation of these principles

during extension development.

• We address the challenges involved in porting a huge corpus of legacy extensions to mod-

ern frameworks (Chapter 4). These challenges stem from the differences in programming

models and necessity to conform to certain security principles. We present Morpheus, an

automated toolchain to port legacy Firefox extensions to Mozilla’s Jetpack framework.

• We propose a policy checker framework for Jetpack that allows runtime policy enforce-

ment at a fine-level of granularity (Chapter 4). The modular and extensible architecture of

a Jetpack extension together with the policy checker allows the developers to seamlessly

add or remove security policies without affecting the rest of the code.

• We demonstrate the effectiveness of these tools by extensive experiments with real-world

browser extensions. We report on previously unknown 36 capability leaks that are de-

tected by Beacon in 359 Jetpack extensions and Jetpack code base (Chapter 3). We show

the utility of Morpheus by applying it to port 52 legacy extension to modern Jetpack

framework (Chapter 4). The effectiveness of policy checker framework at blocking at-

tacks is shown by enforcing 7 security policies in transformed extensions (Chapter 4).

1.7 Contributors to the Dissertation

The following is a list of people who co-authored papers from which material was used in this

dissertation. Chapter 3 of this dissertation is the result of a collaboration with my advisor, Pro-

fessor Vinod Ganapathy, Professor Chung-chieh Shan and my colleague Dr. Mohan Dhawan.

During this time, Professor Shan and Professor Vinod Ganapathy contributed to formulating

the problem of detecting violations of security principles in Jetpack modules as a capability

leak detection problem. Dr. Mohan Dhawan developed modules to automate the evaluation
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of the tool and helped in conducting large number of experiments. The idea of automatically

porting legacy Firefox extensions to the Jetpack framework, as illustrated in chapter 4, was

first coined by Professor Vinod Ganapathy. Dr. Mohan Dhawan developed the initial prototype

for rewriting the legacy JavaScript code and designed the module for handling synchronous

chrome-content communication against an asynchronous message passing channel.
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Chapter 2

Background

The primary purpose of Web browsers is to allow users to locate, retrieve and view content on

the Web available in different formats e.g., HTML based Web pages, files, image, videos and

audios. Web browsers are also used as clients to update and maintain Web applications that run

on top of the browsers. The immense popularity of these applications can be attributed to the

ubiquity of the latter across various types of devices. There are more than 80 different browsers

available today, with the most popular being Mozilla Firefox [57], Google Chrome [40], Inter-

net Explorer [55], Safari [22] and Opera [68]. The extensible architecture of these browsers

allows third-parties to enhance the browser functionality and has been instrumental in making

the browser a prominent computing platform. In this chapter, we provide a brief discussion

about the essential Web technologies, browser extensions and their security issues.

2.1 Core Web Browser Technologies

The major components of Web browsers include HTML/CSS parsers, layout and rendering

engine, JavaScript interpreter, network protocol stack and storage layers. The following is a

discussion of some of the standard set of essential Web technologies that forms the core of

browser extensions and Web applications.

HTML DOM

All Web documents are primarily written in HTML [32] and CSS [31]. While HTML, a

declarative markup language, describes the structure of the Web document, CSS dictates its

presentation and style. Elements in the HTML document form a tree structure that is inter-

nally represented and can be manipulated by a programming API known as Document Object

Model(DOM) [4]. Each HTML tag in a Web page is represented by a node in the DOM tree.
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Each DOM node also contains the associated CSS data as well as any application-defined event

handlers for GUI activity.

JavaScript

JavaScript [39] is a lightweight, interpreted, dynamic language that has become the Lingua-

franca for Web and for browser client side scripting in particular. It is prototype-based and

object-oriented, and allows functions to be treated as first class objects. It allows Web pages to

dynamically modify their HTML DOM structure, CSS style properties and alter the displayed

content. It also permits Web pages to register handlers for GUI events that empowers end-users

to interact with the page. JavaScript also allows a page to asynchronously fetch data from Web

servers and thus provide a rich experience for Web application users.

2.2 Browser Specific Technologies

In addition to the most common technologies discussed above, browser vendors sometimes

introduce their own technologies to simplify programming for the concerned platform. What

follows is a brief description of two important technologies used in the Mozilla [59] application

suite and frequently referenced in the remainder of the dissertation.

XPCOM

Extensions for Mozilla’s Firefox browser are mostly implemented in JavaScript which lacks ac-

cess to system resources. To enable the Firefox extensions to access various system resources,

Mozilla uses a technology named XPCOM [66]. XPCOM is a cross platform component object

model that has multiple language bindings, allowing XPCOM components to be used and im-

plemented in JavaScript, Java, and Python in addition to C++. XPCOM provides a set of core

components and classes, for file and memory management, threads, network access and more,

endowing JavaScript based browser extensions to interact with the system-level resources.
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XUL

To design portable, cross-platform user interfaces for all applications the Mozilla platform uses

XUL (XML User Interface Language) [20]. XUL is Mozilla’s XML-based language that in-

cludes all the features available in XML and aims to make development for the Mozilla browser

easier and faster by simplifying development and modification of the interfaces. XUL allows

developers to create common GUIs including various input controls, toolbars with buttons or

other content, different types of menus, tabbed dialogs, trees for hierarchical or tabular infor-

mation and keyboard shortcuts.

2.3 Web Application Security

To enrich users’ browsing experience, Web applications often include third-party JavaScript

libraries such as jQuery, Google Analytics, Facebook and other social APIs. In such cases,

scripts from different domains or origins can potentially interact with each other and, if per-

mitted, can access application data. However, scripts in Web applications are restricted by two

security policies — same-origin policy [18] and Content Security Policy (CSP) [1]. Same-

origin policy prevents scripts of different origins from accessing data when they are loaded in

different iframes [8]. CSP allows Web page authors to whitelist trusted sources of content that

browsers can load on a page. Browsers rely on these two security policies for securing Web

applications and protecting application data. However, browser extensions are typically obliv-

ious to the origin of content and thus are historically different from Web applications in terms

of functionality. Therefore, the security measures for Web applications are not applicable for

browser extensions.

2.4 Web Browser Extension

A browser extension adds functionality to the browser itself, often in the form of extra toolbars,

context menus, or customizations to the browser’s user interface. Extensions come in a variety

of flavors, such as executable plugins to interpret specific MIME formats (e.g., PDF readers,

ActiveX, Flash players), browser helper objects, and scriptable extensions developed mostly

in JavaScript, HTML and CSS. Extensions offer a diverse set of functionalities – displaying
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Figure 2.1: A real-world extension displaying weather information.

specific data based on user preference, customizing the rendered Web page, accessing and even

manipulating security and privacy sensitive data, developing and debugging Web applications

and many more. Figure 2.1 shows an extension that displays weather data upon clicking a par-

ticular icon. Some extensions become so popular that they are later integrated with the main

browser as an inherent feature. For instance, search-bar or tabbed browsing experience was

initially introduced by Mozilla Firefox extensions and later adopted by the next Firefox ver-

sion. Browser extensions are generally developed by third-party developers, widely available

and improve browsing experience for the end-users enabling them to customize the available

features by installing various extensions. Extensions help form a developer community for

the concerned browser platform and eventually contribute in large part to the popularity of the

Firefox browser and related tools, such as the Thunderbird mail client.

As of July 2015, around 14000 extensions, offering a wide variety of functionalities, are

available for Firefox via the Mozilla extensions gallery. Popular examples of extensions for

Firefox include GreaseMonkey [6], which customizes the look and feel of Web pages using

user-defined scripts, Firebug [5], which is a JavaScript code development environment, and

NoScript [16], which is a security extension that aims to prevent the execution of unauthorized

third-party scripts.

To support diverse functionalities, most modern Web browsers export privileged APIs (e.g.,

XPCOM for Firefox) allowing extension developers to access sensitive resources like file sys-

tems, passwords, cookies, networks and more. This unrestricted access to sensitive resources

allows JavaScript(JS) based extensions to run with the privilege of hosting principals i.e., a Web

browser. Thus, browser extensions are fundamentally different from Web applications that have

limited authority governed by principles like same-origin policy. Therefore, compared to Web
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applications these extensions pose more threat to end-users, as the benign-but-buggy extensions

can be exploited by remote attackers to take control over the entire Web browser.

This high security risk compelled the browser vendors to maintain authorized sites for host-

ing extensions. The addon gallery is the official site for Firefox extensions while the Chrome

Web Store is the official means for users to find and install extensions for Google Chrome. The

addon gallery and Web store is similar to other app stores, such as those for iOS and Android,

in that developers make their extension available for users to download. In addition to these

authorized places, extensions can also be installed manually by a user or an external program.

But unlike the ones on official sites these extensions do not go through a rigorous security re-

view process. In case the developer of such extensions intends to provide a security guarantee,

they can use either Beacon or Morpheus. Browsers vendors typically discourage end-users

from downloading and installing extensions from untrusted sources due to potential security

consequences.

Each browser offers a different extension architecture, extension technologies and API pro-

vided for extension programming. For example, in Firefox, extensions can modify the browser

UI using a feature of XUL called an overlay, which allows the UI provided from one source, in

this case, the Firefox browser, to be merged together with the UI from the extension. In Google

Chrome, extensions can use chrome APIs [41] or Web APIs [43] for the same purpose.

2.4.1 Legacy Extension Architecture

Legacy extensions are typically written using open technologies such as HTML, CSS,

JavaScript and XUL. These extensions often utilize privileged browser APIs like XPCOM to

access system resources and perform useful tasks. In terms of interaction with API, JavaScript

code in extensions can be divided into two categories — privileged JavaScript code (chrome

script) accessing XPCOM and unprivileged JavaScript code (content script) interacting with

the untrusted Web content on Web pages. However, the original extension architecture used

by Firefox has a number of features that make it vulnerable. We briefly discuss some of them

below:

• Unified JavaScript heap: In Mozilla’s legacy extensions, both unprivileged content
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scripts and privileged chrome scripts execute in the same heap, raising the risk of shared

references. Due to the limitations of the isolation mechanism that attempts to separate

untrusted references of the content JavaScript from the chrome JavaScript, the interface

has been exploited [25, 71] by attackers. In such cases, if the user navigates to a mali-

cious Web page, the attacker could manipulate the shared object references and influence

the execution of the privileged code within the extension. Such scenarios of privilege

escalation have previously been used to exploit vulnerable extensions [6].

• Privileged objects: All chrome scripts have default access to the global window object

and its properties. The Components object is a special property of the window which

provides access to the browser’s sensitive XPCOM APIs. If an attacker gets a reference to

the Components object, he can access any system resources and effectively has control

over the entire browser. Therefore, the availability of Components to all scripts by

default significantly increases the chances of vulnerability exploitation in a shared heap

environment.

• Chrome DOM: The chrome DOM encodes the visual representation of the browser’s UI

including toolbars, menus, statusbar and icons. Similar to JavaScript code on a Web page

that can access the page DOM, chrome scripts also have access to the chrome DOM and

can programmatically modify the browser’s entire UI.

Parts of the browser itself are written in JavaScript, as are extensions. With a unified heap

and lack of any isolation primitives in the language itself, security of legacy extensions predom-

inantly relies on extension developers’ discretion and expertise. Much prior work has shown

the drawbacks of legacy extensions [24, 25, 35, 36] and highlighted the deficiencies in the

design of the legacy architecture.

2.4.2 Modern Extension Frameworks

Web browser vendors have addressed the shortcomings of the legacy extension architecture and

recently developed new extension frameworks aimed at better isolating extensions while still

allowing them access to privileged browser state. Examples of such frameworks include the

Google Chrome extension architecture and Mozilla’s Jetpack extension framework for Firefox.
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Figure 2.2: Google Chrome extension architecture.

Google Chrome Extension Architecture

Addressing the security issues of legacy Firefox extension architecture, Google Chrome incor-

porates security principles in designing its own extension architecture [25]. It aims to protect

users from vulnerabilities in benign-but-buggy extensions by dividing the extension into three

process-isolated components: content scripts, extension core and native binary, and following

three security principles : POLA, privilege separation and strong isolation. Figure 2.2 shows

a high level overview of the Chrome extension architecture. It features three primary security

mechanisms:

• Privilege separation: Chrome extensions adhere to a privilege-separated architecture.

Each extension typically consists of two types of components: zero or more content

scripts and zero or one extension core. Content scripts are limited to only interacting

with untrusted Web content and therefore execute with no privileges. Extension core

implements extension specific features including browser UI modification, interacting

with system level resources via Chrome’s extension API and therefore executes with the

extension’s full privileges. These two types of components, having different level of priv-

ileges, are isolated from each other using separate processes. Therefore, content scripts
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cannot access any extension API, and similarly, the extension core cannot directly inter-

act with Web sites and need to communicate to content scripts via JSON [13] messages.

However, the extension core does not have access to the host machine and an exten-

sion can optionally have a native binary component for this purpose. The native binary

component can only interact with the extension core via standard Netscape Plugin API

(NPAPI) interface and not with content scripts. Such privilege separation between com-

ponents prevents the attacker-controlled Web sites to gain direct access to the privileged

extension API and take control of the browser.

• Isolated worlds: Apart from the process-level isolation between components, there is

an additional layer of isolation between content scripts and the Web pages it interacts

with. This isolated worlds mechanism is intended to protect content scripts from Web

attackers by disallowing pointer exchange in a shared program heap between them. For

this purpose, even though a content script can access or modify a Web site’s DOM, their

JavaScript heaps are separate and each have their own DOM objects. This makes it

difficult for attackers in malicious Web sites to tamper with content scripts in vulnerable

extensions.

• Permissions: The goal of permissions is intended to mitigate extension core vulnerabil-

ities. By default, a chrome extension has no access to browser APIs and must explicitly

request permissions for such access. Each extension comes packaged with a manifest, an

upfront specification of permissions that governs the access to the browser APIs and Web

domains. A vulnerable extension, if compromised, cannot request more permission than

those already requested explicitly by the developer. These permissions, once granted, al-

lows only the extension core to access the privileged APIs. Consequently, the severity of

a vulnerability in an extension is limited to the API calls and domains that the statically

declared permissions allow.

Mozilla’s Jetpack Framework for Firefox

The Jetpack framework [9], officially known as addon SDK [11], focuses on simplifying the

extension development process with an emphasis on modular development, code sharing and
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Figure 2.3: Architecture of a simple Jetpack extension.

security. The framework provides high-level APIs, allowing extension authors the ease of

writing extensions using standard Web technologies, like JavaScript, HTML and CSS. This

is in contrast to traditional extension development, which required developers to be proficient

in Mozilla specific technologies like XUL [20] and XPCOM [66].

Figure 2.3 shows the overall architecture of a Jetpack extension. Each extension consists

of at least one privileged chrome scripts and zero or more unprivileged content scripts. Con-

tent scripts are responsible for interacting with Web page content and are completely isolated

from privileged chrome scripts that interact with core modules encapsulating XPCOM interface

access and browser DOM manipulation. Chrome and content scripts communicate via asyn-

chronous JSON pipe further making it harder for the Web attacker to launch a successful attack

via a compromised content script.

From a security perspective, Jetpack follows the same design philosophy as the Chrome

extension architecture. Adhering to the security principles of privilege separation and POLA,

Jetpack also implements key security features e.g., a privilege separated architecture, strong

isolation and a permission system, Jetpack aims to confine the effect of vulnerable extensions.

Jetpack attempts to provide security guarantees at finer granularity. In addition to process level

isolation between components, separate heap for content script and Web page content, Jetpack
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further structures the extension-specific code as a collection of modules, the combination of all

of which is equivalent to an extension core component in a Chrome extension. These modules

are isolated and communicate via cleanly defined interfaces. Permissions are granted on a

module-basis rather than to the extension as a whole, as opposed to Chrome extensions. Each

Jetpack module is thus limited to the permissions or privilege granted to it statically by the

manifest provided by the developer. Together with conformance to security principles such

module-level permission further attenuate the authority of a compromised extension and thus

severity of vulnerability is further reduced compared to Chrome extension. More on this will

be discussed on section 4.4 in chapter 4.
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Chapter 3

An Analysis of the Mozilla Jetpack Extension Framework

In this chapter, we study the extent to which the Jetpack framework achieves its goals of re-

ducing risks and protecting users from vulnerable extensions. Specifically, we present Beacon,

a tool that uses static analysis to study capability leaks in Jetpack modules and extensions.

A capability leak happens when a module requests permission to access a specific XPCOM

interface (i.e., a capability), and inadvertently exports a pointer to this interface. Capability

leaks allow other modules to access this XPCOM interface (via the exported pointer) without

explicitly requesting access permission for the interface, thereby breaking modularity and the

permission system, and essentially violating the principle of least authority (POLA). Beacon

also detects other violations of least privilege or POLA, i.e., cases where a module requests

access to an XPCOM interface, but never uses it. A vulnerable module that violates POLA

can endow an attacker with more privileges than if the module satisfied POLA. We present the

design and implementation of Beacon in detail followed by an evaluation of its effectiveness in

real world Jetpack extensions and Jetpack modules itself.

3.1 Problem

As discussed earlier, most modern browsers allow third-party developers to enhance core

browser functionality by developing browser extensions. To support rich functionality,

Mozilla’s Firefox browser exports an XPCOM interface [66] that JavaScript code in exten-

sions can use to access a wide variety of privileged browser objects and services. Access to the

XPCOM interface endows JavaScript code in an extension with capabilities that are normally

not available to JavaScript code in a Web page. For example, JavaScript code in an exten-

sion can freely send XMLHttpRequests to any Web domain, without being constrained by the

same-origin policy. The extension can also freely access objects stored on the file system, such
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as the user’s browsing history, cookie store, or any other files accessible by the browser process.

Unfortunately, the privileges endowed by the XPCOM interface can be misused by attacks

directed against vulnerable extensions. A recent study of over 2400 Firefox extensions [24]

found several extensions demonstrating insecure programming practices and exploitable vul-

nerabilities. A successful exploit against vulnerable extensions gives the attacker privileges to

access the XPCOM interface, via which he can access the rest of the system.

A key problem that has contributed thus far to vulnerabilities and insecure programming

of Firefox extensions is the lack of development tools for extension authors. Extension authors

have thus far been required to write their code from scratch, directly accessing the XPCOM

interface to perform privileged actions. Such an approach lacks modularity, and provides too

much authority to each extension. An exploitable vulnerability anywhere in the extension typ-

ically exposes the entire XPCOM interface to the attacker.

