
HIGH-THROUGHPUT FPGA QC-LDPC DECODER
ARCHITECTURE FOR 5G WIRELESS

BY SWAPNIL MHASKE

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Professor Predrag Spasojevic

and approved by

New Brunswick, New Jersey

October, 2015



c© 2015

Swapnil Mhaske

ALL RIGHTS RESERVED



ABSTRACT OF THE THESIS

High-Throughput FPGA QC-LDPC Decoder

Architecture for 5G Wireless

by Swapnil Mhaske

Thesis Director: Professor Predrag Spasojevic

Wireless data traffic is expected to increase by a 1000 fold by the year 2020 with

more than 50 billion devices connected to these wireless networks with peak data rates

upto 10 Gb/s . The next generation of wireless cellular technology (being collectively

termed as 5G) is slated to operate in the mm-wave (30-300GHz) spectrum which comes

with challenges such as, reliance on line of sight (LOS) communication, short range of

communication, increased shadowing and, rapid fading in time. This will necessitate

additional signal processing techniques such as large antenna arrays and beamsteering

which will further reduce the processing budget available to the channel coding system.

In an effort to design and develop a channel coding solution suitable to such systems,

in this thesis we propose strategies to achieve a high-throughput FPGA-based decoder

architecture for a QC-LDPC code based on circulant-1 identity matrix construction.

We present a novel representation of the parity-check matrix (PCM) providing a multi-

fold throughput gain. Splitting of the node processing algorithm enables us to achieve

pipelining of blocks and hence layers. By partitioning the PCM into not only layers but

superlayers, we derive an upper bound on the pipelining depth with respect to the size

of the superlayer for the compact representation. To validate the architecture, a decoder

for the IEEE 802.11n (2012) QC-LDPC is implemented on the Xilinx Kintex-7 FPGA

ii



with the help of the FPGA IP compiler available in the NI LabVIEWTMCommunication

System Design Suite (CSDSTM). It offers an automated and systematic compilation

flow. An optimized hardware implementation from the decoder algorithm was generated

in approximately 3 minutes, achieving an overall throughput of 608Mb/s (at 260MHz).

With little or no modifications, the proposed decoder architecture caters to a wide range

of circulant-1 identity matrix construction based QC-LDPC codes widely accepted in

several communication and data storage standards.

iii



Acknowledgements

I would like to thank my advisor Prof. Predrag Spasojevic for having faith in me and

guiding me throughout the course of this research work, the importance of his advice

cannot be overstated. Special thanks to Prof. Roy Yates and Prof. Zoran Gajic for

being a part of my thesis committee.

I would also like to thank my colleagues Hojin Kee and Tai Ly in the LabVIEW

FPGA R&D, National Instruments, Austin for their valuable feedback and guidance.

I am especially grateful to Ahsan Aziz and the Advanced Wireless Research team in

National Instruments, Austin for their support. I am thankful to Christopher Mueller-

Smith for his help and contribution toward developing the BCJR decoding algorithm

for the 3GPP turbo decoder during the very initial phase of this project. Many thanks

go out to the Department of Electrical & Computer Engineering, Rutgers University

for their continual support for this research work.

Finally, I thank my parents and my dear friends Chaitral and Manasa, without their

love and encouragement this would not have been possible.

iv



Dedication

To Aai, Baba, Tai, Ajay & Adu

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Quasi-Cyclic LDPC Codes and Decoding . . . . . . . . . . . . . . . . . 3

2.1. Quasi-Cyclic LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Scaled Min-Sum Algorithm (MSA) for Decoding QC-LDPC Codes . . . 6

3. Strategies to Achieve High-throughput . . . . . . . . . . . . . . . . . . 9

3.1. Linear Complexity Node Processing . . . . . . . . . . . . . . . . . . . . 9

3.2. z-fold Parallelization of NPUs . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3. Layered Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4. Compact Representation of Hb . . . . . . . . . . . . . . . . . . . . . . . 15

