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Flame retardants (FR), including polybrominated diphenyl ethers (PBDE) 

congener 2,2’,4,4’tetrabromodiphenyl ether (BDE-47) and organophosphate FR (OPFR) 

are ubiquitous in the environment and interact with multiple target receptors, including 

estrogen receptors (ERs). Estrogenic endocrine disruptors (EDCs) such as bisphenol A 

(BPA) affect reproduction and energy homeostasis and modulate hypothalamic functions 

including gene expression.  Developmental exposures to EDCs also alter offspring 

energy homeostasis, although little is known about the effects of FR, especially OPFR. 

Therefore, we investigated if exposure to FR alters genes in arcuate nucleus (ARC) that 

are known to be regulated by 17-β estradiol (E2) through classical ER in adults and if 

developmental exposures to FR elicit negative energy balance in adulthood. In 

Experiment 1, adult male and female mice were orally dosed daily vehicle (oil), 17-α- 

ethinyl estradiol (2.5 µg/kg) as a positive control, BDE-47 low or high dose (1 mg/kg or 

10 mg/kg), and OPFR mixture low or high dose (1 mg/kg or 10 mg/kg of tris (1,3-

dichloro-2-propyl) phosphate (TDCPP), triphenyl phosphate (TPP), and tricresyl 

phosphate (TCP) each) for 28 days. ARC mRNA expression, weekly cumulative body 

weight gain, and female uteri were measured. In Experiment 2, pregnant female mice 
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were fed vehicle, BDE-47 (1mg/kg), and OPFR mixture (1mg/kg) from gestational day 7 

(GD7) to postnatal day (PND) 14. Neonatal pup body weight, anogenital distance (AGD), 

and sex ratio were measured. Weanlings were fed normal or high-fat diet (ND or HFD) 

and body weights and food intake were measured weekly until PND140. Adults were 

tested for body composition, metabolic parameters, and glucose homeostasis. While FR 

altered E2-regulated ARC gene expression in both sexes, there were more striking 

effects of FR on males.  FR amplify effects of HFD, but also promote negative energy 

balance when given ND in males. In females, FR increased effects of HFD on body 

weight gain. These data suggest that these FR alter ARC homeostatic gene expression 

and energy balance in sex-dependent manner.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iv 

Acknowledgement 
 

I would like to thank my mentor Dr. Roepke for his guidance and support and, my 

brother and parents for their encouragement throughout the process. Special thanks to 

my committee members, Drs. Nicholas Bello and Mehmet Uzumcu for their time and 

valuable research input. Furthermore, I would like to thank Roepke members – Ali 

Yasrebi, Jennifer Yang, Kyle Mamounis, and Vipa Patel for their contribution to my 

thesis. I would also like to thank Dr. Storch for the use of EchoMRI and Oxymax CLAMS 

system for the project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 v 

TABLE OF CONTENTS 

 

Page 

General Abstract                                                                                                          ii 

Acknowledgement                                                                                                       iv 

List of Tables                                                                                                                vi 

List of Figures                                                                                                               vi 

Chapter 1 – Introduction and Background                                                                 1 

Chapter 2 – Effects of Flame Retardants on Arcuate Nucleus Gene                      22      

          Expression  

Chapter 3 – Effects of Flame Retardants on Energy Homeostasis                         56 

Chapter 4 – Summary                                                                                                 114 

References                                                                                                                   118 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 vi 

List of Tables 

Pages 

Table 1. Primer List.                                                                                                     45 

 

List of Figures 

 

  Page 
 

Figure 1. Male and female average cumulative body weight gain. 48 

Figure 2. 
 

Male and female ARC average relative Esr1 and Ghsr average  

relative mRNA expression. 49 

Figure 3. 
 

Male and female ARC average relative Insr and Lepr average  

relative mRNA expression. 50 

Figure 4. 
 

Male and female ARC average relative Cacna1g, Cacna1h, and  

Cacna1i average relative mRNA expression. 51 

Figure 5. 
 

Male and female ARC average relative Kcnq2, Kcnq3, and Kcnq5  

mRNA expression. 52 

Figure 6. 
 

Male and female ARC average relative Trpc5 mRNA expression. 53 

Figure 7. 
 

Male and female ARC average relative Npy and Agrp mRNA  

expression. 54 

Figure 8. 
 

Male and female ARC average relative Pomc and Cart mRNA  

expression. 55 

Figure 9. 
 

Average unsexed pup litter weights for PND2 and PND14 and  

sexed male and female PND21 body weights. 95 

Figure 10. 
 

PND5 average litter sex ratio and PND21 average AGD for males  

and females. 96 



 

 vii 

 
Figure 11. 

 

Weekly average cumulative body weights for males and females.  
97 

Figure 12. 
 

Male and female week 20 average actual body weights. 98 

Figure 13. 
 

Male and female weekly average energy intake and juvenile and  

adult feeding efficiencies. 99 

Figure 14. 
 

Average male and female percent fat and percent lean mass of  

body weight. 100 

Figure 15. 
 

Male and female average hourly VO2 for 24 hours diet effects. 101 

Figure 16. 
 

Male and female average hourly VO2 for 24 hours (BDE-47 vs. oil). 102 

Figure 17. 
 

Male and female average hourly VO2 for 24 hours (OPFR vs. oil). 103 

Figure 18. 
 

Night and day average VO2 for males and females. 104 

Figure 19. 
 

Night and day average CO2 for males and females. 105 

Figure 20. 
 

Night and day average RER for males and females. 106 

Figure 21. 
 

Night and day average heat for males and females. 107 

Figure 22. 
 

Night and day average total X-axis activity for males and females. 108 

Figure 23. 
 

Night and day average total Z-axis activity for males and females. 109 

Figure 24. 
 

Male and female 4-hour fasting glucose. 110 

Figure 25. 
 

Male and female blood glucose over time points for glucose  

tolerance tests (GTTs) and glucose average AUC for the entire test. 111 

Figure 26. 
 

Male and female average blood glucose over time points for insulin  

tolerance tests (ITTs) and glucose average AUC for the entire test. 112 

Figure 27. 
 

Terminal female and male blood triglycerides and female uterine  

weights 113 

 



 

 

1 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1: 

INTRODUCTION AND BACKGROUND 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2 

I. INTRODUCTION   

Development and production of synthetic chemicals increases the variety and 

concentrations of substances in the environment that could potentially act as endocrine 

disrupting compounds (EDCs). EDCs are substances in our environment, food, and 

consumer products that interfere with hormone biosynthesis, metabolism, or action that 

results in the alteration of normal homeostatic control or reproduction 1. These 

compounds can bind to receptors, and/or alter enzyme action, metabolism, hormone 

availability, and gene expression. These effects may accumulate and become more 

prevalent across the lifespan.  

Estrogenic EDCs such as diethylstilbestrol (DES) and bisphenol A (BPA) can 

lead to transient and permanent structural and functional abnormalities in rodents and 

humans 2-5. These abnormalities are dependent on concentration, route of 

administration, exposure duration, and the developmental period when exposed to the 

EDC. Furthermore, estrogenic EDCs can alter energy homeostatic parameters. With 

elevated incidences of obesity and associated medical conditions such as type II 

diabetes and cardiovascular disease, the interactions of different diets is crucial for the 

exploring exposure consequences 1,6,7.  

Flame retardants (FR) such as polybrominated diphenyl ethers (PBDE) and 

organophosphate phosphate FR (OPFR) are compounds found in furniture, toys, 

electronics, clothing, and some plastics that have become ubiquitous in the environment, 

especially house dust, and have been shown to bind to estrogen receptors (ERs) in vitro 

8-14. PBDE congeners with lower molecular weight and bromination (1-5 bromine atoms) 

such as 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) and 2,2’,4,4’,5-pentabromodiphenyl 

ether (BDE-99) are completely absorbed, slowly eliminated, and longer half-lives 15. 

Since the early 2000’s, European countries and select U.S. states have enforced 

policies for phasing out PBDEs 16,17. However, they continue to persist in the 
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environment from old furniture and electronic products and collect in house dust and as 

waste. In U.S. and British houses, concentrations were detected from 520-29,000 ng/g 

of dust and 1-330ng/day consumed 18. OPFR are a common replacement in products 

that formerly contained PBDEs, sharing many of their persistent characteristics 16,19-21. 

OPFR levels in Chinese house dust ranged from 0.2-1798 µg/g of house dust 22,23. 

Continuing levels of PBDEs and rising levels of OPFR raise concerns for potential 

neurotoxicity and developmental effects induced by various durations of exposure at 

different stages of life 24,25.  

The fact that these FR are at high environmental concentrations lead to 

speculation of these compounds potentially affect the physiology of the general 

population in a negative manner. If these compounds interact with ERs, they can affect 

many systems, as demonstrated from past studies that analyzed consequences of 

estrogenic EDC exposure. ERs are distributed ubiquitously throughout central and 

peripheral tissue and are interact with many signaling pathways involved in energy 

balance 26-37. Therefore, in the present study, we investigated effects of BDE-47 and 

OPFR ~ tris(1,3-dichloro-2-propyl)phosphate (TDCPP), triphenyl phosphate (TPP), and 

tricresyl phosphate (TCP) ~ on 17β-estradiol (E2)-responsive gene expression in the 

brain and on energy homeostasis in mice.   

 

II. E2-REGULATED PATHWAYS 

General Mechanism 

By targeting ERs, environmental EDCs have the ability to alter neuroendocrine 

signaling pathways responsible for neuronal activation, gene expression, and cellular 

functions. Estradiol (E2), the predominant circulating estrogen, acts on either classical 

(ERα/β) or nonclassical (Gq-mER or GPR30) receptors that can induce nuclear-initiated 

or membrane-initiated signaling and gene regulation 38,39. When E2 acts through 
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classical ERs, it diffuses through the membrane and binds to an ER dimerized complex. 

From there, the complex enters the nucleus and binds either to the estrogen response 

element (ERE) on the genome, controlling gene expression regulation or induces 

protein-protein interactions with transcriptional factors (i.e. AP-1, SP-1, NF-κB) and 

initiating transcription through non-ERE promoters 40,41. Alternatively, E2 can also bind to 

membrane receptors such as Gq-mER and GPR30, activating intracellular signaling 

pathways (i.e. EGFR, IGF-1, PI3K, MAPK, PLC-PKC-PKA pathways) 42-48. Due to ERs 

distribution, changes in ER signaling can have varied and substantial physiological 

effects 49,50.  

 

E2-Regulation of Reproduction and Energy Balance  

E2-responsive signaling in the hypothalamus regulates reproductive and energy 

homeostatic functions. Hypothalamic nuclei involved include the arcuate nucleus (ARC), 

paraventricular nucleus (PVN), dorsomedial hypothalamus (DMH), ventromedial 

hypothalamus (VMH), lateral hypothalamic area (LHA), and medial preoptic area 

(mPOA) 51,52. Specifically, ARC axon terminals are located in an area where the blood 

barrier is incomplete, allowing direct access to potential peripheral circulating signals 

such as sex steroid hormones, glucose, leptin, insulin, and ghrelin and to EDCs 53,54. 

Therefore, the ARC has the unique role in integrating central and peripheral inputs.  

 

E2 control of the HPG-axis 

Traditionally, E2 controls reproductive functions through the hypothalamic-

pituitary-gonadal (HPG)-axis. In the ARC and mPOA of the hypothalamus, gonadotropin-

releasing hormone (GnRH) neurons are localized. GnRH secretion is controlled by 

neighboring kisspeptin (KISS-1) neurosn localized in the ARC or in the anteroventral 

periventricular (AVPV) nucleus 55. In the ARC, E2 suppresses Kiss-1 gene expression by 
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nonclassical ERα signaling (Yang, In Review). If KISS-1 is released, GnRH secretion is 

promoted 56-58. Gonadotropin-inhibiting hormone (GnIH) from the DMH or PVN can also 

inhibit GnRH secretion 59,60. When GnRH is secreted into the median eminence, it travels 

via the hypophyseal portal system to the anterior pituitary and binds to its receptors. 

From the anterior pituitary, luteinizing hormone (LH) and follicle-stimulating hormone 

(FSH) are produced, released into circulation, and travel to the gonads. Depending on 

the sex, LH and FSH elicit proper gonadal and germ cell development (oogenesis, 

folliculogenesis, spermatogenesis), estrous cycles, and secretion of sex hormones such 

as E2 and testosterone (T).  E2 and T can inhibit GnRH, LH, and FSH through a 

negative feedback mechanism. E2 and progesterone also work together to regulate the 

estrous cycle in females. 61-64 Improper fluctuations of these hormones can lead to 

abnormal sex differentiation or lower fecundity if given during critical developmental 

windows 65,66. Therefore, ER signaling in the hypothalamus regulates appropriate 

development and function of the reproductive system.  

Central melanocortin circuitry  

More recently, the concept of E2 regulating energy homeostasis has emerged. 

Energy balance is controlled through the central melanocortin circuit 54,67. In the 

integrative ARC, there are two main populations of neurons known to be involved in 

energy balance: 1) anorectic neurons that express proopiomelanocortin (POMC) and 

cocaine and amphetamine-regulated transcript (CART) and 2) orexigenic neurons that 

express neuropeptide Y (NPY) and agouti-related peptide (AgRP). Generally while 

feeding, the Pomc gene is transcribed in POMC/CART neurons and post-translationally 

cleaved into α-melanocyte-stimulating hormone (α-MSH) and other neuropeptides. α-

MSH binds to its melanocortin receptors (MC3/4R) in the PVN to decrease food intake 

68. During fasting, peripheral peptide hormones such as ghrelin travel through the blood 

brain barrier to bind to its receptor, growth hormone secretagogue receptor (GHSR), in 
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ARC NPY/AgRP neurons to activate gamma-aminobutyric acid (GABA) release, which 

inhibits POMC/CART neurons 39,69-73. Subsequently, NPY and AgRP are released in 

other hypothalamic nuclei (PVN). Neurons in these nuclei respond to NPY through its 

Y1/5 receptors and to AgRP as an antagonist to M3/4Rs 74. Consequently, food intake is 

increased 39,54.  

 

E2 control of energy balance 

E2 modulates food intake and negative energy balance through the 

hypothalamus, hindbrain, and other areas of the brain, although the mechanism is not 

completely understood 51,52,75,76. For example, ovariectomy (ovx) in females leads to 

increased adiposity, which can be prevented by E2 replacement 77. Primarily, E2’s 

energy balance effects are mediated through ERα, based on studies with ERα knockout 

(KO) mice. Phenotypically, ERα KO mice are obese, have decreased energy 

expenditure and activity, and altered glucose homeostasis 78-85. POMC and NPY 

neurons in ARC of mice guinea pigs express Esr1 86-89. Short-term, E2 augments Pomc 

expression or one of its cleaved products, β-endorphin, which is associated with an 

attenuation of food intake 78,90-93. Global mouse ERα KO prevents POMC upregulation 

an anorectic effects by leptin and insulin to promote feeding 94. Different species exhibit 

varied E2 long-term effects on hypothalamic POMC expression 95-98. With long-term E2 

exposure, rodent NPY expression in the hypothalamus decreases, which also lowers 

food intake 99-102.  

Although Gq-mER not fully characterized since it has not yet been cloned, this 

receptor has been functionally identified thus far in the ARC of the hypothalamic POMC, 

dopamine (DA), and gamma-amino butyric acid (GABA) neurons 39,103-105. STX, a 

selective Gq-mER agonist, decreases food intake and meal frequency and controls gene 
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expression in female guinea pigs 46,106,107. Therefore, by targeting multipe ERs, E2 has a 

major role in reproduction and energy balance. Not only does E2 exert its effects on 

ERs, but it also modulates other homeostatic receptors and cation channels in the ARC 

 

E2 interactions with other energy homeostatic receptors found in the ARC 

In the ARC, E2 increases Ghsr gene expression in female mice 89. GHSR is a G-

protein-coupled receptor (GPCR) that is activated by ghrelin, a hormone secreted from 

the gut that promotes hunger 108-110. GHSR is involved in many intracellular signaling 

pathways with intracellular calcium homeostasis as the most characterized pathway 111-

113. While ubiquitously distributed in the body, in the ARC, GHSR is found in NPY/AgRP, 

POMC, Kiss-1/NeurokininB/Dynorphin (KNDy), and tyrosine hydroxylase (TH) neurons 

89,114-116. Primarily, ghrelin binding to GHSR in ARC NPY/AgRP neurons is directly 

stimulatory to NPY neurons and indirectly inhibitory to POMC/CART neurons 

70,72,111,117,118. Downstream, these actions increase food intake 70,73,74,119. Peripheral 

ghrelin administration increases body weights and carbohydrate utilization while 

decreasing fat oxidation 120. Additionally, global GHSR knockout (KO) mice are resistant 

to diet-induced obesity 121. Thus, by stimulating GHSR, E2 can alter energy homeostasis 

throughout the body.  

E2 also induces insulin receptor (INSR) signaling in rodents 122,123. INSR is a 

tyrosine kinase receptor activated by insulin, which is a peptide hormone secreted from 

the pancreas that promotes the shuttling of glucose from circulation into muscle and fat 

tissue, inhibits hepatic glucose production, and typically functions as an appetite 

suppressant 124-130. Brain-specific INSR KO promotes diet-induced obesity, infertility, 

elevated body fat, and increased plasma leptin levels 124,125,128,131. ARC INSR has been 

shown to act functionally through insulin-like growth factor-1 (IGF-1), phosphoinositide-3 

kinase (PI3K), and rapamycin (mTOR) signaling pathways and is located on NPY, 
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POMC, and KISS-1 neurons 122,123,126,127,129,131-136. In the ARC, insulin signaling inhibits 

Npy expression and activates POMC neurons to decrease food intake 127,129,135,136. 

Peripherally, INSR is widely distributed in tissues such as fat, muscle, and the liver 

137,138. Furthermore, global INSR KO is lethal shortly after birth in rodents, induced 

diabetic ketoacidosis, and retards growth 138-140. Through activating INSR, E2 has the 

ability to influence energy balance centrally and peripherally. 

E2 potentiates leptin receptor (LEPR) signaling through PI3K pathways in the 

ARC of rodents 78,141-143.  LEPRs are cytokine receptors that are activated by leptin, 

commonly an anorectic signal that is correlated to and secreted from fat 144-146.  Neuron-

specific LEPR KO increases plasma leptin glucose, insulin, corticosterone while 

increasing hypothalamic AgRP and NPY 147. These receptors have been localized in 

POMC, NPY, and KISS-1 neurons as well 105,135,136. In the ARC, leptin activates KISS-1 

and POMC neurons while inhibiting NPY neurons, overall lowering food intake 141,142. 

Other than the brain, these receptors can be found in many peripheral tissues, including 

white and brown fat, muscle, kidney, stomach, and bone marrow 148. LEPR KO mice 

(db/db) exhibit early-onset obesity and insulin resistance 149,150. Thus, E2 has an 

additional route, by inducing ARC LEPR, to affect energy balance.      

Comparable to E2, peroxisome proliferator-activated receptor gamma (PPARγ) is 

a receptor has a modulatory role in energy homeostasis that is also expressed in the 

ARC of rodents 151. In positive energy balance, PPARγ is known to increase adipocyte 

differentiation, fat accumulation, insulin sensitivity, and macrophage differentiation while 

lowering hepatic glucose production 152-156. PPARγ is a member of the PPAR family that 

has many natural ligands such as fatty acids, and metabolites of lipoproteins and 

alkylated phospholipids and is found in peripheral tissue, including liver, fat, and kidney 

153,155,157,158. Centrally, this receptor is highly expressed in the hypothalamus of rodents 
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151,159,160. Neural PPARγ activation increases food intake and body weight gain and brain-

specific PPARγ KO lowers feeding behavior with PPARγ agonist treatment 161. POMC-

specific PPARγ KO elevates energy expenditure while decreasing body weight and food 

intake 160. In the ARC, PPARγ activation by agonists also augmented Npy and Agrp 

expression in rodents 159. E2 suppresses PPARγ actions in cancer cells and adipocytes 

through crosstalk, but potential E2-induced effects on neural PPARγ require elucidation 

27-29,34,35,162.  

Similar to E2, while androgens are more established as sex steroids that control 

proper reproductive parameters, they also regulate energy balance.  Androgen receptors 

(ARs) are activated by androgens such as T and dihydrotestosterone (DHT). ARs are 

distributed throughout the body, including in the ARC 163-166. Furthermore, T decreases 

ARC POMC neuron activation in rodents 167,168. In male mice, global AR KO decreases 

leptin signaling in the ARC 169. Conversely, the androgen, DHT, increased POMC neuron 

activity in females 170. Brain-specific AR KO suppresses hypothalamic nuclear factor-κB-

mediated induction of protein tyrosine phosphatase 1B, reduces insulin sensitivity, and 

impairs, glucose homeostasis, 171. Peripherally, AR KO promotes adiposity, body weight 

gain, and insulin and leptin resistance while decreasing activity and food intake in male 

mice 172-175. AR KO female mice have increased leptin and adiponectin levels 174. 

However, there is controversy over the effects of AR on insulin sensitivity in female 

rodents 172,176.  

Furthermore, there is also a well-studied link between androgen antagonism or 

insensitivity and elevated E2 levels 26,177-179. AR antagonism during development can 

lead to alternative sex differentiation in males such as decreased AGD while increasing 

instances of cryptorchidism 180. With complete androgen insensitivity, serum androgens 

levels are elevated, which increases aromatase activity. Due to the fact that aromatase 
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converts T to E2, AR antagonism or insensitivity can increase ER stimulation 179. For 

example, adipocyte-specific AR KO increased leptin expression in fat by increasing E2 

activation in fat 180. Therefore, it is plausible for E2 to exert its negative energy balance 

effects when there is AR antagonism or insensitivity. 

 

E2-responsive ARC Cation Channels  

 In addition to hormone channels, E2 also regulates cation channels in the ARC 

such as transient (T)-type calcium channels 104,181, Kv.7 family potassium channels 86,182, 

and transient receptor potential channels (TRPC) 46,136,141,142,183. While these channels 

are also distributed peripherally, centrally, they are involved in hypothalamic control of 

energy homeostasis 44,45,184-187.  

Isoforms of T-type calcium channels are associated with an a1 subunit are 

Cav3.1, Cav3.2, and Cav3.3 with Cacna1g, Cancna1h, and Cacna1i as their gene names, 

respectively.  These channels are low-voltage-activated and are responsible for neuronal 

burst firing and neurotransmitter release and found in ARC POMC and KISS-1 neurons 

181,188-190. ERα and Gq-mER activation increases Cacna1g expression in female guinea 

pig ARC 46,181,188,190. In female mice, E2 augments Cacna1g in the ARC in an ERE-

dependent manner (Yang et al., In Review). E2 also increases Cacna1h expression in 

the ARC of female guinea pigs by ERα and ERβ activation 181. Furthermore, E2 has 

been shown to upregulate Cacna1i in female guinea pig pituitary, ARC KISS-1 neurons, 

and POA GnRH neurons190,191. While these channels have been characterized in 

females, there are no studies of these channels in the ARC of males.  