To address this problem, Mozilla has recently been developing the Jetpack framework [11]

that aims to improve the way extensions are developed. It does so using modularity and by

attempting to enforce the principle of least authority (POLA) [70]. A Jetpack extension consists

of a number of modules. Each module explicitly requests the capabilities that it requires, e.g.,

access to specific parts of the XPCOM interface, and is isolated from the other modules at the

framework level, i.e., its objects are not visible to other modules in the Jetpack extension unless

they are explicitly exported by the module. The Jetpack framework therefore aims to contain

the effects of vulnerabilities within individual modules by structuring the extension as a set

of modules that communicate with each other with clearly defined interfaces, and by ensuring

that each module only requests access to the XPCOM interfaces that it needs. The design

of the Jetpack extension framework also facilitates code reuse: Jetpack extension authors can

contribute the modules used in their extensions to the community, following which others can

use the modules within their own extensions. To bootstrap this process, Mozilla has provided

a set of core modules that provide a library of features that will be useful for a wide variety of

extensions.

In this chapter, we study the extent to which the Jetpack framework achieves its goals.

Specifically, we use static analysis to study capability leaks in Jetpack modules and extensions.

A capability leak happens when a module requests access to a specific XPCOM interface (i.e.,
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a capability), and inadvertently exports a pointer to this interface. Capability leaks allow other

modules to access this XPCOM interface (via the exported pointer) without explicitly request-

ing access to the interface, thereby violating modularity. We also use the same static analysis to

study violations of POLA, i.e., cases where a module requests access to an XPCOM interface,

but never uses it. A vulnerable module that violates POLA can endow an attacker with more

privileges than if the module satisfied POLA.

For capability flow analysis, we favor static analysis than dynamic analysis even though

static analyses are known to be susceptible to both false positives and false negatives. The

underlying reason is that we want to avoid well-known drawbacks of dynamic approach —

performance overhead and risk of missing any particular program execution path due to typical

low code coverage. On top of that, adapting dynamic approaches for this purpose would require

instrumentation of both browser and Jetpack extension runtime. In sharp contrast, our static

analysis based solution is more lightweight and does not require any modification of either of

them. And the extensive evaluation on the real world extension code as discussed later shows

that our solution is effective and capture the leaks in a time and memory efficient manner.

3.2 Background and Motivation

The Jetpack framework [9] focuses on easing the extension development process with an em-

phasis on modular development, code sharing and security. The framework provides high-level

APIs, allowing extension authors the ease of writing extensions using standard Web technolo-

gies, like JavaScript and CSS. This is in contrast with traditional extension development, which

required developers to be proficient in Mozilla specific technologies like XUL [20] and XP-

COM [66].

A Jetpack extension is a hierarchical collection of JavaScript modules, with each mod-

ule exporting some key functionality. A typical Jetpack extension consists of core modules,

user modules and some glue code. Core modules provide low-level functionality and are pro-

vided by Mozilla itself. User modules are usually authored by the extension developer or other

third-parties who have contributed their code to the community. Glue code ties up all the mod-

ules to provide the expected functionality of the extension. On execution, the Jetpack runtime
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loads each component module in a separate sandboxed environment resulting in namespace

separation for code within the modules. Inter-module communication is facilitated by spe-

cial JavaScript constructs, exports and require, which serve as well-defined entry and exit

points for the modules. The exports interface enables a module to expose functionality by

attaching properties to the exports object. The require function enables a module to import

such exported functionality.

The guidelines by Mozilla advise developers to follow POLA [12] when designing modules.

This helps in attenuating the capabilities of modules. The modular architecture of a Jetpack

extension coupled with strong isolation between the modules helps to confine the effects of

module execution. This is in sharp contrast to the traditional extension development model,

where monolithic extensions shared the same namespace and had privileged access to large

number of resources via the XPCOM interface. Prior work [23, 25, 35] has shown that such

extensions are vulnerable to a variety of security threats.

Although not recommended, a Jetpack module may also directly invoke XPCOM interfaces

if the desired functionality is not exported by either the core or user modules. However, this is

dangerous since interaction with XPCOM interfaces provides access to privileged resources and

inexperienced extension authors could inadvertently attach such capabilities to the exports

interface. Importing such modules would make the requesting module over-privileged and

violate POLA.

Figure 3.1 shows the architecture of a simple Jetpack extension which enables the user

to download files from the Web. Each of the dotted boxes in the figure represents a module.

Modules such as file, network, preferences represent the core modules and are provided by

Mozilla. The user-level modules include the helper module, the UI module and third-party file

utilities. As shown in the figure, the helper module and file utilities build on top of the services

exported by the core modules. The UI module directly invokes XPCOM interfaces to support

functionality not provided by core modules, such as user alerts or dialog boxes. Although such

direct invocations are not recommended (as shown by the dotted line), they are allowed till the

Jetpack framework matures and Mozilla develops core modules for all key services.
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Figure 3.1: Modular Structure of a simple Jetpack extension to download files.

(1) const {Cc, Ci} = require("chrome");

(2) let Preferences = {
(3) branches: {},
(4) caches: {},
(5) getBranch: function (name) {
(6) if (name in this. branches) return this. branches[name];

(7) let branch = Cc["@mozilla.org/preferences-service;1"]

.getService(Ci.nsIPrefService).getBranch(name);

(8) .../* other statements */

(9) return this. branches[name] = branch;

(10) }, ... /* other properties */

(11) };
(12) exports.Preferences = Preferences;

Figure 3.2: Code snippet of a module from a real-world Jetpack extension which leaks the
capability to access and modify browser preferences.

Capability leak in a Jetpack extension

Consider the code snippet as shown in Figure 3.2 which represents the actual code of the

Preferences module from ‘Customizable Shortcuts’ [2], a popular Jetpack extension with

over 5000 users. This module exports a method getBranch which inadvertently enables ac-

cess to the browser’s entire preference tree. If another module imports the Preferenecs

module, it would receive additional capabilities to access and modify the user’s preferences for
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all extensions without explicitly requiring access to the user preferences; in effect the import-

ing module becomes over-privileged. Although the Jetpack framework recommends adherence

to POLA, it does not safeguard against developer mistakes, with the result that unintended

capability leaks are frequent.

Let us now examine the code in detail to understand the cause of the capability leak. In

line 1, the module requests chrome authority to enable it to access any XPCOM interface.

Line 2-11 declare a Preferences object with several properties (including branches and

getBranch) defined on it. On line 12, the module exports the Preferences object by at-

taching it to the exports object. Since the entire Preferences object is exported, a module

which requires this module would have access to all its properties, including getBranch.

The getBranch method utilizes the chrome privileges acquired in line 1 to first create an

instance of the XPCOM interface nsIPrefService and then invoke the getBranch method

defined on the interface. The getBranch method returns an instance of another XPCOM

interface nsIPrefBranch, which provides a handle to access and modify user preferences.

After the assignment in line 7 is complete, branch stores an instance of nsIPrefBranch.

In line 9, the method returns this privileged instance to the caller. Thus, the capability to

manipulate the preference tree is leaked through the exports interface of the module.

The capability leak from Preferences module thus makes an importing module over-

privileged, thereby violating POLA. Such a capability leak might even cause inadvertent dele-

tion of user preferences. Ideally, the module should have been designed in a manner to either

export access only to its own preference branch, or return primitive values corresponding to the

preferences rather than a reference to the branch.

The module also violates another Jetpack extension design principle, which is to utilize

capabilities of core modules whenever possible and maintain the hierarchical module struc-

ture. The Preferences module accesses and returns a reference to the preferences XP-

COM interface even though the core modules provide equivalent functionality through the

preferences-service module, thereby breaking the expected hierarchical structure. The

absence of any restriction on developers to use core modules only exacerbates the problem.

Failure to adhere to Jetpack extension guidelines and principles is common in Jetpack mod-

ules, in part due to the absence of functionality in core modules and also because of the available
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Entity Sensitive attributes and methods
Bookmarks nsIRDFDataSource
Chrome Components.classes, Components.interfaces, Components.utils, Components.result
Cookies nsICookieService, nsICookieManager
Document window.gBrowser.contentDocument, window.document
Files nsILocalFile, nsIFile
Passwords nsIPasswordManager, nsIPasswordManagerInternal.
Preferences nsIPrefService, nsIPrefBranch
Serivces nsIIOService, nsIObserverService, nsIPromptService
Streams nsIInputStream, nsIFileInputStream
Window nsIWindowMediator, nsIWindowWatcher
XPCOMUtils nsIModule, generateQI

Table 3.1: List of some privileged resources and their access interfaces.

choices during module design and implementation. Although adherence to POLA ensures that

a module has the minimal set of capabilities required to perform its desired functionality, it is

hard to implement in practice due to developer mistakes and refactoring oversights. A capa-

bility leak analysis for Jetpack modules would help to identify modules that violate POLA and

restrict any security threat only to the concerned module.

3.3 Static Analysis of Jetpack Modules and Extensions

In this section we describe a static analysis to detect sources of capability generation in Jetpack

modules, flow of capabilities through a module and across the module interface.

The capability leak analysis is an instance of static information flow tracking where taint

is modeled as the capability of accessing sensitive sources. A list of the sensitive sources

considered in our analysis is given in Table 3.1. These sources are classified as sensitive as

they allow module code to access browser resources and perform privileged operations, such

as access to arbitrary DOM elements, read/write access to the cookie and password stores,

unrestricted access to the local file system and the network, etc.

In the context of Jetpack modules, an object acquires capabilities if (a) it directly accesses

any of the sensitive sources (XPCOM interfaces) or (b) aliases capabilities inherited by the

module via an explicit require call. In our analysis, an object is marked privileged if it

directly acquires capabilities, while it is considered tainted if it transitively acquires the capa-

bilities.

Both privileged and tainted objects propagate the associated capability through different
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program paths and can potentially leak it through the module’s exports interface. Thus, the

exports interface of each module is an information sink. A module can leak capabilities if it

exports:

• direct references to privileged or tainted objects, and/or

• functions that provide references to privileged or tainted objects on invocation or on

construction.

To identify capability leaks through module interfaces, we do a flow- and context-

insensitive call-graph based static analysis of JavaScript in the module code. Our analysis

converts the JavaScript code into the Static Single Assignment (SSA) [33] form and analyzes

each SSA instruction. It then processes these facts to perform capability leak analysis. The

analysis obtains a degree of flow sensitivity by performing a flow insensitive analysis on an

SSA representation of the program.

Our analysis models taint values to flow upwards in an object hierarchy i.e. an object is

tainted if it itself is tainted or any of its properties are tainted. The key insight is that properties

can be accessed given a reference to the parent object but not vice-versa. Thus, for the code

snippet in Figure 3.2, branches in line 9 is tainted because one of its properties is assigned

to branch, which is privileged (line 7). Similarly, Preferences also gets tainted as one of

its children ( branches) is tainted. Since there was no capability assignment to caches,

it remains untainted. We have adopted a conservative approach to handle arrays. Since it

is statically impossible to precisely determine the index for every array load, store, or access

instructions, if any element in the array is tainted then the entire array is marked tainted. Unlike

objects, our analysis models all array properties to be tainted if any of the siblings is tainted.

The analysis is inter-procedural. It models functions call sites, arguments and captures the

appropriate flow of taint across function invocations. Primitive values are not modeled. Our

analysis also does not implement any string analysis. This could affect capability flows arising

from string manipulation and dynamic constructs like eval. JavaScript containing eval is

supported, however the code introduced by eval is not modeled.
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Figure 3.3: Overall workflow of our analysis.

3.3.1 Stages of the Analysis

Our analysis is based upon Datalog and proceeds in three stages. In the first stage, the analysis

pre-processes the extension code to make it amenable to static analysis. The next stage per-

forms the core analysis on the pre-processed code. The core analysis generates Datalog facts

that represent capability flow in the Jetpack extension code. The results of core analysis are

then processed in the third stage to identify offending flows in the source code of the Jetpack

extension. Figure 3.3 illustrates a schematic diagram of the analysis of a Jetpack extension. The

components gray are contributions of this work, while those in white are off-the-shelf tools.

We now describe the various stages of the analysis in detail:

Pre-processing

Our core analysis (as will be described in Section 3.3.1) is based on call-graph construction.

The pre-processing stage process the module code to facilitate construction of a complete call-

graph for the module.

Since functions are first-class objects in JavaScript and can be properties of other objects, it

is possible that such functions are never invoked within the module. Further, if these functions

are exported by the module, they could be invoked by the module requesting them. A call-graph

generated for such a module would be incomplete since it would not reflect invocations for all

the functions. Therefore, we append the module code with additional JavaScript code which

would enable the call-graph generator to invoke all functions and generate the complete call-

graph for the module. To do so, we consider all functions and properties (including JavaScript
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Construct Desugared to Code Desugared Code
Destructuring property var {Cc, Ci} = var Cc =

assignment access and require("chrome"); require("chrome").Cc;

assignment var Ci =

require("chrome").Ci;

let † var let foo = 5; var foo = 5;

const var const SIZE = 100 var SIZE = 100

lambda Function f(x) x * x f(x) { return x * x; }
Function

Table 3.2: Pre-processed JavaScript constructs and their desugared forms.† We desugar all
forms of let i.e. statement, expression and definition.

getters and setter) reachable from the module’s exports interface and append appropriate

JavaScript statements for their invocation.

We do not append function objects defined in event handling or callback code because the

Jetpack runtime freezes the exports interface when the module has finished loading. This re-

stricts all event handlers from attaching or modifying exports interface. However, the loader

does not perform deep freeze of the exports object making it possible to modify any property

reachable from the interface. Beacon may therefore have false negatives. We plan to extend

Beacon to analyze all event handlers.

The pre-processing stage is also required to make the Jetpack extension code amenable for

static analysis. To do so, we desugar some of the JavaScript constructs into simpler forms.

For example, ‘destructuring assignment’ is a popular JavaScript construct that mirrors the con-

struction of array and object literals. In essence it only represents syntactic sugar to extract data

from arrays or objects. As part of pre-processing, we desugar it and convert it to statements

involving simple property access and assignment. For other constructs like let and const, we

change them to var statements while keeping the semantics unchanged. Table 3.2 lists set of

the pre-processed constructs along with their desugared forms.

The pre-processing stage also includes code re-writing to simplify statements involving

Mozilla specific XPCOM [66] interfaces, which indicate creation or access of privileged re-

sources. To do so, we replace all such XPCOM instances by stubs indicating function calls.

For example, the statement in line 7 of Figure 3.2 is re-written as shown below:

We also create summaries to indicate capabilities accessible from the stub methods. This

summary is fed to the analysis engine to enable it to accurately model the flow of capabilities
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let branch = Cc["@mozilla.org/ → let branch = MozPrefService()
preferences-service;1"] .getBranch(name);

.getService(Ci.nsIPrefService)
.getBranch(name);

when handling code that accesses properties on the stub method. For example, the module sum-

mary of MozPrefService would have one entry for getBranch which returns the capability

PrefBranch.

Core Analysis

For the purpose of statically analyzing the pre-processed JavaScript code we use an off-the-

shelf tool to generate a call-graph in the SSA format. We then generate appropriate Datalog

facts corresponding to statements in the JavaScript code and apply inference rules for points-to

and capability flow analysis.

Our points-to analysis is inspired by the JavaScript points-to analysis introduced in Gate-

keeper [44]. The key distinction is that in our analysis, all program variables carry taint infor-

mation as well, thereby performing capability flow analysis together with points-to analysis.

Similar to prior works [44, 78], we adopt a relatively standard way to represent a program as

a database of facts. The set of Datalog relations deployed for the analysis are summarized in

Table 3.4. Each of these relations is of fixed type and arity. The relations specify how points-to

and taint information are propagated. We represent heap-allocated objects and functions using

the alphabet H, program variables by V, fields by F, call sites by I, integers by Z and capabilities

by P.

Unlike prior works [23, 44] which perform whole program analysis, our analysis focuses on

modular JavaScript code, such as Jetpack modules. Analysis of individual modules requires that

capabilities of each module be appropriately seeded based on which other modules it imports.

Since invoking functions from an imported module is akin to using library or foreign functions,

we model such functionality as a summary of each module. Thus, a comprehensive analysis of

a particular module requires that the summary of each of the imported modules be fed to the

analysis engine.
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Entity Type Capability
exports Object prefBranch

exports.Preferences Object prefBranch

exports.Preferences. branches Object prefBranch

exports.Preferences.getBranch Function prefBranch

Table 3.3: Summary of preferences module showing the capability leaks.

Our analysis focuses primarily on detecting capability flows, thus our summaries only re-

flect capability leaks possible through the module’s exports interface, A module’s summary

typically contains information about the properties of the exports interface, their types and

taint values reflecting the capabilities associated with the object. Table 3.3 shows the summary

for the code module shown in Figure 3.2.

Our module summaries simply list the capabilities exported by specific properties exported

by a module. In JavaScript, functions can also be exported. However, our summaries are cur-

rently not parameterized by the arguments to such functions, which may lead to false negatives

in our analysis.

Once summaries for all the imported modules are available, the analysis engine constructs

a call graph along with the control-flow graphs for each method in the module to be analyzed.

These control-flow graphs consist of several basic blocks which comprise of SSA statements.

The analysis engine traverses each of these statements and produces Datalog facts capturing its

semantics, as illustrated in Table 3.5. It also generates heap allocation mappings for the objects

and functions, denoted by h f resh. During this phase, several Datalog facts corresponding to

the relations shown in Table 3.4 are generated. The analysis engine then applies the Datalog

inference rules presented in Table 3.6 over the initial set of facts to keep track of aliases and the

flow of capability through the JavaScript code.

Post-processing

The combination of initial set of Datalog facts and facts generated after the application of

inference rules abstract the behavior of the Jetpack module under analysis. These facts provide

information regarding capability flows for the module being analyzed. The post-processing

stage links this information back to the source code, identifying possible locations in the source

code where capabilities were generated and the properties of the exports interface through
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Relations for points-to analysis

Heap mapping
ptsTo(V, H) represents a points-to relation for a variable
heapPtsTo(H1, F, H2) represents points-to relation for heap objects
prototypeOf(H1, H2) record object prototype

Object
manipulation

assign(V1, V2) represents variable assignments
store(V1, F, V2) represents field store for an object
load(V1, V2, F) represents field load from an object

Function
manipulation

calls(I, H) represents call site I invoking method M
formal(H, Z, V) represents formal argument of method M
methodRet(H, V) represents return value of a method
actual(I, Z, V) represents actual parameter of a call site
callRet(I, V) represents return value for a call site

Relations for capability flow analysis

Capability flow
isPrivileged(H, P) indicates heap object H is privileged with type P
isTainted(H, P) indicates heap object H is tainted with type P
idIsPrivileged(V, P) indicates variable V is privileged with type P
idIsTainted(V, P) indicates variable V is tainted with type P

Table 3.4: Datalog relations used in our static analysis.

which they were externalized. This processed information is also utilized for generating a

summary for the analyzed module.

