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ABSTRACT OF THE DISSERTATION

Topological materials: phase transitions and

magnetoelectric response

by Jianpeng Liu

Dissertation Director: David Vanderbilt

In this thesis, we study the properties of topological materials using theoretical tech-

niques such as first-principles calculations and tight-binding models. In the first part

of the thesis, we deal with the phase transitions in 3D topological insulators. We first

study the topological phase transitions in In- and Sb-doped Bi2Se3, where distinct be-

haviors are found. In the In-doped case, we find that the In 5s orbitals destroy the

topological phase at low impurity compositions, and the phase transition is better de-

scribed by a local percolation scenario. On the other hand, the Sb-doped Bi2Se3 is

well described by a “linear-gap-closure” picture, where the phase transition is domi-

nated by the gradual decrease of the effective spin-orbital coupling. We also discuss the

Weyl semimetals emerging from noncentrosymmetric topological insulators. We first

clarify the previous theory, and prove that an intermediate Weyl semimetal must show

up through the phase transition from a 3D topological to normal insulator. Then we

propose LaBi1−xSbxTe3, LuBi1−xSbxTe3 and pressurized BiTeI as possible candidates

of Weyl semimetals.

The second part of the thesis is focused on method development. We first propose
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a quantitative definition for the band inversions driven by spin-orbit coupling in insu-

lators, known as the “spin-orbit spillage”. The spin-orbit spillage has been applied to

various topological systems, which turns out to be a useful tool for the identification of

topological characters in band theory. In the last chapter of the thesis, we develop a

new method for calculating the Chern-Simons orbital magnetoelectric coupling in 3D

insulators. The contributions from the gauge discontinuity and the “vortex loops” are

taken into account in our method. The former is expressed as a 2D integral over a k

plane across which the gauge of the occupied Bloch functions become discontinuous,

while the latter is expressed as the Berry phases around 1D “vortex loops” lying in

the gauge-discontinuity plane. Our method is successfully applied to the Fu-Kane-Mele

model with the breaking of time-reversal symmetry.
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Chapter 1

Introduction

Condensed matter physics deals with systems consisted of a macroscopically large num-

ber of electrons and nuclei. The most generic Hamiltonian of a condensed matter sys-

tem includes the kinetic energy of electrons and nuclei, the electron-electron (e-e) and

electron-nuclei (e-n) Coulomb interactions, as well as the spin-orbit coupling as a rela-

tivistic effect in systems with heavy elements. Approximations have to be made in order

to deal with systems with such complexity. For example, to deal with the electronic

behavior, one can first isolate the nuclear dynamics from the electrons by freezing the

nuclear degrees of freedom and consider a static periodic lattice structure, then treat

the e-n Coulomb interaction as an external periodic potential. Such an approximation

is usually valid because the characteristic time scale of nuclear dynamics is much slower

than that of electrons.

If one further makes a drastic approximation that the e-e Coulomb interaction can

also be treated on a mean-field level, i.e., the complicated interacting many-electron

system is approximated as single electrons moving in an effective static field generated

self-consistently by other electrons, then the problem is reduced to a simpler problem of

solving for many non-interacting electrons obeying Pauli exclusion principle and moving

in an effective static field with lattice periodicity. The eigenstates of such a mean-field

effective Hamiltonian are known as Bloch states ψnk(r) , where k is the wave vector

which is periodic in the Brillouin zone, and n is the band index. The corresponding

eigenenergies εnk gives us the bandstructure. A Bloch eigenfunction is of the form

ψnk(r) = eik·runk(r), where unk(r) has the periodicity of the primitive unit cell. Such
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a theory is known as the band theory of solids.

Band theory lays the foundation for modern solid state physics. For example, band

theory has successfully explained the difference between a metal and an insulator: an

insulator is characterized by an energy gap between the occupied and unoccupied Bloch

states, while such a gap is absent in a metal. Moreover, the bandstructures and Bloch

functions of a given material typically act as the cornerstone based on which much

interesting physics in solids, such as electric transport phenomena, effects of vacancies

and impurities, and optical properties etc., are developed [1].

In particular, with the development of first-principles techniques calculating elec-

tronic structure in solids [2], such as the density functional theory [3, 4], it becomes

feasible to calculate properties of realistic materials in an accurate and “parameter-free”

way. Based on first-principles band theory, modifications can be made to study many

interesting effects in realistic materials. To name a few, using the iterative Green’s

function technique, one can study the surface and interface physics of crystals based on

the Bloch states and bandstructures of the bulk materials [5, 6, 7]; an onsite Hubbard-

like Coulomb interaction treated on the Hartree-Fock level can be added on top of the

Kohn-Sham [4] type Hamiltonian to study the correlated physics in transition metal

oxides [8]; using the “maximally localized Wannier functions” [9] obtained from first-

principles Bloch functions, various response functions in solids such as the dc electric

conductivity tensor and magneto-optical absorption can be evaluated with great accu-

racy and numeric efficiency [10]. A plethora of research directions thrive by virtue of the

band theory and the development of first-principles methods in calculating electronic

structures of solids.

Besides the interesting physics mentioned above, the effects of the geometric phase

in crystalline solids have attracted a significant amount of interest since the discovery

of Berry’s geometric phase in quantum mechanics [11, 12]. In crystalline solids, the

wavevector k is periodic in the Brillouin zone (BZ). A geometric phase thus can be
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defined for a Bloch function which varies adiabatically on a k path in the toric BZ. Such

a Berry phase accumulated by varying Bloch functions in the BZ was first discussed by

Zak, and sometimes known as Zak’s phase [13].

Various interesting phenomena in solids are related to the Berry phase. For example,

electric polarizations in band insulators stems from the Berry phase of Bloch functions

in the BZ [14, 15]; the intrinsic contribution to the anomalous Hall effect in (quasi)2D

systems [16] originates from the Berry phase of the Bloch function around the Fermi

loop [17, 18]; and the Chern-Simons orbital magnetoelectric coupling turns out to be

contributed by a more complicated geometric term, i.e., the 3D BZ integral of the

Chern-Simons 3-form [19, 20].

For band insulators in even dimensions, an integer topological index called the

Chern number can be defined in the corresponding even-dimensional BZ. For a “zero-

dimensional” molecule or cluster, the zeroth Chern number is simply the number of

occupied particles. For a 2D insulators, the first Chern number is defined as the in-

tegration of Berry curvature over the 2D BZ torus. There is also the second Chern

number in four dimensions, but it is not quite relevant to physical observables. We

will use the term “Chern number” to refer to the first Chern number defined in the

2D BZ throughout this thesis. A non-zero Chern number is responsible for a quantized

Hall conductance in insulating 2D systems. It explains the integer quantum Hall (IQH)

effect [21] from a topological perspective [22, 23] and has motivated research on the

quantum anomalous Hall effect in (quasi) 2D material systems [24, 25].

It can be shown that the Chern number must vanish in the presence of time-reversal

symmetry. However, in 2005, it was proposed by Kane and Mele that time-reversal (T )

symmetry would impose an additional Z2 topological classification to 2D band insulators

[26]. An odd Z2 index corresponds to the quantum spin Hall (QSH) phase, which is

manifested by an odd number of pairs of spin-polarized gapless [27, 26, 28] edge states

which can never exist in isolated 1D systems [29]. An even Z2 index corresponds to the
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(a) (b)

Figure 1.1: ARPES results for (a) Bi2Se3, and (b) Bi2Te3. Figure (a) is taken from
Nature Physics, vol. 5, p. 398 (2009), and Fig. (b) is from Science, vol. 325, p. 178
(2009).

conventional 2D insulators without topologically protected edge states.

The Z2 classification of 2D insulators was soon generalized 3D T − invariant systems

in 2007 [30, 31]. In 3D systems, it turns out that there are four Z2 indices, where one

of them is the known as the strong Z2 index and the rest of the three are weak indices

[30, 31, 32]. A system with an odd strong Z2 index is now known as a “topological

insulator”, which has an odd number of gapless Dirac cones on the surface and possesses

interesting transport properties and magnetoelectric response [33, 34].

Topological insulators (TIs) have been theoretically proposed and experimentally

realized in various material systems [35]. The most famous one may be the Bi2Se3-class

materials [36, 37, 38, 39]. The Bi2Se3-class materials, including Bi2Se3, Bi2Te3 and

Sb2Te3, were first theoretically proposed as candidates of TIs in 2009 [36]. These theo-

retical predictions were later on experimentally verified by angle resolved photoelectron

spectroscopy (ARPES) [37, 38, 39]. The ARPES results for Bi2Se3 and Bi2Te3 are

shown in Fig. 1 (a) and (b) respectively. It is clearly seen that there is a single Dirac

cone traversing the bulk energy gap centered at one of the TRIM (Γ) in both materials.
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An interesting topic is the topological phase transitions in this class of topological

insulators driven by impurity doping. One of the main topics of this paper is to study

the topological phase transitions in In- and Sb-doped Bi2Se3 [40, 41, 42]. As will be

discussed in detail in Chapter 3, distinct behaviors have been observed in the phase-

transition process of these two solid-solution systems [42].

A topological index is usually well defined for systems with a non-vanishing bulk

energy gap. However, recently the concept of topologically protected phases have been

generalized to gapless systems with band-touching points (BTPs) in the BZ. Systems

with such topologically protected BTPs are known as Weyl semimetals (WSMs) [43, 44,

45], which are topologically robust only in three dimensions. It turns out the emergence

of the WSMs requires the breaking of either T symmetry or inversion (P) symmetry.

In particular, in noncentrosymmetric TIs, WSMs show up as a critical phase in the

process of topological phase transitions connecting the Z2-odd and Z2-even insulating

phases [46, 47, 48]. In Chapter 4, we will discuss the emergence of WSMs as such a

critical phase. We also propose a couple of material candidates of WSMs based on

noncentrosymmetric TIs [48].

A crucial ingredient in topological materials is spin-orbit coupling (SOC). In systems

with weak electron-electron interactions 1, SOC is indispensable in obtaining topolog-

ically nontrivial phases. The general scenario is that SOC drives a band inversion

somewhere in the BZ, and such a band inversion may lead to a nontrivial band topol-

ogy. In Chapter 5, we define a quantity called “spin-orbit spillage” [51]. It allows for a

quantitative evaluation of SOC-driven band inversions in the BZ, which may be helpful

for search for new topological materials.

An important signature of 3D TIs is the quantized magnetoelectric (ME) response

[19, 20]. To be specific, the Chern-Simons orbital ME response of 3D TIs is formally

1It is possible to have “topological Mott insulators” in strongly correlated systems [49]. In these
systems, some kind of effective spin-orbit coupling is generated dynamically by electron-electron inter-
actions [50], leading to nontrivial band topology. We will not discuss this topic in the present thesis.
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quantized as e2/2h 2, which can be considered as a benchmark of TIs. The Chern-

Simons orbital ME coupling is not only present in TIs, it exists in all insulating solids

with the breaking of both T and P symmetry. For systems in the absence of T and

P symmetries, it is no longer quantized and can take arbitrary values depending on

specific material properties. However, the existing method for computing the Chern-

Simons term suffers from the difficulty in numeric convergence with respect to k-mesh

sampling. In Chapter 6, we propose a new method to calculate the orbital Chern-Simons

ME response. We derive new formulas for the contributions from gauge discontinuity

of Bloch functions in the BZ. It turns out that our method is numerically efficient and

may provide a new interpretation to the origin of the quantized ME response in TIs.

This paper is organized as follows. In Chapter 2, we will review some basic concepts.

We will start by introducing the concept of the Berry phase, then show a few examples

of geometric-phase effects in solids. We proceed to discuss some basic topologically-

protected phases in condensed matter physics. After Chapter 2, the thesis is divided

into two parts. The first part includes topics related to Bi2Se3-class TIs, including

the topological phase transitions in In- and Sb-doped Bi2Se3 (Chapter 3) and WSMs

emerging from non-centrosymmetric TIs (Chapter 4). The second part is focused on

method development. As mentioned above, in Chapter 5, the concept of spin-orbit

spillage is proposed, and is applied to various topological systems. In Chapter 6, a

new method for computing the Chern-Simons orbital ME coefficient is proposed. This

method is successfully applied to the Fu-Kane-Mele model [30] with broken time-reversal

symmetry.

2For a TI sample, the quantized bulk ME response is exactly cancelled by the contributions from
the surface states such that the total ME response of the sample is still vanishing. We will discuss this
topic in details in Sec. 2.2.4.
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Chapter 2

Basic concepts

In this chapter, we introduce some basic concepts to understand topological phases

of matter. First we introduce the concept of Berry’s geometric phase, and discuss its

applications in solids such as the electric polarization, the anomalous Hall effect and the

Chern-Simons magnetoelectric coupling. Then we make a transition from geometry to

topology by discussing a few examples of topologically protected phases. We start with

the first example of topologically protected phases in condensed matter physics, the

integer quantum Hall (IQH) effect, and continue to discuss the “quantized Hall effect

without magnetic field”, i.e., the quantum anomalous Hall (QAH) effect. Then we look

at the situations with time-reversal symmetry. We will talk about the quantum spin Hall

(QSH) phase in 2D insulators with time-reversal symmetry and its 3D generalization

for topological insulators.

2.1 Berry phase

Let us consider a quantum system which is coupled to a classical environment param-

eterized by R(t) = {R1(t), R2(t), ..., RN (t)}. The parameters R are allowed to vary as

a function of time t, but we assume that the time evolution is slow enough compared

with any intrinsic dynamics of the quantum system, such that one can define a set

of eigenenergies and orthonormal eigenstates of the Hamiltonian H(R(t)), which are
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instantaneously dependent on R(t)

H(R(t))|n(R(t)〉 = En(R(t))|n(R(t))〉 ,

〈m(R(t))|n(R(t))〉 = δmn . (2.1)

We also assume that the phase factor, i.e., the “gauge” of |n(R(t))〉 has been chosen

in such a way that it remains smooth and single-valued in the parameter space R(t).

Then we study the time evolution of an initial state at t = 0 (|ψ(0)〉) in response to the

variation of the external parameters in a periodic cycle from R(0) to R(τ) = R(0).

Suppose that the system starts from one of its eigenstates |ψ(0)〉 = |n(R(0))〉,

then in general the corresponding state at time t (0 < t < τ) |ψ(R(t))〉 should be a

superposition of all the instantaneous eigenstates

|ψ(R(t))〉 =
∑
m

cm(t)|m(R(t))〉 . (2.2)

However, if the time evolution is slow enough, we can make the adiabatic approx-

imation. The adiabatic approximation says that if the system starts in one of the

eigenstates |n(R(0))〉 at t = 0, then it remains in the corresponding instantaneous

eigenstate |n(R(t))〉 throughout the evolution process. In other words, in the adiabatic

approximation,

|ψ(R(t))〉 = cn(t)|n(R(t))〉 , (2.3)

where cn(t) is a phase factor determined by the path of time evolution, with cn(0) = 1.

The adiabatic approximation is valid when the variation of R(t) is much slower than

any of the intrinsic time scales of the system; or equivalently, the energy fluctuation

induced by the time variation of R(t) is much smaller than typical energy gaps of the

system.

Plugging Eq. (2.3) into the time-dependent Schrödinger equation, one would imme-

diately obtain the following equation for cn(t),

dcn(t)

dt
= −cn(t)

(
iEn(t) + 〈n(R(t))| d

dt
n(R(t))〉

)
. (2.4)
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Dividing both sides of Eq. (2.4) by cn(t), and integrating over time from 0 to t, one

obtains,

cn(t) = e−i
∫ t
0 En(R(t′))dt′eiβn(t) (2.5)

where

βn(t) =

∫ t

0
i 〈n(R(t′))| d

dt′
n(R(t′))〉dt′

=

∫ R(t)

R(0)
i 〈n(R)| d

dR
n(R)〉dR . (2.6)

One notices that besides the expected “dynamic” phase factor e−i
∫ t
0 En(R(t′))dt′ , an extra

phase factor eiβn(t) resulted from the variation of the eigenbasis also plays a role. It was

argued that such a phase factor is unimportant because it is gauge dependent, and it

vanishes if a proper gauge choice is made. Then the only gauge-invariant phase factor is

the dynamic phase. This is indeed true for a non-cyclic evolution. On the other hand,

for cyclic adiabatic evolution (with period τ), the phase factor eiβ(τ) becomes gauge

invariant (modulo 2π). Therefore, for a cyclic evolution,

ψ(τ) = e−i
∫ τ
0 En(R(t′))dt′eiβn(τ)|n(R(τ))〉

= e−i
∫ τ
0 En(R(t′))dt′eiβn(τ)|n(R(0))〉 . (2.7)

The second line in the above equation follows as a result of the single-valued gauge

choice of |n(R)〉. We see that for a cyclic adiabatic evolution, a system returns to a

state which differs from the original state by an extra phase factor in addition to the

conventional dynamic phase. Such a phase factor is known as the Berry phase. The

Berry phase is important because (unlike the case of non-cyclic evolution) it is gauge

invariant modulo 2π, implying that it may be related to physical observables.

Now let us illustrate the gauge invariance of the Berry phase. For a cyclic evolution,

the system traverses a closed path C in the parameter space R. From Eq. (2.6) we know

the Berry phase can be expressed as

βn =

∮
C
i 〈n(R)| d

dR
n(R)〉 · dR . (2.8)
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The integrand on the right-hand side (RHS) of the above equation is known as the

Berry connection An(R):

An(R) = i〈n(R)| d
dR

n(R)〉 . (2.9)

Suppose a U(1) gauge transformation is made to |n(R)〉 such that

|n(R)〉 → eiλn(R)|n(R)〉 , (2.10)

where eiλn(R) is single-valued on R. Then it is straightforward to show that

An(R)→ An(R)− dλn(R)/dR

βn → βn − λn(R(τ)) + λn(R(0)). (2.11)

As eiλn(R) is single-valued, it immediately follows that λn(R(τ))−λn(R(0)) = 2πn with

n to be an arbitrary integer. Thus it is proved that the Berry phase is gauge invariant

modulo 2π.

The loop integral shown in Eq. (2.8) can also be expressed as an area integral of

a local gauge-invariant quantity known as the Berry curvature. By applying Stoke’s

theorem to the loop integral in Eq. (2.8), one obtains

βn =

∮
C

An(R) · dR

=

∮
C

N∑
i=1

Ani (R)dRi

=

∫
S

N∑
i,j=1

1

2
Ωn
ijdRi ∧ dRj (2.12)

where S is a subregion in the multi-dimensional parameter space R enclosed by loop C,

and “∧” denotes the wedge product dRi∧dRj = −dRj∧dRi. Ωn
ij is the Berry curvature

defined as

Ωn
ij = ∂Anj /∂Ri − ∂Ani /∂Rj

= i 〈∂Rin|∂Rjn〉 − i〈∂Rjn|∂Rin〉 . (2.13)
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In Eq. (2.12) and Eq. (2.13), the dependence on R is implicit (in later discussions, we

will drop the explicit dependence of R). As a simplest example, in 2D parameter space,

R = (R1, R2),

βn =

∫
S

1

2

(
Ωn

12dR1 ∧ dR2 + Ωn
21dR2 ∧ dR1

)
=

∫
S

Ωn
12dR1 ∧ dR2 , (2.14)

where we have used the antisymmetric property of the wedge product and the Berry

curvature.

Unlike the Berry connection, it is straightforward to check that the Berry curvature

is a gauge invariant quantity. Moreover, as a result of

〈m|∂Rin〉 =
〈m|∂H/∂Ri|n〉
En − Em

, if m 6= n , (2.15)

the Berry curvature can be rewritten in a form that resembles a response function

obtained from perturbation theory,

Ωn
ij = i

∑
m 6=n

〈n|∂H/∂Ri|m〉〈m|∂H/∂Rj |n〉 − 〈n|∂H/∂Rj |m〉〈m|∂H/∂Ri|n〉
(En − Em)2

. (2.16)

The Berry curvature can be understood in a more intuitive way from the above equation.

It results from the virtual excitations driven by the time evolution of the Hamiltonian.

In the adiabatic approximation, the system starting with a certain eigenstate must stay

in the same instantaneous eigenstate. However, there could be virtual process that the

system tunnels to a different eigenstate then hops back. The effect of such process is

manifested as the Berry curvature, and enters into the phase of the wavefunction after

a cyclic evolution.

The Berry connection and the Berry curvature are analogous to the gauge field

A(r) and magnetic field B(r) = ∇ × A(r) in real space. To be specific, for a three

dimensional parameter space R = (R1, R2, R3), Eq. (2.13) can be simplified as

Ω = ∇R ×A(R) , (2.17)
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where the ith component of the vector Ω is defined as

Ωi = εijkΩjk . (2.18)

Here Ωjk is the Berry curvature defined in Eq. (2.13) and εijk is the Levi-Civita sym-

bol. Therefore, the Berry curvature can be considered as the “magnetic field” in the

parameter space R, with A(R) being the corresponding gauge field. More interestingly,

from Eq. (2.16), it is evident that the Berry curvature diverges if there is a degeneracy

in the energy levels at some point R0 in the parameter space. It means a degeneracy

point acts as a source that generates Berry curvature in the parameter space, and can

be considered as a “magnetic monopole” in R space.

In the following, we will introduce the Berry phase of Bloch states in the BZ, which

was first discussed by Zak in 1989 [13].

2.1.1 Berry phase of Bloch bands

As introduced in Chapter 1, the eigenstates of a single-body effective Hamiltonian in a

periodic potential obey the Bloch theorem

|ψnk〉 = eik·r|unk〉 , (2.19)

where |unk〉 is periodic in units of lattice vectors and k is the wavevector defined in

reciprocal space. As a result of real-space periodicity, the reciprocal space is also peri-

odic in units of reciprocal space lattice vectors Gi, with i = 1, ..., d for d−dimensional

lattices. People usually define the Wigner-Seitz cell in reciprocal space as the first Bril-

louin zone, or simply as the Brillouin zone (BZ). If we adopt a “periodic gauge” for the

Bloch states in the BZ, i.e., |ψnk〉 = |ψnk+Gi
〉, then the BZ naturally acts as a cyclic

parameter space for the Bloch states.

Following the discussion by Zak [13], let us now derive an expression for the Berry

phase of Bloch states in crystalline solids. Imagine that a weak time-dependent electric
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field with low frequency is applied to a 1D crystal. The single-particle Hamiltonian is

then

H(t) =
1

2m

(
− i~∂x − eA(t)

)2
+ V (x) (2.20)

where V (x) is periodic in units of lattice constant a, and we choose the gauge A(t) =

−E0t, with E0 to be the strength of the weak electric field. For an electric field that

varies slowly as time, we can assume that there are a set of orthonormal instantaneous

eigenfunctions at each time t for H(t)

H(t)ψnk(t) = εnk(t) ψnk(t) , (2.21)

where

ψnk(t) = eikxunk(t) . (2.22)

As shown in the above equation, the time dependence of ψnk(t) enters only through the

wavevector k(t) = k−eA(t)/~; and it is assumed that the wavevector of the plane wave

is time-independent. We seek for a solution of the form of Eq. (2.22) for the Schrödinger

equation given in Eq. (2.21).

Moreover, plugging Eq. (2.22) into Eq. (2.21), one obtains the Schrödinger equation

for the periodic part of the Bloch state unk(t)

Hk(t)unk(t) = εnk(t) unk(t) , (2.23)

where

Hk(t) = e−ikxH(t)eikx

=
1

2m

(
− i~∂x + ~k − eA(t)

)2
+ V (x) . (2.24)

In the adiabatic approximation, as time increases from 0 to t, an electron starting

in one of the Bloch states would remain in the corresponding instantaneous eigenstate,

but the wavevector k(t) varies in the BZ. Once k(t) hits the boundary of the BZ, the
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time-evolved wavefunction ψ(t) returns to the original eigenstate at k(0) and picks up

an extra Berry phase. If it is not a periodic cycle, say, at some arbitrary time t,

ψ(t) = eiβn(t)e−
i
~
∫ t
0 εnk(t′)dt

′
ψnk(t) , (2.25)

Plugging Eq. (2.25) into the time-dependent Schrödinger equation, and using Eq. (2.23)

and Eq. (2.24), one obtains the following equation for βn(t)

∂tβn(t) = i 〈unk(t)|∂tunk(t)〉 , (2.26)

where ∂t ≡ ∂/∂t. It means for a adiabatic cycle with period τ , the Berry phase βn(τ)

has the expression

βn(τ) =

∫ τ

0
dt i 〈unk(t)|∂tunk(t)〉

=

∫ π/a

−π/a
dk i 〈unk|∂kunk〉 . (2.27)

Eq. (2.27) can be easily generalized to 2D and 3D lattices. In 1D, a loop is formed

in BZ only if one traverses throughout the BZ. In 2D and 3D, however, one can take

an arbitrary loop in the BZ and calculate the corresponding Berry phase. The general

expression is then

βn(C) =

∮
C
dk i 〈unk|∇kunk〉 . (2.28)

2.1.2 Formulation in Wannier basis

We would like to show that the Berry phase of Bloch bands is closely related to the

center of the corresponding Wannier functions. For simplicity, let us again consider a

1D lattice. The Wannier function wnRj (x) associated with the nth Bloch band is

wnRj (x) =
1√
Ns

∑
k

ψnk(x)e−ikRj , (2.29)

where Ns is the total number of cells in the lattice, and Ns →∞ in the thermodynamic

limit, and Rj = ja is a lattice vector with a being the lattice constant and j being an
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integer. Conversely,

ψnk(x) =
1√
Ns

∑
j

eikRjwnRj (x) . (2.30)

The Berry phase of Bloch bands can be re-expressed in Wannier basis as

βn = i

∫ π/a

−π/a
dk〈unk|∂kunk〉

=
2π

a

1

N2
s

∑
j,j′,k

eik(Rj−R′j)〈wnj |x|wnj〉

=
2π

a

1

Ns

∑
j

〈wnj |x|wnj〉

= 2π
xn
a
, (2.31)

where xn = 〈wn0|x|wn0〉 is the center of the Wannier function in the “home” unitcell,

i.e., the j = 0 cell, which is also denoted as the “Wannier center” or “Wannier charge

center” in the literatures [52, 53]. The substitution (a/2π)
∫ π/a
−π/a dk → (1/Ns)

∑
k is

used when going from the first to the second line. The Wannier-function formulation of

Berry phase in Eq. (2.31) provides an intuitive interpretation to the Berry-phase theory

of electric polarization [15, 54], which will be discussed later.

2.1.3 Generalized gauge freedom and non-Abelian Berry phase

In the above discussions, we have only considered the case of a single eigenstate which

remains isolated from other eigenstates during the cyclic adiabatic evolution. How-

ever, in general there may be crossing of states during an adiabatic evolution, then the

single-state formulation of Berry phase breaks down. For example, in solids, as a result

of crystalline symmetry, the Bloch states at a wavevector k can be characterized by

irreducible representations of the small symmetry group at k. The degeneracy of the

Bloch states at k is exactly the dimension of the corresponding irreducible representa-

tion (irreps) [55]. Therefore, typically there is high degeneracy at high-symmetry points

in the BZ. Even for non-degenerate states that belong to one-dimensional irreducible

representations, two energy levels may still touch each other without avoided crossing
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as long as their symmetry characters are different. Besides crystalline symmetries, for

fermionic systems with time-reversal symmetry, the Bloch states are guaranteed to be

two-fold degenerate at time-reversal invariant momenta (TRIM) in the BZ 1. Therefore,

degeneracy is ubiquitous in crystalline solids, which means the single-band formulation

for Berry phases (Eq. (2.27)) has to be generalized to fit multi-band situations.

In solids, usually there exists a group of energy bands which are separated from other

bands by a finite energy gap at every k point in the BZ. For example, for insulators,

the occupied (valence) bands are separated from the unoccupied (conduction) bands

by an energy gap. In such situations, it is helpful to define the Berry connection,

Berry curvature and Berry phase in terms of the entire set of bands, because in general

degeneracy is unavoidable within such a group of bands. It is then natural to generalize

the Berry connection and Berry curvature to multi-band cases [52], or, in other words,

to “non-Abelian” cases

Aa,mn = i〈umk|∂aunk〉 ,

Ωab,mn = ∂aAb,mn − ∂bAa,mn , (2.32)

where m,n = 1, ...N are band indices, and a, b label the k-space directions, i.e., ∂a ≡

∂/∂ka . Now both Amn,a and Ωmn,ab are matrix elements of N ×N matrices.

As discussed in Sec. 2.1, there is a U(1) gauge freedom for electronic wavefunctions

as shown in Eq. (2.10) (the case of superconductors is not considered in this thesis),

which means a physical observable remains invariant against a local twist of phase.

In insulating solids, as mentioned above, there is always a group of occupied energy

bands which are separated from other bands by a finite energy gap, while degeneracy

is generally present within this set of bands. In such a situation, a physical observable

is usually calculated by tracing over the entire group of bands, and the matrix element

1TRIM means those wavevectors that are invariant under time-reversal operation modulo a reciprocal
lattice vector. For example, in 1D, there are only two TRIM, k = 0 and k = π. In 2D, there are four
TRIM; in 3D there are eight TRIM. The TRIM play a crucial role in theory of topological insulators
which will be discussed in more details in Sec. 2.3.
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of each individual band is not quite meaningful due to the entanglement among the

bands. Therefore, in such multi-band (N -band) case, the U(1) gauge freedom can be

generalized to a U(N) gauge freedom. A physical observable should be invariant under

the following U(N) transformation

|umk〉 →
N∑
m=1

|umk〉Umn , (2.33)

where Umn is the matrix element of a N ×N unitary matrix.

One can check that the non-Abelian Berry connection and Berry curvature defined

in Eq. (2.32) are not “gauge-covariant” under a U(N) transformation. Instead, they

transform as

Aa → U †Aa U + i U † ∂aU ,

Ωab → U †Ωab U + Λab + i [Ca, U
†AbU ]− i [Cb, U

†AaU ] , (2.34)

where

Ca = i U † ∂aU ,

Λab = ∂aCb − ∂bCa , (2.35)

can be considered as the “Berry connection” and “Berry curvature” in the gauge space.

Since the Berry curvature matrix now is no longer “gauge-covariant”, we can de-

fine a new Berry-curvature-like quantity which transforms covariantly under the gauge

transformation,

Ω̃ab = Ωab − i [Aa, Ab] . (2.36)

It is easy to check that Ω̃ab is gauge-covariant, i.e., under a U(N) transformation,

Ω̃ab → U †Ω̃abU .

One can still calculate the Berry phase in such non-Abelian cases, but now the loop

integration of the Berry connection gives us a matrix instead of a scalar. Moreover,

this “Berry-phase” matrix in general is non-diagonal. What we can do is to diago-

nalize the Berry-phase matrix, and consider each eigenvalue as the Berry phase of the
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corresponding unitarily transformed Bloch state. However, the Berry phase of each in-

dividual band is no longer gauge invariant. Only the sum of them is a gauge-invariant

quantity modulo 2π.

2.1.4 Symmetry properties

The presence of symmetries, such as time-reversal (T ) and inversion (P) symmetries,

may impose strong constraints on possible values of Berry phase. In this section, we will

particularly discuss systems with T symmetry only and with both T and P symmetries.

Time-reversal symmetry

For a lattice with T symmetry, one can insist on a gauge choice for the Bloch states

that respect T symmetry (which cannot be both smooth and periodic for Z2 topological

insulators [56, 57] ). We have to distinguish two situations: (a) spinless electrons, such

as electrons in graphene and other nonmagnetic materials with negligible SOC; (b)

spin-1/2 fermions, such as electrons in materials with non-negligible spin-orbit coupling.

Since there is T symmetry, a magnetic order is allowed in neither case.

A gauge respecting T symmetry means that the Bloch function at k is related to

the one at −k by a time-reversal operation without any gauge ambiguity. For spinless

electrons, the time-reversal operation is simply a complex-conjugation operation, which

means

ψnk(r) = ψ∗n−k(r) ,

unk(r) = u∗n−k(r) . (2.37)
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The above gauge choice imposes the following constriant on the Berry connection matrix

Aa,mn(k) = i 〈umk|∂aunk〉

= i

∫
dru∗mk(r) ∂aunk(r)

= i

∫
drum−k(r) ∂au

∗
n−k(r)

= i

∫
dru∗n−k(r) ∂−aum−k(r)

= Aa,nm(−k) , (2.38)

where ∂−a ≡ ∂−ka in the above equation. Using similar tricks, it is straightforward

to show that the Berry curvature and the gauge-covariant Berry curvature matrix

(Eq. (2.36)) behaves as odd functions of k:

Ωab,mn(k) = −Ωab,nm(−k) ,

Ω̃ab,mn(k) = −Ω̃ab,nm(−k) . (2.39)

Writing Eq. (2.38) and Eq. (2.39) in matrix form in the basis of the occupied Bloch

bands, one obtains

Aa(k) = ATa (−k) , (2.40)

Ωab(k) = −ΩT
ab(−k) , (2.41)

Ω̃ab(k) = −Ω̃T
ab(−k) , (2.42)

where the superscript “T” refers to matrix transpose.

For spin-1/2 fermionic systems, there must be an even number of bands (say, 2N

bands). In most cases one can decompose the 2N bands into N pairs. Kramers’

degeneracy is satisfied in each pair of bands

εnk,1 = εn−k,2 ,

εnk,2 = εn−k,1 , (2.43)

where the subindices “1” and “2” refer to the spin indices in each pair 2. The gauge is

2Here we refer to the local spin polarization at each k, whose direction may vary with k.
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said to respect T symmetry if for the nth pair (1 ≤ n ≤ N), the following relationship

is satisfied

T |unk,1〉=−|un−k,2〉

T |unk,2〉= |un−k,1〉 (2.44)

Now T = iσyK, where σy is the second Pauli matrix acting on the spin subspace within

each Kramers pair, and K is the complex-conjugation operator. More specifically, in

real-space representation,

unk,1(r)=−u∗n−k,2(r) ,

unk,2(r)=u∗n−k,1(r) . (2.45)

As a result of Eq. (2.45), the matrix elements of the non-Abelian Berry connection

obey the following relationship

Aa,mn,11(k) = i〈umk,1|∂aunk,1〉

= i

∫
dru∗mk,1(r) ∂aunk,1(r)

= i

∫
drum−k,2(r) ∂au

∗
n−k,2(r)

= i

∫
dru∗n−k,2(r) ∂−aum−k,2(r)

= Aa,nm,22(−k) , (2.46)

and

Aa,mn,12(k) = i〈umk,1|∂aunk,2〉

= i

∫
dru∗mk,1(r) ∂aunk,2(r)

= −i
∫
drum−k,2(r) ∂au

∗
n−k,1(r)

= −i
∫
dru∗n−k,1(r) ∂−aum−k,2(r)

= −Aa,nm,12(−k) . (2.47)
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Similarly,

Aa,mn,21(k) = −Aa,nm,21(−k)

Aa,mn,22(k) = Aa,nm,11(−k) . (2.48)

The above equations can be written in a neat matrix form

Aa(k) = σy A
T
a (−k)σy , (2.49)

where σy acts only on the (pseudo)spin subspace in each Kramers’ pair, while the

transpose operation “T” acts on the entire space of the 2N bands. A similar relationship

can be obtained for the non-Abelian Berry curvature,

Ωab(k) = −σy ΩT
ab(−k)σy . (2.50)

It should be noted that Eq. (2.40)-(2.42) and Eq. (2.49)-(2.50) are valid only for the

time-reversal invariant gauge as shown in Eq. (2.37) and Eq. (2.45).

Now we are ready to discuss the constriants on the Berry phase from T symmetry.

For spinless electrons in 2D and 3D lattices 3, if a k loop is chosen in such a way that

for any k on the loop, −k is also on the loop (we call such a loop a T -symmetric loop),

as shown in Fig. 2.1(b), then the total Berry phase for a set of isolated bands around

this loop must be vanishing, i.e.,

β =

∮
CTR

dk · tr [A(k)]

=

∫
S
dkadkb tr [Ωab(k)] = 0 (2.51)

where CTR is the “T -symmetric loop” as described above (Fig. 2.1(b)), S is the area

enclosed by the loop CTR, and “tr ” refers to the trace over the energy bands. From

Eq. (2.41), we know that the trace of the Berry curvature at k and −k exactly cancel

each other, leading to a vanishing total Berry phase.

3In 3D systems, we have to consider time-reversal-invariant k planes, e.g., the 2D planes at kj = 0, π.
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Figure 2.1: Schematic plots of the k loops. (a) An arbitrary loop C in the BZ enclosing
a degeneracy point Γc. (b) A T -symmetric loop CTR which is consisted of two paths
C1

TR (blue) and C2
TR (black). C2

TR can be obtained from C1
TR by a T operation, i.e.,

k → −k, and the choice of C1
TR is arbitrary. A degeneracy point Γc resided at one of

the TRIM is enclosed by the loop CTR.

It may also be interesting to look at the Berry phase of each individual band. One

can diagonalize the Berry connection matrix Aa(k) = V †(k)AD
a (k)V (k), where V (k)

is the eigenvector matrix of Aa(k), and AD
a (k) is the corresponding diagonal eigenvalue

matrix. The integration of each eigenvalue AD
a,nn(k) around the loop CTR would be the

Berry phase of the nth Bloch-like state, which is unitarily transformed from the original

gauge by V (k), |unk〉 =
∑

m |u0
mk〉Vmn(k), where |u0

mk〉 refers to the original gauge.

Let us denote such a single-band Berry phase as βn,

βn =

∮
CTR

dk ·AD
nn(k) . (2.52)

From Eq. (2.39), it is plausible to say that since AD
a,nn(k) = AD

a,nn(−k), βn has to

vanish as a result of the exact cancellation between two opposite k points. However,

this is not necessarily true if there is a degeneracy at the center of S enclosed by CTR

(denoted as Γc), which by definition has to be one of the TRIM. Such a degeneracy is

quite possible at high-symmetry points for a group of entangled bands. From (2.16),

we know that the Berry curvature for band n would diverge at Γc as a result of the

degeneracy. Moreover, as Γc is invariant under T operation, there is no way to cancel

the diverging Berry curvature.
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On the other hand, from Eq. (2.52) we know that if k→ −k, the Berry phase flips

its sign βn → −βn, which in turn must be equal to βn as a result of T symmetry. Since

βn is gauge invariant modulo 2π, there are only two possible values for βn, either 0 or

π. If there is no degeneracy at the center Γc (nor anywhere else within the loop), we

know that βn = 0 due to the cancellation of Berry connections at opposite k points. It

thus follows that when there is degeneracy at Γc, βn = π.

To summarize, for spinless electronic systems with T symmetry only, the Berry

phase of the nth “disentangled” band around a T -symmetric loop centered at Γc can

only take two possible values

βn(CTR) =


π if there is a degeneracy at Γc ,

0 otherwise .

(2.53)

The above conclusion for spinless particles can be generalized to spin-1/2 fermions.

Again, let us consider the situation that there are N pairs of bands which are sepa-

rated from other bands by a finite energy gap. The Kramers’ degeneracy is satisfied

within each pair (Eq. (2.43)), and a gauge respecting T symmetry has been constructed

(Eq. (2.45)). For such a situation, it is helpful to divide a T -symmetric loop CTR into

two paths as shown in Fig. 2.1(b), CTR = C1
TR + C2

TR, where C2
TR can be obtained from

C1
TR by a time-reversal operation k → −k, and the choice of C1

TR is indeed arbitrary.

