
IMPROVING AND TUNING THE PERFORMANCE OF
SERVER SYSTEMS

BY Cheng Li

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Thu D. Nguyen and Ricardo Bianchini

and approved by

New Brunswick, New Jersey

October, 2015

c© 2015

Cheng Li

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Improving and Tuning the Performance of Server Systems

by Cheng Li

Dissertation Directors: Thu D. Nguyen and Ricardo Bianchini

Modern server systems incorporate complex hardware and software technologies, such as solid-

state drives and software virtualization. Maximizing the performance of these complex systems

involves many challenges. For example, their performance can often be strongly affected by

multiple configuration parameters. At the same time, service providers using these servers

often have complex performance objectives, such as achieving multiple performance targets at

the same time.

In this dissertation, we address three such challenges: improving space efficiency in solid-

state drives used as caches (and consequently performance)for storage arrays, reducing perfor-

mance variability in virtualized systems, and engineeringperformance to meet multiple perfor-

mance targets. We built three systems to tackle these challenges concretely. The first system,

called Nitro, uses deduplication and local compression to increase the effective (solid-state)

cache size of network-attached storage systems, improvingperformance and space efficiency

while minimizing total cost. The second system, called VirtualFence, leverages solid-state

drives and non-work-conserving scheduling to provide consistent I/O performance in virtu-

alized multi-tenant systems. The third system, called OpTune, mitigates the complexity of

ii

tuning performance to meet multiple performance targets inmulti-tier systems using optimiza-

tion. Our extensive experimental evaluations show that oursystems can consistently improve

performance and/or achieve the desired performance objectives. These positive results suggest

that the principles and techniques embodied in our systems are strong steps toward effectively

managing the performance of modern server systems.

iii

Acknowledgements

First and foremost, I would like to thank my research advisor, Ricardo Bianchini, whose guid-

ance, encouragement, and support made the dissertation possible. Not only did he worked

closely with me on all research topics, but also his passion towards work and life greatly influ-

enced me. I learned a lot from him, including problem solving, creative thinking, dedication

and tenacity. These skills and merits help build solid foundations for my future career.

I would also like to thank my research co-advisor, Thu D. Nguyen, for the consistent help

during the entire course of my PhD. Thu helps me to make the transition from an inexperienced

graduate student to a computer science researcher. I enjoyed every discussion with him on

technical details, research ideas and high-level technology trend.

I would like to thank my thesis committee members Abhishek Bhattacharjee, for his advice

on how to present and write papers, and Dr. Hui Zhang for valuable feedback on the disser-

tation. I also would like to thank to my internship mentors and collaborators. I like to thank

immensely to Philip Shilane, Fred Douglis, Grant Wallace and Stephen Smaldone at EMC

Princeton office. I like to thank Hyong Shim, Windsor Hsu, Darren Sawyer, and Stephen Man-

ley at EMC; Neil Blakery-Milner, Brian Pane, Federico Larumbe, Jonathan Frank, Peter Ruibal

and Doug Beaver at Facebook. The internships helped me understand real world problems and

helped me identify interesting research topics.

It is a pleasure to work in DARK and PANIC lab, where hard work and fun coexist. It

is a great pleasure to have worked with my labmates, Rekha Bachwani, Josep Lluis Berral,

Guilherme Cox, Qingyuan Deng, Inigo Goiri, Md E. Haque, BillKatsaks, Kien Le, Ioannis

Manousakis, Luiz Ramos, and Wei Zheng. I enjoyed open discussion, brainstorming, and

iv

friendship over the course of these years. Most importantly, you made the challenging, some-

times frustrating process much easier to go through.

Finally, I would like to deeply thank my parents and relatives. Their support helped me go

through the ups and downs in the course of my PhD years.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

List of Tables . x

List of Figures . xi

1. Introduction . 1

1.1. Motivation . 1

1.2. Research Overview .. 5

1.2.1. Nitro . 5

1.2.2. VirtualFence . 5

1.2.3. OpTune . 6

1.3. Contributions .. 6

1.4. Overview of the Dissertation 7

2. Background and Related Work . 8

2.1. Optimizing Flash Performance and Capacity 8

2.2. I/O Predictability . 9

2.3. Performance Engineering in Server Systems 11

3. A Capacity-Optimized SSD Cache for Primary Storage 13

3.1. Introduction .. 13

vi

3.2. Background and Discussion 15

3.3. Nitro Architecture and Design 17

3.3.1. Nitro Components . 19

3.3.2. Nitro Functionality .. 21

3.4. Nitro Implementation 24

3.5. Experimental Methodology 25

3.5.1. Metrics . 26

3.5.2. Experimental Traces .26

3.5.3. Parameter Space . 28

3.5.4. Experimental Platform .. 28

3.6. Evaluation .29

3.6.1. Simulation Results .29

3.6.2. Prototype System Results .. 33

3.6.3. Nitro Advantages . 38

3.7. Summary . 40

4. I/O Predictability in Virtualized Multi-tenant Systems 41

4.1. Introduction .. 41

4.2. Motivation .43

4.3. Methodology . 45

4.3.1. Performance Deviation Metrics 46

4.3.2. Virtualized Systems .46

4.3.3. Workloads . 47

4.3.4. Experimental Platform .. 48

4.4. VMM-Driven Performance Deviation 49

4.5. VirtualFence .. 51

vii

4.5.1. Prototype . 52

4.5.2. Space Partitioning .53

4.5.3. Time Partitioning .54

4.6. Evaluation .56

4.6.1. Performance Deviation .. 57

4.6.2. Performance Deviation at Low Load 60

4.6.3. Performance vs. Predictability 62

4.6.3.1. Impact of Number of Slots 63

4.6.3.2. Impact of Slot Length . 63

4.7. Discussion .64

4.8. Summary . 66

5. Multi-Point Performance Engineering in Server Systems 67

5.1. Introduction .. 67

5.2. OpTune Methodology .. 70

5.2.1. Overview . 70

5.2.2. Performance Composition .. 73

5.2.3. Performance Decomposition .. . 75

5.2.4. Implementing OpTune . 76

5.3. OpTune Systems . 78

5.3.1. Web Server . 78

5.3.2. Filesystem Emulator .80

5.3.3. MapReduce System . 82

5.4. Evaluation .83

5.4.1. Experimental Setup .83

5.4.2. Impact of Configuration Parameters 85

viii

5.4.3. Performance Tuning . 88

5.4.4. Sensitivity Analysis .. 91

5.5. Summary . 91

6. Conclusion and Future Work . 93

Appendix A. Additional Evaluation for OpTune . 96

A.1. Filesystem Emulator with OpTune 96

A.1.1. Independent Tests .96

A.1.2. Single-point Performance Optimization 97

A.1.3. Multi-point performance optimization 98

A.2. MapReduce with OpTune .. 99

A.2.1. Single-point Performance Optimization 99

A.2.2. Multi-point performance optimization 100

A.3. OpTune Solver Overhead Analysis 100

A.3.1. Solving Time . 101

A.3.2. Convergence Speed . 101

A.3.3. Extrapolation of Solving Time 102

References . 104

ix

List of Tables

3.1. Parameters for Nitro with default values in bold.. 28

3.2. Performance evaluation of Nitro and its variants. 34

4.1. VirtualFence variants 57

5.1. Detailed results for web server. 89

A.1. Detailed results for filesystem emulator. 98

A.2. Detailed results for MapReduce system. 100

A.3. Running time of different tuning tasks. 101

x

List of Figures

3.1. Potential deduplication in cache. 15

3.2. SSD cache and disk storage.. 18

3.3. Nitro indices .. 20

3.4. Read-hit ratio of WEU-based vs. Extent-based. 30

3.5. Fingerprint index ratio impact. 31

3.6. Number of SSD erasures for modified and unmodified SSD variants. . . 32

3.7. Sensitivity analysis of (D, NC) and (D, C).. 36

3.8. Overheads of Nitro prototypes. 37

3.9. Response time diverges for random I/Os.. 38

3.10.Nitro improves snapshot restore performance.. 40

4.1. Performance deviation 4-VM heterogeneous workloads.. 49

4.2. VirtualFence architecture.. 52

4.3. Driver with non-work-conserving time partitioning.. 54

4.4. Deviation when running the 4-VM heterogeneous workloads 57

4.5. Deviation of VirtualFence. 60

4.6. Deviation when running 4-VM homogeneous, low-rate I/O workloads. 61

4.7. Number of slots and response time trade-off. 62

5.1. Impact of a cache configuration parameter on the response time of a Web server. 68

5.2. The service graph of a Web server. 71

5.3. An illustration of periodic activities in OpTune.. 72

xi

5.4. Sequential (a), conditional (b), parallel (c), and loop patterns. 73

5.5. File server composition graph. 81

5.6. MapReduce composition graph. 82

5.7. The SWIM trace and utilization 85

5.8. Impact ofS ize(f) on the Web server’s response time. 86

5.9. Impact ofidle time on the Web server’s response time. 87

5.10. Illustration of independence 88

5.11. Validation of prediction. 89

5.12. Web server’s response time for different performance objectives. 89

5.13. Multi-target results. 90

5.14. Impact of I/O parameter. 92

A.1. Illustration of independence 97

A.2. Filesystem emulator’s response time for different performance objectives. . . . 98

A.3. MapReduce’s response time for different performance objectives. 99

A.4. Solution quality over time using brute-force and simulated annealing. 102

A.5. Time complexity for OpTune solver. 103

xii

1

Chapter 1

Introduction

Despite having received a significant amount of attention from researchers and practitioners,

server systems still exhibit some important performance challenges, such as inefficiencies in

the use of solid-state drives (SSDs) as data caches, performance interference and variability

in virtualized systems, and difficulties in configuring systems to meet multiple performance

targets. In this dissertation, we address these three challenges by designing, implementing, and

evaluating performance improvement and tuning techniquesfor several real systems. Next, we

overview the motivation for our efforts, and the techniques and systems we built. We conclude

the section with a summary of our contributions, and an outline for the rest of the dissertation.

1.1 Motivation

Server systems are the basic but crucial components in datacenters. Internet service giants,

such as Google, Facebook, and Amazon, manage hundreds of thousands of server machines

in their datacenters. We observe three trends from this big picture: (1) As advanced hardware

technologies (i.e., SSDs, phase-change memory) become available, more and more server

systems will leverage these advanced technologies to improve overall performance; (2) cloud

service providers, such as Google App Engine, Amazon EC2, and Microsoft Azure, allow

small companies to rent servers to help traditional IT department to transition their computing

systems to the cloud; (3) As server systems gets complicated, performance tuning for these

systems needs to consider multiple factors or multiple dimensions, which are based on users

new requirements. Next, we summarize the motivation of the thesis and new challenges from

2

the architectural and performance requirement perspectives.

Inefficiency in the use of SSD cache space.The emergence of flash-based SSD reshapes the

storage landscape because SSD as a persistent storage that has much higher performance than

hard disk drives (HDD). This can help service provider significantly increase the performance

of their servers. However, there are inherent tradeoffs between the performance and cost per

byte of storage. For example, a 2.4 TB flash fusion I/O card that can service≥100K IOPS

nearly costs∼$27K [2], while 2TB HDD that barely services≤100 IOPS only costs∼$100.

Fundamentally though, the goals of high performance and cost-efficient storage are in conflict.

Solid state drives (SSDs) can support high IOPS with low latency, but their cost will be higher

than hard disk drives (HDDs) for the foreseeable future [85]. In contrast, HDDs have high

capacity at relatively low cost, but IOPS and latency are limited by the mechanical movements

of the drive. Although a full-flash array can increase performance significantly, system admin-

istrators may find a HDD/SSD hybrid storage array more cost-efficient, where SSD services as

a cache in front of HDD arrays.

Previous work has explored SSDs as a cache in front of HDDs to address performance

concerns [7, 37, 113], and the SSD interface has been modifiedfor caching purposes [93], but

the cost of SSDs continues to be a large fraction of total storage cost. Thus, further optimizing

SSDs caching performance along both the space and cost dimensions remains an open research

problem.

I /O unpredictability in virtualized multi-tenant systems. Recent trend shows that IT con-

sumers prefer to rent servers and resources rather than spending capital on these dedicated

infrastructure and depreciate over time. The notion of cloud computing is based on sharing

of resources to achieve economic of scale. IT infrastructure is outsourced to cloud service

providers so that workloads from different IT consumers are shared and collocated. Traditional

IT infrastructure model is shrinking because cloud computing enables IT to more rapidly adjust

resources to meet fluctuating and unpredictable business demand.

3

With the advent of cloud computing, virtualization has become the primary strategy to con-

solidate diverse workloads (encapsulated in virtual machines or VMs) to ensure high utilization

of physical machines (PMs). The workload in the cloud rangesfrom computation intensive AI

tasks [28, 34, 112, 111] to HPC jobs [77, 50]. Among its various benefits, virtualization in-

creases fault isolation and simplifies workload migration [13, 14]. Many IaaS cloud providers,

such as Amazon EC2 and Rackspace, use virtualization and consolidation in offering their ser-

vices.

Unfortunately, our quantification of storage I/O performance across a range of workloads,

virtual machine monitor (VMM) architectures, approaches to storage virtualization, and stor-

age devices shows widespread performanceunpredictability in the face of consolidation. In

fact, VM performance is essentially unpredictable, since the number of co-located VMs and

their workloads may change each time the VM runs, or even during a single run. For example,

researchers have shown a single run of a fixed-load VM on Amazon EC2 to exhibit wild per-

formance swings due to consolidation [87]. VM performance may vary significantly in the face

of consolidation. Interestingly, the use of solid-state drives (SSDs) can exacerbate the prob-

lem because the SSD write performance gets much worse when consolidated with multiple

VMs. Since many users may desire consistent performance, weargue that IaaS cloud providers

should offer a new class of predictable-performance servicein addition to(and using different

resources from) their existing (predictability-oblivious) services.

Along these lines, our research seeks to create virtualizedsystems that exhibitperformance

predictability for this new class of service. This property implies that theaverage throughput

and response time experienced by each VM should be unaffected by any other VM executing

on the same PM or the overall utilization of the PM. In fact, performance should be the same

whether the VM runs in isolation or is co-located with any number (up to a pre-defined limit)

of other VMs.

Importantly, note that our notion of performance predictability differs fromperformance

4

isolation [14, 45, 46, 59, 62, 86, 106]. The goal of isolation is to ensure that each co-located

VM achieves at least a minimum desired level of performance.This is one of the goals of

predictability. However, in performance isolation it is typically acceptable to dedicate more

resources than this minimum, if those resources are available. In contrast, dedicating any avail-

able resources beyond a fixed amount will likely ruin predictability. One may see performance

isolation as a less strict form of performance predictability. The performance of each VM

should always be the same, regardless of how many other VMs are running on the same server

or how active those VMs are.

Challenges in simultaneously achieving multi-point performance objectives.Modern server

systems encompass multiple components and/or layers containing configuration parameters

that can affect performance. Examples include parameters controllingthe amount of paral-

lelism (e.g., number of threads), the size and replacement policy used for memory caches, and

the scheduling policies for processing workloads. As the complexity of server systems con-

tinues to increase, managing the interplay between these configuration parameters to precisely

tune performance becomes a challenging task.

This challenge is exacerbated by the need of many service providers to meet multiple per-

formance objectives. For example, reducing the tail latencies of on-line services has received

much attention (e.g., [31, 47, 116]). However, techniques and configuration parameter values

for reducing tail latencies can often negatively impact performance at other percentiles in the

performance cumulative distribution function (CDF).

Given the challenge of tuning system performance to meet a single performance objective

(e.g., minimize median response time), it is not surprising that tuning for multiple performance

targets is a challenging, error-prone, and time-consumingexercise for server system adminis-

trators.

5

1.2 Research Overview

With the above motivations in mind, the goal of this dissertation is to build software techniques

and systems that mitigate the inefficiencies and performance management challenges we iden-

tified. Specifically, we design and prototype three novel systems: Nitro, VirtualFence, and

OpTune. The next few subsections overview the systems and their main evaluation results.

1.2.1 Nitro

Nitro is an SSD cache that leverages data reduction techniques to further reduce the capital

cost of and to increase effective capacity. Data reduction techniques adopted in Nitro include

deduplication and local compression.

We designed and built Nitro, and explored extensively with evaluation: (1) an SSD cache

design with adjustable deduplication, compression, and large replacement units, (2) an eval-

uation of the trade-offs between data reduction, RAM requirements, SSD writes (reduced up

to 53%, which improves lifespan), and storage performance,and (3) acceleration of two pro-

totype storage systems with an increase in IOPS (up to 120%) and reduction of read response

time (up to 55%) compared to an SSD cache without Nitro. Additional benefits of Nitro include

improved random read performance, faster snapshot restore, and reduced writes to SSDs.

1.2.2 VirtualFence

VirtualFence is a storage system that provides predictableperformance in virtualized multi-

tenant scenario. In this work, we argue that IaaS cloud providers should provide a class of

predictable-performance service in addition to their existing (predictability-oblivious) services

since many users may desire consistent performance.

VirtualFence reduces I/O unpredictability by leveraging three main techniques: (1) non-

work-conserving time-division I/O scheduling, (2) a small SSD cache in front of a much larger

hard disk drive (HDD), and (3) space-partitioning of both the SSD cache and the HDD.

6

Our evaluation of VirtualFence demonstrates that improvesI/O predictability in virtual-

ized systems significantly. More fundamentally, VirtualFence illustrates the tradeoff between

predictability and performance. We conclude that current VMMs are far from providing stor-

age I/O performance predictability. Systems like VirtualFence can remedy this problem, while

allowing the cloud provider to select an appropriate compromise between performance and

predictability.

1.2.3 OpTune

OpTune is a framework designed to help system administrators tune these parameters. OpTune

asks administrators to specify objectives to shape the performance CDFs of systems;e.g., min-

imize the median response time while keeping the 99th percentile below a target value. In fact,

administrators can specify entire target CDFs. OpTune thenuses a graphical representation of

the system, performance instrumentation and profiling, andmanipulations of the profiled CDFs

of components to configure the system.

We demonstrate the broad utility of OpTune by integrating itinto three different, widely-

used systems: a Web server, a filesystem emulator, and a MapReduce server cluster. Evaluation

results demonstrate that OpTune successfully helps administrators to quickly identify configu-

ration parameter values to best achieve the desired performance behaviors.

1.3 Contributions

In summary, our contributions in this dissertation are:

• We propose Nitro, an SSD cache that utilizes deduplication,compression, and large re-

placement units to accelerate primary I/O.

• We investigate the trade-offs between deduplication, compression, RAM requirements,

performance, and SSD lifespan. We experiment with storage system prototypes to vali-

date Nitro’s performance improvements.

7

• We study the impact of VMM architecture, approach to storagevirtualization, and stor-

age device on I/O predictability.

• We propose VirtualFence, a system that combines SSDs working as HDD caches, space

and non-work-conserving time partitioning. We quantify the impact of each feature of

VirtualFence on I/O predictability. Using VirtualFence, we investigate the fundamental

tradeoff between predictability and performance.

• We propose and build the OpTune framework for guiding administrators when configur-

ing server systems to meet a set of performance objectives.

• We implement OpTune in three diverse server systems to demonstrate its wide applica-

bility.

• We present results from a large set of case studies to show howOpTune can ease the

task of performance tuning, particularly when this processinvolves tradeoffs between

multiple points on the performance CDF (e.g., average and/or median vs. tail latencies).

1.4 Overview of the Dissertation

The remainder of the dissertation processes as follows. Chapter 2 discusses related works.

Chapter 3 describes the design, implementation, and evaluation of Nitro. Chapter 4 details

the I/O predictability problem in virtualized multi-tenant systems and describes VirtualFence.

Chapter 5 presents the details and evaluation OpTune. Finally, Chapter 6 concludes the disser-

tation and discusses future work.

8

Chapter 2

Background and Related Work

In this chapter, we first describe prior efforts on SSD caches research to provide background

for the remainder of the thesis. We then discuss efforts and related work in I/O predictability

research and finally summarize related work in admin-guidedfull-range performance engineer-

ing.

2.1 Optimizing Flash Performance and Capacity

SSD as storage or cache.Many studies have focused on incorporating SSDs into the existing

hierarchy of a storage system [11, 37, 58, 113]. In particular, several works propose using flash

as a cache to improve performance. For example, Intel Turbo Memory [78] adds a nonvolatile

disk cache to the hierarchy of a storage system to enable faststart-up. Kgil et al. [57] splits a

flash cache into separate read and write regions and uses a programmable flash memory con-

troller to improve both performance and reliability. However, none of these systems combine

deduplication and compression techniques to increase the effective capacity of an SSD cache.

Several recent papers aim to maximize the performance potential of flash devices by incor-

porating new strategies into the established storage I/O stack. For example, SDF [88] provides a

hardware/software co-designed storage to exploit flash performance potentials. FlashTier [93]

specifically redesigned SSD functionality to support caching instead of storage and introduced

the idea of silent eviction. As part of Nitro, we explored possible interface changes to the

SSD including aligned WEU writes and TRIM support, and we measured the impact on SSD

lifespan.

9

Deduplication and compression in SSD.Deduplication has been applied to several primary

storage systems. iDedup [99] selectively deduplicates primary workloads inline to strike a bal-

ance between performance and capacity savings. ChunkStash[32] designed a fingerprint index

in flash, though the actual data resides on disk. Dedupv1 [81]improves inline deduplication by

leveraging the high random read performance of SSDs. Unlikethese systems, Nitro performs

deduplication and compression within an SSD cache, which can enhance the performance of

many primary storage systems.

Deduplication has also been studied for SSD storage. For example, CAFTL [24] is de-

signed to achieve best-effort deduplication using an SSD FTL. Kim et al. [60] examined using

the on-chip memory of an SSD to increase the deduplication ratio. Unlike these systems, Nitro

performs deduplication at the logical level of file caching with off-the-shelf SSDs. Feng and

Schindler [38] found that VDI and long-term CIFS workloads can be deduplicated with a small

SSD cache. Nitro leverages this insight by allowing our partial fingerprint index to point to a

subset of cached entries. Another distinction is that sinceprevious deduplicated SSD projects

worked with fixed-size (non-compressed) blocks, they did not have to maintain multiple refer-

ences to variable-sized data. Nitro packs compressed extents into WEUs to accelerate writes

and reduce fragmentation. SAR [76] studied selective caching schemes for restoring from

deduplicated storage. Our technique uses recency instead of frequency for caching.

2.2 I/O Predictability

Disk Drives and I/O Interference. Many recent studies have established that I/O interference

prevents VMs from achieving predictable performance [14, 45, 46, 59, 62, 106]. This is pri-

marily due to the mechanical nature of HDDs. Disks make I/O performance highly dependent

on the locality of accesses across VMs, variability in I/O sizes, request priorities, and access

burstiness [45].

10

Many previous efforts to address this problem have focused primarily on resource schedul-

ing techniques, seeking to provide proportional allocation of I/O resources with strong isolation

[48, 53, 104, 109]. Argon [104] in particular shares common techniques with VirtualFence,

such as space partitioning of caches (memory caches in the case of Argon) and time parti-

tioning of I/O access time. However, our focus on predictability insteadof isolation leads to

fundamental differences, including non-work-conserving allocation policies and static config-

uration parameters.

Other works seek to provide proportional allocation while supporting latency-sensitive ap-

plications [36, 91, 109, 117]. mClock [45] goes further by providing proportional allocation,

subject to minimum reservations and maximum limits. In principle, mClock can support pre-

dictability when the maximum limit is set equal to the reservation. However, the authors did not

consider this scenario. Moreover, mClock does not considerthe properties of storage devices

and how they impact predictability. VirtualFence does and,hence, combines SSDs and HDDs.

For this reason, the two systems cannot be fairly compared quantitatively. Alternate approaches

using sophisticated machine learning techniques to meet end-user QoS targets have also been

studied [118].

