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ABSTRACT OF THE DISSERTATION

The Structure of BPS Spectra

By Pietro Longhi

Dissertation Director:

Professor Gregory W. Moore

In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric

quantum field theories of class S.

By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS

spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phe-

nomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory,

featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The

occurrence of wild BPS states is surprising because it appears to be in tension with physical expec-

tations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle

comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully

analyzing the volume-dependence of the entropy of BPS states. We also find some interesting struc-

tures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a

BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution

of spin-j irreps within a multiplet of given charge.

We also extend the spectral networks construction by introducing a refinement in the topological

classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as

the “writhe of soliton paths”. A careful analysis of the 2d-4d wall-crossing behavior of this refined

data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by

the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS

ii



states. Our construction opens the way for the systematic study of refined BPS spectra in class S

theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find

an interesting relation between spectral networks and certain functional equations.

For class S theories of A1 type, we derive an alternative technique for computing generating

functions of 2d-4d BPS spectra, based on the topological data of an ideal triangulation of the

Riemann surface defining the theory. We provide a set of building blocks and corresponding rules,

from which the 2d-4d spectra of a vast class of theories can be algorithmically recovered.

Finally, we present previously unpublished exact results on the BPS spectrum of the SU(2)

N = 2∗ theory, and briefly comment on its wall crossing.
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Chapter 1

Introduction and Summary

In this thesis we develop and apply new tools for studying the non-perturbative dynamics of four-

dimensional gauge theories with N = 2 supersymmetry. The study of these theories has nowadays

grown a long and rich history, punctuated by a number of crucial results, which fostered interest

and led to more intensive investigation over the years. One feature that makes these models so

attractive is the relatively high amount of supersymmetry, which severely constrains the dynamics,

making the theories amenable to much exploration through purely field theoretic approaches. While

highly constrained, the dynamics is nevertheless rich enough to mimic phenomena believed to occur

in nature, providing tractable toy examples of poorly understood field theory phenomena, such

as confinement and dynamical generation of mass scales. Another aspect responsible for much of

the interest and progress on these theories is their relation to string theory and M theory. Like

many other gauge theories, in various dimensions and with various amounts of supersymmetry,

these models appear in low energy approximations to string/M theory, a viewpoint that shed much

light, for example, on their non-perturbative dynamics and their duality webs. A third facet of this

area of research, which came to prominence in recent years, is a rich interplay with active areas

of mathematics. This proved both concrete and far-reaching, allowing to tackle difficult physics

problems exploiting mathematical results, and vice versa. Much of the work presented in this thesis

relies directly on these connections, which likely hold the potential for much further progress.

At very low energies, four-dimensional N = 2 gauge theories exhibit a family of Coulomb phases,

in which the effective dynamics is described by a supersymmetric abelian gauge theory. The Coulomb

vacua are parametrized by a manifold B known as the Coulomb branch, in a generic vacuum u ∈ B

the massless spectrum of the theory includes only abelian vector-multiplets, and the dynamics is
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sensitive to u through the couplings in the effective action1 Seff (u). An important consequence of

the extended supersymmetry is the BPS bound, which states that any state carrying electromagnetic

charge γ must be massive [112], with its mass bounded from below

Mγ(u) ≥ |Zγ(u)| , (1.1)

where Zγ is the central charge of that state. BPS states are the lightest charged states, those

which saturate this bound, and will be our main subject of study. Another distinguished feature

of BPS states is that they preserve only part of the super-Poincaré symmetry: while |Zγ | = Mγ

is responsible for breaking translations and boosts to the little group, Arg(Zγ) determines which

half of the supercharges is preserved. Since BPS states are the lightest charged particles, the BPS

spectrum is clearly a very important piece of information about the low energy dynamics of these

theories, albeit an elusive one.

The elusive nature of BPS spectra is partially due to the fact that BPS states are non-perturbative

soliton field configurations. Another complication is that they carry charge and mutually interact,

as a consequence the spectrum may include their boundstates whenever stable ones exist. Since the

couplings of the IR theory depend on the Coulomb moduli, a BPS boundstate may be stable within

certain regions of the moduli space, while not in others. These phase transitions indeed occur, at

special loci on B. The central charge Zγ(u) depends linearly on the electromagnetic charge γ, hence

the mass of a BPS boundstate is subject to the triangular inequality with respect to the masses of

its constituents

|Zγ+γ′(u)| ≤ |Zγ(u)|+ |Zγ′(u)| . (1.2)

A boundstate is kinematically (un)stable as long as the strict inequality holds; however when it is

saturated, a boundstate becomes only marginally stable and can undergo the transition from stable

to unstable (or vice versa). The bound is saturated when Arg(Zγ) = Arg(Zγ′), conditions like this

one define real-codimension one loci inside the Coulomb branch, known as walls of marginal stability

(or MS walls2), which divide B into disjoint chambers. The BPS spectrum may jump discontinuously

from one chamber to the next one: this is the wall crossing phenomenon, and plays a key role in the

study of BPS spectra.

In fact, while wall-crossing may at first appear as a complication for studying the low-energy

dynamics on the whole Coulomb branch, the jumps of the BPS spectrum across MS walls follow

1As well as through the u-dependent identification of the IR degrees of freedom with UV ones, although from the
IR viewpoint, this relation becomes meaningful only once we consider the global picture over the Coulomb branch,
considering e.g. varying u along nontrivial cycles of B [120].

2More precisely, another important condition is involved in the definition of MS walls. Namely that γ, γ′ be
charges of populated BPS states.
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precise rules encoded by wall crossing formulae [14, 40, 60, 88]. These allow to determine the BPS

spectrum on one side of an MS wall, based on knowledge of the spectrum on the other side. Wall

crossing formulae are in fact a powerful tool to study the spectrum of a theory, allowing to probe

the whole Coulomb branch while relying solely on knowledge of the spectrum in a single vacuum.

Nevertheless, wall crossing alone does not provide a complete approach to finding the spectrum,

falling short in one key aspect: one still needs to provide the input for the spectrum at some point

on the Coulomb branch.

1.1 Class S theories and Spectral Networks

Recent years have witnessed tremendous progress in the study of BPS spectra, driven by the devel-

opment of novel frameworks which opened the way for systematic spectroscopy within a large class

of theories [11, 12, 61, 63–65]. Much of this thesis revolves around applications and extensions of

the spectral networks technique of [63]. The relation of spectral networks to BPS states is rather

involved, and begins with the low energy description of 4d N = 2 gauge theories in terms of families

of Riemann surfaces, first uncovered by Seiberg and Witten [120, 121]. To a given theory corre-

sponds a fibration of Riemann surfaces Σu over the Coulomb branch3, together with a family of

meromorphic differentials λu on Σ. The first homology group H1(Σ,Z) is identified with the lattice

of gauge and flavor charges in the low energy abelian theory, and the central charge of a state with

electromagnetic charge γ is

Zγ(u) =
1

π

∮
γ

λu . (1.3)

The periods of λu also determine the exact low energy effective action, including all perturbative and

non-perturbative quantum corrections. The (Σu, λu) fibration over B includes monodromies around

complex-codimension one singular loci of the Coulomb branch. These singularities correspond in

fact to BPS particles becoming massless and the monodromies capture physical information on these

states. The monodromy structure of the fibration furthermore provides a comprehensive conceptual

picture for the rich web of dualities of the family of low energy theories.

Generalizations of Seiberg and Witten’s solution to a large class of 4d N = 2 quiver gauge

theories have been obtained soon thereafter, in several different ways. One approach is to consider

certain decoupling limits of brane constructions in Type IIA string theory [83, 91, 92, 133]. In the

decoupling limit, the 4d gauge theories describe the worldvolume dynamics of Dirichlet four-branes

suspended between NS five-branes (possibly in presence of six-branes) arranged within configurations

3Away from singularities on B
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preserving eight supercharges. Quantum effects of the field theory are captured upon lifting the brane

configurations to M-theory, where the system is described by a single curved fivebrane wrapping

Σ × R1,3. Another approach is based on establishing a connection between the gauge theories and

certain integrable systems [46, 74, 101]. Here the role of the Σ is identified with the spectral curve of

the integrable system, while the Coulomb branch is identified with the space of hamiltonian moduli.

The periods of λ are parametrized by the fiber of the integrable system manifold above a fixed u ∈ B.

A more recent approach, unifying aspects of both previous ones, is to view a 4d N = 2 gauge

theory as arising from the compactification of a stack of M5 branes wrapping a punctured Riemann

surface C [64, 66, 83, 133]. The effective four dimensional theory, denoted by S[g, C,D], is a twisted

compactification of the six dimensional (2, 0) theory, where a partial topological twist allows to pre-

serve eight of the sixteen supercharges. The nomenclature refers to the data of the compactification,

which includes a simply-laced Lie algebra g, a punctured Riemann surface C, and certain data D,

specifying the behavior of worldvolume fields at the punctures. This category of theories has been

named class S [64], after their defining property of originating from six-dimensions, which actually

encodes a wealth of information about their dynamics. One striking insight originating from six

dimensions is the identification of moduli spaces of marginal deformations with the Teichmüller

moduli space of C [66], which provides a comprehensive conceptual picture of the intricate duality

webs among different lagrangian descriptions. Another key feature tied to six dimensions involves

the finite-radius compactification of these theories on S1 × R3, whose quantum dynamics has been

related to Hitchin systems on C [64]. The relation of class S theories to Hitchin systems plays a

central role in the study of their BPS spectra. The S1 compactification admits an effective descrip-

tion as an N = 4 sigma model with hyper-kähler target spaceM, having a natural fibration over B

with fibers parametrized by ’t Hooft-Wilson lines wrapping the S1 [122]. BPS states of the 4d theory

contribute quantum corrections to the metric onM, since they now wrap the compactification circle

and contribute finite-size corrections to the path integral, weighted by factors of e−R |Zγ | (R is the

compactification radius).

The effective metric onM thus contains information about the BPS spectrum of the correspond-

ing class S theory, but a puzzle readily arises in this picture: thinking of M as a fibration over B,

how is smoothness of the metric compatible with the fact that it depends on the BPS spectrum,

since the latter jumps discontinuously across walls of marginal stability? This question was first

explored by the authors of [60] who approached the problem by studying in detail how BPS states

correct the metric, introducing the twistor-TBA construction construction of hyperkähler metrics.

A central piece of data of the standard twistor construction are certain holomorphic functions –



5

Darboux coordinates– Xγ(u, θ; ζ) on the twistor spaceM×C× (here u ∈ B, θ is a coordinate on the

fiber above u, and ζ is a coordinate on the twistor sphere of complex structures of M), BPS states

enter in their construction with contributions weighted by the BPS index 4 Ω(γ;u). The Xγ are only

piecewise holomorphic in ζ, and exhibit a Stokes phenomenon involving jumps across meridians on

the twistor sphere, located at phases of (central charges of) populated BPS states. These jumps

correspond precisely to Kontsevich-Soibelman symplectomorphisms and are controlled by the BPS

index

Xγ(u, θ; ζ ′) = KΩ(γ′;u)
γ′ Xγ(u, θ; ζ) , (1.4)

in particular, Ω(γ, u) can be computed by comparing Xγ(u, θ; ζ ′) and Xγ(u, θ; ζ). At any given

u ∈ B the Stokes jumps of these functions thus “detect” BPS states, and the whole spectrum can

be encoded into the spectrum generator, defined as the phase ordered product of the corresponding

symplectomorphisms

S = :
∏
γ

KΩ(γ;u)
γ : . (1.5)

Rather than a mere definition, this operator holds the key to the solution to the puzzle: in [60] it was

shown that smoothness of the quantum corrected metric of M (argued on field theoretic grounds)

implies that the jumps of the BPS spectrum across MS walls must be such to compensate for jumps

of the phase ordering of Kγ operators, leaving the spectrum generator invariant

:
∏
γ

KΩ(γ;u)
γ : = :

∏
γ

KΩ(γ;u′)
γ : . (1.6)

In other words, the spectrum generator is an invariant of wall crossing, this is the content of the

Konstevich-Soibelman wall crossing formula [88].

In the specific case of class S theories, M is identified with the moduli space of solutions to

Hitchin’s equations on C,

F +R2[ϕ,ϕ] = 0

∂z̄ϕ+ [Az̄, ϕ] = 0

∂zϕ+ [Az, ϕ] = 0

(1.7)

supplemented with the boundary data D. More properly M is identified with the corresponding

Hitchin system, this comes with a lagrangian fibration M→ B over the parameter space of hamil-

tonians, which is identified with the Coulomb branch of the four dimensional theory. The spectral

curve of the Hitchin system

Σ : {λ |det(λ− ϕ) = 0} ⊂ T ∗C (1.8)

4An integer-valued supersymmetric index, roughly counting the dimensionality of the BPS Hilbert space of states
with charge γ, up to a sign. We will review its definition in detail in Section 3.1.
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is identified with the Seiberg-Witten curve of the theory, while the restriction of the tautological

1-form λ on T ∗C corresponds to the Seiberg-Witten differential.

The definition of the spectral curve implies that it has a natural presentation as a ramified

covering of C. This means that there is a projection map π : Σ → C, with the roots of the

characteristic polynomial (1.8) corresponding to sheets of the cover. Let γ be a closed path on Σ,

whose homology class (by a small abuse of notation) we also denote by γ ∈ H1(Σ,Z), running on

sheets5 λi, λj as depicted in figure 1.1. Defining λij := λj − λi, we may consider the following

refinement6 of the BPS bound:

∣∣Zγ∣∣ =
1

π

∣∣∣∣∮
γ

λ

∣∣∣∣ =
1

π

∣∣∣∣∣
∫
π(γ)

λij

∣∣∣∣∣ ≤ 1

π

∫
π(γ)

∣∣λij∣∣ = Mγ , (1.9)

where Mγ at this point just denotes the area of the shaded disc embedded inside T ∗C and bounded

by γ. In fact, as we will momentarily argue following [64], Mγ really is the mass of a particle state

Figure 1.1: A BPS cycle bounding an M2 brane

with electromagnetic charge γ. Recalling the M theory interpretation of T ∗C as the neighborhood

of the fivebrane worldvolume, one may consider membranes ending on the fivebrane: in the limit

of small separation of the fivebranes, the M2 transverse worldvolume would stretch precisely within

T ∗C. In particular, a membrane whose boundary wraps a one-cycle γ on Σ, while extending along

a timelike curve in R1,3, will appear in the effective four dimensional theory as a charged massive

soliton. The charge of this particle is precisely the homology class γ, since the membrane couples

to the fivebrane two-form field, whose periods on Σ give rise to the four dimensional abelian gauge

fields. The central charge of the particle state is given by the period 1
π

∮
γ
λ. The mass on the other

5The definition of sheets of the covering is subordinate to a choice of branch cuts and to a choice of trivialization.
6In general there is no reason why the pieces of a path γ ⊂ Σ running on sheets λi, λj should project to the same

image on C. On the other hand, due to holomorphicity of λ the value of the integral is invariant under homological
deformations of γ, and we will assume that suitable deformation of this type always exist. As will be presently
clarified, the paths of interest to us enjoy this property by construction.
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hand depends on both the area and tension of the membrane worldvolume: when the membrane is

a disc bounded by γ as depicted in figure 1.1, the mass is precisely 1
π

∫
π(γ)

∣∣λij∣∣ [64].

Therefore (1.9) should be viewed as a geometric version of the BPS bound [83, 102, 103]. Such

bound is saturated by actual geometric cycles on Σ which project to paths on C along which

λij(z)

|λij(z)|
=

Zγ
|Zγ |

=: ζ (1.10)

is a constant phase. Conversely, given a path on C with this type of geometry, it will lift to a BPS

cycle on Σ only if it begins and ends at branch points. In some cases this kind of constraint has a

discrete set of solutions, while in other cases there might be continuous families of solutions. Only

M2 branes with such a compatible profile along Σ are BPS: in general the existence of a BPS state

of charge γ in the spectrum of the four dimensional effective theory will depend on the existence of

a BPS cycle in the corresponding homology class. As the Coulomb branch moduli are varied, so is

λij(u, z), and solutions to these constraints may appear or disappear: this is a geometric perspective

on the wall crossing phenomenon.

The systematic study of BPS spectra can in fact be translated into the geometric problem of

finding all BPS paths on C – i.e. paths that can be lifted to closed cycles γ on Σ and satisfy the

geometric BPS constraint (1.9), with phase ζ = Zγ/|Zγ | dictated by the corresponding homology

class γ. However, while the existence of a finite BPS path does imply the possible presence of BPS

states, more structure needs to be considered in order to determine relevant physical information,

such as the number of BPS states, or their spin. As will be reviewed in Chapter 3, spectral net-

works [63] accomplish precisely this. Wζ is a one-parameter family of networks whose “streets” are

BPS paths on C, sourcing from branch points, or from “joints” (intersections of two streets). The

ζ-dependence of the familyWζ allows to probe the whole BPS spectrum by scanning over all phases

Arg(ζ) ∈ R/2πZ. Attached to each “street” of the network is certain combinatorial data associated

Figure 1.2: A spectral network on a cylinder C. Different colors denote streets of different types.

with 2d-4d BPS states, a kind of BPS states of the four dimensional theory in presence of a BPS
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surface defect. Surface defects and the corresponding 2d-4d BPS states play a key role in the defi-

nition of spectral networks. In the UV, such defects can be described in terms of a two dimensional

N = (2, 2) quantum field theory living on R1,1 ⊂ R1,3, coupled to the four dimensional ambient

theory through the gauging of global symmetries of the 2d theory by four dimensional gauge fields

[9, 65, 68, 69, 76–79]. In the IR, the bulk degrees of freedom generally reduce to abelian gauge fields,

with an effective action parametrized by the Coulomb branch of vacua. The two dimensional theory

develops a superpotential with a discrete set of (genecally) non-degenerate massive vacua {i}ki=1,

leaving no massless 2d degrees of freedom in the IR. From the bulk viewpoint, an IR surface defect

in a given vacuum appears as a source of monodromy for the abelian fields, much like a generalized

version of a solenoid. The lightest states on the defect are in fact 2d solitons, which interpolate

between two vacua (i, j) from one spatial boundary to the other. A 2d soliton appears from the bulk

viewpoint as a space-dependent monodromy of the abelian gauge fields, with a profile of variation

determined by the 2d field configuration.

As a consequence of the coupling of the 2d and the 4d systems, any amount of flavor charge

carried by a 2d soliton corresponds to some gauge charge of the 4d theory. In fact, one may consider

(ij) solitons a and b, interpolating between the same vacua i and j, but differing by a net flavor

charge. Schematically, let us indicate this for now as a − b = γ, meant to indicate that the a-

soliton carries a net flavor charge of γ as compared to the b soliton. From the bulk viewpoint, the

monodromy profile generated by a differs from the profile of b by a net flux of charge γ, much as

if soliton a were a boundstate of soliton b with a 4d soliton of charge γ. Indeed, in this sense 4d

solitons may “bind” to 2d solitons, forming a class of states known as 2d-4d BPS states [65].

Figure 1.3: A soliton a supported on a surface defect, as it would appear in physical space. The soliton
interpolates between vacua i and j, corresponding to different values of the monodromy of the bulk abelian
gauge fields.

In addition to familiar 2d solitons interpolating between different vacua, surface defects in 2d-4d

coupled systems exhibit a new type of solitons interpolating between a vacuum and itself. These are

particularly interesting, as they are key in establishing the connection between 2d BPS spectra and
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4d BPS spectra which allows to compute the latter from the former through the spectral networks

technique. A soliton of this type generally carries nontrivial flavor charge from the 2d viewpoint,

corresponding to a 4d electromagnetic charge. In fact, from the bulk viewpoint such 2d solitons

appear as a change in the monodromy corresponding to a net flux carried by the abelian gauge

fields, a configuration that is indistinguishable (from the bulk IR viewpoint) from having a charged

4d soliton on the defect in the given vacuum.

Class S theories admit a particular family of defects, known as canonical surface defects and

denoted by Sz. They are labeled by points z ∈ C, since in the M-theoretic construction they result

from the presence of a semi-infinite membrane ending on the fivebranes along R1,1×{z} ⊂ R1,3×C

[65]. One peculiar aspect of canonical defects is that their vacua coincide with pre-images {z(i)}i of

z on Σ [65, 69], and therefore a 2d-4d soliton is labeled by a pair of sheets7 (λi, λj) on Σ. As in

the case of generic defects, two solitons interpolating between the same vacua (z(i), z(j)) may differ

by a net flavor charge in the 2d theory, corresponding to a gauge charge from the bulk viewpoint.

Since the lattice of gauge charges is identified with H1(Σ,Z), the topological charge of a 2d soliton

interpolating between a given pair of vacua is naturally classified by the relative homology class of

an open path γij on Σ, stretching from z(i) to z(j). The central charge and mass of a 2d soliton on

Sz are given by

Zγij =
1

π

∫
π(γij)

λij Mγij =
1

π

∫
π(γij)

∣∣λij∣∣ , (1.11)

it follows that the BPS condition Mγij = |Zγij | for 2d solitons coincides precisely with the geometric

BPS bound encountered above. Indeed each point on a street p of a spectral network Wζ labels

a canonical surface defect Sz, carrying 2d-4d BPS solitons with central charges of phase ζ. As

anticipated, to each street of the network is associated certain combinatorial data of 2d-4d BPS

states: this is precisely the BPS spectrum of 2d solitons, expressed as a set of relative homology

classes on Σ and integers:

{
a ∈ Hrel

1 ((z(i), z(j)); Σ,Z) ; µ(a) ∈ Z
}

(1.12)

the former correspond to topological charges of 2d solitons, and the latter to a supersymmetric index

[27] counting solitons of the given charge.

Just like 4d “vanilla” BPS states, 2d-4d BPS states also exhibit a wall crossing behavior [25, 26,

65], whereby two solitons may bind together into a single one. More precisely, a (z(i), z(j)) soliton

may bind with a (z(j), z(k)) soliton for certain values of the 2d couplings, forming a (z(i), z(k)) soliton

7To have a global labeling of sheets of Σ, one must first choose branch cuts and trivialize the cover.
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boundstate. For solitons of canonical defects, these “2d walls of marginal stability” are loci where a

street of ij type ofWζ has some point in common with a street of jk type from the same network. On

the one hand, if i 6= k the resulting boundstate is a new 2d-4d BPS state, whose topological charge

is simply the relative homology class obtained by natural composition (concatenation of open paths

on Σ) of the topological charges of the two constituents. This is what happens in correspondence

of joints of Wζ , depicted on the left of Figure 1.4. On the other hand when i = k the boundstate

carries a purely four-dimensional topological charge8 γ = cl(γij ◦ γji), and appears from the bulk

viewpoint as a 4d BPS soliton stuck on the IR defect in vacuum i. In other words, 2d BPS solitons

ij

jk

ik
ik

ki

Figure 1.4: Wall crossing of 2d-4d BPS states as manifest in spectral networks on C. Left: only 2d-4d BPS
solitons of ij and jk types exist for Sz supported on the left of the dashed line, while ik solitons may also
exist on the right. Right: ik solitons may concatenate with ki solitons for certain values of u, boundstates
are ii-type solitons carrying pure flavor charge of the 2d theory, corresponding to a gauge charge from the
bulk viewpoint.

living on the surface defect can bind together into a 4d BPS soliton of the bulk theory: this is the

mechanism underlying the 2d-4d wall crossing phenomenon, first elucidated in [65]. Through 2d-4d

wall-crossing, the 2d BPS spectrum is sensitive to the bulk “vanilla” BPS states, hence allowing

to probe the latter by studying the former: this mechanism is key to computing 4d BPS spectra

through spectral networks. In keeping with the previous logic, this phenomenon may also be seen at

the level of spectral networks, although it is somewhat more special than regular joints. In fact, if

Sz simultaneously supports 2d BPS states of charges γik, γki with the same phase ζ, it follows that

Wζ must contain two BPS paths (streets of the network) running through z: one parametrized by

λik and the other by λki, having opposite orientations as displayed on the right in Figure 1.4.

The appearance of “two-way” streets generally corresponds to values of ζ for which Wζ has a

degenerate topology. A sub-network of two-way streets is of course a generalization of the “finite

BPS geodesics” that were previously associated with 4d BPS states as a consequence of their M

theory interpretation. However, from the viewpoint of spectral networks, rather than being merely

a finite BPS geodesic, a two-way street carries the additional data of 2d degeneracies. By exploiting

the 2d-4d wall-crossing picture, where boundstates of 2d BPS solitons produce 4d BPS solitons,

8Here ◦ denotes concatenation of paths, and cl is the closure map, turning an open path with matching endpoints
into a closed one.
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the degeneracies of the latter can in fact be obtained from careful combinatorics of the data of

the former. More specifically, perturbing the critical phase ζ in either direction gives two resolved

Figure 1.5: Center: a network with degenerate topology occurs when streets of “opposite” types collide
head-on. The blue segment in the middle consists of two such streets. (Here C is a cylinder, obtained by
identification of the left and right edges of the picture.) Left and right: networks from the same family Wζ

at slightly different phases have a non-degenerate topology, exhibiting two different resolutions of the two
degenerate streets.

inequivalent networks Wζ± (see Figure 1.5), encoding the spectrum of 2d-4d BPS states before

and after the jump. Then the data of these two spectra, when packaged into a certain physically-

and mathematically-motivated generating function F (℘) (its definition and interpretation will be

reviewed in detail in Section 3.1), are related precisely by a Kontsevich-Soibelman transformation

(1.4). Conversely, comparing the 2d soliton content of Wζ± it is possible to compute the 4d BPS

degeneracies Ω(γ;u) of those states responsible for the jump of Wζ . This is how BPS degeneracies

are captured by spectral networks: as ζ is continuously varied one focuses on the topological jumps

of Wζ , the 4d BPS spectrum is then extracted from a detailed study of the combinatorics of 2d-4d

soliton spectra in correspondence of the jumps. A detailed review of these techniques and their

applications is provided in Section 3.1.

We turn next to introducing the main content of this thesis, based on the papers [72, 73, 95]

as well as unpublished joint work [96]. Sections 1.2-1.5 present the main results, while each of the

corresponding chapters 2-5 gives the corresponding in-depth exposition and discussion. Chapter 6

concludes with a look to the future, we collect the most interesting questions raised by our work,

and promising directions.

1.2 The Spectrum Generator of 2d-4d BPS States for S[A1, C,D] theories

Chapter 2 focuses on A1-type theories of class S. These are special in a number of ways: for one thing

their BPS spectrum contains only hypermultiplets and vectormultiplets; another special feature is
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that their spectral networks are dual to ideal triangulations of C. A third distinguishing feature of

A1 theories is that a single triangulation actually encodes the whole BPS spectrum, bypassing the

need to study the jumps that occur varying ζ [64] – a potentially challenging task [63, 64, 73]. More

precisely, from the topology of an ideal triangulation it is possible to extract the spectrum generator

S of 4d BPS states, from which the full spectrum can be deduced. Then a natural question to ask is

whether there exists an analog of the spectrum generator of 4d BPS states, which captures all 2d-4d

BPS states. In fact, upon introducing suitable generalizations of the Xγ coordinates, associated with

topological charges of 2d-4d BPS states and denoted by Yγij [65], the 2d-4d BPS degeneracies ω, µ

are actually encoded into a product of Poisson morphisms acting on these new functions9

Y ′γij = SYγij

S = :
∏
γ

Kωγ
∏
γij

Sµγij :
(1.13)

In some explicit examples, detailed formulae for the transformation S are provided by equations

(2.61), (2.64), (2.77), (2.98) and (2.111) below, and by the equations right above them. The main

goal of this Chapter is to find an algorithm to compute the transformed Y ′γij directly in terms of the

original Yγij , based on knowledge of a single triangulation. Our result is a set of formulae for the

Y ′γij , expressing them in terms of the original coordinates and the given ideal triangulation. The

expressions we derive encode the action of the most general S on the Yγij , and they can be easily

applied to any specific situation. Just like in the pure 4d case, once adapted to the specific situation

under study, our formulae encode the 2d-4d BPS degeneracies. Our formulae provide therefore

a systematic approach to the study of 2d-4d spectra of A1-type theories: as we show through

examples, it is fairly easy to recover the simplest finite spectra from our general expressions, while

more complicated theories will probably require some sort of algorithm to extract the degeneracies.

1.3 Wild Wall Crossing

In Chapter 3 we turn our attention to higher rank gauge theories, and investigate their BPS spectra

by means of spectral networks and wall-crossing techniques. As noted by various authors, theories

of class S[AK−1] for K > 2 could have higher spin BPS states, beyond the familiar hypermultiplets

and vectormultiplets which occur in theories of class S[A1]. One result of this chapter is that this

9here Kγ ,Sγij correspond respectively to morphisms induced by 4d and 2d-4d BPS states, and : : denotes an
ordering by phases of central charges of the product.
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expectation is indeed correct: higher spin BPS multiplets do occur at some points of the Coulomb

branch in one explicit theory of class S[A2], namely the pure d = 4, N = 2, SU(3) theory.

In addition, we find a much more surprising phenomenon: theories of class S can have wild BPS

spectra, i.e. at some points of the Coulomb branch, the number of BPS states with mass ≤ M

grows exponentially with M . The main result of this chapter is two independent demonstrations,

in Sections 3.2 and 3.3, that wild spectra appear in the pure d = 4,N = 2, SU(3) theory. The

possibility that there could be such exponential growth in BPS degeneracies in field theory was

suggested some time ago in [84].

As explained in Section 3.6 below, this exponential growth is physically a bit surprising. Indeed,

the existence of a conformal fixed point defining the 4d theory, plus dimensional analysis, implies that

the degeneracy of BPS states at energy E in finite volume V cannot grow faster than exp[const ×

V 1/4E3/4]. On the other hand, here we are finding that the spectrum of BPS 1-particle states

grows like exp[const × E]. The resolution of this puzzle must lie in the difference between BPS

1-particle states and states in the finite volume Hilbert space; we propose that the size of the objects

represented by the BPS 1-particle states grows with E, so that for any fixed V , most of the BPS

1-particle states simply do not fit into the finite-volume Hilbert space. Indeed, in Section 3.6, using

Denef’s picture of BPS bound states, we demonstrate directly that their size does indeed grow with

E. The invalid exchange of large E and large V limits when accounting for field theory entropy

should perhaps serve as a cautionary tale.

Here is the fundamental idea which we use to find wild BPS degeneracies. Suppose we have an

N = 2 theory and a point of the Coulomb branch in which the spectrum contains two BPS hyper-

multiplets, of charges γ and γ′, and no bound states thereof — i.e. we have the BPS degeneracies

Ω(γ) = 1, Ω(γ′) = 1, Ω(aγ + bγ′) = 0 for all other a, b ≥ 0. Then suppose we move on the Coulomb

branch to a point where the central charges Zγ and Zγ′ have the same phase. Such a point lies on

a wall of marginal stability. On the other side of the wall, the spectrum includes bound states with

charge aγ + bγ′ for various a, b. Their precise degeneracies can be determined by the Kontsevich-

Soibelman wall-crossing formula, and indeed depend only on the integer m = 〈γ, γ′〉. For this reason

we call the collection of BPS states thus generated an “m-cohort.”

The cases m = 1 and m = 2 occur already in the theories of class S[A1]. For m = 1 an m-cohort

contains only a single bound state; for m = 2 an m-cohort contains an infinite set of hypermultiplets

plus a single vector multiplet. In either case, at any rate, one does not get wild degeneracies. In

contrast, for m > 2 the wall-crossing formula shows that an m-cohort does contain wild degeneracies.

Indeed, even if one restricts attention to charges of the form n(γ + γ′), one already has exponential



14

growth. This is explained and made precise in Proposition 3.2.4, Section 3.4.3, and Section 3.5.3

below. With this in mind, for any m > 2, we will say that a theory contains “m-wild degeneracies”

if its BPS spectrum contains an m-cohort.

The BPS degeneracies arising in m-cohorts have been studied at some length in the mathematics

literature because they arise as Donaldson-Thomas invariants attached to the m-Kronecker quiver

in one region of its stability parameter space. The latter have been intensively studied in [115–118,

127, 128]. One interesting feature noted there is that for m > 2, the phases of the central charges of

BPS states in an m-cohort are dense in some arc of the circle.

This discussion motivates two approaches to the problem of exhibiting wild degeneracies in a

physical theory. Our first approach goes via the “spectral networks” of [63, 70]: rather than studying

the wall-crossing directly, we make a guess about the kind of spectral networks which could arise

from wall-crossing involving two hypermultiplets with arbitrary m = 〈γ, γ′〉. For m = 1 the network

we draw looks like a saddle, which motivates an equine terminology: our networks are built from

constituents we call “horses” (defined in Section. 4.4, Figure 3.3, and detailed in Appendix C), glued

together to form “m-herds.” See Figure 3.4 for some examples. We show moreover that m-herds

indeed occur in physical spectral networks at some particular points of the Coulomb branch of the

SU(3) theory: see Figure 3.5 for the evidence. The general rules of spectral networks, combined

with Proposition 3.1 and Proposition 3.2 below, lead to the following formula for the BPS spectrum

for charges of the form n(γ + γ′) := nγc in the wild region. We first form a generating function

Pm(z) related to the BPS spectrum by

Pm(z) =

∞∏
n=1

(1− (−1)mnzn)nΩ(nγc)/m. (1.14)

Then, Proposition 3.1 states that Pm(z) is a solution of the algebraic equation (4.111), which we

reproduce here:

Pm = 1 + z (Pm)
(m−1)2

. (1.15)

This equation had been identified previously by Kontsevich and Soibelman [88] and by Gross and

Pandharipande [75], as the one governing the generating function of BPS degeneracies of an m-

cohort, for charges of the form n(γ+γ′). It follows that if we have an m-herd (m > 2) somewhere in

our theory, then our theory does contain at least the part of an m-cohort corresponding to charges

of the form n(γ + γ′). In particular, if the theory contains an m-herd, then it does contain wild

degeneracies. Since we have found m-herds at some points of the Coulomb branch in the pure SU(3)

theory, we conclude that we indeed have wild degeneracies in that theory.
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The algebraic equation (1.15) is apparently an instance of a more general phenomenon. It has

been observed by Kontsevich that the generating functions of Donaldson-Thomas invariants are often

solutions of algebraic equations. For the Kronecker quiver and some other special cases Kontsevich

has proved that these equations exist [86]. Our analysis via spectral networks produces the algebraic

equation (1.15) in a direct way. Moreover, we expect that this will happen more generally, as we

explain in Appendix F. Thus spectral networks seem to be a natural framework for understanding

Kontsevich’s observation.

Our second method of demonstrating the existence of wild spectra uses wall-crossing more di-

rectly. Namely, in Section 3.3.2 we exhibit a path on the Coulomb branch which begins in a strong

coupling chamber with a finite set of BPS states, and leads to a wall-crossing between two hyper-

multiplet charges γ, γ′ with 〈γ, γ′〉 = 3. As we have discussed above, the existence of such a path

directly implies the existence of wild spectra. In fact this gives more than we got from the spectral

network: it shows that there is a whole 3-cohort in the spectrum. In Section 3.4.2 we perform some

nontrivial checks of this statement by factorizing the spectrum generator derived from the known

finite spectrum in a strong coupling chamber. In Section 3.4.3 we also check numerically the expo-

nential growth of the BPS degeneracies for sequences of charges of the form n(aγ + bγ′), n → ∞,

for various values of a, b.

In Section 3.5 we discuss the behavior of the “BPS quivers” of the SU(3) theory along the

path found in Section 3.3.2. It turns out that the Kronecker 3-quiver is in fact a subquiver of the

BPS quiver, after one has performed suitable mutations and made a suitable choice of half-plane to

define simple roots. We similarly argue that for all m ≥ 3 (not only m = 3) there are Kronecker

m-subquivers and corresponding m-wild spectra on the Coulomb branch of the SU(3) theory.

In the course of our investigations we also studied the protected spin characters (a.k.a. “refined

BPS degeneracies”) for the m-Kronecker quiver in the wild region. Our main tool was the “motivic”

Kontsevich-Soibelman formula [88, 90]. While investigating these spin degeneracies we discovered

some beautiful but strange systematics. Some of these were previously discovered by Weist and

Reineke in [128] and [118], respectively, but some are new. We collect them in Section 3.7. Perhaps

the most notable new observation is that the spin degeneracies appear, (on the basis of numerical

data), to obey a universal scaling law. See equations (3.106) and (3.107).
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1.4 Protected Spin Characters from Spectral Networks

In Chapter 4 we describe a refinement of the Spectral Networks method for computing BPS degen-

eracies. We propose an algorithm to compute the spin content, or more properly, the protected spin

character, of the space of BPS states at a given charge. One motivation for such an algorithm is

that, while the range of applicability of the spectral networks technique is rather large, the infor-

mation it provides about BPS states is, in a sense, somewhat limited. On the one hand, as already

anticipated, the only information about BPS states of the 4d gauge theory which can be extracted

from spectral networks is the BPS index. On the other hand, the results of chapter 3 (in particular,

of section 3.7) emphasize that BPS spectra can exhibit a rather rich structure, which is missed by

the BPS index alone, but is captured by the protected spin character (PSC). The PSC provides a

refined description of BPS states, in particular by encoding their spin, thereby capturing the rich

structures of wild spectra uncovered in [73]. Given its importance, and the questions raised by the

occurrence of wild spectra, it would be desirable to develop a framework for a systematic study

of the PSC. The main result of this Chapter is a proposal for extracting PSC data from a certain

refined version of spectral networks, thus generalizing the BPS index formula of [63]. Specifically, we

propose a method for computing the spin of both framed and vanilla BPS states. (The terminology

comes from [61, 63, 65].)

We will argue below that spectral networks actually contain much more information than hitherto

utilized. In section 4.1 we formulate precise conjectures explaining where such extra information sits

within the network data, and how it encodes spin degeneracies. A key ingredient is the refinement of

the classification of soliton paths induced by regular homotopy. After introducing a suitable formal

algebra associated with this refinement, in section 4.2 we provide the related generalization of the

formal parallel transport of [63]. This involves establishing a refined version of the detour rules,

whose physical interpretation explains the wall-crossing of framed BPS states. The refinement by

regular homotopy allows one to associate to each path a an integer known as the writhe wr(a),

consisting of a certain signed sum over self-intersections. We identify the writhe with the spin of a

framed BPS state, while its charge is given by the canonical projection to relative homology. In the

same way as framed degeneracies are good probes to study vanilla BPS indices, the framed PSCs

obtained in this way serve the same purpose for computing vanilla PSCs.

Important consistency checks come from the halo picture of framed wall-crossing [14, 61], which

was crucial in linking jumps of PSCs at walls of marginal stability and the motivic Kontsevich-

Soibelman wall-crossing formula [88, 90]. The main idea here is to associate a path ℘ on the ultraviolet
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curve C with a supersymmetric interface between surface defect theories [65]. We find that the halo

picture easily emerges within our proposal if we restrict to a certain type of susy interface. We provide

a criterion that distinguishes this special class and call them halo-saturated interfaces. Physically,

their crucial feature is that their wall-crossing behavior mimics that of line defects [61]. The wall-

crossing behavior of more generic interfaces is one issue which remains only partially understood, in

particular it would be desirable to shed light on the halo interpretation of the framed wall crossing

of generic interfaces. In section 4.3.4 we study a particular example and find some apparent tension

with the halo picture. However, by taking into account a refinement of the homology on Σ induced

by the presence of the interface, we eventually find a reconciliation with the halo interpretation. A

systematic understanding of how the halo picture fits with our conjectures for generic interfaces is

left as an interesting and important open problem for the future.

We would like to mention another curious conjecture, even though it is not central to the main

development of the paper. Only certain states in a vanilla multiplet will bind to a generic interface

[63, 65, 95]. This suggests that each state within the vanilla multiplet can be associated with a

subnetwork of the critical network Wc, and that the halos forming around the interface depend on

how the latter10 intersects the various subnetworks. Towards the end of section 4.3.4 we mention

this hypothesis when discussing contributions from “phantom” halos to the K-wall jumps of framed

PSCs, while we defer a more detailed study to appendix H, where supporting evidence is also offered.

We leave a proof of our conjectures to future work. We concentrate instead on how they are

realized in various examples, and on their consequences. The results are in perfect agreement with

other approaches, such as results derived from motivic wall-crossing (see for example [73]) or from

quiver techniques. In particular, we consider the rich playground provided by the wild BPS states

investigated in [73]. These wild BPS states typically furnish high-dimensional and highly reducible

representations of the group of spatial rotations. In a wild chamber of the Coulomb branch one finds

BPS multiplets of arbitrarily high spin. In this phase of the IR theory the number of BPS states

grows exponentially with the mass, a surprising fact for a gauge theory [73, 84, 85]. We will apply

our techniques both to the herd networks, which describe a particular type of wild state, as well as

to a new type of wild critical network which is a close cousin of the herds. Wild spectral networks

have been associated with algebraic equations for generating functions of BPS indices [73, 75, 88,

90]. For instance, it was found (see [73, eq.(1.1)]) that herd networks encode an algebraic equation

familiar in the context of the tropical vertex group. By exploiting our construction of the formal

10More properly, the relative homology class associated to it.



18

parallel transport, we derive a deformation of that equation

P (z, y) = 1 + z

m−2∏
s=−(m−2)

P (zy2s, y)m−1−|s| , (1.16)

which is of a functional nature. We check that (1.16) correctly describes the generating function

of PSCs, and discuss its consistency with quiver representation theory (in particular with Kac’s

theorem [73, 116] and Poincaré polynomial stabilization [118]).

Finally, since the use of formal variables and the introduction of the writhe might seem artifi-

cial to some readers, in §4.5.2 we propose a framework in which all these crucial ingredients arise

naturally. A quantization of the moduli space of flat abelian connections on the Seiberg-Witten

curve naturally yields an operator algebra resembling that of our formal variables. From a slightly

different viewpoint, our formal variables may be thought of as Wilson operators of a certain abelian

Chern-Simons theory. From this perspective both the refined classification of paths (which are sin-

gular knots in our case) by regular homotopy and the role of the writhe are no surprise at all (see

e.g. [50]). We do not develop the relation of our story to Chern-Simons theory in detail, rather

we limit ourselves to some preliminary remarks. However we do expect an interpretation of our re-

fined construction of the formal parallel transport as a map between observables of two distinguished

Chern-Simons theories.

1.5 The BPS spectrum of the SU(2) N = 2∗ theory

Despite the great deal of progress in finding the BPS spectrum of many N = 2 theories in recent

years [11, 12, 63, 64], finding that of a rather simple and beautiful theory, the SU(2) N = 2∗

theory, has proven somewhat recalcitrant to the existing techniques. In chapter 5 we give a solution

to the problem by combining an analysis of the weak coupling spectrum using the method of the

spectrum generator introduced in [64]. The content of this chapter is based on unpublished work in

collaboration with Greg Moore [96].

Let us summarize the main result here. There is a one-dimensional Coulomb branch, the u-plane,

with a rank three local system Γ of charges with three singularities with monodromy conjugate to T 2.

Locally we may choose a trivialization with generators γi, i ∈ Z mod 3 satisfying 〈γi, γi+1〉 = 2.

The sum γf = γ1 + γ2 + γ3 is a monodromy-invariant flavor charge and has a fixed central charge

Z(γf ;u) = m throughout the u-plane. Assuming that the Z(γi, u) lie within the same half complex

plane, there is then an exceptional locus

E =

3⋃
i=1

Ei , Ei = {u|Z(γi;u)/m > 0, ArgZ(γi+1;u) < ArgZ(γi−1;u)} (1.17)
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where the BPS spectrum is exceptionally simple. A pedantic reader will certainly find this statement

a bit disturbing, since Ei correspond to walls of marignal stability, where the spectrum is ill-defined.

An astute reader, however, will further note that no wall crossing may happen at such wall, due to

the vanishing of 〈γ, γ′〉 for any two charges whose central charges align here11. Therefore, it makes

perfect sense to speak of the spectrum at these loci.

Let us focus on the case u ∈ E3, where ArgZ(γ2) > ArgZ(γ1). Then we claim that12

Ω(nγ1 + (n+ 1)γ2, u; y) = 1 n ≥ 0

Ω(γ3, u; y) = 1

Ω(γ1 + γ2;u; y) = y + y−1

Ω(2γ1 + 2γ2 + γ3, u; y) = 1

Ω((n+ 1)γ1 + nγ2, u; y) = 1 n ≥ 0

(1.18)

and Ω(γ, u; y) = 0 for all other charges (except for charges whose negative is a member of the above

list, since of course Ω(−γ, u; y) = Ω(γ, u; y))13. Analogous results hold on the other loci Ei.

Equation (1.18) may be described simply in words. There is a region of E3 in which we can discuss

the spectrum in semiclassical terms. In a suitable duality frame we expect a massive vector multiplet

from the spontaneous breaking of SU(2) → U(1). This accounts for states of charge γ1 + γ2. In

addition the field-theoretic hypermultiplet provides states with charges γf ± (γ1 +γ2). Finally, there

are ’t Hooft-Polyakov magnetic monopoles that form dyonic boundstates with the massive W-bosons

of charges ±(γ1 + γ2). These account for the remaining charges in the list (1.18).

In general such a semiclassical analysis cannot determine the full spectrum because it is hard to

analyze the relevant supersymmetric quantum mechanics on monopole moduli spaces with higher

magnetic charge. It is precisely at this point that the spectrum generator of [64] comes to the rescue.

We recall that the spectrum generator is defined as the product of KS transformations associated

to occupied BPS rays in a halfplane Hϑ:

S =

x∏
γ:ϑ<Arg−Zγ(u)<ϑ+π

KΩ(γ;u)
γ . (1.19)

A key result of [64] is a straightforward algorithm for computing S exactly, in closed form, as a

symplectic transformation, from a spectral network [63] (equivalently, a WKB triangulation) of

11More precisely, no wall crossing that could be detected by the Kontsevich Soibelman formula. It is however true
that there will be marginally stable boundstates of mutually local states, their (in)stability must be determined by
other means.

12The Ω(γ, u; y) employed here is precisely the protected spin character introduced previously.
13An important exception are pure flavor BPS states, i.e. those which do not carry any net gauge charge (this

notion is invariant of the choice of e.m. duality frame). These are not captured by Kontsevich-Soibelman wall crossing,
and contribute trivial factors to S; they can be studied, however, by means of spectral networks.
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phase ϑ. In a word, our main computation in this chapter is to show that the spectrum (1.18)

completely accounts for the spectrum generator of the SU(2) N = 2∗ theory computed from the

algorithm of [64]. This computation is carried out in §5.3.2

Using the Kontsevich-Soibelman wall-crossing formula [88, 90] we can now in principle determine

the spectrum in any other region of the Coulomb branch. We give some illustrative results in section

5.4. The general pattern is that the factorization of S involves an infinite number of vectormultiplets,

each with its corresponding “cohort” of dyonic boundsates. Indeed, the loci Ei are extremely special

in that they have a single vectormultiplet. We also argue that all the wall-crossing events are copies

of the basic SU(2) wall-crossing, involving creation/annihilation of 2−cohorts, implying the absence

of wild walls.
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Chapter 2

The Spectrum Generator in Coupled

2d-4d Systems

2.1 Spectrum generating functions in 2d-4d systems

2.1.1 A short account of the GMN construction

Let us begin by recalling some fundamental ingredients from papers [61, 64, 65]. At generic u on

the Coulomb branch B of N = 2 four-dimensional SYM, there is a family of WKB triangulations

TϑWKB of C, defined as the isotopy class of the flow

〈∂t, λ〉 ∈ eiϑR× (2.1)

where λ is the Seiberg-Witten differential. These triangulations are piecewise independent of ϑ and

the BPS spectrum manifests itself through jumps of TϑWKB at values of ϑ coinciding with Arg ZγBPS .

The Hitchin system arises by considering a different kind of compactification, namely taking the the

6d theory on a circle, which leads to 5d super Yang-Mills, then considering the “4d BPS instantons”

on the space-like directions, finally reducing the corresponding self-duality equations on C. The M-

theory engineering of these theories provides the data that is necessary to specify the corresponding

Hitchin system, in particular the behavior of the Higgs field ϕ and of the connection A at singular

points, in correspondence of M5-brane intersections [32, 59]. The solutions of the Hitchin system

that satisfy the boundary conditions, modulo gauge, are parameterized by a hyperkahler manifold

M which is also the moduli space of flat sl(2,C) connections defined by

A =
R

ζ
ϕ+A+Rζϕ̄, ζ ∈ C×. (2.2)
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At each singularity there is a monodromy matrix Mi associated with this connection, which depends

on the boundary data as well as on ζ,R. Each of the Mi has two eigen-sections si, s̃i, with respective

eigenvalues µi, µ
−1
i . The small flat section at a singularity is defined to be the A-flat eigen-section

si , chosen between the two such that its norm decreases when evaluated along WKB lines that flow

into the singularity. The choice of small flat section at each singularity is a “decoration” of TWKB .

Each edge of the triangulation corresponds to a homology cycle of the spectral curve of the

Hitchin system. Let Γ denote the lattice generated by such cycles, to each γ ∈ Γ one associates a

corresponding Fock-Goncharov coordinate Xγ defined by

Xγ = − (si ∧ sj)(sk ∧ s`)
(sj ∧ sk)(s` ∧ si)

(2.3)

where i, j, k, ` denote the four singularities -ordered counterclockwise- at the corners of a quadrilateral

with Eγ stretching between singularities i, k. Here the cycles γ belong to Γ, the homology sublattice

of gauge charges. The jumps of TϑWKB are quantitatively described by Poisson transformations Kγ′

acting on the Xγ , there are two main types of jumps: one due to a BPS hypermultiplet and one

due to a vectormultiplet. Naively, keeping track of the jumps as ϑ varies is one way to recover the

BPS spectrum, however typical spectra are infinite and in practice cannot be obtained with this

method. The BPS spectrum divides evenly into particles and their CPT conjugates, by adopting

an appropriate definition of particle , the central charges can be taken to lie within a half of the

complex plane; therefore varying ϑ over an angle of π captures all the states of interest. The full

BPS spectrum is then encoded into the transformations X ϑγi 7→ X
ϑ+π
γi (γi runs over a basis of Γ),

these determine1 an operator S having a unique factorization

S =
∏
γ

KΩ(γ,u)
γ (2.5)

where Ω(γ, u) are the BPS degeneracies for states of charge γ.

At this point, this method might appear quite inconvenient, because of the difficulties involved in

constructing explicitly Fock-Goncharov coordinates. As a matter of fact, however, there are simple

expressions for the X ϑ+π
γi in terms of the initial FG coordinates. In [64] a fairly easy recipe for

writing them down was provided, which applies to all A1 theories of class S. For later convenience

we briefly recall the key idea behind it. The crucial step is to notice that Tϑ+π
WKB has the same

topology as TϑWKB , but inverted flow direction, the overall effect of this is to switch the definition

1The Fock-Goncharov coordinates obey the multiplication rules

XγXγ′ = Xγ+γ′ (2.4)

thus, the transformations of basis coordinates (those associated to a basis of Γ) determine that of any Xγ .
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of small flat section at each singularity, this amounts to a change in the decoration of TWKB also

known as the omnipop. One can then write down the spectrum generating functions Si, defined by

X ϑ+π
γi = SX ϑγi = Si X ϑγi (2.6)

by noting that, in the ratio X ϑ+π
γi /X ϑγi , terms containing the new small flat sections cancel out.

As a side note, we stress that the spectrum generating functions only implicitly encode the BPS

spectrum, while the factorization of the spectrum generator S into K operators ultimately encodes

the spectrum in an explicit fashion.

The aim of this paper is to extend this technique to the case of coupled 2d− 4d systems. In fact,

just like gauge charges of the 4d IR theory have a nice geometric interpretation as representatives

of H1(Σ,Z), correspondingly charges of 2d solitons are described by introducing a set of Γ-torsors

Γij , i, j ∈ V the set of vacua of the defect.2 An element of Γij corresponds then to a representative

of the relative homology class of oriented open paths on Σ, running from zi to zj , two of the lifts

of z ∈ C to Σ, where z is the position of the defect. This interpretation, together with the natural

notion of composition of oriented paths, determines whether two charges can be “added together”.

The 2d − 4d BPS spectrum is studied by introducing an enlarged set of Fock-Goncharov variables

Ya3, where a is any charge belonging to Γ,Γij .

The construction of the Y is analogous to that of the X for the pure gauge charges, while we review

it below for the other types of charges. Two distinct sets of degeneracies are employed to describe

the full 2d-4d spectrum: the ω : Γ×
∐
i,j Γij → Z, satisfying ω(γ, a+ b) = ω(γ, a) + ω(γ, b) and the

µ : Γij → Z defined for each γij , i 6= j. The picture is closely analogous to the 4d one: the spectrum

manifests itself through an ordered product of transformations acting on the Y, this time however

there are two different types of transformations.

S =:
∏
γ

Kωγ
∏
γij

Sµγij : (2.8)

where the : : indicate that the product is ordered according to the phases of the central charges of

the BPS states involved.

2Physically, the rationale is that an element γij of one of these torsors represents a 2d soliton state carrying some
4d gauge charge.

3The Y obey a twisted multiplication rule

YaYb =

{
σ(a, b)Ya+b if a+ b is defined
0 otherwise

(2.7)

the definition of the twisting function σ(a, b) can be found in §7 of [65]
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2.1.2 The conjugate section at a singularity

For later convenience, we now determine explicitly the “large” flat section s̃P at a singular point

P ∈ C, written in terms of sa and of the Xa in the star-shaped neighborhood of P .

Figure 2.1: The triangulation of C around a generic regular singularity.

Let us begin with the case, shown in fig.2.1, in which P is a regular singular point, and every

point in its neighborhood is a regular singular point. Define

Σ(P ;Q→ Q) = 1 + XP,` + XP,`XP,`−1 + · · ·+ (XP,` · · · XP,1) (2.9)

this can be expressed [64] in terms of flat sections as

Σ(P ;Q→ Q) = (1− µ2
P )

(sP ∧ s`)(sQ ∧ s̃P )

(sQ ∧ s`)(sP ∧ s̃P )
. (2.10)

solving for s̃P we have4

s̃P = ξP
[
(Σ(P ;Q→ Q)(sQ, s`)sP − (1− µ2

P )(sP , s`)sQ
]

(2.11)

where ξP is a constant depending on the normalization convention we choose. Both Σ(P ;Q → Q)

and µP have explicit expressions in terms of the Xa, so this is the form of s̃P we were after. This has

a straightforward extension to the case in which any of P and its neighbors are irregular punctures,

we deal with it below.

2.1.3 The omnipop for solitonic FG coordinates

We focus on the shortest representatives of each relative homology class. The spectrum generator for

more general ones can be obtained by employing the twisted product law of the Y: writing Yγ0
ij+γ

4To lighten notation, we use (sa, sb) ≡ (sa ∧ sb) from here on.
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as a twisted product of coordinates corresponding to the “simplest” solitonic charges Yγ0
ij

together

with purely gauge Yγ .

Any WKB triangulation of C carries a corresponding decomposition into quadrilateral cells Cab

bounded by four separating WKB lines [64], i.e. with vertices consisting of two turning points and

two singularities a and b, subject to the constraint that there aren’t any singularities, nor turning

points within the cell. As a first example, let us consider a single surface defect located at z ∈ Cab,

within a quadrilateral which vertices are all regular punctures, our goal is to compute the omnipop

for the Y corresponding to a BPS ij-soliton. This type of situation was examined in §7.5.2 of [65],

TϑWKB is shown in Fig.2.2.

Figure 2.2: A quadrilateral containing z, at an angle ϑ: sheet 1 on the left, sheet 2 on the right. The path
γ12 runs from x1 (the lift of z in sheet 1) straight to the turning point inside triangle abc on sheet 1, then
back from the turning point to x2 on sheet 2.

According to eq.(7.36) of [65]

Yγ12 =
(sa, sc)

(sb, sa)(sb, sc)
sb(z)⊗ sb(z) (2.12)

We briefly review the rules leading to this result.

2.1.3.1 Defining the Yγij

There are two equivalent definitions of the Y, we quickly review how these coordinates are obtained

and set our conventions for the rest of this work. For clarity, we report the pictures of the two sheets

of Σ in a neighborhood of cell Cab, indicating the direction (as given by the sign of 〈λ, ∂t〉e−iϑ) of

WKB lines on each sheet. We use P1,2
α for the lifts of singular points on sheets 1, 2 respectively.

Adopting the conventions of [65]: γ12 is the simplest path from z to the turning point in triangle

abc, when lifted, it flows from sheet 1 to sheet 2.

First method
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We begin by applying the methods described in section 7.5.2 of [65]. We first identify a homotopy

equivalent to γ12, made from edges of the WKB triangulation, on Σ: we choose the path

x1 → P1
b → P2

c → P2
a → P2

b → x2 (2.13)

we must pass through P1
b at the beginning because of the direction of the WKB line through x1

and similarly for P2
b at the end because of the direction of the WKB line through x2. We have the

equivalence

γ12 ∼ Êb,x1 − Êb,c + Êc,a − Êa,b + Êb,x2 (2.14)

where the signs are dictated by comparison of the direction of the path of our choice with that of

the WKB edges employed. The Ê are oriented lifts of the edges on C and they are understood to

be taken on the sheet on which we are working, that is actually specified by eq. (2.13). Equation

(7.27) of [65] defines

X ϑn,b,b(z, z) =
∏
α,β

(sα, sβ)nαβ sϑb (z)⊗ sϑb (z) (2.15)

where nαβ is a matrix such that γ12 =
∑
nαβÊαβ , therefore in our case (2.14) yields

X ϑn,b,b(z, z) = sb(z)⊗ sb(z)
(sc, sa)

(sa, sb)(sb, sc)
. (2.16)

There is a sign for passing from the untwisted X to the twisted Y, which is positive according to

the rules outlined in appendix F.1 of [65]. So (2.16) gives Yγ12
.

Second method

As discussed in appendix F in [65], the proper definition of the Ya is slightly more involved, we

now recall it and then use it to re-derive the result (2.16). This method has two advantages: signs

are fixed unambiguously, and the procedure is somewhat faster. We will use this second type of

construction throughout the rest of this work.

As we mentioned above, to each WKB triangulation corresponds a cell decomposition into quadri-

laterals. Considering the union of the edges from TWKB and those from the cell decomposition yields

a finer decomposition into “sectors”. For example, in fig.2.2 the sector containing z is the triangle

whose vertices are a, b and the branch point on the left, and whose edges are the the generic path

(in black) from a to b, together with the two separating WKB paths running between the branch

point and a, b respectively.

More generally, denote by S the sector containing the surface defect. Also, let zi, zj be two of the
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lifts of z. Consider a path in C from z to the turning point on the boundary of S, and denote

by γij,S the odd sum of its lifts, namely an oriented open path in Σ running from zi to zj . Let a

be the vertex of TWKB reached by flowing along a lifted WKB path from zi, and let (abc) be the

vertices of the triangle in counterclockwise order, then define si,S := sa (sb, sc) and similarly define

sj,S . Finally, Yγij ,S is defined to be the fiber endomorphism of the rank-2 bundle over the point z

that maps

si,S 7→ 0 , sj,S 7→ νi,Ssi,S (2.17)

with νi,S = +1 (respectively −1) if the lifted generic WKB path through zi runs counterclockwise

(clockwise) around the triangle. Letting γii,0 be the element of Γii corresponding to 0 ∈ Γ, define

Yγii,0 to be the fiber endomorphism

si 7→ si , sj 7→ 0. (2.18)

Variables Yγij+γ and Yγii,0+γ , γ ∈ Γ, corresponding to more general elements of the Γ-torsors are

obtained via the twisted multiplication laws. In our specific case, we have

s1,S = sb(sc, sa) s2,S = sa(sb, sc), (2.19)

and the fiber endomorphisms

Yγii =
sj,S(z)⊗ si,S(z)

(si,S , sj,S)

Yγij = νi,S
si,S(z)⊗ si,S(z)

(sj,S , si,S)

(2.20)

where ν1 = 1 = −ν2. Therefore, we have explicitly

Yγ11,0 =
sa(z)⊗ sb(z)

(sb, sa)
Yγ22,0 =

sb(z)⊗ sa(z)

(sa, sb)

Yγ12
= sb(z)⊗ sb(z)

(sc, sa)

(sa, sb)(sb, sc)
Yγ21

= sa(z)⊗ sa(z)
(sb, sc)

(sa, sb)(sc, sa)

(2.21)

Although the definition of Fock-Goncharov coordinates might appear somewhat unmotivated, this

in fact generalizes the Xγ , γ ∈ Γ in agreement both with the twisted multiplication laws of the Ya,

and with the morphisms induced by crossing S or K walls, details can be found in appendix F of

[65].