Then let us define the Berry phase βn,h and βn,l as the Berry phases of the Bloch states

which are higher and lower in energy for the nth Kramers’ pair,

βn,h(CTR) =

∫
C1TR

dk · i 〈unk,1|∇kunk,1〉+

∫
C2TR

dk · i 〈unk,2|∇kunk,2〉 ,

βn,l(CTR) =

∫
C1TR

dk · i 〈unk,2|∇kunk,2〉+

∫
C2TR

dk · i 〈unk,1|∇kunk,1〉 . (2.54)

Due to Kramers’ degeneracy, the Berry curvature of each individual band must

diverge at the TRIM. As a result, the Berry phases βn,h(CTR) and βn,l(CTR) around a
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T symmetric loop CTR enclosing one of the TRIM Γc have to be ±π, i.e.,

βn,h(CTR) = ±π ,

βn,l(CTR) = ∓π . (2.55)

Eq. (2.55) explains the quantized (π) Berry phase in systems with strong Rashba

spin-orbit coupling, which gives rise to the anti-weak localization in semiconductor

heterostructures with the breaking of inversion symmetry [58]. From Eq. (2.55), it is

also evident that the sum of the Berry phases in each Kramers’ pair is still vanishing,

i.e., βn,h + βn,l = 0.

Time-reversal and inversion symmetries

Now let us proceed to the situation with both T and P symmetries. Since the spatial

inversion operation acts only on the orbital degrees of freedom, it is not necessary

to distinguish between spin-1/2 and spinless particles. The inversion operation maps

unk(r) to un−k(r),

Punk(r) = un−k(r) = eiφ(k)unk(r) . (2.56)

Then one can construct a gauge respecting P symmetry by fixing the otherwise arbitrary

phase factor as 0, i.e., φ(k) = 0,

unk(r) = un−k(r) . (2.57)

If the periodic part of the Bloch functions satisfy the above equation, we say a gauge

respecting P symmetry has been constructed.

If both T and P symmetries are present, we have to distinguish between spinless

electrons and spin-1/2 fermions. For spinless electrons, comparing Eq. (2.37) with

Eq. (2.57), it is obvious that unk(r) can be made real everywhere in the BZ. It implies

that the Berry phase of each individual band around any loop in the BZ must be either

0 or ±π in order to be compatible with the reality condition.
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The above conclusion may be further illustrated by looking at the properties of the

Berry curvature. For spinless systems with PT symmetry, it is straightforward to show

that the Berry curvature and Berry connection matrices have to be skew-symmetric,

Aa(k) = −ATa (k) , (2.58)

Ωab(k) = −ΩT
ab(k) , (2.59)

which means the trace of them vanish everywhere in the BZ. It follows that the total

Berry phase for an isolated set of bands must vanish for any k loop in the BZ.

However, as discussed previously, if we are interested in the Berry phase of each

individual band βn, then βn could be either 0 or ±π. When a degeneracy point is

enclosed by the k loop, βn = ±π [59], otherwise it is 0. In other words, for spinless

systems with both T and P symmetries,

βn(C) =


π if there is a degeneracy point enclosed by the loop C

0 otherwise

(2.60)

The difference between Eq. (2.53) and Eq. (2.60) deserves discussion. In the former

case with T symmetry only, the quantization condition of the Berry phase applies

only if the loop is chosen as a T -symmetric loop CTR centered at one of the TRIM as

shown in Fig. 2.1(b). However, the conclusion shown in Eq. (2.53) is valid for both

spinless and spin-1/2 systems. On the other hand, in the latter case with both T and

P symmetries, the loop can be an arbitrary loop C in the BZ and the degeneracy point

can be anywhere within the loop as shown in Fig. 2.1(a), but the quantization condition

(Eq. (2.60)) applies only to spinless systems. The π Berry phase around the Dirac cone

in graphene [60] can be explained by Eq. (2.60).

The case of spin-1/2 fermions is a little bit subtle. As mentioned above, the P

symmetry does not distinguish the spin, thus the only difference would be from the T

symmetry. A PT operation would map the Bloch state at k with up (pseudo) spin to
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the state with down (pseudo) spin at the same k point,

unk,1(r) = eiφ(k)u∗nk,2(r) ,

unk,2(r) = −e−iφ(k)u∗nk,1(r) , (2.61)

where φ(k) is an arbitrary phase factor. As a result, the Bloch bands are two-fold

degenerate everywhere in the BZ,

εnk,1 = εnk,2 , (2.62)

where n is the index of the Kramers’ pair, while “1” and “2” are the spin indices.

Let us consider the situation that the Kramers’ pairs are separated from each other

by finite energy gaps. Then the Berry connection and the Berry curvature for the nth

Kramers’ pair are 2×2 matrices due to the degeneracy. Setting φ(k) = 0, one would

find that the Berry connection matrix elements for the nth Kramers’ pair obey the

following relationship,

An,11(k) = −An,22(k) . (2.63)

It immediately follows from Eq. (2.63) that the total Berry phase around any loop in the

BZ must be vanishing. If one locally diagonalizes the Berry connection matrix An(k)

and calculate the Berry phases of the two “disentangled” subbands for each Kramers’

pair, one would find that the two Berry phases are equal and opposite. If a T -symmetric

loop (Fig. 2.1(b)) is chosen in the BZ, then according to Eq. (2.53), βn,h and βn,l as

defined in Eq. (2.54) have to be quantized as ±π, i.e., βn,h = ±π, and βn,l = ∓π.

In summary, in this section we have introduced the concept of Berry phase and

discussed some properties of the Berry phase. In the following section, we will start

talking about the applications of Berry phase in solid state physics.



27

2.2 Examples of Berry phase

In the above section we have introduced the Berry phase. In this section, we will focus

on the applications of Berry phase in specific physical problems. We start with the sim-

plest example, a two-level system, where the Berry connection and the Berry curvature

have analytic expressions. Then we discuss the electric polarizations in one-dimensional

systems, the anomalous Hall conductance (conductivity) in 2D (3D) systems, and the

Chern-Simons orbital magnetoelectric coupling in 3D systems. All three physical quan-

tities can be regarded as geometric properties of the occupied Bloch functions.

2.2.1 Two-level system

The two-level system may be one of the most “classical” examples to illustrate the

properties of the Berry phase. It has a simple analytic solution, and it provides a

natural connection between the geometric phase and the topological invariant. More

importantly, it may be considered as a two-band effective Hamiltonian from a k · p

model expanded around a given high-symmetry point in the BZ, which is widely used

in the band theory [12].

We consider a spin or a pseudospin σ, which couples to a “Zeeman field” parame-

terized by R

H = σ · h(R) . (2.64)

Here σ refer to the Pauli matrices representing the pseudospin. Let us consider the case

that h is defined on the surface of a unit sphere, which has a constant magnitude and

points outward from the center of the sphere

h(R) = hR̂ = h(sin θ cosφ, sin θ cosφ, cos θ) , (2.65)

where θ ∈ [0, π] and φ ∈ [0, 2π] are introduced as the polar and azimuthal angles in the

spherical coordinate system.
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Following Ref. [12], if one fixes the gauge for one of the eigenstates (ψ1) at the north

pole (θ = 0), then ψ1 can be chosen to be smooth and single-valued everywhere on the

sphere except for the south pole (θ = π):

|ψ1〉 = ( sin
θ

2
e−iφ,− cos

θ

2
) ,

|ψ2〉 = ( cos
θ

2
e−iφ, sin

θ

2
) , (2.66)

where |ψ1〉 (|ψ2〉) is the eigenstate with the negative (positive) eigenvalue. With such a

gauge choice, |ψ1〉 at the south pole are dependent on the azimuthal angle φ, implying

that they are multivalued at this point. One can certainly make another gauge choice,

for example, |ψ1〉 → |ψ1〉eiφ, such that the states are single-valued at the south pole,

but it turns out to be multivalued at the north pole [12, 61]. Actually it is impossible

to insist a smooth and single-valued gauge for either one of the two eigenstates over the

entire sphere. Some discontinuity or multivaludness must show up somewhere on the

sphere. The best one can do is to push it to a point such as the south pole or the north

pole. As will be discussed later in this section, this is due to a topological obstruction.

Taking the gauge shown in Eq. (2.66), the Berry curvature of |ψ1〉 turns out to be

Ωθφ =
1

2
sin θ , (2.67)

which is gauge invariant. The corresponding Berry phase around an arbitrary loop C

on the surface of the sphere is then

β(C) =
1

2

∫
S

sin θdθdφ =
1

2
Λ(S) , (2.68)

where S is the area enclosed by loop C, and Λ(S) is the solid angle subtended by S. If

S is chosen as the entire surface of the sphere, it follows from Eq. (2.68) that the Berry

phase is quantized as 2π, i.e., β0 = 2πC, where C = 1 in our case. It turns out that

the integer C is a topological invariant, which is known as the Chern number of |Ψ1〉

defined on the surface of the sphere. It can be an arbitrary integer in more general

cases.
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The topological nature of the model becomes more explicit if we extend the param-

eter space to the entire 3D Euclidean space, instead of on the surface of the sphere. In

other words, the magnitude of h is considered as the third variable. In the spherical

coordinate system, the Berry connections of |ψ1〉 are given by the following expressions,

Ar = i〈ψ1|
∂

∂h
|ψ1〉 = 0 ,

Aθ = i〈ψ1|
∂

h∂θ
|ψ1〉 = 0 ,

Aφ = i〈ψ1|
∂

h sin θ∂φ
|ψ1〉 =

1− cos θ

2h sin θ
. (2.69)

The Berry curvature is a 3-vector in 3D parameter-space, which is simply the curl of

the Berry connection (Eq. (2.17)). Apply the curl operator in the spherical coordinate

system to the Berry connections defined in Eq. (2.69), one obtains the expression of the

Berry-curvature vector (Eq. (2.18))

Ω =
1

2h2
R̂ , (2.70)

where R̂ is the unit vector pointing to the radial direction. From Eq. (2.70), we see

that the expression of Ω strongly resembles the magnetic field generated by a magnetic

monopole located at the center of the sphere. It is indeed helpful to interpret the degen-

eracy point at the origin as a “magnetic monopole” in the parameter space. Then the

Berry curvature 0
¯

may be regarded as “magnetic field” generated by such a monopole.

Gauss’s theorem tells us that for any closed surface enclosing the monopole, the surface

integral of the Berry curvature must be quantized and proportional to the number of

monopoles enclosed by the surface. This is why the Berry phase over the entire surface

of the sphere must be quantized as 2πC, where C is exactly the number of monopoles

enclosed by the surface. It is the non-zero Chern number that brings the obstruction

to constructing a smooth and single-valued (or, smooth and periodic) gauge over the

entire surface of the sphere [62].
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2.2.2 Electric polarization

Electric polarization is one of the most fundamental physical quantities in solids. In

almost all the traditional textbooks about electromagnetism, the electric polarization

is defined as some kind of electric-dipole density. In crystalline solids, however, the

polarization may be partitioned into two parts: one contributed from the bare nuclei and

the localized core electrons, denoted as Pion, and the other from the valence electrons

denoted as Pelec. The bare nuclei are screened by the core electrons, thus the bare

nuclear charges are usually renormalized as some effective nuclear charges. In crystalline

systems, the contribution to the total polarization P from such kind of screened nuclei

is simply the sum of all the nuclear dipole moments in a primitive cell divided by the

volume of the cell

Pion =
1

Vcell

∑
i

Zi Ri , (2.71)

where Zi is the effective nuclear charge of the ith ion and Ri is the ionic position. Such

a definition is valid for the nuclear contribution because the core electrons are deeply

localized, and are tightly bound with the nuclei. Moreover, the nuclei and the core

electrons bound with them are well separated from each other in space, which means

they can be treated as some kind of classical objects.

One may attempt to define the contribution from valence electrons in a similar

approach. If all the valence electrons are localized around the nuclei such that there

is vanishing interstitial charge distribution, then Eq. (2.71) still works, except that Zi

is interpreted as the ionic charge including the valence electrons. The above definition

may be a good approximation for ionic lattices such as NaCl, but it clearly fails for

materials with covalent bonds where the valence charge density extends through the

entire lattice [54]. In the latter case, it is unclear how to unambiguously define the ionic

charge.
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Another attempt to define Pelec is to generalize the discrete summation of the lo-

calized charge to an integration of the continuous charge-density distribution over the

primitive cell

Pelec =
1

Vcell

∫
cell

dr ρ(r)r , (2.72)

where ρ(r) is the real-space charge-density distribution of the valence electrons. How-

ever, in principle there are infinitely number of ways to choose a primitive cell, each

of which would give us a unique result based on Eq. (2.72). Therefore, Eq. (2.72) is

still problematic. There are also other attempts towards defining the electronic part of

the polarization in terms of local charge-density distribution, as nicely summarized in

Ref. [54], but all of them suffer from various fallacies.

On the other hand, from both experimental and theoretical points of view, it has

been realized that the “absolute polarization” is ill defined [54, 63]. Experimentalists

always measure the change of polarization in a ferroelectric material through a hysteresis

loop. From a theoretical point of view, the bulk property of a crystal should remain

invariant against the translation of one valence electron by one unit cell, but it may

change the polarization by a “polarization quantum”, which is simply one electric charge

in 1D lattice [64]. It is certainly allowed to repeat such an operation for an arbitrary

number of times. As a result, there are infinite number of polarization values that differ

from each other by the polarization quanta, but all of them actually correspond to the

same bulk physical state. An instantaneous polarization would never be unambiguously

determined in this regard. As pointed out by Resta [65, 63], only the change of the

polarization through an adiabatic process is an experimentally measurable quantity.

Therefore it is more appropriate to define the electric polarization from the charge

current instead of the charge density [65, 54]

dP(t)

dt
= 〈J(t)〉 , (2.73)
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where 〈J(t)〉 is the quantum-mechanical expectation value of the current-density oper-

ator. If the current is driven by some external parameter λ that varies adiabatically

with time, the change of the polarization from the initial (λ = 0) state to the final

(λ = 1) state is then

∆P =

∫ 1

0
dλ 〈J(λ(t))〉 . (2.74)

∆P turns out to be the measurable quantity without ambiguity.

The above idea motivated the development of the “modern theory of electric polar-

ization” [14, 15]. Eq. (2.73) implies that the polarization is closely related to the phase

of electronic wavefunctions. In 1993, King-Smith and Vanderbilt showed that during an

adiabatic process parameterized by λ, the instantaneous polarization can be expressed

as the Berry phase of the (occupied) instantaneous Bloch functions [14],

Pj(λ) =
e

(2π)3

Nocc∑
n=1

∫
BZ
dk i 〈unk(λ)|∂junk(λ)〉 , (2.75)

where ∂j ≡ ∂/∂kj , unk(λ) is the periodic part of the nth occupied Bloch function at k,

and Nocc is the number of occupied bands. We assume the system is a 3D lattice.

For simplicity, let us consider a 3D orthorhombic lattice 4. It is helpful to write

k = (k‖, kj), where kj represents the wavevector component in the direction of interest,

and k‖ are the other two wavevector components which are orthogonal to kj . Using

these notations, Eq. (2.75) can be re-expressed as

Pj(λ) =
e

(2π)3

Nocc∑
n=1

∫
BZ
dk‖ φnj(k‖, λ) , (2.76)

where

φnj(k‖, λ) =

∫ 2π
aj

0
dkj i 〈unk(λ)|∂junk(λ)〉 , (2.77)

is the Berry phase of |unk〉 along the kj direction at k‖. The total polarization is

proportional to the sum of all the Berry phases at all k‖ in the 2D plane.

4Otherwise we must do the calculus in a skew coordinate system, which is more complicated. How-
ever, the general conclusion remains unchanged
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The Berry-phase formula may also explain the ambiguity of the bulk polarization.

It is rooted in the 2π ambiguity of the Berry phase. It follows from Eq. (2.76) that the

magnitude of the polarization quantum in the jth direction is e/A0 = e aj/Vcell, where

A0 = Vcell/aj is the cross-sectional area of the primitive cell normal to aj . For crystals

with non-orthogonal lattice vectors, the polarization quantum P0
j in the direction of

the jth lattice vector can be generalized as

P0
j = e

aj
Vcell

, (2.78)

where aj is the jth primitive lattice vector.

The generalization of Eq. (2.76) to 2D and 1D lattices is straightforward. For 2D

systems,

Pj(λ) =
e

(2π)2

Nocc∑
n=1

∫
BZ
dk‖ φnj(k‖, λ) , (2.79)

where k‖ becomes a scalar for 2D systems, and φnj(k‖, λ) is just the Berry phase

along the kj direction as defined in Eq. (2.77). The polarization quantum in 2D is a

generalization of Eq. (2.78),

P0
j = e

aj
Acell

, (2.80)

where aj is one of the two lattice vectors, and Acell is the area of the 2D primitive cell.

For 1D systems, the polarization has the same dimension as the electric charge,

Pj(λ) =
e

2π

Nocc∑
n=1

φnj(λ) . (2.81)

As mentioned above, the polarization quantum in 1D is simply the electric charge e.

The ambiguity of bulk polarizations is closely related to surface charges. Let us

truncate a bulk 3D lattice to make a surface with the surface normal n̂. It follows

from Eq. (2.78) that n̂ · P0
j = e/As, where As is the area of the 2D surface primitive

cell. It implies that the polarization quantum may be rooted in the uncertainty of the

surface charge density. To be explicit, one can always add or remove an integer number

of electrons from each surface primitive cell without affecting the bulk property, but
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the bulk polarization would be changed by the corresponding polarization quanta due

to such operations [15, 54]. Therefore, for an isolated insulating surface with definite

surface charge density, the polarization would be uniquely determined by the surface

condition.

The electric polarization can also be expressed in the Wannier-function basis. Using

Eq. (2.31), the electric polarization for 3D systems can be re-expressed as

P =
e

Vcell

Nocc∑
n=1

rnR , (2.82)

where rnR = 〈wnR|r|wnR〉 = 〈wn0|r|wn0〉+ R is the Wannier center (dependence on λ

is implicit). Certainly the choice of the lattice vector R is arbitrary, corresponding to

the ambiguity of the bulk polarization.

2.2.3 Anomalous Hall effect

Besides the electric polarization, another important application of the Berry phase in

solids is the anomalous Hall effect. The linear response of electrons in solids to a weak

applied electric field can be described by a conductivity (conductance) tensor for 3D

(2D) systems

Ja = σabEb (2.83)

where σab refers to the conductivity (conductance) tensor, Eb is the electric field applied

in the b direction, and Ja is the electric current density in the a direction induced by

Eb. If a = b, the above formula is basically Ohm’s law in metals. If a 6= b, Eq. (2.83)

describes a dissipationless transverse current generated by a longitudinal electric field

in the absence of external magnetic fields. Such an effect is known as the anomalous

Hall effect (AHE), and σab is known as the anomalous Hall conductivity (conductance).

In 2D or quasi-2D systems, the anomalous Hall conductance is usually denoted as

σxy = −σyx. In 3D systems, there are three anomalous Hall conductivities denoted by

σxy, σzx and σyz.
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It turns out that there are three main mechanisms which add up to contribute to

the total AHE, as nicely summarized in Ref. [16]. First, in realistic materials with

impurities and defects, there would be skew scattering of the spin-polarized electrons

by disorder, which results from the spin-orbit coupling of either the intrinsic system

or the disorder. Second, there is also the “side-jump” mechanism which takes account

of the other effects from imperfections of the lattice. Lastly, besides these “extrinsic”

mechanisms, there is an intrinsic contribution which tends to dominate in disordered

systems at relatively high temperatures.

The intrinsic contribution to the AHE was first pointed out about 60 years ago by

Karplus and Luttinger [66] in terms of the “anomalous velocity”. A half century later,

after the idea of Berry’s geometric phase was proposed [11], the anomalous-velocity

term was reformulated as the Berry curvature of the semiclassical wavepacket subject

to a weak electric field [67]. In 2002, Jungwirth et al. [68] studied the AHE in dilute

ferromagnetic semiconductors, where the anomalous Hall conductivity (conductance)

was expressed as the integration of the Berry curvature of Bloch bands over the occupied

portion of the BZ

σab =
e2

~
∑
n

∫
BZ

dkd

(2π)d
Ωab,n(k)fn(k, µ) . (2.84)

In the above equation, d refers to the spatial dimension, Ωab,n is the Berry curvature of

the nth Bloch band, and fn(k, µ) is the occupation number of the nth band at k with

the Fermi level µ.

If the system has T symmetry, from Sec. 2.1.4 we know that the traces of Berry

curvatures at opposite k points are opposite, i.e.,
∑

n Ωab,n(k) = −∑n Ωab,n(−k)

(Eq. (2.41) and Eq. (2.50)). On the contrary, the occupation number at k and −k

are equal to each other: fn(k) = fn(−k). Therefore, σab must vanish for a system

with T symmetry. The breaking of T symmetry thus becomes necessary to obtain the

AHE. On the other hand, in typical magnetic materials, the magnetic moments are

mostly contributed by the spin degrees of freedom, which means T symmetry is broken



36

in the electronic spin subspace. The Berry curvature is associated with orbital motion

of electrons, which implies the spin-orbit coupling is also indispensable for the AHE.

For 2D metals, Haldane showed that Eq. (2.84) can be expressed as the Berry phase

of the Bloch states around the Fermi loop(s) [17],

σxy =
e2

h

1

2π

∑
n

∫
BZ
dk2Ωn,xy(k)fn(k, µ)

=
e2

h

1

2π

∑
n

∫
BZ
dk2
(
An,x(k)∂yfn(k, µ)−An,y(k)∂xfn(k, µ)

)
=

e2

h

1

2π

∮
CF
dkF ·A(kF )

=
e2

h

β(CF )

2π
, (2.85)

where CF refers to the Fermi loop(s) of the 2D metallic system, kF is the Fermi wavevec-

tor, A(kF ) is the corresponding Berry connection at kF , and β(CF ) denotes the Berry

phase around the Fermi loop(s). The second line of Eq. (2.85) follows by using the

integration by parts. The third line follows from the fact that at zero temperature the

partial derivative of fn(k, µ) with respect to k behaves as a δ-function exactly at the

Fermi wavevector kF , and vanishes identically elsewhere.

For 3D metallic systems, Eq. (2.85) may be generalized as a Fermi-surface integral

of the Berry curvature weighted by the corresponding local Fermi wavevector, plus an

additional term from the BZ boundary [17]. However, for the purpose of practical

calculations, it may be more intuitive to follow the idea of Ref. [69], in which the

3D BZ is divided into a discrete set of 2D parallel k slices, and the anomalous Hall

conductivity is proportional to the sum of the Berry phases around all the Fermi loops

on all the slices. To be specific, following the notation of Ref. [69], the anomalous Hall

conductivity of 3D metals can be expressed as

σab =
e2

h

1

2π

∑
n,c

εabcKn,c , (2.86)
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where

Kn =
3∑
i=1

gniGi

gni =
ai

(2π)2

∫ 2π/ai

0
dkiβn(ki)

βn(ki) =

∮
Cn(ki)

dk ·A(k) . (2.87)

In the above equation, Gi denotes the ith reciprocal lattice vector, ai is the lattice

constant in the ith direction, Cn(ki) is the projected Fermi loop(s) within the 2D slice

at ki for the nth band (ki is the direction normal to the 2D k slice), and βn(ki) is the

Berry phase of the nth band around Cn(ki).

If band n is completely filled, then there is no Fermi surface nor any projected Fermi

loop. The Berry phase φn(ki) thus must be evaluated over the entire 2D k slice, which

equals to integer multiples of 2π:

βn(ki) = 2πCin ,

gni = Cin , (2.88)

where the integer Cin is the Chern number of the nth band defined in the 2D slice at ki.

Therefore, the contribution to the total anomalous Hall conductivity from a completely

filled band must be quantized in terms of the reciprocal lattice vectors,

σnab =
e2

h

1

2π

∑
c

εabcGn,c , (2.89)

where Gn =
∑3

i=1C
i
nGi. It follows that all the completely filled bands would contribute

to the total σab as a quantized part, while the remaining non-quantized part is a pure

Fermi-surface property as shown in Eq. (2.87).

As a concluding remark, we would like to briefly discuss the situation of insulators.

From Eq. (2.85) and Eq. (2.87), we know that the non-quantized part of the anoma-

lous Hall conductivity (conductance) can be expressed as a Fermi-surface (Fermi-loop)

property in 3D (2D) systems, and that a completely filled band may only contribute
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a quantized anomalous Hall response. If the system is insulating (say, in two dimen-

sions), the non-quantized part must vanish because there is no Fermi loop. Therefore

the anomalous Hall conductance must be quantized in units of e2/h, σab = Ce2/h. The

integer C is the Chern number of the occupied bands for the 2D insulating system. We

call such a 2D insulator with non-zero Chern number a quantum anomalous Hall insu-

lator, or Chern insulator [24]. We will discuss the quantum anomalous Hall insulator

in more detail in Sec. 2.3.2.

2.2.4 Chern-Simons orbital magnetoelectric coupling

Another important property of solids which involves the geometric phase of the Bloch

functions is the magnetoelectric coupling. With magnetoelectric (ME) coupling in an

insulator, an electric polarization P can be induced by an external magnetic field B,

and conversely a magnetization M can be generated by an applied electric field E. The

linear ME coupling coefficient is a rank-2 tensor defined as

αab =
∂Mb

∂Ea

∣∣∣
E=0

=
∂Pa
∂Bb

∣∣∣
B=0

(2.90)

where a, b = x, y, z denote the directions in real space. The ME phenomena are con-

tributed by both electronic and lattice degrees of freedom. To be specific, the electronic

contribution refers to the ME response when the ions are completely frozen, while the

lattice contribution takes account of the ionic response of M (P) to external electric

(magnetic) fields. Moreover, depending on the origin of the E-induced magnetization,

each of the two contributions can be further decomposed into spin and orbital compo-

nents [70, 71].

The spin contribution to the ME response (from both electronic and lattice degrees

of freedom) has been thoroughly studied with well established theoretical methods in

typical magnetoelectrics such as Cr2O3 [72, 73]. On the other hand, the orbital ME

response is theoretically more challenging and intriguing. In recent years, it has been

shown that the frozen-ion orbital ME coupling consists of two terms. One term can
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be expressed as a standard linear response of the Bloch functions to external electric

(magnetic) fields, denoted as the “Kubo term”; while the other is isotropic and is

completely determined by the unperturbed ground-state wavefunctions, which is known

as the Chern-Simons term [71, 74].

The Chern-Simons coupling in insulators is conventionally scaled by a dimensionless

parameter θ

αCS
ij =

θe2

2πh
δij , (2.91)

where θ is another type of geometric phase of the occupied Bloch states, which can be

expressed as an integral of the Chern-Simons 3-form over the 3D BZ [19, 20]

θ = − 1

4π

∫
d3k εabcTr [Aa∂bAc −

2

3
iAaAbAc] , (2.92)

where Aa, Ab and Ac are the Berry connections of the occupied Bloch states, and the

trace is taken over the occupied bands. The Berry phase defined in Eq. (2.27) can be

considered as the integral of the Berry connection, which is the Chern-Simons 1-form,

over the 1D BZ. θ may be interpreted as the generalization of the Berry phase to 3D

manifolds, i.e., it is the integral of the Chern-Simons 3-form over the 3D BZ.

The Chern-Simons ME coupling has several interesting properties. First of all, a

material with the Chern-Simons ME coupling can be considered as medium exhibiting

axion electrodynamics [75], where an additional term ∆L = αCSE ·B is added to the

conventional Lagrangian of electromagnetic fields in media. The electrodynamics with

such an axion coupling turns out to be invariant under θ → θ + 2π [75].

Secondly, θ would have a physically measurable effect only if it varies in space or time

[74]. As a result, for a time-independent crystal with a surface truncation, the presence

of the bulk Chern-Simons coupling is manifested as the surface anomalous Hall effect,

where the anomalous Hall conductance is proportional to θ, σxy = θe2/(2πh). The

connection between the surface anomalous Hall effect and the bulk Chern-Simons ME

coupling may provide an intuitive explanation to the ambiguity of θ. If an insulating
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quantum anomalous Hall (QAH) layer with non-zero Chern number C is coated to all

the surfaces of a 3D system with non-zero θ response in the bulk, the surface anomalous

Hall conductance would be changed by the Chern number σxy = θe2/(2πh) + Ce2/h,

while the bulk property remains unchanged. Such a freedom of coating QAH layers

with arbitrary Chern numbers to the surface would take account for the 2π ambiguity in

defining θ. It is interesting to note that the ambiguity of θ is analogous to the ambiguity

in defining the bulk electric polarization as discussed in the previous subsection. In the

latter case, the ambiguity is due to the freedom of adding (removing) an integer number

of charges to (from) the surface bands [15].

The 2π ambiguity of θ imposes a Z2 topological classification to 3D insulators with

either time-reversal or inversion symmetry. Both T and P operations would transform

θ to −θ, while the presence of T or P symmetry implies that θ = −θ, modulo 2π.

Therefore, there are only two possible values of θ, either 0 or π. When θ = π, the

system is known as a topological insulator [33, 34] in the presence of T symmetry;

while it is known as an axion insulator when only inversion symmetry is present [76].

We will discuss about some of the exotic topological phases in the following section.

2.3 From geometry to topology

In Sec. 2.1, we have introduced the concept of Berry phase and discussed various proper-

ties of the Berry phase. We also showed a few examples to illustrate how the geometric

phases are involved in specific physical problems. We see that the electronic part of

the polarization in insulating solids can be expressed as some kind of averaged Berry

phase of the occupied Bloch states; the anomalous Hall conductances in (quasi) 2D

metallic systems are proportional to the Berry phases of the Bloch states around the

Fermi loops; for 3D lattices, the Chern-Simons orbital ME coupling is proportional to

another geometric phase θ, which is the integral of the Chern-Simons 3-form over the

entire 3D BZ.
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These examples indicate that some physical response functions may be determined

by the geometric properties of the ground-state wavefunctions. The values of these

geometric quantities are strongly dependent on the specific properties of the systems,

which are not necessarily quantized. For example, in a typical ferroelectric material such

as BaTiO3, the bulk polarization would take some definite value modulo the polarization

quantum, but in general it differs from that of another type of ferroelectrics such as

PbTiO3. The anomalous Hall conductivity of Fe is definitely different from that of Co,

even though they are next to each other in the periodic table.

In some special situations, however, such geometric-phase-related quantities may be

exactly quantized regardless of specific properties of the materials. For examples, it

is possible to have a (quasi) 2D system whose anomalous Hall conductance is exactly

quantized in units of e2/h, which is robust against weak perturbations. In topological

insulators (axion insulators), the formal bulk ME responses are always quantized as

e2/2h, as long as time-reversal (inversion) symmetry is preserved. In such cases, the

exact quantization of the physical response functions are protected by the corresponding

topological invariants. Therefore they are insensitive to the details of the systems.

In this section, we will discuss some of the topologically protected phases. We start

with the first discovered topological phases of matter, the integer quantum Hall effect

(IQH) [21], and extend the discussion to the quantized Hall effect without external

magnetic field, i.e., the quantum anomalous Hall (QAH) effect [24, 25]. We proceed to

the situation with preserved T symmetry, and introduce the quantum spin Hall (QSH)

effect [27, 26, 28] and the topological insulators [33, 34].

2.3.1 The integer quantum Hall effect

In 1980, von Klitzing discovered that the Hall conductance of a 2D electron gas subject

to strong out-of-plane magnetic fields was exactly quantized in units of e2/h at low

temperatures, σxy = νe2/h [21]. This is known as the IQH effect.
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It is not difficult to explain the IQH effect if the system is modeled as a clean

free-electron gas subject to strong magnetic fields, where the effects of ionic potentials,

defects, impurities and electron-electron interactions are all ignored. To be specific,

let us consider a model Hamiltonian of a 2D free electron gas with a strong applied

magnetic field of magnitude B in the z direction and a weak applied electric field of

magnitude E in the longitudinal direction (y direction). If we take the gauge choice

A = (0, Bx − Et, 0), and ignore the Zeeman splitting of the spins 5, the Hamiltonian

looks like

H =
1

2me

(
(−i~ ∂

∂x
)2 + (−i~ ∂

∂y
+ eBx− eEt)2

)
. (2.93)

Suppose the electric field is infinitesimally weak, so that we can ignore its influence on

the energy spectrum. If the electric field is temporarily dropped, the eigenenergies of

the Hamiltonian shown in Eq. (2.93) form Landau levels En = (n + 1/2) ~ωc, where

ωc = eB/me (with me being the mass of an electron). Each Landau level turns out

to be highly degenerate. The degeneracy D = SeB/h, where S is the area of the

entire 2D sample. The corresponding eigenfunction ψn(x, y) is plane-wave-like in the y

direction, and can be written in the form ψn(x, y) = eikyyφn(x− xc), where φn(x− xc)

is some wavepacket centered at xc = −~ky/eB. The effect of the electric field may be

taken into account by the Pierel’s substitution ky → ky−eEt/~. Then the center of the

wavepacket becomes time-dependent xc(t) = −~ky/eB+Et/B , with the group velocity

vc = dxc/dt = E/B. When the chemical potential lies in the gap between two Landau

levels, the current density along x direction jx = −eρvc, where ρ = νD/S = νeB/h

is the number of electrons per unit area. Combining the above two equations, one

immediate obtains jx = −νe2E/h, and σxy = −νe2/h, where ν is the number of

occupied Landau levels.

5For a magnetic field as strong as 10T, the corresponding Zeeman splitting is ∼ 1meV, which is
negligible compared with the Landau-level splitting. So the Zeeman splitting will be ignored in the
following discussions.
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From the above discussions, it seems that the IQH effect naturally results if an in-

teger number of Landau levels are filled. However, the above analysis is based on an

over-simplified model Hamiltonian as shown in Eq. (2.93). In realistic systems, there

are Coulomb interactions between electrons (which should be weak for IQH effct), nu-

clear potentials, and lattice imperfections such as impurities and defects. The realistic

Hamiltonian describing the experimental system is far more complicated, and is essen-

tially disordered. Then how the exact quantization of the Hall conductance remains

robust against these perturbations?

There are a lot of theoretical works aiming to prove the quantization of the Hall

conductance in the presence of various types of disorder, as briefly summarized in

Chapter 13 of Ref. [61]. One of the most important conclusions from these works is

that each Landau level would be broadened into Landau bands with finite bandwidth

in the presence of disorder. Moreover, the states around the center of the Landau level

remain extended in the presence of disorder, while they become localized as the energy

approaches the band edges. The extended states and localized states are separated from

each other by a “mobility edge”, whose exact position is dependent on the strength

and types of disorder, as well as specific properties of the system. Based on the above

conclusion, Thouless managed to prove that the Hall conductance would remain exactly

quantized at zero temperature as long as the Fermi level lies in the “mobility gap”

[77] 6. Interestingly, by modelling the potential of a single impurity as a δ-function

in real space, Prange proved that even though the localized states around the single

impurity carries no current, there is an extra Hall current from the extended states

which exactly compensate for the loss of current from the localized state. Therefore

the exact quantization of the Hall conductance remains robust [78].

Motivated by the previous studies, Laughlin proposed his famous gauge argument

6Here the mobility gap means an energy interval within which there are only localized eigenstates,
which do not contribute to the transport phenomena.
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Figure 2.2: A schematic plot of the Laughlin’s ribbon. A gauge field A(r, t), which is
dependent on both position r and time t, is applied toward the longitudinal direction.
As a result of the longitudinal gauge field, a magnetic flux φ is threaded through the
ribbon, and a constant magnetic perpendicular to the surface of the ribbon is applied.

[79]. He considered a 2D Hall-bar system with the periodic boundary condition in the y

direction (longitudinal) and the open boundary condition in the x direction (transverse).

Thus a Hall bar is modelled as a ribbon of finite width as shown in Fig. 2.2. A uniform

magnetic field perpendicular to the surface of the ribbon is applied, and a magnetic

flux φ that varies slowly with time threads through the ribbon as shown in Fig. 2.2. It

is convenient to chose the gauge A = (0, Bx+ φ0t/(τL), 0), where B is the magnitude

of the magnetic field, φ0 = h/e is the flux quantum, τ is the period of time after which

φ varies by a flux quantum, and L is the circumference of the ribbon. We see that Ay

consists of two parts 7. The spatially dependent part generates a constant magnetic

field normal to the surface of the ribbon, while the time-dependent part threads a time-

dependent flux through the ribbon. As time varies from 0 to τ (consider τ →∞), the

flux φ increases linearly from 0 to φ0.

As the flux increases adiabatically, a longitudinal current would be generated [80]

S Jy =
e

me

N∑
j=1

(−i~ ∂yj − eAy(rj) ) = − ∂H(t)

∂A0(t)

∣∣∣
A0(t)=0

, (2.94)

where Jy is the current density operator in the longitudinal direction, A0(t) = φ0t/(τL),

7In the rectangular geometry, the longitudinal direction is the y direction. But in the ribbon ge-
ometry, it is the azimuthal direction. We just label the azimuthal direction as the “y” direction for
convenience.
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S = LW is the area of the sample (W is the width of the ribbon in the transverse

direction and L is the circumference of the ribbon), j is the index of electrons, and

the total number of electrons is N (a macroscopically large number). From Eq. (2.94),

it follows that the expectation value of the longitudinal current Iy = 〈 Jy 〉W can be

expressed as

Iy = −〈 ∂H(φ(t))

∂φ(t)
〉
∣∣∣
φ(t)=0

= −∂E(φ(t))

∂φ(t)

∣∣∣
φ(t)=0

= −∆E

∆φ
(2.95)

where φ(t) = A0(t)L = φ0t/τ . The second line in the above equation follows from the

Hellmann-Feynman theorem, and in the last line the continuous derivative is approxi-

mated by a finite difference.

Consider the process that φ increases from 0 to φ0, i.e., ∆φ = φ0 = h/e. After

such a process, the energy must increase by some amount to generate a non-vanishing

longitudinal current. However, the eigenstates at φ = φ0 must remain the same as those

at φ = 0. The only way that the energy could increase is “through a re-population of the

states” [80]. On the other hand, if there is no extended bulk states at the Fermi level,

in other words, the Fermi level lies in the (mobility gap) gap between two Landau levels

(bands), the population of electrons in the bulk must remain invariant after such an

adiabatic cycle. Then the only possible way to increase the energy is to pump an exactly

integer number (ν) of electrons from one edge to the other. In other words, the energy

increases through a re-population of the edge states. Therefore, ∆E = νe∆V (ν is an

integer), where ∆V is the potential drop across the transverse direction of the ribbon.

It immediately follows that Iy = −∆E/∆φ = −νe2/h∆V , i.e., σyx = −σxy = −νe2/h.

Laughlin further showed that in the clean limit, ν is exactly the number of the filled

Landau levels [80].

We would like to make two additional remarks about Laughlin’s argument. First, it
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should be noted that Laughlin’s gauge argument is model-independent. The only two

requirements to validate the argument is the correctness of Eq. (2.94), and that there

is no bulk extended states at the Fermi level. Therefore, it is fair to claim that the

quantization of the Hall conductance remains exact against various perturbations, as

along as the perturbations are not strong enough to close the bulk energy gap (either a

spectrum gap or a mobility gap). From this point of view, it seems that the quantized

Hall conductance is topologically protected by a finite energy (mobility) gap.

Secondly, the adiabatic charge pump from one edge to the other suggest that there

must be some gapless extended states localized at the two edges. Following Laughlin’s

work, Halperin in 1982 obtained the exact solution of a 2D free-electron system in the

annular geometry subject to a strong out-of-plane magnetic field [81]. It was shown

that the eigenenergies remain gapped and approach the limit of flat Landau levels in

the bulk, while they increase monotonically and become gapless as one approaches the

edges. It was further demonstrated that these gapless “chiral” edge states carry opposite

currents. All the states are left-moving at one edge, while they become all right-moving

at the opposite edge. In principle, extended electronic states in 1D systems (the edges

of a 2D systems are considered as 1D systems) would be localized by arbitrarily weak

disorder due to the backscattering off the disordered potentials. For such chiral edge

states, however, there is no state available for the backscattering. Therefore these edge

states remain robust even in the presence of moderate strength of disorder, which were

argued to be responsible for the quantized Hall conductance [81]. This is the first

time that the concept of topologically protected edge states was explicitly proposed in

condensed matter physics.

