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ABSTRACT OF THE DISSERTATION

Improving and Tuning the Performance of Server Systems

by Cheng Li

Dissertation Directors: Thu D. Nguyen and Ricardo Bianchin

Modern server systems incorporate complex hardware ahdaeftechnologies, such as solid-
state drives and software virtualization. Maximizing tlegfprmance of these complex systems
involves many challenges. For example, their performamceaften be stronglyféected by
multiple configuration parameters. At the same time, seryividers using these servers
often have complex performance objectives, such as adigieailtiple performance targets at
the same time.

In this dissertation, we address three such challengegoirmg space ficiency in solid-
state drives used as caches (and consequently perfornfansgrage arrays, reducing perfor-
mance variability in virtualized systems, and engineegagormance to meet multiple perfor-
mance targets. We built three systems to tackle these nlgaeconcretely. The first system,
called Nitro, uses deduplication and local compressiomtoeiase thefeective (solid-state)
cache size of network-attached storage systems, imprgénigrmance and spacéieiency
while minimizing total cost. The second system, called VAlEence, leverages solid-state
drives and non-work-conserving scheduling to provide istast YO performance in virtu-

alized multi-tenant systems. The third system, called @eTumitigates the complexity of



tuning performance to meet multiple performance targeisuiti-tier systems using optimiza-
tion. Our extensive experimental evaluations show thatsgatems can consistently improve
performance arfdr achieve the desired performance objectives. Thesavmsisults suggest
that the principles and techniques embodied in our systeensteong steps towardfectively

managing the performance of modern server systems.
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Chapter 1

Introduction

Despite having received a significant amount of attentiomfresearchers and practitioners,
server systems still exhibit some important performana@lehges, such as iffeciencies in

the use of solid-state drives (SSDs) as data caches, perficarinterference and variability

in virtualized systems, and feiculties in configuring systems to meet multiple performance
targets. In this dissertation, we address these threesdgalé by designing, implementing, and
evaluating performance improvement and tuning technifpreseveral real systems. Next, we
overview the motivation for ourforts, and the techniques and systems we built. We conclude

the section with a summary of our contributions, and an wetior the rest of the dissertation.

1.1 Motivation

Server systems are the basic but crucial components ineddé&as. Internet service giants,
such as Google, Facebook, and Amazon, manage hundredsushtids of server machines
in their datacenters. We observe three trends from thisibigne: (1) As advanced hardware
technologiesi(e., SSDs, phase-change memory ) become available, more arel sanrer
systems will leverage these advanced technologies to wapreerall performance; (2) cloud
service providers, such as Google App Engine, Amazon EC@ Miorosoft Azure, allow
small companies to rent servers to help traditional IT depant to transition their computing
systems to the cloud; (3) As server systems gets complicaex@brmance tuning for these
systems needs to consider multiple factors or multiple dsins, which are based on users

new requirements. Next, we summarize the motivation of llesis and new challenges from



the architectural and performance requirement persm@sctiv

Inefficiency in the use of SSD cache spac&he emergence of flash-based SSD reshapes the
storage landscape because SSD as a persistent storagastmatith higher performance than
hard disk drives (HDD). This can help service provider digantly increase the performance
of their servers. However, there are inherent tréiidebetween the performance and cost per
byte of storage. For example, a 2.4 TB flash fusigd tard that can servicel00K IOPS
nearly costs~$27K [2], while 2TB HDD that barely services100 IOPS only costs-$100.
Fundamentally though, the goals of high performance antdetisient storage are in conflict.
Solid state drives (SSDs) can support high IOPS with lownlatebut their cost will be higher
than hard disk drives (HDDs) for the foreseeable future.[85] contrast, HDDs have high
capacity at relatively low cost, but IOPS and latency aretéthby the mechanical movements
of the drive. Although a full-flash array can increase pemnance significantly, system admin-
istrators may find a HDEBSSD hybrid storage array more cosfi@ent, where SSD services as
a cache in front of HDD arrays.

Previous work has explored SSDs as a cache in front of HDDsldoeas performance
concerns [7, 37, 113], and the SSD interface has been moébii@adching purposes [93], but
the cost of SSDs continues to be a large fraction of totahgeicost. Thus, further optimizing
SSDs caching performance along both the space and costglonememains an open research
problem.

I/O unpredictability in virtualized multi-tenant systems. Recent trend shows that IT con-
sumers prefer to rent servers and resources rather thadisgerapital on these dedicated
infrastructure and depreciate over time. The notion of @loamputing is based on sharing
of resources to achieve economic of scale. IT infrastrectaroutsourced to cloud service
providers so that workloads fromfterent IT consumers are shared and collocated. Traditional
IT infrastructure model is shrinking because cloud commquuénables IT to more rapidly adjust

resources to meet fluctuating and unpredictable businesaruk



With the advent of cloud computing, virtualization has beeahe primary strategy to con-
solidate diverse workloads (encapsulated in virtual meehor VMs) to ensure high utilization
of physical machines (PMs). The workload in the cloud rarfga® computation intensive Al
tasks [28, 34, 112, 111] to HPC jobs [77, 50]. Among its vasitkenefits, virtualization in-
creases fault isolation and simplifies workload migratib8,[14]. Many laaS cloud providers,
such as Amazon EC2 and Rackspace, use virtualization amslubetion in dfering their ser-
vices.

Unfortunately, our quantification of storag®lperformance across a range of workloads,
virtual machine monitor (VMM) architectures, approachestorage virtualization, and stor-
age devices shows widespread performamggredictabilityin the face of consolidation. In
fact, VM performance is essentially unpredictable, sir riumber of co-located VMs and
their workloads may change each time the VM runs, or evemduwisingle run. For example,
researchers have shown a single run of a fixed-load VM on Am&%&2 to exhibit wild per-
formance swings due to consolidation [87]. VM performanay vary significantly in the face
of consolidation. Interestingly, the use of solid-stateel (SSDs) can exacerbate the prob-
lem because the SSD write performance gets much worse wheoloated with multiple
VMs. Since many users may desire consistent performancargue that laaS cloud providers
should dfer a new class of predictable-performance serincaddition to(and using dierent
resources from) their existing (predictability-oblivE)uservices.

Along these lines, our research seeks to create virtuatigsigms that exhiberformance
predictability for this new class of service. This property implies thatakerage throughput
and response time experienced by each VM should b&agtad by any other VM executing
on the same PM or the overall utilization of the PM. In factifpenance should be the same
whether the VM runs in isolation or is co-located with any rtnam(up to a pre-defined limit)
of other VMs.

Importantly, note that our notion of performance preditiighbdi ffers fromperformance



isolation[14, 45, 46, 59, 62, 86, 106]. The goal of isolation is to eaghat each co-located
VM achieves at least a minimum desired level of performanthis is one of the goals of
predictability. However, in performance isolation it ipigally acceptable to dedicate more
resources than this minimum, if those resources are alailabcontrast, dedicating any avail-
able resources beyond a fixed amount will likely ruin preatidtty. One may see performance
isolation as a less strict form of performance predictghbiliThe performance of each VM
should always be the same, regardless of how many other Vsianing on the same server
or how active those VMs are.

Challenges in simultaneously achieving multi-point perfomance objectives.Modern server
systems encompass multiple components/@nldyers containing configuration parameters
that can &ect performance. Examples include parameters controllisgamount of paral-
lelism (e.g, number of threads), the size and replacement policy usaddmory caches, and
the scheduling policies for processing workloads. As thamlexity of server systems con-
tinues to increase, managing the interplay between thedg@oocation parameters to precisely
tune performance becomes a challenging task.

This challenge is exacerbated by the need of many servicéders to meet multiple per-
formance objectives. For example, reducing the tail lagsnof on-line services has received
much attention (e.g., [31, 47, 116]). However, techniquas @nfiguration parameter values
for reducing tail latencies can often negatively impacfqenance at other percentiles in the
performance cumulative distribution function (CDF).

Given the challenge of tuning system performance to meeatglesperformance objective
(e.g, minimize median response time), it is not surprising thatrtg for multiple performance
targets is a challenging, error-prone, and time-consurakegcise for server system adminis-

trators.



1.2 Research Overview

With the above motivations in mind, the goal of this diss@tais to build software techniques
and systems that mitigate the ffieiencies and performance management challenges we iden-
tified. Specifically, we design and prototype three novetesys: Nitro, VirtualFence, and

OpTune. The next few subsections overview the systems aiirdntiain evaluation results.

1.2.1 Nitro

Nitro is an SSD cache that leverages data reduction techsitp further reduce the capital
cost of and to increasdfective capacity. Data reduction techniques adopted iroMitclude
deduplication and local compression.

We designed and built Nitro, and explored extensively withl@ation: (1) an SSD cache
design with adjustable deduplication, compression, argklaeplacement units, (2) an eval-
uation of the trade{is between data reduction, RAM requirements, SSD writesi(exd up
to 53%, which improves lifespan), and storage performaand,(3) acceleration of two pro-
totype storage systems with an increase in IOPS (up to 126&o)eduction of read response
time (up to 55%) compared to an SSD cache without Nitro. Adidétl benefits of Nitro include

improved random read performance, faster snapshot restwleeduced writes to SSDs.

1.2.2 VirtualFence

VirtualFence is a storage system that provides predictabléormance in virtualized multi-
tenant scenario. In this work, we argue that laaS cloud gewsi should provide a class of
predictable-performance service in addition to their axgs(predictability-oblivious) services
since many users may desire consistent performance.

VirtualFence reduceg® unpredictability by leveraging three main techniques: n@n-
work-conserving time-divisiory© scheduling, (2) a small SSD cache in front of a much larger

hard disk drive (HDD), and (3) space-partitioning of both 8SD cache and the HDD.



Our evaluation of VirtualFence demonstrates that imprdy@spredictability in virtual-
ized systems significantly. More fundamentally, VirtuaiEe illustrates the tradédbetween
predictability and performance. We conclude that curreltiMé are far from providing stor-
age JO performance predictability. Systems like VirtualFenaa cemedy this problem, while
allowing the cloud provider to select an appropriate compse between performance and

predictability.

1.2.3 OpTune

OpTune is a framework designed to help system adminisgatoe these parameters. OpTune
asks administrators to specify objectives to shape th@pednce CDFs of systems;g, min-
imize the median response time while keeping th®8 pércentile below a target value. In fact,
administrators can specify entire target CDFs. OpTune tises a graphical representation of
the system, performance instrumentation and profiling,raadipulations of the profiled CDFs
of components to configure the system.

We demonstrate the broad utility of OpTune by integratinigtid three dfferent, widely-
used systems: a Web server, a filesystem emulator, and a Map&server cluster. Evaluation
results demonstrate that OpTune successfully helps astmaitars to quickly identify configu-

ration parameter values to best achieve the desired pafarenbehaviors.

1.3 Contributions

In summary, our contributions in this dissertation are:

e We propose Nitro, an SSD cache that utilizes deduplicatompression, and large re-
placement units to accelerate primaf@.

e We investigate the tradeffs between deduplication, compression, RAM requirements,
performance, and SSD lifespan. We experiment with storggiems prototypes to vali-

date Nitro’s performance improvements.



1.4

We study the impact of VMM architecture, approach to stonggealization, and stor-
age device on/O predictability.

We propose VirtualFence, a system that combines SSDs vgpadriHDD caches, space
and non-work-conserving time partitioning. We quantife impact of each feature of
VirtualFence on /O predictability. Using VirtualFence, we investigate thldamental
tradedt between predictability and performance.

We propose and build the OpTune framework for guiding adstiafors when configur-
ing server systems to meet a set of performance objectives.

We implement OpTune in three diverse server systems to denada its wide applica-
bility.

We present results from a large set of case studies to showdmwne can ease the
task of performance tuning, particularly when this prodessives tradefis between

multiple points on the performance CD&.¢, average arfdr median vs. tail latencies).

Overview of the Dissertation

The remainder of the dissertation processes as follows.pt€éh& discusses related works.

Chapter 3 describes the design, implementation, and di@iuaf Nitro. Chapter 4 details

the O predictability problem in virtualized multi-tenant sgats and describes VirtualFence.

Chapter 5 presents the details and evaluation OpTune.si@dlapter 6 concludes the disser-

tation and discusses future work.



Chapter 2

Background and Related Work

In this chapter, we first describe prioff@rts on SSD caches research to provide background
for the remainder of the thesis. We then discu§eres and related work iry© predictability

research and finally summarize related work in admin-gufdiédange performance engineer-

ing.

2.1 Optimizing Flash Performance and Capacity

SSD as storage or cachéMany studies have focused on incorporating SSDs into tretiegi
hierarchy of a storage system [11, 37, 58, 113]. In particskveral works propose using flash
as a cache to improve performance. For example, Intel Turbmdfy [78] adds a nonvolatile
disk cache to the hierarchy of a storage system to enablstistup. Kgil et al. [57] splits a
flash cache into separate read and write regions and usegraiprable flash memory con-
troller to improve both performance and reliability. Howewnone of these systems combine
deduplication and compression techniques to increasefihetiee capacity of an SSD cache.
Several recent papers aim to maximize the performance jtehflash devices by incor-
porating new strategies into the established stor&gstack. For example, SDF [88] provides a
hardwargsoftware co-designed storage to exploit flash performantengials. FlashTier [93]
specifically redesigned SSD functionality to support caghinstead of storage and introduced
the idea of silent eviction. As part of Nitro, we explored gibte interface changes to the
SSD including aligned WEU writes and TRIM support, and we soeed the impact on SSD

lifespan.



Deduplication and compression in SSDDeduplication has been applied to several primary
storage systems. iDedup [99] selectively deduplicateaagny workloads inline to strike a bal-
ance between performance and capacity savings. Chunk3&stesigned a fingerprint index
in flash, though the actual data resides on disk. Dedupviif@ijoves inline deduplication by
leveraging the high random read performance of SSDs. Ulttigse systems, Nitro performs
deduplication and compression within an SSD cache, whiohecdance the performance of
many primary storage systems.

Deduplication has also been studied for SSD storage. Fongea CAFTL [24] is de-
signed to achieve bestfert deduplication using an SSD FTL. Kim et al. [60] examinathg
the on-chip memory of an SSD to increase the deduplicatitio. ldnlike these systems, Nitro
performs deduplication at the logical level of file cachinghwoff-the-shelf SSDs. Feng and
Schindler [38] found that VDI and long-term CIFS workloadsde deduplicated with a small
SSD cache. Nitro leverages this insight by allowing ouriphfingerprint index to point to a
subset of cached entries. Another distinction is that spregious deduplicated SSD projects
worked with fixed-size (non-compressed) blocks, they didawe to maintain multiple refer-
ences to variable-sized data. Nitro packs compressedtsxteén WEUS to accelerate writes
and reduce fragmentation. SAR [76] studied selective cgcbthemes for restoring from

deduplicated storage. Our technique uses recency instéaatjoency for caching.

2.2 /O Predictability

Disk Drives and 1/O Interference. Many recent studies have established tf@tihterference
prevents VMs from achieving predictable performance [B},46, 59, 62, 106]. This is pri-
marily due to the mechanical nature of HDDs. Disks makegderformance highly dependent
on the locality of accesses across VMs, variability /@ kizes, request priorities, and access

burstiness [45].
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Many previous &orts to address this problem have focused primarily on mesoschedul-
ing techniques, seeking to provide proportional allocatidl/O resources with strong isolation
[48, 53, 104, 109]. Argon [104] in particular shares commechhiques with VirtualFence,
such as space partitioning of caches (memory caches in 8geafaArgon) and time parti-
tioning of /O access time. However, our focus on predictability instefadolation leads to
fundamental dferences, including non-work-conserving allocation pescand static config-
uration parameters.

Other works seek to provide proportional allocation whiorting latency-sensitive ap-
plications [36, 91, 109, 117]. mClock [45] goes further bpyding proportional allocation,
subject to minimum reservations and maximum limits. In @gpie, mClock can support pre-
dictability when the maximum limit is set equal to the resgion. However, the authors did not
consider this scenario. Moreover, mClock does not conshdeproperties of storage devices
and how they impact predictability. VirtualFence does dmhce, combines SSDs and HDDs.
For this reason, the two systems cannot be fairly comparadtgatively. Alternate approaches
using sophisticated machine learning techniques to mekuser QoS targets have also been
studied [118].

Besides the dierences described above, our work identifies predictgbdistricter form
of isolation, as desirable, and is the first to study hybridF8D systems in this context. We

also quantify the lack of predictability across a range ofMMdrchitectures and configurations.

Hybrid SSDs and HDDs. Recent advances in Flash memory SSDs have led to studies ex-
ploiting their high-speed random reads, low power consignpfeature size, and shock resis-
tance [7, 15, 35, 56, 67, 110]. Most research on SSD orgamizhts focused on either using
SSDs as HDD replacements [15, 54], or using SSDs as a caelyiegih the storage hierarchy
[56, 67, 85, 92, 113]. The primary focus of these works is @ybrformance benefits of SSDs.
The energy implications of SSDs have also been studied [A], 1

In comparison to thesefferts, our work is the first to quantify the impact of SSDs on
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VM performance predictability. In fact, we present the feckaracterization of predictability
on SSDs across a spectrum of VMM types. Interestingly, osulte show that SSDs duot
guarantee predictability: in write-intensive workloattgir predictability is actuallyvorsethan
that of HDDs. Moreover, SSDs exhibit cost-per-byte thdt sinnot compete with those of

HDDs. VirtualFence combines the advantages of both staraga to promote predictability.

2.3 Performance Engineering in Server Systems

Full-range performance tuning has recently garneredastei~or example, recent work [119]
uses a similar approach to OpTunees; graphical representation of system together with com-
position of components’ performance CDFs—to predict theralv performance of compound
Web services. Unlike this study however, we seek to tune gordtion parameters to actually
achieve performance goals rather than only estimatingsyperformance. We also implement
and evaluate OpTune in three real systems.

Several additional projects have studied the problem dbpmiance variability in dierent
ways. For example, the real-time systems community hasidenesl mechanisms to ensure
that groups of tasks meet their deadline targets [18, 30]ewie high performance computing
community has studied mechanisms to remove performan@didy or jitter [96]. OpTune is
more flexible in that it helps administrators to shape theeperformance CDFs. Thus, it can
be used to find appropriate configurations fdtetient desired tradés between performance
(e.g., average response time) and performance variafglity, tail latencies).

Our work is also partly inspired by prior work on quality ofrgiee and resource allo-
cation fairness studies [23, 65, 12, 41, 45], which atteropguarantee a minimum level of
performance in server and networked systems. While theseaghes do use optimization
techniques to suggest system configuration settings, tteniivize users to share resources,
leaving other hardware idle. As pointed out in [90, 95] hoerethis may increase performance

variability. Similarly, online services seek to guarantieat a high percentile of their requests
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complete within an acceptable amount of time [65, 107, 38n& of these works [114, 100]
specifically target median performance; we go beyond &l phior work, by considering full-
range performance that also accounts for long-latency. tail

Finally, a few prior works have proposed to manage perfogadry adjusting system con-
figurations, e.g. [121, 120]. These systems either had riorpeaince target or needed to satisfy
a single-point service-level agreement (e.g" 9@rcentile performance lower than 100ms).
OpTune diters from theseféorts as it allows administrators to specify multiple peniance
targets.