Besides the differences described above, our work identifies predictability, a stricter form

of isolation, as desirable, and is the first to study hybrid SSD/HDD systems in this context. We

also quantify the lack of predictability across a range of VMM architectures and configurations.

Hybrid SSDs and HDDs. Recent advances in Flash memory SSDs have led to studies ex-

ploiting their high-speed random reads, low power consumption, feature size, and shock resis-

tance [7, 15, 35, 56, 67, 110]. Most research on SSD organization has focused on either using

SSDs as HDD replacements [15, 54], or using SSDs as a caching layer in the storage hierarchy

[56, 67, 85, 92, 113]. The primary focus of these works is on the performance benefits of SSDs.

The energy implications of SSDs have also been studied [21, 103].

In comparison to these efforts, our work is the first to quantify the impact of SSDs on

11

VM performance predictability. In fact, we present the firstcharacterization of predictability

on SSDs across a spectrum of VMM types. Interestingly, our results show that SSDs donot

guarantee predictability: in write-intensive workloads,their predictability is actuallyworsethan

that of HDDs. Moreover, SSDs exhibit cost-per-byte that still cannot compete with those of

HDDs. VirtualFence combines the advantages of both storagemedia to promote predictability.

2.3 Performance Engineering in Server Systems

Full-range performance tuning has recently garnered interest. For example, recent work [119]

uses a similar approach to OpTune—i.e., graphical representation of system together with com-

position of components’ performance CDFs—to predict the overall performance of compound

Web services. Unlike this study however, we seek to tune configuration parameters to actually

achieve performance goals rather than only estimating system performance. We also implement

and evaluate OpTune in three real systems.

Several additional projects have studied the problem of performance variability in different

ways. For example, the real-time systems community has considered mechanisms to ensure

that groups of tasks meet their deadline targets [18, 30], while the high performance computing

community has studied mechanisms to remove performance variability or jitter [96]. OpTune is

more flexible in that it helps administrators to shape the entire performance CDFs. Thus, it can

be used to find appropriate configurations for different desired tradeoffs between performance

(e.g., average response time) and performance variability(e.g., tail latencies).

Our work is also partly inspired by prior work on quality of service and resource allo-

cation fairness studies [23, 65, 12, 41, 45], which attempt to guarantee a minimum level of

performance in server and networked systems. While these approaches do use optimization

techniques to suggest system configuration settings, they incentivize users to share resources,

leaving other hardware idle. As pointed out in [90, 95] however, this may increase performance

variability. Similarly, online services seek to guaranteethat a high percentile of their requests

12

complete within an acceptable amount of time [65, 107, 33]. Some of these works [114, 100]

specifically target median performance; we go beyond all this prior work, by considering full-

range performance that also accounts for long-latency tails.

Finally, a few prior works have proposed to manage performance by adjusting system con-

figurations, e.g. [121, 120]. These systems either had no performance target or needed to satisfy

a single-point service-level agreement (e.g., 99th percentile performance lower than 100ms).

OpTune differs from these efforts as it allows administrators to specify multiple performance

targets.

An additional related topic is Web Service composition [20,1]. While these works do

consider QoS issues [40], we go beyond them by studying full-range performance tuning.

13

Chapter 3

A Capacity-Optimized SSD Cache for Primary Storage

3.1 Introduction

In this chapter, we present Nitro, an SSD cache that applies advanced data reduction techniques

to SSD caches, increasing the effective cache size and reducing SSD costs for a given system.

Deduplication (replacing a repeated data block with a reference) and compression (e.g. LZ) of

storage have become the primary strategies to achieve high space and energy efficiency, with

most research performed on HDD systems. We refer to the combination of deduplication and

compression for storage as capacity-optimized storage (cos), which we contrast with traditional

primary storage (tps) without such features.

Though deduplicating SSDs [24, 60] and compressing SSDs [49, 75, 115] has been studied

independently, using both techniques in combination for caching introduces new complexities.

Unlike the variable-sized output of compression, the FlashTranslation Layer (FTL) supports

page reads (e.g. 8KB). The multiple references introduced with deduplication conflicts with

SSD erasures that take place at the block level (a group of pages, e.g. 2MB), because individual

pages of data may be referenced while the rest of a block couldotherwise be reclaimed. Given

the high churn of a cache and the limited erase cycles of SSDs,our technique must balance

performance concerns with the limited lifespan of SSDs. We believe this is the first study

combining deduplication and compression to achieve capacity-optimized SSDs.

Our design is motivated by an analysis of deduplication patterns of primary storage traces

and properties of local compression. Primary storage workloads vary in how frequently similar

14

content is accessed, and we wish to minimize deduplication overheads such as in-memory in-

dices. For example, related virtual machines (VMs) have high deduplication whereas database

logs tend to have lower deduplication, so Nitro supports targeting deduplication where it can

have the most benefit. Since compression creates variable-length data, Nitro packs compressed

data into larger units, called Write-Evict Units (WEUs), which align with SSD internal blocks.

To extend SSD lifespan, we chose a cache replacement policy that tracks the status of WEUs

instead of compressed data, which reduces SSD erasures. An important finding is that replacing

WEUs instead of small data blocks maintains nearly the same cache hit ratio and performance

of finer-grained replacement, while extending SSD lifespan.

To evaluate Nitro, we developed and validated a simulator and two prototypes. The proto-

types place Nitro in front of commercially available storage products. The first prototype uses

a cos system with deduplication and compression. The system is typically targeted for storing

highly redundant, sequential backups. Therefore, it has lower random I/O performance, but

it becomes a plausible primary storage system with Nitro acceleration. The second prototype

uses atps system without deduplication or compression, which Nitro also accelerates.

Because of the limited computational power and memory of SSDs [60] and to facilitate the

use of off-the-shelf SSDs, our prototype implements deduplication and compression in a layer

above the SSD FTL. Our evaluation demonstrates that Nitro improves I/O performance because

it can service a large fraction of read requests from an SSD cache with low overheads. It also

illustrates the trade-offs between performance, RAM, and SSD lifespan. Experiments with pro-

totype systems demonstrate additional benefits including improved random read performance

in aged systems, faster snapshot restore when snapshots overlap with primary versions in a

cache, and reduced writes to SSDs because of duplicate content. In summary, our contributions

are:

Summary of contributions. We propose Nitro, an SSD cache that utilizes deduplication,

15

1.0

1.5

2.0

2.5

0 0.1
0.5

1 4 16 64 256

D
e
d
u
p
lic

a
ti
o
n
 R

a
ti
o

Cache Size (GB)

WebVM
Homes

Mail

Figure 3.1:Caching tens of thousand of blocks will achieve most of the potential dedup-
lication.

compression, and large replacement units to accelerate primary I/O. We investigate the trade-

offs between deduplication, compression, RAM requirements, performance, and SSD lifespan.

We experiment with bothcos andtps prototypes to validate Nitro’s performance improvements.

The remainder of the paper proceeds as follows. The next section motivates our work and

discusses some of the background. Section 3.3 describes Nitro and its architecture. Section 3.4

describes an SSD co-design to validate the benefits of WEU caching and our prototypes. Sec-

tion 3.5 describes our storage traces and platform, and Section 3.6 presents our evaluation

results.

3.2 Background and Discussion

In this section, we discuss the potential benefits of adding deduplication and compression to an

SSD cache and then discuss the appropriate storage layer to add a cache.

Leveraging duplicate content in a cache.I/O rates for primary storage can be accelerated

if data regions with different addresses but duplicate content can be reused in a cache. While

previous work focused on memory caching and replicating commonly used data to minimize

disk seek times [63], we focus on SSD caching.

16

We analyzed storage traces (described in§3.5) to understand opportunities to identify re-

peated content. Figure 3.1 shows the deduplication ratio (defined in§3.5.1) for 4KB blocks for

various cache sizes. The deduplication ratios increase slowly for small caches and then grow

rapidly to∼ 2.0X when the cache is sufficiently large to hold the working set of unique content.

This result confirms that a cache has the potential to capturea significant fraction of potential

deduplication [60].

This result motivates our efforts to build a deduplicated SSD cache to accelerate primary

storage. Adding deduplication to a storage system increases complexity, though, since infras-

tructure is needed to track the liveness of blocks. In contrast, caching requires less complexity,

since cache misses do not cause a data loss for write-throughcaching, though performance is

affected. Also, the overhead of calculating and managing secure fingerprints must not degrade

overall performance.

Leveraging compression in a cache.Compression, like deduplication, has the potential to

increase cache capacity. Previous studies [29, 49, 105, 115] have shown that local compression

saves from 10-60% of capacity, with an approximate mean of 50% using a fast compressor

such as LZ. Potentially doubling our cache size is desirable, as long as compression and de-

compression overheads do not significantly increase latency. Using an LZ-style compressor

is promising for a cache, as compared to a HDD system that might use a slower compressor

that achieves higher compression. Decompression speed is also critical to achieve low latency

storage, so we compress individual data blocks instead of concatenating multiple data blocks

before compression. Our implementation has multiple compression/decompression threads,

which can leverage future advances in multi-core systems.

A complexity of using compression is that it transforms fixed-sized blocks into variable-

sized blocks, which is at odds with the properties of SSDs. Similar to previous work [49, 75,

115], we pack compressed data together into larger units (WEUs). Our contribution focuses on

exploring the caching impact of these large units, which achieves compression benefits while

17

decreasing SSD erasures.

Appropriate storage layer for Nitro. Caches have been added at nearly every layer of storage

systems: from client-side caches to the server-side, and from the protocol layer (e.g. NFS)

down to caching within hard drives. For a deduplicated and compressed cache, we believe

there are two main locations for a server-side cache. The first is at the highest layer of the

storage stack, right after processing the storage protocol. This is the server’s first opportunity

to cache data, and it is as close to the client as possible, which minimizes latency.

The second location to consider is post-deduplication (andcompression) within the system.

The advantage of the post-deduplication layer is that currently existing functionality can be

reused. Of course, deduplication and compression have not yet achieved wide-spread imple-

mentation in storage systems. An issue with adding a cache atthe post-deduplication layer is

that some mechanism must provide the file recipe, a structuremapping from file and offset to

fingerprint (e.g. SHA-1 hash of data), for every cache read. Loading file recipes adds addi-

tional I/O and latency to the system, depending on the implementation. While we added Nitro

at the protocol layer, forcos systems, we evaluate the impact of using file recipes to accelerate

duplicate reads (Section 3.3.1). We then compare totps systems that do not typically have file

recipes, but do benefit from caching at the protocol layer.

3.3 Nitro Architecture and Design

This section presents the design of our Nitro architecture.Starting at the bottom of Figure 3.2,

we use eithercos or tps HDD systems for large capacity. The middle of the figure showsSSDs

used to accelerate performance, and the upper layer shows in-memory structures for managing

the SSD and memory caches.

Nitro is conceptually divided into two halves shown in Figure 3.2 and in more detail in

Figure 3.3 (steps 1-6 are described in§3.3.2). The top half is called theCacheManager, which

manages the cache infrastructure (indices), and a lower half that implements SSD caching. The

18

COS / TPS systems

Solid State Drives (SSDs)

DRAM

NVRAM for dirty list

VFS,NFS,CIFS Reqs

Cache

Indices

 Extended

FTL Interface

Restore Reqs Cache

Manager

 Recipe

 Cache

 Write-Evict

 Units (WEUs)

N
itro

Figure 3.2:SSD cache and disk storage.

CacheManager maintains a file index that maps the file system interface (<filehandle, offset>)

to internal SSD locations; a fingerprint index that detects duplicate content before it is written

to SSD; and a dirty list that tracks dirty data for write-backmode. While our description

focuses on file systems, other storage abstractions such as volumes or devices are supported.

The CacheManager is the same for our simulator and prototypeimplementations, while the

layers below differ to either use simulated or physical SSDs and HDDs (§5.2.4).

We place a small amount of NVRAM in front of our cache to buffer pending writes and to

support write-back caching: check-pointing and journaling of the dirty list. The CacheManager

implements a dynamic prefetching scheme that detects sequential accesses when the consec-

utive bytes accessed metric (M11 in [69]) is higher than a threshold across multiple-streams.

Our cache is scan-resistant because prefetched data that isaccessed only once in memory will

not be cached. We currently do not cache file system metadata because we do not expect it to

deduplicate or compress well, and we leave further analysisto future work.

19

3.3.1 Nitro Components

Extent. An extent is the basic unit of data from a file that is stored in the cache, and the

cache indices reference extents that are compressed and stored in the SSDs. We performed a

large number of experiments to size our extents, and there are trade-offs in terms of read-hit

ratio, SSD erasures, deduplication ratio, and RAM overheads. As one example, smaller extents

capture finer-grained changes, which typically results in higher deduplication ratios, but smaller

extents require more RAM to index. We use the median I/O size of the traces we studied (8KB)

as the default extent size. For workloads that have differing deduplication and I/O patterns than

what we have studied, a different extent size (or dynamic sizing) may be more appropriate.

Write-Evict Unit (WEU). The Write-Evict Unit is our unit of replacement (writing andevict-

ing) for SSD. File extents are compressed and packed together into one WEU in RAM, which is

written to an SSD when it is full. Extents never span WEUs. We set the WEU size equal to one

or multiple SSD block(s) (the unit for SSD erase operation) depending on internal SSD proper-

ties, to maximize parallelism and reduce internal fragmentation. We store multiple file extents

in a WEU. Each WEU has a header section describing its contents, which is used to accelerate

rebuilding the RAM indices at start-up. The granularity of cache replacement is an entire WEU,

thus eliminating copy forward of live-data to other physical blocks during SSD garbage collec-

tion (GC). This replacement strategy has the property of reducing erasures within an SSD, but

this decision impacts performance, as we discuss extensively in §3.6.1. WEUs have generation

numbers indicating how often they have been replaced, whichare used for consistency checks

as described later.

File index. The file index contains a mapping from filehandle and offset to an extent’s location

in a WEU. The location consists of the WEU ID number, the offset within the WEU, and the

amount of compressed data to read. Multiple file index entries may reference the same extent

due to deduplication. Entries may also be marked as dirty if write-back mode is supported

(shown in gray in Figure 3.3).

20

Figure 3.3:File index with base and duplicate entries, fingerprint index, file extents stored in WEUs,
and a dirty list.

Fingerprint index. To implement deduplication within the SSDs, we use a fingerprint index

that maps from extent fingerprint to an extent’s location within the SSD. The fingerprint index

allows us to find duplicate entries and effectively increase the cache capacity. Since primary

workloads may have a wide range of content redundancy, the fingerprint index size can be

limited to any arbitrary level, which allows us to make trade-offs between RAM requirements

and how much potential deduplication is discovered. We refer to this as thefingerprint index

ratio, which creates a partial fingerprint index. For a partial fingerprint index, a policy is

needed to decide which extents should be inserted into/evicted from the fingerprint index. User-

specified configurations, folder/file properties, or access patterns could be used in future work.

We currently use LRU eviction, which performed as well as more complicated policies.

Recipe cache.To reduce misses on the read-path, we create a cache of file recipes (Figure 3.2),

which represent a file as a sequence of fingerprints referencing extents. This allows us to check

21

the fingerprint index for already cached, duplicate extents. File recipes are a standard compo-

nent ofcos systems and can be prefetched to our cache, though this requires support from the

cos system. Since fingerprints are small (20 bytes) relative to the extent size (KBs), prefetching

large lists of fingerprints in the background can be efficient compared to reading the corre-

sponding data from HDD storage. A recipe cache can be an add-on for tps to opportunistically

improve read performance. We do not include a recipe cache inour currenttps implementa-

tion because we want to isolate the impact of Nitro without changing other properties of the

underlying systems. Its impact on performance is discussedin §3.6.2.

Dirty list. The CacheManager supports both write-through and write-back mode. Write-

through mode assumes all data in the cache are clean because writes to the system are ac-

knowledged when they are stable both in SSD and the underlying storage system. In contrast,

write-back mode treats writes as complete when data are cached either in the NVRAM or SSD.

In write-back mode, a dirty list tracks dirty extents, whichhave not yet propagated to the under-

lying disk system. The dirty list can be maintained in NVRAM (or SSD) for consistent logging

since it is a compact list of extent locations. Dirty extentsare written to the underlying storage

system either when they are evicted from the SSD or when the dirty list reaches a size water-

mark. When a dirty file index entry is evicted (base or duplicate), the file recipe is also updated.

The CacheManager then marks the corresponding file index entries as clean and removes the

dirty list entries.

3.3.2 Nitro Functionality

File read path. Read requests check the file index based on filehandle and offset. If there is

a hit in the file index, the CacheManager will read the compressed extent from a WEU and

decompress it. The LRU status for the WEU is updated accordingly. For base entries found

in the file index, reading the extent’s header from SSD can confirm the validity of the extent.

When reading a duplicate entry, the CacheManager confirms the validity with WEU generation

22

numbers. An auxiliary structure tracks whether each WEU is currently in memory or in SSD.

If there is a file index miss and the underlying storage systemsupports file recipes (i.e.

cos), the CacheManager prefeteches the file recipe into the recipe cache. Subsequent read

requests reference the recipe cache to access fingerprints,which are checked against the cache

fingerprint index. If the fingerprint is found to be a duplicate, then cached data can be returned,

thus avoiding a substantial fraction of potential disk accesses. The CacheManager updates the

LRU status for the fingerprint index if there is a hit. If a readrequest misses in both the file and

fingerprint indices, then the read is serviced from the underlying HDD system, returned to the

client, and passed to the cache insertion path.

File write path. On a write, extents are buffered in NVRAM and passed to the CacheManager

for asynchronous SSD caching.

Cache insertion path. To demonstrate the process of inserting an extent into the cache and

deduplication, consider the following 6-step walk-through example in Figure 3.3: (1) Hash a

new extent (either from caching a read miss or from the file write path) to create a fingerprint.

(2) Check the fingerprint against the fingerprint index. If the fingerprint is in the index, update

the appropriate LRU status and go to step 5. Otherwise continue with step 3. (3) Compress and

append the extent to a WEU that is in-memory, and update the WEU header. (4) Update the

fingerprint index to map from a fingerprint to WEU location. (5) Update the file index to map

from file handle and offset to WEU. The first entry for the cached extent is marked as a “Base”

entry. Note that the WEU header only tracks the base entry. (6) When an in-memory WEU

becomes full, increment the generation number and write it to the SSD. In write-back mode,

dirty extents and clean extents are segregated into separate WEUs to simplify eviction, and the

dirty-list is updated when a WEU is migrated to SSD.

Handling of duplicate entries is slightly more complicated. Once a WEU is stored in SSD,

we do not update its header because of the erase penalty involved. When a write consists of

duplicate content, as determined by the fingerprint index, aduplicate entry is created in the file

23

index (marked as “Dup”) which points to the extent’s location in SSD WEU. Note that when a

file extent is over-written, the file index entry is updated torefer to the newest version. Previous

version(s) in the SSD may still be referenced by duplicate entries in the file index.

SSD cache replacement policy.Our cache replacement policy selects a WEU from the SSD

to evict before reusing that space for a newly packed WEU. TheCacheManager initiates cache

replacement by migrating dirty data from the selected WEU todisk storage and removing

corresponding invalid entries from the file and fingerprint indices. To understand the interaction

of WEU and SSDs, we experimented with moving the cache replacement decisions to the SSD,

on the premise that the SSD FTL has more internal knowledge. In our co-designed SSD version

(§5.2.4), the CacheManager will query the SSD to determine which WEU should be replaced

based on recency. If the WEU contains dirty data, the CacheManager will read the WEU and

write dirty extents to underlying disk storage.

Cleaning the file index. When evicting a WEU from SSD, our in-memory indices must also

be updated. The WEU metadata allows us to remove many file index entries. It is impractical,

though, to record back pointers for all duplicate entries inthe SSD, because these duplicates

may be read/written hours or days after the extent is first written to a WEU. Updating a WEU

header with a back pointer would increase SSD churn. Instead, we use asynchronous cleaning

to remove invalid, duplicate file index entries. A background cleaning thread checks all du-

plicate entries and determines whether their generation number matches the WEU generation

number. If a stale entry is accessed by a client before it is cleaned, then a generation number

mismatch indicates that the entry can be removed. All of the WEU generation numbers can be

kept in memory, so these checks are quick, and rollover casesare handled.

Faster snapshot restore/access.Nitro not only accelerates random I/Os but also enables faster

restore and/or access of snapshots. The SSD can cache snapshot data as well as primary data

for cos storage, distinguished by separate snapshot file handles.

We use the standard snapshot functionality of the storage system in combination with file

24

recipes forcos. When reading a snapshot, its recipe will be prefetched fromdisk into a recipe

cache. Using the fingerprint index, duplicate reads will access extents already in the cache, so

any shared extents between the primary and snapshot versions can be reused, without additional

disk I/O. To accelerate snapshot restores fortps, integration with differential snapshot tracking

is needed.

System restart.Our cache contains numerous extents used to accelerate I/O, and warming up

a cache after a system outage (planned or unplanned) could take many hours. To accelerate

cache warming, we implemented a system restart/crash recovery technique [93]. A journal

tracks the dirty and invalid status of extents. When recovering from a crash, the CacheManager

reads the journal, the WEU headers from SSD (faster than reading all extent headers), and

recreates indices. Note that our restart algorithm only handles base entries and duplicate entries

that reference dirty extents (in write-back mode). Duplicate entries for clean extents are not

explicitly referenced from WEU headers, but they can be recovered efficiently by fingerprint

lookup when accessed by a client, with only minimal disk I/O to load file recipes.

3.4 Nitro Implementation

To evaluate Nitro, we developed a simulator and two prototypes. The CacheManager is shared

between implementations, while the storage components differ. Our simulator measures read-

hit ratios and SSD churn, and its disk stub generates synthetic content based on fingerprint. Our

prototypes measure performance and use real SSDs and HDDs.

Potential SSD customization.Most of our experiments use standard SSDs without any modi-

fications, but it is important to validate our design choicesagainst alternatives that modify SSD

functionality. Previous projects [7, 21, 60] showed that the design space of the FTL can lead

to diverse SSD characteristics, so we would like to understand how Nitro would be affected by

potential SSD changes. Interestingly, we found through simulation that Nitro performs nearly

as well with a commercial SSD as with a customized SSD.

25

We explored two FTL modifications, as well as changes to the standard GC algorithm. First,

the FTL needs to support aligned allocation of contiguous physical pages for a WEU across

multiple planes in aligned blocks, similar to vertical and horizontal super-page striping [21].

Second, to quantify the best-case of using SSD as a cache, we push the cache replacement

functionality to the FTL, since the FTL has perfect information about page state. Thus, a new

interface allows the CacheManager to update indices and implement write-back mode before

eviction. We experimented with multiple variants and present WEU-LRU, an update to the

greedy SSD GC algorithm that replaces WEUs.

We also added the SATA TRIM command [102] in our simulator, which invalidates a range

of SSD logical addresses. When the CacheManager issues TRIMcommands, the SSD performs

GC without copying forward data. Our SSD simulator is based on well-studied simulators [7,

21] with a hybrid mapping scheme [66] where blocks are categorized into data and log blocks.

Page-mapped log blocks will be consolidated into block-mapped data blocks through merge

operations. Log blocks are further segregated into sequential regions and random areas to

reduce expensive merge operations.

Prototype system.We have implemented a prototype Nitro system in user space, leveraging

multi-threading and asynchronous I/O to increase parallelism and with support for replaying

storage traces. We use real SSDs for our cache, and either acos or tps system with hard drives

for storage (§ 3.5). We confirmed the cache hit ratios are the same between the simulator and

prototypes. When evicting dirty extents from SSD, they are moved to a write queue and written

to disk storage before their corresponding WEU is replaced.

3.5 Experimental Methodology

In this section, we first describe our analysis metrics. Second, we describe several storage traces

used in our experiments. Third, we discuss the range of parameters explored in our evaluation.

Fourth, we present the platform for our simulator and prototype systems.