The topological nature of the IQH effect was later on clarified by Thouless, Kohmoto,

Nightingale, and den Nijs [22]. Thouless et al. explicitly calculated the bulk Hall

conductance for 2D non-interacting electrons subject to a periodic potential and a

perpendicular magnetic field. When the strength of the magnetic field is chosen in such
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a way that an integer number (p) of magnetic flux quanta penetrate through an integer

number (q) of primitive cells (in general p 6= q), it turns out that the eigenfunctions of

the Hamiltonian are still Bloch-like. A “magnetic BZ”, whose size is q-times smaller

than the BZ without magnetic field, can be defined [23]. For example, for a gauge choice

A = (0, Bx, 0), the wavevector in the magnetic BZ may be defined as kx ∈ (0, 2π/(qa)],

ky ∈ (0, 2π/b], where a and b are the real-space lattice constants of the original crystal

in the x and y directions respectively [22].

Using the Kubo formula, it turns out that when the Fermi level lies in a gap, the Hall

conductance in such a probelm can be written as the integral of the Berry curvature of

the Bloch-like functions over the entire magnetic BZ (MBZ) [22, 23],

σxy =
e2

2πh

∫
MBZ

dkxdky
∑
n

Ωxy,n(k) , (2.96)

where Ωxy,n(k) denotes the Berry curvature defined in terms of the periodic part of the

quasi-Bloch functions. k = (kx, ky) are defined in the MBZ, while n labels the occupied

bands. As mentioned in Sec. 2.2.3, the integral of the Berry curvature over a closed 2D

parameter space must be quantized as 2πC, where C is known as the Chern number.

In the context of the IQH effect, the parameter space is the 2D magnetic BZ, and the

Berry curvature is calculated with respect to the occupied Landau bands. Therefore,

the quantization number in IQH effect ν =
∑

nCn, i.e., the sum of the Chern numbers

of all the occupied bands. The Chern number defined in the magnetic BZ is also known

as the TKNN invariant in the literatures.

The topological nature of the IQH effect naturally explains the robustness of the

quantization against various perturbations. As shown in Eq. (2.96), the Hall conduc-

tance is directly proportional to the TKNN invariant, while the TKNN invariant is

guaranteed to be quantized as long as the bulk energy gap (which could be a mobility

gap) remains unclosed. Therefore, any weak perturbations, e.g., electron-electron inter-

actions, impurities, defects, which are not strong enough to close the bulk energy gap

would not change the quantized Hall conductance. Moreover, as shown by Halperin
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[81], a non-zero bulk Chern number (TKNN invariant), is always accompanied by the

same number of gapless topological edge states. As discussed above, these edge states

are chiral, in a sense that the group velocities of the gapless states localized at one edge

all point to the same direction, thus eliminating the possibility of backscattering.

The most important concepts in (non-interacting) topological phases of matter are

very well demonstrated in the IQH effect. First, we see that a bulk topological invariant

can be defined in a gapped system. A bulk topological index is further associated with

some bulk response function, leading to the exact quantization of the corresponding

response function. In this regard, we say that the quantized response function is pro-

tected by the topologically nontrivial bulk energy gap. In the context of the IQH effect,

the bulk energy gap is the gap between adjacent Landau levels or Landau bands, and

the topological index is the Chern number, or the TKNN invariant, which is defined

in terms of the occupied quasi-Bloch functions over the magnetic BZ. The response

function associated with the topological index is the Hall conductance. More interest-

ingly, a non-trivial bulk topological index in a d-dimensional system always corresponds

to some gapless surface states 8 that cannot exist in any isolated (d − 1)-dimensional

systems [34]. For example, in the IQH systems, the topological surface states are the

chiral gapless states localized at the two edges, which were never found in isolated 1D

systems. In the following subsections, these concepts will be applied to a family of

topological systems which are all rooted in the IQH effect.

2.3.2 The quantum anomalous Hall effect

After the discovery of the IQH effect, people started thinking about the possibility of

achieving a spontaneous quantized Hall conductance in the absence of any external

magnetic field. Such an effect is known as the quantum anomalous Hall (QAH) effect.

The system exhibiting such a spontaneous quantized Hall effect is known as a QAH

8Here “surface” refers to the (d− 1)-dimensional boundary of a d-dimensional system.
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insulator, or a “Chern insulator”.

In Sec. 2.2.3, we have discussed the anomalous Hall effect in metals with broken

T symmetry. As shown in Eq. (2.85), the 2D Hall conductance in metallic systems is

expressed as the Berry phases around the Fermi loops in the 2D BZ. On the other hand,

in the previous subsection we also introduced the concept of bulk topological indices (the

TKNN invariant, or the Chern number defined in the magnetic BZ) in gapped systems.

The Chern insulators may thus be interpreted from two perspectives. First, it may be

considered as a generalization of the AHE in metals in the sense that the integration

of the Berry curvature has to be carried out over the entire BZ, because the system is

an insulator instead of a metal. Second, it can be regarded as a generalization of the

IQH effect in the absence of magnetic field. Therefore, the anomalous Hall conductance

for a Chern insulator is quantized in terms of the Chern number of the occupied Bloch

bands,

σxy = C
e2

h
(2.97)

where the Chern number C is defined as the integral of the Berry curvature over the

entire BZ of the 2D lattice system

C =
1

2π

∫
BZ
dkxdky Tr

[
Ωxy(k)

]
=

1

2π

∫
BZ
dkxdky

∑
n

Ωxy,n(k) (2.98)

where the non-Abelian Berry curvature of the occupied Bloch bands Ωxy is defined

in Eq. (2.32), and n is the index of the occupied bands. Note the difference between

Eq. (2.97-2.98) and Eq. (2.96). In the latter case, the integration is carried out over

the magnetic BZ, and the Berry curvature is defined with respect to the quasi-Bloch

functions which are eigenfunctions of “magnetic translation operators” [23, 61], instead

of the regular Bloch functions in periodic lattices.

Similar to the IQH effect, the existence of chiral gapless edge states is also the

benchmark of a Chern insulator [24, 82]. As discussed in the previous subsection,
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these chiral edge states are free from backscattering, thus remain robust against weak

disorder. The edge states on the two opposite edges carry opposite currents, both of

which are dissipationless due to their chiral nature.

The Chern insulator was first theoretically proposed by Haldane in 1988 [24]. Hal-

dane designed a tight-binding model of spinless electrons with broken T symmetry on

a 2D honeycomb lattice. In this model, there is a real first-neighbor hopping term, a

complex second-neighbor hopping, and staggered on-site energies which are opposite

for the two sublattices,

H = t1
∑
〈i,j〉

(c†icj + c.c.) + t2
∑
〈〈i,j〉〉

eiφij (c†icj + c.c.) + ∆
∑
i

(−1)ηc†ici . (2.99)

As schematically shown in Fig. 2.3(a), t1 and t2 are the first-neighbor and second-

neighbor hopping amplitudes, and ∆ denotes the magnitude of the on-site energies.

φij = ±φ is a phase angle associated with t2, whose sign is dependent on the chirality

of the second-neighbor bond and cannot be made vanishing by a gauge transformation.

The non-vanishing phase angle φ generates some microscopic magnetic flux whose av-

erage over a primitive cell vanishes.

It is straightforward to solve Eq. (2.99) and calculate the Berry curvature for the

band lower in energy. Eq. (2.99) is written in the basis of two orbitals localized at

A and B sublattices, therefore there are two energy bands in total. We consider the

situation of hall filling, and calculate the Chern number of the lower (occupied) band

as a function of the parameters of the model. Setting t1 = 1 and t2 = 1/3, Fig. 2.3(b)

demonstrates the phase diagram of the Haldane model in the parameter space of ∆ and

φ. Given the value of ∆, say, ∆ = 2, if φ = 0, the Chern number of the system must

vanish as a result of T symmetry. As φ increases from 0, T symmetry is broken, and

the bulk gap at one of the BZ corners (labeled by K) gradually diminishes. At some

critical point φc, the gap at K closes and the system becomes a 2D Dirac semimetal. If

φ > φc, the gap at K would be reopened in an “inverted” order, giving rise to a non-zero
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Figure 2.3: (a) The relevant parameters in Haldane model. (b) The phase diagram of
the Haldane model.

Chern number. The system thus enters the Chern-insulator phase with a quantized Hall

conductance proportional to the Chern number (C = 1). As φ keep increases, there is

another gap closure at K so that the states return to the previous normal order and

the Chern number vanishes again.

It is helpful to understand the topological character of the Chern insulator by look-

ing at the “hybrid Wannier centers”. To be explicit, consider the 2D system as a family

of 1D chains parameterized by ky, then we ask how the centers of the Wannier func-

tions localized in the x direction (Eq. (2.31)) evolve as a function of ky (xn(ky)). Such a

quantity is called hybrid Wannier center because it can be computed by Fourier trans-

forming a 2D Bloch function only in the x direction, such that the obtained function is

Wannier-like in the x direction but remains Bloch-like in the y direction.

In the same vein as Laughlin’s gauge argument, let us consider the situation that

the quasi-1D chains grown along the x direction are wrapped around in the y direction,
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forming “quasi-1D tubes”. A magnetic flux is then threaded through the atomically thin

quasi-1D tube, corresponding to a gauge field pointing to the y (or azimuthal) direction.

The gauge field is spatially uniform 9 but linearly dependent on time. According to the

Pierel’s substitution, a change of the gauge field may be regarded as a change of the

wavevector in the longitudinal direction (ky). Therefore, the change of the flux by φ0

(flux quantum) may correspond to the change of ky by 2π, both of which leave the bulk

of the quasi-1D system invariant. However, during such adiabatic evolution, an integer

number of charges in the bulk of the quasi-1D system may be pumped by one lattice

constant in the transverse (x) direction to the ends of the system, leading to excitations

at the two ends.

Such a topological charge pump is well depicted by the hybrid Wannier centers.

For a normal 2D insulator with vanishing Chern number, xn(ky) would return to the

original position as ky varies by 2π, as shown by the black curve in Fig. 2.4. On the

other hand, for a Chern insulator with the Chern number C = 1(−1), xn(ky) would

be shifted by exactly one lattice constant along the positive (negative) x direction, as

illustrated by the red crosses in Fig. 2.4. The data shown in Fig. 2.4 are obtained from

the Haldane model in the topologically trivial and nontrivial phases respectively.

As a result of the non-trivial bulk topology, electrons from the bulk of the quasi-1D

system are pumped to the state localized at the end whose energy level increases with

ky. On the other hand, the lowest unoccupied state localized at the opposite end of the

chain is pulled down due to the charge pump. After one adiabatic cycle (ky changes by

2π), an exactly integer number of electrons are accumulated at one end with the same

number of holes left at the other end. If one plots the dispersion of the energy level

localized at one end with respect to ky, one would obtain some chiral states traversing

through the bulk energy gap as shown in Fig. 2.5. These states are exactly the gapless

9In the case of QAH effect, an external magnetic field is not needed. Therefore, we can drop the
spatial dependence of the gauge field.
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Figure 2.4: The hybrid Wannier center of the occupied band for the Haldane model
(x(ky)). The black and red crosses represent the normal phase and the Chern-insulator
phase respectively.

edge states for a 2D Chern insulator with C = ±1. Such chiral edge states are nontrivial

because the group velocities of the electrons staying in the edge states all point to one

direction, thus the disorder-induced backscattering is not allowed near the edge. It

should be emphasized again that such novel edge states stem from the bulk topological

charge pump, which is protected by the bulk energy gap.

The Haldane model has motivated the search for Chern insulators in realistic ma-

terials. A crucial ingredient in the Haldane model is the breaking of T symmetry in

the orbital degrees of freedom. However, in realistic systems, what usually happens is

that T symmetry is broken spontaneously in the spin degrees of freedom, leading to

spontaneous spin magnetizations. In order to break T symmetry in the orbital degrees

of freedom, a non-negligible spin-orbit coupling (SOC) is needed. Therefore, what the

Haldane model really describes is some simplified effective Hamiltonian of a quasi-2D

system with some kind of spin magnetic order and non-negligible spin-orbit coupling.

Despite numerous proposals using both simplified model Hamiltonians and first



54

0 0.5 1
 

0

 

E
(k

)

k (in unit of 2π)

valence band

conduction band

valence band

Figure 2.5: A schematic plot of the edge state in a Chern insulator with the magnitude
of the Chern number to be 1.

principles calculations [83, 84, 85, 86], the Chern insulator remained as a theoretical

hypothesis until it was experimentally confirmed in Cr-doped topological-insulator thin

films in 2013 [25]. However, the size of the energy gap observed in Ref. [25] is on the

order of meV, and the quantization of Hall conductance was observed only when the

temperature dropped below ∼400 mK. Theorists keep coming up with new proposals,

aiming to design an experimentally more robust QAH system. For example, one of

the promising ideas is to deposite heavy adatoms with strong SOC such as Bi, on

top of ferromagnetic thin films such as MnTe and MnSe [87]. It has predicted several

promising candidates of Chern insulators with energy gaps on the order of 0.1 eV [87].

2.3.3 The quantum spin Hall effect

As discussed in the previous subsection, a Chern insulator can be characterized by a

topological charge pump along the x direction as ky varies adiabatically by 2π. After

such an adiabatic cycle, an exactly integer number of charges are pumped from one edge

to the other, where the integer is the Chern number defined in the (kx, ky) space. Let us
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generalize the discussion to 2D insulating systems consisted of spin-1/2 fermions which

respect time-reversal symmetry. As a result of T symmetry, the Chern number must

vanish, corresponding to a vanishing net charge pump. However, if the spin degrees of

freedom is taken into account, there could be a situation that the spin-up electrons and

spin-down electrons moved toward opposite directions in response to the variation of

ky, resulted in a net spin pump and a non-vanishing spin Hall conductance for the 2D

system.

In the same vein as the case of 1D charge pump, one can consider ky as an external

parameter that varies adiabatically and drives the nontrivial spin pump in a quasi-1D

chain. As ky increases, electrons with one spin species, say, spin up, would be pumped

to the right end of the chain, going into an eigenstate localized at the right end whose

energy level is raised up by the increase of ky. In the meanwhile, the lowest unoccupied

energy level of the same spin species localized at the left end would gradually drop

down as ky increases. On the other hand, the spin-down electrons are pumped towards

the left end, giving rise to a spin-down eigenstate localized at the left end whose energy

level increases with ky. At some critical value of ky, the unoccupied spin-up state going

downward and the occupied spin-down state going upward (both are localized at the

left end) would cross each other, then traverse through the bulk energy gap (Fig. 2.6).

By virtue of the Kramers’ theorem, the level crossing has to occur at either ky = 0 or

ky = π, i.e., when time-reversal symmetry is preserved for the quasi-1D chain.

Now let us map those 1D chains parameterized by different ky values back to a 2D

system. If one plots the dispersions of the eigenenergies for a semi-infinite 2D system,

one would see the gapless spin-polarized edge states as shown in Fig. 2.5. The two states

localized at one edge possess opposite spin polarization and opposite momenta. Such

novel edge states characterizes a new phase of electronic systems known as the quantum

spin Hall (QSH) phase. These edge states are nontrivial because the net backscattering

amplitude induced by any non-magnetic impurities near the edge vanishes as a result
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Figure 2.6: A schematic illustration of the spin-polarized edge states for the QSH
insulator.

of time-reversal symmetry. Therefore, they are robust against Anderson localization

induced by non-magnetic disorder. Electrons staying in these edge states would be in

the regime of perfect ballistic transport, which would contribute a longitudinal charge

conductance quantized as 2e2/h (from the two edges) [88, 89].

The above discussion implicitly assumes the conservation of the spin quantum num-

ber sz. When sz is conserved, the net spin pumped after one cycle is quantized as ~,

and the spin Hall conductance in the QSH phase is also exactly quantized as e/2π 10.

However, in general there are spin-flip terms (e.g., Rashba spin-orbit coupling in 2D

systems with breaking inversion symmetry) in the Hamiltonian so that there would be

spin relaxations during the pumping process. Therefore, the net spin pumped after

one cycle may be finite but not necessarily quantized. However, it turns out that the

QSH phase remains robust in the presence of the spin-flip terms. It is even robust

against weak disorder and weak electron-electron interactions as long as time-reversal

symmetry is unbroken and the bulk energy gap is unclosed. This is because the QSH

10Without spin flip, the spin current density is defined as Js = (~/2e)(J↑−J↓), where J↑ and J↓ are
charge currents from spin-up and spin-down electrons respectively.
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phase is a topological phase of matter protected by time-reversal symmetry [26]. The

nontrivial bulk band topology is characterized by the novel gapless edge states shown

in Fig. 2.6.

To be more specific, the edge states in Fig. 2.6 are topologically in the sense that

there is a single pair of spin-polarized gapless states traversing through the bulk energy

gap, which cross each other at one of the TRIM. As mentioned above, backscattering

with a spin flip is not allowed by T symmetry for such a single pair of edge states,

therefore they are robust against nonmagnetic disorder. Moreover, as the level crossing

at ky = 0 or ky = π is protected by T symmetry, any perturbations that preserve

T symmetry cannot lift the Kramers’ degeneracy. In other words, with T -invariant

perturbations, the dispersions of the single pair of edge states may be modified and the

position of the degeneracy point may be shifted up and down in energy, but they cannot

be removed. Therefore, even if the spin-flip terms or other T -invariant perturbations

are included, the topological edge states would remain robust.

In principle there could be an arbitrary number of pairs of spin-polarized edge

states which obey Kramers’ degeneracy. However, unlike the case of Chern insulators,

the topological classification in the presence of T symmetry is Z2 instead of Z. This is

because T symmetry only allows for the change of particle numbers by 2n for a given

spin species [34]. It follows that backscattering is allowed only for an even number of

pairs of the edge states. If the number of pairs of the edge states is odd, say, 2n+1, then

backscattering is allowed among 2n pairs of them, leaving one pair intact. Therefore

there is a Z2 topological classification for 2D insulating systems with T symmetry.

In the remaining part of this subsection, we will review the first model Hamiltonian

that realizes the QSH phase. We will calculate the hybrid Wannier centers of the model

to better understand the bulk topological property. We conclude by brief discussions

on the rigorous definition of the bulk Z2 index, and on the theoretical proposals and

experimental realizations of the QSH phase in realistic material systems.
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The quantum spin Hall effect was first proposed by Kane and Mele in 2005 [27].

They considered a 4-band tight-binding model on a 2D graphene lattice with time-

reversal symmetry. The first-neighbor spin-independent hopping and the symmetry-

allowed first-neighbor and second-neighbor SOC were considered in the model. The

model Hamiltonian looks as

H=
∑
〈ij〉

tc†icj +
∑
〈〈ij〉〉

iλsoνijc
†
iszcj +

∑
〈ij〉

iλRc
†
i (s× d̂ij)zcj +

∑
i

ε(−1)ic†ici . (2.100)

where t is the first-neighbor spin-independent hopping amplitude, λso is the strength

of the second-neighbor non-spin-flip SOC, λR is the first-neighbor Rashba-like SOC

amplitude, and ε is the magnitude of the staggered on-site energies, with signs ±1

for A and B sublattices respectively. Also, νij =±1, with the sign depending on the

chirality of the second-neighbor bond from site i to j, and d̂ij is the unit vector pointing

from site i to its first-neighbor site j. In this model, λso competes with λR and ε, in

the sense that λso tends to drive the system to the QSH phase while λR and ε tend to

retain the trivial band topology. When sz is conserved, the Kane-Mele model can be

considered as a superposition of two copies of the Haldane model with opposite Chern

numbers. If one calculates the 2D Chern numbers for spin-up and spin-down electrons

separately, one would find that the two Chern numbers are ±1 in the QSH phase.

In order to illustrate the bulk topological property, we calculate the hybrid Wan-

nier centers x(ky) of the two occupied bands for the Kane-Mele model. As shown in

Fig. 2.7(a), in the QSH phase, the two hybrid Wannier centers remain degenerate at

ky = 0 as a result of T symmetry. As ky moves away from 0, the Kramer pair split

apart and are separated by exactly one lattice constant along the x direction after a

half cycle (ky = π). If one plots multiple branches of the Wannier centers, it would be

straightforward to see that these Kramers pairs switch partners between each other as

ky varies from 0 to π. As a result, if the 2D system is considered as a family of 1D

chains parameterized by ky, and truncations are made to these 1D chains, there would

be unpaired excited charges of opposite spins localized at the two opposite ends when
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Figure 2.7: The hybrid Wannier centers of the two occupied bands for the Kane-Mele
model (x(ky)): (a) In the QSH phase (b) In the topologically trivial phase.

ky = π. As ky keeps increasing from π to 2π, the two Wannier centers continue to move

away from each other. At ky = 2π, they are split by exactly two lattice constants .

Finally after a second cycle (not plotted), these two Wannier centers evolve back to the

original state at ky = 0.

On the other hand, in the topologically trivial phase, as shown in Fig. 2.7(b), the two

Wannier centers split a little bit when ky is away from 0, then become degenerate again

at ky = π. The Kramers’ pairs never switch partners in the process of the adiabatic

evolution. Therefore, there is no nontrivial edgestate, and the system is topologically

trivial.

There are various ways to define the bulk Z2 index. The most intuitive approach is

to associate the Z2 index to the “time-reversal polarization” P θx along the x direction

[56],

P θx (ky) = P Ix − P IIx (ky), (2.101)
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where P Ix (ky) and P IIx (ky) are the ky-dependent 1D charge polarizations (Eq. (2.77))

for the two bands that form a Kramers’ pair. They are exactly the Berry phases of the

two bands calculated along the kx direction at a given ky (the electric charge e is set

to 1),

P I(II)x (ky) =
i

2π

∫ 2π

0
dkx 〈uI(II)k |∂xuI(II)k 〉, (2.102)

where k = (kx, ky). The lattice constant along the x direction is normalized as 1.

Actually the plots shown in Fig. 2.7 can be interpreted as the variation of P Ix and P IIx

as a function of ky.

The Z2 index ν0 is defined as the difference between the time-reversal polarizations

at ky = 0 and ky = π:

ν0 = P θx (ky = π)− P θx (ky = 0) mod 2 . (2.103)

When ν0 = 1, as shown in Fig. 2.7(a), the system is a QSH insulator; while when

ν0 = 0 (Fig. 2.7(b)), the system is topologically trivial. It worth to note that the

time-reversal polarization is a gauge-dependent quantity, but the difference between

P θx (ky = π) and P θx (ky = 0) is a gauge-invariant. We have only considered a single

Kramers’ pair in Eq. (2.101)-(2.103), but the generalization to the case of N Kramers’

pairs is straightforward.

When inversion symmetry is present in addition to time-reversal symmetry, the Z2

index can be determined by the parities of the occupied Kramers’ doublets at the four

TRIM [90] 11,

(−1)ν0 =

4∏
i=1

N∏
n=1

ηn(Γi), (2.104)

where ηn(Γi) is the parity eigenvalue of the nth Kramers’ pair of the Bloch states at

the ith TRIM Γi, and N is the total number the occupied Kramers’ pairs.

The QSH phase were theoretically predicted to exist in quite a few quasi-2D sys-

tems such as the HgTe/CdTe quantum wells [28], Bi thin films [91], silicene [92], and

11In 2D BZ, there are four TRIM, which are (0, 0), (0, π), (π, 0) and (π, π).
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numerous others [83, 93, 94]. As one of the earliest proposals of the QSH effect, the

HgTe/CdTe quantum-well system is particularly interesting. To be specific, as the

thickness of the quantum well (HgTe layer sandwiched between CdTe layers) increases,

the system was predicted to go through a topological phase transition from a trivial to

a QSH insulator. This proposal has been experimentally realized in HgTe/(Hg,Cd)Te

quantum wells in 2007 [89].

2.3.4 3D Topological insulators

The definition of the 2D Z2 index can be generalized to 3D insulators with time-reversal

symmetry. In the 3D BZ, there are six 2D planes which are “time-reversal invariant

planes”, i.e., the planes at kj = 0 and kj = π, with j = 1, 2, 3 labelling the directions

of the three reciprocal lattice vectors. In principle one can define six 2D Z2 indices on

these planes, namely, νj = νkj=π and ν ′j = νkj=0, for j = 1, 2, 3. However, it turns

out that only four of the six 2D Z2 indices are independent of each other. It is thus

conventional to take the three indices ν1, ν2 and ν3 as three weak topological indices,

and (−1)ν0 = (−1)ν1+ν′1 = (−1)ν2+ν′2 = (−1)ν3+ν′3 as the strong Z2 index [30, 32].

Since all the four indices (ν0; ν1, ν2, ν3) are of Z2 type, in principle there are 16 classes

of 3D insulators preserving T symmetry. These 16 classes of T -invariant insulators

generally fall into three categories: the trivial insulators, the weak topological insulators

(TIs) and the strong TIs. The trivial insulators correspond to the situation that all

the four indices are zeros. Most nonmagnetic insulators and semiconductors found in

nature belong to this category. There is no nontrivial surface state in these topologically

trivial materials. The weak topological insulators are characterized by a trivial strong

index and at least one nontrivial weak index. The strong topological insulators are

characterized by a nontrivial strong index, i.e., ν0 = 1.

The weak and strong TIs possess very interesting surface states. Let us first discuss

the weak TIs. For example, if the weak index ν1 is odd (ν1 = 1), then ν ′1 must also
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Figure 2.8: A schematic illustration of a surface Dirac cone centered at one of the TRIM
of a projected surface BZ. The red point indicates the position of the TRIM. The black
arrows represent the spin polarization at different wavevectors.

be odd because the strong index has to be even. Let us consider that a 3D system is

consisted of a class of 2D systems parameterized by different k1 values. Since ν1 = 1,

the 2D system at k1 = π is a QSH insulator with an odd number of pairs of gapless edge

states for any truncations to the 2D system. The same statement also applies to the

2D system at k1 = 0, because both of them possess odd Z2 indices. As a result, if one

make a surface of the 3D system whose surface normal is along either the k2 or the k3

direction, there would be an even number of gapless surface states centered at an even

number of TRIM in the projected 2D surface BZ. As now we are in three dimensions,

the gapless surface states form Dirac cones in the bulk energy gap with novel helical

spin textures (Fig. 2.8(a)). On the other hand, if the surface normal is along the k1

direction, there would not be any topological surface states.

For strong TIs, the strong Z2 index is odd ν0 = 1, which implies νj and ν ′j (for

j = 1, 2, 3) must be opposite. Based on the argument on weak TIs, it follows that there

must be an odd number of Dirac cones localized at the surface for arbitrary surface

truncations. In the remaining part of this chapter, we will call the strong TIs as TIs

for simplicity.
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For 3D insulators with both time-reversal and inversion symmetry, it turns out that

the Z2 index can be calculated from the parities of the occupied Bloch states at the eight

TRIM in the 3D BZ. The formula for the strong Z2 index is simply the generalization

of Eq. Eq. (2.104) to the case of eight TRIM,

(−1)ν0 =
8∏
i=1

N∏
n=1

ηn(Γi), (2.105)

where Γi now refers to the TRIM in the 3D BZ, and ηn(Γi) is the parity of the nth

Kramers’ pair at Γi.

As mentioned in Sec. 2.2.4, a 3D TI is also characterized by a formally quantized

Chern-Simons orbital magnetoelectric (ME) coupling α = e2/2h. As is well known,

the time-reversal operation flips the sign of both magnetization and magnetic field

M → −M, B → −B; whereas it leaves the electric polarization P and electric field

E invariant. Therefore, for insulators with T symmetry, the magnetoelectric coupling

coefficient α defined in Eq. (2.90) is expected to vanish. However, as discussed in

Sec. 2.2.4, the Chern-Simons ME coupling αCS is not unambiguously defined. The bulk

electrodynamics of the media is invariant under αCS → αCS + e2/h, or equivalently

θ → θ + 2π (Eq. (2.91)). Therefore there are two possible values of θ for systems with

T symmetry, θ = 0 or θ = π. It turns out θ = π for TIs, while θ = 0 for trivial

insulators.

On the other hand, for a given sample of TI, the experimentally measured magne-

toelectric coupling coefficient must be vanishing due to T symmetry. What happens is

that the quantized θ coupling from the bulk is exactly cancelled by contributions from

the metallic surface states, leading to a vanishing gross magnetoelectric response for

the entire sample [95].

An interesting and challenging experiment is to gap the surface Dirac cones in TIs by

“locally” breaking T symmetry only on (all) the surfaces of a TI sample, while the bulk

still preserves T symmetry. Then the contribution to the ME coupling from the surface

states vanish, and one would expect to obtain a quantized ME response contributed
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Figure 2.9: A schematic plot of the band-inversion process in Bi2Se3 at Γ as spin-orbit
coupling increases.

purely by the bulk states. As discussed in Sec. 2.2.4, the isotropic bulk orbital ME

coupling is equivalent to the anomalous Hall effect on the surface. Therefore, now the

measured anomalous Hall conductance for the surface of the TI sample (with gapped

surface states) would be “fractionally” quantized as e2/2h [34]. Unfortunately, such a

intriguing thought experiment has not been realized yet due to technical difficulties.

Various materials have been theoretically proposed as 3D TIs, e.g., the Bi2Se3-class

materials [36], some of the half-Heusler compounds [96], some of the ternary chalco-

genides such as TlBiSe2 [97], and numerous others as nicely summarized in Ref. [35].

Quite a few of these proposals have been experimentally verified [37, 38, 39, 98, 99].

Among these materials, the Bi2Se3-class TIs, including Bi2Se3, Bi2Te3 and Sb2Te3 [36],

may be the most “popular” ones which have been extensively studied both theoretically

and experimentally.

The Bi2Se3-class TIs have evoked significant interest in the community for several

reasons. First of all, the physics picture in the Bi2Se3-class TIs is simple and elegant.

Strong spin-orbit coupling (SOC) in Bi2Se3 would push up the highest occupied state

and pull down the lowest unoccupied state at the center of the BZ (labeled as Γ). Since

these two states possess opposite parities, they will cross each other at some critical

SOC strength, then reopen a gap in an inverted order as shown in Fig. 2.9. As a result,

the product of parities of all the occupied Kramers’ pairs at Γ flips its sign, so does

the strong Z2 index (Eq. (2.105)). Secondly, the “topological gap” after such “band
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inversion” is quite large in the Bi2Se3-class TIs. For example, Bi2Se3 has a direct gap

∼ 0.5 eV at Γ and an indirect gap ∼ 0.3 eV. It means that the topological properties

such as the gapless surface states and the novel magnetoelectric response would remain

robust up to room temperatures. Lastly, as the band inversion takes place only at Γ,

there is only one surface Dirac cone in Bi2Se3 where the Dirac point is located at the

center of the projected surface BZ. It is thus a perfect system to study the topological

surface states.

On the other hand, experimentally the Bi2Se3-class TIs are not true insulators. For

example, there are always Se vacancies in Bi2Se3 crystals, which dope electrons into

the systems. Bi2Te3 is usually metallic due to the Bi-Te antisites. These extra charge

carriers lift up (down) the Fermi level to the conduction (valence) band which hinders

transport measurements on the topological surface states. However, significant progress

has been made after years of consistent efforts in decreasing the bulk carrier densities

[100, 101, 102, 103]. For example, by electric gating [100] and doping Ca [101], the bulk

carrier in Bi2Se3 can be significantly reduced and transport signatures of the topological

surface states have been successfully observed.

TIs also act as a platform for stimulating other new physics. For example, the

Chern-insulator phase has been realized by doping magnetic impurities such as Cr into

TI thin films [85, 25]. It was theoretically proposed that Majorana fermions could be

realized at the surface of TIs by superconductor proximity effect [104]. In particular, a

topological phase transition between a TI and a normal insulator may be realized by

doping non-magnetic impurities into TIs. Depending on whether inversion symmetry

is present or not, the critical phase may be either a 3D Dirac semimetal [105] or a

topological Weyl semimetal [46, 48].

In the following two chapters, we will focus on the topological phase transitions in

3D TIs. We first study the topological phase transitions in In- and Sb-doped Bi2Se3,

where the effects of disorder and the different orbital character introduced by impurities
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are investigated. In Chapter 4, we deal with the topological phase transitions in TIs

without inversion symmetry, and study the intermediate Weyl semimetals.
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Chapter 3

Topological phase transitions in (Bi1−xInx)2Se3 and

(Bi1−xSbx)2Se3

In the previous chapter, we have discussed the concept of topological phases of mat-

ter and in particular 3D TIs. We mentioned that one of the most famous TIs is the

Bi2Se3-class TIs, which has various merits as a type of promising topological materials.

In this chapter, we study the phase transition from a topological to a normal insula-

tor with concentration x in (Bi1−xInx)2Se3 and (Bi1−xSbx)2Se3 in the Bi2Se3 crystal

structure. We carry out first-principles calculations on small supercells, using this in-

formation to build Wannierized effective Hamiltonians for a more realistic treatment

of disorder. Despite the fact that the spin-orbit coupling (SOC) strength is similar in

In and Sb, we find that the critical concentration xc is much smaller in (Bi1−xInx)2Se3

than in (Bi1−xSbx)2Se3. For example, the direct supercell calculations suggest that xc

is below 12.5% and above 87.5% for the two alloys respectively. More accurate results

are obtained from realistic disordered calculations, where the topological properties

of the disordered systems are understood from a statistical point of view. Based on

these calculations, xc is around 17% for (Bi1−xInx)2Se3, but as high as 78%-83% for

(Bi1−xSbx)2Se3. In (Bi1−xSbx)2Se3, we find that the phase transition is dominated by

the decrease of SOC, with a crossover or “critical plateau” observed from around 78%

to 83%. On the other hand, for (Bi1−xInx)2Se3, the In 5s orbitals suppress the topo-

logical band inversion at low impurity concentration, therefore accelerating the phase

transition. In (Bi1−xInx)2Se3 we also find a tendency of In atoms to segregate.
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3.1 Introduction

Topological aspects of quantum systems has been an exciting area in condensed-matter

physics since the discovery of the integer quantum Hall effect (IQHE) [21, 22] and the

first proposal of a 2D Chern insulator [24]. Both the IQHE and the 2D Chern insu-

lators are characterized by a quantized Hall conductance and the presence of gapless

edge modes that are topologically protected by a non-zero Chern number. In 2005,

a topological classification was also found to apply to spinful systems with SOC and

time-reversal symmetry, defining a topologically non-trivial 2D state known as a quan-

tum spin Hall (QSH) insulator [27, 26]. A QSH insulator also possesses gapless edge

states that always cross at one of the time-reversal invariant momenta (TRIM) in the

1D edge Brillouin zone (BZ). In a 2D Chern insulator, the chiral gapless edge modes

can be interpreted in terms of the charge accumulation at one end of a truncated 1D

system during an adiabatic periodic evolution. The spin-polarized edge modes in a

QSH insulator can be interpreted in a similar way, except that charges with opposite

spin characters are pumped in opposite directions and accumulated on opposite ends

[56]. This pumping process can be classified by a new topological index, known as the

Z2 index, which guarantees the robustness of the edge modes of a QSH insulator to

weak time-reversal invariant perturbations.

The definition of the Z2 index was later generalized from 2D to 3D crystals [30, 106].

In 3D systems, there is one strong Z2 index, which is odd when the number of Dirac

cones on the surface is odd, defining a strong topological insulator (TI); when it is even,

the other three indices characterize the weak TIs, specifying how these gapless surface

states are distributed among the TRIM in the 2D surface BZ.

A non-trivial bulk topological index is usually connected with a non-trivial “topo-

logical gap” resulting from band inversion. For systems with inversion symmetry, the

topological index can be uniquely determined from the parities of the occupied states
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at the TRIM in the BZ [90]. Thus, to drive an inversion-symmetric system from a

normal insulator (NI) to a TI, a strong SOC is usually needed to flip the valence-band

maximum (VBM) and conduction-band minimum (CBM) with opposite parities at one

of the TRIM. The band gap after the topological band inversion is conventionally as-

signed with a minus sign, to be distinguished from the ordinary band gap in the Z2-even

case. The scenario sketched above is exactly the mechanism in the Bi2Se3 class of TIs

[36, 107, 38, 37, 108, 109, 110, 39]. In Bi2Se3 with SOC turned off, the VBM and CBM

states at Γ are built from Se 4p and Bi 6p orbitals in such a way as to have opposite

parities. When SOC is turned on, the previous VBM is pushed up into the conduction

bands, leading to an exchange of parities and a non-trivial Z2 index. As long as the

inverted band gap remains and time-reversal symmetry is preserved, a single Dirac cone

exhibiting a helical spin texture is guaranteed to exist at Γ in the surface BZ. For some

useful recent reviews, see Refs. [33, 34, 111].

Up to now, however, only a few pioneering works [112, 113, 114] have focused on

the topological phase transition from the TI to the NI state driven by non-magnetic

substitution, and while the general picture of such a transition seems obvious, details

remain unclear. In the simplest picture, one would expect the band gap of a TI to

decrease linearly as a lighter element with weaker SOC is substituted, and the phase

transition would occur when the bulk gap is closed. However, on a closer look, many

questions arise. For example, the bandstructures of known TIs are mostly dominated

by p orbitals, but what happens if the substituted element includes different valence

orbitals such as s or d orbitals? More fundamentally, translational symmetry is lost for

a randomly substituted system. In this case, how should one determine the topological

properties of a system in which wavevector k is no longer a good quantum number,

and what signature indicates the presence of a TI state? These questions focus on two

aspects that are not taken into account in the simplest linear band-closure picture: the

effects of impurities with different orbital character, and the effects of disorder.



70

These issues arise, in particular, for the substitution of In into Bi2Se3, one of the

best-known TI systems. Recently, several experimental groups have reported a sur-

prisingly low critical concentration xc of about 5% in (Bi1−xInx)2Se3, much lower than

would be expected from a linear band-closure picture, thus challenging the usual under-

standing of the phase-transition behavior of TIs by non-magnetic doping [41, 40]. These

experiments motivated our theoretical studies of the (Bi1−xInx)2Se3 system. Moreover,

to separate the effects of In 5s orbitals from a simple weakening of the effective SOC,

we also study (Bi1−xSbx)2Se3. Here Sb has the same orbital character as Bi, lying

directly above it in the Periodic Table, but shares the weaker intrinsic SOC strength of

In because their atomic numbers are very close in magnitude.

We first study the solid-solution systems by constructing small supercells with dif-

ferent impurity configurations. For each supercell configuration, the strong Z2 index

and surface states are computed using Wannier-interpolation techniques [9], which also

allow us to test the effect of artificially removing the In 5s orbitals from the calculation.

Next, we study the the effects of disorder more realistically by constructing a large su-

percell of pure Bi2Se3 acting as reference system, making random substitutions of In or

Sb on the Bi sites, and calculating the disorder-averaged spectral functions [115, 116].

We further propose an approach in which we compute “Z2-index statistics” in order to

determine the topological properties of disordered systems from a statistical point of

view.