An additional related topic is Web Service composition [2D, While these works do

consider QoS issues [40], we go beyond them by studyingdiniire performance tuning.
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Chapter 3

A Capacity-Optimized SSD Cache for Primary Storage

3.1 Introduction

In this chapter, we present Nitro, an SSD cache that appliesneed data reduction techniques
to SSD caches, increasing thi@eetive cache size and reducing SSD costs for a given system.
Deduplication (replacing a repeated data block with a ezfeg) and compression (e.g. LZ) of
storage have become the primary strategies to achieve pagte and energyfieciency, with
most research performed on HDD systems. We refer to the catidin of deduplication and
compression for storage as capacity-optimized storag, (vhich we contrast with traditional
primary storageifs) without such features.

Though deduplicating SSDs [24, 60] and compressing SSQ¥BEIA.15] has been studied
independently, using both techniques in combination fohoay introduces new complexities.
Unlike the variable-sized output of compression, the Flasinslation Layer (FTL) supports
page reads (e.g. 8KB). The multiple references introducitlal deduplication conflicts with
SSD erasures that take place at the block level (a group elspagg. 2MB), because individual
pages of data may be referenced while the rest of a block ath&twise be reclaimed. Given
the high churn of a cache and the limited erase cycles of S&Dsechnique must balance
performance concerns with the limited lifespan of SSDs. \&kebe this is the first study
combining deduplication and compression to achieve capaptimized SSDs.

Our design is motivated by an analysis of deduplicationepast of primary storage traces

and properties of local compression. Primary storage wadd vary in how frequently similar
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content is accessed, and we wish to minimize deduplicat@nheads such as in-memory in-
dices. For example, related virtual machines (VMs) havé kdigduplication whereas database
logs tend to have lower deduplication, so Nitro supportgeting deduplication where it can
have the most benefit. Since compression creates varetghl data, Nitro packs compressed
data into larger units, called Write-Evict Units (WEUSs),ialinalign with SSD internal blocks.
To extend SSD lifespan, we chose a cache replacement pbhctyracks the status of WEUs
instead of compressed data, which reduces SSD erasuresypénant finding is that replacing
WEUs instead of small data blocks maintains nearly the saleechit ratio and performance
of finer-grained replacement, while extending SSD lifespan

To evaluate Nitro, we developed and validated a simulatdrtawo prototypes. The proto-
types place Nitro in front of commercially available stagggoducts. The first prototype uses
acos system with deduplication and compression. The systenpisdily targeted for storing
highly redundant, sequential backups. Therefore, it hagigandom /O performance, but
it becomes a plausible primary storage system with Nitrelgcation. The second prototype
uses arps system without deduplication or compression, which Nitsmaccelerates.

Because of the limited computational power and memory of S[BD] and to facilitate the
use of df-the-shelf SSDs, our prototype implements deduplicatimh @mpression in a layer
above the SSD FTL. Our evaluation demonstrates that Nitpporres JO performance because
it can service a large fraction of read requests from an S$Becwith low overheads. It also
illustrates the tradefts between performance, RAM, and SSD lifespan. Experimeitiisono-
totype systems demonstrate additional benefits includmgaved random read performance
in aged systems, faster snapshot restore when snapsholapowgth primary versions in a
cache, and reduced writes to SSDs because of duplicatentolmeummary, our contributions
are:

Summary of contributions. We propose Nitro, an SSD cache that utilizes deduplication,
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Figure 3.1:Caching tens of thousand of blocks will achieve most of theptial dedup-
lication.

compression, and large replacement units to acceleratepril/O. We investigate the trade-
offs between deduplication, compression, RAM requiremertsopnance, and SSD lifespan.
We experiment with bothos andrres prototypes to validate Nitro’s performance improvements.
The remainder of the paper proceeds as follows. The nexbeatiotivates our work and
discusses some of the background. Section 3.3 describmsaid its architecture. Section 3.4
describes an SSD co-design to validate the benefits of WEkiraand our prototypes. Sec-
tion 3.5 describes our storage traces and platform, andoBe8i6 presents our evaluation

results.

3.2 Background and Discussion

In this section, we discuss the potential benefits of addauydlication and compression to an
SSD cache and then discuss the appropriate storage laysd to@ache.

Leveraging duplicate content in a cache.l/O rates for primary storage can be accelerated
if data regions with dferent addresses but duplicate content can be reused in @ daAttle
previous work focused on memory caching and replicatingmomnly used data to minimize

disk seek times [63], we focus on SSD caching.
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We analyzed storage traces (described3drb) to understand opportunities to identify re-
peated content. Figure 3.1 shows the deduplication ra¢iin@d in§3.5.1) for 4KB blocks for
various cache sizes. The deduplication ratios increasdysfor small caches and then grow
rapidly to~ 2.0X when the cache is fiiciently large to hold the working set of unique content.
This result confirms that a cache has the potential to captsgignificant fraction of potential
deduplication [60].

This result motivates ourfirts to build a deduplicated SSD cache to accelerate primary
storage. Adding deduplication to a storage system incsee@@plexity, though, since infras-
tructure is needed to track the liveness of blocks. In cehtaching requires less complexity,
since cache misses do not cause a data loss for write-thigaditing, though performance is
affected. Also, the overhead of calculating and managing sdmgerprints must not degrade
overall performance.

Leveraging compression in a cache.Compression, like deduplication, has the potential to
increase cache capacity. Previous studies [29, 49, 105ha¥6 shown that local compression
saves from 10-60% of capacity, with an approximate mean &6 b8ing a fast compressor
such as LZ. Potentially doubling our cache size is desiradddong as compression and de-
compression overheads do not significantly increase latedsing an LZ-style compressor
is promising for a cache, as compared to a HDD system thattmigga slower compressor
that achieves higher compression. Decompression spe&bisrdical to achieve low latency
storage, so we compress individual data blocks instead mfatenating multiple data blocks
before compression. Our implementation has multiple cesgiofdecompression threads,
which can leverage future advances in multi-core systems.

A complexity of using compression is that it transforms fiesirked blocks into variable-
sized blocks, which is at odds with the properties of SSDmil8rF to previous work [49, 75,
115], we pack compressed data together into larger unitsd{8yEOur contribution focuses on

exploring the caching impact of these large units, whicheaas compression benefits while
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decreasing SSD erasures.

Appropriate storage layer for Nitro. Caches have been added at nearly every layer of storage
systems: from client-side caches to the server-side, and the protocol layerg.g. NFS)
down to caching within hard drives. For a deduplicated antpressed cache, we believe
there are two main locations for a server-side cache. Theidi® the highest layer of the
storage stack, right after processing the storage protdduos is the server’s first opportunity

to cache data, and it is as close to the client as possiblehwhinimizes latency.

The second location to consider is post-deduplication ¢amapression) within the system.
The advantage of the post-deduplication layer is that otlgreexisting functionality can be
reused. Of course, deduplication and compression haveet@chieved wide-spread imple-
mentation in storage systems. An issue with adding a cactie gtost-deduplication layer is
that some mechanism must provide the file recipe, a struatagping from file and fiset to
fingerprint €.9. SHA-1 hash of data), for every cache read. Loading file recgmds addi-
tional /O and latency to the system, depending on the implementatithile we added Nitro
at the protocol layer, fotos systems, we evaluate the impact of using file recipes to actel
duplicate reads (Section 3.3.1). We then companedaystems that do not typically have file

recipes, but do benefit from caching at the protocol layer.

3.3 Nitro Architecture and Design

This section presents the design of our Nitro architect8tarting at the bottom of Figure 3.2,
we use eithetos or trs HDD systems for large capacity. The middle of the figure sh88Bs
used to accelerate performance, and the upper layer shewsritory structures for managing
the SSD and memory caches.

Nitro is conceptually divided into two halves shown in Fig8.2 and in more detail in
Figure 3.3 (steps 1-6 are described$13.2). The top half is called tHéacheManagerwhich

manages the cache infrastructure (indices), and a lowkthadlimplements SSD caching. The
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Figure 3.2:SSD cache and disk storage.

CacheManager maintains a file index that maps the file systanrface «filehandle, ¢fset-)

to internal SSD locations; a fingerprint index that deteciglidate content before it is written
to SSD; and a dirty list that tracks dirty data for write-bamlode. While our description
focuses on file systems, other storage abstractions suaobllanes or devices are supported.
The CacheManager is the same for our simulator and protdtgpEementations, while the
layers below dfter to either use simulated or physical SSDs and HD§Bs2(4).

We place a small amount of NVRAM in front of our cache tdibu pending writes and to
support write-back caching: check-pointing and jourr@bithe dirty list. The CacheManager
implements a dynamic prefetching scheme that detects sajuaccesses when the consec-
utive bytes accessed metric (M11 in [69]) is higher than aghold across multiple-streams.
Our cache is scan-resistant because prefetched data Huwaissed only once in memory will
not be cached. We currently do not cache file system metadataube we do not expect it to

deduplicate or compress well, and we leave further analgdisture work.
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3.3.1 Nitro Components

Extent. An extent is the basic unit of data from a file that is storedhe tache, and the
cache indices reference extents that are compressed aad stdhe SSDs. We performed a
large number of experiments to size our extents, and therérade-d's in terms of read-hit
ratio, SSD erasures, deduplication ratio, and RAM overbeAd one example, smaller extents
capture finer-grained changes, which typically resultsghér deduplication ratios, but smaller
extents require more RAM to index. We use the medi@rsize of the traces we studied (8KB)
as the default extent size. For workloads that hatieking deduplication and® patterns than
what we have studied, aftirent extent size (or dynamic sizing) may be more apprapriat
Write-Evict Unit (WEU). The Write-Evict Unit is our unit of replacement (writing aedict-
ing) for SSD. File extents are compressed and packed tagathbene WEU in RAM, which is
written to an SSD when it is full. Extents never span WEUSs. ¥dlse WEU size equal to one
or multiple SSD block(s) (the unit for SSD erase operati@pahding on internal SSD proper-
ties, to maximize parallelism and reduce internal fragrmgor. We store multiple file extents
in a WEU. Each WEU has a header section describing its cantetich is used to accelerate
rebuilding the RAM indices at start-up. The granularity atbe replacement is an entire WEU,
thus eliminating copy forward of live-data to other physigl@cks during SSD garbage collec-
tion (GC). This replacement strategy has the property afcig erasures within an SSD, but
this decision impacts performance, as we discuss extéysive3.6.1. WEUs have generation
numbers indicating how often they have been replaced, wdnelused for consistency checks
as described later.

File index. The file index contains a mapping from filehandle afiget to an extent’s location
in a WEU. The location consists of the WEU ID number, thiset within the WEU, and the
amount of compressed data to read. Multiple file index entmeay reference the same extent
due to deduplication. Entries may also be marked as dirtyrifevback mode is supported

(shown in gray in Figure 3.3).
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Figure 3.3:File index with base and duplicate entries, fingerprint ipdide extents stored in WEUS,
and a dirty list.

Fingerprint index. To implement deduplication within the SSDs, we use a fingetrpndex
that maps from extent fingerprint to an extent’s locatiorhimithe SSD. The fingerprint index
allows us to find duplicate entries anffextively increase the cache capacity. Since primary
workloads may have a wide range of content redundancy, tigerfnint index size can be
limited to any arbitrary level, which allows us to make tramfs between RAM requirements
and how much potential deduplication is discovered. Wer rief¢his as thdingerprint index
ratio, which creates a partial fingerprint index. For a partial émpgint index, a policy is
needed to decide which extents should be insertedewitied from the fingerprint index. User-
specified configurations, foldéie properties, or access patterns could be used in futurk.wo
We currently use LRU eviction, which performed as well as enaymplicated policies.

Recipe cacheTo reduce misses on the read-path, we create a cache of fles€Eigure 3.2),

which represent a file as a sequence of fingerprints refergmsitents. This allows us to check
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the fingerprint index for already cached, duplicate extehite recipes are a standard compo-
nent ofcos systems and can be prefetched to our cache, though thisescuipport from the
cos system. Since fingerprints are small (20 bytes) relativaaceiktent size (KBs), prefetching
large lists of fingerprints in the background can ltkceent compared to reading the corre-
sponding data from HDD storage. A recipe cache can be anmadaokops to opportunistically
improve read performance. We do not include a recipe cacbearircurrentres implementa-
tion because we want to isolate the impact of Nitro withowdraling other properties of the
underlying systems. Its impact on performance is discuss§8.6.2.

Dirty list. The CacheManager supports both write-through and writé-lmaode. Write-
through mode assumes all data in the cache are clean becsts® tov the system are ac-
knowledged when they are stable both in SSD and the undgrstorage system. In contrast,
write-back mode treats writes as complete when data aredagther in the NVRAM or SSD.
In write-back mode, a dirty list tracks dirty extents, whitve not yet propagated to the under-
lying disk system. The dirty list can be maintained in NVRAM SSD) for consistent logging
since it is a compact list of extent locations. Dirty extesuts written to the underlying storage
system either when they are evicted from the SSD or when tieldit reaches a size water-
mark. When a dirty file index entry is evicted (base or dupéathe file recipe is also updated.
The CacheManager then marks the corresponding file indelegmts clean and removes the

dirty list entries.

3.3.2 Nitro Functionality

File read path. Read requests check the file index based on filehandle féset.olf there is
a hit in the file index, the CacheManager will read the congmdsextent from a WEU and
decompress it. The LRU status for the WEU is updated acoglsdir-or base entries found
in the file index, reading the extent’s header from SSD calffirorihe validity of the extent.

When reading a duplicate entry, the CacheManager confirenglidity with WEU generation
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numbers. An auxiliary structure tracks whether each WEWisently in memory or in SSD.

If there is a file index miss and the underlying storage systapports file recipes (i.e.
cos), the CacheManager prefeteches the file recipe into theaemache. Subsequent read
requests reference the recipe cache to access fingerprinith) are checked against the cache
fingerprint index. If the fingerprint is found to be a duplieathen cached data can be returned,
thus avoiding a substantial fraction of potential disk ases. The CacheManager updates the
LRU status for the fingerprint index if there is a hit. If a readuest misses in both the file and
fingerprint indices, then the read is serviced from the ugiohey HDD system, returned to the
client, and passed to the cache insertion path.

File write path. On a write, extents are Hered in NVRAM and passed to the CacheManager
for asynchronous SSD caching.

Cache insertion path. To demonstrate the process of inserting an extent into tbleecand
deduplication, consider the following 6-step walk-thrbugxkample in Figure 3.3: (1) Hash a
new extent (either from caching a read miss or from the filéenpath) to create a fingerprint.
(2) Check the fingerprint against the fingerprint index. # fimgerprint is in the index, update
the appropriate LRU status and go to step 5. Otherwise ammtirith step 3. (3) Compress and
append the extent to a WEU that is in-memory, and update the) Weader. (4) Update the
fingerprint index to map from a fingerprint to WEU location) (Bpdate the file index to map
from file handle and fiiset to WEU. The first entry for the cached extent is marked &=aae”
entry. Note that the WEU header only tracks the base entjyW{ten an in-memory WEU
becomes full, increment the generation number and write fhé SSD. In write-back mode,
dirty extents and clean extents are segregated into sep&tats to simplify eviction, and the
dirty-list is updated when a WEU is migrated to SSD.

Handling of duplicate entries is slightly more complicaté€hce a WEU is stored in SSD,
we do not update its header because of the erase penaltyadvolVhen a write consists of

duplicate content, as determined by the fingerprint indelygicate entry is created in the file
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index (marked as “Dup”) which points to the extent’s locatio SSD WEU. Note that when a
file extent is over-written, the file index entry is updatedétfer to the newest version. Previous
version(s) in the SSD may still be referenced by duplicataesnin the file index.

SSD cache replacement policyOur cache replacement policy selects a WEU from the SSD
to evict before reusing that space for a newly packed WEU.QdgheManager initiates cache
replacement by migrating dirty data from the selected WEWlisk storage and removing
corresponding invalid entries from the file and fingerpnaices. To understand the interaction
of WEU and SSDs, we experimented with moving the cache repiaat decisions to the SSD,
on the premise that the SSD FTL has more internal knowledpeut co-designed SSD version
(85.2.4), the CacheManager will query the SSD to determinelvWEU should be replaced
based on recency. If the WEU contains dirty data, the Cachelyler will read the WEU and
write dirty extents to underlying disk storage.

Cleaning the file index. When evicting a WEU from SSD, our in-memory indices must also
be updated. The WEU metadata allows us to remove many file ieatgies. It is impractical,
though, to record back pointers for all duplicate entriethim SSD, because these duplicates
may be reagvritten hours or days after the extent is first written to a WElgdating a WEU
header with a back pointer would increase SSD churn. Insteadise asynchronous cleaning
to remove invalid, duplicate file index entries. A backgrdwieaning thread checks all du-
plicate entries and determines whether their generationbeu matches the WEU generation
number. If a stale entry is accessed by a client before iteiardd, then a generation number
mismatch indicates that the entry can be removed. All of tigJ/generation numbers can be
kept in memory, so these checks are quick, and rollover Gasdsandled.

Faster snapshot restorgaccess Nitro not only accelerates randortOls but also enables faster
restore antbr access of snapshots. The SSD can cache snapshot datd as prehary data
for cos storage, distinguished by separate snapshot file handles.

We use the standard snapshot functionality of the storasfersyin combination with file
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recipes forcos. When reading a snapshot, its recipe will be prefetched filek into a recipe
cache. Using the fingerprint index, duplicate reads wilesscextents already in the cache, so
any shared extents between the primary and snapshot vecsiarbe reused, without additional
disk I/0O. To accelerate snapshot restoresrfer integration with diferential snapshot tracking
is needed.

System restart. Our cache contains numerous extents used to accel@tgtarild warming up

a cache after a system outage (planned or unplanned) cadrtany hours. To accelerate
cache warming, we implemented a system restash recovery technique [93]. A journal
tracks the dirty and invalid status of extents. When redageirom a crash, the CacheManager
reads the journal, the WEU headers from SSD (faster tharingadl extent headers), and
recreates indices. Note that our restart algorithm onlylesbase entries and duplicate entries
that reference dirty extents (in write-back mode). Dupcantries for clean extents are not
explicitly referenced from WEU headers, but they can beved dficiently by fingerprint

lookup when accessed by a client, with only minimal disR& fo load file recipes.

3.4 Nitro Implementation

To evaluate Nitro, we developed a simulator and two pro&dgyd he CacheManager is shared
between implementations, while the storage componefter.dOur simulator measures read-
hit ratios and SSD churn, and its disk stub generates synttwitent based on fingerprint. Our
prototypes measure performance and use real SSDs and HDDs.

Potential SSD customization Most of our experiments use standard SSDs without any modi-
fications, but it is important to validate our design choiagainst alternatives that modify SSD
functionality. Previous projects [7, 21, 60] showed that tiesign space of the FTL can lead
to diverse SSD characteristics, so we would like to undedsteow Nitro would be fiected by
potential SSD changes. Interestingly, we found througtukition that Nitro performs nearly

as well with a commercial SSD as with a customized SSD.
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We explored two FTL modifications, as well as changes to tmedstrd GC algorithm. First,
the FTL needs to support aligned allocation of contiguougsjalal pages for a WEU across
multiple planes in aligned blocks, similar to vertical aratibontal super-page striping [21].
Second, to quantify the best-case of using SSD as a cacheustetipe cache replacement
functionality to the FTL, since the FTL has perfect inforroatabout page state. Thus, a new
interface allows the CacheManager to update indices antemgnt write-back mode before
eviction. We experimented with multiple variants and pneS& EU-LRU, an update to the
greedy SSD GC algorithm that replaces WEUSs.