2.1.3.2 The case of regular punctures

We now set about deriving the expression for Ỹγ12
:= Yϑ+π

γ12
in terms of the Ya := Yϑa . To begin with,

recall that sending ϑ→ ϑ+π inverts the direction of the WKB flow, as well as switching decorations
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at the punctures. The inversion of the WKB flow has different effects on gauge and solitonic charges.

Sending ϑ → ϑ + π yields γϑ+π = −γϑ since, for 4d gauge charges, the orientation of cycles γ is

defined by the intersection with WKB lines. In contrast, for soliton charges a path γij is specified

to go from sheet i to sheet j, within a certain relative homology class, thus its orientation will

remain unchanged under an omnipop. As a consequence, the procedure for obtaining the spectrum

generator will be slightly different from the one for the pure 4d case. More precisely, for gauge

charges one can derive S by evaluating the transformation [64]

X ϑ+π
γ = X ϑγ ·

(
X
TWKB(ϑ,λ2)

E X̃
TWKB(ϑ,λ2)

E

)−1
. (2.22)

This result relies on the fact that, under the omnipop,

XγϑE 7→ Xγϑ+π
E

= X−γϑE = X−1
γϑE

As we mentioned, this is not the case with solitonic charges: after sending ϑ 7→ ϑ + π a charge γij

still runs from sheet i to sheet j. Since we can no longer employ this trick, we will instead directly

inspect Ỹa.

Figure 2.3: A quadrilateral containing z, at an angle ϑ+ π: sheet 1 on the left, sheet 2 on the right. The
path γ12 runs from x1 straight to the turning point in triangle abc, on sheet 1, then back from the turning
point to x2 on sheet 2.

We begin by applying again the rules in (2.20) to write down Yϑ+π
γ12

in terms of the new sections:

we now have

s̃1(z) = s̃a(z)(s̃b, s̃c) s̃2(z) = s̃b(z)(s̃c, s̃a) ν̃1 = −ν̃2 = − (2.23)

therefore, applying (2.20) gives

Ỹγ12
= s̃a(z)⊗ s̃a(z)

(s̃b, s̃c)

(s̃a, s̃b)(s̃c, s̃a)
(2.24)

The next step is finding an expression for Ỹγ12
in terms of Ya. In order to do so, let us consider a

neighborhood of triangle abc, as shown in Fig.2.4, we can employ eq.(2.11) to get the conjugate flat
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sections:

P → a, Q→ b, `→ c

s̃a = ξa
[
Σb→ba (b, c)sa + (1− µ2

a)(c, a)sb
] (2.25)

where we understand the shorthands Σβ→βα := Σ(α;β → β) and (α, β) := (sα, sβ). Similarly, we

have the other sections by cyclic permutation of the indices

P → b, Q→ c, `→ a

s̃b = ξb
[
Σc→cb (c, a)sb + (1− µ2

b)(a, b)sc
]

P → c, Q→ a, `→ b

s̃c = ξc
[
Σa→ac (a, b)sc + (1− µ2

c)(b, c)sa
]

(2.26)

Figure 2.4: Punctures a, b, c are regular, indicated is the path for computing Σ(a; b→ b)

We first compute

s̃a(z)⊗ s̃a(z) = ξ2
a

{
[Σb→ba (b, c)]2 sa ⊗ sa + (1− µ2

a)2(a, c)2sb ⊗ sb

+Σb→ba (1− µ2
a)(b, c)(c, a)[sa ⊗ sb + sb ⊗ sa]

}
,

(2.27)
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from now on, we’ll drop the normalization factors ξα, since they cancel out in eq.(2.24). In order to

compute the other piece of eq.(2.24) we first evaluate

(s̃a, s̃b) =
[
Σb→ba Σc→cb − Σb→ba (1− µ2

b) + (1− µ2
a)(1− µ2

b)
]

× (a, b)(b, c)(c, a),

(2.28)

together with cyclic permutations of the three indices. For later convenience, we define the quantities

Ξ(X,Y ;x, y) := [XY −X(1− y2) + (1− x2)(1− y2)]

ωa,b,c := (sa, sb)(sb, sc)(sc, sa),

(2.29)

for each triple of vertices a, b, c of a triangle, labeled counter-clockwise.

Equations (2.28) can be summarized as

(s̃a, s̃b) = Ξ(Σb→ba ,Σc→cb ;µa, µb)ωa,b,c (2.30)

In order to avoid confusion below, let us stress here that some care is needed, when using this

notation: the Σ’s appearing into Ξ must be those related to the triangle abc, thus e.g. for fig.2.8,

one cannot write (s̃c, s̃b) = Ξ(Σb→bc ,Σc→cb ;µc, µb)ωa,b,c, because the clockwise labeling would impose

to work in triangle c, b, g. One can, of course, use (s̃c, s̃b) = −(s̃b, s̃c) and work on triangle a, b, c

instead.

Notice that, since ωa,b,c is antisymmetric under odd permutations of the indices, in particular

a, b, then we must have Ξ(A,B;x, y) = Ξ(B,A; y, x) which is not trivial from the definition of Ξ,

but must be justified by studying the properties of the Σ’s.

From (2.28) follows

(s̃b, s̃c)

(s̃a, s̃b)(s̃c, s̃a)
=

1

ωa,b,c
Ξ(Σc→cb ,Σa→ac ;µb, µc)

×
[
Ξ(Σb→ba ,Σc→cb ;µa, µb) Ξ(Σa→ac ,Σb→ba ;µc, µa)

]−1

(2.31)

The factors Ξ have well defined expressions in terms of Yγ : see eq.(11.9) of [64]. Eventually, we come

to the explicit expression for Ỹγ12

Ỹγ12 =
1

ωa,b,c
Ξ(Σc→cb ,Σa→ac ;µb, µc)

×
[
Ξ(Σb→ba ,Σc→cb ;µa, µb) Ξ(Σa→ac ,Σb→ba ;µc, µa)

]−1

×
{

[Σb→ba (b, c)]2 sa ⊗ sa + (1− µ2
a)2(a, c)2sb ⊗ sb

+Σb→ba (1− µ2
a)(b, c)(c, a)[sa ⊗ sb + sb ⊗ sa]

}
= Ξ(Σc→cb ,Σa→ac ;µb, µc)

×
[
Ξ(Σb→ba ,Σc→cb ;µa, µb) Ξ(Σa→ac ,Σb→ba ;µc, µa)

]−1

×
{

(Σb→ba )2Yγ21
+ (1− µ2

a)2Yγ12
+ Σb→ba (1− µ2

a) [Yγ22=0 − Yγ11=0]
}

(2.32)
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Similar, tedious but straightforward, calculations give

Ỹγ11=0
=
s̃b(z)⊗ s̃a(z)

(s̃a, s̃b)

=
[
Ξ(Σb→ba ,Σc→cb ;µa, µb)

]−1

×
{

Σb→ba Σc→cb Yγ22=0 + Σc→cb (1− µ2
a)Yγ12

−Σb→ba (1− µ2
b) [Yγ22=0 + Yγ21

]− (1− µ2
a)(1− µ2

b) [Yγ12
− Yγ11=0]

}
Ỹγ22=0

=
s̃a(z)⊗ s̃b(z)

(s̃b, s̃a)

= −
[
Ξ(Σb→ba ,Σc→cb ;µa, µb)

]−1

×
{
−Σb→ba Σc→cb Yγ11=0 + Σc→cb (1− µ2

a)Yγ12

−Σb→ba (1− µ2
b) [Yγ21

− Yγ11=0]− (1− µ2
a)(1− µ2

b) [Yγ12
+ Yγ22=0]

}
Ỹγ21

= s̃b(z)⊗ s̃b(z)
(s̃c, s̃a)

(s̃a, s̃b)(s̃b, s̃c)

= Ξ(Σa→ac ,Σb→ba ;µc, µa)

×
[
Ξ(Σb→ba ,Σc→cb ;µa, µb) Ξ(Σc→cb ,Σa→ac ;µb, µc)

]−1

×
{

(Σc→cb )2Yγ12 − Σc→cb (1− µ2
b) [2Yγ12 + Yγ22=0 − Yγ11=0]

+(1− µ2
b)

2 [Yγ12 + Yγ21 + Yγ22=0 − Yγ11=0]
}

2.1.3.3 Extension to irregular punctures: one irregular puncture

Suppose b, c are regular punctures and a is now irregular. A pop acts in two combined ways on the

decorated triangulation at the irregular puncture, as explained in §8 of [64]:

• on the decoration – a pop can be regarded as the action by 1 on the Z torsor of decorations at the

irregular puncture: labeling vertices . . . Qj , Qj+1 . . . clockwise with corresponding decorations

. . . sn, sn+1 . . . , then after sending ϑ → ϑ + π the decorations associated to vertices will be

. . . sn−1, sn . . . .

• on the vertices – a pop acts as a cyclic permutation of the vertices associated with an irregular

puncture, this is easy to see e.g. in AD theories, where the irregular puncture is at infinity:

here we can actually follow the evolution of the triangulation as ϑ 7→ ϑ+ π, we see the WKB

rays rotating counterclockwise by an angle 2π/(N + 2)

The overall effect is a combination of these two, they don’t add up, rather, they describe the same

behavior.
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Therefore, referring to fig.2.5, equation (2.24) still holds. The rules for expressing s̃b, s̃c don’t

change, while we have s̃a = sã.

Figure 2.5: The defect’s parameter z sits in cell Cab, within a triangle whose vertex a is an irregular
puncture. Indicated in yellow is the path for parallel transport, employed in constructing Σb→ãa

The suitable generalization of (2.10) is (see [64])

Σb→ãa =
(sã, sb)(sa, sc)

(sb, sc)(sã, sa)
(2.33)

from which we derive5

sã = ξã[Σb→ãa (b, c) sa + (c, a) sb] (2.34)

Notice that this corresponds to making the replacements Σb→ba → Σb→ãa , µ2
a → 0 into eq (2.25).

Therefore, we can immediately write down the outer products of sections at popped vertices, in a

way that is analogous to (2.30)

(s̃a, s̃b) = Ξ(Σb→ãa ,Σc→cb ; 0, µb)ωa,b,c

(s̃c, s̃a) = Ξ(Σa→ac ,Σb→ãa ;µc, 0)ωa,b,c

(2.35)

similarly, computing again sã ⊗ sã just involves making the above-mentioned replacements. Even-

tually, we have the new expression for Ỹγ12

Ỹγ12
= Ξ(Σc→cb ,Σa→ac ;µb, µc)

×
[
Ξ(Σb→ãa ,Σc→cb ; 0, µb) Ξ(Σa→ac ,Σb→ãa ;µc, 0)

]−1

×
{

(Σb→ãa )2Yγ21 + Yγ12 + Σb→ãa [Yγ22=0 − Yγ11=0]
} (2.36)

Similar expressions for Ỹγ21 , Ỹγ11=0, Ỹγ22=0 are obtained after applying the proper substitutions.

2.1.3.4 Extension to irregular punctures: general case

It is straightforward to extend the above reasoning to the case in which any combination of a, b, c

are regular or irregular. If a vertex α is irregular, one must apply the corresponding replacements:

5In the case of N=1 AD theory, this result together with identity (2.44) gives the expected s̃a = sc.
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Figure 2.6: The defect’s parameter z sits in cell Cab, within a triangle whose vertices are all irregular
punctures

Σβ→βα → Σβ→β̃α and µ2
α → 0, into expression (2.32), where α, β, γ is an ordered triple valued in

{a, b, c}.

2.1.4 Including line defects

We now want to derive the spectrum generator in presence of line defects. The simplest case of a

single line defect will be considered.

2.1.4.1 Defects in the same cell, different sectors

Let’s start with the situation of fig.2.7: both z, z′ lie within cell Cab. We first assume all punctures

to be regular, and later generalize.

In analogy with what we have seen so far, we define the WKB coordinates corresponding to

framed BPS states as follows. Let S, S′ be the sectors6 in which z, z′ lie respectively. On sheet i

we define si,S(z) = s1(z) (s2, s3) (si′,S′(z
′) = s1(z′) (s2, s3)) where s1(z) (s1(z′)) is the small flat

section of the vertex into which the WKB line through z (z′) flows, evaluated at z (z′). The triple

123 indicates a counterclockwise labeling of the vertices of the triangles containing z, z′.

6a sector is a subset of C bounded by a WKB edge and two separatrices



34

Figure 2.7: Sheet 1, at angle ϑ

We define the bundle morphisms (understanding i = i′ 6= j = j′)

Yii′ :

 si(z)→ si′(z
′)

sj → 0
=
sj(z)⊗ si′(z′)

(si′ , sj)

Yij′ :

 si(z)→ 0

sj(z)→ νi si′(z
′)

= νi
si(z)⊗ si′(z′)

(sj , si′)

(2.37)

in close analogy to the reasoning in appendix F of [65]; we omitted the subscripts indicating the cells,

since such information is specified by whether we evaluate at z or z′. The sign νi,S is positive if the

WKB line through si(z) flows counterclockwise within the triangle containing z, negative otherwise:

it really depends on the sector, not just on the cell, of z.

A remark is in order here: this definition is not explicitly stated in [65], but it follows naturally

by extending what is defined in appendix F of that reference for the fiber endomorphisms (see eq

(2.20)), along with enforcing normalization invariance. However, in eq. (8.11) of [65], in order to

get Y−+′ , the second line of (2.37) must be changed to

Yij′ = νj
sj(z)⊗ sj′(z′)

(si, sj′)
(2.38)

leaving the first line unchanged. Eventually, all the spectra we will derive in the rest of this work

will match with those of cases analyzed in [65], provided we make the proper identifications.

Therefore in our case we identify

s1(z) = sb(z) (sc, sa) s1′(z
′) = sb(z

′) (sa, sf )

s2(z) = sa(z) (sb, sc) s2′(z
′) = sa(z′) (sf , sb)

(2.39)

together with the signs ν1 = −ν1′ = −ν2 = ν2′ = +.
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Consider the two “simplest paths” (not crossing any separatrices) between z and z′, lying entirely

on sheets 1 and 2, to them associate respectively: Yϑ11′ ≡ Y11′ , Yϑ22′ ≡ Y22′ ; similarly, the “simplest”

paths from sheet 1 to 2, and vice versa, are Yϑ12′ ≡ Y12′ , Yϑ21′ ≡ Y21′ . They read

Y11′ =
sa(z)⊗ sb(z′)

(sb, sa)
Y22′ =

sb(z)⊗ sa(z′)

(sa, sb)
,

Y12′ = sb(z)⊗ sb(z′)
(sc, sa)

(sa, sb)(sb, sc)
Y21′ = sa(z)⊗ sa(z′)

(sb, sc)

(sa, sb)(sc, sa)
.

(2.40)

After sending ϑ→ ϑ+ π, we have the new quantities

s̃1(z) = s̃a(z) (s̃b, s̃c) s̃1′(z
′) = s̃a(z′) (s̃f , s̃b)

s̃2(z) = s̃b(z) (s̃c, s̃a) s̃2′(z
′) = s̃b(z

′) (s̃a, s̃f )

(2.41)

together with the new signs ν̃1 = −ν̃1′ = −ν̃2 = ν̃2′ = −.

Applying again definitions (2.37), the new coordinates read

Yϑ+π
11′ =: Ỹ11′ =

s̃b(z)⊗ s̃a(z′)

(s̃a, s̃b)
,

Yϑ+π
22′ =: Ỹ22′ =

s̃a(z)⊗ s̃b(z′)
(s̃b, s̃a)

Yϑ+π
12′ =: Ỹ12′ = s̃a(z)⊗ s̃a(z′)

(s̃b, s̃c)

(s̃a, s̃b)(s̃c, s̃a)
,

Yϑ+π
21′ =: Ỹ21′ = s̃b(z)⊗ s̃b(z′)

(s̃c, s̃a)

(s̃a, s̃b)(s̃b, s̃c)
.

(2.42)

Employing eq.s (2.25)(2.26) and (2.30) we obtain

Ỹ11′ =
[
Ξ(Σb→ba ,Σc→cb ;µa, µb)

]−1

×
{

Σb→ba Σc→cb Yϑ22′ + Σc→cb (1− µ2
a)Yϑ12′

+ (1− µ2
a)(1− µ2

b)
sc(z)⊗ sb(z′)

(sb, sc)
+ Σb→ba (1− µ2

b)
sc(z)⊗ sa(z′)

(sc, sa)

} (2.43)

In order to fix the second row, i.e. to eliminate sc(z), we employ the identity

sa(z) (sb, sc) + sb(z) (sc, sa) + sc(z) (sa, sb) = 0 (2.44)

and get

Ỹ11′ =
[
Ξ(Σb→ba ,Σc→cb ;µa, µb)

]−1

×
{

Σb→ba Σc→cb Y22′ + Σc→cb (1− µ2
a)Y12′

− (1− µ2
a)(1− µ2

b) [Y12′ − Y11′ ]

− Σb→ba (1− µ2
b) [Y21′ + Y22′ ]

}
(2.45)
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Similar, tedious but straightforward, calculations show that

Ỹ22′ = −
[
Ξ(Σb→ba ,Σc→cb ;µa, µb)

]−1

×
{
−Σb→ba Σc→cb Y11′ + Σc→cb (1− µ2

a)Y12′

− (1− µ2
a)(1− µ2

b) [Y12′ + Y22′ ]

− Σb→ba (1− µ2
b) [Y21′ − Y11′ ]

}
(2.46)

Ỹ12′ = Ξ(Σc→cb ,Σa→ac ;µb, µc)

×
[
Ξ(Σb→ba ,Σc→cb ;µa, µb) Ξ(Σa→ac ,Σb→ba ;µc, µa)

]−1

×
{

(Σb→ba )2Y21′ + (1− µ2
a)2Y12′ + Σb→ba (1− µ2

a) [Y22′ − Y11′ ]
}

Ỹ21′ = Ξ(Σa→ac ,Σb→ba ;µc, µa)

×
[
Ξ(Σb→ba ,Σc→cb ;µa, µb) Ξ(Σc→cb ,Σa→ac ;µb, µc)

]−1

×
{

(Σc→cb )2Y12′ − Σc→cb (1− µ2
b) [2Y12′ + Y22′ − Y11′ ]

+(1− µ2
b)

2 [Y12′ + Y21′ + Y22′ − Y11′ ]
}

Extension to irregular punctures

If one or more of the vertices a, b, c, f belong to an irregular puncture, we obtain the new spectrum

generator by using the analogue of eq.(2.34) in place of (2.25), (2.26), ultimately this amounts to

performing the substitutions mentioned in subsection 2.1.3.4.

2.1.4.2 Defects in same sector

Suppose z, z′ are in the same sector of cell Cab, mark a point z′′ in the other sector of cell Cab: then

use the twisted product law of the Ya, to glue together paths z → z′′ and z′′ → z′.

For future convenience, we point out a few features here. Looking back at last section, one

might notice that the only changes come from substituting s1′ = sb(z
′)(sc, sa), s2′ = sa(z′)(sb, sc)

in eq.(2.39) and s̃1′ = s̃a(z′)(s̃b, s̃c), s̃2′ = s̃b(z
′)(s̃c, s̃a) in eq.(2.41), together with flipping the signs

νi′ , ν̃i′ .

The point is that none of what we change comes into play in the expressions of the Y, Ỹ (sf

never appears, indeed, due to cancellations). Henceforth if we move z′ across the ab edge nothing

changes, as long as it keeps lying in the same cell.
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2.1.4.3 Defects in neighboring cells

Figure 2.8: Line defect connecting neighboring cells

Referring to fig.2.8 we consider the case where z, z′ are in neighboring cells with the choice

of sectors shown in the picture. Other choices of sectors can be achieved by using the twisted

multiplication rule of the Y to attach to z or z′ the paths described in the previous subsection.

Following the rules sketched above, we have now

s1(z) = sb(z) (sc, sa) s1′(z
′) = sb(z

′) (se, sc)

s2(z) = sa(z) (sb, sc) s2′(z
′) = sc(z

′) (sb, se)

ν1 = ν1′ = −ν2 =− ν2′ = +

(2.47)

yielding

Yϑ11′ =
s2(z)⊗ s1′(z

′)

(s1′ , s2)
=
sa(z)⊗ sb(z′)

(sb, sa)
,

Yϑ22′ =
s1(z)⊗ s2′(z

′)

(s2′ , s1)
=
sb(z)⊗ sc(z′)

(sc, sb)
,

Yϑ12′ = ν1
s1(z)⊗ s1′(z

′)

(s2, s1′)
= sb(z)⊗ sb(z′)

(sc, sa)

(sa, sb)(sb, sc)
,

Yϑ21′ = ν2
s2(z)⊗ s2′(z

′)

(s1, s2′)
= −sa(z)⊗ sc(z′)

(sc, sa)
.

(2.48)

After sending ϑ→ ϑ+ π we have

s̃1(z) = s̃a(z) (s̃b, s̃c) s̃1′(z
′) = s̃c(z

′) (s̃b, s̃e)

s̃2(z) = s̃b(z) (s̃c, s̃a) s̃2′(z
′) = s̃b(z

′) (s̃e, s̃c)

ν̃1 = ν̃1′ = −ν̃2 =− ν̃2′ = −

(2.49)
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therefore, applying the definitions gives

Ỹ11′ =
s̃b(z)⊗ s̃c(z′)

(s̃c, s̃b)
Ỹ22′ =

s̃a(z)⊗ s̃b(z′)
(s̃b, s̃a)

Ỹ12′ = − s̃a(z)⊗ s̃c(z′)
(s̃c, s̃a)

Ỹ21′ = s̃b(z)⊗ s̃b(z′)
(s̃c, s̃a)

(s̃a, s̃b)(s̃b, s̃c)
.

(2.50)

We start working on Yϑ+π
11′ ≡ Ỹ11′ , at the denominator we have (s̃c, s̃b), in employing (2.30)7 we

choose to work within triangle abc. Thus we refer to eq.s (2.26), and have

Ỹ11′ = [−Ξ(Σc→cb ,Σa→ac ;µb, µc)ωa,b,c]
−1

× {Σc→cb Σa→ac (c, a)(a, b) sc(z)⊗ sc(z′)

+ Σc→cb (c, a)(b, c)(1− µ2
c) sb(z)⊗ sa(z′)

+ Σa→ac (a, b)2(1− µ2
b) sc(z)⊗ sc(z′)

+(1− µ2
b)(1− µ2

c) (a, b)(b, c) sc(z)⊗ sc(z′)
}

(2.51)

in order to have proper asymptotics, one must use the analogue of (2.44) to substitute both sa(z′)

and sc(z), notice that since we are “working in triangle abc” it is convenient to apply such identities

among these vertices, in order to benefit from proper cancellations. The resulting expression reads

Ỹ11′ = [Ξ(Σc→cb ,Σa→ac ;µb, µc)]
−1

×
{

Σc→cb Σa→ac Y22′ + Σc→cb (1− µ2
c)(Y12′ − Y22′)

− (Σa→ac + µ2
c − 1)(1− µ2

b)(Y21′ + Y22′)

+(1− µ2
b)(1− µ2

c)(Y11′ − Y12′)
}

(2.52)

7As we stressed in defining Ξ, it would be a mistake to write e.g.

(s̃c, s̃b) = Ξ(Σb→bc ,Σc→cb ;µc, µb)ωa,b,c.

There are two possibilities here:

(s̃c, s̃b) = −(s̃b, s̃c) = −Ξ(Σc→cb ,Σa→ac ;µb, µc) = +Ξ(Σb→bc ,Σe→eb ;µc, µb)ωc,b,e
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A similar procedure leads to

Ỹ22′ = [Ξ(Σb→ba ,Σc→cb ;µa, µb)]
−1
{

Σb→ba Σc→cb Y11′ + Σb→ba (1− µ2
b)Y21′

−Σc→cb (1− µ2
a)Y12′ + (1− µ2

a)(1− µ2
b)Y22′

}

Ỹ12′ = [Ξ(Σa→ac ,Σb→ba ;µc, µa)]−1
{

Σb→ba Σa→ac Y21′ + Σa→ac (1− µ2
a)Y22′

−Σb→ba (1− µ2
c)(Y11′ + Y21′) + (1− µ2

a)(1− µ2
c)(Y12′ − Y22′)

}

Ỹ21′ =
Ξ(Σa→ac ,Σb→ba ;µc, µa)

Ξ(Σb→ba ,Σc→cb ;µa, µb)Ξ(Σc→cb ,Σa→ac ;µb, µc)

×
{

(Σc→cb )2Y12′ − Σc→cb (1− µ2
b)(Y22′ + Y12′ + Y11′)

+(1− µ2
b)

2(Y21′ + Y22′)
}

(2.53)

2.1.4.4 Variation on the case of neighboring cells

Here we briefly repeat the above calculation, but the path from z to z′ now goes clockwise around

the turning point. For simplicity we take the case in which both z, z′ belong to the same triangle.

This will be useful when considering N = 1 AD theory with a line defect.

Figure 2.9: A variation on the case of neighboring cells

We refer to fig.2.9.

s1(z) = sb(z) (sc, sa) s2(z) = sc(z) (sa, sb)

s1′(z
′) = sb(z

′) (sc, sa) s2′(z
′) = sa(z′) (sb, sc)

ν1 = −ν2 = −

(2.54)
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From the definitions (2.37) follow

Y11′ =
s2(z)⊗ s1′(z

′)

(s1′ , s2)
=
sc(z)⊗ sb(z′)

(sb, sc)

Y22′ =
s1(z)⊗ s2′(z

′)

(s2′ , s1)
=
sb(z)⊗ sa(z′)

(sa, sb)

Y12′ = ν1
s1(z)⊗ s1′(z

′)

(s2, s1′)
= sb(z)⊗ sb(z′)

(sc, sa)

(sa, sb)(sb, sc)

Y21′ = ν2
s2(z)⊗ s2′(z

′)

(s1, s2′)
=
sc(z)⊗ sa(z′)

(sa, sc)

(2.55)

After sending ϑ→ ϑ+ π we have instead

s̃1(z) = s̃c(z) (s̃a, s̃b) s̃2(z) = s̃b(z) (s̃c, s̃a)

s̃1′(z
′) = s̃a(z′) (s̃b, s̃c) s̃2′(z

′) = s̃b(z
′) (s̃c, s̃a)

ν̃1 = −ν̃2 = +

(2.56)

From the definitions (2.37), and employing eq.s (2.25), (2.26), (2.30) follow

Ỹ11′ = [Ξ(Σb→ba ,Σc→cb ;µa, µb)]
−1
{

Σb→ba Σc→cb Y22′ + Σc→cb (1− µ2
a)Y12′

−Σb→ba (1− µ2
b)Y21′ + (1− µ2

a)(1− µ2
b)Y11′

}

Ỹ22′ = [Ξ(Σc→cb ,Σa→ac ;µb, µc)]
−1
{

Σc→cb Σa→ac Y11′ − Σa→ac (1− µ2
b)[Y11′ − Y21′ ]

−Σc→cb (1− µ2
c)[Y12′ + Y11′ ] + (1− µ2

b)(1− µ2
c)[Y11′ + Y22′ + Y12′ − Y21′ ]

}

Ỹ12′ = [Ξ(Σa→ac ,Σb→ba ;µc, µa)]−1
{

Σa→ac Σb→ba Y21′ − Σa→ac (1− µ2
a)Y11′

+Σb→ba (1− µ2
c)[Y22′ − Y21′ ] + (1− µ2

c)(1− µ2
a)[Y12′ + Y11′ ]

}

Ỹ21′ = Ξ(Σa→ac ,Σb→aa ;µc, µa)[Ξ(Σc→cb ,Σa→ac ;µb, µc)Ξ(Σb→ba ,Σc→cb ;µa, µb)]
−1

×
{

(Σc→cb )2Y12′ + (1− µ2
b)

2[Y21′ − Y11′ ]

+Σc→cb (1− µ2
b)[Y11′ − Y22′ − Y12′ ]

}

(2.57)

2.2 Extracting the spectrum using S

We now provide some examples of how to apply the results of §2.1. In the cases reviewed below,

using S to extrapolate the spectrum is quick and easy. As we will see, it essentially amounts to
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matching pictures, which is achieved by matching vertex labels and sheet labels. According to this

picture, we expect to have wall crossing for solitonic charges whenever labels jump: this occurs when

z crosses a separating line or a branch cut8, in agreement with the results of [65].

2.2.1 N = 1 AD theory without line defects

Figure 2.10: The + sheet, on the left at angle ϑ = 0, on the right at angle ϑ = π.

For the N = 1 Argyres-Douglas theory we have φ2(z) = −z dz2, on C = CP 1, meaning that there

is one irregular singularity at infinity, a turning point in z = 0, and Σ is a two-sheeted cover of C.

We consider the theory in presence of a single surface defect sitting at z, with Arg(z) ∈ [0, 2π/3], as

in fig.2.10. Notice that vertices are labeled clockwise (counter-clockwise as seen from a neighborhood

of the irregular puncture at infinity).

We now want to apply the results obtained in section 2.1.3 to derive the spectrum. Compare

figures 2.2 and 2.10: matching the flow of WKB lines through z in both pictures entails the identi-

fications for the vertices a↔ 1, b↔ 3, c↔ 2 together with the identification of sheets

sheet 2↔ sheet + (2.58)

and similarly for sheets 1 and −.

Indeed, identifying the sheets properly is all we need : this entails

Y11 ↔ Y−−, Y12 ↔ Y−+, . . .

Ỹ11 ↔ Ỹ−−, Ỹ12 ↔ Ỹ−+, . . .

(2.59)

thus, employing expressions (2.32) and (2.33), and making the replacements explained in §§2.1.3.3,

2.1.3.4 should give the transformation generated by S. As a matter of fact, in this particularly simple

example, we have only degenerate edges, thus we replace all µ2
α = 0, and all Σ = Ξ = 1.

8A branch cut is not physically meaningful, so the reader may be puzzled by its relevance in jumps of the spectrum.
In this context if z crosses the cut, this amounts to a deck transformation, or to exchanging the lifts of z to Σ. In
other words, when z crosses a cut we switch γij ↔ γji which explains why we see a “jump” in the spectrum: we are
really just switching notation, accordingly the jump must reflect such exchange of charges.
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With these rules, eq.s (2.32) and (2.33) give the transformation

Ỹ12 = Y12 + Y21 + Y22 − Y11

Ỹ21 = Y21

Ỹ11 = Y11 − Y21

Ỹ22 = Y22 + Y21

↔



Ỹ−+ = Y−+ + Y+− + Y++ − Y−−

Ỹ+− = Y+−

Ỹ−− = Y−− − Y+−

Ỹ++ = Y++ + Y+−

(2.60)

This corresponds to the transformation

Sµ+− : Y++ 7→ (1− µ+−Y+−)Y++ (1 + µ+−Y+−) (2.61)

with µ+− = +1, and similarly for the other Y’s. This means that the BPS spectrum contains only

one soliton γ+−: S = Sµ+− (together with its antiparticle), consequently there can’t be any marginal

stability wall, nor wall crossing.

2.2.2 N = 1 AD theory: framed wall crossing

2.2.2.1 Small angular separation

We now consider what happens in presence of a line defect [61, 82], namely an interface between two

surface defects [65]. Let the two surface defects sit at points z, z′ on C, we consider Yϑ=0
++′ , associated

to the path shown in fig.2.11.

Figure 2.11: The + sheet, on the left at angle ϑ = 0, on the right at angle ϑ = π.

We can then apply the machinery of sections 2.1.4.1 and 2.1.4.2 and quickly obtain the spectrum

generator.

Comparing figures 2.7 and 2.11 we immediately see that to adapt the general discussion to our

case we must identify

sheet2 ↔ sheet+ (2.62)
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and accordingly identify sheets 1 and −. Having to deal with an irregular puncture, we must make

the replacements mentioned at the end of section 2.1.4.1. Since all edges involved are boundary

edges we just have to replace all µ2 = 0, Σ = 1 = Ξ into equations (2.45), (2.46).

Doing so, gives immediately the omnipop transformation

Ỹ12′ = Y12′ + Y21′ + Y22′ − Y11′

Ỹ21′ = Y21′

Ỹ11′ = Y11′ − Y21′

Ỹ22′ = Y22′ + Y21′

↔



Ỹ−+′ = Y−+′ + Y+−′ + Y++′ − Y−−′

Ỹ+−′ = Y+−′

Ỹ−−′ = Y−−′ − Y+−′

Ỹ++′ = Y++′ + Y+−′

(2.63)

All these transformations can be traced back to the action of

S = S+′−′S+−, (2.64)

with µ(+′−′) = µ(+−) = +1, as one could naively expect from the discussion of the previous section:

the spectrum contains two BPS solitons, one for each surface defect, and each of them undergoes

exactly the same wall crossing as that of eq. (2.61), since both defects will get crossed by the same

WKB ray as in that case.

Notice that, in order to match our result with the example analyzed in [65] section 8.1.1, one

needs to apply the label exchange ij ↔ ji as described in remark (2.38). After doing this, one

recovers the transformations of eq.s (8.9), (8.10) in the reference.

As a check, we give a full derivation of the spectrum generator, this will also be useful in analyzing

line defects below. According to the rules sketched above

s+(z) = s1(z) (s3, s2) s+′(z
′) = s1(z′) (s3, s2)

s−(z) = s3(z) (s2, s1) s−′(z
′) = s3(z′) (s2, s1)

ν+ = −ν− = − = ν+′ = −ν−′

(2.65)

therefore, from (2.37) we have

Yϑ++′ =
s3(z)⊗ s1(z′)

(s1, s3)
Yϑ−−′ =

s1(z)⊗ s3(z′)

(s3, s1)

Yϑ+−′ = s1(z)⊗ s1(z′)
(s3, s2)

(s1, s3)(s2, s1)
Yϑ−+′ = s3(z)⊗ s3(z′)

(s2, s1)

(s1, s3)(s3, s2)
,

(2.66)

setting ϑ = π gives the situation of fig.2.11.

s̃+(z) = s1(z) (s3, s2) s̃+′(z
′) = s1(z′) (s3, s2)

s̃−(z) = s2(z) (s1, s3) s̃−′(z
′) = s2(z′) (s1, s3)

ν̃+ = −ν̃− = + = ν̃+′ = −ν̃−′

(2.67)
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Therefore, rules (2.37) now give

Ỹ++′ =
s2(z)⊗ s1(z′)

(s1, s2)
Ỹ−−′ =

s1(z)⊗ s2(z′)

(s2, s1)

Ỹ+−′ = s1(z)⊗ s1(z′)
(s3, s2)

(s2, s1)(s1, s3)
Ỹ−+′ = s2(z)⊗ s2(z′)

(s1, s3)

(s3, s2)(s2, s1)
.

(2.68)

We can now employ eq. (2.44), and get e.g.

Ỹ++′ = Y++′ + Y+−′ (2.69)

similarly, repeating the machinery one finds

Ỹ−−′ = Y−−′ − Y+−′

Ỹ−+′ = Y−+′ + Y+−′ + Y++′ − Y−−′

Ỹ+−′ = Y+−′

(2.70)

in agreement with the above result.

Now, having a line defect, we can consider its expectation value at some angle ϑ: before the

omnipop

〈L℘,ζ〉 = Y++′ + Y−−′ . (2.71)

Since 〈L℘,ζ〉 must not jump as ϑ varies, we can rewrite it at ϑ + π by inverting eq.s(2.69), (2.70)

and plugging into (2.71). This gives

〈L℘,ζ〉 = Ỹ++′ + Ỹ−−′ . (2.72)

We see no framed wall crossing. Comparing with §8.1.1 of [65] the explanation is the following one:

as is shown in the reference, referring to fig.19 therein, framed wall crossing occurs when we compare

between situations such as (A) and (B) (if e.g. in situation (A) ϑ = ϑ0, situation (C) has ϑ = ϑ0 +π,

and (B) is some particular intermediate situation), but no difference exists between situations (A)

and (C). This agrees with eq.(8.10) of [65].

2.2.2.2 Large angular separation

Let us now consider the case when z, z′ are separated by an angle between 2π/3 and π, as shown in

fig.2.12. In [65] the clockwise transformation for ϑ 7→ ϑ − π is considered (see end of section 8.1.1

there), our methods are suitable for studying an omnipop, i.e. an increase of ϑ by π, nonetheless

once we obtain the transformation for this, we can match with [65] by recalling that in the sector

[ϑ, ϑ− π] the spectrum consists of the corresponding antiparticles.
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Figure 2.12: The + sheet, on the left at angle ϑ = 0, on the right at angle ϑ = −π.

Let us therefore study the regular omnipop first. This case matches with the analysis carried

out in section 2.1.4.4: comparing figures 2.9 and 2.12 entails the identification

sheet1 ↔ sheet+ (2.73)

therefore, we can employ eq.s (2.57): setting all µ2 7→ 0, Σ 7→ 1, Ξ 7→ 1, they read

Ỹ11′ = Y11′ + Y22′ + Y12′ − Y21′

Ỹ22′ = Y22′

Ỹ12′ = Y12′ + Y22′

Ỹ21′ = Y21′ − Y22′

↔



Ỹ++′ = Y++′ + Y−−′ + Y+−′ − Y−+′

Ỹ−−′ = Y−−′

Ỹ+−′ = Y+−′ + Y−−′

Ỹ−+′ = Y−+′ − Y−−′

(2.74)

these are generated by9

S(ϑ+ π, ϑ) = S−+S+′−′ (2.76)

meaning that µ(−+) = +1 = µ(+′−′).

We therefore conclude that the spectrum generator in the other half-plane will be

S(ϑ, ϑ− π) = S+−S−′+′ (2.77)

Now, to match with the example in [65], we need to make the following consideration: inverting eq.s

(2.74) amounts to switching the tildes and all ij → ji as well as i′j′ → j′i′ namely, we get

Y++′ = Ỹ++′ + Ỹ−−′ − Ỹ+−′ + Ỹ−+′

Y−−′ = Ỹ−−′

Y+−′ = Ỹ+−′ − Ỹ−−′

Y−+′ = Ỹ−+′ + Ỹ−−′

(2.78)

9Here we are using the following set of twisting functions:

σ(−+,++′) = σ(+′−′,++′) = 1 = −σ(+′−′,−+′) = −σ(−+,+−′) (2.75)
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this would be the action of S(ϑ, ϑ + π) = S(ϑ + π, ϑ)−1, describing the clockwise transformation

from ϑ = π to ϑ = 0. What we found is that, in this example switching ij ↔ ji in the Y’s labels

corresponds precisely to switching the clockwise↔counterclockwise jumps of ϑ by angles of π. We

claim that this also holds for the spectrum generator in the other half plane, we prove this in the

following subsection.

Now, according to remark (2.38) this switching of labels is just what we must employ to match

our conventions with those of [65]. Therefore, we arrive at the conclusion that our S(ϑ, ϑ − π) is

precisely the transformation they find in going clockwise from ϑ = 0 to ϑ = −π. Indeed they match,

see eq.s (8.12) therein: EC = S+−S−′+′EA.

The above derivation of the spectrum was straightforward, although the matching with [65] might

appear a bit artificial. Let us prove that this is actually correct: we now give a full derivation of the

spectrum generator when ϑ 7→ ϑ− π (i.e. following the direction taken by the reference).

We start with ϑ = 0, our building blocks are now

s+(z) = s1(z) (s3, s2) s+′(z
′) = s1(z′) (s3, s2)

s−(z) = s3(z) (s2, s1) s−′(z
′) = s2(z′) (s1, s3)

ν+ = −ν− = − = −ν+′ = ν−′

(2.79)

therefore, from (2.37) we have

Yϑ++′ =
s3(z)⊗ s1(z′)

(s1, s3)
Yϑ−−′ =

s1(z)⊗ s2(z′)

(s2, s1)

Yϑ+−′ = s1(z)⊗ s1(z′)
(s3, s2)

(s1, s3)(s2, s1)
Yϑ−+′ =

s3(z)⊗ s2(z′)

(s2, s3)
,

(2.80)

setting ϑ = −π gives the situation of fig.2.12.

s̃+(z) = s2(z) (s1, s3) s̃+′(z
′) = s1(z′) (s3, s2)

s̃−(z) = s3(z) (s2, s1) s̃−′(z
′) = s3(z′) (s2, s1)

ν̃+ = −ν̃− = + = −ν̃+′ = ν̃−′

(2.81)

where we now understand Ỹ := Y−π. Therefore, rules (2.37) now give

Ỹ++′ =
s3(z)⊗ s1(z′)

(s1, s3)
Ỹ−−′ =

s2(z)⊗ s3(z′)

(s3, s2)

Ỹ+−′ =
s2(z)⊗ s1(z′)

(s1, s2)
Ỹ−+′ = s3(z)⊗ s3(z′)

(s2, s1)

(s1, s3)(s3, s2)
.

(2.82)
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We can employ eq. (2.44), and get directly

Ỹ++′ = Y++′

Ỹ−−′ = Y−−′ + Y++′ + Y+−′ − Y−+′

Ỹ−+′ = Y−+′ − Y++′

Ỹ+−′ = Y+−′ + Y++′

(2.83)

These transformations correspond to going clockwise from ϑ = 0 to ϑ = −π, they are the inverse of

the counterclockwise ϑ = −π 7→ ϑ = 0 which reads

Y++′ = Ỹ++′

Y−−′ = Ỹ−−′ + Ỹ++′ − Ỹ+−′ + Ỹ−+′

Y−+′ = Ỹ−+′ + Ỹ++′

Y+−′ = Ỹ+−′ − Ỹ++′

(2.84)

these result precisely from the action of

S(ϑ, ϑ− π) = S+−S−′+′ (2.85)

in agreement with our previous derivation.

With a line defect at hand, we can examine the associated expectation value at some angle ϑ: before

the omnipop (cf. eq.(8.11) in [65])10:

〈L℘,ζ〉 = Y++′ + Y+−′ + Y−−′ . (2.86)

Since 〈L℘,ζ〉 must not jump as ϑ varies, we can rewrite it at ϑ = −π by inverting eq.s(2.83) and

plugging into (2.86). This gives

〈L℘,ζ〉 = Ỹ++′ + Ỹ−+′ + Ỹ−−′ . (2.87)

this corresponds to acting on 〈L℘,ζ〉 with

(1− Y−′+′)(1− Y+−)〈L℘,ζ〉(1 + Y+−)(1 + Y−′+′)

≡ (1− Y+−)〈L℘,ζ〉(1 + Y−′+′)
(2.88)

that means S(ϑ, ϑ− π) = Sγ−′+′Sγ+− , together with µ(γ−′+′) = 1 = µ(γ+−).11

10Note: as remarked in eq.(2.38) for us Yij′ have i and j switched, as compared to [65], so here our Y+−′ corresponds
to their Y−+′ , and vice versa

11Note on twisting functions: we are using

σ(+−,−+′) = +1 σ(+−,−−′) = −1

σ(−−′,−′+′) = −1 σ(+−′,−′+′) = +1
(2.89)

The first row is explicitly employed in [65], see footnote at p.114; the first sign of the second row is implicitly used in
eq. (8.10) in that reference; the last sign is derivable by means of the cocycle condition for twisting functions (2.24).
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2.2.3 N = 2 AD theory

We now turn to the case of N = 2 AD theory, label-matching is slightly more delicate here, hence

we first give a derivation of S by carrying out a complete analysis of how TWKB evolves with ϑ, later

we obtain S relying only on the results of 2.1.3, this will be much faster and agree exactly with the

former derivation, as well as with the analysis of [65].

2.2.3.1 Full derivation of the spectrum generator

Figure 2.13: The WKB triangulation on sheet 2 as seen from the north pole of CP1: on the left at ϑ and
on the right at ϑ + π. The topology remains the same, while the flow of WKB lines switches direction,
moreover there is a cyclic permutation of the vertices, since they all belong to the same irregular puncture
at the south pole.

In this theory the Seiberg-Witten differential is given by P2(z) = z2+2m. The only deformation is

log-normalizable (see [64]), hence the Coulomb branch is a single point. Let us adopt the conventions

of section 8.1.2 in [65], in particular we will choose the same conventions for the orientation of paths

on C. Figure 2.13 shows how the WKB triangulation evolves in passing from ϑ to ϑ + π on sheet

2. This is justified as follows: on the one hand, the topology of the triangulation must be the same,

with the orientation of WKB lines inverted; on the other hand one can follow how the triangulation

evolves step by step, as shown in fig.2.1412 (also see fig. 45 in [64]), which explains manifestly

the nature of the spectrum: we must have an S factor due to the fact that a separatrix crosses z,

and then a K factor because of the flip; this interpretation is confirmed by equation (8.14) in the

reference, moreover by placing z, say, in the upper region, one sees that there will be 2 S factors

instead of 1, because two separatrices cross z, as confirmed by eq. (8.15) in the reference, and so

on. To begin our analysis of the spectrum in the region on the right, we first identify, as usual

s2 = sd(sa, sc) s1 = sa(sc, sd) ν1 = + = −ν2 (2.90)

12Since we have an irregular singularity at infinity, the WKB rays will rotate as ϑ increases, for N = 4 we have a
rotation by π/2 for ϑ 7→ ϑ+ π as the labels show
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Figure 2.14: Evolution of the WKB triangulation as ϑ 7→ ϑ+π. Between stages 1 and 2 an S factor occurs,
since the separating line at d crosses z, at stage 3 we have a jump from the hypermultiplet as indicated by
the flip, hence the spectrum will contain a K factor as well.

After the omnipop, we’ll have

s̃2 = sd(sb, sc) s̃1 = sc(sd, sb) ν̃1 = − = −ν̃2 (2.91)

Following rules (2.20) we have immediately

Y12 = sa ⊗ sa
(sc, sd)

(sd, sa)(sa, sc)
Y21 = sd ⊗ sd

(sa, sc)

(sd, sa)(sc, sd)

Y11 =
sd ⊗ sa
(sa, sd)

Y22 =
sa ⊗ sd
(sd, sa)

(2.92)

together with

Yγ =
(sa, sb)(sc, sd)

(sb, sc)(sd, sa)
= (Y−γ)−1. (2.93)

After sending ϑ 7→ ϑ+ π we have instead

Ỹ12 = −sc ⊗ sc
(sd, sb)

(sd, sc)(sb, sc)

=
(sa, sc)(sd, sb)

(sb, sc)(sd, sa)
[Y12 + Y21 + Y11 − Y22]

(2.94)

extrapolating sb in terms of sa, sc from the analogue of (2.44) we get

(sa, sc)(sd, sb) = (sb, sc)(sd, sa)− (sa, sb)(sc, sd) (2.95)

hence,

Ỹ12 = (1− Yγ) [Y12 + Y21 + Y22 − Y11]

= (1− Yγ) (1− Y21)Y12 (1 + Y21)

(2.96)
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It’s straightforward to follow the rules and obtain the other coordinates: by employing (2.44) we

find

Ỹ21 = ν̃2
s̃2 ⊗ s̃2

(s̃1, s̃2)
= (1− Yγ)−1 Y21

Ỹ11 =
s̃2 ⊗ s̃1

(s̃1, s̃2)
= Y11 − Y21

Ỹ22 =
s̃1 ⊗ s̃2

(s̃2, s̃1)
= Y22 + Y21

(2.97)

recalling that 〈γii, γ〉 = 0, we recognize the spectrum generator

S = S21Kγ (2.98)

in agreement with eq.(8.14) of [65].

2.2.3.2 Adapting the general spectrum generator

Figure 2.15: The WKB triangulation at angle ϑ, on sheet 2. Indicated are the paths for computing
Σc→da , Σd→bc , Σa→cd around vertices a, c, d respectively

We now apply the results of section 2.1.3 to derive S. As usual this just requires matching labels

correctly, this is slightly more delicate than in previous examples, therefore we will explain it in

some detail.

In order to match the two situations, comparing figures 2.2 and 2.15, it is straightforward to

identify

sheet 2 ↔ sheet 2 (2.99)

in order to read the Ỹ’s from those in eq.s (2.32), (2.33) we must take two steps

1. replace labels according to

a→ d b→ a c→ c (2.100)



51

2. perform the replacements suitable to irregular punctures, as explained in section 2.1.3.4. For

this example we have simply (by definition, or by combining (2.34) with (2.44))

s̃a = sd, s̃b = sa, s̃c = sb, s̃d = sc

Labels only occur within Ξ’s and Σ’s, therefore we only need to replace

Σb→ba

(1)7→ Σa→ad

(2)7→ Σa→cd = 1

Σc→cb

(1)7→ Σc→ca

(2)7→ Σc→da = 1

Σa→ac

(1)7→ Σd→dc

(2)7→ Σd→bc = 1 + Xγ = 1− Yγ

(2.101)

Where, in the last column we used the definition of Σ (11.9) of [64]. Notice that, since a, b, c, d all

belong to an irregular puncture, all µ2 must be set to zero, as explained in section 2.1.3.3. Employing

the definition of the Ξ’s (2.29), we can perform the following replacement for the Ξ’s:

Ξ(Σb→ba ,Σc→cb ;µa, µb) 7→ 1

Ξ(Σc→cb ,Σa→ac ;µb, µc) 7→ 1− Yγ

Ξ(Σa→ac ,Σb→ba ;µc, µa) 7→ 1

(2.102)

Given these, we can now directly read off the omnipop transformation from (2.32), (2.33)

Ỹ12 = (1− Yγ) [Y12 + Y21 + Y22 − Y11]

Ỹ21 = (1− Yγ)−1 Y21

Ỹ11 = Y11 − Y21

Ỹ22 = Y22 + Y21

(2.103)

in agreement with our full derivation.

Wall crossing formulae: by repeating the above reasoning, one can determine the spectra for var-

ious deformations of the surface defect. According to our derivation, there will be a jump whenever

the labeling changes: this occurs precisely when we move from one cell to another (the vertex labels

change), or when we cross a branch cut (the sheet labels change). Therefore we expect precisely 6

different regions with their own spectra. This is exactly what [65] found.

2.2.4 The CP 1 sigma model

The next example we consider is that of the CP 1 sigma model presented in [65]. As pointed out

there, the 4d dynamics is trivial (no wall crossing), while we do have some 2d phenomena.
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Figure 2.16: The six-fold cover at angle ϑ, the surface defect sitting at strong coupling. For convenience
points at infinity have been mapped at finite distance.

The Seiberg-Witten curve is described by

λ2 =

(
Λ2

z
+
m2

z2

)
dz2 (2.104)

which encodes a turning point at z = −m2/Λ2, as well as a regular singularity in z = 0 and an

irregular singularity at infinity with one Stokes sector. The triangulation consists therefore of one

degenerate triangle on each of the two sheets. In order to build the coordinates, we must locally

pass to a three-fold covering on each of the two sheets, as pointed out in [64].

After doing so, we end up with the six-fold cover illustrated in fig.2.16. Let us start with the so-

called strong coupling regime, and choose to work within the triangle denoted by vertices Q1, P,Q3.

We will understand z to stand for z1. Let M be the monodromy matrix for parallel transport around

P , then M ·s3 = s1 = M−1 ·s2, and we denote Yγ = Yγi,P , ∀i = 1, 2, 3. The vertices Qi belong to an

irregular vertex, while P is regular, therefore we must employ the rules of §2.1.3.4 in order to match

the spectrum generator correctly. Taking a look at fig. 2.2, we have the following identifications:

Q1 → Pa Q3 → Pb P → Pc

sheet a → sheet 2

(2.105)

since Q1, Q3 are irregular we set µa, µb → 0. Notice that, since we have an irregular singularity at

infinity

s̃1 = s2 s̃2 = s3 s̃3 = s1 (2.106)
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therefore we evaluate the modified Σ’s according to our prescriptions13

Σb→ãa = Σ3→2
1 = 1− Yγ1P

= 1− Yγ

Σc→b̃b = ΣP→1
3 = 1

Σa→ac = Σ1→1
P = 1− Yγ3P

+ Yγ3P
Yγ2P

= 1− Yγ + Y2
γ

(2.107)

entailing the explicit expressions

Ξ(Σb→ãa ,Σc→b̃b ;µa, µb) = 1

Ξ(Σc→b̃b ,Σa→ac ;µb, µc) = 1− Yγ + Y2
γ

Ξ(Σa→ac ,Σb→ãa ;µc, µa) = 1− Yγ + Y2
γ

(2.108)

We are now ready to read the omnipop transformation from eqs. (2.32), (2.33): they read

Ỹaa = Yaa + (1− Yγ)Yab

Ỹbb = Ybb − (1− Yγ)Yab

Ỹab = Yab

Ỹba = Yba + (1− Yγ)2Yab + (1− Yγ)(Yaa − Ybb)

(2.109)

by direct inspection14, these correspond to the spectrum generator15

S = Sγab+γ Sγab (2.111)

we find two 2d solitons whose charges differ by the flavor charge γ. This is consistent with what is

found in §8.2 of [65], where they find a soliton with charge γ̃12 and one with charge γ12 = γf − γ̃21 =

γf + γ̃12.

Let us now investigate the weak coupling regime. Suppose that z lies in the sector indicated in fig.

2.17. Then, looking at fig.2.2 we identify

Q1 → Pb Q3 → Pc P → Pa

sheet a → sheet 1

(2.112)

since Q1, Q3 are irregular we set µb, µc → 0, while µ2
a = µ2 = −Yγ16. We evaluate the modified Σ’s

13we use eq. (11.9) of [64] together with the fact that Yγ = −Xγ , as pointed out in appendix F of [65].
14we use σ(γ, γαβ) = 1, ∀α, β ∈ {a, b}
15we employ the following twisting functions:

σ(aa, ab) = σ(bb, ab) = σ(aa+ γ, ab+ γ) = +

σ(aa, ab+ γ) = σ(bb, ab+ γ) = σ(ba, ab) = σ(ba, ab+ γ) = −
(2.110)

16cf. eq.(7.6) in [64]



54

Figure 2.17: The six-fold cover at angle ϑ with the surface defect in the weak coupling region

according to our prescriptions

Σb→ba = Σ1→1
P = 1− Yγ + Y2

γ

Σc→b̃b = Σ3→2
1 = 1− Yγ

Σa→c̃c = ΣP→1
3 = 1

(2.113)

entailing the explicit expressions

Ξ(Σb→ba ,Σc→b̃b ;µa, µb) = 1 + Y2
γ − Y3

γ

Ξ(Σc→b̃b ,Σa→c̃c ;µb, µc) = 1

Ξ(Σa→c̃c ,Σb→ba ;µc, µa) = 1− Yγ + Y2
γ

(2.114)

therefore, from eqs. (2.32), (2.33) we read off the omnipop transformation

Ỹaa = (1 + Y2
γ − Y3

γ)−1

×
[
(1 + Yγ)Yaa − (Yγ − Y2

γ + Y3
γ)Ybb − (Yγ + Y2

γ)Yab − (1− Yγ + Y2
γ)Yba

]
Ỹbb = (1 + Y2

γ − Y3
γ)−1

×
[
(1 + Yγ)Ybb − (Yγ − Y2

γ + Y3
γ)Yaa − (Yγ + Y2

γ)Yab + (1− Yγ + Y2
γ)Yba

]
Ỹab =

[
(1 + Y2

γ − Y3
γ)(1− Yγ + Y2

γ)
]−1

×
[
(1 + Yγ)2Yab + (1− Yγ + Y2

γ)2Yba + (1 + Y2
γ − Y3

γ)(1 + Yγ)(Ybb − Yaa)
]

Ỹba =
[
(1 + Y2

γ − Y3
γ)(1− Yγ + Y2

γ)
]−1

×
[
Yba + Y2

γYab + Yγ(Ybb − Yaa)
]

(2.115)

It is not easy to read the spectrum generator off these transformations. As pointed out in [65], there

should be two solitons with charges γ + γaa, γ + γbb, as well as two towers of states with charges

γab + nγ, γba + nγ.
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Chapter 3

Wild Wall Crossing and BPS Giants

3.1 Brief Review of Spectral Networks

In this section we give a brief review of the spectral network machinery and its use for computing

BPS spectra in N = 2, d = 4 theories of class S. For a more complete discussion we refer the reader

to [63]. For a more informal (but incomplete) review see [106].

3.1.1 The Setting

Recall that the N = 2, d = 4 theories of class S are specified by three pieces of data [59, 64]:

1. A Lie algebra g of ADE type (as in [63] the following discussion assumes g = AK−1),

2. a compact Riemann surface C with punctures at points s1, · · · , sn ∈ C,

3. a collection of defect operators D located at the punctures.

To shed some light on this collection of data, we note that such theories can be constructed via a

partial twist (preserving eight supercharges) of the N = (2, 0), d = 6 theory S[g] defined on R3,1×C.

The defect operators D are codimension-2 defects located at R3,1 × {s1}, · · · , R3,1 × {sn}. A four-

dimensional N = 2 field theory is produced after integrating out the degrees of freedom along C

and is labeled S[g, C,D].

We now present some useful definitions.

Definitions

1. The Coulomb branch B of S[g, C,D] is the set of tuples (φ2, · · · , φK) of holomorphic r-

differentials φr with singularities at s1, · · · , sn ∈ C prescribed by the defect operators D.
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2. Let u = (φ2, · · · , φK) ∈ B and denote the holomorphic cotangent bundle of C as T ∗C. Then

the spectral cover is a K-sheeted branched cover πu : Σu → C, where Σu is the subvariety1

Σu := {λ ∈ T ∗C : λK +

K∑
r=2

φrλ
K−r = 0} ⊂ T ∗C, (3.1)

and the projection πu is the restriction of the standard projection T ∗C → C.

3. As Σu ⊂ T ∗C it carries a natural holomorphic 1-form which is just the restriction of the

tautological (Liouville) 1-form. In the spirit of its tautological nature we abuse notation and

denote this 1-form λu.

Often we will work over a fixed u ∈ B; so eventually the index u will be dropped where there is

no ambiguity.

3.1.1.1 Spectral Cover Crash Course

Let us make some observations about the spectral cover. First, the fibers are given by

π−1
u (z) = {λ(z) ∈ T ∗z C : λ(z)K +

K∑
r=2

φr(z)λ
K−r(z) = 0},

i.e. the roots of the defining polynomial of Σu at the point z. Generically, π−1
u (z) consists of K

distinct roots, although at particular values of z (branch points) two or more roots may coincide.

In fact, letting C ′ = C − {branch points}, πu|C′ is a K-fold (unramified) cover of C ′.

If πu|C′ is a non-trivial cover, the roots do not fit together into global holomorphic 1-forms on

C as they undergo monodromy around branch points. However, restricted to the complement of

a choice of branch cuts on C, the cover is trivializable: a projection of K distinct sheets onto the

complement. Each sheet is the graph traced out by a root of the defining polynomial; such roots are

distinct holomorphic differential forms. A choice of trivialization of the restricted cover is a bijective

map between the set of K sheets and the set {1, 2, . . . ,K}, or equivalently, a labeling of the roots

of the defining polynomial from 1 to K.

Definitions

1. Make a suitable choice of branch cuts for the branched cover πu : Σu → C. The complement

of these branch cuts in C will be denoted by Cc.

2. A choice of trivialization of π−1(Cc) → Cc will be denoted by a labeling of the roots of the

defining polynomial for Σ, i.e. a labeling λi (i = 1, . . . ,K), where each λi (a holomorphic

1Σu is also called the Seiberg-Witten curve.
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1-form on Cc) is a distinct root of the defining polynomial for Σ. Note that this gives us a

labeling of sheets: the ith sheet is the graph of λi in T ∗C. If we wish, we can extend the λi(z)

to branch points z to speak of “collisions” of sheets.

3. For later convenience, we define

λij := λi − λj .

As in [63] we will assume that all branch points are simple, i.e. at most two sheets of Σ collide

at any z.

Definition A branch point of type ij (i, j ∈ 1, · · · ,K) is a point z ∈ C where the ith and jth sheets

of Σu collide, i.e, λi(z) = λj(z).

The data of the full spectral cover can be recovered after trivializing by specifying the monodromy

around all branch points, and all closed cycles of C. In this paper, we assume simple ramification:

in a neighborhood around each branch point, the spectral cover looks like the branched cover z 7→ z2

of the disk. Thus, for a simple closed curve surrounding a branch point of type ij, there is a Z/2Z

monodromy

λi ↔ λj .

Monodromy around an arbitrary closed cycle of C may permute the sheets in a more complicated

fashion.