When stimulated by depolarization, KCNQ (Kv.7) channels at the neuron’s 

membrane facilitate a non-inactivating outward potassium current (M-current) to stabilize 

membrane potential and reduce action potential frequency 86,182,185,192-195. Particularly, 

KCNQ channel subunits Kcnq2, Kcnq3, and Kcnq5 are expressed in the ARC with 
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KCNQ3 being necessary for M-current function and colocalizing with KCNQ2 and 

KCNQ5 86,182,192,195. E2 increases M-current in ARC NPY, but not POMC neurons to 

decrease NPY activity and subsequently food intake in female rodents 182. Additionally, 

fasting in male and female rodents inhibit M-current activity by suppressing Kcnq2 and 

Kcnq3 expression in NPY neurons 182. Furthermore, ghrelin also inhibits the M-current in 

NPY neurons (Yasrebi et al., In Review). In POMC neurons, regulation of food intake is 

mediated through serotonin receptors (5HT2cR) 103,104,142,183,196. M-current is decreased by 

5HT2cR through phospholipase C (PLC)-mediated phosphatidylinositol 4,5-biphospahte 

(PIP2) hydrolysis to increase firing in POMC neurons, which reduces food intake 196,197.  

 TRPC channel subunits 1, 3, 4, 5, 6, and 7 are non-selective cation channels that 

increase depolarization in neurosecretory neurons 136,141,142,183,186,189,198. In particular, 

Trpc5 is not only expressed in ARC POMC and KISS-1 neurons in female rodents, but it 

is also a target of E2, insulin, and leptin 136,141,142,183,198,199. E2 inhibits ARC KISS-1 

neurons through ERα activation, reducing TRPC channel activity 189,198,200. In POMC 

neurons, TRPC5 is activated by insulin and leptin receptor signaling pathways, 

potentially decreasing food intake 138,143,144,185.  

Overall, E2 has wide-ranging effects on reproduction and energy balance. E2 

and ERs interact with various hormone receptors and cation channels centrally and 

peripherally, which influence each other in a complex manner. Thus, EDCs mimicking 

the effects of E2 either through ERs or receptors that alter ER signaling can lead to 

expansive disruption of homeostatic functions throughout the body.  

 

III. ESTROGENIC EDCS 

Estrogenic EDCs Reproductive and Metabolic Effects 

A variety of EDCs partially bind to ERs and are both present and widely 

distributed in the environment at potentially harmful concentrations. Many estrogenic 
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EDCs have the ability to affect membrane-initiated signaling pathways in different 

tissues through classical and nonclassical ERs 6,201,202.  In vitro, these compounds also 

bind to GPR30, a neural estrogen-responsive GPCR, and activate adenylate cyclase 203. 

During critical developmental periods, exposure to estrogenic compounds such as DES, 

BPA, and methoxychlor (MXC) can change brain structures through developmental 

programming, neurogenesis, and alter neural circuitry in adulthood 204-213. Estrogenic 

compound exposure at critical developmental windows can induce alternative sexual 

differentiation such as changing the anogenital distance (AGD) in males and females 

204,209,214-216. Conversely, EDC exposure during adulthood can alter gene expression 

and/or neuronal activity 217-222.  

Furthermore, growing evidence suggests the relevance of maternal EDC 

exposure on offspring energy homeostasis in rodents and humans. In in vitro, select 

EDCs functionally activate mERs in peripheral tissue such as the pancreas 5,6,201,202,223. 

Estrogenic EDCs such as BPA, polychlorinated biphenyl ethers (PCBs), methoxychlor 

(MXC) and DES alter adipogenesis, lean mass ratios, energy expenditure, body weight, 

glucose homeostasis, and cholesterol levels in rodents 2,7,224-226. While the majority of 

these studies support these estrogenic EDCs acting as obesogens, a few studies find 

opposite effects where hyperactivity, lean body mass, and even weight loss in rodents 

227,228. Depending on concentration, route of administration, sex, and duration of 

exposure, estrogenic EDCs can either promote or protect against obesity 2,225-236.  

 

EE2  

17-α-ethinyl estradiol (EE2) has been extensively studied and is considered a 

model EDC. EE2 is orally bioactive derivative of E2 that is used in many oral 

contraceptives approved in the U.S. since1960 237. Recently, EE2 concentrations in 

sewage water effluent have increased, especially in urban areas 237-239. This compound 
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has a high binding affinity for ERα and has a longer half-life than E2 due to a slower 

breakdown rate. Since EE2’s ERα binding affinity is close to E2 in rodents, EE2 is often 

used as a positive control for E2 for estrogenic EDC studies 240-242. 

EE2 treatment in adulthood has been studied for effects later in life. Use of EE2 

as a contraceptive is associated with higher incidences of benign liver tumors, liver 

toxicity, and increased risk of breast cancer with higher concentrations 243,244.  However, 

EE2 may protect against ovarian cancer at relatively low doses 245. In energy balance, 

there have been studies that support change altered fat metabolism in rodents and 

increased weight gain in young adult women 246-248. Furthermore, 28-day exposure to 

high doses of EE2 in adult male rats exacerbates high-fat diet effects including, 

increased total cholesterol and glycolytic/gluconeogenic and fatty acid 

synthesis/oxidation processes in the liver 247.  In the brain, EE2 exposure during 

adulthood lowers noradrenaline turnover rate in the POA and medial basal 

hypothalamus (MBH) and is protective against quinolinic acid toxicity in the 

hippocampus of rodents 249-251.  

 

IV. FR STUDIES  

Epidemiology of FR  

PBDE and OPFR are manufactured in products such as plastics, furniture, and 

electronics. Recently, FR levels have been increasing in the environment due to the 

wide range of products and the extensive product distribution. While PBDEs have been 

decreasing in Sweden, the U.S. China, and England maintain high concentrations 

18,22,252-254. PBDEs such as BDE-47 have been shown to bioaccumulate in marine 

mammals, fish, birds and humans with half-lives that last for approximately 96 hours 

15,24,255,256. The EPA has designated daily PBDE levels 0.1-7 ng/g of body weight as safe 

for humans15,16. However, in the U.S., the geometric mean of BDE-47 in maternal serum 
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is 20.1 ng/g of lipid 253. In California alone, levels in adult human serum range between 

20.8-73.0 ng/g of lipid while children serum contain 61.8 ng/g of lipid 257,258. Furthermore, 

in Chinese populations, PBDE concentrations in placenta (15.8ng/g lipid), breast milk 

(13.2ng/g lipid), and fetal cord blood (1.8ng/g lipid) and neonatal urine (1.99ng/mL) with 

BDE-47 as one of the predominant congeners 253.  

Since the early 2000’s, OPFR have been replacing PBDEs in the various 

products policy-induced concentration limitations of 1g/kg in electronics by the European 

Union and few U.S. states allowing different amounts to continue being manufactured 15-

17. OPFR concentrations continue to rise in women’s breast milk (29.0ng/g), urine (0.08-

68.7ng/mL), drinking water (2-15ng/L), and air contamination in offices and aircrafts 

22,259-263. Alarmingly, Butt and colleagues found higher levels of OPFR metabolites in the 

urine of toddlers paired with their mothers 264. With their high levels in the environment 

and few in vivo studies testing the compounds in mammals, there are pressing concerns 

about potential toxicity, developmental abnormalities, and other physiological alterations.  

 

PBDE Toxicity 

Due to the vast assortment of PBDE congeners, studies elucidate how FR as 

mixtures, active metabolites, and individually can be toxic in different tissue 257,265-269. 

Maternal exposure at low levels (0.06 mg/kg/day) induced fetal anomalies such as 

decreased ossification and malformed digits on the paws of rats 270. Therefore, having 

relatively high concentrations of these compounds may negatively affect the general 

population in the future.  

Particularly, neurotoxicity induced by PBDEs and the commercial, 

pentabromodiphenyl ether mixture, DE-71, have been examined for mechanism in 

neural cell lines and mice and through differences in neurocognitive behavior 265,266. DE-

71, 2,2’,4,4’,5-pentabromodiphenyl ether (BDE-99), and BDE-47 promote oxidative 
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stress and apoptosis in human neural stem cells 271,272, neuroblastoma cells 273-275, 

hippocampal neurons 199,276, cerebellar granule cells 276-278, and astrocytes 279,280 by 

increasing reactive oxygen species (ROS). In rodents, maternal exposure to BDE-47 led 

to lower spatial learning and memory, neural development and nerve pulse transmission 

281-283. In humans, prenatal exposure is associated with lower IQ scores and higher 

hyperactive behaviors 284. DE-71 treatment during adulthood alters frontal cortex circuitry 

through GABAergic and glutatmatergic systems and damages nigrostriatal dopaminergic 

system in mice 285,286. Overall, PBDEs have the potential to impact the central nervous 

system. 

In peripheral tissue, PBDEs also promote hepatotoxicity and nephrotoxicity. In 

human embryonic kidney cells (HEK293), BDE-47 also induced apoptosis by increasing 

ROS levels, which is suggested with elevated lactate/alanine ratios 267. Additionally, 

relatively low levels of dietary BDE-47 reduced survival rates in Chinook salmon and 

increased ROS levels in the kidney as well 268. In rats given DE-71 maternally, offspring 

increased hepatocyte cytoplasmic vacuolization, suggesting liver toxicity 269. Gestational 

BDE-99 induces hepatotoxicity in rats by upregulating hepatic cytochrome P450 

isoforms (CYP1A1, CYP1A2, CYP3A2) and elevated ROS production in the liver 287. 

Therefore, PBDEs can be harmful throughout the body. 

 

OPFR Toxicity 

Currently, the there are few OPFR toxicity studies and most examine toxicity in 

cell cultures or in vivo working with zebrafish and chickens. In PC12 cells, TDCPP elicits 

concentration-dependent neurotoxicity, inhibits DNA synthesis, and alters 

neurodifferentiation 288. For example, also in PC12 cells, TDCPP decreases cell growth 

and gene expression of GAP43, NF-H, and tubulins (α/β) while increasing apoptosis, 

abnormal morphology, and CAMKII gene expression 289. In human embryonic, hepatic 
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cells, TPP activates p53 to induce apoptosis 290. Tri-o-cresyl phosphate (TOCP) is an 

isomer of TCP that has been shown to be toxic in adult hen spinal cord neurons, mice 

sperm cell culture, PC12 cell line, and mouse neuroblastoma cells to induce 

organophosphate-induced delayed neuropathy 288,291-294. In zebrafish larvae, TDCPP 

decreases body weight, survival, heartbeat rates, and increases incidences of 

malformation 295. TPP promotes cardiotoxicity in zebrafish and reduced retinoic acid 

receptor gene expression 296-298.  

 

FR Thyroid Disruption 

The majority of PBDE studies analyze their role in disrupting thyroid function, 

which is involved in many growth and metabolic-related parameters. PBDE exposure is 

associated with reduced thyroxin (T4) in animal studies 299-301 and heightened T4 or 

decreased thyroid-stimulating hormone (TSH) in humans 302,303. BDE-47 inhibits thyroid 

hormone (TH) sulfotransferase activity (Butt, 2013). Additionally, BDE-47 changes in an 

assortment of gene expressions participating TH pathway enzymes 304. However, there 

are discrepancies of BDE-47 binding to thyroid receptors (TRs) 304-308. Thyroid 

responsive gene expression is affected by early BDE-47 exposure, but BDE-47 alone or 

in a PBDE mixture does not compete with radioactive triiodothyronine (T3) for TRβ 

binding and did not show agonistic nor antagonistic characteristics in some studies 

304,305. Conversely, hydroxylated PBDEs (OH-BDEs) have been shown to activate TRβ 

more effectively than their parent PBDEs 309. OH-BDE metabolites also bind to thyroid 

receptors in rat pituitary cell nuclear extracts and transthyretin, a thyroid hormone 

transport protein 306,310. Thus, OH-BDEs may be the active compounds eliciting thyroid 

dysfunction. 

Similar to PBDEs, OPFR also have effects on thyroid function. TDCPP 

upregulates TR gene expression while TPP augments TR protein and gene expression 
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in zebrafish 311,312. Zebrafish embryos exposed to TDCPP also have lower whole body 

T4, higher T3, and upregulation of expression in genes involved in TH metabolism, 

synthesis, and thyroid gland development 295. Additionally, TDCPP in chickens decrease 

free T4 in plasma 313. Firemaster550, an OPFR mixture that contains TPP, increased 

serum T4 in pregnant mice 314. Recently, emerging studies analyze selective PBDEs, 

PBDE metabolites, and OPFR having binding affinity and targeting ERs. With TR and 

ER-signaling pathways displaying intricate crosstalk, FR can disrupt complex 

interactions involved in growth, development, reproduction and energy homeostasis 32,33.  

 

FR ER Binding Affinity 

FR affinity studies on ER elucidate more potential mechanisms of action. Low-

MW brominated PBDEs such as BDE-47 and certain OPFR (TDCPP, TPP, TCP) bind 

directly to ERs, functioning as endocrine disrupting compounds 8-11. Effects can differ 

depending on the compound (parent or active metabolite) and dose. Select hydroxylated 

low-brominated PBDEs such as 6-OH-BDE-47 and 6’OH-BDE-099 bind to classical ERs 

in vitro and have a longer half-life than their parents BDE-47 and BDE-99 8.  3’-OH-BDE-

47 elicits agonistic estrogenic activity while 6’-OH-BDE-47 induces ER antagonistic 

action 8,9,11. Additionally, 6-methoxylated-BDE-47 is highly antiandrogenic at 1 µM, 

estrogenic at 10 µM, and antiestrogenic at 10 and 50 µM in cell lines 10. TDCPP, TPP, 

and TCP all bind to ERs in vitro, but there are discrepancies whether they act ER 

antagonist-like or agonist-like 12-14. However, FR have been shown to interact not only 

with ERs, but with multiple target receptors in vitro as well such as prename X receptor 

(PXR), TRs, AR, PPARs (α/γ), mineralocorticoid receptors (MRs) and glucocorticoid 

receptors (GRs) 13,14,304,311,315-322. Therefore, potential FR mechanisms of action may 

affect the body in an intricate manner through multiple receptors.  
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Effects of FR on Reproduction 

FR can elicit many alterations of reproduction. In zebrafish, DE-71 enhances 

gonadal development, but reduces spawning, fertilization success, hatching success, 

and larval survival rates 323. BDE-47 disrupts spermatogenesis, by inducing apoptosis of 

early leptotene spermatocytes in male rats 324.  Concurrently, maternal exposure to BDE-

47 in rats lowers serum E2 and folliculogenesis in female offspring 325. BDE-47 

metabolites 5 and 6-OH-BDE-47 increase E2 secretion, ER gene and protein 

expression, and aromatase gene and protein expression in porcine ovary and granulosa 

cells 326,327. Additionally, gestational exposure to BDE-99 alters preproenkephalin, Esr1, 

Esr2, and progesterone receptor mRNA expression in the VMH and mPOA and 

decrease female sex behavior in rats 328. In the serum of young girls, elevated PBDEs 

correlate with delayed puberty while women of reproductive age with higher blood PBDE 

levels are associated with less successful pregnancies 329-331.    

Regarding OPFR, TDCPP, TPP, and TCP are analyzed alone and in a FR 

mixture Firemaster550 (FM550), which is in many polyurethane components of furniture 

264,332. TPP inhibits AR in human cells 320. Tri-ortho-cresyl phosphate, a TCP isomer, 

lowers rat spermatogonial stem cells in male rats 293. In zebrafish embryos, OPFR 

treatment increases T and E2 in circulation in males and females while downregulating 

vitellogenin (vtg) in females and upregulates vtg gene expression in males, which is a 

biomarker of estrogenic activity in male fish 321. Furthermore, TDCPP also heightens 

plasma-free T in male chicken eggs while reducing spermiation in zebrafish 313,333. In 

adult male zebrafish, TDCPP and TPP lower fecundity, elevated plasma E2, and 

upregulates gnrh2, gnrh3, fshβ, lhβ, cyp19b, erα, erβ, and ar in the brain. Conversely, 

female adult zebrafish gnrhr2 and gnrhr3 mRNA expression are downregulated in the 

brain 12,311,333. In female rats, maternal Firemaster550 exposure promotes earlier vaginal 

opening 314.  At high doses, butylated forms of TPP and TCP increase albumin, serum 



 

 

19 

E2, cholesteryl lipidosis in adrenal cortical and ovarian interstitial, and irregular estrous 

cycles in female adult rats 334,335. Collectively, FR alter reproductive parameters, but 

additional studies are required to further characterize effects and elucidate mechanism.  

 

FR and Metabolism 

FR exhibit substantial effects on metabolism through actions on peripheral 

organs. In male liver microsomes, OH-PBDEs inhibit E2 glucuronidation for phase II 

metabolism to promote E2 bioavailability and activate PPARγ 315,336. DE-71 decreases 

phosphoenolpyruvate carboxykinase (PEPCK) activity while increasing liver lipid and 

CYP1A, CYP2B, and CYP3A in male rats 337. In human hepatic cells, BDE-47 enhances 

PXR and constitutive androstane receptor (CAR) activation 304,322. In fact, in vivo, BDE-

47 heightens Cyp3a11 and Cyp2b1 gene expression while binding and activating PXR, 

steroid X receptor, but not AhR in the liver of rats 338. Analysis of global gene expression 

when rats are maternally exposed to BDE-47 elevates groups of genes involved in 

carbohydrate metabolism, electron transport, lipid/fatty acid/steroid metabolism, and 

drug metabolizing enzymes 269,319. Additionally, treatment with BDE-47 in rats at 

relatively higher doses for 28 days increases the number of adipocytes, lipolysis, and 

lowers insulin-stimulated glucose oxidation 301,339. Furthermore, maternal exposure at 

relevant doses in the environment the same model augments plasma IGF-1 in males 

only while promoting higher body weight and length in males and females 305,319.    

With OPFR in vitro, FM550 components bind to PPARγ in human liver cells 

317,318. TPP activates mouse and human CAR and PXR, but inhibits glucocorticoid 

receptor (GR) in human liver only 320. TDCPP, TPP, and TCP all act agonist-like to PXR 

and antagonistic to GR in human cells 13,296. High concentrations of TPP treatment on 

mice liver inhibit liver carboxylesterase1g, which is associated with dyslipidemia 340. In 
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zebrafish embryo and larvae, TDCPP upregulates gene expression of aryl hydrocarbon 

receptors (ahrs), PPAR α (pparα), gr, and mineralocorticoid receptor (mr) genes while 

TPP upregulates ahr, pparα, gr, and mr genes 311. Gene expression of cyp26a1 in liver is 

also promoted by perinatal TPP exposure in adult zebrafish 13,296. In chickens, TDCPP 

injected into the eggs induces cholestatic liver, biliary fibrosis, disrupts lipid and steroid 

metabolism. Consequences include lowering gallbladder size and plasma cholesterol 

while elevating circulating bile acid, gene expression Cyp3a37 and Cyp2h1. 

Furthermore, global gene analysis of these subjects demonstrates alterations in 

apolipoprotein E, hepatocyte nuclear factor 4α, and Pparα expression. 313,341 

Additionally, butylated TCP in female adult rats induces higher total serum cholesterol 

and low-density lipoprotein while butylated TPP promotes alanine transaminase 335. At 

PND 120, maternal exposure to FM550 in rats lowers hepatic carboxylesterase activity 

and increases body weight in males, male fasting blood glucose, and glucose 

intolerance 30 min after glucose injection in female offspring 314. Thus, FR can affect 

energy balance in an expansive and diverse manner. 

 

V. RATIONALE FOR CURRENT STUDY 

Due to BDE-47, TDCPP, TPP, and TCP (or their metabolites) having the ability to 

bind to ERs and having neurological, reproductive, and metabolic effects, these 

compounds can potentially alter estrogen-responsive pathways in the regulatory ARC of 

the hypothalamus during adult exposures. While there is growing body of PBDE 

research regarding toxicity of different tissue, reproduction, and energy homeostasis in 

rodents, OPFR studies looking at in vivo mammalian models are scarce 314,334,335,340. 

Thus far, there are no in vivo studies of OPFR treatment on adult male rodents 

examining alterations in energy balance. Additional studies examining FR not only 

individually, but in mixtures as well can further elucidate potential pharmacodynamics 
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and pharmacokinetic effects. Concurrently, many studies analyzing effects of FR do not 

administer the treatments through daily consumption, which is the primary route of entry 

for most of these compounds, especially in children 1. Therefore, in the present study, 

we investigated if oral dosing of BDE-47 alone or a mixture of the selected OPFR 

(TDCPP, TPP, TCP) affects ARC gene expression and offspring energy homeostasis in 

mice. The objectives of the present study were to determine 1) if the selected FR alter 

ARC gene expression of known E2-regulated genes in a sex-dependent manner and 2) 

if exposure during critical developmental periods affects sexual differentiation and 

growth; and 3) if that early exposure negatively affects offspring energy balance and 

glucose homeostasis.  

 

VI. HYPOTHESIS 

1) Exposure to BDE-47 and OPFR mixture (TDCPP, TPP, and TCP) in adult mice 

will alter ARC E2-regulated gene expression in a sex-dependent manner.  