We also added the SATA TRIM command [102] in our simulatoricihnvalidates a range
of SSD logical addresses. When the CacheManager issues déthivhands, the SSD performs
GC without copying forward data. Our SSD simulator is basedvell-studied simulators [7,
21] with a hybrid mapping scheme [66] where blocks are catego into data and log blocks.
Page-mapped log blocks will be consolidated into block+meaipdata blocks through merge
operations. Log blocks are further segregated into semlieegions and random areas to
reduce expensive merge operations.

Prototype system.We have implemented a prototype Nitro system in user spagerdging
multi-threading and asynchronoy®lto increase parallelism and with support for replaying
storage traces. We use real SSDs for our cache, and eitbeoarrs system with hard drives
for storage § 3.5). We confirmed the cache hit ratios are the same betweesirttulator and
prototypes. When evicting dirty extents from SSD, they aoedl to a write queue and written

to disk storage before their corresponding WEU is replaced.

3.5 Experimental Methodology

In this section, we first describe our analysis metrics. 8écwe describe several storage traces
used in our experiments. Third, we discuss the range of petemexplored in our evaluation.

Fourth, we present the platform for our simulator and pygietsystems.
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3.5.1 Metrics

Our results present overall system IOPS, including botbdsemd writes. Because writes are
handled asynchronously and are protected by NVRAM, we éurtbcus on read-hit ratio and
read response time to validate Nitro. The principal evaoatnetrics are:

IOPS: Inpuf/Output operations per second.

Read-hit ratio: The ratio of read/O requests satisfied by Nitro over total read requests.

Read response time (RRT)The average elapsed time from the dispatch of one read iteques
to when it finishes, characterizing the user-perceivalitnty.

SSD erasures:The number of SSD blocks erased, which counts against S&&péh.
Deduplication and compression ratios: Ratio of the data size versus the size after dedup-

lication or compressiorn>1X). Higher values indicate more space savings.

3.5.2 Experimental Traces

Most of our experiments are with real-world traces, but ve®alse synthetic traces to study
specific topics.

FIU traces: Florida International University (FIU) collected storagiaces across multiple
weeks, including WebVM (a VM running two web-servers), M@h email server with small
I/0Os), and Homes (a file server with a large fraction of randoites). The FIU traces contain
content fingerprint information with small granularity (Bkor 512B), suitable for various ex-
tent size studies. The FIU storage systems were reasonably, ®ut only a small region of
the file systems was accessed during the trace period. FompéxaWebVM, Homes and Mail
have file system sizes of 70GB, 470GB and 500GB in size, réspbg but we measured that
the traces only accessed 5.3%, 5.8% and 11.5% of the stopage,gespectively [63]. The
traces have more writes than reads, with write-to-readsaif 3.6, 4.2, and 4.3, respectively.
To our knowledge, the FIU traces are the only publicly avddaraces with content.

Boot-storm trace: A “boot-storm” trace refers to many VMs booting up within soshtime
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frame from the same storage system [38]. We first collecteakca twhile booting up one 18MB
VM kernel in Xen hypervisor. The trace consisted of 99% resayliests, 14% randonQ, and
1.2X deduplication ratio. With this template, we synthallic produced multiple VM traces in
a controlled manner representing a large number of cloned With light changes. Content
overlap was set at 90% between VMs, and the addresses otalasliwere shifted by 0-15%
of the address space.

Restore trace: To study snapshot restore, we collected 100 daily snapsihet38GB work-
station VM with a median over-write rate of 2.3%. Large re@asl (512KB) were issued while
restoring the entire VM.

Fingerprint generation. The FIU traces only contain fingerprints for one block sizey.(e
4KB), and we want to vary the extent size for experiments 48KB), so it is nhecessary to
process the traces to generate extent fingerprints. We usdtiapass algorithm, which we
briefly describe. The first pass records the fingerprints &oheblock read in the trace, which
is the initial state of the file system. The second pass replag trace and creates extent fin-
gerprints. An extent fingerprint is generated by calcutainrSHA-1 hash of the concatenated
block fingerprints within an extent, filling in unspecifiecbbk fingerprints with unique values
as necessary. Writ¢ds within the trace cause an update to block fingerprints anéspond-
ing extent fingerprints. A final pass replays the modifieddrac a given experiment.
Synthetic compression information. Since the FIU traces do not have compression informa-
tion, we synthetically generate content with intermingleique and repeated data based on a
compression ratio parameter. Unless noted, the compressio is set for each extent using
a normal distribution with mean of 2 and variance of 0.25respnting a typical compression
ratio for primary workloads [105]. We used LZ4 [44] for corepsion and decompression in

the prototype.
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Variable Values
Fingerprint index ratio (%) 100, 75, 50, 25, 0 ()
Compression on, off

Extent size (KB) 4,8, 16, 32, 64, 128
Write/Evict granularity WEU, extent
Cache size (% of volume) 0.5,1,2,5

WEU size (MB) 05,124
Co-design standard SSD modified SSD
Write-mode write-through write-back
Prefetching dynamic up to 128KB
Backend storage €08, TPS

Table 3.1:Parameters for Nitro with default values in bold.

3.5.3 Parameter Space

Table 3.1 lists the configuration space for Nitro, with déffsalues in bold. Due to space con-
straints, we interleave parameter discussion with exparimin the evaluation section. While
we would like to compare the impact of compression using W#adhing versus plain extent-
based caching, itis unclear how tiieiently store compressed (variable-sized) extents to SSDs
without using WEUSs or an equivalent structure [49, 75, 1Fgr that reason, we show extent
caching without compression, but with or without deduglma, depending on the experiment.
The cache is sized as a fraction of the storage system sizeth&d-IU traces, a 2% cache
corresponds to 1.4GB, 9.4GB, and 10GB for WebVM, Homes and tvées respectively.
Most evaluations are with the standard SSD interface exXoeptco-design evaluation. We use
the notation Deduplicated (D), Non-deduplicated (ND), @oessed (C) and Non-compressed

(NC). Nitro uses the WEU (D, C) configuration by default.

3.5.4 Experimental Platform

Our prototype with acos system is a server equipped with 2.33GHz Xeon CPUs (two sock-
ets, each with two cores supporting two hardware threads. system has 36GB of DRAM,
960MB of NVRAM, and two shelves of hard drives. One shelf haslTB 7200RPM SATA
hard drives, and the other shelf has 15 7200RPM 2TB drivesh Elaelf has a RAID-6 configu-

ration including two spare disks. For comparison,thesystem is a server equipped with four
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1.6GHz Xeon CPUs and 8GB DRAM with battery protection. Thare 11 1TB 7200RPM
disk drives in a RAID-5 configuration. Before each run, weetdhle initial state of the HDD
storage based on our traces.

Both prototypes use a Samsung 256GB SSD, though our expesmse a small fraction of
the available SSD, as controlled by the cache capacity pemAccording to specifications,
the SSD supports 100K random read IOPS aneéBOK random write IOPS. Using a SATA-
2 controller (3.0 Gbps), we measured 8KB SSD random readsvaites at 18.7K and 4.2K
IOPS, respectively. We cleared the SSD between experiments

We set the SSD simulation parameters based on the Micron MRIT specification [83].
We vary the size of each block or flash chip to control the SSiacity. Note that a larger SSD
block size has longer erase time (e.g., 2ms for 128KB andf8n2MB). For the unmodified
SSD simulation, we over-provision the SSD capacity by 7%garbage collection, and we
reserve 10% for log blocks for the hybrid mapping scheme. pazes reservation is used for

the modified SSD WEU variants.

3.6 Evaluation

This section presents our experimental results. We firssareahe impact of deduplication
and compression on caching as well as techniques to redumerimory indices and to extend
SSD lifespan. Second, we evaluate Nitro performance ondasthndres prototype systems

and perform sensitivity and overhead analysis. Finallystuely Nitro’s additional advantages.

3.6.1 Simulation Results

We start with simulation results, which demonstrate caglmprovements with deduplication
and compression and compare a standard SSD against a go-desi modifies an SSD to

specifically support caching.

Read-hit ratio. We begin by showing Nitro’s féectiveness at improving the read-hit ratio,



30

g 100
° 90
g 80
E 70 R
S 60t I §
()
o 50
WebVM Homes Mail
Extent (ND, NC) ===—== WEU (ND, C
Extent (D, NC) mmmmmm WEU (D, NC) ==z=z2
WEU (ND, NC) e WEU (D, C) s

Figure 3.4:Read-hit ratio of WEU-based vs. Extent-based for all waakle Y-axis
starts at 50%.

which is shown in Figure 3.4 for all three FIU traces. The dréor all traces is that adding
deduplication and compression increases the read-lut rati

WEU (D, C) with deduplication (fingerprint index ratio set260% of available SSD ex-
tent entries) and compression represents the best scem#iniamprovements of 25%, 14%
and 20% across all FIU traces as compared to a version witlealitplication or compression
(WEU (ND, NC)). Adding compression increases the read-tiorfor WEU by 5-9%, and
adding deduplication increases the read-hit ratio for WEAB¥9% and extents by 6-17%.
Adding deduplication consistentlyffers a greater improvement than adding compression, sug-
gesting deduplication is capable of increasing the readaltio for primary workloads that
contain many duplicates like the FIU traces. Comparing WBY extent-based caching with
deduplication, but without compression (D, NC), extergdshcaching has a slightly higher hit-
ratio by 1-4% due to finer-grained evictions. However, theaathges of extent-based caching
are dfset by increased SSD erasures, which are presented laserekperiment that increased
the cache size up to 5% of the file system size, the combinafiateduplication and com-
pression (D, C) showed the largest improvement. Thesetsesudgest Nitro can extend the

caching benefits of SSDs to much larger disk storage systems.
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Figure 3.5:Fingerprint index ratio impact on read-hit ratio and dedgilon for WEU
(D, NC).

Impact of fingerprint index ratio. To study the impact of deduplication, we adjust the finger-
print index ratio for WEU (D, NC). 100% means that all potahtduplicates are represented in
the index, while 0% means deduplication is turnéld ®ecreasing the fingerprint index ratio
directly reduces the RAM footprint (29 bytes per entry) bigbdikely decreases the read-hit
ratio as the deduplication ratio drops.

Figure 3.5(a) shows the read-hit ratio drops gradually asfithgerprint index ratio de-
creases. Figure 3.5(b) shows that the deduplication ristowly decreases with the finger-
print index ratio. Homes and Mail have higher deduplicatiatios &1.5X) than WebVM, as
shown in Figure 3.1. Interestingly, higher deduplicatiatias in the Homes and Mail traces do
not directly translate to higher read-hit ratios becausectiare more writes than readgi(\W/R

ratio), but do increase I0P$3.6.2). Nitro users could limit their RAM footprint by settj the
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Figure 3.6:Number of SSD erasures for modified and unmodified SSD vatiant

fingerprint index ratio to 75% or 50%, which results in a 1842RAM savings respectively
and a decrease in read-hit ratio of 5-11%. For example, wkeuncing the fingerprint index
from 100% to 50% for the Mail trace (10GB cache siz£} 31,000 duplicate extents are not
cached by Nitro, on average.

WEU vs. SSD co-design.So far, we considered scenarios where the SSD is unmodified.
Next we compare our current design to an alternative thatfieedcain SSD to directly support
WEU caching. In this experiment, we study the impact of $ilnction and the WEU-LRU
eviction policy (discussed if§5.2.4) on SSD erasures. Our co-design specifically align&J8VE
to SSD blocks (WEU-LRU-mod). We also compare our co-desigvatiants using the TRIM
command (WEkextent-LRU-TRIM), which alerts the FTL that a range of laji@addresses
can be released. Figure 3.6 plots SSD erasures normalizitedo WEU-LRU without SSD
modifications (1.0 on the vertical axis) and compares WEWQw®extent caching.

SSD erasures are 2-4X higher for the extent-LRU-mod appréee. FlashTier [93] ex-
tended to use an LRU policy) and extent-LRU-TRIM approaclt@spared to both WEU
versions. This is because the CacheManager lacks SSD layowrhation so that extent-based
eviction cannot completely avoid copying forward live SSida Interestingly, utilizing TRIM

with the WEU-LRU-TRIM approach has similar results to WEBWU-mod, which indicates
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the CacheManager could issue TRIM commands before ovetgyMWEUSs instead of mod-
ifying the SSD interface. We also analyzed the impact oftexicpolicy on read-hit ratio.
WEU-LRU-mod achieves a 5-8% improvement in read-hit rabmpared to an unmodified
version across the FIU traces.

Depending on the data set, the number of SSD erasures varidtef FTL and TRIM
alternatives, with results between 9% fewer and 20% morsuega than using WEUs. So,
using WEUSs for caching is a strong alternative when it is megical to modify the SSD or
when the TRIM command is unsupported. Though not shown,icgaxtents without SSD
modifications or TRIM (naive caching) resulted in severalevs of magnitude more erasures

than using WEUSs.

3.6.2 Prototype System Results

Next, we report the performance of Nitro for primary workdgaon bothcos andtes systems.
We then present sensitivity and overheads analysis of NMaie that the cache size for each
workload is 2% of the file system size for each dataset unlgeswise stated.
Performance in cos system. We first show how a high read-hit ratio in our Nitro prototype
translates to an overall performance boost. We replayeé#ithdraces at an accelerated speed
to use~95% of the system resources, (reserving 5% for backgrouskk)arepresenting a
sustainable high load that Nitro can handle. We setup a waanhecscenario where we use the
first 16 days to warm the cache and then measure the perfoenianithie following 5 days.
Table 3.2 lists the improvement of total IOPS (reads andeaj)jtand read response time
reduction relative to a system without an SSD cache for &lltFdces. For example, a decrease
in read response time from 4ms to 1ms implies a 75% redudtonall traces, IOPS improve-
ment is>254%, and the read response time reductior49% for Nitro WEU variants. In
contrast, the Extent (ND, NC) column shows a baseline SShimgsystem without the ben-

efit of deduplication, compression, or WEU. The read-hibri consistent with Figure 3.4.
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Metric Trace Extent Nitro WEU Variants
(%) ND, NC|ND, NC| ND, C| D, NC| D, C
cos system

WebVM| 251 307 393 | 532 | 661
IOPS | Homes| 259 341 432 | 556 | 673

Mail 213 254 292 | 320 | 450
WebVM 52 54 63 72 78
RRT | Homes| 46 49 55 57 62
Mail 50 53 61 67 72
TPS System

WebVM| 93 113 148 | 198 | 264
IOPS | Homes| 90 130 175 | 233 | 287

Mail 56 75 115 | 122 | 165
WebVM| 39 41 49 58 | 64

RRT | Homes| 39 42 47 49 | 54
Mauil 41 44 51 57 | 61

Table 3.2:Performance evaluation of Nitro and its variants. We reff@RS improve-
ment and read response time (RRT) reduction percentage/eciacos andtrs sys-
tems without an SSD cache. The standard deviatigr7i5%.

We observe that with deduplication enabled (D, NC), ouresystichieves consistently
higher IOPS compared to the compression-only version (NDT@is is because finding du-
plicates in the SSD prevents expensive disk storage as;asbieh have a larger impact than
caching more data due to compression. Nitro (D, C) achidwesighest IOPS improvement
(673%) in Homes usingos. As explained before, a high deduplication ratio indicateg du-
plicate writes are canceled, which contributes to the imgdd OPS. For Mail, the increase of
deduplication relative to compression-only version is ken&®ecause smalfOs (29% of J|Os
are < the 8KB extent size) can cause more reads from disk on the wath, thus negating
some of the benefits of duplicate hits in the SSDs.

Compared to extent-based caching, WEU (D, C) improves momalized IOPS up to
120% and reduces read response time up to 55%. Compared to(MIEUNC), extent-based
caching decreases IOPS 13-22% and increases read respoage#%. This is partially be-
cause extent-based caching increases the SSD write pdoaltp small SSD overwrites. From
SSD random write benchmarks, we found that 2MB writes (WEté)shave~60% higher
throughput than 8KB writes (extent size), demonstratirgvdlue of large writes to SSD.

We also performed cold cache experiments that replay tbe fram the last 5 days without
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warming up Nitro. Nitro still improves IOPS up to 520% becaa$ sequential WEU writes to
the SSD. Read response time reductions are 2-29% for Nitranta across all traces because
fewer duplicated extents are cached in the SSD.

Performance in tps system. Nitro also can benefit aps system (Table 3.2). Note that Nitro
needs to compute extent fingerprints before performing plesation, which is computation
that can be reused ks but nottes. In addition, Nitro cannot leverage a recipe cacherfar

to accelerate read requests, which causes 5-14% loss imiteadio for our WEU variants.

For all traces, the improvement of total IOPS (reads andea)iis>75%, and the read re-
sponse time reduction 41% for Nitro WEU variants. While deduplication and comgien
improve performance, the improvement across Nitro vasigtower relatively than for our
cos system because storage systems without capacity-optrezdniques (e.g. deduplication
and compression) have shorter processing paths, thus batteline performance. For exam-
ple, overwrites in existing deduplication systems can eqaesformance degradation because
metadata updates need to propagate changes to an entirecifle structure. For these rea-
sons, the absolute IOPS is higher than with faster read response times. Cold cache results
are consistent with warm cache results.

Sensitivity analysis. To further understand the impact of deduplication and cesgon on
caching, we use synthetic traces to investigate the impacarmdom read performance, which
represents the worst-case scenario for Nitro. Note thahgdebn-duplicate writes to the traces
would equivalently decrease the cache size (e.g. muéiastrrandom reads and non-duplicate
writes). Two parameters control the synthetic traces: (B ratio of working set size versus the
cache size and (2) the deduplication ratio. We vary bothmpeters from 1 to 10, representing
a large range of possible scenarios.

Figure 3.7 shows projected 2D contour graphs from a 3D plo{fp NC) and (D, C).
The metric is read response timecios with Nitro normalized against that of fitting the entire

data set in SSD (lower values are better). The horizontal iaxihe ratio of working set size
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Figure 3.7:Sensitivity analysis of (D, NC) and (D, C).

versus cache size, and the vertical axis is the deduplicaéito. The bottom left corner (1, 1)
is a working set that is the same size as the cache with no teatign. We can derive the
effective cache size from the compression and deduplicatitm faor example, theféective
cache size for a 16GB cache in this experiment expands to 32 2X deduplication ratio
configuration, and further to 64GB when adding 2X compressio

First, both deduplication and compression dfedive techniques to improve read response
time. For example, when the deduplication ratio is high.(25X such as for multiple, similar
VMs), Nitro can achieve response times close to SSD even wieworking set size is 5X
larger than the cache size. The combination of deduplicaimd compression can support an
even larger working set size. Second, when the deduplica#ito is low (e.g£2X), perfor-
mance degrades when the working set size is greater thaa thgccache size. Compression
has limited ability to improve response time, and only a higleduplicated scenario (e.g. VM
boot-storm) can counter a large working set situation. d;hinere is a sharp transition from
high response time to low response time for both (D, NC) andG@Pconfigurations (values
jump from 1 to> 8), which indicates that (slower) disk storage has a gréaeact on response
time than (faster) SSDs. As discussed before, the perfarenor Nitro in theres system is

always better than thevs system.

Nitro overheads. Figure 3.8 illustrates the performance overheads of Niith lew and high
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hit-ratios. We performed a boot-storm experiment usingah V& boot trace §3.5) syntheti-
cally modified to create 60 VM traces. For the 59 synthetisiomis, we set the content overlap
ratio to 90%. We set the cache size to achieve 0% (0GB) and 1Q@&B) hit-ratios in the
SSD cache. With these settings, we expect Nitro’'s perfooman approach the performance
of disk storage and SSD storage.