3.1.1.2 BPS objects in S[AK−1, C,D]

Theories of class S admit a zoo rich in BPS species, each of which has a different classical description

from the point of view of the six-dimensional geometry of R3,1 × C. Our ultimate interest in this

paper is in the 4D (vanilla) BPS states, but the power behind the spectral network machine draws

heavily on the symbiosis between these different species; so we take a moment to project each of

them into the spotlight.

BPS Strings and “vanilla” 4D BPS states

4D BPS states in the four-dimensional N = 2 theory arise from extended objects in the 6D descrip-

tion: BPS strings. In the effective IR description, at a point u ∈ B, BPS strings wrap closed paths p

on the branched cover Σu ⊂ T ∗C → C. The resulting states are classified by their homology classes
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γ = [p] ∈ H1(Σu;Z) in the sense that there is a natural grading of the Hilbert space of BPS strings

as

HBPS(u) =
⊕

γ∈H1(Σu;Z)

H(γ;u),

commuting with the action of the super-Poincaré group.

Definition The charge lattice of 4D BPS states at a point u ∈ B is Γu = H1(Σu;Z). It is equipped

with an antisymmetric pairing 〈·, ·〉 : Γu × Γu → Z given by the intersection form on H1(Σu;Z).

To count the number of BPS states of a particular charge γ we recall a major celebrity of this

paper: the second helicity supertrace (a.k.a. the “BPS degeneracy” or “BPS index”)

Ω(γ;u) = −1

2
TrH(γ;u)(2J3)2(−1)2J3 ,

where J3 is any generator of the rotation subgroup of the massive little group. This index is

piecewise constant on B, jumping across real codimension-1 walls of marginal stability on B where

two BPS states with linearly independent charges γ, γ′ ∈ Γu have central charges of the same phase:

Arg (Zγ) = Arg (Zγ′). To compute this index we will not rely on its definition as a supertrace, but

instead utilize the geometric methods of the spectral network machine.

Remarks

1. On B there may be (complex) codimension-1 loci where a cycle of Σu degenerates. Let B∗ =

B − {degeneration loci}. Then the collection Γ̂ = {Γu}u∈B∗ forms a local system of lattices

Γ̂→ B∗. This local system is often equipped with a non-trivial monodromy action.

2. As mentioned previously, we will often drop the subscript u ∈ B as we will often be working

over a single point on the Coulomb branch, or choosing a local trivialization of the local system

of lattices on some open set.

3. Strictly speaking, the lattice of charges Γu is not quite H1(Σu;Z) [64]; in the theory we consider

in this paper, though, Γu is just a sublattice of H1(Σu;Z), and for our considerations there is

no harm in replacing Γu by H1(Σu;Z). (If we considered the theory with g = gl(K) instead

of g = sl(K) then the charge lattice would be literally H1(Σu;Z).)

4. From the four-dimensional point of view, Γu is the lattice of electric/magnetic and flavor

charges in the IR effective abelian gauge theory defined at u.
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Fix u ∈ B. The central charge and mass of a string p : S1 → Σ are2

Zp =
1

π

∫
p

λ,

Mp =
1

π

∫
p

|λ|.

With this, the BPS condition |Zp| = Mp is given by∫
p

λ = eiϑ
∫
p

|λ| (3.2)

for some ϑ = Arg(Zp) ∈ R/2πZ. The value of ϑ specifies which four-dimensional BPS subalgebra

is preserved. We can rewrite this condition in more useful form; indeed, let vp denote a vector field

along the path p, then (3.2) is true iff

Im
[
e−iϑ〈λ, vp〉

]
= 0. (3.3)

Solitons

The theory S[g, C,D] is equipped with a special set of BPS surface defect operators {Sz}z∈C param-

eterized (in the UV3) by points on C. In the IR, for fixed u ∈ B, the operator Sz possesses finitely

many massive vacua labeled by the set π−1(z) (with π = πu). Letting z ∈ C ′, then solitons are BPS

states4 bound to the defect Sz, which interpolate between two different vacua. Classically, they are

given by oriented paths s : [0, 1] → Σ with endpoints s(0), s(1) ∈ π−1(z); furthermore, each such

path satisfies a BPS condition that we will now describe.

Consider a soliton path s such that, after choosing a trivialization, s only runs along sheets i

and j and such that the projection sC := π ◦ s is a connected open path on C. Let vsC be a vector

field along the path sC . Then, the BPS condition is the differential equation

Im
[
e−iϑ〈λij , vsC 〉

]
= 0 (3.4)

for some fixed angle ϑ. For more complicated solitons that travel along more than two sheets, we can

break the soliton up into a concatenation of partial solitons running along various pairs of sheets;

each partial soliton involved in the concatenation must satisfy (3.4) where ij is replaced by the

relevant pair of sheets, and ϑ is the same for each partial soliton. Hence, the BPS condition for

solitons leads to a system of
(
K
2

)
differential equations on C ′ (one for each disjoint pair of sheets).

2The integral
∫
p λ is only a function of the class [p] ∈ H1(Σ;Z); hence, the central charge reduces to a function

Γ→ C.
3In the six-dimensional UV description, the operator Sz attached to a point z ∈ C is a surface defect which

intersects C at a single point.
4After insertion of Sz there are four remaining supercharges. A BPS soliton preserves two supercharges.
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For such a soliton s, broken into partial solitons {sr}Lr=1 as decribed above, its central charge and

mass are

Zs =

L∑
r=1

1

π

∫
srC

λij

Ms =

L∑
r=1

1

π

∫
srC

|λij |.

(3.5)

We can now identify the angle as the phase of the central charge, ϑ = Arg(Zs), and indeed the BPS

condition is equivalent to Ms = |Zs|.

As with 4D BPS states, solitons also carry a charge, but now given by a relative homology class

as they are open paths.

Let z ∈ C ′; choose a labeling of the K points in π−1(z) ∈ C ′.

Definition

1. Let zl ∈ π−1(z) denote the pre-image of z ∈ C ′ on the lth sheet. Then a soliton is of type

ij if it is given by a path that begins on zi and ends on zj . We also refer to such solitons as

ij-solitons.

2. Γij(z, z) is the set of charges of ij-solitons, i.e.

Γij(z, z) := {[a] ∈ H1(Σ, {zi} ∪ {zj};Z) : a is a 1-chain with ∂a = zj − zi} .

3. The total set of soliton charges is

Γ(z, z) :=

K⊔
i,j=1

Γij(z, z).

Remarks

1. A soliton s can be extended by “parallel transporting” its endpoints. Indeed, let s be a soliton

of type ij with s(0), s(1) ∈ π−1(z). Now, given a path q : [0, 1] → C ′ from z to z′, let q{n}

denote the lift of q to the nth sheet of Σ defined by lifting the initial point q(0) to sheet n;

then one can define the transported path,

Pqs = q{j} ? s ? q−{i} (3.6)

where ? denotes concatenation of paths, and q−{i} is q{i} with reversed orientation. The

resulting path on Σ has endpoints in π−1(z′). If s is an ij soliton, then the path Pqs is a

soliton iff q satisfies (3.4) for the same pair of sheets ij.
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2.
⋃
z∈C′ Γ(z, z) → C ′ is a local system over C ′: for any path q : [0, 1] → C there is a parallel

transport map Pq : Γ(q(0), q(0)) → Γ(q(1), q(1)), induced by the map Pq defined above, and

only depending on the homotopy class of q relative to the endpoints. (Henceforth we abbreviate

this as “rel endpoints.”)

3. If there is an extension of an ij-soliton through a branch cut emanating from an ij branch

point, it becomes a ji-soliton. More generally, if a soliton passes through any branch cut, its

type is permuted according to the permutation of sheets across the branch cut.

Just as with 4D vanilla BPS states, for each az ∈ Γ(z, z), there is an index µ(az) ∈ Z that counts

BPS solitons of charge az. Again, this can be defined as a supertrace over an appropriate BPS

subspace, however, we will compute it via geometric methods. Using the parallel transport map

described in the remarks above, this BPS index is also stable along extensions of solitons at generic

z ∈ C ′; 5 it jumps only at points z ∈ C ′ where solitons of different types exist and interact. This

motivates the following (notation-simplifying) definitions.

Definitions

1. A soliton s : [0, 1]→ Σ is said to be of phase θ if it satisfies the BPS condition6 (3.4) for ϑ = θ.

2. A point z ∈ C is said to support a soliton of phase ϑ if there exists a soliton s with [s] ∈ Γ(z, z)

and µ([s]) 6= 0. A path p on C supports a family of solitons of phase ϑ if each point on p

supports a soliton fitting into a 1-parameter family of solitons of phase ϑ. When the phase ϑ

is clear from context, occasionally we will just say that p supports a family of solitons.

3. Let p ⊂ C be a path on C supporting a family of solitons of phase ϑ extending a soliton s0

with charge az = [s0] ∈ Γ(z, z). With an abuse of notation, occasionally a will denote any one

of the parallel transports of az along the path p.

4. Let z ∈ p and az ∈ Γ(z, z). If the index µ(az) is constant for any soliton in the family generated

by parallel transports of az ∈ Γ(z, z) along p ⊂ C, then we will denote the index by µ(a, p) ∈ Z.

Framed 2D-4D States

We consider one final BPS construction: the framed 2D-4D states. Given ϑ ∈ R/(2πZ), z1, z2 ∈ C,

and ℘ a path on C from z1 to z2, one can associate two surface defects Sz1 and Sz2 , along with a

5In the sense that if s is an ij soliton, and q is a sufficiently small path on Σ satisfying (3.4), then µ([s]) = µ(Pq [s])
6Thought of as a system of equations on each “partial soliton” as described above.
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supersymmetric interface L℘,ϑ between these two surface defects.7 The interface is supersymmetric

in the sense that it preserves two out of the four supercharges preserved by the surface defects; the

parameter ϑ controls which two are preserved. Framed 2D-4D states are the vacua of the theory

after insertion of this defect.

Geometrically, such a state is represented by a path f : [0, 1]→ Σ such that there exists a finite

subdivision of times

[0, 1] = [0, t1] ∪ [t1, t2] ∪ · · · ∪ [tN−1, 1]

and, with respect to this subdivision:

• f |[0,t1] and f |[tN−1,1] have images in π−1(℘) (in particular, the path begins on a lift of z1 and

ends on a lift of z2).

• If 1 < i < N − 2, then f[ti,ti+1] is either a soliton of phase ϑ, or has image in π−1(℘).

When f is projected to C the resulting path looks like ℘ with finitely many diversions to solitons

(and back) along the way. In [61], such a path f is referred to as a millipede with body ℘ and phase

ϑ.

Similar to solitons, we can classify framed 2D-4D states by their values in a set of charges given

by relative homology classes [f ], for f a millipede; as the geometric description above suggests, now

the relative cycles can have boundaries on pre-images of two different points on C.

Definition Let ℘ : [0, 1]→ C with ℘(0) = z and ℘(1) = w; with a choice of labeling of sheets above

π−1(z) and π−1(w), let zi (resp. wi) be a point on the ith sheet in π−1(z) (resp. π−1(w)). Then,

the set of charges of framed 2D-4D states corresponding to ℘ is

Γ(z, w) :=

K⊔
i,j=1

{[a] ∈ H1(Σ, {zi} ∪ {zj};Z) : a is a 1-chain with ∂a = wj − zi } .

Furthermore, for each a ∈ Γ(z, w) we define the counting index Ω(L℘,ϑ, a) that, once again, can be

defined via a supertrace over an appropriate Hilbert space, but we will only utilize its interpretation

from a geometric perspective.

Remark It is believed that the theory obtained after insertion of the defect L℘,ϑ only depends on

the homotopy class (rel boundary) of ℘. This homotopy invariance is the key ingredient that ties

the story of spectral networks together.

7From the four-dimensional perspective, L℘,ϑ is a line defect extended along R0,1 and living on the interface
between Sz1 and Sz2 .
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3.1.1.3 Adding a Little Twist

Before proceeding to the definition of the Wϑ networks, we make an important technical detour. As

discussed in [63], the indices µ(a) and Ω(L℘,ϑ, a) are only well-defined up to a sign, due to potential

integer shift ambiguities in the fermion number operators that enter their definitions. To correct

these ambiguities globally over all regions of parameter space, it suffices to construct (geometrically

motivated) Z/2Z extensions of Γ and Γ(z, w). First, a bit of notation that will be used throughout

this section and part of Appendix C.

Definition Let S be a real surface, then ξS : S̃ → S is the unit tangent bundle projection to S.

The map ξS∗ : H1(S̃;Z) → H1(S;Z) has a kernel generated by the homology class that has a

representative winding once around some fiber.

Definition Let H ∈ H1(Σ̃;Z) denote the homology class represented by a 1-chain that winds once

around a fiber of Σ̃→ Σ, then

Γ̃ := H1(Σ̃;Z)/ (2H) .

We abuse notation and denote the image of H in Γ̃ by H again.

It follows that Γ̃ is a Z/2Z extension of Γ, i.e there is an exact sequence of abelian groups,

0→ Z/2Z→ Γ̃→ Γ→ 0.

Similarly, for framed states and solitons we define extended charge sets. First we pass through an

intermediate construction.

Definition Let π̃ : Σ̃ → C̃ be the restriction of dπ : TΣ → TC to the unit tangent bundle. For

fixed z̃, w̃ ∈ C̃, choose a labeling of sheets above π−1(z) and π−1(w); let zi (resp. wi) be a point on

the ith sheet in π−1(z) (resp. π−1(w)), then define

Gij(z̃, w̃) :=
{

[a] ∈ H1(Σ̃, {z̃i} ∪ {w̃j};Z) : a is a 1-chain with ∂a = w̃j − z̃i
}
,

G(z̃, w̃) :=

K⊔
i,j=1

Gij(z̃, w̃).
(3.7)

Remark G(z̃, w̃) is equipped with an H1(Σ̃;Z) action given by the addition of a closed cycle (at

the level of chains).

This allows us to make the following definition,
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Definition

Γ̃(z̃, w̃) := G(z̃, w̃)/〈2H〉. (3.8)

Sometimes it is useful to view Γ̃(z̃, w̃) as a disjoint union of quotients of Gij :

Definition

Γ̃ij(z̃, w̃) := Gij(z̃, w̃)/〈2H〉.

So we may write,

Γ̃(z̃, w̃) :=

K⊔
i,j=1

Γ̃ij(z̃, w̃).

Remark

Γ̃(z̃, w̃) is equipped with a Γ̃ action, descending from addition of a closed cycle with a relative cycle.

For γ ∈ Γ̃ and a ∈ Γ̃(z̃, w̃) we will denote this action by γ : a 7→ a + γ = γ + a. In fact, for any

ordered pair ij, Γ̃ij(z̃, w̃) is a torsor for Γ̃.

Γ̃(z̃, w̃) carries an extra Z/2Z’s worth of “winding” information in the sense that Γ̃(z̃, w̃)
proj→

Γ(z, w) is a principal Z/2Z bundle, with proj given by forgetting lifts8, and the Z/2Z action given

by adding H.

Now, a soliton is a smooth curve on Σ; furthermore, the tangent vectors at the endpoints (which

lie on disjoint sheets) of a soliton are oppositely oriented in the sense that their pushforwards to C

are oppositely oriented.

Definition Let z̃ ∈ C̃, then −z̃ ∈ C̃ is the unit tangent vector pointing in the opposite direction to

z̃.

Remark To every soliton (represented by a smooth path) there is a natural lifted charge in Γ̃(z̃,−z̃)

that descends from the relative homology class of the soliton’s tangent framing lift.

We introduce one final piece of technology. First, note that for each z̃ ∈ C̃ ′ there is a disjoint

union of K lattices inside of the set Γ̃(z̃, z̃):

K⊔
i=1

Γ̃ii(z̃, z̃) ⊂ Γ̃(z̃, z̃).

8More precisely, proj is the map descending from the induced map on relative homology (ξΣ)∗ :

H1

(
Σ̃, π−1(z̃) ∪ π−1(w̃);Z

)
→ H1

(
Σ, π−1(z) ∪ π−1(w);Z

)
where z =

(
π ◦ ξΣ

)
(z̃) and w =

(
π ◦ ξΣ

)
(w̃).
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Any representative of an element in Γ̃ii(z̃, z̃) has zero boundary, hence, is actually a cycle. In-

deed,there is a canonical “basepoint forgetting” isomorphism of lattices Γ̃ii(z̃, z̃) ∼= Γ̃ for each

i = 1, · · · ,K, descending from the identity map at the level of chain representatives. This allows us

to define the closure map.

Definition

cl :

K⋃
i=1

Γ̃ii(z̃, z̃)→ Γ̃

is the map which acts on each component by the “basepoint-forgetting” map described above.

Now, due to the sign ambiguity in µ and Ω then, näıvely, only their absolute values are well-

defined: i.e. we have functions,

µ≥0 :
⋃
z∈C′

Γ(z, z)→ Z≥0

Ω≥0(℘, ·) :
⋃

(z,w)∈C′×C′
Γ(z, w)→ Z≥0.

However, with our “lifted charge” definitions, we can lift µ≥0 to a function µ :
⋃
z̃∈C̃′ Γ̃(z̃,−z̃)→ Z

such that ∀a ∈
⋃
z̃∈C̃′ Γ̃(z̃,−z̃),

|µ(a)| = µ≥0(ξΣ
∗ a)

µ(a+H) = −µ(a).

(3.9)

Similarly, fixing a path ℘ on C, the framed BPS degeneracies lift to well-defined functions Ω(L℘,ϑ, ·) :⋃
(z̃,w̃)∈C̃′×C̃′ Γ̃(z̃, w̃)→ Z such that ∀a ∈

⋃
(z̃,w̃)∈C̃′×C̃′ Γ̃(z̃, w̃),

∣∣Ω (L℘,ϑ, a)
∣∣ = Ω≥0

(
L℘,ϑ, ξ

Σ
∗ a
)

Ω (L℘,ϑ, a+H) = −Ω (L℘,ϑ, a) .

(3.10)

3.1.2 The Wϑ Networks

Using (3.4), we can produce a concrete picture of (the projections to C of) ij-solitons on the curve

C. This motivates the following definitions.

Definition Fix ϑ ∈ R/2πZ, for each (ordered) pair of sheets ij we define a (real) oriented line field

lij(ϑ) on Cc given at every z ∈ Cc by

lij,z(ϑ) :=
{
v ∈ TzC : Im

[
e−iϑ 〈λij , v〉

]
= 0
}
,

with v positively oriented if Re
[
e−iϑ 〈λij , v〉

]
> 0.
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Given an integral curve p of lij(ϑ), the orientation of lij(ϑ) tells us how to lift the curve back to

a curve pΣ on Σ.

Definition Any integral curve p (on C ′) of lij(ϑ) has a lift to a curve pΣ on Σ defined as the union

of p{i} (the lift of p to the ith sheet), and p−{j} (the lift of p to the jth sheet, reversing orientation).

Remarks

• Fix z∗ ∈ Cc and take a neighborhood U of z∗ that does not contain any branch cuts of type

ij. Then for each ordered pair ij we can define local coordinates wij : U → C by

wij(z) =

∫ z

z∗

(λi − λj) . (3.11)

In these coordinates, the integral curves of lij(ϑ) are precisely the straight lines of inclination

ϑ.

• Note that the line field lji(ϑ) is just lij(ϑ) with reversed orientation.

• On a cycle surrounding a branch point of type ij, the monodromy action induces λij 7→ λji =

−λij ; hence, lij(ϑ) 7→ lji(ϑ) (i.e., the line field orientation reverses when passing through a

branch cut extending from a branch point.)

We can finally define the (real) codimension-1 networks of interest.

Definition

Wϑ =
⋃

ordered pairs ij

{p : p is an integral curve of lij(ϑ) and p supports a soliton of phase ϑ} ⊂ C ′.

The network Wϑ is composed of individual integral curve segments, which may interact and join

each other at vertices on C ′.

Definitions

1. An individual integral curve segment on Wϑ is called a street.9 A street of type ij is a street

that is an integral curve of lij(ϑ).

2. A joint is a point on C ′ where two or more streets of different types meet.

9In [63] these were also referred to as S-walls.
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The upshot of all these constructions is that now we have a solidified picture of solitons via a

network on C ′. Indeed, we can lift Wϑ to a graph on Lift(Wϑ) ⊂ Σ by taking the union of the lifts

(as defined above) pΣ of each street p. Then an ij soliton of phase ϑ traces out a path supported on

Lift(Wϑ), and begins and ends on points zi, zj that are lifts to the ith and jth streets (respectively)

of a point z on a street of type ij. In particular, an ij street of Wϑ represents the endpoints of a

set of solitons of type ij.

From a constructive viewpoint, however, the reader may feel unsatisfied as we have not yet defined

how to determine the condition that p ⊂ Wϑ actually supports a soliton of phase ϑ, i.e. µ(a, p) 6= 0,

for some a the charge of a soliton of phase ϑ. To fill this void we remark that there are exactly three

integral curves of lij(ϑ) ∪ lji(ϑ) emerging from each ij-branch point. On each such integral curve p

there is a family of solitons represented by “small” paths: for z ⊂ p and zi, zj ∈ π−1(z) lifts of z to

sheet i and sheet j (respectively), there is a soliton supported on pΣ traveling from zi ∈ Σ, through

the ramification point on Σ, to zj ∈ Σ. Such solitons become arbitrarily light as z approaches the

branch point. Furthermore, as argued in [63], letting a be the (lifted) charge of any soliton in this

family, we assign

µ(a, p) = +1. (3.12)

Terminology The “light” solitons described in the previous paragraph will be called simpletons.

We defer the problem of determining the soliton indices µ on all other streets until the appropriate

definitions are developed in the next section; for now it will suffice to say that, with this condition,

the soliton indices on all other streets can be determined via a set of algebraic equations.

3.1.2.1 K-walls and Degenerate Networks

Of particular interest in this paper will be Wϑ networks of a very special type.

Definition A street p ⊂ Wϑ is two-way if it consists of a coincident ij-street and a ji-street.

Equivalently, p supports ij-solitons and ji-solitons. A street that is not two-way is called one-way.

A network that contains a two-way street is said to be degenerate.

We adopt the following convention in order to keep track of the individual directions of the

constituent one-way streets of a two-way street.

Convention Let p be a two-way street consisting of coincident ij and ji-streets, then we will say

p is of type ij and assign it the orientation of its constituent ij-street. (Or, equivalently, we will say

p is of type ji and assign it the orientation of its constituent ji-street.)
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As described in [63], sec. 6.2, for generic values of ϑ, the network Wϑ will only contain one-way

streets due to a bifurcation behavior of integral curves near branch points. However, at critical

values ϑc ∈ R/Z, an ij street will collide with a ji street and the network Wϑc will contain two-way

streets. Now we make an important claim:

Wϑ contains a two-way street ⇒ ∃ a homologically non-trivial closed loop on Σ satisfying (3.3) for

some phase ϑ ∈ R/2Z.

To see this, fix a point z ∈ p ⊂ C on any two-way street p; without loss of generality we will

say p is of type ij. Then z supports a soliton of type ij and a soliton of type ji, both of the same

phase ϑ; the concatenation of these two paths yields a closed loop l satisfying (3.3) for the phase

ϑ. Moreover, this loop is homologically non-trivial. Indeed, the period of l is just the sum of the

periods of the two solitons forming it. However, both have periods (central charges) of the same

phase; so the sum must be nonzero.

Thus, via the claim, a degenerate network automatically leads to a possible 4D BPS state of

charge [l] ∈ Γ; in fact, there are possible BPS states of charges n[l], n ∈ Z>0. All that remains is to

determine the BPS indices Ω(n[l]) which, as expressed more explicitly below, are computable from

the soliton data supported on Wϑ.

In practice, degenerate networks can be found by looking for discontinuous changes in the topol-

ogy ofWϑ as ϑ is varied. Indeed, if a region R ⊂ R/Z does not contain any degenerate networks then,

as ϑ is varied continuously in R, the network Wϑ also varies continuously (in the sense described in

[63]). However, if the region R contains a single critical angle ϑc, the bifurcation of integral curves

near a branch point induces a discontinuous change in the topology of Wϑ as ϑ is varied10 past ϑc.

(If we consider the parameter space of ϑ and the Coulomb branch then the locus where degenerate

networks appear defines K-walls.)

3.1.2.2 Formal Variables

In order to construct the generating functions that keep track of various BPS degeneracy indices, it

is helpful to construct spaces of formal variables with some algebraic structure.

10However, there may be an accumulation point of critical angles as in the picture of the vector multiplet when
K = 2 (see [63]). Around such an accumulation point the topology of Wϑ rapidly changes, and there is no open
region containing the accumulation point where the topology smoothly varies. Even “worse,” as we will see, the
critical angles can densely fill an open interval.
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Definition Z[[Γ̃]] is the commutative ring of formal series generated by formal variables Xγ , γ ∈ Γ̃

such that

X0 = 1,

XH = −1,

XγXγ′ = Xγ+γ′ .

To define an algebraic structure for formal variables in 2D-4D/soliton charges, we note that there

is a partially defined “addition” operation.

Definitions

1. Let a ∈ Γ̃(z̃1, z̃2), then

end(a) = z̃2

start(a) = z̃1.

2. Let a, b ∈
⋃
z̃,w̃∈C̃ Γ̃(z̃, w̃), then if end(a) = start(b) there is a well-defined operation (con-

catenation of paths) a + b ∈
⋃
z̃,w̃∈C̃ Γ̃(z̃, w̃) descending from the usual addition of relative

homology cycles.

With this we can define the space of interest.

Definition The homology path algebra A is the non-commutative Z[[Γ̃]]-algebra of formal series

generated by formal variables Xa, for every a ∈
⋃
z̃,w̃∈C̃ Γ̃(z̃, w̃); such that

1. For γ ∈ Γ̃,

XγXa = Xa+γ = Xγ+a,

2. for any a, b ∈
⋃
z̃,w̃∈Σ̃ Γ̃(z̃, w̃)

XaXb =

 Xa+b, if end(a) = start(b)

0, otherwise
.

There are two important Z[[Γ̃]]-subalgebras of A.

Definition
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1. AS is the Z[[Γ̃]]-subalgebra generated by formal variables in soliton charges

a ∈
⋃
z̃∈C̃ Γ̃(z̃,−z̃).

2. AC is the (commutative) Z[[Γ̃]]-subalgebra generated by formal variables in

a ∈
⋃
z̃∈C̃

⊔K
i=1 Γ̃ii(z̃, z̃).

The closure map can be easily extended to AC .

Definition

cl :AC → Z[[Γ̃]]

is the linear extension of the map

cl(Xa) = Xcl(a).

We now define generating functions for BPS indices.

Definition For each path ℘ from z ∈ C to w ∈ C that represents an interface L℘,ϑ, we associate

the framed generating function

F (℘, ϑ) :=
∑

a∗∈Γ(z,w)

Ω(L℘,ϑ, a)Xa ∈ A,

where a ∈ Γ̃(z̃, w̃) is a lift of the charge a∗ ∈ Γ(z, w) such that z̃ and w̃ are the unit tangent vectors

at the ends of ℘.

For each street p of type ij, we associate two soliton generating functions: Υ(p), that encodes

the indices of solitons of type ij, and ∆(p), that encodes the indices of solitons of type ji.

Definition Let z ∈ p ⊂ C, then we define

Υz(p) :=
∑

a∗∈Γij(z,z)

µ(a)Xa ∈ AS (3.13)

∆z(p) :=
∑

b∗∈Γji(z,z)

µ(b)Xb ∈ AS , (3.14)

where a ∈ Γ̃ij(z̃,−z̃), b ∈ Γ̃ji(−z̃, z̃) denote respective lifts of a∗ ∈ Γij(z, z) and b∗ ∈ Γji(z, z), for

z̃ ∈ C̃ the unit tangent vector agreeing with the orientation of p at the point z ∈ C.11

11As Γ̃(z̃,−z̃) is a principal Z/2Z bundle over Γ(z, z), there are two possible lifts of a∗ related by addition of H.
Via XH = −1 along with (3.9) and (3.10), the definition of Υz(p) is independent of the choice of lift. This argument
also applies to ∆z(p).
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Definition From the soliton generating functions on a street p, we can define the street factor,

Q(p) := cl [1 + Υz(p)∆z(p)]

= 1 +
∑

a∗∈Γij(z,z),b∗∈Γji(z,z)

µ(a)µ(b)Xcl(a+b) ∈ Z[[Γ̃]].

where z ∈ C is any point on p.

Remark As the notation suggests, Q(p) is independent of the choice of point z. This follows as the

index µ(a) is constant as any charge a is parallel transported along any path supported on p ⊂ C.

By the same reasoning, for any z, z′ ∈ p, Υz(p) and Υz′(p) are related by applying an appropriate

parallel transport map 12 (similarly for ∆z(p) and ∆z′(p)).

And now for the punchline.

3.1.2.3 Computing Ω(nγc)

The power of the spectral network machine can be summarized with the following squiggly arrows:

Jumping of Framed 2D-4D

Spectrum + Homotopy Invari-

ance of L℘,ϑ

(A)

Soliton Spectrum
(B)

(Vanilla) 4D spectrum.

To understand (A): the framed generating function F (℘, ϑ) is piecewise constant in the sense that

as the endpoints of ℘ are varied on C−Wϑ, then F (℘, ϑ) does not vary in A; however, if an endpoint

of ℘ is varied across a street of Wϑ, then F (℘, ϑ) will jump in a manner depending on the spectrum

of solitons located on that street. Indeed, F (℘, ϑ) is the sum of the charges of “millipedes,” and as

the “body” ℘ of each such millipede crosses the street p, then the millipede can gain an extra leg

by detouring along a soliton supported along p; hence, the spectrum of 2D-4D states (represented

by millipedes) will jump. To reproduce the soliton spectrum we utilize the homotopy invariance

of the operator L℘,ϑ to equate the different jumps of F (℘, ϑ) across different, but homotopic (rel

endpoints), paths ℘. The resulting equations are equivalent to conditions on the soliton generating

functions. These conditions, combined with the simpleton input data (3.12), allow us to completely

determine the soliton generating functions, which encapsulate the soliton spectrum.

To describe (B), let Γc ⊂ Γ be the lattice of charges γ with e−iϑcZγ ∈ R−; then the degenerate

network Wϑc captures all of the 4D BPS states carrying charges γ ∈ Γc. Their spectrum can be

extracted from the generating functions Q(p). But, first we have to deal with a technical point.

12For this reason, the point z in soliton generating functions is often dropped as in the calculations of Appendix
C.
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Definitions

1. For every curve q on a surface S, there is a canonical “lift” q̂ to a curve on S̃, given by the

tangent framing.

2. For each γ ∈ Γ, we define another lift γ̃ ∈ Γ̃ by the following rule. First, represent

γ as a union of smooth closed curves βm on Σ. Then γ̃ is the sum of β̂m, shifted by(∑
m≤n δmn + #(βm ∩ βn)

)
H (of course, because we work modulo 2H, all that matters here

is whether this sum is odd or even.)

One can check directly (see Appendix E) that γ̃ so defined is independent of the choice of how we

represent γ as a union of βm; this requirement is what forced us to add the tricky-looking shift.

Then, for each street p, we factorize Q(p) as a product:

Definition

Q(p) =
∏
γ∈Γc

(1−Xγ̃)αγ(p). (3.15)

This representation determines the coefficients αγ(p).

Definition Let mpΣ ∈ C1(Σ;Z) be the one-chain corresponding to the lift pΣ, then we define13

L(γ) :=
∑

streets p

αγ(p)mpΣ ∈ C1(Σ;Z). (3.16)

Now, as shown in [63], the magic of this definition is that L(γ) is actually a 1-cycle satisfying the

BPS condition (3.2) for ϑ = ϑc.
14 Let us make the further assumption that Γc is a rank-1 lattice,

which holds automatically off of the walls of marginal stability on B, then it follows that both γ and

[L(γ)] are multiples of a choice of generator γc ∈ Γc. With this in mind, the journey to the end of

the squiggly arrow (B) follows by analyzing the jumping of F (℘, ϑ), but now as ϑ is varied across

the critical angle ϑc (fixing ℘). The resulting analysis (see [63], sec. 6) leads us to the desired result:

[L(γ)] = Ω(γ)γ, γ ∈ Γc, (3.17)

from which all BPS indices of 4D BPS states with central charge phase ϑc can be computed.

13Note that the sum over streets in (3.16) reduces to a sum over two-way streets; indeed, Q(p) 6= 1 iff p is two-way.
14This last comment follows from the fact that

∫
pΣ
λ =

∫
p λij ∈ e

iϑcR<0 for any street p of type ij.
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(A) (B) (C)

Figure 3.1: A hypothetical wall-crossing of two hypermultiplets with charges γ, γ′ such that 〈γ, γ′〉 = 1.
Streets of type 12 are shown in red, 23 in blue, and 13 in fuchsia; only two-way streets are depicted. Arrows
denote street orientations according to the convention described in Section 3.1.2.1. Yellow crosses denote
branch points. Arrows denote the direction of solitons of type 12, 23, or 13 (according to the street). The
black dotted lines are identified to form the cylinder. (A): The two hypermultiplet networks at a point u−

just “before” the wall of marginal stability. (B): The hypermultiplet networks at a point uwall on the wall of
marginal stability and at phase ϑ = Arg

[
Zγ(uwall)

]
= Arg

[
Zγ′(u

wall)
]

= Arg
[
Zγ+γ′(u

wall)
]
. (C): Slightly

“after” the wall at a point u+, a BPS bound state of charge γ + γ′ is born and a two-way street of type 13
“grows” as one proceeds away from the wall.

Abstract Spectral Networks

It is possible to abstract the properties of the Wϑ networks in order to draw networks on C that

do not necessarily come from integral curves of (3.4). It is not necessary to give a precise list of the

properties here, and we instead refer the interested reader to Section 9 of [63]. There, the abstracted

networks are particularly useful for defining the “non-abelianization map” between moduli spaces

of flat GL(1)-bundles on Σ, and flat GL(K)-bundles on C. In this paper, however, our interest in

abstract spectral networks will be in constructions of potential Wϑ networks. Indeed, the m-herds

mentioned in the introduction, and introduced in Section 4.4, are examples of abstract networks on

an arbitrary curve C. By searching the parameter space of the pure SU(3) theory, where C = S1×R

and K = 3, it turns out that a large subset of m-herds actually arise as Wϑ networks at various

points on the Coulomb branch.

3.2 Spectral network analysis of a wild point on the Coulomb branch

3.2.1 Horses and Herds

We begin by describing a sequence of spectral networks that may arise in the hypothetical wall-

crossing between two BPS hypermultiplets of charges γ, γ′ ∈ Γ such that 〈γ, γ′〉 = m. Indeed,
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(A) (B) (C)

Figure 3.2: A hypothetical wall-crossing of two hypermultiplets with charges γ, γ′ such that 〈γ, γ′〉 = 3.
The story is similar to that described in the caption of Fig. 3.1.

assume at some point on the Coulomb branch there are two BPS states (occurring at different

phases) such that the degenerate network associated to each state has a single two-way street given

by a simple curve passing through two branch points of the same type (frame (A) of Figs. 3.1-3.2);

such spectral networks are associated to BPS hypermultiplets. Now, assume that there exists a

marginal stability wall on the Coulomb branch associated to the (central charge phase) crossing of

these two hypermultiplets (and no other BPS states). On the other side of the wall, a possible bound

state of charge γ + γ′ may be formed (where γ, γ′ are the charges of the original hypermultiplets).

Figs. 3.1-3.2 depict three hypothetical snapshots along a path passing through the wall of marginal

stability for the cases m = 1, 3; frame (C) depicts a guess at the appearance of the degenerate

network associated to the bound state of charge γ+γ′. After drawing such pictures for progressively

higher m, and given a sufficient dose of mildly-confused staring, one will begin to notice that the

(two-way streets of) networks associated to the bound state of charge γ+γ′ can be decomposed into

m-components that look like “extended” saddles; as they are the generalization of saddles we have

no choice but to call each such component a “horse.”

Definitions

1. A horse street p ∈ {a1, a2, a3, b1, b2, b3, c, a1, a2, a3, b1, b2, b3} is one of the streets of Fig. 3.3

(left frame).

2. Let N be a spectral network (subordinate to some branched cover Σ→ C) and U ⊂ C ′ be an

open disk region. Then U ∩N is a horse if a subset of its streets can be identified with Fig. 3.3

in a way such that:
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Figure 3.3: Left Frame: Two-way streets of a horse on some open disk U ; the solid streets depicted are
capable of being two-way; one-way streets are not shown. The sheets of the cover Σ → C are (locally)
labeled from 1 to K ≥ 3. Red streets are of type 12, blue streets are of type 23, and fuchsia streets are of
type 13. We choose an orientation for this diagram such that all streets “flow up.” Right Frame: A relatively
simple example of a horse with one-way streets shown as partially transparent and two-way streets resolved
(using the “British resolution”, cf. Appendix B or [63]). One can imagine horses with increasingly intricate
“backgrounds” of one-way streets.

a) every two-way street is a horse street,

b) there is always a two-way street identified with the street labeled c.

We can reconstruct the two-way streets of the full spectral network by gluing m horses back

together. This leads us to the following working definition (a more complete definition is provided

in Appendix C), which we extend to any curve C.

Working Definition Given a collection of m horses, let p(l) denote a horse street on the lth horse

(l = 1, · · · ,m). A spectral network on a curve C is an m-herd if its two-way streets are generated

by gluing together m horses using the following relations:

a
(l)
1 = a

(l−1)
3

b
(l)
1 = b

(l−1)
3

a1
(l) = a3

(l+1)

b1
(l)

= b3
(l+1)

,

(3.18)

and such that a
(1)
1 , b

(1)
1 , a1

(m), and b1
(m)

are connected to four distinct branch points.

Remark It can be shown from our definition that a 1-herd (which consists of a single horse) is

just a saddle. Indeed, a small computation will show that Q(p) is nontrivial (Q(p) 6= 1) only for
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Figure 3.4: The first four herds on the cylinder. Solid streets are two-way; dotted, transparent streets are
streets of Fig. 3.3 that happen to be only one-way as indicated by Prop. 3.2.1. The black dotted lines are
identified to form the cylinder and capital Latin letters are placed on either side to aid in the identification
of streets. Top row (from left to right): The 1-herd (saddle) and 2-herd. The middle row shows a 3-herd
and the bottom row shows a 4-herd.
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p = a1, a1, b1, b1, and c; this leads us to the picture of a saddle extending from four branch points

(pictured in the top left corner of Fig. 3.4).

An advantage of the decomposition into horses is computability: a horse should be thought of

as a scattering machine which takes inflowing solitons, and regurgitates outgoing solitons as well

as all spectral data “bound” to the horse.15 The combinatorial problem of computing the BPS

degeneracies Ω(nγc), n ≥ 1, using spectral network machinery, is then greatly simplified and explicit

results can be obtained for all m ≥ 1. In fact, we have the following.

Proposition 3.2.1. Let N be an m-herd, then Q(p) for all two-way streets p on N are given in

terms of powers of a single generating function Pm satisfying the algebraic equation

Pm = 1 + z (Pm)
(m−1)2

, (3.19)

where z = (−1)mXγ̃+γ̃′ for some γ, γ′ ∈ H1(Σ;Z) such that 〈γ, γ′〉 = m. In particular, adopting the

notation Q(p, l) := Q(p(l)),

Pm = Q(c, l)

(Pm)
m−l

= Q(a2, l) = Q(b2, l) = Q(a3, l) = Q(b3, l)

(Pm)
l−1

= Q(a2, l) = Q(b2, l) = Q(a3, l) = Q(b3, l)

(Pm)
m−l+1

= Q(a1, l) = Q(b1, l)

(Pm)
l

= Q(a1, l) = Q(b1, l).

(3.20)

for l = 1, · · · ,m.

Proof. See Appendix C.6 for the full calculational proof.

The precise cycle γc = γ + γ′ that appears depends on the embedding of N in C as a graph.

Further, as shown at the end of Appendix C.6, there are cycles representing γ and γ′ that look like the

charges of simple “saddle-connection” hypermultiplets. Indeed, the cycle representing either γ or γ′

projects down to a path on C that runs between two distinct branch points of the same type. These

are precisely the (hypothetical) hypermultiplets whose wall-crossing motivated the construction of

m-herds.16

15See Appendix C.3 for a the precise and explicit description of the horse as a scattering machine.
16The representative cycles discussed here, however, do not live entirely on Lift(N) ⊂ Σ. Roughly speaking

representatives of γ, γ′ are given by the lifts of paths running along the ai, ai and bi, bi respectively, but these do not
define closed paths on Σ without running through at least one street of type 13.
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Remarks

• A street p is two-way iff Q(p) 6= 1. Thus, (3.20) states that on the first (l = 1) and last (l = m)

horses, some streets depicted in Fig. 3.3 are only one-way.

• When m = 1, 2, (4.111) has easily derivable solutions:

P1 = 1 + z, (3.21)

P2 = (1− z)−1. (3.22)

For a saddle (m = 1), this result, combined with (3.20), states that there are five two-way

streets; each such two-way street p is equipped with a generating function Q(p) = 1 + z, as

originally derived in [63].

3.2.2 Connection with Kontsevich-Soibelman, Gross-Pandharipande

The algebraic equation (4.111) and relevant solutions appear in a conjecture by Kontsevich and

Soibelman (KS) [88], later proven by Reineke [115] and generalized by Gross-Pandharipande (GP)

[75]. A series solution of (4.111) can be obtained using the Lagrange formula for reversion of series

and the result for m > 1 is [88]:

Pm =

∞∑
n=0

1

1 + (m2 − 2m)n

(
(m− 1)2n

n

)
zn,

= exp

[ ∞∑
n=1

1

(m− 1)2n

(
(m− 1)2n

n

)
zn

]
.

(3.23)

To describe the connection between our result and that of KS and GP, we review the generalized

conjecture of GP, briefly adopting their notation in [75].

The algebraic equation (4.111) appears in [75]. 17 There, the object of study is a group of (formal

1-parameter familes of) automorphisms of the torus C∗ × C∗ generated by θ(a,b),f that are defined

by

θ(a,b),f (x) = f−b · x, θ(a,b),f (y) = fa · y

where x and y are coordinate functions on the two factors of C∗×C∗, (a, b) ∈ Z2, and f is a formal

series of the form

f = 1 + xayb
[
tf1(xayb) + t2f2(xayb) + · · ·

]
, fi(z) ∈ C[z].

17A different, but related, algebraic equation on the quantity (Pm)m was originally stated by Kontsevich and
Soibelman in [88].
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Alternatively we may say f ∈ C[x, x−1, y, y−1][[t]] (i.e. f is a formal power series in t with coefficients

Laurent polynomials in x and y). Such automorphisms preserve the holomorphic symplectic form

ω = (xy)−1dx ∧ dy.

Now, letting

Sq = θ(1,0),(1+tx)q , Tr = θ(0,1),(1+ty)r ,

we consider the commutator

T−1
r ◦ Sq ◦ Tr ◦ S−1

q =

⇀∏
θ(a,b),f(a,b)

(3.24)

where the product on the right hand side is over primitive vectors (a, b) ∈ Z2 (i.e. gcd(a, b) = 1)

such that a, b > 0, and the order of the product is taken with increasing slope a/b from left to right.

The conjecture of Gross-Pandharipande involves the slope 1 term of (3.24).

Conjecture (Gross-Pandharipande)

For arbitrary (q, r), the slope 1 term θ(1,1),f(1,1)
in (3.24) is specified by

f1,1 =

( ∞∑
n=0

1

(qr − q − r)n+ 1

(
(q − 1)(r − 1)n

n

)
t2nxnyn

)qr
.

The case q = r was first conjectured by KS, and later proven by Reineke. Now, letting

Pq,r =

∞∑
n=0

1

(qr − q − r)n+ 1

(
(q − 1)(r − 1)n

n

)
t2nxnyn, (3.25)

For general q, r, Gross and Pandharipande noted that Pq,r satisfies the equation

t2xy (Pq,r)(q−1)(r−1) − Pq,r + 1 = 0; (3.26)

so that f1,1 is an algebraic function (over Q(t, x, y)).

In the case q = r = m, the equation (3.26) and solution (3.25) bear striking similarity to (4.111)

and (3.23), which motivates identifying t2xy = z in hopes of identifying Pm,m with Pm.

To motivate the identification t2xy = z, we turn our attention back to the original motivation

for our definition of m-herds: they are expected to arise after two hypermultiplets of charges γ, γ′,

with 〈γ, γ′〉 = m, cross a wall of marginal stability. If m-herds do arise in this manner, then in the

resulting wall-crossing formula we should expect the Pm to be related to the generating function for

the KS transformations attached to the charges n(γ + γ′), n > 0. We now go about unpacking the

identification of such a wall crossing formula with (3.24).
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Assume on one side of the wall Arg(Zγ) < Arg(Zγ′), then the wall crossing formula reads (see

Section 3.4.1)

KγKγ′ = Kγ′

 ∏
(a,b)∈Z2

(Kaγ+bγ′)
Ω(aγ+bγ′)

Kγ (3.27)

where all products are taken in order of increasing central charge phase (when read from left to right)

and the Kα are transformations on a twisted Poisson algebra of functions on the torus T = Γ⊗ZC×,

i.e. the space of functions generated by polynomials in formal variables Yα, α ∈ Γ equipped with

twisted product given by

YαYβ = (−1)〈α,β〉Yα+β . (3.28)

T is equipped with a holomorphic symplectic form induced by the symplectic pairing on Γ; it is

equivalently given by the holomorphic Poisson bracket

{Yα, Yβ} = 〈α, β〉YαYβ . (3.29)

Now, the Kα are symplectomorphisms that act as

Kα : Yβ 7→ (1− Yα)〈α,β〉Yβ . (3.30)

For 〈γ, γ′〉 = m, it follows that

Kγ : Yγ 7→ Yγ ,

Kγ : Yγ′ 7→ (1− Yγ)mYγ′ ,

Kγ′ : Yγ 7→ (1− Yγ′)−mYγ ,

Kγ′ : Yγ′ 7→ Yγ′ .

(3.31)

We identify the torus C× × C× of Gross-Pandharipande by the subtorus of T generated by

x := Yγ

y := Yγ′ ;

then by (3.31) we have18

Kγ = θ(1,0),(1−x)m = Sm

Kγ′ = θ(0,1),(1−y)m = Tm.

Furthermore, noting that

xayb = (−1)〈aγ,bγ
′〉Yaγ+bγ′ = (−1)mabYaγ+bγ′ , (3.32)

then

Kaγ+bγ′ : x = Yγ 7→ (1− Yaγ+bγ′)
−mbYγ = (1− (−1)mabxayb)mbx

: y = Yγ′ 7→ (1− Yaγ+bγ′)
−maY maγ′ = (1− (−1)mabxayb)−may;

18To make the identification with Sm and Tm we evaluate the formal (time) parameter at t = −1. Alternatively,
we could set −tx = Yγ and −ty = Yγ′ .
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giving the identification

Kaγ+bγ′ = θ(a,b),(1−(−1)mabxayb)m .

On the right hand side of (3.27) Arg(Zγ) > Arg(Zγ′) and so the phase ordered product is

equivalent to ordering by increasing slope a/b from left to right. This completes the identification

of (3.27) with (3.24). Matching the slope 1 terms in both equations,

θ(1,1),f1,1
=
∏
n≥1

(Knγc)
Ω(nγc) ,

where γc := γ + γ′; in terms of generating functions, this is equivalent to the statement19

f1,1 =
∏
n≥1

[(1− (−1)mnzn)m]
nΩ(nγc) .

Equivalently, as f1,1 = (Pm,m)m
2

,

(Pm,m)
m

=
∏
n≥1

(1− (−1)mnzn)nΩ(nγc). (3.33)

Now assume that the generating function Pm, derived in the context of spectral networks, is the

generating function Pm,m, derived in the context of wall crossing; then, given the exponents {αn}n≥1

of the factorization of Pm (see (3.35)), (3.33) predicts spectral network techniques will show Ω(nγc) =

mαn/n. As we will see, this prediction is confirmed with Prop. 3.2.2.

3.2.3 Herds of horses are wild (for m ≥ 3)

Definition For each two-way street p, define the sequence of exponents {αn (p, l)}n≥1 ⊂ Z via

Q(p, l) =

∞∏
n=1

(1− (−1)mnzn)
αn(p,l)

. (3.34)

We also define the sequence of integers {αn}n≥1 via

Pm =

∞∏
n=1

(1− (−1)mnzn)αn . (3.35)

By Prop. 3.2.1, we can express all αn(p, l) as multiples of αn. 20

Remark The choice of signs (−1)mn follows from our convention of factorization, defined by (3.15),

in terms of formal variables in the image of Yγ 7→ Xγ̃ (which forms an embedding of the twisted

algebra of Yγ , γ ∈ Γ, as subalgebra of Z[[Γ̃]] as detailed in Appendix E). By Prop. 3.2.1, zn =

(−1)mnXnγ̃c for some γc ∈ Γ, leading to the choice of signs in (3.34).

19To see this, let gn = (1 − (−1)mn(xy)n)m, then Knγc = θ(n,n),gn = θ(1,1),(gn)n ; furthermore, as θ(1,1),(gn)n

fixes the product xy: θ(1,1),(gn)n ◦ θ(1,1),(gl)
l = θ(1,1),(gn)n(gl)

l .
20The radius of convergence R of the series in equation (4.111) is logR = −cm, where cm is given in equation (3.40);

in particular R < 1. Therefore, the product expansion is only a formal expansion and is not absolutely convergent;
otherwise, it would predict that all the singularities of d logP sit on the unit circle.
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Proposition 3.2.2.

[L(nγc)] = mαnγc ∈ H1(Σ;Z).

Proof (sketch). A rough argument goes as follows. Note that, using Prop. 3.2.1 and the definition

of L(nγc) in (3.16), we have

L(nγc) =

m∑
l=1

∑
p(l)

αn(p, l)mp(l)

= αn

m∑
l=1

{
mc(l) + (m− l)

(
ma2

(l) + ma3
(l) + mb2

(l) + mb3
(l)
)

+ (l − 1)
(
ma2

(l) + ma3
(l) + mb2

(l)
+ mb3

(l)
)

+

+(m− l + 1)
(
ma1

(l) + mb1
(l)
)

+ l
(
ma1

(l) + mb1
(l)
)}

.

(3.36)

Each term in this sum can be split up into a sum of words of the form

ma
(1)
1 + mb

(1)
1 + (· · · ) + ma

(m)
1 + mb

(m)

1 ,

Each such word represents a closed cycle on the lift of the m-herd to a graph on Σ, and is homolo-

gous21 to γc. As ma
(1)
1 , mb

(1)
1 , ma

(m)
1 , mb

(m)

1 all come with multiplicity m in (3.36), then there are

m such words and the proposition follows. A full proof, using brute-force homology calculations,

can be found in Appendix C.8.

Via (3.17), the immediate result of Prop. 3.2.2 is that

Ω(nγc) =
mαn
n

;

so all that remains is to compute αn. For the cases m = 1, 2: using (3.21) and (3.22) we immediately

have22

αn =

 δn,1, if m = 1

−δn,1, if m = 2
⇒ Ω(nγc) =

 δn,1, if m = 1

−2δn,1, if m = 2
. (3.37)

More generally, we can find an explicit form for αn by taking the log of both sides of (3.35), matching

powers of z, and applying Möbius inversion to derive

αn =
1

n

∑
d|n

(−1)md+1µ
(n
d

) 1

(d− 1)!

[
dd

dzd
log(Pm)

]
z=0

,

where µ is the Möbius mu function. Using (3.23),

αn =
1

(m− 1)2n

∑
d|n

(−1)md+1µ
(n
d

)((m− 1)2d

d

)
, m ≥ 2.

21This homological equivalence can be shown using explicit calculations of the form shown in Appendix C.8. For
the reader that wishes to avoid excruciating detail: sufficient staring at some simple examples will suffice.

22The case m = 1 (i.e. the saddle) was also computed in [63].
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Corollary 3.2.3. For m ≥ 2,

Ω(nγc) =
m

(m− 1)2n2

∑
d|n

(−1)md+1µ
(n
d

)((m− 1)2d

d

)
. (3.38)

This agrees with the result of Reineke23 in the last section of [115]. A table of the values of

Ω(nγc) is provided in Appendix C.9 for 1 ≤ n,m ≤ 7. From this explicit result, we can deduce the

large n asymptotics for the non-trivial24 case m ≥ 3.

Proposition 3.2.4. Let m ≥ 3, then as n→∞,

Ω(nγc) ∼ (−1)mn+1

(
1

m− 1

√
m

2π(m− 2)

)
n−5/2ecmn, (3.39)

where cm is the constant

cm = (m− 1)2 log
[
(m− 1)2

]
−m(m− 2) log [m(m− 2)] . (3.40)

Proof. Restricting n to be an element of an infinite subsequence of primes, the sum over divisors

simplifies and the claimed asymptotics (restricted to this subsequence) follow immediately using

Stirling’s asymptotics and (3.38). See Appendix D for a full proof.

3.2.4 Herds in the pure SU(3) theory

Now, finally, let us exhibit some points of the Coulomb branch of the pure SU(3) theory where

m-herds actually occur in spectral networks Wϑ.

In the pure SU(3) theory, the curve C is CP1 with two defects. It is natural to view it topologically

as the cylinder R× S1. Moreover, the spectral curve (3.42) has 4 branch points. Thus, the pictures

of actual spectral networks in this theory look much like the “hypothetical” spectral networks we

considered in Figures 3.1, 3.2.

In particular, consider the parameters

u2 = −3, u3 =
95

10
(3.41)

(in the notation of (3.42).) At this point, in accordance with the discussion of Section 4.4, we

consider two charges γ, γ′ supporting BPS hypermultiplets, represented simply by paths connecting

pairs of branch points across the cylinder, as in the left side of Figure 3.2. In particular they have

23Reineke showed (in our notation) Ω(nγc) = 1
(m−2)n2

∑
d|n(−1)md+1µ(n/d)

((m−1)2d−1
d

)
. To translate between

results, we use the observation that
((m−1)2d

d

)
=

(m−1)2

m(m−2)

((m−1)2d−1
d

)
.

24In the case m = 2, using the identity
∑
d|n µ(d) = δn,1 in (3.38) reproduces the result Ω(nγc) = −2δn,1 of (3.37).
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〈γ, γ′〉 = 3. By numerically computing the appropriate contour integrals we find that these charges

have Zγ = 7.244− 9.083i, Zγ′ = 20.980− 40.148i.

Now, our proposal in Section 4.4 was that when we have two such hypermultiplets, there will be

a wall of marginal stability in the Coulomb branch when Zγ and Zγ′ become aligned, and on one

side of that wall, the spectral network at the phase ϑ = ArgZγ+γ′ will contain a 3-herd. So, we plot

the spectral network at phase ϑ = ArgZγ+γ′ , and find Figure 3.5. Comparing with Figure 3.4, we

see that the two-way streets in this network make up a 3-herd as desired.25

Figure 3.5: The spectral network Wϑ which occurs in the pure SU(3) theory at the point (3.41) of the
Coulomb branch. The phase ϑ has been chosen very close to the critical phase ϑ = ArgZγ+γ′ . Here we
represent the cylinder C as the periodically identified plane, i.e., the left and right sides of the figure should
be identified. Streets which become two-way at ϑ = ArgZγ+γ′ are shown in thick red, blue and fuchsia. We
do not show the whole network but only a cutoff version of it, as described in [63].

Moving u3 in the positive real direction, we have similarly found a 4-herd, a 5-herd and a 6-herd.

It is natural to conjecture that one can similarly obtain m-herds for any m in this way. Of course, at

a fixed point in the Coulomb branch it is in general possible that there could be m-herds for many

25In particular, our point (3.41) is on the side of the wall where the 3-herd exists. The wall of marginal stability
where the 3-herd disappears can be reached by moving u3 in the negative real direction.
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different values of m at different values of ϑ.

In any case, the existence of 3-herds in the pure SU(3) theory is already enough to show that

the analysis of the last few sections is not only a theoretical exercise: the wild BPS degeneracies we

found there indeed occur in the N = 2 supersymmetric pure SU(3) Yang-Mills theory!

3.3 Wild regions for pure SU(3) theory from wall-crossing

In the previous section we exhibited an example of a class of spectral networks that lead to the

m-wild degeneracies of slope (1, 1). An explicit point on the Coulomb branch of the pure SU(3)

theory which produces such a spectral network for m = 3 was given in equation (3.41) above.

In the present section we start anew, and use wall crossing and quiver techniques to give an

alternative demonstration that wild degeneracies exist on the Coulomb branch of the pure SU(3)

theory.

3.3.1 Strong Coupling Regime of the Pure SU(3) Theory

The spectral curve Σ of pure SU(3) SYM theory is

λ3 − u2

z2
λ (dz)2 +

(
1

z2
+
u3

z3
+

1

z4

)
(dz)3 = 0. (3.42)

It is a branched three-sheeted covering of the cylinder C, with six ramification points. There are four

branch points corresponding to two-cycles of S3, and there are also ramifications at the irregular

singularities at 0,∞, with associated permutations of the sheets given by three-cycles.

In the strong coupling region, i.e. at small values of the moduli u2, u3, the BPS spectrum is

finite; so the spectral network evolves in a rather simple fashion. As a concrete example we choose

u2 = 0.7, u3 = 0.4i; then varying ϑ from 0 to π we encounter six degenerate networks containing

finite webs, which are depicted in Figure 3.6.

We assign to these cycles the charges γ1, γ2, γ2 + γ4, γ1 + γ3, γ3, γ4, Figure 3.7 shows the charge

assignments with the basis cycles resolved.

The mutual intersections of cycles can be read off Figure 3.7, and are summarized by the following

pairing matrix Pij = 〈γi, γj〉

P =



0 −2 1 0

2 0 −2 1

−1 2 0 −2

0 −1 2 0


. (3.43)

For a video showing the evolution of the spectral network through an angle of π, see [1].
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Figure 3.6: The six hypermultiplets in the strong coupling chamber: from the top left, the flips corre-
sponding to γ1, γ2, γ1 + γ3, γ2 + γ4, γ3, γ4. Arg Zγ1 < Arg Zγ2 < Arg Zγ3 < Arg Zγ4 . Here we represent the
cylinder C as the punctured plane.
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(23) (12)
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(312)

Figure 3.7: The labeling of finite networks. We only show the four basis hypermultiplets γ1, . . . , γ4. The
trivialization is indicated by the branch cuts (wavy lines, the associated permutations of sheets are also
specified), the sheets on which the cycles run are indicated explicitly. Here we represent the cylinder C as
the punctured plane.
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3.3.2 A path on the Coulomb branch

We now consider a straight path on the Coulomb branch of the pure SU(3) theory, parameterized

by

u2(t) = (u
(f)
2 − u(i)

2 )t+ u
(i)
2 ,

u3(t) = (u
(f)
3 − u(i)

3 )t+ u
(i)
3 ,

(3.44)

with t ∈ [0, 1] and

u
(i)
2 = 0.7, u

(i)
3 = 0.4i (strong coupling chamber)

u
(f)
2 = 0.56− 0.75i, u

(f)
3 = 2 + 1.52i (wild chamber)

(3.45)

As discussed above, the spectrum in the strong coupling chamber is known (see for example [63])

to consist of six hypermultiplets. As we move along our path we cross several walls of marginal

stability, with consequent jumps of the BPS spectrum. In order to study the evolution of the BPS

spectrum, we must track explicitly the evolution of central charges. Variation of the moduli also

induces changes in the geometry of the Seiberg-Witten curve Σ, therefore in computing the central

charges at different points one must take care of deforming the cycles in a way compatible with the

flat parallel transport of the local system Γ̂→ B∗. Starting from the point studied in Section 3.3.1,

the evolution of branch points can be tracked on C, as shown in Figure 3.8.

Figure 3.8: The picture shows the projection of the Seiberg-Witten curve on C. The four arrows show the
progression of the four branch points as we vary u2,3 along the path of equation (3.44). The black dot is
the singularity at z = 0. The central charges have been computed numerically using Mathematica and, as
a check, they evolve smoothly along the path (see [2]).