4. Layer-Pipelined Decoder Architecture . . . . . . . . . . . . . . . . . . . 18

4.1. Pipelining GNPU and LNPU Arrays . . . . . . . . . . . . . . . . . . . . 19

5. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6. Application

2.48Gb/s QC-LDPC Decoder on the NI USRP-2953R . . . . . . . . . . 29

6.1. Multi-core Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



6.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7. Related Work

3GPP UMTS Turbo Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



List of Tables

2.1. Base matrix Hb for z = 81 specified in IEEE 802.11n (2012) standard

used in the case study. L1−L12 are the layers and B1−B24 are the block

columns (see Section 3.3). Valid blocks (see section 3.4) are highlighted. 5

3.1. Arbitrary submatrix Is in H, 0 ≤ J ≤ nb−1, illustrating the opportunity

to parallelize z NPUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2. Illustration of Message Passing in row-layered decoding in a Section of

the PCM Hb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3. Block index matrix βI showing the valid blocks (highlighted) to be pro-

cessed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4. Block shift matrix βS showing the right-shift values for the valid blocks

to be processed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1. Rearranged Block Index Matrix β′I used for our work, showing the valid

blocks (highlighted) to be processed. . . . . . . . . . . . . . . . . . . . . 19

5.1. LDPC Decoder IP FPGA Resource Utilization & Throughput on the

Xilinx Kintex-7 FPGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1. Performance and resource utilization comparison for the Baseline archi-

tecture with the Pipelined architecture of the QC-LDPC decoder on the

NI USRP-2953R containing the Xilinx Kintex7 (410t) FPGA. . . . . . . 33

6.2. Performance and resource utilization comparison for versions with vary-

ing number of cores of the QC-LDPC decoder implemented on the NI

USRP-2953R containing the Xilinx Kintex7 (410t) FPGA. . . . . . . . 34

7.1. Turbo Decoder IP FPGA Resource Utilization & Throughput on the

Xilinx Kintex-7 XC7K325T-2L-FFG900. . . . . . . . . . . . . . . . . . . 37

viii



List of Figures

2.1. A Tanner graph where VNs (representing the code bits) are shown as

circles and CNs (representing the parity-check equations) are shown as

squares. Each edge in the graph corresponds to a non-zero entry (1 for

binary LDPC codes) in the PCM H. . . . . . . . . . . . . . . . . . . . . 4

2.2. An instance of extrinsic message computation at CN i and its transfer

to VN j on the Tanner graph. It is important to note that the VTC

message from VN j is not included in the computation (indicated by a

dashed line) as CN i intends to send it to VN j itself. . . . . . . . . . . 7

3.1. For-loop view of processing complexity (a) without two pass computation

(b) with two pass computation. . . . . . . . . . . . . . . . . . . . . . . . 10

4.1. Block-level view of the pipeline timing diagram. (a) General case for a

circulant-1 identity submatrix construction based QC-LDPC code (see

Section 2.1) without pipelining. (b) Special case of the IEEE 802.11n QC-

LDPC code used in this work without pipelining (c) Pipelined processing

of two layers for the general QC-LDPC code case in (a). (d) Pipelined

processing of two layers for the IEEE802.11n QC-LDPC code case in (b). 22

4.2. Layer-level view of the pipeline timing diagram. (a) General case for a

circulant-1 identity submatrix construction based QC-LDPC code (see

Section 2.1) without pipelining. (b) Special case of the IEEE 802.11n QC-

LDPC code used in this work without pipelining (c) Pipelined processing

of two layers for the general QC-LDPC code case in (a). (d) Pipelined

processing of two layers for the IEEE802.11n QC-LDPC code case in (b). 23

ix



4.3. High-level decoder architecture. showing the z-fold parallelization of the

NPUs with an emphasis on the splitting of the sign and the minimum

computation given in equation (2.3). Note that, other computations in

equations (2.1)-(2.4) are not shown for simplicity here. For both the

pipelined and the non-pipelined versions, processing schedule for the in-

ner Block Processing loop is as per Fig. 4.1 and that for the outer Layer

Processing loop is as per Fig. 4.2. . . . . . . . . . . . . . . . . . . . . . . 25