In bothcos andtes 0% hit-ratio configurations, we normalized against coroesiing sys-
tems without SSDs. All WEU variants impos&% overhead in response time because ex-
tent compression and fingerprint calculation are perforoféthe critical path. In the 100%
hit-ratio scenario, we normalize against a system with afladitting in SSD without WEUSs.
WEU (ND, NC) imposes a 2% increase in response time. Comipressly (ND, C) and
deduplication-only (D, NC) impose 11% and 6.2% overheadempanse time respectively.
WEU (D, C) overhead<18%) mainly comes from decompression, which requires imhdit
time when reading compressed extents from SSD. Althoughrevaa focused on comparing
compression algorithms, we did quantify that gzip achie2@gl7% more compression than

LZ4 (our default), which improves the read-hit ratio, thbudpcompression is 380% slower for

gzip.
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3.6.3 Nitro Advantages

There are additional benefits because Nitfe@ively expands a cache: improved random read
performance in agecbs, faster snapshot restore performance, and write redscti8SD.
Random read performance in agedcos system. For HDD storage systems, unfortunately,
deduplication can lead to storage fragmentation becaukesactintent may be scattered across
the storage system. A previous study considered sequesdid$ from large backup files [73],
while we study the primary storage case with random readsaa range ofO sizes.

Specifically, we wrote 100 daily snapshots of a 38GB desktbjty/a standardos system,
a system augmented with the addition of a Nitro cache, and aystem. To age the system,
we implemented a retention policy of 12 weeks to create &patf file writes and deletions.
After writing each VM, we measured the time to perform 100d@n reads for/O sizes of
4KB to 1MB. The Nitro cache was sized to achieve a 50% hit r@tiGB). Figure 3.9 shows
timing results for the 1st generation (low-gen) and 100thegation (high-gen) normalized
to the response time fafos low-gen at 4KB. For thaprs system, we only plot the high-gen
numbers, which were similar to the low-gen results, sinegdtwas no deduplication-related
fragmentation.

As the read size grows from 4KB to around 128KB, the respoinsestare stable and the

low-gen and high-gen results are close to each other foysiéss. However, for larger read
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sizes in thecos high-gen system, the response time grows rapidly. ddsesystem’s logs in-
dicate that the number of interngOs for thecos system is consistent with the high response
times. In comparison to theos system, the performance gap between low-gen and high-gen
is smaller for Nitro. For 1MB random reads, Nittos high-gen response times (76ms) are
slightly faster tharos low-gen, and Nitraos low-gen response times (39ms) are slightly faster
than ares high-gen system. By expanding an SSD cache, Nitro can regeidermance dif-
ferences across random read sizes, though the impact afdjenal diferences is not entirely
removed.

Snapshot restore.Nitro can also improve the performance of restoring andssing standard
snapshots and clones, because of shared content with adgaimary version. Figure 3.10
plots the restore time for 100 daily snapshots of a 38GB VNhg&aequence of snapshots as
the previous test). The restore trace used 512KB r&asl Which generate random HD[DIs

in an agedgos system described above.

We reset the cache before each snapshot restore experionting state when the 100th
snapshot is created. We evaluate the time for restoring s@&pshot version and report the
average for groups of 25 snapshots with the cache sizedhat @#% or 5% of the 38GB volume.
The standard deviation for each group w&s. Group 1-25 has the oldest snapshots, and group
76-100 has the most recent. For all cache sizes, WEU (D, Crtesistently faster restore
performance than a compression-only version (ND, C). Feraldest snapshot group (1-25)
with a 5% cache size, WEU (D, C) achieves a shorter restore (874s) when deduplication
and compression are enabled as compared to the system wwighression only (513s). The
recent snapshot group averages 80% content overlap wigirithary version, while the oldest
group averages 20% content overlap, as plotted againsiginieaxis. Clearly, deduplication
assists Nitro in snapshot restore performance.

Reducing writes to SSD.Another important issue is howffective our techniques are at re-

ducing SSD writes compared to an SSD cache without Nitro. sSS&Dnot support in-place
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Figure 3.10:Nitro improves snapshot restore performance.

update, so deduplication can prevent churn for repeatetticbio the same, or aftierent,

address. For WebVM and Mail, deduplication-only and corsgign-only reduces writes to
SSD &22%), in which compression produces more savings compardeduplication. In the
Homes, deduplication reduces writes to SSD hy 39% becausieooter fingerprint reuse dis-
tance. Deduplication and compression (D, C) reduces woyes3%. Reducing SSD writes

directly translates to extending the lifespan.

3.7 Summary

Nitro focuses on improving storage performance with a ciépaptimized SSD cache with

deduplication and compression. To deduplicate our SSDe;aeh present a fingerprint index
that can be tuned to maintain deduplication while reducidd/Requirements. To support the
variable-sized extents that result from compression, athit@cture relies upon a Write-Evict
Unit, which packs extents together and maximizes the cadhmitio while extending SSD

lifespan. We analyze the impact of various design traffi®iavolving cache size, fingerprint
index size, RAM usage, and SSD erasures on overall perfamndxtensive evaluation shows

that Nitro can improve performance in batbs andrtps systems.
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Chapter 4

I/O Predictability in Virtualized Multi-tenant Systems

4.1 Introduction

In this chapter, we address the specific casgtafige JO performance predictability (or simply
I/O predictability). Compared to processing, memory, or eking, |/O predictability is the

most challenging to achieve primarily due to the mechanlicaitations of disk drives. In

particular, high disk seek and rotational times make pteditity difficult to achieve when
multiple VMs share the same disk.

We divide the chapter into two parts. The first part quanttfiesmpact of workload charac-
teristics, virtual machine monitor (VMM) architectureethpproach to virtualizing storage, and
storage device characteristics ¢@ Ipredictability. Overall, we measure th®Ilpredictability
of three workloads running on sixteen configurations. Usingw “performance deviation” (or
simply “deviation”) metric, we find widespread unpredidtiéyp Further, perhaps surprisingly,
we find that using an SSD as the storage device can exacehmbgteoblem when the workload
is write-intensive.

Based on this first study, the second part of the chapter pespand evaluates VirtualFence,
a performance-predictable storage system. VirtualFeaekssto produceonsistent perfor-
mance within the range defined by the best and worst perfarenéavels that each VM may
experience in a predictability-oblivious servi@ee., in the absence of VirtualFence). Specif-
ically, a VM would experience its best performanBestPerfwhen the provider co-locates

no other VMs with it, and allows it to use all resources of thd. Frhe worst performance
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WorstPerfwould occur when the provider co-locates other active VM wi(up to the max-
imum capacity of the PM). VirtualFence seeks to producegoerédnce betweeBestPerfand
WorstPerf In addition, it seeks to retain this performance regasdtdshanges in the number
of co-located VMs, changes in the working set size of therotids, or any other external
condition. The goal is for each VM to always run as if it werered on a fixed and tightly
controlled partition of the resources.

To achieve this goal, VirtualFence couples a small persiS8D cache with a much larger
HDD. It also implements a non-work-conserving@Ischeduling algorithm, partitioning time
into a fixed number of relatively coarse-grained slots. BaGhslot can only be given to one
active VM, but a single active VM may receive multiple slatse( number of slots depends on
how much the VM’s owner is willing to pay the cloud providel)O accesses from a VM are
only serviced during the VM’s assigned slot(s). A statioedition of time slots while a VM
is active ensures consistent resource allocation for giaale performance. The SSD cache
and JO time partitioning together minimize the impact of HDD headvement due to con-
solidation, whereag® time partitioning minimizes the impact of SSD block erasur~inally,
VirtualFence partitions both the SSD cache and the HDD, lwigca non-work-conserving
space allocation scheme that again ensures consistentecesalocation for predictability.

For simplicity, we implement VirtualFence for a virtualizesystem with direct-attached
disks. However, the same ideas (one SSD per HDD, SSD spatitoparg, and JO time
partitioning) can be easily implemented in fdorage servers, network-attached storage appli-
ances, or distributed filstorage systems. Although these other systems may pretgitibaal
sources of potential unpredictability, we expect disk«gini unpredictability to still dominate.
The only requirement in these implementations is that theedt driver to the disks must be
able to identify the VMs from which the accesses are coming.

Our evaluation demonstrates that VirtualFence impro(@gtedictability (or, equivalently,

that it reduces deviation) significantly, as long as wezdikll of its component techniques at
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the same time. In fact, we show that simply using an SSD as lzecat HDD data isnot
enough. More fundamentally, our evaluation illustratestthded between predictability and
performance: the more we improve predictability, the wagerage response time becomes.
The challenge is finding the smallest response time thajpnaliluce enough predictability.
Summary of contributions. We study the impact of VMM architecture, approach to storage
virtualization, and storage device g®lpredictability. We propose VirtualFence, a system that
combines SSDs working as HDD caches, space and non-wodenong time partitioning. We
quantify the impact of each feature of VirtualFence @ predictability. Using VirtualFence,
we investigate the fundamental tradidoetween predictability and performance.

The remainder of the chapter proceeds as follows. The netibeemotivates our work.
Section 4.2 motivates our work. Section 4.3 describes operxental methodology and
workloads. Section 4.4 details the results from our VMM dlogerization. Section 4.5 de-
scribes VirtualFence, whereas Section 4.6 presents ilsatian. Section 4.7 discussedidr-

ent aspects of VirtualFence and our results.

4.2 Motivation

Many users desire performance predictability. Although most cloud users may not require
predictable VM performance, many actually do. For examgieeaming (videtaudio) and
gaming applications typically seek to achieve a consistaté €.g, displayed frame rate)
rather than the highest performance, if that performanghtintroduce unpredictability (jit-
ter). There are also many cases where repeatable behaingpastant, such as performance
tuning, debugging, and diagnosis [27, 72]. In fact, it is @sgible to evaluate the impact of
changes to an application in the cloud, if its performancg ownstantly be éiected by con-
solidation. Finally, many applications implement workflgpipelines €.g, Nutch [8], genome
analysis [39]), where the performance that can be achievedd¢h stage depends on the ex-

pected performance of a previous stage. Properly designioly applications for the cloud is
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impossible if the performance of each stage can vary widely.

Predictability would benefit cloud providers and users. As predictability is important to
many users, we argue that laaS cloud providers shatéd @new class of predictable-performance
service. Importantly, this class of service shoulot replace their existing (predictability-
oblivious) servicesUsers who do not require predictability can still use thesérig services.
Rather, the new class should be an additional service tbataiseparate set of tightly managed
hardware resources. (Section 4.7 discusses combiningrtheldsses of service onto the same
hardware infrastructure.) The amount of resources to behased for the new class of service
can be small at first, and be increased as demand for preldidiabavior increases. Current
laaS providers alreadyfler a range of other classes of service, such as the Clustep@em
and Cluster GPU service classes of Amazon EC2.

The tight management of resources in this class of serviaddv@l) enable the provider
to charge for exactly the pre-defined levels of performanu# @redictability that its users
require; (2) enable the provider to conserve energy whewuress are not used to guarantee
the performance paid for by its users. For example, unne€tidls or memory modules can
simply be turned fi. In fact, the tight management of resources allows the gemtb provision
just enough servers, for additional (operating and cgpitast savings. Obviously, current
services can use fewer servers by overbooking resourcehdycannot provide predictability;
and (3) create an obvious relationship between the resotine¢ customers pay for and the
performance that can be achieved with those resources,ugsers never complain that the
performance of their VMs suddenly got worse (when the prwvistopped dedicating more
than the minimum set of contracted resources). Guaatl. mention some of these same
benefits to limiting maximum allocations [45].

Cloud users can also benefit from predictability for thressoms: (1) they can rely on it
to implement applications for which predictability is mdneportant than receiving as many

resources as are available; (2) predictability can loweir ttloud costs when the provider can
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save money by conserving energy or provisioning their datders more tightly; and (3) they
can predict their cloud costs into the future with the cattathat their VMs’ performance will
never be ffected by changes in provider-side resource allocation.

Importantly, our approach enables a wide variety of pertoroe and predictability levels.
For example, a user may purchas@ {n is defined by the provider) of a PM and receive the
performance that this fraction of resources produces.igfgerformance is not good enough,
the user can purchase any multiglés < n) of this fraction. The larger the fraction, the more
consistent the performance will be. Ideally, the price ofM Mstance withs slices of a PM in
the predictable service would be the same as (or only sfigigher than) an instance with the

same amount of resources on average in the existing prbtitgtablivious service.

Client-side throttling does not work. One might think that providing an additional class
of predictable service is unnecessary, as delays can bel addéhe client side to achieve
predictable behavior. However, this intuition is incotre&s the client does not know how bad
VM performance may get in the future (thidorstPerfperformance mentioned above), it cannot
target a performance level that is guaranteed to be considiefact, even if the client knew
the value ofWorstPerf it would have to set its delay to achieve this worst perfaroga Any

other value could be exceeded.

4.3 Methodology

In this section, we first define the metric we use to evaluate pévformance predictability.

We then describe the virtualized systems we study in Sedtibneach of which comprises a
different combination of VMM, approach to storage virtualiaafiand storage device. Finally,
we describe the experimental environment, including theklwads and hardware execution

platform.
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4.3.1 Performance Deviation Metrics

Itis difficult to study performance predictability without a metoguantify it. Since our notion
of predictability means achieving the same VM performamcthe presence of other VMs as
in isolation, we earlier defined the performance deviatiogirio informally to relate these
guantities explicitly. Again, we measure performance aon as the percentage performance
degradation when a VM runs in the presence of other VMs coegpiar when it runs alone on
the physical host. Specifically, 18 be the (initial) performance of a VM when running alone,
andPp be the (degraded) performance of the VM when co-located etfthr VMs. Then, the

amount of deviatio is:
|-

Po
100%
2 | X ()

o0=]

When multiple (sayn) VMs executing the same workload are used in an experimeat, w
report the average deviation:

n

E[A] = —i#(si

whereA = {61,652, ...,0n}.
As we show below, performance deviation is ofteffatdient for throughput and response

time. Thus, throughout the paper, we study deviation foh Ineétrics.

4.3.2 Virtualized Systems

We measure performance deviation across four well-knowrivighind two types of persistent
storage, SSD and HDD. First, we study VMWare’s Workstati8m), where the host OS is
responsible for devicg®. In contrast, we also study VMWare's ESXi Server (5.0), relguest
VM 1/0 operations trap into the VMM, which then directly accegbes/O device. Third, we
study Xen (4.0.1), where a split-driver model is used foriceWO. Here, an isolated device
domain (DomO0) runs the device drivers. Therefore, VMs (g\dds, which are referred to as

DomU) pass their/D requests through to Dom0 ofOl accesses. Like VMWare's ESXi, the
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Xen VMM runs on the hardware directly. Finally, we study KVI.12.5), where the Linux
kernel is equipped with native virtualization capabibtiéds such, it relies on the Linux kernel
to actually accomplish devicgQ.

As VMWare Workstation and KVM run on top of Linux, and Xen imporates drivers from
Linux, we also run our workloads as processes on a Linux setup

Finally, we study both file-based and disk-partition-bastmtage of VM persistent data in

Xen and KVM.

4.3.3 Workloads

We use workloads from Filebench [79], a popular frameworkrieasuring and comparing file
system performance. Specifically, we use Fileserver, Maits, and Webserver. Fileserver
emulates a server hosting directories owned by multiplesuddailserver focuses on malil
operations and has afO mix of a read per sync write; and Webserver emulates a straer
services a read-only workload.

To measure deviation, we compare a VM® Iperformance when running alone against
that when running with three other VMs. Specifically, we cgufe workloads of four VMs
running concurrently, each of which executes the same éiilelb application. One of the VMs
is configured to produce a low-intensityOl load that is approximately 8% of the storage sys-
tem’s saturation load. Each remaining VM is configured talpoe approximately 24% of the
storage system'’s saturation load. (We produce a loadwbf saturation by finding the satura-
tion throughput for each application, and adjusting the benof threads and threatO rate to
achievex% of that throughput.) Overall, the four VMs reach 80% of sation, representing
an aggressive consolidation scenario. We then comparewhntensity VM’s performance
to when it runs alone, and the performance of each of the thigder-intensity VM to when
it runs alone. Note that we scale the load to maintain a constdization level (80%) across

storage systems (HDD, SSD, and VirtualFence).
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We call the above setup a 4-VM heterogeneous workload andt aséhe primary work-
load for our study for two reasons. First, we want to study hayher-intensity VMs &ect the
predictability of low-intensity VMs. Second, we want to gyudeviation when VM consolida-
tion leads to high utilization levels. In Section 4.6, weoatsudy homogeneous workloads and

systems with low-intensity VMs only, resulting in low aggege loads.

4.3.4 Experimental Platform

We run our experiments on a server equipped with a 2.4GHzd-Xeon CPU (each core
supports two hardware threads), 8GB of RAM, a 60GB SSD, angD&B 7200RPM SATA
HDD. According to its datasheet, the HDD has an average $eekdf 11ms and full stroke
time of 22ms. The SSD is spec’ed with random read performa28:0000ps and random
write performance-5,0000ps. We measured erasures, including garbage collectiomk t
approximately 3.5ms-4ms in a write-only benchmark. Thesg@sS in the VMs is always a
Debian installation with Linux kernel version 2.6.32. ThashOS for VMWare Workstation
and KVM is the same Linux installation.

The Linux 2.6 kernel has 4 commonly used disk schedulers:pNbeadline, Anticipa-
tory, and Completely Fair Queuing (CFQ). We set the disk dales of the guest and host
(including Xen’s DomO) Linux systems to Noop and CFQ, refipely. We choose Noop in
the guest OS to isolate the impact of the VMM®Ischeduling. We choose CFQ for the host
OS because it minimizes deviation when not using Virtuatieen

In all experiments, we allocate 512MB of memory to each VM aiml it to a core to
minimize the impact of VMM CPU scheduling. We run at most 4 Vsilmultaneously so that

each VM can be allocated an entire core.
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Figure 4.1:Performance deviation experienced by the low-intensity \M-VM heterogeneous work-
loads.

4.4 \VMM-Driven Performance Deviation

Our study begins with characterizingl performance deviation for the fourfiirent VMMs,
when using file-based vs. disk-partition-based storagealization, and when using an SSD
vs. an HDD device. Figure 4.1 plots the deviation experidnog the low-intensity VM in
the 4-VM workloads described in Section 4.3.3. We plot déwafor both throughput and
response time. In both cases, the lower the measure, thes. bEtte range markers represent
the minimum and maximum values from three experiments, @dwethe bar represents the
average. We do not show the results for the high-intensitys\tidcause they exhibit similar
trends.

Many interesting observations arise from these graphst, Fleviation is endemic across
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all system configurations for both throughput and respanse. tFor example, Xen’s deviation
ranges from~17-32% for throughput and327-433% for response time when running on an
HDD, and ranges from9-28% for throughput and166-479% for response time when running
on an SSD.

These high deviations show that performance degradesfisantly when running with
other VMs. Much of the degradation arises from interferelpesveen the 4 VMs. The higher
aggregate workload leads to increased queueing timesltingsin higher response times.
When running on the HDD, interleaved requests from mulfifiés increase seek overheads,
resulting in loss of throughput and higher response timeteréstingly, the response time de-
viations for workloads with writes (Fileserver and Mailger) are worse when running on the
SSD compared to the HDD. The main reason is that SSD writegthoes cause expensive
Flash block erasures, which mafjext accesses from all VMs.