3.3.2 Capability Flow: A Concrete Example

We now demonstrate how the analysis detects capability flows from the exports interface of

Jetpack extension modules. Figure 3.4 represents a pre-processed module and the initial set of

points-to facts generated by the analysis.

The pre-processed module indicates the use of capabilities within the module by the stub

function MozPrefService. The ptsTo relations represent object allocations in the heap for

each object or function declaration. The analysis engine generates a call-graph with invocation

for all methods reachable from the exports interface to determine the capabilities flowing out

of the module. In the example, the analysis invokes the exports.Preference.getBranch

method. For brevity, we omit the details of the invocation itself and the associated facts gener-

ated for the relevant statements.
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Statement Example Code Generated Facts

ASSIGNMENT v1 = v2 assign(v1, v2)
RETURN return v callRet(v)

OBJECT LITERAL v = {} ptsTo(v, h f resh)
STORE v1.f = v2 store(v1, f, v2)
LOAD v1 = v2.f load(v1, v2, f)

FUNCTION v = function(v1, v2, ..., vn) ptsTo(v, h f resh)
DECLARATION heapPtsTo(h f resh, prototype, p f resh)

for z ∈ 1...n, generate
formal(h f resh, z, vz)
methodRet(h f resh, v)

OBJECT v = new v0(v1, v2, ..., vn) ptsTo(v, h f resh)
CONSTRUCTION prototypeOf(h f resh, d) :-

ptsTo(v0, hmethod),
heapPtsTo(hmethod, prototype, d)

for z ∈ 1...n, generate
actual(i, z, vz)
callRet(i, v)

FUNCTION CALL v = v0(vthis, v1, v2, ..., vn) ptsTo(v, h f resh)
for z ∈ 1...n, this, generate

actual(i, z, vz)
callRet(i, v)

Table 3.5: Datalog facts generated for each JavaScript statement.

The analysis detects capability leaks from the module by determining whether exports is

tainted or not. To do so, it must answer the following Datalog query:

idIsTainted(vexports, X)?

where vexports is the SSA representation for the exports interface and X is the capabil-

ity being exported.

Instead of operating on SSA representations, the analysis transforms the above Datalog

query to operate on heap allocation representation. Thus, the new query to be resolved is:
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Basic rules

ptsTo(V1, H) :- ptsTo(V2, H), assign(V1, V2)

ptsTo(V2, H2) :- load(V2, V1, F), ptsTo(V1, H1), heapPtsTo(H1, F, H2)
heapPtsTo(H1, F, H2) :- store(V1, F, V2), ptsTo(V1, H1), ptsTo(V2, H2)

Call graph

calls(I, H) :- actual(I, 0, V), ptsTo(V, H)

Inter-procedural assignments

assign(V1, V2) :- calls(I, H), formal(H, Z, V1), actual(I, Z, V2)
assign(V2, V1) :- calls(I, H), methodRet(H, V1), callRet(I, V2)

Prototype handling

heapPtsTo(H1, F, H2) :- prototypeOf(H1, H), heapPtsTo(H, F, H2).
prototypeOf(O, H) :- heapPtsTo(M, prototype, P), heapPtsTo(M, prototype, H),

prototypeOf(O, P)

Taint propagation

isTainted(H1, P) :- heapPtsTo(H1, F, H2), isPrivileged(H2, P)
isTainted(H1, P) :- heapPtsTo(H1, F, H2), isTainted(H2, P)

idIsTainted(V, P) :- ptsTo(V, H), isPrivileged(H, P), not(idIsPrivileged(V, P))
idIsTainted(V, P) :- ptsTo(V, H), isTainted(H, P)

Table 3.6: Datalog inference rules for points-to analysis.

isTainted(hexports, X)?

where hexports represents heap allocation for vexports.

When the analysis invokes the getBranch method and analyzes line 5, it reads the sum-

mary for MozPrefService. This summary lists getBranch as method that returns the

capability PrefBranch. Thus, the analysis engine allocates a heap object (hpre f Branch) for

nsIPrefBranch and generates the fact: isPrivileged(hpre f Branch, prefBranch). At line 6,

vbranch holds the return value of the function MozPrefService.getBranch(name), and thus

vbranch points to hpre f Branch. For sake of brevity, we omit the processing of the return state-

ment.
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Pre-processed JavaScript statements Generated Datalog facts
(1) var exports = {}; ptsTo(vexports, hexports)
(2) var Preferences = { ptsTo(vPre f erences, hPre f erences)
(3) branches: {}, ptsTo(v branches, h branches)

store(vPre f erences, branches, v branches).
(4) getBranch: function (name) { ptsTo(v branches, h branches).

store(vPre f erences, getBranch, vgetBranch)
(5) var branch = MozPrefService() ptsTo(vbranch, hpre f Branch).

.getBranch(name);

(6) return this. branches[name] = branch; store(v branches, , vbranch)
(7) }, ... /* other properties */

(8) };
(9) exports.Preferences = Preferences; ptsTo(vexports, hexports)

store(vexports, preferences, vPre f erences)

Figure 3.4: Example showing the flow of capabilities through the module’s exports interface.

On consulting the Datalog inference rules in Table 3.6 and existing facts, the analysis in-

fers that hpre f Branch is stored in the heap allocation object h branches thus tainting h branches. As

mentioned earlier in the section, taints propagate upwards in an object hierarchy. Thus the capa-

bility PrefBranch flows from h branches to the heap allocation of the parent object, hPre f erences

and generates the fact: isTainted(hPre f erences, prefBranch). This in turn generates a similar

fact: isTainted(hexports, prefBranch). Coupled with the fact that vexports points to the heap

allocation hexports, the analysis resolves X to be PrefBranch and determines PrefBranch as

the capability flowing out of the module through the exports.Preferences.getBranch

method.

3.4 Implementation

We realized the analysis described in Section 3.3 in a tool named Beacon. Beacon is built

atop WALA [77], an existing static analysis tool, and uses WALA’s capabilities to convert pre-

processed JavaScript code into an SSA-based register-transfer intermediate representation (IR)

and generate appropriate control-flow graph. Beacon analyzes each IR to generate correspond-

ing Datalog facts, which are processed using the DES Datalog query engine [27]. The core

analysis in Beacon was implemented in about 2.8K lines of Java code while an additional 700

lines of scripts were required for pre- and post-processing.
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3.5 Results

We evaluated the effectiveness and accuracy of Beacon in detecting capability leaks by analyz-

ing the entire set of 359 Jetpack extensions and 77 core modules available to us at the time of

writing the paper. In total, Beacon analyzed over 600 modules consisting of over 68K lines of

JavaScript code. The performance of Beacon’s static analysis heavily depends on the size of

the analyzed module. On average, Beacon takes a couple of minutes and consumes 200MB per

module. For the largest module (tab-browser.js/25KB), Beacon took 30mins and 243MB

of memory. In Section 3.5.1 we present results from analysis of the capability leaks in core

modules and Jetpack extensions. In Section 3.5.2 we study the nature and usage of capabilities

in various Jetpack extensions. Lastly, in Section 3.5.3 we report on the use of Beacon to analyze

the privileges associated with Jetpack extensions and the core modules to detect over-privileged

modules.

Our evaluation methodology involved pre-processing the modules to desugar any incom-

patible JavaScript constructs and append additional JavaScript code to ensure complete code

coverage (see Section 3.3.1 for details). Each pre-processed module file was individually an-

alyzed by Beacon to generate appropriate Datalog facts that were later processed to extract

information about capability leaks. The post-processing also generated a summary for the

module that was utilized for analysis of another modules which imported it.

3.5.1 Capability Leaks

Beacon detected 12 capability leaks in four core modules and another 24 leaks in seven Jetpack

extensions. Most of the detected leaks were subtle and hard to catch through manual code

review. This is reinforced by the fact that Beacon managed to detect 12 capability leaks in

production quality code which has undergone numerous code reviews and has a relatively stable

code base. For each of the reported leaks, we manually verified the results and observed no false

positives. We shared the details of our findings with Mozilla who acknowledged capability

leaks in the four core modules. Tables 3.7 and 3.8 summarize the findings.
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Core module Capability Leak mechanism Essential
tabs/utils † Active tab, browser window and

tab container
Function return Yes

window-utils † Browser window Function return Yes
xhr Reference to the

XMLHttpRequest object
Property of this object No

xpcom Entire XPCOM utility module Exported property No

Table 3.7: List of capability leaks observed in the core modules. † indicates multiple reference
leaks.

Jetpack Capability Leak mechanism Essentialextensions
Bookmarks Entire XPCOM services module Exported property NoDeiconizer
Browser window, document Return from NoSign In exported function

Customizable
Shortcut

nsIPrefBranch, nsIAtomService Property of this object No
window Return of function No

attached to this

Firefox Share

nsIPrefBranch, window Property of this object No
Reference to built-in SQLite database Property of this object No
nsIObserverService Exported property No
nsIScriptableInputStream Return value of No

exported function
nsIBinaryInputStream Return value of No

exported function
nsISocketTransportService Property of this object No
nsISocketTransport Property of this object No
nsIInputStreamPump Property of this object No
Instance of the imported Socket module Property of this object No

Most nsIPrefBranch Property of this object No
Recent Tab window Function return No
Open nsIPrefBranch, window Property of this object No
Web Reference to built-in SQLite database Property of this object No
Apps nsIObserverService Exported property No
Recall nsIIOService Property of this object No
Monkey nsIFaviconService Property of this object No

Table 3.8: Capability leaks in Jetpack extensions.

Capability Leaks in Core Modules

Beacon discovered two kinds of capability leaks in the core modules. First, capability leaks

that occur due to the intended functionality of the module and must therefore be white-listed.

Second, capability leaks that occur due to exporting direct references to privileged objects. We

list two examples which are representative of the nature of capability leaks in the core modules.

• window-utils: The core module window-utils as part of its intended functionality
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exports utility methods to access and track the browser’s windows. As mentioned in Sec-

tion 3.2, the Jetpack framework executes each module within a sandbox without access to

the privileged window, document or gBrowser objects. On analyzing window-utils,

Beacon reported several capability leaks for methods and properties defined on the

exports interface that return references to the window and document objects. Since

all of these violations were due to intended functionality as documented in the Jetpack

extension SDK [11], we white-listed the offending leaks for the window-utils module.

• xpcom: The xpcom module provides functionality to register a user-defined component

with XPCOM and make it available to all XPCOM clients. This module also exposes the

XPCOMUtils module which offers several utility routines for the components loaded by

the JavaScript component loader. Due to the privileged nature of these utility routines,

we modeled the XPCOMUtils module as a capability source. Our analysis of the xpcom

module reported a capability leak which we confirmed manually as the reference to the

exported XPCOMUtils module.

Exporting a reference to a privileged interface is inconsistent with the philosophy of

Jetpack. We believe that instead of the reference to the XPCOMUtils module, separate

accessor methods that invoke its functionality should be exported by the xpcom module.

We reported our observation about the xpcom module to Mozilla and they agree with our

suggestion to wrap the functionality of XPCOMUtils with xpcom accessors to decrease

the surface area for vulnerabilities.

Capability Leaks in Jetpack Extensions

Capability leaks discovered by Beacon in the Jetpack extensions can be classified into four

categories. The first category of leaks occurs due to export of capabilities through direct refer-

ences of privileged objects or due to function objects which return capabilities on invocation.

The second class of leaks occurs when a module attaches a capability to an exported function’s

this object. The third class of capability leaks occur if the module utilizes the functionality

of a core module which itself leaks capabilities, such as window-utils or xpcom. Lastly,

we also observed capability leaks when a Jetpack extension uses third-party modules which
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themselves leak capabilities. We describe two popular Jetpack extensions which demonstrate

all four classes of capability leaks.

• Customizable Shortcuts: Customizable Shortcuts is a popular Jetpack extension with

over 5000 users. It enables users to easily create keyboard shortcuts to customize the Web

browser. We analyzed the extension using Beacon and found 3 capability leaks which

cover three out of the four classes of leaks. The first leak results from one of the modules

exposing a method that on invocation returns reference to the entire preferences tree,

instead of the sub-tree specific to the extension. Accessing the entire preferences tree is

not recommended since tree modifications on other branches could result in inadvertent

loss of user data.

The second capability leak occurs in a module which exports a wrapper method over the

window-utils core module. The wrapper invokes functions on window-utils which

return references to the window and document objects.

The last capability leak occurs as a result of the module attaching an instance of the

nsIAtomService XPCOM interface to the exported function’s this object. Although,

the nsIAtomService interface does not provide any security critical functionality, leak-

ing capabilities implicitly through the this object is a bad programming practice.

On manually verifying the leaks, we observed that none of the leaked capabilities was

being used by other modules in the Jetpack extension. This suggests that the module

author inadvertently exported the capability instead of keeping it local to the module.

• Firefox share: Firefox share is a Jetpack extension by Mozilla Labs which allows fast

and easy sharing of links from any Web page. This extension has 25 modules with over

5300 lines of JavaScript code. Several of these modules have been reused from another

Jetpack extension, Open Web Apps, also by Mozilla Labs.

Analyzing Firefox share with Beacon, we discovered 10 diverse capability leaks ranging

from leaking preference trees, the window object, access to a built-in SQLite database

to leaking socket services, which would enable a module to leverage benefits equivalent

of using raw UDP/TCP sockets. Table 3.8 enumerates all the observed violations in
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Firefox share. On manual verification, we observed that in each case the leaked capability

was never invoked from any another module. This clearly indicates that the leaks were

inadvertent.

We also found that four of the leaks originated in the code modules that were shared

with Open Web Apps. This demonstrates that sharing of over-privileged code modules

exacerbates capability leaks.

Accuracy

Beacon detected a total of 36 capability leaks in over 600 modules. For each capability leak,

we manually validated the results and observed no false positives. However, Beacon could miss

capability flows due to a combination of the following reasons:

• Dynamic features: Our analysis currently does not handle some of the dynamic and

reflective features available in JavaScript. For example, privilege propagation through

iterators, generators and reflective constructs like arguments.callee are not modeled.

Accurate propagation of privileges for such constructs cannot be achieved statically alone

and requires dynamic analysis [35, 37].

• Unsupported constructs: There are a few constructs in JavaScript for which the WALA

analysis engine throws exceptions, and thus they are not supported by Beacon. Such

constructs include for..each, yield and case statement over a variable. We re-wrote

all instances of such constructs (by hand) in the Jetpack modules to make them amenable

to analysis. Although hard to quantify, it is possible that the re-written code may miss

some capability flows.

• Unmodeled constructs: There are some constructs which have not been appropriately

modeled yet in our analysis. These include nested try/catch/throw sequences, eval

and with. During our experiments, we found no instance of either eval or with in any

of the modules.

Also, our analysis currently does not model DOM function calls, like setAttribute
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and property assignments, like innerHTML. Such constructs are handled similar to nor-

mal JavaScript function calls and property assignments and could affect capability flows.

Although foreign function calls, like those invoked on imported modules, are modeled,

the analysis does not consider the taint value of arguments passed to them. Instead,

the analysis determines the taint value of function returns by consulting the module’s

summary. Ignoring taint values of arguments of foreign functions could also affect the

detection of capability flow.

• Latent bugs: Lastly, in-spite of exhaustive testing, it is possible that there are latent bugs

in Beacon or the automated module summary generation which might affect capability

flows.

3.5.2 Capability Use

The Jetpack framework automatically generates a manifest for each Jetpack extension that pro-

vides a dossier about the core modules ‘required’ by the extension, but provides no informa-

tion about the XPCOM interfaces invoked by the modules in the extension. As revealed in

Section 3.5.1, a large number of capability leaks originated from the direct use of XPCOM

interfaces. In this section, we analyze the Jetpack extensions and determine the XPCOM-level

capabilities associated with them. A concrete understanding of the capabilities associated with

a Jetpack extension is useful to both the end-user and Mozilla itself.

• extension reviewers at Mozilla can use capability leak analysis to publish fine-grained

Jetpack extension manifests that accurately lists all its capabilities. This would be help-

ful to end-users in making a well-informed choice when installing an extension. For

example, if a Jetpack extension invokes the nsICookieManager and also has access to

the network, then the end-user can be made aware of the fact that the extension is capable

of reading user cookies from all domains and sending them over the network.

• A capability analysis of existing Jetpack extensions would help Mozilla in two ways.

First, the analysis would identify the set of XPCOM interfaces that are most widely used

by developers and for which there do not exist any core modules. This knowledge would

help Mozilla in prioritizing the development of core modules. Secondly, the analysis
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XPCOM # Jetpack XPCOM # Jetpack
Interface extensions Interface extensions

nsIWindowMediator 18 nsIWindowWatcher 4
nsIIOService 10 nsIFaviconService 4
Services 8 AddonManager 3
nsIPrefService 6 nsILocalFile 3
nsIProperties 5 nsIObserverService 3

Table 3.9: Top 10 XPCOM interfaces used in Jetpack extensions.

Core # Jetpack Core # Jetpack
module extensions module extensions

self 243 request 101
tabs 160 chrome 94
widget 157 panel 83
page-mod 126 simple-storage 82
context-menu 117 selection 52

Table 3.10: Top 10 core modules used in Jetpack extensions.

would help the curators at Mozilla to identify extensions that use XPCOM interfaces for

which a core module already exists. The curator can then suggest the desired modifica-

tions to the developer and ensure that all Jetpack extensions conform to the hierarchical

model where the developer maximizes the use of the built-in core modules for the Jetpack

extension functionality.

To understand the usage pattern of capabilities in Jetpack extensions, we modify Beacon to

collect two kinds of capability usage characteristics. First, we track all heap object creations

that occur when a Jetpack extension invokes an XPCOM interface. Second, we measure the

usage of core modules, i.e.,the number of core modules imported using a require call.

Figure 3.5 shows the frequency distribution of XPCOM interfaces for the 359 Jetpack ex-

tensions which directly invoke atleast one XPCOM interface. We observe that 46 of the ex-

tensions directly invoke XPCOM functionalities, with one Jetpack extension (Firefox share by

Mozilla Labs) invoking 14 XPCOM interfaces. Thus over 12% of Jetpack extensions directly

use XPCOM to include functionality and features not available in the core modules. We believe

that as the Jetpack framework becomes popular, this number will increase and along with it the

number of modules that leak capabilities.