Based on our results, the (Bi1−xSbx)2Se3 system is well described by the linear band-

closure picture with a high critical concentration xc, because the orbital character of

the host and dopant are the same and the disorder effect is thus rather weak. We

also observe a “critical plateau” in the Sb-substituted system, where the critical Dirac

semimetal phase remains robust from about x ≈78% to x ≈83%, although it is difficult

to test whether this may be a finite-size effect due to the limited numerical accuracy in

our calculations. In In-substituted Bi2Se3, on the other hand, the disorder effects are
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Figure 3.1: (a) Lattice vectors of Bi2Se3 primitive cell, 2×2×1 supercell, and 2×2×2
supercell. (b) Corresponding bulk Brillouin zone and its surface projection.

quite strong, and the presence of In 5s orbitals rapidly drives the system into the NI

state even at very low impurity concentrations. A tendency of segregation of In atoms

has been observed for (Bi1−xInx)2Se3, and may play an important role.

This chapter is organized as follows. In Sec. II the lattice structures, notations and

the details of first-principles calculations are introduced. In Sec. III we present the main

results of this chapter. First we summarize the results from the direct first-principles

superlattice calculations, and determine the critical points and the influence of In 5s

orbitals by computing the bulk Z2 index and by calculating surface states. Then, the

critical points of the two solid-solution systems are further determined by looking at

the disordered spectral functions, and the topological behaviors are understood from a

statistical point of view. Finally we summarize in Sec. IV.

3.2 Preliminaries

3.2.1 Structures of bulk material and superlattices

As shown in Fig. 3.1, the crystal structure of Bi2Se3 is rhombohedral. The crystal has

a layered structure along the z direction with five atoms per primitive cell. The five

2D monolayers made by repeating the primitive cell in the x and y directions form a

quintuple layer (QL). In each QL, there are two equivalent Se atoms located at the
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top and bottom of the QL, two equivalent Bi atoms inside those, and another central

Se atom. Seen from the top, each monolayer forms a 2D triangular lattice, and these

triangular planes are stacked along the z direction in the order A−B−C−A−B−C...,

where A, B and C represent the three different high-symmetry sites. Both Bi2Se3 and

β-phase In2Se3 have a rhombohedral structure belonging to the R3m space group, but

their lattice parameters are slightly different. The in-plane hexagonal lattice parameter

is a=4.138 Å for Bi2Se3 but a = 4.05 Å for In2Se3, and the height of a QL is c=9.547 Å

for Bi2Se3 compared with c=9.803 Å for In2Se3. The rhombohedral structure of Sb2Se3

does not exist in nature, so for this case we relaxed both the lattice parameters and

atomic positions. After a complete relaxation, we obtained a= 4.11 Å and c= 10.43 Å

for Sb2Se3.

To study the substitution problem from first-principles calculations, a 2×2×1 su-

percell based on the original Bi2Se3 crystal structure is built. The lattice vectors of

the supercell are shown in Fig. 3.1. There are 20 atomic sites in such a supercell,

where eight of them are Bi sites. Among all the possible configurations, we choose to

investigate the supercells with one, two, four, six and seven Bi atoms substituted by

impurities. The (unique) configuration with x=0.125 is denoted as C0.125. For two or

six impurities (x= 0.25 and x= 0.75), there are two inequivalent configurations, with

the two impurity (or remaining host) atoms residing in different monolayers or in the

same monolayer, which we label as C0.25 (C0.75) and C′0.25 (C′0.75) respectively. For four

impurities, x=0.5, all impurities can be clustered in one monolayer, labeled as C′′0.5, or

three in one monolayer and one in the other, denoted as C′0.5, or the impurities can be

equally divided between top and bottom monolayers with inversion symmetry, denoted

as C0.5. Note that primes indicate more strongly clustered configurations.
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3.2.2 First-principles methodology

The first-principles calculations are carried out with the Quantum ESPRESSO pack-

age [117], with the PBE generalized gradient approximation (GGA) exchange-correlation

functional [118, 119] and well-tested fully relativistic ultrasoft [120] and norm-conserving

pseudopotentials. The ultrasoft pseudopotentials are from Quantum ESPRESSO 1,

and the norm-conserving pseudopotentials are from the OPIUM package [121, 122]. The

ionic relaxations, ground-state energies, and densities of states presented in Sec. 3.3

are calculated with ultrasoft pseudopotentials, but we switched to norm-conserving

pseudopotentials for those topics that required transformation to a Wannier repre-

sentation (see below). The energy cutoff with ultrasoft pseudopotentials is 60 Ry for

In-substituted Bi2Se3 supercells and 35 Ry for Sb-substituted supercells. The cutoff be-

comes larger for norm-conserving pseudopotentials, specifically 65 Ry for In substitution

and 55 Ry for Sb substitution. The BZ is sampled on a 6×6×6 Monkhorst-Pack [123] k

mesh for the 2×2×1 supercells, and 8×8×8 for the primitive cell bulk materials. In our

calculations, the lattice parameters of the Sb- and In-substituted supercells are fixed,

taken as a linear interpolation of the Bi2Se3 and In2Se3 experimental lattice parameters

according to the impurity concentration x, and the internal coordinates of the atoms

are fully relaxed. We do not relax the lattice vectors because the coupling between two

QLs is at least partially of van der Waals type, so that the standard GGA does not

give a good estimate of the lattice constants, especially the one in the z direction.

To investigate the topological properties of these supercells, we calculate both the

bulk Z2 indices and the surface states using the Wannier-interpolation technique. More

specifically, we use the Wannier90 package to generate Wannier functions (WFs) from

the outputs of standard first-principles calculations [124]. Wannier90 can optionally

generate maximally localized WFs [52, 53], and in any case reports the Wannier charge

1We used the pseudopotentials Bi.rel-pbe-dn-rrkjus.UPF, Se.rel-pbe-n-rrkjus.UPF, Sb.rel-
pbe.US.UPF and In.rel-pbe-dn-rrkjus.UPF from http://quantum-espresso.org
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centers, their spreads, and the real-space Hamiltonian matrix elements of an effective

tight-binding (TB) model in the WF basis. This information is often very useful in

studying the bonding mechanism of materials, as well as for calculating topological

indices, computing surface and interface states, treating disorder, etc.

It should be noted that the TB models constructed from Wannier90 are realistic

in the sense that the Wannier-interpolated bandstructures reproduce the first-principle

bandstructures essentially exactly within a certain energy window. This “frozen win-

dow” is chosen to extend from 3 eV below the Fermi level to 3 eV above the Fermi level

in our calculations. In addition to the frozen window, there is also an outer energy win-

dow outside which the Bloch eigenstates will not be included in generating the WFs.

The outer window varies in our calculations depending on the system, but typically

covers a total range of 17-22 eV and includes all the valence p bands as well as In va-

lence s bands when present. For example, for Bi2Se3we construct 30 spinor WFs per

primitive cell, and two additional WFs constructed from In valence s orbitals would be

added for each substituted In atom.

3.3 Results and discussions

3.3.1 Ground-state energies and band gaps

We begin by discussing our results for In-substituted supercells representing (Bi1−xInx)2Se3.

The ground-state energies for supercells with different In impurity configurations are

shown in Fig. 3.2. Open and closed circles represent topologically normal and Z2-odd

cases respectively (see Sec. 3.3.4). For concentrations 0.25 ≤ x ≤ 0.75 there are two

or more inequivalent configurations of the 2×2×1 supercell having the same concen-

tration x. Among these, the configurations with lowest total energy are traced by the

solid red line, and are found to consist of “clustered” configurations in which the In

impurities tend to be first neighbors. Conversely, those with the highest total energies,
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Figure 3.2: Ground-state energies vs. impurity concentration x for (Bi1−xInx)2Se3 su-
percells. Here ∆ = Eg(x)−(1−x)E1+xE2, where Eg(x), E1 and E2 are the ground-state
energies per 5-atom cell for the alloy supercell, host material, and dopant material, re-
spectively. Filled and open circles denote Z2-odd and even states respectively. Solid
(red) and dashed (dark blue) lines follow the most and least In-clustered configurations
respectively.

indicated by the dark blue dashed line, are those with the In atoms distributed most

evenly throughout the supercell. For example, at x= 0.5, the ground-state energy of

the clustered configuration (C′′0.5) is lower than that of the distributed one (C0.5) by

140 meV per primitive unit cell, and at x= 0.25 the energy of C′0.25 is lower than that

of C0.25 by 50 meV per primitive unit cell. Thus we clearly find a strong tendency of

the In atoms to segregate and cluster together. We also find that the Z2 index changes

sign at a critical concentration xc lying somewhere between 6.25% and 12.5%. (One

may notice from Fig. 3.2 that the distributed configuration C0.25 at x=0.25 is Z2-odd,

but since its energy is so much higher, the significance of this is questionable.)

Turning now to the case of Sb substitution, we find a quite different behavior.

The corresponding total-energy results for the 2×2×1 (Bi1−xSbx)2Se3 supercells are

presented in Fig. 3.3(a). Here we find that the energies of different configurations at

the same x differ by no more than 10 meV per primitive unit cell, which is roughly

ten times smaller than in (Bi1−xInx)2Se3 (note the difference in the vertical scales here

compared to Fig. 3.2). This signifies that the disorder effect is very weak in this system.
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Figure 3.3: (a) Ground-state energies vs. impurity concentration x for (Bi1−xSbx)2Se3

supercells, following the same conventions as in Fig. 3.2. (b) Band gap at the center
of the Brillouin zone vs. impurity concentration x computed within the virtual crystal
approximation. Positive and negative values of band gap denote the topological and
normal phases respectively.

It is also evident from Fig. 3.3(a) that the system remains in the TI phase even up to

x=87.5%, in sharp contrast to the behavior in (Bi1−xInx)2Se3.

Because we find the disorder effect to be so weak in Sb2Se3, we have also analyzed

its behavior using the virtual crystal approximation (VCA), in which each Bi or Sb

is replaced by an identical average atom whose properties are a weighted mean of the

two constituents. We implement the VCA in a Wannier basis by constructing separate

30-band models for Bi2Se3 and Sb2Se3, including all the valence cation and anion p

orbitals. The Hamiltonian matrix elements HVCA
mn of the “virtual crystal” are taken as

the linear interpolation in x of the two bulk materials, HVCA
mn = (1 − x)HBi

mn + xHSb
mn,

where HBi
mn and HSb

mn denote the matrix elements of the TB models of Bi2Se3 and

Sb2Se3. We note in passing that one has to be cautious when generating the WFs for

the VCA procedure, since it is important for the Wannier basis functions to be as similar

as possible before the averaging takes place. Only in this way will the addition and

subtraction between two different Hamiltonians be well defined. Because the maximal
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Figure 3.4: (a) Local DOS of (Bi1−xInx)2Se3 at x= 12.5% for the s and p orbitals on
the substituted In atom and the p orbitals on first-neighbor Bi and Se atoms. (b) Local
DOS of (Bi1−xSbx)2Se3 at x=12.5% for the p orbitals on the substituted Sb atom and
the p orbitals on first-neighbor Bi and Se atoms.

localization procedure might generate different WFs for different systems as it seeks to

minimize the “spread functional” [52], we construct the WFs for the VCA treatment

simply by projecting the Bloch states onto the same set of atomic-like trial orbitals

without any further iterative localization procedure.

Within this VCA approach, it is straightforward to compute the band gaps and

topological indices, since only a primitive bulk cell is needed. Fig. 3.3(b) shows how ∆Γ,

the band gap at the Brillouin zone center, evolves with x for the (Bi1−xSbx)2Se3 virtual

crystal. It is evident that the gap closes at xc ' 65%, where the system undergoes a

transition to the normal-insulator state (here indicated by a negative gap value).

3.3.2 Orbital character

To get some physical insight about the distinct behaviors in the two substituted systems,

we turn to study the orbital character at a low composition of x= 12.5%. The local

density of states (DOS) of the substituted In and Sb atoms and their neighboring Bi



78

and Se atoms are plotted in Fig. 3.4. For low-composition In-substituted systems, the

In 5s orbitals and nearest-neighbor Se 4p orbitals form bonding and antibonding states,

with the former leading to a flat band deep in the valence bands corresponding to the

In 5s peak around −6 eV in Fig. 3.4(a). The hybridized s-p antibonding states further

interact with the Bi 6p orbitals, bringing some In 5s character into the conduction

bands. The In 5p orbitals are mainly responsible for the sharp peak about 7 eV above

the Fermi level in Fig. 3.4(a), but also mix with Bi and Se p orbitals on the nearby

atoms to contribute to the lower conduction-band states. The hopping between In 5p

and neighboring Se 4p states, on the other hand, contributes mainly to the valence

band, but also to the lower conduction bands.

If one only focuses on the low-energy physics, say within 5 eV of the Fermi level, one

would notice that the In 5p states are homogeneously distributed among the valence

and conduction bands. On the other hand, the s orbitals are more concentrated at the

bottom of the valence and conduction bands. This implies that the effects of In 5s and

5p orbitals in the supercell electronic structure are distinct. The non-homogeneously

distributed In 5s states may be crucial in determining the topological properties of the

supercell. From the DOS at the Γ point (not shown here), we also observe that the

VBM is mostly composed of Se 4p states, while the CBM is dominated by Bi 6p states.

This implies that the nontrivial topological band inversion has already been removed

at 12.5% of In substitution.

For the Sb substitution at x=12.5%, however, the local DOS shown in Fig. 3.4(b)

indicates that that Sb 5p orbitals are more or less homogeneously distributed among

the valence and conduction bands as they hybridize with the Bi and Se p states. In

fact, the Sb 5p and Bi 6p local DOS profiles are strikingly similar. While not displayed,

we also explore the DOS of (Bi1−xSbx)2Se3 at other compositions, and observe that

the hybridization between Bi, Se and Sb p states remains homogeneous over the entire

composition range. A homogeneous hybridization of Bi, Se and Sb p states tends to
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Figure 3.5: (a) Wannier-interpolated bandstructure of In2Se3, with color code indicating
In 5s character. (b) Same but with In 5s levels shifted upward by 0.79 eV.

confirm the appropriateness of the use of VCA with artificial orbitals to construct an

effective description of the electronic structure of the substituted system. Within the

VCA, the strength of the effective SOC would be expected to decrease linearly as x is

increased, suggesting that the topological phase transition in the Sb-substituted system

should belong to the linear band-closure regime.

To study In-substituted Bi2Se3 at a lower concentration, a 2×2×2 supercell has

been constructed, in which one out of 16 Bi atoms is substituted by In. The supercell

lattice vectors are shown in Fig. 3.1. The energy cutoff is taken to be the same as for

the 2×2×1 supercell calculations. A 3×3×3 Monkhorst-Pack k mesh is used for ionic

relaxation and calculation of the ground-state energy, while it is increased to 4×4×4 for

the non-self-consistent calculation used to interface with Wannier90. The ground-state

energy is indicated by the filled circle at x= 6.25% in Fig. 3.2, and is confirmed to be

in the Z2-odd phase from the Z2 index and surface-state calculations.

3.3.3 Shift of In 5s levels

Among the In-substituted configurations, our calculations find that C0.5 and C0.75 are

metallic, in contrast with experimental observations showing the gap opening with

increasing x beyond the transition to the normal phase [41, 40]. The reason for the gap
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closure becomes clear from an inspection of our calculated bandstructure of bulk In2Se3,

shown in Fig. 3.5(a), which was computed using the Wannier interpolation capabilities

of the Wannier90 package [124] based on a 34-band TB model including the 30 valence

p orbitals and four In 5s orbitals. The color coding in Fig. 3.5(a) shows the degree

of In 5s character. We find that there is almost a gap closure, Eg ' 0.15 eV, much

smaller than the experimental value of 1.34 eV [125]. Our small gap clearly results from

a low-lying conduction band at L that is dominantly of In 5s character. For the C0.5

and C0.75 cases, these states get folded and mixed with other conduction-band states

in such a way as to cause the metallic behavior observed in our supercell calculations.

We have good reason to believe, however, that the energy position of these In 5s

is incorrectly predicted by standard density functional theory (DFT) [3, 4]. It is well

known that DFT tends to underestimate gaps, especially when the character of the

VBM (here p states at Γ) and the CBM (here In 5s states at L) are different. More

specifically, however, quasiparticle calculations on InAs have shown that the In 5s en-

ergy levels are too low relative to the many-body GW calculation [126]. In particular,

the CBM at Γ, having In 5s character, was found there to be too low by about 0.79 eV

within DFT. We have checked that our In 5s energy positions do not depend sensi-

tively on the use of the local-density approximation (LDA) [127] vs. GGA, the choice

of pseudopotentials, or the use of different code packages [128, 129]. Therefore, we con-

clude that more advanced approaches such as hybrid functionals or direct many-body

methods are needed to fix this problem.

Unfortunately, application of hybrid functionals to our supercell calculations would

be computationally expensive. Here we have taken a simpler approach to adjust the

In 5s energy levels. The Wannier interpolation procedure has already provided us with

a first-principles effective TB model reproducing the DFT bandstructure. We simply

shift the energies of all the In 5s orbitals within this effective model upward by 0.79 eV,

the value taken from Refs. [126], and leave all other matrix elements unchanged. The
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resulting bandstructure for bulk In2Se3 is shown in Fig. 3.5(b). We find that the band

gap opens up to 0.52 eV, while otherwise the general character of bandstructure is not

significantly changed.

While 0.52 eV is still far from an experimentally correct estimate of the gap, we

expect our modified Wannier Hamiltonian should be good enough for the purpose of

computing topological properties of (Bi1−xInx)2Se3 solid solutions. Once we apply this

shift, we find that that the supercells that were metallic before are now insulating, and

moreover the states near the Fermi energy that determine the topological character

do not have significant In 5s character. Therefore, the magnitude of the shift is not

important for computing the topological properties, as long as it is large enough to

prevent the In 5s levels from interfering. In any case, since the β− phase of In2Se3 is

not very stable at room temperature (it has to be stabilized by doping small amounts

of Sb) [125], a direct comparison between the experimental and theoretical band gaps

is not very meaningful. Therefore, we adopt the procedure here of applying the 0.79 eV

shift of In 5s levels in all of our In-substituted supercell calculations. In particular, the

Z2 indices (filled vs. open circles) shown in Fig. 3.2 have been computed using this

shift, as will be discussed in detail next.

3.3.4 Z2 indices

The strong Z2 indices of all the In and Sb-substituted Bi2Se3 supercells have been cal-

culated in order to locate the critical concentrations for the transition from topological

to normal behavior in the two solid-solution systems. As discussed above, some of the

supercells (C0.25, C0.5 and C0.75) have inversion symmetry, in which case the strong Z2

index can be evaluated simply by counting the parities of the occupied bands at the

TRIM in the BZ. Specifically, if one defines δi as the product of the parities of the

occupied bands (counting just one band from each Kramers doublet) at the ith TRIM

in the BZ, the strong Z2 index is just ν0 =
∏8
i=1 δi, i.e., the product of δi at all the
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eight TRIM [90].

In the general case, however, the strong Z2 index has to be determined by explicitly

calculating the 2D Z2 indices of the top and bottom slices of half of the 3D BZ. There are

six such 2D indices, namely νj ≡ νkj=0 and ν ′j ≡ νkj=π, corresponding to the indices of

the slices at kj =0 and kj =π, where j={1, 2, 3} labels the three wavevector directions

in the BZ. However, only four of the six indices turn out to be independent variables.

The indices ν1, ν2 and ν3 are usually taken to define the three weak topological indices,

while the product ν0 = νjν
′
j of the two indices on any pair of parallel slices is known as

the strong Z2 index ν0. This means that if two parallel slices have different Z2 indices,

as for example at k3 = 0 and k3 = π, then ν0 is odd and the system is a strong TI;

otherwise it is a weak TI if any indices are odd, or normal if not.

In the absence of inversion symmetry, the 2D Z2 index is defined by the change of 1D

“time-reversal polarization,” say in the k1 direction, as the other wavevector k2 evolves

from 0 to π. The time-reversal polarization can be explicitly visualized by tracing the

1D hybrid Wannier charge centers (WCCs) [52] in the k1 direction as a function of

k2. The Z2 index is odd if the hybrid WCCs of the Kramers doublets switch partners

during the evolution, and even otherwise [56].

We implement these ideas in practice using the approach of Soluyanov and Vander-

bilt [130], in which the 2D Z2 index is obtained by counting the number of jumps of

the “biggest gap” among the 1D hybrid WCCs during the evolution. The approach for

computing the Z2 indices described above has been implemented in the Wannier basis

using the matrix elements of the effective TB model and the WCCs generated from

Wannier90 [124].

The results are shown in Figs. 3.2 and 3.3(a) by using filled circles to indicate cases in

which the strong Z2 index is odd, while an open circle means it is even. In fact, none of

the Z2-even configurations are found to be weak TIs, so open circles denote topologically

normal insulators. If one follows the solid (red) lines in Fig. 3.2 and Fig. 3.3(a), which



83

Table 3.1: Bulk band gaps at Γ for x=12.5% in (Bi1−xInx)2Se3. “Shifted” In 5s levels
were raised by 0.79 eV (see text).

without SOC with SOC
(eV) (eV)

In 5s levels unshifted 0.72 0.11
In 5s levels shifted 0.68 0.07
In 5s levels removed 0.42 −0.26

track the configurations with lowest energies, it is clear that for (Bi1−xInx)2Se3 the

system becomes topologically trivial for x> 6.25%. For (Bi1−xSbx)2Se3, however, the

TI phase is preserved up to 87.5%.

It should be emphasized again that a 0.79 eV shift has been added on the on-site

In 5s energy levels in the effective TB models for the supercells of (Bi1−xInx)2Se3.

However, except for C0.5 and C0.75, which are metallic without the shift, the Z2 indices

of all the other configurations are unchanged by the application of this shift.

3.3.5 Effects of In 5s orbitals on bulk and surface states

To understand why the phase transition happens so rapidly in (Bi1−xInx)2Se3, we focus

on the x= 0.125 supercell, and separately investigate the effects of In 5s orbitals and

SOC on bulk bandstructure. As shown in Table 3.1, without SOC the In 5s orbitals

try to pull down the VBM, leading to a band gap as large as 0.7 eV at Γ, such that the

SOC strength is not large enough to invert the CBM and VBM. If the In 5s orbitals are

removed, however, the gap at Γ is only 0.42 eV without SOC, and when SOC is added

back the band inversion reoccurs, with an inverted gap as large as 0.26 eV (denoted with

a minus sign in Table 3.1). We also notice that the shift of In 5s levels only changes

the gap at Γ by 0.04 eV, and does not influence the topological behavior.

We continue to study the effects of In 5s orbitals on surface states by calculating the

surface bandstructures both with and without In 5s orbitals. The surface bandstruc-

tures shown in Fig. 3.6 are calculated with the “slab method,” where the first-principles

TB models of slabs of In- and Sb-substituted Bi2Se3 with finite thickness stacked along
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Figure 3.6: Surface bandstructures for (Bi1−xInx)2Se3 slabs, plotted in the 2D surface
Brillouin zone. (Surface states are shown in red.) (a) 8QL slab for x=0.125. (b) 4QL
slab for x = 0.125 but with In 5s orbitals removed. (c) 12QL slab for energetically
favored configuration C′0.25 at x = 0.25. (d) 8QL slab for C′0.25 with In 5s orbitals
removed. Note split Dirac cones arising at Γ in (b) and (d).

the [111] direction have been constructed. This is done by extrapolating the matrix

elements of the primitive unit cell TB model to multiple QLs along the [111] direction,

then truncating at the two surfaces to enforce open boundary conditions. The 2D sur-

face bandstructure is then obtained by directly diagonalizing the TB model of the slab.

It has to be noted that the surface states are not calculated self-consistently by doing

such a truncation at the surface, because the Wannier functions close to the surface

could be significantly deformed and the hopping parameters between orbitals close to

the surface are expected to be different from those deep in the bulk. These effects are

not properly included simply by truncating at the slab boundaries. However, we argue

that even though these surface effects could be important in determining such details

as the exact position of the Dirac point (if present) relative to the bulk CBM, they

cannot change the topological character of the surface states, which is what we really

care about here.
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Table 3.2: Existence of topological surface states vs. impurity concentration x in
(Bi1−xInx)2Se3 and (Bi1−xSbx)2Se3 based on slab calculations in the Wannier repre-
sentation.

0% 6.25% 12.5% 25% 50% 75% 87.5% 100%

With In 5s X X × × × × × ×
Without In 5s X X X X × × × ×
Sb substitution X - X X X X X ×

To understand the role of In 5s orbitals in the phase-transition process, the surface

states are calculated both with and without the In 5s orbitals. The results for the

configurations with lowest energy (the In-clustered configuration) are summarized in

Table 3.2, where ‘X’ indicates the existence of a Dirac cone around Γ, and × denotes

the absence of such a Dirac cone. The thicknesses of the slabs are chosen such that the

interference between the states from two opposite surfaces is negligible.

As can be seen in Table 3.2, the In 5s orbitals are directly responsible for removing

the Dirac cones from the surface spectrum for the C0.125 and C′0.25 cases. This is shown

explicitly in Fig. 3.6, where Dirac cones emerge at Γ only when the In 5s orbitals

are removed. (Actually, a close inspection of the figure shows a split pair of Dirac

cones contributed by opposite surfaces, where the splitting arises because of broken

inversion symmetry due to the pattern of In substitution.) Scanning over the Sb-

substituted Bi2Se3 supercells from x= 0.125 to 0.875, clear signatures of Dirac cones

are observed for all of them (not shown here), consistent with the results of the bulk

Z2-index calculations of Fig. 3.3(a).

Based on our supercell calculations, we conclude that this suppression of the topolog-

ical surface states results from the In 5s orbitals, with an In concentration of x=0.125

or x=0.25 being sufficient to remove them entirely.

3.3.6 Disordered spectral functions

The previous superlattice calculations enabled us to capture some important physics

of the phase-transition behavior, but it is still difficult to give a precise estimate of the
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critical concentrations because of the limited size of the supercells and the approach of

studying one particular configuration at a time. Here we use the Wannier representation

to construct ensembles representing the disordered systems in much larger supercells,

in an attempt to study the effects of disorder in the phase-transition process more

realistically and estimate the critical points more accurately.

Two issues arise when disorder is included. First, in a periodic lattice structure

without any disorder, the eigenstates of are Bloch states which are perfectly coherent

with infinite lifetime, and the wavevector k is a good quantum number. For such systems

with nontrivial band topology, the easiest way to study the topological phase transition

is to look at the band structure; a band-gap closure usually implies a phase transition

from a topological to trivial insulator. In disordered systems, however, the “band-gap

closure” is not so easy to recognize, because the Bloch functions are no longer the

eigenstates of the system and a bandstructure is really not well-defined. Secondly, as

we know, the Z2 index is computable for periodic lattices if the information of occupied

Bloch states in the entire BZ is given. However, it is a difficult question how to define

the Z2 index and determine the topological behavior of a realistic disordered system.

Our answer to the first issue is to look at the disorder-averaged spectral functions

computed from a large supercell with different impurity configurations, but unfolded

back to the BZ of the primitive unit cell. If the disorder is weak, one should see a sharp

spectrum with narrow lifetime broadening, which means the quantum states would

remain coherent over long distances. For strongly disordered systems, however, it is

expected that the spectral functions should be strongly smeared out due to the strong

randomness of the impurity scattering, and the quantum states would be localized

around the impurities with a relatively short localization length.

We propose the “Z2-index statistics” to address the second problem. To be specific,

several different impurity configurations are generated in our calculations at each im-

purity composition x, forming a representative ensemble of the disordered system, and
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we then compute the strong Z2 index for each configuration. If each configuration in

the disorder ensemble is equally weighted, then when over half of the configurations are

in the Z2-odd phase, we say that the disordered system can be statistically considered

as a TI.

To calculate the disordered spectral functions, we use the Wannier effective-Hamiltonian

approach as well as the technique of unfolding first-principle supercell bandstructures

(spectral functions) as proposed by Ku and coworkers [115, 116].We note in passing that

a similar technique has been proposed by Popescu and Zunger [131]. To be explicit, we

first construct a TB model for a 4×4×3 supercell of pure Bi2Se3 whose matrix elements

are extrapolated from the primitive-cell Bi2Se3 TB model. The 4×4×3 supercell of the

bulk material acts as the reference system in which the Bi atoms are randomly substi-

tuted by the impurity atoms. For a 4×4×3 supercell, there are 240 atoms of which 96

are Bi-like, so the impurity composition x can be varied on the scale of one percent,

enabling us to determine the critical point xc with high precision.

The next procedure is to extract the Hamiltonian of a single impurity defined under

the same WF basis. This is done by working in a small supercell (2×2×1 in our case)

and subtracting the pure bulk-material Hamiltonian H0 from the Hamiltonian Hs of a

supercell containing one substituted impurity of type s. To set the notation, we label

(5-atom) cells within the supercell by l, sites within the cell as τ , and orbitals within

the cell as m. Then the impurity potential is constructed as

∆s
lm,l′m′(τs) = (Hs

lm,l′m′(0τs)−H0
lm,l′m′)Plm,l′m′(τs) . (3.1)

This describes the change in the on-site energy if (lm) = (l′m′), or in the hopping if

(lm) 6=(l′m′), induced by the presence of the impurity of type s on site τs in the central

cell ls=0 of the small supercell. We define a “partition function” [116] Plm,l′m′(τs) that

is used to partition the contribution of the single impurity from the super-images in

the neighboring supercells, such that the single impurity Hamiltonian is not influenced

by the artificial periodicity of the supercell. In our calculations this partition function



88

is chosen as

P (d) =


e−(d/r0)8 if d ≤ dc

0 otherwise

(3.2)

where d = dlm,l′m′(τs) ≡ |rlm − r0τs | + |rl′m′ − r0τs | is chosen as a measure of the

“distance” from the hopping matrix element (lm, l′m′) to the impurity site located at

r0τs [116]. Here we choose dc =8.69 Å and r0 =7.86 Å. (We find that if dc > 8.5 Å and

r0 is chosen slightly smaller than or equal to dc, the impurity Hamiltonian becomes

insensitive to small variations of dc and r0.) Our partition scheme has been tested to

be able to reproduce the first-principles 2×2×1 supercell bandstructures at x= 0.125

and 0.25.

We extract this impurity potential once and for all for an In atom substituting for the

top Bi atom in the quintuple-layer (s=1) and again when it substitutes for the bottom

Bi atom (s = 2). Then for a particular impurity configuration R = {l1s1, l2s2, . . .}

of the 4 × 4 × 3 supercell, where ljsj specifies the subcell and type of impurity and

j runs over the impurities in the supercell, the effective Hamiltonian is taken as a

linear superposition of the reference-system Hamiltonian H0 and the single-impurity

Hamiltonians residing on the specified sites in the large supercell, i.e.,

HRlm,l′m′ = H0
lm,l′m′ +

∑
j

∆
sj
(l−lj)m,(l′−lj)m′(τj) . (3.3)

The linear superposition of the matrix elements of different TB Hamiltonians is

well-defined only when these Hamiltonians are treated under the same WF basis. In

other words, each of the orbitals from the large supercell with impurities should map

appropriately to the corresponding orbitals of the unperturbed reference system. For

this reason, we skip the maximal localization procedure when generating the WFs, and

instead simply use the projection method to generate a basis that remains in close

correspondence to the atomic-like orbitals. Once the effective Hamiltonians has been

obtained for an ensemble of impurity configurations representing a given concentration



89

x, we calculate the spectral function for each, and unfold it from the highly compressed

supercell BZ into the primitive-cell BZ [115]. Finally, the ensemble average of the

unfolded spectral functions can then be taken to reflect the effects of disorder on the

original bulk electronic states.

To be specific, let AN (ω,K) be the spectral function at energy ω associated with

band N in the supercell, with K specifying the wavevector in the small supercell BZ,

given by the imaginary part of the retarded Green’s function operator G via A =

−π−1 ImG=−π−1 Im(ω + iη −H)−1, where H is the supercell Hamiltonian and η > 0

is a small artificial smearing factor. Then, to unfold the supercell spectral function onto

a complete set of primitive-cell Bloch states, one can expand the primitive-cell spectral

function An(ω,k) in terms of the supercell spectral functions as

An(ω,k) =
∑
NK

|〈ψNK|ψnk〉|2AN (ω,K) , (3.4)

where |ψnk〉 and |ψNK〉 are the primitive-cell and supercell Bloch states respectively,

and n and k represent the band index and wavevector of the primitive cell. One can

solve for the coefficient 〈ψNK|ψnk〉 within the Wannier basis provided that the supercell

Hamiltonian is defined under a set of WFs having a clear one-to-one mapping with the

primitive-cell WFs by primitive-cell lattice translations, as can be realized by using

simple projection for the Wannier construction 2.

In our calculations, 16 configurations are generated for (Bi1−xInx)2Se3 at each impu-

rity composition, whereas eight configurations are generated for each x of (Bi1−xSbx)2Se3

due to the much weaker effect of disorder. For (Bi1−xSbx)2Se3 the configurations are

generated randomly, as different configurations seem to be equally favored energetically.

For (Bi1−xInx)2Se3, however, the configurations are generated using the Metropolis

Monte Carlo method according to a proper Boltzmann weight in order to reflect the

2Expressed under Wannier basis, the summation over K in Eq. (3.4) becomes unnecessary, because
there is a Kronecker-δ relationship between k and K in the expression for 〈ψN (K)|ψn(k)〉, thus removing
the summation.
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Figure 3.7: Disordered spectral functions of (Bi1−xSbx)2Se3 unfolded into the primitive-
cell BZ. (a) x=68%. (b) x=78%. (c) x=83%. (d) x=88.5%. (e) x=99%.

tendency of In segregation. The Boltzmann weight is proportional to e−(EpNp)/(kBTg),

where Ep = [E(C′0.25)−E(C0.25)]/2 is defined as the “paring energy” of In atoms, Np is

the number of In pairs in a particular configuration, kB is the Boltzmann constant, and

Tg=850◦C is taken as the growth temperature of the In-substituted Bi2Se3 sample.

The disordered spectral functions of (Bi1−xSbx)2Se3 are shown in Fig. 3.7, with

an artificial Lorentzian broadening of 2 meV. At x= 68%, the spectral gap is visible,

but already very small, suggesting that the system is approaching the critical point.

As x is increased to 78%, a sharp Dirac cone is observed, which remains robust from

78% to 83%. At x= 88.5%, the band gap reopens, meaning that the system is in the



91

7 7.5 8 8.5 9
0

0.2

0.4

0.6

0.8

1.0

D
O

S

(a)

7 7.5 8 8.5 9
0.0

0.2

0.4

0.6

0.8

1.0
(b)

7 7.5 8 8.5 9
0

0.2

0.4

0.6

0.8

1.0

Energy (eV)

D
O

S

(c)

7 7.5 8 8.5 9
0

0.2

0.4

0.6

0.8

1.0

Energy (eV)

(d)

Figure 3.8: Disordered spectral functions of (Bi1−xSbx)2Se3 at the Γ point in the
primitive-cell BZ for (a) x = 68%, (b) x = 78%, (c) x = 83%, and (d) x = 88.5%.
Vertical (red) line indicates Fermi energy. Distinct VBM and CBM peaks are still visi-
ble in the topological phase in (a), merge in (b) and (c), and reappear in (d) as the gap
reopens in the normal phase.

NI phase, and this topologically trivial phase becomes more robust as x goes to 99%

with a more visible gap. One may notice that the effect of disorder is weak during the

phase-transition process, and the semi-metallic behavior at criticality is rather sharp.

The spectral functions of (Bi1−xSbx)2Se3 at the Γ point (in the primitive-cell BZ) are

plotted in Fig. 3.8. At x=68% there are two peaks around the Fermi level, indicating

that the CBM and VBM are still separated, and the critical point has not been reached

yet. At x=78% and 83%, the two peaks from the conduction and valence bands merge

into one, suggesting the system becomes a semimetal. As x goes to 88.5%, the gap

opens up again. From these results it appears that there is a kind of “critical plateau”

for x between ∼78% and ∼83%.

This critical behavior observed for (Bi1−xSbx)2Se3 is at variance with the general

expectation for the topological phase-transition behavior in the Bi2Se3 class of TIs,

where the system becomes a critical Dirac semimetal at one point in the parameter space

(here it is the impurity composition x) and then becomes insulating again immediately
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after the gap closure. This deserves discussion.

We cannot exclude the possibility that numeric uncertainties play a role here. In

(Bi1−xSbx)2Se3, the band gap varies quite slowly as a function of x, with a change

of impurity composition of 5% corresponding to a band gap change of only ∼0.03 eV.

Thus, the critical point could be hidden by disorder and artificial smearing, such that

the system looks metallic even if a very small band gap has opened up. Moreover, finite-

size effects may be important. In a disordered system we expect that the localization

length evaluated in the middle of the mobility gap should grow as the mobility gap

shrinks and the system approaches the critical metallic state. As one approaches the

critical point at which this mobility gap vanishes, the localization length may exceed

the size of the supercell and the states in neighboring supercells may overlap and behave

like extended states.

However, it is also possible that a finite window of metallic phase is physically

correct. Since the topologically nontrivial and trivial insulating configurations compete

with similar weight near criticality, the system may remain in the metallic phase until

one of the two insulating phases comes to dominate. Support for this picture can be

drawn from Ref. [132], in which careful numerical simulations on a disordered lattice

model showed a finite-width region of metallic phase as the system was driven from the

TI to the NI phase with increasing disorder strength while other parameters were held

fixed. In our case the disorder strength remains approximately constant, but the ratio

of disorder strength to energy gap varies with x, so that a metallic plateau may still be

expected. We leave these questions as avenues to pursue in future research.

The disorder-averaged spectral functions for (Bi1−xInx)2Se3 with the same artificial

broadening are plotted in Fig. 3.9. At 8.3%, the band-inversion character is still obvious

(note the tilde-like shape of the highest occupied bands around Γ) with the spectral

gap unclosed, which implies the system may still stay in a TI phase. At 12.5% the

spectral gap becomes hard to recognize. When it comes to 14.6%, 16.7% and 18.8%,
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Figure 3.9: Disordered spectral functions of (Bi1−xInx)2Se3 unfolded into the primitive-
cell BZ. (a) x=8.3%. (b) x=12.5%. (c) x=14.6%. (d) x=16.7%. (e) x=18.8%.

the spectral gap is almost completely unrecognizable, which means the system is pretty

close to the critical point.

Moreover, in sharp contrast with the behavior of (Bi1−xSbx)2Se3, the effect of dis-

order in (Bi1−xInx)2Se3 is very strong. It can be seen from Fig. 3.9 that the original

energy bands are strongly smeared out. Different Bloch states are mixed together,

as would be expected if localized eigenstates are formed centered on the substituted

In atoms. It is difficult to identify the critical point simply by looking at the disor-

dered spectral functions, because the Dirac semi-metallic behavior is not as obvious

as in (Bi1−xSbx)2Se3. Therefore, we calculate the Z2 index of each configuration from
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x= 8% to 18.8%. By inspecting the statistical behavior of the resulting Z2 indices, as

described next, we conclude that the critical point of (Bi1−xInx)2Se3 is around 17%.

Our theoretical prediction of xc for (Bi1−xInx)2Se3 is somewhat higher than the ex-

perimental values, estimated to be 3%-7% according to Brahlek et al. [41] and ∼6% ac-

cording to Wu et al. [40] We attribute our overestimate of xc to both the use of standard

DFT methods and the absence of impurity-impurity correlation terms in Eq. (3.3). Re-

garding the former, we would expect to get an xc more consistent with the experimental

results if hybrid functionals or more advanced many-body first-principles methods were

used in the calculations, which unfortunately becomes expensive for large supercells.

Regarding the latter, we expect that the In clustering effects would be treated more ac-

curately if we would go beyond a simple superposition of one-body impurity potentials

and include many-body terms in the impurity cluster expansion when constructing the

effective Hamiltonian. However, this too would carry a large computational cost due

to the anisotropic nature of the two-body impurity-impurity interactions and the fact

that higher-body terms may also be important.

