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ABSTRACT OF THE DISSERTATION
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By SEHA KIM

Dissertation Director:

Jacob Feldman

Line drawings lack direct 3D depth information, yet human vision easily perceives the

3D shapes from the contours. This dissertation investigates the mechanisms underlying

the 3D shape inference from 2D line drawings. Here, four psychophysical experiments

and a computational model for the 3D shape inference are discussed. Experiment 1

shows that human responses in depth judgments for line drawings reflect an underlying

uncertainty of the perceived 3D shape, which is based on the complex interaction of

local and global depth cues propagated from the contours. The computational model

estimates the posterior probability of possible 3D surfaces from the contours of a line

drawing in a Bayesian framework. The comparison of the model predictions and human

depth responses for the line drawings from Experiment 1 demonstrates that the model

accounts for the probabilistic 3D shape interpretation of line drawings by human vision.

Experiment 2 shows that the reliability of a contour segment in a line drawing as a

meaningful depth cue is conditional to the complex global context. Experiments 3 and

4 show that the certainty of depth difference perceptions from partial line drawings

increases as more non-local visual cues are available. The experiments and the model

offer a new perspective on 3D shape perception from line drawings as an inference based

on the probability over possible 3D shapes given the contour cues, providing a broader

understanding on the mechanisms of human vision.
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Chapter 1

General Background

1.1 3D Shape interpretation of line drawings

Line drawings are a simple but rich domain for understanding 3D shape perception. A

surprisingly rich 3D inference can be drawn from a very impoverished stimulus with

sparse depth cues (Koenderink et al., 2012). Human vision can easily recover depths

and surface structures from line drawings as shown in Figure 1.1. The area inside

contours is not filled with direct depth cues, such as texture and shading, yet humans are

very accurate at interpreting the 3D shapes (Barrow & Tenenbaum, 1981; Marr, 1982;

Koenderink & van Doorn, 1982; Hoffman & Richards, 1984; Biederman, 1987; Pizlo &

Salach-Golyska, 1995). An experiment has shown that even 9-month-old children can

interpret line drawings without training (Hochberg & Brooks, 1962). However, there

are very few studies for 3D shape interpretation from pure line drawings, compared

with many studies about 3D shape inference from shading and texture (Bülthoff &

Mallot, 1988; Liu & Todd, 2004; Todd et al., 1996; Koenderink et al., 1992; Koenderink

& van Doorn, 1995; Koenderink, 1998; Todd & Reichel, 1990; Knill, 1998a,b; Knill &

Saunders, 2003; Zimmerman et al., 1995; Norman et al., 2006; Todd, 2004; Koenderink

et al., 2001).

In most areas of line drawing images, there is no information at all except the

contours. Yet, human observers have a clear and strong perception of 3D structures

purely on the basis of the contours (Pizlo, 2010; Koenderink et al., 2012). This implies

that the depth information “propagates” from the contour in a way that allows depth

judgments to be made everywhere, including the “empty” area. Depth cues are spatially

transferred along the contours and also propagated over the area where no explicit local

depth cues exist. This is an extremely interesting issue because it epitomizes one of
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Figure 1.1: A line drawing depicting a simple form.

the central issues in perceptual organization: the integration of local and global cues.

Thus, the intrinsic interest of line drawings as an example of 3D inference from the

integration of local and global information promises to shed light on much more far-

reaching problems in vision.

An enormous amount of work in the 1970’s and 1980’s tried to solve line drawing

interpretation by contour labeling, which categorizes junction types and picks legitimate

labels for the contours and surfaces at the junctions (Huffman, 1971; Clowes, 1971;

Waltz, 1972; Mackworth, 1973; Charkravarty, 1979; Malik, 1987). These works assumed

a very deterministic process aimed at finding solid models for block-like shapes that

were consistent with known junction constraints. These methods were seen to be very

limited in part because they do not handle violations of the assumptions well. They did

not explain the surface interpretation of more general forms but focused on deterministic

selection of a single 3D model consistent with the logical relations between surfaces of

the solid object. The more recent tools in computer graphics construct 3D surfaces

from contours (Zeleznik et al., 1996; Igarashi et al., 1999; Nealen et al., 2005; Jorge &

Samavati, 2011). However, the tools also focus on creating deterministic surfaces from

silhouettes and editing the surface by human users, so the tools do not explain human

interpretation of contours into 3D surfaces.

A computational model to recover 3D shapes from 2D line drawings has been sug-

gested by Pizlo and his colleagues (Li et al., 2009; Pizlo, 2010; Pizlo et al., 2010). The

model uses Gestalt principle of simplicity as a priori constraints to recover 3D coor-

dinates of the 2D contours in a single line drawing image for polyhedral and natural
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objects. The constraints are to maintain 3D symmetry, to maximize the planarity

of contours, to maximize 3D compactness, and to minimize surface area. However,

the model does not explain the 3D surface percepts in the empty areas between the

recovered 3D contours, and the approach is also deterministic.

A more probabilistic approach to this problem was suggested by Mamassian &

Landy (1998). They suggested that local 3D shapes for the line drawings of curved

surface patches—concave or convex shapes—can be estimated in a Bayesian fashion by

assuming priors based on the preferences for upward surface normals, for locally convex

shapes, and for surface contours (surface markings) aligned with the principal curvature

lines on surfaces. In this study, I attempt to extend the similar Bayesian framework

to estimate the entire shape of volumetric 3D objects by constructing a probability

distribution over possible 3D surfaces, focusing on how the contour structures in line

drawings, such as junctions, internal contours, and all bounding contours, interact to

generate the possible 3D shapes.

1.2 The types of contours and features in line drawings

The types of contours in line drawing images that convey 3D shape information have

been categorized based on different research approaches. According to Stevens (1981),

contours are categorized into occluding contours, which outline the boundaries of objects

and background, and surface contours, which appear due to luminance differences on the

surfaces bounded by the occluding contours. Marr (1982) categorized the contours in

2D images by the origins—the discontinuities in depth, surface orientation, and surface

reflectance. On the other hand, Koenderink & van Doorn (1982) and Koenderink

(1984) argued that contours are generated by the discontinuities in either depth or

surface orientation but not in surface reflectance, because contours refer to the visible

2D project of the rim—the locus along on a surface touched by the rays from a vantage

point—which divides visible and invisible surfaces on the object.

In this study, Experiment 1 tests line drawings that represent occluding contours,
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Experiment 2 tests the possibility of interpreting contours in line drawings as occlud-

ing contours vs. surface contours (surface markings), and Experiments 3 and 4 test

occluding contours that are projected from the rim of 3D surfaces.

Among the contour features in line drawings, the termination and curvature of

contours have critical information about 3D shapes. The junction labeling studies

characterized contours by the terminations and cusps—junctions—and interpreted 3D

structures by the rule that logically relates junctions to the 3D surfaces (Huffman,

1971; Clowes, 1971; Waltz, 1972; Mackworth, 1973; Charkravarty, 1979; Malik, 1987).

Richards et al. (1987) suggested an interpretation using the curvatures of contours.

The method divides smooth contours into the primitive parts—called codons—at the

maximum, minimum, and zero curvatures on the contours, and interprets 3D structures

by the rule that mathematically relates codons to the 3D surfaces. However, the rule-

based methods are applicable only to very limited types of line drawings, and do not

provide a computational model for the process.

In this study, the process of 3D shape inference from 2D contours is modeled in a

probabilistic computation that can account for human interpretation of line drawings

based on the important contour features—junctions and curvatures—in addition to the

complex interaction of local and global contour structures.

1.3 Dissertation Overview

This dissertation addresses the following questions: how human vision perceives depth

from line drawings, what the important 2D contour features are in the 3D shape inter-

pretation, what decides the type of a contour in a line drawing, and how non-local cues

interact with local depth cues.