 

2) Perinatal exposure to BDE-47 and OPFR mixture will increase body weight, 

adiposity, and altering glucose homeostasis in adult offspring in a sex-dependent 

manner. 
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CHAPTER 2: 

EFFECT OF FLAME RETARDANTS ON ARCUATE NUCLEUS GENE EXPRESSION 
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ABSTRACT  

Flame retardants (FR) such as polybrominated diphenyl ether (PBDE) congener 

2,2’,4,4’tetrabromodiphenyl ether (BDE-47) and organophosphate FRs (OPFR) persist in 

the environment and interact with multiple target receptors involved in energy 

homeostasis, including estrogen receptors (ERs). Estrogenic EDCs such as bisphenol A 

(BPA) disrupt homeostatic gene expression in the arcuate nucleus (ARC) of the 

hypothalamus, which centrally controls energy balance. However, little is known about 

the effects of FRs, especially OPFR. Therefore, we investigated if exposure to these FR 

alters adult 17-β estradiol (E2)-regulated gene expression in the ARC. Adult male and 

female mice were orally dosed daily vehicle (oil), 17α- ethinyl estradiol (2.5 µg/kg), BDE-

47 low or high dose (1 mg/kg or 10 mg/kg), and OPFR mixture low or high dose (1 

mg/kg or 10 mg/kg of tris (1,3-dichloro-2-propyl) phosphate (TDCPP), triphenyl 

phosphate (TPP), and tricresyl phosphate (TCP) each) for 28 days.  EE2 was used as a 

positive estrogenic EDC control. ARC mRNA expression, weekly cumulative body weight 

gain, and uteri weights were measured. In male ARC, FR upregulated GhsR, Insr, Lepr, 

Cacna1g, -h, -i, Kcnq2,-3,-5, mRNA expression while downregulating Esr1, Cart, and 

Npy. OPFR increased Agrp and Pomc ARC expression in males. In female ARC, BDE-

47 suppressed ARC Ghsr and Cart, but augmented Insr and Cacna1g. OPFR also 

decreased Ghsr, Pomc, Cart, while increasing Insr and Cacna1g in females. Overall, FR 

more drastically influenced ARC gene expression in males than in females. These 

results suggest that these FR alter ARC gene expression in a sex-dependent manner in 

mice. 
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Glossary: flame retardants (FR) polybrominated diphenyl ether (PBDE), 

2,2’,4,4’tetrabromodiphenyl ether (BDE-47), organophosphate FR (OPFR),  tris (1,3-

dichloro-2-propyl) phosphate (TDCPP), triphenyl phosphate (TPP), and tricresyl 

phosphate (TCP), estrogen receptor (ER), endocrine-disrupting compound (EDC), 

bisphenol A (BPA), 17-β estradiol (E2),   arcuate nucleus (ARC), gestational day (GD), 

postnatal day (PND), anogenital distance (AGD), normal diet (ND), high-fat (HFD), 

neuropeptide Y (NPY), agouti-related peptide (AgRP), proopiomelanocortin (POMC), 

cocaine- and amphetamine-regulated transcript (CART), growth hormone secretagogue 

receptor (GHSR), insulin receptor (INSR), leptin receptor (LEPR) 
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INTRODUCTION 

 Recently, flame retardants (FR) such as polybrominated diphenyl ethers (PBDE) 

and organophosphate FR (OPFR) have become ubiquitous in the environment at high 

concentrations, due to their manufacturing and distribution in electronics, furniture, and 

plastics and their long half-lives 15,16,19-21. PBDE levels in adult human sera ranges 

between 20.8-73.0 ng/g of lipid 257,258 while OPFR in urine are approximately 0.08-

68.7ng/mL 22,264. Production of select PBDE have been limited since the early 2000’s, 

however, they persist in house dust and electronic waste sites and continue to 

bioaccumulate in the environment 16,24,253. BDE-47 has been found in house dust at 

concentration ranges of 0.5-29 µg/g of dust and 0.2-1798 µg/g of dust for OPFR 18,22,23. 

Furthermore, OPFR have been replacing the PBDE in products, but few in vivo studies 

have been carried out in mammals.  

In particular, PBDE congers such as 2,2’,4,4’tetrabromodiphenyl ether (BDE-47) 

and OPFR tris(1,3-dichoro-2-propyl)phosphate (TDCPP), triphenyl phosphate (TPP), 

and tricresyl phosphate (TCP) are in commercial FR including Firemaster550 (FM550) 

have the ability to bind to estrogen receptors (ERs) 8-14. Therefore, there is potential for 

these FR to act as estrogenic endocrine disrupting compounds (EDCs). Exposure to 

certain levels of estrogenic EDCs such as bisphenol A (BPA) and diethylstilbestrol (DES) 

can lead to transient and permanent changes, including altering aspects of sexual 

differentiation, adiposity, and insulin sensitivity 2,209,214-216,226.  

 Due to extensive E2-regulation in the brain, disruption from exposure could 

potentiate a wide array of problems. Particularly, in the arcuate nucleus (ARC) of the 

hypothalamus, classical and nonclassical ERs control reproduction and energy 

homeostasis 44,45,51,86-88,182,187. The ARC of the hypothalamus is crucial for integration of 

central and peripheral signaling such as ghrelin, insulin, leptin, and sex hormones due to 

its location where the blood brain barrier is incomplete 39,54. POMC- and NPY-expressing 
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neurons in the ARC promote or inhibit food intake, respectively 51,54. Estrogenic EDCs 

such as BPA has been shown previously to change gene expression in the ARC in male 

and female mice 342. 

PBDE have been shown to affect reproductive, metabolic, and neurocognitive 

parameters.  PBDE alter classical E2-regulated gene expression and function in neural 

and gonadal tissue 326-328, increase adiposity in male rats 337, promote rodent 

neurotoxicity 285,286, and lower neurocognitive performance in rodents and children 282,284. 

Thus far, there are a number studies exhibiting PBDE inducing neurotoxicity and 

decreased neurocognitive behaviors in rodents, but there are no studies specifically 

examine PBDE, 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) changing gene expression 

in the ARC.  

Within the last few years, evidence of OPFR augmenting similar effects is 

growing in tissue and nonmammalian models. For example, BDE-47 and OPFR act as 

agonists to thyroid receptors (TRs), pregnane X receptor (PXR), androgen receptor (AR) 

and peroxisome proliferator-activated receptors (PPARα and PPARγ) in human liver 

cells, which promote adipocyte differentiation and affects glucose homeostasis 304,315-

318,320,340,341. Furthermore, there are interactions between ER, AR, PPARγ, PPARα, and 

TR signaling pathways in the brain 26-35,37,162. However, only ERs, PPARγ, and AR are 

found in the ARC 86-88,151,163,164,182. Therefore, there is potential for FR to disrupt multiple 

target pathways in the ARC involved in energy homeostasis, including ERs. 

When phasing out one compound and replacing it with another widely distributed 

products, it is crucial to identify effects that the former compound may have already 

inflicted and determine if the novel compound is harmful as well 15-17. These FR interact 

with ERs and disrupt neural, reproductive, and energy homeostatic gene expression and 

function. However, there are no known effects these particular FR on the rodent 
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hypothalamus in vivo, especially integrative ARC. Additionally, daily ingestion is the 

primary route of exposure for many EDCs 1,15,16. Therefore, we designed a study to 

investigate the effects of daily orally dosing BDE-47 and a mixture of OPFR (TDCPP, 

TPP, and TCP) on the ARC of male and female mice at relevant environmental doses. 

Our hypothesis is that these FR will alter the gene expression of homeostatic genes 

known to be 17β-estradiol (E2)-regulated in the ARC in a sex-specific manner. 

 

MATERIALS AND METHODS 

Chemicals 

2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) was purchased from ChemService 

(West Chester, PA) while Tris(1,3-dichloro-2-propyl)phosphate (TDCPP), triphenyl 

phosphate (TPP), and 17α-ethinyl estradiol (EE2) were purchased from Sigma-Aldrich 

(St. Louis, MO). Tricresyl phosphate (TCP) was purchased from AccuStandard (New 

Haven, CT). Each compound was dissolved in acetone before dissolution in sesame oil 

(Sigma-Aldrich, New Haven, CT; Spectrum, Boulder, CO). Ketamine was purchased 

from Henry Schein (Melville, NY, USA) and used for sedation prior to killing.  

 

Animals. 

Animal treatments are in accordance with institutional guidelines based on 

National Institutes of Health standards and were performed with Institutional animal Care 

and Use Committee approval at Rutgers University. Wild-type (WT) mice with a C57BL/6 

background were bred in-house and maintained under controlled temperature (25°C) 

and 12/12h light/dark cycle with water and food ad libitum.  

Due to the daily ingestion being the primary route of exposure for many EDCs, 

animals were treated with the compounds orally on a daily schedule 1. EE2 was used as 

a positive control as it is a model EDC that binds to classical ERs 240-242,343,344. Male and 
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female WT mice (n=8) were orally dosed with either sesame oil, EE2 (2.5 µg/kg), low 

dose BDE-47 (BDE-1; 1mg/kg), high dose BDE-47 (BDE-10; 10mg/kg), low dose of a 

mixture of OPFR (OP-1; TDCPP, TPP, TCP each 1mg/kg), or a high dose of the OPFR 

mixture (OPFR-10; each at 10mg/kg) in peanut butter (0.5-0.6 g) for 4 weeks. The 

mixtures of OPFR have equal concentrations of the respective compounds. Mice were 

tested in adulthood and matched by weight and age. Ages for male and mice ranged 

from postnatal day (PND) 45 – 133 and from PND 52 – 236, respectively. 

 

Ovariectomy 

Females between 8 and 22 weeks old were bilaterally ovariectomized (ovx) using 

isoflurane anesthesia and no-touch technique according to NIH guidelines for Survival 

Rodent Surgery. Analgesic (4mg/kg caprofen (Rimadyl®)) was given immediately after 

surgery and one day after surgery. Animals were monitored for recovery for three days 

postsurgery. 

 

Tissue Dissection and Blood Preparation 

Animals were sacrificed within an hour of the final dose. After sedation with 

ketamine (100uL of 100mg/ml stock, i.p.) and decapitation, brains were removed and 

rinsed in ice-cold Sorenson’s Phosphate Buffer (0.2 M sodium phosphate, dibasic and 

0.2 M sodium phosphate, monobasic) for 30-60 sec. Basal hypothalamus (BH) was cut 

into 1-mm thick coronal rostral and caudal blocks using a brain slice matrix (Ted Pella, 

Redding, CA, USA) corresponding to Plates 42-47 and Plates 48-53 from The Mouse 

Brain in Stereotaxic Coordinates 345. These slices were transferred to a 50/50 

RNAlater®/Pyrogard water solution and stored until microdissection at 4°C (overnight). 

ARC was microdissected from the BH using a dissecting microscope. Until RNA 
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extraction, ARC was stored at -80°C. Trunk blood collected for serum compound 

metabolites, and uteri weighed.   

After sacrifice, whole trunk blood was stored at 4°C for 1 hr, it was centrifuged 

twice, once at 13000 rpm at 4°C for 30 min to remove large blood clots and finally at 

13000 rpm at 4°C for 15 min to collect serum samples. Serum samples were stored at -

80 °C until LC/MS analysis.  Serum levels of BDE-47 and OPFR metabolites at their high 

dose treatments were measured using LC/MS at EOHSI (Sample analysis was not 

completed at the time of the writing of the thesis).  

 

RNA Extraction  

RNA was extracted from ARC using Ambion RNAqueous® Micro Kits (Life 

Technologies, Inc., Carlsbad, CA, USA) according to manufacturer protocol. DNase-I 

treatment was used to remove genomic DNA contamination. RNA samples were tested 

for concentration using NanoDrop™ ND-2000 spectrophotometer (ThermoFisher, Inc., 

Waltham, MA, USA). RNA quality was assessed using Agilent 2100 Bioanalyzer using 

RNA 6000 Nano Kit (Agilent Technologies, Inc., Santa Clara, CA, USA) with samples 

with a RNA integrity number (RIN)>6 were used for quantitative real-time PCR (qPCR). 

 

Reverse Transcription 

ARC cDNA was produced from 200ng total RNA using Superscript III reverse 

transcriptase (Life Technologies, Inc.), 4 uL 5X Buffer, 25 mM MgCl2, 10mM dNTP 

(Clontech Laboratories, INc., Mountain View, CA, USA), 100 ng random hexamer 

primers (Promega Corporation, Madison, WI, USA), 40U/uL Rnasin (Promega) and 100 

mM DTT in DEPC-treated water (Gene Mate, Bioexpress, Inc., Kaysville, UT, USA) in a 

total volume of 20 uL. Reverse transcription protocol was set to 5 min at 25°C, 60 min at 

50°C, 15 min at 70°C. cDNA was diluted 1:20 using nuclease-free water (Gene Mate) to 



 

 

30 

produce a final cDNA concentration of 0.5 ng/uL and was stored at -20°C. RNA from BH 

tissue containing ARC from male and female mice were used as positive controls while 

BH with no reverse transcriptase was used as a negative control.   

 

Quantitative real-time PCR 

ARC was analyzed by qPCR for mRNA expression of genes found to be E2-

regulated in our preliminary investigations or from the literature 

39,46,47,54,77,86,87,103,104,106,107,136,141,142,181,182,188-190,196,198: Pomc, Cart, Npy, Agrp, Esr1, LepR, 

InsR, GhsR, Trpc5, Cacna1g, -h, -i, Kcnq2, Kcnq3, and Kcnq5. Gapdh, Actb, and Hprt 

were used as reference genes using the geomean of the three reference genes in our 

calculation of relative mRNA expression. Primers were designed to span exon-exon 

junctions and synthesized by Life Technologies using Clone Manager 5 software (Sci Ed 

Software, Cary, NC, USA) (Table 1). We used 4 ug cDNA (equivalent to 2 ng total RNA) 

and amplified with either PowerSYBR Green master mix (Life Technologies) or Sso 

Advanced SYBR Green (BioRad, Inc., Hercules, CA, USA) on CFX-Connect Real-time 

PCR instrument (BioRad). Standard curves for each primer pair was generated using 

serial dilutions of BH cDNA in triplicate to determine percent efficiencies (acceptable 

efficiency: 90% - 110%) (Table 1). Amplification protocol for all genes was as follows: 

initial denaturing 95°C for 10 min (PowerSYBR®) or 3 min (Sso Advanced™) followed 

by 40 cycles if amplification at 94°C for 10 sec (denaturing), 60°C for 45 sec (annealing), 

and a dissociation step for melting point analysis with 60 cycles of 95°C for 10 sec, 65°C 

to 95°C (in increments of 0.5°C) for 5 sec and 95°C for 5 sec. Positive and negative 

controls were included in each qPCR plate design including a nuclease-free water blank. 

qPCR data was analyzed using comparative ΔΔCq method utilizing a calibrator of cDNA 

diluted 1:20 from intact male BH. Values were expressed as relative mRNA expression 

in comparison to oil controls. We maintained a consistent threshold level that was set to 
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the lowest but steepest slope of the exponential curve in all plates. Linear quantity of 

target genes was calculated using the 2-ΔΔCq formula 346,347. Data were expressed as n-

fold difference normalized to oil control.  

 

Statistical Analysis 

 All data were analyzed using GraphPad Prism 6 software (GraphPad Software, 

Inc., La Jolla, CA, USA). Cumulative weekly body weight measurements were analyzed 

by repeated measures two-way ANOVA followed (treatment X time) by post hoc 

Bonferroni’s multiple comparison tests between Oil and EDC groups within each time 

point. One-way ANOVA was used for analyzing uterine weights and qPCR data for EDC 

treatments in comparison to oil. All data were expressed as mean ± SEM and 

significance was set at α ≤ 0.5.      

 

RESULTS 

1. Cumulative Weekly Body Weight Gain  

 It is well documented that E2 replacement attenuates female post-ovx body 

weight gain 77,81. Therefore, we examined if EE2 and the selected FR elicit the same 

effect. Due to the treatments being introduced in adulthood with subjects having already 

obtained a stable weight into adulthood, we observed cumulative weekly body weight 

gain, comparing all subsequent body weights with initial body weights. EE2, used as 

positive estrogenic EDC control, decreased cumulative body weight gain in males (2.7 ± 

0.4 g, p < 0.05) compared to oil-treated males (4.3 ± 0.7 g) at week 4 (ANOVA: time: 

F(4,56) = 71.47, p < 0.0001; treatment x time: F(4,56) = 4.54, p < 0.01; Figure 1A). 

Additionally, OP-1-treated females had higher cumulative body weight gain (4.7 ± 0.7 g, 

p < 0.05) at week 4 in comparison to females treated with oil (2.9 ± 0.5 g) (ANOVA: 

F(2,21) = 3.53, p < 0.05; F(4,84) = 80.37, p < 0.0001; F(8,84) = 3.46, p < 0.01, 
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respectively; Figure 1F). However, EE2 and BDE-47 treatment did not alter cumulative 

body weight gain in females or males compared to their oil-treated controls (Figure 1B, 

C, D, & E).  

 

2. Uterine Weights 

 E2 replacement is known to amplify uterine weights through ERα-mediated 

mechanism 81,348. Thus, we investigated if these EDCs also altered uterine weights. EE2 

increased uterine weight (2.2 ± 0.5 g, p < 0.01) compared to oil (0.6 ± 0.5 g). There were 

no significant effects of FR treatment on uterine weight at any dose (ANOVA: F(5,38) = 

5.6, p < 0.001; data not shown).  

 

3. Flame-retardants regulate ARC gene expression   

Selected flame-retardants altered ARC gene mRNA expression in a sex-specific 

manner. These genes selected are primarily involved in reproduction, energy 

homeostasis, and neuronal excitability or are E2-responsive 46,86,87,89,136,141,142,181,182,188-190. 

Genes analyzed were grouped based on function as receptors, ion channels, and 

neuropeptides. Oil was used as a negative control and EE2 as a positive estrogenic 

control. For each gene, all EDC treatments (EE2, BDE-1, BDE-10, OP-1, OP-10) were 

compared to oil in which  -1 and -10 represent the dose (1 or 10 mg/kg/day). 

 

A. Receptors:  Esr1, Ghsr, Insr, Lepr 

 Gene expression of ARC hormone receptors for E2 (ERα), ghrelin (GHSR), 

insulin (INSR), and leptin (LEPR) modulate energy balance and were examined as 

potential targets for the selected EDCs 86,88,89,127,129,136,141,142,182,349. Esr1 mRNA 

expression was decreased by ~70 % in males treated with EDCs (ANOVA: F(5,41) = 
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31.9, p < 0.0001; Figure 2A). However, in females, there was no significant effect of 

EDC treatment on ARC Esr1 mRNA expression compared to oil-treated females (Figure 

2B). All EDC treatments augmented Ghsr gene expression in males by ~4-6-fold  

(ANOVA: F(5,41) = 25.2, p < 0.0001; Figure 2C). Conversely, in females, BDE-10, OP-1, 

and OP-10 treatments suppressed Ghsr expression by ~20% (BDE-10: p < 0.01; OP-1 

and OP-10: p < 0.05), but there was no effect of BDE-1-and EE2-treated in females 

(ANOVA: F(5,41) = 4.2, p < 0.01; Figure 2D).  All EDC treatments upregulated Insr gene 

expression by ~2-7-fold in males and females (ANOVA: males: F(5,40) = 11.3, p < 

0.0001; females: F(5,41) = 11.2, p < 0.0001; Figure 3A & B). Lepr gene expression was 

increased by ~3-4-fold in males with all EDC treatments (ANOVA: F(5,41) = 11.9, p < 

0.0001; Figure 3C). However, there was no significant difference in Lepr gene 

expression between any EDC treatment and females orally dosed with oil (Figure 3D). 

 

B. Cation channel subunits: Cacna1g, -h, -i, Kcnq2,-3,-5, Trpc5 

 We also examined cation channel subunits that are involved in neuroendocrine 

functions 46,86,136,141,142,181,182,188,189. These include calcium channel subunits (Cav3.1, 

Cav3.2, Cav3.3) that produce the T-type calcium current 181,188,189; the KCNQ subunits 

(KCNQ2, KCNQ3, KCNQ5) that produce the M-current, a potassium current 86,182,196, and 

the transient receptor potential 5 (TRPC5) subunit that produces non-selective cation 

current under the control of leptin and insulin in the ARC 136,141,142,181. Cacna1g mRNA 

expression was increased in males by ~3-5-fold with all EDC treatments (ANOVA: 

F(5,41) = 6.3, p < 0.001; Figure 4A). Furthermore, all FR treatments augmented 

Cacna1g mRNA expression 3-5-fold in females with all FR treatments (p < 0.0001), but 

EE2 did not significantly affect Cacna1g expression (ANOVA: F(5,39) = 25.1, p < 0.001; 

Figure 4B). Except for BDE-1, all EDC treatments upregulated Cacna1h and Cacna1i 

gene expression ~2-4-fold (BDE-10 and OP-1: p < 0.01; EE2 and OP-10: p < 0.0001) 
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and ~2-3-fold (p < 0.0001), respectively, in males (ANOVA: Cacna1h: F(5,41) = 8.2, p < 

0.001; Cacna1i: F(5,41) = 11.5, p < 0.0001; Figure 4C & E). Conversely, in females, only 

EE2 increased Cacna1h and Cacna1i mRNA expression by ~30-50% (p < 0.05) 

(ANOVA: Cacna1h: F(5,41) = 4.9, p < 0.01; Cacna1i: F(5,42) = 4.8, p < 0.01; Figure 4D 

& F).  

 In males, EE2, BDE-10, OP-1, and OP-10 increased Kcnq2 (BDE-10: p < 0.01; 

EE2, OP-1, and OP-10: p < 0.0001) and Kcnq5 (Kcnq2: BDE-10: p < 0.01; EE2: p < 

0.001; OP-1 and OP-10: p < 0.0001) gene expression by ~2-3-fold for both genes while 

there was no significant difference for BDE-1 treatment (ANOVA: Kcnq2: F(5,40) = 11.9, 

p < 0.0001; Kcnq5: F(5,39) = 8.5, p < 0.0001; Figure 5A & C). However, all EDC 

treatments elevated Kcnq3 mRNA expression in males (ANOVA: F(5,41) = 13.2, p < 

0.0001; Figure 5B). Gene expression for Kcnq2, Kcnq3, and Kcnq5 were increased in 

females only by EE2-treatment by ~60% for Kcnq2 and Kcnq3 (Kcnq2 and Kcnq3: p < 

0.0001) and ~2-fold for Kcnq5 expression (p < 0.001)(ANOVA: Kcnq2: F(5,42) = 5.6, p < 

0.001; Kcnq3: F(5,42) = 12.0, p < 0.0001; Kcnq5: F(5,39) = 8.5, p < 0.0001; Figure 5D, 

E, & F).  In males, all EDC treatments increased Trpc5 gene expression by ~3-5-fold 

(ANOVA: F(5,41) = 17.7, p < 0.0001; Figure 6 A). However, in females, EE2 treatment 

only suppressed Trpc5 mRNA expression by 30% (p < 0.05) (ANOVA: F(5,42) = 3.0, p < 

0.05; Figure 6B).  

 

C. Neuropeptides Npy, Agrp, Pomc, Cart 

 Finally, we examined ARC neuropeptides involved in energy homeostasis and 

reproduction, including neuropeptide Y (NPY), agouti-related peptide (AgRP), 

proopiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript 

(CART) 51,54. While all EDC treatments decreased Npy mRNA expression by ~30-70% in 

males, there was no significant change for females in any treatment compared to oil 
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(ANOVA: males: F(5,40) = 32.2, p < 0.0001; Figure 7A & B). Only OP-10 increased Agrp 

gene expression by ~2-fold in males (p < 0.01) (ANOVA: F(5,40) = 6.2, p < 0.001; Figure 

7C). In females, there were no significant effects of any EDC treatment on Agrp mRNA 

expression (Figure 7D). OP-10-treatment increased Pomc mRNA expression by ~2-fold 

in males (p < 0.001)  (ANOVA: F(5,40) = 4.92, p < 0.01; Figure 8A). Interestingly, while 

not having a significant overall effect, OP-10-treated females had suppressed Pomc 

gene expression by ~30% in post-hoc analysis (ANOVA: ns, p < 0.05; Figure 8B). 