26

3.5.1 Metrics

Our results present overall system IOPS, including both reads and writes. Because writes are

handled asynchronously and are protected by NVRAM, we further focus on read-hit ratio and

read response time to validate Nitro. The principal evaluation metrics are:

IOPS: Input/Output operations per second.

Read-hit ratio: The ratio of read I/O requests satisfied by Nitro over total read requests.

Read response time (RRT):The average elapsed time from the dispatch of one read request

to when it finishes, characterizing the user-perceivable latency.

SSD erasures:The number of SSD blocks erased, which counts against SSD lifespan.

Deduplication and compression ratios:Ratio of the data size versus the size after dedup-

lication or compression (≥ 1X). Higher values indicate more space savings.

3.5.2 Experimental Traces

Most of our experiments are with real-world traces, but we also use synthetic traces to study

specific topics.

FIU traces: Florida International University (FIU) collected storagetraces across multiple

weeks, including WebVM (a VM running two web-servers), Mail(an email server with small

I/Os), and Homes (a file server with a large fraction of random writes). The FIU traces contain

content fingerprint information with small granularity (4KB or 512B), suitable for various ex-

tent size studies. The FIU storage systems were reasonably sized, but only a small region of

the file systems was accessed during the trace period. For example, WebVM, Homes and Mail

have file system sizes of 70GB, 470GB and 500GB in size, respectively, but we measured that

the traces only accessed 5.3%, 5.8% and 11.5% of the storage space, respectively [63]. The

traces have more writes than reads, with write-to-read ratios of 3.6, 4.2, and 4.3, respectively.

To our knowledge, the FIU traces are the only publicly available traces with content.

Boot-storm trace: A “boot-storm” trace refers to many VMs booting up within a short time

27

frame from the same storage system [38]. We first collected a trace while booting up one 18MB

VM kernel in Xen hypervisor. The trace consisted of 99% read requests, 14% random I/O, and

1.2X deduplication ratio. With this template, we synthetically produced multiple VM traces in

a controlled manner representing a large number of cloned VMs with light changes. Content

overlap was set at 90% between VMs, and the addresses of duplicates were shifted by 0-15%

of the address space.

Restore trace: To study snapshot restore, we collected 100 daily snapshotsof a 38GB work-

station VM with a median over-write rate of 2.3%. Large read I/Os (512KB) were issued while

restoring the entire VM.

Fingerprint generation. The FIU traces only contain fingerprints for one block size (e.g.

4KB), and we want to vary the extent size for experiments (4-128KB), so it is necessary to

process the traces to generate extent fingerprints. We use a multi-pass algorithm, which we

briefly describe. The first pass records the fingerprints for each block read in the trace, which

is the initial state of the file system. The second pass replays the trace and creates extent fin-

gerprints. An extent fingerprint is generated by calculating a SHA-1 hash of the concatenated

block fingerprints within an extent, filling in unspecified block fingerprints with unique values

as necessary. Write I/Os within the trace cause an update to block fingerprints and correspond-

ing extent fingerprints. A final pass replays the modified trace for a given experiment.

Synthetic compression information.Since the FIU traces do not have compression informa-

tion, we synthetically generate content with intermingledunique and repeated data based on a

compression ratio parameter. Unless noted, the compression ratio is set for each extent using

a normal distribution with mean of 2 and variance of 0.25, representing a typical compression

ratio for primary workloads [105]. We used LZ4 [44] for compression and decompression in

the prototype.

28

Variable Values
Fingerprint index ratio (%) 100, 75, 50, 25, 0 (off)
Compression on, off
Extent size (KB) 4, 8, 16, 32, 64, 128
Write/Evict granularity WEU, extent
Cache size (% of volume) 0.5, 1,2, 5
WEU size (MB) 0.5, 1,2, 4
Co-design standard SSD, modified SSD
Write-mode write-through,write-back
Prefetching dynamic up to 128KB
Backend storage cos, tps

Table 3.1:Parameters for Nitro with default values in bold.

3.5.3 Parameter Space

Table 3.1 lists the configuration space for Nitro, with default values in bold. Due to space con-

straints, we interleave parameter discussion with experiments in the evaluation section. While

we would like to compare the impact of compression using WEU-caching versus plain extent-

based caching, it is unclear how to efficiently store compressed (variable-sized) extents to SSDs

without using WEUs or an equivalent structure [49, 75, 115].For that reason, we show extent

caching without compression, but with or without deduplication, depending on the experiment.

The cache is sized as a fraction of the storage system size. For the FIU traces, a 2% cache

corresponds to 1.4GB, 9.4GB, and 10GB for WebVM, Homes and Mail traces respectively.

Most evaluations are with the standard SSD interface exceptfor a co-design evaluation. We use

the notation Deduplicated (D), Non-deduplicated (ND), Compressed (C) and Non-compressed

(NC). Nitro uses the WEU (D, C) configuration by default.

3.5.4 Experimental Platform

Our prototype with acos system is a server equipped with 2.33GHz Xeon CPUs (two sock-

ets, each with two cores supporting two hardware threads). The system has 36GB of DRAM,

960MB of NVRAM, and two shelves of hard drives. One shelf has 12 1TB 7200RPM SATA

hard drives, and the other shelf has 15 7200RPM 2TB drives. Each shelf has a RAID-6 configu-

ration including two spare disks. For comparison, thetps system is a server equipped with four

29

1.6GHz Xeon CPUs and 8GB DRAM with battery protection. Thereare 11 1TB 7200RPM

disk drives in a RAID-5 configuration. Before each run, we reset the initial state of the HDD

storage based on our traces.

Both prototypes use a Samsung 256GB SSD, though our experiments use a small fraction of

the available SSD, as controlled by the cache capacity parameter. According to specifications,

the SSD supports>100K random read IOPS and>90K random write IOPS. Using a SATA-

2 controller (3.0 Gbps), we measured 8KB SSD random reads andwrites at 18.7K and 4.2K

IOPS, respectively. We cleared the SSD between experiments.

We set the SSD simulation parameters based on the Micron MLC SSD specification [83].

We vary the size of each block or flash chip to control the SSD capacity. Note that a larger SSD

block size has longer erase time (e.g., 2ms for 128KB and 3.8ms for 2MB). For the unmodified

SSD simulation, we over-provision the SSD capacity by 7% forgarbage collection, and we

reserve 10% for log blocks for the hybrid mapping scheme. No space reservation is used for

the modified SSD WEU variants.

3.6 Evaluation

This section presents our experimental results. We first measure the impact of deduplication

and compression on caching as well as techniques to reduce in-memory indices and to extend

SSD lifespan. Second, we evaluate Nitro performance on bothcos andtps prototype systems

and perform sensitivity and overhead analysis. Finally, westudy Nitro’s additional advantages.

3.6.1 Simulation Results

We start with simulation results, which demonstrate caching improvements with deduplication

and compression and compare a standard SSD against a co-design that modifies an SSD to

specifically support caching.

Read-hit ratio. We begin by showing Nitro’s effectiveness at improving the read-hit ratio,

30

 50

 60

 70

 80

 90

 100

WebVM Homes Mail
R

e
a
d
-h

it
 R

a
ti
o
 (

%
)

Extent (ND, NC)
Extent (D, NC)
WEU (ND, NC)

WEU (ND, C)
WEU (D, NC)

WEU (D, C)

Figure 3.4:Read-hit ratio of WEU-based vs. Extent-based for all workloads. Y-axis
starts at 50%.

which is shown in Figure 3.4 for all three FIU traces. The trend for all traces is that adding

deduplication and compression increases the read-hit ratio.

WEU (D, C) with deduplication (fingerprint index ratio set to100% of available SSD ex-

tent entries) and compression represents the best scenariowith improvements of 25%, 14%

and 20% across all FIU traces as compared to a version withoutdeduplication or compression

(WEU (ND, NC)). Adding compression increases the read-hit ratio for WEU by 5-9%, and

adding deduplication increases the read-hit ratio for WEU by 8-19% and extents by 6-17%.

Adding deduplication consistently offers a greater improvement than adding compression, sug-

gesting deduplication is capable of increasing the read-hit ratio for primary workloads that

contain many duplicates like the FIU traces. Comparing WEU and extent-based caching with

deduplication, but without compression (D, NC), extent-based caching has a slightly higher hit-

ratio by 1-4% due to finer-grained evictions. However, the advantages of extent-based caching

are offset by increased SSD erasures, which are presented later. Inan experiment that increased

the cache size up to 5% of the file system size, the combinationof deduplication and com-

pression (D, C) showed the largest improvement. These results suggest Nitro can extend the

caching benefits of SSDs to much larger disk storage systems.

31

 0

 20

 40

 60

 80

 100

WebVM Homes Mail
R

e
a
d
-h

it
 R

a
ti
o
 (

%
)

Fingerprint Index Ratio
100%
75%

50%
25%

0%

(a) Impact of fingerprint index ratio on read-hit ratio

 0

 0.5

 1

 1.5

 2

WebVM Homes Mail

D
e
d
u
p
lic

a
ti
o
n
 R

a
ti
o

Fingerprint Index Ratio
100%
75%

50%
25%

0%

(b) Impact of fingerprint index ratio on deduplication ratio

Figure 3.5:Fingerprint index ratio impact on read-hit ratio and deduplication for WEU
(D, NC).

Impact of fingerprint index ratio. To study the impact of deduplication, we adjust the finger-

print index ratio for WEU (D, NC). 100% means that all potential duplicates are represented in

the index, while 0% means deduplication is turned off. Decreasing the fingerprint index ratio

directly reduces the RAM footprint (29 bytes per entry) but also likely decreases the read-hit

ratio as the deduplication ratio drops.

Figure 3.5(a) shows the read-hit ratio drops gradually as the fingerprint index ratio de-

creases. Figure 3.5(b) shows that the deduplication ratio also slowly decreases with the finger-

print index ratio. Homes and Mail have higher deduplicationratios (≥1.5X) than WebVM, as

shown in Figure 3.1. Interestingly, higher deduplication ratios in the Homes and Mail traces do

not directly translate to higher read-hit ratios because there are more writes than reads (∼4 W/R

ratio), but do increase IOPS (§3.6.2). Nitro users could limit their RAM footprint by setting the

32

 0

 1

 2

 3

 4

WebVM Homes Mail

N
o
rm

a
liz

e
d

 S
S

D
 E

ra
s
u
re

s

WEU-LRU-mod
WEU-LRU-TRIM

Extent-LRU-mod
Extent-LRU-TRIM

Figure 3.6:Number of SSD erasures for modified and unmodified SSD variants.

fingerprint index ratio to 75% or 50%, which results in a 16-22% RAM savings respectively

and a decrease in read-hit ratio of 5-11%. For example, when reducing the fingerprint index

from 100% to 50% for the Mail trace (10GB cache size),≥131,000 duplicate extents are not

cached by Nitro, on average.

WEU vs. SSD co-design.So far, we considered scenarios where the SSD is unmodified.

Next we compare our current design to an alternative that modifies an SSD to directly support

WEU caching. In this experiment, we study the impact of silent eviction and the WEU-LRU

eviction policy (discussed in§5.2.4) on SSD erasures. Our co-design specifically aligns WEUs

to SSD blocks (WEU-LRU-mod). We also compare our co-design to variants using the TRIM

command (WEU/extent-LRU-TRIM), which alerts the FTL that a range of logical addresses

can be released. Figure 3.6 plots SSD erasures normalized relative to WEU-LRU without SSD

modifications (1.0 on the vertical axis) and compares WEU versus extent caching.

SSD erasures are 2-4X higher for the extent-LRU-mod approach (i.e. FlashTier [93] ex-

tended to use an LRU policy) and extent-LRU-TRIM approach ascompared to both WEU

versions. This is because the CacheManager lacks SSD layoutinformation so that extent-based

eviction cannot completely avoid copying forward live SSD data. Interestingly, utilizing TRIM

with the WEU-LRU-TRIM approach has similar results to WEU-LRU-mod, which indicates

33

the CacheManager could issue TRIM commands before overwriting WEUs instead of mod-

ifying the SSD interface. We also analyzed the impact of eviction policy on read-hit ratio.

WEU-LRU-mod achieves a 5-8% improvement in read-hit ratio compared to an unmodified

version across the FIU traces.

Depending on the data set, the number of SSD erasures varied for the FTL and TRIM

alternatives, with results between 9% fewer and 20% more erasures than using WEUs. So,

using WEUs for caching is a strong alternative when it is impractical to modify the SSD or

when the TRIM command is unsupported. Though not shown, caching extents without SSD

modifications or TRIM (naive caching) resulted in several orders of magnitude more erasures

than using WEUs.

3.6.2 Prototype System Results

Next, we report the performance of Nitro for primary workloads on bothcos andtps systems.

We then present sensitivity and overheads analysis of Nitro. Note that the cache size for each

workload is 2% of the file system size for each dataset unless otherwise stated.

Performance in cos system. We first show how a high read-hit ratio in our Nitro prototype

translates to an overall performance boost. We replayed theFIU traces at an accelerated speed

to use∼95% of the system resources, (reserving 5% for background tasks), representing a

sustainable high load that Nitro can handle. We setup a warm cache scenario where we use the

first 16 days to warm the cache and then measure the performance for the following 5 days.

Table 3.2 lists the improvement of total IOPS (reads and writes), and read response time

reduction relative to a system without an SSD cache for all FIU traces. For example, a decrease

in read response time from 4ms to 1ms implies a 75% reduction.For all traces, IOPS improve-

ment is≥254%, and the read response time reduction is≥49% for Nitro WEU variants. In

contrast, the Extent (ND, NC) column shows a baseline SSD caching system without the ben-

efit of deduplication, compression, or WEU. The read-hit ratio is consistent with Figure 3.4.

34

Metric
Trace

Extent Nitro WEU Variants
(%) ND, NC ND, NC ND, C D, NC D, C
cos system

IOPS
WebVM 251 307 393 532 661
Homes 259 341 432 556 673
Mail 213 254 292 320 450

RRT
WebVM 52 54 63 72 78
Homes 46 49 55 57 62
Mail 50 53 61 67 72

tps system

IOPS
WebVM 93 113 148 198 264
Homes 90 130 175 233 287
Mail 56 75 115 122 165

RRT
WebVM 39 41 49 58 64
Homes 39 42 47 49 54
Mail 41 44 51 57 61

Table 3.2:Performance evaluation of Nitro and its variants. We reportIOPS improve-
ment and read response time (RRT) reduction percentage relative to cos andtps sys-
tems without an SSD cache. The standard deviation is≤7.5%.

We observe that with deduplication enabled (D, NC), our system achieves consistently

higher IOPS compared to the compression-only version (ND, C). This is because finding du-

plicates in the SSD prevents expensive disk storage accesses, which have a larger impact than

caching more data due to compression. Nitro (D, C) achieves the highest IOPS improvement

(673%) in Homes usingcos. As explained before, a high deduplication ratio indicatesthat du-

plicate writes are canceled, which contributes to the improved IOPS. For Mail, the increase of

deduplication relative to compression-only version is smaller because small I/Os (29% of I/Os

are≤ the 8KB extent size) can cause more reads from disk on the write path, thus negating

some of the benefits of duplicate hits in the SSDs.

Compared to extent-based caching, WEU (D, C) improves non-normalized IOPS up to

120% and reduces read response time up to 55%. Compared to WEU(ND, NC), extent-based

caching decreases IOPS 13-22% and increases read response time 4-7%. This is partially be-

cause extent-based caching increases the SSD write penaltydue to small SSD overwrites. From

SSD random write benchmarks, we found that 2MB writes (WEU size) have∼60% higher

throughput than 8KB writes (extent size), demonstrating the value of large writes to SSD.

We also performed cold cache experiments that replay the trace from the last 5 days without

35

warming up Nitro. Nitro still improves IOPS up to 520% because of sequential WEU writes to

the SSD. Read response time reductions are 2-29% for Nitro variants across all traces because

fewer duplicated extents are cached in the SSD.

Performance in tps system. Nitro also can benefit atps system (Table 3.2). Note that Nitro

needs to compute extent fingerprints before performing deduplication, which is computation

that can be reused incos but nottps. In addition, Nitro cannot leverage a recipe cache fortps

to accelerate read requests, which causes 5-14% loss in readhit-ratio for our WEU variants.

For all traces, the improvement of total IOPS (reads and writes) is≥75%, and the read re-

sponse time reduction is≥41% for Nitro WEU variants. While deduplication and compression

improve performance, the improvement across Nitro variants is lower relatively than for our

cos system because storage systems without capacity-optimized techniques (e.g. deduplication

and compression) have shorter processing paths, thus better baseline performance. For exam-

ple, overwrites in existing deduplication systems can cause performance degradation because

metadata updates need to propagate changes to an entire file recipe structure. For these rea-

sons, the absolute IOPS is higher thancos with faster read response times. Cold cache results

are consistent with warm cache results.

Sensitivity analysis. To further understand the impact of deduplication and compression on

caching, we use synthetic traces to investigate the impact on random read performance, which

represents the worst-case scenario for Nitro. Note that adding non-duplicate writes to the traces

would equivalently decrease the cache size (e.g. multi-stream random reads and non-duplicate

writes). Two parameters control the synthetic traces: (1) The ratio of working set size versus the

cache size and (2) the deduplication ratio. We vary both parameters from 1 to 10, representing

a large range of possible scenarios.

Figure 3.7 shows projected 2D contour graphs from a 3D plot for (D, NC) and (D, C).

The metric is read response time incos with Nitro normalized against that of fitting the entire

data set in SSD (lower values are better). The horizontal axis is the ratio of working set size

36

1

4

7

10

1 4 7 10

D
e
d
u
p
lic

a
ti
o
n
 R

a
ti
o

Working Set Size v Cache Size

Normalized Response Time (X)

1

30

60

90

(a) No compression

1

4

7

10

1 4 7 10

D
e
d
u
p
lic

a
ti
o
n
 R

a
ti
o

Working Set Size v Cache Size

Normalized Response Time (X)

1

30

60

90

(b) 2X compression

Figure 3.7:Sensitivity analysis of (D, NC) and (D, C).

versus cache size, and the vertical axis is the deduplication ratio. The bottom left corner (1, 1)

is a working set that is the same size as the cache with no deduplication. We can derive the

effective cache size from the compression and deduplication ratio. For example, the effective

cache size for a 16GB cache in this experiment expands to 32GBwith a 2X deduplication ratio

configuration, and further to 64GB when adding 2X compression.

First, both deduplication and compression are effective techniques to improve read response

time. For example, when the deduplication ratio is high (e.g. ≥5X such as for multiple, similar

VMs), Nitro can achieve response times close to SSD even whenthe working set size is 5X

larger than the cache size. The combination of deduplication and compression can support an

even larger working set size. Second, when the deduplication ratio is low (e.g.≤2X), perfor-

mance degrades when the working set size is greater than twice the cache size. Compression

has limited ability to improve response time, and only a highly deduplicated scenario (e.g. VM

boot-storm) can counter a large working set situation. Third, there is a sharp transition from

high response time to low response time for both (D, NC) and (D, C) configurations (values

jump from 1 to> 8), which indicates that (slower) disk storage has a greaterimpact on response

time than (faster) SSDs. As discussed before, the performance for Nitro in thetps system is

always better than thecos system.

Nitro overheads. Figure 3.8 illustrates the performance overheads of Nitro with low and high

37

 0.8

 0.9

 1

 1.1

 1.2

COS
(0%)

TPS
(0%)

COS or TPS
(100%)

N
o
rm

a
liz

e
d

R
e
s
p
o
n
s
e
 T

im
e

WEU (ND, NC)
WEU (ND, C)

WEU (D, NC)
WEU (D, C)

Figure 3.8:Overheads of Nitro prototypes with the cache sized to have 0%and 100%
hit-ratios. Y-axis starts at 0.8. The standard dev. is≤3.8% in all cases.

hit-ratios. We performed a boot-storm experiment using a real VM boot trace (§3.5) syntheti-

cally modified to create 60 VM traces. For the 59 synthetic versions, we set the content overlap

ratio to 90%. We set the cache size to achieve 0% (0GB) and 100%(1.2GB) hit-ratios in the

SSD cache. With these settings, we expect Nitro’s performance to approach the performance

of disk storage and SSD storage.

In bothcos andtps 0% hit-ratio configurations, we normalized against corresponding sys-

tems without SSDs. All WEU variants impose≤7% overhead in response time because ex-

tent compression and fingerprint calculation are performedoff the critical path. In the 100%

hit-ratio scenario, we normalize against a system with all data fitting in SSD without WEUs.

WEU (ND, NC) imposes a 2% increase in response time. Compression-only (ND, C) and

deduplication-only (D, NC) impose 11% and 6.2% overhead on response time respectively.

WEU (D, C) overhead (≤18%) mainly comes from decompression, which requires additional

time when reading compressed extents from SSD. Although we are not focused on comparing

compression algorithms, we did quantify that gzip achieves23-47% more compression than

LZ4 (our default), which improves the read-hit ratio, though decompression is 380% slower for

gzip.

38

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

4KB
8KB

16KB

32KB

64KB

128KB

256KB

512KB

1M
B

N
o
rm

.
R

e
s
p
o
n
s
e
 T

im
e

Read Size (logscale)

COS high-gen response time
COS low-gen response time

Nitro COS high-gen response time
Nitro COS low-gen response time

TPS high-gen response time

Figure 3.9:Response time diverges for random I/Os.

3.6.3 Nitro Advantages

There are additional benefits because Nitro effectively expands a cache: improved random read

performance in agedcos, faster snapshot restore performance, and write reductions to SSD.

Random read performance in agedcos system. For HDD storage systems, unfortunately,

deduplication can lead to storage fragmentation because a file’s content may be scattered across

the storage system. A previous study considered sequentialreads from large backup files [73],

while we study the primary storage case with random reads across a range of I/O sizes.

Specifically, we wrote 100 daily snapshots of a 38GB desktop VM to a standardcos system,

a system augmented with the addition of a Nitro cache, and atps system. To age the system,

we implemented a retention policy of 12 weeks to create a pattern of file writes and deletions.

After writing each VM, we measured the time to perform 100 random reads for I/O sizes of

4KB to 1MB. The Nitro cache was sized to achieve a 50% hit ratio(19GB). Figure 3.9 shows

timing results for the 1st generation (low-gen) and 100th generation (high-gen) normalized

to the response time forcos low-gen at 4KB. For thetps system, we only plot the high-gen

numbers, which were similar to the low-gen results, since there was no deduplication-related

fragmentation.

As the read size grows from 4KB to around 128KB, the response times are stable and the

low-gen and high-gen results are close to each other for all systems. However, for larger read

39

sizes in thecos high-gen system, the response time grows rapidly. Thecos system’s logs in-

dicate that the number of internal I/Os for thecos system is consistent with the high response

times. In comparison to thecos system, the performance gap between low-gen and high-gen

is smaller for Nitro. For 1MB random reads, Nitrocos high-gen response times (76ms) are

slightly faster thancos low-gen, and Nitrocos low-gen response times (39ms) are slightly faster

than atps high-gen system. By expanding an SSD cache, Nitro can reduceperformance dif-

ferences across random read sizes, though the impact of generational differences is not entirely

removed.

Snapshot restore.Nitro can also improve the performance of restoring and accessing standard

snapshots and clones, because of shared content with a cached primary version. Figure 3.10

plots the restore time for 100 daily snapshots of a 38GB VM (same sequence of snapshots as

the previous test). The restore trace used 512KB read I/Os, which generate random HDD I/Os

in an aged,cos system described above.

We reset the cache before each snapshot restore experiment to the state when the 100th

snapshot is created. We evaluate the time for restoring eachsnapshot version and report the

average for groups of 25 snapshots with the cache sized at either 2% or 5% of the 38GB volume.

The standard deviation for each group was≤7s. Group 1-25 has the oldest snapshots, and group

76-100 has the most recent. For all cache sizes, WEU (D, C) hasconsistently faster restore

performance than a compression-only version (ND, C). For the oldest snapshot group (1-25)

with a 5% cache size, WEU (D, C) achieves a shorter restore time (374s) when deduplication

and compression are enabled as compared to the system with compression only (513s). The

recent snapshot group averages 80% content overlap with theprimary version, while the oldest

group averages 20% content overlap, as plotted against the right axis. Clearly, deduplication

assists Nitro in snapshot restore performance.