This dissertation includes four psychophysical experiments and one computational

model. Chapter 1 presents a psychophysical experiment of human line drawing interpre-

tation and 3D shape perception (Experiment 1), and suggests a computation model of

the 3D shape inference. The experiment investigates the interaction of local T-junction

cues and non-local contour features. The model estimates a probability distribution of
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possible 3D surfaces for a given line drawing. Chapter 2 describes an experiment aimed

to investigate the influence of global context on interpreting contour segments in line

drawings as occlusion cues or surface markings. Chapter 3 presents two experiments

aimed to investigate how the amount of non-local visual information influences line

drawing interpretations.
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Chapter 2

Human Line Drawing Interpretation and a Bayesian

Model

2.1 Experiment 1

This experiment mainly aimed to probe relative depths at various areas in line drawings,

where the influence of local and global contour cues on interpreting the 3D shapes

could be revealed. I placed two dots on a line drawing and asked participants “which

dot appears closer.” The answer informed the 3D surface perceived from the 2D line

drawing. I tested line drawings that had only one critical T-junction. The perceived

depths would be influenced not only by the conventional local depth cue (the T-junction)

but also by global cues of the line drawings. To measure the changes induced by non-

local cues, the probes were placed at various distances from the T-junction for a line

drawing.

2.1.1 Methods

Participants

Subjects were 10 undergraduate students at Rutgers University who participated in the

experiment for course credits.

Stimuli

The stimuli were images of 2D line drawings of black contours on white background,

with two dots in different colors superimposed on the line drawing image (Figure 2.1).

The subjects were asked to answer which dot appeared closer to them. The stimuli

were presented on a 17 inch color monitor (1152×854 pixel at 82Hz, 27◦×19◦ in visual
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(a) Line Drawing 1 (b) Line Drawing 2

Figure 2.1: Pairwise dot comparisons on line drawings. Subjects were asked to answer
“which dot appears closer” and responded by selecting the dot color. Rectangular boxes
represent monitor screens.

angle) connected to a AppleG4 computer. The viewing distance was approximately 27

inches from the monitor. The line drawing stimuli subtended a maximum of 8.5◦ in

visual angle horizontally and vertically.

I used two types of line drawings depicting simple forms, Line Drawing 1 and Line

Drawing 2 (Figure 2.1). They were not randomly picked but designed to examine the

influence of local and non-local contour cues and to explain the theoretical difference

between them. The bounding contour of each line drawing was made to be symmetric,

having exactly the same left and right sides except for the internal contour. The sym-

metry allows an operational examination for the influence of local T-junction structure

(in particular, the internal contour) while keeping the non-local contour structure the

same. Also, the internal contours in two line drawings were made to be geometrically

different; as shown in Figure 2.1, the ending of the internal contour in Drawing 1 is con-

cave and thus consistent with a smooth surface, but the ending of the internal contour

in Drawing 2 is convex and thus inconsistent with a smooth surface. The ending of a

contour for a smooth 3D surface is supposed to be concave because it is made from the

projection of a local saddle surface (Koenderink & van Doorn, 1982; Koenderink, 1984).

Although the relations between curvatures of occluding contours and surface shapes in

the two line drawings are geometrically different, the difference seems relatively subtle
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and often goes unnoticed by human eyes (Koenderink & van Doorn, 1982; Koenderink,

1984). This raises the question of whether the difference will be reflected in our data.

Design and procedure

One of the main factors, manipulated in this experiment, was the location of probes with

respect to the T-junction (Figure 2.2). In order to test the influence of the distances

from a T-junction cue, the paired dots (from Probe Sets 1 to 5) were placed along the

internal contour from farther to closer to the T-junction. Then, Probe Sets 2 and 4

were mirrored to the opposite side (between the left and right sides) where there was

no internal contour, and they were Probe Sets 6 and 7, respectively. The two probe

sets made it possible to compare the 3D perception either with or without the internal

contour while keeping the same bounding contours, which are symmetric as explained

above. Another factor was the orientation of stimuli (Figure 2.3). The middle point

of two probe dots was placed at the center of screen, and then the whole image was

rotated counterclockwise by one of four angles, 0◦, 90◦, 180◦, and 270◦, about the

middle point. Thus, the relative locations of two probe dots on the screen were varied

by the angle. The other factors were stimulus display durations (200 or 800ms), two

color sets of probe dots between cyan and magenta, and two horizontally flipped images

that displayed the ending of the internal contour either on the left or right side. Each

condition was repeated three times; therefore, a total of 1344 trials were tested.

In each trial, after a fixation screen displayed for 1 sec, a stimulus was displayed for

the duration and disappeared on the screen. Then, the subject pressed the f or j key

according to the color of the dots that they perceived closer. I measured the proportion

of responses “congruent” with the general interpretation of the internal contours of 3D

shapes for the stimuli (congruence rate). For example, in the line drawings shown in

Figure 2.3, the act of selecting the cyan color dot B represents a congruence choice. For

Probe Sets 6 and 7, since there were no internal contours on these probes that made

the general interpretation as to the local depths, the congruence rates were defined

according to the congruent rates for Probe Sets 4 and 2, respectively. For example,

the congruent response of Probe Set 6 is selecting the dot mirroring the congruent
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1 2 3 4
5

6
7

(a) Line Drawing 1

1
2
3
4
5

6

7

(b) Line Drawing 2

Figure 2.2: Probe locations. Each pair of dots is grouped with dashed lines (the lines
were not shown in the experiment). Probe Sets 1 to 5 are located along the internal
contour from farther to closer to the T-junction, and Probe Sets 6 and 7 are located on
the opposite side.

A

B

(a) Rotated by 0◦

A
B

(b) Rotated by 90◦

A

B

(c) Rotated by 180◦

A
B

(d) Rotated by 270◦

Figure 2.3: The orientations of stimuli. Stimuli are rotated counter-clockwise about
the midpoint of probe dots A and B.
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dot of Probe Set 4. Congruence rates at the various probe locations would reveal the

differences in depth perception among the conditions.

2.1.2 Results and discussion

In ANOVA analysis, I found a significant main effect of probe location (F (6, 54) =

2.593, p = 0.0279) on congruence rates (Figure 2.4). First of all, these results support

the idea that human 3D interpretation from 2D line drawing is not deterministic. If one

perceived a deterministic depth difference at two probe dots, then the judgment about

the closer dot would always be the same, and the consequent congruence rate should

always be either one or zero. However, this was not the case. The congruence rates

from the depth judgments were between zero and one, even where the probe dots were

obviously separated by the internal contour. Such rates are accounted by the well-known

“probability matching” phenomena. Humans tend to match the rate of choice between

two alternatives in proportion to the actual probability, instead of always choosing the

one with the higher likelihood in repeated binary decision tasks (Fantino & Esfandiari,

2002; Green et al., 2010). Therefore, the congruence rates reveal the probability of

perceived depth difference by the two probe dots from the repeated depth judgments.

The higher congruence rate means that the certainty of depth difference is higher, and

the lower congruence rate means that the certainty is lower.

Secondly, the certainty for the depth perceptions at the probe sets along the internal

contour (from Probe Sets 1 to 5) was influenced by the distance from the T-junction.

Analyzed as a function of distance, congruence rates systematically increased as probes

got closer to the junction. According to a logistic regression model, the log odds of

congruent responses were positively related to the distance (z = 5.061, p = 4.17e−07).

This suggests that depth information from a local T-junction cue propagates both

along its contour and even further inward to create the global surface interpretation.

In addition, the congruence rates for Probe Sets 6 and 7 were very different from the

congruence rates for the corresponding Probe Sets 4 and 2, respectively. This shows that

the internal contours clearly influenced perceived surfaces while the nearby bounding

contours are exactly the same. Taking these results together, perceiving 3D surfaces
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Figure 2.4: The influence of probe locations on congruence rates. Means and standard
errors in each condition are shown.

from line drawings can be explained as the integration of information propagated from

both local cues, such as junctions, and non-local cues, such as the global context of

contours.

Thirdly, the congruence rates were influenced by the relative height of probe dots

on the screen, which was changed by the different orientations of stimuli. For example,

as shown in Figure 2.3, for the probe set, B is lower than A on the stimulus with 0◦

orientation, but B is higher than A on the stimulus with 180◦ orientation. The exact

height differences for all different probe sets and stimuli were grouped into ten subsets

with the height difference values in the 10-quantiles, and the means and standard errors

of congruence rates for each subset were plotted in Figure 2.5. The negative height

difference means that the “congruent” and “closer” dots were lower than the other dot

on the screen. The relation between the height differences and congruence rates were

analyzed by a logistic regression model, which showed that the log odds of congruent

responses were negatively related to the height differences (z = −12.720, p < 2e−16).