Finally, males orally dosed with all EDC treatments decreased Cart mRNA expression 

by ~50-70% (ANOVA: F(5,39) = 16.8, p < 0.0001; Figure 8C). Females treated with 

BDE-1 and OP-10 had suppressed Cart mRNA expression by ~30% (BDE-1 and OP-10: 

p < 0.05), but EE2, BDE-10, and OP-1 treatment in females had no significant 

differences compared to oil-treated females (ANOVA: F(5,41) = 2.7, p < 0.05; Figure 

8D).       

 

DISCUSSION  

FR such as PBDE and OPFR are an emerging group of EDCs that are found at 

detectable levels in the environment with BDE-47, TDCPP, TPP, and TCP amongst the 

predominant FR detected. In the current study, we found that FR, BDE-47 and the 

selected OPFR (TDCPP, TPP, and TCP), had striking effects on homeostatic gene 

expression in the ARC, including hormone receptors, cation channels, and 

neuropeptides in a sex-specific manner. Specifically, these FR influenced male ARC 

mRNA expression more drastically than in females. Many of these genes are regulated 

by E2 in the ARC through multiple receptor-mediated pathways and modulate central 

energy homeostasis 44-46,51,86,87,103,182,187,188.  

In in vitro studies, the selected FR bind to classical ERs (ERα/β), although there 

are discrepancies whether or not they act as agonists or antagonists 8-14. From this 
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study, these FR modulate ARC genes are known to be regulated by E2. However, in 

addition to ERs, BDE-47 and the OPFR examined also bind to other nuclear receptors 

involved energy homeostasis such as AR, PPARs (α/γ), PXR, TRs, GRs and MRs in fat, 

liver, and kidney cells 10,13,14,304,311,315-320.  Similar to ERs, AR and PPARγ are also located 

in the ARC 151,163,166,169. ERs can participate in crosstalk between PPARγ and AR in 

cancer cell lines in which E2 suppresses PPARγ actions in cancer and fat cells while AR 

activation upregulates ERβ  in breast cancer cells 26-29,34,35,162,350-352. However, it is 

currently unknown whether E2 affects PPARγ in the central nervous system and 

ERβ was not examined in the present study  27-29,34,35,162. In future studies, FR influences 

on the expression of Ar, Esr2, and genes involved in various signaling pathways in the 

ARC could also be analyzed. Overall, there is potential for FR to affect ER signaling 

either directly or indirectly from crosstalk of other ARC receptors, including AR and 

PPARγ.  

In the integrative ARC, classical and nonclassical ERs can control central energy 

balance 44-46,51,86,87,182,187. Therefore, we analyzed known E2-regulated homeostatic 

genes. In the ARC, nuclear-initiated (classical) ERα/β signaling can act through estrogen 

response element (ERE)-dependent and ERE-independent mechanisms to control gene 

expression while membrane-initiated ERα/β pathways must first activated signal 

transduction pathways prior to controlling gene expression 44,45,187. Membrane-

associated ERs (mERs) also activate or inhibit secondary messenger cascades that can 

affect central energy homeostasis and neuronal activity 44,45,48,64,187. Therefore, there are 

multiple-receptor-mediated ER mechanisms that FR can activate to control gene 

expression. 

 Past studies have investigated EDCs such as BPA and EE2 and their abilities to 

bind to ERα/β and mERs such as GPR30 or ER-X in vitro and alter hypothalamic gene 
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expression in adult mammalian models 5,6,201,221,223,224,353-358. Centrally, BPA exposure 

during adulthood suppresses Esr1 gene expression in the hypothalamus of male rodents 

357. BPA treatment also increased progesterone receptor activation and gene expression 

in the female rodent preoptic area (POA) and ventromedial nucleus of the hypothalamus 

(VMH) 354-357. Additionally, BPA exposure also augmented kisspeptin mRNA and protein 

expression in anteroventral periventricular nucleus of adult female mice 221.  Specifically 

in the ARC, EE2 and BPA treatment during early puberty increased ER-labeled neurons 

3. Peripherally, adult exposure to BPA in males also inhibited protein kinase B 

phosphorylation in skeletal muscle 224. However, little is known about effects of EDC 

exposure during adulthood on central homeostatic genes, specifically in the ARC.  In the 

present study, we found that exposure to the selected FR during adulthood altered ARC 

gene expression of genes that are E2-responsive and involved in energy homeostasis, 

but it is uncertain whether they act specifically at ERs or other ARC receptors 

204,205,207,220,221,234,235. 

 

Cumulative body weight gain and neuropeptide ARC gene expression 

FR subtly disrupted normal cumulative body weight gain in females and changed 

ARC neuropeptide gene expression in both sexes. At week 4, EE2 lowered cumulative 

body weight gain in males and OP-1-treated females gained more body weight. The fact 

EE2 has well-known anorectic effects coincides with decreased male body weight gain. 

However, OPFR affected female cumulative body weight gain in a dose-dependent 

manner in which only the low dose was effective. While Patisaul and colleagues (2013) 

have shown that perinatal OPFR treatment in females increases body weight, this 

finding that OPFR exposure during adulthood similarly promotes body weight gain in 

females is novel 314. Since these treatment effects on cumulative body weight gain are 

observed toward the end of the treatment paradigm (week 4), it is possible that a longer 
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duration of orally dosing FR would elicit a more pronounced effect. Furthermore, 

anorectic neurons co-expressing POMC and CART (POMC/CART) and orexigenic 

neurons that express both NPY and AgRP (NPY/AgRP) in the ARC are incorporated into 

the central melanocortin system, which promotes or inhibits food intake downstream in 

other hypothalamic nuclei such as the paraventricular nucleus (PVN) 54,68. Thereby, ARC 

neuropeptide gene expression can be linked to cumulative body weight gain.  

In females, FR decreasing ARC Cart gene expression correlates with the higher 

cumulative body weight gain in OPFR-treated females since Cart is considered 

anorectic. Regarding BDE-47 treatment, it is possible that mRNA expression changes 

did not necessarily lead to alterations in CART protein expression due factors such as 

posttranslational modification. By pooling ARC from different animals within the same 

treatment (BDE-1) and then applying western blotting specifically for CART we could 

examine this possibility.  

Surprisingly, in males, FR induced opposite effects in genes that are typically co-

expressed in the same ARC neurons and have similar effects on food intake 

(POMC/CART; NPY/AgRP). Specifically, FR treatments upregulated Pomc and Agrp 

gene expression while Npy and Cart were downregulated in the ARC. However, the 

ARC has a heterogeneous population of these neurons and additional single-cell studies 

are required to elucidate FR effects on the activation of these particular ARC neurons 

72,359. Moreover, compensatory responses involved in satiety and reward signaling from 

neuronal projections between the ARC and other hypothalamic nuclei such as the PVN 

can modulate the gene expression of these neuropeptides and food intake differently 360-

362. Due to the fact that FR did not affect cumulative body weight gain in males, it is 

possible for that compensatory actions are more active in males. Additional investigation 

can examine the plausibility of this effect by double-labeling for vesicular glutamate 

transporter 1, glutamic acid decarboxylase 67, POMC, and NPY in the PVN after FR 
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treatment, which would determine if FR exposure altered the density of particular 

innervated projections 342.  

 

Esr1 gene expression and FR receptor-mediated mechanism implications 

In a sex-dependent manner, FR exposure decreases Esr1 gene expression in 

male ARC. Esr1 is expressed in rodent ARC POMC and NPY neurons 86,87,182. Thus, E2 

can exert its anorectic effects by activating POMC neurons and inhibiting NPY neurons 

39,47,78,97,103. Additionally, chronic E2 administration downregulates Esr1, which is the 

effect that we observed in the males exposed to EE2 and FR 363. Therefore, the present 

study supports implications for FR inducing changes in reproductive parameters such as 

spermatogenesis in addition to energy balance in male mice 292,293,324.  However, female 

Esr1 gene expression was unaffected even though Esr1 is more highly expressed in the 

ARC and OPFR exposure increased cumulative body weight gain in females 364. 

Whereas, it is well established that ovx promotes hyperphagia, which can be prevented 

by E2 replacement 77. Therefore, the selected FR may not be acting directly on ERs.    

Due to males having a higher sensitivity to the selected FR, these compounds 

may directly act on other receptors that are highly expressed in the male ARC such as 

PPARγ and AR 151,159,163-166,169. Recently, we found that OPFR exposure upregulates 

ARC Pparγ expression in adult male mice, which is consistent with in vitro studies that 

demonstrate that the selected FR can act as PPARγ agonists (unpublished data) 315-

318,339. Conversely, past studies that examine the effects of hypothalamic PPARγ 

activation contradict the effects that we observed in ARC neuropeptide gene expression 

from FR exposure. Neural PPARγ activation by agonists also augmented Npy and Agrp 

expression in the ARC of rodents. Additionally, a study by Long and colleagues (2015) 

suggests that PPARγ activation in POMC neurons results in higher body weights. While 
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OPFR exposure upregulated Pomc expression in male ARC, body weight was not 

increased in this study 159,160. However, since the ARC is a heterogeneous population 

and changes in Pomc gene expression does not necessarily equate to correlated 

alteration in protein expression these FR acting as PPARγ agonists is still plausible 72,359. 

While we had not examined the potential effects of FR on AR gene expression in 

the ARC, past in vitro studies support that these FR act as AR antagonists 10,13,320. 

Androgen insensitivity (AIS) or antagonism is typically associated high levels of 

circulating of testosterone (T), which indirectly promotes aromatase activity in males and 

female rodents to produce more E2 365-372. Thus, FR could potentially affect 

hypothalamic Esr1 gene expression indirectly by acting directly on ARs 368-370. Moreover, 

POMC neurons can be affected depending on the androgen and the sex of the animal in 

which T inhibits ARC POMC neuron activation in rodents of both sexes while 

dihydrotestosterone (DHT) stimulated POMC neurons in females 167,168,170. However, 

there are also other androgens that ARs can bind to and may affect POMC activation 

such as dehydroepiandrosterone (DHEA). Additionally, body weight alterations are 

dependent on the type of global AR KO model, which could still apply to the findings in 

our study 174. Further investigation is required to determine which receptors these FR are 

directly acting upon to control these alterations in ARC gene expression. These studies 

could include utilizing global or brain-specific PPARγ, ER, or AR KO models or known 

receptor agonists and antagonists.  

 

Hormone peptide receptor ARC expression 

While there is no previous evidence of the selected FR directly binding to the 

examined peptide hormone receptors, they altered ARC Ghsr, Insr, and Lepr gene 

expression in a sex-dependent manner. Ghsr is mostly expressed on NPY neurons and 
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is orexigenic while both Insr and Lepr are expressed in NPY and POMC neurons and 

are anorectic 89,111,113,115,126,127,129,136,141,142,295. Additionally, these hormone receptors are 

E2-regulated 78,89,90,122,136,141. While not necessarily acting through ERs, FR upregulated 

Ghsr, Insr, and Lepr expression in male ARC, similar to EE2 treatment in the present 

study and E2 in past studies, but Lepr was unaffected in females 78,89,373. This sex-

dependent effect could be due differential leptin blood-brain barrier permeability, in 

which leptin permeability is lower in females than in males 374-379. FR suppressed Ghsr 

while increasing Insr ARC expression in females. The difference in ARC Ghsr 

expression amongst males and females may be due to females having more E2 than 

males, which can inhibit GHSR signaling 380.  

If FR are acting directly on PPARγ and/or AR, ARC Ghsr, Insr, and Lepr gene 

expression can be altered depending on the sex of the animal because of their high 

distribution in male ARC 10,13,320. PPARγ regulates an array of genes involved in lipid 

metabolism, adipogenesis, glucose homeostasis, and insulin sensitivity and neural 

PPARγ signaling is necessary for the full effect of thiazolidinediones on hepatic insulin-

sensitization 153,155,158,381.  Interestingly, global AR KO also decreases leptin signaling in 

the ARC and promotes insulin and leptin resistance 169,172,174,175.  Additionally, brain-

specific AR KO suppresses hypothalamic nuclear factor-κB-mediated induction of 

protein tyrosine phosphatase 1B, reduces insulin sensitivity, and impairs glucose 

homeostasis 171. Therefore, additional studies examining FR binding affinity in neural 

tissue may be required to evaluate if these compounds centrally act as AR agonist or 

antagonists. Furthermore, previous studies indicate that both PPARγ and AR crosstalk 

with GHSR peripherally, but there are no studies that examine if PPARγ or AR activation 

affects GHSR signaling, especially in the brain 175,382-386. Overall, FR-induced PPARγ or 
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AR activation could possibly increase ARC Ghsr, Insr, and Lepr gene expression in 

males and augment ARC Insr gene expression in females.  

Electrophysiology experiments can evaluate if ARC NPY and POMC neurons in 

males treated with FR are more sensitive to ghrelin, insulin, or leptin, which would 

correlate with the upregulation of Ghsr, Insr, and Lepr gene expression in males and 

increased Insr gene expression in females. However, FR-treated females may be more 

insensitive to ghrelin as Ghsr gene expression was suppressed. If circulating 

concentrations of these hormone peptides were also elevated, NPY and POMC neurons 

could be activated or inhibited, which could modulate many energy homeostatic 

parameters 387-392. To examine the physiological implication FR exposure upregulated 

Insr gene expression in the ARC, we could utilize glucose and insulin tolerance tests or 

a euglycemic clamp and determine if FR treatment alters whole-body glucose 

homeostasis by promoting glucose clearance and/or insulin sensitivity 387,389-391. 

Furthermore, additional studies would benefit from measuring food intake after FR 

treatment since NPY, AgRP, and ghrelin are considered orexigenic and POMC, CART, 

insulin, and leptin anorectic 54,78,124,393.  

 

Cation Channel expression in the ARC  

The selected estrogen-responsive cation channel subunits are involved in the 

neuronal activation or inhibition 86,136,141,142,181-183,189,198. These cation channels are found 

throughout the brain in different neurons, including ARC POMC and NPY neurons 

86,182,192,193,196,394,395. While AR and PPARγ influences these cation channels in peripheral 

tissue such as muscle, little is known about their effects in neural tissue 396-401. Cacna1g, 

-h, and –i are the gene names for T-type calcium channel subunits (Cav3.1, Cav3.2, 

Cav3.3 respectively), which induce neuronal firing and neurotransmitter release 181,188,189. 

In addition to E2, DHEA also targets Cacna1g, -i, and –h, expression in brain tissue, but 
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it is unknown whether it is also effective in the ARC 181,188,189,191,397. Transient receptor 

potential cation channel 5 (TRPC5) is a non-selective cation channel that induces 

depolarization in ARC neurosecretory neurons of rodents 136,141,142.   In ARC POMC 

neurons, E2, insulin, and leptin signaling target Trpc5 136,141,142. The KCNQ channel 

subunits, KCNQ2, -3, and -5 are responsible for the M-current in the brain, which is a 

non-inactivating outward potassium current that stabilizes membrane potential and 

reduces action potential frequency 86,182. Recently, we found that ghrelin also inhibits the 

M-current in ARC NPY neurons in mice (Yasrebi et al., In Review). Therefore, peripheral 

signals such as ghrelin, insulin, and leptin differentially affect these cation channels and 

modulate the activation of NPY and POMC neurons, which controls energy and glucose 

homeostasis (Yasrebi et al., In Review) 86,104,136,142,181,182,189,196,387,390. 

In males, FR augmented all cation channel subunits examined, which indicates 

that FR could potentially alter neuron excitability, although the mechanism of action is 

still unknown. If ARC neurons, including NPY and POMC neurons, are found to be more 

sensitive to ghrelin, insulin, or leptin after FR exposure by using electrophysiology, 

correlating with increased Ghsr, Insr, and Lepr gene expression, cation channel 

activation may also be influenced. In the present study, Kcnq2, -3, and -5 are all 

upregulated by FR treatment in male ARC. If NPY neurons of FR-treated males were 

more sensitive to ghrelin, these neurons could downregulate Kcnq2, -3, and -5 gene 

expression, potentially inhibiting the M-current, and more effectively and promote NPY 

neuron excitability (Yasrebi et al., In Review).  Thereby, this effect would indicate that 

hunger and potentially food intake could be more readily induced in FR-treated males if 

there are also higher levels of ghrelin in the brain 70,73,253. In ARC POMC neurons of FR-

treated males, presumably, these neurons may be more sensitive to insulin and leptin, 

which could promote TRPC5 gene expression or activation 136,142. Overall, these actions 

would increase POMC neuron activity and possibly decrease food intake, depending on 
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neural insulin and leptin concentrations 54. However, additional studies would confirm if 

FR-induced alterations in cation channels and NPY and POMC neuron activity would 

result in changes in aspects such as hunger and food intake 39,72,359.  

 

Conclusion 

Collectively, FR alter homeostatic gene expression in the ARC of adult male and 

female mice, impacting males more greatly than females. Results from the current study 

provide insight into the effects of FR in a part of the brain that controls energy 

homeostasis in a mammalian in vivo model. Since these ARC genes regulate energy 

homeostasis such as food intake, energy expenditure, body composition, and glucose 

homeostasis, studies analyzing these parameters elucidate additional physiological 

effects 54,99,134,197,402. However, future studies that analyze FR mechanisms that promote 

these effects and their physiological ramifications will greatly enhance our understanding 

of the impacts of FR exposure.   
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Table1. Primer list. Product and primer length are represented in number of base pairs.  
 
 

Gene	  	   Accession	  #	   Product	  
Length	   Primer	  Sequence	   Primer	  	  

Length	  	  
Efficiency	  

(%)	  

Actβ NM_007393.3 63 F:GCCCTGAGGCTCTTTTCCA 849-867 100.7 

      R:TAGTTTCATGGATGCCACAGGA 890-911   
Gapdh NM_008084.2 98 F:TGACGTGCCGCCTGGAGAAA 778-797 93.1 

      R:AGTGTAGCCCAAGATGCCCTTCAG 852-875   
Hprt NM_013556 117 F:GCTTGCTGGTGAAAAGGACCTCTCGAAG 631-658 107 

      R:CCCTGAAGTACTCATTATAGTCAAGGGCAT 718-747   
ERα 
(Esr1) NM_007956 107 F:GCGCAAGTGTTACGAAGTG 919-937 96.4 

      R:TTCGGCCTTCCAAGTCATC 1007-1025   
Ghsr NM_177330 122 F:CAGGGACCAGAACCACAAAC 1003-1022 123 

      R:AGCCAGGCTCGAAAGACT 1107-1124   
Insr  NM_010568 89 F: GTGTTCGGAACCTGATGAC 1215-1233 114 

      R: GTGATACCAGAGCATAGGAG 1686-1706   

Lepr NM_146146.2 149 F:AGAATGACGCAGGGCTGTAT 3056-3075 104.8 

      R:TCCTTGTGCCCAGGAACAAT 3185-3204   
Cav 3.1 

(Cacna1g) NM_009783 87 F: ACACTGGAACCGGCTTGAC 2935–2954  100.6 
	  	   	  	   	  	   R: CTGCGGAGAAGCTGACATTCTG 3059 –3078 	  	  

Cav 3.2 
(Cacna1h) 

NM_0011636
91 284 F: CTCTGGGCTTCCTTTAGTAG 2640 –2659 95.6 

      R: ATCTCCCAGACGCTTATG 2906 –2923   
Cav 3.3 

(Cacna1i) 
NM_0010443

08 128 F: TGGGCATTTTTGGCAAGAA 965–973 104.2 

	  	   	  	   	  	   R: CAGTGCGGATGGCTGACA 1093–1110 	  	  
Kcnq2 NM_133322 171 F:GGTGCTGATTGCCTCCATTG 644-663 105 

      R:TCCTTGCTGTGAGCGTAGAC 795-814   

Kcnq3 NM_152923.1 94 F:GCTGCTGGAAACCTTTGC 474-491 105 

      R:ACGCCAGCCTTTGTATCG 550-567   

Kcnq5 NM_023872.2 99 F:GGGCACAATCACACTGACAAC 915-935 101 

      R:GAAATGCCAAGGAGTGCGAAG 993-1013   

Trpc5 NM_009428 195 F: TGGTAGTGCTGCTGAATATG 2241-2260 103.3 

      R: TGAACCAGTTGCCAAGATAG 2416-2435   

Npy NM_023456 182 F:ACTGACCCTCGCTCTATCTC 106-125 100 

      R:TCTCAGGGCTGGATCTCTTG 268-287   

Agrp NM_007427.2 146 F:CTCCACTGAAGGGCATCAGAA 287-307 105 

      R:ATCTAGCACCTCCGCCAAA 414-432   

Pomc NM_008895 200 F:GGAAGATGCCGAGATTCTGC 145-164 103 

      R:TCCGTTGCCAGGAAACAC 327-344   

Cart NM_013732 169 F:GCTCAAGAGTAAACGCATTCC 277-297 95 

      R:GTCCCTTCACAAGCACTTCAA 425-445   
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Figure 1. Male and female average cumulative body weight gain. (A, C, E)  Male 
cumulative body weight gain. (B, D, F) Female cumulative body weight gain. All data 
were analyzed using repeated measures two-way ANOVA (treatment X time) with 
Bonferroni multiple comparison test (*p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001) 
and compared to oil unless otherwise noted. Bars represent mean ± SEM. For all 
treatment and oil groups for each sex, n = 8. FR doses  (mg/kg/day) are represented as -
1 or -10. 
 
Figure 2. Male and female ARC average relative Esr1 and Ghsr average relative mRNA 
expression. (A & C) Male Esr1 and Ghsr average relative mRNA expression, 
respectively. (B & D) Female Esr1 and Ghsr average relative mRNA expression, 
respectively.  All data were analyzed using one-way ANOVA with Bonferroni multiple 
comparison test of treatments compared to oil (*p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 
0.0001). All qPCR data were normalized to oil. Bars represent mean ± SEM. For all 
treatment and oil groups for each sex, n = 8. FR doses  (mg/kg/day) are represented as -
1 or -10. 
 
Figure 3. Male and female ARC average relative Insr and Lepr average relative mRNA 
expression. (A & C) Male Insr and Lepr average relative mRNA expression, respectively. 
(B & D) Female Insr and Lepr average relative mRNA expression, respectively.  All data 
were analyzed using one-way ANOVA with Bonferroni multiple comparison test of 
treatments compared to oil (*p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001). All qPCR 
data were normalized to oil. Bars represent mean ± SEM. For all treatment and oil 
groups for each sex, n = 8. FR doses  (mg/kg/day) are represented as -1 or -10. 
 