Reducing writes to SSD.Another important issue is how effective our techniques are at re-

ducing SSD writes compared to an SSD cache without Nitro. SSDs do not support in-place

40

 300

 400

 500

 600

 700

 800

76-100
(recent)

51-75 26-50 1-25
(oldest)

0

20

40

60

80

100

R
e
s
to

re
 t
im

e
 (

s
)

O
v
e
rl
a
p
 r

a
ti
o
 (

%
)

Snapshot Groups

WEU (2%, ND, C)
WEU (2%, D, C)

WEU (5%, ND, C)

WEU (5%, D, C)
Avg. content overlap

Figure 3.10:Nitro improves snapshot restore performance.

update, so deduplication can prevent churn for repeated content to the same, or a different,

address. For WebVM and Mail, deduplication-only and compression-only reduces writes to

SSD (≥22%), in which compression produces more savings compared to deduplication. In the

Homes, deduplication reduces writes to SSD by 39% because ofshorter fingerprint reuse dis-

tance. Deduplication and compression (D, C) reduces writesby 53%. Reducing SSD writes

directly translates to extending the lifespan.

3.7 Summary

Nitro focuses on improving storage performance with a capacity-optimized SSD cache with

deduplication and compression. To deduplicate our SSD cache, we present a fingerprint index

that can be tuned to maintain deduplication while reducing RAM requirements. To support the

variable-sized extents that result from compression, our architecture relies upon a Write-Evict

Unit, which packs extents together and maximizes the cache hit-ratio while extending SSD

lifespan. We analyze the impact of various design trade-offs involving cache size, fingerprint

index size, RAM usage, and SSD erasures on overall performance. Extensive evaluation shows

that Nitro can improve performance in bothcos andtps systems.

41

Chapter 4

I /O Predictability in Virtualized Multi-tenant Systems

4.1 Introduction

In this chapter, we address the specific case ofstorage I/O performance predictability (or simply

I/O predictability). Compared to processing, memory, or networking, I/O predictability is the

most challenging to achieve primarily due to the mechanicallimitations of disk drives. In

particular, high disk seek and rotational times make predictability difficult to achieve when

multiple VMs share the same disk.

We divide the chapter into two parts. The first part quantifiesthe impact of workload charac-

teristics, virtual machine monitor (VMM) architecture, the approach to virtualizing storage, and

storage device characteristics on I/O predictability. Overall, we measure the I/O predictability

of three workloads running on sixteen configurations. Usinga new “performance deviation” (or

simply “deviation”) metric, we find widespread unpredictability. Further, perhaps surprisingly,

we find that using an SSD as the storage device can exacerbate the problem when the workload

is write-intensive.

Based on this first study, the second part of the chapter proposes and evaluates VirtualFence,

a performance-predictable storage system. VirtualFence seeks to produceconsistent perfor-

mance within the range defined by the best and worst performance levels that each VM may

experience in a predictability-oblivious service(i.e., in the absence of VirtualFence). Specif-

ically, a VM would experience its best performanceBestPerfwhen the provider co-locates

no other VMs with it, and allows it to use all resources of the PM. The worst performance

42

WorstPerfwould occur when the provider co-locates other active VMs with it (up to the max-

imum capacity of the PM). VirtualFence seeks to produce performance betweenBestPerfand

WorstPerf. In addition, it seeks to retain this performance regardless of changes in the number

of co-located VMs, changes in the working set size of the other VMs, or any other external

condition. The goal is for each VM to always run as if it were alone on a fixed and tightly

controlled partition of the resources.

To achieve this goal, VirtualFence couples a small persistent SSD cache with a much larger

HDD. It also implements a non-work-conserving I/O scheduling algorithm, partitioning time

into a fixed number of relatively coarse-grained slots. EachI/O slot can only be given to one

active VM, but a single active VM may receive multiple slots (the number of slots depends on

how much the VM’s owner is willing to pay the cloud provider).I/O accesses from a VM are

only serviced during the VM’s assigned slot(s). A static allocation of time slots while a VM

is active ensures consistent resource allocation for predictable performance. The SSD cache

and I/O time partitioning together minimize the impact of HDD headmovement due to con-

solidation, whereas I/O time partitioning minimizes the impact of SSD block erasures. Finally,

VirtualFence partitions both the SSD cache and the HDD, which is a non-work-conserving

space allocation scheme that again ensures consistent resource allocation for predictability.

For simplicity, we implement VirtualFence for a virtualized system with direct-attached

disks. However, the same ideas (one SSD per HDD, SSD space partitioning, and I/O time

partitioning) can be easily implemented in file/storage servers, network-attached storage appli-

ances, or distributed file/storage systems. Although these other systems may present additional

sources of potential unpredictability, we expect disk-driven unpredictability to still dominate.

The only requirement in these implementations is that the closest driver to the disks must be

able to identify the VMs from which the accesses are coming.

Our evaluation demonstrates that VirtualFence improves I/O predictability (or, equivalently,

that it reduces deviation) significantly, as long as we utilize all of its component techniques at

43

the same time. In fact, we show that simply using an SSD as a cache of HDD data isnot

enough. More fundamentally, our evaluation illustrates the tradeoff between predictability and

performance: the more we improve predictability, the worseaverage response time becomes.

The challenge is finding the smallest response time that willproduce enough predictability.

Summary of contributions. We study the impact of VMM architecture, approach to storage

virtualization, and storage device on I/O predictability. We propose VirtualFence, a system that

combines SSDs working as HDD caches, space and non-work-conserving time partitioning. We

quantify the impact of each feature of VirtualFence on I/O predictability. Using VirtualFence,

we investigate the fundamental tradeoff between predictability and performance.

The remainder of the chapter proceeds as follows. The next section motivates our work.

Section 4.2 motivates our work. Section 4.3 describes our experimental methodology and

workloads. Section 4.4 details the results from our VMM characterization. Section 4.5 de-

scribes VirtualFence, whereas Section 4.6 presents its evaluation. Section 4.7 discusses differ-

ent aspects of VirtualFence and our results.

4.2 Motivation

Many users desire performance predictability. Although most cloud users may not require

predictable VM performance, many actually do. For example,streaming (video/audio) and

gaming applications typically seek to achieve a consistentrate (e.g., displayed frame rate)

rather than the highest performance, if that performance might introduce unpredictability (jit-

ter). There are also many cases where repeatable behavior isimportant, such as performance

tuning, debugging, and diagnosis [27, 72]. In fact, it is impossible to evaluate the impact of

changes to an application in the cloud, if its performance may constantly be affected by con-

solidation. Finally, many applications implement workflows/pipelines (e.g., Nutch [8], genome

analysis [39]), where the performance that can be achieved in each stage depends on the ex-

pected performance of a previous stage. Properly designingsuch applications for the cloud is

44

impossible if the performance of each stage can vary widely.

Predictability would benefit cloud providers and users. As predictability is important to

many users, we argue that IaaS cloud providers should offer a new class of predictable-performance

service. Importantly, this class of service shouldnot replace their existing (predictability-

oblivious) services.Users who do not require predictability can still use the existing services.

Rather, the new class should be an additional service that uses a separate set of tightly managed

hardware resources. (Section 4.7 discusses combining the two classes of service onto the same

hardware infrastructure.) The amount of resources to be purchased for the new class of service

can be small at first, and be increased as demand for predictable behavior increases. Current

IaaS providers already offer a range of other classes of service, such as the Cluster Compute

and Cluster GPU service classes of Amazon EC2.

The tight management of resources in this class of service would: (1) enable the provider

to charge for exactly the pre-defined levels of performance and predictability that its users

require; (2) enable the provider to conserve energy when resources are not used to guarantee

the performance paid for by its users. For example, unneededCPUs or memory modules can

simply be turned off. In fact, the tight management of resources allows the provider to provision

just enough servers, for additional (operating and capital) cost savings. Obviously, current

services can use fewer servers by overbooking resources, but they cannot provide predictability;

and (3) create an obvious relationship between the resources that customers pay for and the

performance that can be achieved with those resources, i.e.users never complain that the

performance of their VMs suddenly got worse (when the provider stopped dedicating more

than the minimum set of contracted resources). Gulatiet al. mention some of these same

benefits to limiting maximum allocations [45].

Cloud users can also benefit from predictability for three reasons: (1) they can rely on it

to implement applications for which predictability is moreimportant than receiving as many

resources as are available; (2) predictability can lower their cloud costs when the provider can

45

save money by conserving energy or provisioning their data centers more tightly; and (3) they

can predict their cloud costs into the future with the certainty that their VMs’ performance will

never be affected by changes in provider-side resource allocation.

Importantly, our approach enables a wide variety of performance and predictability levels.

For example, a user may purchase 1/n (n is defined by the provider) of a PM and receive the

performance that this fraction of resources produces. If this performance is not good enough,

the user can purchase any multiples (s≤ n) of this fraction. The larger the fraction, the more

consistent the performance will be. Ideally, the price of a VM instance withsslices of a PM in

the predictable service would be the same as (or only slightly higher than) an instance with the

same amount of resources on average in the existing predictability-oblivious service.

Client-side throttling does not work. One might think that providing an additional class

of predictable service is unnecessary, as delays can be added on the client side to achieve

predictable behavior. However, this intuition is incorrect. As the client does not know how bad

VM performance may get in the future (theWorstPerfperformance mentioned above), it cannot

target a performance level that is guaranteed to be consistent. In fact, even if the client knew

the value ofWorstPerf, it would have to set its delay to achieve this worst performance. Any

other value could be exceeded.

4.3 Methodology

In this section, we first define the metric we use to evaluate VMperformance predictability.

We then describe the virtualized systems we study in Section4.4, each of which comprises a

different combination of VMM, approach to storage virtualization, and storage device. Finally,

we describe the experimental environment, including the workloads and hardware execution

platform.

46

4.3.1 Performance Deviation Metrics

It is difficult to study performance predictability without a metric to quantify it. Since our notion

of predictability means achieving the same VM performance in the presence of other VMs as

in isolation, we earlier defined the performance deviation metric informally to relate these

quantities explicitly. Again, we measure performance deviation as the percentage performance

degradation when a VM runs in the presence of other VMs compared to when it runs alone on

the physical host. Specifically, letPI be the (initial) performance of a VM when running alone,

andPD be the (degraded) performance of the VM when co-located withother VMs. Then, the

amount of deviationδ is:

δ = |
PI −PD

PI
| ×100%

When multiple (sayn) VMs executing the same workload are used in an experiment, we

report the average deviation:

E[∆] =

∑n
i=1δi

n

where∆ = {δ1, δ2, ..., δn}.

As we show below, performance deviation is often different for throughput and response

time. Thus, throughout the paper, we study deviation for both metrics.

4.3.2 Virtualized Systems

We measure performance deviation across four well-known VMMs and two types of persistent

storage, SSD and HDD. First, we study VMWare’s Workstation (8.0), where the host OS is

responsible for device I/O. In contrast, we also study VMWare’s ESXi Server (5.0), where guest

VM I /O operations trap into the VMM, which then directly accessesthe I/O device. Third, we

study Xen (4.0.1), where a split-driver model is used for device I/O. Here, an isolated device

domain (Dom0) runs the device drivers. Therefore, VMs (guest VMs, which are referred to as

DomU) pass their I/O requests through to Dom0 on I/O accesses. Like VMWare’s ESXi, the

47

Xen VMM runs on the hardware directly. Finally, we study KVM (0.12.5), where the Linux

kernel is equipped with native virtualization capabilities. As such, it relies on the Linux kernel

to actually accomplish device I/O.

As VMWare Workstation and KVM run on top of Linux, and Xen incorporates drivers from

Linux, we also run our workloads as processes on a Linux setup.

Finally, we study both file-based and disk-partition-basedstorage of VM persistent data in

Xen and KVM.

4.3.3 Workloads

We use workloads from Filebench [79], a popular framework for measuring and comparing file

system performance. Specifically, we use Fileserver, Mailserver, and Webserver. Fileserver

emulates a server hosting directories owned by multiple users; Mailserver focuses on mail

operations and has an I/O mix of a read per sync write; and Webserver emulates a serverthat

services a read-only workload.

To measure deviation, we compare a VM’s I/O performance when running alone against

that when running with three other VMs. Specifically, we configure workloads of four VMs

running concurrently, each of which executes the same Filebench application. One of the VMs

is configured to produce a low-intensity I/O load that is approximately 8% of the storage sys-

tem’s saturation load. Each remaining VM is configured to produce approximately 24% of the

storage system’s saturation load. (We produce a load ofx% of saturation by finding the satura-

tion throughput for each application, and adjusting the number of threads and thread I/O rate to

achievex% of that throughput.) Overall, the four VMs reach 80% of saturation, representing

an aggressive consolidation scenario. We then compare the low-intensity VM’s performance

to when it runs alone, and the performance of each of the threehigher-intensity VM to when

it runs alone. Note that we scale the load to maintain a constant utilization level (80%) across

storage systems (HDD, SSD, and VirtualFence).

48

We call the above setup a 4-VM heterogeneous workload and useit as the primary work-

load for our study for two reasons. First, we want to study howhigher-intensity VMs affect the

predictability of low-intensity VMs. Second, we want to study deviation when VM consolida-

tion leads to high utilization levels. In Section 4.6, we also study homogeneous workloads and

systems with low-intensity VMs only, resulting in low aggregate loads.

4.3.4 Experimental Platform

We run our experiments on a server equipped with a 2.4GHz 4-core Xeon CPU (each core

supports two hardware threads), 8GB of RAM, a 60GB SSD, and a 160GB 7200RPM SATA

HDD. According to its datasheet, the HDD has an average seek time of 11ms and full stroke

time of 22ms. The SSD is spec’ed with random read performance>20,000op/s and random

write performance>5,000op/s. We measured erasures, including garbage collection, to take

approximately 3.5ms-4ms in a write-only benchmark. The guest OS in the VMs is always a

Debian installation with Linux kernel version 2.6.32. The host OS for VMWare Workstation

and KVM is the same Linux installation.

The Linux 2.6 kernel has 4 commonly used disk schedulers: Noop, Deadline, Anticipa-

tory, and Completely Fair Queuing (CFQ). We set the disk schedulers of the guest and host

(including Xen’s Dom0) Linux systems to Noop and CFQ, respectively. We choose Noop in

the guest OS to isolate the impact of the VMM’s I/O scheduling. We choose CFQ for the host

OS because it minimizes deviation when not using VirtualFence.

In all experiments, we allocate 512MB of memory to each VM andpin it to a core to

minimize the impact of VMM CPU scheduling. We run at most 4 VMssimultaneously so that

each VM can be allocated an entire core.

49

(a) Webserver running on HDD (b) Webserver running on SSD

(c) Fileserver running on HDD (d) Fileserver running on SSD

(e) Mailserver running on HDD (f) Mailserver running on SSD

Figure 4.1:Performance deviation experienced by the low-intensity VMin 4-VM heterogeneous work-
loads.

4.4 VMM-Driven Performance Deviation

Our study begins with characterizing I/O performance deviation for the four different VMMs,

when using file-based vs. disk-partition-based storage virtualization, and when using an SSD

vs. an HDD device. Figure 4.1 plots the deviation experienced by the low-intensity VM in

the 4-VM workloads described in Section 4.3.3. We plot deviation for both throughput and

response time. In both cases, the lower the measure, the better. The range markers represent

the minimum and maximum values from three experiments, whereas the bar represents the

average. We do not show the results for the high-intensity VMs because they exhibit similar

trends.

Many interesting observations arise from these graphs. First, deviation is endemic across

50

all system configurations for both throughput and response time. For example, Xen’s deviation

ranges from∼17-32% for throughput and∼327-433% for response time when running on an

HDD, and ranges from∼9-28% for throughput and∼166-479% for response time when running

on an SSD.

These high deviations show that performance degrades significantly when running with

other VMs. Much of the degradation arises from interferencebetween the 4 VMs. The higher

aggregate workload leads to increased queueing times, resulting in higher response times.

When running on the HDD, interleaved requests from multipleVMs increase seek overheads,

resulting in loss of throughput and higher response times. Interestingly, the response time de-

viations for workloads with writes (Fileserver and Mailserver) are worse when running on the

SSD compared to the HDD. The main reason is that SSD writes sometimes cause expensive

Flash block erasures, which may affect accesses from all VMs.

Second, deviations for all workloads and HDD/SSD combinations are worse when a VMM

is used vs. stand-alone Linux. Since many VMMs operate on a Linux base, such as KVM or

Xen’s Dom0, this further demonstrates that VMMs intrinsically increase deviation.

Third, file-based virtual disks exhibit slightly worse predictability than partition-based vir-

tual disks. Two potential sources for the greater deviationare the file system code running

inside the VMMs, and the need to update the metadata of the files implementing virtual disks

when the hosted VMs access their virtual disks.

Finally, Figure 4.1 shows that KVM exhibits the highest deviations. The main reason is that,

by default, KVM propagates writes coming from the VMs directly through to the storage device

to improve reliability. When this feature is disabled, the KVM deviations become comparable

to those of the other VMMs.

Although the results are not shown here, we have also measured performance deviation for

a low load scenario, where the aggregate load reaches only 20% of saturation. Throughput

deviation is relatively low in this scenario but response time deviation is still significant.

51

Taken together, these observations mean that current systems lack I/O predictability. Large

deviations may arise from the resource allocation policies; specifically, work-conserving poli-

cies link VMs’ I/O resource allocation to the number of co-located VMs, causing deviations

as this number changes. Large deviations may also arise fromdevice-specific characteristics.

Interleaving HDD requests from different VMs leads to higher seek overheads, whereas SSD

erasures initiated by a VM can interfere with operations from other VMs.

4.5 VirtualFence

VirtualFence uses three techniques to reduce performance deviation between VMs whose vir-

tual disks are stored on the same physical disk: (1) a non-work-conserving time-division I/O

scheduling algorithm with relatively coarse-grained timequanta, (2) a small persistent SSD

cache in front of a much larger HDD, and (3) space partitioning of both the HDD and the SSD

cache.

The non-work-conserving time-division I/O scheduling serves two purposes. First, it en-

sures that the resources allocated to a VM are (mostly) constant regardless of the number of

co-located VMs. Second, it avoids fine-grained interleaving of requests from different VMs

to reduce inter-VM interference; for an HDD, this reduces seek overheads between operations

from the same VM, whereas for an SSD, it reduces the interference of erasures from one VM

on accesses from other VMs.

Despite the non-work-conserving policy, a system with onlyHDDs would still suffer some

performance deviation when multiple VMs are co-located; asthe system switches from serving

1 VM to another, the HDD’s head will have to move across partitions, leading to higher seek

time for the first HDD operation, and so performance deviation. We limit the impact of this

deviation by putting the SSD cache in front of the HDD. With a reasonable hit ratio in the SSD

cache, we may eliminate some of these expensive HDD accesses. Moreover, the SSD cache

significantly increases the performance of the virtual disk, so that the expensive first HDD

52

����

����	
��

�	��

���

�����

������

����

������

������

�	�������
�

�
������

�	����

���	
�

�	��

Figure 4.2:VirtualFence architecture.

operation is amortized across many more operations.

Finally, the space partitioning of the HDD limits the seek overheads between operations

from the same VM, while the space partitioning of the SSD cache is a non-work-conserving

space allocation scheme to ensure constant cache allocation for each VM.

Note that VirtualFence deals solely with storage I/O resources, assuming that other re-

sources (e.g., CPU cores and memory) are also managed with predictability-preserving sched-

ulers.

4.5.1 Prototype

We have implemented a prototype VirtualFence system in the Xen VMM version 4.0.1, using

the blktap user-level toolkit [82]. This prototype includes a device driver and a scheduler. The

device driver instances—a separate instance of the device driver is used to service each distinct

virtual disk—and the scheduler each runs as a user-level process in Dom0 (Figure 4.2). We

have not experimented with multiple SSDs and HDDs but it should be trivial to extend our

prototype, as long as the caches for virtual disks co-located on a single HDD are themselves

co-located on a single SSD. We discuss multiple SSDs and HDDsagain in Section 7.

The SSD cache holds two types of persistent data: (1) blocks cached from the HDD, and

(2) metadata describing the state of each cache block (e.g.,valid bit, HDD block number). The

53

driver implements the data structures needed to support an LRU replacement policy in volatile

memory, including an LRU list of blocks, a write list that points to dirty blocks that need to be

written to the HDD and then evicted, and a free list. At start up, the driver scans the SSD for all

metadata, and builds all the in-memory data structures. No “last usage times” are kept across

system restarts.

The LRU maintenance is simple. A background thread attemptsto maintain the size of the

free list above a threshold size by evicting the oldest entries in the LRU list as needed. Dirty

blocks to be evicted are moved to the write list while the writes to the HDD are outstanding. If

the free list ever reaches a low watermark threshold, processing of incoming requests is halted

until the free list grows above the low watermark.

The driver uses asynchronous I/O to read and write data from/to both the SSD and HDD.

4.5.2 Space Partitioning

VirtualFence uses a separate partition of an SSD as a cache for each virtual disk co-located on

the same HDD. (Note that while the sizes of the partitions in our evaluation experiments are

the same, it is trivial to make the cache size proportional tothe size of the virtual disk, so that

larger virtual disks also have larger caches.) We have also implemented a variation that uses a

single SSD partition as a shared cache across multiple virtual disks to quantify the impact of

space partitioning on deviation.

The implementations of the two variants are slightly different. In the space-partitioned

version (i.e., VirtualFence), the caching code runs insidethe driver process that manages each

virtual disk. In the shared-cache variant, the caching coderuns in a separate process (that

must then interact with the multiple drivers managing the virtual disks sharing the cache).

This structure makes the shared cache implementation slightly less efficient than VirtualFence

because of the inter-process communication between the cache manager and the drivers.

54

��������	
�	

�����

����

����

����
���

���

���

��������

����	�

���	���	� ���������	���	�����	�

Figure 4.3:Driver with non-work-conserving time partitioning.

4.5.3 Time Partitioning

Our non-work-conserving I/O scheduler assumes that a physical SSD/HDD pair is used to ser-

vice at mostn simultaneous active virtual disks, and so divides access tothe physical disks into

n equal-sized time slots. When a VM starts running on a host, its virtual disk is allocated one

or more I/O slots (depending on how much of the host’s I/O resources is assigned to that VM).

The scheduler then round-robins between the slots,leaving a slot idlewhen it is unassigned or

the assigned virtual disk does not have any I/O activities; utilizing these slots would break the

non-work-conserving property of the scheduler. On the other hand, this property of the sched-

uler also impacts performance, as we discuss extensively inSection 4.6.3. Figure 4.3 illustrates

our implementation.

The driver translates each user I/O request into requests to the SSD and HDD, and adds

each type of requests to the appropriate device I/O queue. Each virtual disk has a distinct set of

queues that are serviced during the slots assigned to the VM.1 The scheduler informs a driver

instance when its assigned slot is scheduled, at which time it is allowed to forward requests to

the SSD and/or the HDD until the slot time expires. A driver can end its slot early (see below),

in which case the scheduler will lengthen the slot time appropriately the next time that slot is

1 We currently assume that each virtual disk is only attached to a single VM and that a VM attaches to at most
one virtual disk.

55

scheduled. If a driver overruns the slot time, the schedulerwill deduct the overrun from the

next slot.

To implement accurate time partitioning without losing performance, we need to send as

many accesses as possible in a slot without running over the time allocated to the slot. In addi-

tion, it is more efficient to batch requests because of effects such as disk scheduling and fixed

access overheads. Thus, our approach is to estimate the service times of batches of accesses,

and to send the largest batch of accesses that is estimated tocomplete within the remaining time

in the slot.