Tables 3.9 and 3.10 list the top 10 XPCOM interfaces and core modules currently

in use by Jetpack extensions. We observe that 5 of the XPCOM interfaces listed
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Figure 3.5: Frequency of XPCOM interfaces used in Jetpack extensions.

in Table 3.9, namely nsIWindowMediator, nsIPrefService, nsIWindowWatcher,

nsILocalFile and nsIObserverService, are used by extension authors even though

there exist core modules that provide equivalent functionality. For example, the core mod-

ule preference-services provides functionality equivalent to the XPCOM interface

nsIPrefService. Two of the popular interfaces nsIIOService and Services provide rich

functionality that currently do not have any functionally equivalent core modules. Although a

Jetpack extension author can access these capabilities by requesting chrome privileges, it in-

creases the privileges associated with the module manifold. The surface area for vulnerabilities

in Jetpack extensions would greatly reduce if Mozilla could provide core modules for privi-

leged, but frequently used XPCOM interfaces.

Careless handling of multiple capabilities in a module could result in capability leak through

the module’s exports interface. To determine if the modules in Jetpack extensions can be

split up into better-confined subsets of authority, we used Beacon to detect all modules which

accessed more that one XPCOM interface. We grouped the XPCOM interfaces by their func-

tionality and identified modules that used XPCOM interfaces from different categories. If a

module uses functionalities from more than one category, then it is a candidate for isolating the

authorities used by the module.

We grouped the XPCOM interfaces into 6 categories — namely Application, Browser,

DOM, I/O, Security and Miscellaneous — each representing distinct classes of functionalities,

All XPCOM interfaces that access application or user preferences, create application threads,



46

Jetpack Categories
extension Module name Application Browser DOM I/O Security Misc.

Add-on Builder
Helper

main 3 3
bootstrap 3 3 3

Auto countdown 3 3 3 3Shutdown NG
Awesome ui 3 3Screenshot
Bookmarks main 3 3 3 3 3 3Deiconizer
Browser Sign In sessions 3

Do Not Fool localization 3 3

Fastest Search main 3 3 3 3

Firefox Share

api 3 3
oauthconsumer 3 3
socket 3 3
typed-storage 3 3

Image2Icon main 3 3

LepraPanel 2 main 3 3 3 3

Memory Meter main 3 3 3 3 3 3

Open Web Apps
api 3 3
oauthconsumer 3 3
typed-storage 3 3

PriceBlink main 3 3

Read Later Fast main 3 3

Recall Monkey helper 3 3
main 3 3 3 3 3 3

Snaporama main 3 3 3 3 3 3

Springpad main 3 3 3

Socat main 3 3 3 3

Wsad.it main 3 3Bookmarks

Table 3.11: List of Jetpack modules accessing multiple categories of XPCOM interfaces.

etc. are categorized under Application. The category Browser contains interfaces that represent

browser neutral functionality like access to timers and console. DOM provides access to the

window and document objects. Services that handle browser permissions and cookies are

grouped under Security, while interfaces which require access to the network, file system or

storage come under I/O. The remaining interfaces are grouped as Miscellaneous.

We found 26 modules in 19 Jetpack extensions, where each module invoked XPCOM in-

terfaces to obtain capabilities of different nature. Table 4.5 lists the findings. We observe that

these modules request a wide variety of authorities, with 4 modules requesting access to all 6

categories. We believe that such modules could be split into better-confined subsets.
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Core module Privilege Severity
file Directory service Moderate
hidden-frame Timer None
tab-browser Errors None
content/content-proxy Chrome Critical
content/loader File Moderate
content/worker Chrome Critical
keyboard/utils Chrome Critical
clipboard Errors None
widget Chrome Critical
windows XPCOM, apiUtils Critical

Table 3.12: List of core modules violating POLA.

Accuracy

We evaluated the accuracy of capability use analysis by comparing the results against the

ground truth. By manually analyzing all the modules, we found 53 Jetpack extensions which

had direct invocations to XPCOM interfaces. Beacon detected 46 extensions with XPCOM ca-

pabilities. The remaining 7 extensions invoked XPCOM interfaces from within event handling

code (which Beacon does not model — for reasons stated in 3.3.1).

3.5.3 Over-privileged Modules

The Jetpack extension documentation outlines several guidelines about best practices for de-

veloping modules. One of them recommends module authors to follow the principle of least

authority (POLA) [12]. To study how the existing core modules conform to this guideline,

we analyzed all 77 core modules using Beacon. Our analysis revealed 10 over-privileged core

modules.

Table 3.12 lists the core modules and the nature of the unused privilege. We observe 11

instances of additional privileges which are requested but never utilized in the module code.

We also see that 5 of the core modules request critical capabilities like chrome and XPCOM

but never use it. Two modules request file and directory-service capabilities, which

give them privileges to navigate through and read/write to the file system, while the remaining

three modules import harmless capabilities which are never used. We contacted Mozilla and

notified them about the over-privileged core modules, which they acknowledged as refactoring

oversights [10].



48

Accuracy

To measure the accuracy of false positives in detection of over-privileged modules, we manually

validated the Beacon’s results for all 77 core modules. Beacon generated a total of 18 warnings

for all core modules, out of which 11 were true positives, while the remaining 7 were false

positives. On verifying the 7 instances of false positives, we observed that the over-privileged

objects were defined in the module’s global scope but were used within event handling code.

As mentioned in Section 3.3.1, Beacon does not analyze event handling code, thereby causing

false positives.

3.6 Summary

In this chapter, we described Beacon, a system for capability flow analysis of JavaScript mod-

ules. Beacon uses static analysis to detect flow of capabilities through the module’s exports

interface. The techniques used by Beacon are generic, and can detect capability leaks in any

modular JavaScript code base, e.g., node.js [15], Harmony modules [7], SproutCore [19]. How-

ever, our focus was on browser extensions implemented using Jetpack. Beacon cannot directly

be applied to non-modular extensions.

We implemented Beacon and used it to analyze 77 core modules from Mozilla’s Jetpack

framework and another 359 Jetpack extensions. In total, Beacon analyzed over 600 Jetpack

modules and detected 12 capability leaks in 4 core modules and another 24 capability leaks in

7 Jetpack extensions. Beacon also detected 10 over-privileged core modules. We have shared

the details with Mozilla who have acknowledged our findings for the core modules.

In conclusion, the Jetpack framework attempts to improve how scriptable extensions for the

Mozilla Firefox browser are developed. Although it provides guidelines for developing modular

extensions and recommends POLA, it does not enforce these guidelines. Our evaluation of

the Jetpack framework suggests that even heavily-tested core modules may contain capability

leaks. The use of a tool such as Beacon during extension development can help prevent such

leaks.

The overall security of the Jetpack framework can further be improved by dynamically

enforcing permissions requested in extension manifests and by deep freezing the exports
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object. Dynamic enforcement of manifests will ensure that extensions are not able to access

any resources that they have not explicitly requested. Deep freezing the exports object will

prevent any capability leak through event handlers.
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Chapter 4

Porting Legacy Mozilla Extensions to the Jetpack Framework

In this chapter, we present Morpheus, a static analysis and transformation tool that allows

legacy Firefox extensions to be systematically ported into Jetpack in a manner that allows

enforcement of fine grained security policies without any modification to browser runtime.

Porting legacy extensions to Jetpack is necessary since it both improves security of exten-

sions and make them compatible with future multi-process Firefox architecture. However the

challenge for the extension developer lies in understanding the key architectural differences be-

tween legacy and modern extensions, and in manually transforming the code without altering

the basic features.

4.1 Problem

To support extensions, browsers typically expose an API that gives access to privileged browser

objects. As discussed earlier, Mozilla’s XPCOM API [66] allows browser extensions to access

the file system, the network, the cookie store, and user preferences, among others. Such a

rich API is often necessary to implement extensions with useful features. In sharp contrast,

code that executes within a Web page is often tightly sandboxed by the browser, e.g., using the

same-origin policy, and does not have access to such privileged browser APIs.

Unfortunately, browser extensions do not undergo the same quality control as the rest of the

browser, and are riddled with vulnerabilities. Prior work [24] has uncovered vulnerabilities in

the legacy Firefox extension architecture and prevalence of of insecure programming practices

in legacy extension that can easily be exploited for malicious purposes. Any such exploit would

endow the attacker with access to privileged browser APIs, thereby completely undermining the

security of the Web browser.
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Modern browser extension frameworks address the security issues of legacy extension ar-

chitecture that can compromise the security of browser itself and therefore aim to better isolate

extensions [9, 17, 25, 34] . These frameworks force extension authors to adhere to core security

principles, such as privilege separation and least privilege to some extent. They partition exten-

sions to disallow privileged API access to extension code that interacts with untrusted scripts

on a Web page. Consequently, even if an attacker hijacks this portion of the extension, he will

be unable to access privileged browser objects. Mozilla’s Jetpack framework and the Google

Chrome extension model are two popular examples of modern extension frameworks that use

these techniques to improve extension security.

While the quantitative impact of such frameworks at reducing attacks against extensions

is as yet unknown, it is qualitatively clear that by embracing first principles, they improve

extension security. However, such frameworks require extensions to be written from ground

up, adhering to the programming disciplines that they enforce. To be applicable to legacy

extensions, the extensions must be ported to the new frameworks. However, doing so manually

would be expensive and time-consuming.

In this chapter, we present Morpheus, a static analysis and transformation tool that allows

legacy extensions to be systematically ported into modern extension frameworks in a manner

that allows enforcement of fine grained security policies without any modification to browser

runtime. Our prototype targets legacy Mozilla Firefox extensions, and rewrites them to make

them compatible to the Jetpack framework while conforming to the security principles. We

chose to focus on Firefox because of the abundance of legacy extensions for this browser. There

are currently over 14000 extensions available for Firefox. Morpheus targets an important subset

of these extensions, those written fully in JavaScript. Rather than require these extensions to

be rewritten for Jetpack from scratch, Morpheus preserves the investment in these extensions

and provides a path for automatically refactoring them to work in Jetpack. We have applied

Morpheus to port 52 popular Firefox extensions into the Jetpack framework, and are actively

applying it to more extensions from the Firefox extension gallery.

This chapter makes the following contributions:

• We identify the key challenges in building a reliable and usable toolchain (Morpheus) for

systematic conversion of legacy Firefox extensions to the more secure Jetpack framework.
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• We present an automated transformation toolchain to partition legacy extension code into

Jetpack modules that satisfy the principle of least privilege. Each module encapsulates ob-

jects corresponding to sensitive browser APIs and enables accessor methods which provide the

required API functionality.

• We present a policy checker framework for Jetpack extensions. The modular and extensi-

ble architecture of Jetpack extensions allows developers to seamlessly add or remove security

policies without affecting the rest of the code.

• Our evaluation with a suite of 52 popular legacy extensions demonstrates that the design of

Morpheus is practical and it is deployable for real world use.

The rest of this chapter is organized as follows. We start in Section 4.2 by presenting

background material on legacy Firefox extensions and new features introduced by the Jetpack

framework. We then present the design of Morpheus in Section 4.3, followed by a security

analysis in Section 4.4. We then discuss the implementation of Morpheus in Section 4.5, and

an experimental evaluation of Morpheus in Section 4.6.

4.2 Overview

In this section, we describe the architecture of legacy extensions, with a particular focus on

issues that motivated browser vendors to develop new extension frameworks. We then discuss

the key components of the new Jetpack framework from Mozilla.

4.2.1 Threats to Extension Security

Browser extensions are written using open technologies such as HTML, CSS and JavaScript,

but they often utilize privileged browser APIs to perform useful tasks. For example, Mozilla’s

XPCOM API gives an extension access to the file system, the network, and sensitive browser

state such as cookies and browsing history. The goal of an attacker is to misuse the extension

to access the capabilities provided by browser APIs.

A typical browser extension can interact with content on web pages and any remote server

on the Internet. For example, a DisplayWeather extension may access the web page to search

for locations in the text as specified by the user, and its home server to get the corresponding
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weather data to be showed in the webpage itself. An attacker can wrest control of an extension

by either (1) tricking the user into visiting a malicious website and then exploiting vulnerabili-

ties in the extension, or (2) compromising the extension’s communication with its home server,

i.e., the attacker can inject malicious packets in the network stream or compromise the remote

server to which the extension communicates.

Browsers attempt to safeguard against the first class of attacks by isolating the execution

of JavaScript code on the Web page i.e., unprivileged content scripts from the JavaScript code

executing within the extension i.e., privileged chrome scripts. This isolation of content scripts

from chrome scripts limits the threats posed by a Web attacker by disallowing direct access to

sensitive browser APIs. Nevertheless, there are often bugs in this isolation mechanism, leading

to exploits. To defend against the second class of network-based attacks, extensions can use

SSL to secure their connection with their home server.

4.2.2 Legacy Extensions on Firefox

Consider Figure 4.1, which shows a snippet from the DisplayWeather extension that we de-

veloped. The extension provides options to overlay weather information on a browser panel

for which it reads the zipcode from persistent storage. In lines 1-6, the function getZipCode

reads the file ’zip.txt’ from the user’s profile directory to retrieve the zipcode for the user

specified location. In line 2, the construct import attaches the FileUtils object to the exten-

sion’s global namespace. FileUtils.jsm internally invokes XPCOM APIs to enable all file

I/O operations. Lines 9-28 define the Weather object that encapsulates properties and methods

to fetch weather data from a remote server. The method requestDataFromServer defined

in lines 16-27 uses XMLHttpRequest to fetch weather data for a given zipcode from a re-

mote server. Line 30 registers a click event listener with the extension’s icon in the browser’s

status bar to display weather in a panel. In lines 33-37, the code creates an event listener

addWeatherToWebpage to overlay weather information on the Web page, whenever a new

Web page is loaded. Lines 34-36 identify all DOM1 elements containing user-specified loca-

tion in the active Web page and invoke getWeatherData method defined on the Weather

1Document Object Model (DOM) provides a structural representation of the document, enabling developers to modify its
content and appearance using JavaScript.
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(1) function getZipCode(locationStr){
(2) Components.utils.import(’resource://gre/modules/FileUtils.jsm’);
(3) var dir = ’ProfD’, filename = ’zip.txt’;//’ProfD’ is profile directory
(4) var file = FileUtils.getFile(dir, [filename]);get ’zip.txt’ file from ’ProfD’
(5) var locationZipcodeMap = readFile(file);
(6) return locationZipcodeMap[locationStr]; //retrieve zipcode for the location
(7) }
(8) ...
(9) var Weather = {

(10) temperature: null,
(11) ...
(12) getWeatherData: function(zipcode){
(13) Weather.requestDataFromServer(zipcode);
(14) return processWeatherData(Weather.temperature);// format weather data
(15) },
(16) requestDataFromServer: function(sendData){
(17) var httpRequest = new window.XMLHtttpRequest();
(18) ...
(19) //set the listener to handle response from Server
(20) httpRequest.onreadystatechange = function(){
(21) // extract temperature data from response and set Weather.temperature
(22) Weather.extractTemperature(httpRequest.response);
(23) ...
(24) }
(25) httpRequest.open(’GET’, serverUrl, true);
(26) httpRequest.send(sendData);//contact remote server
(27) }
(28) }
(29) //Add the click listener to the extension’s icon to show Weather in panel
(30) document.getElementById(’weatherStatusBar’).addEventListener

(’click’, showWeatherInPanel, false);
(31) ...
(32) window.addEventListener(’DOMContentLoaded’, addWeatherToWebpage, false);
(33) function addWeatherToWebpage(){
(34) var locationStr = getLocationFromWebpage(gBrowser.contentDocument);
(35) var temperature = Weather.getWeatherData(getZipCode(locationStr));
(36) modifyWebpageContent(gBrowser.contentDocument, temperature);
(37) }

Figure 4.1: Code snippet from the DisplayWeather extension.

object to retrieve latest weather updates. The method modifyWebpageContent in line 36

actually overlays the weather information on the active Web page.

The above snippet highlights several features commonly used by legacy Firefox extensions:

(1) Unified JavaScript heap: Mozilla’s legacy extension development environment provides a

unified heap for all JavaScript code execution. Both privileged chrome scripts and unprivileged

content scripts reside in the same heap, raising the risk of shared references. For example, code

in line 36 invokes the modifyWebpageContent method with a reference to the document ob-

ject of the active Web page. Mozilla uses XrayWrappers (also know as XPCNativeWrappers)

to isolate the untrusted references of the content JavaScript from the chrome JavaScript. How-

ever, this mechanism has limitations and a history of exploitable bugs [25, 71]. If this interface

is exploited, and the user navigates to a malicious Web page, the document object would be-

long to the attacker, who could then influence the execution of the privileged code within the

extension. Such scenarios have previously been used to exploit vulnerable extensions [6].
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A second consequence of having a unified heap for JavaScript execution results is that top-level

objects declared in chrome scripts are attached as properties of the global object. This often

results in namespace collisions across different extensions or even different chrome scripts

within the same extension. Further, since globals defined in one script can be accessed and

modified from another script, data races may occur.

(2) Privileged objects: All chrome scripts have default access to the global window object and

its properties. The Components object is a special property of the window which provides ac-

cess to the browser’s sensitive XPCOM APIs. If an attacker gets a reference to the Components

object, he effectively has control over the entire browser. The fact that the Components object

is so powerful and is yet available to all scripts by default is a significant threat to security in a

shared heap environment..

(3) Chrome DOM: Much as the DOM API available to content scripts on a Web page, chrome

scripts also have access to the chrome DOM. The chrome DOM is responsible for the visual

representation of the browser’s UI including toolbars, menus, statusbar and icons. Since much

of Firefox’s UI is also written in JavaScript, chrome scripts can programmatically access and

modify the browser’s entire UI (line 30).

The issues discussed above stem in part due to the architecture of Mozilla’s legacy extension

framework. Parts of the browser itself are written in JavaScript, as are extensions. With a

unified heap and lack of any isolation primitives in the language itself, extension developers

must consciously and carefully restrict access to critical functionality. The legacy extension

framework makes it easy for developers to commit mistakes, and much prior work has shown

the pitfalls of legacy extensions [24, 25, 35, 36].

4.2.3 The Jetpack Extension Framework

The Jetpack extension framework [9, 56] is an effort by Mozilla to incorporate security prin-

ciples in the design of the extension architecture, thereby improving the overall security of

extensions. Jetpack uses a layered defense architecture to make it harder for an attacker to

compromise extensions, and limit the damage done if he succeeds in compromising all or part

of the extension. The Jetpack project shares ideological similarities with the Google Chrome
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extension architecture [25]. It has also been motivated by the goal of easing extension devel-

opment process with an emphasis on modular development and code sharing, and partly by the

new multi-process Firefox architecture [63].