The results mean that the depth difference between two dots for the same probe set was

perceived higher when the “congruent” dots were lower on the screen, implying that the

perceived 3D surface from a line drawing image is influenced by an even more global

context, the orientation of the whole line drawing. The asymmetric depth perceptions
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Figure 2.5: Congruence rates as a function of height difference between two probe dots.
The height difference is the height of “farther” dot on the screen subtracted from the
higher of “closer” dot for each probe set. Each data point shows the mean and standard
error of congruence rates for each subset. The line shows a fitted curve from the logistic
regression.

are consistent with the pictorial depth cue observed by Vecera et al. (2002). They found

more figural perception for lower regions of display than upper regions, which leads to

closer depths for lower regions than upper regions.

In addition, the two different line drawings tested here were theoretically different,

but there was neither significant difference in congruence rates nor interactions (Figure

2.6). Line Drawing 1 is consistent with a smooth surface, but Line Drawing 2 is not

because the internal contour ends convex (Koenderink & van Doorn, 1982; Koenderink,

1984). However, there was no distinction between the two line drawings in the depth

judgments, implying that the subjects had at most limited sensitivity to this type of

geometric constraint.

Taken together, these results show that the ambiguity in interpreting 3D shapes from

line drawings is resolved using both local and non-local structures in the line drawings,

but the perceived depth differences on the 3D surfaces are inherently probabilistic. The

congruence rates represent the beliefs in the depth difference based on local and global

contour cues. To capture the probabilistic nature, a model of the interpretation of 3D

shapes from line drawings must incorporate a computation for a probability of possible
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Figure 2.6: The interaction of probe locations and line drawing types. No significant
difference between different type of line drawings was found.

3D shapes. The probability could provide more information about the perceived shape

than one reconstructed depth map or surface as in the previous studies on pictorial

surfaces (Koenderink et al., 1992; Koenderink & van Doorn, 1995; Koenderink, 1998).

In the following, I propose a model by which the computation is processed.

2.2 Model

I propose a computational model of 3D shape interpretation from line drawings that

accounts for (1) the probabilistic nature of human line drawing interpretation, and (2)

the interaction between local and global cues in line drawings that creates depth and

surface percepts. This model estimates distributions of possible 3D shapes from the

contours in line drawings. Based on the distributions, probabilities of depth differences

on the perceived surfaces are computed and compared with the human responses from

the experiment.

This model estimates distributions of depth differences given a novel line drawing

in a Bayesian framework as follows:

P (D|L) ∝ P (L|D)× P (D), (2.1)
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where L is a line drawing, and D is the depth difference. This model aims to formulate

the probability distribution of depth difference between two dots on the pictorial surface.

The posterior of depth difference for the unknown 3D surface of a line drawing, P (D|L),

is computed by incorporating a prior of depth difference, P (D), and a likelihood of depth

difference, P (L|D).

The likelihood function, P (L|D), is defined from the relations between line drawings

and the 3D shapes that give rise to the line drawings, assuming a generative process

of the 2D line drawings from the 3D shapes. It is difficult to compute this likelihood

function analytically, so it is computed numerically by a Monte Carlo simulation, which

uses random line drawings and 3D shapes from the following generative model.

2.2.1 The inflation model

This generative model creates 3D shapes and line drawings in a stochastic way. The

shapes in this model represent simple forms with smooth surfaces of natural 3D objects,

such as animals’ torsos or fruits. The random 3D shapes are generated by inflating sur-

faces from random skeletons, and the random line drawings are generated by projecting

the inflated surfaces from random viewpoints. This procedure is summarized in Figure

2.7.

Firstly, random skeletons are generated. To produce perceptually continuous and

smooth random curves for skeletons, I connect line segments which are close to being

collinear (Field et al., 1993; Geisler et al., 2001; Feldman, 2001). The angle differences

between two consecutive segments on skeleton polygons are sampled from a zero-mean

Gaussian. For simplicity, in this model, all skeletons are planar. Secondly, a skeleton is

inflated to have circular cross-sections at each vertex, thus creating a volumetric shape

similar to the generalized cones with circular cross-sections (Marr, 1977). The thickness

of the inflated surface is linearly changing along the skeleton with the parameters ran-

domly sampled as well. Then, random 2D line drawings are projected from the inflated

3D shapes via orthographic projections from random viewpoints. The contour is made

where a surface is turning away (Barrow & Tenenbaum, 1981). The marginally visible

rim points on the inflated surface are projected on the image plane, and the points on
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(a) Skeleton and circular cross-
section

(b) Inflated surface (c) Extracting a line drawing

Figure 2.7: A schematic diagram of the inflation model. (a) 3D surfaces are inflated
from smoothly curved skeletons, having circular cross-sections. (b) The inflated 3D
shape is represented by rectangular meshes with the surface normals on the center of
each mesh. (c) Line drawing contours are extracted via orthographic projections.

the image are connected to make the contours of a line drawing.

In this way, many random line drawings with the corresponding 3D shapes are

generated. The examples of random line drawings used in this study are shown in Figure

2.8. The relations of the 3D shapes and line drawings are tabulated in a database, from

which the likelihood of depth difference given a new line drawing, P (L|D), will be

estimated. The relations and the representations of the line drawings and 3D shapes in

the database will be explained in the following section.

2.2.2 The database of 2D contours and 3D surfaces

The inflation model generates random inflated shapes and projects them as random

line drawings. The contour segments on the line drawings are related to the local 3D

surfaces on the inflated shapes. The contour segments and local surface patches are

quantified and tabulated to be compared and to be combined later when probable 3D

shapes are queried for a novel contour.
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Figure 2.8: Examples of the line drawing extracted from the inflated surfaces.

The 2D contours of line drawings are quantified by turning angles—the angle dif-

ferences between two consecutive edges along contours—which approximate curvatures

for discrete curves (Figure 2.9). Then, each contour point is represented by a contour

segment, which is the visual cue around the contour point in a “receptive field.” Each

contour segment is converted into a vector of turning angles along the segment, as

shown in Figure 2.10. The size of a turning angle vector—the number of elements of

the vector—represents the scope of visual cues at a contour point. The longer turning

angle vector stands for the more global features of the contour, thus the larger receptive

field around a contour point.

In addition to the turning angle patterns, local T-junction structures on contours

are used to characterize the contour segments. T-junctions suggest occlusion structure

near them; thus the head surface is figural and closer than the stem surfaces as shown

in Figure 2.11. In this model, this figure/ground cue is implicitly characterized by

defining the left side of a contour as figural (when traversed counterclockwise) and by

differentiating the stem and internal contour segments from other ordinary contour

segments. Such local T-junction information accompanying with turning angle vectors

are tabulated to characterize 2D contour features and are used as a key of this database

to look up possible 3D shapes.

While the contours are divide into contour segments, the inflated 3D surfaces are



17

Figure 2.9: A turning angle is the angle difference between two adjacent edges at a
point, the current and the previous edges along the contour counterclockwise.

(a) More-local contour cue: a shorter contour segment and turning angle vector

(b) More-global contour cue: a longer contour segment and turning angle vector

Figure 2.10: The local and global features of contour segments (bold lines) are repre-
sented by the size of turning angle vectors (black dots). The scope of cues is quantita-
tively characterized by the size of a turning angle vector.

Figure 2.11: T-junction as a local depth cue. The surface owning the head contour is
a figure, and the depth is closer. The surface owning the stem contour is ground, and
the depth is farther.
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(a) local surface patch (b) Patches from a surface

Figure 2.12: Local surface patch. (a) A local surface patch at rim point (+ symbols)
is seen from two different viewpoints. (b) Local surface patches are extracted at each
rim point (black dots) on an inflated 3D shape.

divided into local 3D surface patches. The 3D surfaces are represented by surface

orientations as in many other studies on 3D shape perception (Kent, 1983; Todd et al.,

1996; Phillips et al., 1997; Todd, 2004; Norman et al., 2006). The main reason for

choosing surface orientations instead of depths is that there is no ground truth zero for

depth in this model. The locations of observers are not defined; therefore, the depths

cannot be directly compared across the differently inflated shapes. However, surface

orientations can be compared with each other because the angles are clearly determined

by the direction of the line of sight. A local surface patch is defined at each rim point,

as shown in Figure 2.12, and it is represented by surface orientation information (the

surface normals).