3.3.7 Z2-index statistics

The Z2 indices of a 3D band insulator are well defined for a perfect periodic lattice with

time-reversal symmetry. For disordered systems, however, the topological indices are

much harder to calculate. A promising approach is the use of non-commutative algebra

[133, 134, 135, 136], but to date this has generally been applied to simple models, and

its applicability to realistic disordered materials has not been demonstrated.

Here we attempt to determine the topological indices of a disordered time-reversal

invariant insulating system using a more straightforward approach: we calculate the

strong Z2 index (with periodic boundary conditions on the supercell) for each impurity

configuration in the statistical ensemble, thus determining the topological properties of

the disordered system from a statistical point of view. As long as the configurations
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Table 3.3: Z2 statistics of (Bi1−xInx)2Se3. The entries in the first, second, and third
rows indicate respectively the number of Z2-odd, Z2-even, and metallic configurations
drawn from a 16-member ensemble.

8.3% 12.5% 14.6% 16.7% 18.8%

Z2 odd 15 16 14 11 5
Z2 even 0 0 0 3 9
Metallic 1 0 2 2 2

are sampled in such a way that each contributes equally to the statistical ensemble,

then we define the system as Z2-odd (i.e., a strong TI) if over half of the configurations

are Z2-odd, and normal otherwise. As mentioned in Subsec. 3.3.6, the impurity con-

figurations of (Bi1−xInx)2Se3 are generated using the Metropolis Monte Carlo method

based on a Boltzmann weight defined by the In-clustering energy. As a result, the ten-

dency of In segregation is reflected in the number of generated distributed vs. clustered

configurations, rather than by manual assignment of weights. Thus we consider each

configuration to be equally weighted, satisfying the criterion stated above.

The strong Z2 index statistics of several (Bi1−xInx)2Se3 configurations are shown in

Table 3.3. For x between 16.7 and 18.8%, the number of Z2-odd configurations drops

from eleven to five, so we estimate xc to be approximately 17%.

3.4 summary and outlook

To summarize, we have studied the topological phase transitions in (Bi1−xInx)2Se3 and

(Bi1−xSbx)2Se3 using two approaches, the direct application of first-principles calcu-

lations on small supercells, and a Wannier-based modeling approach that allows for a

more realistic treatment of disorder in large supercells. Based on the former approach,

the xc of (Bi1−xInx)2Se3 is slightly less than 12.5%, while that of (Bi1−xSbx)2Se3 is

even above 87.5%. A VCA treatment of (Bi1−xSbx)2Se3 predicts xc ∼ 65%; this is not

in perfect agreement with the prediction from the supercell calculations, but both of
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them are much higher than that of (Bi1−xInx)2Se3. From the results of realistic disor-

dered calculations, we found that xc is ∼17% for (Bi1−xInx)2Se3, while it is ∼78-83%

for (Bi1−xSbx)2Se3. The critical concentrations are determined from disorder-averaged

spectral functions and Z2-index statistics. It is concluded that in (Bi1−xSbx)2Se3, the

band gap at Γ decreases almost linearly with increasing x, corresponding to the reduc-

tion in average SOC strength, with only a very weak disorder effect. For (Bi1−xInx)2Se3,

on the other hand, the In 5s orbitals tend strongly to suppress the topological band

inversion even at very low impurity concentrations, so that the phase transition is

drastically accelerated as a function of increasing x.

In the case of (Bi1−xSbx)2Se3, we observed a critical plateau from x ∼ 78% to

x ∼ 83%. As discussed in Subsec. 3.3.6, it is difficult to say whether this intermediate

metallic phase is just an artifact of numerical limitations such as finite-size effects, or

is a true feature of the physics. Further theoretical and experimental work is needed to

clarify what happens in this critical region.

We also find a tendency of the In (but not Sb) atoms to segregate. This In clus-

tering effect could help clarify some aspects of the topological phase transition in

(Bi1−xInx)2Se3, as for example by suggesting a scenario in which the phase transi-

tion may happen locally, instead of homogeneously as in the usual linear gap-closure

picture. One can imagine that as In atoms are implanted into bulk Bi2Se3, isolated

In clusters would start to emerge, inside which the system is topologically trivial. As

more and more Bi atoms are substituted by In, these isolated In “islands” become con-

nected to each other, and the topological phase transition happens when the percolation

threshold is reached.

Our results for (Bi1−xInx)2Se3 provide a physical explanation for the observed low

transition concentration in several recent experiments on (Bi1−xInx)2Se3[40, 41], and

the results on (Bi1−xSbx)2Se3 may give predictions for future experimental works.

The techniques used in this chapter provide a powerful methodology that may be
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used to carry out theoretical explorations of other types of disordered topological sys-

tems. For example, interesting physics is anticipated in a TI whose bandstructure is

mostly contributed by p orbitals while substituting with impurities having d or f or-

bitals. It could also be interesting to investigate the effects of magnetic impurities, not

only on the surface states and their spin textures [137, 138], but on the bulk topological

transition as well. We thus hope that these methods will enable the search for new ma-

terials and systems with non-trivial topological properties in strongly disordered alloy

systems.

This work is supported by NSF Grant DMR-10-05838. We are grateful to M. Taher-

inejad and K. Garrity for useful discussions, I. Souza for important technical assistance

with the codes, and W. Wu and his collaborators for sharing their unpublished experi-

mental data.
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Chapter 4

Weyl semimetals from noncentrosymmetric topological

insulators

In this chapter, we study the problem of phase transitions from 3D topological to nor-

mal insulators without inversion symmetry. In contrast with the conclusions of some

previous work, we show that a Weyl semimetal always exists as an intermediate phase

regardless of any constriant from lattice symmetries, although the interval of the crit-

ical region is sensitive to the choice of path in the parameter space and can be very

narrow. We demonstrate this behavior by carrying out first-principles calculations on

the noncentrosymmetric topological insulators LaBiTe3 and LuBiTe3 and the trivial

insulator BiTeI. We find that a robust Weyl-semimetal phase exists in the solid solu-

tions LaBi1−xSbxTe3 and LuBi1−xSbxTe3 for x≈ 38.5 − 41.9% and x≈ 40.5 − 45.1%

respectively. A low-energy effective model is also constructed to describe the critical

behavior in these two materials. In BiTeI, a Weyl semimetal also appears with applied

pressure, but only within a very small pressure range, which may explain why it has

not been experimentally observed.

4.1 Introduction

The significance of topology in determining electronic properties has became widely

appreciated with the discovery of the integer quantum Hall effect and been highlighted

further by the recent interest in topological insulators (TIs) [21, 22, 33, 34]. In topo-

logical band theory, a topological index, such as the Chern number or the Z2 index,

is well-defined only for gapped systems, and the topological character is signaled by
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the presence of novel gapless surface states which cannot exist in any isolated 2D sys-

tem [33, 34]. Recently, the concept of topological phases is further generalized to 3D

bulk gapless systems, whose topological behavior is protected by lattice translational

symmetry, known as the Weyl semimetal (WSM) [139, 140, 43, 45, 141].

A Weyl semimetal is characterized by a Fermi energy that intersects the bulk bands

only at one or more pairs of band-touching points (BTPs) between nondegenerate va-

lence and conduction bands. This can occur in the presence of spin-orbit coupling

(SOC), typically in a crystal with broken time-reversal or inversion symmetry but not

both, so that the pairs are of the form (k0, −k0) in the Brillouin zone (BZ). The effec-

tive Hamiltonian around a single BTP k0 can be written as H(k) = f0(k) + f(k) · σ,

where f0 and f are scalar and vector functions respectively of wavevector in the BZ

and the σj are the Pauli matrices acting in the two-band space. If one expands the

coefficient f(k) to linear order around k0, one gets a Hamiltonian having the form of the

Weyl Hamiltonian in relativistic quantum mechanics after a coordinate transformation

in k space. If the sign of the determinant of the Jacobian that describes the coordinate

transformation is positive (negative), we call the BTP as a Weyl node with positive

(negative) chirality, and the low-energy excitations around such a Weyl node provide a

condensed-matter realization of left-handed (right-handed) Weyl fermions.

These pairs of Weyl nodes are topologically protected in the sense that they are

robust against small perturbations, which can be see from the codimension argument

as follows. One can introduce a parameter λ that acts as a perturbation on the BTP,

and let both f0 and f to be dependent on λ. In order to get a band touching at

(k0, λ0), the three coefficients f ≡ (fx, fy, fz) have to vanish. However, since there are

four degrees of freedom, if λ0 → λ0 +δλ, instead of opening a gap, the Weyl node would

just shift slightly in momentum to compensate for the perturbation. In fact, there is no

way to remove a Weyl node unless two Weyl nodes with opposite chirality annihilate

each other.
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If the two Weyl nodes are aligned in energy due to either time-reversal or some

lattice symmetry, and the bands are filled right up to the Weyl nodes, then the Fermi

energy would be locked there regardless of weak perturbations. That is, the Fermi

level could be slightly shifted upward (downward) due to some weak perturbation, such

that there is an electron-like (hole-like) Fermi surface, then there must also be a hole-

like (electron-like) Fermi surface to conserve the total number of electrons, which is

impossible in such a a semimetal. It follows that the low-energy physics in the Weyl

semimetal is completely dominated by the linearly dispersing states around the Weyl

nodes, which leads to interesting surface states and transport properties.

The presence of Weyl nodes in the bulk bandstructure is responsible for the presence

of Fermi arcs at the surface, which can be understood as follows [43, 45], Consider a

small loop in the 2D surface BZ that encloses the projection along kz of one Weyl

point. When translated along kz, this loop traces out a surface in the 3D BZ, and the

application of Gauss’s theorem implies that the Chern number on this surface must

equal the chirality of the enclosed Weyl node. It follows that as (kx, ky) is carried

around the loop, a single electron is pumped up to (or down from) the top surface, and

this is only consistent with charge conservation if a single surface state crosses the Fermi

energy EF during the cycle. Since this argument applies for an arbitrary loop, surface

states must exist at EF along some arc emerging from the surface-projected Weyl point.

If there is another Weyl node with opposite chirality, then the Chern number can vanish

once the cylinder encloses both of the nodes, such that the Fermi arc would only extend

between the two projected Weyl nodes [43, 45]. It is also interesting to note that the

surface states resided on top and bottom surfaces are linearly dispersed in opposite

directions, and they remain robust even when the Fermi energy is away from the bulk

Weyl nodes [142].

In a WSM with broken time-reversal (TR) symmetry, there is also a non-zero anoma-

lous Hall conductivity (AHC) that is closely related to the positions of the Weyl nodes
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[143, 44, 144]. Consider the AHC σxy with the crystal oriented such that the third

primitive reciprocal vector is along z. If we track the Chern number Cz of a 2D slice

normal to z in the 3D BZ, we must find that it changes by ±1 whenever kz passes a

Weyl node, with the sign depending on the chirality of the node. In the simplest case,

if Cz =1 for kz between the two Weyl nodes and zero elsewhere, then the AHC is just

proportional to the separation of the two Weyl nodes in kz. This is also interpreted

as a consequence of the “chiral anomaly” in a WSM [145]. Other interesting transport

phenomena can arise due to the chiral anomaly. For example, if a magnetic field B is

applied to a WSM in the z direction, Landau levels will be formed in the (x, y) plane.

The zeroth Landau level disperses linearly along kz, but in opposite directions for Weyl

nodes with opposite chirality. As a result, if an electric field E is applied along z,

electrons would be pumped from one Weyl node to the other at a rate proportional to

E·B, with the Fermi arcs serving as a conduit [139, 146, 45, 144].

As discussed above, a WSM requires the breaking of either TR or inversion symme-

try. Many of the previous works are focused on WSMs without TR symmetry, such as in

pyrochlore iridates [43], magnetically doped TI multilayers [44], and Hg1−x−yCdxMnyTe

[147]. In this chapter, we study the WSM with preserved TR symmetry but broken

inversion symmetry.

It was argued some time ago that the Z2-odd and Z2-even phases of a noncen-

trosymmetric insulator should always be bridged by a critical WSM phase [47, 46].

If the transition is described by some adiabatic parameter λ, then as λ increases one

expects first the appearance of m higher-order BTPs in the half BZ (and another m

at the time-reversed points), where m = 1 is typical of low-symmetry systems while

m > 1 can occur when, e.g., rotational symmetries are present. These higher-order

BTPs generally have quadratic dispersion in one direction while remaining linear in

the other two, and are non-chiral; we refer to such a point henceforth as a “quadratic

BTP.” As λ increases, each quadratic BTP splits to form a pair of Weyl nodes (4m



102

altogether), which then migrate through the BZ and eventually annihilate at a second

critical value of λ after exchanging partners. The previous work demonstrated that

this process inverts the strong Z2 index if m is odd [47, 46]. Recently, however, Yang

et al. claimed that for systems with certain high-symmetry lines in the BZ, the phase

transition could occur at a unique critical value of λ at which the bands would touch

and immediately reopen, instead of over some finite interval in λ, even when inversion

symmetry is absent [148]. These authors suggested that BiTeI under pressure could

serve as an example to support their claim [149, 148].

In this chapter, we address this issue carefully. We show that an intermediate criti-

cal WSM phase should always exist for any topological phase transition (TPT) between

a normal and a Z2-odd insulating phase. We find however that the width of the critical

WSM phase can be sensitive to the choice of path in parameter space and can some-

times be very small. To justify our conclusions, we take specific materials as examples.

We first study the TPT in the solid solutions LaBi1−xSbxTe3 and LuBi1−xSbxTe3 using

the virtual crystal approximation, where the phase transition is driven by Sb substi-

tution. The parent compounds at x= 100%, LaBiTe3 and LuBiTe3, are hypothetical

noncentrosymmetric materials that are predicted to be strong topological insulators in

Ref. [150] and in the present work respectively. Instead, the end members LaSbTe3 and

LuSbTe3 at x=0% are trivial insulators [150]. We find that a WSM phase is obtained

when x is in the range of about 38.5-41.9% for LaBiTe3 and 40.5-45.1% for LuBiTe3.

We further construct a low-energy effective model to describe the topological and phase-

transitional behavior in this class of materials. We also revisit the TPT of BiTeI driven

by applied pressure, where a WSM phase has not previously been observed [149, 151].

Based on our calculations, we find that a small interval of WSM phase does actually

intervene as increasing pressure drives the system from the trivial to the topological

phase.

This chapter is organized as follows. In Sec. 4.2 we derive the general behavior of
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TPTs in noncentrosymmetric insulators and point out some deficiencies in the discus-

sion of BiTeI by Yang et al [148]. In Sec. 4.3 we describe the lattice structures and

basic topological properties of the materials, as well as the numerical methods used in

the realistic-material calculations, especially the methods used in modeling the alloyed

and pressurized systems and in searching for BTPs in the BZ. In Sec. 4.4 we present

the results for LaBi1−xSbxTe3, LuBi1−xSbxTe3 and BiTeI, and discuss the sensitivity

to the choice of path. In Sec. 4.5, we summarize our work.

4.2 Topological transition in noncentrosymmetric insulators

4.2.1 General behavior

We consider the problem of TPTs in noncentrosymmetric insulators in the most general

case. In the space of the two bands which touch at the TPT, the system can be described

by the effective Hamiltonian

H(k, λ) = fx(k, λ)σx + fy(k, λ)σy + fz(k, λ)σz , (4.1)

where λ is the parameter that drives the TPT and σx,y,z are the three Pauli matrices

defined in the space spanned by the highest occupied and the lowest unoccupied states

at k. Since we study the TPT between two insulating phases, we can assume without

loss of generality that the system is gapped for λ<λ0, and that the first touching that

occurs at λ=λ0 takes place at k = k0. In other words, fi(k0, λ0) = 0, i=x, y, z. Then

we ask what happens if k0 → k0 + q and λ0 → λ0 + δλ.

We first expand the coefficients f around (k0, λ0) as f = J · q + Λ δλ, where q =

k − k0, δλ=λ − λ0, J is the Jacobian with matrix elements Jij = (∂fi/∂kj)|k0,λ0 , and

Λ is a 3-vector with components Λi = (∂fi/∂λ)|k0,λ0 . A natural set of momentum-

space coordinates can be defined in terms of the eigensystem J · vi = Jivi. Defining
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q =
∑

i pi vi and ui = Jivi, we obtain

f =

3∑
i=1

pi ui + δλΛ. (4.2)

Following the argument of Yang et al [148], the Jacobian matrix J has to be sin-

gular at (k0, λ0) because otherwise there would be band touching even when λ < λ0,

contradicting the assumption that the system is insulating for λ < λ0. This implies

that at least one of the eigenvalues of J is zero. We assume for the moment that the

others are non-zero, i.e., that J is rank-2, and let it be the first eigenvalue that vanishes.

Since the p1-dependence of f then vanishes at linear order, we again follow Ref. [148]

by including a second-order term to obtain

f = p2 u2 + p3 u3 + δλΛ + p2
1 w (4.3)

where w= (1/2)∂2f/∂2p1|k0,λ0 . Now we also have the freedom to carry out an arbitrary

rotation in the pseudospin representation of the two-band space. That is, we redefine fi

to be the component in the pseudospin in direction ei, with e3 given by (u2×u3)/|u2×

u3|, and e1 and e2 chosen to form an orthonormal frame with e3. Then u23 and u33

vanish, and we can write explicitly that

f1 = p2 u21 + p3 u31 + δλΛ1 + p2
1w1,

f2 = p2 u22 + p3 u32 + δλΛ2 + p2
1w2,

f3 = δλΛ3 + p2
1w3. (4.4)

We assume Λ3/w3 < 0, since otherwise there are solutions at negative λ. Then at

positive λ, there are always two solutions p1 =±
√
−δλΛ3/w3 at which f3 =0. Plugging

this into the expressions for f1 and f2 in Eq. (4.4), we can obtain p2 and p3 by solving

the linear system u21 u31

u22 u32


p2

p3

+

Λ1 − w1Λ3/w3

Λ2 − w2Λ3/w3

 δλ = 0. (4.5)
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Solutions of the above equation always exist as long as the Jacobian matrix J is of rank

two, which means a critical WSM should always exist in the absence of a special lattice

symmetry that would lower the rank of J. From the above it also follows that at the

critical λ=λ0 the dispersion around k0 is quadratic in p1 and linear in p2 and p3, and

that for larger λ the Weyl point displacements scale like |p1|∼
√
δλ and |p2,3|∼δλ. The

same conclusions in the rank-two case have been obtained by Murakami et al. [47] and

restated by Yang et al. [148].

If the Jacobian matrix J turns out to be rank-one instead at λ0, then the bands

would first close at a doubly-quadratic BTP. That is, there would be two vanishing

eigenvalues of the Jacobian matrix (which we take to be the first and second), and the

dispersion would be quadratic in p1 and p2 and linear in p3. This implies that only the

second-order terms associated with p1 and p2 need to be included in Eq. (4.3), yielding

f1 = p3 u31 + δλΛ1 + p2
1w

11
1 + p2

2w
22
1 + 2p1p2w

12
1 ,

f2 = p3 u32 + δλΛ2 + p2
1w

11
2 + p2

2w
22
2 + 2p1p2w

12
2 ,

f3 = p3 u33 + δλΛ3 + p2
1w

11
3 + p2

2w
22
3 + 2p1p2w

12
3 , (4.6)

where wij = (1/2)∂2f/∂pi∂pj |k0,λ0 (i, j = 1, 2). We can make a similar transformation

on f such that the f3 direction is e3 = (u3 × w22)/|u3 × w22|, so that f3 becomes

independent of p3 and p2
2. Then one also has the freedom to rotate the p1 and p2

components to make w12
3 vanish. After these two transformations, f3 only depends

on p2
1 and δλ, and one expects solutions at p1 = ±

√
−δλΛ3/w11

3 . Plugging this into

the expressions for f1 and f2 in Eq. (4.6), one obtains a quadratic equation for p2 of

the form aδλ + bp2
2 + c

√
δλp2 = 0, where a, b and c are some constants determined

by the components of u3, Λ, and wij (i, j = 1, 2). If there are real solutions for the

above equation, then the doubly-quadratic BTPs would split into four Weyl nodes

whose trajectories scale as p1 ∼ ±
√
δλ and p2 ∼ ±

√
δλ, p3 ∼ δλ. Otherwise, if there

is no solution for p2, a gap would be opened up immediately after the band touching
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at (k0, λ0), which would represent the rare case of an “insulator-insulator transition”

using the language of Ref. [148].

However, we do not expect that the strong Z2 index would be inverted for such an

insulator-insulator transition in the rank-one case. This can be seen as follows. If the

BTP does not lie in any of the TR-invariant slices (kj = {0, π}, j = 1, 2, 3), then certainly

the 2D Z2 indices of the TR invariant slices would not change, and it follows that none

of the four 3D Z2 indices would change either. If the BTP happens to reside in one

of the TR invariant slices, then since the dispersion in the 2D slice must be quadratic

in at least one direction, it should be topologically equivalent to the superposition of

an even number of linearly-dispersing Weyl nodes, which is also not expected to flip

the 2D Z2 index, as argued in Ref. [47]. Thus none of the 3D Z2 indices, including the

strong index, would change.

To summarize this section, we find without any lattice-symmetry restriction that

a critical WSM phase always exists in the rank-two case. In the rank-one case, an

insulator-insulator type transition is allowed in principle, but would not be expected to

be accompanied by a change in the strong Z2 index. Therefore, it is fair to claim that,

regardless of special lattice symmetry, there is always a WSM phase connecting Z2-odd

and Z2-even phases in a noncentrosymmetric insulator.

4.2.2 Discussion of BiTeI

In this section we discuss the TPT in pressured BiTeI, a case in which the TPT is

driven in a system with C3v symmetry. Contrary to the conclusions of Ref. [148], here

we argue that a critical WSM does exist in the TPT of BiTeI, although the pressure

interval over which it occurs may be rather narrow.

In Refs. [149, 148] the authors argued that if there exists a high-symmetry line in

the BZ such that the dispersion extremum evolves along the line as a function of the

adiabatic parameter (pressure), then one could get an insulator-insulator type transition
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without going through a critical WSM. The authors further pointed out that the high-

symmetry lines from A to H in the BZ of BiTeI, shown in Fig. 4.1(d), satisfy some

necessary conditions for this to occur. Moreover, they showed that the symmetry of

BiTeI is such that if one concentrates on the band dispersions along these A-H lines,

one finds a pair of extrema (one valence-band maximum and one conduction-band

minimum) which migrate along the A-H line as a function of the external parameter

(pressure), coincide at a critical value, and then separate again to reopen the gap. They

furthermore showed that the dispersions are quadratic in the two orthogonal directions

(except exactly at the critical value), raising the possibility that the extrema in question

could be minima and maxima in all three k-space directions. This would correspond

to the insulator-insulator transition without an intervening WSM phase. However, our

analysis in the previous section shows that this cannot occur in the rank-two case, and

that the extrema in question actually become saddle points after the band touchings

occur along the A-H lines. In this case, as recognized in Ref. [148], a WSM phase does

occur. As has been verified in Ref. [148], the Jacobian does remain of rank two on

these lines in BiTeI, and we shall show below in Sec. 4.4.2 that an intermediate WSM

phase does occur. We also point out that Fig. 2 of Ref. [148] does not demonstrate the

absence of the Weyl nodes, since they are expected to lie off the (kx, kz) plane on which

the dispersion was plotted.

Yang et al. [148] gave another argument in favor of the insulator-insulator scenario

in BiTeI as follows. They noted that the band touching first takes place on the A-H

line, which is invariant under the combination of time-reversal and mirror operations.

This imposes some constraints on the form of the effective Hamiltonian around the

BTP, and from these the authors concluded that, if Weyl nodes do appear, they should

migrate along trajectories of the form p1 ∼±δλ1/2, p2 ∼±δλ3/2 and p3 ∼ δλ. Such a

curve in 3D space possesses non-zero torsion, so that the trajectories of the two Weyl

nodes emerging from one quadratic BTP could never join again and form a closed
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curve. This implies that if the WSM is formed by such an event, then it would remain

permanently, contradicting the fact that BiTeI clearly becomes a globally-gapped TI at

higher pressures. Based on this reasoning, they concluded that the TPT in BiTeI must

be an insulator-insulator transition without an intermediate WSM.

However, this argument neglects the fact that the C3v symmetry means that there

are several A-H lines in the BZ of BiTeI, and the gap first closes by the simultaneous

appearance of quadratic BTPs at equivalent positions on all of these lines. Even though

the two Weyl nodes which emerge from a single quadratic BTP cannot meet each other,

as shown from the torsion of their trajectories, the Weyl nodes from different BTPs

can interchange partners and eventually annihilate each other in such a way as to

form a closed curve in the BZ. This is exactly the mechanism of the topological phase

transition in noncentrosymmetric TIs [46, 47]. As will be discussed in Sec. 4.4.2, there

are actually six quadratic BTPs in the full BZ that appear simultaneously, according

to the crystalline and TR symmetries. These six Dirac nodes split into twelve Weyl

nodes, which are eventually gapped out by annihilation after exchanging partners.

In the following section, we will study the TPTs in various inversion asymmetric ma-

terials by first-principles calculations. We predict LaBi1−xSbxTe3 and LuBi1−xSbxTe3

to be WSM candidates within a certain range of impurity composition x. We also re-

visit the case of BiTeI, and find that a WSM phase emerges when external pressure is

applied to BiTeI, but only within a small pressure interval.

4.3 Preliminaries

4.3.1 Lattice structures and basic topological properties

The assumed crystal structures of LaBiTe3 and LuBiTe3 are very similar to Bi2Te3,

where five atomic monolayers stack in the [111] direction in an A-B-C-A-... sequence

forming quintuple layers (QLs) as shown in Fig. 4.1(a). The only difference is that one
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Figure 4.1: (a) The lattice structure of LaBiTe3, LuBiTe3, LaSbTe3, and LuSbTe3. (b)
The BZ of La(Lu)Bi(Sb)Te3. (c) The lattice structure of BiTeI. (d) The BZ of BiTeI.

of the two Bi atoms in the primitive unit cell is replaced by a La or Lu atom, which

breaks the inversion symmetry. The lattice structure of LaSbTe3 and LuSbTe3 is the

same as for LaBiTe3 and LuBiTe3, except that all the Bi atoms are substituted by Sb.

The in-plane hexagonal lattice parameters for LaBiTe3 and LuBiTe3 are a=4.39 Å and

4.18 Å respectively, while the size of a QL along c is 10.07 Å and 10.29 Å respectively.

The lattice parameters of LaSbTe3 are slightly different from LaBiTe3, with a=4.24 Å

and c=10.13 Å. The lattice parameters for LuSbTe3 have not been reported before, so

we use those from LuBiTe3. Among these four hypothetical materials, LaBiTe3 has been

previously reported as a candidate for an inversion-asymmetric TI [150]. LuBiTe3 is

first reported as a TI candidate in this work; the non-trivial band topology is confirmed

by calculating the bulk Z2 index [130] and checking the existence of topological surface

states. On the other hand, LaSbTe3 and LuSbTe3 are trivial insulators.

As shown in Fig. 4.1(c), BiTeI has a hexagonal lattice structure with three atoms in

the primitive cell stacked as A-B-C-A-... along the z direction. The lattice parameters

in-plane and along the hexagonal axis are a= 4.339 Å and c= 6.854 Å. BiTeI itself is

a trivial insulator with a large Rashba spin splitting in the bulk [152], but it can be
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driven into a TI state by applying pressure. Previous studies have suggested that the

transition to the topological phase is not mediated by a WSM phase [149, 148], but we

revisit this issue in Sec. 4.4.2 and come to different conclusions.

4.3.2 First-principles methodology

We carry out the bulk first-principles calculations using the VASP package including

SOC [153, 154]. The generalized-gradient approximation is used to treat the exchange-

correlation functional [118, 119]. The BZ is sampled on an 8×8×8 Monkhorst-Pack [123]

k mesh and an energy cutoff of 340 eV is used. The output from the first-principles

plane-wave calculations are then interfaced to the Wannier90 package [124] to construct

realistic tight-binding (TB) models for these materials.1

To describe the electronic structure of LaBi1−xSbxTe3 and LuBi1−xSbxTe3, we adopt

the virtual crystal approximation (VCA) in which each Bi or Sb is replaced by a “vir-

tual” atom whose properties are a weighted average of the two constituents. The VCA

treatment typically gives a reasonable description for solid-solution systems in which

the dopant and host atoms have a similar chemical character. For example, the VCA

was shown to work well in describing Sb substitution in Bi2Se3, because of the similar

orbital character of Sb 5p and Bi 6p, but not for In substitution, where In 5s orbitals

become involved [42]. The VCA is implemented in the Wannier basis by constructing

separate 36-band models for LaBiTe3 (LuBiTe3) and LaSbTe3 (LuSbTe3), including all

the valence p orbitals of the cations and anions, as well as the 5d and 6s orbitals of

the rare-earth elements.2 In the solid solution, the Hamiltonian matrix elements are

then taken as a linear interpolation in impurity composition x of the corresponding

matrix elements of the parent materials. That is, we take HVCA
mn = (1−x)HBi

mn+xHSb
mn,

1The TB models from Wannier90 are realistic in the sense that the Wannier-interpolated bandstruc-
ture can reproduce the first-principles band energies exactly in a specified energy window which, is
chosen here to be centered around the Fermi level.

2The fully occupied f shell of Lu has very little influence on the electronic structure around the
Fermi level.
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where HBi
mn and HSb

mn denote the matrix elements of the TB models of LaBiTe3 and

LaSbTe3. It worth noting that when generating the WFs for the VCA treatment, the

Wannier basis functions have to be chosen as similar as possible before the averag-

ing [42]. We therefore use WFs that are constructed simply by projecting the Bloch

states onto the same set of atomic-like trial orbitals without applying a subsequent

maximal-localization procedure [52, 53].

Similarly, to study the pressure-induced TPT in BiTeI, we carry out first-principles

calculations for the system at the zero-pressure volume, where it is topologically normal,

and also at 85.4% of the original volume, a value chosen somewhat arbitrarily to be well

inside the TI region [149]. We denote these two states as η= 0 and η= 1 respectively.

Then from the Wannier representation we again construct a realistic Hamiltonian for

each system, denoted as H0 and H1 respectively, including all the valence p orbitals

of Bi, Te and I. Finally we linearly interpolate these as H(η) = (1 − η)H0 + ηH1,

treating η as an adiabatic parameter that tunes the system through the topological

phase transition.

Using these Wannierized effective TB models, we can search for BTPs very efficiently

over the entire BZ. We first sample the irreducible BZ using a relatively sparse k mesh,

e.g., 20×20×20, and find the point k0 having the smallest direct band gap on this

mesh. A second-round search is conducted by scanning over a denser k mesh within a

sphere centered on k0. We then repeat the procedure iteratively until convergence is

reached. All of the trajectories of Weyl nodes presented in Sec. 4.4 are obtained using

this approach.
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Figure 4.2: Smallest direct band gap in the BZ vs. composition x for (a) LaBi1−xSbxTe3

and (b) LuBi1−xSbxTe3. Dashed gray line marks our chosen threshold of 0.2 meV to
signal a gap closure.

4.4 Results

4.4.1 LaBi1−xSbxTe3 and LuBi1−xSbxTe3

Band gap and Weyl chirality

For each of these materials we scan over a mesh in composition x, and for each x

we construct the Wannierized Hamiltonian for the corresponding solid solution within

the VCA. We then use the methods of the previous section to search for the BTPs in

the entire irreducible BZ. Plots of the smallest direct band gap in the BZ vs. x are

presented in Fig. 4.2. Clearly the gap remains closed over a finite range of x in both

cases, from 38.5% to 41.9% for LaBi1−xSbxTe3 and 40.5% to 45.1% for LuBi1−xSbxTe3.

By checking the dispersion around the gap-closure point, we confirm that the system

is semimetallic with the Fermi level lying at a set of degenerate Weyl BTPs over this

entire range.
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Figure 4.3: Determinant of the Jacobian matrix evaluated at Weyl nodes with positive
(red) and negative (black) chirality vs. composition x, for (a) LaBi1−xSbxTe3 and (b)
LuBi1−xSbxTe3.

To illustrate the topological character, we further calculate the chirality of the BTPs,

which is given by the determinant of the Jacobian matrix Jij = ∂fi/∂kj . Fig. 4.3 shows

how det(J) varies with x for the BTPs in LaBi1−xSbxTe3 and LuBi1−xSbxTe3. The

red and black open circles mark the values of det(J) for the BTPs with positive and

negative chirality, which are mapped into each other by mirror operations about the

kx = 0 and other equivalent mirror planes. One can see that at the beginning of the

band touching, the chirality starts at zero, indicating the creation of a quadratic BTP.

As x increases, each quadratic BTP splits into two Weyl nodes with opposite chirality.

These then migrate through the BZ and eventually annihilate each other at the point

where the chirality returns to zero.

Symmetry considerations

As mentioned earlier, the point group of this class of materials is C3v, which has a 3-fold

rotation axis along kz and three mirror planes that contain the kz axis and intersect
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Figure 4.4: Trajectories of Weyl nodes in the (kx, ky) plane (in units of Å−1). Dashed
red lines indicated Weyl nodes of positive chirality; solid black lines are negative. The
‘*’ and ‘⊕’ denote respectively the points of creation or annihilation of Weyl nodes. (a)
For LaBi1−xSbxTe3. (b) For LuBi1−xSbxTe3.

the kz = 0 plane on the lines kx = 0 and ky =±kx/
√

3. We define an azimuthal angle

θ that measures the rotation of (kx, ky) from the +ky axis in the clockwise direction

as shown in Fig. 4.4(a). As a result of the three-fold rotational symmetry, if a Weyl

node with positive chirality appears at some θ in the region 0 ≤ θ ≤ π/3 and at

some kz in the upper half BZ, then there must be another two nodes with the same

chirality and the same kz located at θ + 2π/3 and θ − 2π/3. Taking into account the

mirror symmetry, these must have negative-chirality partners at the same kz but at −θ,

−θ + 2π/3 and −θ − 2π/3. Finally, because of TR symmetry, each Weyl node at k is

always accompanied by another at −k with the same chirality, giving six more Weyl

nodes in the lower half BZ. We thus generically expect a total of twelve Weyl nodes in

the entire BZ for compositions x in the region of the WSM phase.

Weyl trajectories

Figure 4.4 shows the trajectories of the Weyl nodes in LaBi1−xSbxTe3 and LuBi1−xSbxTe3

projected onto the (kx, ky) plane as x passes through the critical region. The red dashed

line represents the trajectory of Weyl nodes with positive chirality, while the solid black



115

one denotes those with negative chirality, and the “*” and “⊕” denote the creation

and annihilation points of the Weyl nodes respectively. As x increases, six quadratic

BTPs are simultaneously created in the mirror planes; this occurs at xc1 = 38.5% for

LaBi1−xSbxTe3 and 40.5% for LuBi1−xSbxTe3. Each quadratic BTPs then splits into

two Weyl nodes of opposite chirality, and these twelve nodes migrate along the solid

black and dashed red lines shown in the figure. Eventually, after exchanging partners,

the Weyl nodes meet and annihilate each other in another set of high-symmetry planes

(ky = 0 and other equivalent planes), at xc2 = 41.9% for LaBi1−xSbxTe3 and 45.1% for

LuBi1−xSbxTe3.

Figure 4.5(a)-(b) shows the trajectory of the Weyl nodes in the kz direction. At

x = xc1, six quadratic BTPs are created, three in the top half-BZ and three in the

bottom half-BZ, but all of them fairly close to the BZ boundary plane at kz =±π/c.

As x increases, the six BTPs split to form twelve Weyl nodes, and these begin to move

toward the above-mentioned BZ boundary plane. Finally, after interchanging partners,

Weyl nodes of opposite chirality annihilate in pairs at xc2 on the BZ boundary plane

at kz =±π/c. For x > xc2 a global gap opens up and the system is again an insulator

but with an inverted Z2 index.

The locus of Weyl points can be regarded as forming a loop in the 4D space of

(kx, ky, kz, x), and just as this loop can be projected onto kz as in Figs. 4.5(a-b), it can

also be projected onto the direction of impurity composition x as shown in Figs. 4.5(c-

d). Again, it is clear that the Weyl nodes are created at xc1 in the mirror planes and

annihilated at xc2 at θ=±π/6. These plots may also be helpful in seeing how the high

six-fold symmetry contributes to the narrowness of the WSM region. If the symmetry

of the system were lower, the period of oscillation in θ in Figs. 4.5(c-d) would be longer,

which would allow the Weyl nodes to oscillate farther in the x direction, giving a wider

window of concentration for the WSM phase. In contrast, a fictitious system with an

N -fold rotational symmetry would force the width of the WSM region to vanish as
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Figure 4.5: (a-b): Trajectories of Weyl nodes in the kz direction (in units of Å−1) for
(a) LaBi1−xSbxTe3 and (b) LuBi1−xSbxTe3. Dashed red (solid black) lines refer to the
Weyl nodes with positive (negative) chirality. θ is the azimuthal angle in the (kx, ky)
plane, as indicated in Fig. 4.4(a). The “*” and “⊕” denote the creation and annihilation
point of the Weyl nodes respectively. (c-d): Trajectories of Weyl nodes in the direction
of impurity composition x for (c) LaBi1−xSbxTe3 and (d) LuBi1−xSbxTe3.

N →∞. Here we have N=6, which is evidently large enough to limit the WSM phase

to a rather small interval in x.

Surface Fermi arcs

One of the most characteristic features of WSMs is the existence of Fermi arcs in the

surface bandstructure. Here we calculate the surface states using the surface Green’s-

function technique [7], which is implemented in the context of the VCA effective Hamil-

tonian in the Wannier basis. The surface BZ is sampled by a 64×64 k mesh, and the

surface spectral functions calculated on this mesh are then linearly interpolated to fit

a 128×128 k mesh. Fig. 4.6 shows the normalized surface spectral functions averaged

around the Fermi level for LaBi1−xSbxTe3 at x = 0.405 and for LuBi1−xSbxTe3 at
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Figure 4.6: Surface spectral function averaged around the Fermi level (kx and ky in
units of Å−1) for (a) LaBi1−xSbxTe3 at x=0.405, (b) LuBi1−xSbxTe3 at x=0.43.
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Figure 4.7: Bulk bandstructures of (a) LaBiTe3 and (b) LuBiTe3.

x=0.43. The averaging is done over an energy window of ±4.5 meV around the Fermi

energy, which is determined by the position of the bulk Weyl nodes. Six Fermi arcs

connecting the projected Weyl nodes of opposite chirality are visible, confirming the

existence of the WSM phase in these two solid-solution systems. Note that because

of the small projected bulk gap on the loops where the Fermi arcs reside, some non-

negligible spectral weight is visible even outside the Fermi arcs in Fig. 4.6, coming from

the artificial smearing of the Green’s functions.
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Simplified six-band model

In order to capture the essential physics in these materials, we construct a six-band

TB model to describe the interesting critical behavior. From the bandstructures plots

presented in Fig. 4.7, it is clear that the band inversion occurs around the Z point of

LaBiTe3 and LuBiTe3, so we focus our attention on the six states at Z closest to the

Fermi level. A symmetry analysis shows that these six states belong to two copies of

the two-dimensional Z6 irreducible representation (irrep) of the C3v group at Z, plus a

Kramers pair of one-dimensional complex-conjugate Z4 and Z5 irreps corresponding to

linear combinations of jz=±3/2 orbitals.