5.1. Bit Error Rate (BER) performance comparison between uncoded BPSK

(rightmost), rate=1/2 LDPC with 4 iterations using fixed-point data

representation (second from right), rate=1/2 LDPC with 8 iterations

using fixed-point data representation (third from right), rate=1/2 LDPC

with 8 iterations using floating-point data representation (leftmost). . . 28

6.1. Top-level VI describing the parallelization of the QC-LDPC decoder [1]

on the NI USRP-2953R containing the Xilinx Kintex7 (410t) FPGA. . . 32

6.2. Bit Error Rate (BER) performance comparison between uncoded BPSK

(green) and the 2.48Gb/s, rate=1/2, QC-LDPC decoder (red) on the NI

USRP-2953R containing the Xilinx Kintex7 (410t) FPGA. . . . . . . . 34

7.1. Turbo Decoder Iterative Log-MAP Decoder . . . . . . . . . . . . . . . . 36

7.2. BER performance of the aforementioned turbo decoder (curve on the left

in black) versus uncoded BPSK (curve on the right in red) . . . . . . . . 37

x



1

Chapter 1

Introduction

For the next generation of wireless technology collectively termed as Beyond-4G and 5G

(hereafter referred to as 5G), peak data rates of upto ten Gb/s with overall latency less

than 1ms [2] are envisioned. However, due to the proposed operation in the 30-300GHz

range with challenges such as short range of communication, increasing shadowing and

rapid fading in time, the processing complexity of the system is expected to be high. In

an effort to design and develop a channel coding solution suitable to such systems, in

this report, we present a high-throughput, scalable and reconfigurable FPGA decoder

architecture for circulant-1 identity matrix construction based QC-LDPC codes.

It is well known that the structure offered by QC-LDPC codes [3] makes them

amenable to time and space efficient decoder implementations relative to random LDPC

codes. We believe that, given the primary requirements of high decoding throughput,

QC-LDPC codes or their variants (such as accumulator-based codes [4]) that can be

decoded using belief propagation (BP) methods are highly likely candidates for 5G sys-

tems. Thus, for the sole purpose of validating the proposed architecture, we chose a

standard compliant code, with a throughput performance that well surpasses the re-

quirement of the chosen standard. The proposed decoder architecture can be used for

a wide range of circulant-1 identity construction based QC-LDPC codes many of which

have been accepted in several standards such as IEEE 802.11n/ac [5], IEEE 802.16e/m

[6] and DVB [7].

Insightful work on high-throughput (order of Gb/s) BP-based QC-LDPC decoders

is available, however, most of such works focus on an ASIC design [8], [9] which usually

requires intricate customizations at the Register Transfer Level (RTL) level and expert

knowledge of VLSI design. A sizeable subset of which caters to fully-parallel [10] or



2

code-specific [11] architectures. From the point of view of an evolving research solution

this is not an attractive option, especially for rapid-prototyping. In the relatively less

explored area of FPGA-based implementation, impressive results have recently been

presented in works such as [12],[13] and [14]. However, these are based on fully-parallel

architectures which lack flexibility (code specific) and are limited to small block sizes

(primarily due to the inhibiting routing congestion) as discussed in the informative

overview in [15]. Since our case study is based on fully-automated generation of the

Hardware Description Language (HDL), a fair comparison is done with another state-of-

the-art implementation [16] in Chapter 5. Moreover, in this report, we provide without

loss of generality, strategies to achieve a high-throughput FPGA-based architecture for

a QC-LDPC code based on a circulant-1 identity matrix construction.

The main contribution of this work is a compact representation (matrix form) of

the PCM of the QC-LDPC code which provides a multi-fold increase in throughput.

In spite of the resulting reduction in the degrees of freedom for pipelined processing,

we achieve efficient pipelining of two-layers and also provide without loss of generality

an upper bound on the pipelining depth that can be achieved in this manner. The

splitting of the node processing allows us to achieve the said degree of pipelining with-

out utilizing additional hardware resources. The algorithmic strategies were realized in

hardware for our case study by the FPGA IP [17] compiler in LabVIEWTM CSDSTM

which translated the entire software-pipelined high-level language description into VH-

SIC Hardware Description Language (VHDL) in approximately 3 minutes, enabling

state-of-the-art rapid-prototyping. The scalability of the proposed architecture has

been demonstrated in an application that achieves a throughput of 2.48Gb/s [18] on

the NI USRP-2953R.

The remainder of this report is organized as follows. Chapter 2 describes the QC-

LDPC codes and the decoding algorithm chosen for this implementation. The strategies

for achieving high throughput are explained in Chapter 3. The details of the layered

decoding technique applied in this work are given in Chapter 4. The case study for the

IEEE 802.11n (2012) standard is discussed in Chapter 5, developments that contributed

towards this work are presented in Chapter 7 and we conclude with Chapter 8.