Our driver dispatches requests to the SSD and HDD in the same manner as follows. If

there are no pending requests, then wait until a request arrives or the current slot terminates.

If there are pending accesses, and at least the first access isestimated to complete within the

remaining time in the slot, find the largest batch that is estimated to fit within the remaining

time. (We explain our prediction model below.) After the completion of a batch of requests, if

time remains in the slot, then repeat.

The driver will end a slot early if the first pending HDD request is estimated to take longer

than the remaining time in the slot. This is because HDD resources are much more constrained

than the SSD, and thus, when the remaining slot time cannot beused for accessing the HDD,

it is better to “credit” it to the next slot instead of wastingit. On the other hand, if a batch of

HDD requests overruns the slot time, while waiting for the batch to complete, slowly send SSD

requests to not waste this time while not causing even more slot delay by having to wait for the

completion of a large batch of SSD requests.

Predicting HDD request service times accurately can be quite complicated [94, 108]. For

our purposes, however, it is sufficient to use a simple piece-wise linear function that predicts

the access time of a request based on the distance between theblock being requested and

the block requested by the immediately preceding request. When predicting the service time

of a batch, we order the requests using the block addresses under the assumption that the disk

56

scheduling algorithm includes some form of scanning. We parameterize the prediction function

for our specific HDD by benchmarking the service time of a large number of random batches of

accesses, each batch with a random mix of reads and writes. Our approach leads to reasonably

accurate prediction of batch service time: for a benchmark issuing batches of random sizes

averaging 50 accesses and 336ms batch service time, over 70%of our predictions are within

[−5ms,5ms] of the actual batch service times.

Measurements of the SSD used in our experiments show that request service times can be

approximated using a linear function that depends on the number of requests simultaneously

submitted to the asynchronous I/O system. We parameterize the prediction function for our

SSD by benchmarking the service times of a large number of batches of accesses, where each

batch has a random size (between 1 and 100), a random split between reads and writes, and

random target blocks. For a benchmark with an average batch size of 49 accesses and an

average batch service time of 19.4ms, over 83% of our predictions were within [−250us,250us]

of the actual batch service times.

4.6 Evaluation

We now explore VirtualFence’s effectiveness in providing performance predictability. All ex-

periments are performed using the workloads and experimental platform described in Sec-

tion 4.3. The SSD cache block size is set to 4KB to match the default 4KB block size of

the HDD. We also adjust the SSD cache size to explore the impact of different hit rates. We use

the notation VirtualFence(X%,Yms) to denote a VirtualFence system with a time-sharing slot

size ofYms, and the SSD cache empirically sized to achieve a hit rate of X%. We explicitly

set the SSD cache hit rate to systematically isolate its impact; in practice, administrators would

set the SSD partition size (and the number of time slots) for each VirtualFence virtual disk

based on the QoS/resources promised to the disk’s owner and the number of virtual disks to be

consolidated on the physical server.

57

Variant HDD SSD Cache NWC
HDD+NWC x x
SSD+NWC x x
Hybrid/Shared x x Share
Hybrid/Shared+NWC x x Share x
Hybrid/Partitioned x x Partition
VirtualFence x x Partition x

Table 4.1:Variants of VirtualFence comprising different combinations of predictability-enhancing tech-
niques. The HDD and SSD columns show whether a variant uses anHDD and SSD device, respectively.
When both devices are used, the SSD acts as a cache for the HDD.The Cache column shows whether
the SSD cache is shared or partitioned. The NWC column shows whether non-work-conserving time
partitioning is used.

���������� 	��������
��������
�

�

��

��

��
������������������������������� �!�

"��������������������������������#������ �!�$�%

&����������'���������������������� �!�

"�������&����������'����������������#������ �!�$�%

(
�
��
�
�'
�
�
)
�
�
�
�
��
��
�
�
$*
%

(a)
��� ��� ����

�

��

��

��

��
	
���
���������������������������

 �������	
���
�����������������!��
�������"#$

%�#���#��	�&��������������������������

 �������%�#���#��	�&����������������!��
�������"#$

'
�
��
�
�&
�
�
(
�
�
�
�
��
��
�
�
"�
$

(b)

Figure 4.4: Deviation when running (a) the 4-VM heterogeneous workloads on VirtualFence
(50%,20ms), and (b) the 4-VM heterogeneous Fileserver workload on VirtualFence (X%,20ms), withX
∈ {50%, 75%, 100%}. The range markers show the minimum and maximum values from three experi-
ments whereas the bar shows the average.

To isolate the contributions of the different features of VirtualFence toward increasing pre-

dictability, we also measure deviation for many incompletevariants of VirtualFence. Table 4.1

lists these variants. The first two variants, HDD+NWC and SSD+NWC, are designed to isolate

the benefits of non-work-conserving time partitioning. TheHybrid/Shared variant uses an SSD

cache in front of the HDD, but the entire cache space is sharedbetween multiple virtual disks.

Hybrid/Shared+NWC extends this variant with non-work-conserving time partitioning. Hy-

brid/Partitioned is VirtualFence without non-work-conservingtime partitioning, isolating the

benefits of space-partitioned SSD caches.

4.6.1 Performance Deviation

VirtualFence. We begin by showing VirtualFence’s effectiveness at reducing performance

deviation. Figure 4.4(a) shows the measured deviation whenrunning the 4-VM heterogeneous

workloads on VirtualFence(50%,20ms). Figure 4.4(b) showsthe measured deviation when

58

running the 4-VM heterogeneous Fileserver workload, whichexperiences the highest deviation,

on VirtualFence with hit rates ranging from 50% to 100% and a time-sharing slot size of 20ms.

Figure 4.4(a) shows that VirtualFence is successful at reducing deviation in both throughput

and response time, compared to a system without VirtualFence (Figure 4.1). In fact, Virtual-

Fence produces lower deviations regardless of storage device or approach to virtualizing stor-

age. For the low-intensity VM, all deviations are≤15%, compared to throughput deviations of

≥31% and response time deviations of≥443% without VirtualFence. Furthermore, deviations

are always lower than 19% when the SSD cache affords a 50% hit rate. Figure 4.4(b) shows

that deviation decreases as the SSD hit rate increases.

The results are positive in terms of raw performance as well.For example, Fileserver

file accesses (97KB on average) by the low-intensity I/O VM take an average of 19ms, when

the VM runs in isolation on the HDD configuration. When the same VM runs co-located

with 3 high-intensity VMs, the average file access time increases to 98ms. We increase the

I/O intensity of each VM by a factor of 3.3x in VirtualFence(50%,20ms) to achieve the same

utilization as in the HDD case. Despite the much higher I/O intensity, the low-intensity I/O

VM experiences an average file access time of 59ms when running alone, and just 64ms when

co-located with 3 high-intensity I/O VMs, under VirtualFence(50%,20ms).

Isolating the contributions of different features. Figure 4.5 plots performance deviation

when the Mailserver workload is run on the variants (including the full VirtualFence imple-

mentation) listed in Table 4.1. Performance deviations forHDD and SSD (from Figure 4.1) are

also shown as baselines. These results are representative of all three Filebench workloads.

First, this figure shows that VirtualFence achieves performance predictability close to that

of SSD+NWC. Specifically, SSD+NWC achieves 3% and 10% throughput and response time

deviation, respectively, whereas VirtualFence achieves 6% and 12%. SSD+NWC represents

the best case scenario since it includes space partitioning(each VM is given a separate SSD

partition), non-work-conserving scheduling, and storagecompletely on the SSD. The fact that

59

these two systems achieve almost the same predictability shows that our caching approach is

effective, allowing VirtualFence to extend the predictability benefits of (expensive) SSDs to

much larger (and cheaper per byte) HDDs with small SSD caches.

Second, results for HDD+NWC suggest that non-work-conserving time partitioning can

also be effective in reducing deviation when not using an SSD cache. However, the movement

of the disk head between partitions when changing between time slots assigned to different

VMs is sufficiently large that HDD+NWC with a 20ms slot size still incurs a 13% throughput

deviation and a 33% response time deviation. As we show in Section 4.6.3.2, increasing the slot

size to attack this source of deviation also increases the response time observed by a VM run-

ning alone on a host. As already mentioned, this source of deviation also exists in VirtualFence

but is mitigated by the SSD cache.

Third, at this hit rate, non-work-conserving time partitioning achieves higher predictability

than using an SSD cache: HDD+NWC has lower deviations than both Hybrid/Shared and Hy-

brid/Partitioned. Interestingly, HDD+NWC is also better than Hybrid/Shared+NWC, implying

that the interference at the shared cache negates some of thebenefits of NWC. Of course, as the

hit rate increases, the relative advantage of using NWC vs. an SSD cache will likely change.

Fourth, as expected, a shared SSD cache produces worse predictability than a partitioned

cache. A shared cache can produce higher absolute performance; e.g., it may benefit an I/O-

intensive VM running by itself. However, it would hurt predictability when the VM is co-

located with other VMs and so must share the cache.

Finally, all three techniques used in VirtualFence contribute to increasing predictability;

VirtualFence achieves higher predictability than the other configurations, except for the much

more expensive SSD+NWC.

60

���������� 	
�����
���

�

��

���

���

���

�

��
�
��
�
�
�

�

�
��
��
�
�
�
�
�

���
���

��� !"#

��� !"#

�$%��&'����
&����

�$%��&'����
&����
 !"#
�$%��&'�������������

(�����)*
��

��$%��&'�������������
 !"#�

Figure 4.5:Deviation when running on VirtualFence(50%,20ms) compared to various incomplete vari-
ants of it. Each bar shows results for the low-intensity VM inthe 4-VM heterogeneous MailServer
workload. The cache size for Shared-cache versions is equalto the sum of the caches in the Partitioned-
cache cases.

4.6.2 Performance Deviation at Low Load

The previous subsection shows that VirtualFence is effective in aggressive consolidation sce-

narios. In this section, we consider what happens when the aggregate load is low, representing

more conservative scenarios.

Figure 4.6 shows the average throughput and response time deviation under low aggregate

loads for SSD, HDD, and VirtualFence(50%,20ms). Each workload runs 4 homogeneous VMs,

where each VM is configured to generate 5% of the storage system’s saturation load (i.e., each

VM is less I/O intensive than any VM we have discussed so far). These results show that,

even at these low loads, HDD experiences very high deviation. This is because requests from

multiple VMs are interleaved, leading to much higher seek overheads. Although throughput

deviation for the SSD is low, response time deviation is still significant for the workloads with

writes (greater than 50% for both Mailserver and Fileserver). All deviations are below 14% for

VirtualFence.

The raw performance results for this low-load workload are interesting as well. For ex-

ample, Fileserver file accesses by each VM take an average of 21ms, when it runs in isolation

on the HDD configuration. When the 4 low-intensity I/O VMs are co-located, the average

file access time increases to 42ms. We increase the I/O intensity of each VM by a factor

61

��������� ��	�������
��	������
�

�

��

��

��

���

��
�����������
��������������

�

�
�
��
�
��
�
�
�
�
�
�
�
��
��
�
�
�!
"
#

(a) HDD

��������� ��	�������
��	������
�

�

��

��

��

���

��
�����������
��������������

�

�
�
��
�
��
�
�
�
�
�
�
�
��
��
�
�
�!
"
#

(b) SSD

��������� ��	�������
��	������
�

�

��

��

��

���

��
�

�
�
��
�
��

�
�
�
�
��
�
�
��
��
�
�
��
�
� ����� !�" �

�#��"���������

(c) VirtualFence (50%, 20ms)

Figure 4.6:Deviation when running 4-VM homogeneous, low-rate I/O workloads.

62

���� ��� ���
�

��

��

��

��

��

�

��

��

��

��

��
�	
��
	����	��	������

�	
��
	����	

�
	

�

�

	

�
��

	
��

�

�
	

���
��

�

�
	

�
	

���
���

��

�����	������ ��

(a) Webserver workload

�� �� �� �� �� �� ��
�

��

��

��

��

���

���

���

�

��

��

��

��

��

��

	�

���������������������

�����������

��������������

�
�

�
�
�
�
�
��

�
��

�
�

�
�
���

��
�
�

�
�
�
���

���
�
�!

�

(b) Webserver workload

���� ��� ���
�

��

��

��

��

��

�

��

��

��

��

��
�	
��
	����	��	������

�	
��
	����	

�
	

�

�

	

�
��

	
��

�

�
	

���
��

�

�
	

�
	

���
���

��

�����	������ ��

(c) Fileserver workload

�� �� �� �� �� �� ��
�

��

���

���

���

���

���

���

���

�

��

��

��

��

��

��

��
	
����
����
��
������

	
����
����

�������
�����

	

�
�

�
�

�
��

��
�
�

�

��
��
�
�
�

�

���
��
�
�
�

(d) Fileserver workload

���� ��� ���
�

��

��

��

��

��

�

��

��

��

��

��
�	
��
	����	��	������

�	
��
	����	

�
	

�

�

	

�
��

	
��

�

�
	

���
��

�

�
	

�
	

���
���

��

�����	������ ��

(e) Mailserver workload

�� �� �� �� �� �� ��
�

��

��

���

���

���

�

��

��

��

��

��

��

	�

���
��������

�
�
�
�
�
�
�
�
�
��

�
��

�
�

�
�
���

��
�
�
�
�
�
�
 ��

��
�
�!

�

���������������� �����

�������������

(f) Mailserver workload

Figure 4.7:Number of slots and response time trade-off. Slot length and response time trade-off.

of 2.7x in VirtualFence(50%,20ms) to achieve the same utilization as in the HDD case. De-

spite the much higher I/O intensity, each VM experiences an average file access time of 35ms

when running alone, and just 40ms when it is co-located with the other 3 VMs, under Virtual-

Fence(50%,20ms).

4.6.3 Performance vs. Predictability

In this subsection, we explore the performance vs. predictability tradeoff that VirtualFence

exposes. In particular, we explore the performance deviation and raw performance impact of

its two key parameters: the number of VM slots per PM, and the length of each slot.

63

4.6.3.1 Impact of Number of Slots

The number of VM slots determines how aggressively a cloud provider will be able to con-

solidate VMs onto the same PMs. Figure 4.7 illustrates the impact of the number of slots on

response time deviation and raw response time of VirtualFence(50%,20ms). For each number

of slotsn, we assumen VMs, and configure each VM to generate only∼5% of the Virtual-

Fence(50%,20ms) saturation load. Such a low aggregate loadis a particularly challenging for

VirtualFence raw performance-wise, because it may producesignificant average waiting times.

As the figure illustrates, VirtualFence produces lower response times as we decrease the

number of slots (while keeping the slot length fixed). The reason is that fewer slots also means

lower waiting times, as each VM is allotted a higher fractionof time. From the opposite point of

view, raw response time worsens linearly with increasing number of slots, because VirtualFence

will not service a request until its corresponding slot is scheduled.

Interestingly, response time deviation decreases slowly as we increase the number of slots.

With a large number of slots, deviation would approach 0%, because the waiting time would

overwhelm the single disk head movement in the first request of each slot.

Clearly, there is a tension between wanting a small number ofslots to reduce average re-

sponse times and wanting to increase the number of slots to improve predictability. Fortunately,

VirtualFence makes predictability reasonably good even with only a few slots. Thus, we would

like to set the number of slots at the smallest number that will enable enough consolidation.

4.6.3.2 Impact of Slot Length

The key source of remaining deviation in VirtualFence is theneed to move the disk head from

one partition to another when changing slots assigned to different VMs. Thus, the slot length

directly impacts VirtualFence’s predictability: a longerslot better amortizes the inter-partition

head movement cost among more requests. However, lengthening the slots also increases re-

sponse time, because I/O operations issued outside of a VM’s slot incur greater delay.

64

Assuming 4 slots, Figure 4.7 plots the response time deviation and average response time,

as a function of slot length for VirtualFence(50%,10-40ms). We use the 4-VM heterogeneous

workload (Section 4.3.3), and focus on the low-intensity I/O VM in Figure 4.7. This setup

is challenging for VirtualFence predictability-wise, because it is almost certain that every first

access in the low-intensity VM’s slot will cause a disk head movement.

The figure clearly shows the tradeoff between lowering deviation by lengthening the slots

against increased response time. For all workloads, lengthening the slots from 10ms to 20ms

significantly reduces performance deviation. Further lengthening the slots to 40ms reduces

deviation much more slowly at the expense of a further, essentially linear, increase in response

time. Thus, a slot length of 20ms is the right tradeoff for our particular SSD and HDD devices.

We have chosen this length as our a default for all previous experiments based on these results

(and additional ones not shown here).

Again, there is a tension between wanting shorter slots for lower average response times and

longer slots for better predictability. The slot length should be the shortest that will produce

enough predictability.

4.7 Discussion

Recall from the Introduction that the goal of VirtualFence is to produce consistent raw per-

formance betweenWorstPer fandBestPer f, the extremes in performance in a predictability-

oblivious, work-conserving scenario. However, to achievethis goal, VirtualFence must be

properly configured as demonstrated in the previous section. Determining the best configura-

tion involves experimenting with the devices at hand, and understanding how much users value

performance vs. predictability. Since we propose VirtualFence for a new class of predictability-

conscious cloud service, we expect our users to accept relatively low (but consistent) perfor-

mance in exchange for good predictability. This would mean atendency to prefer longer slots.

Given that predictability is good even with few slots, the cloud provider can choose to use

65

more slots (as long as performance is still acceptable to users) to enable more aggressive con-

solidation (lower costs).As a target for “acceptable performance”, the cloud provider can

estimate WorstPer f by using its existing (predictability-oblivious) serviceand desired amount

of consolidation. This value can be used in limiting the number and length of slots.

Clearly, in the predictability-conscious service, resources may go underutilized. The provider

may then be tempted to adjust the VirtualFence parameters dynamically to adapt to current

workloads and their I/O activities. Unfortunately, doing so could ruin predictability. A better

approach may be to combine the predictability-conscious and predictability-oblivious services

onto the same hardware infrastructure.For example, a VM that requires predictability could

be given a fixed fraction of a PM (e.g., a slot of 20ms out of every 100ms, one-fifth of the SSD

cache, and a separate disk partition), whereas many co-located predictability-oblivious VMs

could fight for the remaining resources.

Importantly, VirtualFence enables cloud users to pay only for the performance that they

(consistently) get. If they desire better performance,they can purchase multiple slots while still

retaining predictability. Given that our system enables the cloud provider to reduce its costs

through better resource provisioning and energy conservation, the user may end up paying

roughly the same for multiple slots as she would pay for the equivalent of one slot in the

absence of VirtualFence.

Finally, it is important to discuss two aspects of our study.First, VirtualFence does not

partition all I/O resources across VMs. In particular, it does not partitionthe buffer cache in

Xen’s Dom0. We made this decision because (1) we find the hit ratio in that cache to be very

low; and (2) partitioning the SSD space and the I/O access time is substantially more important

for predictability. The low performance deviations that VirtualFence is able to achieve justify

our choice.

Second, our evaluation of VirtualFence focuses on a single HDD (and associated SSD).

However, our approach extrapolates to RAID or JBOD systems using a single SSD for caching.

66

The reason is that VirtualFence would be built into the driver closest to the disk array and, thus,

could partition the SSD space and I/O access time like the array were a single disk.

VirtualFence can be extended to proportional share scheduling [64], which requires users to

translate workload priority into number of slots. VirtualFence can also be extended to support

max-min fairness resource allocation [16]. Since max-min fairness is achieved if and only if an

increase of any rate within the domain of feasible allocations must be at the cost of a decrease of

some already smaller rate, an offline pre-allocation of resources is needed to achieve max-min

fairness in VirtualFence.

4.8 Summary

In this chapter, we quantified the impact of storage medium, and VMM architecture and config-

uration on I/O performance predictability. The results showed that unpredictability is pervasive.

Based on these results, we proposed VirtualFence, a software/hardware approach for achieving

predictability at low cost. VirtualFence combines a small SSD cache in front of a much larger

HDD, and non-work-conserving space and time partitioning.Our evaluation showed that Vir-

tualFence can provide high predictability, as long as all ofits features are used at the same time.

We also identified and quantified the tradeoff between predictability and performance.

We conclude that it is possible to build performance-predictable storage systems with rel-

atively simple software and hardware components, especially for those users that find pre-

dictability just as important as (or even more so than) raw performance.

67

Chapter 5

Multi-Point Performance Engineering in Server Systems

5.1 Introduction

In this chapter, we address the problem on how to achieve multiple performance targets. Mod-

ern server systems encompass multiple components and/or layers containing configuration pa-

rameters that can affect performance. Examples include parameters controllingthe amount of

parallelism (e.g., number of threads), the size and replacement policy used for memory caches,

and the scheduling policies for processing workloads. As the complexity of server systems con-

tinues to increase, managing the interplay between these configuration parameters to precisely

tune performance becomes a challenging task.

This challenge is exacerbated by the need of many service providers to meet multiple per-

formance objectives. For example, reducing the tail latencies of on-line services has received

much attention (e.g., [31, 47, 116]). However, techniques and configuration parameter values

for reducing tail latencies can often negatively impact performance at other percentiles in the

performance cumulative distribution function (CDF). Figure 5.1 shows an example of one such

tradeoff in a Web server, where setting the configuration parameter toa small value (i.e., value

= 0.1 leading to the purple CDF) can significantly reduce the tail but gives much worse perfor-

mance for a large part of the space (difference in the purple and blue CDFs between the 15th to

60th percentiles). Thus, administrators must often consider multiple points on the performance

CDF when configuring server systems.

Given the challenge of tuning system performance to meet a single performance objective

68

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000

F
ra

ct
io

n

Time (ms)

CDF

value=0.1
value=0.5

value=2

 0.85
 0.9

 0.95
 1

 0 200 400

Figure 5.1: Impact of a cache configuration parameter on the response time of a Web server.

(e.g., minimize median response time), it is not surprisingthat tuning for multiple performance

targets is a challenging, error-prone, and time-consumingexercise for server system administra-

tors. In this chapter, we propose OpTune, a framework for guiding administrators to configure

server systems to meet specified performance objectives. Examples of performance objectives

that can be specified in OpTune include: (1) minimize the average response time; (2) minimize

the average response time while keeping the 99th percentile response time below a target value;

(3) minimize the 99th percentile response time while keeping the median responsetime below a

target value; and (4) find the “closest” achievable performance CDF for a specified target CDF.

OpTune assumes that administrators can identify a subset ofimportant parameters, which it

then carefully calibrates to best achieve the performance objectives. OpTune relies on a graph-

ical representation of the system, performance instrumentation and profiling, and manipulation

of performance CDFs to perform its function. The graphical representation describes the main

system components and their interactions, and how they aggregate to determine overall system

performance. OpTune collects transition probabilities and performance CDFs of the software

components at different possible parameter settings during a profiling phase.OpTune relies on

the fact that the impact of different parameters are typically localized (e.g., a parameter might

69

mainly affect the performance of just one component) and independent to reduce the amount of

profiling. OpTune then uses the profiled data, the graphical representation, and a small set of

mathematical operations on the components’ performance CDFs to predict system performance

for different sets of configuration parameter values.

Finally, OpTune formulates the configuration problem as an optimization problem, and cal-

culates the percentage of time that the server system shouldbe configured with a particular set

of parameter values to best meet the performance objectives. The solution to this optimization

problem may be a set of static configuration parameter values. More interestingly, the solution

may be several sets of values, each of which should be used periodically (e.g., for 2 minutes

every 10 minutes) to achieve a performance CDF over time thatis impossible to get with just a

single static set of parameter values. Such dynamic configurations would be extremely difficult

for administrators to determine manually.

We demonstrate the broad utility of OpTune by prototyping itfor a diverse set of widely-

used systems. Specifically, we integrate OpTune into a Web server, a filesystem emulator, and

the scheduler of a Hadoop MapReduce processing system. In each case, we first study the

performance tradeoff involved in the setting of several critical configuration parameters (e.g.,

caching and scheduling parameters). We then demonstrate that OpTune is able to achieve de-

sired performance profiles through its optimization strategy with low overheads. For example,

consider the performance objectives of minimizing the 99th percentile while maintaining a me-

dian response time of less than equal to 10ms in a Web server with two important configuration

parameters. The best static configuration would yield a median response time of 3.85ms and

a 99th percentile time of 96ms. In comparison, OpTune found three sets of parameter values

leading to a median response time of 9.83ms and a 99th percentile time of 89.2ms.