We thus build our six-band TB model out of basis states having the symmetry of

|pz, ↑〉 and |pz, ↓〉 on the Te atoms at the top and bottom of the quintuple layer, and

|px+ipy, ↑〉 and |px−ipy, ↓〉 combinations located on the central Te atoms. A schematic

illustration of the six-band model is shown in Fig. 4.8, where the top, bottom and cen-

tral Te atoms are denoted by Te1, Te1′ and Te2 respectively. First of all, six inter-layer

spin-independent hopping terms are included in the model. As shown in Fig. 4.8, we

consider the first-neighbor hopping between the central and top (bottom) Te atoms t1

(t2), the inter-QL (intra-QL) hopping between the top and bottom Te atoms t3 (t4),

and some further-neighbor hoppings tu and tv that are crucial in obtaining a nontrivial

Z2 index. Second, to capture the Rashba spin-splitting in the first-principles band-

structure, in-plane Rashba-like spin-dependent hoppings within the top and bottom Te

monolayers are included and are denoted by λ1 and λ2 respectively. For completeness,

the inter-layer first-neighbor Te1-Te2 (λ3) and Te1′-Te2 (λ4) Rashba-like hopping terms

are also included. Lastly, to reproduce the first-principles bandstructure better, we also

introduce first-neighbor spin-independent hopping terms within the Te1, Te2 and Te1′

monolayers, denoted by v1, v2 and v3 respectively. The onsite energies are also different

and are labeled by E1 for Te1, E2 for Te2, and E3 for Te1′. As our model is only

intended to be semiquantitative, we use the same model parameters to describe both
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Figure 4.8: Top: Schematic diagram of the inter-layer spin-independent hopping terms
in the six-band model. Orbitals on sites Te1, Te2, and Te1′ make up a quintuple
layer; A, B and C label in-plane hexagonal positions. Bottom: Phase diagram for the
topological behavior of the six-band model.

LaBiTe3 and LuBiTe3.

We take all of the parameters in the model to depend a scaling parameter δ that

drives the TPT. When δ is zero, the system is a trivial insulator; as δ increases, the

system becomes a topological insulator by going through a critical WSM. The depen-

dence of the parameters on δ defines a path in parameter space. It is important to note

that the width of the critical WSM region can be highly sensitive to this path, with an

improper choice sometimes leading to an extremely narrow WSM phase. Our choice is

specified in Table 4.1.

Table 4.1: Parameters of the six-band model (in eV).
t1 0.2− δ/4 λ3 0.15− δ/2 v3 0

t2 0.15− δ/4 λ4 0.12− δ/2 E1 0.1 + δ − 6v1

t3 δ tu 0.12 + δ/2 E2 −6v2

t4 0.1− δ/4 tv 0.06− δ/2 E3 −0.1− δ
λ1 0.24− δ/2 v1 0.05

λ2 0.2− δ/2 v2 0.1

Following the path we have chosen, a WSM phase is obtained for 0.067 eV< δ <

0.074 eV. As shown in Fig. 4.9(b), the smallest direct band gap in the BZ vanishes when

0.067 eV<δ < 0.074 eV, indicating the existence of BTPs in BZ. If one further checks

the position of the BTPs, one finds that when δ ≈ 0.067 eV, six quadratic BTPs are
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Figure 4.9: (a) Bulk bandstructure of the six-band model at δ= 0.09 eV. (b) Smallest
direct band gap in the BZ vs. δ. (c) Trajectory of Weyl nodes projected onto the (kx, ky)
plane. Dashed red (solid black) line refers to the Weyl node with positive (negative)
chirality. The “*” and “⊕” denote the creation and annihilation point of the Weyl
nodes respectively. θ is the azimuthal angle in the (kx, ky) plane. (d) Trajectory of
Weyl nodes along kz. Units of kx, ky and kz are Å−1.

created in the mirror planes, which then split into twelve Weyl nodes and propagate

in the BZ following the solid black and dashed red lines in Fig. 4.9(c) and (d). These

Weyl nodes eventually annihilate with each other at δ≈0.074 eV after exchanging part-

ners, which qualitatively reproduces the phase-transition behavior of the VCA effective

Hamiltonians very well. When δ>0.074 eV, the system becomes a strong TI. The bulk

bandstructure at δ= 0.09 eV in the TI phase is shown in Fig. 4.9(a), which very well

captures the low-energy dispersions around Z that were found in the first-principles

calculations.
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Figure 4.10: (a) Smallest direct band gap in the BZ of BiTeI vs. the pressure-scaling
variable η. (b) Surface spectral function of BiTeI in the WSM phase (at 55% of the full
pressure).

Discussion

To conclude this section, we would like to comment that the width of the WSM phase

depends on two ingredients. On one hand, as discussed above, it depends on the

symmetry of the system; other things being equal, the WSM interval tends to be wider

in systems with lower symmetry. On the other hand, even for fixed symmetry, it also

depends on the the detailed choice of path connecting the topological and trivial phases.

Choosing a different path may broaden or reduce the WSM region. For example, if one

artificially changes the strength of the atomic SOC strength in LaBiTe3 and LuBiTe3

in the Wannierized TB models, and scales the variation of the actual atomic SOC by a

single scaling parameter λ, then we find that the WSM region only shows up for λ in the

range of 76.8-77.3%, which is significantly narrower than for the VCA case. However,

if an average SOC is applied to the entire system, such that the SOC strength on Te

is artificially high and that on Bi is artificially low, we find that a much wider WSM

region results. Thus, it may potentially be possible to engineer the width of a critical

WSM phase if one can modify the transformation path, as by epitaxial strain, pressure,

or additional chemical substitution.
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4.4.2 BiTeI: revisited

In order to justify the discussion in Sec. 4.2.2, we revisit the TPT in BiTeI driven

by pressure. In our calculations, the pressure is applied by compressing the volume

of the primitive cell. The fully compressed volume V is taken to be 85.4% of the

original volume V0, such that the former is well inside the topological region [149], and

both the lattice vectors and atomic positions are relaxed at the compressed volume.

As discussed in Sec. 4.3.2, we searched for BTPs over the entire irreducible BZ for a

transitional Hamiltonian scaled as H(η) = (1 − η)H0 + ηH1 for 0 ≤ η ≤ 1, where H0

and H1 represent the Hamiltonians of the uncompressed and fully compressed BiTeI,

with even and odd Z2 indices respectively. As shown in Fig. 4.10(a), as the pressure is

increased from 0% to 100% (alternatively, as V is deceased from 100% to 85.4% of V0),

a semimetallic phase emerges for η in the range of about 54-56%.

The point group of BiTeI is the same as for LaBiTe3 and LuBiTe3, namely C3v.

Therefore, as explained in Sec. 4.4.1, one would expect the emergence of twelve Weyl

nodes in the entire BZ during the phase-transition process. The trajectories of the

Weyl nodes are plotted in Fig. 4.11(a-b). When η≈54%, six quadratic BTPs are first

created at the BZ boundary kz=π/c in the ky=0 and other equivalent high-symmetry

planes. These BTPs then split into twelve Weyl nodes which propagate along the

directions indicated by solid black (antimonopoles) and dashed red (monopoles) lines.

They annihilate each other in the three mirror planes after exchanging partners. Note

that in this case the system goes from a normal to topological insulator as η increases,

which is the reverse of the LaBi1−xSbxTe3 and LuBi1−xSbxTe3 cases.

The results shown in Fig. 4.11 support our conclusions in Sec. 4.2.2. In particular,

even though the torsion argument implies that the trajectories of the two Weyl nodes

which split off from a given quadratic BTP would never meet each other, a closed curve

is still formed in the 3D BZ of BiTeI through the interchange of partners among the

Weyl nodes.
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Figure 4.11: (a) Trajectories of Weyl nodes in the (kx, ky) plane (in units of Å−1).
Dashed red (solid black) lines indicate the trajectories of Weyl nodes with positive
(negative) chirality. The “*” and “⊕” denote the creation and annihilation point of
the Weyl nodes respectively. (b) Trajectory of Weyl nodes in the kz direction (units of
Å−1).

Fig. 4.10(b) shows the surface spectral function of BiTeI averaged around the Fermi

level for η=0.55, in the WSM phase. It is clear that there are six Fermi arcs extending

between the six pairs of projected Weyl nodes, which is again the hallmark of a WSM

phase.

We therefore conclude that a WSM phase does exist in the TPT of BiTeI, but it

occurs only within a narrow pressure range. If η is changed by 2.5%, the volume is

only changed by 0.39%, which might be difficult to measure experimentally. Again, the

narrowness of the WSM interval can be attributed in part to the high symmetry of the

system. However, as emphasized in the previous section, the width of the critical WSM

is also sensitive to the choice of path in parameter space. The critical WSM could get

broadened by choosing a different path, as for example by applying uniaxial pressure.

We leave this for a future study.
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4.5 Summary

In this chapter, we have investigated the nature of the TPT in a noncentrosymmetric TI

in the most general case. We find that an intermediate WSM phase is always present,

regardless of other lattice symmetries, as long as inversion symmetry is absent. We

discussed separately the cases in which the Jacobian matrix is rank-one or rank-two

when the gap first closes. In the rank-two case, each quadratic BTP would always split

into a pair of Weyl nodes, which annihilate each other after exchanging partners. If the

rank of the Jacobian is one, then the doubly-quadratic BTP in this case would either

split into four Weyl nodes, or else immediately be gapped out again, corresponding to

an “insulator-insulator transition.” However, in the latter case, the bulk Z2 indices are

not expected to change. Therefore, we conclude that Z2-even and Z2-odd phases of a

noncentrosymmetric insulator must always be separated by a region of WSM phase,

even if other symmetries are present.

To illustrate our conclusions, we have carried out calculations on specific noncen-

trosymmetric insulators. For LaBi1−xSbxTe3 and LuBi1−xSbxTe3 we have used Wan-

nierized VCA Hamiltonians to find a WSM phase in the region x≈38.5%− 41.9% and

x≈40.5%− 45.1% respectively. A six-band TB model was also constructed to describe

the topological and critical behavior in these materials. We found that the width of

the critical WSM phase can be highly sensitive to the choice of path in the parameter

space, suggesting that there is flexibility to engineer the WSM phase.

We have also revisited the TPT of BiTeI as a function of pressure, where previous

work suggested the absence of a WSM phase [148]. Using a carefully constructed

algorithm to search for the minimum gap in the full three-dimensional BZ, we found

that a WSM phase is indeed present over a narrow interval of pressure, although this

range may be so narrow as to make its experimental observation difficult.

In summary, we have clarified the theory of a general Z2-even to Z2-odd topological
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phase transition in a three-dimensional time-reversal-invariant insulator with broken

inversion symmetry, and demonstrated that an intermediate WSM phase must always

be present. We have also detailed the behavior of LaBi1−xSbxTe3 and LuBi1−xSbxTe3

as promising candidates for WSMs of this kind. While we have not considered disorder

or interactions explicitly, we expect our conclusions to survive at least for weak disorder

or interactions. Our work is a step forward in the general understanding of topological

phase transitions, and may provide useful guidelines for the experimental realization of

new classes of Weyl semimentals.
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Chapter 5

Spin-orbit spillage as a measure of band inversions in

insulators

From the previous chapters, we learned that a crucial concept in topological materials

is the so-called “band inversion”. Nontrivial band topology is usually associated with

an inverted order of bands somewhere in BZ. For example, as discussed above, in

Bi2Se3, the band inversion driven by spin-orbit coupling takes place at Γ. In this

chapter, we deal with such band inversions driven by spin-orbit coupling. We propose

a straightforward and effective approach for quantifying the band inversion induced

by spin-orbit coupling in band insulators. In this approach we define a quantity as

a function of wavevector in the Brillouin zone measuring the mismatch, or “spillage”,

between the occupied states of a system with and without SOC. Plots of the spillage

throughout the BZ provide a ready indication of the number and location of band

inversions driven by SOC. To illustrate the method, we apply this approach to the

two-band Dirac model, the 2D Kane-Mele model, a 2D Bi bilayer with applied Zeeman

field, and to first-principles calculations of some 3D materials including both trivial

and Z2 topological insulators. We argue that the distribution of spillage in the BZ is

closely related to the topological indices in these systems. Our approach provides a

fresh perspective for understanding topological character in band theory, and should

be helpful in searching for new materials with non-trivial band topology.
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5.1 Introduction

Spin-orbit coupling (SOC) is a relativistic effect originating from the interaction be-

tween the spin and orbital motions of electrons. It has played a key role in various

aspects of condensed-matter physics, including the electronic structure of solids and

the transport properties in mesoscopic systems [155, 156]. It has been known since

the 1950s that SOC can induce anisotropic spin splitting in some III-V semiconduc-

tors with the zinc-blende structure, known as the Dresselhaus splitting [155]. In 2D

and quasi-2D systems, the SOC resulting from the electric field perpendicular to the

2D plane gives rise to a Rashba splitting linear in k with interesting “helical” spin

textures [155, 156]. The SOC is also crucial in determining the transport behavior of

low-dimensional electronic systems. One famous example is the weak antilocalization in

spin-orbit-coupled 2D electronic systems, where the backscattering amplitudes interfere

destructively due to a geometric Berry phase [11] associated with the intrinsic SOC,

leading to a suppressed resistivity when an external magnetic field is absent [157]. SOC

is also responsible for spin precession in 1D and quasi-1D systems [156], the spin Hall

effect in paramagnetic metals [158], and numerous other effects.

The SOC has received renewed attention recently because of its central role in

the physics of topological insulators (TIs) and related topological states. Typically,

the transition from a topologically trivial to a non-trivial phase is accomplished by a

SOC-driven inversion of states of different symmetry at the conduction-band minimum

(CBM) and valence-band maximum (VBM). For example, such a SOC-driven topologi-

cal band inversion between Γ6-derived (s-like) and Γ8-derived (p-like) states at the zone

center is responsible for the quantum spin Hall (QSH) state observed in HgTe/CdTe

quantum wells [28, 89]. Similarly, the Kane-Mele model of 2D graphene-like systems

[27, 26] enters the QSH state when two band inversions occur at the K and K′ points as

the SOC strength is increased at a constant staggered potential. In 3D band insulators

with time-reversal (TR) symmetry, a SOC-induced band inversion can transform the
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system from a trivial insulator into a strong TI displaying an odd number of gapless

Dirac cones in the surface states, as occurs for Bi2Se3 and Bi2Te3 [33, 34, 111, 36].

In the case of a 3D strong TI with inversion symmetry such as Bi2Se3, the strong

Z2 index can be uniquely determined by the parities of the occupied bands at the TR-

invariant momenta (TRIM) in the Brillouin zone (BZ) [90]. If the highest occupied

states and lowest unoccupied states at one of the TRIM possess opposite parities with-

out SOC, and they are inverted by turning on SOC, then the system transforms from

a normal to a topological insulator. For example, in Bi2Se3, two pairs of Kramers-

degenerate occupied states at the BZ center (Γ) are inverted by SOC, resulting in the

nontrivial Z2 index. For TIs without inversion symmetry, the band inversion may hap-

pen at arbitrary points in the BZ, instead of at the TRIM. We can identify such band

inversion points as the points where a band touching occurs between valence and con-

duction bands as the SOC is adiabatically turned on; TR symmetry implies that an

inversion at k0 will always be accompanied by one at −k0. Even in the absence of

inversion symmetry, therefore, a band inversion driven by SOC is typically a hallmark

of the non-trivial topology in TIs with TR symmetry.

The SOC also plays a crucial role in giving rise to the Chern insulator (CI) state,

also known as the quantum anomalous Hall state, which can occur in 2D insulators

lacking time-reversal symmetry. The possibility of a CI state was first introduced by

Haldane [24], who constructed an explicit model that demonstrates the effect. Although

the Haldane model is a model of spinless Fermions on a honeycomb lattice, its key

feature is the presence of complex second-neighbor hoppings, which can be regarded

as arising from intrinsic atomic SOC through a second-order perturbation process in

a more realistic system of spinor electrons [159]. An example is a Bi bilayer with an

applied Zeeman field, as will be discussed below.

The concept of topological band inversion has been much discussed in the topological-

insulator literature, but in the absence of symmetry it may be difficult to recognize when
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a band inversion has actually occurred. The usual approach is to look at the symme-

try or orbital character at a high-symmetry point in the BZ where a band inversion

is suspected, but this only works if sufficient symmetry is present. Some authors have

tried to deduce the presence of band-inversion behavior by studying other properties of

the system, such as by looking at the qualitative shape of the bands near the symme-

try point [160], or even more indirectly, by studying the variation of the band-energy

differences with strain in the absence of SOC [161]. However, the reliability of such

methods is questionable, as they do not give a direct and quantitative evaluation of the

SOC-induced band inversion.

In this chapter, we propose that the calculation of spin-orbit spillage, which mea-

sures the degree of mismatch between the occupied band projection operators with and

without SOC, provides a simple and effective measure of SOC-driven band inversion

in insulators. We demonstrate that the mapping of this spin-orbit spillage in k-space

easily allows a direct identification of any region in the BZ where band inversion has

occurred, and that the maximum spillage is a useful indicator of topological charac-

ter. We illustrate the method in the context of both tight-binding models and realistic

first-principles calculations.

This chapter is organized as follows. In Sec. II the formal definition of SOC-induced

spillage is introduced, and the correspondence between topological indices and spillage

is also discussed. In Sec. III the formalism is applied to various systems, including

the two-band Dirac model, 2D Kane-Mele model, a Bi bilayer with tunable SOC and

exchange field, and realistic materials including Bi2Se3, In2Se3, and Sb2Se3. In Sec. IV

we make a brief summary.
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5.2 Formalism

5.2.1 Definitions

Mathematically, the mismatch between two projection operators P and P̃ , both of rank

N , can be represented by a quantity

γ = N − Tr[PP̃ ] = Tr[PQ̃] = Tr[QP̃ ] (5.1)

where Q = 1−P and Q̃ = 1− P̃ denote the complementary projections. This measure

of mismatch is often referred to as “spillage” since it measures the weight of states that

spill from P into Q̃, or equivalently, from P̃ into Q. Clearly the spillage vanishes if

P = P̃ at one extreme, and rises to N at the other extreme if there is no overlap at all

between the subspaces associated with P and P̃ . Thus, the spillage provides a measure

of the degree of mismatch between the two subspaces.

Here we apply this concept to the band projection operators

P (k) =

nocc∑
n=1

|ψnk〉〈ψnk| (5.2)

associated with a given wavevector k in the BZ of a crystalline insulator with N =

nocc occupied bands. We assume an effective single-particle Hamiltonian such as that

appearing in density-functional theory (DFT) [3, 4]. Then the SOC-induced spillage

γ(k) is defined as

γ(k) = Tr[P (k)Q̃(k)] (5.3)

where P and P̃ (and their complements) refer to the system with and without SOC

respectively. More explicitly,

γ(k) = nocc − Tr[P (k)P̃ (k)]

= nocc −
nocc∑
m,n=1

|Mmn(k)|2 (5.4)

where

Mmn(k) = 〈ψmk|ψ̃nk〉 (5.5)
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is the overlap between occupied Bloch functions with and without SOC at the same

wavevector k. Equivalently, this can be written as Mmn(k) = 〈umk|ũnk〉 if one prefers

to work in terms of the cell-periodic |unk〉 defined as unk(r) = e−ik·rψnk(r).

In the case of realistic DFT calculations in a plane-wave basis, the overlap matrix

elements are easily evaluated as

Mmn(k) =
∑
G

〈ψmk|k + G〉〈k + G|ψ̃nk〉 , (5.6)

where |k + G〉 is the plane wave ei(k+G)·r for reciprocal vector G normalized to the

unit cell. The evaluation should also be straightforward in other first-principles basis

sets. For simple lattice models the Hamiltonian is typically written in an orthonormal

tight-binding basis, so that the wavefunctions are

|ψnk〉 =
∑
j

Cnj,k |χjk〉 (5.7)

where |χjk〉 are the Bloch basis states

χjk(r) =
∑
R

eik·R ϕj(r−R) (5.8)

and ϕj(r −R) is the j’th tight-binding basis orbital in unit cell R. Then the spillage

is trivially computed using

Mmn(k) =
∑
j

C∗mj,kC̃nj,k . (5.9)

Since the use of Wannier interpolation methods [53, 10, 9] is becoming increasingly

frequent, we also comment on this case here. In this approach, the occupied Bloch

states are again written as in Eq. (5.7), but this time the Bloch basis states are

χjk(r) =
∑
R

eik·Rwj(r−R) (5.10)

where wj(r−R) is the j’th Wannier function in unit cell R. Then the spillage is again

computed using Eqs. (5.4) and (5.9). This will be accurate as long as the WFs for the

systems with and without SOC are chosen to be the same, or as similar as possible. As
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we shall see in the following section, the results from the Wannier basis match those of

the direct plane-wave calculation very closely for the cases studied here.

In the case of complex unit cells or supercells with many bands near the gap, it

may be difficult to identify precisely which bands have been inverted by the SOC.

In this case it may be helpful to define a valence-band-resolved spillage as γn(k) =

[L(k)L†(k)]nn, where Lnm(k)= 〈ψnk|ψ̃mk〉 is the overlap matrix between the occupied

states without SOC and the unoccupied states with SOC. Then the total spillage is

γ(k) =
∑nocc

n=1 γn(k). Similarly, γ̄m = (L†L)mm provides a conduction-band-resolved

spillage. However, it should be noted that γn and γ̄m are not gauge-invariant; they

will change under a unitary transformation among the occupied or unoccupied states.

A natural gauge choice is the one associated with the singular-value decomposition

L=V ΣW †. Transforming the sets of occupied and unoccupied states according to the

unitary matrices V and W respectively, the overlap matrix between the transformed

states is just Σ, which is real and diagonal. The columns of V (W ) corresponding to the

leading eigenvalues indicate which linear combinations of valence (conduction) states

contribute the most to the total spillage. We leave the exploration of these refinements

for a future study.

5.2.2 Relation to topological character

Here we argue that the presence of non-trivial topological indices will be reflected in

certain features of the spillage distribution in the BZ.

We first consider the relatively simple case in which the SOC-driven band inversion

is associated with the crossing of highest valence and lowest conduction states belonging

to two different irreducible representations (irreps) at a high-symmetry point k=Λ0 in

the BZ. Since the states belonging to different irreps have no overlap with each other,

the spillage at Λ0 must be greater than or equal to the irrep dimension. In TR-invariant

Bi2Se3, for example, the four states around the Fermi level at Γ consist of two Kramers
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doublets of opposite parity. In this case the dimension of the irreps is two, so we expect

a peak in γ(k) centered at Γ whose height is γmax≥2. As we shall show in Sec. 5.3.4,

this is exactly what we find in Bi2Se3.

Next, we argue that a correspondence between topological character and spillage

should also remain valid for more general cases without special lattice symmetry. Let

us first consider the case of CIs (i.e., with broken TR symmetry). We assume the

Bloch functions ψnk are those of a normal system with Chern number C = 0, while

ψ̃nk are topologically nontrivial with a nonzero Chern number C̃. We argue that this

implies the existence of at least one point in the BZ where the spillage is ≥ 1. If we

assume the contrary, i.e., γ(k) < 1 everywhere in the BZ, then the determinant of the

overlap matrix of Eq. (5.5) between ψnk and ψ̃nk obeys det(Mk) > 0 everywhere, since

a singular M would imply γ ≥ 1. Because the system |ψnk〉 is topologically normal, we

know it is possible to choose a smooth and periodic gauge for it, and we assume without

loss of generality that this has been done. But if Mk is nowhere singular, the |ψnk〉 can

be used as “trial functions” to construct a smooth and periodic gauge for the |ψ̃nk〉, as

follows. At each k, carry out a singular value decomposition to express M = V †ΣW

(V and W are unitary and Σ is real positive diagonal), and then use the unitary matrix

V †W to transform the original ψ̃nk to a new set ψ̃′nk. Then M = V †ΣV , i.e., it is

Hermitian and positive definite. Intuitively, this means that a smooth and periodic

gauge has been chosen for the states ψ̃′nk to make them “maximally aligned” with the

states ψnk. But a smooth and periodic gauge is inconsistent with a nonzero Chern

number, completing the proof by contradiction. Thus, if γ < 1 everywhere in the BZ,

then Mmn,k is nonsingular everywhere, and the system |ψ̃nk〉 is normal. Conversely, a

topological system must have γ(k) ≥ 1 somewhere in the BZ, which provides both a

signal for the topological phase and an indication of where in the BZ the band inversion

has occurred.

For the TR-invariant Z2 TIs, similar arguments can be put forward that work even



134

in the absence of inversion symmetry. If the system of |ψnk〉 is in the Z2-even phase, one

can always make a smooth gauge choice over the entire BZ that respects TR symmetry.

In the Z2-odd case, however, such a gauge choice does not exist [56, 57]. Therefore,

det(Mk) must vanish somewhere in BZ, or else the smooth gauge could be transferred to

the |ψ̃nk〉, resulting in a contradiction. Due to the TR symmetry, det(Mk) = det(M−k),

so one would generically expect γ(k)≥ 1 at two points (k0 and −k0) in the BZ. For

the case of inversion-symmetric TIs, k0 and −k0 merge at one of the TRIM, the two

spillages add up, and one expects γ ≥ 2 at one of the TRIM.

In the following section, we numerically test and confirm the above arguments by

applying the formalism to systems in different topological phases.

5.3 Applications

5.3.1 Application to two-band Dirac Hamiltonian

As a warm-up exercise, we first apply the spillage formula to a minimal model of a band

inversion in 2D (kx, ky) space, namely a Dirac model at half filling as described by the

Hamiltonian

H=m(1− λ)σz + kxσx + kyσy (5.11)

where σj are Pauli matrices. Here m is a mass and λ is a control parameter that inverts

the bands at λ= 1. Physically, such a model may describe the low-energy physics in

the vicinity of a band touching event associated with the transition from a normal to

a quantum anomalous Hall insulator, or at one of the band touching events (at k0

or −k0) in the transition to a spin-Hall insulator. The energy spectrum of the above

Hamiltonian is E± = ±
√
m2(1− λ)2 + k2

x + k2
y, where the gap closes at λ = 1 at Γ

(kx=ky = 0). The spillage is just γ(λ,k) = 1 − |〈ψ0
1k|ψλ1k〉|2, where |ψ0

1k〉 (|ψλ1k〉) is the

occupied eigenstate at zero (non-zero) λ.

Figure 5.1 shows the spillage vs. kx at ky=0 as λ is increased from 0.4 to 1.9. When
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Figure 5.1: The spillage of the half-filled Dirac Hamiltonian as λ increases from 0.4 to
1.9.

λ= 0.4, the spillage is negligible almost everywhere, and is exactly zero at Γ. On the

other hand, when λ= 0.99, which is very close to the gap closure point, one finds two

peaks of spillage emerging on either side of Γ, with a peak value approaching 0.5 as

λ→ 1. As λ passes through the critical point at λ=1, one finds that the spillage at Γ

jumps from 0 to 1, and then gradually spreads out in BZ as λ is increased further.

This interesting behavior can be interpreted as follows. When λ= 0, the σz term

dominates around Γ, so that the pesudospin is mostly along the z direction around Γ.

On the other hand, if λ is very close to 1, the σx and σy terms dominate near (but

not exactly at) Γ, forcing the pseudospin direction to point in the (x, y) plane and

resulting in a spillage of 1/2. However, the σx and σy terms vanish at Γ, which means

the pseudospin has to point along the ±z direction. Therefore, when λ<1 (λ>1), the

pseudospin is parallel (anti-parallel) with the pseudospin direction at λ= 0, such that

the spillage jumps from 0 to 1 as λ passes through the critical point.

5.3.2 Application to the Kane-Mele model

The Kane-Mele model is a four-band TB model on a graphene lattice, including nearest-

neighbor (NN) spin-independent hoppings and both NN and next-NN spin-dependent



136

      
0

0.2

0.4

0.6

0.8

1

1.2

Γ M K M K
′ Γ

(a)

 

 

γ
(k

)

Γ

M K

K

K
′

M

M

      
0

0.2

0.4

0.6

0.8

1

1.2

Γ M K M K
′ Γ

γ
(k

)

 

 (b)

λR=0
λR=0.2t

Figure 5.2: Spin-orbit spillage of the Kane-Mele model in the QSH phase, with t= 1,
λso =0.1t, and ε=0.1t. (a) Spin-resolved spillage without Rashba coupling; solid (green)
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K′-Γ path used here (blue) and K-Γ-M-K path used in Fig. 5.3 (magenta). (b) Total
spillage without (solid line) and with (dashed line) Rashba coupling.

hoppings:

H=
∑
〈ij〉

tc†icj +
∑
〈〈ij〉〉

iλsoνijc
†
iszcj +

∑
〈ij〉

iλRc
†
i (s× d̂ij)zcj +

∑
i

ε(−1)ic†ici . (5.12)

Here spin is implicit, t is the NN spin-independent hopping amplitude, λso is the

strength of the next-NN non-spin-flip SOC, λR is the NN Rashba-like SOC ampli-

tude, and ε is the magnitude of on-site energy, with signs ±1 for A and B sublattices

respectively. Also, νij =±1 with the sign depending on the chirality of the next-NN

bond from site i to j, and d̂ij is the unit vector pointing from site i to its NN j. In this

model, λso competes with λR and ε, in the sense that λso tends to drive the system to

the QSH phase while λR and ε tend to retain the trivial band topology.

For simplicity, we first drop the Rashba coupling, so that spin is a good quantum

number. The system is in the QSH phase when 3
√

3λso > ε, and in the normal phase
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otherwise. Without the Rashba term, the Kane-Mele model can be considered as a su-

perposition of two copies of the Haldane model with opposite Chern numbers [24]. If one

calculates the 2D Chern numbers for spin-up and spin-down electrons separately, one

would find that the two Chern numbers are ±1 in the QSH phase. While the Haldane-

model system goes from a normal insulator to a CI via a band inversion at either the K

or K′ point, the Kane-Mele model transitions to the QSH state via simultaneous band

inversions at both K and K′, but for opposite spins at these two points.

The SOC-induced spillage without the Rashba term is shown in Fig. 5.2(a). In

this case the spins act independently, so the spin-up and spin-down spillages γσ(k) =

nocc/2 −
∑nocc/2

m,n=1 |Mnσ,mσ(k)|2 (where σ = {↑, ↓}) are shown separately. Clearly the

spin-up band inversion at K is responsible for γ↑= 1, and conversely at K′. The total

spillage γ(k) = γ↑(k) + γ↓(k) is shown by the solid line in Fig. 5.2(b). The symmetry

between the behavior at K and K′ has been restored by summing over spins. Note that

the peak values are γ = 1 exactly; the fact that they do not exceed one is an artifact

of the simplicity of the model. It is also interesting to note that in the absence of

time-reversal symmetry, the spin-resolved spillage is closely related to the van Vleck

paramagnetism in spin-orbit coupled systems.

When the Rashba coupling is included, as shown by the dashed line in Fig. 5.2(b),

spin is no longer a good quantum number, so that a spin decomposition is not well-

defined. As expected, adding the Rashba term does not significantly change the results

1; one still finds that the spillage reaches unity at K and K′ as before, providing an

indication of the spin-Hall phase.

5.3.3 Application to Chern insulators

We now consider the case of broken TR symmetry, so that the Z2 index is no longer

well-defined, but the possibility of CI phases appears. As discussed in Sec. 5.1, SOC is

1The k-dependence of the Rashba coupling terms is such that they vanish at K and K′.
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Figure 5.3: (a) Spin-orbit spillage of the Bi bilayer for C = 1 (dashed blue) and C =
−2 (solid red) phases, plotted along the K-Γ-M-K path (magenta path in inset of
Fig. 5.2(a)). (b) Spillage for C = 1 phase plotted in the 2D BZ (kx and ky in units of
Å−1). (c) Same for C=−2 phase.

important here as well. Here we study a buckled honeycomb Bi bilayer with a Zeeman

field applied normal to the plane, which can be regarded as having been cut from a 3D

Bi crystal on a (111) plane. The Bi (111) bilayer has been proposed as a candidate

for QSH insulator [91]. If a Zeeman field is further applied, it is possible to obtain

CI phases with Chern numbers C = 1 or C =−2 [162, 159]. To describe this system

we use a TB model based on Bi 6s and 6p orbitals, where the first-neighbor ss, sp,

ppσ, and ppπ hoppings, as well as the second-neighbor ppσ hoppings, are included. The

hopping parameters are taken from a TB model for 3D bulk Bi [163]. In order to obtain

non-zero Chern numbers, an on-site p-shell SOC (λSOC) and a Zeeman field (Hz) are

further applied. It turns out that if Hz is fixed at 0.8 eV, then the phases with C=−2

and +1 are realized at λSOC =2.4 eV and 0.6 eV respectively. If the SOC is completely

turned off, C=0.
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The spillage for the Bi bilayer is shown along a high-symmetry k-path in Fig. 5.3(a),

and as a distribution in the 2D BZ in Figs. 5.3(b-c), for the two parameter sets giving

the C = 1 and C =−2 phases. In both cases the spillage distribution is concentrated

at Γ, indicating a band inversion there, although it is much more sharply peaked in

the C = 1 case. Clearly the spillages provide a signature of the presence of a Chern-

insulator phase, including the location of the band inversion and the magnitude (but

not the sign) of the Chern number. Here again the peak values of the spillage are

exactly equal to the magnitude of the Chern number. For more realistic systems with

more bands included, the spillage can be expected to exceed these values slightly, but

a clear correlation between the peak values of spillage and the Chern number is still

expected.

5.3.4 Application to 3D topological insulators

In this subsection we apply our formalism to realistic first-principles calculations of

Bi2Se3, In2Se3 and Sb2Se3. Bi2Se3 is a well-known strong TI [36], where the SOC-

induced band inversion takes place at Γ. We also consider In2Se3 and Sb2Se3 in the

same crystal structure (known as β phase for In2Se3 and not realized experimentally for

Sb2Se3), which are theoretically predicted (and experimentally confirmed for In2Se3)

to be trivial insulators [36, 41, 40, 42]. Here it is interesting to note that even though

Sb and In have very similar atomic SOC strength, the substitution of In atoms tends

to drive Bi2Se3into a trivial-insulator phase much faster than does Sb substitution, due

to the existence of In 5s orbitals [42].

As shown in Fig. 5.4, the considered structure is rhombohedral, with two cations

and three Se atoms in the primitive unit cell. The five 2D monolayers are stacked

in an A-B-C-A-... sequence along the (111) direction to form quintuple layers (QLs).

Experimentally the in-plane hexagonal parameters are a=4.138 and 4.05 Å, and the QL

size is c=9.547 and 9.803 Å, for Bi2Se3 and In2Se3 respectively. In our calculations, we
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Figure 5.4: (a) Lattice structure of Bi2Se3. (b) The BZ of Bi2Se3; the spillage and
bandstructures shown in Fig. 5.5(a) and Fig. 5.6 are plotted along the black path.

take the experimental lattice parameters of Bi2Se3 and In2Se3, but relax their internal

atomic coordinates. As for Sb2Se3, because its rhombohedral structure is not adopted

in nature, both the lattice parameters and atomic positions are relaxed. The ground

state of rhombohedral Sb2Se3 is predicted to be a trivial insulator with a=4.11 Å and

c=10.43 Å.

We use the Quantum ESPRESSO package [117] to carry out first-principles cal-

culations on these systems both with and without SOC. The PBE generalized-gradient

approximation (GGA) is taken to treat the exchange-correlation functional [118, 119],

and norm-conserving pseudopotentials are generated from OPIUM package [121, 122].

The energy cutoff is taken as 65 Ry for In2Se3 and 55 Ry for Bi2Se3 and Sb2Se3, with

an 8×8×8 Monkhorst-Pack k mesh [123]. The wavefunctions defined in the plane-wave

basis are extracted from these calculations and Eq. ( 5.6) is applied to evaluate the

spillage.

As mentioned in Sec. 5.1, the spillage can also be calculated in the Wannier basis.

Starting from the first-principles calculations, we use the Wannier90 package [124] to
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construct Wannier functions (WFs) and a corresponding realistic TB model 2 for each

of the three materials. The basis WFs are constructed by projecting 30 atomic p trial

orbitals onto the Bloch subspace of p-like bands to generate a 30-band spinor model for

Bi2Se3 and Sb2Se3, whereas four additional In 5s projectors and bands are included in

the model for In2Se3. In order that they will retain their atomic-like identity as much

as possible, the projected WFs are not optimized to minimize the spread functional

[9]. We find that the WFs generated by this projection method are almost the same

for the systems with and without SOC, so that the matrix elements Mmn(k) defined in

Sec. 5.2.1 can be evaluated with good accuracy.

The spillage from the direct plane-wave calculations are shown as the solid lines

in Fig. 5.5(a). For Bi2Se3, the spillage γ(k) has a peak value of 2.12 at Γ, which is

slightly larger than 2, indicating that two Kramers degenerate bands at Γ have been

inverted by SOC. On the other hand, the effect of SOC in In2Se3 and Sb2Se3 seems to

be negligible everywhere in the BZ, which is consistent with the fact that they are both

trivial insulators.

The calculations carried out in the Wannier basis are shown by the dashed lines in

Fig. 5.5(a). The spillage is typically slightly larger for the direct plane-wave calculations,

since the fact that the WFs have a slightly different plane-wave representation with

and without SOC is not taken into account in the Wannier-based calculations. Still,

the qualitative features are the same, showing that the Wannier-based approach can

successfully provide the same kind of information about the nature and location of the

topological band inversion. In Fig. 5.5(b) we also show the spillage of Bi2Se3 in the

(kx, ky) plane at kz = 0, as calculated in the Wannier basis, which again indicates a

highly localized band inversion near Γ and is fully consistent with the expected picture

of the band inversion in Bi2Se3.

2The TB models from Wannier90 are constructed in such a way that the Wannier-interpolated
bandstructure reproduces the first-principles bandstructure exactly within an energy window centered
around the Fermi level.
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Color coding indicates weight of Sb 5p or Bi 6p orbitals.
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To see the band inversion from another perspective, we plot in Fig. 5.6 the bulk

bandstructures of Sb2Se3 and Bi2Se3 projected onto Sb 5p and Bi 6p orbitals respec-

tively. It is clear that for Sb2Se3, the Sb 5p orbitals are almost all concentrated in

the conduction bands, whereas in Bi2Se3 there is a localized region around Γ where

the corresponding Bi 6p orbitals contribute mostly to the top valence band. This is

precisely the region of the band inversion corresponding to the peak at Γ in Fig. 5.5.

5.4 Summary

To summarize, we have introduced the SOC-induced spillage γ(k) as a useful quantita-

tive tool for evaluating the degree of band inversion driven by SOC and mapping it as a

function of k in the BZ. We have applied this method to the two-band Dirac model, the

2D Kane-Mele model and a tight-binding model of a Bi bilayer with applied Zeeman

field, as well as to realistic materials including both trivial and topological insulators.

A clear correspondence between non-trivial topological indices and non-trivial spillage

distributions is evident. In the two-band Dirac model, one observes interesting behavior

in the distribution of spillage through a topological phase transition process. In the

Kane-Mele model, one gets two peaks of spillage at K and K′ with the peak value of

1, which indicates that a single band is inverted at these two points corresponding to

an odd 2D Z2 index. In the Bi bilayer with applied Zeeman field, a peak of spillage

shows up at Γ, with the peak value corresponding to the absolute value of the Chern

number. In Bi2Se3, the spillage is slightly greater than 2 at one of the TRIM, namely

Γ, implying that two bands are inverted by SOC there and signaling the presence of a

nontrivial strong Z2 index.