3.3.3 Cohorts in pure SU(3)

As the moduli cross walls of marginal stability, the BPS spectrum jumps according to a regular

pattern. At a wall MS(γ, γ′) for two populated hypermultiplets, with 〈γ, γ′〉 = m > 0, the KS wall
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crossing formula predicts

Kγ′Kγ =:
∏
a,b≥0

KΩ(aγ+bγ′)
aγ+bγ′ : (3.46)

where the normal ordering symbols : : on the right hand side indicate that factors are ordered

according to the phases of central charges, phase-ordering on the right hand side is the opposite of

that on the left-hand side. We refer to the spectrum on the right hand side as the cohort generated

by γ, γ′, and will occasionally denote it by Cm(γ, γ′). An important fact to note about cohorts,

following from the linearity of the central charge homomorphism, is that

ArgZγ′ < ArgZaγ+bγ′ < ArgZγ , ∀a, b ≥ 0 (3.47)

for moduli corresponding to the right hand side of (3.46).

Quite generally, the wall-crossing of two hypermultiplet states with pairing m can be analyzed

in terms of the corresponding m-Kronecker quiver (see [12, 39]), from this perspective the degen-

eracies of an m-cohort correspond to Euler characteristics of moduli spaces of (semi)stable quiver

representations.

Cohort structures Cm with m = 1, 2 are known exactly. Examples of such cohorts have been

encountered a number of times in the literature [60, 61, 64, 75, 87], and are common in A1 theories

of class S. For later convenience, we recall the structure of the m = 2 cohort in figure 3.9.

Figure 3.9: The populated BPS rays of the m = 2 cohort (a schematic depiction of central charges in the
complex plane). The state with charge γ+γ′ is a BPS vectormultiplet (Ω = −2), surrounded by two infinite
towers of hypermultiplets (Ω = 1), represented by dashed arrows.

As we start moving along our path on the Coulomb branch, from t = 0 to t = 1, several cohorts

are created. The first wall of marginal stability is MS(γ1 + γ3, γ2 + γ4), with 〈γ1 + γ3, γ2 + γ4〉 = 2,

thus a C2 cohort is generated. As we proceed along the path, other BPS states undergo wall-crossing,

generating other C2 cohorts. As shown in Fig. 3.10, first γ1 generates a cohort with γ2, then γ3, γ4

generate a similar cohort, finally another m = 2 cohort is generated by wall crossing of γ1 and
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γ2 + γ4. At this point, i.e. within a chamber around t = 0.95, the spectrum can be schematically

summarized as the union of four C2 cohorts

C2(γ2 + γ4, γ1 + γ3) ∪ C2(γ2, γ1) ∪ C2(γ4, γ3) ∪ C2(γ1, γ2 + γ4) (3.48)

consisting of four vectormultiplets, and infinite towers of hypermultiplets.
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Γ2Γ3

Γ4
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Γ1
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Figure 3.10: The evolution of the spectrum is illustrated. Green arrows represent the basis hypermultiplets,
the purple arrows are γ2 +γ4 and 2γ1 +γ2, the two states that generate the m = 3 cohort. For other charges,
increasing length denotes higher |Ω| and lighter shades denote larger charges. First picture: the strong
coupling chamber. Second picture: the states γ1 + γ3 and γ2 + γ4 have crossed and created a C2 cohort.
Third picture: γ2 and γ1 cross and create another cohort. Fourth picture: the cohort generated by γ3, γ4.
Fifth picture: γ2 + γ4 and γ1 have crossed and created a cohort. In the sixth picture γ2 + γ4 and 2γ1 + γ2

have crossed, generating wild degeneracies.. For a video showing the full evolution of the spectrum along
our path, see [3].

Proceeding further along our path, we encounter another wall of marginal stability: γ2 + γ4

undergoes wall-crossing with 2γ1 + γ2 generating a new cohort with m = 3. This phenomenon

has not been studied before, and deserves a detailed analysis. We anticipate here that this cohort

contains distinctive new features, such as a wealth of higher spin states and a cone of densely

populated BPS rays.

It is worth stressing that merely finding a point on the Coulomb branch where Zγ2+γ4
approaches

Z2γ1+γ2 is hardly sufficient to claim that such wall-crossing happens. In addition one must make

sure that such rays are populated. This is certainly the case in our example. Another important
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requirement is the absence of populated rays between Zγ2+γ4
and Z2γ1+γ2

, as we approach their

mutual wall of marginal stability. We claim that there aren’t any, based on two independent facts.

First, at values of the moduli just before MS(γ2 + γ4, 2γ1 + γ2), the spectral network shows simple,

smooth evolution for ArgZ2γ1+γ2
< ϑ < ArgZγ2+γ4

, see [4]. Second, our explicit path on the

Coulomb branch – together with property (3.47) of cohorts – guarantees that all boundstates created

so far fall outside of the cone bounded by the central charges of 2γ1+γ2, γ2+γ4: indeed if a populated

boundstate were between γ2 + γ4 and 2γ1 + γ2, it would have to be one of the following

• a boundstate of 2γ1 + γ2 with a charge counterclockwise of γ2 + γ4

• a boundstate of γ2 + γ4 with a charge clockwise of 2γ1 + γ2

• a boundstate of two charges lying respectively counterclockwise of γ2 + γ4 and clockwise of

2γ1 + γ2

• a boundstate due to one of the antiparticles

All these possibilities are clearly ruled out by our explicit choice of path. Our analysis relies on the

numerical evaluation of central charges at several points on the Coulomb branch, video [2] shows the

smooth evolution of central charges of basis hypermultiplets along the path, ensuring that integration

contours have been adapted suitably. Another important check is the following: at fixed u2, u3 we

tune the spectral network to the phase of central charges (as predicted numerically), and we check

that there are indeed degenerate networks.

3.3.4 Wall-crossings with intersections m > 3

So far we have encountered an MS wall of two hypermultiplets with intersection pairing 3, but there

is nothing special about m = 3. The path proposed in (3.44) can be extended through walls of

marginal stability with m = 4, 5, and higher. The strategy is simply to look for a direction on the

Coulomb branch, along which the ray γ2 + γ4 sweeps across the infinite tower of hypermultiplets

with charges (n+ 1)γ1 + nγ2.

For example, moving along a straight line from (u
(f)
2 , u

(f)
3 ) to

u
(4)
2 = 0.56− 0.75i, u

(4)
3 = 2.00 + 1.99i (3.49)

induces wall-crossing of γ2 + γ4 with 3γ1 + 2γ2, with intersection 〈γ2 + γ4, 3γ1 + 2γ2〉 = 4. In this

chamber the spectrum gains a new m = 4 cohort, described by the 4-Kronecker quiver.
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Proceeding further, along a straight segment, to

u
(5)
2 = 0.56− 0.75i, u

(5)
3 = 2.00 + 2.52i (3.50)

we cross the marginal stability wall of γ2 +γ4 and 4γ1 +3γ2, with intersection 〈γ2 +γ4, 4γ1 +3γ2〉 = 5

generating an m = 5 cohort.

In the same spirit, we have checked numerically that there is a path along which γ2 + γ4 crosses

all hypermultiplets with charges (m− 1)γ1 + (m− 2)γ2, with pairings

〈γ2 + γ4, (m− 1)γ1 + (m− 2)γ2〉 = m (3.51)

hence generating an infinite tower of cohorts. The situation gets very complicated, as these cohorts

will widen and start overlapping with each other, inducing further wild wall crossing.26. It is worth

stressing that, by the same reasoning outlined for the wall-crossing of γ2 + γ4 with 2γ1 + γ2, there

are no populated states between γ2 + γ4 and (m − 1)γ1 + (m − 2)γ2 immediately before the point

where they cross. This crucial fact guarantees that in this region of the Coulomb branch m-cohorts

are generated, for arbitrarily high m.

Finally, we remark that a natural question arises as to whether analogous wall-crossings happen

where the integer m is negative. In fact, there is a simple physical argument that such wall-crossings

cannot happen on Coulomb branches of physical theories, it goes as follows. Let us consider two

charges γ1, γ2 with 〈γ1, γ2〉 < 0; we would like to investigate whether there could be a chamber of

the Coulomb branch, bounded by MS(γ1, γ2), where

• argZγ2 > argZγ1

• Ω(γ) = 1 for γ ∈ {±γ1,±γ2}

• Ω(γ) = 0 for all other combinations γ = aγ1 + bγ2.

If these conditions were realized, we would be in a situation in which the spectrum generator (defined

below eq. (3.54)) contains a factor Kγ2
Kγ1

, and we stress that there would be no other K factors

between Kγ2
and Kγ1

.

We claim that this cannot happen: under sufficiently general conditions, near a wall MS(γ1, γ2)

we expect Denef’s multicenter equations (for the case under consideration, they are reported below

26As explained in the next section, the spectrum is best studied via the spectrum generator technique introduced
in [64]. This technique is straightforwardly applicable whenever comparing two points on the Coulomb branch, such
that the lattice basis vectors have corresponding central charges all contained within a half-plane. When instead one
or more of the central charges exit the half-plane, one needs to account for that by suitably modifying the spectrum
generator. While moving from strong coupling into these wilder regions, we actually incur in such a situation.
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in (3.83)) to provide a reliable description of the boundstates. It is immediately evident from such

description that, in the case of negative 〈γ1, γ2〉 = m, on the side of MS(γ1, γ2) where argZγ2 >

argZγ1
, there will be stable boundstates of γ1 with γ2 populating rays between those of Zγ1

and

Zγ2
. In particular, inside the spectrum generator, the factors Kγ2

and Kγ1
are necessarily separated

by other factors Kaγ1+bγ2 , for a, b > 0, violating the conditions formulated above.

Nevertheless, it makes sense to ask what the prediction of the KSWCF would be. To learn

something interesting, it is actually sufficient to consider the motivic version of the primitive WCF

(see [41]). From such formula, the protected spin character (see appendix A) associated to γ1 + γ2

has the simple expression

Ω(γ1 + γ2; y) := Trhm(y)2J3(−y)2I3 =
ym − y−m

y − y−1
(3.52)

corresponding (not uniquely)27 to the following exotic representations of so(3)⊕ su(2)R

hm =


(

1
2 ,

1
2

)
⊕ (1, 0) m = −1(

0, 1
2

)
m = −2(−m−2

2 , 1
2

)
⊕
(−m−3

2 , 0
)

m ≤ −3

. (3.53)

Since the no-exotics theorem is in fact fairly well established for pure SU(K) gauge theories [35],

this further supports the argument that such wall-crossings cannot occur on the Coulomb branch.

3.4 Some Numerical Checks on the m = 3 Wild Spectrum

The discussion of Section 3.3 is sufficient to prove that there are wild degeneracies on the Coulomb

branch of the pure SU(3) theory. However, since this phenomenon is somewhat novel, we have

checked the results using the “spectrum generator” in some relevant regions of the Coulomb branch.

This section explains those checks.

3.4.1 The spectrum generator technique

According to the KSWCF, the phase-ordered product

A(^) = :
∏

γ, argZγ∈^
KΩ(γ)
γ : (3.54)

is invariant across walls of marginal stability provided no occupied BPS rays cross into or out of the

angular sector ^. Considering an angle of π corresponds to a choice of the “half plane of particles”.

Once this choice is made, A(π) is called a 28 spectrum generator and denoted S [64].

27Albeit necessarily involving exotic representations.
28Several equivalent choices are related by how one chooses the half-plane in the complex plane of central charges.
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The idea of the “spectrum generator technique” is that if - through some means or other - one

can compute A(π), then, by factorization one can deduce the spectrum (after computing the phase

ordering of the Zγ at that point). For example in [64] an algorithm is given for computing A(π)

without an a priori knowledge of the spectrum. Here our strategy will be a little different. We will

derive the spectrum generator in the strong coupling chamber, where the spectrum can be easily

read off from the spectral network or from quiver techniques. We then use wall-crossing to argue

that A(π) is unchanged along a particular path in the Coulomb branch (described in Section 3.3) to

the wild region. Then we factorize the spectrum generator at points along that path.

An effective technique for factorizing S is the following. Let {γi}i=1,...,k be a basis for the

lattice of charges Γ, and let γ =
∑
aiγi, with ai > 0. Define the height |γ| :=

∑
i ai, and S(r) =:∏

γ,|γ|≤r K
Ω(γ)
γ :29. The full spectrum generator S can then be factorized by studying its action on

the basis formal variables30 Yγi for increasing values of r, by employing

Y−γi(S− S̃(r))Yγi = −
∑

|γ′|=r+1

〈γi, γ′〉Ω(γ′)Yγ′ + . . . (3.55)

where S̃ represents the factorization of the spectrum generator under study. The ellipses contain

terms with Yγ , |γ| > r + 1.

3.4.2 Factorizing the spectrum generator

The spectrum in the strong coupling region can be obtained via spectral network techniques, as

discussed in Section 3.3.1. According to the results presented there, the spectrum generator is

S = Kγ4
Kγ3
Kγ2+γ4

Kγ1+γ3
Kγ2
Kγ1

, (3.56)

in agreement with [12, 63].

We now fix a point on our path

u2 = 0.56− 0.73i, u3 = 1.94 + 1.49i, (3.57)

corresponding to the situation exhibited in (3.48) immediately before the wall MS(γ2 +γ4, 2γ1 +γ2).

The central charges corresponding to the simple roots are

Zγ1
= 8.42972 + 6.00549i Zγ2

= 4.83278− 0.0226871i

Zγ3 = −7.30679 + 7.50651i Zγ4 = −0.504898 + 2.53401i ,
(3.58)

29Recall that the ordering depends crucially on the position u on the Coulomb branch, hence we should really write
S(r)(u). To lighten the notation we do not indicate the u-dependence.

30i.e., it is sufficient to work with formal variables corresponding to a choice of simple roots for the lattice of
charges. The choice of simple roots must be consistent with the choice of half-plane that comes with the spectrum
generator.
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the factorization of the spectrum generator up to |γ| = 21 reads31

Kγ3
K2γ3+γ4

K3γ3+2γ4
K4γ3+3γ4

K5γ3+4γ4
K6γ3+5γ4

K7γ3+6γ4
K8γ3+7γ4

K9γ3+8γ4

K10γ3+9γ4K11γ3+10γ4K−2
γ3+γ4

K10γ3+11γ4K9γ3+10γ4K8γ3+9γ4K7γ3+8γ4K6γ3+7γ4

K5γ3+6γ4K4γ3+5γ4K3γ3+4γ4K2γ3+3γ4Kγ3+2γ4Kγ4Kγ1+γ3K2γ1+γ2+2γ3+γ4

K3γ1+2γ2+3γ3+2γ4K4γ1+3γ2+4γ3+3γ4K5γ1+4γ2+5γ3+4γ4K−2
γ1+γ2+γ3+γ4

K4γ1+5γ2+4γ3+5γ4

K3γ1+4γ2+3γ3+4γ4K2γ1+3γ2+2γ3+3γ4Kγ1+2γ2+γ3+2γ4Kγ1K2γ1+γ2+γ4K3γ1+2γ2+2γ4

K4γ1+3γ2+3γ4K5γ1+4γ2+4γ4K6γ1+5γ2+5γ4K7γ1+6γ2+6γ4K−2
γ1+γ2+γ4

K6γ1+7γ2+7γ4

K5γ1+6γ2+6γ4K4γ1+5γ2+5γ4K3γ1+4γ2+4γ4K2γ1+3γ2+3γ4Kγ1+2γ2+2γ4Kγ2+γ4

K2γ1+γ2K3γ1+2γ2K4γ1+3γ2K5γ1+4γ2K6γ1+5γ2K7γ1+6γ2K8γ1+7γ2K9γ1+8γ2

K10γ1+9γ2K11γ1+10γ2K−2
γ1+γ2

K10γ1+11γ2K9γ1+10γ2K8γ1+9γ2K7γ1+8γ2K6γ1+7γ2

K5γ1+6γ2
K4γ1+5γ2

K3γ1+4γ2
K2γ1+3γ2

Kγ1+2γ2
Kγ2

(3.59)

The spectrum exhibits four m = 2 cohorts, as expected from the discussion of Section 3.3.3: they

include four vectormultiplets (with Ω = −2), accompanied by infinite towers of hypermultiplets.

On the other side of the m = 3 wall, at

u2 = 0.56− 0.75i, u3 = 2.00 + 1.52i, (3.60)

central charges read

Zγ1
= 8.52337 + 6.18454i Zγ2

= 4.89813− 0.18347i

Zγ3 = −7.43876 + 7.53531i Zγ4 = −0.410809 + 2.59321i.
(3.61)

31Color code: The factors in blue come from the hypermultiplets of the strong coupling chamber. The factors in
red come from vectormultiplets. The remaining factors in black are hypermultiplets created by the wall-crossing from
the strong coupling chamber.



95

The spectrum generator, up to |γ| = 21, is

Kγ3
K2γ3+γ4

K3γ3+2γ4
K4γ3+3γ4

K5γ3+4γ4
K6γ3+5γ4

K7γ3+6γ4
K8γ3+7γ4

K9γ3+8γ4

K10γ3+9γ4K11γ3+10γ4K−2
γ3+γ4

K10γ3+11γ4K9γ3+10γ4K8γ3+9γ4K7γ3+8γ4K6γ3+7γ4

K5γ3+6γ4K4γ3+5γ4K3γ3+4γ4K2γ3+3γ4Kγ3+2γ4Kγ4Kγ1+γ3K2γ1+γ2+2γ3+γ4

K3γ1+2γ2+3γ3+2γ4K4γ1+3γ2+4γ3+3γ4K5γ1+4γ2+5γ3+4γ4K−2
γ1+γ2+γ3+γ4

K4γ1+5γ2+4γ3+5γ4

K3γ1+4γ2+3γ3+4γ4K2γ1+3γ2+2γ3+3γ4Kγ1+2γ2+γ3+2γ4Kγ1K2γ1+γ2+γ4K3γ1+2γ2+2γ4

K4γ1+3γ2+3γ4K5γ1+4γ2+4γ4K6γ1+5γ2+5γ4K7γ1+6γ2+6γ4K−2
γ1+γ2+γ4

K6γ1+7γ2+7γ4

K5γ1+6γ2+6γ4K4γ1+5γ2+5γ4K3γ1+4γ2+4γ4K2γ1+3γ2+3γ4Kγ1+2γ2+2γ4K2γ1+γ2

K6γ1+4γ2+γ4K3
10γ1+7γ2+2γ4

K3
4γ1+3γ2+γ4

K−6
8γ1+6γ2+2γ4

K68
10γ1+8γ2+3γ4

K13
6γ1+5γ2+2γ4

K68
8γ1+7γ2+3γ4

K18
6γ1+6γ2+3γ4

K3
2γ1+2γ2+γ4

K−6
4γ1+4γ2+2γ4

K−84
8γ1+8γ2+4γ4

K68
6γ1+7γ2+4γ4

K13
4γ1+5γ2+3γ4

K68
6γ1+8γ2+5γ4

K18
6γ1+9γ2+6γ4

K3
2γ1+3γ2+2γ4

K−6
4γ1+6γ2+4γ4

K3
4γ1+7γ2+5γ4

K2γ1+4γ2+3γ4
Kγ2+γ4

K3γ1+2γ2
K4γ1+3γ2

K5γ1+4γ2
K6γ1+5γ2

K7γ1+6γ2

K8γ1+7γ2K9γ1+8γ2K10γ1+9γ2K11γ1+10γ2K−2
γ1+γ2

K10γ1+11γ2K9γ1+10γ2K8γ1+9γ2

K7γ1+8γ2K6γ1+7γ2K5γ1+6γ2K4γ1+5γ2K3γ1+4γ2K2γ1+3γ2Kγ1+2γ2Kγ2 ,

(3.62)

where K-factors in green are those of the newborn m = 3 cohort. Notice the large values of Ω.

Both formulae (3.59), (3.62) can be recast in more suggestive forms by adopting the notation32

Π(n,m)(a, b) :=

 ∞∏
k↗n

K(k+1)a+kb

 K−2
a+b

 ∞∏
`↘m

K`a+(`+1)b

 (3.63)

Expression (3.59) is then simply the truncation to |γ| = 21 of (cf. (3.48))

Π(0,0)(γ3, γ4) Π(0,1)(γ1 + γ3, γ2 + γ4) Π(0,0)(γ1, γ2 + γ4) Π(1,0)(γ1, γ2) (3.64)

Similarly, for (3.62) we have

Π(0,0)(γ3, γ4) Π(0,1)(γ1 + γ3, γ2 + γ4) Π(0,1)(γ1, γ2 + γ4)

Ξ(2γ1 + γ2, γ2 + γ4) Π(2,0)(γ1, γ2)

(3.65)

where Ξ(2γ1 + γ2, γ2 + γ4) represents the contribution from the full C3(2γ1 + γ2, γ2 + γ4) cohort,

which we now analyze in greater detail.

32We adopt the following conventions: a product of noncommutative factors
∏b
k↗a indicates that values of k

increase from left to right between a and b, while
∏b
k↘a denotes decreasing values of k from left to right.
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3.4.3 Exponential growth of the BPS degeneracies

We now focus on the part of BPS spectrum within the cohort C3(γ2 + γ4, 2γ1 + γ2). Let

K(a,b) ≡ Ka(2γ1+γ2)+b(γ2+γ4), a, b ∈ Z, (3.66)

then, up to a+ b = 15, Ξ(2γ1 + γ2, γ2 + γ4) reads

K(1,0)K(3,1)K(8,3)K−6
(10,4)K

3
(5,2)K

13
(7,3)K

68
(9,4)K

465
(10,5)K

−84
(8,4)K

18
(6,3)

K−6
(4,2)K

3
(2,1)K

2530
(9,5)K

399
(7,4)K

68
(5,3)K

4242
(8,5)K

34227
(9,6) K

−478
(6,4)K

13
(3,2)K

4242
(7,5)

K−32050
(8,6) K68

(4,3)K
399
(5,4)K

2530
(6,5)K

16965
(7,6) K

118668
(8,7) K

18123
(7,7) K

−2808
(6,6) K

465
(5,5)

K−84
(4,4)K

18
(3,3)K

−6
(2,2)K

3
(1,1)K

118668
(7,8) K

16965
(6,7) K

2530
(5,6)K

399
(4,5)K

−32050
(6,8) K68

(3,4)

K4242
(5,7)K

34227
(6,9) K

−478
(4,6)K

13
(2,3)K

4242
(5,8)K

68
(3,5)K

399
(4,7)K

2530
(5,9)K

465
(5,10)K

−84
(4,8)

K18
(3,6)K

−6
(2,4)K

3
(1,2)K

68
(4,9)K

13
(3,7)K

−6
(4,10)K

3
(2,5)K(3,8)K(1,3)K(0,1)

(3.67)

The BPS degeneracies appearing in (3.67) look rather wild at first sight. One way of looking at

them is to consider sequences of charges (a0 + na, b0 + nb) approaching different “slopes” a/b for

n → ∞, and study the asymptotics of Ω for large n. As illustrated in figure 3.11, the BPS index

grows exponentially with n, the asymptotic exponential behavior depends entirely on a/b and not

on a0, b0.
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Figure 3.11: Left: values of log Ω(an, bn) for several slopes a/b: 1 (circles), 3/2 (diamonds), 7/4 (up-
triangles), 2 (squares), 5/2 (down-triangles). Right: sequences of type (a0 + an, b0 + bn) have the same
asymptotics; here we show a = b = 1 with a0 − b0 = 0, 5, 10.

According to the positivity conjecture discussed below equation (A.4), BPS indices count di-

mensions of Hilbert subspaces, as stated more precisely in (3.95). Such exponential growth in the

number of states may seem surprising in the context of a gauge theory. We will return to the physical

implications below, in Section 3.6.
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3.5 Relation to quivers

In addition to spectral networks, one alternative route to the BPS spectrum is the dual description

in terms of quiver quantum mechanics [12, 39, 40]. The problem of counting BPS states gets mapped

into that of counting cohomology classes of moduli spaces of quiver representations. These classes are

organized into Lefschetz multiplets, which correspond to the so(3) multiplets. The PSC Ω(γ, u; y)

is then given by the Poincaré polynomial associated to a certain quiver representation.

The basic observation here is that an isolated wall-crossing of hypermultiplets with charges γ, γ′

such that 〈γ, γ′〉 = m will produce the spectrum of the Kronecker m-quiver in the wild stability

region.

3.5.1 Derivation of the Kronecker m-quivers from the strong coupling regime

Here we briefly describe how the quiver description fits in our study of the BPS spectrum of this

theory. We start in the strong coupling chamber: we choose a half-plane as shown in the first frame

of figure 3.12, the corresponding BPS quiver is shown in the second frame of the same figure. As we

move along the path (3.44), we come to the situation shown in the third frame of figure 3.12: three

MS walls have been crossed, and the corresponding m = 2 cohorts are indicated (this corresponds

to the situation shown in the fifth frame of figure 3.10 above.). Note that no walls of the second

kind33 have been crossed, hence the same BPS quiver is still valid.

Now, while keeping the moduli fixed, we rotate the half-plane clockwise inducing a mutation on

Γ1

Γ2

Γ1 + Γ3Γ2 + Γ4

Γ3

Γ4

-Γ1

-Γ2

-Γ1 - Γ3 -Γ2 - Γ4

-Γ3

-Γ4

-Γ1 - Γ3 Γ1

-Γ2 - Γ4 Γ2

Γ2

Γ1

Γ2 + Γ4Γ1 + Γ3

Γ4

Γ3

-Γ2

-Γ1

-Γ2 - Γ4 -Γ1 - Γ3

-Γ4

-Γ3

Figure 3.12: Left: the disposition of charges and choice of half plane in the strong coupling chamber. The
depiction of the central charges is schematic. Center: the quiver at strong coupling. Right: central charges
and cohorts after crossing the first three MS walls along our path.

the quiver, as shown in the first two frames of figure 3.13. We then proceed a little further along

our path on B, until we cross the wall MS(γ1, γ2 + γ4), again this does not involve crossing walls of

33In the physics literature, a wall of the second kind is, roughly speaking, the locus on the moduli space where the
central charge of a populated state exits the half-plane associated with the quiver under study. When this happens,
the quiver description changes by a mutation, for more details, see [12].
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the second kind, and the same quiver is still valid. The charge disposition and cohorts are shown in

the third frame of figure 3.13.

Finally, we rotate the half-plane counterclockwise, as shown in figure 3.14, inducing an inverse

Γ2

Γ1

Γ2 + Γ4Γ1 + Γ3

Γ4

Γ3

-Γ2

-Γ1

-Γ2 - Γ4 -Γ1 - Γ3

-Γ4

-Γ3

2 Γ1 + Γ2

-Γ3 -Γ1

-Γ2 - Γ4 2 Γ1 + Γ2

Γ2

Γ2 + Γ4

Γ1Γ1 + Γ3

Γ4

Γ3

-Γ2

-Γ2 - Γ4

-Γ1 -Γ1 - Γ3

-Γ4

-Γ3

2 Γ1 + Γ2

Figure 3.13: Left: a clockwise rotation of the half-plane past the ray Zγ1 . Center: the corresponding BPS
quiver. Right: after proceeding further on B we cross MS(γ1, γ2 + γ4)

mutation on the node −γ2 − γ4, which results in the desired BPS quiver.

The two lower nodes of the quiver we just obtained manifestly exhibit the 3-Kronecker quiver

Γ2

Γ2 + Γ4

Γ1Γ1 + Γ3

Γ4

Γ3

-Γ2

-Γ2 - Γ4

-Γ1 -Γ1 - Γ3

-Γ4

-Γ3

2 Γ1 + Γ2

-Γ3 -Γ1 - 2 Γ2 - 2 Γ4

Γ2 + Γ4 2 Γ1 + Γ2

Figure 3.14: Left: a counterclockwise rotation past Zγ2+γ4 . Right: the corresponding BPS quiver.

involved in wild wall-crossing as a subquiver. In particular, it offers a convenient starting point for

studying stable quiver representations on both sides of MS(γ2 + γ4, 2γ1 + γ2): states with charge

a(γ2 + γ4) + b(2γ1 + γ2) correspond to particularly simple dimension vectors, in which the two

upper nodes decouple leaving the pure 3-Kronecker quiver. We will not pursue the stability analysis

in this paper, let us stress however that, since we have been working with stability parameters

constrained by special geometry on the Coulomb branch (as opposed to working in C4), it should

be possible to perform such analysis on both sides of the above-mentioned MS wall, thus recovering

the related wild degeneracies.

The above construction generalizes easily to higher m. Consider indeed the situation in frame

three of Figure 3.13: here one could rotate the half-plane clockwise up until crossing the ray of
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γ(j+1,j) := (j + 1)γ1 + jγ2, resulting in a sequence of mutations leading to the quiver of Figure

3.15. Then, without crossing walls of the second kind, one can move on B on a continuation of our

path, as discussed in Section 3.3.4, until getting past MS((j + 1)γ1 + jγ2, γ2 + γ4), the same quiver

description still holds.

At this point, a counterclockwise rotation of the half-plane, corresponding to an inverse mutation

Γ2

Γ1

Γ2 + Γ4Γ1 + Γ3

Γ4

Γ3

-Γ2

-Γ1

-Γ2 - Γ4 -Γ1 - Γ3

-Γ4

-Γ3

Γ
H j+2, j+1L

-Γ3 -Γ
H j+1, jL

-Γ2-Γ4 Γ
H j+2, j+1L

Hj-1L

HjL

Hj+2L

Hj+3L

H2L
Γ2

Γ2 + Γ4

Γ1Γ1 + Γ3

Γ4

Γ3

-Γ2

-Γ2 - Γ4

-Γ1 -Γ1 - Γ3

-Γ4

-Γ3

Γ
H j+2, j+1L

Figure 3.15: Left: a clockwise rotation of the half-plane past the ray Z(j+1)γ1+jγ2
. Center: the corre-

sponding BPS quiver, arrow multiplicities are indicated in red. Right: after proceeding further on B we
cross MS((j + 1)γ1 + jγ2, γ2 + γ4)

on −γ2−γ4 yields the quiver given in Figure 3.16. Again the two lower nodes exhibit the Kronecker

subquiver of interest.

Γ2

Γ2 + Γ4

Γ1Γ1 + Γ3

Γ4

Γ3

-Γ2

-Γ2 - Γ4

-Γ1 -Γ1 - Γ3

-Γ4

-Γ3

Γ
H j+2, j+1L

-Γ3 -Hj+1LΓ1-H2j+2LΓ2-Hj+2LΓ4

Γ2+Γ4 Γ
H j+2, j+1L

Hj-1L

HjL

Hj+2L

Hj+3L

H j2+5j+4L

Figure 3.16: Left: a counter-clockwise rotation of the half-plane past the ray Zγ2+γ4 . Right: the corre-
sponding BPS quiver, with arrow multiplicities indicated in red.

3.5.2 A nontrivial symmetry of BPS degeneracies

One very nice application of the quiver approach is that it reveals an intriguing symmetry of BPS

degeneracies which would be very hard to discover using spectral networks.

Our previous analysis of the C3 spectrum has focused on sequences of states (na+ a0)γ1 + (nb+

b0)γ2 with fixed slope a/b as n → ∞. In this section we will instead consider sequences of states
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with the same BPS index.

In full generality, given two hypermultiplets with charges γ, γ′ such that 〈γ, γ′〉 = m > 0, we

know already from the semi-primitive WCF that, across the wall MS(γ, γ′), a new hypermultiplet of

charge γ +mγ′ will be a stable boundstate. The constituents γ, γ′, as well as their CPT conjugates

will also be stable. Now, note that 〈−γ′, γ + mγ′〉 = m, moreover we have the following relation

between stability parameters

sign

(
Im

Zγ
Zγ′

)
≡ sign

(
Im

Z−γ′

Zγ+mγ′

)
. (3.68)

Thus, any boundstate of γ, γ′ can equivalently be described as a boundstate of −γ′, γ +mγ′. Such

change of simple roots for the K(m) quiver simply corresponds34 to a change of duality frame by

gm =

 0 1

−1 m

 ∈ Sp(2,Z) (3.69)

in a basis where γ, γ′ are represented by column vectors (1, 0), (0, 1) respectively. That is, there

is a mutation of the quiver corresponding to the change of basis gm. Since this is detectable by

the semiprimitive wall crossing formula there should be a halo interpretation, see [73] for further

discussion on this point.

The above is essentially an observation of [128] and it immediately implies some remarkable

identities for BPS indices. The group

R = 〈h, h′|h2 = 1, h′
2

= 1〉 = Z2 ? Z2 (3.70)

has an action on Zγ ⊕ Zγ′ by

h =

 0 1

1 0

 , h′ =

 −1 m

0 1

 , gm = hh′, (3.71)

then the BPS indices must have the symmetry:

Ω(g · γ) = Ω(γ), ∀g ∈ R. (3.72)

In other words, the spectrum can be organized into orbits of R.

Remarks

• The identity (3.72) extends to the protected spin character

Ω(g · γ; y) = Ω(γ; y). (3.73)

34In the mathematics literature this correspondence is a known isomorphism among Kronecker moduli spaces, see
for example [128], Remark 3.2.
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• Consider for example m = 3, we call the slope of (a, b) the ratio a/b. The eigenvalues of g3 are

ξ± =
3±
√

5

2
(3.74)

corresponding to the slopes limiting the cone of dense states of Fig. 3.17. All g3 orbits are

confined to lie either inside or outside of the cone, and asymptote to the limiting rays.

• The only orbits falling outside of the cone are those of “pure” hypermultiplets i.e. states with

Ω = 1. All the other orbits are contained within the cone.

• In the pure SU(2) theory the limiting rays of the g2 cone collapse into a single ray, which

coincides with the slope of the gauge boson. In that context, the g2 action has an interpretation

in terms of a half-turn around the strong coupling chamber, combined with the residual R-

symmetry, in a similar spirit to the approach of [21]. One can check that, in a suitable duality

frame g2 is a square root of the monodromy at infinity, up to an overall factor.

For the m = 1 Kronecker quiver, the g1 action simply recovers the whole spectrum.

3.5.3 Asymptotics of BPS degeneracies

For physical reasons we are often interested in the asymptotics of BPS degeneracies for large charges.

There is no known simple closed formula for the degeneracies Ω(aγ1 +bγ2) of the 3-Kronecker quiver.

In this section we discuss some aspects of the large a, b asymptotics.

The Poincaré polynomial for quivers without closed loops has been found explicitly in a closed

form, as a sum over constrained partitions of corresponding quiver dimension vectors [117]. Unfor-

tunately Reineke’s formula does not lend itself well to an evaluation of the large charge asymptotics.

On the other hand, use of localization techniques allows one to estimate asymptotic behavior of the

Euler characteristic for moduli spaces of m-Kronecker quiver representations [127].

Weist conjectured the following. Consider a state Nγ + Mγ′ with 〈γ, γ′〉 = m, in a wild region

of the Coulomb branch. The corresponding BPS index equals the Euler characteristic of the moduli

space of the quiver with m arrows between two nodes with spaces CN and CM in a wild region of

stability parameters. Now consider a sequence of dimension vectors N = an+a0, M = bn+ b0, with

a, b, a0, b0 fixed. Weist conjectured that the asymptotic behavior of the Euler characteristic has the

form

log |Ω(Nγ +Mγ′)| ∼
n→∞

nCa,b(m)

Ca,b(m) =

√
mab− a2 − b2√

m− 2

[
(m− 1)2 log(m− 1)2 − (m2 − 2m) log

(
m2 − 2m

)]. (3.75)

Note that C1,1(m) = cm of equation (3.40).
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3.5.4 Numerical check of Weist’s conjecture

In section 3.4 we obtained BPS degeneracies by using an algorithmic approach, based on the KSWCF

(3.46). The results are in agreement with [75]: in particular we found a sequence of degeneracies of

slope 1 behaving as predicted by Reineke in [115], as well as a highly populated – suggesting dense

– cone of “wild” BPS states in the complex Zγ-plane. The region outside such cone is populated

by hypermultiplets only, falling in sequences approaching the boundaries of the cone, as shown in

figure 3.17.

Figure 3.17: Schematic picture of BPS states charges for 3-Kronecker quiver. A dense cone is bounded by
rays of slopes a/b = (3±

√
5)/2. Only hypermultiplets fall out of the cone.

Let γa,b(n) = (na+ a0)γ1 + (nb+ b0)γ2. Denoting by

ηa,b := log |Ω(γa,b(n))|

√
m− 2

mab − a2 − b2
, (3.76)

Weist’s conjecture says that ηab/n → cm, ∀γ ∈ dense cone as n grows (cm is defined by formula

(3.40)). In Fig. 3.11 we already noticed this kind of behavior, to some extent. In order to establish

a more precise match between our data and Weist’s conjecture, it is convenient to plot the behavior

of ηa,b/n versus the |γ| filtration level, as in Fig. 3.18.

Different colors depict different slopes from the red for a � b or a � b to the blue for a ∼ b.

As the graph shows, the speed of convergence actually depends on the slope, so the degeneracies for

BPS states nearest to the cone boundaries approach Weist’s asymptotics in the worst way. Note that

there are some charges that do not obey the general asymptotic behavior. These give the horizontal

data points at the bottom of Fig. 3.18. These charges indeed lie outside the dense cone. 35

35Note that, because of gm symmetry, the figure would look rather different if we plotted the degeneracies as a
function of n using γa,b(n).
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Figure 3.18: The data shown is for m = 3 with (a0, b0) = (0.0). The straight horizontal line represents the
Weist coefficient c3 = 4 log 4− 3 log 3. For generic values of (a, b) the BPS degeneracies indeed approach the
Weist asymptotics at large |γ|.

3.6 Physical estimates and expectations

3.6.1 An apparent paradox

In this section we first present a physical argument which seems to lead to a very general bound on

the behavior of the BPS index in any supersymmetric field theory. The purported bound, however,

is explicitly violated by the “wild” degeneracies we have just found in the pure SU(3) theory. Thus,

näıvely, there is a paradox. We first explain the paradox in more detail, and then explain how this

paradox is resolved.36

At very large energy our effective theory should approach a UV conformal fixed point. So consider

a d-dimensional CFT put in a box of volume V and heated up to temperature T . Since we have

only two dimensionful parameters and we assume the energy and the entropy of the system to be

extensive quantities, simple dimensional analysis is enough to predict their form up to dimensionless

constants (which will depend on the theory):

E(T, V ) = αV T d,

S(T, V ) = βV T d−1.

(3.77)

Eliminating the temperature dependence we derive the scaling of the entropy with the energy:

S(E, V ) = κV 1/dE(d−1)/d. (3.78)

This provides an estimate for the behavior of the number of microstates of energy E supported in

a volume V , and gives the correct asymptotic dependence for E →∞.

36We thank T. Banks and S. Shenker for crucial remarks on this matter.



104

In order to excite massive states we can increase the temperature, thus taking into account

heavier BPS states. The BPS index, being a signed sum over the states in the theory, cannot exceed

the overall number of states. 37 Thus we come to the following chain of inequalities (here we take

d = 4 and set E = |Zγ |):

|Ω(γ)| =
∣∣Trhγ (−1)2J3

∣∣ ≤ 1

4
TrHBPS,γ 1 ≤ 1

4
TrH,E 1 =

1

4
eS(E) ∼ eκV

1
4E

3
4 , (3.79)

where the last estimate assumes large E. Thus the observed behavior log |Ω(γ)| ∼ E for large γ in

the pure SU(3) theory seems to give a contradiction.

The resolution of this paradox comes from taking into account the fact that our bound applies

only to the theory in a finite volume. If the size of BPS states becomes large enough and they do

not fit into the box of finite volume, then they do not contribute to the näıve counting of degrees

of freedom. So we should instead consider a “truncated BPS index” Ω̌V , counting only the states

which fit into a box of size V ; we should expect this index to satisfy the inequality

|Ω̌V | = |Tr
HBPS ,M=|E|,R≤V

1
3

(−1)2J3 | . eκV
1
4E

3
4 (3.80)

with R the average size of a BPS state.

The rest of this section is devoted to arguing that the above scenario is indeed correct. We will

use the semiclassical picture of BPS states given by the Denef equations, reviewed in Section 3.6.2,

to give a lower bound for the average size of the semiclassical BPS states. The resolution of the

paradox is spelled out in some more detail in Section 3.6.3. We give some supporting evidence for

the validity of the use of the Denef equations for describing the exponentially large number of BPS

states in Section 3.6.4.

3.6.2 Denef equations

In order to estimate the size of the BPS states arising in the theory, we refer to the interpretation

[19, 40, 85, 93] of those BPS states that arise from wall-crossing as multi-centered solutions similar

to those arising in N = 2 supergravity [39]. We assume Denef’s multicentered picture has a good

α′ → 0 limit and can be applied to field theory. Suppose we have a set of elementary BPS states

with charges {γA}nA=1 placed at corresponding points {rA}nA=1 of R3. This configuration is again

BPS only if the following set of equations is satisfied:

n∑
B=1
B 6=A

〈γA, γB〉
|rA − rB |

= 2Im(e−iϑZγA), (3.81)

37 In fact, the data for the Kronecker m-quiver suggest that in this case all the summands contributing to the BPS
index have the same sign, so the BPS index actually counts the number of states up to an overall sign.
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where ϑ = arg
n∑

A=1

ZγA .

Now let us consider a BPS state of total charge Mγ1 + Nγ2, with 〈γ1, γ2〉 = m. Let us, for the

moment, suppose that the dominant contribution to the entropy comes from a boundstate of M

elementary constituents of charge γ1 and N elementary constituents of charge γ2.

In the case where the charges are of the form

{γ1, . . . , γ1︸ ︷︷ ︸
M

, γ2, . . . , γ2︸ ︷︷ ︸
N

} (3.82)

the equations simplify to

N∑
a=1

m

ria
= κ1 := 2Im(e−iϑZγ1), 1 ≤ i ≤M

M∑
i=1

−m
ria

= κ2 := 2Im(e−iϑZγ2
), 1 ≤ a ≤ N

(3.83)

We can view the index a as running over “electrons” and i over “magnetic monopoles,” in an

appropriate duality frame.

Now we are interested in the size of the boundstate. Therefore we consider the sum over the

first equation in (3.83). (Doing the analogous sum over the second equation produces an equivalent

result.) The result is that

∑
i,a

1

ria
=

NM

|MZγ1
+NZγ2

|

(
2Im(Z̄γ2Zγ1)

m

)
(3.84)

We can rewrite this equation nicely in terms of the harmonic average of the distances ria:

〈ria〉h =

(
m

2Im(Z̄γ2
Zγ1

)

)
|MZγ1

+NZγ2
|. (3.85)

On the other hand, we can use the well-known inequality that the harmonic average is a lower bound

for the ordinary average, 〈ria〉h ≤ 〈ria〉, to conclude that(
m

2Im(Z̄γ2
Zγ1

)

)
|MZγ1

+NZγ2
| ≤ 〈ria〉. (3.86)

Equation (3.86) is a key result. It shows that if N or M goes to infinity then the size of the average

BPS molecule grows linearly with N or M , respectively.

We have shown that boundstates of total charge Mγ1 + Nγ2 with constituents (3.82) become

large when N,M →∞. However, other partitions of N,M can and do lead to BPS boundstates. In

general, given a pair of partitions

M =

M∑
j=1

ljj, N =

N∑
k=1

skk (3.87)
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there can be other boundstates where there are lj centers of charge jγ1 and sk centers of charge kγ2.

In order to deal with these cases, let us introduce, for any set of charges {γA}, the moduli space

M({γA}) of solutions to the Denef equations (3.81). If there are n centers it is a subspace of R3n.

Note that the moduli space for charges

{γ1, . . . , γ1︸ ︷︷ ︸
l1

, 2γ1, . . . , 2γ1︸ ︷︷ ︸
l2

, . . . , γ2, . . . , γ2︸ ︷︷ ︸
s1

, 2γ2, . . . , 2γ2︸ ︷︷ ︸
s2

, . . . } (3.88)

is in fact a subspace of the moduli space for (3.82), where certain collections of centers ri and

ra have (separately) collided. Nevertheless, the identity (3.85) applies uniformly throughout the

moduli space and hence applies to all possible partitions. As an extreme example, the moduli space

M({Mγ1, Nγ2}) ∼= R3 × S2, where the R3 is the center of mass and the S2 has a radius

R12 =

(
m

2Im(Z̄γ2
Zγ1

)

)
|MZγ1

+NZγ2
|. (3.89)

In any case, we can conclude that for any partition of charges such as (3.88) the average BPS state

has a size bounded below by a linear expression in N and M . We call these large semiclassical BPS

states BPS giants.

3.6.3 Resolution and Revised Bound

The giant BPS states resolve the paradox explained in Section 3.6.1 above. Indeed we can adapt

the bound (3.79) by adjusting the volume of the box V in such a way that states of mass E fit in a

volume VE := R3
E := E3. From our estimate of the sizes of BPS molecules we know that the average

size indeed scales linearly with E. Therefore the new bound is

log |Ω(E)| ∼ αE . κE3/4V
1/4
E ∼ κ′E3/2 (3.90)

and is indeed satisfied.

In equation (3.90) κ′ is a dimensionful constant, it scales as κ′ ∼ (length)
3
2 . Let us give a physical

interpretation for this scale. If we consider a sequence of charges N(aγ1 + bγ2), with N → ∞ and

γp := aγ1 + bγ2 primitive, then the size of an average BPS molecule behaves as R ∼ r0N , where r0

is the size of a state with charge γp. The energy behaves as E = |Z0|N , where Z0 is a central charge

of the state with charge γp. Thus we can give a formula accounting for the scaling dimension of κ′

in (3.90) by using

VE = R3
E ∼ (r0N)3 ∼ (r0E/|Z0|)3 (3.91)
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to deduce

E3/4V
1/4
E ∼

(
r0

|Z0|

)3/4

E3/2,

⇒ κ′ ∼
(
r0

|Z0|

)3/4

.

(3.92)

We remark that

1. The length scale (r0/|Z0|)1/2
is a function of the moduli, since both r0 and Z0 are functions

of the moduli.

2. The coefficient α in (3.90) is

α =
Ca,b(m)

|Z(aγ1 + bγ2)|
(3.93)

for the series of charges above eq. (3.76). As we noted in Section 3.3.4 there are points on the

Coulomb branch with arbitrarily high m and

Ca,b(m) ∼
√
ab logm2 (3.94)

for large m. Hence, somewhat surprisingly, the coefficient of the logarithmic growth is un-

bounded on the Coulomb branch.

3.6.4 Discussion of validity of the semiclassical picture

In this section we will address the question of how reliable the semiclassical approximation is. We

will review some supporting evidence for the reliability of the semiclassical pictures based on the

relation of an exact result for BPS degeneracies Ω to certain symplectic volumes.

As a side remark we note that numerical data for the 3-Kronecker quiver strongly suggest (cf.

the discussion about positivity below (A.4)) that the BPS index actually measures the number of

states

|Ω(γ)| = Trhγ 1. (3.95)

This relation is not essential to our argument but it does nicely simplify the considerations.

Let us recall the symplectic structure on Denef moduli spaceM({γA}). Overall translation acts

on this space and the reduced space M({γA}) = M({γA})/R3 is generically 2n − 2 dimensional.

Moreover, the reduced space admits a symplectic form [24]:

ω =
1

4

∑
i<j

〈γi, γj〉
εabcdr

a
ij ∧ drbijrcij
r3
ij

. (3.96)
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In the semiclassical approximation we identify a subspace of the space of BPS states with a set of

BPS field configurations. We expect that the dimension of a subspace corresponding to a charge

decomposition can be estimated, in the semiclassical approximation, by the symplectic volume

Vol({γA}) :=
1

(n− 1)!

∫
M

( ω
2π

)n−1

. (3.97)

where n is the number of centers.

Now, thanks to a result of Manschot, Pioline, and Sen [98, 99], in the example of the m-Kronecker

quiver the protected spin character in the wild chamber can in fact be expressed exactly as a sum

over two partitions (3.87) so that

Ω(Mγ1 +Nγ2; y) =

=
∑

{lj},{sk}

gref({lj}, {sk}; y)
∏
j,k

1

lj !jljsk!ksk

(
y − y−1

yj − y−j

)lj ( y − y−1

yk − y−k

)sk (3.98)

where gref refers to an equivariant Dirac index on the space of solutions to Denef’s equations with

distinguishable centers described by charge partitions {lj}, {sk}. If we specialize to the index at

y = 1 38 then gref has a very nice interpretation as the symplectic volume (3.97) of the moduli space

of solutions to Denef’s equations (up to a sign):

Ω(Mγ1 +Nγ2) =
∑

{lj},{sk}

(−1)
mMN+1−

∑
j
lj−

∑
k

sk
Vol({lj}, {sk})

∏
j,k

1

lj !j2ljsk!k2sk
. (3.99)

where Vol({lj}, {sk}) is (3.97) for the charges (3.88).

We will take this relation of the exact number of BPS states to symplectic volumes as sufficient

evidence for the validity of our resolution. There are, however, some further interesting aspects of

this formula which we will comment on in the following Sections 3.6.4.1 and 3.6.4.2 below.

3.6.4.1 A toy example: the Hall halo

A very nice exactly solvable example of BPS configurations is provided by the Hall halo of [39].

Consider a configuration of N electric particles and a single magnetic monopole of charge m. This

corresponds to the case (M,N) = (1, N) in the notation above. In this case the equations (3.83)

imply that the N electric particles all lie on a single sphere centered on the magnetic particle and

of radius:

R12 =

(
m

2Im(Z̄γ2
Zγ1

)

)
|Zγ1

+NZγ2
|. (3.100)

38In the conventions of [98] we take y → 1 rather than y → −1 to get the index.
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Now, in this case Denef argued that to get the spin character we can just apply the usual quantum

mechanics of Landau levels on a sphere with a magnetic monopole inside. Counting the ground

states gives the corresponding protected spin character [124]

Ω(y) = (−y)−(m−N)N

m∏
j=1

(1− y2j)

N∏
j=1

(1− y2j)
m−N∏
j=1

(1− y2j)

, (3.101)

in perfect agreement with Reineke’s general formula (see eq. (5.3) of [39]).

There are two interesting lessons we can draw from (3.101):

1. First, naive physical intuition suggests that the large size of BPS states is due to large angular

momentum. This example shows that in fact this is not necessarily the case. In this case the

size of the configuration is given by formula (3.100). Nevertheless this configuration contains

representations of many different spins.

2. Second, we can derive the number of states in a multiplet by taking y → −1. Then Ω =

m!
N !(m−N)! . In the limit N � m the number of allowed states is much greater than the number

of populated states, so quantum statistics does not play an important role, and the semiclassical

approximation should work. Indeed,

Ω =
m!

N !(m−N)!
∼

N�m

mN

N !
+ · · · (3.102)

This confirms the semiclassical expectation that the number of states should be counted by

the symplectic volume since the volume is proportional to mN . Note however that, for fixed

N the binomial coefficient is really a polynomial in m and (3.102) is only the leading term

at large m. Since 1/m plays the role of ~ we can interpret the subleading terms as quantum

corrections to the naive semiclassical reasoning.

3.6.4.2 Estimating the contribution of the maximal partition

Let us consider the contribution to the BPS degeneracy of the maximal partition (3.82) in the

formula (3.99). The symplectic volume for this partition is

Vol((N,M), κ1, κ2,m) :=
1

(N +M − 1)!

∫
M

( ω
2π

)N+M−1

(3.103)

where we used the fact that there are n = N + M centers. We would like to estimate this volume

when N,M become large.
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Rescaling both κ1,2 in (3.83) by λ ∈ R together with rij 7→ rijλ
−1 shows that solutions for

rescaled values of κ1,2 are obtained by simply rescaling the distances. Therefore the ratio

H((N,M), κ1/κ2) := Vol((N,M), κ1, κ2,m)/mN+M−1

only depends on the ratio κ1/κ2 and on N,M . For simplicity, let us specialize to M = N − 1. in

the limit N →∞ we have

lim
N→∞

1

N
log (Vol((N − 1, N), κ1, κ2,m))

∼ logm2 + F

(
κ1

κ2

)
.

Note that the second piece is independent of m.

There are two important lessons we can draw from this computation:

1. This behavior nicely coincides with the Weist coefficient, but only in the large m limit when:

C1,1(m) ∼ logm2 +O(m−1) (3.104)

The fact that we must take m→∞ is not terribly surprising in view of the Hall halo example

discussed above.

2. It is interesting to note that at finite values of m the maximal partition does not fully account

for the exponential growth coefficient, even in the large charge regime. Indeed, as pointed

out in [128] we should take into account many other partitions to derive even the leading

asymptotic behavior of the BPS index. One important (and subtle) aspect of (3.99) is that

the different symplectic volumes are weighted with signs. This might imply some subtlety in

applying the semiclassical pictures we have used, and should be understood better. In the

meantime, in the formula (3.99), considering the case where the BPS ray lies in the dense

cone, there can be striking cancelations between volumes of different partitions.

3.7 Spectral Moonshine

In the course of these investigations we noticed some unusual and very intriguing features in our

data. We mention these here, leaving a deeper analysis and conceptual understanding of these

features to future work.
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3.7.1 Scaling behavior of the spin degeneracies

An interesting pattern of the spectrum emerges when we consider the distribution of spin multiplets

within HBPS
γ , the subspace of BPS states with gauge charge γ. For the definitions of the protected

spin character and the spin decompositions see Appendix A.

Let δγ(j) be the number of times a spin-j multiplet39 occurs within HBPS
γ , as in (A.3). Numerical

data suggests that all states within the dense cone exhibit a common δ-distribution, as shown in

Fig. 3.19 (the data are in Appendix A).
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Figure 3.19: On the left: the distribution δ(j) for γ = 12(γ1 + γ2). On the right: the same distribution
for several states γ = n(γ1 + γ2). This feature extends to other slopes as well, indeed all states within the
dense cone exhibit such “Poisson” behavior.

More precisely, letting γn denote the sequence of charges (na+a0)γ1 +(nb+b0)γ2, data collected

by computer experiments strongly suggest that there are functions κ1, κ2, κ3, ρ, α
40 of a, b, a0, b0 such

that, if we define jn(s) by

s = (2jn(s) + 1)/(ρ|γn|), (3.105)

then the limit

u(s) := lim
n→∞

κ3|γn|−κ1e−κ2 |γn|δγn (jn(s)) . (3.106)

exists and is given by

u(s) = sαe−α(s−1) (3.107)

(Recall that |γn| = n(a + b) + a0 + b0). The numerical evidence further suggests that for m = 3,

α ≈ 2, regardless of the slope41.

39Meaning a representation ρhh ⊗ (j, 0) of so(3)⊕ su(2)R.
40The κ1, κ2 employed here have nothing to do with those of section 3.6.4.2.
41This estimate is based on data collected for |γ| < 30.
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If we assume that the above scaling law holds and the limiting behavior to the scaling function is

sufficiently rapid, then one can relate the parameters κ1, κ2 of the scaling law to the leading terms

in the n→∞ asymptotic expansion

log |Ω(γn)| ∼ κ2|γn|+ (κ1 + 2) log |γn|+O(1) (3.108)

where O(1) has a finite limit as n → ∞. Indeed, comparing with the Weist asymptotics (3.75) we

learn that (a+ b)κ2 = Ca,b(m). Similarly, comparing with known asymptotics of Ω(γn) we can learn

about the a, b, a0, b0 dependence of κ1.

Regardless of the validity of the scaling law, it is worthwhile stressing that the sub-leading

behavior of log |Ω(γn)| is interesting in its own right. It is often assumed that, at large n, the

BPS index is a continuous function of the slope a/b, however – somewhat surprisingly – the sub-

leading correction exhibits a dependence on a0, b0 too. To see this, consider two different sequences

approaching slope 1, namely γ(n) = (n, n) and γ̃(n) = (n, n+ 1), we have

log |Ω(γn)| = nC1,1(m)− 5

2
log n+O(1)

log |Ω(γ̃n)| = nC1,1(m)− 2 log n+O(1),

(3.109)

where we used the known result42

Ω(n, n− 1) =
1

(3n+ 2)(2n+ 1)

(
4n+ 2

n+ 1

)
. (3.110)

The subleading dependence on a/b, a0, b0 exhibited in (3.109) also occurs at the other slopes in the

same gm orbit.

3.7.2 Partitions and relation to modular functions

Interesting features of the pattern of spin decompositions lie in the tail of the distribution. First

of all, for certain sequences γ(α), α = 1, 2, . . . such that |γ(α)| α→∞−→ ∞, we observe the asymptotic

behavior of Jmax(γ) := max{j|δγ(j) 6= 0}, in particular

Jmax((n, n)) =
n2 + 1

2
, Jmax((n+ 1, n)) =

n2 + n

2
. (3.111)

We can compare this behavior, as well as that of all other sequences in our data, with a prediction

deriving from Kac’s theorem (see e.g. [116]) about the dimensionality of the quiver varieties. More

precisely, for the Kronecker m-quiver K(m), Kac’s theorem asserts that the dimension of the quiver

variety M(a,b)(K(m)) for indecomposable representations with dimension vectors γ = (a, b) is

dimM(a,b)(K(m)) = mab− a2 − b2 + 1, (3.112)

42Cf theorem 6.6 of [127]
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therefore, noting that the Lefschez multiplet of maximal spin must be

jmax(γ = (a, b)) =
1

2
dimM(a,b)(K(m)) (3.113)

we find, as a nice check, that our data agrees with this prediction. (It also confirms a prediction

made in [84].)

Now, while the overall size and shape of the distribution vary with the charge, the degeneracies

δγ(j) on the tail of the distribution stabilize to a common pattern

γ δ(Jmax), δ(Jmax − 1), . . .

4γ1 + 3γ2 1, 0, 2, 2, 3, 2, 2, 0, . . .

7γ1 + 6γ2 1, 0, 2, 2, 5, 6, 13, 14, . . .

8γ1 + 6γ2 1, 0, 2, 2, 5, 6, 13, 16, . . .

8γ1 + 7γ2 1, 0, 2, 2, 5, 6, 13, 16, . . .

(3.114)

As (3.114) shows, the length of the “saturated” subsequence 1,0,2,2,5,6,13,16,. . . increases with |γ|.

Overall, the tail behavior seems to stabilize to the sequence generated by

g(ξ) =

∞∏
m=2

(1− ξm)−2 = 1 + 0ξ + 2ξ2 + 2ξ3 + 5ξ4 + 6ξ5 + 13ξ6 + . . . . (3.115)

A slight modification yields the generating function which coefficients are the incremental sum of

those in g(ξ)

g̃(ξ) =

∞∏
m=2

(1− ξm)−2

(1− ξ)
= 1 + 1ξ + 3ξ2 + 5ξ3 + 10ξ4 + 16ξ5 + 29ξ6 + . . . , (3.116)

generating the number of planar partitions with at most two rows of the corresponding size, some

examples are

No boxes 1 empty partition

1 box 1 1 partition

2 boxes 1 1 , 2,
1

1
3 partitions

3 boxes 3, 1 1 1 , 2 1 ,
2

1
,

1 1

1
5 partitions

This analogy suggests that the stabilized δγ(j) distribution counts some number of constrained

partitions, only deviating from (3.115) at higher orders in ξ. This hypothesis is reminiscent of results

of [98, 117].
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Of course, g(ξ) is also closely related to the Dedekind η-function. It is quite curious that the BPS

degeneracies have some relation to modular functions. This has been long expected in supergravity

[23, 40, 113] but the appearance in field theory is novel.

In fact, the above connection to the Dedekind η was noted before our work by Reineke [118],

who offers a mathematical explanation. But the physical import of this strange behavior remains

mysterious.
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Chapter 4

Spectral Networks with Spin

4.1 Protected Spin Characters from writhe

4.1.1 Review of framed BPS states

Framed BPS states, introduced in [61], appear in the context of four-dimensional N = 2 gauge

theories with the insertion of certain line defects. In the Coulomb phase of the gauge theory, one

may consider the effect of inserting a line defect Lζ preserving a osp(4∗|2)ζ sub-superalgebra (for

notations see [61]). The preserved supercharges depend on the choice of ζ ∈ C∗, and the surviving

algebra develops a new type of BPS bound

E + Re(Z/ζ) ≥ 0 . (4.1)

States in the Hilbert space Hu,L,ζ which saturate this bound are the framed BPS states, the subspace

spanned by these is denoted H BPS
u,L,ζ . The introduction of the line defect also modifies the usual

“vanilla” grading of the BPS Hilbert space to

H BPS
u,L,ζ =

⊕
γ∈ΓL

Hu,L,ζ,γ (4.2)

where ΓL is a torsor for the vanilla lattice gauge lattice Γ, and there is an integral-valued pairing

〈γL, γ〉 ∈ Z defined for any γL ∈ ΓL, γ ∈ Γ.