 
Figure 4. Male and female ARC average relative Cacna1g, Cacna1h, and Cacna1i 
average relative mRNA expression. (A, C, E) Male Cacna1g, Cacna1h, and Cacna1i 
average relative mRNA expression, respectively. (B, D, F) Female Cacna1g, Cacna1h, 
and Cacna1i average relative mRNA expression, respectively. All data were analyzed 
using one-way ANOVA with Bonferroni multiple comparison test of treatments compared 
to oil (*p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001). All qPCR data were normalized 
to oil. Bars represent mean ± SEM. For all treatment and oil groups for each sex, n = 8. 
FR doses  (mg/kg/day) are represented as -1 or -10. 
 
Figure 5. Male and female ARC average relative Kcnq2, Kcnq3, and Kcnq5 mRNA 
expression. (A, C, E) Male Kcnq2, Kcnq3, and Kcnq5 average relative mRNA expression, 
respectively. (B, D, F) Female Kcnq2, Kcnq3, and Kcnq5 average relative mRNA 
expression, respectively. All data were analyzed using one-way ANOVA with Bonferroni 
multiple comparison test of treatments compared to oil (*p < 0.05, ** p < 0.01, ***p < 
0.001, **** p < 0.0001). All qPCR data were normalized to oil. Bars represent mean ± 
SEM. For all treatment and oil groups for each sex, n = 8. FR doses  (mg/kg/day) are 
represented as -1 or -10. 
 
Figure 6. Male and female ARC average relative Trpc5 mRNA expression. (A) Male 
Trpc5 average relative mRNA expression. (B) Female Trpc5 average relative mRNA 
expression. All data were analyzed using one-way ANOVA with Bonferroni multiple 
comparison test of treatments compared to oil (*p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 
0.0001). All qPCR data were normalized to oil. Bars represent mean ± SEM. For all 
treatment and oil groups for each sex, n = 8. FR doses  (mg/kg/day) are represented as -
1 or -10. 
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Figure 7. Male and female ARC average relative Npy and Agrp mRNA expression. (A & 
C) Male Npy and Agrp average relative mRNA expression. (B & D) Female Npy and 
Agrp average relative mRNA expression. All data were analyzed using one-way ANOVA 
with Bonferroni multiple comparison test of treatments compared to oil (*p < 0.05, ** p < 
0.01, ***p < 0.001, **** p < 0.0001). All qPCR data were normalized to oil. Bars represent 
mean ± SEM. For all treatment and oil groups for each sex, n = 8. FR doses  
(mg/kg/day) are represented as -1 or -10. 
  
Figure 8. Male and female ARC average relative Pomc and Cart mRNA expression. (A 
& C) Male Pomc and Cart average relative mRNA expression. (B & D) Female Pomc 
and Cart average relative mRNA expression. All data were analyzed using one-way 
ANOVA with Bonferroni multiple comparison test of treatments compared to oil (*p < 
0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001). All qPCR data were normalized to oil. Bars 
represent mean ± SEM. For all treatment and oil groups for each sex, n = 8. FR doses  
(mg/kg/day) are represented as -1 or -10. 
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 Figure 1.  
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Figure 2.   
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Figure 3.   
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Figure 4. 
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Figure 5. 
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Figure 6.   
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Figure 7.   
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Figure 8.   
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EFFECTS OF FLAME RETARDANTS ON ENERGY HOMEOSTASIS 
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ABSTRACT  

Flame retardants (FR) polybrominated diphenyl ether (PBDE) congener 

2,2’,4,4’tetrabromodiphenyl ether (BDE-47) and organophosphate FR (OPFR) persist in 

the environment and interact with multiple target receptors in peripheral tissue. 

Developmental exposures to EDCs such as bisphenol A (BPA) alter offspring energy 

homeostasis, but few studies examine effects of FR.  Therefore, we investigated if 

perinatal FR exposure disrupts energy balance in adulthood. In this experiment, 

pregnant mice were orally dosed daily vehicle, BDE-47 (1mg/kg), and OPFR mixture 

(1mg/kg of tris (1,3-dichloro-2-propyl) phosphate (TDCPP), triphenyl phosphate (TPP), 

and tricresyl phosphate (TCP) each) from gestational day 7 (GD7) to postnatal day 

(PND) 14. Pup body weights, anogenital distance (AGD), and sex ratio were measured. 

Weanlings were fed normal or high-fat diet (ND or HFD) and body weights and food 

intake were measured weekly until PND140. Adult offspring were tested for body 

composition, energy expenditure, and glucose homeostasis. OPFR-treated males had 

lower AGDs. In adulthood, FR-treated males fed a ND decreased percent fat and activity 

while increasing energy expenditure, and promoted glucose tolerance. When fed a HFD, 

FR-treated males suppressed the effects of HFD on insulin tolerance. OPFR-treated 

males fed HFD produced more heat and promoted glucose intolerance. BDE-47-treated 

males fed a HFD increased body weight gain and reduced percent lean mass. OPFR-

treated females fed a ND gained more body weight and decreased blood triglycerides. 

OPFR-treated females fed a HFD consumed more energy and decreased uterine 

weight. Therefore, these data suggest that these FR alter sex differentiation during 

development and energy balance in adulthood in sex-dependent manner.  
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INTRODUCTION 

 Within the last few years, detectable concentrations of flame retardants (FR) in 

particular polybrominated diphenyl ethers (PBDE) and organophosphate FR (OPFR) 

have been reported in breast milk, placenta, and maternal, fetal, and toddler sera 253,257-

261. More concerning is the fact that levels of these compounds are elevated in toddlers 

when paired with their mothers 264. PBDE congener, 2,2’,4,4’-tetrabromodiphenyl ether 

(BDE-47), and OPFR tris(1,3-dichloro-2-propyl)phosphate (TDCPP), triphenyl phosphate 

(TPP), and tricresyl phosphate (TCP) are FR that are predominantly in the environment. 

BDE-47 has been found in house dust at concentration ranges of 0.5-29 µg/g of dust 

and 0.2-1798 µg/g of dust for OPFR 18,22,23. 

Interestingly, BDE-47 and OPFR (TDCPP, TPP, and TCP) have binding affinities 

to nuclear receptors such as classical estrogen receptors (ERα/β), androgen receptors 

(AR), peroxisome proliferator-activated receptors (PPARα/γ), pregnane X receptor 

(PXR), and thyroid receptors (TRs) in vitro, potentially acting as endocrine-disrupting 

compounds (EDCs) 8,13,296,306,311,315,316,320,339. Therefore, additional studies for maternal 

exposure to BDE-47 in mammals are crucial for evaluating potential health conditions 

later in life 269,305,319,403. Additionally, OPFR have hastily replaced PBDE in many 

respects, but few toxicological studies are analyzing long-term ramifications of early 

exposure to OPFR in mammalian models 314.  

 The developmental origins of health and disease (DOHaD) hypothesis proposes 

that disruptions in the environment at early age can elicit alternative developmental 

changes, affecting a cohort later in life 404. These alterations during development can 

lead to increased risk to an assortment of diseases in adulthood. Maternal exposure to 

EDCs through gestation and lactation can lead to disruption of reproductive and energy 

homeostasis 210,213,234. Studies examining bisphenol A (BPA) and diethylstilbestrol 
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demonstrate how EDCs can sex differentiation, neural circuitry, increased adipogenesis, 

and other developmental programming effects when exposed at critical developmental 

periods 2,3,5,6,221,342.  

Regarding BDE-47 perinatal exposure, high BDE-47 serum levels have been 

associated with altered thyroid hormone levels in pregnant women and pubertal onset in 

young girls 329,331,405. Maternal BDE-47 treatment in rats elevates higher body weight and 

length in males and females 305,319. Global gene analysis of rat livers also given BDE-47 

to dams exhibits changes in carbohydrate and lipid metabolism 319. In rats, perinatal 

exposure to BDE-47 increases body weight in both sexes and elevates plasma insulin 

growth factor-1 and glucose uptake in male rats 403. However, various aspects such as 

dose, route of administration, species, sex, duration of exposure, and multiple receptor 

targets add to the complexity of how PBDE affect an experimental model.   

 The selected OPFR affect metabolism, gene expression, and homeostasis in 

non-mammalian models, but few studies exist in mammalian models. In in vitro, TDCPP, 

TPP, and TCP activate PXR, TRs, PPARα, PPARγ, and AR in rodent and human liver, 

fat, and kidney tissue 10,13,14,304,311,315-320. However, the only maternal exposure rodent 

study examined the effects of a commercial OPFR mixture Firemaster550 (FM550), 

which contains TPP, in rats. When given maternally in rats, FM550 increased body 

weight in both sexes. In female mice, FM550 advanced puberty, altered glucose 

tolerance, and reduced exploratory behavior in females. Male rats increased fasting 

blood glucose. 403. Currently, no studies in mice have been reported. 

 The effect of these FR on energy homeostasis and their potential effects centrally 

and peripherally are still being studied. While there are numerous studies on the effect of 

PBDE, few studies analyze effects of OPFR exposure mammals in vivo and only one 

study treated the subjects perinatally 301,305,314,334,335,340,406,407. Additionally, these potential 

estrogenic EDCs are commonly found in mixtures and the primary route of entry of is 
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through ingestion. Therefore, we examined if perinatal exposure through orally dosing 

select estrogenic BDE-47 and OPFR mixture (TDCPP, TPP, TCP) from GD7-PND14 at 

relevant environmental concentrations negatively impacts developmental and metabolic 

parameters in mouse offspring. Our hypothesis is that perinatal exposure of these FR 

will increase body weight, adiposity, and altering glucose homeostasis in adult offspring 

in a sex-dependent manner. 

 

MATERIALS AND METHODS 

 

Animals.  

Animal treatments are in accordance with institutional guidelines based on 

National Institutes of Health standards and were performed with Institutional animal Care 

and Use Committee approval at Rutgers University. Wild-type C57Bl/6J female and male 

mice were bred in-house, maintained under controlled temperature (25°C) and 12/12h 

light/dark cycle with water and food ad libitum. Males and females were mated where 

males remained housed with the females for a week. Females were acclimated to 

peanut butter at least 3 days prior to male removal. Afterwards, female mice were orally 

dosed daily with either sesame oil, BDE-47 (1mg/kg), OPFR mixture (1mg/kg of each 

(TDCPP, TPP, TCP) in peanut butter from approximately gestational day 7 to postnatal 

day 14 (GD7-PND14). Dams were weighed every 3 days to ensure accurate dosing 

based on body weight. If dams did not produce offspring, they were untreated for a week 

to clear compound levels. At PND2, average litter weights were measured and the 

number of offspring noted. If the litter exceeded 8 pups, the excess pups were randomly 

culled. The sex ratio of each litter was determined between PND5-7 by comparing 

anogenital distances (AGDs). Litters with fewer than 4 pups were culled and not used for 
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the experiment. Unsexed offspring were weighed on the day of dosing termination 

(PND14).  

On PND21, offspring were weaned, separated by sex, have AGDs measured, 

and given either a control normal diet (ND) (Research Diets, D12450B) or high-fat diet 

(HFD) (Research Diets, D12451) ad libitum. The dam’s first litter received ND while the 

second litter was given HFD. Overall, 3-4 litters for each treatment and diet were bred.  

Weekly body weights and food intake was measured until PND140 (20 weeks).  

 

Food Intake 

From food intake (g), energy intake was calculated by the kcal/g food dietary 

information provided by Research Diets. Average weekly energy intake was calculated 

per tub per animal. From energy intake, juvenile feeding efficiency (cumulative 

bodyweight weeks 3-8/Energy Intake weeks 3-8) and adult feeding efficiency 

(cumulative body weight weeks 9-20/energy intake weeks 9-20) were calculated.  

 

Body Composition and Energy Expenditure 

At the end of the 20 weeks, EchoMRI (Echo Medical Systems, Houston, TX, 

USA) assessed body mass composition. Comprehensive Lab Animal Monitoring System 

(CLAMS) analyzed VO2, VCO2, RER, heat, and locomotor activity (Columbus 

Instruments, Inc., Columbus, OH, USA) for 24 hrs.  

 

Glucose and Insulin Tolerance Tests 

GTT and ITT were conducted to gauge glucose and insulin tolerance within 2-3 

days in between the tests. Animals were fasted for 4 hr for both glucose tolerance tests 

(GTT) and insulin tolerance tests (ITT). For GTT, animals were injected of 2 g/kg 

glucose and for the ITT, animals were injected with 0.75 U/kg insulin, after initial tail 
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blood sample were collected. Blood samples were collected from the tail vein at 0, 15, 

30, 60, 90, 120, and 180 minutes after administration of glucose for GTT. For ITT, blood 

samples were collected from the tail vein at 0, 15, 30, 60, 90, and 120 minutes. 

AlphaTrak glucometer (Abbott Laboratories, Abbott Park, IL, USA) was used to measure 

blood glucose concentration. 4% Lidocaine anesthetic cream (L.M.X.4, Cincinnati, OH) 

was applied to the tail 15 minutes before the incision. After sufficient recovery from the 

ITT (at least 2 days after), all animals were sacrificed. 

 

Triglyceride analysis and Tissue Dissection  

After subject sacrifice, trunk blood was collected in BD Vacutainer tubes coated 

with K2 EDTA (Becton, Dickinson & Co., Franklin Lakes, NJ) and analyzed for 

triglyceride levels using a CardioChek (Polymer Technology Systems, Inc., Indianapolis, 

IN, USA). 1uL 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF; 

0.1mg/mL sterile saline; Sigmal-Aldrich, New Haven, CT) for every 100uL of blood was 

used to inhibit blood serine protease activity. In females, uteri were dissected and 

weighed. 

 

Statistical Analysis 

All data were analyzed using GraphPad Prism 6c software (GraphPad Software, 

Inc., La Jolla, CA, USA). Cumulative weekly body weight, GTT/ITT data, and hourly VO2 

consumption for each type of EDC in comparison to oil were analyzed by repeated 

measures multivariate ANOVA (treatment X diet X time) followed by post hoc analysis 

with Fisher’s Least Significant Difference (LSD) tests between treatment group (diet and 

EDC) within time points. One-way ANOVA was used for analyzing PND2 litter weight, 

PND5 sex ratio, PND14 unsexed litter weights, PND21 AGDs, and PND21 sexed body 

weights for EDC treatments in comparison to oil with Fisher’s LSD test post-hoc 
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analysis. Body composition, night and day CLAMS measurements, energy intake, 

feeding efficiency, GTT and ITT AUC data, fasting glucose, and uterine weights were 

analyzed using two-way ANOVA (treatment X diet) followed by post hoc Fisher’s LSD 

tests across diets within perinatal treatments or across diets and perinatal treatments 

compared to ND of the same perinatal treatment. All data were expressed as mean ± 

SEM and significance was set at α ≤ 0.05.   

 

RESULTS 

 

1. Developmental Growth and Sex Differentiation Parameters 

 Growth during early development (PND2-PND21) and biomarkers of sex 

differentiation (AGDs) were measured. In analyzing PND2 and PND14 litter weights, 

PND21 body weights, PND5 sex ratios, and PND21 AGDs, all data were compared to 

oil. For PND2 and PND14, the animals were unsexed when measured. Samples sizes 

for PND2 and PND14 unsexed litter weights and litter sex ratio were as follows: oil (n = 7 

litters), BDE-47 (n = 6 litters), OPFR (n = 7 litters). PND21 body weights and AGDs were 

measured in males and females designated. PND21 is also the day when mice were 

weaned and fed either a ND or HFD. Samples sizes for male and female PND21 groups 

were as follows: oil males (n = 24), BDE-47 males (n = 29), OPFR males (n = 28), oil 

females (n = 18), BDE-47 females (n = 19), and OPFR females (n = 18).  

 There was no effect of FR treatment in developmental growth, but OPFR-treated 

males exhibited modified sex differentiation. FR treatment had no effect on litter weights 

of unsexed pups at either PND2 or PND14 or body weights in sexed males or females at 

PND21 (Figure 9). There was also no effect of perinatal FR treatment on sex ratio 

(number of males/pups in litter) (Figure 10A). However, at PND21, males perinatally 

treated with OPFR had lower AGDs (6.61 ± 0.15 mm, p < 0.05) than males given oil 
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(7.174 ± 0.18 mm) (ANOVA: F(2,78) = 4.19, p < 0.05;  Figure 10B). There was also no 

significant effect of perinatal treatment on female AGDs or male mice given BDE-47 

compared to oil-treated males (Figure 10B &C).  

 

2. Average cumulative body weight gain and body weights 

 All average cumulative body weight gain (weekly body weight – PND21 body 

weight) was compared between FR treatments (FR ND and FR HFD) and oil (oil ND and 

oil HFD) and within each weekly time point. These measurements were taken from 

PND21-140.  In addition to cumulative body weight gain, actual body weights at week 20 

were evaluated to examine potential body weight alterations at the end of the overall 

study. Sample sizes for each group for males is as follows: oil ND (n=11), oil HFD 

(n=13), BDE-47 ND (n=16), BDE-47 HFD (n=13), OPFR mixture ND (n=15), OPFR 

mixture HFD (n=13). Sample sizes for each group of females is as follows: oil ND (n=9), 

oil HFD (n=9), BDE-47 ND (n=8), BDE-47 HFD (n=11), OPFR mixture ND (n=8), OPFR 

mixture HFD (n=10).  

As a treatment effect, BDE-47-treated males fed a HFD gained more body weight 

compared to oil-treated males also fed a HFD on weeks 14-16, 19, and 20 (BDE-47 HFD 

vs. oil HFD, p < 0.05).  In males perinatally treated with BDE-47 compared to oil-treated 

males, there were significant effects of time (ANOVA: F(16, 784) = 765.4, p < 0.0001), 

diet (ANOVA: F(1,49) = 85.3, p < 0.0001), and time x diet (ANOVA: F(16,784) = 57.2, p 

< 0.0001) and time x treatment (ANOVA: F(16,784) = 3.0, p < 0.0001) in cumulative 

body weight gain. As expected, males treated with oil and on a HFD had gained more 

body weight at weeks 7-20 than oil-treated males on a ND (p < 0.05). At weeks 8-20, 

BDE-47-exposed males fed a HFD gained more body weight (BDE-47 HFD vs. BDE-47 

ND, p < 0.01). There was no significant treatment effect of BDE-47 on cumulative body 

weight gain in males when on a ND (BDE-47 ND vs. oil ND). (Figure 11A) 
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 However, there was no effect of BDE-47 treatment in females on cumulative 

body weight gain (BDE-47 vs. oil). In females perinatally treated with BDE-47 in 

comparison to oil-treated females there were effects of time (ANOVA: F(16,528) = 223.7, 

p < 0.0001), diet (ANOVA: F(1,33) = 16.2, p < 0.001), and time x diet (ANOVA: 

F(16,528) = 13.0, p < 0.0001) in cumulative body weight gain. Oil-treated females fed a 

HFD exhibited increased body weight gain at weeks 11-20 (p < 0.05) while BDE-47-

treated females fed a HFD gained more body weight at weeks 12-20 compared to their 

ND-fed counterparts (BDE-47 HFD vs. BDE-47 ND, p < 0.05). (Figure 11B) 

There was also no effect of OPFR treatment in males regarding cumulative body 

weight gain (OPFR vs. oil). Males perinatally treated with OPFR compared to oil-treated 

males, had significant effects of time (ANOVA: F(16,768) = 735.9, p < 0.0001), diet 

(ANOVA: F(1,48) = 82.6, p < 0.0001), and time x diet (ANOVA: F(16, 784) = 47.6, p < 

0.0001) in cumulative body weight gain. At weeks 6-20, males perinatally treated with oil 

or OPFR gained more body weight when fed a HFD than their treatment counterparts 

given a ND (OPFR HFD vs. OPFR ND, p < 0.05). (Figure 11C) 

Conversely, OPFR-treated females exhibited higher body weight gain compared 

to oil-treated females when both groups were given a ND at weeks 12, 16, and 19 (p < 

0.05).  Females perinatally treated with OPFR in comparison to oil-treated females had 

effects of diet (ANOVA: F(1,32) = 19.83, p < 0.001), time (ANOVA: F(16,512) = 253.7, p 

< 0.0001), treatment (ANOVA: F(1,32) = 5.71, p < 0.05), and time x diet (ANOVA: 

F(16,512) = 13.64, p < 0.0001) in cumulative body weight gain. When fed a HFD, OPFR-

treated females gained more body weight at weeks 10-20 than oil-treated females on a 

ND (OPFR HFD vs. OPFR ND, p < 0.05). Oil-treated females also on a HFD gained 

more body weight at weeks 11-20 than their ND-fed counterparts (oil HFD vs. oil ND, p < 

0.05). There was no effect of OPFR treatment on females given HFD (OPFR HFD vs. oil 

HFD). (Figure 11D) 
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 There was no effect of FR treatment on body weights at week 20 in males or 

females. At week 20, as expected, there was a significant effect of diet (ANOVA: F(1,75) 

= 170.1, p < 0.0001), but not for treatment or treatment x diet in male body weights. 