Second, deviations for all workloads and H[E3D combinations are worse when a VMM
is used vs. stand-alone Linux. Since many VMMs operate omax_base, such as KVM or
Xen's DomO, this further demonstrates that VMMs intrinflicencrease deviation.

Third, file-based virtual disks exhibit slightly worse pigdbility than partition-based vir-
tual disks. Two potential sources for the greater deviatiom the file system code running
inside the VMMs, and the need to update the metadata of treeifiiplementing virtual disks
when the hosted VMs access their virtual disks.

Finally, Figure 4.1 shows that KVM exhibits the highest dddns. The main reason is that,
by default, KVM propagates writes coming from the VMs ditgthrough to the storage device
to improve reliability. When this feature is disabled, th¢M deviations become comparable
to those of the other VMMs.

Although the results are not shown here, we have also mehparéormance deviation for
a low load scenario, where the aggregate load reaches oftydGaturation. Throughput

deviation is relatively low in this scenario but responseetideviation is still significant.
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Taken together, these observations mean that currentisy ek YO predictability. Large
deviations may arise from the resource allocation poligegcifically, work-conserving poli-
cies link VMs’ I/O resource allocation to the number of co-located VMs, caudeviations
as this number changes. Large deviations may also arisedese-specific characteristics.
Interleaving HDD requests from fiierent VMs leads to higher seek overheads, whereas SSD

erasures initiated by a VM can interfere with operationsnfi@ther VMs.

4.5 VirtualFence

VirtualFence uses three techniques to reduce performasgation between VMs whose vir-
tual disks are stored on the same physical disk: (1) a nol-a@nserving time-division/O
scheduling algorithm with relatively coarse-grained tieanta, (2) a small persistent SSD
cache in front of a much larger HDD, and (3) space partitigrahboth the HDD and the SSD
cache.

The non-work-conserving time-divisioflO scheduling serves two purposes. First, it en-
sures that the resources allocated to a VM are (mostly) anohstgardless of the number of
co-located VMs. Second, it avoids fine-grained interlegwarh requests from dierent VMs
to reduce inter-VM interference; for an HDD, this reduceskseverheads between operations
from the same VM, whereas for an SSD, it reduces the interéeref erasures from one VM
on accesses from other VMs.

Despite the non-work-conserving policy, a system with d#lyDs would still sdfer some
performance deviation when multiple VMs are co-locatedhassystem switches from serving
1 VM to another, the HDD’s head will have to move across parts, leading to higher seek
time for the first HDD operation, and so performance devmti@ve limit the impact of this
deviation by putting the SSD cache in front of the HDD. Witleagonable hit ratio in the SSD
cache, we may eliminate some of these expensive HDD accelSkesover, the SSD cache

significantly increases the performance of the virtual dsi that the expensive first HDD



52

Dom0O DomU

VirtualFence

- I Virtual |~
Scheduler Device
Driver

Storage user
""""""""" kernel
Physical
Blkt =
Driver ap Blkfnt
A A A

T

]

Figure 4.2:VirtualFence architecture.
operation is amortized across many more operations.

Finally, the space partitioning of the HDD limits the seeledeads between operations
from the same VM, while the space partitioning of the SSD easha non-work-conserving
space allocation scheme to ensure constant cache allod¢atieach VM.

Note that VirtualFence deals solely with storag® kesources, assuming that other re-
sources (e.g., CPU cores and memory) are also managed witttiability-preserving sched-

ulers.

4.5.1 Prototype

We have implemented a prototype VirtualFence system in #e YXMM version 4.0.1, using
the blktap user-level toolkit [82]. This prototype inclwda device driver and a scheduler. The
device driver instances—a separate instance of the dexiier & used to service each distinct
virtual disk—and the scheduler each runs as a user-levekepsoin DomO (Figure 4.2). We
have not experimented with multiple SSDs and HDDs but it &khde trivial to extend our
prototype, as long as the caches for virtual disks co-lacatea single HDD are themselves
co-located on a single SSD. We discuss multiple SSDs and HigBis in Section 7.

The SSD cache holds two types of persistent data: (1) bloa&ksed from the HDD, and

(2) metadata describing the state of each cache block yalgl bit, HDD block number). The
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driver implements the data structures needed to supporRahreplacement policy in volatile
memory, including an LRU list of blocks, a write list that pts to dirty blocks that need to be
written to the HDD and then evicted, and a free list. At startthe driver scans the SSD for all
metadata, and builds all the in-memory data structures. l&ki Usage times” are kept across
system restarts.

The LRU maintenance is simple. A background thread attetoptsaintain the size of the
free list above a threshold size by evicting the oldest estim the LRU list as needed. Dirty
blocks to be evicted are moved to the write list while the @gito the HDD are outstanding. If
the free list ever reaches a low watermark threshold, psiog®f incoming requests is halted
until the free list grows above the low watermark.

The driver uses asynchronoy®lIto read and write data frgie both the SSD and HDD.

4.5.2 Space Partitioning

VirtualFence uses a separate partition of an SSD as a cacbkadb virtual disk co-located on
the same HDD. (Note that while the sizes of the partitionsunevaluation experiments are
the same, it is trivial to make the cache size proportionahéosize of the virtual disk, so that
larger virtual disks also have larger caches.) We have aipteimented a variation that uses a
single SSD partition as a shared cache across multipleaVidigks to quantify the impact of
space partitioning on deviation.

The implementations of the two variants are slightlyffetient. In the space-partitioned
version (i.e., VirtualFence), the caching code runs inlidedriver process that manages each
virtual disk. In the shared-cache variant, the caching qos in a separate process (that
must then interact with the multiple drivers managing theual disks sharing the cache).
This structure makes the shared cache implementatiortlgligiss dficient than VirtualFence

because of the inter-process communication between tlme caanager and the drivers.
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Figure 4.3:Driver with non-work-conserving time partitioning.

4.5.3 Time Partitioning

Our non-work-conserving/© scheduler assumes that a physical 80D pair is used to ser-
vice at mosh simultaneous active virtual disks, and so divides accetgtphysical disks into
n equal-sized time slots. When a VM starts running on a hasyiitual disk is allocated one
or more fO slots (depending on how much of the host® tesources is assigned to that VM).
The scheduler then round-robins between the sleésing a slot idlewhen it is unassigned or
the assigned virtual disk does not have ai@y activities; utilizing these slots would break the
non-work-conserving property of the scheduler. On therdtlamd, this property of the sched-
uler also impacts performance, as we discuss extensiv&lgadtion 4.6.3. Figure 4.3 illustrates
our implementation.

The driver translates each us¢®Irequest into requests to the SSD and HDD, and adds
each type of requests to the appropriate devidegueue. Each virtual disk has a distinct set of
queues that are serviced during the slots assigned to thé \iie scheduler informs a driver
instance when its assigned slot is scheduled, at which tileeallowed to forward requests to
the SSD angr the HDD until the slot time expires. A driver can end itsgarly (see below),

in which case the scheduler will lengthen the slot time appately the next time that slot is

1 We currently assume that each virtual disk is only attachemidingle VM and that a VM attaches to at most
one virtual disk.
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scheduled. If a driver overruns the slot time, the schedul#rdeduct the overrun from the
next slot.

To implement accurate time partitioning without losingfpemance, we need to send as
many accesses as possible in a slot without running oveintigeallocated to the slot. In addi-
tion, it is more dicient to batch requests because fHéets such as disk scheduling and fixed
access overheads. Thus, our approach is to estimate theesemes of batches of accesses,
and to send the largest batch of accesses that is estimatenhjpete within the remaining time
in the slot.

Our driver dispatches requests to the SSD and HDD in the saammen as follows. If
there are no pending requests, then wait until a requestardr the current slot terminates.
If there are pending accesses, and at least the first accestnmted to complete within the
remaining time in the slot, find the largest batch that isnestéd to fit within the remaining
time. (We explain our prediction model below.) After the quation of a batch of requests, if
time remains in the slot, then repeat.

The driver will end a slot early if the first pending HDD requissestimated to take longer
than the remaining time in the slot. This is because HDD nessuare much more constrained
than the SSD, and thus, when the remaining slot time cannoséeé for accessing the HDD,
it is better to “credit” it to the next slot instead of wastiiig On the other hand, if a batch of
HDD requests overruns the slot time, while waiting for thechdao complete, slowly send SSD
requests to not waste this time while not causing even motaslay by having to wait for the
completion of a large batch of SSD requests.

Predicting HDD request service times accurately can be quaitnplicated [94, 108]. For
our purposes, however, it isféigient to use a simple piece-wise linear function that ptedic
the access time of a request based on the distance betwedtothkebeing requested and
the block requested by the immediately preceding requestenpredicting the service time

of a batch, we order the requests using the block addressles tire assumption that the disk
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scheduling algorithm includes some form of scanning. Wapaterize the prediction function
for our specific HDD by benchmarking the service time of agamgmber of random batches of
accesses, each batch with a random mix of reads and writesapproach leads to reasonably
accurate prediction of batch service time: for a benchmssking batches of random sizes
averaging 50 accesses and 336ms batch service time, oveof7686 predictions are within
[-5ms,5ms] of the actual batch service times.

Measurements of the SSD used in our experiments show tha¢segervice times can be
approximated using a linear function that depends on thebeurof requests simultaneously
submitted to the asynchronouy®lsystem. We parameterize the prediction function for our
SSD by benchmarking the service times of a large number chbatof accesses, where each
batch has a random size (between 1 and 100), a random spliedetreads and writes, and
random target blocks. For a benchmark with an average baeho$ 49 accesses and an
average batch service time of 19.4ms, over 83% of our piedgivere within £250us,250us]

of the actual batch service times.

4.6 Evaluation

We now explore VirtualFence’stiectiveness in providing performance predictability. Atte
periments are performed using the workloads and experah@tdatform described in Sec-
tion 4.3. The SSD cache block size is set to 4KB to match thaulle#iKB block size of
the HDD. We also adjust the SSD cache size to explore the ingbddferent hit rates. We use
the notation VirtualFenc&@6,Yms) to denote a VirtualFence system with a time-sharing slot
size of Yms, and the SSD cache empirically sized to achieve a hit fa¥®@ We explicitly

set the SSD cache hit rate to systematically isolate its atppapractice, administrators would
set the SSD partition size (and the number of time slots) émheVirtualFence virtual disk
based on the Qgfesources promised to the disk’s owner and the number efalidisks to be

consolidated on the physical server.
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Variant HDD SSD Cache NWC
HDD+NWC X X
SSD+NWC X X
Hybrid/Shared X X Share
Hybrid/Shared-NWC X X Share X
Hybrid/Partitioned X X Partition
VirtualFence X X Partition X

Table 4.1:Variants of VirtualFence comprisingftirent combinations of predictability-enhancing tech-
nigues. The HDD and SSD columns show whether a variant usd®arand SSD device, respectively.
When both devices are used, the SSD acts as a cache for the Hi@[Cache column shows whether

the SSD cache is shared or partitioned. The NWC column shdvesh&r non-work-conserving time
partitioning is used.
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Figure 4.4: Deviation when running (a) the 4-VM heterogeneous workéoam VirtualFence
(50%,20ms), and (b) the 4-VM heterogeneous Fileserver iwadon VirtualFenceX%,20ms), withX
€ {50%, 75%, 100% The range markers show the minimum and maximum values fnoee texperi-
ments whereas the bar shows the average.

To isolate the contributions of thefterent features of VirtualFence toward increasing pre-
dictability, we also measure deviation for many incompletgants of VirtualFence. Table 4.1
lists these variants. The first two variants, HBIRWC and SSBNWC, are designed to isolate
the benefits of non-work-conserving time partitioning. Hybrid/Shared variant uses an SSD
cache in front of the HDD, but the entire cache space is shHagtdeen multiple virtual disks.
Hybrid/Shared NWC extends this variant with non-work-conserving timetgpianing. Hy-
brid/Partitioned is VirtualFence without non-work-conservitmge partitioning, isolating the

benefits of space-partitioned SSD caches.

4.6.1 Performance Deviation

VirtualFence. We begin by showing VirtualFence'dfectiveness at reducing performance
deviation. Figure 4.4(a) shows the measured deviation win@ming the 4-VM heterogeneous

workloads on VirtualFence(50%,20ms). Figure 4.4(b) shtvesmeasured deviation when
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running the 4-VM heterogeneous Fileserver workload, whigberiences the highest deviation,
on VirtualFence with hit rates ranging from 50% to 100% anidnetsharing slot size of 20ms.

Figure 4.4(a) shows that VirtualFence is successful ataiadweviation in both throughput
and response time, compared to a system without Virtual-@rigure 4.1). In fact, Virtual-
Fence produces lower deviations regardless of storageeleviapproach to virtualizing stor-
age. For the low-intensity VM, all deviations ax45%, compared to throughput deviations of
>31% and response time deviations>@f43% without VirtualFence. Furthermore, deviations
are always lower than 19% when the SSD cacfiierds a 50% hit rate. Figure 4.4(b) shows
that deviation decreases as the SSD hit rate increases.

The results are positive in terms of raw performance as wetlr example, Fileserver
file accesses (97KB on average) by the low-intengi®ty VM take an average of 19ms, when
the VM runs in isolation on the HDD configuration. When the sawM runs co-located
with 3 high-intensity VMs, the average file access time iases to 98ms. We increase the
I/O intensity of each VM by a factor of 3.3x in VirtualFence(5@&ms) to achieve the same
utilization as in the HDD case. Despite the much high€r ihtensity, the low-intensity/O
VM experiences an average file access time of 59ms when miahdme, and just 64ms when

co-located with 3 high-intensity® VMs, under VirtualFence(50%,20ms).

Isolating the contributions of different features. Figure 4.5 plots performance deviation
when the Mailserver workload is run on the variants (inahgdthe full VirtualFence imple-
mentation) listed in Table 4.1. Performance deviationd#dD and SSD (from Figure 4.1) are
also shown as baselines. These results are representadilvéhoee Filebench workloads.

First, this figure shows that VirtualFence achieves peréoroe predictability close to that
of SSD+NWC. Specifically, SSBNWC achieves 3% and 10% throughput and response time
deviation, respectively, whereas VirtualFence achieésabd 12%. SSBNWC represents
the best case scenario since it includes space partitiqeisch VM is given a separate SSD

partition), non-work-conserving scheduling, and storagepletely on the SSD. The fact that
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these two systems achieve almost the same predictabiliyssthat our caching approach is
effective, allowing VirtualFence to extend the predictabilitenefits of (expensive) SSDs to
much larger (and cheaper per byte) HDDs with small SSD caches

Second, results for HDENWC suggest that non-work-conserving time partitioning ca
also be €fective in reducing deviation when not using an SSD cache. ddewy the movement
of the disk head between partitions when changing betweea $lots assigned to fierent
VMs is suficiently large that HDBNWC with a 20ms slot size still incurs a 13% throughput
deviation and a 33% response time deviation. As we show itidet.6.3.2, increasing the slot
size to attack this source of deviation also increases s$morese time observed by a VM run-
ning alone on a host. As already mentioned, this source oatien also exists in VirtualFence
but is mitigated by the SSD cache.

Third, at this hit rate, non-work-conserving time partitiag achieves higher predictability
than using an SSD cache: HBNWC has lower deviations than both Hyhi$hared and Hy-
brid/Partitioned. Interestingly, HDBENWC is also better than Hybri8hared NWC, implying
that the interference at the shared cache negates somebafrtbfits of NWC. Of course, as the
hit rate increases, the relative advantage of using NWCnS.3D cache will likely change.

Fourth, as expected, a shared SSD cache produces worsetgdity than a partitioned
cache. A shared cache can produce higher absolute perfogman., it may benefit afQ-
intensive VM running by itself. However, it would hurt prethbility when the VM is co-
located with other VMs and so must share the cache.

Finally, all three techniques used in VirtualFence contebto increasing predictability;
VirtualFence achieves higher predictability than the pttanfigurations, except for the much

more expensive SSENWC.
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Figure 4.5:Deviation when running on VirtualFence(50%,20ms) comgépevarious incomplete vari-
ants of it. Each bar shows results for the low-intensity VMthie 4-VM heterogeneous MailServer
workload. The cache size for Shared-cache versions is égtla sum of the caches in the Partitioned-
cache cases.

4.6.2 Performance Deviation at Low Load

The previous subsection shows that VirtualFencefiscive in aggressive consolidation sce-
narios. In this section, we consider what happens when tpeeggte load is low, representing
more conservative scenarios.

Figure 4.6 shows the average throughput and response twviaide under low aggregate
loads for SSD, HDD, and VirtualFence(50%,20ms). Each veadlruns 4 homogeneous VMs,
where each VM is configured to generate 5% of the storagersissgaturation load (i.e., each
VM is less JO intensive than any VM we have discussed so far). Thesetsesiibw that,
even at these low loads, HDD experiences very high deviafithis is because requests from
multiple VMs are interleaved, leading to much higher seefribgads. Although throughput
deviation for the SSD is low, response time deviation i$ sigjnificant for the workloads with
writes (greater than 50% for both Mailserver and Filesgrv&ll deviations are below 14% for
VirtualFence.

The raw performance results for this low-load workload arteriesting as well. For ex-
ample, Fileserver file accesses by each VM take an averagknt$,2vhen it runs in isolation
on the HDD configuration. When the 4 low-intensii¥D1VMs are co-located, the average

file access time increases to 42ms. We increase /eéntensity of each VM by a factor



120

< 40| mm Response Time

%)

o

Performance Deviation

120

Performance Deviation (%)
N A O ® O
o o o o o o

120

80
60
40
20

—= Throughput

o)
I1-I
@)
O

Webserver ileserver Mailserver

=3 Throughput
mm Response Time

Webserver Fi ggerver Mailserver

=1 Throughput
mm Response Time

—_—
D 0 O
o O o

o

N b
o

Performance Deviation (%)

o

Figure 4.6:Deviation when running 4-VM homogeneous, low-rat@ Wworkloads.

_.i*_l——x——_ni*_

Webserve Fileserve Mailserver
{c) VirtualFence ?50%, £0ms)

61



62

140 . — 70
- 50 B Rosponse Time Deviation 50 E F100) W Response Time Deviation 60 &
£40| - Response Time 40§ 100" Response Time 50 3
£ 30 308 3
= 8
2 20 20 O
a 10 & 105 5
8 g 5]
2 0 03 2
2 4 3 10 15 20 25 30 35 40 P
V'\>I be of Slots < Slot Size (ms) <
(@ server workload (b) Webserver workload
400 70T
- 50 B Response Time Deviation 50 £ w304 W Response Time Deviation 60%
% 40|  _o Response Time r40 % E3001\ - Response Time 503
£ 30 308
= 8
o 20 205
c & 2
210 108
3 5 5
[he =
02 40 = 10 15 20 25 30 35 40 P
IJ\Jlu ber of Slots > Slot Size (ms) <
(c) Fileserver workload (d) Fileserver workload
200 . — 700
= 50 & Response Time Deviation .50 E @ - Response Time Deviation 60 %
% 40 - Response Tim 40 % %160' -0- Response Time 50 3
£ 30 303 E120
E 2 =
@ 20 20 © 80
12} lw} o
C 2 s
% 10 T 105 & 40 2
& 0 08 2 0 K
4 3 10 15 2%I . S_25 ( )30 35 40 3
ber of Slots < lot Size (ms =
(e) M\‘al server workload (f) Mailserver workload

Figure 4.7:Number of slots and response time trad&-8lot length and response time trad&-o

of 2.7x in VirtualFence(50%,20ms) to achieve the samezatiibn as in the HDD case. De-
spite the much highey® intensity, each VM experiences an average file access fil3&nos
when running alone, and just 40ms when it is co-located vg¢hather 3 VMSs, under Virtual-

Fence(50%,20ms).