The framed BPS bound determines a new type of marginal stability wall, termed BPS walls:

Ŵ (γ) = {(u, ζ) |Zγ(u)/ζ ∈ R−} ⊂ B × C∗ , (4.3)

where Zγ denotes the central charge of a populated vanilla BPS state of charge γ. Near these loci

some framed BPS states look like halo BPS particles (with charge γh ∈ Γ) bound to a non-dynamical
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“core charge” γc ∈ ΓL. Given a choice of moduli (u, ζ) where a framed BPS state of charge γc + γh

is stable, its energy is

E = −Re(Zγc+γh(u)/ζ) ≤ −Re(Zγc(u)/ζ) + |Zγh(u)| (4.4)

the inequality saturates at BPS walls, where boundstates become marginally stable. At BPS walls,

these states mix with the continuum of vanilla BPS states, whose BPS bound is E ≥ |Zγh(u)|, the

Fock space of framed states therefore gains or loses a factor, this is the halo picture of the framed

wall-crossing phenomenon. Part of its importance stems from the fact that it underlies a physical

derivation of the Kontsevich-Soibelman wall-crossing formula, and of its motivic counterpart [14,

61, 88, 90, 104].

As suggested by the halo picture recalled above, framed BPS states furnish representations of

so(3) of spatial rotations as well as of su(2)R. The framed protected spin character (PSC) is defined

as

Ω(Lζ , u, γ; y) := Tr Hu,L,ζ,γ
y2J3(−y)2I3 (4.5)

where J3, I3 are Cartan generators of so(3) and su(2)R. Similarly, the vanilla PSC is defined as

Ω(u, γ; y) := Tr hγ y
2J3(−y)2I3 =

∑
m∈Z

am(γ) (−y)m (4.6)

where hγ is the Clifford vacuum of the BPS Hilbert space1, γ ∈ Γ and the last equality defines the

integers am(γ) ∈ Z.

It is useful to consider a generating function of framed BPS degeneracies

F (u, L, ζ, γc; y) =
∑
γh∈Γ

Ω(u, Lζ , γc + γh; y)Xγc+γh

= TrFγc (u,L,ζ) y
2J3(−y)2I3 eQ ,

(4.7)

where Xγ are formal variables realizing the group algebra of Γ acting on ΓL, namely

XγcXγh = XγhXγc = Xγc+γh XγhXγ′h
= Xγh+γ′h

∀γc ∈ ΓL; γh, γ
′
h ∈ Γ . (4.8)

We denoted by Fγc(u, L, ζ) the Fock space of framed BPS states of core charge γc, while Q is a

linear operator on this Fock space which evaluates to logXγ on a state of charge γ. The fact that F

is expressed as a trace over the Fock space of framed states, together with the halo-creation/decay

mechanism explained in [61, §3.4], entail that across a BPS wall

F± = F∓
∏
γh

∏
m∈Z

2Jγc,γh∏
m′=−2Jγc,γh

(
1 + (−y)m ym

′
Xγh

)am(γh)

(4.9)

1see e.g. [73, 104] for more details.
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where 2Jγc,γh + 1 = |〈γc, γh〉| is the dimension of the so(3) irrep accounting for the “orbital” degrees

of freedom of the halo. It is worth noting that am(γ) ≥ 0 ∀m if the vanilla BPS state in question is

a fermion, while am(γ) ≤ 0 ∀m for bosons2.

Having reviewed the definition of BPS states, we shall now review how their counting goes.

There are different approaches to this problem: on the one hand these states admit a semiclassical

description (see [107, 126]), on the other hand the six-dimensional engineering of line defects [61,

63, 65] has been successfully exploited to derive general expressions for generating functions in class

S theories of the A type. In the rest of this paper we will introduce and study a generalization of

the second approach, we therefore end this section by reviewing this technique.

A class S theory of the Ak type is defined by a punctured Riemann surface C together with some

data D at the punctures [59, 64, 83, 133], we will sometimes refer to Ak, C,D as the “UV data” of the

theory. These objects define a classical integrable system (the Hitchin system) MH together with

a fibration (the Hitchin fibration) by Lagrangian tori over BH (the Hitchin base). In the context

of gauge theories, BH ≡ B is identified with the Coulomb branch of the four-dimensional theory in

question. At each u ∈ B, the spectral curve of the Hitchin system Σu ⊂ T ∗C is identified with the

Seiberg-Witten curve which captures the low-energy dynamics of the gauge theory. The tautological

1-form λ in T ∗C plays the role of the SW differential. The canonical projection π : Σu → C defines

a ramified covering of C. To this covering is associated a one-parameter family of spectral networks

W(u, ϑ) [63]. Loosely speaking, a spectral network is a collection of oriented paths – termed streets –

on C carrying certain soliton data; both the shape of the streets and the soliton data are determined

by a set of rules; it will be important in the following that such paths can be lifted to Σ in a way

dictated by the data they carry. We will not provide a review of spectral networks, we refer the

reader to the original paper [63] or to [73, 106] for self-contained presentations.

Spectral networks are useful for several reasons. From the mathematical viewpoint they establish

a local isomorphism between moduli spaces of flat connections known as the nonabelianization map.

From a physical point of view they give a means to compute BPS spectra of various types, including

as the “vanilla” and “framed” spectra.

Given a network with its soliton data, the counting of framed BPS degeneracies is relatively

simple. Given two surface defects Sz, Sz′ [9, 49, 63, 65, 68] localized at x1 = x2 = 0 in spacetime, a

UV susy interface interpolating between them is associated to a relative homotopy class3 ℘ ⊂ C. At

2The Clifford vacua hγ = (j, jR) of bosons have j half-integer, while fermions have integer j. An interpretation
for this shift can be found in [39, 40].

3Actually, ℘ is a relative homotopy class on the unit tangent bundle of C, as explained in [63]. For simplicity we
suppress this detail for the moment.
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fixed values of (u, ϑ) the framed degeneracies for the interface L℘ are determined by the combinatorics

of “detours”

F (℘, u, ϑ) =
∑
i,j′

∑
π∈Γij′ (z,z

′)

Ω(L℘, u, ϑ, π)Xπ (4.10)

where we extended the formal X variables to take values in the homology path algebra (see [73,

§2]). The first sum runs over all pairs of sheets of the covering Σ (a choice of local trivialization is

understood), and the second sum is determined by the soliton data on the streets of W crossed by

℘. Each π is associated with a 2d-4d framed BPS state (see [63, §4] also for the notation Γij′(z, z
′)),

the Ω are the corresponding framed degeneracies.

As the parameter ϑ ∈ R/2πZ varies, W(u, ϑ) undergoes a smooth evolution, except at special

values of ϑ for which the topology of the network jumps. These jumps occur precisely when

ϑ = Arg(Zγ(u)), where γ is the charge of some populated (vanilla) BPS state. At a generic point

u ∈ B this singles out a one-dimensional sublattice Γc ⊂ Γ. This phenomenon is key to extracting

the kind of BPS degeneracies of interest to us, and occurs precisely at the BPS walls (also termed

K-walls in [63]).

Figure 4.1: The K-wall jump from a hypermultiplet: different colors represent streets carrying solitons of
different types (ij, jk, ki-types).

More specifically, at a critical value ϑ = ϑc a part of the network becomes “degenerate,” literally

two or more streets of type (ij) and (ji) overlap completely, we call this part of the networkWc ⊂ W.

The soliton data and the topology of the subnetwork Wc define a discrete set (possibly infinite) of

closed paths on Σ, usually indicated by {L(γ)}γ∈Γc whose homology class is

[L(γ)] = Ω(γ) · γ . (4.11)

The generating functions of framed degeneracies jump across K-walls, in a way that is captured by
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a universal substitution rule of the twisted formal variables Ya
4

Ya 7→ Ya
∏
γ∈Γc

(1− Yγ)〈a,L(γ)〉 . (4.12)

The vanilla BPS indices control the change of framed BPS indices with the variation of ϑ across a

K-wall. Examples illustrating this mechanism can be found in [63, 73].

4.1.2 Framed spin and writhe

4.1.2.1 Statement of the conjecture

As reviewed above, for any UV susy interface L℘ the corresponding 2d-4d framed BPS states at

(u, ϑ) are associated with relative homology classes of detours π ∈ Γij′(z, z
′).

We now introduce a refinement of the classification of paths that will be of central importance

for the rest of the paper. Let I = [0, 1] be the unit interval parametrized by t, and consider an

immersion f : I → X into a Riemann surface X, namely a smooth map such that f∗ : TtI → Tf(t)X

is injective (i.e. the path never has zero velocity). A regular homotopy between two immersions is a

homotopy through immersions. For open paths we additionally require that the tangent directions

at endpoints be constant throughout the homotopy. This defines an equivalence relation: a regular

homotopy class is an equivalence class.

From now on we will be assuming that all self-intersections of paths are transverse. Choose ℘ to

be any regular homotopy class on C∗ with endpoints z, z′. We define the following spaces

C∗ := C \ {z, z′} , Σ∗ := Σ \ π−1({z, z′}) . (4.13)

The detours of ℘ can be likewise classified by regular homotopy classes on Σ∗, because the network

contains more information than just relative homology for soliton paths (we will further clarify this

point below). We will adopt gothic letters such as p to denote regular homotopy classes of detours

on Σ∗, the refinement just introduced allows us to perform the assignment

p 7→ wr(p) (4.14)

where wr is the writhe of p, defined as a signed sum of ±1 over transverse self-intersections of p. In

the parametrization associated with regular homotopy p : [0, 1] → Σ∗, a self-intersection is a point

where p(t1) = p(t2). For t2 > t1 the associated sign is positive if the tangent vector ṗ(t1) ∈ Tp(t1)Σ
∗

points clockwise from ṗ(t2) (in the short-way around); the sign is negative otherwise. Let Γ∗ij′(z, z
′)

4The Y are related to the X by a choice of quadratic refinement of the charge lattice(s). They obey a twisted

algebra, e.g. YγYγ′ = (−1)〈γ,γ
′〉Yγ+γ′ . For more details we refer the reader to [73, §2].
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be the set of regular homotopy classes of paths p on Σ∗ which begin at z(i) and end at z′
(j′)

. There

is a natural map

β : Γ∗ij′(z, z
′) −→ Γ̃∗ij′(z, z

′) (4.15)

which identifies different regular homotopy classes p belonging to the same relative homology class

π on the unit tangent bundle of Σ∗, which we denote Σ̃∗. Correspondingly, we also define Γ̃∗ :=

H1(Σ̃∗,Z), then Γ̃∗ij′(z, z
′) is a torsor for this lattice5. We are now ready to state our conjecture on

the spin of framed BPS states.

Conjecture 1. If a framed 2d-4d BPS state for an interface determined by ℘ is represented by a

regular homotopy class p then its spin 2J3 is the writhe of p.

Recall that the surface defects choose a direction in space and J3 is defined as the spin around

this direction. Therefore, given a spectral network W and an interface ℘, we define

Ω(L℘, u, ϑ, p) := # of detours in class p ,

Ω(L℘, u, ϑ, π; y) :=
∑

p | β(p)=π

ywr(p) Ω(L℘, u, ϑ, p) ,
(4.16)

together with

F (℘, u, ϑ; y) :=
∑
i,j′

∑
π∈Γ̃∗

ij′ (z,z
′)

Ω(L℘, u, ϑ, π; y) Ŷπ , (4.17)

where Ŷ are formal variables associated with relative homology classes π ∈ Hrel
1 (Σ̃∗, Σ̃ \ Σ̃∗) as well

as with homology classes in γ̃ ∈ H1(Σ̃∗,Z) subject to the relations

ŶπŶγ̃ = y〈π,γ̃〉 Ŷπ+γ̃ Ŷγ̃ Ŷπ = y〈γ̃,π〉 Ŷπ+γ̃ Ŷγ̃ Ŷγ̃′ = y〈γ̃,γ̃
′〉 Ŷγ̃+γ̃′ , (4.18)

as well as

Ŷπ+nH = (−y)nŶπ Ŷγ̃+nH = (−y)nŶγ̃ , (4.19)

where H is the generator of H1(Σ̃∗,Z) corresponding to a cycle wrapping the fiber, going counter-

clockwise (this implies a choice of orientation on Σ∗).

Although not obvious from these definitions, we will prove below in section 4.2.4 that F (℘, u, ϑ; y)

only depends on the regular homotopy class of ℘ on C∗.

4.1.3 Vanilla Protected Spin Characters from Spectral Networks

The main goal of this paper is to propose (vanilla/framed) PSC formulas based on spectral network

data. Our approach will be to identify susy interfaces whose framed wall-crossing is described by

5To avoid possible confusion, let us note that if p′, p differ by n counter-clockwise contractible curls (defined below
in §4.2.1) then wr(p′) = wr(p)− n while β(p′) = β(p) + nH, according to our conventions.
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formula (4.9). By considering the “classical limit” y → −1, it is clear that this formula won’t hold

for generic interfaces, we therefore need to focus on a specific subset of interfaces, which we now

define.

4.1.3.1 A special class of susy interfaces

To understand the motivations behind the definition to come, it is instructive to dissect and compare

formulae (4.9) and (4.12).

To make a meaningful comparison, we shall take F− = Xγc meaning that there are no halo states

with core charge γc at ϑ− (here ϑ = Arg(ζ)). The classical limit of (4.9) reads

F+ = Xγc

∏
γh

(
1− (−1)〈γc,γh〉Xγh

)|〈γc,γh〉|Ω(γh)

, (4.20)

switching to twisted variables [61, 73] the above reads

F+ = Yγc
∏
γh

(1− Yγh)|〈γc,γh〉|Ω(γh) . (4.21)

Now taking [a] = γc to be a closed cycle with a basepoint on Σ, we find the expected match between

the two formulae, since (4.11) ensures that

〈γc, L(γ)〉 = 〈γc, γ〉 · Ω(γ). (4.22)

On the other hand, for general a there is no relation between 〈a, L(γ)〉 and Ω(γ).

As remarked in [63, §6.4], this reflects the fact that L(γ) contains more information than the

charge of 4d BPS degeneracies, such as how they are arranged on C (the charge is a homology class,

while L(γ) are exact paths). In appendix H we suggest a physical interpretation of this phenomenon

in terms of halos formed by single states of hγ .

Now consider a critical subnetwork Wc ⊂ W(u, ϑc). In the British resolution (ϑ = ϑc − ε)

each two-way street p ∈ Wc carries two soliton data sets. While in [63] soliton data is classified by

relative homology classes, there is much more information available in the network. The requirement

of homotopy invariance regulates the propagation of soliton paths across streets of the networks, in a

way described by the six-way joint rules [63, app.A] [73]. Keeping track of the joints involved in the

propagation of a soliton path, it is therefore possible to associate to each soliton an oriented curve

made of lifts of streets6. We consider it up to regular homotopy and refer to this refined object as

a soliton path, while we preserve the terminology soliton classes for the relative homology classes.

6Actually, homotopy invariance is employed in [63] to establish a 2d wall-crossing formula for solitons classified

by relative homology classes on Σ̃. However we will show below in section 4.2.5 that the same set of 6-way rules –
now applied to regular homotopy classes of soliton paths – follows from studying regular-homotopy invariance of a
certain formal parallel transport.
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Let p be an ij/ji-type two way street of Wc, one may join any soliton path from the ij-type

soliton data set with any soliton path from the ji-type data set to make a closed path. We denote

by Π(p) the set of all combinations of soliton paths from the two data sets of p, classified by regular

homotopy (as closed paths, i.e. without a basepoint specified) on Σ∗. A generic element ` ∈ Π will

thus be a class of closed oriented curves on Σ. By genericity its homology class will belong to the

sublattice associated with the K-wall

[`] ∈ Γc . (4.23)

We also define

Π(Wc) :=
⋃
p∈Wc

Π(p) . (4.24)

For any UV susy interface L℘, we may consider the lifts of {℘(i)} = π−1(℘) ⊂ Σ. We will say

that ℘ is halo-saturated if at least one of its lifts satisfies

(I) 〈℘(i), `〉 6= 0

(II)
〈℘(i), `〉
〈℘(i), `′〉

=
[`]

[`′]

∀`, `′ ∈ Π(Wc) . (4.25)

This is our special class of susy interfaces, their essential feature is that in a neighborhood of the

K-wall of interest, their 4d framed wall-crossing is the same as that of a suitable line defect (the 2d

framed wall-crossing may be different though).

For a halo-saturated interface ℘, and halo charge γh ∈ Γ, choose any ` ∈ Π(Wc) such that

[`] = γh then we define

J℘(i),γh :=
1

2

(
|〈℘(i), `〉| − 1

)
. (4.26)

4.1.3.2 The vanilla PSC formula

Let ℘ be a halo-saturated susy interface for Wc, with ℘(i) being the lift satisfying (4.25). Note that

℘(i) provides a trivialization for the torsor Γ̃∗ij′(z, z
′) (hence an isomorphism with Γ̃∗). In particular,

we may single out a certain sub-torsor Γ̃∗
c,℘(i) ' [℘(i)]+ Γ̃∗c ⊂ Γ̃∗ij′(z, z

′), where Γ̃∗c ⊂ Γ̃∗ is the critical

sublattice7 at ϑc. Considering the related restriction8 of the partition function of framed BPS states

(4.17):

F℘(i)(℘, u, ϑ; y) :=
∑

π∈Γ̃∗
c,℘(i)

Ω(L℘, u, ϑ, π; y) Ŷπ , (4.27)

7Let Γ̃c be the preimage of Γc under the natural map Γ̃ → Γ. There is also a natural map Γ̃∗ → Γ̃ obtained by
filling the circle fibers above Σ \ Σ∗, then Γ̃∗c is the preimage of Γ̃c.

8An explicit example will be provided below: the first line of (4.73) contains the full partition function (hence
being the ii-component of the counterpart of (4.17)), while the LHS of (4.74) is the corresponding restriction to the
sub-torsor determined by ℘(i) (the counterpart of (4.27)). The remaining terms in (4.73) don’t appear in (4.74) since
they clearly do not belong to the sub-torsor: their homology classes are not of the form [℘(i)] + γ̃c with γ̃c ∈ Γ̃∗c .
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we can formulate our second conjecture.

Conjecture 2. As ϑ varies across the K-wall there exist integers {am(γ̃h)}m∈Z such that

F℘(i)(℘, u, ϑ+
c ; y) = F℘(i)(℘, u, ϑ−c ; y)

∏
γ̃h

∏
m∈Z

Φn(γ̃h)

(
(−y)m Ŷγ̃h

)am(γ̃h)

±1

, (4.28)

moreover the am(γ̃h) only depend on γh, and they are precisely the Laurent coefficients of Ω(u, γh; y)9.

The Φn(ξ) are finite-type dilogarithms

Φn(ξ) :=

|n|∏
s=1

(1 + y−sgn(n) (2s−1)ξ) , (4.29)

and

n(γ̃h) = 2J℘(i),γ̃h + 1 . (4.30)

The sign is determined by the direction in which the K-wall is crossed: a framed BPS state of halo

charge γh is stable on the side where the Denef radius 〈γh, ℘(i)〉 / 2 Im (Zγh/e
iϑ) is positive, the sign

is therefore positive when going from the unstable side to the stable one and vice versa10.

The practical value of this conjecture comes from taking (4.17) into account at the same time.

The latter allows to compute F (℘, u, ϑ±c ; y), while (4.28) states how to extract the am(γ) (Laurent

coefficients of the PSC). In Section 4.3 we will provide supporting evidence for these conjectures.

4.1.3.3 Framed spin wall-crossing of generic interfaces

Halo-saturated interfaces are just a special class of susy interfaces, it is natural to ask whether we

can say something about the framed wall-crossing of more generic choices. Our conjecture 1 offers

a partial answer to this: the 2J3 eigenvalue of a framed BPS state is still identified with the writhe

of the corresponding detour. The conjecture doesn’t restrict to halo-saturated interfaces.

A crucial property of our special class of interfaces is that it allows to extract the vanilla PSC of

states associated with halo particles. Generic interfaces instead are not guaranteed to capture this

information, this fact is unrelated to the counting of spin and was evident already in the classical

story [63, 65, 95, 106]. The simplest example of what could go wrong is provided by a “bare”

interface: tuning the moduli (u, ζ) to vary within a sufficiently small region near a K-wall, we may

choose an interface which doesn’t intersect with the network for any value of the moduli; certainly as

the K-wall is crossed, this interface wouldn’t capture information of vanilla PSC’s, because it lacks

9See (4.6).
10further details can be found in [61].
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halos of any sort. While simple, this example points to an essential difference between interfaces and

defects: the pairing 〈γc, γh〉 between an (infrared) defect of charge γc and a halo particle of charge

γh is a topological quantity, it can’t be smoothly deformed to zero; on the contrary the intersection

pairing 〈a, γh〉 between a halo charge and an (infrared) interface a is well-defined on the respective

homology classes only after the endpoints of a are deleted from Σ. More concretely, let us look back

at equation (4.12), which applies both to IR line defects and interfaces. The wall-crossing of an IR

defect of charge γ0 ∈ Γ will be governed by 〈γ0, L(γ)〉 = Ω(γ) 〈γ0, γ〉 for γ ∈ Γc. On the other hand

for an interface 〈a, L(γ)〉 cannot be cast into the form Ω(γ)〈a, γ〉, precisely because the latter pairing

is not well-defined. We will come back to generic interfaces in section 4.3.4, where we analyze in

some detail explicit examples.

4.2 Formal parallel transport

In this section we describe the construction of a formal parallel transport on the UV curve C,

employing the data of a flat abelian connection on Σ and a spectral network. The discussion parallels

closely that of [63]: the transport along a path ℘ on C gets corrected by “detours” corresponding

to the soliton data on streets crossed by ℘; the novelty will consist of keeping track of a suitable

refinement of the soliton data.

After defining the formal parallel transport, we show that it enjoys twisted homotopy invariance,

thus reproducing the transport by a flat non-abelian connection on C. As already noticed in [63],

homotopy invariance is tightly connected to pure 2d wall-crossing, in our context this will lead to a

refined version of the 2d WCF.

With respect to the PSC conjectures formulated above, this section’s purpose is two-fold. First,

we will provide a precise definition of the generating function of framed PSC’s, in terms of detours.

Second, we will derive the generalization of the six-way joint rules of [63, app.A] on which the

definition of soliton paths relies.

4.2.1 Twisted formal variables

Let C,Σ,W be a triplet consisting of a punctured Riemann surface C, a ramified K-fold covering

π : Σ → C and a spectral network subordinate to the covering. For convenience we will sometimes

label the sheets of Σ, implicitly employing a trivialization of the covering. We will restrict W to

WKB-type spectral networks, although everything should carry over in a straightforward way to
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general spectral networks (as defined in [63, §9.1]). We define

C∗ = C \ {z1, . . . , zn} , Σ∗ = Σ \ π−1 ({z1, . . . , zn}) (4.31)

where {z1, . . . , zn} is a collection of points (away from the branching locus) with n ≥ 2.

A path on Σ∗ (or C∗) will be understood as a regular homotopy class of curves on Σ∗ (resp. C∗).

We will say that two paths a, b are composable into ab if end(a) = beg(b) and the corresponding

tangent directions are equal at that point.

To each path a we associate a formal variable Υ̂a, then we consider the unital noncommutative

algebra over the ring Z generated by the Υ̂a and subject to the following relations:

1. If a, b are regular-homotopic (see figure 4.2) then

Υ̂a = Υ̂b (4.32)

2. The product rule

Υ̂aΥ̂b =

 Υ̂ab if a, b are composable

0 otherwise
(4.33)

3. Two paths a and a′, such that the natural pushforwards of β(a) and β(a′) to H1(Σ∗) coincide,

are said to differ by a contractible curl if there exists a regular homotopy which takes a → a′

except for a sub-interval of the domain [t, t′] ⊂ [0, 1], where they differ by a curl (see figure

4.2). Contractible curls can be oriented clockwise or counterclockwise, for paths differing by a

contractible curl

Υ̂a = −Υ̂a′ . (4.34)

Figure 4.2: On the left: a, b are regular-homotopic. On the right: a, a′ differ by a contractible curl. Thus
Υ̂a = Υ̂b and Υ̂a = −Υ̂a′

4.2.2 Definition of F(℘): detours

Let ℘ be any path (in the sense specified above) on C∗, subject to the condition that

{beg(℘), end(℘)} ⊂ C \ C∗ . (4.35)
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We associate a formal parallel transport F(℘), according to the following rules.

When ℘ ∩W = ∅

F(℘) = D(℘) :=

K∑
i=1

Υ̂℘(i) , (4.36)

where ℘(i) are the lifts of ℘.

On the other hand, when ℘ intersects W at some point z on a one-way ij street p, it picks up

contributions from soliton paths supported on p, and we have

F(℘) := D(℘) +
∑

a∈Γ∗ij(p)

µr(a, p) Υ̂
℘̌

(i)
+ a ℘̌

(j)
−
. (4.37)

The sum runs over all regular homotopy classes with endpoints on the lift of p, the µr(a, p) are the

refined soliton degeneracies: they are integers associated with soliton paths in each regular homotopy

class a ∈ Γ∗ij(z, z) and they are constant along p. The µr are uniquely determined by rules that will

be presently discussed. In analogy with [63, §3.5], there is a relation between a, a′ which differ by a

contractible curl

µr(a, p) = −µr(a′, p) . (4.38)

The ℘̌
(α)
± , α = i, j are defined by splitting ℘ at z into ℘± and considering a deformation of the lifts

that matches the initial/final tangent directions of the soliton path a on sheets i, j of Σ∗; this is

illustrated in figure 4.3.

(i j)

Figure 4.3: Splitting and deforming π−1(℘).

Before moving on, let us introduce a convenient piece of notation: in order to deal with transports

crossing several streets, it will sometime be convenient to rewrite (4.37) as

F(℘) = D(℘+)

(
1 +

∑
a

µr(a, p) Υ̂a

)
D(℘−) . (4.39)
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4.2.3 Twisted homotopy invariance

We now study the constraints of twisted homotopy invariance for the formal parallel transport. More

precisely, for any path ℘ on C∗, we require F (℘) to depend only on the regular homotopy class of

℘. Similarly to the classical case [63], this requirement will induce constraints on the refined soliton

content of the network. In fact, the whole analysis we will carry out is very close to that of [63],

the only difference is that instead of relative homology classes on the circle bundle Σ̃ (resp. C̃), we

work with regular homotopy classes on Σ∗ (resp. C∗).

4.2.3.1 Contractible curl

Before we get to actual twisted homotopy invariance, let us briefly illustrate the meaning of “twist-

ing”. For the paths depicted in figure 4.4, we have

Figure 4.4: Two paths in the same relative homology class on Σ, which are not regular-homotopic.

F(℘) = D(℘) =
∑
i

Υ̂℘(i) , F(℘′) = D(℘′) =
∑
i

Υ̂℘′(i) (4.40)

Where ℘(i), ℘′
(i)

are regular homotopy classes on Σ, corresponding to the lifts of ℘, ℘′. Since

Υ̂℘′(i) = −Υ̂℘(i) , the formal transports are simply related as

F(℘) = −F(℘′) . (4.41)

4.2.3.2 Homotopy across streets

The simplest homotopy requirement to take into account is the one shown in figure 4.5, where a

path ℘ is homotoped to ℘′ across a one-way street p of ij type.

Figure 4.5: Paths differing by a regular homotopy across a street of the network.
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The transports read

F(℘) = D(℘)

F(℘′) = D(℘′+)
(

1 +
∑
a

µr(a, p) Υ̂az+

)
D(℘′0)

(
1 +

∑
b

µr(b, p) Υ̂bz−

)
D(℘′−)

= D(℘′) +
∑
a

µr(a, p)
(

Υ̂
℘′

(i)
+

Υ̂az+
Υ̂
℘′

(j)
0

Υ̂
℘′

(j)
−

+ Υ̂
℘′

(i)
+

Υ̂
℘′

(i)
0

Υ̂az−
Υ̂
℘′

(j)
−

)
= D(℘′)

(4.42)

where, in the last step, we made use of (4.33) and (4.34), given that ℘′
(i)
+ az+℘

′(j)
0 ℘′

(j)
− and

℘′
(i)
+ ℘′

(i)
0 az−℘

′(j)
− differ precisely by a contractible curl. Since D(℘) ≡ D(℘′) by virtue of (4.32),

this establishes invariance of the formal transport.

4.2.3.3 Branch Point

Homotopy invariance across branch points will provide some nontrivial constraints for simpleton

degeneracies, just as in [63]. Considering two paths on C∗ as depicted in figure 4.6, we study their

transports component-wise.

i
i i

j
i

i

i
ji

j i

i j

i j
i

j
j j

i
jj

k
k k

k k

Figure 4.6: Regularly-homotopic paths across a branch point. Indicated in green are the street labels, and
in blue the simpleton path labels.

Starting with the ji component11, we have

F(℘′)ji = Υ̂℘′(ji)

F(℘)ji = µr(a, p) Υ̂
℘

(j)
+

Υ̂aΥ̂
℘

(i)
0

Υ̂
℘

(i)
−

(4.43)

since ℘
(j)
+ a℘

(i)
0 ℘

(i)
− is regular homotopic to ℘′

(ji)
, this gives

µr(a, p) = 1 . (4.44)

11Notice that ℘′ crosses the ij branch cut, as shown on the right frame of figure 4.6.
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A similar computation for the ij component reads

F(℘′)ij = Υ̂℘′(ij)

F(℘)ij = µr(c, r) Υ̂
℘

(i)
+

Υ̂
℘

(i)
0

Υ̂cΥ̂℘
(j)
−

(4.45)

once again, noting that ℘
(i)
+ ℘

(i)
0 c℘

(j)
− is regular homotopic to ℘′

(ij)
yields

µr(c, r) = 1 . (4.46)

Repeating with the ii components of the transports

F(℘′)ii = µr(b, q) Υ̂
℘′

(i)
+

Υ̂bΥ̂
℘′

(ji)
−

F(℘)ii = Υ̂℘(i)

(4.47)

again, we find

µr(b, q) = 1 . (4.48)

Employing the results obtained so far, we can also evaluate the jj components

F(℘′)jj = 0

F(℘)jj = Υ̂℘(j) + µr(a, p)µr(c, r) Υ̂
℘

(j)
+

Υ̂aΥ̂
℘

(i)
0

Υ̂cΥ̂℘
(j)
−

= Υ̂℘(j) + Υ̂
℘

(j)
+

Υ̂aΥ̂
℘

(i)
0

Υ̂cΥ̂℘
(j)
−

= 0

(4.49)

where we used the fact that ℘(j) and ℘
(j)
+ a℘

(i)
0 c℘

(j)
− differ exactly by a contractible curl.

Finally, for the k` components (k, ` 6= i, j) we have

F(℘′)k` = F(℘)k` (4.50)

trivially.

4.2.3.4 Joints

Finally, let us examine homotopy invariance across joints of the network, as depicted in figure 4.7.12

The formal transports are computed by means of the detour rules, and read

F(℘) = D(℘+)
(

1 +
∑
a

µr(a, p) Υ̂a

)(
1 +

∑
b

µr(b, q) Υ̂b

)(
1 +

∑
c

µr(c, r) Υ̂c

)
D(℘−)

F(℘′) = D(℘′+)
(

1 +
∑
c

µr(c, r
′) Υ̂c

)(
1 +

∑
b

µr(b, q
′) Υ̂b

)(
1 +

∑
a

µr(a, p
′) Υ̂a

)
D(℘−)

(4.51)

12One should also examine joints of streets of types ij and k`, which do not involve the birth/death of new solitons.
The analysis is straightforward and exactly parallel to that of [63], we omit it here and refer the reader to §5.2 of the
reference.
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ij

jk
ik

ij

ik

jk

Figure 4.7: Two paths ℘, ℘′ within the same restricted regular homotopy class, across a branch point.

where it is understood that the detours involve suitable deformations as illustrated in figure 4.3.

Setting F (℘) = F (℘′), the ij, jk, ik components are respectively∑
a

µr(a, p) Υ̂
℘

(i)
+

Υ̂aΥ̂
℘

(j)
−

=
∑
a

µr(a, p
′) Υ̂

℘′
(i)
+

Υ̂aΥ̂
℘′

(j)
−∑

c

µr(c, r) Υ̂
℘

(j)
+

Υ̂cΥ̂℘
(k)
−

=
∑
c

µr(c, r
′) Υ̂

℘′
(j)
+

Υ̂cΥ̂℘′
(k)
−

Υ̂
℘

(i)
+

(∑
a,c

µr(a, p)µr(c, r) Υ̂aΥ̂c +
∑
b

µr(b, q)Υ̂b

)
Υ̂
℘

(k)
−

=
∑
b

µr(b, q
′) Υ̂

℘′
(i)
+

Υ̂bΥ̂
℘′

(k)
−

(4.52)

from which the following 2d wall-crossing formula follows

µr(a, p
′) = µr(a, p)

µr(c, r
′) = µr(c, r)

µr(b, q
′) = µr(b, q) +

∑
a,b|c

µr(a, p)µr(c, r)

(4.53)

where the last sum runs over a, c whose concatenation ac is regular-homotopic to b, so that Υ̂b =

Υ̂aΥ̂c
13. This concludes the study of homotopy invariance of the formal parallel transport.

4.2.4 Invariance of F (℘) under regular homotopy

In the previous section we established the invariance of F(℘) under regular homotopy, for ℘ ⊂ C

with {beg(℘), end(℘)} ⊂ C \ C∗.

Let us now choose C∗ (resp. Σ∗) as in section 4.1.2.1, i.e. the set of auxiliary punctures now

only includes the endpoints z, z′ of ℘ (resp. π−1{z, z′} ⊂ Σ). Using the detour rules, the formal

parallel transport can be written in the generic form

F(℘) =
∑
ij′

∑
p∈Γ∗(r)

ij′ (z,z
′)

Ω(L℘, u, ϑ, p) Υ̂p (4.54)

13More precisely, the correct statement is that one has to concatenate a, c by gluing an extra small arc between
them to match endpoint tangents. Similarly, in order to compare ac to b one must further add small arcs at the
endpoints of ac, in order to match the initial and final directions of b. These modifications are inessential here, since
we adopt, by definition of the detour rules, paths with all the suitable modifications, and eventually we actually
compare Υ̂

℘
(i)
+ ac℘

(k)
−

to Υ̂
℘

(i)
+ ab℘

(k)
−

. Although irrelevant in this context, this issue was dealt with in Appendix B of

[73].



131

where the sum is over all regular homotopy classes p of detours of ℘ on C∗, and the coefficients

of the series are defined by this expression. According to (4.38) and in analogy to [63, §3.5], these

degeneracies obey

Ω(L℘, u, ϑ, a) = −Ω(L℘, u, ϑ, a
′) (4.55)

for a, a′ differing by a contractible curl.

We take this as the definition of the refined framed degeneracies introduced in (4.16).

Since F(℘) involves exclusively paths p ∈ Γ∗(z, z′) := tij′Γ∗ij′(z, z′), we may associate to each of

them its own writhe ywr(p). Then we can consider a linear map (it is not an algebra map!)

ρ(Υ̂p) := ywr(p)Ŷβ(p) , (4.56)

in §4.5.2 below we will propose some physical intuition for this map. For convenience we adopt the

following definition

Ω(L℘, u, ϑ, p; y) := Ω(L℘, u, ϑ, p) ywr(p) . (4.57)

Collecting regular homotopy classes p on Σ∗ that all belong to the preimage of a relative homology

class π on Σ̃∗, the formal parallel transport maps to

ρ
(
F(℘)

)
=
∑
ij′

∑
π∈Γ̃∗

ij′ (z,z
′)

∑
p | β(p)=π

Ω(L℘, u, ϑ, p; y) Ŷπ

=
∑
ij′

∑
π∈Γ̃∗

ij′ (z,z
′)

Ω(L℘, u, ϑ, π; y) Ŷπ .

(4.58)

Since F(℘) is a (twisted) invariant of regular homotopy of ℘, defining

F (℘) := ρ
(
F(℘)

)
(4.59)

establishes the twisted regular homotopy invariance claimed below (4.17).

4.2.5 Joint rules for two-way streets

As in [63, 73], the key to computing vanilla BPS spectra are certain equations relating the soliton

content on the 2-way streets meeting at a joint. This subsection is devoted to presenting the

corresponding refined version. Considering the example shown in figure B.1, there are six two-way

streets, each one carrying two soliton sets. The soliton data is encoded into the generating functions

denoted τ, ν, one for each street p of type ij:

τij =
∑
a

µr(a, p)Υ̂a νij =
∑
b

µr(b, p)Υ̂b (4.60)
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Figure 4.8: A six-way joint of 2-way streets, in the British resolution. Each 2-way street has two “lanes”
(one-way streets), one of type ij and another of type ji and i, j ∈ {1, 2, 3} according to the labels shown
next to each street. Each lane carries its own soliton content, indicated next to it.

where a, b are ij, ji solitons supported on p.

Choosing paths ℘, ℘′ as shown, invariance of the formal parallel transport entails, in particular

F12(℘) = F12(℘′) (4.61)

where, explicitly we have

F12(℘) = Υ̂
℘

(1)
+
τ12 Υ̂

℘
(2)
−

F12(℘′) = Υ̂
℘′

(1)
+
τ13 Υ̂

℘′
(3)
0+

ν32 Υ̂
℘′

(2)
0−

Υ̂
℘′

(2)
−

+ Υ̂
℘′

(1)
+

Υ̂
℘′

(1)
0+

Υ̂
℘′

(1)
0−
ν12 Υ̂

℘′
(2)
−

(4.62)

To lighten notation, we will write the constraint of homotopy invariance simply in the form14

τ12 = ν12 + τ13ν32 . (4.63)

Similar, appropriate choices of auxiliary paths ℘, ℘′ allow to recover the desired joint soliton rules

τ12 = ν12 + τ13ν32,

τ23 = ν23 + τ21ν13,

τ31 = ν31 + τ32ν21,

τ21 = ν21 + ν23τ31,

τ32 = ν32 + ν31τ12,

τ13 = ν13 + ν12τ23.

(4.64)

these look exactly the same as the rules in [63, 73], with the only difference that we are working

with regular homotopy classes on Σ∗.

14As noted in appendix B of [73], this expression is incomplete. It should involve a certain formal variable, called
η in the reference, to account for small arcs that need to be added to match tangent directions of solitons of τ13 with
those of ν32 and their composition with the solitons of ν12. In our context, we suppress the η because later on, when
computing generating functions for 4d BPS states, we will be actually always working with homotopy invariance of
auxiliary paths ℘, ℘′ and such η is subsumed in the rules for deforming detour paths.
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4.2.5.1 Definition of soliton paths

In section 4.1.3.1 we defined halo-saturated susy interfaces based on the notion of soliton paths, in

this section provide more detail about the latter.

Let p ∈ Wc be a two-way street of ij-type, it may be thought of as a pair of one-way streets

pij and pji. To determine the soliton paths going through street p we proceed as follows. pij has

an orientation, let us denote J [p, ij] the joint from which it flows out, similarly J [p, ji] is the joint

associated with pji. At J [p, ij] we may consider the rules (B.1), expanding them in terms of incoming

soliton generating functions, for example

τ12 = ν12 + ν13ν32 + ν12ν23ν32 + ν12ν21ν13ν32 + ν12ν23ν31ν13ν32 + . . . (4.65)

where ναβ = 0 whenever the corresponding street isn’t carrying solitons.

The lift pij,Σ = π−1(pij) contains two components, p
(i)
ij , p

(j)
ij . We start constructing paths by

concatenating the lifts of streets involved in such sums, in the order dictated by the above formulae.

For example, if p = p5 from figure B.1 we would consider several paths:

p
(1)
5,12 · p

(1)
2,12 (. . . ) p

(2)
2,12 · p

(2)
5,12

p
(1)
5,12 · p

(1)
1,13 (. . . ) p

(3)
1,13 · p

(3)
3,32 (. . . ) p

(2)
3,32 · p

(2)
5,12

. . .

(4.66)

where (. . . ) are placeholders, which will be filled upon iteration of this procedure: namely taking

into consideration the junctions at the other ends of the streets involved (e.g. J [p2, 12] in the first

line, J [p1, 13] and J [p3, 32] in the second line, and so on). Iterating this procedure, one eventually

reaches two-way streets terminating on branch-points. If the branch-point in question sources only

one two-way street, then the (. . . ) are simply dropped for that street. If there is more than one

two-way street ending on the branch-point, one must take into account further detours, as explained

e.g. in [63, app.A]. The procedure involved is a straightforward generalization of the one for joints,

we skip its description.

Thus we have constructed (possibly infinite) sets of open soliton paths, associated with pij and

pji. Joining them pairwise produces the closed soliton paths employed in section 4.1.3.1.
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4.3 Applications and examples

4.3.1 Vectormultiplet in SU(2) SYM

The simplest nontrivial example is the spectral network of the vectormultiplet of charge γ in the

weak coupling regime of SU(2) SYM [64]. In order to choose a halo-saturated interface, we need

Figure 4.9: On the left, the spectral network at the critical phase; C is a cylinder, two way streets are solid
lines, branch points and cuts are in orange. z, z′ ∈ C label punctures associated with UV surface defects, a
choice of halo-saturated interface is shown in green. Red dots mark singularities of the WKB flow (see [64]).
On the right: an example of a detour π1; the WKB flow is indicated in grey for the two sheets of Σ.

first to construct Π(Wc). The critical sub-network Wc is depicted with solid black lines in figure

4.9; applying the detour rules to the branch-point of street p we find

Figure 4.10: The branch point of the two way street p from figure 4.9.

ν3 = τ2Xγ̃ ν1 = τ1Xγ̃ ν2 = 0

τ2 = Xa2
τ1 = Xa1

+ τ1Xγ̃

(4.67)

where a1 is an ij-type soliton (it runs from sheet i to sheet j), while a2 is of type ji. We used

τn = Xan + νn [63, app.A] with an denoting the simpleton paths sourcing from the branch point,

and γ̃ ∈ Γ̃ is the tangent lift of γ (which is the “critical” charge γc corresponding to the K-wall,

although we will be avoiding such notation to avoid confusion with the “core” charge of a halo

boundstate). Therefore, let us define

Q(p) = 1 + τ1ν3 = 1 +Xa1 (1−Xγ̃)−1Xa2 Xγ̃ = (1−Xγ̃)−1 (4.68)
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where we used15 Xa1
Xγ̃ = Xγ̃Xa1

andXa1
Xa2

= 1 (the closure map cl(a1a2) = 0 ∈ Γ̃∗ is understood,

see [73]); this expression for Q(p) agrees with the expected one [63, 64]. A similar computation for

p′ reveals the same contribution. Keeping track of soliton paths we find that

Π(p) = {`n}∞n=1 `1 = p̊Σ `n = `n−1 `1 ,

Π(p′) = {`′n}∞n=1 `′1 = p̊′Σ `′n = `′n−1 `
′
1 ,

(4.69)

where p̊Σ is the regular homotopy class of the lift of street p to Σ∗, where it is understood in this

example that the endpoints of the two components of the lifts are pairwise glued together (at the

ramification point, see figure 4.9) into a single closed path. The notation `n−1`1 needs some further

clarification: these are regular homotopy classes of closed curves, hence composition is ambiguous.

Denote p
(i)
Σ , p

(j)
Σ the two components of π−1(p). Then to construct `2 one takes two copies of pΣ:

p′Σ, p
′′

Σ and glues p′
(i)
Σ p′

(j)
Σ p′′

(i)
Σ p′′

(j)
Σ , then gluing the endpoint of p′′

(j)
Σ with the starting point of

p′
(i)
Σ gives an actual closed path, `2 is the corresponding regular homotopy class. The construction

generalizes straightforwardly to `n−1`1.

Noting that [`n] = [`′n] = nγ̃, we deduce immediately that ℘ as depicted in figure 4.9 satisfies

both conditions (4.25).

Choose a trivialization of the cover such that τ1 carries contributions from ij-solitons (this

together with the WKB flow fixes all other sheet labels), compatibly with the right frame of fig. 4.9.

Then studying the detours of ℘ we find

Fii(℘, ϑ
−
c ) = X℘(i) +X

℘
(i)
+

(
1 +

∞∑
n=1

Xa1+nγ̃

)
X
℘

(j)
0

(
1 +

∞∑
n=1

Xa′1+nγ̃

)
X
℘

(i)
−

Fii(℘, ϑ
+
c ) = X

℘
(i)
+
Q(p)X

℘
(i)
0
Q(p′)X

℘
(i)
−

+X
℘

(i)
+

(
1 +

∞∑
n=1

Xa1+nγ̃

)
X
℘

(j)
0

(
1 +

∞∑
n=1

Xa′1+nγ̃

)
X
℘

(i)
−

(4.70)

where the second term of both expressions corresponds to ij detours on street p composed with ji

detours on street p′, while the first term in the second expression counts ii detours on both p and

p′. We took into account that all 2d soliton degeneracies µ±(a1 + nγ̃), µ±(a′1 + nγ̃) are 1 in this

example. The contribution from halos of core charge ℘(i) undergoes the jump

X℘(i) 7→ X℘(i)(1−Xγ̃)−2 (4.71)

in agreement with 〈℘(i), L(γ)〉 = 〈℘(i),−pΣ − p′Σ〉 = −2.

15The fact that Xa1Xa2 = 1 may not be obvious at first glance. This is a technical identity that reflects the choice
of concatenating a1 with a2 the short way around, thus not going around the street p, thus giving a contractible cycle.
This occurrence is dictated by the fact that we chose to indicate explicitly the parallel transport of solitons around
p by factors of Xγ̃ in (4.67), accordingly it would be wrong to write Xa1Xa2 = Xγ̃ since it would introduce extra
powers of Xγ̃ .
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Now we take into account the writhe: first note that the writhe of `n, `
′
n with respect to the

detour points w,w′ (see figure 4.9) is

wr(`n, w) = −n wr(`′n, w) = n , (4.72)

as clarified by the right frame of figure 4.9. Therefore we find

Fii(℘, ϑ
−
c ; y) = Ŷ℘(i) +

∞∑
n,n′=0

y−n+n′ Ŷ
℘

(i)
+ a1℘

(j)
0 a′1℘

(i)
− +(n+n′)γ̃

Fii(℘, ϑ
+
c ; y) = Ŷ℘(i) +

∞∑
n=1

(y−n + yn) Ŷ℘(i)+nγ̃ +

∞∑
n,n′=1

y−n+n′ Ŷ℘(i)+(n+n′)γ̃

+

∞∑
n,n′=0

y−n+n′ Ŷ
℘

(i)
+ a1℘

(j)
0 a′1℘

(i)
− +(n+n′)γ̃

(4.73)

This agrees with the expected jump for Ŷ℘(i) , indeed according to our conjecture we expect

F℘(i)(℘, ϑ−c ; y) = Ŷ℘(i) 7→ Ŷ℘(i)

(
1− Ŷγ̃

)−1 (
1− y−2 Ŷγ̃

)−1

= Ŷ℘(i) Φ1((−y)−1 Ŷγ̃)−1 Φ1((−y) Ŷγ̃)−1

= F℘(i)(℘, ϑ+
c ; y)

(4.74)

where J℘(i),γ̃ = 0 in this setup, together with am(γ) = −δm,±1.

4.3.2 The 3 - herd

The next nontrivial example is provided by a class of critical networks known as k-herds [73].

The case k = 1 is trivial, while the 2-herd is just another network for the vectormultiplet studied

above. The first interesting case is therefore k = 3, we focus on this although our analysis can be

straightforwardly extended to higher integer k.

The soliton content of the 2-way streets of the 3-herd has been studied in great detail in [73].

Let γ̃ be the generator of the critical sublattice corresponding to the K-wall. Recall that it may be

constructed from Wc as the homology class of a weighted sum of lifts of the streets of the network,

where the weights are dictated by the soliton data. Rather than describing precisely the set Π(Wc)

it will be sufficient for us to note (see in particular §C.6.2 of the reference) that, for any street p and

any two soliton paths a, b (of ij/ji types respectively) supported on p, ` = cl(ab) is characterized by

[`] = nγ̃ ⇔ ` 3 {δ1,Σ, δ2,Σ, δ3,Σ, δ4,Σ} n times, (4.75)

where inclusion of δi,Σ stands for the fact that the solitons run through the i-th ramification point

n times. Street names refer to figure 4.11, and γ is the generator of the critical sublattice (with

orientation fixed by ϑc).
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Figure 4.11: The street map of the 3-herd, on the cylinder C which has been cut. The network streets
are glued according to their labeling. The schematic direction of WKB flow of the three types of streets is
displayed on the upper right, for example the branch-point on the upper-left of the herd sits at the end of
an ij-type street and is therefore an ij-type branchpoint.

With this information at hand, we can make a simple choice of a halo-saturated ℘, displayed in

figure 4.11. Other choices are clearly possible. The machinery of section 4.2 establishes relations

between generating functions for different halo saturated choices of ℘: different choices of ℘ within

the same regular homotopy class on C∗ are equivalent.

By direct inspection of soliton paths involved in detours of ℘(i), one finds the following framed

generating functions

Fii(℘, ϑ
−
c ; y) = Ŷ℘(i)

Fii(℘, ϑ
+
c ; y) = Ŷ℘(i) +

(
y−2 + 1 + y2

)
Ŷ℘(i)+γ̃

+
(
y−6 + 2y−4 + 3y−2 + 3 + 3y2 + 2y4 + y6

)
Ŷ℘(i)+2γ̃

+
(
y−12 + 2y−10 + 5y−8 + 8y−6 + 11y−4 + 12y−2 + 13

+ 12y2 + 11y4 + 8y6 + 5y8 + 2y10 + y12
)
Ŷ℘(i)+3γ̃ + · · ·

= Ŷ℘(i)

∏
m∈[1]

Φ1((−y)m Ŷγ̃)
∏

m′∈[5/2]

Φ2((−y)m
′
Ŷ2γ̃)−1

×
∏

m′′∈[3]⊕[5]

Φ3((−y)m
′′
Ŷ3γ̃) · · ·

(4.76)

where the notation m ∈ [k] stands for m ∈ {−2k,−2k + 2, . . . , 2k − 2, 2k}.

Due to the simplicity of ℘, we have Fii(℘, ϑ
±
c ; y) ≡ F℘(i)(℘, ϑ±c ; y) (cf. (4.27)), we thus find
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agreement – up to terms of order X3γ̃ – with the conjectured pattern of (4.28):

F℘(i)(℘, ϑ−c ; y) = Ŷ℘(i) 7→ Ŷ℘(i)

∞∏
n=1

∏
m∈Z

Φn((−y)m Ŷnγ̃)am(nγ̃)

= F℘(i)(℘, ϑ+
c ; y) .

(4.77)

Moreover we recover the structure

hγ = [1] , h2γ =

[
5

2

]
, h3γ = [3]⊕ [5] , (4.78)

as irreps of so(3), in agreement with [73, app.A].

In section 4.4.3 below, we will provide a derivation of the generating function employed above,

obtained by a careful analysis of the soliton paths involved. In fact, we will provide such data for

k-herds of any value of k. Adopting the same kind of ℘ as in our example, the above analysis extends

straightforwardly to higher k and n, allowing for a direct comparison with [73, app.A], this provides

further checks of the conjectures.

4.3.3 The 3 - (2, 3) - herd

We now move to a more complicated example, introducing a whole new type of critical network.

It was shown in [73] that in higher rank gauge theories there can be wild walls on the Coulomb

branch. These are marginal stability walls MS(γ, γ′) with |〈γ, γ′〉| > 2 across which wild BPS

states are created/lost. Wild BPS states are particularly interesting for us, because their Clifford

vacua haγ+bγ′ typically consist of large and highly reducible representations of so(3), providing rich

examples for testing our conjectures.

The critical networks of wild BPS states remained largely unexplored insofar. Except for states

of charge n(γ + γ′) whose networks – in some regions of the Coulomb branch – are known to be

k-herds, no other cases have previously been studied. It is well known that all states of charges

aγ + bγ′ for

k −
√
k2 − 4

2
<
a

b
<
k +
√
k2 − 4

2
(4.79)

are wild.

We will now fix k = 3 and a = 2, b = 3. This kind of state appears in one of the wild chambers

of SU(3) SYM: choosing the same point on the Coulomb branch as in [73, §3.4], and tuning to

ϑ = 5.22181, the critical network of figure 4.12 appears.

By direct inspection of the soliton paths associated with each two-way street, one finds that

[`] = nγ̃ ⇔ ` 3 {2× δ1,Σ, 3× δ2,Σ, 2× δ3,Σ, 3× δ4,Σ} n times. (4.80)
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Figure 4.12: The street map of the 3 - (2, 3)-herd, on the cylinder C. Different colors denote streets carrying
solitons of different types, such as ij, jk, ki-type solitons. Two-way streets are marked in black. Recall there
is an identification of the far left and far right endpoints of α11 in the figure, and so forth.

with street names referring to figure 4.12, and γ being the generator of the critical sublattice (with

orientation fixed by ϑc). This structure could have been expected on homological grounds, being a

mild generalization of the 3-herd case.

Choosing ℘ as in fig 4.12 satisfies the halo-saturation condition. By direct inspection, the corre-

sponding framed generating functions are

Fii(℘, ϑ
−
c ; y) = Ŷ℘(i)

Fii(℘, ϑ
+
c ; y) = Ŷ℘(i) +

(
y−7 + 2y−5 + 4y−3 + 6y−1 + 6y + 4y3 + 2y5 + y7

)
Ŷ℘(i)+γ̃ + · · ·

= Ŷ℘(i)

∏
m∈[1]⊕[1]⊕[3]

Φ2((−y)m Ŷγ̃) ×
(
· · ·
) (4.81)
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Due to the simplicity of ℘, we have Fii(℘, ϑ
±
c ; y) ≡ F℘(i)(℘, ϑ±c ; y), we thus find agreement – up to

terms of order Xγ̃ – with the conjectured pattern16:

F℘(i)(℘, ϑ−c ; y) = Ŷ℘(i) 7→ Ŷ℘(i)

∞∏
n=1

∏
m∈Z

Φn((−y)m Ŷnγ̃)am(nγ)

= F℘(i)(℘, ϑ+
c ; y) .

(4.82)

Moreover we recover the structure

hγ = [1]⊕ [1]⊕ [3] , (4.83)

as irreps of so(3), in agreement with [73, app.A].

The above analysis can in principle be extended to other values of k, a, b. In appendix J we

sketch the structure a large class of critical networks, which we call off-diagonal herds17.

4.3.4 Generic interfaces and halos

We now come back to generic interfaces, as mentioned above in §4.1.3.3, our conjectures on the

spin of framed BPS states naturally extend to these. There is a simple reason for studying generic

interfaces: on the one hand they generically won’t capture enough information to compute vanilla

PSCs, but on the other hand their wall-crossing is of a more generic type, and studying it allows

one to gain further insight into the implications of our conjectures.

In particular, the framed wall-crossing of IR line defects can be understood from a physical

viewpoint in terms of a halo picture [61]. The fact that some framed BPS states arrange into halos is

particularly important for computing (framed/vanilla) PSCs because halos furnish representations

of the group of spatial rotations. Thus the halos naturally encode the spin content of framed BPS

states, for this reason the halo picture played a crucial role in establishing a physical derivation of

the motivic KS wall-crossing formula. Given the importance and the success of this picture, it is of

particular significance to check whether predictions based on our conjectures are compatible with it.

To make the question sharper, note that in the case of generic interfaces so(3) is broken to a

Cartan subalgebra by the surface defects, which are stretched –say– along the x3 axis, thus we

cannot expect the same type of halos that appeared in the case of line defects. So what kind of halo

picture can we expect? The breaking of the rotational symmetry will induce a distinction among the

states of a vanilla multiplet according to their J3 eigenvalue. We may then expect to have halos of

16Note that, given any soliton path ` ∈ Π(Wc), [`] = nγ̃ implies that 〈℘(i), `〉 = 2n. Therefore J℘(i),nγ̃ = (2n−1)/2

and the orbital m′ runs over 2n different values, thus reproducing correctly the subscript of the dilogarithms. The
factor of 2 comes from (4.80), had we chosen ℘ to cross δ2 or δ4, the corresponding factor would be 3 instead of 2.

17T. Mainiero has independently come to the picture of the off-diagonal herds and is currently studying them.
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vanilla BPS states selectively binding to the interface depending on the J3 quantum number. Before

sharpening the question further, let us illustrate the latter statement with a simple example.

Consider a variant of the pure SU(2) interface encountered above, as shown in figure 4.13.

Figure 4.13: The SU(2) vectormultiplet critical network, with a different choice of susy interface ℘. This
choice is not halo-saturated.

The removal of π−1(end(℘)) from Σ now distinguishes between closed cycles coming from lifts

of p and those from lifts of p′. The sub-lattice of critical gauge charges generated by these lifts thus

gets resolved with respect to the case of a halo saturated interface and is now two dimensional. We

denote by γ̃, γ̃′ the generators associated with p and p′ respectively18. It follows easily from the

above analysis that we now have

Fii(℘, ϑ
−
c ; y) = Ŷ℘(i)

Fii(℘, ϑ
+
c ; y) = Ŷ℘(i) +

∞∑
n=1

y−n Ŷ℘(i)+nγ̃ = Ŷ℘(i) Φ1((−y)−1 Ŷγ̃)−1 ,
(4.84)

comparing with (4.74) one realizes that the interface binds not to the whole vanilla multiplet, but

only a “partial” halo is formed, as if the interface is binding only to vanilla states with 2J3 = −1.

Introducing the quantum-dilogarithms

Φ(ξ) :=

∞∏
k=1

(1 + y2k−1ξ)−1 , (4.85)

the above can be recast into the suggestive form

Fii(℘, ϑ
+
c ; y) = Φ((−y)−1Ŷγ̃)a−1(γ)Fii(℘, ϑ

−
c ; y) Φ((−y)−1 Ŷγ̃)−a−1(γ)

= O Fii(℘, ϑ−c ; y)O−1

O = Φ((−y)+1Ŷγ̃′)
a+1(γ)Φ((−y)−1Ŷγ̃)a−1(γ)

(4.86)

18A one-dimensional sub-lattice obviously has two possible generators, however the choice of ϑc canonically lifts
the degeneracy.
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with a±1(γ) = −1 (cf. (4.74)) and where in the first line we used identity (K.2) as well as the

equivalence Φn(z) = Φ−n(y−2nz). In the second line we used the fact that 〈℘(i), γ̃′〉 = 0 hence

Ŷγ̃′ Ŷ℘(i) = Ŷ℘(i) Ŷγ̃′ .

We will say that the framed wall-crossing of a generic interface is compatible with the halo picture

if the K-wall jump of the generating function of framed PSCs can be expressed as a conjugation by

quantum dilogarithms19.

As the next example will illustrate, it is not at all obvious that this criterion will be satisfied in

general. Let us consider a different choice of interface for the 3-herd, as shown in figure 4.14.

Figure 4.14: The 3-herd critical network, with a different choice of ℘. This choice is not halo-saturated.

After removing endpoints of ℘ from C and their lifts from Σ, there are two basic refined homology

classes that we need to consider. They obey

〈℘(j), γ̃1〉 = −1 〈℘(j), γ̃2〉 = 0 γ̃1 − γ̃2 = γ̃f (4.87)

where γ̃f corresponds to a small cycle circling end(℘(j)) clockwise. γ̃f is in the annihilator of 〈 , 〉

when restricted to Γ̃∗. We will refer to it as a “technical flavor charge”.

By direct inspection we find the following detour generating functions

Fjj(℘, ϑ
−
c ; y) = Ŷ℘(j)

Fjj(℘, ϑ
+
c ; y) = Ŷ℘(j) + y2 Ŷ℘(j)+γ̃1

+ (y + y5)Ŷ℘(j)+γ̃1+γ̃2
+ 2y4Ŷ℘(j)+2γ̃1

+ 5y6Ŷ℘(j)+3γ̃1
+ (5y7 + 5y3)Ŷ℘(j)+2γ̃1+γ̃2

+ (y10 + 2y8 + y4 + y−2 + 2)Ŷ℘(j)+γ̃1+2γ̃2
+ · · ·

(4.88)

19The choice of this criterion, as opposed to just demanding some jump of the form (4.84), is more stringent. It is
relatively easy to find an expression for a K-wall jump as a product of finite-type dilogs, but not all finite-type dilogs
correspond to conjugation by quantum dilogs.
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this jump of F (℘) presents a little puzzle: as explained in appendix K it cannot be immediately

expressed as conjugation by quantum dilogarithms. This would seem to indicate some tension

between our conjectures and the halo picture, for the case of generic interfaces.