When fed a HFD, males in all treatment groups had higher body weights at week 20 (oil: 

44.17 ± 1.2 g; BDE-47: 47.4 ± 0.81 g; OPFR: 44.1 ± 1.3 g; oil, BDE-47 and OPFR, p < 

0.0001) compared to their ND-fed counterparts (oil: 32.5 ± 1.0 g; BDE-47: 33.3 ± 1.4 g; 

OPFR: 32.3 ± 1.0 g). Similar to male body weights at week 20, there was also a 

significant effect of diet only in female body weights (ANOVA: F(1,49) = 28.2, p < 

0.0001). At week 20, females given any perinatal treatment and fed a HFD had higher 

body weights (oil: 26.1 ± 1.2 g; BDE-47: 26.9 ± 1.4 g; OPFR: 26.7 ± 1.3; oil and OPFR, p 

< 0.01; BDE-47, p < 0.001) compared to ND-fed females (oil: 21.8 ± 0.5 g; BDE-47: 21.1 

± 0.5 g; OPFR: 22.3 ± 0.8 g). (Figure 12)   

 

4. Energy Intake and Feeding Efficiency   

 Energy intake and feeding efficiency (cumulative body weight/energy intake) 

were noted to evaluate links between energy entering the body and the efficiency of that 

energy being converted to gained body weight. Females treated with OPFR consumed 

more energy on a HFD (87.7 ± 7.6 kcal, p < 0.05) compared to controls on a HFD (70.8 

± 4.8 kcal) and to OPFR-treated females fed a ND (ANOVA: treatment or treatment x 

diet: ns; 66.6 ± 5.2 kcal) (Figure 13D). There was overall a significant diet effect 

(ANOVA: F(1,14) = 7.32, p < 0.05), but no effects for treatment or treatment x diet in 

females regarding energy intake. There were no significant effects for female juvenile or 

adult feeding efficiency regarding treatment or diet (Figure 13E & F). There were also no 

significant treatment or diet effects in energy intake or feeding efficiency in males (Figure 

13A-C). 
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5. Body Composition  

 When fed ND, percent fat in OPFR-treated males was attenuated (17.6 ± 2.0%, p 

< 0.05) compared to oil-treated males also given a ND (24.7 ± 3.8%) (ANOVA: treatment 

or treatment x diet: ns; Figure 14A). There were significant effects of diet (ANOVA: 

males: F(1,75) = 70.58, p < 0.0001; females:  F(1,49) = 32.38, p < 0.0001), but no 

significant effects of treatment or treatment x diet in average male and female percent fat 

of body weight. HFD-fed males had increased percent fat when treated with oil (32.9 ± 

1.2%, p < 0.01), BDE-47, (37.2 ± 0.7%, p < 0.0001), and OPFR (32.3 ± 1.7%, p < 

0.0001) compared to ND-fed males (oil ND: 24.7 ± 3.8%; BDE-47 ND: 20.2 ± 2.6%; 

OPFR ND: 17.6 ± 2.0%). Percent fat was also increased in HFD-fed females compared 

to ND-fed females (oil: 15.7 ± 0.8%; BDE-47: 15.9 ± 1.4%; OPFR: 15.0 ± 1.2%) in oil- 

(28.7 ± 2.6 %, p < 0.001), BDE-47- (25.9 ± 3.4%, p < 0.01), and OPFR-treated females 

(23.8 ± 1.7%, p < 0.01) (Figure 14B). 

Percent lean mass of body weight was altered in FR-treated mice on a HFD. 

HFD-fed males, regardless of treatment, had decreased percent lean mass (oil: 57.8 ± 

0.8%; BDE-47: 53.3 ± 0.5%; OPFR: 59.2 ± 1.9%; p < 0.0001) in comparison to males 

fed a ND (oil: 68.9 ± 1.3%; BDE-47: 68.7 ± 1.5%; OPFR: 70.5 ± 1.9%). There were 

overall effects of treatment (ANOVA: F(2,75) = 3.65, p < 0.05) and diet (ANOVA: F(1,75) 

= 107.5, p < 0.0001), but not for treatment x diet in percent lean mass of body weight in 

males. When fed a HFD, males treated with BDE-47 had higher percent lean mass 

(BDE-47: 53.3 ± 0.5%, p < 0.05) compared to oil-treated males also fed a HFD (oil: 57.8 

± 0.8%). However, there were no significant effects of OPFR treatment in male percent 

lean mass of body weight compared to oil-treated males.  In females, there was an effect 

of diet only (ANOVA: F(1,49) = 26.14, p < 0.0001) and not treatment or treatment x diet 

regarding percent lean mass of body weight (Figure 14C). Similar to the males, HFD-fed 

females in all perinatal treatment groups had lower percent lean mass (oil: 65.3 ± 2.4%, 
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p < 0.05; BDE-47: 65.3 ± 3.2%, p < 0.001; OPFR: 67.6 ± 1.3%, p < 0.05) compared to 

ND-fed females (oil: 73.1 ± 0.8%; BDE-47: 76.4 ± 1.1%, OPFR: 74.9 ± 1.5%) (Figure 

14D).  

 

  6. Energy Expenditure  

 Energy expenditure was analyzed amongst the parameters of oxygen 

consumption (VO2), carbon dioxide production (VCO2), respiratory exchange ratio (RER 

= VCO2/VO2), heat, and activity (X-axis and Z-axis) using two-way ANOVA. While VO2 

was analyzed hourly and by average nighttime (7pm-7am) and daytime (7am-7pm) for 

24 hours, all other changes in energy expenditure were reported as only average 

nighttime and daytime values. Hourly VO2 was analyzed with two-way ANOVA 

(treatment x time or diet x time). In post-hoc analysis, data were compared either 

between overall treatment or diet within each time point (hours 0-23). Average nighttime 

and daytime VO2 were compared between either perinatal treatment (oil, BDE-47, 

OPFR) or diet (ND or HFD) when using two-way ANOVA. For the hourly, nighttime and 

daytime measurements, data were compared between treatments (EDC vs. oil) within 

diet and between diets (ND vs. HFD) within EDC treatment in post-hoc analysis.  

 

6a. Oxygen Consumption  

FR-treated males on a HFD exhibited more striking effects in oxygen 

consumption than oil-treated males. Oxygen consumption (VO2) is a biomarker that 

reflects the amount of adenosine triphosphate (ATP) utilized in aerobic metabolism 408-

410. Therefore, if oxygen consumption increases, theoretically, so does energy 

expenditure. In oil-treated mice fed a HFD, males and females consumed more oxygen 

compared to their ND-fed controls (oil ND vs. oil HFD) at hours 2, 4, 11, 13, 14, 21, and 

22 in males and at hours 7, 14, and 17 in females (Figure 15A & B). There were effects 
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of time (ANOVA: males: F(23,506) =10.12, p < 0.0001; females: F(23,368) = 6.649, p < 

0.0001) and diet x time (ANOVA: males: F(23,506) =2.669, p < 0.0001; females: 

F(23,368) = 2.13, p < 0.01) in hourly oxygen consumption of oil-treated males on a HFD 

compared to oil-treated males on a ND and females perinatally treated with oil fed a 

HFD compared to oil-treated females on a ND. BDE-47-treated males fed a HFD 

consumed less oxygen at hours 1, 2, 14, 17, and 20-23 compared to ND-fed males also 

perinatally treated with BDE-47 (BDE-47 ND vs. BDE-47 HFD; Figure 15C & D). In BDE-

47-treated mice, there were effects of time in males and females (ANOVA: males: 

F(23,621) = 11.42, p < 0.0001; females: F(23, 391) = 6.688, p < 0.0001) and effects of 

diet (ANOVA: F(1,27) = 5.04, p < 0.05) and diet x time in males only (ANOVA: F(23,621) 

= 1.81, p < 0.05). In OPFR-treated mice on a HFD, mice consumed less oxygen 

compared to ND at hours 0-5, 9, 10, 13, 14, 17, 19, and 23 for males and at hour 0 

(12:00 am) for females (OPFR ND vs. OPFR HFD; Figure 15E & F). In mice perinatally 

treated with OPFR, there were effects of time (ANOVA: males: F(23,598) = 9.199, p < 

0.0001; females: F(23,368) = 5.471, p < 0.0001) in males and females and effects of diet 

in males only (ANOVA: F(1,26) = 5.00, p < 0.05) in hourly oxygen consumption, but 

there were no significant effects of diet x time in males or females.  

Mice perinatally treated with BDE-47 had modified hourly oxygen consumption 

on a HFD. Overall, there were effects of time in mice fed a ND (ANOVA: males: 

F(23,575) = 13.78, p < 0.0001; females: F(23,345) = 5.802, p < 0.0001) and a HFD 

(ANOVA: males: F(23,552) = 8.457, p < 0.0001; females: F(23,414) = 8.141, p < 

0.0001), and treatment x time in mice fed a HFD (ANOVA: males: F(23,552) = 2.311, p < 

0.001; females: F(23,414) = 1.70, p < 0.05) regarding hourly oxygen consumption. BDE-

47-treated females on a ND consumed more oxygen compared to oil-treated females at 

hour 10 only (p < 0.05). When fed a HFD, mice perinatally treated with BDE-47 

consumed more oxygen at hour 5 in males (p < 0.05) and at hour 15 in females (p 
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<0.01) compared to their oil-treated counterparts that were given a HFD. However, at 

hours 11 and 15 in males, HFD-fed males with BDE-47 perinatal treatment consumed 

less oxygen in comparison to oil-treated males also given HFD (hour 11, p < 0.01; hour 

25, p < 0.05). (Figure 16) 

Hourly oxygen consumption was altered in OPFR-treated mice. When comparing 

OPFR and oil perinatal treatment, there were effects of time in ND-fed mice (ANOVA: 

males: F(23,552) = 8.857, p < 0.0001; females: F(23,345) = 4.358, p < 0.0001) and mice 

on a HFD (ANOVA: males: F(23,552) = 12.42, p < 0.0001; females: F(23,391) = 7.101, p 

< 0.0001) and treatment x time in ND-fed mice (ANOVA: males: F(23,552) = 1.58, p < 

0.01; females: F(23,414) = 1.92, p < 0.01) and in mice on a HFD (ANOVA: females: 

F(23,391) = 2.320, p < 0.001). However, there was no effect of treatment x time in HFD-

fed males. Additionally, there were also no overall treatment effects for males or 

females. When fed a ND, OPFR-treated mice consumed more oxygen at hours 4 and 5 

in males (p < 0.05) and hours 7, and 13 in females (p < 0.01). Conversely, OPFR-treated 

females consumed less oxygen when on a HFD than females perinatally treated with oil 

also fed HFD at hours 16 and 17 (p < 0.05). (Figure 17)         

Average daytime and nighttime oxygen consumption was changed in FR-treated 

males. There was an effect of diet (ANOVA: F (1,75) = 14.3, p < 0.001) in nighttime male 

oxygen consumption, but not treatment or treatment x diet while daytime oxygen 

consumption in males had no significant effects of diet or treatment x diet. Males fed a 

HFD and perinatally treated with BDE-47 or OPFR consumed less oxygen at nighttime 

compared to their treatment controls on a ND (BDE-47 ND vs. BDE-47 HFD: 2537 ± 

81.60 mL/kg/hr, p < 0.05; OPFR ND vs. OPFR HFD: 2510 ± 153.1 mL/kg/hr, p < 0.01). 

However, oil-treated males did not have any significant diet effects during daytime or 

nighttime (Figure 18A & B). OPFR-treated males on a ND consumed more oxygen 

during the daytime than oil-treated males also fed a ND (OPFR ND: 2730 ± 96.16 
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mL/kg/hr; oil ND: 2355 ± 202.6 mL/kg/hr, p < 0.05) however, there was no overall effect 

of treatment on daytime oxygen consumption (ANOVA: treatment and treatment x diet: 

ns).  Males treated with OPFR and fed a HFD consumed less oxygen during the daytime 

in comparison to OPFR-treated males on a ND (OPFR HFD: 2510 ± 153.1 mL/kg/hr; 

OPFR ND: 2937 ± 107.9 mL/kg/hr, p < 0.01) without an overall effect of diet (ANOVA: 

diet: ns). There were no significant effects of treatment or diet regarding night and day 

VO2 in females (Figure 18C & D).  

 

6b. VCO2  

Daytime carbon dioxide production was altered in FR-treated males. There were 

effects of diet only during the nighttime and daytime (ANOVA: night: F(1,75) = 58.44, p < 

0.0001; day: F(1,75) = 23.07, p < 0.0001) in males while there were no effects of 

treatment or treatment x diet. At nighttime, males in all perinatal treatment groups 

produced less carbon dioxide when fed a HFD (oil: 2085 ± 36.2 mL/kg/hr, p < 0.001; 

BDE-47: 2099 ± 72.49 mL/kg/hr, p < 0.0001; OPFR: 2123 ± 142.8 mL/kg/hr, p < 0.0001) 

in comparison to ND-fed males (oil: 2812 ± 134.1 mL/kg/hr; BDE-47: 2887 ± 159.4 

mL/kg/hr; OPFR: 3002 ± 138.5 mL/kg/hr). During the daytime, males perinatally treated 

with OPFR reduced carbon dioxide production during the daytime when on a ND 

compared to oil-treated males also on a ND (OPFR: 2709 ± 125.2 mL/kg/hr, p < 0.05; oil: 

2271 ± 222.6), however, there was no overall treatment effect (ANOVA: treatment or 

treatment x diet: ns). FR-treated males fed a HFD produced less carbon dioxide during 

the daytime (BDE-47: 2011 ± 44.04 mL/kg/hr, p < 0.01; OPFR: 1990 ± 128.6 mL/kg/hr, p 

< 0.001) compared to ND-fed in BDE-47- and OPFR-treated males (BDE-47: 2560 ± 

146.3 mL/kg/hr; OPFR: 2709 ± 125.2 mL/kg/hr), but there was no diet effect in oil males. 

(Figure 19A & B)  
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There was only an effect of diet during the nighttime and daytime (ANOVA: night: 

F(1,49) = 25.94, p < 0.0001; day: F(1,49) = 25.8, p < 0.0001) in female carbon dioxide 

production and no significant effects of treatment or treatment x diet. Females in all 

perinatal treatment groups on a HFD reduced nighttime (oil: 2747 ± 108.3 mL/kg/hr, p < 

0.05; BDE-47: 2833 ± 156.2 mL/kg/hr, p < 0.01; OPFR: 2839  ± 175.2 mL/kg/hr, p < 

0.001) and daytime (oil: 2539 ± 93.87 mL/kg/hr, p < 0.05; BDE-47: 2661 ± 198.3 

mL/kg/hr, p < 0.01; OPFR: 2590 ± 233.8 mL/kg/hr, p < 0.01) carbon dioxide production 

compared to their ND-fed controls (nighttime: oil: 3249 ± 233.4 mL/kg/hr; BDE-47: 3571 

± 138.5 mL/kg/hr; OPFR: 3749 ± 183.5 mL/kg/hr; daytime: oil: 3028 ± 210.5 mL/kg/hr; 

BDE-47: 3264 ± 106.3 mL/kg/hr; OPFR: 3288 ± 138.7 mL/kg/hr), but there was no 

significant effect of diet in oil-treated females. (Figure 19C & D) 

 

6c. RER  

 Daytime substrate utilization was modified in FR-treated males. Respiratory 

exchange ratio (RER = VCO2/VO2) is a measurement of substrate utilization 

(carbohydrates vs. fat) for metabolism. If the RER is closer to 0.7, fat is primarily 

oxidized and if it is closer to 1.0, carbohydrates are mostly used. There was a significant 

effect on diet only (ANOVA: night: F(1,75) = 235.7, p < 0.0001; day: F(1,75) = 22.93, p < 

0.0001) in male substrate utilization during the nighttime and daytime. During the 

nighttime, males in all treatment groups fed a HFD primarily oxidized fat (oil: 0.81 ± 0.01, 

p < 0.05; BDE-47: 0.82 ± 0.01, p < 0.01; OPFR: 0.84 ± 0.01, p < 0.001) while males on a 

ND mostly utilized carbohydrates (oil: 1.00 ± 0.02; BDE-47: 0.98 ± 0.02; OPFR: 1.01 ± 

0.01). OPFR-treated males fed a ND utilized carbohydrates during the daytime more 

than oil-treated males also fed a ND (OPFR: 0.99 ± 0.02; oil: 0.89 ± 0.08, p < 0.05), 

although, there was no overall effect of treatment (ANOVA: treatment or treatment x diet: 

ns). HFD-fed BDE-47- and OPFR-treated males utilized fat as a fuel during the daytime 
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(BDE-47: 0.825 ± 0.004, p < 0.05; OPFR: 0.84 ± 0.01, p < 0.01) more than their ND-fed 

counterparts (BDE-47: 0.95 ± 0.02; OPFR: 0.99 ± 0.02), but there was no effect of diet in 

oil-treated males. (Figure 20A & B)  

 Females in all perinatal treatment groups had an effect of diet (ANOVA: night: 

F(1,49) = 144.9, p < 0.0001; day: F(1,49) = 91.41, p < 0.0001) in nighttime and daytime 

substrate utilization, but not an effect for treatment or for treatment x diet. In all perinatal 

treatment groups, females fed a HFD treatments exhibited increased RER compared to 

ND-fed females and used fats as their main fuel during the nighttime (oil: 0.84 ± 0.01, p 

< 0.05; BDE-47: 0.84 ± 0.01, p < 0.01; OPFR: 0.86 ± 0.02, p < 0.01) and daytime (oil: 

0.84 ± 0.01 p < 0.0001; BDE-47: 0.84 ± 0.01, p < 0.0001; OPFR: 0.846 ± 0.02, p < 

0.0001). Conversely, females in all treatment groups on a ND mostly utilized 

carbohydrates during the night (oil: 1.00 ± 0.04, BDE-47: 1.04 ± 0.01, OPFR: 1.07 ± 

0.01) and day (oil: 0.98 ± 0.04, BDE-47: 1.1 ± 0.02; OPFR: 1.0 ± 0.02). (Figure 20C & D) 

 

6d. Heat  

 Heat production was changed in FR-treated males and females during the 

nighttime and daytime. Heat production was measured to determine energy output in 

which heat production usually increases due to carbohydrate utilization. There was an 

effect of diet in heat production for males during the nighttime (ANOVA: F(1,75) = 31.26, 

p < 0.0001), but no treatment or treatment x diet effects. At nighttime, oil- and BDE-47 

treated males on a HFD, produced more heat  (oil: 0.59 ± 0.02 kcal/hr, p < 0.0001; BDE-

47: 0.59 ± 0.02 kcal/hr, p < 0.001) compared to their ND-fed controls (oil: 0.48 ± 0.02 

kcal/hr; BDE-47: 0.51 ± 0.01 kcal/hr), but had no significant effect of diet on OPFR-

treated males (OPFR HFD vs. OPFR ND). Males treated perinatally with OPFR and fed 

a HFD produced less heat during the nighttime compared to oil-treated males also given 

a HFD (OPFR: 0.53 ± 0.03 kcal/hr, p < 0.05; oil: 0.59 ± 0.02 kcal/hr), but there was no 
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overall effect of treatment (ANOVA: treatment or treatment x diet: ns). During the 

daytime, there was an effect of diet (ANOVA: F(2,75) = 4.14, p < 0.05) and treatment x 

diet (ANOVA: F(1,75) = 48.66, p < 0.0001) in the heat production of males. BDE-47- and 

oil-treated males fed a HFD produced more heat (oil: 0.56 ± 0.02 kcal/hr, 0.0001; BDE-

47: 0.568 ± 0.001 kcal/hr, p < 0.0001) in comparison to their ND-fed controls during the 

daytime (oil: 0.40 ± 0.04 kcal/hr; BDE-47: 0.46 ± 0.01 kcal/hr), but not in OPFR-treated 

males. Furthermore, BDE-47-treated males on a HFD produced more heat during the 

daytime when fed ND (BDE-47: 0.45 ± 0.01 kcal/hr, p < 0.05) compared to oil-treated 

males also given a ND (oil: 0.40 ± 0.01 kcal/hr). When fed a HFD, OPFR-treated males 

produced less heat during the daytime (OPFR: 0.50 ± 0.02 kcal/hr, p < 0.05) than oil-

treated males on a HFD (oil: 0.56 ± 0.02 kcal/hr). (Figure 21A & B) 

 There were effects of diet in nighttime and daytime heat production 

measurements for females, but no effects of treatment or treatment x diet (ANOVA: 

night: F(1,49) = 5.00, p < 0.05; day: F(1,49) = 6.68, p < 0.01) in females within all 

perinatal treatment groups. During the nighttime and daytime, oil-treated females fed a 

HFD produced more heat (night: 0.45 ± 0.02 kcal/hr, p < 0.05; day: 0.41 ± 0.02 kcal/hr, p 

< 0.05) than oil-treated females on a ND (night: 0.37 ± 0.02 kcal/hr; day: 0.34 ± 0.02 

kcal/hr). However, there were no significant treatment effects in oil-treated females or 

effects of diet or treatment in BDE-47- or OPFR-treated females. (Figure 21C & D) 

 

7. Activity 

 During the nighttime, X total activity was altered in OPFR-treated males. X total 

activity was determined by the number of times that a subject crossed the X-axis of the 

CLAMS cage. There was a significant effect of diet (ANOVA: F(1,75) = 5.73, p < 0.05) in 

males regarding total activity on the X-axis of the CLAMS cage (X total activity) during 

the nighttime, but not the daytime. For nighttime and daytime X total activity in males, 
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there were no significant effects of treatment or treatment x diet. When fed HFD, males 

perinatally treated with oil or BDE-47 had decreased X total activity during the nighttime 

(oil: 299 ± 44.1 counts, p < 0.05; BDE-47: 307 ± 16.2 counts, p < 0.05) compared to their 

treatment counterparts fed a ND (oil: 454 ± 79.0 counts; BDE-47: 443 ± 46.2 counts) 

while there was no effect of diet in OPFR-treated males. OPFR-treated males on a ND 

had decreased X total activity during the nighttime compared to oil-treated males also on 

a ND (OPFR: 280 ± 36.0 counts, p < 0.01; oil: 454 ± 79.0 counts), but there was no 

overall effect of treatment (ANOVA: treatment and treatment x diet: ns) (Figure 22A & B). 

There were no significant effects of diet, treatment, or treatment x diet on X total activity 

in females during the nighttime or daytime (Figure 22C & D).  

Nighttime Z total activity was modified in FR-treated females. Z total activity was 

determined by the number of times that a subject crossed the Z-axis of the CLAMS 

cage. When perinatally treated with oil, females fed a HFD had increased Z total activity 

during the nighttime (HFD: 174 ± 31.3 counts, p < 0.05) in comparison to oil-treated 

females fed a ND (ND: 50.3 ± 22.2 counts), but there was no overall effect of diet in 

females (ANOVA: diet or treatment x diet: ns; Figure 23C & D). There were also no other 

significant diet effects in female mice perinatally treated with BDE-47 or OPFR during 

the nighttime. There were no significant effects of diet, treatment, or treatment x diet in Z 

total activity at nighttime in males. Furthermore, there were no effects of diet, treatment, 

or treatment x diet during the daytime in Z total activity of females. Interestingly, there 

was a significant effect of treatment (ANOVA: F(2,75) = 4.21, p < 0.05) in males during 

the daytime, without an effect in post-hoc analysis. There were also no significant effects 

of diet or treatment x diet in Z total activity during the daytime in males. (Figure 23A & B) 

 

8. Glucose and Insulin Tolerance  
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 Glucose homeostasis was altered in FR-treated males. GTT and ITT were used 

to determine glucose and insulin tolerance. Data for these tests were analyzed regarding 

fasting glucose, blood glucose levels throughout the tests for each time point (15, 30, 90, 

120, 180 min), and average area under the curve (AUC) blood glucose for the overall 

test. There was a significant effect of diet (ANOVA: F(1,75) = 17.86, p < 0.0001) on 4-

hour fasting blood glucose in males, no effects of treatment or treatment x diet. While 

there was no overall effect involving treatment, OPFR-treated males on a HFD exhibited 

increased blood glucose when fasted (227.2 ± 14.2 mg/dL, p < 0.05) compared to oil-

treated males also given a HFD (193.8 ± 10.3 mg/dL) (ANOVA: treatment or treatment x 

diet: ns). However, there were no overall effects involving treatment or in post-hoc 

analysis in females.  When fed a HFD, males and females perinatally treated with oil or 

OPFR had higher fasting blood glucose (males: oil: 194 ± 10.3 mg/dL, p < 0.05; OPFR: 

227 ± 14.2 mg/dL, p < 0.001; females: oil: 168.0 ± 5.7 mg/dL, p < 0.01; OPFR: 186.0 ± 

6.3 mg/dL, p < 0.01) than ND-fed oil-treated males or females (male: oil: 158 ± 10.1 

mg/dL; OPFR: 168.8 ± 8.3 mg/dL; female: oil: 130.0 ± 17.8 mg/dL; OPFR: 156.9 ± 6.0 

mg/dL), but no effect of diet in BDE-47-treated males or females.  (Figure 24) 

 In the GTT, there was significant effects of diet (ANOVA: F(1,49) = 9.08, p < 

0.05), time (ANOVA: F(6,294) = 131.0, p < 0.0001), and time x diet (ANOVA: F(6,294) = 

14.94, p < 0.0001) in oil- and BDE-47-treated males, but there were no effects of 

treatment. Oil-treated males fed a HFD had a decrease in glucose clearance at 60-

120min during the GTT (60 min, p < 0.05; 90 min, p < 0.001; 120 min, p < 0.01). In BDE-

47-treated males on a HFD, glucose clearance was attenuated from 60-180min (60 min, 

p < 0.001; 90 and 120 min, p < 0.001; 180 min, p < 0.01). There were no effects of 

treatment or any interactions involving treatment for BDE-47- and oil-treated males.  