4.6.3 Performance vs. Predictability

In this subsection, we explore the performance vs. preduliittatradedt that VirtualFence
exposes. In particular, we explore the performance deviaind raw performance impact of

its two key parameters: the number of VM slots per PM, andehgth of each slot.
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4.6.3.1 Impact of Number of Slots

The number of VM slots determines how aggressively a clowdiger will be able to con-
solidate VMs onto the same PMs. Figure 4.7 illustrates thearhof the number of slots on
response time deviation and raw response time of Virtual&@&%,20ms). For each number
of slotsn, we assume VMs, and configure each VM to generate orl$% of the Virtual-
Fence(50%,20ms) saturation load. Such a low aggregatadaagdarticularly challenging for
VirtualFence raw performance-wise, because it may prodigzgficant average waiting times.

As the figure illustrates, VirtualFence produces lower oese times as we decrease the
number of slots (while keeping the slot length fixed). Thesogais that fewer slots also means
lower waiting times, as each VM is allotted a higher fractodtime. From the opposite point of
view, raw response time worsens linearly with increasingber of slots, because VirtualFence
will not service a request until its corresponding slot isestuled.

Interestingly, response time deviation decreases slosvlyaincrease the number of slots.
With a large number of slots, deviation would approach 0%ahee the waiting time would
overwhelm the single disk head movement in the first requiestch slot.

Clearly, there is a tension between wanting a small numbstobt$ to reduce average re-
sponse times and wanting to increase the number of slotgimuma predictability. Fortunately,
VirtualFence makes predictability reasonably good eveh wmly a few slots. Thus, we would

like to set the number of slots at the smallest number thaewdble enough consolidation.

4.6.3.2 Impact of Slot Length

The key source of remaining deviation in VirtualFence isrieed to move the disk head from
one partition to another when changing slots assignedfiierdnt VMs. Thus, the slot length
directly impacts VirtualFence’s predictability: a longdot better amortizes the inter-partition
head movement cost among more requests. However, lengghtrd slots also increases re-

sponse time, becaustl operations issued outside of a VM’s slot incur greaterydela
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Assuming 4 slots, Figure 4.7 plots the response time deviatnd average response time,
as a function of slot length for VirtualFence(50%,10-40m&je use the 4-VM heterogeneous
workload (Section 4.3.3), and focus on the low-intensjty VM in Figure 4.7. This setup
is challenging for VirtualFence predictability-wise, b@se it is almost certain that every first
access in the low-intensity VM'’s slot will cause a disk heaovement.

The figure clearly shows the tradébetween lowering deviation by lengthening the slots
against increased response time. For all workloads, lengtg the slots from 10ms to 20ms
significantly reduces performance deviation. Further tleeiging the slots to 40ms reduces
deviation much more slowly at the expense of a further, esgdlgriinear, increase in response
time. Thus, a slot length of 20ms is the right traffid¢or our particular SSD and HDD devices.
We have chosen this length as our a default for all previopgmxents based on these results
(and additional ones not shown here).

Again, there is a tension between wanting shorter slotofeel average response times and
longer slots for better predictability. The slot length glibbe the shortest that will produce

enough predictability.

4.7 Discussion

Recall from the Introduction that the goal of VirtualFensetd produce consistent raw per-
formance betweel orstPer fandBestPer f the extremes in performance in a predictability-
oblivious, work-conserving scenario. However, to achidévie goal, VirtualFence must be
properly configured as demonstrated in the previous secbatermining the best configura-
tion involves experimenting with the devices at hand, ardeustanding how much users value
performance vs. predictability. Since we propose Virtealte for a new class of predictability-
conscious cloud service, we expect our users to accepivedjatow (but consistent) perfor-
mance in exchange for good predictability. This would megnaency to prefer longer slots.

Given that predictability is good even with few slots, theut provider can choose to use
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more slots (as long as performance is still acceptable tsuszenable more aggressive con-
solidation (lower costs).As a target for “acceptable performance”, the cloud provid=n
estimate WorstPerf by using its existing (predictabibitylivious) serviceand desired amount
of consolidation. This value can be used in limiting the neménd length of slots.

Clearly, in the predictability-conscious service, resmgrmay go underutilized. The provider
may then be tempted to adjust the VirtualFence parametarandigally to adapt to current
workloads and their/O activities. Unfortunately, doing so could ruin predidliép A better
approach may be to combine the predictability-conscious @medictability-oblivious services
onto the same hardware infrastructuréor example, a VM that requires predictability could
be given a fixed fraction of a PM (e.g., a slot of 20ms out of pu€0ms, one-fifth of the SSD
cache, and a separate disk partition), whereas many ctetbgmedictability-oblivious VMs
could fight for the remaining resources.

Importantly, VirtualFence enables cloud users to pay oalytlie performance that they
(consistently) get. If they desire better performarthey can purchase multiple slots while still
retaining predictability. Given that our system enables the cloud provider to redsceoists
through better resource provisioning and energy consernyathe user may end up paying
roughly the same for multiple slots as she would pay for theivedent of one slot in the
absence of VirtualFence.

Finally, it is important to discuss two aspects of our stuéhtst, VirtualFence does not
partition all 1/O resources across VMSs. In particular, it does not partitienbufer cache in
Xen’s Dom0. We made this decision because (1) we find the tiit irathat cache to be very
low; and (2) partitioning the SSD space and i@ &ccess time is substantially more important
for predictability. The low performance deviations thattMalFence is able to achieve justify
our choice.

Second, our evaluation of VirtualFence focuses on a sindd® Hand associated SSD).

However, our approach extrapolates to RAID or JBOD systesitgya single SSD for caching.
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The reason is that VirtualFence would be built into the dralesest to the disk array and, thus,
could partition the SSD space an@®laccess time like the array were a single disk.
VirtualFence can be extended to proportional share scimedid4], which requires users to
translate workload priority into number of slots. Virtualice can also be extended to support
max-min fairness resource allocation [16]. Since max-raimgss is achieved if and only if an
increase of any rate within the domain of feasible allocetimust be at the cost of a decrease of
some already smaller rate, afiime pre-allocation of resources is needed to achieve max-mi

fairness in VirtualFence.

4.8 Summary

In this chapter, we quantified the impact of storage mediund \&MM architecture and config-
uration on JO performance predictability. The results showed that edigtability is pervasive.
Based on these results, we proposed VirtualFence, a sefbwadware approach for achieving
predictability at low cost. VirtualFence combines a sm&DScache in front of a much larger
HDD, and non-work-conserving space and time partitioni@gr evaluation showed that Vir-
tualFence can provide high predictability, as long as alisdieatures are used at the same time.
We also identified and quantified the tradéidmetween predictability and performance.

We conclude that it is possible to build performance-pradiie storage systems with rel-
atively simple software and hardware components, esped@l those users that find pre-

dictability just as important as (or even more so than) raxiopmance.
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Chapter 5

Multi-Point Performance Engineering in Server Systems

5.1 Introduction

In this chapter, we address the problem on how to achievapteufierformance targets. Mod-
ern server systems encompass multiple componengsrdagiers containing configuration pa-
rameters that canfiect performance. Examples include parameters contralfiasgamount of
parallelism (e.g., number of threads), the size and replacé policy used for memory caches,
and the scheduling policies for processing workloads. Astmplexity of server systems con-
tinues to increase, managing the interplay between thegegacation parameters to precisely
tune performance becomes a challenging task.

This challenge is exacerbated by the need of many servicéders to meet multiple per-
formance objectives. For example, reducing the tail laeenof on-line services has received
much attention (e.g., [31, 47, 116]). However, techniques @nfiguration parameter values
for reducing tail latencies can often negatively impacfqenance at other percentiles in the
performance cumulative distribution function (CDF). Fig.1 shows an example of one such
tradedt in a Web server, where setting the configuration parameterstoall value (i.e., value
= 0.1 leading to the purple CDF) can significantly reduce tiédtda gives much worse perfor-
mance for a large part of the spacefigience in the purple and blue CDFs between tH&th5
60" percentiles). Thus, administrators must often considdtiptelpoints on the performance

CDF when configuring server systems.

Given the challenge of tuning system performance to meeatglesperformance objective
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Figure 5.1: Impact of a cache configuration parameter ongbganse time of a Web server.

(e.g., minimize median response time), it is not surprisived tuning for multiple performance
targets is a challenging, error-prone, and time-consumkegcise for server system administra-
tors. In this chapter, we propose OpTune, a framework fadiggiadministrators to configure
server systems to meet specified performance objectiveanfes of performance objectives
that can be specified in OpTune include: (1) minimize theayeresponse time; (2) minimize
the average response time while keeping tHB @ércentile response time below a target value;
(3) minimize the 99 percentile response time while keeping the median resgonséelow a
target value; and (4) find the “closest” achievable perfarceaCDF for a specified target CDF.
OpTune assumes that administrators can identify a subsapoftant parameters, which it
then carefully calibrates to best achieve the performabgectves. OpTune relies on a graph-
ical representation of the system, performance instruatientand profiling, and manipulation
of performance CDFs to perform its function. The graphiepresentation describes the main
system components and their interactions, and how theyeggtg to determine overall system
performance. OpTune collects transition probabilitied parformance CDFs of the software
components at fierent possible parameter settings during a profiling phap&une relies on

the fact that the impact of fierent parameters are typically localized (e.g., a paranneitght
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mainly dfect the performance of just one component) and independeatitice the amount of
profiling. OpTune then uses the profiled data, the graphemlesentation, and a small set of
mathematical operations on the components’ performandes@®predict system performance
for different sets of configuration parameter values.

Finally, OpTune formulates the configuration problem astimtdzation problem, and cal-
culates the percentage of time that the server system sheuwdnfigured with a particular set
of parameter values to best meet the performance objeciivessolution to this optimization
problem may be a set of static configuration parameter vaMesge interestingly, the solution
may be several sets of values, each of which should be usextiigaily (e.g., for 2 minutes
every 10 minutes) to achieve a performance CDF over timaghiatpossible to get with just a
single static set of parameter values. Such dynamic comatiigmis would be extremely fiicult
for administrators to determine manually.

We demonstrate the broad utility of OpTune by prototypinfpita diverse set of widely-
used systems. Specifically, we integrate OpTune into a Wedeisa filesystem emulator, and
the scheduler of a Hadoop MapReduce processing system.clincaae, we first study the
performance tradgbinvolved in the setting of several critical configuratiorrgraeters (e.g.,
caching and scheduling parameters). We then demonstat©gTune is able to achieve de-
sired performance profiles through its optimization stpateith low overheads. For example,
consider the performance objectives of minimizing th® @@rcentile while maintaining a me-
dian response time of less than equal to 10ms in a Web sertletwa important configuration
parameters. The best static configuration would yield a aredksponse time of 3.85ms and
a 99" percentile time of 96ms. In comparison, OpTune found thete sf parameter values
leading to a median response time of 9.83ms and'a@9centile time of 89.2ms.

Summary of contribution. We proposing and develop the OpTune framework for guiding
administrators when configuring server systems to meet afgarformance objectives; We

implement OpTune in three diverse server systems to denadasts wide applicability; and
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we present results from a large set of case studies to showCpiwne can ease the task of
performance tuning, particularly when this process ingsltradefis between multiple points
on the performance CDF (e.g., average/andhedian vs. tail latencies).

The remainder of the paper proceeds as follows. Sectiones&ithes related work. Sec-
tion 5.2 describes the methodology and framework of OpT@&eetion 5.3 describes ouffert

in building OpTune into three systems, and Section 5.4 ptesmir evaluation results.

5.2 OpTune Methodology

5.2.1 Overview

OpTune represents and tunes performance using the entiogrpance CDF of the system. To
use OpTune, the designers of a system must build a servipl gepresentation, where each
node in the graph corresponds to the sequential executismmod code, and each directed edge
represents control flow. The graph must contain a root notier@the computation starts) and
one or more end nodes (where the computation ends). Eachetiredge in the graph is labeled
with the probability with which execution will pass from tls@urce node to the destination
node. Thus, each execution path from the root to an end npdesents a potentially flerent
performance behavior, which happens witietient probability. Figure 5.2 shows the service
graph for a Web server that serves only static content.

OpTune then works as follows (illustrated in Figure 5.3). TOpe begins with running
the server system through a warm up phase so that subseqoéhng of the system will
accurately represent steady state behaviors. After war@pipune will enter a profiling phase
(which should take place under a real or realistic worklodd)this phase, OpTune gathers
performance data (e.g., request service times) and ti@ngitobabilities for the components
and edges in the service graph, respectively, as it settifegaration parameters tofterent

values within their defined domains. Administrators areeex@d to specify the configuration
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Figure 5.2: The service graph of a Web serv@i. process user requesiy: get requested
object from the cacheCs: read the requested object from the filesyst€hg, compose and
send reply to user.

parameters and the values that OpTune should explore. \maghat a server system making
use of OpTune is modified to include the necessary calls if®ude for this profiling.

Once OpTune has gathered the necessary profiling data, litecdinected to enter the con-
figuration phase. In this phase, OpTune sets up an optimizatioblem to find configuration
settings that will best meet a set of performance objecti@slune assumes that time will be
divided into discrete accounting periods (e.g., 10 mifutmsd that its goal is to configure the
system to best meet the performance objectives within eecbuating period. OpTune then
further divides each accounting period into multiple edaabth epochs (e.g., 2 minutes) and
solves for a set of configurations, one per epoch, that tegeflies the optimal solution. This
sub-division allows OpTune to achieve performance CDFaffoaccounting period that would
be impossible with a static configuration that should be tisemlighout the period.

To solve the optimization problem, OpTune must be able taliptehe server's perfor-
mance for diferent configuration settings. It does this by using the sergraph to compose
the profiled performance of components and transition goitibas at specific configuration
settings. As an example, suppose the Web server whoseesgnaph is shown in Figure 5.2
has two parameter¥, andV,. Further, suppose th& only impactsC, andV, only impacts

Cs. In this case, OpTune would profil€’s performance acrossfiirent settings of/. (at a
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Figure 5.3:An illustration of periodic activities in OpTune.

default setting oW,), andCs’s performance acrossftierent settings o¥,. Then, to predict the
server’s performance for a particular configuratiy= x,V, =y, OpTune would compose;’s
performance CDRZ,’s CDF for V; = X, C3's CDF forV, =y, andC,4’'s CDF.

Finally, OpTune enters the run phase. If only one configonagetting was chosen, then
OpTune configures the system just once. If multiple configmmasettings were chosen, then
OpTune keeps track of time epochs, and reconfigures thensgst@ppropriate at the beginning
of each epoch.

Over time, system performance may deviate from the expdmtb@vior. For example,
this can happen when the characteristics of the workloadgdw Thus, OpTune continu-
ously monitors performance and compares the observed gettexi performance for each
accounting period. It will alert administrators and reatie the entire tuning process if it de-
tects stficiently large deviations. Note that such automatic detactf deviation may not
be appropriate in some cases; e.g., in workloads with wedlaka diurnal patterns, but whose
characteristics may change significantly throughout the dlathese cases, it is possible for
OpTune to “remember” dierent profiling data and configurations appropriate féiedent pe-
riods during the day. One of our evaluation systems, a HasggReduce cluster, has some of
these characteristics. The current implementation uses afrmanual intervention and simple
load prediction. We leave the design and implementation @fensophisticated mechanisms

and approaches as future work.
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Floop

Figure 5.4: Sequential (a), conditional (b), parallel &)d loop patterns.
5.2.2 Performance Composition

Given the service graph of a system, we view the system’sceetime as a random variable
with a distribution that can be calculated if we know the sitian probabilities of the edges
and the distribution of the service time at each node. In ggnmost service graphs can be
defined using a small number of patterns. We briefly discussabipns used to compose the
CDFs for the basic patterns that are used to define the sagraphs for the OpTune systems
that we have built (Section 5.3). We refer the reader to [119] for a more detailed discussion

of a similar approach for predicting the performance of cosgal Web services.

Sequential. In a sequential pattern, execution always passes from a tooitie one follow-
ing it as shown in Figure 5.4(a). The distribution functidratt describes the performance
of both components is then given by the convoluti@) 6f the distributions of the compo-

nents: Fseft) = F1(t) ® Fo(t), whereF; is the CDF for component iQequivalently Fseq =

1 The composition depends on the fact that service timesfireit nodes are independent (i.e., not corre-
lated). This assumption does not always hold. In Sectiombe explain how we implement the composition
operationally so that we can account for correlations whesdad.
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fot F1(t—x) f2(X)dx, wheref,(X) is the probability density function d¥,(t)).

Conditional. In a conditional pattern (Figure 5.4(b)), execution padsas a node to one
of a set of following nodes according to the probability &ssted with each outgoing edge.
The distribution function that describes the executioretohthe set of following nodes is then
given by a weighted sun®j of the distributions of the componentBeon(t) = F1(t) © Fo(t) ©
...OFp(t), which can be computed &Son(t) = fot(zi”:l P; fi(x))dx, whereP; is the probability
for transitioning to nod€;. Note that the transition probabilities are required fis thperation,

but are left out of the notation for simplicity.

Parallel with synchronized merge. In this pattern (Figure 5.4(c)), execution passes from a
node to the parallel execution of the set of following nodegh a barrier at the end. The
distribution function that describes the execution timehef set of parallel nodes is given by
the product®) of the distributions of the componentS4(t) = F1 () @ F2(t) ®...® Fx(t), which

can be computed @par(t) = 11 Fi(t).

Loop. In this pattern (Figure 5.4(d)), the execution loops thioagnumber of states for a
number of iterations before exiting the pattern. The distion of the execution time of this
pattern depends both on the distribution of the sub-graphinvihe loop, as well as the prob-
ability for the execution of another iteration vs. that oftiexy the loop. The computation of
this distribution is more involved, and so we refer the read¢119] for the details. We denote
this composition asFigop(t) = ®(F1,F2,...,Fn) whereF; is the performance CDF of compo-
nentC; in the loop. Similar to the> operation, the transition probabilities are importanthe t

computation but left out of the notation for simplicity.

Computing the composed CDF of a graph.Given a graph, we first compute the composed
CDFs of loops; for nested loops, we start from the innermagp land proceed outward. We

then apply the remaining operations from the root (lefthi énd nodes (right).
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5.2.3 Performance Decomposition

OpTune must also address the reverse problem in order toditabke configurations. That
is, given a service graph andf@rent transition probabilities and performance CDFs fahea
component corresponding tofidirent settings of configuration parameters, how can OpTune
choose the appropriate configuration parameter valuesstonieet a set of performance objec-
tives. Our approach is to pose this as an optimization pnolsled then solve it.

Specifically, administrators can specify performance cbjes as a set of points on a target
performance CDR-g, and optionally constraints such E§1(99) < 200ms The optimization
problem is then posed as the minimization of the mean squared(MSE) between a solution

CDF Fs and the targeE:

min - > (F5HP) - 5P 5.1)
peP

subject to the specified constraints, whérés the range (percentages) specified Fgy and
F~1is the inverse ofF (typically called the quantile function).