While each contour segment represents the contour cues at each contour point, each

surface patch represents the 3D shape at each rim point that gives rise to the contour

point; therefore, contour segments and local surface patches are related one by one.

The relations are saved in a database, from which possible local surface patches are

searched. In this study, a total of 1550 relations between the contour segments and

local surface patches are saved from 31 random line drawings. When a novel contour

segment is given, the 10 most similar contour segments in the database are picked, and

the corresponding local surface patches are retrieved. Euclidean distance on the space

of turning angle vectors is applied to measure the similarity among contour segments

(cosine similarity).
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(a) Line Drawing 1 (b) Line Drawing 2

Figure 2.13: Surface normals samples (arrows) at grid points on line drawing images.
All probable local surface patches retrieved from contour comparisons are overlaid, and
all the normal vectors on the patches are aggregated.

2.2.3 The distribution of 3D surface orientation

Given a new line drawing, the model looks for contour segments in the database which

are similar to the contour segments on the line drawing, and it returns the probable

local surface patches. Then, all retrieved surface patches along the whole line drawing

contours are integrated. The surface orientation samples on the patches are aggregated

to estimate distributions of 3D surface orientation.

Figure 2.13 shows the retrieved samples of surface orientations—normal vectors—at

each grid point on the line drawing images. Note that the count of samples are varied

from one grid point to the other. The number is dependent on the distance of a grid

point from the contours. The closer grid points have a higher number of samples,

and thus more information, while the farther grid points have a smaller number of

samples, and thus less information. This is consistent with the spatial decaying of

depth information from contours inward as discussed in the experiment. Based on the

normal vector samples, distributions of 3D surface orientations at each grid point are

computed. When there is no sample, the distribution is assumed to be uniform.

Estimating the distributions of 3D surface orientations, two mathematically inde-

pendent elements of surface orientation, slant (the angles between the normal vectors
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(a) Distributions at a near point to the internal contour
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(b) Distributions at a farther point from the internal contour

Figure 2.14: Distributions of 3D surface orientations. Distributions of slant and tilt
are estimated from the orientation samples (small circles on x-axes) at each grid point.
(a) The distributions at a near point (* symbols) to the internal contour are wider and
having clear two peaks, consistent with the possibility of surface orientations at the
point. (b) The distributions at a farther point are narrower.

and line of sight) and tilt (the angles of normal vectors on the image plane), are an-

alyzed separately because they are psychophysically different as well. The different

sensitivities for slant and tilt that were observed in various studies imply two distinc-

tive mechanisms for each in perceptual tasks (Stevens, 1983; Kent, 1983; Christou et al.,

1996; Knill, 1998b; Koenderink et al., 1992; Mamassian & Landy, 1998; Norman et al.,

2006). Thus, at each grid point, a distribution of slant and a distribution of tilt are

separately estimated. The distributions are estimated in a non-parametric way, using

kernel density estimation (also known as Parzen windows) with Gaussian kernel func-

tions (Parzen, 1962). For tilt distributions, I used a periodic kernel density estimation

module developed by Bylan Muir (Biozentrum, University of Basel, Switzerland). In

consequence, there are two distributions at each grid point on a line drawing image.

Figure 2.14 shows the examples of the distributions at two different grid points. Based

on the distributions, the aimed likelihood function of depth difference is computed.

Before moving on to the computation of the likelihood, I present a test for the
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consistency of the distributions. I estimated the distributions of 3D surface orientations

for some simple line drawings, which are shown in Figure 2.15, and the Line Drawing

1 and 2, which are tested in the experiment. Then, assuming that these distributions

are the posteriors of surface orientations, the values of Maximum a Posterior (MAP)

were picked at each grid point on the image plane. The MAP slants, tilts and surface

normals are presented in Figure 2.15, validating that they are perceptually correct: the

estimates are consistent with human interpretation of these line drawings. For example,

the MAP slants along the contours are near 90◦, estimating correctly the rim on surface;

the MAP normals along the internal contours are the opposite directions, illustrating

two surfaces are facing each other.

2.2.4 Comparison with human response

In this section, this model computes the posterior of depth difference, P (D|L), which is

computed by combining the likelihood and the prior. From the posterior, the probability

of depth difference at the probe dots on the probable 3D surfaces can be predicted. The

probability will be compared with the congruence rates from the experiment.

The likelihood of depth difference at any two points on the line drawing is computed

from the distributions of 3D surface orientations estimated in the previous section. The

depth difference can be calculated by taking the integral of surface orientation because

slant is mathematically the gradient of depth. Thus, the likelihood of depth difference,

P (L|D), is estimated as the integration of the slant distributions along a straight path

connecting the two probe dots on the image.

Then, the prior for depth difference, P (D), is considered by taking known human

biases in depth perception. One well-known bias is slant underestimation. The per-

ceived slants of surfaces are smaller than the actual slants, meaning that slanted surfaces

are perceived closer to the fronto-parallel plane (Perrone, 1981; Mamassian & Kersten,

1996; Christou et al., 1996; Todd & Perotti, 1999; van Ee et al., 2003). Consequently,

the perceived depth differences on the surfaces get smaller, which makes a non-uniform

prior of depth difference. The distribution of the prior would be higher for smaller

depth differences near zero and lower for larger depth differences far from zero, such
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Figure 2.15: MAP estimates for slants (left), tilts (center), and surface normals (right)
from the distribution of 3D surface orientations.
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as a Gaussian. Therefore, to model this bias, a Gaussian distribution is selected whose

standard deviation reflects the strength of slant underestimation. For example, the

smaller standard deviation represents the stronger slant underestimation, and thus less

depth difference on the surface.

The other bias is lower-region figure in figure/ground organization. The lower region

is more likely to be perceived as a figure than ground, and thus to be perceived closer

to the viewer (Vecera et al., 2002). This bias is also observed in experiment 1, in which

the perceived depth difference was higher when the “closer” dot was located lower on

the image relative to the other dot. Due to this bias, the perceived slants become

skewed upward from the fronto-parallel plane, which can be modeled by a Gaussian

with a non-zero mean. The mean value reflects the strength of lower-region figure bias.

For example, the larger positive mean represents the stronger asymmetry of depth

difference. Thus, the prior of depth difference, P (D), is summarized with the pair of a

mean and a standard deviation of a Gaussian.

These biases could be modeled directly in terms of surface orientation as well, but

for mathematical simplicity I choose to model them in terms of depth difference for the

following reasons. Firstly, the slant underestimation can be modeled as a bias of slant

solely, but applying the same slant priors at all grid points repeatedly is computationally

less efficient than applying the prior of depth difference at once, while both results are

mathematically the same. Secondly, the closer lower-region bias can be modeled with

both slant and tilt, but this bias means that the slant and tilt are not independent,

which requires a complicated bivariate distribution to model this. Therefore, modeling

this bias in terms of depth difference is much simpler, which involves only one variable.

Finally, for two probe dots on a line drawing, the prior of depth difference, P (D), is

combined with the likelihood of depth difference, P (L|D), to generate the posterior of

depth difference, P (D|L). Examples of the posteriors for a probe set on Line Drawing

1 and Line Drawing 2 are shown in Figure 2.16. In this test, the maximum-likelihood

prior parameters were selected for each line drawing.

From the posterior of depth difference, the probability of depth difference for each

probe set—P (B is closer than A)—is computed. The predicted probabilities across the
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(b) Depth difference for Probe Set 3 on Line Drawing 2

Figure 2.16: The posteriors of depth difference between two probe dots A and B. The
range of depth difference is scaled so that the distance between two probe dots is one,
and positive depth difference means the depth at B from the observer is smaller than
the depth at A, thus B is closer. Therefore, P (B is closer than A) is the area under the
curve of the posterior (shades).
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(a) Line Drawing 1

1 2 3 4 5
0.54

0.56

0.58

0.6

0.62

0.64

0.66

Probe Set

P
(B

 is
 c

lo
se

r 
th

an
 A

)

(b) Line Drawing 2

Figure 2.17: Comparison between P (B is closer than A)s predicted from this model
(red dots) and the congruence rates with the standard errors from the experiment
(black lines).

probe sets for each line drawing were compared with the congruence rates from the

experiment (Figure 2.17). The certainties of depth difference perceptions and congru-

ent rates were consistent, showing human depth judgments on the line drawings were

accounted for by this model. Such comparisons confirm that this computational model

explains human interpretation of 3D shapes from line drawings.