Conceptually, each Jetpack extension has two parts: (1) at least one chrome script that

interacts with a set of core modules, which have access to the sensitive browser APIs, and

(2) zero or more content scripts. The chrome script(s) execute within the Web browser with

restricted but elevated privileges: it must explicitly request access at load time to the browser

APIs that it requires access to; any attempt to access other APIs at runtime is blocked. Content

scripts interact with the Web page and are unprivileged. In addition, Jetpack incorporates these

features:

(1) Chrome/content heap partitioning. Chrome and content scripts execute in separate pro-

cesses. This partitioning guarantees isolation of the JavaScript heap for the chrome and content

scripts and prevents inadvertent access by content scripts to privileged references in the chrome

code. Communication amongst the chrome and content scripts is made possible through IPC

with all messages exchanged in the JSON [13] format.

(2) Content script integrity. Content scripts execute in the context of the Web page and a

malicious Web page can redefine objects referenced by the content script, thereby affecting its

integrity. Jetpack uses content proxies to protect the integrity of content scripts. Content proxies

allow the content script to access the content on the Web page while still having access to the

native objects and APIs (e.g., document and window), even if the Web page has redefined

them.

(3) Chrome privilege separation. Jetpack provides developers with a set of core modules that

encapsulate the functionality of the privileged browser APIs, thus preventing inadvertent mis-

use of these APIs by the developer. Further, developers must explicitly request these core

modules as required by the extension’s chrome scripts. If compromised, this restricts the set of

privileges that an attacker can obtain to only those requested by the exploited script.

The Jetpack framework further recommends developers to partition the chrome script and or-

ganize an extension as a hierarchy of user modules, each of which may itself request other
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Figure 4.2: Architecture of a simple Jetpack extension. Policy Checker is not part of original
architecture and is introduced by Morpheus.

user modules and zero or more core modules using the require interface. The set of privi-

leges thus acquired by each user module is determined statically by analyzing the source code

and enforced by the framework at runtime. The Jetpack framework further provides isolation

among all modules. Objects declared within a module are local to the module unless exported

explicitly through the module’s exports interface.

Figure 4.2 shows the overall architecture of a Jetpack extension. In summary, Jetpack

attempts to improve extension security by separating content scripts from chrome scripts, em-

ploying privilege separation for chrome scripts, and restricting the privileges of chrome scripts

to those declared at load time. While this architecture does not prevent vulnerabilities in exten-

sion scripts, it ensures that the effect of any exploits is contained to the vulnerable components

of the extension, and will not give the attacker unbridled access to privileged browser APIs.

However, a compromised chrome script can still trick core modules to access sensitive re-

sources of the attacker’s choice. Consider the scenario where the attacker has compromised

the chrome script in the DisplayWeather extension, and has changed the parameter value in
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FileUtils.getFile() to read the passwords stored on disk. The core module with priv-

ileges to access file-system will then read and return all the saved passwords to the attacker.

Similarly, the attacker can redirect stolen data to an attacker-controlled remote server by chang-

ing serverUrl in httpRequest.open(). In both cases, the attacker does not need to extend

the script’s privileges at runtime. Instead, lack of policy checker to enforce fine-grained access

control enables the attacker to exploit benign extensions even in the security enhanced Jetpack

framework.

4.3 Morpheus

While the Jetpack framework provides clear security benefits to extensions, legacy extensions

must be rewritten in Jetpack in order to enjoy these benefits. Morpheus is a static dataflow

analysis and transformation tool that automates this process. In this section, we identify the

key requirements that Morpheus’s analysis and transformation must provide and describe its

design.

4.3.1 Design Requirements

The transformations in Morpheus must perform the following tasks:

(1) Chrome/content partitioning. Jetpack requires chrome and content scripts to execute in

isolated heaps. Morpheus must analyze the code of the legacy extension and identify object

references that should be part of either chrome scripts or content scripts. Code that transitively

accesses these object references should also correspondingly be marked for execution within

the context of chrome or content scripts.

In Jetpack, chrome scripts interact with content scripts via asynchronous message pass-

ing protocols using JSON. In contrast, legacy extensions use synchronous calls for con-

tent/chrome communication. For example, calls to getLocationFromWebPagecontent and

modifyWebPageContent (lines 34-36, Figure 4.1) are synchronous invocations in the legacy

extension. Thus, to preserve the control flow of the legacy extension, Morpheus must use the

asynchronous communication API available in Jetpack and emulate the synchronous nature of

content/chrome communication in legacy extensions.
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(2) Module construction. The Jetpack framework encapsulates a selection of the privileged

browser APIs as core modules and requires developers to arrange their code as user modules to

limit the extent of the damage in case of a breach. A Jetpack extension is a hierarchical collec-

tion of such core and user modules. Morpheus must identify the use of privileged browser APIs

in the legacy extension and create core modules for them. Although creation of user modules

is not mandatory, it is recommended. Thus, Morpheus must analyze the legacy extension and

extract related functionality that can be compiled into a user module.

Modules interact using the require and exports interfaces. Although modules are allowed

to export privileged objects that they access, doing so would undermine the security of the

whole extension (by exposing the object to other modules). Morpheus must therefore ensure

that the modules it creates never export references to privileged objects. Instead, they should

export accessor methods to these privileged objects, which can be invoked by other modules

to achieve their desired tasks. One may argue that exporting accessor methods is akin to ac-

cessing capabilities to achieve the desired functionality. However, as will be described later in

Sections 4.3.3 and 4.4,: isolating capabilities in separate JavaScript modules makes it harder

for an attacker to compromise other modules.

(3) Scope and global objects. Legacy extensions make frequent use of global objects as

shown in Figure 4.1. Morpheus must ensure that partitioning the code into chrome/content

and user/core modules does not affect visibility of the globals (or other objects in scope) in the

Jetpack extension.

(4) Policy Checker. Benign software that exposes an API to third-party code is often vulnera-

ble to the confused deputy problem [47]. To safeguard core Jetpack modules from becoming

confused deputies themselves, (see Section 4.2) and also protect benign-but-buggy extensions,

Morpheus must allow enforcement of fine-grained access control and other security policies at

runtime. A key requirement here is that the extension code should be oblivious to the security

policies and the policy checker implementation.

(5) Preserve extension UI. The transformed Jetpack extension must retain the look and feel

of the legacy extension. Thus, the browser’s UI overlays, including any CSS, XUL and icons,

must be appropriately mapped.
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E Set of all expressions
Eρ f Fixed property access expression of the form e.x, e[’x’]
Eρd Dynamic property access expression of the form e[v]

Eρ Property access expression where Eρ := Eρ f ∪ Eρd where Eρ ⊂ E
Eµ Method invocation expression e.f( args ), e[’f’]( args ),

e[vf]( args )

Eχ XPCOM invoke expression, where Eχ ⊂ E. It can be one of the two
forms, either (i)Components.classes[.*]

.getService(Components.interfaces[.*]]) or
(ii)Components.utils

.import("resource://gre/modules/*.jsm");

EΩ Object Literal expression of the form { a:1, b:function(){}},
where EΩ ⊂ E

Ed Function/ variable declaration expression, where Ed ⊂ E. Can be any
of the following expressions

const c; let l; var a; var b=5; function foo( ){}
EXPRESSION(η) Expression for AST node η
OBJECT(ξ) {e | ξ ∈ (Eρ ∪ Eµ)} object whose property is accessed in expression ξ
PROPERTY(ξ) {e | ξ ∈ Eρ} property being accessed in expression ξ
NODE(η, ξ) AST node for expression ξ and a descendant of node η
GETALIASSET(A, n) Consults alias relationA and returns all may-alias for the node n.
INCONTENT(ξ) Checks if object denoted by expression ξ belongs to content context.
CANMAKEMODULE(n,T ) Decides if code corresponding to AST node n can be extracted and

put in a separate module

Table 4.1: Common notations used in transformation rules and algorithms.

In our work to date, we have not attempted to optimize the performance of the transformed

extension. The goal of Morpheus is to preserve the investment in legacy extensions, while also

improving their security by making them amenable for use within Jetpack. In doing so, Mor-

pheus may degrade the performance of the legacy extension, e.g., by using an asynchronous

communication API to emulate synchronous communication. We leave performance optimiza-

tion of the rewritten extensions as a topic for future research.

4.3.2 Analyses and Transformations

Morpheus invokes TRANSFORM (see algorithm 1) over the legacy extension to transform it

into the corresponding Jetpack extension. TRANSFORM takes in (i) the JavaScript code of the

legacy extension L, which has been preprocessed to resolve any global-local scope conflict, (ii)

an alias relation A as computed by the CFA2 algorithm [76] over the extension’s JavaScript

code, and (iii) some basic transformation rules R (see Table 4.2). Each transformation rule

modifies an expression ξ from the program’s abstract syntax tree (AST) T . TRANSFORM in



61

TRANSFORM(L,A,R)
Input: L : Legacy code,A : alias relation, R : set of rewriting rules
Output: M a set of Jetpack modules

Initialize:
T := AS T (L) ; O := ∅ /*Set of nodes for object literals*/

S := COMPUTESENSITIVESET(L,A) /*set of sensitive objects*/

D := COMPUTEDOMSET(L,A) /*set of DOM objects*/

foreach n ∈ NODES(T ) do
ξn := EXPRESSION(n)
if ξn ∈ Eχ then

REWRITE(ξn,T ,R1) /*rewrite with require, import core modules*/

else if ξn ∈ Eµ ∧ (NODE(n,OBJECT(ξn)) ∈ S ∨ NODE(n,OBJECT(ξn)) ∈ D) then
REWRITE(ξn,T ,R3)

else if ξn ∈ Eρ ∧ (NODE(n,OBJECT(ξn)) ∈ S ∨ NODE(n,OBJECT(ξn)) ∈ D) then
REWRITE(ξn,T ,R2)

else if ξn ∈ EΩ ∧ CANMAKEMODULE(n,T ) then
O ∪ = {n}

M := EXTRACTMODULE(T , O) /*Creates user modules from the relevant code*/

returnM
Algorithm 1: Transforming legacy extension code to Jetpack modules.

turn invokes algorithms 4.2(a), 4.2(b) and 3 to complete the transformation. Table 4.1 lists the

common notations used in all algorithms and rules.

We now discuss in detail the analyses and transformations implemented in Morpheus cor-

responding to each of the design requirements listed above.

Chrome/Content Separation

To identify object references that must appear in chrome or content scripts, Morpheus identi-

fies the context in which object references and their property accesses should be evaluated. The

context of an object reference is the context in which it was declared. Thus, any object declared

in chrome code must be evaluated in chrome context and similarly all accesses to content ob-

jects must be evaluated in the context of the current Web page (content). For the rest of the

chapter, we refer chrome context simply as chrome and content context as content.

Morpheus uses static dataflow analysis to identify whether code that accesses an object ref-

erence should be evaluated in either chrome or content. Our analysis leverages the dataflow

rules given in prior work [76]. The analysis is based on the observation that JavaScript code
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in legacy extensions is evaluated in chrome unless it specifically makes a transition to ac-

cess objects in content scripts. There are only a limited number of ways to make a transi-

tion from chrome code to content code, i.e., by accessing content, contentWindow and

contentDocument properties on selected chrome objects, like window and gBrowser. This

observation forms the basis of our static analysis.

All JavaScript in a legacy extension executes in the same heap, and thus objects have global

visibility. To precisely identify which objects must reside in the chrome or content, Morpheus

does a whole program analysis of the legacy extension. It concatenates all JavaScript code

within the extension before performing the static analysis. This concatenation includes scripts

defined within JavaScript files, event handlers and globals declared within overlay files and

also JavaScript code modules. The result of the static analysis is a table where each entry is an

object reference and the context in which it should be evaluated.

Static analysis to determine the chrome/content context of object references can suffer from

false positives and negatives when content references are accessed using JavaScript’s reflective

constructs. This happens, for instance, when object references are used within the eval string,

or passed as parameters to functions but are accessed as elements of the arguments array

within the function. Morpheus currently does not handle such cases and instead relies on the

developer to rewrite the code to make it more amenable to analysis, or to manually classify the

context of the object reference.

By default, a legacy extension executes in chrome, so object references that remain

in chrome in Jetpack can be evaluated as before. To evaluate objects in content, Mor-

pheus considers the content as a sensitive resource and models it as a core Jetpack

module called contentDOM. Algorithm 4.2(a) identifies all program points correspond-

ing to property accesses of content objects and Morpheus then rewrites these accesses

by accessor methods to abstract away the design of the content module from the ex-

tension code. For example, the code gBrowser.contentDocument in a legacy ex-

tension would be rewritten as gBrowser.getProperty(’contentDocument’). Like-

wise, the property access gBrowser.contentDocument.location would be rewritten as

gBrowse.getProperty(’contentDocument’).getProperty(’location’).

Morpheus addresses a key challenge that arises as a result of the design of Jetpack’s
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COMPUTEDOMSET(L,A)
Input: L: Legacy code,A: Alias relation
Output: D : set of DOM objects

Initialize:
T := AS T (L) ; D := ∅

foreach n ∈ NODES(T ) do
ξn := EXPRESSION(n)
ξr

n := RVALUEEXP(ξn), ξl
n := LVALUEEXP(ξn)

if (ξr
n ∈ D)

∨(ξr
n ∈ Eµ ∧ ((NODE(n,OBJECT(ξr

n)) ∈ D) ∨ INCONTENT(OBJECT(ξr
n))))

∨(ξr
n ∈ Eρ ∧ ((NODE(n,OBJECT(ξr

n)) ∈ D) ∨ INCONTENT(OBJECT(ξr
n))))

∨(ξr
n ∈ Eρ ∧ ((NODE(n,OBJECT(ξr

n)) ∈ D) ∨ INCONTENT(PROPERTY(ξr
n)))) then

D ∪ = {NODE(n, ξl
n)}

Al := GETALIASSET(A, NODE(n, ξl
n))

D ∪ = Al /*add all alias of ξl
n to D*/

return D

(a)

COMPUTESENSITIVESET(L,A)
Input: L: Legacy code,A: Alias relation
Output: S : set of sensitive objects

Initialize:
T := AS T (L) ; S := ∅

foreach n ∈ NODES(T ) do
ξn := EXPRESSION(n)
if ξn ∈ Eχ

∨(ξn ∈ Eµ ∧ (NODE(n,OBJECT(ξn)) ∈ S ))
∨(ξn ∈ Eρ ∧ (NODE(n,OBJECT(ξn)) ∈ S )) then

S ∪ = {n}
An := GETALIASSET(A, n)
S ∪ = An /*add all alias of ξn to S*/

return S

(b)

Algorithm 4.2: Algorithms for computation of set of nodes corresponding to (a) content DOM
objects and (b) sensitive objects.

contentDOM module. As shown in line 36 in Figure 4.1, legacy extensions may contain

statements that refer to objects in both chrome and content, i.e., modifyWebPageContent

is a method defined in the chrome while gBrowser.contentDocument is the active

window’s document object and is therefore an object in content. Moreover, the call

to modifyWebPageContent is synchronous in the legacy extension. Since the Jetpack

framework executes chrome scripts and content scripts in separate processes, they cannot

share object references, but only exchange data in JSON format asynchronously. Thus, in

the Jetpack counterpart of this extension, the call in line 36 would be asynchronous be-

cause modifyWebPageContent should be part of content script as they operate on the
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Rule: (ξ ⇒ ξ′)→ (T ⇒ T ′), where ξ := expression(n). T is set to T ′ after applying each rule
Rule R1: Import Module
m := get-module-name(ξ)
ξ′ := require(’m’)

Rule R2: Rewrite property access with setProperty, getProperty
o := object(ξ), prop := property(exp)

(R2.a)
property-read(T, ξ)

ξ′:= o.getProperty(’p’)
(R2.b)

property-write(T, ξ) v := value-to-store(T, ξ)

ξ′:= o.setProperty(’p’, v)

Rule R3 : Rewrite method invocation with invoke
o := object(ξ), µ := method(exp), α := arguments(exp)
ξ′ := o.invoke(’µ’, α)

Rule R4: Rewrite Global Access with GlobalGET, GlobalSET

(R4.a)
Global-read(T, ξ)

ξ′:= GlobaGET(’ξ’)
(R4.b)

Global-write(T, ξ) v := value-to-store(T, ξ)

ξ′:= GlobaSET(’ξ’, ξ)

Rule R5: Global Write ** This rule creates a new statement
σ := GlobaSET(’ξ’,ξ )

Table 4.2: Rewrite rules for expressions. Each rule modifies an expression ξ and updates AST
T .

gBrowser.contentDocument from the active Web page. Morpheus addresses this chal-

lenge by creating opaque identifiers (i.e., capabilities) for objects in the content and transmit-

ting these identifiers across the JSON pipe to the chrome. Morpheus’s transformation also

attempts to retain the control flow of the original extension code as intended by the developer

(see Section 4.5).

Module Construction

Modules in Jetpack must ideally not export references to privileged objects. Any such leaking

references to other modules can lead to privilege escalation attacks, i.e., a module to which a

reference is leaked may be able to access a privileged object without explicitly requesting access

to it at load time. Morpheus creates extensions that do not export privileged objects. Instead,

Morpheus creates module templates (see Figure 4.3) that export accessor methods to these

privileged objects. These modules export only four properties, namely id, getProperty,
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var table = require(’core module table’);
var policyChecker = require(’policy checker’);
var module = {

id: initModule(), /*initializes the module*/
getProperty: function() {

var property = arguments[0];
var violated = policyChecker.check

(<core module name>, property);
if(violated){

return {};
}
var ref = table.getReference(this.id);
switch(property) {

case ’< depends on the core module >’:
var retval = ref[property];
var newref = < new core module instance>
table.setReference(newref.id, retval);
return newref;

... /* more case statements */
default:

return null;
}

},
/*code for setProperty, invoke*/

}
exports.module = module ;

Figure 4.3: Template for secure core module with policy.

setProperty and invoke to privileged objects. Each module encapsulates a privileged ob-

ject, which is assigned an opaque identifier (id) on module initialization. Other modules access

the object using getProperty and setProperty, which are getter and setter methods, and

invoke, which allows invocation of methods defined on the privileged object. The first ar-

gument to each of getProperty, setProperty and invoke is the property to be accessed

followed by a list of arguments. Each of these methods can either return primitive values or

an instance of a module. Accessor methods also embody any security policies associated with

access to privileged objects. Section 4.4 discusses the security implications of creating modules

in this way.