Alternatively, administrators can specify performancgeotives as the minimization of
a functiong() applied to the solution CDIFg, and optionally constraints such 551(99) <

200ms In this case, the optimization problem is posed as:

min gpcp(F5™(P)) (5.2)

whereg() can be an arbitrary function that produces a single vahaePds a set of percentages
specified by administrators. Average is a commonly usedtifumce.g., minimize the average
response time, while ensuring that thé"gsercentile is less than 200ms.

As already mentioned, to solve féi;, we divide each accounting period infbepochs of
equal length (e.g., 2 minutes). We assume that ffered load is stable over the accounting

period; note that this typically implies that the accougtiperiod should be relatively short
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(since the &ered load is more likely to change over longer periods of Yinwge then search

for a performance CDF for each epocle such that:

1 E
Fs() = £ D, Felt) (5:3)
e=1

where eaclfF¢ is the system performance CDF given by a particular settfngpofiguration
parameter€e. Each of the CDF$¢ is computed by composing the component CDFs corre-
sponding taCe using the system service graph as explained in Section. F.Be2goal of course

is to find the set oF¢ that leads to an overafg giving the minimum for the posed optimization

problem.

5.2.4 Implementing OpTune

We have built a prototype OpTune framework that can be iatedrwith diferent server sys-

tems. Some relevant aspects of the implementation arelag/$ol

Configuration parameters independence.Our approach of profiling components’ perfor-
mance at dterent settings of their configuration parameters, and tbemposing components’
CDFs to predict overall service performance, is mdBtient if the impact of parameters are
localized and relatively independent. As an example, damsa system witln components
C1,Cy,...,C,, andm parametersy, po, ..., pm. If all m parameters significantly impact all tran-
sition probabilities an@r the performance of all components, then OpTune would need
profile the system fo©([ ", vi) different configurations, whekgis the number of values that
p; can take on. On the other hand, if each parameter mostly isipiae transition probabili-
ties and performance of a non-overlapping sub-graph oféhecge graph, then OpTune would
need to profile the system for on@(3 ", vi).

Currently, OpTune relies on administrators to identify dugjes and components that are
significantly impacted by each parameter. It uses thesearships to minimize the number of

collected profiles. In future work, we will explore technegufor automatically detecting these
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relationships.

Composing CDFs.Section 5.2.2 describes a mathematic for manipulating Gbéigs conve-
nient for discussing how the transition probabilities aed@rmance CDFs of components can
be composed to predict the overall service performance. ederyour implementation uses a
sampling approach to implement the composition operatidhis approach works as follows.
When profiling the performance of a component, OpTune recarthrge number of execu-
tion times across a large number of a component’s execufitiis defines the component’s
performance CDF at a particular configuration setting. ThemomputeF, ® F,, we would
repeatedly compute a value of the resulting CDF by addinguvaesv, andv,, chosen ran-
domly from the set of execution times comprisiRgandF,, respectively. Other operations are
implemented in a similar manner. Our profiling runs needaokithe probabilities for dierent
numbers of iterations across loop executions to supparirtplementation.

The above approach allows us to account for correlationdwtvthe performance offifer-
ent components. For example, supposed the execution titee component€; andC, are
correlated. Then, when computikg ® F» (F1 is C1’s performance CDF), we will choose
andv, in a manner that respects the correlation. This was not déadmy of the three systems
we implemented. When composing to predict the performahaeservice, we ensure that there

are enough sampling points so that compositions are alwatistially significant [74, 61].

Solving the OpTune optimization problem. Currently, our implementation performs a com-
plete search over the possible configuration settings tdliethest solution to the optimization
problem. This approach works well for a small number of camfigion parameters; for ex-
ample, solving the optimization problem for the three sesystems that we implemented and
evaluated, each with two parameters exposed to OpTuneyslwak less than 40 seconds.
In the future, we intend to explore a more scalable approaskdon a search heuristic (e.g.,

simulated annealing).

User interface. It is possible that no solution exists that satisfy the c@msts specified by
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administrators, or that the best fitting solution is verffatent from the target CDF. In this
case, administrators can iterate through multiple runsfude, modifying the performance
objectives. To ease this task, OpTune can sha¥emrint CDFs that can be achieved using

different configuration settings.

5.3 OpTune Systems

We have built three OpTune systems using the above framewwrkiding a Web server, a
filesystem emulator, and a MapReduce scheduler. We deshelmesign and implementation

of these systems in this section.

5.3.1 Web Server

We have modified the Mongoose Web server [4] to work with OgTufhe primary perfor-
mance metric for this server is request processing timeurgi§.2 shows the service graph for
the Web server comprising four components. We modified Mosgdo measure the execu-
tion time of the code corresponding to these components. Weéte server's CDF of request
processing timeHys) can then be computed aBiys = F1® (F2 © F3) @ F4, whereF; is the
performance CDF of compone@t.

Two configuration parameters are exposed to OpTune for pegioce tuning. As shall
be seen, we choose these two parameters because thegssetiimstrongly shape the entire
performance CDF of the server. The first is thi#le_time parameter in the disk©® layer
(inside the Linux kernel). This parameter specifies thetlenftime that the CFQ/O scheduler
will wait for another request from a thread it is currentiyvéeing before switching to servicing
I/O requests from another thread. It has been observed thaaiy oases, a stream ¢f0
requests from a single thread will correspond to sequeatiedsses to files. This is especially
true for a Web server. Thus, increasiidjle_time can reduce disk head movement, improving

both throughput and average response time [10, 51]. Howkzam increase the tail response
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time if a request is delayed while th&l scheduler switches through several other threads. As
shall be shown below, this parameter’s setting can have@agtmpact on the CDF of response
time for disk requests, which in turn has a significant imgacthe Web server’s performance
CDF.

The second configuration parameter is in the caching sudmystCaching inside Web
servers and proxies have been studied extensively [19226)2and it has been shown that ac-
counting for factors such as temporal locality, popula@tyd size is important for maximizing
performance. However, accounting for these factors reptdsadeffs. For example, in some
cases, it may be desirable to achieve the highest hit rateg $his corresponds to the highest
percentage of clients experiencing low response time. @wfther hand, high hit rates dispro-
portionately favors the caching of small files. Thus, in otteses, it may be more appropriate
to maximize the byte hit ratio, which tradeff snore misses for small files to get the benefits
from caching larger files.

In our Web server, we use the GDSF algorithm, which has beenrskto work well [19,
26]2 This replacement algorithm considers threfetient metrics for choosing victims for
eviction when there is a miss and the cache is full. Theseieseirclude aging based on time
of last access, frequency of access, and object size. Briefh\sF works as follows. Each

cached file is assigned a prioriB(f) computed as:

Cos(f)

P(f) = clock- Freq(f) 5o

(5.4)

When there is a miss, and the cache does not have enough &ee tepcache the refer-
enced file, the set of files with the lowest priorities are mdcto make space. When a file is
first brought into the caché&req(f) = 1 andSiz€f) is a function off’s size in bytes. When-

ever there is a hit forf in the cacheFreq(f) = Freq(f) + 1, andf’s priority is recomputed.

2 \We chose to use Mongoose because it is a mature server thbedasvailable since 2004, yet is relatively
easy to modify. However, Mongoose did not include a memonheawhich is critical for performance in many
production environments. Thus, we added a memory cache mybiise.
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Whenever a set of file§, fo, ..., f,, are evictedglock= ma>{‘:l P(f).

There are actually four possible configuration parametartuhing GDSF’s performance,
the function for increasing clock, tHeizé f) function, theCos{f) function, and the function
for increasingFreq(f). For simplicity, we focus orsiz€f) as the performance tuning knob
because we find that it gives the largest traffebetween performance and variability; others

have found size to be a critically important parameter a$ wsj., [6].

5.3.2 Filesystem Emulator

We have also integrated OpTune into a filesystem emulatas d@rhulator takes a trace ¢fd
requests and a file-to-disk-block mapping, and emulatesehsgcing of the /O requests. The
emulator emulates the operation of a filesystem by impleimgra block-based lier cache
on top of a disk partition. It accesses the disk for cacheesissing direct/D to bypass the
OS buter cache. It services eaclOl request by computing the set of blocks needed using
the file-to-disk-block mapping, and then retrieves the kdoitom the bifer cache or disk as
appropriate. Writes are Higred in the bffer cache, and written back to disk by a background
flusher thread. Note that the Linux kernel writes back ditbcks based on several conditions
(current load, flush threshold, etc.). For simplicity, omnplementation flushes dirty blocks
periodically (every 30 seconds) or when the number of dilbgkreaches a high watermark.
Figure 5.6 shows a high-level service graph for this systéfrites of dirty blocks are not
on the critical path (dicient free space is maintained so that a write is never nagess the
eviction of a dirty block), and so are not included in the sgangraph.C, andCsz, which handle
hits and misses in the Her cache, respectively, form a multi-loop structure. AD tequest
containingn blocks, withm hits andn—mmisses, would loop througB, mtimes andCz n—m
times. Disk accesses are performed using asynchron@u€) includes the wait time for all
disk accesses to complete. The filesystem emulator's CDEmqfast processing timé fs)

can then be computed as:
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File request

Pmiss+1

Figure 5.5: File server composition grap8i: process file requesE,: get requested block
from bufer cacheCs, service missed block from disk4: wait for all disk accesses to com-
plete, complete processing of request, and return.

Frs = F1® ((®(F2,F3) ® F4) 0 (&(F3,F2) ® F4))

Two configuration parameters are again exposed to OpTupeftarmance tuning because
of their strong impact on the system'’s performance CDF. Tis¢ifi the samédle_time pa-
rameter in the disk/O layer already described above. The second is used to mowvedrean
LRU replacement strategy and one based on popufretguency. This parameter is motivated
by previous work showing that no single replacement policlgast for all possible workload-
genvironments (e.g., [9, 80]). Specifically, we implementoafiguration parameter called
eviction_prob, which takes on a value between 0 and 1. When it is set to 1,ahectim
chosen for replacement using an LRU replacement policywsya evicted. When set to 0,
cached items are never evicted. Thus, if the cache is filléd the most popular items, this
policy emulates a popularity-based caching scheme. Whéntion_prob is set between 0
and 1, then the victim will be evicted with probability eq@kviction_prob. Thisincreases
the chances for popular items to be removed from the cachieegisare not used for longer

periods of time.
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Figure 5.6: MapReduce composition gragbs: preprocess and schedule jdbwvy,...,Cym:
perform map task<;,: barrier between Map and Reduce pha$gs, ...,Crn: perform reduce
tasks,Ce: complete job.

5.3.3 MapReduce System

Finally, we have integrated OpTune with the Hadoop MapRedwheduler to explore its be-
havior in a system that is drasticallyfidirent from the Web and filesystem servers. In this
system, we use OpTune to tune the CDF of job completion tiffigsire 5.6 shows the service

graph for completing a Hadoop MapReduce job. Each job haphases, a Map phase where

all map tasks ©mv.1,Cwm.2,....Cum) are executed and a Reduce phase where all reduce tasks

(Cr1,Cr2;...,Crn) are executed. The job is initiated @. Cy, transitions between the Map
and Reduce phases, a@gdsaves the output and completes the job.

Given this service graph, the performance CDF of the syskr) can be computed as:

FurR=Fs®(FM1®..9 Fum)®Fp® (Fri®...® Frm & Fe

We tune the performance of this system by adjusting the stdimgdpolicy and dropping
the execution of a subset of map tasks. For the schedulingypale implemented a param-
eterprob_SJF that moves the scheduling policy between FIFO, which givetseb fairness
since jobs are executed in order of arrival, and ShortastRist (SJF), which reduces aver-
age waiting time but may starve large jobprob _SJF allows a mix of the two scheduling
policies, allowing the administrator to favor one over thieen by sliding the parameter. Note
that Hadoop has been specifically implemented to allow cordigon with diferent pluggable

schedulers. In this case, we are introdugshgdying a scheduler that allows dynamic tuning,
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rather than the statia priori selection of a single scheduler.

We implement the mixed scheduling policy using Hadoop’sgdbrities 1-5, with 1 being
lowest and 5 being highest. When a job arrives, we randontlraiéne whether FIFO or SJF
should be used based gpmnob_SJF. If FIFO, then the job is given priority 3. If SJF, then the
job is given a priority based on the number of reduce taskécfwive use as a rough estimate
of job size). The partitioning between priorities is suchttjobs with sizes around the median
are given priority 3, the largest priority 1, and the smalfasority 5.

The second configuration parametiaop_p_maps allows the administrator to trade preci-
sion for reduced completion times. In particular, this paeger controls whether map tasks can
be dropped from the execution of a MapReduce job. When nom-deop_p_maps percent
of map tasks are randomly chosen and dropped from the emacnftieach job. While we are
introducing this parameter, we note that dropping taskdbas used to enable approximations
in MapReduce with small inaccuracy bounds, as shown in [4B, Bhus, we hypothesize that
parameters for controlling approximation similamoop_p_maps will be introduced into future

approximation-enabled MapReduce frameworks.

5.4 Evaluation

We now turn to explore and evaluate OpTunefscacy at helping administrators to tune their
systems to achieve specific performance goals. We presesitymesults from the Web server,
although we also show some results for the MapReduce systéfilesystem emulator toward

the end of the section.

5.4.1 Experimental Setup

Experimental platform. Experiments for the Web and filesystem servers were run orvarse
machine equipped with a 2.4 GHz 4-core, each with 2 hypeatis, Xeon CPU, 8 GB of

RAM, and a 160 GB 7200 RPM SATA hard disk. The server was runhinux 3.2.54, with
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the scheduling policy of the disk®@ subsystem set to Completely Fair Queuing (CFQ).
Experiments for the MapReduce system were run on a 10-madhister, where each
machine is equipped with a 1.8 GHz 2-core, each with 2 hymermds, Opteron CPU, 8 GB
of RAM, and a 750 GB 7200 RPM SATA hard disk. The servers wenming Hadoop 1.1.2
on top of Linux 2.6.18. We modified the HadodpbQueueTaskScheduler class to assign
priority to jobs based on the size of their input data. Theesyswvas configured with 40 map

slots and 10 reduce slots (4 map slots and 1 reduce slot forseacer).

Web server workload. We use ProwGen [17] to generate a Web access trace. We use the
default Zipf distribution with parameter 0.9 and Paretdribstion with tail index of 1.2 to
model object popularity and object size, respectively [TTfje median object size is set to 60

KB with standard deviation of 10 MB based on studies of presid/eb server workloads [42,

52, 84]. Finally, requests arrive according to a Poissorcgs® with mean inter-arrival time

of 72ms, leading to an average utilization of approximatfyo. We generate a trace lasting

4 hours, using the first 2 hours for profiling and system warmng the last 2 hours for our

experiments.

Filesystem workload. We use a trace from the Microsoft Production Server Tracés]81].
Traces in this set were collected from a number dfiedént Microsoft production servers, and
include information such as process ID, operation type diflecriptor, fset, and size. These
traces contain gficient information for us to build the needed file-to-diskdX mapping. We
use the 6-hour MSN Storage File Server trace to study thevimahaf typical file servers. We
use the first 4 hours for profiling and system warmup and the2lasurs for our experiments.
The trace was collected from a more powerful server thansmye slowed the trace down

such that average throughput is approximately 60% of saaca

MapReduce workload. We use the Statistical Workload Injector for MapReduce (B\\R5]
to generate a scaled-down 6-hour workload from a largerbesdetrace collected from May to

October 2009. In the resulting workload, each job compr&s&80 map tasks and 1-20 reduce
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Figure 5.7: The SWIM trace are classified intdfelient phases based on utilization. Task
execution and queueing times are sampled froffieidint utilization phases accordingly.

tasks. There are700 jobs with~8000 tasks. The map phase of each job takes 50-300 seconds,
and the reduce phase takes 15-100 seconds. Jobs have ihpdidB-9GB and outputs of up

to 1GB. Figure 5.7 plots this workload, which gives an averelgister utilization of 64%. We

use the first 3 hours for profiling and the last 3 hours for oyreeixnents.

Recall that the completion times of map and reduce tasksdeclvait times, which are
different at diferent load. Thus, we define fivefidirent load levels as follows: VERYOW
(<5 active map tasks), LOW&@10), NORMAL (<15), HIGH (<50) and VERYHIGH (>50).
OpTune then collects a set of profiling information for eaftiedent load level, and solves the
optimization problem separately for each load level to geffiguration settings that best meet
the performance objectives for that level. At runtime, Opdyredicts the load level at the
beginning of each accounting period to be the same as thatwausin the accounting period

that just completed. It then configures the system accottditige predicted load level.

5.4.2 Impact of Configuration Parameters

Impact of caching size priority parameter. We begin our study by exploring the impact
that diferent values of configuration parameters can have on therpafce of a system. Fig-

ure 5.8 plots the performance CDFs for the Web server wherettaes JO idle-time parameter
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Figure 5.8: Impact oS iz€f) on the Web server’s response time.

to 8ms and the functioB iz€f) to |f|1—lo,|f|%,|f|,|f|2, where|f| = number of bytes in.# These
functions lead to 18%, 24%, 41% and 44% item-wise hit-ratiespectively. It is easy to ob-
serve that lowering the caching priority of larger objeetsy(,S izéf) = |f|?) can substantially
improve response time for a fraction of the requestS§dinces in CDFs from15-45%). This
is because larger objects will push out smaller objectsfiegsiently, leading to morefi@ctive
caching for the smaller objects. On the other hand, favotfegsmaller objects can signifi-
cantly increase the tail response time, as requests foatedt objects will most likely lead to

cache misses.

Impact of /O idle_time parameter. We next explore the impact of thgd idle-time param-
eter on server performance. Specifically, we set the cachiad f) parameter tdf|, which
gives a hit ratio of 41%, and we set the idle-timé ih CFQ to Oms, 4ms, 8ms, 16ms, and
24ms. Figure 5.9 plots the results. Again, it is easy to olestrat the parameter valuéfers
tradedts between the response time for a significant portion of thé Getween-50%-90%)

against the tail¥95%).

3 We also adopt the common approach of not caching files langer 2MB to avoid polluting the cache with
very large objects [22, 3, 5].
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Figure 5.9: Impact oidle_time on the Web server’s response time.

Configuration parameters independence.We specify to OpTune thabiz€f) affect Py,
Pmiss and the performance «,, while idle_time affect the performance d€;. In Fig-
ure 5.10, we study the accuracy of this information. SpealficFigure 5.10(a) and (b) show
thatC,’s performance CDF remains almost the same even vidéa_time is set to two very
different values. Thusidle_time indeed does not impa€,'s performance. On the other
hand, Figure 5.10(c) and (d) show that the taiCgfs performance CDF isfeected somewhat
by Siz€f) whenidle_time = 24ms. We deemed the inaccuracies introduced to be small
enough that it was acceptable to assubtads independent of iz€f) to keep profiling over-
heads low.