So far all the probabilities of depth differences are computed with a fixed scope

of contour cues. The following analysis further investigates the role of non-locality of

contour cues on 3D shape inference with this model.

2.2.5 The influence of local and global cues

As suggested above, estimation of local surface normals is based on a combination of

local and global cues, which interact in potentially complex ways. In this section, I

look more closely at how the degree of locality of each shape cue (that is, the size of

the neighborhood over which evidence is integrated) influences subjects judgments.

As discussed about the database for 2D contour features, the scope of contour

cues is represented by the size of turning angle vectors. The shorter turning angle

vector represents the more-local contour cues, and the longer turning angle vector

represents the more-global contour cues. At each size of turning angle vectors, the

probabilities of depth difference—P (B is closer than A)—are predicted and compared
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with the congruence rates from the experiment (Figure 2.18).

This comparison shows that as the cue scope increases, the predictions converge on

the experimental data. To quantitatively examine the quality of fit at each cue scope to

the data, the log-likelihood is computed assuming that each depth judgment at a probe

is a Bernoulli procedure with the predicted probability, P (B is closer than A). The

log-likelihoods for Line Drawing 1 and Line Drawing 2 have similar patterns. They are

fluctuating for the shorter turning angle vectors and then converging to an asymptote

for the longer turning angle vectors. Such patterns signify that global features of contour

play important roles in interpreting 3D surface and making decisions about the depths,

but the global context helps only up to a point where the influence is saturated.

Just before approaching the asymptote, both log-likelihoods make a deep valley al-

though the scales at which the valley occurs are different for the two line drawings.

The deep valley for Drawing 2 happens later than for Drawing 1, and then both go to

the relatively stable state. This implies that Drawing 2 needs more-global features to

interpret it properly. This difference might be caused by the distinction in the geomet-

rical properties of the two drawings. The contour of Line Drawing 1 is theoretically

consistent with a smooth-surface interpretation, but the contour of Drawing 2 is not be-

cause its internal contour ends convex. As discussed in Methods, contours of a smooth

surface must end concave (Koenderink & van Doorn, 1982; Koenderink, 1984). This

suggests that interpreting the surface from Line Drawing 2 may be more dependent on

the global contour features because its local contour features are conflicting with a nat-

ural smooth surface. Considering humans generally do not discriminate this difference

easily, the difference observed here can suggest there is a possibility that human vision

selects an appropriate level of cue scope to infer the reasonable surfaces from varied

contours even when they are geometrically inconsistent with a smooth form. However,

this issue clearly needs further exploration with a wide range of stimuli before any

strong conclusions can be drawn.
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(a) The influence of cue scopes for Line Drawing 1
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(b) The influence of cue scopes for Line Drawing 2

Figure 2.18: The influence of cue scopes. The predictions of congruence rate from this
model, P (B is closer than A), are plotted in color varied from green to red as the size of
turning angle vector increases, which are compared with the congruence rates measured
in the experiment (black line). The log-likelihoods of predictions at each cue scope level
are plotted as a function of the cue scope.
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2.3 General Discussion

To understand the mechanism of 3D shape inference from line drawings, I tested a

psychophysical experiment on the interpretation of line drawings and suggested a com-

putational model that explains the results. From the experiment, I concluded that

human depth judgments reflect the underlying probability of possible 3D shapes in-

duced by a line drawing. The possible shapes are perceived as the result of complex

interaction between local and non-local contour cues. In this complex interaction, the

depth information is propagated from the contour cues, and as a result, the influence of

local T-junction cue is decayed as the distance from the local cue increases. I modeled

the inference of 3D shapes for a line drawing based on the interaction of contour cues

in a Bayesian framework. In this probabilistic model, the probability distribution over

possible 3D shapes is estimated for the line drawing, and perceptual decisions about the

line drawing are made based on the distribution. The model predicts the probability of

depth difference between the two dots on a line drawing from the posterior distribution

of depth difference, which represents the underlying probability of possible 3D interpre-

tations. The predictions from this model were consistent with human responses for the

line drawings in the experiment, which confirms this model provides a computational

framework for 3D shape perception from line drawings.

The study of perceiving 3D shapes from line drawings is especially interesting. Line

drawing images have very limited depth cues compared with other types of images

with shading and texture because the only available depth cues in line drawings are

the contours. While most of line drawing images are empty without any local cues for

surface depth at all, humans naturally interpret line drawings as 3D surfaces by filling

in the blank areas without difficulty. This shows that the contours in line drawing

images connote adequate information to produce the 3D percept (Koenderink et al.,

2012). Pizlo et al. (2010) have also emphasized that contour is essential to describe 3D

shapes, and the contours in a line drawing are sufficient to produce the percept of a 3D

object with clearly defined surfaces.

Traditionally, local junction geometry has been considered a conclusive and virtually
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deterministic cue to 3D surface structure (Huffman, 1971; Clowes, 1971; Waltz, 1972;

Mackworth, 1973; Charkravarty, 1979; Malik, 1987), but this approach has not been

directly compared with human 3D interpretation of line drawings. Koenderink et al.

(2012) measured the 3D surfaces perceived from Picasso’s line drawings, using gauge

figures to reconstruct 3D surface maps for the drawings, but this approach is also

deterministic. In the current study, I devised a simpler set of line drawings for smooth

objects and picked natural and easier visual tasks about the line drawings to examine

the role of contour cues—the depth comparison on the perceived 3D surfaces induced by

the contour cues. The depth judgments were tested by probing the depth order between

pairwise dots that were superimposed on each line drawing. The probes were placed

along the internal contour of a T-junction with varied distances from the junction to

examine the influence of the local junction cue. Human observers were asked to indicate

which dot appeared closer for each probe, and I measured the congruence rate, the rate

of picking the “closer” dot. The rate revealed the underlying probability of the perceived

depth difference, and the uncertainty for the depth difference systemically increased as

the distance of probes from the T-junction increased.

The result from the experiment indicates that the influence of local T-junction cue is

not deterministic, contrary to the deterministic role of the T-junction cue in traditional

line drawing interpretations (Huffman, 1971; Clowes, 1971; Waltz, 1972; Mackworth,

1973; Charkravarty, 1979; Malik, 1987). The influence is rather probabilistic. The

influence of T-junction cue spatially propagated while the strength decayed. The prop-

agation here focuses on spatial spreading than temporal spreading as in the method

suggested by (Weiss, 1997), and the spatial spreading is also different from the prop-

agation of contours suggested by Tse (2002), because what propagates here is not the

contour itself but the depth information from the contour. The spatial dependency of

the strength implies that the local depth cue is coupled with non-local cues to create

the possible global 3D percepts. The influence of local and non-local contour cues are

combined and fill inward the empty areas, and the complex interaction generates not a

deterministic interpretation for the 3D surface. Such influence of global context is not

new in visual perception. Koenderink et al. (2012) have pointed out that local cues in
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interpretation of a line drawing are “overridden” by context. The interaction of local

and global information is also an important topic in perceptual grouping. Therefore, I

suggested a model that simulates the complex interaction of local and global cues for

the probabilistic 3D shape inference from the contours of a line drawing.

I selected a Bayesian framework to model the 3D shape inference. The method

of Bayesian inference has been applied to model various human behaviors in percep-

tion and cognition (Mamassian & Landy, 1998; Yuille & Bulthoff, 1994; Mamassian

et al., 2002; Kersten & Yuille, 2003; Kersten et al., 2004; Mamassian, 2006; Yuille &

Kersten, 2006; Maloney & Mamassian, 2009; Ma, 2012). In this Bayesian framework,

the likelihood function and the prior are combined to compute the posterior on which

the perceptual decisions are based. This framework provides quantitative measures to

represent and to analyze the uncertainty of 3D shape interpretation observed in the

experiment, by using the probability distributions. The distributions represent the

ambiguity of 3D surfaces propagated from the depth cues in contours. Also, the prob-

abilistic representation of 3D shapes provides richer information about the quantity

of belief for the interpreted 3D shapes instead of a single specific surface orientation

or depth map. In addition, this probabilistic representation for shape information is

feasible for biological systems, which can encode the distributions by the population of

neurons (Zemel et al., 1998; Pouget et al., 2000). Moreover, the Bayesian framework

accommodates to incorporate human biases in depth perception as the form of prior

probability distribution.