(Figure 25A) 
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 OPFR-treated males were more glucose tolerant on a ND and glucose intolerant 

when fed a HFD in comparison to their oil-treated counterparts. There were significant 

effects of diet (ANOVA: F(1,48) = 23.62, p < 0.0001), time (ANOVA: F(6,288) = 137.2, p 

< 0.0001), time x diet (ANOVA: F(6,288) = 20.70, p <  0.0001), and treatment x diet 

(ANOVA: F(1,48) = 8.00, p < 0.01) in the GTT of OPFR- and oil-treated males. In males 

perinatally treated with oil, glucose clearance was attenuated from 60-120 min (60 min, p 

< 0.05; 90 min, p < 0.001; 120 min, p < 0.01). OPFR-treated males on a HFD had lower 

glucose clearance at 30, 120, and 180 min time points (30 min, p < 0.05; 120 and 180 

min, p < 0.01) compared to oil-treated males also given a HFD. Furthermore, males 

treated with OPFR and given a ND demonstrated higher glucose clearance compared to 

oil-treated males on a ND at 60 and 90 min time points (60 min, p < 0.01; 90 min, p < 

0.05). OPFR-treated males fed a HFD exhibited a decrease in glucose clearance from 

30-180 min compared to their ND-fed counterparts (30 and 180 min, p < 0.001; 60, 90, 

and 120 min, p < 0.0001). (Figure 25B) 

 Glucose tolerance was modified in males perinatally treated with FR. There were 

effects of diet (ANOVA: F(1,75) = 3.824, p < 0.0001)  and treatment x diet (ANOVA: 

F(2,75) = 3.82, p < 0.05) in average glucose clearance (AUC) over the course of the 

GTT in males. OPFR-treated males had lower glucose clearance compared to oil-treated 

males when both groups were on a HFD (OPFR: 105071 ± 6289.3 mg/dL! min, p < 0.05; 

oil: 86735 ± 4772.1 mg/dL! min). BDE-47- and OPFR-treated males fed a HFD 

demonstrated a decrease in glucose clearance (BDE-47 HFD: 91198 ± 7928.1 mg/dL! 

min, p < 0.001; OPFR HFD: 105071 ± 6289.3 mg/dL! min, p < 0.0001) compared to ND-

fed males given the same perinatal treatment (BDE-47 ND: 62297 ± 4324.5 mg/dL! min; 

OPFR ND: 56801 ± 4860.7mg/dL! min), but there was no significant effect of diet in oil-

treated males. (Figure 25C)    
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BDE-47-treated females exhibited a subtle change in glucose tolerance when fed 

a HFD. When analyzing glucose tolerance at each time point, there were overall effects 

of diet, but not in post-hoc analysis. Throughout the GTT, females perinatally treated 

with BDE-47 in comparison to oil-treated females had effects of diet (ANVOA: F(1,33) = 

11.53, p < 0.01) and time only (ANOVA: F(6,198) = 102.26, p < 0.0001) (Figure 25D). In 

comparison, the glucose clearance between groups perinatally treated with OPFR and 

oil in females, there were only effects of diet (ANVOA: F(1,32) = 6.03, p < 0.01), and 

time (ANOVA: F(6,192), p < 0.0001) (Figure 25E). However, females exhibited an effect 

of diet only (F(1,49) = 14.37, p = 0.0004) in average glucose clearance (AUC) for the 

entire GTT. Females treated with BDE-47 and fed HFD had higher average glucose 

clearance (62223 ± 4886.1 mg/dL! min, p < 0.01) than BDE-47-treated females given a 

ND (42193 ± 3552.4 mg/dL! min), but there were no effects of diet for oil- or OPFR-

treated females (Figure 25F).  

 BDE-47-treated males fed a HFD had improved insulin tolerance in comparison 

to oil-treated males given the same diet. In ITT, there were significant effects of diet 

(ANOVA: F(1,49) = 24.33, p < 0.0001), time (ANOVA: F(5,245) = 20.70, p < 0.0001), 

and treatment x diet (ANOVA: F(1,49) = 4.4, p < 0.05) when comparing oil- and BDE-

treated males. As a treatment effect, BDE-47-treated males had higher insulin-induced 

glucose clearance at 15, 30, and 90 min time points (90 min, p < 0.05; 15 and 30 min, p 

< 0.01) compared HFD-fed males perinatally treated with oil. BDE-47-treated males on a 

HFD had increased insulin-induced glucose clearance at 0 and 120 min time points (0 

min, p < 0.05; 120 min, p < 0.01). Additionally, males perinatally treated with oil and fed 

a HFD exhibited decreased insulin-induced glucose clearance from 0-120 min (0 min, p 

< 0.01; 15, 30, and 90 min, p < 0.0001; 60 min, p < 0.001) compared to their ND-fed 

counterparts. (Figure 26A)  
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Similar to the BDE-47 males, insulin tolerance was ameliorated in OPFR-treated 

males on a HFD. In ITT, there was an effect of diet (ANOVA: F(1,48) = 26.18, p < 

0.0001), time (ANOVA: F(5,240) = 17.31, p < 0.0001), and treatment x diet (ANOVA: 

F(1,48) = 7.58, p < 0.01), and treatment x diet x time (ANOVA: F(5,240) = 3.83), p < 

0.01) when comparing OPFR- and oil-treated males. OPFR-treated males given HFD 

exhibited increased insulin-induced glucose clearance compared to oil-treated males 

also given HFD from 15-120 min (15, 30, 60 and 120 min, p < 0.05; 90 min, p < 0.01). At 

the 120 min time point of the ITT, OPFR-treated males fed ND had recovered from the 

insulin challenge more quickly than oil-treated males given ND (p < 0.05). Males treated 

with OPFR and fed a HFD had decreased insulin-induced glucose clearance from 0-30 

min (0 min, p < 0.001; 15 and 30 min, p < 0.05) compared to OPFR-treated males on a 

ND. In oil-treated males also fed a HFD, insulin-induced glucose clearance was 

attenuated from 0-120 min (0 min, p < 0.05; 60 min, p < 0.01; 15, 30, 90, 120 min, p < 

0.0001). (Figure 26B) 

Overall, insulin tolerance was promoted in FR-treated males on a HFD. In ITT, 

there were effects of diet (F(2,71) = 3.79, p < 0.01) and treatment x diet (F(1,71) = 18.35, 

p < 0.0001) on average insulin-induced glucose clearance (AUC) in males. However, 

while HFD-fed males perinatally treated with oil had decreased insulin-induced glucose 

clearance (25587 mg/dL! min ± 1520.8, p < 0.0001) compared to oil-treated males fed a 

ND (14578 ± 1598.3 mg/dL! min), there were no effects of diet in BDE-47- or OPFR-

treated males. When given HFD, BDE-47- and OPFR-treated males had increased 

insulin-induced glucose clearance (BDE-47: 20123 ± 1749.2 mg/dL! min, p < 0.05; 

OPFR: 18775 ± 1644.8 mg/dL! min, p < 0.01) compared to oil-treated males fed a HFD 

(oil: 25587 ± 1520.8 mg/dL! min). (Figure 26C) 

 Conversely, there were no treatment or diet effects in in insulin tolerance upon 

post-hoc analysis in females given any perinatal treatment. In ITT, there were significant 
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effects of time (ANOVA: F(5,165) = 53.20, p < 0.0001) and time x diet only (ANOVA: 

F(5,165) = 2.91, p < 0.05) when comparing oil- and BDE-47-treated females (Figure 

26D).  There was an effect of time only (ANOVA: F(5,160) = 57.36, p < 0.0001) in ITT 

when comparing OPFR-treated and oil-treated females (Figure 26E). There were also no 

significant effects for diet, treatment, or treatment x diet in average glucose clearance 

(AUC) for the ITT with any perinatal treatment in females (Figure 26F).  

  
8. Triglycerides and terminal uterine weights  

 Circulating triglycerides were measured at the time of sacrifice as a biomarker for 

alterations in fat metabolism 149,411,412. There were significant effects of treatment and 

treatment x diet (F(2,49) = 4.13, p < 0.05; F(2.46) = 5.50, p < 0.05, respectively) in 

terminal female triglyceride levels (Figure 27B). OPFR-treated female blood triglyceride 

levels were attenuated (42.6 ± 3.9 mg/dL, p < 0.05) in comparison to oil-treated females 

(53.1 ± 1.4 mg/dL) when both groups were fed a HFD. Additionally, OPFR-treated 

females on a HFD had suppressed blood triglyceride levels (42.6 ± 3.9 mg/dL, p < 0.05) 

compared to females also treated with OPFR and given a ND (55.6 ± 1.8 mg/dL). 

Conversely, there were no significant effects of diet or treatment in BDE-47-treated 

females. There were also no significant effects of diet or treatment in terminal blood 

triglyceride levels of males (Figure 27A).  

Terminal uterine wet weights were measured in females. In past studies, E2 

promotes uterine growth while HFD reduces uterine contractility 77,81,413. Therefore, we 

examined if either one of these factors of an interaction between them altered uterine 

weights, but terminal uterine weights (uterine weight/body weight) did not exhibit overall 

effects of treatment, diet, or treatment x diet. However, OPFR-treated females on a HFD 

had reduced uterine weights ratios (3.2 ± 0.2, p < 0.05) in comparison to oil-treated 
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females also given a HFD (4.3 ± 0.6) (ANOVA: treatment or treatment x diet: ns). There 

were no other significant effects of treatment in BDE-47-treated females. (Figure 27C) 

 

DISCUSSION 
 

PBDE are found in baby products such as baby bottles and strollers, but levels 

have recently been limited in products 16,17. Primarily, OPFR have replaced PBDE in 

these widely distributed products, but few studies have examined these compounds at 

relevant levels, in mammalian models during critical developmental periods 

269,281,305,314,319,403. BDE-47 and the selected OPFR (TDCPP, TPP, and TCP) are amongst 

the predominant FR in the environment 18,22,23. Additionally, EDC mixtures are useful to 

evaluate potential synergistic or additive effects of these compounds and previous 

studies have analyzed OPFR mixtures such as Firemaster550 (FM550), which contains 

TPP. Past studies analyzed EDCs such as DES, BPA, and polychlorinated biphenyls 

(PCBs) acting obesogenic when exposed during critical developmental windows to 

change development, feeding behavior, body composition, energy expenditure, and fat 

metabolism in adulthood 7,204,205,207,220,221,235,342,414. However, there are few studies that 

analyze energy homeostatic effects of perinatal exposure to these FR, especially OPFR, 

in mammalian models 269,305,314,319,403. 

In the present study, perinatal exposure to the OPFR mixture decreased male 

AGDs during development. In adulthood, these FR amplified effects of HFD in both 

sexes, but elicited more striking effects on male energy balance and glucose 

homeostasis.  Furthermore, FR promoted negative energy balance in males and positive 

energy balance in females when given ND. Therefore, FR alter development and energy 

homeostasis in a sex-dependent manner. 

 

Developmental Growth and Cumulative Body Weight Gain in adulthood 
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Despite past studies demonstrating perinatal treatment of BDE-47 and FM550 

increased body weight and length in male and female offspring during development, FR 

had no effect on developmental growth 314,403. However, in the case of BDE-47, the 

concentrations were lower than the ones tested in the current study and the route and 

frequency of administration varied. Additionally, while FM550 was administered in a 

similar fashion, the OPFR mixture in this study is composed of different compounds and 

was given for a longer period of time, which could have produced alternative results.  

Regarding cumulative body weight gain, there were diet effects that were 

apparent in male offspring earlier (week 6) than in females (weeks 10-11), wherein mice 

fed a HFD gained more body weight. As a treatment effect, females exposed to OPFR 

on a ND and BDE-47-treatment males fed a HFD gained more body weight. However, 

there were no treatment effects in body weight at week 20 for males or females 

compared to their same-sex controls. Thus, although body weights were relatively 

normal during early development, FR altered cumulative body weight gain, but not actual 

body weight in adulthood. These FR interact with multiple receptors involved in energy 

balance centrally and peripherally, including classical ERs (ERα/β), but also with AR, 

PPARs (α/γ), PXR, and TRs in liver, kidney, and fat cells. 10,13,14,304,311,315-320.  Therefore, 

the selected FR may modulate energy homeostasis as a gross anatomical result of 

these receptor interactions and their physiological mechanism 8-11,10,13,14,304,311,315-320. 

Between the potential for multiple receptor targets and crosstalk amongst receptor 

signaling, these compounds may affect growth, development, and metabolism in a 

complex manner 26-33,35,37.  

 

Biomarkers of sex hormone action: AGD and uterine weight 
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While there were no differences in FR litter sex ratios, males treated with OPFR 

exhibited lower AGDs at PND21. Past studies of OPFR exposure during pregnancy 

exhibit changes in reproductive function such as average pubertal onset in offspring rats 

314. Furthermore, OPFR have been shown to interact with classical ERs and AR in vitro 

and alterations in sex hormone levels or actions could lead to disruption in sex 

differentiation 8,12-14,311,415. Despite discrepancies whether the examined OPFR act as 

classical ER agonists or antagonists 12-14,274, TPP consistently act as an AR antagonist in 

human cells 13,320. Therefore, it is plausible that OPFR treatment during development 

could produce lower AGDs in males as a result of AR antagonism 178,416.  

However, in HFD-fed females, perinatal OPFR treatment decreased terminal 

uterine weight in comparison to oil-treated females given the same diet.  Hypertrophic 

growth of the uterus is a well-known marker of indirect ER-signaling and was examined 

at the time of sacrifice 81,348. In adult female rats, Latendresse and colleagues (1993, 

1995) found that high doses of butylated TPP and TCP increase serum E2. Conversely, 

TDCPP potentially acts as a classical ER antagonist, which may attenuate endogenous 

uterine hypertrophy  12,13,334,335. Additionally, females perinatally treated with OPFR on a 

HFD had lower uterine weights compared to oil-treated controls on the same diet, 

independent of changes in whole body weights. Previously, food restriction alters uterine 

growth with an association to obesity in adult offspring 417. While not restricting food 

intake, there is a link between uterine weight and diet, but additional studies would need 

to clarify effects of HFD on uterine growth. Currently, studies have only analyzed HFD 

impacting uterine activity, although, lack of uterine activity could potentially result of 

reduced uterine growth 413. Therefore, further investigation is required to understand this 

interaction with the chosen OPFR, sex hormones, and HFD.  

 

Energy balance alterations in adult offspring  
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The known FR-sensitive nuclear receptors, have primary roles in energy 

homeostasis, which can be evaluated by measuring their effects on energy intake, 

energy expenditure, body composition, glucose homeostasis, and body weight 

30,79,82,85,153,155,158,161,172-176,393,409,418-425. Regarding negative energy balance effects, 

PPARα is known to directly induce fat metabolism and TR is known to increase 

catabolism while ERα and AR typically elicit these effects indirectly to promote weight 

loss, fat oxidation, and energy expenditure 30,79,82,85,155,172-176,418-422. Conversely, PPARγ 

and PXR favor positive energy balance by increasing body weight, fat mass and uptake, 

and food intake 153,155,158,161,423-425. PPARγ directly promotes fat uptake and accumulation 

while PXR more indirectly impacts energy balance. All of these receptors can be found 

centrally and in peripheral tissue such as liver, fat, and kidney 49,50,153,155,422,426,427. 

Therefore, FR could potentially affect energy homeostasis in a multitude of ways by 

targeting these receptors. 

In the present study, males were more susceptible to changes in energy balance 

from perinatal FR exposure by altering body composition, energy expenditure, and 

glucose homeostasis. However, due to FR being an emerging EDC group, there are few 

studies that analyze perinatal FR treatment effects on energy homeostasis and there are 

currently no studies that analyze the effects of FR on energy expenditure 269,305,314,319,403. 

Negative energy balance was induced in OPFR-treated males by demonstrating 

increased oxygen consumption (VO2), carbon dioxide production (VCO2), heat 

production, and carbohydrate utilization (RER) during the day, overall leading reduced 

fat accumulation. In particular, decreased percent body fat in OPFR-treated males was 

unexpected because OPFR treatment in vitro increases adipocyte differentiation and 

hepatic PPARγ activation 317,318. Thus, these findings emphasizes the importance of in 

vivo adult and perinatal exposure models, which account for compensatory mechanisms 
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throughout the body to maintain homeostasis 393. Additionally, these OPFR were 

administered in a mixture, which complicates the elucidation of the receptor-mediated 

mechanism. Therefore, these effects of this OPFR mixture on energy balance, especially 

concerning energy expenditure, are novel.  

Furthermore, these FR also promote positive energy balance in males. 

Regarding energy expenditure, when fed a HFD, males given both FR treatments had 

decreased oxygen consumption and OPFR-treated males on a ND reduced nighttime 

activity in comparison to oil-treated males given the same diet. At least in BDE-47-

treated males on a HFD, these alterations in energy expenditure lead to decreased 

percent lean mass. These effects of FR promoting positive energy balance are 

consistent with our finding that BDE-47-treated males fed a HFD also gained more body 

weight. A previous study by Suvorov and Takser (2010) also supports the promotion of 

positive energy balance from perinatal BDE-47 exposure in which this treatment 

modifies hepatic carbohydrate and lipid metabolism in rat offspring 319. Since there are 

currently no reports of FR-induced changes in energy expenditure, especially in 

combination with different diets, further investigation of FR effects peripherally and 

centrally, especially in the hypothalamus, are required.  

Centrally and peripherally, food intake, energy, and glucose homeostasis is 

regulated, which can lead to alterations body weight 68,428.  The hypothalamus controls 

glucose homeostasis, insulin sensitivity, and hepatic glucose production, containing 

glucose-sensing neuron populations in the ventromedial hypothalamus (VMH), lateral 

hypothalamus (LH), and arcuate nucleus (ARC) 68,388,389,429. In particular, the ARC is 

positioned in which its axon terminals are where the blood-brain barrier is incomplete, 

able to receive input from peripheral satiety signals such as glucose, insulin, leptin, and 

EDCs 54. The ARC has at least two populations of neurons that mediate feeding and 

participate in the melanocortin system, including neurons that express neuropeptide Y 
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(NPY) and agouti-related peptide (AgRP) and neurons that express proopiomelanocortin 

(POMC) and cocaine- and amphetamine-regulated transcript (CART). POMC/CART 

neurons are considered anorectic and glucose-excited while NPY/AgRP neurons are 

typically orexigenic and glucose-inhibited 54,390,430-432. Through the inhibition of closure of 

ATP-sensitive potassium (KATP) channels in POMC neurons, whole-body glucose was 

impaired when challenged with a systemic glucose load, exhibiting the importance of 

POMC as a glucose-sensing neuron 390. Peripheral hormones such as insulin and leptin 

can activate POMC neurons and suppress activity in NPY neurons through the 

mediation of these KATP channels to control energy expenditure, locomotor activity, 

glucose homeostasis, insulin sensitivity, and hepatic glucose production, but little is 

known about the effects of perinatal FR treatment on these parameters 

136,142,269,305,314,319,391,392,403,433-437.  

Additionally, FR-treated males had altered glucose homeostasis. Males treated 

with OPFR and on a HFD had reduced glucose clearance when systemically challenged 

with a glucose load. In male rats, perinatal FM550 increases fasting blood glucose, 

which coincides with higher glucose intolerance 314. When challenged with an insulin 

load, FR-treated males fed a HFD and OPFR-treated males on a ND improved glucose 

clearance. In past studies, perinatal BDE-47 elevates plasma IGF-1 and glucose uptake 

in male rats, which support that insulin-induced glucose clearance amelioration in males, 

but this parameter has not been directly tested in OPFR 403.  Improved insulin-induced 

glucose clearance in perinatally FR-treated males could signify increased insulin 

sensitivity, but future studies using a euglycermic clamp can confirm this speculation. If 

perinatal FR treatment in males improves insulin sensitivity, FR may have also affected 

hepatic glucose production in these males 387,389,391,392. Further investigation could 

determine if FR induces its potential effect on hepatic glucose centrally and/or 

peripherally and if hepatic glucose production is increased or decreased 387,389,391,392.  
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In OPFR-treated females fat metabolism may be altered. OPFR lowered terminal 

blood triglycerides in females when a HFD, indicating a treatment effect and effect of the 

interaction of treatment and HFD. Decreased blood triglycerides could suggest an 

alteration in fat metabolism, which is supported by the fact that these females mostly 

utilized fat 411,412. Females given both HFD and OPFR treatment also consumed more 

energy than their oil counterparts given the same diet, which would normally promote 

positive energy balance. However, there was not a significant effect of cumulative body 

weight gain, body weight at week 20, or percent body fat compared to females fed HFD 

and perinatally treated with oil. Therefore, it is plausible that both fat oxidation and 

adipogenesis are both augmented and homeostasis in body weight and body 

composition are consequently maintained 317,318.  