Figure 5.11 shows an example of the potential inaccuracisg@ from OpTune’s vari-
ous assumptions. The figure shows a target CDF chosen tadtigiaccuracies introduced
by the specified independence assumptions (the long taé)CDF predicted by OpTune for
its chosen configuration(s), and the resulting observed @Bén the server was run with Op-
Tune’s chosen configuration(s). Observe that while thexesame inaccuracies, the fit between

predicted and actual is quite good.
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Figure 5.10: Quantile-quantile plots for (a-b) compariragte access time (performance of
Cy) whenidle_time is set to Oms vs. 24ms for (&iz€f) = |f| and (b)Siz€f) = |f|1_lo; (c-

d) comparing file read times (performance @) whenSiz€f) is set to|f| vs. |f|1—10 for (c)
idle_time (I) = Oms and (d)idle_time = 24ms;

5.4.3 Performance Tuning

Single point performance optimization. We begin by studying the impact of optimizing for a
single point on the CDF. Figure 5.12(a) shows this singl@tpaptimization when OpTune op-
timizes for the smallest average, mediarf” @@rcentile, and 99 percentile. Table 5.1 lists the
average, median, 90percentile, and 99 percentile response times for each of these optimiza-
tion goal. Observe that depending on whether the user is cooreerned with averagaedian
performance or the tail, the overall performance CDffeds significantly. Specifically, when
we are interested in minimizing the 9®ercentile, OpTune se®izéf) to|f|1—10 andidle—time

to 0. These settings lead to the smallest §@rcentile response time (46ms), but degrades
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Figure 5.12: Web server’s response time fdfatent performance objectives.

performance significantly for lower percentiles (e.g., rmadresponse time of 11.3ms). In

contrast, optimizing the median leads OpTune toSe# f) to |f|> andidle —time to 24ms.

These parameters lead to a much lower median response tiftmas)Q but significantly de-

grades the 99 percentile latency (281ms). Minimizing the average lead®nger response

time for shorter requests (median time of 10.4ms), but Bigaitly smaller 99 percentile time

(102.2ms).
| Goal | Avg. | Median | 90™-%ile | 99"-%ile |
Min Avg. 12.1 10.4 24.2 102.2
Min Median | 22.4 0.1 49.6 281.3
Min 90M-%ile | 13.4 3.2 19.5 143.7
Min 99™-%ile | 13.9 11.3 30.1 46.0

Table 5.1: Detailed results for web server single pointrojation. Times are given in ms.
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Figure 5.13: Server response time foftelient numbers of constraints.

Multi-point performance optimization. As discussed previously, itis frequently not desirable
to optimize for a single point of performance. Rather, therusay want to realize multiple
performance goals, such as minimizing th&'3ercentile response time, while maintaining a
target median response time. Meeting such performancs goekactly what we set out to do
with OpTune.

Figure 5.12(b) shows the results when the user wants to rizieithe 99" percentile re-
sponse time while constraining median response time to leonse than 10ms and 5ms. Ob-
serve that as the bound for the median response time becwhts {10ms— 5ms), OpTune
has to trade b a progressively “longer” tail for the desired median pariance.

Figure 5.12(c) shows that OpTune is aldteetive when the constraint and optimization
goal are exchanged; that is, in these cases, OpTune is gdekininimize the median perfor-
mance while observing a constraint for thé"98ercentile.

Figure 5.13(a) shows the results when minimizing th& @@rcentile performance with
bounds on the median and the®percentile performance. Interestingly, when we introduce
the bound for the 90 percentile performance, the tail becomes much worse, whéeme-
dian becomes much better compared to when we only bound tHemeThis demonstrates
OpTune’s ability for full-range performance tuning, ane ttifficulty facing administrators
without OpTune when performance objectives require timglkabout multiple points on the

performance CDF.
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Figures 5.13(b) and 5.13(c) show the results when minimitire 99" percentile perfor-
mance with bounds on the median and th® @@rcentile performance for the filesystem emu-
lator and MapReduce system. Results are similar in thahgdaierformance objectives (con-
straints in these cases) can lead to significant changedlwentire performance CDF. Such

full-range tuning would be very ficult for administrators to manage manually.

Full performance CDF target. We previously showed results in Figure 5.11 for OpTune

seeking to meet performance objectives specified as a full €&bve (100 points).

5.4.4 Sensitivity Analysis

We have studied the sensitivity of our results for the Welveseto diferent workload char-
acteristics, including load intensity, correlation betweobject size and popularity, and the
distribution of object sizes. As these characteristicsigkathe tradets embodied in the con-
figuration parameters can increase or decrease. For exariglee 5.14 shows that a higher
load intensity can significantly increase the trattegiven by diterent settings ofdle_time.
Correspondingly, results for a lower load intensity (naish here) shows less tradén Over-
all, we find that the parameters exposed to OpTune for the thystems continue to embody
significant tradefis across a wide range offtérent workload characteristics. Thus, we con-
clude that OpTune should be widely applicable to full-rapggormance tuning of many server

systems and many ftierent workloads.

5.5 Summary

In this chapter, we proposed and evaluated OpTune, a frarkdamohelping administrators to
configure server systems to best achieve a set of perfornadjeetives. Administrators can
use OpTune to find settings for multiple interacting confagion paramaters in order to shape
the entire performance CDF of a server system. Adminiggatan also use OpTune to ask

what-if questions. For example, what will happen to the grenfance CDF of a system if its
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Figure 5.14: Impact of/D idle_time on the Web server’s performance for high load.

configuration is modified to meet an additional constrainthsas “make the 90 percentile
response time less than X.” Such tasks are extremdicut to perform manually, and will
only become more dicult as server systems becomes ever more complex.

We have integrated OpTune into thredfelient server systems: a Web server, a file sys-
tem emulator, and a MapReduce scheduler. Our evaluatiaftgeshow that configuration
parameters embody significant traffesdetween dierent parts of the performance CDF—e.g,
configuring to reduce tail response times can significantlysen response times for shorter
requests—and that OpTune is a powerful tool for helping adstrators explore such tradé®

and configure systems appropriately for performance digsctriven by diferent needs.
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Chapter 6

Conclusion and Future Work

In this dissertation, we addressed three key performana#ledges in server systems: the
inefficiency in SSD cache space utilization, the performanceafarence and variability in
virtualized systems, and the desire to meet multiple perémice targets at the same time.
We explored these challenges concretely by designing,eimghting, and evaluating three
systems: Nitro, VirtualFence, and OpTune.

In Nitro, we leveraged data reduction techniques to impmst dficiency of a HDDSSD
hybrid storage system while achieving high performanceVittualFence, we leveraged SSDs
and non-work-conserving scheduling to provide considi@hperformance for virtualized en-
vironment. In OpTune, we leveraged manipulation of periamoe CDF to manage multi-target
performance for server systems. We used optimization tesanfigurations for dierent per-
formance targets. Our evaluations showed that our systamacahieve specified performance
targets for these performance tuning tasks. In most caseschieve desirable performance
targets based on user’s requirements.

Finally, we conclude that the techniques proposed in tissaitation shows great potential
in performance management in server systems. The notioptohizing performance while
considering other constraints can be used in other systesaneh works, which has had a sig-
nificant impact on both industry and academia. As serveesystbecome more complex and
cloud computing becomes more popular, performance impgoand tuning will confront an
even greater challenge. In fact, the definition of best parémce will not be easily determined

because desirable performance ifatient across various scenarios. Our systems are strong
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steps toward féectively managing the performance of modern server systdfos example,
providing predictable performance for tenant VMs will bew challenging as the scale of
cloud service increases gndthe workload types increase. The heterogeneity and eadrbf
tuning performance may also become a concern for cloud geosiwho want high consolida-
tion and high performance. Further research along thess Will lead to promising outcome.
As for future work, we propose several possible directions:

Caching algorithm for WEU. Although Nitro [70] optimizes overall storage system perfo
mance while minimizing cost by leveraging coarse-graindgdWithere is limited work to sys-
tematically study the benefit of WEU and co-design a cachaiewi algorithm that maximizes
WEU's benefit on performance and lifespan. Classic cachiggrithms leverage recency,
frequency, angbr other properties of cached blocks at per-block granylakiowever, WEU
comprises multiple logically distinct, but physically tmeated, blocks. WEU may have highly
diverse blocks, with mixtures of frequently accessed,empfiently accessed, and invalidated
blocks. A simple caching algorithm such as the WEU-based IoRght be instficient to
handle blocks with diverse access patterns [71]. Creatavgpolicies for caching compound
objects in flash remains an open research problem.

Extending predictable performance research in other systms. VirtualFence [68] shows
promising results for virtualized environments in the engation of virtual machines. As
container technology [98] becomes increasingly populantainers might be a new medium
to encapsulate resources as compared to virtual machingsilar performance and resource
management problem arises in the context of containerdiniguees used in VirtualFence such
as timgspace resource partitioning will continue to have an impatiie new context.
Automatic multi-point perform tuning. OpTune shows that tuning performance with multi-
point constraints is a challenging task. Previous worké& stscACI [121] and [89] have lever-
aged adaptive control techniques to perform automatic gorgtion management. We believe

that further leveraging these techniques can be helpflé&fge Internet service providers, such



as Google and Amazon.
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Appendix A

Additional Evaluation for OpTune

We first present the evaluation of the file system emulatoM@pReduce system. Specifically,
we study the impact of independence test, single point peence target tuning and multi-
point performance targets tuning for each system. Next, xgegnt overhead analysis for

OpTune.

A.1 Filesystem Emulator with OpTune

First, we study applying OpTune to filesystem emulator. Wgl\stthe independence test,

single-point performance target tuning, multi-point penfiance targets tuning.

A.1.1 Independent Tests

We specify to OpTune thatviction prob affect cache hit-ratios, whiledle _time affect the
performance of disk/O. In Figure A.1, we study the accuracy of this informatiope8&fically,
Figure A.1(a) and (b) show th&,'s performance CDF remains almost the same even when
idle_time is set to two very dferent values. Thud,dle_time indeed does not impa€y’s
performance. On the other hand, Figure A.1(c) and (d) sheuvttte tail ofC3’s performance
CDF is dfected somewhat byviction_prob whenidle_time = 24ms. The RMSE for both
I=0ms and+24ms are 0.4 and 1.3, which means the CDFs in one tier willfietethe CDF in
another tier. We deemed the inaccuracies introduced to b# snough that it was acceptable

to assumeCs is independent ofviction_prob to keep profiling overheads low.
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A.1.2 Single-point Performance Optimization

We begin by studying the impact of optimizing for a singlermian the CDF. Figure A.2(a)

shows this single point optimization when OpTune optimipeghe smallest average, median,
90" percentile, and 99 percentile. Table A.1 lists the average, mediarl @@rcentile, and
99" percentile response times for each of these optimizatiah gabserve that depending on
whether the user is more concerned with avefrmgéian performance or the tail, the overall
performance CDF diers significantly. Specifically, when we are interested inimizing the
99" percentile, OpTune setsriction_prob to 0 andidle_time to 0. These settings lead to

the smallest 99 percentile response time (39.4ms), but degrades perfargignificantly for
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Figure A.2: Filesystem emulator’s response time fdfedent performance objectives.

lower percentiles (e.g., median response time of 29.3nmsg.ohtrast, optimizing the median
leads OpTune to setviction_prob to 0.8 andidle_time to 24ms. These parameters lead
to a much lower median response time (1.1ms), but significalegrades the 99 percentile

latency (117.8ms).

| Goal | Avg. | Median | 90"-%ile | 99"-%ile |
Min Avg. 5.6 1.2 7.56 61.2
Min Median | 8.06 11 10.1 117.8
Min 90M-%ile | 5.9 2.8 6.5 61.2
Min 99™M-%ile | 23.2 29.3 324 39.4

Table A.1: Detailed results for filesystem emulator singd@poptimization. Times are given
in ms.

A.1.3 Multi-point performance optimization

As discussed previously, it is frequently not desirableptiize for a single point of perfor-
mance. Rather, the user may want to realize multiple pedoma goals, such as minimizing
the 99" percentile response time, while maintaining a target nreckaponse time. Meeting
such performance goals is exactly what we set out to do withu@e.

Figure A.2(b) shows the results when the user wants to miirttie 99' percentile re-
sponse time while constraining median response time to bearee than 20ms and 10ms.
Observe that as the bound for the median response time bedmhter (20ms— 10ms), Op-

Tune has to tradefba progressively “longer” tail for the desired median perfance.



99

CDF CDF CDF
1 — 1 - - 1 o
0.9 . - A 0.9 = - 0.9 N 'J
038 . 1} o 08 . ] 08 Y T
0.7 /{ o r 0.7 I B 0.7 - L B
S 06 ] Vi S 06 r .;' e S 06 |
g 05 7 " g 05 A ! 3 05 v A
I 04 J l I 04 / [ I 04 v 7
03 .o minavgs” - 0.3 L. Lo 0.3 ‘[
0.2 min P(50%ile) - 02 **F min P(99%ile) - 0.2 min P(50%ile) -
o1 min P(90%ile) = o1 min P(99%ile), P(50%le)<35005 - o1 min P(50%ile), P(99%ile)<8500s -
o min P(99%ile) - : min P(99%ile), P(50%ile)<2500s = : min P(50%ile), P(99%ile)<7500s =
¢ 1000 t)0"0 ‘?o"o % %"o 60"0 )%o &%o 9%0 {0000 ¢ 1000 t)0"0 ‘?o"o % %"o 60"0 )%o &%o 9%0 {0000 ¢ {oao eo‘b "’o% % &o‘b G‘O‘b )o‘b &O‘b %% \’o%o
Time(s) Time(s) Time(s)
(a) MapReduce. (b) Minimizing tail with constraint  (c) Minimizing median with constraint

for median for tail

Figure A.3: MapReduce’s response time faffelient performance objectives.

Figure A.2(c) shows that OpTune is aldteetive when the constraint and optimization goal
are exchanged; that is, in these cases, OpTune is seekingitoire the median performance

while observing a constraint for the ©9®ercentile.

A.2 MapReduce with OpTune

First, we study applying OpTune to MapReduce system. Weystinel independence test,

single-point performance target tuning, multi-point penfiance targets tuning.

A.2.1 Single-point Performance Optimization

We begin by studying the impact of optimizing for a singlergain the CDF. Figure A.3(a)
shows this single point optimization when OpTune optimipeghe smallest average, median,
90" percentile, and 99 percentile. Table A.2 lists the average, mediarl @@rcentile, and
99" percentile response times for each of these optimizatiah gdbserve that depending on
whether the user is more concerned with avefagéian performance or the tail, the overall
performance CDF dliers significantly. Specifically, when we are interested inimizing the
99" percentile, OpTune setsrob_SJF to 0 anddrop_p_maps to 0.8. These settings lead to
the smallest 99 percentile response time (6993s), but degrades perfoersignificantly for
lower percentiles (e.g., median response time of 3924sYkoimrast, optimizing the median

leads OpTune to satrob_SJF to 1.0 anddrop_p_maps to 0.9. These parameters lead to a
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much lower median response time (2923s), but significartiyatles the $percentile latency

(9188s).
| Goal | Avg. | Median | 90"-%ile | 99"-%ile |
Min Avg. 2412 | 2079 4792 8756
Min Median | 2923 | 1926 7864 9188
Min 90M-%ile | 2578 | 2103 4284 8996
Min 99™M-%ile | 3360 | 3924 4807 6993

Table A.2: Detailed results for web server single pointmjtation. Times are given in second.

A.2.2 Multi-point performance optimization

As discussed previously, it is frequently not desirableftimize for a single point of perfor-
mance. Rather, the user may want to realize multiple pedoom goals, such as minimizing
the 99" percentile response time, while maintaining a target nretkaponse time. Meeting
such performance goals is exactly what we set out to do witfude.

Figure A.3(b) shows the results when the user wants to mzairttie 99' percentile re-
sponse time while constraining median response time to b&anse than 3500s and 2500s.
Observe that as the bound for the median response time bsdighéer (3500s— 2500s),
OpTune has to tradeffta progressively “longer” tail for the desired median peariance.

Figure A.3(c) shows that OpTune is aldteetive when the constraint and optimization goal
are exchanged; that is, in these cases, OpTune is seekingitoize the median performance

while observing a constraint for the ©9®ercentile.

A.3 OpTune Solver Overhead Analysis

Next, we evaluate the performance and overhead of OpTumersmd system scales.
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\ Task | Brute-force | SA |
1. min(average) 157s 24s
2. min(median) 163s 32s

3. min(99%ile)
and P(50%ilex 10ms 160s 48s

Table A.3: Running time of dierent tuning tasks.
A.3.1 Solving Time

We use diterent tuning tasks and measured the decoding time usingS#o#nd brute-force
approach. Table A.3 shows the solving time foif@lient approaches and performance objec-
tives. The time for brute-force is2x higher than SA because brute-force has to explore the
entire problem space. As the task varies from single tamdiltiple targets (e.g., Task 3, de-
tails in Section 5.4.3), we observed that the execution tifrtee SA approach shows a slightly
increase, because multi-target performance constraiake I8A dificult to find local optimal

annealing schedules.

A.3.2 Convergence Speed

Next, we study the solution quality as a function of time. Waftgure 20 values for the cache
parameter and 20 values for th®©Ilknob in a synthetic two-layer sequential structure. We
provide an arbitrary target CDF and perform the decompsitask. We compute the RMSE
between the optimal CDF and the target CDF every 10 secorglsdlation quality is defined
1- GoMSE. where theWorstPer fis the maximum performance of the target CDF. Higher
value means more close to the target CDF.

Figure A.4 illustrates that SA quickly converges to its ol compared to brute-force (cut-
off at 200 second). We study the convergence speed for both gesech CDF task (CDF) and

multi-point optimization task (multi-points). Interesgjly, the brute-force curve is flat and

slowly growing because of iterating all cases. The CDF deusimg task using brute-force



102

100 uu
90 T/
80

¢ A

i /

&50 /T i

230 e .vz

2 20 ,i/ - P v .8t
s "6 > ® o0 0@

N > 100 150 200

Time (seconds)

B (mutipoms o BR(ERR

Figure A.4: Solution quality over time using brute-forcedaimulated annealing.

is identical to the multi-points decomposing task curve. &yserved that the brute-force ap-
proach can only achieve 23% solution quality at time 200s because it tries every ipless
solution without memorizing the fierence between the current solution and the target solution
to decide the next solving schedule. In contrast, the SAecgrews quickly because of reduc-
ing impossible solution space. The SA multi-points decosegdocurve has faster convergence

speed because of the loose constraints compared to SA Clomgese task.

A.3.3 Extrapolation of Solving Time

Next, we study the solving time as a function of number of gamfation parameters and num-
ber of epochs for the brute-force approach. In addition éotkinee systems, we also explore
the solver running time in a synthetic multi-tier systemsielexperiment simulates a 5-tier
system (e.g., TCHP stack) and the epoch number is set to 10. Each profiled Chtaios
5000 points. We assume sequential pattern as the struchae gonnecting each tier.

Figure A.5(a) plots the solving time for the 5-tier syntbedystem. The y-axis shows the
number of parameters, the y-axis shows the number of epochiha z-axis shows the solving
time in K seconds.

Figure A.5(b) plots the extrapolation of time complexityingsrandomly generated com-

ponent CDFs samples. The time complexity of the system stgdeat (1) the brute-force
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Figure A.5: Time complexity plot as a function of configuoatiparameters (5) and epoch
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approach is plausible when the number of configuration paters or the number of epochs
is low; (2) the brute-force does not scale up to 6 or more patanvalues. We found that
finer epoch granularity indicates higher decoding time dexity. The solving time for the
brute-force grows rapidly as the system scales.

Note that the each sub-problem in brute-force can be solv@ebendently, therefore the
time complexity can be further reduced if we assume a reddermarallel speedup factor.
Another way to reduce time complexity is to provide approadenresult. For example, we can

return the first result that satisfy the constrains not expdpthe entire search space.
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