The likelihood of depth differences on perceived 3D surfaces is computed by assum-

ing a generative model—the inflation model. The inflation model creates random line

drawings from random 3D surfaces that are inflated from skeletons, and the relations of

many random line drawings and the corresponding 3D surfaces are kept in a database.

The database keeps the information of local 3D surfaces for 2D contours with a spe-

cific cue scope, and the likelihood is numerically computed from the database. Such

an approach has several advantages. Firstly, this method avoids complex computing

to get the analytical solution of the likelihood function by using random samples of

the 3D surfaces retrieved from the database to estimated the function. Secondly, this
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method defines the likelihood at different scopes of 2D contour cues in a easier way by

using the size of the turning angle vector to represent the scope of a contour cue. In

addition, any existing natural bias in the distribution of surface orientations—such as

any natural distributions over slant and tilt for the type of shapes generated by the

inflation model—is already incorporated in the database, so no correction is needed.

Note that the existing human biases in slant and tilt perception are separately applied

as the prior.

The predictions for the probability of depth difference from the model were consis-

tent with human responses from the experiment, showing that our model reasonably

explains human 3D shape interpretation from line drawings based on the estimated pos-

teriors. This Bayesian model accounts for the inference of 3D shape information from

2D line drawing contours, including surface orientations and depths in the empty areas

without other direct depth cues at the locations, and encodes the underlying uncertainty

contributed to the propagation of indirect depth cues as the posterior probability distri-

butions, which can convey richer information for the later cognitive processes to make

decisions about the 3D shapes. Also, this model provides a good quantitative tool to

examine the complex influence between local and global cues on shape inference, which

is a central challenge in perceptual grouping. The analysis for the varied contour cue

scope suggests that human vision may choose the appropriate scope of contour cues

to estimate the global 3D surface, considering the local and non-local features without

awareness, and this computational model suggest the mechanism.

2.4 Conclusion

This chapter investigated 3D shape inference from line drawings. Line drawings rep-

resenting simple forms were picked to test human interpretation about the pictorial

surfaces. The experiment revealed that human depth judgments based on the per-

ceived surface were not deterministic but rather probabilistic; the judgment rates were

matched with the probability that encodes the uncertainty in perceiving 3D shapes.

The perceived 3D surfaces can be explained as the result of propagation of depth in-

formation from both local cues and global cues in line drawing contour structures.



32

The computational model was suggested for this 3D shape interpretation in a Bayesian

framework, which encodes the probabilistic nature of estimating 3D surfaces, incorpo-

rates human biases in 3D shape perception, and provides a tool for simulating the 3D

shape inference with respect to various factors, such as contour cue scopes.
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Chapter 3

Perception of Contour Types: Depth Cues vs. Surface

Markings

Contours in line drawing images convey 3D shape information, but the interpretation

is dependent on the global context in the line drawing images. Contours in images can

be caused by various discontinuities in depth, surface orientation, and surface color on

the surface that gives rise the contours (Stevens, 1981; Barrow & Tenenbaum, 1981;

Marr, 1982; Koenderink & van Doorn, 1982; Koenderink, 1984; Knill, 1992; Mamassian

& Landy, 1998; Phillips et al., 2003). The contours are interpreted as either occlud-

ing contours, which represent depth structures and provide direct information about

the shapes of surfaces, or as surface markings, which represent the changes in surface

reflectance and provide constrained information about the shape. For example, at an

intersection of two contours (a T-junction), the internal contour can be interpreted

either as an occluding contour or as a surface marking. Deciding the reliability of a

contour as a depth cue is not trivial process, but is a complex inference based on global

context with non-local contour features in line drawings.

3.1 Experiment 2

The purpose of this experiment was to examine the influence of global context on

interpreting a contour segment as an occlusion cue or a surface marking. Based on the

original line drawings used in Experiment 1 (Line Drawing 1 and Line Drawing 2), a

contour segment is added or deleted to change the junction structures, and the change

would make a different interpretation of the 3D surfaces and depths. I used the same

pair-wise depth comparisons for the same line drawings as in Experiment 1.
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3.1.1 Methods

Participants

Sixteen Rutgers undergraduate students participated in this experiment to get course

credits.

Stimuli

Based on the same line drawings used as in Experiment 1, four other types of junctions

were made (Figure 3.1). A contour segment that had the same shape with the original

internal contour of the original T-junction was added either below or above the original

junction on the opposite side of the original stem contour, as shown in Figure 3.1 (b) and

(c). The addition generated another T-junction that made conflicting depth relations

with the relations that were created from the original T-junction as an occlusion cue. In

addition, removing the segment from the original T-junction made an L-junction, and

adding the segment on the other side at the original T-junction made an X-junction, as

shown in Figure 3.1 (d) and (e). Both L- and X-junctions provide very ambiguous depth

information. The 3D interpretations were measured by probe sets, which were the pairs

of two color dots along the original internal contour, as was similar in Experiment 1.

Design and Procedure

The locations of probes and the types of junctions were the main factors manipulated

in this experiment. Five probe locations (Probe Sets 1 to 5) were tested from farther

to closer to the original junction along the internal contour, and five types of junctions

were tested, as shown in Figure 3.1. Two different types of base line drawings (Line

Drawing 1 and 2) were used. Each line drawing image was horizontally flipped left or

right, and the color of the two probe dots were changed between cyan and magenta.

The orientation of the whole stimuli was fixed as shown in Figure 3.1. Each stimulus

was displayed for 300, 750, or 1200 ms. Each condition was repeated twice; therefore, a

total of 1200 trials were tested. Participants were asked to indicate which dot appeared

closer to them, and the congruence rates were measured.
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(a) The original T-junction

(b) New T-junction below the original (c) New T-junction above the original

(d) L-junction (e) X-junction

Figure 3.1: Five junction types for the set of Line Drawing 1 (left) and Line Drawing 2
(right). Based on the original line drawing with one T-junction (a), a contour segment
that had the same shape and length with the internal contour of the T-junction was
added near the junction (b and c), or the internal contour was deleted or added to
generate various types of junction (d and e). The dots show the locations of probe sets.

3.1.2 Results and Discussion

Firstly, the influence of probe locations was significant according to an ANOVA analysis

(F (4, 60) = 4.532, p = 0.00289), and the log odds of congruent responses were positively

related to the distance of probes from the original T-junction according to a logistic

regression (z = 6.073, p = 1.25e−09) (Figure 3.2). Such results confirm again that the

interaction of local T-junction cue and non-local cues influenced the depth difference

perception that was observed in Experiment 1.

Secondly, there was a significant difference in the congruence rates with the original

T-junction only and X-junction (p < 0.03), but there were no significant differences

among the other junction types, from an analysis of a pairwise test. The facts that

the additional T-junctions did not make differences in the depth perception with the

original T-junction only line drawings, and that there was no distinction between the

above and below T-junctions imply that the additional junctions were interpreted not

as a meaningful depth cue but rather a noise. Therefore, the stem contours were
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Figure 3.2: The influence of probe locations on congruence rates. The data points show
the means of congruence response, and error bars show the standard errors.

considered as surface markings instead of occluding cues.

Interestingly, the congruence rates for the line drawings with L- and X-junctions

were not constant although the surfaces perceived from L- and X-junctions were ex-

pected to be “flat,” because both types of junctions do not provide depth information

from the contour structures. However, the congruence rates with L- and X-junctions

reflected the certainty of depth difference perceptions, which varied according to the

location of probes, showing that the line drawings were interpreted as 3D surfaces and

the depth differences were perceived. The 3D shape interpretation from L-junctions can

be explained that subjects could learn the pattern of the probe locations and internal

contours from the trials with T-junctions, and they assumed the internal contours that

were not existing in L-junctions. Similarly, the contour that separated two probe dots

in an X-junction was assumed to be the internal contour of a T-junction, representing

depth relations, and the other contour was assumed to be a surface marking.

Taken together, the results show that the interpretation of contours as an occlusion

cue or a surface marking is not deterministic but conditional based on the global context.