Summary of contribution. We proposing and develop the OpTune framework for guiding

administrators when configuring server systems to meet a setof performance objectives; We

implement OpTune in three diverse server systems to demonstrate its wide applicability; and

70

we present results from a large set of case studies to show howOpTune can ease the task of

performance tuning, particularly when this process involves tradeoffs between multiple points

on the performance CDF (e.g., average and/or median vs. tail latencies).

The remainder of the paper proceeds as follows. Section 2.3 describes related work. Sec-

tion 5.2 describes the methodology and framework of OpTune.Section 5.3 describes our effort

in building OpTune into three systems, and Section 5.4 presents our evaluation results.

5.2 OpTune Methodology

5.2.1 Overview

OpTune represents and tunes performance using the entire performance CDF of the system. To

use OpTune, the designers of a system must build a service graph representation, where each

node in the graph corresponds to the sequential execution ofsome code, and each directed edge

represents control flow. The graph must contain a root node (where the computation starts) and

one or more end nodes (where the computation ends). Each directed edge in the graph is labeled

with the probability with which execution will pass from thesource node to the destination

node. Thus, each execution path from the root to an end node represents a potentially different

performance behavior, which happens with different probability. Figure 5.2 shows the service

graph for a Web server that serves only static content.

OpTune then works as follows (illustrated in Figure 5.3). OpTune begins with running

the server system through a warm up phase so that subsequent profiling of the system will

accurately represent steady state behaviors. After warm up, OpTune will enter a profiling phase

(which should take place under a real or realistic workload). In this phase, OpTune gathers

performance data (e.g., request service times) and transition probabilities for the components

and edges in the service graph, respectively, as it sets the configuration parameters to different

values within their defined domains. Administrators are expected to specify the configuration

71

User request
C1

Cache Miss

C2

C4

C3

Pmiss

PhitCache Hit

Figure 5.2: The service graph of a Web server.C1: process user request,C2: get requested
object from the cache,C3: read the requested object from the filesystem,C4: compose and
send reply to user.

parameters and the values that OpTune should explore. We assume that a server system making

use of OpTune is modified to include the necessary calls into OpTune for this profiling.

Once OpTune has gathered the necessary profiling data, it canbe directed to enter the con-

figuration phase. In this phase, OpTune sets up an optimization problem to find configuration

settings that will best meet a set of performance objectives. OpTune assumes that time will be

divided into discrete accounting periods (e.g., 10 minutes), and that its goal is to configure the

system to best meet the performance objectives within each accounting period. OpTune then

further divides each accounting period into multiple equallength epochs (e.g., 2 minutes) and

solves for a set of configurations, one per epoch, that together gives the optimal solution. This

sub-division allows OpTune to achieve performance CDFs foran accounting period that would

be impossible with a static configuration that should be usedthroughout the period.

To solve the optimization problem, OpTune must be able to predict the server’s perfor-

mance for different configuration settings. It does this by using the service graph to compose

the profiled performance of components and transition probabilities at specific configuration

settings. As an example, suppose the Web server whose service graph is shown in Figure 5.2

has two parameters,Vc andVI . Further, suppose thatVc only impactsC2 andVI only impacts

C3. In this case, OpTune would profilesC2’s performance across different settings ofVc (at a

72

TimeLine

warm up

phase

profile phase

P1=V1 P1=V2 Pn=Vm...

run phase

...E1 E2 En...

solving

phase

Figure 5.3:An illustration of periodic activities in OpTune.

default setting ofVI), andC3’s performance across different settings ofVI . Then, to predict the

server’s performance for a particular configurationVc = x,VI = y, OpTune would composeC1’s

performance CDF,C2’s CDF for Vc = x, C3’s CDF forVI = y, andC4’s CDF.

Finally, OpTune enters the run phase. If only one configuration setting was chosen, then

OpTune configures the system just once. If multiple configuration settings were chosen, then

OpTune keeps track of time epochs, and reconfigures the system as appropriate at the beginning

of each epoch.

Over time, system performance may deviate from the expectedbehavior. For example,

this can happen when the characteristics of the workload changes. Thus, OpTune continu-

ously monitors performance and compares the observed and expected performance for each

accounting period. It will alert administrators and reinitiate the entire tuning process if it de-

tects sufficiently large deviations. Note that such automatic detection of deviation may not

be appropriate in some cases; e.g., in workloads with well-known diurnal patterns, but whose

characteristics may change significantly throughout the day. In these cases, it is possible for

OpTune to “remember” different profiling data and configurations appropriate for different pe-

riods during the day. One of our evaluation systems, a HadoopMapReduce cluster, has some of

these characteristics. The current implementation uses a mix of manual intervention and simple

load prediction. We leave the design and implementation of more sophisticated mechanisms

and approaches as future work.

73

C1

C2

Fseq

C1 C2

P1 P2

Fcon

C1 C2 Fpara

C1

Floop

Pexit

(a) (b)

(c) (d)

C3C2

P
en
te
r

Figure 5.4: Sequential (a), conditional (b), parallel (c),and loop patterns.

5.2.2 Performance Composition

Given the service graph of a system, we view the system’s service time as a random variable

with a distribution that can be calculated if we know the transition probabilities of the edges

and the distribution of the service time at each node. In general, most service graphs can be

defined using a small number of patterns. We briefly discuss operations used to compose the

CDFs for the basic patterns that are used to define the servicegraphs for the OpTune systems

that we have built (Section 5.3).1 We refer the reader to [119] for a more detailed discussion

of a similar approach for predicting the performance of composed Web services.

Sequential. In a sequential pattern, execution always passes from a nodeto the one follow-

ing it as shown in Figure 5.4(a). The distribution function that describes the performance

of both components is then given by the convolution (�) of the distributions of the compo-

nents: Fseq(t) = F1(t) � F2(t), whereFi is the CDF for component Ci (equivalentlyFseq=

1 The composition depends on the fact that service times at different nodes are independent (i.e., not corre-
lated). This assumption does not always hold. In Section 5.2.4, we explain how we implement the composition
operationally so that we can account for correlations when needed.

74

∫ t

0 F1(t− x) f2(x)dx, where f2(x) is the probability density function ofF2(t)).

Conditional. In a conditional pattern (Figure 5.4(b)), execution passesfrom a node to one

of a set of following nodes according to the probability associated with each outgoing edge.

The distribution function that describes the execution time of the set of following nodes is then

given by a weighted sum (⊙) of the distributions of the components:Fcon(t) = F1(t)⊙F2(t)⊙

...⊙Fn(t), which can be computed asFcon(t) =
∫ t

0 (
∑n

i=1 Pi fi(x))dx, wherePi is the probability

for transitioning to nodeCi . Note that the transition probabilities are required for this operation,

but are left out of the notation for simplicity.

Parallel with synchronized merge. In this pattern (Figure 5.4(c)), execution passes from a

node to the parallel execution of the set of following nodes,with a barrier at the end. The

distribution function that describes the execution time ofthe set of parallel nodes is given by

the product (⊗) of the distributions of the components:Fpar(t)= F1(t)⊗F2(t)⊗ ...⊗Fn(t), which

can be computed asFpar(t) =
∏n

i=1 Fi(t).

Loop. In this pattern (Figure 5.4(d)), the execution loops through a number of states for a

number of iterations before exiting the pattern. The distribution of the execution time of this

pattern depends both on the distribution of the sub-graph within the loop, as well as the prob-

ability for the execution of another iteration vs. that of exiting the loop. The computation of

this distribution is more involved, and so we refer the reader to [119] for the details. We denote

this composition as:Floop(t) = ⊕(F1,F2, ...,Fn) whereFi is the performance CDF of compo-

nentCi in the loop. Similar to the⊙ operation, the transition probabilities are important to the

computation but left out of the notation for simplicity.

Computing the composed CDF of a graph.Given a graph, we first compute the composed

CDFs of loops; for nested loops, we start from the innermost loop and proceed outward. We

then apply the remaining operations from the root (left) to the end nodes (right).

75

5.2.3 Performance Decomposition

OpTune must also address the reverse problem in order to find suitable configurations. That

is, given a service graph and different transition probabilities and performance CDFs for each

component corresponding to different settings of configuration parameters, how can OpTune

choose the appropriate configuration parameter values to best meet a set of performance objec-

tives. Our approach is to pose this as an optimization problem and then solve it.

Specifically, administrators can specify performance objectives as a set of points on a target

performance CDFFg, and optionally constraints such asF−1
g (99)< 200ms. The optimization

problem is then posed as the minimization of the mean squarederror (MSE) between a solution

CDF Fs and the targetFg:

min
1
|P|

∑

p∈P

(F−1
g (p)−F−1

s (p))2 (5.1)

subject to the specified constraints, whereP is the range (percentages) specified forFg, and

F−1 is the inverse ofF (typically called the quantile function).

Alternatively, administrators can specify performance objectives as the minimization of

a functiong() applied to the solution CDFFs, and optionally constraints such asF−1
g (99)<

200ms. In this case, the optimization problem is posed as:

min gp∈P(F−1
s (p)) (5.2)

whereg() can be an arbitrary function that produces a single value and P is a set of percentages

specified by administrators. Average is a commonly used function; e.g., minimize the average

response time, while ensuring that the 99th percentile is less than 200ms.

As already mentioned, to solve forFs, we divide each accounting period intoE epochs of

equal length (e.g., 2 minutes). We assume that the offered load is stable over the accounting

period; note that this typically implies that the accounting period should be relatively short

76

(since the offered load is more likely to change over longer periods of time). We then search

for a performance CDFFe for each epochesuch that:

Fs(t) =
1
E

E∑

e=1

Fe(t) (5.3)

where eachFe is the system performance CDF given by a particular setting of configuration

parametersCe. Each of the CDFsFe is computed by composing the component CDFs corre-

sponding toCe using the system service graph as explained in Section 5.2.2. The goal of course

is to find the set ofFe that leads to an overallFs giving the minimum for the posed optimization

problem.

5.2.4 Implementing OpTune

We have built a prototype OpTune framework that can be integrated with different server sys-

tems. Some relevant aspects of the implementation are as follows.

Configuration parameters independence.Our approach of profiling components’ perfor-

mance at different settings of their configuration parameters, and then composing components’

CDFs to predict overall service performance, is most efficient if the impact of parameters are

localized and relatively independent. As an example, consider a system withn components

C1,C2, ...,Cn, andm parametersp1, p2, ..., pm. If all m parameters significantly impact all tran-

sition probabilities and/or the performance of all components, then OpTune would needto

profile the system forO(
∏m

i=1 vi) different configurations, wherevi is the number of values that

pi can take on. On the other hand, if each parameter mostly impacts the transition probabili-

ties and performance of a non-overlapping sub-graph of the service graph, then OpTune would

need to profile the system for onlyO(
∑m

i=1 vi).

Currently, OpTune relies on administrators to identify theedges and components that are

significantly impacted by each parameter. It uses these relationships to minimize the number of

collected profiles. In future work, we will explore techniques for automatically detecting these

77

relationships.

Composing CDFs.Section 5.2.2 describes a mathematic for manipulating CDFsthat is conve-

nient for discussing how the transition probabilities and performance CDFs of components can

be composed to predict the overall service performance. However, our implementation uses a

sampling approach to implement the composition operations. This approach works as follows.

When profiling the performance of a component, OpTune records a large number of execu-

tion times across a large number of a component’s execution.This defines the component’s

performance CDF at a particular configuration setting. Then, to computeF1 � F2, we would

repeatedly compute a value of the resulting CDF by adding twovaluesv1 andv2, chosen ran-

domly from the set of execution times comprisingF1 andF2, respectively. Other operations are

implemented in a similar manner. Our profiling runs need to track the probabilities for different

numbers of iterations across loop executions to support this implementation.

The above approach allows us to account for correlation between the performance of differ-

ent components. For example, supposed the execution times of two componentsC1 andC2 are

correlated. Then, when computingF1 � F2 (F1 is C1’s performance CDF), we will choosev1

andv2 in a manner that respects the correlation. This was not needed in any of the three systems

we implemented. When composing to predict the performance of a service, we ensure that there

are enough sampling points so that compositions are always statistically significant [74, 61].

Solving the OpTune optimization problem. Currently, our implementation performs a com-

plete search over the possible configuration settings to findthe best solution to the optimization

problem. This approach works well for a small number of configuration parameters; for ex-

ample, solving the optimization problem for the three server systems that we implemented and

evaluated, each with two parameters exposed to OpTune, always took less than 40 seconds.

In the future, we intend to explore a more scalable approach based on a search heuristic (e.g.,

simulated annealing).

User interface. It is possible that no solution exists that satisfy the constraints specified by

78

administrators, or that the best fitting solution is very different from the target CDF. In this

case, administrators can iterate through multiple runs of OpTune, modifying the performance

objectives. To ease this task, OpTune can show different CDFs that can be achieved using

different configuration settings.

5.3 OpTune Systems

We have built three OpTune systems using the above framework, including a Web server, a

filesystem emulator, and a MapReduce scheduler. We describethe design and implementation

of these systems in this section.

5.3.1 Web Server

We have modified the Mongoose Web server [4] to work with OpTune. The primary perfor-

mance metric for this server is request processing time. Figure 5.2 shows the service graph for

the Web server comprising four components. We modified Mongoose to measure the execu-

tion time of the code corresponding to these components. TheWeb server’s CDF of request

processing time (FWS) can then be computed as:FWS = F1⊕ (F2⊙F3)⊕F4, whereFi is the

performance CDF of componentCi.

Two configuration parameters are exposed to OpTune for performance tuning. As shall

be seen, we choose these two parameters because their settings can strongly shape the entire

performance CDF of the server. The first is theidle time parameter in the disk I/O layer

(inside the Linux kernel). This parameter specifies the length of time that the CFQ I/O scheduler

will wait for another request from a thread it is currently servicing before switching to servicing

I/O requests from another thread. It has been observed that in many cases, a stream of I/O

requests from a single thread will correspond to sequentialaccesses to files. This is especially

true for a Web server. Thus, increasingidle time can reduce disk head movement, improving

both throughput and average response time [10, 51]. However, it can increase the tail response

79

time if a request is delayed while the I/O scheduler switches through several other threads. As

shall be shown below, this parameter’s setting can have a strong impact on the CDF of response

time for disk requests, which in turn has a significant impacton the Web server’s performance

CDF.

The second configuration parameter is in the caching subsystem. Caching inside Web

servers and proxies have been studied extensively [19, 26, 22, 5], and it has been shown that ac-

counting for factors such as temporal locality, popularity, and size is important for maximizing

performance. However, accounting for these factors represent tradeoffs. For example, in some

cases, it may be desirable to achieve the highest hit rate, since this corresponds to the highest

percentage of clients experiencing low response time. On the other hand, high hit rates dispro-

portionately favors the caching of small files. Thus, in other cases, it may be more appropriate

to maximize the byte hit ratio, which trades off more misses for small files to get the benefits

from caching larger files.

In our Web server, we use the GDSF algorithm, which has been shown to work well [19,

26].2 This replacement algorithm considers three different metrics for choosing victims for

eviction when there is a miss and the cache is full. These metrics include aging based on time

of last access, frequency of access, and object size. Briefly, GDSF works as follows. Each

cached file is assigned a priorityP(f) computed as:

P(f) = clock+Freq(f)
Cost(f)
S ize(f)

(5.4)

When there is a miss, and the cache does not have enough free space to cache the refer-

enced file, the set of files with the lowest priorities are evicted to make space. When a file is

first brought into the cache,Freq(f) = 1 andS ize(f) is a function of f ’s size in bytes. When-

ever there is a hit forf in the cache,Freq(f) = Freq(f)+ 1, and f ’s priority is recomputed.

2 We chose to use Mongoose because it is a mature server that hasbeen available since 2004, yet is relatively
easy to modify. However, Mongoose did not include a memory cache, which is critical for performance in many
production environments. Thus, we added a memory cache to Mongoose.

80

Whenever a set of filesf1, f2, ..., fn are evicted,clock=maxn
i=1 P(fi).

There are actually four possible configuration parameters for tuning GDSF’s performance,

the function for increasing clock, theS ize(f) function, theCost(f) function, and the function

for increasingFreq(f). For simplicity, we focus onS ize(f) as the performance tuning knob

because we find that it gives the largest trade-off between performance and variability; others

have found size to be a critically important parameter as well, e.g., [6].

5.3.2 Filesystem Emulator

We have also integrated OpTune into a filesystem emulator. This emulator takes a trace of I/O

requests and a file-to-disk-block mapping, and emulates theservicing of the I/O requests. The

emulator emulates the operation of a filesystem by implementing a block-based buffer cache

on top of a disk partition. It accesses the disk for cache misses using direct I/O to bypass the

OS buffer cache. It services each I/O request by computing the set of blocks needed using

the file-to-disk-block mapping, and then retrieves the blocks from the buffer cache or disk as

appropriate. Writes are buffered in the buffer cache, and written back to disk by a background

flusher thread. Note that the Linux kernel writes back dirty blocks based on several conditions

(current load, flush threshold, etc.). For simplicity, our implementation flushes dirty blocks

periodically (every 30 seconds) or when the number of dirty block reaches a high watermark.

Figure 5.6 shows a high-level service graph for this system.Writes of dirty blocks are not

on the critical path (sufficient free space is maintained so that a write is never necessary on the

eviction of a dirty block), and so are not included in the service graph.C2 andC3, which handle

hits and misses in the buffer cache, respectively, form a multi-loop structure. An I/O request

containingn blocks, withmhits andn−mmisses, would loop throughC2 m times andC3 n−m

times. Disk accesses are performed using asynchronous I/O. C4 includes the wait time for all

disk accesses to complete. The filesystem emulator’s CDF of request processing time (FFS)

can then be computed as:

81

File request
C1

Pdone

Block Miss

C2

C4

C3

Pmiss

PhitBlock H
it Pdone

P
m

is
s
+

1 P
h
it+

1

Phit+1

Pmiss+1

Figure 5.5: File server composition graph.C1: process file request,C2: get requested block
from buffer cache,C3, service missed block from disk,C4: wait for all disk accesses to com-
plete, complete processing of request, and return.

FFS = F1 � ((⊕(F2,F3)� F4)⊙ (⊕(F3,F2)� F4))

Two configuration parameters are again exposed to OpTune forperformance tuning because

of their strong impact on the system’s performance CDF. The first is the sameidle time pa-

rameter in the disk I/O layer already described above. The second is used to move between an

LRU replacement strategy and one based on popularity/frequency. This parameter is motivated

by previous work showing that no single replacement policy is best for all possible workload-

s/environments (e.g., [9, 80]). Specifically, we implement a configuration parameter called

eviction prob, which takes on a value between 0 and 1. When it is set to 1, thena victim

chosen for replacement using an LRU replacement policy is always evicted. When set to 0,

cached items are never evicted. Thus, if the cache is filled with the most popular items, this

policy emulates a popularity-based caching scheme. Wheneviction prob is set between 0

and 1, then the victim will be evicted with probability equalto eviction prob. This increases

the chances for popular items to be removed from the cache as they are not used for longer

periods of time.

82

Cs

CM1

CM2

CMm

Cb

CR1

CRn

Ce...

...

Figure 5.6: MapReduce composition graph.Cs: preprocess and schedule job,CM1, ...,CMm:
perform map tasks,Cb: barrier between Map and Reduce phases,CR1, ...,CRn: perform reduce
tasks,Ce: complete job.

5.3.3 MapReduce System

Finally, we have integrated OpTune with the Hadoop MapReduce scheduler to explore its be-

havior in a system that is drastically different from the Web and filesystem servers. In this

system, we use OpTune to tune the CDF of job completion times.Figure 5.6 shows the service

graph for completing a Hadoop MapReduce job. Each job has twophases, a Map phase where

all map tasks (CM,1,CM,2, ...,CM,m) are executed and a Reduce phase where all reduce tasks

(CR,1,CR,2, ...,CR,n) are executed. The job is initiated inCs. Cb transitions between the Map

and Reduce phases, andCe saves the output and completes the job.

Given this service graph, the performance CDF of the system (FMR) can be computed as:

FMR= Fs⊕ (FM1⊗ ...⊗FMm)⊕Fb⊕ (FR1⊗ ...⊗FRm)⊕Fe

We tune the performance of this system by adjusting the scheduling policy and dropping

the execution of a subset of map tasks. For the scheduling policy, we implemented a param-

eter prob SJF that moves the scheduling policy between FIFO, which gives better fairness

since jobs are executed in order of arrival, and Shortest-Job-First (SJF), which reduces aver-

age waiting time but may starve large jobs.prob SJF allows a mix of the two scheduling

policies, allowing the administrator to favor one over the other by sliding the parameter. Note

that Hadoop has been specifically implemented to allow configuration with different pluggable

schedulers. In this case, we are introducing/studying a scheduler that allows dynamic tuning,

83

rather than the statica priori selection of a single scheduler.

We implement the mixed scheduling policy using Hadoop’s jobpriorities 1-5, with 1 being

lowest and 5 being highest. When a job arrives, we randomly determine whether FIFO or SJF

should be used based onprob SJF. If FIFO, then the job is given priority 3. If SJF, then the

job is given a priority based on the number of reduce tasks (which we use as a rough estimate

of job size). The partitioning between priorities is such that jobs with sizes around the median

are given priority 3, the largest priority 1, and the smallest priority 5.

The second configuration parameterdrop p maps allows the administrator to trade preci-

sion for reduced completion times. In particular, this parameter controls whether map tasks can

be dropped from the execution of a MapReduce job. When non-zero, drop p maps percent

of map tasks are randomly chosen and dropped from the execution of each job. While we are

introducing this parameter, we note that dropping tasks hasbeen used to enable approximations

in MapReduce with small inaccuracy bounds, as shown in [43, 97]. Thus, we hypothesize that

parameters for controlling approximation similar todrop p mapswill be introduced into future

approximation-enabled MapReduce frameworks.

5.4 Evaluation

We now turn to explore and evaluate OpTune’s efficacy at helping administrators to tune their

systems to achieve specific performance goals. We present mostly results from the Web server,

although we also show some results for the MapReduce system and filesystem emulator toward

the end of the section.

5.4.1 Experimental Setup

Experimental platform. Experiments for the Web and filesystem servers were run on a server

machine equipped with a 2.4 GHz 4-core, each with 2 hyper-threads, Xeon CPU, 8 GB of

RAM, and a 160 GB 7200 RPM SATA hard disk. The server was running Linux 3.2.54, with

84

the scheduling policy of the disk I/O subsystem set to Completely Fair Queuing (CFQ).

Experiments for the MapReduce system were run on a 10-machine cluster, where each

machine is equipped with a 1.8 GHz 2-core, each with 2 hyper-threads, Opteron CPU, 8 GB

of RAM, and a 750 GB 7200 RPM SATA hard disk. The servers were running Hadoop 1.1.2

on top of Linux 2.6.18. We modified the HadoopJobQueueTaskScheduler class to assign

priority to jobs based on the size of their input data. The system was configured with 40 map

slots and 10 reduce slots (4 map slots and 1 reduce slot for each server).

Web server workload. We use ProWGen [17] to generate a Web access trace. We use the

default Zipf distribution with parameter 0.9 and Pareto distribution with tail index of 1.2 to

model object popularity and object size, respectively [17]. The median object size is set to 60

KB with standard deviation of 10 MB based on studies of previous Web server workloads [42,

52, 84]. Finally, requests arrive according to a Poisson process with mean inter-arrival time

of 72ms, leading to an average utilization of approximately50%. We generate a trace lasting

4 hours, using the first 2 hours for profiling and system warmupand the last 2 hours for our

experiments.