As mentioned above, other methods exist for the direct computation of topological

Chern and Z2 indices, with or without inversion symmetry [164, 90, 130], and we still

recommend these if a direct and definitive determination of the topological indices is

needed. However, the present spillage-based approach has the advantage of providing
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a BZ map of the strength, position, and degree of localization of the band inversion re-

sponsible for the topological character, thus giving valuable physical intuition about the

origin of the topological properties of the material in question. In addition, compared

with direct methods for topological index calculation, the spillage calculation only re-

quires the evaluation of overlaps between two wavefunctions at the same k point, which

is easy to implement and numerically very efficient. Therefore, it is our hope that

the calculation of SOC spillage will prove to be a widely useful tool that can be ap-

plied both for high-throughput screening for topological materials and for obtaining a

deeper understanding of the critical features of the bandstructures in known topological

materials.

This work was supported by NSF Grant DMR-10-05838. We appreciate valuable

discussions with Hongbin Zhang and Huaqing Huang.
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Chapter 6

Gauge-discontinuity contribution to the Chern-Simons

orbital magnetoelectric coupling

As discussed in Chapter 2, there is a geometric term in the magnetoelectric coupling

coefficient known as the “Chern-Simons term”, or the “θ term” (Eq. (2.82)-(2.83)).

In this chapter, we propose a new method for calculating the Chern-Simons orbital

magnetoelectric coupling coefficient. According to previous theories, θ can be expressed

as a 3D Brillouin-zone integral of the Chern-Simons 3-form defined in terms of the

occupied Bloch functions. Such an expression is valid only if a smooth and periodic

gauge has been chosen in the entire Brillouin zone. However, previous calculations show

that for systems expected to possess giant Chern-Simons magnetoelectric response, such

as topological insulators and systems derived from topological insulators, it is difficult

to get numeric convergence for the 3D integral. In order to resolve this problem, we

propose to relax the periodicity condition in one k direction (say, the kz direction)

so that some gauge discontinuity is introduced on a 2D k plane (normal to kz). The

total θ response is then contributed from both the integral of the Chern-Simons 3-form

over the 3D bulk BZ and the gauge discontinuity expressed as a 2D integral over the

k plane. Sometimes the 2D k plane where the gauge discontinuity resides may be

further divided into subregions by 1D “vortex loops”, which also contribute to the total

θ as Berry phases around the vortex loops. The total θ thus consists of three terms

which can be expressed as integrals over 3D, 2D and 1D manifolds. Interestingly, in

the presence of time-reversal symmetry, both the 3D and 2D integrals vanish due to

a time-reversal invariant gauge choice, and the 1D vortex-loop integral is proved to
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be either 0 or π, corresponding to the Z2 classification of 3D time-reversal invariant

insulators. Our method has been successfully applied to the Fu-Kane-Mele model with

applied staggered Zeeman field.

6.1 Introduction

As introduced in Sec. 2.2.3, the total magnetoelectric (ME) response is contributed

by two terms. The first term stems from lattice degrees of freedom, and the second

is from the electronic degrees of freedom with frozen ionic motions. Each of the two

contributions can be further divided into spin and orbital components. We are only

interested in the frozen-ion orbital ME coupling in this chapter. The frozen-ion orbital

ME coupling also consists of two terms. The first term is a conventional response

function known as the “Kubo term”. The second term is isotropic, and is completely

determined by the geometric property of the ground-state wavefunction, which is known

as the Chern-Simons term or the θ term [74, 71].

The Chern-Simons orbital ME coupling has drawn significant attention recently due

to the interest in topological phases of matter in condensed matter physics [34]. It has

been shown that for topological insulators (TIs) with time-reversal (T ) symmetry and

axion insulators with inversion (P) symmetry [165, 76], both the spin ME response and

the Kubo-like orbital ME response have to vanish due to the symmetries. However,

there is still an exotic isotropic ME response quantized as ±e2/2h in these two phases,

which is exactly the Chern-Simons term [166, 20, 76].

As mentioned in Sec. 2.2.3, the Chern-Simons coupling is conventionally scaled by

a dimensionless parameter θ via

αCS
ij =

θe2

2πh
δij . (6.1)

θ can be expressed as an integral of the Chern-Simons 3-form over the 3D Brillouin
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zone (BZ)

θ = − 1

4π

∫
d3k εabcTr [Aa∂bAc −

2

3
iAaAbAc] , (6.2)

where Aa, Ab and Ac are the Berry connection matrices of the occupied Bloch bands,

and the trace is taken over the occupied bands. For TIs and axion insulators, θ = ±π.

In the more general cases with the breaking of both T and P symmetries, θ is no longer

quantized as ±π, and other components of ME response would also contribute.

Despite the intriguing properties of the Chern-Simons coupling as discussed in detail

in Sec. 2.2.3, up to now it is still a challenging problem to accurately calculate θ using

Eq. (6.2) for a specific system. For example, as reported in Ref. [95], the calculated

θ for Bi2Se3, one of the prototype TIs, on a 11×11×11 first-principles k mesh is only

∼ 35% of π. In Ref. [20], the authors calculated the ME response of the Fu-Kane-Mele

model with applied staggered Zeeman field. As the system approaches to the TI phase,

however, the authors switched to some indirect methods to compute θ, because a direct

numeric implementation of Eq. (6.2) became difficult to converge. In other words,

despite the theoretical importance, Eq. (6.2) is not suitable for practical calculations.

The essential problem is that the integrand in Eq. (6.2) is gauge dependent. As

a result, in order to numerically implement Eq. (6.2) on a discrete k mesh, one has

to adopt a smooth and periodic gauge over the entire 3D BZ. On the other hand, as

is well known, a nontrivial topological indices usually brings some obstruction against

constructing a smooth and periodic gauge in the BZ. For example, for a 2D quantum

anomalous Hall (QAH) insulator (such as the Haldane model [24]) with non-zero Chern

number, it is just impossible to construct a smooth and periodic gauge in the entire

2D BZ. This implies Eq. (6.2) would completely break down for a 3D analogue of the

QAH insulators 1, which is thus beyond the scope of the present work. For 2D and

1A 3D analogue of QAH insulators is defined as a 3D insulator whose Chern number of each 2D
k slice in 3D BZ is non-zero and equals to each other. Such a system can be realized by stacking
QAH layers in the third spatial dimension, assuming that the inter-layer coupling is weak so that the
topologically nontrivial gap remains unclosed.
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3D Z2 TIs, it is impossible to construct a smooth and periodic gauge respecting T

symmetry throughout the BZ [56, 57], although in principle a smooth and periodic

gauge breaking T symmetry is allowed [57]. As a result of the topological obstruction,

for Z2 TIs, or for systems with strong spin-orbit coupling and are close to the Z2-odd

phase, the constriant of being both smooth and periodic is typically too strong such

that the gauge would have to be strongly twisted in the BZ to satisfy both conditions.

This makes the numeric implementation of Eq. (6.2) difficult.

In this chapter, we propose a new method to compute the Chern-Simons orbital

ME coefficient. The general idea is to relax the periodicity condition of the gauge

in one direction, say the kz direction, thus introducing some gauge discontinuity at

a 2D k plane (normal to kz) denoted by SGD. Then the total θ is the sum of the

bulk-BZ integral (Eq. (6.2)) and an extra contribution from the gauge discontinuity.

Furthermore, as will be shown in Sec. 6.4, SGD may also be divided into subregions by

1D “vortex loops” (Sec. 6.4.1), which contribute to the total θ as Berry phases around

the vortex loops. Then the total θ can be expressed as the sum of the 3D integral over

the bulk BZ (θBK), the 2D integral over the gauge-discontinuity plane (θGD) and the

1D integral(s) over the vortex loop(s) (θVL).

The above method may be generalized to the situations where the BZ is divided into

multiple subvolumes. These subvolumes meet at multiple 2D surface patches where the

gauge discontinuities reside. Furthermore, the 2D surface patches may meet at some

1D curves, defined as vortex lines. Again, the subvolumes, the surface patches and the

vortex lines should all contribute to the total θ. However, the definition of a vortex line

becomes trickier in this more generalized case, and we leave it for future study.

The advantage of our method is that the gauge can be made smoother in the bulk BZ

without worrying too much about the periodicity condition, so that it is much easier to

get numeric convergence using Eq. (6.2). The loss of periodicity is then compensated

by contributions from the gauge discontinuity expressed as 2D surface integrals and
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1D vortex-loop integrals. We will show that the formula for these two terms are very

simple, and are efficient for the purpose of numeric implementations.

This chapter is organized as follows. In Sec. 6.2, we review the definitions of Berry

connections, Berry curvatures and the bulk formula for θ. We also put the main idea

into a more specific context and make a formal statement of the problem. In Sec. 6.3,

we derive a formula for θGD, which is expressed as 2D integral over the boundary where

the gauge-discontinuity resides. We also discuss about the properties of the formula.

In Sec. 6.4, we give a formal definition of a vortex loop, and derive a formula for the

vortex-loop contribution to θ (θVL). We also show that the π quantization of θ in TIs

is purely contributed by the vortex-loop term. In Sec. 6.5, we apply the method to the

Fu-Kane-Mele model with a staggered Zeeman field. In Sec. 6.6, we make a summary.

6.2 Preliminaries

In this section, we first review the definitions of some basic quantities such as Berry

curvatures and Berry connections which will be frequently used in the chapter. The

bulk formula of θ Eq. (6.2) is written in a more explicit form. We also explain the main

idea in more detail, and make a formal statement of the problem and the goal.

6.2.1 Definitions

We adopt the following definitions. The Berry connection matrix is

Aa,mn(k) = i〈umk|∂a|unk〉 , (6.3)

where m and n run over the occupied bands and a and b run over {x, y, z}. Here the

wavevector components kx etc. are rescaled to run over [0, 2π]. We shall start dropping

the explicit k arguments and subscripts, keeping in mind that everything is a function

of k. Then the non-covariant Berry curvature tensor is

Ωab,mn = i 〈∂aum|∂bun〉 − i 〈∂bum|∂aun〉 , (6.4)
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and the covariant Berry-curvature tensor is

Ω̃ab,mn = Ωab,mn − i[Aa, Ab]mn . (6.5)

The Chern-Simons coupling θ has been defined in Eq. (6.2), where the trace is over

the occupied band indices. Using the cyclic property of the trace, Eq. (6.2) can be

written in a more explicit form

θ = − 1

4π

∫
d3k Tr

[
AxΩyz +AyΩzx +AzΩxy − 2i[Ax, Ay]Az

]
. (6.6)

We can also choose to write one of the Berry curvatures in gauge-covariant form:

θ = − 1

4π

∫
d3k Tr

[
AxΩyz +AyΩzx +AzΩ̃xy − i[Ax, Ay]Az

]
. (6.7)

Eq. (6.7) turns out to be convenient for the derivation of θGD, as will be shown in

Sec. 6.3.

6.2.2 Statement of the problem

Assume that one particular smooth gauge has been chosen in the region 0 ≤ kz < π and

a different one in the region −π < kz < 0. The gauge is constructed in such a way that

it smoothly evolves from one to the other at kz = 0, but with some gauge discontinuity

left at the kz = ±π plane. (The location of the boundary can easily be generalized.)

From now on k = (kx, ky) denotes a point in the 2D slice at kz = ±π, and |u(0)〉 and

|u(1)〉 denote the wavefunctions defined using the gauges at the “bottom” (kz = −π)

and “top” (kz = π) planes respectively. The corresponding Berry potentials are A
(0)
x

and A
(0)
y from the bottom plane, and A

(1)
x and A

(1)
y from the top plane. Moreover, we

know the unitary matrix U(k) relating the two gauges:

|ψ(1)
mk〉 =

∑
n

|ψ(0)〉nk Unm(k)

|u(1)
mk〉 = e−i2πz

∑
n

|u(0)
nk〉Unm(k) . (6.8)
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Our goal is to calculate the contribution θGD coming from this gauge discontinuity, such

that if we add this contribution to the bulk volume integral θBK as in Eq. (6.6), we get

the correct total θ. Later, we shall see that there may also be a contribution θVL from

vortex loops around which the gauge discontinuity circulates by an integer multiple of

2π, so that the total axion coupling is given by

θ = θBK + θGD + θVL , (6.9)

i.e., a sum of contributions evaluated on 3D, 2D, and 1D manifolds.

6.3 Calculation of θGD on a planar surface

In this section, we derive a formula for θGD and discuss various properties of the formula.

We assume, as above, that the gauge discontinuity occurs on the kz = ±π plane as

schematically shown in Fig. 6.1, and is described by the unitary matrices Uk as a

function of k lying in the 2D plane. We let

U(k) = e−iB(k) (6.10)

where B(k) is a Hermitian matrix that varies smoothly with k in the 2D plane. Note

that B(k) is basically just i ln(U(k)), but a set of branch choices is involved in picking

a particular B. That is, in the representation that diagonalizes B, we can add 2πnj

to the j’th eigenvalue without changing U (nj is an arbitrary integer). For now we

insist that the branch choice is made in such a way that B(k) is continuous, with no 2π

discontinuities in any of its eigenvalues throughout the 2D k plane, but this condition

will be relaxed in Sec. 6.4.
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top plane

bottom plane

Figure 6.1: A Schematic figure showing that a 2D plane with gauge discontinuity is
introduced into the 3D BZ. The two different gauge choices at the top and bottom
planes are then smoothly interpolated by introducing a fictitious parameter λ ∈ [0, 1]

6.3.1 Formalism

Our strategy is to introduce a parameter λ and define |umk(λ)〉 in such a way that it

smoothly interpolates from one gauge to the other (Fig. 6.1), i.e.,

|umk(λ)〉 = e−i2πz
∑
n

|u(0)
nk〉Wnm(k, λ) (6.11)

where

W (k, λ) = e−iλB(k) (6.12)

so that W (k, 0) = I and W (k, 1) = U(k). It is worth noting that W (k, λ) commutes

with B(k). We shall again dropping the k labels, and will frequently use W and B

below.

We then calculate the gauge-discontinuity contribution to θ, denoted by θGD, by

integrating Eq. (6.7) over the region λ ∈ [0, 1], where Eq. (6.7) is applied in (kx, ky, λ)

space instead of (kx, ky, kz) space. A straightforward set of calculations shows that

Ax(λ) = W †(λ)A(0)
x W (λ) + iW †(λ) ∂xW (λ) , (6.13)

Ay(λ) = W †(λ)A(0)
y W (λ) + iW †(λ) ∂yW (λ) , (6.14)

Aλ(λ) = B . (6.15)

where A
(0)
x(y) is the Berry connection evaluated at the bottom plane as defined earlier.
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Then we can write

θGD = − 1

4π

∫
d2k G(k) , (6.16)

where

G =

∫ 1

0
dλ Tr

[
AxΩyλ −AyΩxλ +AλΩ̃xy − i[Ax, Ay]Aλ

]
. (6.17)

We can then write G as the sum of three contributions, G = G1 +G2 +G3, where

G1(k) =

∫ 1

0
dλ Tr [B Ω̃xy] , (6.18)

G2(k) =

∫ 1

0
dλ Tr [AxΩyλ −AyΩxλ] , (6.19)

G3(k) =

∫ 1

0
dλ Tr

[
− i [Ax, Ay]B

]
. (6.20)

The G1 term is easy; because Ω̃xy is gauge-covariant, it follows that Ω̃xy(λ) =

W †(λ) Ω̃
(0)
xy W (λ) and since [B,W (λ)] = 0 the integrand is independent of λ, so that

G1(k) = Tr [B Ω̃(0)
xy ] . (6.21)

In order to evaluate G2 and G3, we need to evaluate objects such as ∂xW (λ) in

Eq. (6.13), which can be done by noting that the derivative of an exponential of a

matrix can be written as

∂xe
−iλM = −i

∫ λ

0
dµ e−i µM (∂xM)e−i (λ−µ)M . (6.22)

This motivates us to define

Bj(λ) =

∫ λ

0
dµ e−iµB Bj e

iµB , (6.23)

so that Eq. (6.12) gives

∂jW (λ) = ∂je
−iλB = −iBj(λ)W (λ) , (6.24)

where j = x, y. Then Eqs. (6.13-6.14) become

Aj(λ) = W †AjW , (6.25)
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where

Aj = A
(0)
j +Bj . (6.26)

Again, j = x, y, and the dependence on λ is implicit.

Now for the G2 term we need to compute terms like ∂λAx. Using Eq. (6.25) and

∂λW (λ) = −iBW (λ), it becomes

∂λAx = iW † [B,Ax]W +Bx . (6.27)

Recalling that Ωxλ = ∂xAλ−∂λAx and ∂xAλ = Bx, we get a nice cancellation, and can

write

Ωxλ = −iW † [B,Ax]W ,Ωyλ = −iW † [B,Ay]W .

Substituting these expressions into Eq. (6.20) then gives

G2(k) =

∫ 1

0
dλ Tr

[
2i B [Ax,Ay]

]
. (6.28)

As it happens, this is almost the same as the expression for G3 in Eq. (6.20). Since

B commutes with W we can use the representation-invariance and cyclic properties of

the trace to write it as

G3(k) =

∫ 1

0
dλ Tr

[
− i B [Ax,Ay]

]
. (6.29)

Thus, this term cancels half of G2. Restoring the explicit λ dependencies, we get

G = Tr
[
B
(

Ω̃(0)
xy + i

∫ 1

0
dλ [Ax(λ),Ay(λ)]

)]
, (6.30)

which is a remarkably simple result in the end.

Using Eq. (6.26), this can be written explicitly as

G(k) = Tr
[
B
(

Ω(0)
xy +Bx,y + i[Bx, A

(0)
y ]− i[By, A

(0)
x ]
)]

, (6.31)

where

Bx =

∫ 1

0
dλ Bx(λ) , (6.32)

By =

∫ 1

0
dλ By(λ) , (6.33)

Bx,y = i

∫ 1

0
dλ [Bx(λ), By(λ) ] . (6.34)
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Eq. (6.31) is one of our central results of this chapter.

We would like to make some remarks on the formula for θGD. First of all, it can be

analytically proved that the choice of “bottom” and ”top” surfaces (Fig. 6.1) is indeed

arbitrary (details not shown). In other words, the formula remains invariant under the

reverse of the integration direction along λ axis. Secondly, in the case that B(k) can

be made diagonal at all k (i.e., globally diagonal) 2, all the quantities such as W , Bx(y)

and Bx(y) commute with each other. Thus the only non-vanishing term in Eq. (6.31)

is G = G1 = Tr
[
BΩ

(0)
xy

]
. This is actually also the formula when there is only one

occupied band. Lastly, we would like to point out that the integration over the λ axis

can be carried out analytically in the basis that B(k) is locally diagonal (details given

in Appendix 6.7.2). Therefore only a 2D discrete integration over the k plane is needed,

which is numerically efficient.

In the following subsection, we discuss about the property of the formula for θGD

(Eq. (6.16) and Eq. (6.31)) in the presence of T symmetry. We show that for sys-

tems with T symmetry, if a TR-symmetric gauge has been chosen in the bulk BZ and

assuming that B(k) varies smoothly in the 2D k plane, both θBK and θGD must vanish.

6.3.2 Time-reversal symmetry

Let us consider the situation that the system has T symmetry, and that a smooth gauge

respecting T symmetry has been chosen in the bulk. For a general T -invariant system

with 2N occupied bands, one can always decompose the 2N bands into N Kramers

pairs. A gauge respecting T symmetry means that for the nth pair (n ≤ N), the

following relationship is satisfied:

T |unk,1〉=−|un−k,2〉

T |unk,2〉= |un−k,1〉 (6.35)

2It is unclear, however, how B can be made globally diagonal.
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where the indices “1” and “2” are the spin or pseudospin indices in each Kramers pair,

and T denotes the time-reversal operator. If the gauge choice in the bulk satisfies

Eq. (6.35), it turns out the Berry curvatures and Berry connections obey the following

relationship:

Ai(k)=σy

(
Ai(−k)

)T
σy,

Ωij(k)=−σy
(

Ωij(−k)
)T

σy (6.36)

where i, j = x, y, z label the components of k vectors. The Pauli matrix σy acts only

on the (pseudo) spin subspace, and the superscript “T” refers to matrix transpose.

Since the Berry curvature behaves as an odd function while the Berry connections

behave as an even function of k, it is easy to show that both Tr
[
Ai(k)Ωij(k)

]
and

Tr
[
iAi(k) [Aj(k), Ak(k)]

]
cancel their time-reversal partners at −k. Therefore, the

bulk integral θBK (Eq. (6.6) ) vanishes if a smooth T -symmetric gauge is chosen in the

bulk BZ.

In particular, at the boundary of the BZ where there is gauge discontinuity, the

wavefunctions at the bottom and top planes of the BZ are connected via T |u(0)
nk,1〉 =

−|u(1)
n−k,2〉, T |u

(0)
nk,2〉= |u

(1)
n−k,1〉 (k now is interpreted as wavevectors in 2D plane). With

such a T -symmetric gauge choice, the B matrix, the Berry connections, and the Berry

curvature satisfy the following relationship:

B(k) = σyB(−k)Tσy, (6.37)

A(0)
x (k) = σy

(
A(1)
x (−k)

)T
σy, (6.38)

A(0)
y (k) = σy

(
A(1)
y (−k)

)T
σy, (6.39)

Ω(0)
xy (k) = −σy

(
Ω(1)
xy (−k)

)T
σy (6.40)

Again, the superscript “(0)” and “(1)” refer to the quantities evaluated at λ=0 and λ=1

respectively. We claim that if Eq. (6.37)-(6.40) are satisfied, and if all the quantities

involved in the formula vary smoothly in the 2D BZ, then θGD must vanish, which will

be proved as follows.
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First of all, it is easy to see that the first term in Eq. (6.30) vanishes due to T

symmetry. Note that the gauge covariant Berry curvature Ω̃
(1)
xy =U † Ω̃

(0)
xy U and U=e−iB

commutes with B, so Tr
[
BΩ̃

(1)
xy

]
= Tr

[
BΩ̃

(0)
xy

]
. On the other hand, B transforms as

an even function of k while Ω̃xy transforms as an odd function of k. This leads to the

cancellation at k and −k for the G1 term.

The second term in Eq. (6.30) is trickier. First, from the representation-invariance

of the trace and the fact W = e−iλB commutes with B, we know that Tr
[
i B [Ax,Ay]

]
=

Tr
[
i B [A

(λ)
x , A

(λ)
y ]
]
. Then we claim that the Berry connection matrix at (kx, ky, λ) is

connected to that at (−kx,−ky, 1− λ) by a T transformation

A
(λ)
j (k)=σy

(
A

(1−λ)
j (−k)

)T
σy , (6.41)

where A
(λ)
j ≡ Aj(λ), with j = x, y, as defined in Eq. (6.13)-(6.14). Eq. (6.41) will be

proved in Appendix 6.7.3, but if one considers λ as the third wavevector component,

Eq. (6.41) is indeed very intuitive. Combing Eq. (6.41) and Eq. (6.25), it follows that:

η(k, λ) = −η(−k, 1− λ) , (6.42)

where

η(k, λ) = Tr
[
i B(k) [A(λ)

x (k),A(λ)
y (k)]

]
. (6.43)

Here A(λ)
x(y) ≡ Ax(y)(λ). Therefore, the integrand at (k, λ) and (−k, 1 − λ) cancel each

other, so that the second term in Eq. (6.30) also vanishes. It is therefore concluded that

if Bk varies continuously, both θBK and θGD vanish with a T -symmetric gauge choice.

To summarize this section, we have derived a formula for the gauge discontinuity

contribution θGD. The key result is shown in Eq. (6.16) and Eq. (6.30)-(6.31). We also

show that for a system with T symmetry, if a T -symmetric gauge choice is constructed

in the bulk, and if the branch choice is made in such a way that B(k) varies smoothly

over the entire 2D k plane, then both θBK and θGD must vanish. However, it is well

known that θ = π for Z2 TIs, then where is the quantized θ from? The answer is that in
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the Z2-odd case, it is impossible to insist a branch choice such that B remains smooth

throughout the (kx, ky) plane. In other words, the 2D k plane have to be divided into

some subregions so that the eigenvalues of B would be shifted by integer multiples of

2π when going from one subregion to another. The boundary of such 2D subregions

are called vortex loops. It turns out that for a Z2-odd TI, the contribution from such a

vortex loop is exactly π. We will elaborately discuss about the vortex-loop contribution

in the following section.

6.4 Vortex-loop contribution

In this section, we first propose a formal definition for a vortex loop in Sec. 6.4.1. In

Sec. 6.4.2, we derive a formula for the vortex-loop contribution θVL, which turns out to

be very simple. It only involves in the Berry phases of the electronic Bloch functions and

the “Berry phases” of the eigenvectors of B(k) around the vortex loops. In Sec. 6.4.3

we discuss properties of the formula for θVL. In particular, we show that in systems

with T symmetry, θVL must be either 0 or π, corresponding to the Z2 classification of

3D insulators with T symmetry.

6.4.1 What is a vortex loop

In Sec. 6.2.2 we suggested that the complete formula for θ should include three kinds

of contributions, as expressed by Eq. (6.9). Here we review the philosophy of the

calculation, and explaining why the third vortex-loop contribution θVL may be needed.

First, we choose a smooth gauge in the 3D bulk BZ, but the periodicity condition in

the kz direction is relaxed. Hence some gauge discontinuity is introduced at some 2D

boundary plane normal to kz. The 3D bulk integral (Eq. (6.2)) excluding the boundary

is the θBK term in Eq. (6.9).

Next, we identify the 2D boundary as SGD. Let us define SGD as a directed area with

surface normal n̂. In order to compute the integral over the 2D plane SGD, n̂ is chosen
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in such a way that x̂-ŷ-n̂ form a right-handed coordinate triad. The gauge discontinuity

in the n̂ direction is given by a unitary matrix U(k) = e−iB(k) which varies smoothly

with k lying in the 2D plane. Since the Hermitian matrix B(k) = i ln(U(k)) is involved

in the formula of θGD (Eq. (6.31)), a branch choice for B has to be made. If possible we

make a branch choice so that B(k) is smooth and continuous over the entire k plane,

but this may not always be possible or desirable. In that case SGD is divided into

subregions within each of which B(k) is smooth and continuous. The 2D contribution

θGD is then computed by integrating over each subregion using Eq. (6.30)-(6.31) of

Sec. 6.3.

Since the eigenvalues of B may exhibit abrupt 2π jumps as they vary from one

subregion to another, the behavior at the boundaries of the subregions, i.e., at the

vortex loops, is singular. Such vortex-loop contributions cannot be computed by the

formula for θGD, hence a new formula is needed to account for it.

Before deriving the formula for θVL, let us first propose a formal definition for a

vortex loop. As shown in Fig. 6.2, consider the case that a 2D plane is divided into two

subregions by a loop denoted as SGD and SGD respectively. We establish a convention

for the direction of integration along the loop by picking a unit vector t̂ tangent to the

loop as shown by the red arrow in Fig. 6.2 (a), and denote the directions of the two

surface normals in order of counter-clockwise circulation relative to t̂, as indicated by

the black arrows n̂a and n̂b in Fig. 6.2.

Let us take an arbitrary point k0 on the loop whose tangential vector is t̂(k0). Then

we take two k points lying on two different sides of, but infinitely close to k0, denoted

as k+
0 and k−0 respectively. One can define two U matrices Ua(k

+
0 ) and Ub(k

−
0 ). On

one side of the loop, the gauge discontinuity is described by Ua,mn(k+
0 ) = 〈u(0)

m |u(1)
n 〉=

( e−iBa(k+
0 ) )mn; while on the other side of the loop, following the circulation direction

around t̂(k0), the unitary matrix is Ub(k
−
0 ) = e−iBb(k

−
0 ) = U †a(k+

0 ). Obviously, ∆U =

Ua(k
+
0 )Ub(k

−
0 ) = 1. Now we are ready to ask if this loop is a vortex loop. We make a
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IV. VORTEX-LOOP CONTRIBUTION

In this section, we first propose a formal definition for a
vortex loop in Sec. IV A. In Sec. IV B, we derive a formula for
the vortex-loop contribution ✓VL, which turns out to be very
simple. It only involves in the Berry phases of the electronic
Bloch functions and the “Berry phases” of the eigenvectors
of B(k) around the vortex loops. In Sec. IV C we discuss
properties of the formula for ✓VL. In particular, we show that
in systems with T symmetry and the gauge in the bulk BZ is
chosen to respect this symmetry, ✓VL must be either 0 or ⇡,
corresponding to the Z2 classification of 3D insulators with T
symmetry.

A. What is a vortex loop

In Sec. II B we suggested that the complete formula for
✓ should include three kinds of contributions, as expressed
by Eq. (11). Here we review the philosophy of the calcula-
tion, and explaining why the third vortex-loop contribution
✓VL may be needed.

First, we choose a smooth gauge in the 3D bulk BZ, but the
periodicity condition in the kz direction is relaxed. Hence
some gauge discontinuity is introduced at a 2D boundary
plane normal to kz . The 3D bulk integral (Eq. (3)) exclud-
ing the boundary plane is the ✓BK term in Eq. (11).

Next, we identify the 2D boundary as SGD. Let us define
SGD as a directed area with surface normal n̂. In order to
compute the integral over the 2D plane SGD, n̂ is chosen in
such a way that x̂-ŷ-n̂ form a right-handed coordinate triad.
The gauge discontinuity in the n̂ direction is given by a unitary
matrix U(k) = e�iB(k) which varies smoothly with k lying in
the 2D plane. Since the Hermitian matrix B(k) = i ln U(k)
is involved in the formula for ✓GD (Eq. (33)), a branch choice
for B has to be made. If possible we make a branch choice so
that B(k) is smooth and continuous over the entire k plane,
but this may not always be possible or desirable. In that case
SGD is divided into subregions within each of which B(k)
is smooth and continuous. The 2D contribution ✓GD is then
computed by integrating over each subregion using Eq. (32)-
(33) of Sec. III.

Since the eigenvalues of B may exhibit abrupt 2⇡ jumps
as they vary from one subregion to another, the behavior at
the boundaries of the subregions, i.e., at the vortex loops, is
singular. Such vortex-loop contributions cannot be computed
by the formula for ✓GD, hence a new formula is needed to
account for it.

Before deriving the formula for ✓VL, let us first propose a
formal definition for a vortex loop. As shown in Fig. 2, con-
sider the case that a 2D plane is divided into two subregions
by a loop denoted as SGD and SGD respectively. We establish
a convention for the direction of integration along the loop by
picking a unit vector t̂ tangent to the loop as shown by the red
arrow in Fig. 2 (a), and denote the directions of the two sur-
face normals in order of counter-clockwise circulation relative
to t̂, as indicated by the black arrows n̂1 and n̂2 in Fig. 2.
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Figure 6.2: A schematic figure showing that there is a 2D k plane with gauge discon-
tinuity in the 3D BZ. Further more, the 2D plane is divided into two patches SGD and
SGD by a vortex loop (red line). The red arrow represents a vector that is tangential to
the vortex loop. The two black arrows n̂a and n̂b indicate the surface normals of SGD

and SGD respectively. (a) A 3D view, and (b) a side view

branch choice for B and define the quantity ∆B(k0)=Ba(k
+
0 ) +Bb(k

−
0 )= i lnUa(k

+
0 ) +

i lnUb(k
−
0 ). Since k+

0 and k−0 are infinitely close to each other, Ua(k
+
0 ) and Ub(k

−
0 )

share the same eigenvectors, thus commute with each other. This means e−i∆B(k0) =

e−i(Ba(k+
0 )+Bb(k

−
0 ) ) = e−iBa(k+

0 ) e−iBb(k
−
0 ) = 1. Therefore, the eigenvalues of ∆B(k0)

can only be an integer multiples of 2π. Then the loop is defined as a vortex loop if at

least one eigenvalue of ∆B is non-zero.

We would like to point out that the above definition applies only to the simple case

where there is one gauge-discontinuity plane in the BZ, and the vortex loops show up

as boundaries of the 2D subregions in the gauge-discontinuity plane. In more general

cases, a 3D BZ may be divided into multiple subvolumes, and these subvolumes meet

at multiple 2D surface patches with gauge discontinuities. These surface patches may

further meet at one or more vortex lines. Now the definition of a vortex line needs to

be generalized to a situation that the U matrices from different surface patches do not

commute with each other. We leave this more complicated situation to future study.

Certainly the presence or absence of vortex loops is dependent on branch choice.
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However, when the system is topologically nontrivial, the presence of vortex loops may

also be due to topological obstructions, and becomes independent of branch choice. To

be specific, if the system has neither T nor P symmetry (assuming vanishing Chern

number), then one can generally make a proper branch choice such that all the eigen-

values of B remain smooth throughout the 2D k plane. This is because in general the

eigenvalues of B are non-degenerate everywhere in the absence of T and P symmetries.

However, if either T or P symmetry is present, there must be degeneracy between

different eigenvalues of B at the four time-reversal invariant momenta (TRIM) in the

2D k plane 3. As a result, the topological property of the bulk Hamiltonian becomes

closely related to the number of vortex loops in the (kx, ky) plane. In the same vein

as the Z2 classification based on the number of surface Dirac cones [30], when there

is an odd number of vortex loops centered at an odd number of TRIM in the 2D k

plane, the system is Z2-odd, corresponding to a topological insulator for the case of T

symmetry, and an axion insulator for the case of P symmetry [76]. Otherwise when the

number of vortex loops is even, the system is topologically trivial. In the topologically

nontrivial cases (topological insulators and axion insulators), it is impossible to insist

on the smoothness for all the eigenvalues of B throughout the 2D k plane without

jumping to different branches. In principle the vortex loop can be made infinitesimally

small such that it shrunk to one of the TRIM, but it can never be removed due to

the symmetry-protected degeneracy at the TRIM. Therefore, we must consider the

contribution from the vortex loops in such topologically nontrivial phases.

On the other hand, the vortex loops may be present even in the topologically trivial

cases unless one makes a proper branch choice to remove them. In realistic calculations,

however, one usually adopts some default branch choice (e.g., from -π to π), which is

not necessarily the one that makes B globally smooth. Then one has to consider both

3Let us consider the gauge-discontinuity plane as an isolated 2D BZ without worrying about its kz
value.
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θGD and θVL. In this regard, it would be nice to have a formula for the vortex loop

contribution, so that one can evaluate the gauge-discontinuity contribution to θ at

arbitrary branch choices.

In the remainder of this section, we will derive a formula for θVL, and discuss

properties of the formula. We will show that in the presence of time-reversal symmetry,

our formula gives θVL = ±π in the Z2-odd case.

6.4.2 The formula for θVL

Let us first consider the topologically trivial case so that we can always find a proper

branch choice in which B remains smooth throughout the 2D plane. Assume this has

been done, now shift the nth eigenvalue of B by 2πν(n) within region S, thus creating

an artificial vortex loop C whose interior is S. The above operation is equivalent to

making a different branch choice. However, a physical quantity should not depend on

the branch choice of B, so θ should remain invariant after such an operation. Let us

denote the θ as θ0 before the operation; after the operation, θ= θ0 + θVL + θshift = θ0,

where θVL is the contribution from the vortex loop which we do not yet know how to

calculate, while θshift is the contribution from shifting the eigenvalues of B within the

subregion S. Therefore, the vortex loop contribution θVL must be equal (in magnitude)

and opposite (in sign) to θshift:

θVL = −θshift . (6.44)

We begin by considering a simple case in which only one of the eigenvalues of B is

shifted by 2π within S. We decompose B into a smooth part B0 and a extra contribution

from the 2π shift ∆B, B = B0 + ∆B. We choose to connect the states at the bottom

and top planes in two steps. In the first step,

|u(λ)〉 = e−iλ∆B|u(0)〉, λ ∈ [0, 1). (6.45)
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In the second step,

|u(λ)〉 = e−i(λ−1)B0 |u(1)〉, λ ∈ [1, 2]. (6.46)

Note that now the states at the top plane is |u(2)〉 instead of |u(1)〉. In the second step,

B0 is smooth over the entire 2D BZ. One can define λ′ = λ − 1, with λ′ ∈ [0, 1], then

the formula derived in Sec. 6.3 applies.

We assume without loss of generality that the first eigenvalue of B b1 jumps by 2π

in the subregion S. Then ∆B can be written as

∆B =


V ∆1 V

† if k ∈ S

0 otherwise

(6.47)

where ∆1 is a N×N matrix (N is the number of occupied bands), with (∆1)11 = 2π and

all the remaining matrix elements vanishing. V = (|v1〉, |v2〉, ..., |vN 〉) is the eigenvector

matrix of B0, with each column being one of the eigenvectors. Plug the expression of

∆B (Eq. (6.47)) into the expression of G (Eq. (6.31)), one would obtain a formula for

θshift, and θVL is simply the opposite of θshift. It turns out that many complicated terms

cancel each other, and eventually one obtains a surprisingly simple formula

θVL = −θshift =
(
φ1(C) + ξ1(C)

)
/2 , (6.48)

where φ1(C) is the Berry phase of |u(0)
1k 〉 around the vortex loop C. |u(0)

1 〉 =
∑N

m=1 |u
(0)
mk〉Vm1

is the first eigenstate which is unitarily transformed by V from the original gauge at

the bottom plane (λ = 0). ξ1(C) in the above equation is the “Berry phase” of |v1〉

around the vortex loop C, with |v1〉 being the first column vector of V . In other words,

ξ1 =

∫∫
S

Λxy,11 =

∮
C

C11 · dk (6.49)

where C = (Cx, Cy) can be considered as “Berry connections” in the gauge space,

Cx(y) = iV †∂x(y)V . (6.50)



164

Λxy is then the corresponding “Berry curvature”,

Λxy = ∂xCy − ∂yCx . (6.51)

The details of deriving Eq. (6.48) is given in Appendix 6.7.4.

In general, there may be multiple vortex loops {Ci, i = 1, ..L} in the 2D k plane,

and inside the ith vortex loop the nth eigenvalue of B may be shifted by 2πνn(i) (νn(i)

is an integer). Then Eq. (6.48) can be generalized in a straightforward manner

θVL =
∑
i

∑
n

(
φn(Ci) + ξn(Ci)

)
νn(i)/2 (6.52)

where φn(Ci) and ξn(Ci) are the two Berry phases of the nth Bloch states and the nth

eigenvector of B around the vortex loop Ci. Eq. (6.48), together with its generalized

form Eq. (6.52), is the other central result of this chapter.

In the above discussion, we only consider the situation when k is in the interior of

the vortex loop. If k lies exactly on the vortex loop, the partial derivatives of B behaves

as a δ function due to the abrupt 2π jump in the eigenvalues of B across the vortex

loop C. Therefore,

(V †Bx(y) V )mn = 2πνnδ(C)δmn (6.53)

However, because k lies exactly on the vortex loop, the eigenvector matrix V does not

vary. As a result Bx(y) and Bx(y) both commute with B, and Bx also commutes with

By. Therefore, there is no contribution from these δ functions exactly on the vortex

loop. It is confirmed that Eq. (6.52) is the final result.

6.4.3 Discussions

We continue discussing the properties of Eq. (6.52) in this subsection. We first show that

for a given branch choice, Eq. (6.52) is gauge invariant modulo 2π, which is consistent

with the 2π ambiguity of θ. Secondly we prove that Eq. (6.52) remains unchanged by

interchanging the two steps (Eq. (6.45) and Eq. (6.46)). Lastly we discuss the situation

with T symmetry, and come to the conclusion that θVL = ±π in the Z2-odd case.
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Gauge invariance

We would like to show that at a fixed branch choice, Eq. (6.48) and Eq. (6.52) are indeed

gauge invariant modulo 2π. First note that Eq. (6.52) involves the sum of the Berry

phases of |u(0)
n 〉 and |vn〉, so the only gauge freedom is a U(1) gauge transformation acted

on |vn〉. Let us apply a U(1) gauge transformation to |vn〉 such that |vn〉 → |vn〉eiβ(k)

. Then since |u(0)
n 〉 =

∑N
m=1 |u

(0)
m 〉Vmn, the same gauge transformation is also applied

to |u(0)
n 〉: |u(0)

n 〉 → |u(0)
n 〉eiβ(k) (Note that |vn〉 is a column vector whose mth element is

Vmn). Therefore, if the gauge transformation has a non-zero winding number (denoted

by J) such that ξn → ξn + 2πJ , φn has to be changed by 2πJ either. So it is concluded

that Eq. (6.52) is gauge invariant upto 2π.