However, by introducing a technical assumption on certain “flavor charges” associated with the

endpoints of the interface, we found that the above expression can be massaged into a factorizable

form. We will presently provide the details of this computation. While it is not clear to us what the

generalization to generic interfaces should be, we expect one to exist. To recover the halo picture,

we start with the identity

Ŷγ̃1
= Ŷγ̃2

Ŷγ̃f = Ŷγ̃f Ŷγ̃2
⇒ Ŷ℘(j)+n1γ̃1+n2γ̃2

= y−n2 Ŷ℘(j)+(n1+n2)γ̃1
Ŷ−n2γ̃f

= yn2 Ŷ−n2γ̃f Ŷ℘(j)+(n1+n2)γ̃1

(4.89)

to turn the above into

Fjj(℘, ϑ
+
c ; y) = Ŷ℘(j) + y2 Ŷ℘(j)+γ̃1

+ (y2 + y6)Ŷ−γ̃f Ŷ℘(j)+2γ̃1
+ 2y4Ŷ℘(j)+2γ̃1

+ 5y6Ŷ℘(j)+3γ̃1
+ (5y8 + 5y4)Ŷ−γ̃f Ŷ℘(j)+3γ̃1

+ (y12 + 2y10 + y6 + 1 + 2y2)Ŷ−2γ̃f Ŷ℘(j)+3γ̃1
+ · · ·

(4.90)

then (this is our technical assumption20 ) taking Ŷγ̃f → 1

Fjj(℘, ϑ
+
c ; y) = Ŷ℘(j)

(
1 + y3 Ŷγ̃1 + (y4 + 2y6 + y8) Ŷ2γ̃1

+ (y15 + 2y13 + 5y11 + 6y9 + 5y7 + 2y5 + y3) Ŷ℘(j)+3γ̃1
+ · · ·

)
= O Ŷ℘(j) O−1

(4.91)

with

O = Φ((−y)2Ŷγ̃1
) Φ((−y)3Ŷ2γ̃1

)−1 Φ((−y)5Ŷ2γ̃1
)−1

× Φ
(

(−y)10Ŷ3γ̃1

)
Φ
(

(−y)8Ŷ3γ̃1

)
Φ
(

(−y)6Ŷ3γ̃1

)
2

× Φ
(

(−y)4Ŷ3γ̃1

)
Φ
(

(−y)2Ŷ3γ̃1

)
· · ·

=
∏
n>0

∏
m∈Z

Φ((−y)m Ŷnγ̃1
)cn,m .

(4.92)

All values of m appearing in the factorization are compatible with the vanilla spin content (4.78),

moreover the exponents satisfy

0 ≤ cn,m
am(nγ̃1)

≤ 1 (4.93)

20Recall that γ̃f is a “technical” flavor charge, arising from the removal of endpoints of the interface from Σ. It
is therefore natural to assume that formal variables –which should be related to holonomies of a flat connection on a
line bundle over Σ– should resemble trivial holonomy around this cycle.
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for am(nγ̃1) defined by (4.28), this is compatible with the interpretation that each dilog is the

contribution to the Framed Fock space by |cn,m| vanilla oscillators of corresponding charge and 2J3

eivgenvalue. Hence we recover the picture that the generic interface interacts unevenly with different

states within a vanilla multiplet, as in the previous SU(2) example. Only some of the vanilla states

bind to the interface as the K-wall is crossed, while another part of the vanilla multiplet does not.

It is worth mentioning that, based on the observations and the conjecture of appendix H, it

should be possible to enhance (4.92) with dilog factors corresponding to other states in the vanilla

multiplet as well, in the same fashion as in (4.86). This would reinforce the picture of a generic

interface interacting selectively with vanilla states depending on their J3 quantum number: the

“phantom” quantum dilogs would be those of states that do not couple to the interface. For halo-

saturated interfaces on the other hand all states of a multiplet contribute to the jump, there are no

“phantoms”, hence the choice of terminology. We will not pursue the study of generic interfaces

further, although it would certainly be interesting to gain a systematic understanding of these

phenomena.

To sum up, we have given a sharp criterion to determine whether our conjectures are compatible

with the halo picture, based on whether the K-wall jump of the related generating function of framed

states can be expressed in terms of conjugation by quantum dilogarithms. However we do not have

a general proof that this is always the case, and we have seen that it takes some care to check that

the halo picture is recovered even in simple examples. It would be good to clarify these matters

further.

4.4 m-herds

Herds, already encountered above, are a class of critical networks occurring in higher rank gauge

theories [73]. As reviewed in section 4.3.3, these theories have wild chambers on their moduli space of

vacua, where BPS particles of charges γ, γ′ with 〈γ, γ′〉 > 2 can form stable wild BPS boundstates.

Herd networks correspond to “slope 1” boundstates, i.e. states with charge of the form n(γ + γ′)

with n ≥ 1.

In this section we study the refined soliton content of herds, relying on equations (B.1). From

the refined soliton data, vanilla PSCs of wild BPS states can be extracted. The main result is a

functional equation for the generating function of PSCs. Our analysis applies to m-herds for any

positive integer m.
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4.4.1 The horse and other preliminaries

m-herds are constructed by gluing together m copies of an elementary subnetwork called the horse

(a.k.a. the 1-herd, with suitable boundary conditions [73]), shown in figure 4.15. We therefore start

by studying the soliton content of the horse, and then move on to m > 1.

Figure 4.15: The horse. All streets are assumed to be 2-way (in some cases certain streets are actually
one-way, but this case is automatically handled by our setup) and directions correspond to conventions
explained in the text. We stress that p, p̄ are distinct streets and are not identified: while the bar stresses
the symmetry of the equations, we do not impose particular boundary conditions.

The lift of this kind of network involves 3 sheets of the cover π : Σ → C, say i, j, k; there are

then three types of two-way streets: ij, jk, ik marked by blue, red and purple colors on the figure

respectively.

Recall that each two-way street can be thought of as a pair of one-way streets flowing in opposite

directions. Therefore to each two-way street p we associate a refined soliton generating function Dp

(resp. Up) for the one-way street flowing downwards (resp. upwards). We fix conventions such that

one-way streets of types ij, jk, ik flow upwards (they carry solitons of the U -type), while ji, kj, ki

flow downwards (they carry solitons of the D-type).

Without loss of generality we choose the British resolution, then applying the 6-way joint rules

(B.1) to all four joints, we find the following set of identities

Db̄2 = Db̄1 , Dc = Dā1
Db̄1 , Dā2

= Dā1
Q̂(b̄2)

Ub2 = Ub1 , Uc = Ub1Ua1
, Ua2

= Q̂(b2)Ua1

Db̄3 = Db̄2 , Ua3
= Q̂(b̄3)Ua2

Ub3 = Ub2 , Dā3 = Dā2Q̂(b3)

(4.94)
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To each street we may associate two generating functions

Q̂(α)(p) := 1 +DpUp Q̂(β)(p) := 1 + UpDp (4.95)

where α = j, k, k and β = i, j, i respectively for the three types of streets. In (4.94) we suppressed

the superscripts, but it is understood that the suitable choice of Q̂(?) appears: this is determined by

compatibility of concatenation of paths with those within the D,U they multiply.

In the same way as equations (B.1) were derived from homotopy invariance of off-diagonal terms

of the formal parallel transport, there is a corresponding set of equations descending from homotopy

invariance of diagonal terms (the story is closely parallel to [63, eq.s (6.18)-(6.19)]). These may be

cast into the form of a “conservation law” for different streets coming into one joint, for example

referring to figure B.1 we have for the sheet-1 component

Υ̂
℘

(1)
+
Q̂(1)(p1)Υ̂

℘
(1)
0
Q̂(1)(p2)Υ̂

℘
(1)
−

= Υ̂
℘′

(1)
+
Q̂(1)(p5)Υ̂

℘′
(1)
0
Q̂(1)(p4)Υ̂

℘′
(1)
−

(4.96)

where ℘, ℘′ are here understood to be broken apart into pieces compatibly with the necessary

concatenations. Analogous expressions hold for other streets and sheets combinations.

To keep track properly of the writhe of detours, it is more convenient to express the above rule

with a richer notation. Consider a path χ with endpoints on Σ\Σ∗, intersecting π−1(Wc) somewhere.

An example is provided in fig.4.11, where the path χ may be taken to be ℘(i). Let p be one of the

streets whose lift is crossed by χ, the intersection splits χ into two pieces denoted χ±. Associated

with χ we can construct a “corrected” detour generating function Qχ(p) defined by the following

relation

Ŷβ(χ)Qχ(p, y, z) := ρ
(

Υ̂χ+
Q̂(p)Υ̂χ−

)
(4.97)

where z = yŶγc and ρ was defined in (4.56). Where we implicitly made use of the fact that all

detours’ homology classes can be decomposed as π = β(χ)+nγc. As will be evident in the following,

the “correction” by χ consists of extra units of writhe induced by possible intersections of χ± with

the soliton detours to which they concatenate.

Moreover, it is easy to show that the “conservation rule” (4.96) carries over through the map ρ:

Qχ(p1, y, z)Qχ(p2, y, z) = Qχ(p4, y, z)Qχ(p5, y, z) (4.98)

in fact, choosing the auxiliary paths as in fig. I.1, multiplying both sides of (4.96) by Υ̂χ+ and

Υ̂χ− from the left and from the right respectively, accounting for the regular homotopy classes21 of

21More precisely, the δp are open regular homotopy classes on Σ∗ consisting of concatenations of ij solitons with
ji solitons supported on p.
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detours δp from each street p, and applying the morphism ρ, we find

∑
δp1

,δp2

ywr(χ+δp1δp2χ−)Yβ(χ)+β(δp1
)+β(δp2

) =
∑

δp4
,δp5

ywr(χ+δp5δp4χ−)Yβ(χ)+β(δp5
)+β(δp4

) (4.99)

Noting that the mutual intersections of the detours paths δpi all vanish, it is easy to see that both

sides factorize into

Yβ(χ)

∑
δp1

ywr(χ+δp1χ−)y〈[χ],[δp1 ]〉Yβ(δp1
)

∑
δp2

ywr(χ+δp2χ−)y〈[χ],[δp2 ]〉Yβ(δp2
)

 =

= Yβ(χ)

∑
δp4

ywr(χ+δp4
χ−)y〈[χ],[δp4

]〉Yβ(δp4
)

∑
δp5

ywr(χ+δp5
χ−)y〈[χ],[δp5

]〉Yβ(δp5
)

 (4.100)

establishing eq.4.98.

The above derivation keeps holding if we start moving the point where the path χ is connected to

the street p, while preserving the homotopy class of the detours. In this way we can simultaneously

uniquely assign generating functions to each street whose lift to the i-th sheet is contained in a

contractible chart on Σ∗.

In the following we will omit the subscript χ, leaving understood that we will always be working

with such “corrected” generating functions.

4.4.2 Herds

An m-herd is a critical network consisting of a sequence of horses glued together, see for example

figure 4.16. The outer legs of each horse are either glued to external legs of neighboring horses, or

terminate on branching points, as displayed. Just like horses, herds lift to a triple of sheets i, j, k, we

adopt the same sheet labels and color conventions for the streets of herds as we used for the horse.

Thus, for example, branch points a and d are of type (ij), while b, c are of type (jk).

Denoting the formal variables of the four simpletons by Υ̂a, ..., Υ̂d (cf. figure 4.16), these soliton

paths can be propagated through the m-herd by using the rules derived in the previous section

together with gluing rules

Dα1
= Υ̂bQ̂(β1), Dαn = Dαn−1

Q̂(βn)Q̂(β̄n−1) ,

Uᾱm−1
= Q̂(β̄m−1)Υ̂c, Uᾱn−1

= Q̂(β̄n−1)Q̂(βn)Uᾱn ,

Dβn = Υ̂a, Uβ̄n = Υ̂d .

(4.101)

These are obtained by applying (4.94) to the network, for example

Dα2
= Dα1

Q̂(β̄2) Q̂(β1) (4.102)
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Figure 4.16: The m-herd, the streets are glued together according to labels. Typically the herd “wraps”
a tube of C, in the picture the tube has been cut along a spiral and opened up.

is derived from

Dā3 = Dā2 Q̂(b3) =
(
Dā1 Q̂(b̄2)

)
Q̂(b3) . (4.103)

Thus we find the following expression for the generating function of a generic vertical 2-way

street γn

Q̂(γn) = 1 +Dαn−1Dβn−1Uβ̄nUᾱn =

= 1 + Υ̂bQ̂(β1)

n−1∏
j=2

Q̂(βj)Q̂(β̄j−1)

 Υ̂aΥ̂d

m−2∏
j=n

Q̂(β̄j)Q̂(βj+1)

 Q̂(β̄m−1)Υ̂c .
(4.104)

It is easily seen that each Q̂ generating function is a formal power series in a single word, then

we consider assigning an algebraic generating function to each Q̂, as follows. For example,

Q̂(β) =
∑
n∈N

ωn(y, β)
(

Υ̂aΥ̂dΥ̂cΥ̂b

)n
, Q(β, y, z) =

∑
n∈N

ωn(y, β)zn

Q̂(β̄) =
∑
n∈N

ωn(y, β̄)
(

Υ̂cΥ̂bΥ̂aΥ̂d

)n
, Q(β̄, y, z) =

∑
n∈N

ωn(y, β̄)zn
(4.105)

where ωn are Laurent polynomials in y arising after casting the Q̂ into this form by means of (4.33)

and (I.6). It is important to note that the two words made of simpleton variables (in the expressions

for β, β̄ respectively) are different . Moreover, in constructing these functions we hid the involvement

of necessary transition functions which actually extend the simpleton paths across the herd (see [73,
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app.C]). We fix a prescription for the transport of soliton paths as follows: the transport must be

carried out along streets of the same soliton type (for example to join a, d we can continue them

across the β-type streets) plus any one of the vertical streets of γ-type.

In particular, the generating functions of vertical γ-streets Q̂(γn) are formal series in the single

word Υ̂bΥ̂aΥ̂dΥ̂c. Performing the due substitutions of the generating functions Q̂(β), Q̂(β̄) into the

expression for Q̂(γn) we end up with an expression in which different words are scrambled . To make

some order, we employ a trick explained in appendix I, manipulating the expressions of Q̂(γn) by

means of the equivalence

(
Υ̂aΥ̂d

)(
Υ̂cΥ̂b

)
=̇ y2〈cl(ad),cl(cb)〉 (Υ̂cΥ̂b

)(
Υ̂aΥ̂d

)
, (4.106)

the symbol =̇ means that both sides have the same image under ρ.

For an m-herd, we have simply 〈cl(ad), cl(cb)〉 = m. Taking this into account, we may rewrite the

equations for the formal series Q̂ in terms of algebraic ones which include corrections from generic

auxiliary paths χ

Qχ(γn, y, z) = 1 + z ywr(χ+baγndcχ−)×

×

n−1∏
j=1

Qχ(βj , y, z)

 m−1∏
j=n+1

Qχ(βj , y, zy
−2m)

m−1∏
j=n

Qχ(β̄j , y, z)

n−2∏
j=1

Qχ(β̄j , y, zy
2m)


(4.107)

where in baγndc it is understood that simpletons are propagated through the network in the way

explained above, and the extra powers of y in the arguments of Q’s account for due reorderings.

Here the path χ intersects the 2-way street γn on sheet i and the factor γn inside ywr(χ+baγndcχ−)

means a lift of this 2-way street to another sheet.

Switching to “universal” generating functions, all corresponding to a specific path χ = ℘(i) as

drawn in fig.4.11, gives simply

wr (χ+baγndcχ−) = 2n− 1−m (4.108)

Applying homotopy invariance (4.98) thus yields

Q(a, y, z) = Q(d, y, z) =

m−1∏
j=1

Q(γj , y, z),

Q(βn, y, z) =

m−1∏
j=n+1

Q(γj , y, z), Q(β̄n, y, z) =

n−1∏
j=1

Q(β̄j , y, z)

(4.109)

After substitution of the ansatz

Q(γn, y, z) = P (zy2n−1−m, y) (4.110)
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into (4.107) all the equations in this system turns into the same single equation with a parameter z

shifted by powers of y in different ways. This defining equation reads

P (z, y) = 1 + z

m−2∏
s=−(m−2)

P (zy2s, y)m−1−|s| . (4.111)

This is a functional equation for power series in z, with Laurent polynomials in y as their coefficients.

In the limit y2 → 1 all terms in the product on the r.h.s. become the same, then powers just sum

up to (m− 1)2, properly reproducing the algebraic herd equation found in [73, eq.(1.2)]. It therefore

generalizes Prop.3.1 of [115] and the defining equation of (1.4) of [75] to the “refined” case.

Given a solution to the functional equation (4.111), generating functions on other 2-way streets

follow simply by

Q(a, y, z) = Q(d, y, z) =

m−1
2∏

s=−m−1
2

P (zy2s, y),

Q(γn, y, z) = P (zy2n−1−m, y)

(4.112)

where the product is assumed to be taken either over integers or over half-integers.

Finally, we should note that, due to choice of (commutative) variables in this section, there is a

controlled shift in powers of y as compared22 to the expected factorization (4.28):

Q(a, y, z) =
∏
γ̃h

∏
m∈Z

Φn(γ̃h)

(
(−y)myn(γ̃h)zn(γ̃h)

)am(γ̃h)

. (4.113)

4.4.3 Herd PSC generating functions

To conclude our discussion of herds, we examine some explicit solutions to the functional equation

(4.111).

2-herd: Eq.(4.111) is algebraic in this case and can be solved explicitly

P (z, y) = (1− z)−1 . (4.114)

Thus

Q(a, y, z) = Q(b, y, z) = Q(c, y, z) = Q(d, y, z) = (1− zy)(1− zy−1) , (4.115)

corresponding to the expected vectormultiplet

Ω(γc, y) = y + y−1, Ω(nγc, y) = 0, n ≥ 2 (4.116)

22More precisely, the extra yn factor is omitted in (4.28) because it is reproduced by Ŷ℘(i) Ŷnγ̃h = yn Ŷ℘(i)+nγ̃h
.
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3-herd: m = 3 provides the first non-trivial example, since in this case (4.111) is no longer

algebraic. Nevertheless one can study its solutions perturbatively, introducing the series

P (z, y) = 1 +

∞∑
n=1

ω(m)
n (y)zn . (4.117)

We find the following perturbative solution

P (z, y) = 1 + z +
(
y−2 + 2 + y2

)
z2 +

(
y−6 + 2y−4 + 5y−2 + 6 + 5y2 + 2y4 + y6

)
z3+

+
(
y−12 + 2y−10 + 5y−8 + 10y−6 + 16y−4 + 23y−2 + 26 + 23y2 + 16y4 + 10y6

+ 5y8 + 2y10 + y12
)
z4 +O(z5)

= Φ1(yz)Φ2

(
(−y)−1y2z2

)−1
Φ2

(
(−y)y2z2

)−1
Φ3

(
(−y)−4y3z3

)
Φ3

(
(−y)−2y3z3

)
× Φ3

(
y3z3

)2
Φ3

(
(−y)2y3z3

)
Φ3

(
(−y)4y3z3

)
Φ4

(
(−y)−9y4z4

)−1
Φ4

(
(−y)−7y4z4

)−1

× Φ4

(
(−y)−5y4z4

)−3
Φ4

(
(−y)−3y4z4

)−4
Φ4

(
(−y)−1y4z4

)−5
Φ4

(
(−y)y4z4

)−5

× Φ4

(
(−y)3y4z4

)−4
Φ4

(
(−y)5y4z4

)−3
Φ4

(
(−y)7y4z4

)−1
Φ4

(
(−y)9y4z4

)−1
(1 +O(z5)) .

(4.118)

Relations (4.112) and (4.113) allow to extract the corresponding PSCs: denoting χs(y) = (y2s+1 −

y−(2s+1))/(y − y−1)

Ω(γc, y) = χ1(y)

Ω(2γc, y) = χ 5
2
(y)

Ω(3γc, y) = χ3(y) + χ5(y)

Ω(4γc, y) = χ 5
2
(y) + 2χ 9

2
(y) + χ 11

2
(y) + 2χ 13

2
(y) + χ 17

2
(y)

(4.119)

as anticipated in (4.78). These results agree in fact with the ones derived by means of the motivic

Kontsevich-Sobeilman wall-crossing formula [73, Appendix A.2].

4.5 Extra remarks

4.5.1 Kac’s theorem and Poincaré polynomial stabilization

Kac’s theorem. As discussed in [73, §8.2], Kac’s theorem (see e.g. [116]) implies a charge-

dependent bound on the highest-spin irreps in the Clifford vacua of BPS states. The highest

admissible spin is related to the dimensionality of the corresponding quiver variety. In the case

of interest to us, m-Kronecker quivers, the maximal spin for a state of charge (n, n) is

2J (quiver)
max (n) = (m− 2)n2 + 1 (4.120)
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Recall that Laurent decomposition of the PSC reads

Ωn(y) =

2Jmax∑
m=−2Jmax

am(n) (−y)m , (4.121)

also note that the highest power of y for the zk term of the generating function comes from

Φk((−y)2Jmax(k)ykzk) ∼ zkyk−1+2Jmax(k) + . . . . (4.122)

Then let us study the maximal power of y for the zk term of m-herd generating functions, as

predicted by equation (4.111). To do so, we consider the series expansion (4.117), where coefficients

ωk are Laurent polynomials in y. For an m-herd, the first two read

ω
(m)
1 (y) = 1, ω

(m)
2 (y) =

y2(m−1) + y−2(m−1) − 2

(y + y−1 − 2) (y + y−1 + 2)
. (4.123)

Equation (4.111) implies a recursion relation for the coefficients of (4.117). The contribution to a

particular Taylor coefficient in front of z can be represented as a sum over partitions ts,j . We label

non-negative integers ts,j by a pair of integers (s, j); s corresponds to a contribution of a term with

a shift controlled by s in (4.111), while j distinguishes formally between the terms with the same

s gathered into powers in (4.111). We sum over all possible values of ts,j inserting a Kronecker

symbol, so that only a few contribute. The recursion relation reads

ω
(m)
k (y) =

∞∑
ts,j=0

y
2
∑
s,j
sts,j

 m−2∏
s=−(m−2)

m−1−|s|∏
j=1

ω
(m)
ts,j (y)

 δk−1,
∑
s,j
ts,j (4.124)

The highest power of y is contributed by tm−2,1 = k− 1 with all the others t’s set to zero, therefore

we may recast the above as a recursion relation for the the maximal power αk for y in ω
(m)
k (y),

together with a boundary condition:

αk = αk−1 + 2(m− 2)(k − 1), α1 = 0 , (4.125)

which is solved by

αk = (m− 2)k(k − 1) . (4.126)

Since Q is related to P by (4.112), the highest power of y in the coefficient of zk is αk + (m− 1)k.

Hence, finally, the highest spin for the (n, n) state reads

2J (herds)
max (k) + k − 1 = αk + (m− 1)k . (4.127)

This entails a beautiful agreement of our formula (4.111) with previously known results from quiver

representation theory

2J (herds)
max (n) = 2J (quiver)

max (n) = (m− 2)n2 + 1 . (4.128)
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Poincaré polynomial stabilization. The relation between quiver representation theory and BPS

state counting extends to Poincaré polynomials. In our particular example the representation of the

Kronecker quiver with m arrows and a dimensional vector (n, n) is a collection of m elements of

End(Cn) [89, 118]:

R = Hom (Cn,Cn)
⊕m

(4.129)

It has a natural action of the gauge group G = GL(n,C)×GL(n,C). The BPS states are associated

with G-equivariant cohomologies of the quiver representations.

The relation between the Poincaré polynomial and the PSC reads 23

χ(m)
n (y) :=

∑
k

β
(m)
n,k y

2k

=y2Jmax(n)Ω(m)(y, nγc)

(4.130)

where β
(m)
n,k (k = 0, . . . ,dimM) are corresponding suitably defined24 Betti numbers of the moduli

space of representations, and Ω(m)(y, nγc) denotes the PSC of a BPS state of charge (n, n), with m

being the charge pairing of elementary constituents.

Explicit computations [73] of the Betti numbers suggest that they stabilize: there is a well-defined

limit

lim
n−→∞

β
(m)
n,k = β

(m)
∞,k , (4.131)

which can be recast as a limit for a polynomial

lim
n−→∞

χ(m)
n (y) = χ(m)

∞ (y) . (4.132)

Moreover, by direct inspection, this limit turns out to be independent of m: χ
(m)
∞ (y) = χ(y) for all

m; this observation implies another interesting limit

lim
m−→∞

χ(m)
n (y) = χ(∞)

n (y) . (4.133)

It turns out that these limiting polynomials are known. In fact they correspond to the Poincaré

polynomials of the classifying space B ((GLn ×GLn)/C∗) where C∗ is the subgroup of elements

(λ I, λ−1 I) [118].

23 It would be more precise to call quantity χ
(m)
n (y) a χy-genus, though if the moduli space is smooth it can be

identified with the Poincaré polynomial (see the discussion in [35, section 2.5]).
24 The BPS indices for generalized m-herds are not simple Euler-characteristics (of stable or semi-stable moduli).

The reason is that the contributions to Ω(nγ) for n > 1 involve contributions from threshold bound states, or, in the
language of quivers, from semi-stable representations of the Kronecker quiver.

The failure can be seen most drastically for the m-herd: where the Euler characteristic χ(n) for the moduli space
of stable representations of the Kronecker m-quiver, with dimension vector (n, n), vanishes for n > 1 (see the proof
of the m-herd functional equation in [115]). See also discussion in [118, s.6.5, s.7].

We thank T. Mainiero for this valuable remark.
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Numerical experiments indicate that Betti numbers satisfy an interesting inequality β
(m)
n,k ≤

β
(m+1)
n,k , implying in turn

β
(m)
∞,k ≤ β

(∞)
∞,k (4.134)

though it remains unclear why Betti numbers saturate this bound for every m ≥ 3.

It is interesting to investigate how this convergence interplays with the equation for the generating

function (4.111). As a preliminary remark, notice that the expansion of the dilog product in the

generating function allows one to relate coefficients in the formal series to the PSC

ω(m)
n (y) = yαn−2Jmax(n) 1− y2n

1− y2
Ω(m)(y, nγc)

(
1 +O(y(m−1)n)

)
. (4.135)

and by O(yp) we denote a formal series in y, starting with a term of degree p. It is simple to observe

this relation since Φn(ξ) = 1 + y1−2n 1−y2n

1−y2 ξ +O(ξ)

∏
k∈Z

Φn
(
(−y)kynzn

)ak(γ̃h)
= 1 + y1−n 1− y2n

1− y2

(∑
k∈Z

ak(γ̃h)(−y)k

)
zn +O(zn+1) (4.136)

and corrections from lower dilogarithms can be estimated by lowest values of the powers of y they

bring in.

Introducing the series

χ̃(m)
n (y) := y−(m−2)n(n−1)ω(m)

n (y) , (4.137)

we can focus on its stabilization since (assuming |y| < 1)

lim
n→∞

χ̃(m)
n (y) = (1− y2)−1χ(m)

∞ (y) ,

lim
m→∞

χ̃(m)
n (y) =

1− y2n

1− y2
χ(∞)
n (y) .

(4.138)

Performing the substitution ω
(m)
n (y) 7→ χ̃

(m)
n (y)y(m−2)n(n−1), s 7→ s − (m − 2) into (4.124) we

arrive at the following recursion relation

χ̃
(m)
k (y) =

∞∑
ts,j=0

y
2
∑
s,j
sts,j+(m−2)

∑
(s,j)6=(s′,j′)

ts,jts′,j′

×

×

2(m−2)∏
s=0

m−1−|s−(m−2)|∏
j=1

χ̃
(m)
ts,j (y)

 δk−1,
∑
s,j
ts,j

(4.139)

where the second summation in the power of y goes over different pairs of indices. In the limit

m → ∞, precisely that summation causes a localization (assuming |y| < 1 and noticing that the

power is non-negative) on partitions of k − 1 satisfying
∑

(s,j)6=(s′,j′)

ts,jts′,j′ = 0, these are partitions

consisting of just one ts,j = k − 1 with all the others being zero. Thus we are eventually left with a

summation over positions (s, j)

χ̃
(∞)
k (y) =

∞∑
s=0

(1 + s)y2s(k−1)χ̃
(∞)
k−1(y) . (4.140)
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This reproduces the result from quiver representation theory

χ(y,B ((GLn ×GLn)/C∗)) =
1− y2

(1− y2)2n
χ̃(∞)
n (y) =

1− y2

n∏
j=1

(1− y2j)2

, (4.141)

the corresponding limiting Poincaré series reads

χ(y) =
1− y2

∞∏
j=1

(1− y2j)2

. (4.142)

4.5.2 Chern-Simons, formal variables and the writhe

In this section we propose a different perspective on the formal variables introduced in §4.2.1,

together with a natural explanation for the appearance of the writhe and of the map ρ introduced

in (4.56), two prominent characters of our story.

The formal variables Υ̂ employed above have a natural interpretation in terms of a quantized

twisted flat connection. Before turning to the twisted connection, let us consider a classical flat

abelian C-valued connection on Σ, subject to certain boundary conditions at punctures. We take

the logarithm of the holonomy to be fixed to ms at the puncture zs. Let Xγ be coordinates on the

moduli space Mab ' Hom(π1(Σ),C×) with fixed choices of m, obeying

{Xγ ,Xγ′} = 〈γ, γ′〉XγXγ′ , XγXγ′ = Xγ+γ′ . (4.143)

These coordinates are holonomies

Xγ = exp

∮
γ

Aab , (4.144)

where Aab is required to have canonical structure

{Aabµ (w),Aabν (w′)} =
1

k
εµν δ

(2)(w − w′) , (4.145)

where w,w′ are local coordinates on Σ and we have used k = 1 in (4.145). εµν is the Levi-Civita

symbol normalized to ε12 = 1. Given a flat connection with this Poisson bracket, its transports

indeed obey (4.143). This also coincides with the algebra of Darboux coordinates of [60] (cf eq.

(2.3) of [64]).

Notice that the canonical structure of this flat connection coincides with the equal-time Poisson

bracket of a Chern-Simons gauge field on Σ, with noncompact gauge group C×. In the spirit of this

observation, it is easy to see that promoting the Poisson bracket to a commutator

[Âµ(w), Âν(w′)] = 2 log y εµνδ
(2)(w − w′), (4.146)
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produces corresponding “quantum” noncommutative holonomies obeying precisely the algebra of

our y-twisted formal variables

Y γ = exp

∮
γ

Â , Y γY γ′ = y〈γ,γ
′〉Y γ+γ′ . (4.147)

Honest gauge invariant holonomies should be path-ordered, however if a closed path does not self-

intersect, then path-ordering has no effect since the commutator (4.146) only contributes to trans-

verse (self-)intersections. On the other hand, if the path does contain self-intersections, the path-

ordered transport will depend on a choice of basepoint p ∈ γ

Υγp = P exp

∮ p

p

Â . (4.148)

Closed self-intersecting curves on surfaces are also known as singular knots, Wilson lines asso-

ciated to singular knots on the plane in abelian Chern-Simons theory were studied in [50], where

it was shown that the algebra of Υγp matches that of ywr(γp) Y γ , this motivates (4.56), and offers

a natural explanation for the appearance of the writhe as a consequence of path-ordering of quan-

tum holonomies. In particular this relation reveals that the Y also enjoy gauge invariance, being

proportional to the Υ up to a constant. There is an analogous story for open paths25.

In the proofs of twisted homotopy invariance of §4.2.3, it was crucial to deal with a twisted

flat connection, concretely we repeatedly used the fact that holonomy around a contractible cycle26

equals −y, resulting in (4.34). At the classical level, one way to construct such a connection is to

consider the unit circle bundle Σ̃ → Σ with a flat U(1) connection having fixed holonomy equal to

−1 around the circle fiber; then to each path on Σ one associates the transport of this connection

along the tangent framing lift of the path to Σ̃. To the best of our knowledge, quantum twisted

flat connections have not been discussed in the literature. A reasonable approach to quantizing a

twisted flat connection is to leave the holonomy on the fiber fixed to a constant, while quantizing the

holonomies on Σ in a way consistent with the symplectic structure. Alternatively, using the data of

a spin structure we can identity the moduli space of twisted flat connections with the moduli space

of ordinary flat connections and quantize the latter. Either way we produce transports obeying the

twisted algebra of our formal variables Υ̂.

The above discussion of quantum flat connections is only meant to provide an heuristic motiva-

tion for the definition of formal variables in section §4.2.1. In particular, it ignores the important

subtleties associated with the quantization of Chern-Simons connections with noncompact gauge

25Although open Wilson lines aren’t gauge invariant, they are gauge covariant and this is enough to ensure that
their algebra is gauge invariant.

26For contractible curls winding counter-clockwise
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group. A more thorough investigation of how our formal variables can be modeled on quantum

holonomies of a Chern-Simons connection should clearly be possible, given a number of works avail-

able in the literature on noncompact Chern-Simons (see e.g. [20, 44, 131, 132]). We leave this for

future work.

We expect that quantum Chern-Simons theory will provide an interesting perspective on the key

formula, equation (4.54). We recall from [63, §10] that given the data of a spectral network one

can construct a “nonabelianization map,” taking a flat C∗-connection ∇ab on Σ to a flat GL(K,C)-

connection ∇nonab on C. The key formula defining this map expresses the parallel transport of

∇nonab along a path ℘ on C in terms of a sum of parallel transports by ∇ab on Σ, weighted by

framed BPS degeneracies. (See, for example, equation (16.17) of [106].) In the quantum setting,

P exp
∫
℘
∇nonab and P exp

∫
γij′
∇ab become quantum operators on Chern-Simons theory Hilbert

spaces H nonab(C) and H ab(Σ), respectively. We conjecture that there is an isomorphism between

these Hilbert spaces φ : H nonab(C)→H ab(Σ) allowing us to interpret equation (4.54) as a quantum

version of the nonabelianization map27:

φ

(
TrP exp

∮
℘

∇nonab

)
φ−1 =

∑
a

Ω(℘, a; y) exp

∮
a

∇ab (4.149)

We stress that this is a conjecture, motivated by the present paper, and further work is needed to

make precise sense of the formula. We hope to return to this topic and make these ideas more precise

in future work.

An interpretation of y-twisted formal variables in terms of deformation quantization of the above

Poisson brackets was already suggested in [61, §6.2]. The relation of BPS states of class S theories

to Chern-Simons Wilson lines was already pointed out in [30, 31]. In those works Chern-Simons

theory appeared when considering compactifications of M5 branes in certain backgrounds, via the

duality of Chern-Simons theory to open topological strings (see also [6, 8]). Although we didn’t

find a straightforward connection to our setup, we take such results as supporting evidence that our

formal variables can be related to quantum parallel transports.

We expect there will also be very interesting further connections with non-compact WZW models

and Toda theories [119, 125], using the theory of Verlinde operators [9, 49] and β-ensembles. See

[5] for a recent review of the current state of the art. Closely related to this is the theory of check

operators [10, 71] which should provide new perspectives on the quantum version of the Darboux

expansion alluded to above.

27Related considerations have appeared in [29] and [111].
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Chapter 5

The BPS Spectrum of SU(2) N = 2∗

5.1 Review of SU(2) N = 2∗ theory

5.1.1 Classical Description

In N = 2 language, the field content consists of a vectormultiplet together with one hypermultiplet,

both are in the adjoint representation of SU(2). The N = 2 vectormultiplet contains N = 1

vectormultiplets V a, with gauge index a = 1, 2, 3, together with chiral multiplets Φa. For fixed a,

the gauge field and the scalar transform as singlets under SU(2)R while the fermions in V a and

Φa rotate into each other in the fundamental representation. The hypermultiplet features chiral

superfields Qa together with anti-chiral ones Q̃a, here the fermions are singlets of SU(2)R while

the complex scalars mix with each other as a fundamental doublet. The action can be expressed in

N = 1 language as

L =
1

8π
Im Tr

[
τ

(∫
d2θWαWα + 2

∫
d4θΦ†e−2V Φ

)]
+ Tr

[∫
d4θ

(
Q†e−2VQ+ Q̃e2V Q̃†

)
+

(∫
d2θ

(√
2 Q̃ΦQ+mQ̃Q

)
+ h.c.

)] (5.1)

where the first row is the pure N = 2 SYM kinetic term for the vector multiplet, while the second

row contains the hyper multiplet’s kinetic terms with coupling to V, Φ together with its mass terms.

5.1.2 Seiberg-Witten low energy description

The SU(2)N = 2∗ theory may be regarded as N = 4 SYM explicitly broken by a mass term down

to N = 2. From this perspective one might ask whether S-duality is preserved by the mass term. A

nontrivial check is provided by the Seiberg-Witten curve of the theory [121] which can be presented

in a manifestly SL(2,Z) invariant way: in conventions where the W bosons carry unit electric charge
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the equation of the curve is

y2 = (x− e1ũ−
1

4
e1

2m2)(x− e2ũ−
1

4
e2

2m2)(x− e3ũ−
1

4
e3

2m2) (5.2)

where ei(τ) are the roots of 4x3 − g2 x − g3, where in terms of Eisenstein series g2 = 60π−4G4(τ)

and g3 = 140π−6G6(τ) characterizing the auxiliary elliptic curve with modular parameter τ . All

coefficients of the curve are modular forms: the ei and ũ have modular weight 2, while x, y have

weights 4 and 6 respectively. To be precise, the ei are not modular forms for SL(2,Z), but only for

certain subgroups of it, however SL(2,Z) permutes them, and this presentation of the SW curve is

manifestly invariant under permutations of the ei. The parameter ũ is related to the gauge-invariant

Coulomb branch-coordinate u = 〈Trφ2〉 by

u = ũ+
1

8
e1m

2. (5.3)

As argued in [121], a weak coupling analysis indicates the presence of a singularity at u ≈ 1
4m

2

where a component of the adjoint hypermultiplet becomes massless, while flowing to low energies

one expects the theory to evolve to the pure SU(2) theory which is well known to have two singu-

larities. Overall one expects therefore three singularities on the Coulomb branch, at each of these

two branch points collide, indicating the presence of three distinct hypermultiplets, each with mon-

odromy conjugate to T 2. At a generic point in the coupling parameter space the precise positions

of the singularities can be read off eq. (5.2) to be

u1 =
3

8
m2 e1, u2,3 = ±1

8
m2 (e3 − e2). (5.4)

The two dyons becoming massless at u2,3 are exchanged under the Z2 symmetry of the pure SU(2)

Coulomb branch, identifying u1 as the singularity due to the new adjoint hypermultiplet.

The flow to the pure SU(2) theory involves sending the mass to infinity together with taking the

weak coupling limit: more precisely, letting q = e2πiτ and sending τ → i∞, m → ∞ while keeping

Λ0 = 2q1/2m2 fixed, takes the curve (5.2) to

y2 = (x̃− u)(x̃− Λ2
0)(x̃+ Λ2

0) (5.5)

where x̃ = x − 1
2e1u + 1

8m
2e1

2 is an optional shift in the x plane that highlights the u → −u

symmetry.

5.1.3 SU(2) N = 2∗ theory as a theory of class S

Following [59] we may engineer the N = 2∗ theory as a superconformal SU(2) quiver gauge theory

with a single node and a single bifundamental massive hypermultiplet (this viewpoint was first
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adopted in [133]). The UV parameter space of marginal deformations of this theory then coincides

with the parameter space of a once-punctured torus C. C arises by gluing together two punctures of

a three-holed sphere, this corresponds to gauging two of the three SU(2) flavor symmetries on the

trinion into a single SU(2) node, leaving a hypermultiplet in the bifundamental of the gauge group,

with the remaining SU(2) flavor symmetry. Turning on the mass parameter, which is represented

by the Cartan generator of SU(2), will eventually break the flavor symmetry down to the expected

U(1). The bifundamental of SU(2) reduces to the direct sum of an adjoint and a singlet, the

singlet decouples, leaving N = 2 SU(2) SYM coupled to and adjoint-valued hypermultiplet. When

m = 0 this field content actually enjoys more supersymmetry, and the theory really corresponds to

maximally supersymmetric gauge theory. When the mass deformation is instead turned on this is also

known as N = 2∗ theory. The moduli space of marginal deformations, modulo S-duality, coincides

with the moduli space of elliptic curves with a marked point, which is just is the fundamental domain

of the modular group. The Seiberg-Witten curve of this theory is a ramified double-covering of C,

with Seiberg-Witten differential (see for example [61])

λ2 =
(
ũ+ m̃2℘(z|τ)

)
(dz)2 (5.6)

where ℘ is the Weierstrass elliptic function and z is a holomorphic coordinate on the elliptic curve

C ∼ C/Λ, and Λ is the lattice generated by (1, τ). ℘ : C → C has a double pole at z = 0,

where is behaves as ℘ ∼ 1/z2. Then the SW differential exhibits a simple pole at the origin with

Resz=0λ = m̃, and has two branch points on the torus. The Seiberg-Witten curve is then a genus-two

Riemann surface with two punctures.

Let us briefly comment on the relation between this description of the SW curve and that of

equation 5.2. First, recall that ℘ and satisfies

℘(z) = ℘(z + 1) = ℘(z + τ) = ℘(−z) (5.7)

in particular this means that each point on C has two preimages on C, with the exception of the

three points ei(τ), i = 1, 2, 3 whose preimages are three vanishing loci of ℘′: 1/2, τ/2, (1+τ)/2. The

ei have the property that e1 + e2 + e3 = 0, which we’ll make use of. Starting from expression (5.7),

changing variable from z to x = ℘(z)

λ2 =
(m̃2 x+ ũ)(dz)2

4x3 − g2x− g3
(5.8)

the equation of the elliptic curve described as a branched covering of the x plane is obtained by

looking at ∂λ/∂u ≡ dx/y. Scaling y = y′ 2im̃ we have the curve

y′
2

=
(
x+

ũ

m̃2

)
(x− e1)(x− e2)(x− e3) (5.9)
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where ei depend on τ and are simply the roots of 4x3 − g2x− g3. Now employ the change of variable

x 7→ x′ = T(e1,e2,e3)(x) with

T(a,b,c)(z) :=
(z − a)(b− c)
(z − b)(a− c)

(5.10)

giving

w2 = x′(x′ − 1)(x′ − v) v =
(ũ+ e1m̃

2)(e2 − e3)

(ũ+ e2m̃2)(e1 − e3)
(5.11)

now employ an affine transformation on the x plane x′′ = ax′ + b with

a = (e1 − e3)

(
ũ+

1

4
(e1 + e3)m2)

)
b = e3ũ+

1

4
e2

3m
2

(5.12)

and where m = 2im̃, together with a rescaling y′′ = wa3/2, overall this gives

y′′
2

=

3∏
i=1

(x′′ − eiũ−
1

4
e2
im

2) (5.13)

this is precisely equation (5.2).

5.2 The spectrum generator

In this section we derive explicit expressions for those functions that correspond to the action of

the spectrum generator (1.19) on a basis of WKB coordinates, establishing the following relations

between WKB coordinates before and after an omnipop

X ϑ+π
γi = SX ϑγi = Si X ϑγi , i = 1, 2, 3 . (5.14)

In order to determine the Si, we shall follow closely the algorithm presented in [64]. The only

ingredient in the computation is the WKB triangulation. In the context of SU(2) N = 2∗ we are

dealing with a triangulation of a once-punctured torus and the typical TϑWKB for generic ϑ is of the

type shown in figure 5.1.

To each edge Ei of TϑWKB we associate a polynomial Σi (these are precisely the same polynomials

we already encountered in chapter 2, see equation (2.9); normally there would be two distinct ones,

but in this theory they coincide)

Σ1 = 1 + Xγ2
+ Xγ2+γ3

+ Xγ2+γ3+γ1
+ X2γ2+γ3+γ1

+ X2γ2+2γ3+γ1

Σ2 = 1 + Xγ3
+ Xγ3+γ1

+ Xγ3+γ1+γ2
+ X2γ3+γ1+γ2

+ X2γ3+2γ1+γ2

Σ3 = 1 + Xγ1
+ Xγ1+γ2

+ Xγ1+γ2+γ3
+ X2γ1+γ2+γ3

+ X2γ1+2γ2+γ3

(5.15)

upon defining

Ai :=
Xγi Σi

2

(1− µ2)
2 , i = 1, 2, 3 (5.16)
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E1

E1

E2E3 E3

Figure 5.1: The triangulation of C for the N = 2∗ theory: C is a torus obtained by identifying parallel
edges pairwise. The edges Ei of the WKB triangulation are shown, the elements γi of the charge lattice
are the corresponding dual cycles. The puncture on C is indicated by the thick blue dot, branch points are
indicated by orange crosses. The path for computing Σ1 is indicated in red.

with µ2 = X2γ1+2γ2+2γ3
, the spectrum generating functions can be readily expressed as

S1 =

(
1 +A2

1 +A3

)2

, S2 =

(
1 +A3

1 +A1

)2

, S3 =

(
1 +A1

1 +A2

)2

. (5.17)

This set of functions uniquely encodes the full BPS spectrum of the theory, our next step is to prove

that that our ansatz for S correctly reproduces the Si just derived.

5.3 A special decomposition of S

5.3.1 Review of SU(2) wall-crossing

Before dealing with our ansatz for the N = 2∗ spectrum, it will be useful to review some aspects

of the well known wall crossing formula of the pure SU(2) theory, as this will provide us with some

necessary tools. The two factorizations of the spectrum generator in the different regimes of strong-

and weak-coupling are related by the renowned wall crossing formula of [88]

Kγ1
Kγ2

= Π1 K−2
γ1+γ2

Π2 (5.18)

where 〈γ1, γ2〉 = 2 and we set

Π1 = Kγ2
Kγ1+2γ2

· · · Knγ1+(n+1)γ2
· · ·

Π2 = · · · K(n+1)γ1+nγ2
· · · K2γ1+γ2

Kγ1

(5.19)

the physical interpretation of this formula (first observed by Frederik Denef) was described in [60].

The purpose of this subsection is to derive explicit expressions in closed form for the action of Π1, Π2
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on Xγ1
and Xγ2

. For the sake of clarity we will denote by X (0)
γ the Darboux coordinates before acting

on them with S, together with

X (I)
γ = Π2X (0)

γ ,

X (II)
γ = K−2

γ1+γ2
X (I)
γ ,

X (III)
γ = Π1X (II)

γ .

(5.20)

Adopting a trick employed1 in the appendix of [60], we introduce a reparameterization of the Xγ ’s in

terms of two auxiliary variables a, b ∈ C. For that purpose let us introduce the following countably

infinite set of variables

xn =
cosh2(an+ b)

sinh2 a
(5.21)

enjoying the recursion relation xn+1xn−1 = (1 + xn)2. Without loss of generality we choose

X (0)
γ1

= x−1
1 , X (0)

γ2
= x0. (5.22)

The advantage of using the auxiliary xn description will now become clear, consider the action of

Π2  X
(0)
γ1 = x−1

1

X (0)
γ1+γ2

= x0x
−1
1

Kγ1−→

 X
(1)
2γ1+γ2

= x−1
2

X (1)
γ1+γ2

= x1x
−1
2

K2γ1+γ2−→

 X
(2)
3γ1+2γ2

= x−1
3

X (2)
γ1+γ2

= x2x
−1
3

· · · (5.23)

in particular, acting with the first n KS operators within Π2 yields X (n)
γ1+γ2

= xnx
−1
n+1, X (n)

(n+1)γ1+nγ2
=

xn+1. If, say, Re a,Re b > 0, then the limit n→∞ is finite for X (n)
γ1 , X (n)

γ2 and gives

Π2 :

 X
(0)
γ1 = sinh2 a

cosh2(a+b)

X (0)
γ2 = cosh2 b

sinh2 a

7→

 X
(I)
γ1 = e−2b(1− e−2a)2

X (I)
γ2 = e2(b−a)(1− e−2a)−2

, (5.24)

hence X (I)
γ1+γ2

= e−2a. Acting with K−2
γ1+γ2

then gives

X (II)
γ1

= e−2b(1− e−2a)−2

X (II)
γ2

= e2(b−a)(1− e−2a)2

(5.25)

In order to study the action of Π1 on these Darboux coordinates, it is convenient to work backwards:

by employing the strong-coupling side of the pure SU(2) wall crossing formula on the X
(0)
γ , one can

readily derive that X (III)
γ1 = x−1, X (III)

γ2 = x−1
−2. Although this is all we need to know, for the sake

of completeness we show that the wall crossing formula closes correctly: consider the action of Π−1
1

1Notice that our definition of the xn differs from theirs by a sign. This sign modifies the recursion relation of the
xn, this in turn is necessary when working with the pure SU(2) wall crossing formula while taking into account the
quadratic refinement σ(γ) within each Kγ factor, which was later introduced in [64].
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on the X (III)
γ X

(III)
γ2 = x−1

−2

X (III)
γ1+γ2

= x−1x
−1
−2

K−1
γ2−→
Kγ2←−

 X
(−1)
γ1+2γ2

= x−1
−3

X (−1)
γ1+γ2

= x−2x
−1
−3

K−1
γ1+2γ2−→
Kγ1+2γ2←−

 X
(−2)
2γ1+3γ2

= x−1
−4

X (−2)
γ1+γ2

= x−3x
−1
−4

· · · (5.26)

the n-th iteration yields X (−n)
γ1+γ2

= x−(n+1)x
−1
−(n+2), X

(−n)
nγ1+(n+1)γ2

= x−1
−(n+2). In the limit n→∞ we

recover

X (−n)
γ1+γ2

−→ e−2a ≡ X (II)
γ1+γ2

X (−n)
γ1

−→ e−2b(1− e−2a)−2 ≡ X (II)
γ1

.

(5.27)

Overall, we found

Π1 :

 X
(II)
γ1 = e−2b(1− e−2a)2

X (II)
γ2 = e2(b−a)(1− e−2a)−2

7→

 X
(III)
γ1 = cosh2(b−a)

sinh2 a

X (III)
γ2 = sinh2 a

cosh2(b−2a)

, (5.28)

By inverting the LHS of the above relation, we find e−2a = X (II)
γ1+γ2

and e−2b = X (II)
γ1 (1− X (II)

γ1+γ2
)2.

Replacing these on the right-hand side, we find the action of Π1 on the WKB basis coordinates

X (III)
γ1

= X (II)
γ1

(1 + X (II)
γ2 (1 + X (II)

γ1 (−2 + X (II)
γ1+γ2

)))2

(1−X (II)
γ1+γ2

)4

X (III)
γ2

= X (II)
γ2

(1−X (II)
γ1+γ2

)4

(1 + X (II)
γ1+γ2

(−2 + X (II)
γ2 + X (II)

γ1+γ2
))2

, .

(5.29)

This is the expression we were after, as we will see shortly, it will enable us to express the Poisson

transformation given by equations (1.19) and (1.18) in closed form. An analogous expression for Π2

can be obtained by the same method.

5.3.2 The spectrum at the special locus

Let us consider the low energy theory at some point u ∈ E3 where ArgZ(γ2) > ArgZ(γ1), our ansatz

for the spectrum generator reads

S = Π1 Kγf−(γ1+γ2)K−2
γ1+γ2

Kγf+(γ1+γ2) Π2 (5.30)

notice that the central charges corresponding to the three K operators in the middle have exactly

the same phase, a fact that could potentially introduce an ambiguity of the ordering. The ambiguity

is absent in this case, because the three operators commute. Adopting a notation analogous to that

of the previous subsection, we will denote by X (0)
γ the set of WKB coordinates before acting on them
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with S, together with

X (I)
γ = Π2X (0)

γ ,

X (II)
γ = Kγ0−(γ1+γ2)K−2

γ1+γ2
Kγ0+(γ1+γ2)X (I)

γ ,

X (III)
γ = Π1X (II)

γ .

(5.31)

Unlike in the previous subsection, we are now working with a rank 3 lattice generated by γ1, γ2, γ3

with intersection pairing 〈γi, γi+1〉 = 2 (the index i here runs cyclically from 1 to 3). Nevertheless,

notice that Xγf = Xγ1+γ2+γ3
remains unchanged by each of the Kγ , we shall rename this distin-

guished coordinate as µ (compatibly with the definition below eq. (5.16)). This means that, at any

stage during the computation, we only need to compute the action of K operators on Xγ1
,Xγ2

, while

Xγ3
will follow as

X (K)
γ3

=
µ

X (K)
γ1 X

(K)
γ2

. (5.32)

Once again, we will employ the auxiliary variables xn, and choose X (0)
γ1 = x−1

1 , X (0)
γ2 = x0 to begin

with. We already know the action of Π2 from (5.24), hence we start from the X (I)
γ and act on them

with Kγ0−(γ1+γ2)K−2
γ1+γ2

Kγ0+(γ1+γ2), this yields

X (II)
γ1

= e−2b

(
1 + e−2aµ

)2
(1− e−2a)

2
(1 + e2aµ)

2

X (II)
γ2

= e2(b−a)

[ (
1 + e−2aµ

)2
(1− e−2a)

2
(1 + e2aµ)

2

]−1

X (II)
γ1

= e2aµ

(5.33)

Then, acting with Π1 is achieved by employing (5.29), which gives

X (III)
γ1

= e−2b

(
e4a + e2(a+b) + 2e2aµ+ 2e4a+2bµ+ µ2 + e6a+2bµ2

)2
(1− e2a)

2
(e2a + µ)

2
(1 + e2aµ)

2

X (III)
γ2

= e2(a−b)
(
1− e2a

)2 (
e2a + µ

)2 (
1 + e2aµ

)2(
e4a + e2b + 2e2aµ+ 2e2(a+b)µ+ µ2 + e4a+2bµ2

)2
X (III)
γ3

= e2aµ

(
e4a + e2b + 2e2aµ+ 2e2(a+b)µ+ µ2 + e4a+2bµ2

)2(
e4a + e2(a+b) + 2e2aµ+ 2e4a+2bµ+ µ2 + e6a+2bµ2

)2
(5.34)

At this point one could solve equations (5.22) for a, b and substitute into the above ones, to express

the X (III)
γ in terms of the original basis X (0)

γ . Since this would be cumbersome, we will instead

employ equations (5.22) to express the Si in terms of a, b, µ and show that they match with our
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result (5.34). From the discussion of §5.2, in our current notation the Si are given by (5.17) with

A1 := X (0)
γ1

(
1 + X (0)

γ2 + X (0)
γ2+γ3

+ X (0)
γ2+γ3+γ1

+ X (0)
2γ2+γ3+γ1

+ X (0)
2γ2+2γ3+γ1

)
2

(1− µ2)
2

A2 := X (0)
γ2

(
1 + X (0)

γ3 + X (0)
γ3+γ1

+ X (0)
γ3+γ1+γ2

+ X (0)
2γ3+γ1+γ2

+ X (0)
2γ3+2γ1+γ2

)
2

(1− µ2)
2

A3 := X (0)
γ3

(
1 + X (0)

γ1 + X (0)
γ1+γ2

+ X (0)
γ1+γ2+γ3

+ X (0)
2γ1+γ2+γ3

+ X (0)
2γ1+2γ2+γ3

)
2

(1− µ2)
2

(5.35)

Together with (5.22), these entail

X (0)
γ1
S1 = e−2b

(
e4a + e2(a+b) + 2e2aµ+ 2e4a+2bµ+ µ2 + e6a+2bµ2

)2
(1− e2a)

2
(µ+ e4aµ+ e2a (1 + µ2))

2 ,

X (0)
γ2
S2 = e2b

(
1 + µ2 + µ(e2a + e−2a)

)2
(ea − e−a)2

(2 (1 + e2b)µ+ (1 + e2b) (1 + µ2) (e2a + e−2a)/2 + (1− e2b) (1− µ2) (e2a − e−2a)/2)
2 ,

X (0)
γ3
S3 = e2aµ

(
e4a + e2b + 2e2aµ+ 2e2(a+b)µ+ µ2 + e4a+2bµ2

)2(
e4a + e2(a+b) + 2e2aµ+ 2e4a+2bµ+ µ2 + e6a+2bµ2

)2 .
(5.36)

The first and third lines coincide with (5.34). A little algebra shows that the middle line also

coincides, as claimed.

5.4 Wall crossing to other chambers

So far we discussed the BPS spectrum at some very particular loci on the Coulomb branch. As

we will see, the spectrum becomes much more complicated as we move away from those loci. In

particular, an infinitesimally small perturbation in u will induce wall crossing and produce an infinite

amount of BPS vector multiplets, together with their cohorts of hypermultiplets.

Recall that the central charges of the lattice basis are related by

Z(γ1) + Z(γ2) + Z(γ3) = m (5.37)

Let us now consider an infinitesimal perturbation away from the condition ArgZ(γ1+γ2) = Argm =

ϑ0, more precisely, consider moving on the Coulomb branch along an infinitesimal path away from E3,

where Z(γ2) remains unchanged and Z(γ1) changes by ρ eiφ, 0 < ρ� |Z(γi)|, φ = ArgZ(γ1) +π/2.

In other words, we consider a perturbation which “closes” slightly the wedge between Z(γ1) and

Z(γ2), while leaving Z(γ2) unchanged (recall that ArgZ(γ1) < ArgZ(γ2)). Since m does not depend

on u, then Z(γ3) rotates clockwise to Z(γ3) − ρ eiφ by a phase δφ3. Conversely, Z(γ1 + γ2) and

Z(γf + γ1 + γ2) will undergo infinitesimal counter-clockwise rotations by respective phases δφ12 and

δφ3̄, furthermore δφ3̄ < δφ12.
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Γ1

Γ2

Γ3

m

Γ1 + Γ2

2 Γ1 + 2 Γ2 + Γ3

Γ1

Γ2

Γ3

m
Γ1 + Γ2

2 Γ1 + 2 Γ2 + Γ3

Figure 5.2: On the left: the configuration of central charges on the locus E3. On the right: the central
charges after perturbing away from the special locus

Accordingly, the spectrum generator evolves to

Π1K−2
γ1+γ2

· · ·?? · · · Kγf+(γ1+γ2) · · ·?? · · · Kγ3K(n′+1)γ1+n′γ2
· · · K2γ1+γ2Kγ1 (5.38)

where n′ is the largest positive integer such that ArgZ((n′ + 1)γ1 + n′γ2) < ArgZ(γ3). The central

charges of BPS hypermultiplets within Π2 accumulate at the phase of Z(γ1 + γ2), therefore as we

perturb away from the situation of §5.3.2 the Kγ3
factor will cross infinitely many K factors within

Π2, stopping at a “finite distance” of n′ operators from the right end. It is important that Kγ3 leads

the way in front of Kγf+(γ1+γ2), this ensures that at each wall of marginal stability crossed by γ3 one

has 〈γ3, (m+ 1)γ1 +mγ2〉 = 2. In other words, upon crossing each wall, the portion of S affected by

wall crossing of γ3 will change as prescribed by the pure SU(2) wall crossing formula. This occurs

(countably) infinitely many times: as Kγ3
proceeds across the MS walls of the charges in Π2 it leaves

behind a wake of vector multiplets of charges (n + 1)γ1 + nγ2 + γ3 for n > n′ and relative cohorts

of hypermultiplets. The advance of Kγ3 is followed by that of Kγf+(γ1+γ2), this operator will find

on its way the remnants of the infinitely many wall crossings caused by its predecessor. These are

harder to follow systematically, because there could in principle be walls of marginal stability where

two charges have arbitrarily large (positive or negative, though always even) intersection pairing.

Extensive experimentation suggests that the only type of wall crossing actually occurring is the one

encountered in pure SU(2) SYM, although we don’t have a proof of this.

In keeping with our approach of pairwise permuting adjacent K-operators of S, it should be noted

that the products of the infinitely many wall crossing formulae will interact among themselves, giving

rise to new “second generation” wall crossing phenomena. There is no good reason to think that this
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should stop at the second generation of BPS states, hence we expect the structure to be extremely

intricate as we move further away from the Ei. Given the complexity of this structure, the absence

Figure 5.3: A spectral network Wζ of the SU(2) N = 2∗ theory. Away from the exceptional loci, it is
difficult to study the spectrum systematically by keeping track directly of the jumps of the network, as
these occur for infinitely many values of the phase ζ. While in the example of SU(2) pure SYM (which also
exhibits an infinite sequence of jumps) there is a clear pattern for the cycles involved in the jumps, there is
no evidence of a general pattern in this theory, save for the exceptional locus E .

of wild chambers on B appears to be rather nontrivial, and worthy of further investigation.

We should also point out that, if we started perturbing in the opposite direction, i.e. “opening”

the wedge between Zγ1 and Zγ2 , we would just have encountered a mirror situation. Once again

Kγ3
leads the way through the infinitely many hyper multiplet’s Kγ within Π1, with Kγf+(γ1+γ2)

following. In this case, just like in the previous one, the wall crossing formula of the pure SU(2)

theory governs the wall crossing phenomena induced by Kγ3
, since 〈mγ1 + (m+ 1)γ2, γ3〉 = 2.