Filesystem workload.We use a trace from the Microsoft Production Server Traces [55, 101].

Traces in this set were collected from a number of different Microsoft production servers, and

include information such as process ID, operation type, filedescriptor, offset, and size. These

traces contain sufficient information for us to build the needed file-to-disk-block mapping. We

use the 6-hour MSN Storage File Server trace to study the behavior of typical file servers. We

use the first 4 hours for profiling and system warmup and the last 2 hours for our experiments.

The trace was collected from a more powerful server than our,so we slowed the trace down

such that average throughput is approximately 60% of saturation.

MapReduce workload.We use the Statistical Workload Injector for MapReduce (SWIM) [25]

to generate a scaled-down 6-hour workload from a larger Facebook trace collected from May to

October 2009. In the resulting workload, each job comprises2-120 map tasks and 1-20 reduce

85

2

4

8

1

12

14
M ps in the system
Reduces in the system
MapSlots
ReduceSlots

Interval (10min)

C
o

u
n
te

r

Figure 5.7: The SWIM trace are classified into different phases based on utilization. Task
execution and queueing times are sampled from different utilization phases accordingly.

tasks. There are∼700 jobs with∼8000 tasks. The map phase of each job takes 50-300 seconds,

and the reduce phase takes 15-100 seconds. Jobs have inputs of 64MB-9GB and outputs of up

to 1GB. Figure 5.7 plots this workload, which gives an average cluster utilization of 64%. We

use the first 3 hours for profiling and the last 3 hours for our experiments.

Recall that the completion times of map and reduce tasks include wait times, which are

different at different load. Thus, we define five different load levels as follows: VERYLOW

(<5 active map tasks), LOW (<10), NORMAL (<15), HIGH (<50) and VERYHIGH (≥50).

OpTune then collects a set of profiling information for each different load level, and solves the

optimization problem separately for each load level to get configuration settings that best meet

the performance objectives for that level. At runtime, OpTune predicts the load level at the

beginning of each accounting period to be the same as that observed in the accounting period

that just completed. It then configures the system accordingto the predicted load level.

5.4.2 Impact of Configuration Parameters

Impact of caching size priority parameter. We begin our study by exploring the impact

that different values of configuration parameters can have on the performance of a system. Fig-

ure 5.8 plots the performance CDFs for the Web server when we set the I/O idle-time parameter

86

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000

F
ra

ct
io

n

Time (ms)

CDF

|f|^1/10
|f|^1/2

|f|
|f|^2

 0.85
 0.9

 0.95
 1

 0 200 400

Figure 5.8: Impact ofS ize(f) on the Web server’s response time.

to 8ms and the functionS ize(f) to | f |
1
10 , | f |

1
2 , | f |, | f |2, where| f | = number of bytes in f.3 These

functions lead to 18%, 24%, 41% and 44% item-wise hit-ratios, respectively. It is easy to ob-

serve that lowering the caching priority of larger objects (e.g.,S ize(f) = | f |2) can substantially

improve response time for a fraction of the requests (differences in CDFs from∼15-45%). This

is because larger objects will push out smaller objects lessfrequently, leading to more effective

caching for the smaller objects. On the other hand, favoringthe smaller objects can signifi-

cantly increase the tail response time, as requests for the largest objects will most likely lead to

cache misses.

Impact of I /O idle time parameter. We next explore the impact of the I/O idle-time param-

eter on server performance. Specifically, we set the cachingS ize(f) parameter to| f |, which

gives a hit ratio of 41%, and we set the idle-time (I) in CFQ to 0ms, 4ms, 8ms, 16ms, and

24ms. Figure 5.9 plots the results. Again, it is easy to observe that the parameter value offers

tradeoffs between the response time for a significant portion of the CDF (between∼50%-90%)

against the tail (>95%).

3 We also adopt the common approach of not caching files larger than 2MB to avoid polluting the cache with
very large objects [22, 3, 5].

87

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

F
ra

ct
io

n

Time (ms)

CDF

I=0ms
I=4ms
I=8ms

I=16ms
I=24ms

 0.85
 0.9

 0.95
 1

 0 200 400

Figure 5.9: Impact ofidle time on the Web server’s response time.

Configuration parameters independence.We specify to OpTune thatS ize(f) affect Phit,

Pmiss, and the performance ofC2, while idle time affect the performance ofC3. In Fig-

ure 5.10, we study the accuracy of this information. Specifically, Figure 5.10(a) and (b) show

thatC2’s performance CDF remains almost the same even whenidle time is set to two very

different values. Thus,idle time indeed does not impactC2’s performance. On the other

hand, Figure 5.10(c) and (d) show that the tail ofC3’s performance CDF is affected somewhat

by S ize(f) whenidle time = 24ms. We deemed the inaccuracies introduced to be small

enough that it was acceptable to assumeC3 is independent ofS ize(f) to keep profiling over-

heads low.

Figure 5.11 shows an example of the potential inaccuracies arising from OpTune’s vari-

ous assumptions. The figure shows a target CDF chosen to highlight inaccuracies introduced

by the specified independence assumptions (the long tail), the CDF predicted by OpTune for

its chosen configuration(s), and the resulting observed CDFwhen the server was run with Op-

Tune’s chosen configuration(s). Observe that while there are some inaccuracies, the fit between

predicted and actual is quite good.

88

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

T
im

e
(u

s)

Time (us)

0 vs. 24
Reference

(a) Cache perf. (Size(f)= | f |))

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

T
im

e
(u

s)

Time (us)

0 vs. 24
Reference

(b) Cache perf. (Size(f)= | f |
1
10))

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

T
im

e
(m

s)

Time (ms)

|f| vs. |f|^1/10
Reference

(c) File read perf. (I=0ms)

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

T
im

e
(m

s)

Time (ms)

|f| vs. |f|^1/10
Reference

(d) File read perf. (I=24ms)

Figure 5.10: Quantile-quantile plots for (a-b) comparing cache access time (performance of
C2) whenidle time is set to 0ms vs. 24ms for (a)S ize(f) = | f | and (b)S ize(f) = | f |

1
10 ; (c-

d) comparing file read times (performance ofC3) whenS ize(f) is set to| f | vs. | f |
1
10 for (c)

idle time (I) = 0ms and (d)idle time = 24ms;

5.4.3 Performance Tuning

Single point performance optimization.We begin by studying the impact of optimizing for a

single point on the CDF. Figure 5.12(a) shows this single point optimization when OpTune op-

timizes for the smallest average, median, 90th percentile, and 99th percentile. Table 5.1 lists the

average, median, 90th percentile, and 99th percentile response times for each of these optimiza-

tion goal. Observe that depending on whether the user is moreconcerned with average/median

performance or the tail, the overall performance CDF differs significantly. Specifically, when

we are interested in minimizing the 99th percentile, OpTune setsS ize(f) to | f |
1
10 andidle− time

to 0. These settings lead to the smallest 99th percentile response time (46ms), but degrades

89

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250 300

F
ra

ct
io

n

Time(ms)

WS target CDF
WS predicted CDF

WS real run CDF

(a) CDFs

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

T
im

e
(m

s)

Time (ms)

target vs. pred.
target vs. real

Reference

(b) QQ-plots

Figure 5.11: Accuracy of OpTune’s performance prediction for an example target Web server
performance CDF.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100 1000

F
ra

ct
io

n

Time(ms)

CDF

min avg.
min P(50%ile)
min P(90%ile)
min P(99%ile)

 0.85
 0.9

 0.95
 1

 0 200 400

(a) Single point optimization

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000

F
ra

ct
io

n

Time (ms)

CDF

min P(99%ile)
min P(99%ile), P(50%ile)<10ms
min P(99%ile), P(50%ile)<5ms

 0.85
 0.9

 0.95
 1

 0 200 400

(b) Minimizing tail with constraint for
median

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

F
ra

ct
io

n

Time (ms)

CDF

min P(50%ile)
min P(50%ile), P(99%ile)<200ms
min P(50%ile), P(99%ile)<150ms

 0.85
 0.9

 0.95
 1

 0 200 400

(c) Minimizing median with constraint
for tail

Figure 5.12: Web server’s response time for different performance objectives.

performance significantly for lower percentiles (e.g., median response time of 11.3ms). In

contrast, optimizing the median leads OpTune to setS ize(f) to | f |2 and idle− time to 24ms.

These parameters lead to a much lower median response time (0.1ms), but significantly de-

grades the 99th percentile latency (281ms). Minimizing the average leads to longer response

time for shorter requests (median time of 10.4ms), but significantly smaller 99th percentile time

(102.2ms).

Goal Avg. Median 90th-%ile 99th-%ile

Min Avg. 12.1 10.4 24.2 102.2
Min Median 22.4 0.1 49.6 281.3

Min 90th-%ile 13.4 3.2 19.5 143.7
Min 99th-%ile 13.9 11.3 30.1 46.0

Table 5.1: Detailed results for web server single point optimization. Times are given in ms.

90

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

F
ra

ct
io

n

Time (ms)

CDF

1: min P(99%ile)
2: 1+P(50%ile)<10ms
3: 2+P(90%ile)<60ms

 0.85
 0.9

 0.95
 1

 0 200 400

(a) Web server

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

F
ra

ct
io

n

Time (ms)

CDF

1: min P(99%ile)
2: 1+P(50%ile)<20ms
3: 2+P(90%ile)<25ms

 0.85
 0.9

 0.95
 1

 0 200 400

(b) File server

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000
 8000

 9000
 10000

F
ra

ct
io

n

Time(s)

CDF

1: min P(99%ile)
2: 1 + P(50%ile)<3500s
3: 2 + P(90%ile)<4600s

(c) MapReduce

Figure 5.13: Server response time for different numbers of constraints.

Multi-point performance optimization. As discussed previously, it is frequently not desirable

to optimize for a single point of performance. Rather, the user may want to realize multiple

performance goals, such as minimizing the 99th percentile response time, while maintaining a

target median response time. Meeting such performance goals is exactly what we set out to do

with OpTune.

Figure 5.12(b) shows the results when the user wants to minimize the 99th percentile re-

sponse time while constraining median response time to be noworse than 10ms and 5ms. Ob-

serve that as the bound for the median response time becomes tighter (10ms→ 5ms), OpTune

has to trade off a progressively “longer” tail for the desired median performance.

Figure 5.12(c) shows that OpTune is also effective when the constraint and optimization

goal are exchanged; that is, in these cases, OpTune is seeking to minimize the median perfor-

mance while observing a constraint for the 99th percentile.

Figure 5.13(a) shows the results when minimizing the 99th percentile performance with

bounds on the median and the 90th percentile performance. Interestingly, when we introduce

the bound for the 90th percentile performance, the tail becomes much worse, whilethe me-

dian becomes much better compared to when we only bound the median. This demonstrates

OpTune’s ability for full-range performance tuning, and the difficulty facing administrators

without OpTune when performance objectives require thinking about multiple points on the

performance CDF.

91

Figures 5.13(b) and 5.13(c) show the results when minimizing the 99th percentile perfor-

mance with bounds on the median and the 90th percentile performance for the filesystem emu-

lator and MapReduce system. Results are similar in that adding performance objectives (con-

straints in these cases) can lead to significant changes overthe entire performance CDF. Such

full-range tuning would be very difficult for administrators to manage manually.

Full performance CDF target. We previously showed results in Figure 5.11 for OpTune

seeking to meet performance objectives specified as a full CDF curve (100 points).

5.4.4 Sensitivity Analysis

We have studied the sensitivity of our results for the Web server to different workload char-

acteristics, including load intensity, correlation between object size and popularity, and the

distribution of object sizes. As these characteristics change, the tradeoffs embodied in the con-

figuration parameters can increase or decrease. For example, Figure 5.14 shows that a higher

load intensity can significantly increase the tradeoffs given by different settings ofidle time.

Correspondingly, results for a lower load intensity (not shown here) shows less tradeoffs. Over-

all, we find that the parameters exposed to OpTune for the three systems continue to embody

significant tradeoffs across a wide range of different workload characteristics. Thus, we con-

clude that OpTune should be widely applicable to full-rangeperformance tuning of many server

systems and many different workloads.

5.5 Summary

In this chapter, we proposed and evaluated OpTune, a framework for helping administrators to

configure server systems to best achieve a set of performanceobjectives. Administrators can

use OpTune to find settings for multiple interacting configuration paramaters in order to shape

the entire performance CDF of a server system. Administrators can also use OpTune to ask

what-if questions. For example, what will happen to the performance CDF of a system if its

92

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

F
ra

ct
io

n

Time (ms)

CDF

I=0ms
I=4ms
I=8ms

I=16ms
I=24ms

 0.85
 0.9

 0.95
 1

 0 200 400

Figure 5.14: Impact of I/O idle time on the Web server’s performance for high load.

configuration is modified to meet an additional constraint such as “make the 90th percentile

response time less than X.” Such tasks are extremely difficult to perform manually, and will

only become more difficult as server systems becomes ever more complex.

We have integrated OpTune into three different server systems: a Web server, a file sys-

tem emulator, and a MapReduce scheduler. Our evaluation results show that configuration

parameters embody significant tradeoffs between different parts of the performance CDF—e.g,

configuring to reduce tail response times can significantly worsen response times for shorter

requests—and that OpTune is a powerful tool for helping administrators explore such tradeoffs

and configure systems appropriately for performance objectives driven by different needs.

93

Chapter 6

Conclusion and Future Work

In this dissertation, we addressed three key performance challenges in server systems: the

inefficiency in SSD cache space utilization, the performance interference and variability in

virtualized systems, and the desire to meet multiple performance targets at the same time.

We explored these challenges concretely by designing, implementing, and evaluating three

systems: Nitro, VirtualFence, and OpTune.

In Nitro, we leveraged data reduction techniques to improvecost efficiency of a HDD/SSD

hybrid storage system while achieving high performance. InVirtualFence, we leveraged SSDs

and non-work-conserving scheduling to provide consistentI/O performance for virtualized en-

vironment. In OpTune, we leveraged manipulation of performance CDF to manage multi-target

performance for server systems. We used optimization to solve configurations for different per-

formance targets. Our evaluations showed that our systems can achieve specified performance

targets for these performance tuning tasks. In most cases, we achieve desirable performance

targets based on user’s requirements.

Finally, we conclude that the techniques proposed in this dissertation shows great potential

in performance management in server systems. The notion of optimizing performance while

considering other constraints can be used in other system research works, which has had a sig-

nificant impact on both industry and academia. As server systems become more complex and

cloud computing becomes more popular, performance improving and tuning will confront an

even greater challenge. In fact, the definition of best performance will not be easily determined

because desirable performance is different across various scenarios. Our systems are strong

94

steps toward effectively managing the performance of modern server systems. For example,

providing predictable performance for tenant VMs will become challenging as the scale of

cloud service increases and/or the workload types increase. The heterogeneity and overhead of

tuning performance may also become a concern for cloud providers who want high consolida-

tion and high performance. Further research along these lines will lead to promising outcome.

As for future work, we propose several possible directions:

Caching algorithm for WEU. Although Nitro [70] optimizes overall storage system perfor-

mance while minimizing cost by leveraging coarse-grained WEU, there is limited work to sys-

tematically study the benefit of WEU and co-design a cache eviction algorithm that maximizes

WEU’s benefit on performance and lifespan. Classic caching algorithms leverage recency,

frequency, and/or other properties of cached blocks at per-block granularity. However, WEU

comprises multiple logically distinct, but physically co-located, blocks. WEU may have highly

diverse blocks, with mixtures of frequently accessed, infrequently accessed, and invalidated

blocks. A simple caching algorithm such as the WEU-based LRUmight be insufficient to

handle blocks with diverse access patterns [71]. Creating new policies for caching compound

objects in flash remains an open research problem.

Extending predictable performance research in other systems. VirtualFence [68] shows

promising results for virtualized environments in the organization of virtual machines. As

container technology [98] becomes increasingly popular, containers might be a new medium

to encapsulate resources as compared to virtual machines. Asimilar performance and resource

management problem arises in the context of containers. Techniques used in VirtualFence such

as time/space resource partitioning will continue to have an impactin the new context.

Automatic multi-point perform tuning. OpTune shows that tuning performance with multi-

point constraints is a challenging task. Previous works such as ACI [121] and [89] have lever-

aged adaptive control techniques to perform automatic configuration management. We believe

that further leveraging these techniques can be helpful forlarge Internet service providers, such

95

as Google and Amazon.

96

Appendix A

Additional Evaluation for OpTune

We first present the evaluation of the file system emulator andMapReduce system. Specifically,

we study the impact of independence test, single point performance target tuning and multi-

point performance targets tuning for each system. Next, we present overhead analysis for

OpTune.

A.1 Filesystem Emulator with OpTune

First, we study applying OpTune to filesystem emulator. We study the independence test,

single-point performance target tuning, multi-point performance targets tuning.

A.1.1 Independent Tests

We specify to OpTune thateviction prob affect cache hit-ratios, whileidle time affect the

performance of disk I/O. In Figure A.1, we study the accuracy of this information. Specifically,

Figure A.1(a) and (b) show thatC2’s performance CDF remains almost the same even when

idle time is set to two very different values. Thus,idle time indeed does not impactC2’s

performance. On the other hand, Figure A.1(c) and (d) show that the tail ofC3’s performance

CDF is affected somewhat byeviction prob whenidle time = 24ms. The RMSE for both

I=0ms and I=24ms are 0.4 and 1.3, which means the CDFs in one tier will not affect the CDF in

another tier. We deemed the inaccuracies introduced to be small enough that it was acceptable

to assumeC3 is independent ofeviction prob to keep profiling overheads low.

97

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

T
im

e
(u

s)

Time (us)

0 vs. 24
Reference

(a) Cache perf. (eviction prob=0))

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

T
im

e
(u

s)

Time (us)

0 vs. 24
Reference

(b) Cache perf. (eviction prob=1))

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

T
im

e
(m

s)

Time (ms)

0 vs. 1
Reference

(c) File read perf. (I=0ms)

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

T
im

e
(m

s)

Time (ms)

0 vs. 1
Reference

(d) File read perf. (I=24ms)

Figure A.1: Quantile-quantile plots for (a-b) comparing cache access time (performance ofC2)
whenidle time is set to 0ms vs. 24ms for (a)eviction prob=0 and (b)eviction prob=1;
(c-d) comparing file read times (performance ofC3) wheneviction prob is set to 0 vs. 1 for
(c) idle time (I) = 0ms and (d)idle time = 24ms;

A.1.2 Single-point Performance Optimization

We begin by studying the impact of optimizing for a single point on the CDF. Figure A.2(a)

shows this single point optimization when OpTune optimizesfor the smallest average, median,

90th percentile, and 99th percentile. Table A.1 lists the average, median, 90th percentile, and

99th percentile response times for each of these optimization goal. Observe that depending on

whether the user is more concerned with average/median performance or the tail, the overall

performance CDF differs significantly. Specifically, when we are interested in minimizing the

99th percentile, OpTune setseviction prob to 0 andidle time to 0. These settings lead to

the smallest 99th percentile response time (39.4ms), but degrades performance significantly for

98

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1 10 100 1000

F
ra

ct
io

n

Time(ms)

CDF

min avg.
min P(50%ile)
min P(90%ile)
min P(99%ile)

(a) Single point optimization

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001

 0.01
 0.1

 1 10
 100

 1000

F
ra

ct
io

n

Time(ms)

CDF

min P(99%ile)
min P(99%ile), P(50%ile)<20ms
min P(99%ile), P(50%ile)<10ms

(b) Minimizing tail with constraint
for median

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001

 0.01
 0.1

 1 10
 100

 1000

F
ra

ct
io

n

Time(ms)

CDF

min P(50%ile)
min P(50%ile), P(99%ile)<90ms
min P(50%ile), P(99%ile)<60ms

(c) Minimizing median with constraint
for tail

Figure A.2: Filesystem emulator’s response time for different performance objectives.

lower percentiles (e.g., median response time of 29.3ms). In contrast, optimizing the median

leads OpTune to seteviction prob to 0.8 andidle time to 24ms. These parameters lead

to a much lower median response time (1.1ms), but significantly degrades the 99th percentile

latency (117.8ms).

Goal Avg. Median 90th-%ile 99th-%ile

Min Avg. 5.6 1.2 7.56 61.2
Min Median 8.06 1.1 10.1 117.8

Min 90th-%ile 5.9 2.8 6.5 61.2
Min 99th-%ile 23.2 29.3 32.4 39.4

Table A.1: Detailed results for filesystem emulator single point optimization. Times are given
in ms.

A.1.3 Multi-point performance optimization

As discussed previously, it is frequently not desirable to optimize for a single point of perfor-

mance. Rather, the user may want to realize multiple performance goals, such as minimizing

the 99th percentile response time, while maintaining a target median response time. Meeting

such performance goals is exactly what we set out to do with OpTune.

Figure A.2(b) shows the results when the user wants to minimize the 99th percentile re-

sponse time while constraining median response time to be noworse than 20ms and 10ms.

Observe that as the bound for the median response time becomes tighter (20ms→ 10ms), Op-

Tune has to trade off a progressively “longer” tail for the desired median performance.

99

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000
 8000

 9000
 10000

F
ra

ct
io

n

Time(s)

CDF

min avg.
min P(50%ile)
min P(90%ile)
min P(99%ile)

(a) MapReduce.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000
 8000

 9000
 10000

F
ra

ct
io

n

Time(s)

CDF

min P(99%ile)
min P(99%ile), P(50%ile)<3500s
min P(99%ile), P(50%ile)<2500s

(b) Minimizing tail with constraint
for median

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000
 8000

 9000
 10000

F
ra

ct
io

n

Time(s)

CDF

min P(50%ile)
min P(50%ile), P(99%ile)<8500s
min P(50%ile), P(99%ile)<7500s

(c) Minimizing median with constraint
for tail

Figure A.3: MapReduce’s response time for different performance objectives.

Figure A.2(c) shows that OpTune is also effective when the constraint and optimization goal

are exchanged; that is, in these cases, OpTune is seeking to minimize the median performance

while observing a constraint for the 99th percentile.

A.2 MapReduce with OpTune

First, we study applying OpTune to MapReduce system. We study the independence test,

single-point performance target tuning, multi-point performance targets tuning.

A.2.1 Single-point Performance Optimization

We begin by studying the impact of optimizing for a single point on the CDF. Figure A.3(a)

shows this single point optimization when OpTune optimizesfor the smallest average, median,

90th percentile, and 99th percentile. Table A.2 lists the average, median, 90th percentile, and

99th percentile response times for each of these optimization goal. Observe that depending on

whether the user is more concerned with average/median performance or the tail, the overall

performance CDF differs significantly. Specifically, when we are interested in minimizing the

99th percentile, OpTune setsprob SJF to 0 anddrop p maps to 0.8. These settings lead to

the smallest 99th percentile response time (6993s), but degrades performance significantly for

lower percentiles (e.g., median response time of 3924s). Incontrast, optimizing the median

leads OpTune to setprob SJF to 1.0 anddrop p maps to 0.9. These parameters lead to a

100

much lower median response time (2923s), but significantly degrades the 99th percentile latency

(9188s).

Goal Avg. Median 90th-%ile 99th-%ile

Min Avg. 2412 2079 4792 8756
Min Median 2923 1926 7864 9188

Min 90th-%ile 2578 2103 4284 8996
Min 99th-%ile 3360 3924 4807 6993

Table A.2: Detailed results for web server single point optimization. Times are given in second.

A.2.2 Multi-point performance optimization

As discussed previously, it is frequently not desirable to optimize for a single point of perfor-

mance. Rather, the user may want to realize multiple performance goals, such as minimizing

the 99th percentile response time, while maintaining a target median response time. Meeting

such performance goals is exactly what we set out to do with OpTune.

Figure A.3(b) shows the results when the user wants to minimize the 99th percentile re-

sponse time while constraining median response time to be noworse than 3500s and 2500s.

Observe that as the bound for the median response time becomes tighter (3500s→ 2500s),

OpTune has to trade off a progressively “longer” tail for the desired median performance.