Not all T-junctions are interpreted as depth cues. When two T-junctions are competing

as depth cues, one is considered as a legitimate depth cue, but the other is dismissed as

an informative depth cue based on the global context. Therefore, the dismissed junction
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Figure 3.3: The influence of junction types on congruence rates.

contours are interpreted as surface markings. On the other hand, junctions that do not

convey depth information, such as L- and X-junctions, can be interpreted as depth cues

based on the context; as the L- and X-junctions created similar 3D shape perceptions

as the T-junctions in this experiment.

Additionally, there was a significant difference in the responses between two types

of line drawings (Line Drawing 1 and Line Drawing 2) (F (1, 15) = 6.062, p = 0.0264).

Such a result is different from Experiment 1 in which there was no distinction between

Line Drawing 1 and Line Drawing 2. There can be an influence of the shape of head

contours—convex head or concave head—that made the differences in the current ex-

periment, which tested line drawings with “noisy” contours. Convexity of a contour

is a well known figural cue in figure/ground organization (Kanizsa & Gerbino, 1976;

Pomerantz & Kubovy, 1986; Driver & Baylis, 1995). Furthermore, Burge et al. (2010)

argued that the convexity is a depth cue that provides information about absolute depth

differences as disparity does in natural viewing. The local geometry of contours—the

curvature of head contours of T-junctions—will be tested in the upcoming experiments

in the next chapter.
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Figure 3.4: The influence of line drawing types on congruence rates.

3.2 Conclusion

Contours in line drawings are differently interpreted according to the global context

in the line drawing images. The contours are interpreted as either occluding contours,

which represent depth structures and provide direct information about the shapes of

surfaces (Marr, 1977), or as surface markings, which represent the changes in surface

reflectance and provide constrained information about the shape (Knill, 1992). For

example, at an intersection of two contours (a T-junction), the internal contour can

be interpreted either as an occluding contour or as a surface marking. Deciding the

reliability of a contour as a depth cue is not trivial process, but is a complex inference

based on global context with non-local contour features in line drawings.

The purpose of this experiment was to examine the influence of global context on

interpreting a contour segment as an occlusion cue or a surface marking. Based on the

original line drawings used in Experiment 1 (Line Drawing 1 and Line Drawing 2), a

contour segment is added or deleted to change the junction structures, and the change

would make a different interpretation of the 3D surfaces and depths. I used the same

pair-wise depth comparisons from the same line drawings as in Experiment 1.

In this chapter, the experiment that tested the influence of global context to dis-

ambiguate the role of junction contours in line drawing images. The interpretation of
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contours of junctions in line drawings are dependent on the global context. Not all the

T-junctions are interpreted as depth cues that convey depth information, and contours

of junctions that are not depth cues can be interpreted as depth cues.
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Chapter 4

Line Drawings Viewed Through an Aperture: Depth

Judgments and the Quantity of Information Available

Interpretations of line drawings are influenced by non-local visual cues. Experiment

1 tested the complex interaction between local and non-local cues that contributes to

the uncertainty of the interpretations. In the following two experiments, the amount

of non-local visual cues are varied, and the influence on perception of depth difference

is examined. Experiment 3 explores how the amount of visual information at a T-

junction influences the depth judgments near the junction, and Experiment 4 examines

the relation of the amount of visual information and the depth interpretation with more

details.

4.1 Experiment 3

The aim of this experiment is to examine the influence of non-local visual information

in line drawings on the 3D shape interpretation. Parts of line drawing images are

presented via circular windows, which are concentric circular apertures, showing the

same T-junction at the centers and the neighboring contours. The area of visible

neighboring contours is varied according to the size of windows. The change in the size

of non-local visual cues would influence the interpretation of 3D surfaces and perception

of depth differences.
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4.1.1 Methods

Participants

Thirteen Rutgers undergraduate students participated in this experiment to get course

credits.

Stimuli

Line drawings were generated from the generative model explained in section 2.2 (Model),

which inflates random 3D surfaces from curved skeletons and projects the surfaces into

2D contours from random viewpoints. The line drawings were black contours on white

background, and the size of the whole line drawing contours subtended a maximum of

8.5◦ in visual angle horizontally and vertically. Each line drawing was seen through a

circular window, which was a hole on the black area covering the whole screen; there-

fore, only part of contours were visible (Figure 4.1). The same pair-wise dots as in

the previous experiments were used to probe the depth difference perceived from line

drawings.

Design and Procedure

The three main factors tested in this experiment were window sizes, probe locations, and

head shapes. The diameters for small, medium, and large windows were approximately

3.3◦, 8.0◦, 12.7◦ in visual angle, respectively (Figure 4.1). Probes were put on one

of three contours of a T-junction (Figure 4.2): the internal contour (part of the head

inside), the head contour (part of the head on the bounding contour side), or the stem

contour. The centers of circular windows were positioned at the midpoint of each probe.

Eight different line drawings having only one T-junction were used. Half of them had

convex head contours, and the other half had concave head contours (Figure 4.3).

Each line drawing image was horizontally flipped in random, and rotated by a

random angle. Each stimulus was displayed for 400ms or 800ms. The probe dot color

was flipped between cyan and magenta. Each condition was repeated three times; thus,

a total of 864 trials were tested.



42

(a) Small window (b) Medium window (c) Large window

Figure 4.1: Three window sizes.

A

B

(a) Internal probe

A B

(b) Head probe

A

B

(c) Stem probe

Figure 4.2: Three probe locations.

(a) Convex head (b) Concave head

Figure 4.3: Two types of head contours.
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Window Size small medium

medium < 0.00001 -
large < 0.00001 not sig.

Table 4.1: The p-values from a pairwise t-test for window size.

Before the trials, subjects were presented with line drawing images of natural ob-

jects, such as fruits, vegetables, and animals, which were selected from the study by

Snodgrass & Vanderwart (1980). On the images, color probe dots were put on each line

drawing, and subjects were asked to verbally answer which dot appeared closer. They

got the feedback of the “correct” answers that were consistent with the ordinary inter-

pretation of line drawings. Then, the subjects were explained that they would observe

similar line drawings in the experiment. In trials, the blocks with small, medium, and

large windows were tested in this order, to prevent subjects from memorizing the line

drawings. The procedure was the same as in the previous experiment, and the same

congruence rates were measured.

4.1.2 Results and Discussion

Firstly, the influence of window sizes on congruence rates was significant in an ANOVA

analysis (F (2, 24) = 22.01, p = 3.73e−06) (Figure 4.4). According to a further pair-

wise t-test, the rates for smaller windows were significantly different from the rates for

medium and largest windows, but the rates for medium and large windows were not

significantly different (Table 4.1). The results showed that the 3D shape interpretations

of line drawings were qualitatively distinctive between with and without the non-local

cues in line drawings, although the local T-junction was always given. Considering that

the large window showed the whole line drawing contours, the partial contours in the

medium windows provided commensurable information to interpret the 3D shapes.

Secondly, the influence of probe locations was significant in the ANOVA analysis

(F (2, 24) = 5.129, p = 0.014) (Figure 4.5). According to a further pairwise t-test, the

congruence rates at stem probes were significantly different from the congruence rates

both at internal and head probes, but the rates at internal probes and at head probes

were not significantly different (Table 4.2). Also, the rates were higher at internal
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Figure 4.4: The influence of window sizes on congruence rates.

Probe Location internal head

head not sig. -
stem < 0.00001 < 0.00001

Table 4.2: The p-values from a pairwise t-test for probe location.

and head probes than at stem probes. The depth differences across the different probe

locations could not be directly compared because the depth of ground in the line drawing

images was not defined. However, the same probability of depth differences at internal

and head probes was consistent with the fact that both internal and head probes were,

in fact, dots along the same head contours of the T-junctions.

Thirdly, the influence of head shapes—convex or concave—was not significant.

In addition, the influence of durations for display was significant (F (1, 12) = 6.087, p =

0.0297), and the congruence rates were higher for the longer durations (Figure 4.6). The

result is in agreement with the fact that the longer display provided more time to un-

derstand the contour structures in line drawings, leading to the higher certainties in

depth difference perceptions for the line drawings.

Also, there was a significant interaction between the repetition of trials and size of

windows (F (4, 48) = 5.534, p = 0.000956), showing that the repetition increased the

congruence rates only when the window sizes were small (Figure 4.7). Such a result

suggests that the line drawings shown through the medium and large windows provided
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Figure 4.5: The influence of probe locations.
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Figure 4.6: The influence of durations of display.
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Figure 4.7: The interaction between repetition and window sizes on congruence rates.

sufficient visual cues while the line drawings shown through the small windows provided

deficient visual cues. The subjects could learn from the partial visual cues in the small

windows by repetition to interpret the 3D shapes and to be more certain about the

perceived depth differences.