In conclusion, it seems difficult to give an explicit exact description of the spectrum away from the

exceptional locus E , at least within the approach of explicitly keeping track of the phase-reordering

of K operators in S, which would be induced by varying u. The main difficulties are presented by

the rapid proliferation of 2-cohorts as we move away from the special locus, and by their “mutual

interactions2”. Nevertheless, thanks to the exact expression of the spectrum generating functions

(5.17), a truncated version of the spectrum can be obtained algorithmically3 for arbitrary values of

the moduli, to arbitrary precision.

2The non-commutivity of the K operators from different, but overlapping (in the central charge plane), cohorts.
3An illustration of such an algorithm was given above, in section 3.4.1.
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Chapter 6

Future Directions

We conclude with a collection of questions and new directions suggested by our work.

6.1 Open Problems

1. It is natural to guess that wild degeneracies will be a common feature among higher rank

theories of class S. Strictly speaking, the only examples we have given are for gauge group

SU(3), but we fully expect that the phenomenon will persist for SU(K) with K > 3. This is

strongly suggested by the quiver analysis of Section 3.5, but a fully rigorous proof would require

that one demonstrate that the path exhibited in the moduli space of stability parameters of

the the Fiol quiver, which leads to wild wall crossing for K > 3, actually can be chosen in

the moduli space of physical stability parameters. (While not fully mathematically rigorous, a

compelling physical argument that this is indeed the case is that we could consider a hierarchy

of symmetry breaking where SU(K) is much more strongly broken to SU(3)× U(1)K−3 than

the SU(3) is broken to U(1)2.)

2. Another open problem along similar lines is how the presence of, say, matter multiplets affects

the existence of wild degeneracies.

3. It should be noted that the explicit point on the Coulomb branch illustrated in Figure 3.5 is

in fact different from the region explored in Section 3.3.2. Nevertheless, using the techniques

of Appendix C we have checked that the same crucial algebraic equation (4.111) governing

the street factors of herds indeed appears in the spectral networks that arise in this region.

These networks are very similar to but not quite the same as the m-herds. One might ask for

a succinct test to see whether a degenerate spectral network leads to m-wild degeneracies.
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4. It would be nice to understand better the physics of the curious invariance of the BPS degen-

eracies under the transformation by the gm matrix discussed in Section 3.5.2 above. To the

extent that the relation to quivers is physical, a physical understanding is indeed provided by

the arguments in Section 3.5. However, we would like to suggest an alternative interpretation

using the halo picture of BPS states. If we consider a core particle γ with halo particles of

charge γ′ then the replacement of the hypermultiplet of charge γ for the hypermultiplet γ+mγ′

is simply flipping the Fermi sea of the halo Fock space. (See, e.g. Section 3.5 of [13] for a

similar transformation.) Perhaps then a physical derivation of the symmetry could proceed by

using Fermi flips to establish such a symmetry for framed BPS states and then using recursion

relations between framed and unframed BPS states to deduce it for general degeneracies. This

symmetry also raises the interesting possibility that the mutation method for determining BPS

degeneracies can be extended to higher spin states.

5. The gm symmetry of Kronecker quivers makes a surprising prediction about two well-known for-

mulae: Reineke’s formula for Poincaré polynomials of quiver varieties [117], and the Manschot-

Pioline-Sen wall-crossing formula [98, 99]. These formulae involve sums over certain partitions.

For certain charges, there is rather extensive cancelation between terms in these formulae im-

plied by the gm symmetry of the BPS degeneracies. Since the individual terms in the sum

in the MPS formulae have a simple geometrical interpretation [99] the gm symmetry together

with the MPS formula imply nontrivial identities on equivariant Dirac indices. For a simple

and dramatic example we can choose m = 3 and note that that (1, 1) has a very simple PSC,

but

(g3)k ·
(

1

1

)
=

(
F2k−1

F2k+1

)
(6.1)

(where Fn is the nth Fibonacci number) involves arbitrarily large charges. Clearly there are

many terms in the MPS formula (3.99) and, as we just said, their coefficients have a beautiful

geometrical interpretation as equivariant indices of Dirac operators on the Denef moduli spaces.

So the identity1

Ω((F2k−1, F2k+1); y) = Ω((1, 1); y) = [3]y (6.2)

is a very remarkable set of identities for these indices. It would be interesting to understand

better these identities (and their analogues for m > 3) from a geometrical point of view.

1We use the notation [n]y := yn−y−n
y−y−1
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6. Returning to the key algebraic equation (4.111), a natural question is whether there is a

physical interpretation of the other roots of this equation. We expect that there will be.

For example, choose a small path ℘ crossing a c-street in an m-herd. The corresponding

supersymmetric interface has a vev when wrapped on the circle in R3 × S1 given by

〈Lζ(℘)〉m =


q(m, ζ) 0 0

0 1 0

0 0 q(m, ζ)

 (6.3)

where m is a point in Hitchin moduli space M, ζ ∈ C∗ has phase Arg ζ = ArgZ(γ + γ′), and

q(m, ζ) = Q(c)|Xγc→Yγc , where Yγc is a function on the twistor space of the Hitchin moduli

space M constructed in [60, 63]. It therefore makes sense to ask about the physical meaning

of the analytic behavior of 〈Lζ(℘)〉, and this might well involve the other roots of (4.111).

Exploring this point further is beyond the scope of this paper.

7. A closely related point to the previous one is that the exponential growth of Ω for certain

charges implies a similar exponential growth for µ and therefore for Ω. We expect this will

have important implications for the construction of hyperkahler metrics of associated Hitchin

systems proposed in [60] and for the definition of the nonabelianization map of [63, 70]. Again,

we leave this important point for future work.

8. The implications of our conjectures on the spin of framed BPS states in presence of “generic

interfaces” raised some interesting questions. For one thing, compatibility with the halo picture

required the introduction of auxiliary “flavor charges”, these played the role of a refinement in

the homological classification of paths on Σ, in particular accounting for important corrections

to the writhe of detours. We also noticed how the jumps of F(℘, ϑ; y) may be understood in

terms of boundstates of the interface with part of the vanilla BPS multiplets, leading to the

notion of phantom halos. While this interpretation fits nicely with the data extracted from

spectral networks, a better understanding of these mechanisms may be achieved by studying

physical models of framed wall crossing of interfaces. One example of such a model was

considered in appendix D.2 of [65].

9. The interpretation of the formal Υ̂ variables as line operators of an abelian Chern-Simons

theory on Σ × R, played the role of an effective guiding principle in formulating a consistent

algebra. However, there are a few hints suggesting to take this analogy more seriously. One of

them is the observation [56–58] that 4d N = 2 theories on S3 × S1 are dual to q-deformed 2d
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Yang-Mills, which can also be viewed as an analytic continuation of a Chern-Simons theory

away from integer rank [7]. Likewise, the appearance of complex Chern-Simons in 3d compacti-

fications of the (2, 0) theory [37, 94] may be taken as another compelling argument for pursuing

this analogy further. At any rate, from this perspective, the formal parallel transport F may

be interpreted as an explicit relation between algebras of observables of two different quantum

theories of flat connections: one involving an abelian connection on Σ, the other involving

a non-abelian connection on C. The statement about this duality can be formulated rather

sharply, thanks to the precise rules involved in our construction of F. It would be interesting

to check this correspondence directly, for example by explicitly constructing the Hilbert spaces

associated with flat connections on C and Σ, as well as the corresponding line operators.

10. While it is true that the spectrum generator of SU(2) N = 2∗, together with the algorithm

of section 3.4.1, allows to determine the spectrum to arbitrary accuracy in any region of B, a

more explicit description remains elusive. Away from the exceptional locus E the structure of

the spectrum appears to be in general rather intricate, and particularly difficult to describe

in the language of “cohorts”. The shortfall is due to the infinite number of K operators

undergoing phase-reordering within S, as we perturb away from the exceptional locus. This is

in contrast with familiar situations where phase-adjacent K operators are permuted pairwise

in a controllable way. We believe that a more suitable language to describe this spectrum may

exist, this would likely involve conceiving a suitable generalization of the concept of “cohort”

for the case of simultaneous multi-K reshuffling within S. We regard this as an interesting

question, since finding such a description would likely lead to a broader understanding of the

workings of the Kontsevich-Soiberlman wall crossing formula, and vice versa. The spectrum

generator technique provides a vast amount of potentially important clues towards this goal.

11. Another lesson we take away from theN = 2∗ story, is how important it is to have an algorithm

for computing S from the topology of a single WKB triangulation. As we mentioned, it would

have been extremely difficult to guess the full spectrum generator by simply studying the

jumps of the spectral network in a generic chamber of the Coulomb branch. However, such

a prescription for deriving the spectrum generator only exists for the vanilla and 2d-4d BPS

spectra of A1-type theories of class S [64, 95]. We do not see any obvious obstruction to the

existence of such a relation of S to generic spectral networks, finding it would significantly

enhance the effectiveness of the spectral network technique for studying BPS spectra.
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6.2 Taking stock

A natural question to ask at this point is: how much have we learned about BPS spectra?

Our viewpoint is that there are still important open questions that have been only partially

answered by the recent major breakthroughs in BPS spectroscopy [11, 12, 63, 64, 99] and the

subsequent developments.

For example, we may consider the interpretation of vanilla 4d BPS states as supersymmetric

configuration of M2 branes suspended between M5 branes. The geometry of such membranes

was studied long ago [80, 102, 103] for the simplest cases of BPS hypermultiplets and vector-

multiplets, but the discovery of wild spectra immediately raises the question the classification

of infinitely many new states. Of course, critical spectral networks such as m-herds and

m− (p, q)-herds offer precious clues for answering this question.

The sector of pure flavor 4d BPS states is another aspect demanding further attention. In

fact, while these states are successfully detected by jumps of spectral networks, the KS wall

crossing formula is “blind” to them. This is because Kγf commutes with any Kγ operator,

since γf has vanishing 〈·, ·〉 pairing with any cycle γ. Thus, the wall crossing behavior of pure

flavor states remains undetermined: for example, in a theory with a wall of marginal stability

MS(γ, γ′) such that γ+ γ′ = γf , the KS formula doesn’t tell us whether the BPS index Ω(γf )

undergoes a jump, or not. As a hint to the potential interest of these states, it’s worth recalling

that the main characters of this work, namely “vanilla” 4d BPS states themselves, appeared

precisely as pure flavor states from the viewpoint of 2d BPS spectra on surface operators in

coupled 2d-4d systems.

A third direction awaiting to be explored, is the extension of spectral networks beyond

S[An, C,D] theories with spectral covers in the defining representation. Generalizing the

construction of spectral networks both to other simply-laced Lie algebras, and to higher-

dimensional representations for the spectral cover, requires to deal with some rather nontrivial

new features [62, 97]. On the one hand, the generalization to D,E-type Lie algebras seems to

involve novel propagation rules of 2d solitons across joints, possibly leading to critical networks

with novel topologies, and to corresponding algebraic/functional equations of a new type. On

the other hand, the physical meaning of going beyond the defining representation is an inter-

esting open question, especially from the viewpoint of the brane construction of 2d-4d coupled
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systems and their 2d-4d BPS states. This subject is being actively investigated at the time of

this writing [97].
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Appendix A

Protected spin characters of the

3-Kronecker quiver

In this subsection we discuss some data for the “refined BPS degeneracies,” or, more properly, the

“protected spin character.” First, we recall some definitions. Then we present the data.

A.1 Spin decompositions

Short irreducible representations of the N = 2 superalgebra take the general form [104, 129]

ρhh ⊗ h (A.1)

where ρhh = (1/2, 0) ⊕ (0, 1/2) is the half-hypermultiplet representation of so(3) ⊕ su(2)R, and h is

the Clifford vacuum. It has been shown recently in [35] that the Clifford vacuum is actually a singlet

of su(2)R, this fact had been previously known as the no-exotics conjecture.

In order to extract information about the spin decomposition of the BPS index, we study a

refinement known as the protected spin character (see e.g. [61, 106])

Ω(γ, u; y) = Tr hγy
2J3(−y)I3

=
∑
m

am(γ, u) (−y)m,
(A.2)

where J3, I3 are Cartan elements of so(3), su(2)R respectively, and the last line defines the coefficients

am. The PSC reduces to the BPS index in the limit y → −1.

For a given charge γ, hγ has an isotypical decomposition into so(3) reps:

hγ =
⊕
j

(
Dj ⊗ (j, 0)

)
(A.3)
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where the degeneracy space Dj is a complex vector space of dimension δγ(j). Therefore

Ω(γ) =
∑
j

(−1)2jδγ(j)(2j + 1). (A.4)

The numerical evidence given below suggests that the degeneracies δγ(j) for the 3-Kronecker quiver

satisfy the following property: for fixed γ, δγ(j) 6= 0 only for 2j of a definite parity.1 For such spin

degeneracies note that

(−1)2jΩ(γ) = dimHγ . (A.5)

Of course, knowing Ω(γ) does not determine the isotypical decomposition. In order to determine that

we need to employ a generalization of the KSWCF known in the physics literature as the “motivic”

KSWCF [42, 61, 87, 88, 90]. We introduce a set of non-commutative formal variables obeying

Ŷγ Ŷγ′ = y〈γ,γ
′〉Ŷγ+γ′ , ∀γ, γ′ ∈ Γ . (A.6)

The generalization of (3.30) is then (for details, see [61])

K̂Ω(γ;y)
γ : Ŷγ0

7→ Ŷγ0

∏
m∈Z

(
Φ〈γ0,γ〉((−y)mŶγ)

)am (sign〈γ0,γ〉)
(A.7)

where the am are defined according to (A.2), and

Φn(ξ) :=

|n|∏
s=1

(1 + y− sign(n)(2s−1)ξ). (A.8)

Let us now apply this formalism to the case at hand, namely the 3-Kronecker quiver. The motivic

version of the wall crossing identity is

K̂γ2K̂γ1 = :
∏

aγ1+bγ2
a,b≥0

K̂Ω(aγ1+bγ2;y)
γ : (A.9)

The RHS admits a unique decomposition with the required charge orderings and hence this equation

fully determines the Ω(aγ1 + bγ2; y).

In practical terms the protected spin characters can be extracted from this formula as follows.

First, acting with the operator on the LHS of (A.9) on the formal variable Ŷγ1
, yields 2

Ŷγ1
+
(
y−2 + 1 + y2

)
Ŷγ1+γ2

+
(
y−2 + 1 + y2

)
Ŷγ1+2γ2

+ Ŷγ1+3γ2
. (A.10)

with a similar formula for the action on Ŷγ2
. Then, we apply an inductive procedure directly

analogous to that used in (3.55) for the ordinary BPS indices.

We report the resulting PSCs in A.2, for charges up to a+ b ≤ 15 .

1Indeed the data suggests that 2j must be odd for γ = aγ1+bγ2 with a, b both even and 2j must be even otherwise.
2As a side note, this implies that a line defect with charge γ1 would support halo configurations of vanilla

hypermultiplets, with overall halo charges γh = kγ2, k = 0, 1, 2, 3. The so(3) representations of the respective framed
BPS states would have spin j = 0, 1, 1, 0 (see [61, 106]). These can also be thought of as the Hall-halo configurations
of [39].
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A.2 The data

The following tables report the content of BPS boundstates corresponding to the 3-Kronecker

quiver, only a quarter of the spectrum is given3 , the rest is determined by symmetry. For

convenience, boundstates are ordered according to the phase of the central charge. Here j labels

the so(3) irrep of the Clifford vacuum, while δ counts the number of occurrences of such irreps.

γ j δ

γ1 0 1

3γ1 + γ2 0 1

8γ1 + 3γ2 0 1

10γ1 + 4γ2 5/2 1

5γ1 + 2γ2 1 1

7γ1 + 3γ2 3 1
5 1

9γ1 + 4γ2 0 2
1 2
2 3
3 2
4 2
6 1

2γ1 + γ2 1 1

4γ1 + 2γ2 5/2 1

6γ1 + 3γ2 3 1
5 1

8γ1 + 4γ2 5/2 1
9/2 2
11/2 1
13/2 2
17/2 1

10γ1 + 5γ2 1 1
3 2
4 2
5 4
6 4
7 5
8 4
9 4
10 2
11 2
13 1

γ j δ

9γ1 + 5γ2 0 7
1 25
2 30
3 38
4 32
5 31
6 23
7 21
8 12
9 11
10 6
11 5
12 2
13 2
15 1

7γ1 + 4γ2 0 5
1 5
2 11
3 7
4 9
5 4
6 5
7 2
8 2
10 1

5γ1 + 3γ2 0 2
1 2
2 3
3 2
4 2
6 1

γ j δ

8γ1 + 5γ2 0 17
1 32
2 55
3 55
4 61
5 48
6 44
7 30
8 25
9 15
10 12
11 6
12 5
13 2
14 2
16 1

3γ1 + 2γ2 1 2
3 1

6γ1 + 4γ2 1/2 4
3/2 7
5/2 11
7/2 7
9/2 10
11/2 5
13/2 5
15/2 2
17/2 2
21/2 1

3I.e. one half of the particle spectrum, namely dimension vectors with non-negative entries.
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γ j δ

9γ1 + 6γ2 0 31
1 125
2 173
3 241
4 251
5 279
6 255
7 244
8 201
9 177
10 129
11 109
12 74
13 58
14 37
15 29
16 15
17 13
18 16
19 5
20 2
21 2
23 1

7γ1 + 5γ2 0 17
1 32
2 55
3 55
4 61
5 48
6 44
7 30
8 25
9 15
10 12
11 6
12 5
13 2
14 2
16 1

γ j δ

4γ1 + 3γ2 0 2
1 2
2 3
3 2
4 2
6 1

8γ1 + 6γ2 1/2 94
3/2 171
5/2 242
7/2 263
9/2 291
11/2 263
13/2 252
15/2 203
17/2 179
19/2 128
21/2 109
23/2 71
25/2 58
27/2 35
29/2 29
31/2 15
33/2 13
35/2 6
37/2 5
39/2 2
41/2 2
45/2 1

5γ1 + 4γ2 0 5
1 5
2 11
3 7
4 9
5 4
6 5
7 2
8 2
10 1

γ j δ

6γ1 + 5γ2 0 7
1 25
2 30
3 38
4 32
5 31
6 23
7 21
8 12
9 11
10 6
11 5
12 2
13 2
15 1

7γ1 + 6γ2 0 23
1 95
2 119
3 160
4 150
5 157
6 131
7 124
8 91
9 83
10 57
11 49
12 31
13 26
14 14
15 13
16 6
17 5
18 2
19 2
21 1
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γ j δ

8γ1 + 7γ2 0 135
1 353
2 562
3 677
4 765
5 762
6 752
7 679
8 619
9 522
10 455
11 363
12 304
13 231
14 188
15 135
16 109
17 73
18 57
19 36
20 28
21 16
22 13
23 6
24 5
25 2
26 2
28 1

γ j δ

γ1 + γ2 1 1

2γ1 + 2γ2 5/2 1

3γ1 + 3γ2 3 1
5 1

4γ1 + 4γ2 5/2 1
9/2 2
11/2 1
13/2 2
17/2 1

5γ1 + 5γ2 1 1
3 2
4 2
5 4
6 4
7 5
8 4
9 4
10 2
11 2
13 1

6γ1 + 6γ2 1/2 1
3/2 2
5/2 5
7/2 5
9/2 11
11/2 9
13/2 18
15/2 15
17/2 20
19/2 15
21/2 18
23/2 9
25/2 11
27/2 5
29/2 5
31/2 2
33/2 2
37/2 1

γ j δ

7γ1 + 7γ2 0 1
1 10
2 12
3 23
4 28
5 41
6 48
7 63
8 68
9 79
10 77
11 79
12 68
13 63
14 48
15 41
16 29
17 23
18 14
19 12
20 6
21 5
22 2
23 2
25 1
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Appendix B

The Six-Way Junction

For reference, we present some basic conditions on soliton generating functions as enforced by the

homotopy invariance of the framed 2D-4D generating functions F (℘, ϑ). First, using the convention

described in Section 3.1.2.1, we assign every two-way street an orientation. If the network in question

is degenerate, we resolve all two-way streets into “constituent one-way streets” using the British

resolution: let p be a two-way street; using the orientation on p, we resolve p into two one-way

Figure B.1: A six-way junction. Two-way streets are resolved into one-way constituent streets using the
British resolution. Streets of type 12 are red, type 23 are blue, and type 13 are fuchsia. A soliton generating
function attached to a (one-way constituent) street is shown adjacent to its respective street. Subscripts
on the soliton generating functions are ordered pairs ij ∈ {1, 2, 3}2 denoting the type of solitons that the
generating function “counts”.
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streets running in opposite directions, infinitesimally displaced from one another, and such that the

street pointing along the orientation of p is to the left of the street running against the orientation.

If p is a two-way street of type ij (i.e. composed of coincident streets of type ij and type ji), then

(after resolving) the street on the left is of type ij and the street on the right is of type ji.

Just as with Kirchoff’s circuit laws it is most convenient to express our equations locally around

each joint (or branch point). Hence, rather than expressing them in terms of the street-dependent

Υ/∆ notation introduced in (3.13)-(3.14), we will temporarily adopt a joint-dependent notation.

Definition Let v ∈ C be a joint or branch point, then τij will denote the soliton generating function

attached to a constituent one-way street of type ij running out of v, and νij will denote the soliton

generating function attached to a constituent one-way street of type ij running into v.

In a full spectral network, the joint dependent τ, ν notation can become redundant; so we will

eventually revert back to the Υ/∆ notation in Appendix C.

To define products of soliton generating functions properly we introduce the following.

Definition Let η be a formal variable that acts on each formal variable Xa in the homology path

algebra via

ηXa = Xatw ,

where, at the level of 1-chains, atw is the 1-chain produced by inserting a half-twist along the circle

fiber of Σ̃→ Σ at some point1 along a.

Remark It is immediate that ∀G ∈ A

η2G = XHG = −G.

We now consider a general type of joint, that can occur for a spectral network subordinate to a

branched cover with K ≥ 3 sheets, where six (possibly two-way) streets meet. The situation is shown

in Fig. B.1: the (relevant) sheets of the cover are labeled from 1 to 3, and the soliton generating

functions attached to a constituent one-way street (under the British resolution of all possible two-

way streets) are shown adjacent to their corresponding sheet. Using homotopy invariance of F (℘, ϑ),

1Up to homotopy (rel endpoints) the insertion point does not matter; hence, it is irrelevant for relative homology.
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one arrives at the six-way junction equations:2

τ12 = ν12 + ητ13ν32,

τ23 = ν23 + ητ21ν13,

τ31 = ν31 + ητ32ν21,

τ21 = ν21 + η−1ν23τ31,

τ32 = ν32 + η−1ν31τ12,

τ13 = ν13 + η−1ν12τ23.

(B.1)

At a branch point of type ij, we will assume that there is at most one two-way street, of type

ij, emanating from the branch point; on this two-way street we will take

τij = Xaij

where aij is the charge of a simpleton.3 As described at the end of Section 3.1.2, fixing a point

z near the branch point, such a simpleton is represented by a path which runs from the lift of z

on sheet i to the lift of z on sheet j. In [63] one can find a more general rule accommodating the

situation of three two-way streets emanating from the branch point; however, we will not need this

generalized rule for m-herds.

2In [63] these equations were erroneously written without the factors η, η−1.
3The coefficient of µ(aij) = 1 in front of Xaij is a result of the soliton input data (3.12).
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Appendix C

m-Herds in Detail

C.1 Notational Definitions

We will consider four distinct branch points of a branched cover Σ → C of degree K ≥ 3. On any

local region on C ′, where the cover may be trivialized, only three sheets will be relevant and we will

label the relevant sheets from 1 to 3. Label the branch points from 1 to 4 such that branch points

1 and 3 are branch points of type 12, while branch points 2 and 4 are branch points of type 23. For

each branch point i ∈ {1, · · · , 4} we will choose a simpleton (cf. the end of Section 3.1.2) si with

endpoints on distinct lifts of some zi ∈ C ′ close to the ith branch point. s1 and s2 will be simpletons

of type 12 and 23, respectively, while s3 and s4 will be of type 21 and 32, respectively. We denote

the charges of these simpletons by

a∗ = [s1] ∈ Γ12(z1, z1)

b∗ = [s2] ∈ Γ23(z2, z2)

a∗ = [s3] ∈ Γ21(z3, z3)

b∗ = [s4] ∈ Γ32(z4, z4).

(C.1)

More often, however, computations are performed in the “Z/2Z-extended” sets Γ̃(z̃,−z̃), z̃ ∈ C̃ ′

where we define

a = [ŝ1] ∈ Γ̃12(z̃1,−z̃1)

b = [ŝ2] ∈ Γ̃23(z̃2,−z̃2)

a = [ŝ3] ∈ Γ̃21(z̃3,−z̃3)

b = [ŝ4] ∈ Γ̃32(z̃4,−z̃4).

(C.2)

where (̂·) denotes the tangent framing lift (first discussed in Section 3.1.2.3) and the z̃i ∈ C̃ are the

unit tangent vectors at the starting points of the tangent framing lifts.
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In a slight abuse of notation, horse streets1 (which may be two-way), will be denoted by decorated

latin letters: ai, ai are streets of type 12, bi, bi are of type 23, and c is of type 13. The subscripts,

denoted by i ∈ {1, 2, 3}, denote which street is in question and the use of overlines are just a

notational exploit of the duality operation described below in C.2.

Furthermore, in contrast with the “joint-dependent” τ, ν notation of Appendix B, we will (more

naturally) denote soliton generating functions2 “streetwise.” The point z ∈ p ⊂ C in the definition of

soliton generating functions will be dropped for notational convenience. As mentioned in a remark

at the end of Section 3.1.2.2: for any z, z′ ∈ p the generating functions Υz(p) and Υz′(p) are related

by parallel transport (similarly for ∆z(p) and ∆z′(p)).

For the sake of readability, we will modify our notation slightly from Section 3.1.2.2 and write

streets as subscripts.

Definition Let p be a street, the generating function of solitons on p which agree with the orien-

tation of p is denoted Υp, the generating function of solitons which disagree with the orientation of

p is denoted ∆p. In all figures in this paper streets are oriented in an upward direction (upsilon is

for “up” and delta is for “down”).

We now wish to associate the street factor (a generating function) Qp to each street p. To do so,

it is convenient to pass through the definition of a closely related auxiliary function.

Definition

For each street p, we define the function

Qp := 1 + Υp∆p ∈ AC (C.3)

To produce a formal series in the Xγ , γ ∈ Γ, we use the “basepoint-forgetting” closure map.

Definition

Qp := cl [Qp] ∈ Z[[Γ̃]].

We now make some important technical remarks about the use of Qp vs. Qp.

1See the definition in Section 4.4.
2We refer to Section 3.1.2.2 for the detailed definitions of generating functions and formal variables.
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Remarks If p is a street of type ij, then Qp is a formal series in formal variables over Γii. In

particular, let a ∈ Γkl, then this means

QpXa =

 0 if k 6= i

QpXa = XaQp if k = i
,

XaQp =

 0 if l 6= i

XaQp = QpXa if l = i
.

Hence, if the (left or right) action of Qp on a soliton function of type kl is nonvanishing, then it

can be replaced with the (commutative) action of Qp. In the following derivations, the action of Qp

happens to be always nonvanishing; hence, it will almost always be replaced by Qp, except in cases

where we resist such replacements for the sake of precision and pedagogy.

Terminology Occassionally we will use the term spectral data to refer to the collection of soliton

generating functions, street factors, and the functions Qp supported on a particular collection of

streets.

C.2 Duality

As an oriented graph embedded in a disk, Fig. 4.15 is invariant under an involution given by rotating

the diagram 180 degrees, and reversing all orientations; we denote this involution on streets p via

an overline

p 7→ p, (C.4)

for p ∈ {ai, ai, bi, bi, c : i = 1, 2, 3}. As the terminology suggests, this involution satisfies p = p

for every street p and c = c. We claim that this geometric involution actually induces a duality

operation on all spectral data, i.e. generating functions. In particular, on any equations involving

soliton generating functions, the replacements

Υp ↔ ∆p

η ↔ η−1,

(C.5)

with all products taken in reverse order, will also yield a valid equation. This claim can be verified

by brute-force checking. Note, in particular, applying the duality operation to the definition of Qp

in (C.3) will yield Qp.
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C.3 The Horse as a Machine

Recall the definition of a horse is given as a condition on the subset of two-way streets of a spectral

network in an open disk region (see Section 4.4). For convenience we restate the definition.

Definitions

1. A horse street p ∈ {a1, a2, a3, b1, b2, b3, c, a1, a2, a3, b1, b2, b3} is one of the streets of Fig. 4.15

(left frame).

2. Let N be a spectral network (subordinate to some branched cover Σ → C) and U ⊂ C ′ be

an open disk region. Then U ∩ N is a horse if a subset of its streets can be identified with

Fig. 4.15 in a way such that

a) Every two-way street is a horse street.

b) There is always a two-way street identified with the street labeled c.

It may happen, however, that on a horse there are “background” non-horse streets that cannot

be identified with those of Fig. 4.15; by definition, these are one-way streets. The following claim

ensures that the computation of soliton generating functions on the streets of a horse are independent

of the details of the non-horse streets.

Claim The equations for soliton generating functions on horse streets, induced by (B.1), close on

themselves. I.e., the equations for the soliton generating functions on a given horse street can be

written entirely in terms of the soliton generating functions on horse streets.

Proof. Let us temporarily denote the four joints in Fig. 4.15 (left frame) as horse joints. We split

non-horse streets into two classes:

(A) Streets that have no endpoints on a horse joint.

(B) Streets that have a single endpoint on a horse joint.

Let us first consider streets of class (A). The claim is trivial for (A)-streets that do not intersect

a horse street. Thus, we turn our attention to a joint where an (A)-street meets a horse street.

The most general picture of such a joint3 is depicted in Fig. C.1. In this figure: i, j, k label any

permutation of the sheets 1, 2, 3, the streets of type jk and ki label background one-way streets,

3By the “most general picture” we mean a six-way junction equipped with the weakest possible constraints on
incoming soliton degeneracy functions, compatible with the condition that only the streets of type ij (for some fixed
pair ij) are two-way. Using (B.1), one finds that the most general picture is Fig. C.1.
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Figure C.1: The most general type of joint where non-horse streets of class (A) meets a horse street (which
may be two-way). As in Fig. B.1, streets are resolved into one-way constituents using the British resolution.
Soliton generating functions vanish on the dotted streets. The labels i, j, k are a permutation of the sheets
1, 2, 3.

and the streets of type ij compose the the horse street (after being split into two streets by the

joint). The soliton generating functions on the horse street are (in the “joint-wise” notation of

Section B) τji, νij , τij , and νji. The claim (for (A)-streets) is then equivalent to the statement that

τij = νij , τji = νji; we will show this is the case. Indeed, by the six-way joint equations (B.1):

τij = νij +

 ητikνkj , if ij ∈ {12, 23, 31}

η−1νikτkj , if ij ∈ {21, 32, 13}

τji = νji +

 η−1νjkτki, if ij ∈ {12, 23, 31}

ητjkνki, if ij ∈ {21, 32, 13}

but νkj = 0, τkj = 0, νki = 0, and τki = 0. Hence,

τij = νij

τji = νji.

Now, via inspection of Fig. 4.15, streets of class (B) are of type 13. If a (B)-street meets a horse

street at a non-horse joint, then we apply the same argument used for (A)-streets to see that the

(equations for) soliton generating functions on horse streets do not depend on the (B)-street soliton

generating function. Thus, we focus our attention on the horse joint.
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If a (B)-street meets a horse joint, then (B.1) requires the equations for soliton generating

functions, on the horse streets meeting the joint, to depend on the soliton generating function of the

(B)-street. We will show that the soliton generating function on the (B) street can be rewritten in

terms of generating functions on the horse streets. First, note that if a (B)-street meets the horse

joint where a1 and b1 meet, or the joint where a1 and b1 meet, then it must be outgoing with respect

to the horse joint. Indeed, the constraint that c is two-way requires the presence of outgoing streets

of type 13 at the horse joints meeting c; if the (B)-street were incoming, it would combine with one

of these outgoing streets to form a two-way street, violating the horse condition. Without loss of

generality, assume the (B) street meets the horse joint where a1 and b1 meet; denote the soliton

generating function on the (B)-street by Υ(B). Then, using (B.1), it follows that Υ(B) = η−1Υa1
Υb1 ;

so its soliton generating function is a function of the soliton generating functions on horse streets.

If a (B)-street meets one of the other two horse joints (where b3 and a3 meet or where a3 and

b3 meet), then there are two situations: the horse streets at the horse joint are both two-way, or

only one of the horse streets at the horse joint is two-way. The former situation is equivalent to the

situation where the (B)-street meets the horse joint where a1 and b1 meet. To resolve the latter

situation we repeat the same argument used for (A)-streets.

We divide the soliton generating functions supported on horse streets into elements of three

subspaces: incoming data, outgoing data, and internal data.

Incoming data

Incoming data is defined as the spectral data which flows into the internal joints of the horse and is

supported on the external streets. Here, the space of such data is composed of four soliton generating

functions and their duals:

Incoming-Data =


 Υa1

, Υb1 , ∆a3
, ∆b3 ,

∆a1 , ∆b1
, Υa3 , Υb3

 ∈ A×8
S

 . (C.6)

It will prove useful to subdivide this space of data further into generating functions of soli-

tons that agree with the orientation of the diagram, Incoming-Data+, and those that disagree,

Incoming-Data−:

Incoming-Data+ =
{(

Υa1
,Υb1 ,Υa3 ,Υb3

)
∈ A×4

S

}
,

Incoming-Data− =
{(

∆a1
,∆b1

,∆a3
,∆b3

)
∈ A×4

S

}
.
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Outgoing data

Similarly, outgoing data is defined as the spectral data which flows out of the internal joints and is

supported on external streets. This consists of the space of soliton generating functions,

Outgoing-Data =


 ∆a1

, ∆b1 , Υa3
, Υb3 ,

Υa1
, Υb1

, ∆a3
, ∆b3

 ∈ A×8
S

 . (C.7)

As with the incoming data, we can similarly subdivide this data into generating functions of solitons

that agree or disagree with the overall orientation:

Outgoing-Data+ =
{(

Υa1
,Υb1

,Υa3
,Υb3

)
∈ A×4

S

}
,

Outgoing-Data− =
{(

∆a1
,∆b1 ,∆a3

,∆b3

)
∈ A×4

S

}
.

(C.8)

Internal/Bound data

The internal data of the diagram is composed of the ten soliton generating functions defined on the

internal streets a2, b2, a2, b2:

Internal-Data =


 Υa2 , Υb2 , Υa2 , Υb2

, Υc,

∆a2
, ∆b2

, ∆a2
, ∆b2 , ∆c.

 ∈ A×10
S

 (C.9)

However, as far as the results of this paper are concerned, all that is relevant are the street factors

Qp, for p an internal street, which are derived from the soliton generating functions above:

Internal-Data 

{(
Qa2

, Qb2 , Qa2
, Qb2 , Qc

)
∈ Z[[Γ̃]]×5

}
. (C.10)

We then view a horse as a scattering-matrix machine that eats incoming solitons and spits out

outgoing solitons + “bound”/internal solitons:

Horse : Incoming-Data→ Outgoing-Data× Internal-Data,
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or in other words, we can determine Outgoing-Data and Internal-Data as a function of

Incoming-Data; to do so we utilize the six-way junction equations (B.1) to give4

Υa2 = Υa1 + ηΥc∆b2

Υa3 = Υa2 + η
(
η−1Υa2Υb2

)
∆b2

= Υa2
Qb2

Υb2 = Υb1

Υb3 = Υb2

Υc = η−1Υa1
Υb1

∆a1
= ∆a2

+ η−1Υb1 (∆c + η∆b1∆a2
)

= Qb1∆a2 + η−1Υb1∆c

∆a2 = ∆a3 + η−1Υb3

(
η∆b3

∆a3

)
= Qb3∆a3

∆b1 = ∆b2 + η−1∆cΥa2

∆b2 = ∆b3 .

(C.11)

By applying the duality operation of Section C.2 to each equation above, we produce the rest of the

six-way junction equations.

We wish to solve for the outgoing and internal (blue) quantities in terms of the incoming (red)

quantities.

4When using the six-way junction equations on the four relevant joints of a horse, pictured in the left panel of
Fig. 4.15, one must take into account one-way streets of type 13 that flow out of these joints. However, as shown
in the proof of the claim of Section C.3, the soliton generating functions on these one-way streets can be written in
terms of soliton generating functions on the horse streets.
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C.3.1 Outgoing Soliton Generating Functions

Starting from a1 and moving counter-clockwise around the edge of Fig. 4.15, we have

∆a1
=
(
1 + Υb1∆b1

∆a1
Υa1

)
(1 + Υb1∆b3)

(
1 + Υb3

∆b1

)
∆a3

+ Υb1∆b1
∆a1

∆b1 = ∆b3 + ∆b1
∆a1

Υa1
(1 + Υb1∆b3)

∆b3
= ∆b1

Υa3 = Υa1 (1 + Υb1∆b3)
(
1 + Υb3

∆b1

)
Υa1 = Υa3

(
1 + ∆a1Υa1Υb1∆b1

) (
1 + Υb3

∆b1

)
(1 + Υb1∆b3) + Υa1

Υb1∆b1

Υb1
= Υb3

+
(
1 + Υb3

∆b1

)
∆a1

Υa1
Υb1

Υb3 = Υb1

∆a3
=
(
1 + Υb3

∆b1

)
(1 + Υb1∆b3) ∆a1

.

C.3.2 Outgoing Street Factors

We remark that all outgoing street factors can be expressed in terms of the internal street factors.

Hence, starting from a1 and moving counter-clockwise around the edge of the diagram, we have

Qa1
= QcQa2

Qb1 = QcQb2

Qb3 = Qb2

Qa3 = Qa2

Qa1
= QcQa2

Qb1 = QcQb2

Qb3 = Qb2

Qa3
= Qa2

.

C.3.3 Internal Street Factors

We now state the internal street factors in terms of the incoming soliton generating functions. These

equations follow from (C.11) and are:
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Qc = 1 + Υa1
Υb1∆b1

∆a1

Qa2
= 1 + Υa1

Qb2Qb2∆a3

Qb2 = 1 + Υb3
∆b1

Qa2
= 1 + Υa3

Qb2Qb2∆a1

Qb2 = 1 + Υb1∆b3 .

By applying the closure map cl one produces the corresponding Qp functions.

Remark We note that in all the equations of sections C.3.1 - C.3.2 there is an almost magical

cancellation of the half-twists η; this cancellation will ultimately ensure that the coefficients of the

degeneracy generating functions Qp (as polynomials in some formal variable Xγ̂c , yet to be identified)

are all positive.

Special Cases

We now cite two important special cases of incoming data for a horse.

Definitions

1. A lower-sourced horse is a horse along with exactly “two-sources from below,” i.e. it is a horse

restricted to the subset of Incoming-Data where a point in Incoming-Data+ is specified:

Incoming-Data+
LSH =





Υa1
= Xa

Υb1 = Xb

Υa3
= 0

Υb3
= 0.




⊂ Incoming-Data+. (C.12)

2. An upper-sourced horse is dual to a lower-sourced horse, i.e. it is a horse restricted to the

subset of Incoming-Data where a point in Incoming-Data− is specified:

Incoming-Data−USH =





∆a1
= Xa

∆b1
= Xb

∆a3 = 0

∆b3 = 0.




⊂ Incoming-Data−. (C.13)
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Remark Inserting the lower-sourced horse conditions into the equations of Section C.3.3, the most

important of the resulting equations are

Qa2
= Qb2 = 1; (C.14)

which, furthermore, via (C.3.2) require

Qa3 = Qb3 = 1. (C.15)

The upper-sourced horse conditions yield the dual equations,

Qa2
= Qa3

= Qb2 = Qb3 = 1. (C.16)

With this technology, we can define an m-herd on an arbitrary oriented real surface C as a

collection of m-horses glued together using the relations (3.18), beginning with a lower-sourced

horse coming from a pair of branch points, and ending with an upper-sourced horse near another

pair of branch points (which, for the purposes of this paper, we will take to be disjoint from the

lower-sourced branch points).

Definition Let N be a spectral network subordinate to some branched cover Σ→ C and let H ⊂ N

be the set of two-way streets of N . Then N is an m-herd if the following conditions are satisfied.

Horses: There exists a collection of open embedded disks {Ul}ml=1 ⊂ C ′ forming a covering of H,

with Ul ∩ Uk 6= ∅ iff l = k ± 1, and each N ∩ Ul is:

• a lower-sourced horse if l = 1,

• a horse if 1 < l < m,

• an upper-sourced horse if l = m.

Gluing : Each horse satisfies particular gluing conditions: let p(l) denote a horse street5 on N ∩Ul.

Then, for l = 2, · · · ,m− 1, we have the conditions

a
(l)
1 = a

(l−1)
3

b
(l)
1 = b

(l−1)
3

a1
(l) = a3

(l+1)

b1
(l)

= b3
(l+1)

.

(3.18)

No Holes: For l = 1, · · · ,m− 1, the oriented loops traced out by the words

5Using our previous naming convention: p ∈ {a1, a2, a3, b1, b2, b3, c, a1, a2, a3, b1, b2, b3}.
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•
(
a

(l)
2

)(
b
(l)

1

)(
a

(l+1)
2

)−1 (
b
(l)
3

)−1

,

•
(
b
(l)

2

)(
a

(l)
1

)(
b
(l+1)
2

)−1 (
a

(l)
3

)−1

are each the oriented boundary of (separate) disks on C ′ (see Fig. C.2).

Remarks

• Note that a 1-herd is the spectral network for a saddle: indeed, via the above definition it

consists of a single horse which is both lower and upper-sourced. The picture of a saddle

is formed by viewing only the two-way streets remaining after “removing” the horse streets

constrained to be one-way according to (C.14) - (C.16).

• Let Incoming-Data±(l) (Outgoing-Data±(l)) be the domain of incoming (range of outgoing)

data associated to the lth horse of an m-herd. Via the definition, Incoming-Data+(1) and

Incoming-Data+(m) are specified by the lower sourced horse conditions (C.12) and upper-

sourced horse conditions (C.13) respectively:

Incoming-Data+(1) =





Υ
(1)
a1 = Xa

Υ
(1)
b1

= Xb

Υ
(1)
a3

= 0

Υ
(1)

b3
= 0.




,

Incoming-Data−(m) =





∆
(m)
a1

= Xa

∆
(m)

b1
= Xb

∆
(m)
a3 = 0

∆
(m)
b3

= 0.




.

(C.17)

Further, for l = 2, · · · ,m− 1, the gluing conditions (3.18) force6

Incoming-Data+(l) = Outgoing-Data+(l − 1),

Incoming-Data−(l) = Outgoing-Data−(l + 1).

(C.18)

In fact, as we will discover, all spectral data on an m-herd can be determined recursively from

(C.18) using the initial conditions (C.17).

• The technical No Holes condition excludes cases where there are “holes” between adjacent

streets when gluing together horses. This condition is essential for our proof of Prop. 3.2.2, as

6We have omitted the parallel transport map (on the RHS of (C.18)), detailed in Section C.4, that transports
spectral data on the (l − 1)th horse to the lth horse.
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A A

BB

Figure C.2: A picture of two horses (cf. Fig. 4.15) glued together using the Gluing conditions and
satisfying the No Holes condition; the dotted lines are identified, and we assign the “horse-indices” l and
l+ 1 to the bottom and top horses respectively. The aqua-blue region is a disk with boundary traced out by

the word
(
a

(l)
2

)(
b
(l)
1

)(
a

(l+1)
2

)−1 (
b
(l)
3

)−1

; the yellow region is a disk with boundary traced out by the word(
b
(l)
2

)(
a

(l)
1

)(
b
(l+1)
2

)−1 (
a

(l)
3

)−1

. Two examples for which the No Holes condition fails can be pictured by

either inserting a puncture, or connect summing with a torus (inserting a “handle”), inside of the colored
regions.

such holes create obstructions to auxiliary streets introduced in the proof. Furthermore, the

No Holes condition is utilized in Prop. 3.2.1 in order to produce an explicit expression for the

charge γ̂c (defined in (C.45)) that appears in the formal variable z, but the condition is not

necessary to derive the algebraic equation (4.111).7

C.4 A Global Interlude

The following is a technical subsection dedicated to a proper definition of the symbols ρ
(k,l)
∗ that

appear throughout the proof of Prop. 3.2.1. Readers who wish to avoid this technical detour may

skip this section and interpret the symbols ρ
(l,l±1)
∗ as parallel transport maps along an appropriate

path, from the lth horse to the (l ± 1)th horse, along the graph of the m-herd living on C ′; further,

the R(k,l) can be replaced by parallel transport maps from the lth horse to the kth horse.

First, we will define the local system of soliton charges over C̃ ′.

Definition Let s :
⋃
z̃∈C̃′ Γ̃(z̃,−z̃)→ C̃ ′ be the projection map with fibers s−1(z̃) = Γ̃(z̃,−z̃).

7In particular, the No Holes condition is used in the definition of the parallel transport maps ρ
(l,l±1)
∗ of Section

C.4. One could use a more general notation for parallel transport in a situation without the No Holes condition and
the proof of the algebraic equation would follow similarly, although, the final expression for z would be modified.



196

Remark s defines a local system of Γ̃-sets (a locally constant sheaf of Γ̃-sets) over C̃ ′, when equipped

with a parallel transport map defined by a lifted version of the parallel transport of solitons (3.6).

More explicitly, for any path ` : [0, 1] → C̃ ′, the parallel transport map P̃` : Γ̃ (`(0),−`(0)) →

Γ̃ (`(1),−`(1)) is given by

P̃`s = (s′ + [`{j}]− [`{i}]) mod 2H, s ∈ Γ̃ij(`(0),−`(0)). (C.19)

where

• s′ is a lift of s to a relative homology cycle8 on Σ̃,

• `{n} is the lift of ` to a path on Σ̃ given by lifting `(0) to sheet n,

• [`{n}] is the relative homology class of `{n}

• (·) mod 2H : G(`(1),−`(1))→ Γ̃(`(1),−`(1)) is the quotient map (where the subset of relative

homology classes G(`(1),−`(1)) is defined in (3.7)).

By construction, P̃` only depends on the homotopy class of ` (rel endpoints).

Let ξ : C̃ ′ → C ′ be the unit tangent bundle projection map (previously denoted ξC
′
). We now

make an important observation.

Observation The monodromy of P̃` around any loop that wraps the circle fibers of ξ is trivial.

I.e., let z ∈ C ′ and choose ` : S1 → (ξ)
−1

(z) ⊂ C̃ ′ to be a closed loop supported on the circle fiber

ξ−1(z), then the monodromy P̃` is the identity map.

Proof. The proof is immediate: if ` is such a loop, then for any sheet n, we have cl ([`{n}]) = H;

the result follows from (C.19).

Definition Let S be any topological space; π1(S; z1, z2) is the set of homotopy (rel endpoints)

classes of paths p : [0, 1]→ S with p(0) = z1 and p(1) = z2.

Corollary C.4.1. Let ` : [0, 1] → C̃ ′ be a path. Then P̃` : Γ̃(`(0),−`(0)) → Γ̃(`(1),−`(1)) is

completely specified by the homotopy class (rel endpoints) of the projected path ξ ◦ ` : [0, 1]→ C ′.

In particular, given q ∈ π1(C ′, z1, z2) along with lifts z̃1 ∈ ξ−1(z1), z̃2 ∈ ξ−1(z2), we may associate

a parallel transport map P̃` : Γ̃(z̃1,−z̃1) → Γ̃(z̃2,−z̃2) where ` : [0, 1] → C̃ ′ is a lift of any path

representative of the class q such that `(0) = z̃1, `(1) = z̃2. By the corollary this association

(q, z̃1, z̃2) P̃` is well-defined.

8Recall from (3.8): Γ̃(z̃,−z̃) is defined as a quotient of the the subset G(z̃,−z̃) (consisting of relative homology

classes on Σ̃).
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Figure C.3: A 3-herd, on C = R × S1, equipped with a (two-way street) cover {Ul}3l=1 satisfying the
Horses condition along with (C.20)-(C.21).

Definition Let q ∈ π1(C ′; z1, z2) and z̃1 ∈ ξ−1(z1), z̃2 ∈ ξ−1(z2), then P̃(q,z̃1,z̃2) : Γ̃(z̃1,−z̃1) →

Γ̃(z̃2,−z̃2) is the unique parallel transport map assigned to (q, z̃1, z̃2).

To simplify matters of computation, without ignoring global issues, we will develop a notation,

suitable to combinatorics, for parallel transport on an m-herd. As each horse is embedded in a

contractible region of C, it suffices to keep track of parallel transport of paths between the horses of

an m-herd: our notation need not keep track of parallel transport between points in an individual

horse as suggested by the following remark.

Remark Let {Ul}ml=1 be an open cover of disks (on C ′) satisfying the Horses condition for an m-

herd, then all paths running between points z1, z2 ∈ Ul and contained within Ul are homotopic (rel

endpoints). Thus, by Cor. C.4.1, for each pair of points z̃1 ∈ ξ−1(z1), z̃2 ∈ ξ−1(z2), there is a unique

parallel transport map assigned to all paths running from z̃1 to z̃2 and contained in ξ−1(Ul).

Now, let us turn our attention to parallel transport of paths running between horses; in particular,

paths contained in Ul ∪ Ul+1 for some l = 1, · · · ,m − 1. First, note that each non-vanishing

intersection Ul∩Ul+1, l = 1, · · · ,m−1, will consist of some number of disconnected disks. However,

on an m-herd, the No Holes condition allows us to modify our cover such that Ul ∩ Ul+1 contains

exactly two components:

Ul ∩ Ul+1 = D
(l)
12 tD

(l)
23 , (C.20)
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where the D
(l)
ij are disks such that for l = 1, · · · ,m− 1(
a

(l)
1 = a

(l+1)
3

)
∩ (Ul ∩ Ul+1) ⊂ D(l)

12 ,
(
a

(l)
3 = a

(l+1)
1

)
∩ (Ul ∩ Ul+1) ⊂ D(l)

12(
b
(l)

1 = b
(l+1)

3

)
∩ (Ul ∩ Ul+1) ⊂ D(l)

23 ,
(
b
(l)
3 = b

(l+1)
1

)
∩ (Ul ∩ Ul+1) ⊂ D(l)

23 ;

(C.21)

an example of such a cover is shown in Fig. C.3 for the case of a 3-herd on C = R × S1. Thus,

fixing a pair of points z̃1 ∈ ξ−1 (Ul) , z̃2 ∈ ξ−1(Ul+1), our interest lies in two homotopy classes (rel

endpoints) of paths that run from z̃1 to z̃2, and are contained in Ul ∪ Ul+1. In particular, denoting

these two classes by q12, q23 ∈ π1(Ul ∪ Ul+1; z1, z2),

1. q12 has a path representative given by a simple curve running from z̃1 to z̃2 and passing through

D
(l)
12 (but not D

(l)
23 ) exactly once,

2. q23 has a path representative given by a simple curve running from z̃1 to z̃2 and passing through

D
(l)
23 (but not D

(l)
12 ) exactly once.

Definition Let z1 ∈ Ul, z2 ∈ Ul+1, and take qij (ij ∈ {12, 23}) to be the homotopy classes described

above. Then, for a choice of lifts z̃1 ∈ ξ−1(z1) and z̃2 ∈ ξ−1(z2),

ρ
(l,l+1)
ij (z̃1, z̃2) := P̃(qij ,z̃1,z̃2) : Γ̃(z̃1,−z̃1)→ Γ̃(z̃2,−z̃2),

ρ
(l+1,l)
ij (z̃1, z̃2) := P̃(q−1

ij ,z̃2,z̃1) : Γ̃(z̃2,−z̃2)→ Γ̃(z̃1,−z̃1) =
[
ρ

(l,l+1)
ij (z̃1, z̃2)

]−1

.

(C.22)

Notation In the following computations we will just write ρ
(l,l+1)
ij , dropping the explicit dependence

on the endpoints z̃1 ∈ ξ−1 (Ul) and z̃2 ∈ ξ−1 (Ul+1); this notation will be sufficiently unambiguous

for our purposes. Indeed, let w̃1 ∈ ξ−1 (Ul) , w̃2 ∈ ξ−1 (Ul+1) be another choice of endpoints with

projections wi = ξ(w̃i), i = 1, 2; then, by a remark above, ∃! homotopy classes q1 ∈ π1(Ul;w1, z1)

and q2 ∈ π1(Ul+1, z2, w2) such that

ρ
(l,l+1)
ij (w̃1, w̃2) = P̃(q2,z̃2,w̃2)

(
ρ

(l,l+1)
ij (z̃1, z̃2)

)
P̃(q1,w̃1,z̃1), ij ∈ {12, 23}.

Now, on an m-herd, (C.21) indicates that only solitons of type 12 or 21 will be transported via

ρ
(l,l+1)
12 , and only solitons of type 23 or 32 will be transported via ρ

(l,l+1)
23 . With this in mind, for

the sake of readability, it will prove convenient to make further notation simplifying definitions.

Definitions

1. Let z̃ ∈ ξ−1(Ul), then

ρ
(l,l+1)
∗ a :=

 ρ
(l,l+1)
12 a if a ∈ Γ̃12(z̃,−z̃) ∪ Γ̃21(z̃,−z̃)

ρ
(l,l+1)
23 a if a ∈ Γ̃23(z̃,−z̃) ∪ Γ̃32(z̃,−z̃)

, (C.23)
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and ρ
(l−1,l)
∗ :=

(
ρ

(l−1,l)
∗

)−1

.

2.

R(k,n) :=

 ρ
(n−1,n)
∗ · · · ρ(k+1,k+2)

∗ ρ
(k,k+1)
∗ if k < n

ρ
(n+1,n)
∗ · · · ρ(k−1,k−2)

∗ ρ
(k,k−1)
∗ if n < k.

(C.24)

Remarks

1. The ρ
(l,k)
∗ extend their action to formal variables Xa via

ρ
(l,k)
∗ Xa = X

ρ
(l,k)
∗ a

.

2. R(k,n) is a parallel transport map, on the local system s, from the kth horse to the nth horse

associated to a path that passes through each l-horse between k and n exactly once. If R(k,n)

acts on a soliton of charge 12 or 21, this path passes through the sets D
(l)
12 (but never D

(l)
23 )

for min{k, n} < l < max{k, n}; if R(k,n) acts on a soliton of charge 23 or 32 the path passes

through the sets D
(l)
23 (but never D

(l)
12 ) for min{k, n} < l < max{k, n}.

We make one final observation that will be of use in Section C.7.

Remark Let r :
⋃
z∈C Γ(z, z)→ C ′ be the projection map with r−1(z) = Γ(z, z); this forms a local

system over C ′ when equipped with the parallel transport map

Pqs∗ = s∗ + [q{j}]− [q{i}], s∗ ∈ Γij(q(0), q(0)). (C.25)

The parallel transport on r is compatible with the parallel transport (C.19) on the local system s in

the sense that for any q ∈ π1(C ′, z1, z2) and z̃1 ∈ ξ−1(z1), z̃2 ∈ ξ−1(z2), we have

ξΣ
∗

(
P̃(q,z̃1,z̃2)s

)
= Pq

(
ξΣ
∗ s
)
, (C.26)

where, recall, ξΣ : Σ̃→ Σ is the unit tangent bundle projection map.

Now, we may define the analog of the parallel transport operators R(k,n) for r.

Definition Let s∗ ∈
⊔
ij∈{12,21,23,32} Γij(z, z) for some z ∈ Uk, then

R
(k,n)
r s∗ := ξΣ

∗ R
(k,n)s, (C.27)

where s ∈
⊔
ij∈{12,21,23,32} Γ̃ij(z̃,−z̃) is any lift of s∗ (i.e. s∗ = ξΣ

∗ s).

(C.26) ensures that (C.27) is a well-defined (lift-independent) statement.
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C.5 Identifications of Generating Functions

Using the notation developed in Section C.4, we can express (C.18) explicitly as

Υ(l)
a1

= ρ
(l−1,l)
∗ Υ(l−1)

a3
,

Υ
(l)
b1

= ρ
(l−1,l)
∗ Υ

(l−1)
b3

,

Υ
(l)
a3

= ρ
(l−1,l)
∗ Υ

(l−1)
a1

,

Υ
(l)

b3
= ρ

(l−1,l)
∗ Υ

(l−1)

b1
,

∆
(l)
a1

= ρ
(l+1,l)
∗ ∆

(l+1)
a3

,

∆
(l)

b1
= ρ

(l+1,l)
∗ ∆

(l+1)

b3
,

∆(l)
a3

= ρ
(l+1,l)
∗ ∆(l+1)

a1
,

∆
(l)
b3

= ρ
(l+1,l)
∗ ∆

(l+1)
b1

.

(C.28)

In particular,

Q(l)
a1

= Q(l−1)
a3

,

Q
(l)
b1

= Q
(l−1)
b3

,

Q
(l)
a1

= Q
(l+1)
a3

,

Q
(l)

b1
= Q

(l+1)

b3
.

(C.29)

C.6 Proof of Proposition 3.2.1

C.6.1 Proof of Equations (3.20)

Using the recursion relations (C.29), in conjunction with the equations listed in Sections C.3.3 and

C.3.2, we first solve for the internal street factors Q
(l)
a2 , Q

(l)
a2
, Q

(l)
b2
, Q

(l)

b2
in terms of street factors on

the lower/upper-sourced horses at l = 1 or l = m. As we noticed in Section C.3.2, all other street

factors can be written in terms of the internal ones.

Now, via (C.29), and the equations of Section (C.3.2),

Q(l)
a2

= Q(l)
a3

= Q(l+1)
a1

= Q(l+1)
c Q(l+1)

a2
. (C.30)

Similarly, we find

Q
(l)
a2

= Q(l−1)
c Q

(l−1)
a2

(C.31)

Q
(l)
b2

= Q(l+1)
c Q

(l+1)
b2

(C.32)

Q
(l)

b2
= Q(l−1)

c Q
(l−1)

b2
. (C.33)

This leads us to the following.
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Lemma C.6.1. For l = 1, . . . ,m, we have

Q(l)
a2

= Q
(l)
b2

=

m+1∏
r=l+1

Q(r)
c (C.34)

Q
(l)
a2

= Q
(l)

b2
=

l−1∏
r=0

Q(r)
c . (C.35)

with the convention that Q
(m+1)
c = Q

(0)
c = 1.

Proof. From the upper-sourced horse conditions (C.13) we have

Q(m)
a2

= Q
(m)
b2

= 1; (C.16)

so (C.34) follows via (C.30) and (C.32). Similarly, from the lower-sourced horse conditions (C.12)

we have

Q
(1)
a2

= Q
(1)

b2
= 1; (C.14)

so (C.35) follows via (C.31) and (C.33).

To reduce (C.34) - (C.35) further, we must compute some soliton generating functions.