3

Chapter 2

Quasi-Cyclic LDPC Codes and Decoding

LDPC codes (due to R. Gallager [19]) are a class of linear block codes that have been

shown to achieve near-capacity performance on a broad range of channels and are

characterized by a low-density (sparse) PCM representation.

Mathematically, an LDPC code is a null-space of its m × n PCM H, where m

denotes the number of parity-check equations or parity-bits and n denotes the number

of variable nodes or code bits [3]. In other words, for a rank m PCM H, m is the number

of redundant bits added to the k information bits, which together form the codeword

of length n = k + m. In the Tanner graph representation (due to Tanner [20]), H is

the incidence matrix of a bipartite graph comprising of the check node (CN) set of m

parity-check equations and the variable node (VN) set of n variable or bit nodes; the

ith CN is connected to the jth VN if H(i, j) = 1, 1 ≤ i ≤ m and 1 ≤ j ≤ n. A toy

example of a Tanner graph is shown in Fig. 2.1. The set of VNs that are connected

with an edge to CN i (hereafter referred to as N (i)) is called as the neighbor set of

CN i. Similarly, N (j) is the neighbor set of VN j. The degree dci (dvj ) of a CN i (VN

j) is equal to the number of 1s along the ith row (jth column) of H. For constants

cc, cv ∈ Z>0 and cc << m, cv << n, if ∀i, j, dci = cc and dvj = cv, then the LDPC code

is called as a regular code and is called an irregular code otherwise.

2.1 Quasi-Cyclic LDPC Codes

The first LDPC codes by Gallager are random i.e. the neighbors of an arbitrary CN

or VN are randomly chosen, subject to constraints specified in the code construction

algorithm. One such constraint is the girth of the Tanner graph underlying the LDPC

code structure. Here girth refers to the length of the smallest cycle in the Tanner graph.



4

Figure 2.1: A Tanner graph where VNs (representing the code bits) are shown as circles
and CNs (representing the parity-check equations) are shown as squares. Each edge in
the graph corresponds to a non-zero entry (1 for binary LDPC codes) in the PCM H.

Random code structures complicate the decoder implementation, mainly because a ran-

dom interconnect pattern between the VNs and CNs directly translates to a complex

wire routing circuit on hardware. QC-LDPC codes belong to the class of structured

codes that are relatively easier to implement without significantly compromising per-

formance.

The construction of identity matrix based QC-LDPC codes relies on an mb×nb ma-

trix Hb sometimes called as the base matrix which comprises of cyclically right-shifted

identity and zero submatrices both of size z × z where, z ∈ Z+, 1 ≤ ib ≤ mb and

1 ≤ jb ≤ nb, the shift value,

s = Hb(ib, jb) ∈ S = {−1} ∪ {0, . . . z − 1}

The PCM matrix H is obtained by expanding Hb using the mapping,

s −→

 Is, s ∈ S\{−1}

0, s ∈ {−1}

where, Is is an identity matrix of size z which is cyclically right-shifted by s = Hb(ib, jb)

and 0 is the all-zero matrix of size z×z. As H is composed of the submatrices Is and 0,

it has m = mb.z rows and n = nb.z columns. H for the IEEE 802.11n (2012) standard

[5] (used for our case study) with z = 81 is shown in Table 2.1.