Order of the two steps

In Sec.6.4.2, we decompose B into two parts B = B0 + ∆B, where B0 is the smooth

part and ∆B is the contribution from the 2π shift which is equal and opposite to the

vortex-loop contribution. Then B is treated in two steps in the fictitious λ space. The

first step is to deal with ∆B (Eq. (6.45)), and the second step is to treat the smooth

part B0 (Eq. (6.46)). Here we would like to show that Eq. (6.48) and Eq. (6.52) remain

correct even if the order of the two steps is reversed.

If the order is reversed, namely, if |u(λ)〉= |u(0)〉e−iλB0 for λ ∈ [0, 1) and |u(λ)〉=

e−i(λ−1)∆B|u(1)〉 for λ ∈ [1, 2], then Eq. (6.48) remains unchanged except that the

first term φ1 is interpreted as the Berry phase of |u(1)
1 〉, where |u(1)〉 = |u(1)〉V =

|u(0)〉 e−iB0 V . The Berry phases of |u(1)
1 〉 and |u(0)

1 〉 around the vortex loop C are

indeed exactly the same. This is because the overlap matrix between |u(1)〉 and |u(0)〉:

〈u(0)|u(1)〉 = V † e−iB0 V , is diagonal, whose nth diagonal element is e−ibn . It means

|u(1)
n 〉 = |u(0)

n 〉e−ibn . Since bn is smooth and single-valued everywhere in the 2D BZ, the

Berry phase would not change under such a single-band gauge transformation. There-

fore, Eq. (6.48) and Eq. (6.52) remain valid even if the order of the two steps (Eq. (6.45)
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and Eq. (6.46)) is reversed.

Time-reversal symmetry

We would like to prove that θVL must be either ±π or 0 in the presence of T symmetry.

Let us consider the simple case that there is only one vortex loop C in the 2D k plane,

and that only one of the eigenvalues of B (labelled as the first eigenvalue) is shifted

by 2π in the interior of the vortex loop. Suppose that a smooth gauge respecting T

symmetry has been constructed in the bulk so that both bulk integral θBK and surface

integral θGD (Eq. 6.9) vanish, as discussed in Sec. 6.3.2. Due to the T -symmetric

gauge (Eq. (6.35)), the B matrix must satisfy Eq. (6.37), with two eigenvalues being

degenerate at the four TRIM, i.e., (0, 0), (0, π), (π, 0) and (π, π). As a result, the vortex

loop C has to be a T -symmetric loop (Fig. 2.1(b)), which means for any k on the loop

C, −k is also on the loop. Then it is well known that the Berry phase around such a

T -symmetric loop enclosing a degeneracy point is ±π, as has been demonstrated in the

surface states of TIs and in systems with Rashba spin-orbit splitting. Therefore, it is

concluded that ξ1 = ±π in Eq. (6.48)

It can also be shown that φ1 ( Eq. (6.48)) is exactly the same as ξ1 as a result of T

symmetry. Let us make a branch choice such that the vortex loop is negligibly small.

Then the Berry connection of |u(0)
1 〉 can be expressed as

A
(0)
x,11 = i 〈u(0)

1 |∂xu
(0)
1 〉

= i

N∑
j,j′=1

V ∗j1〈u(0)
j |∂xu

(0)
j′ 〉Vj′1 + i

N∑
j=1

V ∗j1∂xVj1

= (V
†
A(0)
x V )11 + Cx,11 (6.54)

where N is the number of occupied bands, A
(0)
x is the Berry-connection matrix in the

bottom-plane gauge, and Cx is the “Berry connection” in the gauge space as defined in

Eq. (6.50). Assume the vortex loop is so small such that the variation of |u(0)
1 〉 within

the vortex loop is negligible, then if follows that A
(0)
x = 0, which means Ax,11 is purely
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contributed by the gauge twist, i.e., A
(0)
x,11 = Cx,11. It follows that ξ1 = φ1 = ±π for

such a branch choice, and θVL = ±π according to Eq. (6.48).

The above argument remains valid even if the size of the vortex loop increases so

that the variation of |u(0)
1 〉 is no longer negligible. First, it should noted that the total

response θ = θBK + θGD + θBK is independent of the branch choice for B. On the other

hand, θBK and θGD identically vanish for a T -symmetric gauge (Eq. (6.35)), therefore

θVL must remain invariant regardless of the branch choice. In other words, given a

T -symmetric gauge in the bulk BZ, θVL must be quantized as ±π in the Z2-odd case

regardless of the size of the vortex loop, which means the total θ must be quantized as

±π.

The above statement remains valid for other gauge choices (rather than the T -

symmetric gauge), because the total θ is gauge-invariant modulo 2π. It is thus concluded

that for systems with T symmetry, when there is one vortex loop, our formula Eq. (6.52)

predicts that θ must be ±π.

The above discussion can be easily generalized to a more general case with multiple

vortex loops. Obviously when there is an odd number of vortex loops with an odd

number of 2π shifts in the eigenvalues of B, θ is still quantized ±π. If there is an even

number of vortex loops, they can either enclose an even number of TRIM or fall into

T partners without enclosing any TRIM. In both cases, θ = 0 modulo 2π.

6.5 Applications

In this section, we will apply our method to a specific physical model. We take the Fu-

Kane-Mele (FKM) model, which is a 4-band tight-binding model of s electrons on a 3D

diamond lattice with the spin-orbit coupling (SOC) showing up as the second-neighbor

hopping terms [30]. The model Hamiltonian is

H =
∑
〈i,j〉

tijc
†
icj + i8λSO

∑
〈〈i,j〉〉

c†i s · (d1
ij × d2

ij) cj , (6.55)
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where tij is the first-neighbor spin-independent hopping, λSO is the strength of spin-

dependent second-neighbor hopping generated by SOC. d1
ij and d2

ij are the two first-

neighbor bond vectors connecting two second-neighbor sites i and j. s = (sx, sy, sz)

are Pauli matrices representing the electronic spin. In the remaining of the paper, we

only consider the case of half filling, i.e., two occupied bands. Setting tij = t0 = 1

and λSO = 0.125, when the lattice symmetry is preserved, the system is a semimetal

with gap closures at the three equivalent X points in the BZ . An energy gap would

be opened up if a perturbation lowering the lattice symmetry is added, which could

be a topologically nontrivial gap. For example, when the first-neighbor hopping along

the [111] direction differs from the other three first-neighbor bonds, the system could

be either a trivial insulator or a topological insulator depending on the strength of the

bond distortion.

In order to test our formalism, we need to consider the general case without T

symmetry. Following Ref. [20], we apply a staggered Zeeman field with opposite signs

to the A and B sublattices of the diamond lattice. Moreover, the [111] first-neighbor

bond is distorted by changing the corresponding hopping amplitude from t0 to 3t0 + δ.

Both the Zeeman field strength h and the bond distortion strength δ are dependent on

a single scaling parameter β: h = m sinβ, δ = m cosβ. Now the Hamiltonian becomes

H(β) =
∑

〈i,j〉=[111]

(3t0 +m cosβ) c†icj +
∑

〈i,j〉6=[111]

t0 c
†
icj +

+i8λSO

∑
〈〈i,j〉〉

c†i s · (d1
ij × d2

ij) cj +m sinβ
∑
i

c†iτzci

(6.56)

where τz is the Paul matrix defined in terms of the two sublattices. When β = 0 and

π, the Zeeman field vanishes, but the system stays in two topologically distinct phases.

As β increases from 0 to π, the system varies smoothly from a trivial to a topological

insulator without closing the bulk energy gap.

Setting t0 = 1, λSO = 0.125, and m = 0.5, we first explore the behavior of the B
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Figure 6.3: 3D plots of the two eigenvalues (marked in cyan and red) of B(kx, ky) =
i lnU(kx, ky) for the Fu-Kane-Mele model at half filling: (a) when the system is a TI,
i.e., β=π, with the branch choice taken as (−5.5, 0.783]; (b) when β=0.95π, with the
branch choice (−5.5, 0.783]; (c) when β=π, with the branch choice (−0.785, 5.498]; and
(d) when β = 0.95π, with the branch choice (−0.785, 5.498]. The vortex loops in (a)
and (b) are marked by red circles. The wavevectors kx and ky are defined in units of
2π.

matrix (Eq. (6.10)) in the (kx, ky) plane. As shown in Fig. 6.3(a), when the system is in

the Z2-odd phase (β = π), for a given branch choice (from -5.5 to 0.783) there is a single

vortex loop surrounding one of the TRIM (π, π). Within the loop, one of the eigenvalues

of B (in cyan) is shifted by 2π, while the other eigenvalue remains continuous. Moreover,

as a result of T symmetry, the two eigenvalues of B are degenerate at each TRIM,

leading to quantized Berry phases as discussed in Sec. 6.4.3. If T symmetry is broken,

e.g., when β = 0.95π, the two eigenvalues of B are no longer degenerate, even though

the vortex loop is still present for such a branch choice, as shown in Fig. 6.3(b).

As discussed in Sec. 6.4.1, when T symmetry is preserved and the system is in the
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Z2-odd phase, a vortex loop has to be present regardless of the branch choice. The

best one can do is to compress the vortex loop to one of the TRIM in the 2D plane.

This is illustrated in Fig. 6.3(c). When the branch choice is taken as (−0.785, 5.498]

for the Z2-odd case (β = π), the vortex loop is compressed to the point (π, π) in the

(kx, ky) plane. On the other hand, using the same branch choice, the vortex loop can

be removed if T symmetry is broken (β = 0.95π), which is shown in Fig. 6.3(d).

Using the method developed in Sec. 6.3 and Sec. 6.4 , we have calculated the total

axion response (θ) along the path from β = 0 to π by summing over θBK, θGD and

θVL. We would like to first explain the specific procedures for these calculations before

discussing any specific results. The parallel-transport technique [52] is heavily used

in these procedures, and we refer the readers to Appendix 6.7.1 for details about the

parallel transport. As discussed in previous sections, the basic idea is that we first

construct a smooth gauge in the bulk BZ, which is periodic only in the kx and ky

directions. Then we can extract the unitary matrix U(kx,ky) describing the gauge

discontinuity (Eq. (6.8)) by calculating the overlap between the Bloch states in the

top-plane and bottom-plane gauges. The logarithm of U(kx,ky) with a certain branch

choice would give us the B matrix. We also need to calculate the Berry curvature and

Berry connections either in the top-plane gauge or in the bottom-plane gauge. Then

all the formulae derived in previous sections can be applied.

To be specific, first we need to construct a smooth and periodic gauge on an arbitrary

(kx, ky) plane, say, the kz = 0 plane. In order to do this, we first construct the parallel-

transport gauge (see Appendix 6.7.1) along the ky direction at kx = 0, then make a

set of separate parallel transports from kx = 0 to kx = 2π at each ky, leaving some

gauge discontinuity at the line kx = 2π denoted by Y (ky) = e−iD(ky). We then apply

a local (in k space) unitary transformation R(kx, ky) = eikxD(ky)/2π to the occupied

states at each (kx, ky) to fix this discontinuity. In the above operation, we have insisted

the smoothness of the occupied states because the R matrix is defined to be smooth
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in the 2D plane (kz = 0); in the meanwhile the gauge discontinuity at the boundary

line (kx = 2π) is removed. After these operations, we have successfully constructed a

smooth and periodic gauge in the kz = 0 plane.

Taking the smooth and periodic gauge in the kz = 0 plane as a “reference gauge”, at

each (kx, ky) we further carry out two sets of parallel transports along the positive and

negative kz directions from kz = 0 to kz = ±π. However, now the periodicity condition

in kz is relaxed so that the states are as aligned to each other as possible in the kz

direction. This makes the numeric convergence of the bulk integral (Eq. (6.6)) much

easier. After such operations, we have constructed a gauge which is smooth everywhere

in the bulk BZ, and in the meanwhile remain periodic in the kx and ky directions. Some

gauge discontinuity is left at the plane kz = ±π, which is described by the U matrix

as introduced in Sec. 6.2.2. Now we are well prepared to apply the formulae derived in

Sec. 6.3 and Sec. 6.4 to specific physical systems.

The above procedures have to be implemented with caution if the system has T

symmetry and is in the Z2-odd phase. In this case, it is desirable to construct a

bulk gauge respecting T symmetry, so that both θBK and θGD vanish, and the only

contribution is from θVL. For a 3D strong TI, however, the 2D Z2 indices for the kz = 0

plane and the kz = π plane must be opposite. On the other hand, it is well known that

it is impossible to construct a smooth and periodic gauge respecting T symmetry in

the 2D BZ with an odd Z2 index [56]. Therefore, for a 3D strong TI, one has to first

select the Z2-even plane and construct a (smooth and periodic) T -symmetric gauge

on that plane as the reference gauge. As various numeric methods for computing Z2

indices have been proposed, and some of them have already been implemented in first-

principles code packages [130, 167], computing Z2 indices by itself (even in the absence

of P symmetry) is not difficult.

The axion response θ for the FKM model is shown in Fig. 6.4. As β increase

from 0 to π, the system evolves from a Z2-even to a Z2-odd phase without closing
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Figure 6.4: The axion response θ for the Fu-Kane-Mele model. The blue circle denotes
the total response. The red-diamond curve indicates the contribution from the gauge
discontinuity, including both the 2D surface integral (θGD) and the 1D vortex-loop
integral (θVL). The black crosses represent the contribution from the bulk integral
without enforcing periodicity in the kz direction.

the bulk energy gap. As a result, θ increases smoothly from 0 to π. It is helpful to

decompose the total θ into the bulk-BZ integral θBK and the rest θGD + θVL, which are

indicated by black crosses and red diamonds respectively. One finds that as β increases ,

θGD +θVL becomes more and more dominating. Eventually when β = π, θ is completely

contributed by the vortex-loop term and equals to π, because both θGD and θBK vanish

due to a T -symmetric gauge choice in the bulk.

It should be noted that none of the three terms θBK, θGD and θVL, is independently

gauge invariant. As the size of the vortex loop is dependent on the branch choice, in

general both θVL and θGD are branch-choice dependent unless there is any additional

constriant from special symmetries (e.g., T symmetry). However, for a given gauge

choice in the bulk BZ, the bulk integral θBK is fixed, therefore the sum of θVL and θGD

should be invariant.

The above statement is demonstrated in Fig. 6.5. The blue diamonds (black plus

signs) in Fig. 6.5 denote the difference between the values of θGD (θVL) calculated
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Figure 6.5: The difference between the θ values calculated with two different branch
choices (see text) for the Fu-Kane-Mele model. The blue diamonds, black plus signs,
and red circles denote the differences for θGD, θVL and θVL + θGD.

using two different branch choices (−2π, 0] and (−5.5, 0.783]. For the first branch

choice ((−2π, 0]), a vortex loop starts showing up when β = 0.35π; for the other

branch choice, however, the eigenvalues of B remain continuous throughout the 2D k

plane until β = 0.65π. It is clearly shown from Fig. 6.5 that both θVL and θGD are

branch-choice dependent. On the other hand, the red circles in Fig. 6.5 represent the

difference (between the two branch choices) for θGD + θVL, which remains vanishingly

small throughout the adiabatic path. It thus numerically tested that the sum of θVL

and θGD is invariant against different branch choices.

For a given branch choice, however, there is still freedom in choosing the bulk gauge.

In this regard, both θBK and θGD + θVL are dependent on the choice of the bulk gauge.

However, since the gauge choice in the bulk is constructed in such a way that in the

kz direction they remain as aligned to each other as possible 4, the bulk integral θBK is

typically small. This explains why θGD + θVL dominates over θBK in Fig. 6.4.

4We define two set of states at neighboring k points |unk〉 and |unk+δk〉 to be optimally aligned
if the overlap matrix Mmn(k) = 〈umk|unk+δk〉 is Hermitian, which can be obtained by a parallel
transport operation. If the states are optimally aligned everywhere in BZ, which can be obtained by
parallel transport without enforcing periodicity, the Berry connection vanishes everywhere, leading to
a vanishing bulk integral θBK.
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6.6 Summary

To summarize, we have developed a new method for computing the θ term. The basic

idea is to relax the periodicity condition for the gauge in one k direction, thus intro-

ducing some gauge discontinuity resided at a 2D planar surface. The total contribution

is then the sum of the 3D integral over the bulk BZ excluding the gauge-discontinuity

plane (θBK) and the contribution from the gauge discontinuity θGD, which is expressed

as a 2D integral over the 2D k plane as shown in Eq. (6.16) and Eq. (6.31). Furthermore,

depending on the branch choice of B(k) and the topological property of the system, the

2D k plane may be further divided into subregions by 1D vortex loops. In this case one

must also consider the vortex-loop contribution as expressed in Eq. (6.52). The total θ

is then θ=θBK + θGD + θVL.

As the periodicity condition in one k direction ( kz ) is relaxed, the states do not

twist as strong as in the case when both periodicity and smoothness are required. This

leads to much easier numeric convergence of the 3D bulk integral (Eq. (6.6)). The lost

of periodicity is compensated by extra contributions from gauge discontinuity (θGD)

and possible vortex loops (θVL). The formulae for both terms turn out to be simple,

which can be numerically implemented without much difficulty.

It is interesting to note that if a gauge respecting T symmetry has been constructed

in the bulk BZ for a T -invariant system, then both θBK and θGD vanish. The only

surviving term θVL is proved to be either 0 or π, depending on the topology of the

system. Our theory thus provides a new interpretation to the (formally) quantized

magnetoelectric response in TIs.

We have applied our method to the Fu-Kane-Mele model with applied staggered

Zeeman field. We calculated the axion response for the model along a path with broken

T symmetry connecting the Z2-even and Z2-odd phases. Our results agree well with

the previous results obtained from other methods [20, 168]. In particular, we find that
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the gauge-discontinuity contribution (θGD + θVL) becomes more and more dominating

as the system approaches the Z2-odd phase. In the TI phase, as mentioned above,θ is

completely contributed by the vortex-loop term for a T -symmetric gauge in the bulk

BZ, and the π quantization of θ is due to the π quantization of the Berry phases around

a single vortex loop.

Our method can also be generalized in such a way that a 3D BZ is divided into

multiple subvolumes. The subvolumes may meet each other at multiple 2D boundaries,

and these boundaries meet at curves which may be vortex lines. In such a more compli-

cated case, the formula for θGD still applies, but the definition of a vortex loop as given

in Sec. 6.4.1 has to be generalized to fit a situation that the two adjacent B matrices

around a vortex loop no longer commute with each other. Thus the formula for θVL

may need to be modified. We leave this for future study.

From theoretical point of view, the results presented in this chapter is a step forward

in understanding the orbital Chern-Simons ME coupling. We introduced the gauge-

discontinuity and vortex-loop contributions to θ, and derived formulae for them. We

illustrated that the π quantization of θ in TIs may be explained by the quantization of

Berry phases around vortex loops enclosing degeneracy points at the TRIM.

From the perspective of first-principles calculations, our method is numerically ef-

ficient. It can be implemented in standard first-principles code packages without much

difficulty. This makes it possible to accurately compute the Chern-Simons magnetoelec-

tric coupling for realistic materials, thus motivating the search for functional materials

with giant orbital magnetoelectric coupling.

This work is supported by NSF Grants DMR-14-08838.
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6.7 Appendix

6.7.1 Parallel transport

We discuss about how to carry out the parallel transport operation and construct a

parallel-transport gauge starting from a set of occupied eigenstates with random gauge

choice on a give k path. The basic idea is to make the (periodic part of ) Bloch states at

a particular point on a k path to be as aligned as possible to the states of the previous k

point. If the k path is chosen to be closed, the Bloch states after the parallel-transport

operation may be different from the states in the original gauge by a phase factor,

which is indeed the Berry phase. The Berry phase accumulated along the path can be

gradually smeared out by distributing the phase to every k point on the path. After

this operation, one obtains a gauge which is both smooth and periodic along the path,

and is called a parallel-transport gauge.

To be more specific, let us consider a set of occupied bands |unk〉, with n = 1, ...N ,

which are isolated from other bands in energy everywhere in the BZ . Let us take a

closed k path along kz running from 0 to 2π, and the path is sampled by J discrete

points , so that kj = 2π(j − 1)ẑ/J . Assume that the eigenstates with some random

gauge |u0
nkj
〉 have been obtained for j = 1, ...J , and a periodic gauge is chosen at the

J + 1th point so that |u0
nkJ+1

〉 = e−i2πz|u0
nk1
〉. To carry out the parallel transport,

we need to make the overlap matrix between the occupied states at kj+1 and kj , i.e.,

Mmn(j) = 〈u0
mkj
|u0
nkj+1

〉, Hermitian. This can be done as follows. At each kj , make

a singular-value decomposition to the overlap matrix Mj = VjΣjW
†
j , where V and W

are unitary and Σ is Hermitian. Then apply a unitary transformation Rj = WjV
†
j to

|u0
nkj+1

〉: |ũnkj+1
〉 =

∑N
m=1Rj,mn|u0

mkj+1
〉. Now the overlap matrix between the rotated

states at neighboring k points becomes Hermitian. If one keeps doing such an operation

from j = 1 to j = J , the states would remain as aligned as possible to each other at all

k points on the path. However, there is some gauge discontinuity left at the boundary:
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|ũnkJ+1
〉 = e−i2πz

∑
m Λmn|ũmk1〉, where Λ is a unitary matrix. The logarithm of the

eigenvalues of Λ: βn = −i lnλn can be considered as the non-Abelian Berry phase of

the states.

The above gauge after parallel transport is smooth along the k path, but not peri-

odic. To restore periodicity, we need to rotate all the states on the k path to the basis

that diagonalizes Λ: |u′nkj 〉 =
∑N

m=1 |ũmkj 〉Lmn, where L is the eigenvector matrix of

Λ. Then we gradually smear out the discontinuity by applying the following phase twist

to the states at kj : |unkj 〉 = e−i(j−1)βn/J |u′nkj 〉. Then we have constructed a gauge that

is both smooth and periodic along the k path, and is called a parallel-transport gauge.

6.7.2 Integration over λ in the formula for θGD

Suppose that A
(0)
x (k), A

(0)
y (k), Ω

(0)
xy (k), B(k), Bx(k), and By(k) are known. Then our

job is to compute the quantities in Eqs. (6.32-6.34) and plug them into Eq. (6.31).

These three quantities can all be computed analytically in the sense that we do not

have to discretize the λ axis. The plan is as follows. The first term in Eq. (6.31) is

independent of λ and is trivial. For the remaining terms, at each k, locally diagonalize

B(k), transform all of the matrices A
(0)
x (k), A

(0)
y (k), Bx(k), and By(k) to the basis that

locally diagonalizes B(k), i.e.,

B(k)→ V †(k)B(k)V (k),

Bx(y)(k)→ V †(k)Bx(y)(k)V (k),

Ax(y)(k)→ V †(k)Ax(y)(k)V (k),

Ωxy(k)→ V †(k) Ωxy(k)V (k) , (6.57)

where V (k) is the eigenvector matrix of B(k). Then one can compute the trace in this

basis. Letting Bmn = bn δmn, we find

Bx,mn(λ) =

∫ λ

0
dµ e−iµbm Bx,mn e

iµbn

= gmn(λ)Bx,mn , (6.58)
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where

gmn(λ) =
e−iλ(bm−bn) − 1

−i(bm − bn)
. (6.59)

Then

Bx,mn =
(∫ 1

0
gmn(λ) dλ

)
Bx,mn

=
(ei(bn−bm) − 1

−(bn − bm)2
− 1

i(bn − bm)

)
Bx,mn , (6.60)

and

Bx,y,mn = i
∑
l

(∫ 1

0
gml(λ) gln(λ) dλ

)(
Bx,mlBy,ln −By,mlBx,ln

)
. (6.61)

Because we are interested in the trace of BBx,y in the basis that B is locally diagonal,

only the diagonal matrix elements of Bx,y are relevant. After carrying out the integral

in Eq. (6.61) one obtains the following expression:

Bx,y,nn = i
∑
m

( 2

(bn − bm)2
− 2 sin(bm − bn)

(bm − bn)3

)(
Bx,nmBy,mn −By,nmBx,mn

)
. (6.62)

If two eigenvalues bm and bn are degenerate, one needs to take the limit (bn− bm)→ 0.

It turns out that both quantities are finite:

lim
bn→bm

Bx,mn = Bx,mn/2 , (6.63)

and

lim
bm→bn

Bx,y,nn =
i

3

(
Bx,nmBy,mn −By,nmBx,mn

)
. (6.64)

Of course the entire calculation still has to be done on a discretized mesh on the

k plane, with finite-difference expressions used to evaluate objects like A
(0)
x (k), so it it

not “exact.” But it is at least nice that we eliminate the need to discretize the λ axis,

instead doing all λ integrals analytically.
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6.7.3 Derivation of Eq. (6.41)

Let us prove Eq. (6.41). From Eq. (6.25), Eq. (6.26) and Eq. (6.23), we know that:

A
(λ)
x(y) = Ã

(λ)
x(y) + Γx(y)(0, λ) (6.65)

where

Ã
(λ)
x(y) = W †(λ)A

(0)
x(y)W (λ) , (6.66)

and the function Γx(y)(λ1, λ2) is defined as

Γx(y)(λ1, λ2) =

∫ λ2

λ1

dµW †(µ)Bx(y)W (µ) . (6.67)

Let λ = 1, we get the expression of A
(1)
x(y)

A
(1)
x(y) = Ã

(1)
x(y) + Γx(y)(0, 1) (6.68)

Apply a unitary transformation W (1−λ) to the matrix A
(1)
x(y), one obtains the following:

W (1− λ)A
(1)
x(y)W

†(1− λ) = Ã
(λ)
x(y) + Γx(y)(λ− 1, λ) ,

= A
(λ)
x(y) + Γx(y)(λ− 1, 0) , (6.69)

where a variable transformation (λ + ν − 1)→µ has been made to obtain the second

term (Γx(y)(λ−1, λ)) on the RHS of the first line in Eq. (6.69). The integral from λ−1

to λ in Γx(y)(λ−1, λ) is further divided into two integrals: one from λ−1 to 0, and the

other from 0 to λ. A
(λ)
x(y) in the second line is then obtained by combining the integral

from 0 to λ together with W †(λ)A
(0)
x(y)W (λ) (Eq. (6.65)). Therefore:

A
(λ)
x(y) = W (1− λ)A

(1)
x(y)W

†(1− λ) − Γx(y)(λ− 1, 0) . (6.70)

It immediately follows that:

A
(1−λ)
x(y) = W (λ)A

(1)
x(y)W

†(λ)− Γx(y)(−λ, 0)

= W (λ)A
(1)
x(y)W

†(λ)−
∫ λ

0
dµW (µ)Bx(y)W

†(µ) , (6.71)
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where we let µ→ −µ in going from the first to the second line in Eq. (6.71). Combining

Eq. (6.38)-(6.39) and Eq. (6.71), Eq. (6.41) can be proved in a straightforward manner:

A
(1−λ)
x(y) (−k) = e−iλB(−k)A

(1)
x(y)(−k) eiλB(−k) −

∫ λ

0
dµ e−iµB(−k)Bx(y)(−k) eiµB(−k)

= σy e
−iλBT (k)

(
A

(0)
x(y)(k)

)T
eiλB

T (k) σy + σy

∫ λ

0
dµ e−iµB

T (k)BT
x(y)(k) eiµB

T (k) σy

= σy

(
W †(λ)Ax(y)(k)(0)W (λ) +

∫ λ

0
dµW †(µ)Bx(y)(k)W (µ)

)T
σy . (6.72)

The last line in Eq. (6.72) is simply σy

(
A

(λ)
x(y)(k)

)T
σy, thus Eq. (6.41) is proved. It is

confirmed that θGD vanishes for a T -invariant gauge.

6.7.4 Derivation of Eq. (6.48)

To derive Eq. (6.48), it is convenient to decompose G(k) into four terms G1, G2, G3

and G4, corresponding to the four terms on the right-hand side (RHS) of Eq. (6.31):

G1 = B Ω(0)
xy (6.73)

G2 = iB [Bx(λ), By(λ) ] (6.74)

G3 = iB [A(0)
x , By(λ) ] (6.75)

G4 = iB [Bx(λ), A(0)
y ] (6.76)

Since all the quantities e.g. Ωxy, Ax(y) are defined in the bottom-plane gauge, we will

drop the superscript “(0)” (indicating the bottom-plane gauge) in later steps. We also

define the primed quantities, e.g., the Berry connections and the Berry curvature as

A′x(y) = V †Ax(y) V , (6.77)

Ω′xy = V †Oxy V , (6.78)

B
′
x(y) = V †Bx(y) V . (6.79)

We will prove Eq. (6.48) by explicitly calculating the four terms in Eq. (6.73)-(6.76).
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The G1 term

Plug Eq. (6.47) first into the expression of G1 (Eq. (6.73)), one obtains the following:

Tr
[
G1

]
= Tr

[
V ∆1 V

†Ωxy V V
†
]

= Tr
[

∆1 V
†Ωxy V

]
(6.80)

Note that Ω′xy = V †Ωxy V is associated with the Berry curvature of the Bloch states

at the bottom plane that are unitarily transformed by V : |u(0)〉 = |u(0)〉V . One can

express the Berry curvature of |u(0)〉 (denoted by Ωxy) in terms of Ax, Ay, Ωxy, V and

the partial derivatives of V ,

Ωxy = Ω′xy + Λxy + i[Cx, A
′
y ]− i[Cy, A′x ] (6.81)

where

Cx(y) = iV † ∂x(y)V , (6.82)

Λxy = ∂xCy − ∂yCx , (6.83)

can be considered as the Berry connection and Berry curvature in the “gauge space”.

From Eq. (6.81) it immediately follows

Tr
[
G1

]
= Tr

[
∆1 Ωxy −∆1 Λxy − i∆1 [Cx, A

′
y ] + i∆1 [Cy, A

′
x ]
]
. (6.84)

Before further simplifying Eq. (6.84), let us go to the other terms and come back to G1

later.

The G3 and G4 terms

Let us deal with the G3 and G4 terms. Since Bx and By are involved in G3 and G4, let

us first evaluate these two terms.

Bx = ∂x(V ∆1 V
† )

= ∂xV ∆1 V
† + V ∆1 ∂xV

†

= iV [ ∆1, Cx ]V † (6.85)
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Similarly, By = iV [ ∆1, Cy ]V †. Plug the expression of Bx and By into Eq. (6.23), one

immediately obtains the following equation:

Bx(y)(λ) =

∫ λ

0
duV e−iu∆1 i[ ∆1, Cx(y) ] eiu∆1 V † . (6.86)

In the basis that locally diagonalizes B0, ∆B → V †∆B V = ∆1, Ax(y) → A′x(y),

Bx(y)→B
′
x(y), we get the following expression for Tr

[
G3

]
:

Tr
[
G3

]
= Tr

[
i∆1 [A′x, B

′
y, ]
]

= Tr
[ ∫ λ

0
du i∆1 [A′x, e

−iu∆1 i[ ∆1, Cy ] eiu∆1 ]
]

= Tr
[ ∫ λ

0
du iA′x [ e−iu∆1 i[ ∆1, Cy ] eiu∆1 , ∆1 ]

]
= Tr

[
iA′x

∫ λ

0
du ∂u

(
e−iu∆1 [ ∆1, Cy ] eiu∆1

) ]
= Tr

[
iA′x e

−iλ∆1 [ ∆1, Cy ] eiλ∆1 − iA′x [ ∆1, Cy ]
]
, (6.87)

where we have used the equation:

[ e−iu∆1 i[ ∆1, Cy ] eiu∆1 , ∆1 ] = ∂u

(
e−iu∆1 [ ∆1, Cy ] eiu∆1

)
(6.88)

in going from the third to the fourth line in Eq. (6.87). Taking use of the cyclic property

of trace, one immediately realizes that the second term in the last line of Eq. (6.87)

cancels the last term on the RHS of Eq. (6.84), which will be dropped in later steps.

Therefore, ∫ 1

0
dλTr

[
G3

]
=

∫ 1

0
dλTr

[
iA′x e

−iλ∆1 [ ∆1, Cy ] eiλ∆1

]
=

∫ 1

0
dλTr

[
−A′x ∂λ( e−iλ∆1 Cy e

iλ∆1 )
]

= Tr
[
−A′x ( e−iλ∆1 Cy e

iλ∆1 )|λ=1
λ=0

]
= 0 , (6.89)

where the following equation is used to go from the second to the third line in Eq. (6.89):

ie−iλ∆1 [ ∆1, Cy ] eiλ∆1 = −∂λ( e−iλ∆1 Cy e
iλ∆1 ) . (6.90)
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Similar derivations can be applied to the G4 term:

Tr
[
G4

]
= Tr

[
iA′y e

−iλ∆1 [Cx,∆1 ] eiλ∆1 − iA′y [Cx,∆1 ]
]
. (6.91)

The second term on the RHS of Eq. (6.91) cancels the third term on the RHS

of Eq. (6.84). Drop the second term in Eq. (6.91) and integrate over λ, one obtains∫ 1
0 dλTr

[
G4
]

= 0

The G2 term

In the basis that locally diagonalizes B0 ,

Tr
[
G2

]
= Tr

[
i∆1 [B

′
x, B

′
y ]
]
. (6.92)

On the other hand, combining Eq. (6.86), Eq. (6.79) and Eq. (6.90), we get the following

expression for B
′
x(y):

B
′
x(y) = −

∫ λ

0
dµ∂u( e−iu∆1 Cx(y) e

iu∆1 )

= Cx(y) − C̃x(y) , (6.93)

where C̃x(y) = e−iλ∆1 Cx(y) e
iλ∆1 . It follows that:

Tr
[
G2

]
= Tr

[
i∆1 [ C̃x − Cx , C̃y − Cy ]

]
. (6.94)

If one expands the RHS of Eq. (6.94), one would obtain four commutators between

Cx(y) and C̃x(y). Since e±iλ∆1 commute with ∆1, the term involving [ C̃x, Cy ] equals to

the term with [Cx, Cy ]. Therefore,

Tr
[
G2

]
= Tr

[
∆1

(
2i[Cx, Cy ]− i[Cx, C̃y ]− i[ C̃x, Cy ]

) ]
. (6.95)

The second term on the RHS of Eq. (6.95) can be written as a total derivative of λ

Tr
[
− i∆1 [Cx, C̃y ]

]
= −Tr

[
∂λ( e−iλ∆1 Cy e

iλ∆1 Cx )
]
. (6.96)
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We need to use ∆1 e
±iλ∆1 = ∓i∂λ(e±iλ∆1) to obtain the above equation. Integrate

Eq. (6.96) over λ, one obtains zero. Similarly, after integrating over λ, the third term

on the RHS of Eq. (6.95) also vanishes. Therefore,∫ 1

0
dλTr

[
G2

]
= Tr

[
2∆1 i[Cx, Cy ]

]
(6.97)

Note that the gauge-covariant Berry curvature defined in the gauge space Λ̃xy = Λxy −

i[Cx, Cy ] has to vanish (Λxy defined in Eq. (6.83)). Because Λ̃xy is the Berry curvature

projected onto the unoccupied subspace, which is zero. Therefore, Λxy = i[Cx, Cy ]. It

can also be shown by explicitly writing out the commutator of Cx and Cy:

i[Cx, Cy ] = i(−V † ∂xV V †∂yV + V † ∂yV V
†∂xV )

= i(V † V ∂xV
†∂yV − V † V ∂yV †∂xV )

= i∂x(V † ∂yV )− i∂y(V † ∂xV )

= Λxy (6.98)

We have used the fact that V V † = 1 and ∂x(y)(V V
†) = 0 in the above derivations.

Therefore, ∫ 1

0
dλTr

[
G2

]
= Tr

[
2∆1 Λxy

]
(6.99)

Combine Eq. (6.84), Eq. (6.87), Eq. (6.91) and Eq. (6.99), we get:

θshift =
−1

4π

∫
dkxdky

∫ 1

0
dλTr

[
G1 +G2 +G3 +G4

]
=
−1

4π

∫
S
dkxdky Tr

[
∆1Ω′xy + ∆1Λxy

]
=
−1

4π

∫
S
dkxdky

(
2π (Ω′xy)11 + 2π (Λxy)11

)
= −

(
φ1(C) + ξ1(C)

)
/2 (6.100)

Eq. (6.48) has been proved. Again, θVL is equal and opposite to θshift
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Chapter 7

Summary and outlook

We have studied some of the properties of topological materials in this thesis . To be

specific, we first carried out first-principles calculations on In- and Sb-doped Bi2Se3,

where the effects of disorder and different orbital character have been studied. We

found that the phase-transition mechanisms in the two solid solutions are distinct. In

the Sb-doped case, the phase transition is dominated by a gradual decrease of the

effective spin-orbit coupling strength, which is compatible with the classical “linear-

gap-closure” picture. On the other hand, for the In-doped Bi2Se3, we found that the

topological phase is suppressed at low impurity compositions by the In 5s orbitals and

the tendency of In segregation. Moreover, the phase transition may be better described

by a local percolation scenario.

We also studied the Weyl semimetals emerging from noncentrosymmetric topologi-

cal insulators. We have clarified the general theory for the topological phase transitions

in 3D topological insulators with broken inversion symmetry, and proved that an inter-

mediate Weyl semimetal must show up connecting the Z2-odd and Z2-even phases. We

also proposed a few materials as candidates of Weyl semimetals as discussed in Chapter

4.

As spin-orbit coupling is indispensable to obtain nontrivial band topology in most

cases, we propose a quantitative definition for the band inversions driven by spin-orbit

coupling in insulators, which is known as the “spin-orbit spillage”. In Chapter 5, the

spin-orbit spillage has been calculated in various topological systems, and turned out

to be closely related to the nontrivial topological indices.
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In the last chapter, we proposed a new method to calculate the Chern-Simons orbital

magnetoelectric response (θ term). Based on the conventional formula for the θ term,

we derived formulae for the contributions from gauge discontinuities and “vortex loops”,

so that the total θ consists of three terms expressed as integrals over 3D, 2D and 1D

manifolds. Our method turned out to be numerically efficient, and may provide a new

interpretation to the formally quantized θ in topological insulators.

Although the framework of topological band theory has been well established, the

generalizations to disordered systems [169], to strongly correlated systems [49, 170, 171,

172], and to finite temperatures [173, 174] are still in the early stages. There are still

a lot of unexplained experimental phenomena and open questions in this field. For

example, recently it was observed by angle resolved photoelectron spectroscopy that

the topological phase transitions in (Bi1−xInx)2Se3 happened with a sudden closure

of bulk energy gap [175], which challenged the conventional wisdom from topological

band theory. It suggests that more theoretical works are needed to shed light on the

phase-transition behavior in topological systems with strong disorder. There is also a

lot of interest in searching for possible topological phases in strongly correlated sys-

tems. For example, it was proposed that some kind of effective spin-orbit coupling

could be generated by electron-electron interactions [50], which might lead to “topo-

logical Mott insulators” [49]. Such interaction-driven topological phase was predicted

to exist in LaNiO3/LaAlO3 heterostructures [176, 143], but it has not been realized

by experiments yet. Therefore, it would be both challenging and interesting to search

for such interaction-generated, or interaction-enhanced topological systems. It requires

further development on the theory for topological phases in strongly correlated sys-

tems, as well as a deeper understanding on the interplay between spin-orbit coupling

and electron-electron interactions [177].
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