Figure A.3(c) shows that OpTune is also effective when the constraint and optimization goal

are exchanged; that is, in these cases, OpTune is seeking to minimize the median performance

while observing a constraint for the 99th percentile.

A.3 OpTune Solver Overhead Analysis

Next, we evaluate the performance and overhead of OpTune solver as system scales.

101

Task Brute-force SA

1. min(average) 157s 24s
2. min(median) 163s 32s
3. min(99%ile)

and P(50%ile)≤ 10ms 160s 48s

Table A.3: Running time of different tuning tasks.

A.3.1 Solving Time

We use different tuning tasks and measured the decoding time using bothSA and brute-force

approach. Table A.3 shows the solving time for different approaches and performance objec-

tives. The time for brute-force is∼2× higher than SA because brute-force has to explore the

entire problem space. As the task varies from single target to multiple targets (e.g., Task 3, de-

tails in Section 5.4.3), we observed that the execution timeof the SA approach shows a slightly

increase, because multi-target performance constraints make SA difficult to find local optimal

annealing schedules.

A.3.2 Convergence Speed

Next, we study the solution quality as a function of time. We configure 20 values for the cache

parameter and 20 values for the I/O knob in a synthetic two-layer sequential structure. We

provide an arbitrary target CDF and perform the decomposition task. We compute the RMSE

between the optimal CDF and the target CDF every 10 second. The solution quality is defined

1− RMS E
WorstPer f, where theWorstPer f is the maximum performance of the target CDF. Higher

value means more close to the target CDF.

Figure A.4 illustrates that SA quickly converges to its optimal compared to brute-force (cut-

off at 200 second). We study the convergence speed for both decomposed CDF task (CDF) and

multi-point optimization task (multi-points). Interestingly, the brute-force curve is flat and

slowly growing because of iterating all cases. The CDF decomposing task using brute-force

102

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

0 50 100 150 200
S

ol
ut

io
n

Q
ua

lit
y

(%
)

Time (seconds)

BF (multi-points)
SA (multi-points)

BF (CDF)
SA (CDF)

Figure A.4: Solution quality over time using brute-force and simulated annealing.

is identical to the multi-points decomposing task curve. Weobserved that the brute-force ap-

proach can only achieve≤ 23% solution quality at time 200s because it tries every possible

solution without memorizing the difference between the current solution and the target solution

to decide the next solving schedule. In contrast, the SA curve grows quickly because of reduc-

ing impossible solution space. The SA multi-points decomposed curve has faster convergence

speed because of the loose constraints compared to SA CDF decompose task.

A.3.3 Extrapolation of Solving Time

Next, we study the solving time as a function of number of configuration parameters and num-

ber of epochs for the brute-force approach. In addition to the three systems, we also explore

the solver running time in a synthetic multi-tier systems. The experiment simulates a 5-tier

system (e.g., TCP/IP stack) and the epoch number is set to 10. Each profiled CDF contains

5000 points. We assume sequential pattern as the structure when connecting each tier.

Figure A.5(a) plots the solving time for the 5-tier synthetic system. The y-axis shows the

number of parameters, the y-axis shows the number of epochs and the z-axis shows the solving

time in K seconds.

Figure A.5(b) plots the extrapolation of time complexity using randomly generated com-

ponent CDFs samples. The time complexity of the system suggests that (1) the brute-force

103

 1 2 3 4 5 6 7 8 9 10 1
 2

 3
 4

 5

0
5

10
15
20
25
30
35
40

T
im

e
(K

 s
ec

)

Complexity
 4e+004
 3e+004
 2e+004
 1e+004

Epochs

Parameters

T
im

e
(K

 s
ec

)

(a) Analytic model for solving time.

1

1

3

4

5

1 2 3 4 5 6 7 8 9 10

K
no

bs

Values

Solving time (second)

0.1

1

10

100

1K

10K

100K

1M

10M

(b) Solving time contour.

Figure A.5: Time complexity plot as a function of configuration parameters (5) and epoch
granularity (10).

approach is plausible when the number of configuration parameters or the number of epochs

is low; (2) the brute-force does not scale up to 6 or more parameter values. We found that

finer epoch granularity indicates higher decoding time complexity. The solving time for the

brute-force grows rapidly as the system scales.

Note that the each sub-problem in brute-force can be solved independently, therefore the

time complexity can be further reduced if we assume a reasonable parallel speedup factor.

Another way to reduce time complexity is to provide approximate result. For example, we can

return the first result that satisfy the constrains not exploring the entire search space.

104

References

[1] SWORD: A Developer Toolkit for Web Service Composition.WWW, 2002.

[2] Fusion-IO. http://www.fusionio.com//, 2005.

[3] Memcached, 2014.http://www.memcached.org.

[4] Mongoose, 2014.http://code.google.com/p/mongoose.

[5] Squid caching proxy, 2014.http://www.squid-cache.org.

[6] C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the World Wide Web. IEEE TKDE,
1999.

[7] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and R. Panigrahy. Design
Tradeoffs for SSD Performance. USENIX ATC, 2008.

[8] Apache. Apache Nutch. http://nutch.apache.org/.

[9] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and Control in Gray-box
Systems. SOSP, 2001.

[10] J. Axboe. CFQ IO Scheduler. Talk presented at linux.conf.au, Jan. 2007.

[11] A. Badam and V. S. Pai. SSDAlloc: Hybrid SSD/RAM Memory Management Made
Easy. NSDI, 2011.

[12] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards Predictable Datacenter
Networks. ACM SIGCOMM, 2011.

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho, E. Kotsovinos, A. Mad-
havapeddy, R. Neugebauer, I. Pratt, and A. Warfield. Xen 2002. Technical Report of
University of Cambridge, 2003.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho, E. Kotsovinos, and
R. Neugebauer. Xen and the Art of Virtualization.SOSP, 2003.

[15] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A Designfor High-Performance Flash
Disks. SIGOPS Operating Systems Review, 2007.

[16] J.-Y. Boudec. Rate adaptation, congestion control andfairness: A tutorial.EPFL TR,
2000.

http://www.memcached.org
http://code.google.com/p/mongoose
http://www.squid-cache.org

105

[17] M. Busari and C. Williamson. ProWGen: A Synthetic Workload Generation Tool for
Simulation Evaluation of Web Proxy Caches.Computer Networks, 2002.

[18] G. C. Buttazzo. Hard Real-Time Computing Systems, Predictable SchedulingAlgo-
rithms and Applications. Springer, 2011.

[19] P. Cao and S. Irani. Cost-aware WWW Proxy Caching Algorithms. USITS, 1997.

[20] F. Casati, S. Ilnicki, L.-j. Jin, V. Krishnamoorthy, and M.-C. Shan. Adaptive and Dy-
namic Service Composition in eFlow. CAiSE, 2000.

[21] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon: Using Flash Memory to Build
Fast, Power-efficient Clusters for Data-intensive Applications. ASPLOS, 2009.

[22] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell. A
Hierarchical Internet Object Cache.USENIX ATC, 1995.

[23] J. Chase, D. Anderson, P. Thackar, A. Vahdat, and R. Boyle. Managing Energy and
Server Resources in Hosting Centers. InProceedings of the ACM Symposium on Oper-
ating Systems Principles, 2001.

[24] F. Chen, T. Luo, and X. Zhang. CAFTL: A Content-aware Flash Translation Layer
Enhancing the Lifespan of Flash Memory Based Solid State Drives. FAST, 2011.

[25] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The Case for Evaluating MapReduce
Performance Using Workload Suites. MASCOTS, 2011.

[26] L. Cherkasova. Improving WWW Proxies Performance withGreedy-Dual-Size-
Frequency Caching Policy. Technical Report HPL-98-69R1, Computer Systems Lab-
oratory, HP, 1998.

[27] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch.The Mystery Machine: End-
to-end Performance Analysis of Large-scale Internet Services. OSDI, pages 217–231,
Broomfield, CO, Oct. 2014. USENIX Association.

[28] R. Collobert and J. Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. InProceedings of the 25th international
conference on Machine learning, pages 160–167. ACM, 2008.

[29] C. Constantinescu, J. Glider, and D. Chambliss. MixingDeduplication and Compression
on Active Data Sets. DCC, 2011.

[30] R. I. Davis and A. Burns. A Survey of Hard Real-Time Scheduling for Multiprocessor
Systems.ACM Computing Surveys, 43(4), 2011.

[31] J. Dean and L. A. Barroso. The Tail at Scale.Commun. ACM, 2013.

[32] B. Debnath, S. Sengupta, and J. Li. ChunkStash: Speeding up inline storage dedup-
lication using flash memory. USENIX ATC, 2010.

[33] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly Available
Key-value Store. SOSP, 2007.

106

[34] T. Deselaers, S. Hasan, O. Bender, and H. Ney. A deep learning approach to machine
transliteration. InProceedings of the Fourth Workshop on Statistical Machine Transla-
tion, pages 233–241. Association for Computational Linguistics, 2009.

[35] C. Dirik and B. Jacob. The Performance of PC Solid-stateDisks (SSDs) as a Function of
Bandwidth, Concurrency, Device Architecture, and System Organization.ISCA, 2009.

[36] K. Duda and D. Cheriton. Borrowed Virtual Time (BVT) Scheduling: Supporting
Latency-Sensitive Threads in a General-Purpose Scheduler. SOSP, 1999.

[37] Facebook Inc. Facebook FlashCache, 2013.https://github.com/facebook/flashcache.

[38] J. Feng and J. Schindler. A Deduplication Study for Host-side Caches in Virtualized
Data Center Environments. MSST, 2013.

[39] O. Flores and M. Orozco. NucleR: A Package for Non-Parametric Nucleosome Posi-
tioning. Bioinformatics, 2011.

[40] R. Geambasu, S. D. Gribble, and H. M. Levy. CloudViews: communal data sharing in
public clouds. HotCloud, 2009.

[41] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-Resource Fair Queueing for Packet
Processing. SIGCOMM, 2012.

[42] P. Gill, M. Arlitt, N. Carlsson, A. Mahanti, and C. Williamson. Characterizing Orga-
nizational Use of Web-Based Services: Methodology, Challenges, Observations, and
Insights.ACM Transactions on the Web, 2011.

[43] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. ApproxHadoop: Bringing
Approximations to MapReduce Frameworks. ASPLOS, 2015.

[44] Google LZ4: Extremely Fast Compression algorithm. Google, 2013.
http://code.google.com/p/lz4.

[45] A. Gulati, A. Merchant, and P. J. Varman. mClock: Handling Throughput Variability for
Hypervisor IO Scheduling.OSDI, 2010.

[46] D. Gupta, L. Checkasova, R. Gardner, and A. Vahdat. Enforcing Performance Isolation
Across Virtual Machines in Xen.Middleware, 2006.

[47] M. E. Haque, Y. hun Eom, Y. He, S. Elnikety, R. Bianchini,and K. S. McKinley. Few-
to-Many: Incremental Parallelism for Reducing Tail Latency in Interactive Services.
ASPLOS, 2015.

[48] L. Huang, G. Peng, and T. Chiueh. Multidimensional Storage Virtualization.SIGMET-
RICS, 2004.

[49] W. Huang et al. A Compression Layer for NAND Type Flash Memory Systems. ICITA,
2005.

[50] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. H. Epema.
Performance analysis of cloud computing services for many-tasks scientific computing.
Parallel and Distributed Systems, IEEE Transactions on, 22(6):931–945, 2011.

https://github.com/facebook/flashcache
http://code.google.com/p/lz4

107

[51] S. Iyer and P. Druschel. Anticipatory Scheduling: A Disk Scheduling Framework to
Overcome Deceptive Idleness in Synchronous I/O. SOSP, 2001.

[52] M. Jeon, Y. Kim, J. Hwang, J. Lee, and E. Seo. Workload Characterization and Perfor-
mance Implications of Large-Scale Blog Servers.ACM TOW, 2012.

[53] W. Jin, J. Chase, and J. Kauer. Interposed ProportionalSharing for Storage Service
Utility. SIGMETRICS, 2004.

[54] W. Josephson, L. Bongo, D. Flynn, and K. Li. DFS: A File System for Virtualized Flash
Storage.FAST, 2010.

[55] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda. Characterization of storage
workload traces from production Windows Servers. IISWC, 2008.

[56] T. Kgil, D. Roberts, and T. Mudge. Improving NAND Flash Based Disk Caches.ISCA,
2008.

[57] Kgil, Taeho and Roberts, David and Mudge, Trevor. Improving NAND Flash Based
Disk Caches. ISCA, 2008.

[58] H. Kim and S. Ahn. BPLRU: A Buffer Management Scheme for Improving Random
Writes in Flash Storage. FAST, 2008.

[59] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee. Task-Aware Virtual Machine Scheduling
for I/O Performance.VEE, 2009.

[60] J. Kim et al. Deduplication in SSDs: Model and Quantitative Analysis. MSST, 2012.

[61] L. Kish. Survey Sampling. 1965.

[62] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C.Pu. An Analysis of
Performance Interference Effects in Virtual Environments.ISPASS, 2007.

[63] R. Koller and R. Rangaswami. I/O Deduplication: Utilizing Content Similarity to Im-
prove I/O Performance.ACM TOS, 2010.

[64] H. Kushner and P. Whiting. Convergence of Proportional-fair Sharing Algorithms Under
General Conditions.Wireless Communications, IEEE Transactions on, 2004.

[65] P. Lama and X. Zhou. Efficient Server Provisioning with Control for End-to-End Re-
sponse Time Guarantee on Multitier Clusters.IEEE TPDS, 2012.

[66] S. Lee et al. A Log Buffer-based Flash Translation Layer Using Fully-associativeSector
Translation.ACM TECS, 2007.

[67] S. Lee, B. Moon, C. Park, J. Kim, and S. Kim. A Case for Flash Memory SSD in
Enterprise Database Applications.SIGMOD, 2008.

[68] C. Li, I. Goiri, A. Bhattacharjee, R. Bianchini, and T. Nguyen. Quantifying and Improv-
ing I/O Predictability in Virtualized Systems. IWQoS, 2013.

108

[69] C. Li, P. Shilane, F. Douglis, D. Sawyer, and H. Shim. Assert(!Defined(Sequential I/O)).
HotStorage, 2014.

[70] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and G. Wallace. Nitro: A Capacity-
Optimized SSD Cache for Primary Storage. USENIX ATC, 2014.

[71] C. Li, P. Shilane, F. Douglis, and G. Wallace. Pannier: AContainer-based Flash Cache
for Compound Objects. ACM/IFIP/USENIX Middleware, 2015.

[72] C. Li, S. Zou, and L. Chu. Online Learning Based InternetService Fault Diagnosis
Using Active Probing. ICNSC, 2009.

[73] M. Lillibridge, K. Eshghi, and D. Bhagwat. Improving Restore Speed for Backup Sys-
tems that Use Inline Chunk-Based Deduplication. FAST, 2013.

[74] S. L. Lohr. Sampling: Design and Analysis. 2009.

[75] T. Makatos et al. Using Transparent Compression to Improve SSD-based I/O Caches.
EuroSys, 2010.

[76] B. Mao, H. Jiang, S. Wu, Y. Fu, and L. Tian. Sar: Ssd assisted restore optimization for
deduplication-based storage systems in the cloud. InIEEE 7th International Conference
on Networking, Architecture and Storage (NAS), pages 328–337, 2012.

[77] G. Mateescu, W. Gentzsch, and C. J. Ribbens. Hybrid computingwhere hpc meets grid
and cloud computing.Future Generation Computer Systems, 27(5):440–453, 2011.

[78] J. Matthews et al. Intel Turbo Memory: Nonvolatile DiskCaches in the Storage Hierar-
chy of Mainstream Computer Systems.ACM TOS, 2008.

[79] R. McDougall. Filebench: Application Level File System Benchmark.
http://www.solarisinternals.com/wiki/index.php/FileBench.

[80] N. Megiddo and D. S. Modha. ARC: A Self-Tuning, Low Overhead Replacement Cache.
FAST, 2003.

[81] D. Meister and A. Brinkmann. dedupv1: Improving Deduplication Throughput Using
Solid State Drives (SSD). MSST, 2010.

[82] D. Meyer. Virtual Disk Backend Driver for Xen.
http://wiki.xensource.com/xenwiki/blktap2.

[83] Micron MLC Flash-based SSD Specification, 2013.
http://www.micron.com/products/nand-flash/.

[84] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S. Shankar, V. Sivaku-
mar, L. Tang, and S. Kumar. f4: Facebook’s Warm BLOB Storage System. OSDI,
2014.

[85] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rostron. Migrating Server
Storage to SSDs: Analysis of Tradeoffs. Eurosys, 2009.

http://www.solarisinternals.com/wiki/index.php/FileBench
http://wiki.xensource.com/xenwiki/blktap2
http://www.micron.com/products/nand-flash/

109

[86] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-Clouds: Managing Performance Interfer-
ence Effects for QoS-Aware Clouds. InEuroSys, 2010.

[87] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bianchini. DeepDive: Trans-
parently Identifying and Managing Performance Interference in Virtualized Environ-
ments.USENIX ATC, 2013.

[88] J. Ouyang et al. SDF: Software-defined Flash for Web-scale Internet Storage Systems.
ASPLOS, 2014.

[89] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, and
K. Salem. Adaptive Control of Virtualized Resources in Utility Computing Environ-
ments. InProceedings of the ACM European Conference on Computer Systems, 2007.

[90] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy, and I. Stoica.
FairCloud: Sharing the Network in Cloud Computing. SIGCOMM, 2012.

[91] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M. Wong, and C. Maltzahn. Efficient
Guaranteed Disk Request Scheduling with Fahrrad.Eurosys, 2008.

[92] T. Prichett and M. Thottethodi. SieveStore: A Highly-Selective, Ensemble-Level Disk
Cache for Cost-Performance.ISCA, 2010.

[93] M. Saxena, M. M. Swift, and Y. Zhang. FlashTier: A Lightweight, Consistent and
Durable Storage Cache. EuroSys, 2012.

[94] E. Shriver, A. Merchant, and J. Wilkes. An analytic behavior model for disk drives with
readahead caches and request reordering.SIGMETRICS, 1998.

[95] D. Shue and M. J. Freedman. Performance Isolation and Fairness for Multi-Tenant
Cloud Storage. OSDI, 2012.

[96] D. Skinner and W. Kramer. Understanding the Causes of Performance Variability in
HPC Workloads. IISWC, 2005.

[97] J. Slauson and Q. Wan. Approximate Hadoop, 2012.
http://www.joshslauson.com/pdf/cs736_project.pdf.

[98] Solomon Hykes. Docker. http://www.docker.com//, 2008.

[99] K. Srinivasan et al. iDedup: Latency-aware, Inline Data Deduplication for Primary
Storage. FAST, 2012.

[100] C. Stewart and K. Shen. Performance Modeling and System Management for Multi-
component Online Services. NSDI, 2005.

[101] Storage Networking Industry Association. MSR Cambridge Traces.
http://iotta.snia.org/traces/158, 2010.

[102] TRIM Specification. ATA/ATAPI Command Set- 2 (ACS-2).http://www.t13.org,
2007.

http://www.joshslauson.com/pdf/cs736_project.pdf
http://iotta.snia.org/traces/158
http://www.t13.org

110

[103] H. Tseng, H. Li, and C. Yang. An Energy-Efficient Virtual Memory System with Flash
Memory as the Secondary Storage.ISLPED, 2006.

[104] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. Ganger.Argon: Performance insula-
tion for shared storage servers.FAST, 2007.

[105] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Chamness, and W. Hsu.
Characteristics of Backup Workloads in Production Systems. FAST, 2012.

[106] J. Wang, P. Varman, and C. Xie. Avoiding Performance Fluctuation in Cloud Storage.
HiPC, 2010.

[107] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services. InProceedings of the ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2001.

[108] B. L. Worthington, G. R. Ganger, Y. N. Patt, and J. Wilkes. On-line extraction of scsi
disk drive parameters.SIGMETRICS, 1995.

[109] J. Wu and S. Brandt. The Design and Implementation of Aqua: An Adaptive Quality of
Service-Aware Object-Based Storage Device.MSST, 2006.

[110] M. Wu and W. Zwaenepoel. eNVy: A Non-Volatile Main Memory Storage System.
ASPLOS, 1994.

[111] E. Xun and C. Li. Tree Mapping Template for Prosodic Phrase Boundary Predication.
Journal of Chinese Language and Computing (COLIPS), 2007.

[112] E. Xun and C. Li. Applying Terminology Definition Pattern and Multiple Features to
Identify Technical New Term and its Definition.Journal of Computer Research and
Development, 2009.

[113] Q. Yang and J. Ren. I-CASH: Intelligently Coupled Array of SSD and HDD. HPCA,
2011.

[114] Y. Yang, M. Dumas, L. Garcı́a-Bañuelos, A. Polyvyanyy, and L. Zhang. Generalized
Aggregate Quality of Service Computation for Composite Services. Journal of Systems
and Software, 2012.

[115] K. S. Yim, H. Bahn, and K. Koh. A Flash Compression Layerfor Smartmedia Card
Systems.IEEE TOCE, 2004.

[116] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail: Reducing the Flow
Completion Time Tail in Datacenter Networks. SIGCOMM, 2012.

[117] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska, and E.Riedel. Storage Performance
Virtualization Via Throughput and Latency Control.ACM TOS, 2006.

[118] X. Zhang, K. Davis, and S. Jiang. QoS Support for End Users of I/O-intensive Applica-
tions using Shared Storage System.SC, 2011.

111

[119] H. Zheng, J. Yang, W. Zhao, and A. Bouguettaya. QoS Analysis for Web Service Com-
positions Based on Probabilistic QoS. ICSOC, 2011.

[120] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and Y. Turner. JustRunIt:
Experiment-Based Management of Virtualized Data Centers.USENIX, 2009.

[121] W. Zheng, R. Bianchini, and T. D. Nguyen. Automatic Configuration of Internet Ser-
vices. Eurosys, 2007.

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Research Overview
	Nitro
	VirtualFence
	OpTune

	Contributions
	Overview of the Dissertation

	Background and Related Work
	Optimizing Flash Performance and Capacity
	I/O Predictability
	Performance Engineering in Server Systems

	A Capacity-Optimized SSD Cache for Primary Storage
	Introduction
	Background and Discussion
	Nitro Architecture and Design
	Nitro Components
	Nitro Functionality

	Nitro Implementation
	Experimental Methodology
	Metrics
	Experimental Traces
	Parameter Space
	Experimental Platform

	Evaluation
	Simulation Results
	Prototype System Results
	Nitro Advantages

	Summary

	I/O Predictability in Virtualized Multi-tenant Systems
	Introduction
	Motivation
	Methodology
	Performance Deviation Metrics
	Virtualized Systems
	Workloads
	Experimental Platform

	VMM-Driven Performance Deviation
	VirtualFence
	Prototype
	Space Partitioning
	Time Partitioning

	Evaluation
	Performance Deviation
	Performance Deviation at Low Load
	Performance vs. Predictability
	Impact of Number of Slots
	Impact of Slot Length

	Discussion
	Summary

	Multi-Point Performance Engineering in Server Systems
	Introduction
	OpTune Methodology
	Overview
	Performance Composition
	Performance Decomposition
	Implementing OpTune

	OpTune Systems
	Web Server
	Filesystem Emulator
	MapReduce System

	Evaluation
	Experimental Setup
	Impact of Configuration Parameters
	Performance Tuning
	Sensitivity Analysis

	Summary

	Conclusion and Future Work
	Appendix A. Additional Evaluation for OpTune
	Filesystem Emulator with OpTune
	Independent Tests
	Single-point Performance Optimization
	Multi-point performance optimization

	MapReduce with OpTune
	Single-point Performance Optimization
	Multi-point performance optimization

	OpTune Solver Overhead Analysis
	Solving Time
	Convergence Speed
	Extrapolation of Solving Time

	References