Computing Υ
(l)
b1

Via (C.28)

Υ
(l)
b1

= ρ
(l−1,l)
∗ Υ

(l−1)
b3

= ρ
(l−1,l)
∗ Υ

(l−1)
b1

. (C.36)

Thus, propagating the lower sourced horse conditions (C.12) through this recursion relation,

Υ
(l)
b1

=

(
l∏

r=1

ρ
(r−1,r)
∗

)
Xb (C.37)

= R(1,l)Xb. (C.38)

Computing ∆
(l)

b1

The idea is dual to above; indeed

∆
(l)

b1
= ρ

(l+1,l)
∗ ∆

(l+1)

b3

= ρ
(l+1,l)
∗ ∆

(l+1)

b1
. (C.39)
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Using the upper-sourced horse conditions (C.13),

∆
(l)

b1
=

(
m∏
r=l

ρ
(r+1,r)
∗

)
Xb

= R(m,l)Xb. (C.40)

Computing Υ
(l)
a1

Via (C.28) and the equation for Υa3
in Section C.3.1,

Υ(l)
a1

= ρ
(l−1,l)
∗ Υ(l−1)

a3

= ρ
(l−1,l)
∗ Υ(l−1)

a1

(
1 + Υ

(l−1)

b3
∆

(l−1)

b1

)(
1 + Υ

(l−1)
b1

∆
(l−1)
b3

)
= ρ

(l−1,l)
∗ Υ(l−1)

a1
Q

(l−1)

b2
Q

(l−1)
b2

. (C.41)

Using the lower-sourced horse conditions (C.12),

Υ(l)
a1

=

(
l∏

r=1

ρ
(r−1,r)
∗ Xa

)(
l∏

r=1

ρ
(r−1,r)
∗ Q

(r−1)

b2
Q

(r−1)
b2

)

= R(1,l)Xa

(
l−1∏
r=0

Q
(r)

b2
Q

(r)
b2

)
. (C.42)

Computing ∆
(l)
a1

Again, the computation is dual to that for Υ
(l)
a1 ,

∆
(l)
a1

= ρ
(l+1,l)
∗ ∆

(l+1)
a3

= ρ
(l+1,l)
∗

[(
1 + Υ

(l+1)

b3
∆

(l+1)

b1

)(
1 + Υ

(l+1)
b1

∆
(l+1)
b3

)
∆

(l+1)
a1

]
= ρ

(l+1,l)
∗ Q

(l+1)

b2
Q

(l+1)
b2

∆
(l+1)
a1

. (C.43)

So, using the upper-sourced horse conditions (C.13),

∆
(l)
a1

=

(
m∏
r=l

ρ
(r+1,l)
∗ Q

(r+1)

b2
Q

(r+1)
b2

)
Xa

=

(
m+1∏
r=l+1

Q
(r)

b2
Q

(r)
b2

)
R(m,l)Xa. (C.44)

These computations lead us to the following key lemma that allows all street factors Qp to be

reduced to powers of a single function.

Lemma C.6.2.

Q(l)
c = Q(1)

c , ∀l = 1, · · · ,m.



203

Proof. Recall (C.36), (C.39), (C.41), and (C.43)

Υ
(l)
b1

= ρ
(l−1,l)
∗ Υ

(l−1)
b1

∆
(l)

b1
= ρ

(l+1,l)
∗ ∆

(l+1)

b1

Υ(l)
a1

= ρ
(l−1,l)
∗ Q

(l−1)

b2
Q

(l−1)
b2

Υ(l−1)
a1

∆
(l)
a1

= ρ
(l+1,l)
∗ Q

(l+1)

b2
Q

(l+1)
b2

∆
(l+1)
a1

;

we can rewrite the equations for ∆
(l)

b1
and ∆

(l)
a1

as

∆
(l)

b1
= ρ

(l−1,l)
∗ ∆

(l−1)

b1

∆
(l)
a1

= ρ
(l−1,l)
∗

∆
(l−1)
a1

Q
(l)

b2
Q

(l)
b2

.

Using the equation for Qc in Section C.3.3

Q(l)
c = 1 + Υ(l)

a1
Υ

(l)
b1

∆
(l)

b1
∆

(l)
a1

= 1 +
(
ρ

(l−1,l)
∗ Q

(l−1)

b2
Q

(l−1)
b2

Υ(l−1)
a1

)(
ρ

(l−1,l)
∗ Υ

(l−1)
b1

)(
ρ

(l−1,l)
∗ ∆

(l−1)

b1

)ρ(l−1,l)
∗

∆
(l−1)
a1

Q
(l)

b2
Q

(l)
b2


= 1 +

(
Q(l−1)
c − 1

)Q(l−1)

b2
Q

(l−1)
b2

Q
(l)

b2
Q

(l)
b2

 ;

where, on the last line, the cancellation of the ρ
(l−1,l)
∗ (parallel transport) actions9 can be seen by

working through its definition in equations (C.19), (C.22), and (C.23). Applying the closure map

we obtain

Q(l)
c = 1 +

(
Q(l−1)
c − 1

)Q(l−1)

b2
Q

(l−1)
b2

Q
(l)

b2
Q

(l)
b2

 .

Using (C.34) and (C.35), then

Q(l)
c = 1 +

(
Q(l−1)
c − 1

)(∏
r 6=l−1Q

(r)
c∏

r 6=lQ
(r)
c

)

= 1 +
(
Q(l−1)
c − 1

) Q
(l)
c

Q
(l−1)
c

= 1 +Q(l)
c −

Q
(l)
c

Q
(l−1)
c

.

Hence,

Q(l)
c = Q(l−1)

c , l = 2, · · · ,m.

9This is consistent with the fact that, according to (C.19), parallel transport acts trivially on charges of type ii.
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The above proposition motivates the following simplified notation.

Definition

Pm := Q(1)
c .

Now, when lemmata C.6.1 and C.6.2 are combined, we have

Corollary C.6.3.

Q(l)
a2

= Q
(l)
b2

= (Pm)
m−l

Q
(l)
a2

= Q
(l)

b2
= (Pm)

l−1
.

The above corollary, combined with the equations of Section C.3.2, is enough to express the

remainder of the street factors in terms of Pm,

(Pm)
m−l

= Q(l)
a3

= Q
(l)
b3

(Pm)
l−1

= Q
(l)
a3

= Q
(l)

b3

(Pm)m−l+1 = Q(l)
a1

= Q
(l)
b1

(Pm)l = Q
(l)
a1

= Q
(l)

b1
.

This completes the proof of (3.20) in Prop. 3.1.

C.6.2 Proof of the Algebraic Equation (4.111)

Via the equation for Qc in Section C.3.3 along with (C.38)-(C.42),

Q(l)
c = 1 + Υ(l)

a1
Υ

(l)
b1

∆
(l)

b1
∆

(l)
a1

= 1 +

[(
l−1∏
r=0

Q
(r)

b2
Q

(r)
b2

)
R(1,l)Xa

] [
R(1,l)Xb

] [
R(m,l)Xb

] [( m+1∏
r=l+1

Q
(r)

b2
Q

(r)
b2

)
R(m,l)Xa

]

= 1 +

∏
r 6=l

Q
(r)

b2
Q

(r)
b2

(R(1,l)Xa

)(
R(1,l)Xb

)(
R(m,l)Xb

)(
R(m,l)Xa

)
= 1 + (Pm)

(m−1)2
(
R(1,l)Xa

)(
R(1,l)Xb

)(
R(m,l)Xb

)(
R(m,l)Xa

)
;

where, on the last line we utilized Corollary C.6.3.

Remark We note that,

R(1,l)a+R(1,l)b+R(m,l)b+R(m,l)a

represents a soliton charge of type 11 on the open set ξ−1(Ul) ⊂ C̃ ′. Thus, we may apply the map

cl to this expression to produce an element of Γ̃.
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This leads us to the following definition.

Definition We define

γ̂c : = cl
[
R(1,l)a+R(1,l)b+R(m,l)b+R(m,l)a

]
∈ Γ̃ (C.45)

and corresponding formal variable

z := Xγ̂c . (C.46)

(We will show below that, in fact, (C.45) does not depend on l; thus, this definition is sensible.)

With the above definitions we have

Q(l)
c = 1 + zP (m−1)2

m

hence, by Lemma C.6.2, Pm satisfies the algebraic equation

Pm = 1 + zP (m−1)2

m . (4.111)

This completes the proof of the algebraic equation in Prop. 3.2.1.

Remark As we will show in Section C.7, γ̂c is the sum of two tangent framing lifts of simple closed

curves with corresponding homology classes γ, γ′ ∈ Γ. In fact, we will show that (C.46) can be

rewritten in the form stated in Prop. 3.2.1: z = (−1)mXγ̃+γ̃′ , where (̃·) : Γ→ Γ̃ is defined in Section

(3.1.2.3) and discussed further in Section E.

C.7 Proof of the Decomposition of γ̂c

We begin with an example (which may be skipped for the more general proof below).10

C.7.1 Example: γ̂c for m-herds on the cylinder

We consider generalizations (to arbitrary m) of the herds shown in Fig. 3.4 for m = 1, · · · , 4. Assume

we are equipped with a branched 3-cover of the cylinder C = S1×R with four branch points. Now,

consider an m-herd such that it is contained in a presentation of the cylinder as an identification

space of [0, 1] × R: the streets of type 23 lie entirely in the interior of (0, 1) × R, while the streets

of type 12 involved in the identifications (3.18) pass through the identified boundary. First, each of

the charges a, b, a, b can be thought of as flat sections of the local system s :
⋃
z̃∈C̃′ Γ̃(z̃,−z̃)→ C̃ ′,

locally defined around their respective branch points. The two-way streets are contained within

10The following sections rely on the ideas of Section C.4.
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the open set U :=
⋃m
l=1 Ul, which is homeomorphic to S1 × I for I ∼= (0, 1) an open interval. Let

U c ∼= (0, 1)2 be the open set formed by removing the vertical line11 ({0} × R) ∩ U ∼ ({1} × R) ∩ U

from U . s is trivial over the open set ξ−1(U c) ∼= (0, 1)2 × S1 in C̃ ′; so, we can extend a, b, a, b to

flat sections over all of ξ−1(U c).

Now, let qcyl : [0, 1] → U ⊂ C ′ denote a loop winding once around the S1 direction of U , and

oriented such that the upper-sourced horse branch points sit to its “left,” while the lower-sourced

horse branch points sit to its “right”; q̂cyl : [0, 1]→ C̃ ′ will denote the tangent framing lift of qcyl.

Working through the definition of the parallel transport maps R(k,l) in (C.19), (C.22)-(C.24), we

have

γ̂c = cl
(
a+ b+ b+ a

)
+ (m− 1) ([q̂cyc{2}]− [q̂cyc{1}]) ;

the expression in the closure map is defined by evaluating the sections a, b, a, b at some point

z̃ ∈ ξ−1(U c ∩ Ul) and taking their sum to define an element in Γ̃11(z̃,−z̃).

Observe that we can decompose γ̂c as γ̂c = γ̂ + γ̂′ where,

γ̂ = cl
(
b+ b

)
γ̂′ = cl (a+ a) + (m− 1) ([q̂cyc{2}]− [q̂cyc{1}]) .

Now, note that we can realize γ̂ the tangent framing lift of a simple closed curve on Σ. Indeed,

consider an auxiliary street of type 23, realized as a straight line on U ∪ {branch pts.}, running

between the two branch points of type 23 (beginning at the branch point emitting the charge b and

ending at the branch point emitting the charge b). The lift of this street to Σ is a simple closed

curve; the tangent framing lift is a representative of cl
(
b+ b

)
. Similarly, we can realize cl (a+ a)

with the tangent framing lift of a simple closed curve `a on U ∪ {branch pts.} and so γ̂′ can be

realized as a modification of `a by smoothly “detouring” along the lifts (to sheets 1 and 2) of a curve

that winds m − 1 times around the S1 direction of U . The resulting curve is the tangent framing

lift of a simple closed curve. Furthermore, project these simple-closed curves to Σ; then letting γ

and γ′ be the homology classes of our projections, with their representative curves it is clear that

〈γ, γ′〉 = m.

Now, using different techniques, let us proceed on with the general proof of the decomposition

γ̂c = γ̂ + γ̂′, described in the example above, for an m-herd on a general oriented curve C.

11Here ∼ denotes the identification of the boundary of [0, 1]×R to form the cylinder. The removed vertical line is
given by the (identified) dotted lines in Fig. 3.4.
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Figure C.4: A pony and its lift to Σ. Red streets are of type 12, blue streets are of type 23.

C.7.2 General Proof

Let ξΣ : Σ̃→ Σ be the unit tangent bundle projection.

Definition

γc := ξΣ
∗ γ̂c ∈ Γ.

To derive an explicit expression for γc in terms of simpleton charges (C.1) in
⋃
z∈C Γ(z, z), we

“pushforward” the expression (C.45) via ξΣ. From the definitions (C.1), (C.2), and (C.45) it follows

that

γc = cl
[
R

(1,l)
r a∗ +R

(1,l)
r b∗ +R

(m,l)
r b∗ +R

(m,l)
r a∗

]
(C.47)

where R
(k,n)
r are the “pushforward” of the parallel transport operators R(k,n) defined in (C.27).

We will construct a decomposition γc = γ + γ′ with 〈γ, γ′〉 = m roughly by shrinking the c(l)

streets of the herd to points. To be precise, we introduce some definitions.

Definitions

1. A pony is a partial spectral network as shown in Fig. C.4. Upper and lower-sourced ponies

are defined similar to upper and lower sourced horses.

2. The string of ponies Sm associated to an m-herd Hm is the spectral network constructed by

placing
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a) A lower sourced pony on U1

b) Ponies on Ul, 1 < l < m

c) An upper-sourced pony on Um,

where the Um are a good open cover satisfying the Horses condition for Hm, and forcing the

identifications

A
(l+1)
1 = A

(l)
2

B
(l+1)
1 = B

(l)
2

on each Ul ∩ Ul+1.

Remarks

1. Sm is only defined up to homotopy on each disk Ul.

2. The interpretation of Sm as a spectral network is overkill for our discussion and we introduce

it as such mainly for notational convenience: all that will be necessary is the graph of the lift

Lift(Sm) ⊂ Σ. However, in the wall-crossing interpretation of m-herds discussed in Section

4.4, the spectral network Sm is expected to appear on the wall of marginal stability where two

hypermultiplets of intersection number m have coincident central charge phase. In fact, the

procedure of deforming such a picture is what motivated the construction of m-herds.

Definition Let p(l) be a street of type ij, then mp(l) ∈ C1(Σ;Z) is the 1-chain on Σ representing

the lift12 of p(l) as a street of type ij (using the orientation discussed in Section 3.1.2).

If we define,

γ =

[
m∑
l=1

(
mB

(l)
1 + mB

(l)
2

)]
∈ H1(Σ;Z)

γ′ =

[
m∑
l=1

(
mA

(l)
1 + mA

(l)
2

)]
∈ H1(Σ;Z),

then, as shown in Fig. C.4, γ and γ′ intersect once in each π−1(Ul), l = 1, · · ·m; hence,

〈γ, γ′〉 = m.

Now

12If p(l) connects two joints, this lift has two components. If p(l) connects a joint to a branch point of type ij, then
the two components combine to form a connected 1-chain between sheets i and j.
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•
∑m−1
l=1

(
mA

(l)
1 + mA

(l)
2

)
is a 1-chain representative of the parallel transported charge

R
(1,m−1)
r a∗.

•
∑m−1
l=1

(
mB

(l)
1 + mB

(l)
2

)
is a 1-chain representative of R

(1,m−1)
r b∗.

• mA
(m)
1 + mA

(m)
2 is a 1-chain representative of a∗.

• mB
(m)
1 + mB

(m)
2 is a 1-chain representative of b∗.

Hence,

γc = γ + γ′.

Now, each of the 1-chains mA
(l)
i , mB

(l)
i have well-defined tangent framing lifts m̂A

(l)

i , m̂B
(l)

i when

thought of as oriented paths on Lift(Sm) ⊂ Σ. Similarly, γ and γ′ have obvious representative curves

on Lift(Sm) that allow us to produce tangent framing lifts γ̂, γ̂′. In fact,

γ̂ =

[
m∑
l=1

(
m̂B

(l)

1 + m̂B
(l)

2

)]
∈ H1(Σ̃;Z)

γ̂′ =

[
m∑
l=1

(
m̂A

(l)

1 + m̂A
(l)

2

)]
∈ H1(Σ̃;Z).

Via similar arguments to above, along with the definition of γ̂c in (C.45), we have

γ̂c = γ̂ + γ̂′.

Alternatively, we can lift γc = γ + γ′ using the map (̃·) : Γ → Γ̃ defined in (E.1) of Appendix E.

Indeed, as the curves representing γ and γ′ intersect m times, we have

γ̃c = γ̂ + γ̂′ +mH = γ̂c +mH.

Thus,

z = Xγ̂c = (−1)mXγ̃c .

C.8 Proof of Proposition 3.2.2

We wish to compute the homology class of the 1-chain L(nγc). First we introduce a few notational

definitions that differ slightly from the main body of the paper.
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Definition mp(l,r) ∈ C1(Σ;Z) is the component of mp(l) ∈ C1(Σ;Z) on the rth sheet. If p(l) is a

street of type ij, then

mp(l,r) =


+
(
1-chain representing the lift of p(l) to the rth sheet

)
, if r = j

−
(
1-chain representing the lift of p(l) to the rth sheet

)
, if r = i

0 otherwise

.

Now,

L(nγc) =

m∑
l=1

∑
p(l)

αn(p, l)mp(l)

= αn

m∑
l=1

{
mc(l) + (m− l)

(
ma2

(l) + ma3
(l) + mb2

(l) + mb3
(l)
)

+ (l − 1)
(
ma2

(l) + ma3
(l) + mb2

(l)
+ mb3

(l)
)

+

+(m− l + 1)
(
ma1

(l) + mb1
(l)
)

+ l
(
ma1

(l) + mb1
(l)
)}

.

(3.36)

after using the results of Prop. 3.2.1 and the definition of αn given in equation (3.35).

For the sake of readability we introduce some simplifying notation.

Notational Definition We denote,

ma12 := ma
(l)
1 + ma

(l)
2

ma23 := ma
(l)
2 + ma

(l)
3

ma123 := ma
(l)
1 + ma

(l)
2 + ma

(l)
3 ;

and similarly, for mai, mbi, and mbi.

Using this notation, we can rewrite our sum in slightly more illuminating form,

L(nγc) = αn

m∑
l=1

{
(m− l)

(
ma

(l)
123 + mb

(l)
123

)
+ l
(
ma

(l)
123 + mb

(l)

123

)
+ma1

(l) + mb1
(l) + mc(l) −ma23

(l) −mb23
(l)
}
.

This form suggests we should try to find a homological equivalence taking the terms multiplying

the factor l, to the terms multiplying the factor (m− l). We introduce extra 1-chains to aid in our

computation. To define them, it is helpful to think of them as lifts of auxiliary streets. However,

the interpretation as lifts of streets on C is only a notational tool: these streets are not part of any

spectral network.

Definition Let {Ul}ml=1 be an open covering satisfying the Horses condition for an m-herd. On

each horse we define auxiliary streets as in Fig. C.5: e
(l)
1 , e

(l)
2 ⊂ Ul of type 12, and f

(l)
1 , f

(l)
2 ⊂ Ul, of

type 23 ; such that,
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Figure C.5: Lift of a horse with extra 1-chains, pictured here as the lift of some auxiliary streets on C.
For the sake of readability, the “horse label” (l) is suppressed on the base C.

(C1 ):

e
(l+1)
1 = −e(l)

2

f
(l+1)
2 = −f (l)

1 ,

where “−” indicates orientation reversal.

(C2 ): e
(1)
1 and f

(1)
2 end on the branch points of type 12 and 23 (respectively) of the lower-sourced

horse, while e
(m)
2 and f

(m)
1 end on the branch points of type 12 and 23 (respectively) of the

upper-sourced horse.

Remark The No Holes condition removes any obstruction to condition (C1 ).

The 1-chains that will aid in our proof are the lifts of the auxiliary streets.
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Remark Keeping with the (previously defined) convention for lifts of streets, there are 1-chains (on

Σ) me
(l)
1 , me

(l)
2 , mf

(l)
1 , and mf

(l)
2 (also depicted in Fig. C.5). It follows that, via (C1 ),

me
(l+1)
1 = −me

(l)
2

mf
(l+1)
2 = −mf

(l)
1 .

(C.48)

for l = 1, · · · ,m− 1.

Lemma C.8.1. Let ∼ denote homological equivalence. Then for each l = 1, · · · ,m: on the first

(locally defined) sheet,

0 ∼ma
(l,1)
23 + me

(l,1)
1 −ma

(l,1)
1 −mc(l,1) (C.49)

0 ∼ma
(l,1)
1 + mc(l,1) −ma

(l,1)
23 + me

(l,1)
2 . (C.50)

On the second sheet,

0 ∼ma
(l,2)
123 + me

(l,2)
2 −ma

(l,2)
123 + me

(l,2)
1 (C.51)

0 ∼mb
(l,2)

123 + mf
(l,2)
2 −mb

(l,2)
123 + mf

(l,2)
1 (C.52)

0 ∼ma
(l,2)
3 + mb

(l,2)
2 −ma

(l,2)
1 + me

(l,2)
1 (C.53)

0 ∼ma
(l,2)
2 + mb

(l,2)

3 + mf
(l,2)
2 −mb

(l,2)
1 (C.54)

0 ∼mb
(l,2)
2 + ma

(l,2)
2 −mb

(l,2)

2 −ma
(l,2)
2 . (C.55)

On the third sheet,

0 ∼mb
(l,3)
1 + mc(l,3) −mb

(l,3)

23 −mf
(l,3)
2 (C.56)

0 ∼mb
(l,3)

1 + mf
(l,3)
1 −mb

(l,3)
23 + mc(l,3). (C.57)

Proof. The lemma follows by inspection of Fig. C.5. Each of the listed sum of 1-chains is the

boundary of an oriented disk.

In particular, it follows from the lemma that

ma
(l)
123 ∼ma

(l)
123 −me

(l)
1 −me

(l)
2

mb
(l)

123 ∼mb
(l)
123 −mf

(l)
1 −mf

(l)
2 .

Hence,

L(nγc) ∼ αn
m∑
l=1

{
(m− l)

(
ma

(l)
123 + mb

(l)
123

)
+ l
(
ma

(l)
123 + mb

(l)
123

)}
+ αnR1 + αnR2

∼ mαn
m∑
l=1

(
ma

(l)
123 + mb

(l)
123

)
+ αnR1 + αnR2 (C.58)
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where

R1 = −
m∑
l=1

l
{

me
(l)
1 + me

(l)
2 + mf

(l)
1 + mf

(l)
2

}
R2 =

m∑
l=1

{
ma1

(l) + mb1
(l) + mc(l) −ma23

(l) −mb23
(l)
}
.

Using (C.48), the first of these sums can be simplified,

R1 = −
m∑
l=1

l
(
me

(l)
1 + mf

(l)
2

)
−

m∑
l=1

l
(
me

(l)
2 + mf

(l)
1

)
= −

m∑
l=1

l
(
me

(l)
1 + mf

(l)
2

)
+

m−1∑
l=1

l
(
me

(l+1)
1 + mf

(l+1)
2

)
−m

(
me

(m)
2 + mf

(m)
1

)
= −

m∑
l=1

l
(
me

(l)
1 + mf

(l)
2

)
+

m∑
l=2

(l − 1)
(
me

(l)
1 + mf

(l)
2

)
−m

(
me

(m)
2 + mf

(m)
1

)
= −

(
me

(1)
1 + mf

(1)
2

)
−m

(
me

(m)
2 + mf

(m)
1

)
−

m∑
l=2

(
me

(l)
1 + mf

(l)
2

)
= −m

(
me

(m)
2 + mf

(m)
1

)
−

m∑
l=1

(
me

(l)
1 + mf

(l)
2

)
. (C.59)

To reduce R2, we use the following lemma.

Lemma C.8.2.

ma1
(l) + mb1

(l) + mc(l) −ma23
(l) −mb23

(l) ∼me
(l)
1 + mf

(l)
2 .

Proof. On sheet 1,

ma
(l,1)
1 + mb

(l,1)
1 + mc(l,1) −ma

(l,1)
23 −mb

(l,1)

23 = ma
(l,1)
1 + mc(l,1) −ma

(l,1)
23 .

Using (C.49),

∼ma
(l,1)
1 + mc(l,1) +

(
me

(l,1)
1 −ma

(l,1)
1 −mc(l,1)

)
∼me

(l,1)
1 .

Similarly, on sheet 3, using (C.56) appropriately,

ma
(l,3)
1 + mb

(l,3)
1 + mc(l,3) −ma

(l,3)
23 −mb

(l,1)

23 = mb
(l,3)
1 + mc(l,3) −mb

(l,3)

23

∼mb
(l,3)
1 + mc(l,3) +

(
mf

(l,3)
2 −mb

(l,3)
1 −mc(l,3)

)
∼mf

(l,3)
2 .

On sheet 2

ma
(l,2)
1 + mb

(l,2)
1 + mc(l,2) −ma

(l,2)
23 −mb

(l,2)

23 = ma
(l,2)
1 + mb

(l,2)
1 −ma

(l,2)
23 −mb

(l,2)

23 .
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Now, via (C.53) and (C.54)

ma
(l,2)
1 ∼ma

(l,2)
3 + mb

(l,2)
2 + me

(l,2)
1

mb
(l,2)
1 ∼ma

(l,2)
2 + mb

(l,2)

3 + mf
(l,2)
2 .

Hence,

ma
(l,2)
1 + mb

(l,2)
1 + mc(l,2) −ma

(l,2)
23 −mb

(l,2)

23

∼
(
ma

(l,2)
3 + mb

(l,2)
2 + me

(l,2)
1

)
+
(
ma

(l,2)
2 + mb

(l,2)

3 + mf
(l,2)
2

)
−ma

(l,2)
23 −mb

(l,2)

23

∼mb
(l,2)
2 + ma

(l,2)
2 −mb

(l,2)

2 −ma
(l,2)
2 + me

(l,2)
1 + mf

(l,2)
2

∼me
(l,2)
1 + mf

(l,2)
2 ,

where the last reduction is due to (C.55).

Thus,

R2 ∼
m∑
l=1

(
me

(l)
1 + mf

(l)
2

)
;

so, with (C.59), we have

R1 +R2 = −m
(
me

(m)
2 + mf

(m)
1

)
.

Substituting this result into (C.58),

L(nγ) ∼ mαn
m−1∑
l=1

(
ma

(l)
123 + mb

(l)
123

)
+mαn

[(
ma

(m)
123 + mb

(m)
123

)
−
(
me

(m)
2 + mf

(m)
1

)]
.

After inspecting Fig. C.5, by deforming slightly on the mth horse we can convince ourselves this is

precisely a 1-chain representing γc.

To make this claim precise, let mq be a 1-chain on Σ such that ∂mq ⊂ π−1(z) for some z ∈ C ′,

and define [mq]R as the corresponding equivalence class in
⋃
z∈C′ Γ(z, z). Then, for any k = 1, · · · ,m

Rr(1, k)a∗ =

[
k∑
l=1

ma123

]
R

Rr(1, k)b∗ =

[
k∑
l=1

mb123

]
R

.
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Furthermore, by parallel transporting the endpoints of a and b along an appropriate path contained

in the mth horse13

a∗ =
[(

ma
(m)
123 −me

(m)
2

)]
R

b∗ =
[(

mb
(m)
123 −mf

(m)
1

)]
R
.

Thus,

[L(nγc)]R = mαn

[
R

(1,k)
r a∗ +R

(1,k)
r b∗ + a∗ + b∗

]
R
.

Applying the closure map to both sides, by (C.47) the proposition holds:

[L(nγc)] = mαnγc ∈ H1(Σ;Z).

C.9 Table of m-herd BPS indices Ω(nγc), for low values of n and m

Table C.1: Values of Ω(nγc) for low n and m

n
1 2 3 4 5 6 7

m = 1 1 0 0 0 0 0 0
m = 2 -2 0 0 0 0 0 0
m = 3 3 -6 18 -84 465 -2808 18123
m = 4 -4 -16 -144 -1632 -21720 -318816 -5018328
m = 5 5 -40 600 -12400 300500 -8047440 231045220
m = 6 -6 -72 -1800 -58800 -2251500 -95312880 -4325917260
m = 7 7 -126 4410 -208740 11579925 -710338104 46716068007

13As per our notation motivated in Section C.4, we do not write this parallel transport map explictly.
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Appendix D

Proof of Proposition 3.2.4

Define the sequence

bl :=

(
(m− 1)2l

l

)
;

we will show

lim
n→∞

Ω(nγc)

(−1)mn+1
(

m
(m−1)2n2

)
bn

= 1. (D.1)

Indeed, from (3.38),

Ω(nγc)

(−1)mn+1
(

m
(m−1)2n2

)
bn

= 1 +

R(n)︷ ︸︸ ︷∑
d|n
d<n

(−1)m(n+d)µ
(n
d

)( bd
bn

)
,

but

|R(n)| ≤
∑
d|n
d<n

bd
bn
.

Now, from the bounds
√

2πnn+ 1
2 e−n < n! ≤ nn+ 1

2 e1−n

it follows that

bd
bn

<

(
e√
2π

)3 (n
d

)1/2

ecm(d−n),

where cm is the constant defined in (3.40). Hence,

|R(n)| <
(

e√
2π

)3 (
n1/2e−cmn

)∑
d|n
d<n

d−1/2ecmd.

Now, the next largest divisor of n, other than n itself, is ≤ n/2. Using this fact, the observation that

d−1/2ecmd is a monotonically increasing function of d, and the crude bound that number of divisors



217

of n is ≤ n, we have

∑
d|n
d<n

d−1/2ecmd ≤ n
((n

2

)−1/2

ecmn/2
)

=
√

2necmn/2;

so

|R(n)| <
√

2

(
e√
2π

)3

ne−cmn/2,

which vanishes as n → ∞, verifying (D.1). In other words, the n → ∞ asymptotics of Ω(nγc) are

given by the asymptotics of the largest term bn of (3.38) inside the sum over divisors:

Ω(nγc) ∼ (−1)mn+1

(
m

(m− 1)2

)
n−2bn.

Equation (3.39) follows by using Stirling’s asymptotics on the binomial coefficient bn: as n→∞,

bn ∼
1√
2π

(
m− 1√
m(m− 2)

)
n−1/2ecmn.
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Appendix E

A sign rule

In this appendix we discuss a subtle point about signs which was not treated correctly in the first

version of [63].

The issue concerns the proper way of extracting 4D BPS degeneracy information from the gen-

erating functions Q(p) defined in (3.1.2.2). What we want to do is factorize Q(p) as we wrote in

(3.15), but to do so, we need a way of choosing the lifts γ̃ ∈ Γ̃ of classes γ ∈ Γ.

We propose the following rule. First, represent γ as a sum of k smooth closed curves βm on Σ.

Each such curve has a canonical lift β̂m to Σ̃ just given by the tangent framing. Then we define

γ̃ =

k∑
m=1

(β̂m +H) +
∑
m≤n

#(βm ∩ βn)H. (E.1)

We need to check that γ̃ so defined is independent of the choice of how we represent γ as a

union of βm. First we check that γ̃ is stable under creation/deletion of a null-homologous loop. If

β denotes such a loop then β̂ = H modulo 2H (indeed, suppose β bounds a subsurface S; S admits

a vector field extending β̂, with χ(S) signed zeroes in the interior; this vector field gives a 2-chain

on Σ̃ which shows β̂ is homologous on Σ̃ to χ(S)H; but χ(S) is odd since S has a single boundary

component.) Thus the extra term β̂ +H added to γ̃ is zero modulo 2H. Next we check γ̃ is stable

under resolution of an intersection: indeed this changes
∑
m≤n #(βm∩βn) by −1, and changes k by

±1, while not changing
∑
β̂m; it thus changes γ̃ by either 0 or −2H, which is in either case trivial

mod 2H. Finally we note that any representation of γ as a union of smooth closed curves can be

related to any other by repeated application of these two operations and their inverses. It follows

that γ̃ is indeed well defined.

Moreover, this rule has the following property:

γ̃ + γ̃′ = γ̃ + γ′ + 〈γ, γ′〉H. (E.2)
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It follows that the corresponding formal variables

Yγ = Xγ̃ (E.3)

obey the twisted product rule

YγYγ′ = (−1)〈γ,γ
′〉Yγ+γ′ . (E.4)

In turn it follows (using the arguments of [61, 63]) that, if we use this particular lifting rule to extract

the 4D BPS degeneracies, all the wall-crossing relations (and in particular the KSWCF for the pure

4D degeneracies) will come out as they should.
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Appendix F

Spectral networks and algebraic equations

It has been noted by Kontsevich that the generating functions of Donaldson-Thomas invariants are

often solutions of algebraic equations. The equation (1.15) is one example. This equation determines

the BPS degeneracies Ω(nγc) corresponding to an m-cohort. As we have seen in this paper, this

equation can be derived from a close analysis of the spectral network corresponding to an m-herd.

While finding the precise equation (1.15) involved some hard work, the bare fact that the BPS

generating function obeys some algebraic equation is not so mysterious. Indeed, this seems to be a

general phenomenon, which we expect to occur for any theory of class S. Let us briefly explain why.

The junction equations (B.1) involve variables ν and τ attached to each street of the network.

These variables lie a priori in the noncommutative algebra AS . However, one can replace them by

variables lying in the commutative algebra AC simply by choosing local trivializations of the torsors

Γ̃(z̃,−z̃); indeed such a trivialization gives an embedding of AS into the algebra of K ×K matrices

over AC ; taking the individual matrix components then gives equations where all of the variables

lie in AC . These equations alone do not quite determine ν and τ — there are not quite enough of

them. However, once one supplements them with the “branch point” equations from [63] (which are

also algebraic), one then has one equation for each variable.

In principle the spectral network may involve infinitely many streets and joints, so at this stage

we may have an infinite set of algebraic equations in an infinite number of variables. However, in

all examples we have considered, only finitely many of these equations are relevant for determining

any particular BPS generating function. Indeed, in these examples the set of “two-way streets” is

always supported in some compact set K obtained by deleting small discs around punctures on C;

the intersection W ∩K only involves finitely many streets; and there are no streets which enter K

from outside. It seems likely that these properties hold for all spectral networks, although we have
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not proven it. In any case, taking these properties for granted, it follows that the finitely many

variables ν and τ attached to the finitely many streets in W ∩K are indeed determined by a finite

set of algebraic equations.

The functions Q(p) in turn are algebraic combinations of the ν and τ , as are the BPS generating

functions
∏
pQ(p)〈ā,pΣ〉. Thus we expect that the BPS generating functions in any theory of class

S always satisfy algebraic equations, which gives a natural explanation of Kontsevich’s observation,

at least in those theories.
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Appendix G

Generating function detailed calculation

In this Appendix we present a simple technique allowing one to calculate the writhe effectively for

soliton paths encoded by certain graphs on branched spectral covers, and show its application to a

direct computation of several first terms in expansions like (4.118).

G.1 Singular writhe technique

Schematically, the spectral network may be though of as a graph. We would like to adapt the

usual notion of writhe for smooth curves to the singular1 curves arising in this setting. In order to

compute the writhe it will be necessary to keep track of the order in which the path runs (in different

transverse directions) through a self-intersection. For this purpose, we will resolve paths pictorially

by drawing under/over-crossing. The path-ordering convention is that what runs below runs first.

For example, consider a self-intersection through which a single path runs multiple times as

shown in figure G.1). We can slightly resolve the critical angle ϑc to get the picture on the left hand

side, then it is simple to notice that the four segments give contributions to the writhe by pairs, so

it is enough to sum these contributions pairwise for the thick intersections. The contribution for

this particular case is −2.

Another interesting possible issue are “half-intersections”. They occur when two lines going first

parallel split and go in different directions, this happens due to splitting of intersections as depicted

in fig.G.2. From these pictures it is clear that we can assign half-contributions to half-intersections

assuming that these half-contributions will be summed up to an integer result.

1Here singular does not denote the presence of self-intersections as, for instance, in the math literature on knots.
We refer instead to discontinuities of the tangent vector of solitons paths, these occur in correspondence of (lifts of)
joints.
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Figure G.1: Resolved intersection

Figure G.2: On the singular writhe calculation. At junctions, soliton paths may intersect somewhat
ambiguously, with “half-integer” units of intersections to be taken into account. Upon summation the
contributions from all junctions involved, intersection numbers can eventually be correctly computed and
found to be integers. From left to right we show the addition of half-integer intersection numbers at pairs
of junctions: − 1

2
− 1

2
= −1, − 1

2
+ 1

2
= 0, + 1

2
+ 1

2
= +1, + 1

2
− 1

2
= 0

Thus to compute the “singular writhe” we choose a base point, in each self-intersection lines

come in with some tangent vectors ~vk at corresponding “times” tk, so, finally the formula for the

writhe reads

wr(γ) =−
∑
i∈int′s

∑
k,m

sign(t
(i)
k − t

(i)
m )sign

[
~v

(i)
k , ~v(i)

m

]
+

− 1

2

∑
i∈ 1

2 int′s

∑
k,m

sign(t
(i)
k − t

(i)
m )sign

[
~v

(i)
k , ~v(i)

m

] (G.1)

G.2 Diagram rules

In the next subsection we present results for detour writhe calculations in the cases of 2-herds and

3-herds. We schematize the corresponding detours by diagrams denoting resolutions of paths in

6-way joints.

In this way we can reformulate the 6-way joint rules in a pictorial form. As an example, consider

τki(pS) = + + + + . . .

(G.2)

here we describe the outgoing soliton generating function for the street pS (S is for South) attached

to the bottom gate of the joint: solitons of type ki start from this gate on sheet k going upwards
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and end up on sheet i going downwards to return back to the bottom gate. What happens in

between is described by following the lines connecting the various gates. For example, in the first

term we simply have straight connections to the upper gate, this corresponds to solitons contributed

from νki(pN ) (the street at the northern gate). In the second term we have solitons starting on

sheet k on the south gate, propagating on sheet k to the NW gate, then propagating through the

network, then coming back to the NW gate on sheet j, then propagating to the NE gate on sheet

j and going once more through the network and coming back to the NE gate on sheet i and finally

propagating back to the S gate, and on pS on sheet i. Solitons in the second term are those encoded

into νkj(pNW )νji(pNE). Further terms bear analogous interpretations.

We present whole detour diagrams, calculate corresponding writhes and restore the generating

function Q(d, y, z) (eq.(4.112)). The results will be:

Q(2−herd)(d, y, z) = 1 + (y + y−1)z + (y2 + 1 + y−2)z2 +O(z3)

Q(3−herd)(d, y, z) = 1 + (y2 + 1 + y−2)z + (y6 + 2y4 + 3y2 + 3 + 3y−2 + 2y−4 + y−6)z2 +O(z3)

(G.3)

Diagram rules:

• Green lanes go along ith sheet, red lanes go along jth sheet, blue lanes go along kth sheet

• Green and blue lanes go from right to left, red lanes go from left to right

• We calculate the generating function for d branching point street, thus we always start com-

puting writhe from d branching point from kth sheet.

• For n-th order contributions (meaning that the detour’s homology class is n times the generator

of the critical lattice), in order to keep things tidy, we split the picture into n layers. To

reconstruct the path one has to glue the layers back together, the endpoints of a piece of path

drawn on a layer are marked by thick red and blue dots. The red dot is where the jump to the

next layer begins, the blue dot is where the jump from the previous layer lands. For example,

see figure G.5. On those diagrams where dots are missing layers are glued in the point d.

G.3 2-herd diagrams

G.3.1 Diagrams for order one

We now introduce a diagrammatic representation of detours. We draw the joints of a critical network

as circles and mark the six gates of each joint. The two herd has four joints: two for each horse,
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Figure G.3: The two diagrams for order one in the 2-herd

these are shown in each column of figure G.3: focusing on the left column, the upper two joints

correspond to the joints of the upper horse, while the lower two joints are the joints of the lower

horse (see fig. G.4), the horizontal dashed line separating them denotes the distinction of joints of a

horse from those of the other. The topology of the network determines how the different gates are

mutually connected by two-way streets, or whether they attach to streets ending on branch points.

Each column describes a detour path on Σ, the path is constructed out of the segments shown in the

figure (each color corresponds to a sheet of Σ) as well as of lifts of streets attached to the gates on

which segments end. All paths are conventionally taken with a basepoint on sheet i on the terminal

2-way streets on the SW branch-point of the herd, they are constructed starting from the basepoint

and following segments through joints, and connecting streets from one joint to the next one. As an

example, in figure G.4 we reproduce in full detail the path described by the diagram on the left of

fig. G.3.

diag # 1 2

contribution y−1 y

G.3.2 Diagrams for order two

diag # 1 2 3

contribution y−2 y2 1
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Figure G.4: The path corresponding to the diagram on the left of figure G.3. Recall that the endpoints
of streets on the far left are identified with endpoints of streets on the far right, as the herd wraps a tube
of the Riemann surface C. The starting point of the detour is indicated by a yellow dot, there is only one
self-intersection at the lowest joint, where two red lines (both run on sheet i) cross each other. The overall
writhe of this detour is therefore −1.

Figure G.5: Diagrams of order two in the 2-herd. Since each path goes twice around the herd, we split
the path into two and represented each piece separately, the dashed vertical line separates two pieces of the
same path, the thick dot indicates where one piece joins the other.

G.4 3-herd diagrams

G.4.1 Diagrams for order one

diag # 1 2 3

contribution y−2 1 y2

G.4.2 Diagrams for order two

diag # 1 2 3 4 5 6 7 8 9 10 11 12 13

contribution 1 2y2 y4 y4 y−6 y6 y−4 y−4 2y−2 1 y−2 1 y2
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Figure G.6: Diagrams for the order one in 3-herd

Notice that diagrams of type #2 and type #9 come into play twice, so the total number of

diagrams with multiplicities is 15. All the diagrams except #5, 6 are independent of the order along

what subdiagram one goes first, though for diagrams #5, 6 this choice may switch the sign of the

index to the opposite. The right choice in this case can be extracted from the order of crossing

cuts what coincides with the order of simpleton generating functions in the final generating function

expression.
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Figure G.7: Diagrams #1-8 for the order two in 3-herd
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Figure G.8: Diagrams #9-13 for the order two in 3-herd
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Appendix H

Vanilla states from refined charges

In section 4.1.3.1 we motivated the definition of halo-saturated interfaces by noting that the framed

wall-crossing of generic IR interfaces differs from that of IR line defects, due to the lack of a relation

such as (4.11) for generic interfaces. It is interesting to study the soliton combinatorics involved

in contributions to 〈a, L(γ)〉 for a generic interface labeled by the regular homotopy class a on Σ∗.

In fact, since here we are interested in intersections of a with closed homology classes, it will be

sufficient to consider the relative homology class of a on Σ∗, which will be denoted a.

H.1 Refinement of halo charges

In the classical K-wall formula of [63, 65], the enhanced 2d-4d degeneracies ω(γ, a) keep track of

the effects of the refinement of 4d charges induced by the removal of points corresponding to the 2d

vacua z(i), z′
(j′)

(the endpoints of a). In the context of spectral networks, this is identified with

ω(γ, a) = 〈L(γ), a〉 . (H.1)

When positivity holds1, it tells us that |Ω(γ)| = dim(hγ), in other words the BPS index really counts

the number of oscillators generating the corresponding vanilla Fock sub-space. We conjecture that

there exists a unique splitting

L(γ) =

|Ω(γ)|∑
r=1

Lr(γ) , (H.2)

with each term satisfying

Lr(γ) =
∑
p∈Wc

αr,γ(p) pΣ, ∂Lr(γ) = 0 , [Lr(γ)] = sgn(Ω(γ)) · γ , (H.3)

1In [73] evidence was found, somewhat surprisingly, that positivity seems to hold for BPS boundstates correspond-
ing to stable irreps of the m-Kronecker quiver.
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where αr,γ(p) are integers determined by a set of rules which we will presently explain. Heuristically,

each Lr(γ) should be associated with a 1-particle vanilla BPS state in the multiplet hγ , then ω(γ, a)

counts the number of 4d vanilla as well as orbital oscillators contributing to the Fock space of framed

BPS states.

To present our construction of the Lr, we introduce a new homology lattice, naturally related to

a classification of supersymmetric interfaces. Given a network at a critical phase W(ϑc), consider

the space C \ W(ϑc), it will be a disconnected union of various components. Choose a point from

each component, let R be the set of these points. Then we define

C∗ := C \R Σ∗ := Σ \ π−1(R) Γ∗ = H1(Σ∗,Z) (H.4)

we will call Γ∗ the refined lattice, while we denote by H1(Σ∗,Z;π−1(R)) the Γ∗-torsor of relative

homology classes on Σ∗ with endpoints in π−1(R). We define Γ∗c to be the (not necessarily one-

dimensional) sublattice which projects to Γc ⊂ Γ upon filling the punctures at π−1(R). We also

denote by γc the generator of the one-dimensional lattice Γc (the sign ambiguity is fixed by ϑc).

Any IR interface labeled by a ∈ H1(Σ∗,Z;π−1(R)), enjoys a well-defined pairing 〈γ̃, a〉 with any

γ̃ ∈ Γ∗. The Lr – so far defined as actual paths – can be clearly associated to homology classes of

Γ∗, we define γ̃n,r := [Lr,nγc ]Γ∗ sgn(Ω(nγc)).

Correspondingly, we introduce a new set of formal variables X̃ associated with (relative) homol-

ogy classes on Σ∗, satisfying

X̃γ̃X̃γ̃′ = X̃γ̃+γ̃′ X̃aX̃γ̃′ = X̃a+γ̃ . (H.5)

Now, choose a to be any relative homology class on Σ∗ with endpoints in π−1(R), and consider

the generating function of its framed BPS states with halo charges in Γ∗c (cf. 4.27, where a is played

by ℘(i)) ∑
γ̃∈Γ∗c

X̃a+γ̃ (H.6)

Conjecture 3. the series (H.6) admits a factorization of the form

X̃a

∏
n,r

(
1 + σ(nγc)X̃γ̃n,r

)〈a,γ̃n,r〉
(H.7)

where σ(nγc) = sgn(Ω(nγc)), [γ̃n,r]Γ = nγc and r = 1, . . . , |Ω(nγc)|.

Because of our choice of Γ∗, the refined homology classes γ̃∗ uniquely determine the Lr(γ) (i.e.

the αr,γ(p)). This is our definition of the Lr, it relies on the conjectural factorization. We conclude

by presenting some nontrivial evidence for the conjecture.
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H.2 The 3-herd

For the 3-herd, the BPS indices read

Ω(γc) = 3, Ω(2γc) = −6, Ω(3γc) = 18, . . . (H.8)

We know that Ln,r must run through each terminal street n times, for all r, for homological reasons.

Thus we expect for the halo generating function (H.7) of an interface crossing one terminal street

(cf. fig.4.11)

X̃a (1 + X̃γ̃1,1
)(1 + X̃γ̃1,2

)(1 + X̃γ̃1,2
)

×(1− X̃γ̃2,1
)−2(1− X̃γ̃2,2

)−2(1− X̃γ̃2,3
)−2(1− X̃γ̃2,4

)−2(1− X̃γ̃2,5
)−2(1− X̃γ̃2,6

)−2

×(1 + X̃γ̃3,1
)3(1 + X̃γ̃3,2

)3 · · · (1−Xγ̃3,18
)3

× · · ·

(H.9)

According to our conjecture, this predicts the following form for generating function of framed states

(H.6)

X̃a

[
1 +

(
X̃γ̃1,1

+ X̃γ̃1,2
+ X̃γ̃1,2

)
+
(
X̃γ̃1,1+γ̃1,2

+ X̃γ̃1,1+γ̃1,3
+ X̃γ̃1,2+γ̃1,3

+ 2

6∑
r=1

X̃γ̃2,r

)
+
(
Xγ̃1,1+γ̃1,2+γ̃1,3

+ 2

3∑
r=1

6∑
r′=1

X̃γ̃1,r+γ̃2,r′ + 3

18∑
r=1

X̃γ̃3,r

)
+ · · ·

]
(H.10)

Indeed, by studying the detours, we find exactly the predicted structure, with the identifications

(labels refer to the street map of figure 4.11, the lifts of streets carry the orientations dictated by

the WKB flow for each component of the lift)

L1,1 =π−1(γ1 + δ1 + α2 + β2 + δ2 + δ3 + α4 + β4 + δ4 + α6 + β6)

L1,2 =π−1(α1 + β1 + δ1 + γ2 + δ2 + δ3 + δ4 + α6 + β6)

L1,3 =π−1(α1 + β1 + δ1 + δ2 + α3 + β3 + γ3 + δ3 + δ4 + α5 + β5)

(H.11)
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Figure H.1: The set of L1,r. Values of the αr(p) are displayed.

L2,1 =π−1(2(α1 + β1 + δ1 + γ2 + δ2 + δ3 + δ4 + α6 + β6))

L2,2 =π−1(α1 + β1 + γ1 + 2δ1 + α2 + β2 + γ2 + 2δ2 + 2δ3 + α4 + β4 + 2δ4 + 2α6 + 2β6)

L2,3 =π−1(2α1 + 2β1 + 2δ1 + γ2 + 2δ2 + α3 + β3 + γ3 + 2δ3 + 2δ4 + α5 + β5 + α6 + β6)

L2,4 =π−1(2(γ1 + δ1 + α2 + β2 + δ2 + δ3 + α4 + β4 + δ4 + α6 + β6))

L2,5 =π−1(α1 + β1 + γ1 + 2δ1 + α2 + β2 + 2δ2 + α3 + β3 + γ3 + 2δ3 + α4 + β4 + 2δ4

+ α5 + β5 + α6 + β6)

L2,6 =π−1(2(α1 + β1 + δ1 + δ2 + α3 + β3 + γ3 + δ3 + δ4 + α5 + β5))

(H.12)
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Figure H.2: The set of L2,r. Values of the αr(p) are displayed.
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L3,1 = π−1(3(α1 + β1 + δ1 + γ2 + δ2 + δ3 + δ4 + α6 + β6))

L3,2 = L3,3 = π−1(2α1 + 2β1 + γ1 + 3δ1 + α2 + β2 + 2γ2 + 3δ2 + 3δ3 + α4

+ β4 + 3δ4 + 3α6 + 3β6)

L3,4 = L3,5 = π−1(3α1 + 3β1 + 3δ1 + 2γ2 + 3δ2 + α3 + β3 + γ3 + 3δ3 + 3δ4

+ α5 + β5 + 2α6 + 2β6)

L3,6 = L3,7 = L3,8 = π−1(2α1 + 2β1 + γ1 + 3δ1 + α2 + β2 + γ2 + 3δ2 + α3 + β3

+ γ3 + 3δ3 + α4 + β4 + 3δ4 + α5 + β5 + 2α6 + 2β6)

L3,9 = L3,10 = π−1(α1 + β1 + 2γ1 + 3δ1 + 2α2 + 2β2 + γ2 + 3δ2 + 3δ3 + 2α4

+ 2β4 + 3δ4 + 3α6 + 3β6)

L3,11 = L3,12 = π−1(3α1 + 3β1 + 3δ1 + γ2 + 3δ2 + 2α3 + 2β3 + 2γ3 + 3δ3 + 3δ4

+ 2α5 + 2β5 + α6 + β6)

L3,13 = L3,14 = π−1(2α1 + 2β1 + γ1 + 3δ1 + α2 + β2 + 3δ2 + 2α3 + 2β3 + 2γ3

+ 3δ3 + α4 + β4 + 3δ4 + 2α5 + 2β5 + α6 + β6)

L3,15 = L3,16 = π−1(α1 + β1 + 2γ1 + 3δ1 + 2α2 + 2β2 + 3δ2 + α3 + β3 + γ3

+ 3δ3 + 2α4 + 2β4 + 3δ4 + α5 + β5 + 2α6 + 2β6)

L3,17 = π−1(3(γ1 + δ1 + α2 + β2 + δ2 + δ3 + α4 + β4 + δ4 + α6 + β6))

L3,18 = π−1(3(α1 + β1 + δ1 + δ2 + α3 + β3 + γ3 + δ3 + δ4 + α5 + β5))

(H.13)

The check can be extended to detours on all streets of the critical network (considering a short

interface crosing only a single 2-way street). We checked that the correspondence between (H.7)

and (H.6) holds: taking an interface crossing the lift of a single 2-way street, we find that the halo

generating function gets contributions only from those Ln,r which contain the street itself.
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Figure H.3: The set of L3,r. Values of the αr(p) are displayed.
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Appendix I

A technical equivalence relation

go g ’
o

c+ c-
c0

o

Figure I.1: The writhe as the origin of the quadratic refinement

First we would like to stress that the writhe implements a quadratic refinement function for the

intersection pairing in the homology basis. Indeed the both quantities are of the same nature: they

both can be interpreted as certain signed sums over intersections or self-intersections of actual paths.

Suppose we consider two paths γo and γ′o intersecting in some point o and suppose we are able

to concatenate them (somehow) then the writhe (a signed sum over all self-intersections of the

concatenation) is expected to have the following three contributions:

1. The sum over self-intersections of γo

2. The sum over self-intersections of γ′o

3. The sum over mutual intersections of γo and γ′o

The problem is that according to our rules we are not able to concatenate two closed paths if they

do not have a common tangent vector in the intersection point. Thus we add a small refinement: we
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consider an auxiliary path χ intersecting both γo and γ′o near the point o as it is depicted in fig.I.1.

There are two possibilities to choose χ going above or below the point o.

First consider the choice of χ going above and consider paths γo and γ′o as detours then the

writhe of the resulting path reads

wr(χ+γoχ0γ
′
oχ−) = wr(χ+γoχ0χ−) + wr(χ+χ0γ

′
oχ−) + 〈[γo], [γ′o]〉 (I.1)

where 〈?, ?〉 is the intersection pairing of homology classes [?] on Σ∗1. Then we shrink the auxiliary

path to zero and rewrite this relation as

wr(γoγ
′
o) = wr(γo) + wr(γ′o) + 〈[γo], [γ′o]〉 (I.2)

In this form the writhe represents a quadratic refinement of the intersection pairing on cycles, and

we imply a smooth gluing of the paths via an auxiliary path as in (I.1).

Notice that for the lower choice of χ we take a detour along γ′o first and then along γo, this we

describe as

wr(γ′oγo) = wr(γ′o) + wr(γo) + 〈[γ′o], [γo]〉 (I.3)

And the difference reads

wr(γoγ
′
o)− wr(γ′oγo) = 2〈[γo], [γ′o]〉 (I.4)

This relation can be continued to the ρ-projections of the algebraic variables

ρ
(

Υ̂γoΥ̂γ′o

)
= ρ
(

Υ̂γoγ′o

)
= y2〈[γo],[γ′o]〉ρ

(
Υ̂γ′oγo

)
= y2〈[γo],[γ′o]〉ρ

(
Υ̂′γoΥ̂γo

) (I.5)

The punchline is that, formally, Υ̂γoΥ̂γ′o
and y2〈[γo],[γ′o]〉Υ̂γ′o

Υ̂γo give the same contribution when

projected under ρ. We must stress that this by no means implies something like an algebra rule for

the Υ̂ (nor the Ŷ ) variables!

To lighten computations in the main body of the paper (most notably section 4.4) we will

sometimes employ the following equivalence relation

Υ̂γoΥ̂γ′o
=̇y2〈[γo],[γ′o]〉Υ̂γ′o

Υ̂γo (I.6)

for the purpose of eventually projecting through the map ρ from Υ̂ variables to Ŷ variables. The

symbol =̇ is meant to warn the reader that this is not an identity regarding the algebra of Υ̂ variables.

1Incidentally, since Σ∗ differs from Σ only by punctures, the pairing coincides with the intersection pairing of
homology classes on Σ.
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Appendix J

Off-diagonal herds

In section 4.3.3 we encountered a particular type of wild critical network, which is actually part of a

larger family of “off-diagonal” herds H(m,n)
p

1. We call these networks p - (m,n) herds, in this section

we describe schematically their structure.

The structure of off-diagonal herds is closely related to that of the usual “diagonal” herds: the

general structure of the network consists of p blocks glued together, as shown in figure J.1

(m, n)

(m, n)

(m, n)

A1

A1

A2

A p-1
B1

B1

B2

B p-1

Figure J.1: A p-herd is a collection of “fat” horses glued together with appropriate boundary conditions.

The gluing conditions are similar to those implemented in diagonal herds: blocks are glued to

each other in the natural way, throughout the herd which wraps the cylinder of C. Terminal blocks

are connected to branch points.

The novel feature of these types of networks in comparison to diagonal herds is that the single

(m,n)-block is now an m× n array of elementary horses glued together. This is displayed in figure

1T. Mainiero has independently come to the picture of the off-diagonal herds and is currently studying them.
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J.2, street types are analogous to those of section 4.4.1: ij, jk, ik-types are marked in blue, red and

purple respectively.

(m, n)

m cells

n cells

Figure J.2: A “fat” (m,n)-horse

Physically p - (m,n) - herds encode the protected spin characters of bound states of particles of

charges γ and γ′ with 〈γ, γ′〉 = p, with the ratio of particles of the first and the second types being

m : n.

Put differently, these networks can be associated to “slope-m/n” p-Kronecker quiver representa-

tions [73]

K(m,n)
p : Cαm

p−→Cαn, α ∈ N . (J.1)

From this perspective, the Poincaré polynomial of the corresponding quiver variety is expected

to coincide with the protected spin character calculated from the network. The computation of the

PSC from the network can be carried out applying the techniques discussed above in section 4.3.3.

To give an example, consider the following generating function for the Euler characteristics of

the moduli spaces

Q(K(m,n)
p ) :=

∏
α∈N

(1 + (−1)αmnzα)αχ(M(αn,αm)
p ) . (J.2)

From the network’s side, we may associate soliton generating functions ν, τ (solitons going into/out

of the joint respectively) to every joint of H(m,n)
p . We also introduce the notation ν

(i,j)
k [g], τ

(i,j)
k [g],

where k = 1, . . . , p labels the fat horse within the herd, while i = 0, . . . ,m and j = 0, . . . , n label

the joint within the fat herd, and g = 1, . . . , 6 labels the six streets connected to the joint. The

enumeration of the streets at a generic 6-way joint goes clockwise starting from “noon”. With this

notation, we define the following generating function:

Q(H(m,n)
p ) :=

n

√
1 + τ

(m,n)
p [3]ν

(m,n)
p [3] =

m

√
1 + τ

(m,n)
p [5]ν

(m,n)
p [5] (J.3)



240

Some examples of the network-quiver correspondence are

Q(K(3,1)
3 ) = Q(H(3,1)

3 ) = 1 + z ,

Q(K(3,2)
3 ) = Q(H(3,2)

3 ) = 1 + 13z + 1034z2 + 115395z3 +O(z4) ,

Q(K(4,3)
3 ) = Q(H(4,3)

3 ) = 1 + 68z + 66378z2 +O(z3) ,

(J.4)

in agreement with the general expectation

Q(K(m,n)
p ) = Q(H(m,n)

p ) . (J.5)

It appears to be a challenging problem to generalize equation (1.16) ( or (4.111) ) to the case of

p - (m,n) herds, even in the classical case. One might expect a system of equations for a well-chosen

set of generating functions, but finding a manageable such system is a problem we leave for the

future.
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Appendix K

Generic interfaces and the halo picture

This section is devoted to showing how the factorization property deriving from the halo picture

fails to capture the K-wall jump (4.88). More precisely, the K-wall jump cannot be written as a

conjugation by dilogarithms unless some extra techical assumptions are introduced (see immediately

above 4.91) about the algebra of formal variables. It is sufficient to consider the truncated expression

Fjj(℘, ϑ
+
c ; y) = Ŷ℘(j) + y2 Ŷ℘(j)+γ̃1

+ (y + y5)Ŷ℘(j)+γ̃1+γ̃2
+ 2y4Ŷ℘(j)+2γ̃1

+ · · ·

= Ŷ℘(j)

(
1 + y3 Ŷγ̃1

+ (y2 + y6)Ŷγ̃1+γ̃2
+ 2y6Ŷ2γ̃1

+ · · ·
)
.

(K.1)

In order to assess whether it admits a factorization similar to (4.91), involving quantum dilogs,

consider the following identity

Φ((−y)m Ŷγ̃)k Ŷ℘(j) Φ((−y)m Ŷγ̃)−k = Ŷ℘(j) Φ−〈℘(j),γ̃〉((−y)my−2〈℘(j),γ̃〉 Ŷγ̃)−k sgn(〈℘(j),γ̃〉)

= 1 + k
1− y2〈℘(j),γ̃〉

1− y−2
y−1 (−y)my−2〈℘(j),γ̃〉 Ŷγ̃ +O(Ŷ2γ̃) ,

(K.2)

where in the last line we expanded in powers of Ŷγ̃ and used the fact cycles γ̃ appearing in the

expression of interest all satisfy 〈℘(j), γ̃〉 < 0. From this, taking γ̃ = γ̃1 and comparing with the

above we find only one possibility compatible with a dilog factorization: Φ((−y)2 Ŷγ̃1). Note that

this would contribute a factor of Φ1((−y)4 Ŷγ̃1
) when switching to finite-type dilogs, which is equal

to 1 + y3 Ŷγ̃1
. Therefore this dilog would not contribute to any other term in parentheses on the

RHS of (K.1), hence we may use (K.2) directly on the other terms as well. Thus considering the

term in Ŷ2γ̃1
, if it were coming from a dilog expansion we would expect the following pre-factor

k y3 (−y)m
1− y−4

1− y−2
= k (−y)m(y + y3) (K.3)

which clearly cannot match 2y6. This establishes that (4.88) cannot be cast into the form of conju-

gation by quantum dilogarithms.
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