Morpheus transforms legacy extensions to use core modules designed as above in the fol-

lowing way. It first analyzes the legacy extension to locate the use of browser’s privileged

XPCOM APIs and generates a list of program points (as shown in algorithm 4.2(b)) for the

property access and methods invoked on corresponding privileged XPCOM API. Morpheus

then rewrites the extension code by replacing all such references as per the rules R1, R2, R3 in

Table 4.2 for the corresponding core module in Jetpack. The Jetpack framework does not pro-

vide core modules for all XPCOM APIs, so core modules may have to be supplied separately.

We have used our module template to build a suite of core modules for a variety of XPCOM

APIs. We developed these core modules by hand, and used an off-the-shelf static analysis
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EXTRACTMODULE(T ,O,A)
Input: T : AST for Legacy, O : Set of nodes for object literals,A : alias relation
Output: M a set of Jetpack modules

Initialize:
T := ∅ /*Map from node n ∈ O to AST*/

ι := ∅ /*Map from node n ∈ O to parentAST from which it is extracted*/

foreach ni ∈ O do
Tni := COPYASTFORNODE(T , ni); T[ni] := Tni ; ι[ni] := T

/*update parent AST for nested object Literal expression*/

foreach ni ∈ O do
if ISNESTEDOBJECT(ni,T ) then

T p := FINDPARENTAST(ni, T)
ι[ni] := T p /*T p is the smallest AST T from T[ni] such that ni , root(T )*/

foreach ni ∈ O do
Tni := T[ni] /*AST for node ni*/

Gni := GETGLOBALIDENTIFIERS(Tni )/*Gni is set of identifiers used but not

defined in Tni*/

Hni := GETLOCALIDENTIFIERSGLOBALLYUSED(T ,O,Tni ) /*Identifiers defined in

Tni but also used in other T*/

/*Hni is set of identifiers defined in Tni and used in other modules*/

foreach q ∈ NODES(Tni ) do
ξq := EXPRESSION(q)
if ξq ∈ Gni then REWRITE(ξq,Tni ,R4) /*rewrite with GlobalGET, GlobalSET*/ ;
else if ξq ∈ Ed then

σ := CREATENEWSTATEMENT(LVALUEEXP(ξq),R5) /*create a GlobalSET*/

ADDTOAST(Tni , σ)
mi := MAKENEWMODULE(Tni ) /*Place the code for AST Tni in a new module and

append necessary code*/

M ∪ = mi

/*modify the parent AST*/

T p := ι[ni] /*get parent AST*/

ξni := EXPRESSION(GETNODEFROMAST(ni,T p)); REWRITE(ξni ,T
p,R1) /* rewrite

with require*/

Ani := GETALIASSET(A, GETNODEFROMAST(ni,T p))
foreach λ ∈ NODES(T p) do

ξλ := EXPRESSION(λ)
if ξλ ∈ Eµ ∧ (OBJECT(ξλ) = ξni ) then REWRITE(ξλ,T p,R3) ;
else if ξλ ∈ Eρ ∧ (OBJECT(ξλ) = ξni ) then REWRITE(ξλ,T p,R2) ;

m := MAKENEWMODULE(T ) ;
M ∪ = m /*construct the main module and add to set M*/

returnM
Algorithm 3: Algorithm for extracting user modules.

tool [51] to verify that these core modules do not export references to privileged objects.

Morpheus also creates user modules by analyzing legacy extension code. The main objec-

tive is to partition the chrome script into multiple modules in a way to attenuate the authority of

individual modules and limit the effect of a vulnerability exploit. A simple partition algorithm

could place each line of legacy extension code in a separate module. However this approach is



67

unrealistic since it would lead to excessive amount of intermodule communication which would

ultimately hinder the performance of the extension. Ideally, user modules should be generated

by clustering functions based on access to XPCOM functionality. However objects with privi-

lege to access different XPCOM can be used in a single statement. This makes splitting based

on XPCOM access non-trivial, since it would require more precise and sophisticated static

analysis and semantic-preserving transformation algorithm. Therefore we adopted a simpler

approach of encoding the developer’s way of partitioning code.

Morpheus identifies code fragments in the legacy extension that achieve related function-

ality. The underlying intuition is that these code fragments can then be grouped into a single

module. Morpheus uses a simple notion of object ownership to identify related functionality:

it identifies a set of functions that are owned by the same object, and groups such functions

into a single module. This heuristic is based on the observation that developers often group

functionality as object hierarchies that are more likely to access similar, if not the same, XP-

COM interfaces within one object. Even though this might provide less meaningful partitions

if the developer does not arrange his code using purposeful object hierarchies, our evaluation

shows that this approach is practical and we do extract a reasonable number of user modules

with most of them accessing only a few core modules. User modules follow the same tem-

plate as core modules with the difference that the object encapsulated within the module is the

one that owns the functions grouped in that module, instead of a sensitive XPCOM object as

for core modules. Morpheus rewrites references to the encapsulated objects with a require

invocation. Algorithm 3 encodes the user modules extraction and rewriting technique.

As shown in line 2 in Figure 4.1, an extension can load a JavaScript code module (JSM)

using an invocation to Components.utils.import. The import API takes as arguments

the URL of the script to be loaded and an optional scope object. On execution of the import

statement, the array of objects defined in the script (referenced by the URL) is attached to

the scope object. In case the scope object is not defined, the imported objects are attached

to the global object, i.e., they can be accessed and modified by any script in the extension

code. Browser-provided JSMs internally access XPCOM interfaces and therefore are treated as

privileged API by Morpheus. Core modules are constructed for them and accesses of such JSMs

are rewritten accordingly. In contrast, Morpheus rewrites all JSMs, defined by legacy extension



68

developers, to access only core modules designed as above. However since these JSMs are

self contained code fragments with a well defined interface for exporting objects, Morpheus

rewrites the entire JSM as a user module, and does not partition it further into smaller modules.

Scope and Global Objects

When Morpheus creates user modules from a legacy extension, it is possible that the resulting

user modules may require access to scope or global variables defined in the legacy extension.

However, Morpheus creates modules, which are isolated by the Jetpack framework, and there-

fore cannot share references/updates to scope and global variables. Morpheus therefore creates

a new global module that (1) stores references to all the scope and global variables, and

(2) exports two methods GlobalGET and GlobalSET to enable access to these variables. It

then analyzes all user modules, identifies instances of scope or global variables used (but not

defined) and rewrites access to these variables as per rule R4 in Table 4.2, i.e., using either

GlobalGET or GlobalSET.

Preserving Extension UI

As mentioned in Section 4.2.2, most of the browser’s UI is scriptable, i.e., it can be accessed

and modified using JavaScript. Morpheus leverages this ability and generates JavaScript code

to dynamically modify the browser’s UI on invocation of the Jetpack functionality. To do

so, Morpheus analyzes the legacy extension’s CSS and XUL overlay files, which represent

UI descriptions as XML markups, and dynamically loads the appropriate JavaScript code at

runtime to preserve the UI of the legacy extension.

Figures 4.4 and 4.5 show the rewritten statements and extracted user modules on applying

Morpheus to our DisplayWeather extension (see Figure 4.1).

4.3.3 Policy Checker

Transformations on legacy extensions as applied by Morpheus greatly simplify enforcement

of security policies on a per extension granularity. Morpheus supports both simple access

control checks as well as complex stateful policy checks on sensitive browser resources and
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(2) var FileUtils = require(’core/FileUtils’).module;
(4) var file = FileUtils.invoke(’getFile’,dir, [filename]);
(9) var Weather = require(’user/Weather’).module;
( ) GlobalSET(’Weather’, Weather); /*new statement added*/

(30) document.invoke(’getElementById’,’weatherStatusBar’)
.addEventListener(’click’, showWeatherInPanel, false);

(32) window.invoke(’addEventListener’,’DOMContentLoaded’,
addWeatherToWebpage, false);

(34) var locationStr = getLocationFromWebpage(gBrowser
.getProperty(’contentDocument’));

(35) var temperature = Weather.invoke(’getWeatherData’, getZipCode(locationStr));
(36) modifyWebpageContent(gBrowser.getProperty(’contentDocument’, temperature));

Figure 4.4: Code snippet from Main module of the transformed DisplayWeather Jetpack ex-
tension. Only statements from Figure 4.1 that are rewritten by Morpheus are shown.

(9) var module = {
(12) getWeatherData: function(zipcode){
(13) GlobalGET(’Weather’).invoke(’requestDataFromServer’, zipcode);
(14) return processWeatherData(GlobalGET(’Weather’)

.getProperty(’temperature’));
(15) },
(16) requestDataFromServer: function(sendData){
(17) var httpRequest = require(’core/XMLHtttpRequest’).module;
(20) httpRequest.setProperty(’onreadystatechange’, function(){
(22) GlobalGET(’Weather’).invoke(’extractTemperature’,

httpRequest.getProperty(’response’));
(24) });
(25) httpRequest.invoke(’open’, ’GET’, serverUrl, true);
(26) httpRequest.invoke(’send’, sendData); /*contact remote server*/
(27) }
(28) }

( ) exports.module = module ; /*new statement added*/

Figure 4.5: Code snippet from Weather module of the transformed DisplayWeather Jetpack
extension. Only the statements from Figure 4.1 that are rewritten by Morpheus are shown.

APIs managed by the core modules.

Security policies for preventing undesired accesses by the core modules are encoded in a

separate Jetpack module named PolicyChecker, and all accessor methods in core modules

must consult the PolicyChecker before actually granting access to the sensitive resources

requested by a potentially compromised user module. To do so, Morpheus mandates that core

modules place a trap in their accessor methods, as shown in Figure 4.3. PolicyChecker

exports an API check to validate the request for accessing the sensitive resource by the user

module. If the request does not conform to the extension’s security policy, a violation is raised

and the PolicyChecker simply blocks the requested access and returns an empty object.

The check API takes as input a tuple (m, p, α), where m is the unique core module name, p

is the name of the property accessed or method invoked and α is an optional list of arguments

for method invocation, and returns a boolean indicating whether the request was granted or

not. Algorithm 4 shows the pseudocode for identifying if the compromised user module in

DisplayWeather extension tries to trick the core modules FileUtils or Network in accessing
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a different file or remote server of attacker’s choice. The policy also implements a stateful

policy check wherein it detects an access corresponding to a low confidential sink taking place

after access to a high confidential source. An example of such a policy is to disallows all

network access after accessing the LoginManager interface, which is an XPCOM interface

that allows to read all stored passwords from the Firefox profile.

CHECK(m, p, α)
Input: m : Module name, p : Property, α : ArgumentList

Output: b, where b ∈ {true, f alse}

if m =”FileUtils” ∧p =”getFile” then
f := GETARGVAL(m, p, ”filePath”)
if f , f v then return true /* f v is the permitted filePath*/;

else if m =”XMLHttpRequest” ∧p =”open” then
u := GETARGVAL(m, p, ”url”)
if u , uv then return true /*uv is the permitted server url*/;

/*For a low-confidentiality(high integrity) sink, find corresponding

high-confidentiality(low-integrity) sources that would violate any of the

encoded policy*/

if ISSINKACCESS(m, p, α) then
Γ := FINDSETOFVIOLATINGSOURCE(m, p)
foreach (mi, pi, αi) ∈ Γ do

if (mi, pi, αi) ∈ Λ then return true ;
Λ := Λ ∪ (m, p, α) return f alse
.

Algorithm 4: Checking if an access in core module violates policy. Λ is the list of access
i.e. Λ :={(m, p, α)} and GETARGVAL(m, p, str) gives the value of the argument str in m.p
invocation.

Since policies are encoded within the isolated PolicyChecker module and core modules

can only invoke the check API to validate the access, Morpheus allows policies to be added or

removed with no modification of the extension code.

4.4 Security Analysis

A Jetpack extension’s ability to limit the consequences of a breach depends on the structure of

its modules and the security policies. Figures 4.6(b) and 4.6(c) show the effect of Morpheus’s

transformations in accessing property of sensitive object in terms of the heap model.

In a legacy extension when accessing a property p in sensitive object s, the heap object

hs for s and hs.p for s.p lies in the same address space, as shown in Figure 4.6(b). However

when processed by Morpheus, s.p is rewritten as s.getProperty(’p’) and the heap object
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Figure 4.6: (a) Module hierarchy in transformed DisplayWeather extension. Difference of heap
map of property access of a sensitive object where hξ is the heap object for the expression ξ.
(b) s.p in legacy extension (c) s.getProperty(’p’) in Jetpack. m j is a user module, ms is
a module wrapping sensitive object s.

.

hs for s does not have direct access to hs.p, as shown in Figure 4.6(c). Instead, invoking the

getProperty method gives it access to the actual heap object h′s that has direct access to its

property p heap object h′s.p. The dotted line between h′s.p and hs.p denotes that (i) the latter is

the wrapped version of the former object, and (ii) this relation is further protected by the policy

enforcement mechanism. Note that both h′s and h′s.p lie in a different module ms, which is

isolated from the module m j corresponding to the transformed legacy code. Thus, if an attacker

manages to compromise m j he will not have direct access to the actual heap object from m j.

Given the above heap model, we now analyze the security of a legacy extension transformed

by Morpheus using several properties (enumerated in Table 4.3), provided in part by the Jetpack

framework, Morpheus’s transformation, and Morpheus’s PolicyChecker for policy enforce-

ment.

Let P(m) denote the set of privileges that can be accessed by a module m. It is computed as

follows:

P(m) := (
⋃

m→x P(x))
⋃

(
⋃

m7→mu LP(mu))
⋃

(
⋃

m 7→mc P(mc)), where

m→ x means module m has direct access to XPCOM interface x,

mi 7→ m j means module mi imports module m j,

U is the set of user modules mu in an extension,

C is the set of core modules mc in an extension and U ∩C is ∅, and

LP(mu) denotes the set of privileges leaked from user module mu
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# Provider Property
P1 Each Jetpack extension is a hierarchical collection of modules that are isolated and

share no state except that is explicitly exported using the exports construct.
P2 The set of privileges that can be manipulated and exported by a module depends

on (i) user modules, and (ii) core modules it includes using the require construct.
P3 Jetpack A module can import a privilege only when the Jetpack framework first loads the

module. This implies that the module cannot dynamically extend its privileges at
runtime.

P4 All Jetpack modules lie in chrome space and can contact with content Web page
over an asynchronous message passing channel.

P5 Only core module can directly access XPCOM APIs. User modules can never
directly access XPCOM APIs.

P6 Each core module encapsulates reference to only one XPCOM interface and does
not have direct access to other XPCOM interfaces

P7 Morpheus Core modules cannot import any user module
P8 Each module exports only an opaque identifier and accessor methods, that can

return either primitive values or instances of other modules
P9 Each module stores the reference to the sensitive object it encapsulates within

another designated module, i.e., all core modules share a common module to store
sensitive objects.

P10 Policy Each core module can access a specific sensitive resource after being verified by
Checker security policy mediate the particular sensitive resource that a core module can

access.

Table 4.3: Security properties.

P3 together with P2 guarantees that P(m) can be statically determined and cannot be

changed during execution, and thus prevents the attacker from creating and dynamically load-

ing instances of other core modules inside the compromised core (or user) module m. P5, P6

and P7 limit the privileges P(m) for any core module m ∈ C to (
⋃

m→x P(x))
⋃

(
⋃

m7→mc P(mc)).

In case m is compromised, P9 guarantees that the attacker only has access to the reference to

the privileged object encapsulated by it (see Figure 4.6(b)), and no access to objects managed

by other core modules, e.g., mc
j. This is because core module table, which stores the sen-

sitive references for other core modules, does not support iteration and its accessor methods

need an opaque identifier to return the sensitive reference. Since the opaque identifier itself is

a reference, it is not possible for the attacker to manufacture the exact reference and access all

sensitive objects.

For a user module m ∈ U, P5 and P8 guarantee that
⋃

m→x P(x) is ∅ at all times. This

implies that a user module cannot export references to privileged objects, because it has none.

Therefore, we need not implement accessor methods for user modules, but Morpheus still keeps

the same interface as it allows developers to conveniently enforce security policies on user
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modules. P8 also guarantees that
⋃

m7→mu LP(mu) is ∅ that makes P(m) for any user module

m ∈ U equal to
⋃

m 7→mc P(mc). In other words, the privileges of a user module can be determined

by inspecting privileges of the core modules it imports. Thus, the above properties ensure that

for any module m, P(m) ≡
⋃

m7→mc P(mc) always holds.

The DisplayWeather extension with access to the user’s file system and the network is

an attractive target for Web attackers, who may want to steal sensitive user data, such as stored

passwords, from the file system and send it over to an attacker controlled remote server. We now

illustrate how Morpheus improves the security of the transformed DisplayWeather extension.

Figure 4.6(a) shows the module hierarchy for the transformed Jetpack extension. Using the

above formula and the transformed code (Figures 4.4 and 4.5), we claim that P(mFile) ≡ { f ile},

P(mNetwork) ≡ {network}, P(mMain) ≡ { f ile}, and P(mWeather) ≡ {network} holds even if these

modules get compromised.

Unlike in the legacy DisplayWeather extension, P4 guarantees that the modules in the cor-

responding Jetpack are isolated from the content. Assuming that the attacker has (i) compro-

mised the asynchronous message passing channel between the content and the chrome, and

(ii) can infiltrate into the chrome space (that contains all the modules), we consider the case

of a security breach in a user module mWeather. The only privilege that the attacker gets is ac-

cess to the network via the mNetwork module. Although we place no restriction on the nature of

code that the attacker can evaluate within the extension, as listed earlier, P3 restricts the powers

of the attacker by disallowing him from loading a new core module mLoginManager (to read all

stored passwords), as it was not requested by the compromised mWeather module at load time.

Due to the fixed module hierarchy in Jetpack extensions, the attacker cannot even trick mFile

module (to read the password file) by only compromising mWeather, and must also compromise

mMain or mFile. If we assume that the attacker has managed to infiltrate a core module mFile,

then the only privilege he gets is f ile, i.e., access to the file system. Similar scenario applies if

the attacker has managed to infiltrate the core module mNetwork. In each of the above cases, the

attacker only gets access to the privileges available in the compromised module m computed

by P(m) and no more. This is in contrast to the legacy extensions where a breach in any portion

of an extension enables the attacker to obtain access to any privileged object managed by the

browser.
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P10 further attenuates the authority of core modules. Let us assume that the attacker has

compromised both the mMain and mWeather modules, and also managed to modify the file path

in FileUtils.getFile to the intended password file, and the URL for the remote server

to one that is controlled by attacker. In such a scenario, the PolicyChecker will prevent

the mFile and mNetwork core modules to read file other than ProfD/zip.txt from the file

system and contact a remote server other than the legitimate weather server. Even if the attacker

has compromised mFile and mNetwork module, the PolicyChecker will still prevent access to

unauthorized resources.