4.1.3 Conclusion

In this experiment, the same line drawings were shown through circular windows with

varying sizes, and the perceived 3D shapes were measured by pairwise depth comparison

tasks to examine the influence of non-local visual cues. The amount of non-local visual

cues made the difference in 3D shapes and depth perception. Different window sizes

allowing different extent of visible contour structures changed the certainties of depth

difference perceptions on the same line drawings. In addition, there were learning

effects; the certainty of depth difference perceptions got higher as the line drawings

were displayed longer and repeated more. Yet, the learning from repetition was also

limited only when the amount of visual information was small. All of these results imply

that the line drawings shown through the small windows and through the medium or

large windows were categorically different. This shows that the depth information in

the small windows was not sufficient, but the information in the medium windows was
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sufficient to interpret the visible contour features into the same 3D shapes with the

full information in the large windows. There can be a jump in 3D shape interpretation

between the small and medium windows due to the qualitative difference of depth

information, or there can be a gradual increase, but it could not be examined in this

experiment. In the next experiment, the window sizes will be smaller and more numbers

of sizes will be used to quantitatively analyze the changes of 3D shape interpretations

by the amount of visual information in the windows.

4.2 Experiment 4

The previous experiment confirmed that the amount of visual information made qual-

itative differences in 3D shape interpretation of line drawings, using circular windows

with varying sizes that showed partial contours of line drawings. In this experiment, the

influence of the amount of visual information is examined more closely, using smaller

windows with more numbers of sizes than Experiment 3 for the same stimuli as used in

Experiment 3, to investigate a quantitative relation between the amount of information

and the depth judgment.

4.2.1 Methods

Participants

Thirteen Rutgers undergraduate students participated in this experiment to get course

credits.

Stimuli

The same stimuli were used as in Experiment 3.

Design and Procedure

The same design with Experiment 3 was used except the duration of display, which

was fixed to 800 ms in this experiment, and the sizes of circular windows, which were

five different sizes. The diameters of the windows were 1.32◦, 3.20◦, 5.08◦, 6.96◦, 8.84◦
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(a) Diameter=1.32◦ (b) Diameter=3.20◦

(c) Diameter=5.08◦ (d) Diameter=6.96◦ (e) Diameter=8.84◦

Figure 4.8: Five window sizes.

in visual angle, respectively. (Figure 4.8). The smallest window in this design was

smaller than the small window in Experiment 3, and the largest window was a little bit

larger than the medium window in Experiment 3. Only partial contours were visible

across the different window sizes. The same pairwise probe dots were positioned at

one of three places on the internal, head, and stem contours of a T-junction (Figure

4.2) as in Experiment 3. The same eight line drawings were used (Figure 4.3) as in

Experiment 3. Two colors were switched for the probe dots. Each line drawing image

was horizontally flipped in random, and rotated by a random angle. Each condition

was repeated three times; therefore, a total of 720 trials were tested. The five blocks

were tested in the order of window sizes from smallest to largest. The same congruence

rates were measured.

4.2.2 Results and Discussion

Firstly, the effect of window sizes on congruence rates was significant (F (4, 48) =

6.126, p = 0.000458), which confirmed again the influence from the different amount of

non-local visual cues as observed in Experiment 3 (Figure 4.9). In addition, according

to a logistic regression, the congruence rates increased as the window sizes increased
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Figure 4.9: The influence of window sizes on congruence rates.

Window Size 1.32 3.20 5.08 6.96

3.20 not sig. - - -
5.08 not sig. not sig. - -
6.96 < 0.00001 < 0.005 < 0.005 -
8.84 < 0.00001 < 0.00001 < 0.00001 < 0.05

Table 4.3: The p-values from a pairwise t-test for window size.

(z = 8.559, p < 2e−16). Furthermore, according to a pairwise t-test, the congruence

rates for the line drawings shown through the two larger windows were significantly

different from all the others, while the congruence rates for the line drawings shown

through the three smaller windows were not significantly different with each other (Ta-

ble 4.3). Therefore, the certainties of depth difference perceptions for the line drawings

shown through three smaller windows were qualitatively equivalent. Considering the

results in Experiment 3, in which the congruence rates for the two larger windows were

saturated to be qualitatively equivalent, the current results imply that the congruence

rates increased not linearly but abruptly as the window sizes increased. There could

be a jump in 3D shape interpretation and depth perception from the partial contours

of a line drawing when critical visual cues, such as the endpoint of an internal contour,

were shown.

Interestingly, there was a marginally significant interaction between the location of

probes and size of windows (F (8, 96) = 1.885, p = 0.0712) (Figure 4.10). While the
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Figure 4.10: The interaction between the size of windows and location of probes.

Figure 4.11: The ambiguity in interpreting surfaces from a stem contour when shown
through an aperture. The surface relation along a stem contour for the same T-junction
can be interpreted in two opposite ways.

congruence rates at internal and head probes gradually increased, the congruence rates

at stem probes made a sudden jump as the window sizes increased. This result was

consistent with the ambiguity of stem contours. Surface relations along a stem contour

of a T-junction are undetermined until the information of the endpoint of internal

contour is available, as illustrated in Figure 4.11. Such a result implies that important

non-local cues, such as the endpoints of internal contours in T-junctions, are necessary

to interpret local T-junction cues.

In addition, the influence of the location of probe dots on the display screen was

examined. The height differences between two probe dots for each probe set were
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Figure 4.12: Congruence rates as a function of height difference between two probe
dots. The height difference is the height of “farther” dot on the screen subtracted from
the higher of “closer” dot for each probe set. Each data point shows the mean and
standard error of congruence rates for each group. The line shows a fitted curve from
the logistic regression.

computed, and the relation of congruence rates with the height differences was analyzed.

To visualize the congruence rates as a function of the height difference, the height

differences were grouped into ten groups with the same number of elements, and the

means and standard errors of congruence rates for each group were plotted in Figure

4.12. According to a logistic regression, the congruence rates systematically decreased

as the height differences increased and as the “closer” dot was located higher than the

“farther” dot on the screen (z = −10.348, p < 2e−16). The result shows that the

certainty of depth difference perceptions were higher as the “closer” dot was located on

the lower region, which is consistent with the lower-region figure bias that makes the

lower region perceived as closer.

4.2.3 Conclusion

In this experiment, the scope of non-locality was varied with the sizes of windows that

showed the partial contours of line drawings. The quantitative relation between the

congruence rates and the amount of non-local visual cues in the windows showed that

the depth difference was more certain as more global visual information was available. In
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particular, the increase in the certainty of depth difference perceptions from smaller to

larger amounts of non-local information was abrupt, implying that there was a moment

that the critical non-local visual cues were given. In addition, the relative height of

probe dots on the screen influenced the depth responses, which was consistent with the

closer lower-region bias. These results also confirm that global contex interacts with

local visual information to create the 3D shape interpretation.
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Chapter 5

General Conclusion

In contrast to the large amount of research on 3D surface shape based on local cues

to surface orientation, there has been relatively little exploration of the 3D shape per-

ception from line drawings. In this dissertation, I investigated the mechanism of 3D

shape interpretation from line drawings with four psychophysical experiments and a

computational model. From the experiments, I found that the interpretation of sur-

faces and depths of a line drawing was probabilistic; the repeated depth judgments

about a line drawing reflected the underlying uncertainty of the 3D surfaces based on

the interaction of local and global contour structures. In addition, I found that the

interpretation of a contour as a depth cue was dependent on the more global context,

such as learning from experimental context. Furthermore, the 3D shape interpretations

from partial line drawings were systematically influenced by the amount of visual in-

formation. The inference of 3D shape from 2D line drawing was modeled in a Bayesian

way. The model estimates the posterior of possible 3D shapes given the contour features

of a line drawing—the junctions and curvatures of contours—by combining a likelihood

from a generative model and a prior from biases in depth perception. Additionally, the

model provides a tool for understanding the complex interaction of local and global vi-

sual features by accommodating the global effect of contours on estimating 3D shapes.

The findings from the experiments and the model in this dissertation will advance the

knowledge of 3D shape perception.
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