In previous studies, OPFR have been shown to alter fat metabolism 13,296,311,316-

318,320,338,340,341. In in vivo, TPP elevates liver triglycerides in male mice and dyslipidemia 

in chicken embryos 340,341. In in vitro studies, TDCPP, TPP, and TCP affect PPARγ, 

PPARα, and TR signaling in liver and fat tissue of rodents, pigs, and humans 13,296,311,316-

318,320. Specifically, PPARγ is known to facilitate fat synthesis and uptake while PPARα 

and TR induces fat catabolism 438,439. Since PPARγ, PPARα, and TR all interact with 

OPFR, possibly HFD and OPFR are simultaneously stimulating fat accumulation through 

PPARγ and fat oxidation through PPARα and TR. Furthermore, PPARγ and 

PPARα agonists are found to participate in HFD-induced inflammation through 

macrophages 440,441. Therefore, OPFR treatment and HFD may overall promote energy 

homeostasis in females through fat metabolism and the immune system, but further 

investigation of these genes, proteins, and pathways after OPFR treatment would have 

to be examined to confirm this concept.  
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Implications for future studies  

Overall, while we have observed sex-dependent effects of perinatal FR exposure 

on energy homeostasis, the next step would be to test for central and peripheral 

mechanisms of action that elicit these effects. Interestingly, FR interact with ER, PPARγ, 

and AR are receptors that are distributed centrally in the hypothalamus and peripherally 

in tissue such as fat, muscle, and liver 86,88,153,155,158,166,182,240. Previous studies 

demonstrate that long-term E2 treatment decreases Npy expression in the 

hypothalamus, lowering food intake 99-101. Global ERα knockout (KO) prevents POMC 

upregulation and anorectic effects of leptin and insulin to induce feeding in female mice 

94. Peripherally, ERα KO mice are hyperphagic and have decreased energy expenditure 

and altered glucose homeostasis 79-85. However, males were more greatly affected by 

FR treatment, diet, or the interaction between the two factors and ER are more highly 

expressed in females 364. Therefore, it is possible that FR are acting directly on 

PPARγ and AR due to their high distribution in male ARC 151,159,163-166,169. 

Past in vitro studies in peripheral tissue suggest that the selected FR act as 

PPARγ agonists 315-318,339. In previous studies, PPARγ activation by agonists also 

augmented Npy and Agrp gene expression in the ARC of rodents 159. Central PPARγ 

signaling is also necessary for the full effect of systemic thiazolidinediones on hepatic 

insulin-sensitization 381. Additionally, PPARγ deletion in POMC neurons elevates energy 

expenditure while decreasing body weight and food intake 160. While these studies 

support the FR- and diet-induced positive energy balance effects in this study, it does 

not account for the effects the promoted negative energy balance.  

Conversely, androgens can differentially influence POMC neuronal activation 

depending on the sex and androgen, indicating that potential FR interaction with AR 

could elicit effects that induce both positive and negative balance effects. Testosterone 



 

 

89 

(T) inhibits ARC POMC neuron activation in rodents of both sexes while 

dihydrotestosterone (DHT) activates POMC neurons in females 167,168,170. Brain-specific 

AR KO suppresses hypothalamic nuclear factor-κB-mediated induction of protein 

tyrosine phosphatase 1B, reduces insulin sensitivity, and impairs glucose homeostasis in 

mice 171 Furthermore, global AR KO also decreases leptin signaling in the ARC and 

promotes insulin and leptin resistance 169,172,174,175.  In previous work, these FR are 

consistently characterized as AR antagonists in in vitro peripheral tissue 10,13,320. 

Androgen insensitivity (AIS) is linked to abnormal sex differentiation and elevated E2 

levels due to the fact that there is an increased concentration of circulating T, which can 

be converted to E2 by aromatase 365-372,442. Du and colleagues (2009) also showed that T 

inhibits PPARγ in a transcriptional transaction assay, therefore, (AIS) may indirectly 

promote PPARγ activation 443.   Presumably, FR-induced AIS could affect energy and 

glucose homeostasis directly, indirectly, centrally, and peripherally. However, to 

determine FR mechanism receptor, global and tissue-specific KO models in males and 

females, are required to elucidate potential receptor-mediated mechanisms in each sex 

in different tissues.  

In addition to receptor-mediated mechanisms, potential FR effects in 

hypothalamic control on energy and glucose homeostasis should be considered. 

Recently, we found that FR treatment alter homeostatic ARC gene expression also in a 

sex-dependent manner in adult mice (Chapter 2). In future studies, we can examine if 

perinatal treatment of FR impacts of FR on central and peripheral gene networks by 

using RNA sequencing or quantitative real-time PCR on genes in the liver, fat, and 

hypothalamus. By utilizing electrophysiology on glucose-sensing neurons FR-induced 

effects on glucose uptake, insulin activity, energy expenditure, and hepatic glucose 

production in peripheral tissues can be examined. To determine how perinatal FR 
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treatment affects different hypothalamic nuclei that comprise the melanocortin 

neurocircuitry, we could double-label POMC, NPY, glutamate transporter 1, or glutamic 

acid decarboxylase 67 in the hypothalamus to visualize the density of innervated 

neuronal projections.  FR effects upstream of POMC and NPY neurons could be 

analyzed by testing electrophysiology in these particular neurons for their sensitivity to 

ghrelin, insulin, and leptin. Furthermore, by using green fluorescent tagging for 

melanocortin in the neurons of FR-treated subjects, these neurons can be examined for 

their response to α-MSH as a downstream effect.   Therefore, while we did not examine 

FR mechanism in this study, the results elucidate their effects to perpetuate additional 

research.  

 

Conclusion 

 From this study, we have extensively tested parameters of development and 

energy homeostasis in male and female offspring that orally treated daily to FR (GD7-

PND14). Previously effects of perinatal BDE-47 and TPP in a FM550 mixture have been 

observed using the same concentration as this study. However, this is the first study to 

examine effects this particular OPFR in a mixture and to combine FR treatments with 

HFD 403 281,305,314,319,403. While OPFR altered developmental sex differentiation in males, 

both FR treatments diversely impacted adult energy and glucose homeostasis. 

Therefore, perinatal exposure to these compounds produced sex-dependent effects in 

energy expenditure, glucose homeostasis, and fat metabolism in adulthood.   
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Figure 9. Average unsexed pup litter weights for PND2 and PND14 and sexed male and 
female PND21 body weights. (A) PND2 average unsexed litter weights (B) PND14 average 
unsexed litter weights (C) PND21 average body weights of sexed males. (D) PND21 average 
body weights of sex females. All data were analyzed using one-way ANOVA with Fisher’s 
LSD tests with BDE-47 and OPFR groups compared to oil. Data are represented as mean ± 
SEM. 
 
Figure 10. PND5 average litter sex ratio and PND21 average AGD for males and 
females. (A) PND5 average litter sex ratio (fraction of males/ # pups in litter) (B) PND21 
male average AGD (C) PND21 female average AGD. All data were analyzed using one-
way ANOVA with Fisher’s LSD tests with BDE-47 and OPFR groups compared to oil (*p < 
0.05). Data are represented as mean ± SEM. 
 
Figure 11. Weekly average cumulative body weights for males and females. (A) Male 
BDE-47 ND, BDE-47 HFD, oil ND, and oil HFD cumulative body weight gain. (B) Male 
OPFR ND, OPFR HFD, oil ND, and oil HFD cumulative body weight gain. (C) Female 
BDE-47 ND vs. oil ND cumulative body weight gain. (D) Female OPFR ND vs. oil ND 
cumulative body weight gain. All data were analyzed using two-way ANOVA (time X 
treatment) with Fisher’s LSD tests. For significant effects between treatment (EDC vs. oil)  
*p < 0.05 and significant effects between diets (ND vs. HFD) a = p < 0.05, b = p < 0.01. 
Letter colors represent which data points are compared (oil diet effect (black); EDC diet 
effect (BDE-47 = blue or OPFR = orange). Data are represented as mean ± SEM. 
 
Figure 12. Male and female week 20 average actual body weights. (A) Male week 20 
average actual body weights. (B) Female week 20 average actual body weights. All data 
were analyzed using two-way ANOVA (diet X treatment) with Fisher’s LSD tests. For 
significant diet effects, *p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001. Data are 
represented as mean ± SEM. 
 
Figure 13. Male and female weekly average energy intake and juvenile and adult 
feeding efficiencies. (A) Male energy intake (B) Male juvenile feeding efficiency (C) Male 
adult feeding efficiency (D) Female energy intake (E) Female juvenile feeding efficiency 
(F) Female adult feeding efficiency. All data were analyzed using two-way ANOVA (diet 
X treatment) with. For significant effects, *p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 
0.0001. Bracketed bars represent the comparisons between treatments within diet. Diet 
effects do not have bars. Data are represented as mean ± SEM. 
 
Figure 14. Average male and female percent fat and percent lean mass of body weight. 
(A) Male average percent fat of body weight (B) Female average percent fat of body weight 
(C) Male average percent lean mass of body weight  (E) Female average percent lean mass 
of body weight. All data were analyzed using two-way ANOVA (diet X treatment) with 
Fisher’s LSD tests. For significant effects, *p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 
0.0001. Bracketed bars represent the comparisons between treatments within diet. Diet 
effects do not have bars. Data are represented as mean ± SEM. 
 
 
Figure 15. Male and female average hourly VO2 for 24 hours diet effects. (A) Hourly 
VO2 male oil ND mice compared to oil HFD males (B) Hourly VO2 female oil ND mice 
compared to oil HFD females (C) Hourly VO2 male BDE-47 ND subjects vs. male BDE-
47 HFD (D) Hourly VO2 female BDE-47 ND mice vs. female BDE-47 HFD mice (E) 
Hourly VO2 OPFR ND in comparison to OPFR HFD for males (F) Hourly VO2 OPFR ND 
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in comparison to OPFR HFD for females. All data were analyzed using two-way ANOVA 
(treatment X time) with Fisher’s LSD tests between diets (ND vs. HFD) within treatments 
(a = p < 0.05, b = p < 0.01, c = p < 0.001, d = p < 0.0001). Data are represented as mean ± 
SEM. Black bars across x-axis represent day and night cycle. 
 
Figure 16. Male and female average hourly VO2 for 24 hours (BDE-47 vs. oil). (A) 
Hourly average VO2 in males between BDE-47 and oil within ND (B) Female hourly 
average VO2 between BDE-47 and oil within ND (C) Hourly VO2 for males between 
BDE-47 and oil within HFD (D) Average hourly VO2 in females between BDE-47 and oil 
within HFD. All data were analyzed using two-way ANOVA (treatment X time) with 
Fisher’s LSD tests between treatments (BDE-47 vs. oil) within diet (a = p < 0.05, b = p < 
0.01, c = p < 0.001, d = p < 0.0001). Data are represented as mean ± SEM. Black bars 
across x-axis represent day and night cycle. 
 
Figure 17. Male and female average hourly VO2 for 24 hours (OPFR vs. oil). (A) Hourly 
average VO2 in males between OPFR and oil within ND (B) Female hourly average VO2 
between OPFR and oil within ND (C) Hourly VO2 for males between OPFR and oil 
within HFD (D) Average hourly VO2 in females between OPFR and oil within HFD. All 
data were analyzed using two-way ANOVA (treatment X time) with Fisher’s LSD tests 
between treatments (OPFR vs. oil) within diets (a = p < 0.05, b = p < 0.01, c = p < 0.001, d 
= p < 0.0001). Data are represented as mean ± SEM. Black bars across x-axis represent 
day and night cycle. 
 
Figure 18. Night and day average VO2 for males and females. (A) Male nightly average 
VO2. (B) Day average VO2 in males (C) Female nightly average VO2 (D) Day average 
VO2 in females. All data were analyzed using two-way ANOVA (treatment X diet) with 
Fisher’s LSD tests between and within treatments and diets. For significant effects, *p < 
0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001. Bracketed bars represent the comparisons for 
treatment effects and diet effects do not have bars. Data are represented as mean ± SEM. 
 
Figure 19. Night and day average CO2 for males and females. (A) Male nightly average 
VCO2. (B) Day average VCO2 in males (C) Female nightly average VCO2 (D) Day 
average VCO2 in females. All data were analyzed using two-way ANOVA (treatment X 
diet) with Fisher’s LSD tests between and within treatments and diets. For significant 
effects, *p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001. Bracketed bars represent the 
comparisons between treatments within diet. Diet effects do not have bars. Data are 
represented as mean ± SEM.  
 
Figure 20. Night and day average RER for males and females. (A) Male nightly average 
RER. (B) Day average RER in males (C) Female nightly average RER (D) Day average 
RER in females. All data were analyzed using two-way ANOVA (treatment X diet) with 
Fisher’s LSD tests between and within treatments and diets. For significant effects, *p < 
0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001. Bracketed bars represent the comparisons 
between treatments within diet. Diet effects do not have bars. Data are represented as 
mean ± SEM. 
 
Figure 21. Night and day average heat for males and females. (A) Male nightly average 
heat. (B) Day average heat in males (C) Female nightly average heat (D) Day average 
heat in females. All data were analyzed using two-way ANOVA (treatment X diet) with 
Fisher’s LSD tests between and within treatments and diets. For significant effects, *p < 
0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001. Bracketed bars represent the comparisons 
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between treatments within diet. Diet effects do not have bars. Data are represented as 
mean ± SEM. 
 
Figure 22. Night and day average total X-axis activity for males and females. (A) Male 
nightly average total X activity. (B) Day average total X activity in males (C) Female 
nightly average total X activity (D) Day average total X activity in females. All data were 
analyzed using two-way ANOVA (treatment X diet) with Fisher’s LSD tests between and 
within treatments and diets. For significant effects, *p < 0.05, ** p < 0.01, ***p < 0.001, **** 
p < 0.0001. Bracketed bars represent the comparisons between treatments within diet. Diet 
effects do not have bars. Data are represented as mean ± SEM. 
 
Figure 23. Night and day average total Z-axis activity for males and females. (A) Male 
nightly average total Z activity. (B) Day average total Z activity in males (C) Female 
nightly average total Z activity (D) Day average total Z activity in females. All data were 
analyzed using two-way ANOVA (treatment X diet) with Fisher’s LSD tests between and 
within treatments and diets. For significant differences between diets and within 
treatments, *p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001. Data are represented as 
mean ± SEM. 
 
Figure 24. Male and female 4-hour fasting glucose (A) Male fasting blood glucose (B) 
Female fasting blood glucose. All data were analyzed using two-way ANOVA (diet X 
treatment) with Fisher’s LSD tests. For significant effects, *p < 0.05, ** p < 0.01, ***p < 
0.001, **** p < 0.0001. Bracketed bars represent the comparisons between treatments within 
diet. Diet effects do not have bars. Data are represented as mean ± SEM. 
 
Figure 25. Male and female blood glucose over time points for glucose tolerance tests 
(GTTs) and glucose average AUC for the entire test. (A) Male blood glucose time points 
for GTT (BDE-47 vs. oil). (B) Male blood glucose for GTT time points (OPFR vs. oil). C) 
Male average glucose AUC for GTTs. (D) Female blood glucose for GTT time points 
(BDE-47 vs. oil). (E) Female blood glucose for GTT time points (OPFR vs. oil). (F) 
Female average glucose AUC for GTTs. All data were analyzed using two-way ANOVA 
(time x diet x treatment) for GTT time points; (diet x treatment) for glucose average AUC 
with Fisher’s LSD tests between and across diets and treatments. For significant 
difference between diets within diets (a = p < 0.05, b = p < 0.01, c = p < 0.001, d = p < 
0.0001) and letter colors indicate which data points are compared. Significant differences 
between treatments (OPFR vs. oil), *p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001. For 
blood glucose AUC, bracketed bars represent the comparisons for treatment effects. Data 
are represented as mean ± SEM. 
 
Figure 26. Male and female average blood glucose over time points for insulin tolerance 
tests (ITTs) and glucose average AUC for the entire test. (A) Male blood glucose time 
points for ITT (BDE-47 vs. oil). (B) Male blood glucose for ITT time points (OPFR vs. oil). 
C) Male average glucose AUC for ITTs. (D) Female blood glucose for ITT time points 
(BDE-47 vs. oil). (E) Female blood glucose for ITT time points (OPFR vs. oil). (F) 
Female average glucose AUC for ITTs. All data were analyzed using two-way ANOVA 
(time x diet x treatment) for ITT time points; (diet x treatment) for glucose average AUC 
with Fisher’s LSD tests between and across diets and treatments. For significant 
difference between diets within diets (a = p < 0.05, b = p < 0.01, c = p < 0.001, d = p < 
0.0001) and letter colors indicate which data points are compared. Significant differences 
between treatments (OPFR vs. oil), *p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001. For 
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blood glucose AUC, bracketed bars represent the comparisons for treatment effects. Data 
are represented as mean ± SEM. 
 
 
Figure 27. Terminal female and male blood triglycerides and female uterine weights. (A) 
Male terminal blood triglycerides (B) Female terminal blood triglycerides (C) Average 
terminal female uterine weights (uterine weight/body weight). All data were analyzed using 
two-way ANOVA (treatment X diet) with Fisher’s LSD tests between and within 
treatments. For significant effects, *p < 0.05, ** p < 0.01, ***p < 0.001, **** p < 0.0001. 
Bracketed bars represent the comparisons between treatments within diet. Diet effects do 
not have bars. Data are represented as mean ± SEM. 
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Figure 9.  
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Figure 10.  
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  Figure 11.  
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Figure 12. 
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Figure 13. 
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Figure 14. 
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Figure 15.  
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Figure 16. 
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Figure 17. 
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Figure 18. 
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Figure 19. 
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Figure 20.  
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Figure 21. 
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Figure 22. 
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Figure 23. 
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Figure 24.  
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Figure 25. 
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Figure 26. 
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Figure 27. 
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SUMMARY 

Flame retardants (FR), including polybrominated diphenyl ethers (PBDEs) and 

organophosphate FR (OPFR), that we examined in the present studies (2,2’,4,4’-

tetrabromodiphenyl ether (BDE-47), tris(1,3-dichloro-2-propyl)phosphate (TDCPP), 

triphenyl phosphate (TPP), and tricresyl phosphate (TCP)) are detected at high 

concentrations in the environment, but little is known about their effects on energy 

homeostasis in in vivo mammalian models 15,16,22-24.  In the present studies, we found FR 

exposure during adulthood altered hypothalamic homeostatic gene expression and 

developmental FR exposure modified energy expenditure, glucose homeostasis, and fat 

metabolism. These FR-induced effects in central and peripheral parameters of energy 

balance were sex-dependent and more striking in males.  While we have observed 

outcomes of flame retardant exposure on energy balance, the next step would be to 

examine the central and peripheral FR-induced mechanisms of action that elicit these 

effects.   

Unexpectedly, male mice were more susceptible to FR-induced alteration in 

energy homeostasis, but it is unclear how FR is primarily exerting its effects. FR interact 

with many receptors involved in metabolism centrally and peripherally in vitro such as 

androgen receptor (AR), estrogen receptors (ERs), peroxisome proliferator-activated 

receptors (PPARα/γ), and thyroid receptor (TR), which increases the difficulty in isolating 

receptor-mediated mechanisms 9-11,13,271,304,311,315-317,319,320. Additionally, these receptors 

also participate in crosstalk with each other, which further complicates this investigation 

26-35,37,443-445. Therefore, we could utilize global and tissue-specific knockout (KO) models 

in males and females to determine potential receptor-mediated mechanisms in each sex 

and in different tissues.  

Future studies that investigate FR mechanism in central and peripheral tissue 

would be beneficial to clarify the cause of the effects that we observed in the current 
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studies. Global gene network analysis of central and peripheral gene networks by using 

RNA sequencing or quantitative real-time PCR on genes in tissues such as the liver, fat, 

and hypothalamus can be examined to elucidate FR-induced effects throughout the 

body. In the present studies (Chapter 1), we have examined that FR exposure alters 

gene expression in the ARC, which has an integrative role in the hypothalamic 

melanocortin neurocircuitry to control energy homeostasis 54. However, future studies 

could involve examining if FR exposure also alters gene expression in other 

hypothalamic nuclei that also have roles in energy balance, including the paraventricular 

nucleus, dorsomedial hypothalamus, lateral hypothalamus, and ventromedial 

hypothalamus by using real-time quantitative PCR (qPCR).  To determine the 

components of the melanocortin neurocircuitry that are activated from FR exposure, 

immunohistochemistry can be used to double-label for proopiomelanocortin (POMC), 

neuropeptide Y (NPY), glutamate transporter 1, or glutamic acid decarboxylase 67 in the 

hypothalamus to visualize the density of innervated neuronal projections.  

Furthermore, neuronal cell type should be considered when studying the 

expression of genes and proteins that are ubiquitously expressed throughout the 

hypothalamus, including the ARC 72,359. After FR treatment, green fluorescent tagging for 

POMC, NPY, or kisspeptin can be used to visualize individual neurons in the 

heterogeneous ARC 72,359. Implementing qPCR on these single cells can determine if the 

FR affects the gene expression we observed in this study are similarly influenced in 

individual neurons 72,359.  By utilizing electrophysiology on glucose-sensing neurons, 

effects of FR exposure on insulin, leptin, and ghrelin sensitivity and cation channel 

activity can be examined. Additionally hormone assays could be used to test if FR 

exposure elevates the levels of these peptide hormones in the blood. Depending on if 

these neurons are sensitive to ghrelin, insulin, or leptin, and if the concentrations of 

these hormone peptides are also increased in circulation, energy balance parameters 
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such as glucose homeostatic parameters such as food intake, glucose uptake, energy 

expenditure, and hepatic glucose production in peripheral tissues may also be altered 

387,388,390,392.  

Further investigation can characterize additional toxicological ramifications of FR 

exposure.  A more accurate dose-response curve for these compounds should be 

established due to recent studies that revealed harmful effects at or below the no-

observed-adverse-effect-level (NOAEL) designated by the U.S. Environmental 

Protection Agency 15,16,281,305,314,319,403. Since we experienced difficulty with breeding 

successful pregnancies and litter in dams exposed to OPFR in the present study, 

maternal toxicity and care studies will enhance our understanding of effects of OPFR 

exposure during pregnancy. In the past, studies demonstrate that EDCs such as 

bisphenol A decreases maternal care, but these behaviors have not been tested in 

subjects for these compounds 206,446. In the present study, perinatal FR exposure clearly 

altered energy balance, but studying maternal-fetal and lactational transfer of flame 

retardants and their metabolites by using liquid chromatography/mass spectrometry 

would elucidate the concentrations that are affecting offspring.  

Although the current studies were exploratory, they elucidate central and 

peripheral consequences of FR exposure on energy homeostasis. Interestingly, these 

compounds were examined at relevant levels in the environment and we observed 

diverse effects, especially in male mice 18,22,24. Therefore, these studies potentiate further 

investigation to determine if the FR exposure currently in the environment could impact 

the general public and by what mechanism.   
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