We note that if the mWeather module was not extracted using Morpheus’s transformations,

P(mMain) would have evaluated to { f ile, network}. In the absence of any security policy, com-

promising only mMain module would have sufficed for the attacker. In other words, Morpheus

does not worsen the security guarantees given by Jetpack framework. In fact, its module ex-

traction based on the owning object algorithm along with the PolicyChecker make it harder

for the attacker to mount a successful attack, by increasing the minimum number of modules

that need to be compromised.

4.5 Implementation

We realized the entire Morpheus toolchain in about 13, 400 lines of JavaScript (node.js [15]),

of which about 10, 500 lines were devoted to implement 100 core modules with wide rang-

ing functionality. We used node.js to ease the implementation of the prototype. We leveraged

Doctor JS [3], which also uses node.js as its backend, to implement our JavaScript code ana-

lyzer. Specifically, we added about 100 lines of code to customize Doctor JS for analysis of

legacy extensions. Generation of Jetpack modules and rewriting of the global variables utilized

the Narcissus [60] parser and decompiler to (i) rewrite the source ASTs, and (ii) convert the

rewritten ASTs back to source code. This required about 4200 lines of JavaScript code. Fi-

nally, dynamic generation of the UI and subsequent packaging of the modules into a Jetpack

extension required 900 and 100 lines of JavaScript code, respectively. Another 370 lines of

shell scripts were required to automate the entire toolchain. Policy checker is implemented as

a Jetpack module and requires only 150 lines of JavaScript code to encode all policies listed in
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Table 4.6.

The transformation of legacy extension into the corresponding Jetpack, and correct evalua-

tion of chrome and content scripts in the transformed Jetpack posed several issues. We discuss

a few of them here:

• Content proxy. A content proxy is required for mediating interaction between chrome and

content scripts (see Section 4.2.3). The default content proxy implemented in the Jetpack

framework was stateless, i.e., execution of content scripts across different invocations of the

proxy did not share any execution context. This stateless execution posed a problem since

the transformed Jetpack requires multiple invocations to the proxy depending upon context

switches, i.e., from chrome to content and back (see line 36 in Figure 4.1). We overcame the

problem by modifying the default content proxy to retain all execution state after initialization.

The content proxy is initialized every time a new document is loaded.

• Opaque identifiers. Message exchange between the chrome and content scripts is asyn-

chronous and is limited to transfer of primitive values and opaque identifiers only. Since object

creation may also happen in the content, management of opaque identifiers must also be done

in the content. We therefore inject the content proxy with scripts to manage opaque identifiers

during its initialization.

• Synchronous execution. In order to retain the synchronous execution semantics as in-

tended by the extension developer, Morpheus implements a synchronous execution proto-

col for evaluating object references in the content. Specifically, Morpheus utilizes the

processNextEventAPI defined on XPCOM’s thread interface to implement the synchronous

behavior by repeatedly processing the next pending event on the currently executing thread un-

til it receives a response from the content process. This technique along with a stateful content

proxy ensures that the transformed extension achieves synchronous execution semantics with-

out blocking the CPU. However, this mechanism may affect the performance of the transformed

extension if it makes numerous context switches between the chrome and the content.

• Custom XPCOM interface. Firefox allows extension developers to declare their own XP-

COM components and register them with the extension architecture by packaging supporting

JavaScript files, which implement the component interfaces, with the extension. Morpheus
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treats such JavaScript files as modules, redefines the components using helper methods pro-

vided by Jetpack and rewrites them like other JavaScript code in the legacy extension. All top

level objects in extension scripts are also added to global module so that they can be accessed

by the modules defining the XPCOM interface.

4.6 Evaluation

We evaluated Morpheus using four criteria: (i) correctness of the transformation, (ii) confor-

mance to the principle of least authority (POLA), (iii) effectiveness of user module creation and

(iv) effectiveness of policy-checker. We performed the evaluation using a suite of 52 legacy ex-

tensions (50 popular legacy extensions from Mozilla’s addon gallery (AMO) and 2 synthetic

extensions) and then transformed them using Morpheus. Our dataset contained extensions that

use common extension development technologies, such as JavaScript, HTML, XUL, CSS, etc.,

and did not contain any binary XPCOM component.

4.6.1 Correctness of Transformation

We tested the correctness of the transformation by exercising the advertised functionality of

each of the 52 extensions transformed with Morpheus. In each case, we enhanced the browser

with the Jetpack extension being tested and observed the results of interaction with the ex-

tension’s UI. Table 4.4 lists the extensions evaluated along with their functionality. The top

50 entries are for the real-worls extensions whereas the bottom 2 correspond to the synthetic

ones. For all cases the Jetpack extension was able to provide the advertised functionality of the

original (legacy) extension.

FlagFox is one of the larger extensions that we transformed. It utilizes 28 core modules,

and over 1307 lines of JavaScript (out of 3971 lines of extension code) are used to implement

the UI. The remaining 2667 lines implement the core functionality of the legacy extension. We

also observed that several extensions from our dataset had just a single user module after being

transformed to Jetpack extension. Go To Google, Go To Bing, Steal-login are few instances of

such case. This is due to the absence of any object definition or absence of property method

invocations from objects defined in the legacy code. We also noticed the same Jetpack extension
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Legacy Extension Functionality # Users
Amazon Search Search in amazon.com using the right click context menu from any website. 1,866
BlockSite Blocks websites and disables hyperlinks of user’s choice. 214,173
Bookmark All Bookmark all opening tabs quickly without any dialog. 5,304
Clear Cache Clears the browser cache with one click 10,557
Clear Cache Button Clears the browser cache. 44,843
Comment Blocker Blocks or hides all unwanted comments on websites. 1,415
Context Search Expands the context menu’s “Search for” item for all installed search engines. 67,070
Copy Link Text Adds an option to the context menu to select the text of a link on right-click. 5,199
Copy Link URL Copy the URLs of the selected links to clipboard. 13,025
Ebay Quick Search Search in ebay.com using the right click context menu from any website. 1000
Email This Email link, title, and a selected summary of the Web page being viewed. 15,853
Empty Cache Button Cache clearing made easy. One click. 53,048
Facebook Bookmark Allow visiting Facebook Bookmarks by adding a special Button to Toolbar. 11,222
Facebook New Tab Loads Facebook.com quickly when a new tab is opened. 7,439
Facebook Toolbar Button Loads Facebook.com on clicking toolbar icon. 21,026
Facebook Touch Panel Allow quick check Facebook Notifications and Messages by a touch Panel. 10,054
FlagFox Displays a country flag depicting the location of the current website’s server. 1,296,480
FlashBlock Blocks all Flash content from loading. 1,372,826
Go To Bing Loads bing.com in a new tab when clicked on status-bar Bing icon. 139
Go To Google Loads google.com in a new tab when clicked on status-bar Google icon. 15,700
Google Search By Image Adds Google Search by Image context menu item for images. 45,838
Google Translator Translates selected text or page into chosen language with a click or hot-key. 453,029
Google Viewer Prompt to open supported documents with Google Docs Viewer. 1,472
Image Block Adds a toggle button to conditionally block/allow images on Web pages. 22,147
ImageSearch Adds a context-menu item for images to search Google for that image. 14,285
LEOs Dictionaries Translates selected words/phrases with the help of LEOs Online Dictionaries 10,501
Leo Search Searches selected words at dict.leo.org and opens the result in a new tab. 9,835
LibraryDetector Detects which JavaScript libraries are being used on the current Web page. 1,590
Live IP address Retrieves Live IP Address and displays in the status bar. 9,090
My Home Page Load the homepage in a new Tab. 40,439
My Public IP Address Show browser IP address. 2,959
New Tab Homepage Load the homepage in a new tab; load the first in case of multiple homepages. 245,540
Open Bookmark (new tab) Always opens new tab from bookmarks. 44,683
Open GMail (new tab) Opens Google Mail Web page on a new tab. 22,107
Open GMail (pinned tab) Opens Google Mail Web page on a new pinned tab in HTTPS mode. 10,092
Open Image (new tab) Adds right-click context menu item for opening images in new tabs. 14,285
Place Cleaner Replace the default “Print” button with Mozilla’s “Print Preview” button. 21,878
Plain Text links Open plain-text urls as links via context menu. 4,738
Print Preview Replace the default “Print” button with Mozilla’s “Print Preview” button. 37,966
Really Simple Sticky Allow to add notes, reminders directly in the browser. 924
Right Click Link Opens selected text in a new tab. 6,861
Search IMDB Search the highlighted text at IMDB. 19,635
Show MyIP Displays user’s current IP address in the status bar. 11,239
Tab History Menu Enables opening the history menu for a selected tab just by clicking on it. 7,237
TinEye Rev Img Srch Adds a context menu to search for an image, where it came from, etc. 208,496
Twitter New Tab Loads twitter.com quickly when a new tab is opened. 830
Twitter Toolbar Button Loads twitter.com on clicking toolbar icon. 210
Web2Pdf Converter Web page to PDF conversion tool. 42,185
YouTube Auto Replay Enables automatic replay of a YouTube video or part of it. 26,478
YouTube IT Search the selected Text in Youtube. 15,036
DisplayWeather Displays weather of chosen location N/A
Steal-login Steal passwords and send to remote server N/A

Table 4.4: Legacy extensions transformed using Morpheus and corresponding Jetpack statistics.

structure for TinEye Reverse Image Search entry even though the legacy code defines a top-

level object. This is because it had all the functionality included in just that one object whose

methods were invoked from event handlers.

4.6.2 Conformance to POLA

We used an off-the-shelf tool Beacon [51] to check whether modules in a Jetpack extension

adhere to the principle of least authority. Beacon determines whether a Jetpack module leaks
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Figure 4.7: Frequency of core modules in Jetpack user modules.

references to privileged objects that it encapsulates. If so, any other code that requires this

module will be able to directly access the privileged object without an explicit require of

this object, thereby violating POLA. None of the 100 core modules leaks any object reference

resulting in absence of POLA violation.

4.6.3 Privilege Separation in User Modules

We estimated the effectiveness of our user module extraction algorithm in approximating the

ideal privilege separation by counting the number of core modules imported by each user mod-

ule. The less the number of core modules accessed by a user module, the more effective is

our module extraction algorithm in separating the privileges in extension code, as this corre-

sponds to possible increase in the minimum number of modules that needs to be compromised

to misuse multiple privileges.

We analyzed the user modules produced by Morpheus for all 52 Jetpack extensions and

observed the frequency of the require invocation for various core modules within each user

module. The goal is to demonstrate that user modules created using the owning object algorithm

do not have access to large number of privileged objects as compared to legacy extensions.

Figure 4.7 reflects the frequency distribution of core modules. We see that out of a total of 100

user modules across all the Jetpack extensions, there are 56 modules with one or more accesses

to distinct core modules. From the distribution, it is seen that around 14 modules use only one

core module and as the number of core modules increases, the number of modules requesting

multiple core modules decreases. We also note that there is one user module with 28 accesses
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to core modules. This user module is part of the FlagFox extension and is in fact a JavaScript

code module (JSM) that was wrapped as a user module. Recall that JSMs are not partitioned

into smaller modules because they are self contained code fragments (see Section 4.3.2).

Similar to the categorization of XPCOM interfaces in chapter 3, we further grouped core

modules into 6 categories — namely Application, Browser, DOM, Security, I/O, and Miscella-

neous, to assess the nature of functionality offered by the user modules. Modules that access

application or user preferences, create application threads, etc. are categorized under Applica-

tion. The category Browser contains core modules that represent browser neutral functionality

such as access to timers and console. Modules facilitating access to content objects like window

and document are grouped under DOM. Modules that handle browser permissions and cook-

ies are grouped under Security, while those that access network, file system or storage come

under I/O. The remaining modules are grouped under Miscellaneous. Table 4.5 categorizes the

usage of core modules corresponding to XPCOM interfaces across different categories, and we

make four observations about it. First, most of the table is relatively sparse which indicates

that user modules use related functionality. Second, almost all Jetpack extensions use core

modules under the Application category and the reason is because they set user preferences.

Third, since user modules created from JavaScript code modules, like flagfox in the FlagFox

Jetpack, are just wrappers, they typically use core modules across multiple categories. Fourth,

many Jetpack extensions which interact with content on Web pages, like DisplayWeather, do

not explicitly invoke the core module contentDOM (see Section 4.3.2) responsible for access

to the content objects. Instead they access properties of either chrome window or gBrowser,

which in turn invoke the contentDOM to make a transition to the content. Because of this

implicit invocation, column entires in category DOM are empty for such Jetpack extensions.

4.6.4 Runtime Policy Checking

We evaluated the effectiveness of PolicyChecker at blocking attacks originating from misuse

of the core modules. To do so, we encoded seven policies in the PolicyChecker module for

the transformed extensions in our dataset. Table 4.6 lists these policies, which are classified as

being either generic or extension-specific. The first three policies enforce fine-grained access

control over extension resources, and the remaining policies are stateful. Of the extensions in
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Jetpackextension Module name Categories
Application Browser DOM I/O Security Misc.

Amazon Search M-1 3

BlockSite
M-1 3 3
M-2 3
main 3 3

Bookmark All M-1 3 3
M-2 3

Clear Cache main 3
Clear Cache Button main 3 3

CommentBlocker appl (JSM) 3
main 3

Context Search M-1 3
main 3

Copy Link Text M-1 3 3
Copy Link URL M-1 3 3
Email This M-1 3 3 3
Empty Cache Button M-1 3 3
Facebook Bookmarks M-1 3 3 3

Facebook New Tab M-1 3 3 3
main 3

Facebook Toolbar M-1 3 3 3
Button M-2 3 3 3
Facebook Touch M-1 3 3 3
Panel M-2 3 3 3

FlagFox
flagfox (JSM) 3 3 3 3 3 3
ipdb (JSM) 3
main 3

FlashBlock M-1 3 3 3 3
M-2 3

Google Translator M-1 3
Image Block M-1 3
ImageSearch M-1 3 3 3
LEOs Dictionaries M-1 3
Leo Search main 3
Live IP Address main 3 3
My Home Page M-1 3
My Public IP M-1 3 3
New Tab Homepage main 3
Open Bookmark (new tab) main 3 3
Open Gmail (pinned tab) M-1 3
Open Image (new tab) M-1 3
Plain Text Links M-1 3 3

Places Cleaner M-1 3 3 3
M-2 3 3

Really Simple Sticky M-1 3
Search IMDB M-1 3 3 3
Show MyIP main 3
Tab History Menu main 3
Twitter New Tab M-1 3 3 3
Twitter Toolbar Button M-1 3 3 3
YouTubeIT M-1 3
TinEye Rev Img Srch main 3 3

Web2Pdf M-1 3 3
main 3 3

Dispaly Weather M-1 3
main 3

Steal Login main 3 3

Table 4.5: List of Jetpack modules accessing multiple categories of core modules. User mod-
ules created using owning object algorithm are named using random strings, except when they
are either JavaScript code modules (JSMs) or the entry point of the extension i.e. main module.
Extensions not invoking any core module corresponding to XPCOM interfaces are omitted.

our dataset, only Steal-login exhibits malicious activity, while the others are benign and do not

violate the policies in Table 4.6. Thus, to verify that PolicyChecker can actually identify

and block violations in core module, we introduced synthetic violations in benign extensions.

We did so by appending additional code within the user modules of the benign but transformed
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Policy Generic # extensions
Contact only specified remote server No 3
Access only files in profile directory as advertised No 1
Cannot access preference branch other than its own Yes 2
Cannot contact server if the extension has already accessed file system Yes 1
Cannot contact server if the extension has already accessed LoginManager Yes 1
Cannot contact server if the extension has access browsing history Yes 1
Cannot contact server if the extension has access browser cache Yes 2

Table 4.6: List of policies checked for evaluation data set.

extensions to elicit policy violations. The third column in the table lists the number of exten-

sions that were used to check such synthetic violations of the corresponding policy. In each

case, we observed that PolicyChecker was able to identify the violation and block the unde-

sired operation in the core module. Even though we introduce a runtime policy enforcement,

it does not introduce any perceivable runtime overhead. This is because policy checker is only

consulted for the part of code that invokes core module. In our experiments, we refrained from

checking any policy for an extension if it can potentially block the advertised functionality.

For example, we did not apply policy to block network access after file system access for the

DisplayWeather extension, as the extension contacts a weather server after reading ’zip.txt’

from the file system, which is its advertised functionality. We do envision developer assistance

when encoding such policies. We now list specific observations on applying Morpheus over

legacy extensions.

(1) Event handling with chrome/content separation: An extension from our dataset Comment-

Blocker2 installs event handlers that manipulate objects from both chrome and content to

achieve its advertised functionality. Specifically, it installs two mutation event listeners (for

DOMNodeInserted and DOMNodeRemoved events) in the content while their handlers are

declared in the chrome. Execution of such event handlers invokes frequent invocations to the

synchronous execution mechanism due to context switches between the chrome and content.

Since the Jetpack framework disallows direct access of references across the chrome/content

boundary, Morpheus transforms the handler defined in the chrome to operate using opaque

identifiers for the event object (which is passed implicitly to all handler functions).Morpheus

transforms the code to install a new event handler on the element in the content. This newly

2CommentBlocker:https://addons.mozilla.org/en-US/firefox/addon/commentblocker/

 https://addons.mozilla.org/en-US/firefox/addon/commentblocker/
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Original extension code which installs chrome handler in content code.

document.addEventListener(’DOMNodeInserted’, function(evt) {
CommentBlocker.parser.parse(evt.originalTarget,true);

},false);

function(e) { This handler is installed instead of CommentBlocker.parser.parse.

var evt = {
type: e.type,
originalTarget: getOpaqueID(e.originalTarget),
target: getOpaqueID(e.target),
/* add more fields to the evt object */

};
self.port.emit(’response’, JSON.stringify(evt));

}

worker.port.on("response", function (x) { Supporting chrome code.

var evt = createEventObject(JSON.parse(x));
var evtH = getSavedReferenceToOriginalHandler();
// evtH is a reference to CommentBlocker.parser.parse.
evtH(evt);

});

Figure 4.8: Transformation required to support execution of chrome handlers from event lis-
teners installed in content code. Objects worker and self are used to communicate between
chrome and content processes.

installed event handler then performs a context switch into the chrome code to execute the

event handler in the chrome context. This transformation also requires creating opaque iden-

tifiers for the “event” object (which is passed implicitly to all handler functions) and transmit-

ting it to the chrome for correct execution. Creating opaque identifiers for event attributes

like target and originalTarget allows most functionality, but prevents operations such as

evt.target instanceof HTMLDocument. This is because the Jetpack framework itself

does not provide support for all objects available in the legacy Firefox extension architec-

ture. For example, comparison of object instances against HTMLDocument and other HTML

elements using the instanceof operator does not succeed in the Jetpack framework. Thus,

legacy extension using such comparisons must be rewritten to use alternate comparisons (such

as Ci.nsIHTMLDocument and Ci.nsIHTMLElement).

Figure 4.8 shows the snippet of code required for the transformation for the CommentBlocker

extension. We observed a perceptible performance slowdown for CommentBlocker when hid-

ing comments. While it is well documented that mutation DOM event listeners themselves

considerably degrade the performance of subsequent DOM operations [64], we believe that

repeated context switches between chrome and content also contributed significantly to the

overhead.
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(2) QueryInterface: The interface definitions for most XPCOM APIs inherit from other inter-

faces. For example, the nsILocalFile interface inherits from nsIFile. QueryInterface

[61] is a construct that allows JavaScript to perform runtime type discovery and identify the

interfaces supported by an object. Thus, on instantiating an object of type nsILocalFile,

the object can perform a QueryInterface to access methods and properties defined on

the nsIFile interface as well. With the core modules exporting only accessor methods,

QueryInterface on module objects would be incorrect. To correctly implement the behav-

ior of QueryInterface, the getter method in core module table maintains a linked list of

objects which were QueryInterface’d on a module object and on every property access, it

traverses the list and returns the object on which the property was defined.

(3) String objects: If an XPCOM API returns an instance of a string object, its core module

returns a wrapped string object that exports an opaque identifier and the three accessor meth-

ods (i.e. getProperty, setProperty and invoke). Since this wrapped string object can-

not be directly used for string operations like concatenation, Morpheus appends an additional

toString property on the wrapped string object to facilitate all string operations.

4.7 Limitations

In its current form, Morpheus is constrained by a number of factors. We enumerate them below:

(1) Narcissus and Doctor JS: The Morpheus toolchain uses both these tools during different

phases of its operation. Both Narcissus and Doctor JS are under active development and do not

support all JavaScript constructs and features. For example, Narcissus does not support various

forms of the let block, array comprehension, destructuring, generators, etc. Doctor JS uses

the CFA2 algorithm [76] for JavaScript implemented atop Narcissus. Doctor JS also does not

support a number of JavaScript statements. For example, it throws exceptions when performing

string concatenation via the += shorthand operator, or if the loop variable is not defined explic-

itly within the for loop itself. The above issue can be resolved by porting Morpheus to use a

more stable platform, like SpiderMonkey [62], to remove such limitations and allow evaluation

of more complex extensions.

(2) Jetpack framework: The Jetpack framework itself does not provide support for all objects
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available in the legacy Firefox extension architecture. For example, comparison of object in-

stances against HTMLDocument and other HTML elements using the instanceof operator does not

succeed in the Jetpack framework. Thus, legacy extension using such comparisons must be

rewritten to use alternate comparisons (such as Ci.nsIHTMLDocument and Ci.nsIHTMLElement).

(3) Plethora of XPCOM interfaces: The legacy extension architecture provides myriad XP-

COM interfaces for the Mozilla suite of applications. There exist a total of over 1500 XPCOM

interfaces3 available to developers in Firefox. In absence of an automated generation of core

modules, each XPCOM interface is processed manually and corresponding core module is de-

veloped by hand.

(4) Binaries in custom XPCOM interface: Firefox also allows developers to define an XPCOM

interface by providing an interface definition file and compiling it into a binary format (XPT)

in order to be registered and used within the browser. In its present form, Morpheus does not

process extensions that includes XPT files.

4.8 Summary

We present Morpheus, a streamlined mechanism to port legacy Firefox extensions to the more

secure Jetpack framework. It utilizes module isolation provided in Jetpack framework to over-

come challenges in code partitioning and secure module construction. Transformation applied

by Morpheus enables fine-grained policy enforcement on ported Jetpack extension. We evalu-

ate Morpheus with a suite of 52 legacy extensions and show that the automatically transformed

extensions are secure by construction.

3We counted the number of available XPCOM interfaces by iterating over the Components.interfaces object.
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Chapter 5

Related Work

There has been much interest recently in the research community to improve defenses against

vulnerable and malicious browser extensions. To our knowledge, the work presented in this

thesis is the first one to do a rigorous analysis of the Jetpack framework, and aims at reducing

developers’ and reviewers’ effort in securing both the modern and legacy extensions. Towards

the goal of facilitating secure extension development, it presents the first capability leak de-

tection tool, the first policy checker framework for modern extensions and the first automated

approach to port legacy extensions to secure, modern platforms.

5.1 Securing Browser Extensions

Sabre [35] and Djeric and Goel [37] both present dynamic information-flow tracking system

to detect insecure flow patterns in JavaScript extensions. While the goal of these systems is

to detect extensions that can leak sensitive browser data, Beacon instead aims to detect poor

software engineering practices in Jetpack modules and extensions that can potentially lead to

such situations. Moreover, Beacon employs static analysis, which makes it better suited to

proactively prevent unwanted information flows in browser extensions.

VEX [23, 24] also implements static analysis of JavaScript to study vulnerabilities in exten-

sions. It implements a flow- and context-sensitive analysis that was applied to over 2400 Firefox

extensions to detect unsafe programming practices. In VEX, vulnerabilities are specified as bad

flow patterns; the analysis attempts to verify the absence of these patterns in extensions. While

VEX was originally applied to traditional Firefox extensions, it can also be applied to Jetpack

modules to detect bad programming patterns. Beacon’s analysis goes further to detect capa-

bility leaks that may violate modularity, and violations of POLA, which VEX cannot. Unlike

VEX, Beacon employs flow- and context-insensitive analysis of JavaScript. Despite the use of
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a lower-precision analysis, Beacon is able to find real vulnerabilities in Jetpack modules and

extensions.

LvDetector [80] takes a hybrid approach to automatically detect information leakage vul-

nerabilities in JavaScript-based extensions. It first uses scenario-driven execution traces to

dynamically construct a call graph and then statically analyze the call graph to capture its cor-

responding information flows. The dynamic call graph construction scheme reduces the overall

false positives in the analysis results. In contrast, both Beacon and Morpheus take a pure static

approach. Unlike LvDetector, Beacon detects capability leaks in Jetpack modules.

Kashyap and Hardekopf [52] introduces a new notion of addon security signature in order

to automate the extension vetting process. A security signature of an extension essentially

captures the API usage and detailed information flow and assists in the review process by

enabling the reviewer to compare the signature with the extensionś advertised functionality.

The proposed approach is still reliant on the reviewer’s expertise to decide about the potential

security violation and detect the program point where the actual violation occurred. In contrast,

Beacon automatically identifies program points that lead to vulnerability. However, theses

security signatures can help check policy violations at compile time and reduce the load from

the runtime policy enforcement module.

IBEX [46] provides tools for extension curators to detect policy violating JavaScript ex-

tensions. However, IBEX is a framework for specifying fine-grained access control policies

guarding the behavior of monolithic browser extensions, while Beacon performs information-

flow for modular JavaScript extensions and is designed to detect modules that violate POLA or

leak capabilities across the module interface. IBEX also requires extensions to first be written

in a dependently-typed language (to make them amenable to verification), afterwards they are

translated to JavaScript. In contrast, Beacon works directly with Jetpack extensions written in

JavaScript.

Runtime policy enforcement has also been applied to prevent extensions from leaking sen-

sitive data and limiting extension privilege [67, 74]. Even though the approach presented in

SENTINEL [67] is more light-weight than the one proposed by Ter Louw et al. [74], both

techniques require modifications to the browser. Similar to Morpheus, SENTINEL wraps all

accesses to XPCOM interfaces in legacy extensions to validate the operations with regard to
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security policies specified on the extension. In contrast, Morpheus’s main goal in wrapping

privileged objects in individual modules is to adhere to Jetpack’s security principles and limit

the damage to only the compromised module. The extension architecture also enables fine-

grained security policy enforcement without modifying browser or Jetpack runtime. To our

knowledge, Morpheus is the first tool that retargets legacy extensions to modern frameworks.

The Jetpack framework is similar to the Google Chrome extension architecture [25] which

encourages a modular design, as discussed in section 2.4.2. Recent works [28, 54] explore the

design of the Google Chrome extension architecture to highlight its deficiencies in develop-

ing secure Google Chrome extensions. More large scale studies [50, 75] reveal the prevalence

of malicious Google Chrome extensions and highlighted the limitations of the architecture

in protecting user privacy. This inspires the preliminary design of a new extension architec-

ture [48]. The proposed design relies on mandatory access control based confinement, similar

to COWL [72] — a JavaScript confinement system for Web applications, to prevent sensitive

information from being leaked by malicious extensions. The key idea of restricting the actions

of an extension based on resource access is similar to our proposed policy enforcement in Mor-

pheus. However, Morpheus relies on developers to write the security policies and the policy

checker is independent of the extension code. On the other hand, the new architecture proposes

to have the security policies ingrained in the extension APIs.

5.2 Static Analysis of JavaScript

More generally, there has been much recent work on static analysis of JavaScript code exe-

cuting on Web pages. The dynamic nature of JavaScript makes it hard to analyze it statically.

Beacon borrows and builds upon the techniques introduced in these papers (discussed below),

but applies them to the analysis of the Jetpack framework. On the other hand, Morpheus utilizes

an existing static analyzer for precise information flow analysis of legacy extensions.

The core analysis of Beacon is most similar to that of Gatekeeper [44]. While Gatekeeper

was originally applied to study the security of small JavaScript-based widgets, we applied Bea-

con to study capability leaks in Jetpack. Actarus [45] is another static analysis based system

that studies insecure flows in JavaScript Web applications. Its set of sources and sinks are thus
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based on rules targeting specific vulnerabilities. For example, the DOM property innerHTML

or the method document.write is a sink because they facilitate code injection attacks. Bea-

con, in comparison, targets Jetpack, which has well defined sources (require and XPCOM)

and sinks (exports) for each module. ENCAP [73] is related to Beacon in the domain of

identifying capability leaks via static analysis. Like Beacon, ENCAP implements a flow- and

context-insensitive static analysis of JavaScript, but Beacon differs in both its implementation

and application domain. ENCAP uses static analysis to detect API circumvention, where as

Beacon detects capability flows in modular JavaScript code.

Chugh et al. present staged information flow [30], an analysis infrastructure for JavaScript

code. The goal of their original analysis was to detect insecure flows in JavaScript Web applica-

tions. However, they developed a novel phased analysis that would allow new code generated in

previous phases to be analyzed. Beacon can possibly use these techniques to analyze dynamic

constructs, such as eval and with.

CFA2 [76] is a new flow analysis for functional languages that provides precise dataflow

information. Morpheus uses the CFA2 implementation for JavaScript built into Doctor JS [3],

Mozilla’s suite of static-analysis tools for JavaScript. Morpheus uses the CFA2 implementation

in Doctor JS to analyze legacy extension code.

Feldthaus et al. [38] propose a framework for user-driven general-purpose JavaScript refac-

toring (renaming, property encapsulation, modularization) using static pointer analysis. In con-

trast, Morpheus only performs a specific refactoring to extract user modules, without any user

intervention, towards automatically porting legacy Firefox extensions to the more secure Jet-

pack framework.

Static analysis of JavaScript code is also conducted in domains other than web applica-

tion and browser extension. To overcome the problem of supporting cross-platform mobile

apps, a HTML5 based technique, which uses standard web technologies like HTML5, CSS and

JavaScript, is gaining popularity among mobile app developers. Jin et al. [49] characterizes the

code injection attacks in HTML5 based mobile apps and performs static analysis of JavaScript

in order to detect such attacks.
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5.3 Privilege Separation

Morpheus is most closely related to Privtrans [26] and Swift [29]. Privtrans automatically

integrates privilege separation into legacy source code using context switching between a se-

cure monitor and an untrusted slave. Swift defines a principled approach to build secure web

applications by partitioning the source code. Morpheus uses both approaches. It defines an

evaluation context for object references, as either chrome or content, and switches contexts

when execution of a JavaScript statement contains references from both contexts. This context

switching approach is needed because the Jetpack framework is restrictive and does not allow

placement of content code in chrome or vice-versa. Morpheus differs from both Privtrans

and Swift and several other privilege separation mechanisms [53, 65, 69, 79, 81], because it is

entirely automatic and does not require any user annotations to accomplish partitioning.

Akhawe et al. [21] propose a new architecture to achieve privilege separation for HTML5

web applications including browser extensions. While their primary goal is to design such an

architecture, Morpheus converts legacy code to make it compatible with the Jetpack framework

that mandates chrome-content privilege separation.
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Chapter 6

Conclusion

The flexibility of running third-party browser extensions contributes to the popularity of Web

browsers, unfortunately, it leaves the browser open to security breaches caused by vulnera-

ble extensions. To safeguard the browser from extension vulnerability and protect end-user

data, Web browser vendors recommend extension developers to adhere to safe programming

guidelines. Adherence to these guidelines helps vulnerable extensions limit the damage even if

they are compromised. However, browser vendors transfer this burden to third-party extension

developers whose discretion and expertise are required to adhere to these guidelines. Further-

more, unsafe programming practices are hard to detect via manual inspection. Therefore, in

order to avoid the propagation of detrimental effect of vulnerability, extension developers need

diligent skillfulness and security software tools necessary to identify unsafe programming prac-

tices; today, even if they have the former, they lack the latter. This dissertation aims to simplify

the development of secure browser extensions by aiding extension developers with the tools

necessary to comply with recommended safe programming guidelines. It begins with a study

on Jetpack, a modern extension framework for the Firefox browser, and presents Beacon for

automated detection of unsafe programming practices within extension code. It then presents

Morpheus to transform vulnerable legacy extensions to Jetpack-compatible code that improves

extension security. Morpheus augments Jetpack with a modular policy checker framework that

enables fine grained security policy enforcement. It also allows extension developers to write

legacy-style imperative code and automatically port it to Jetpack to benefit from the enhanced

security guarantee offered by the framework. Program analysis and software engineering tech-

niques have been used for implementing these tools. Experimental evaluation of both of these

tools indicate that they are effective at identifying unsafe programming practices and transform

vulnerable legacy code to secure modern code.
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6.1 Reflections and Short-term Directions

Both Beacon and Morpheus rely on static program analysis and hence inherently suffer from

false positives stemming from JavaScript dynamic constructs. Performance of these two tools

can be improved by augmenting them with dynamic taint tracking as a second phase of analysis.

To reduce the performance overhead introduced by the dynamic analysis, only code generated

by the dynamic constructs can be analyzed.

Instead of leveraging the Datalog query engine, Beacon could have used WALA or a more

lightweight DoctorJS for the alias analysis. However, since Beacon keeps track of taint values

in addition to aliases, it would require modifications of both the tools as they did not provide any

direct interface for such purposes. In particular, WALA, which is a huge JAVA library, changes

in the existing analysis related codebase would become cumbersome. On the other hand, in

Datalog, realizing the inference rules for capability flow analysis and performing queries were

more straightforward and easy to implement.

Performance optimization of the transformed extension is a key aspect that this dissertation

does not address for Morpheus. This concern can be addressed by reducing the number of

context switches between the chrome and the content. For example, with intelligent rewriting

we can perform the evaluation of gBrowser.contentDocument.location.href in one

context switch instead of three required by Morpheus.

The generation of user modules in Morpheus can be improved by clustering functions based

on access to XPCOM functionality instead of the ”owning” object. The current algorithm

tries to encode the developer’s way of partitioning code and may thus provide less meaningful

partitions if the developer does not arrange his code using purposeful object hierarchies.

Morpheus can be extended to make use of core modules provided with the Jetpack frame-

work. To do this, we would need to establish functional equivalence between the legacy inter-

faces and the modules provided by the Jetpack framework. Code comprehension for abstract-

ing program behavior and statistical API mapping techniques can be explored for establishing

functional equivalence between different JavaScript code fragments.

Lastly, Morpheus still relies on extension developers’ assistance for encoding extension-

specific security policies. A more effective approach could be designing a high-level language
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for writing such policies. These policies could then be compiled down to JavaScript code

that encode them in the transformed Jetpack extension. An ideal solution would completely

remove the extension developer from this workflow and automatically infer the policies by

analyzing the extension code itself. An alternate approach could be to tackle the problem at the

framework level and redesign the extension API such that the security policies are ingrained in

the API itself.

6.2 Other Applications

The techniques presented in this thesis are generic and have other applications as well. The

same approach can be extended to investigate difficulties involved in programming for various

other extensible platforms such as smartphones, smart cars, smart homes, smart watches and

other wearable devices — especially given the fact that these platforms also support applica-

tions, popularly known as apps, implemented in HTML5 and JavaScript.

6.2.1 Enhancing Security and Simplify Programming for Extensible Platforms

Every platform comes with a unique challenge of its own and differs in threat model and attack

vector. However, some of the existing frameworks for these extensible platforms have a similar

permission-based security model as the Jetpack extensions. Hence, techniques presented in

chapter 3 can be useful in performing a rigorous security review of the framework.

Exploring programming models for these new platforms and characterizing the necessary

modifications , both in app code and UI, in order to retarget existing web and smartphone apps

to these platforms, will be an interesting challenge. With increasing support for E6 Harmony

modules [7] in most major Web browsers, the current practice is to either write JavaScript

directly using modules or automatically transform non modular JavaScript code to make use

of modules. It would be interesting to study the benefits and challenges involved in automatic

refactoring of legacy monolithic web application code into JavaScript code that uses Harmony

modules. Techniques presented in chapter 4 can be useful in this regard.
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6.2.2 Browser Based OS

Browser has emerged as a new full-fledged computing platform replacing the traditional op-

erating system, where applications running on top of it are simply web applications written in

HTML5, CSS and JavaScript. Two such currently available systems are Firefox OS [58] and

Chrome OS[42]. A developer community has already formed to write apps for Firefox OS

which directly boots to a rendering engine and is designed to be used in smartphones. This

opens a new era of computing the security and programming aspects of which still needs to

go through rigorous study. Given that Firefox OS follows the same permission-based security

model as the Jetpack framework, similar study, as presented in chapter 3, can be conducted for

Firefox OS.
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