5

L
a
y
e
rs
↓

B
lo

ck
s
−→

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
1
0
B

1
1
B

1
2
B

1
3
B

1
4
B

1
5
B

1
6
B

1
7
B

1
8
B

1
9
B

2
0
B

2
1
B

2
2
B

2
3
B

2
4

L
1

57
-1

-1
-1

50
-1

11
-1

50
-1

79
-1

1
0

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

L
2

3
-1

28
-1

0
-1

-1
-1

55
7

-1
-1

-1
0

0
-1

-1
-1

-1
-1

-1
-1

-1
-1

L
3

30
-1

-1
-1

24
37

-1
-1

56
14

-1
-1

-1
-1

0
0

-1
-1

-1
-1

-1
-1

-1
-1

L
4

62
53

-1
-1

53
-1

-1
3

35
-1

-1
-1

-1
-1

-1
0

0
-1

-1
-1

-1
-1

-1
-1

L
5

40
-1

-1
20

66
-1

-1
22

28
-1

-1
-1

-1
-1

-1
-1

0
0

-1
-1

-1
-1

-1
-1

L
6

0
-1

-1
-1

8
-1

42
-1

50
-1

-1
8

-1
-1

-1
-1

-1
0

0
-1

-1
-1

-1
-1

L
7

69
79

79
-1

-1
-1

56
-1

52
-1

-1
-1

0
-1

-1
-1

-1
-1

0
0

-1
-1

-1
-1

L
8

65
-1

-1
-1

38
57

-1
-1

72
-1

27
-1

-1
-1

-1
-1

-1
-1

-1
0

0
-1

-1
-1

L
9

64
-1

-1
-1

14
52

-1
-1

30
-1

-1
32

-1
-1

-1
-1

-1
-1

-1
-1

0
0

-1
-1

L
1
0

-1
45

-1
70

0
-1

-1
-1

77
9

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
0

0
-1

L
1
1

2
56

-1
57

35
-1

-1
-1

-1
-1

12
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

0
0

L
1
2

24
-1

61
-1

60
-1

-1
27

51
-1

-1
16

1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
0

T
ab

le
2.

1:
B

as
e

m
at

ri
x

H
b

fo
r
z

=
81

sp
ec

ifi
ed

in
IE

E
E

80
2.

11
n

(2
01

2)
st

an
d

ar
d

u
se

d
in

th
e

ca
se

st
u

d
y.

L
1
−
L
1
2

a
re

th
e

la
ye

rs
a
n

d
B

1
−
B

2
4

ar
e

th
e

b
lo

ck
co

lu
m

n
s

(s
ee

S
ec

ti
on

3.
3)

.
V

al
id

b
lo

ck
s

(s
ee

se
ct

io
n

3.
4)

ar
e

h
ig

h
li

gh
te

d
.



6

2.2 Scaled Min-Sum Algorithm (MSA) for Decoding QC-LDPC Codes

Owing to the sparsity of the PCM of an LDPC code and the computational power

available today, it is practicable to decode LDPC codes using iterative message passing

(MP) or belief propagation (BP) [19, 21] (name picked up from Bayesian-inference

literature) on the bipartite Tanner graph. Gallager’s method of BP decoding - called

as the Sum-Product Algorithm (SPA) [19] is a general algorithm that provides near-

optimal performance for a wide range of channels. The MSA is a reduced complexity

version of the SPA which has a small loss in performance.

As the name suggests, in MP decoding, the CNs and VNs communicate with each

other, successively passing revised estimates or messages of the a posteriori probability

(APP) log-likelihood ratios (LLR) of the associated VNs or code bits, in every decoding

iteration. In this work we have employed the efficient decoding algorithm presented in

[22], with pipelined processing of layers based on the row-layered decoding technique

[23], detailed in Section 3.3.

Definition 1. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let vj denote the jth bit in the length

n codeword and yj = vj + nj denote the corresponding received value from the channel

corrupted by the noise sample nj. Let the variable-to-check (VTC) message from VN j

to CN i be qij and, let the check-to-variable (CTV) message from CN i to VN j be rij.

Let the a posteriori probability (APP) ratio for VN j be denoted as pj.

The steps of the scaled-MSA [24] are given below.

1. Initialize the APP ratio and the CTV messages as,

p
(0)
j = ln

{
P (vj = 0|yj)
P (vj = 1|yj)

}
, 1 ≤ j ≤ n (2.1)

r
(0)
ij = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n

2. Iteratively compute at the tth decoding iteration,

q
(t)
ij = p

(t−1)
j − r(t−1)ij (2.2)

r
(t)
ij = a ·

∏
k∈N (i)\{j}

sign
(
q
(t)
ik

)
· min
k∈N (i)\{j}

{
|q(t)ik |

}
(2.3)



7

Figure 2.2: An instance of extrinsic message computation at CN i and its transfer to
VN j on the Tanner graph. It is important to note that the VTC message from VN j
is not included in the computation (indicated by a dashed line) as CN i intends to send
it to VN j itself.

p
(t)
j = q

(t)
ij + r

(t)
ij (2.4)

where, 1 ≤ i ≤ m, and k ∈ N (i)\{j} represents the set of the VN neighbors of

CN i excluding VN j. An instance of this message exchange is shown in Fig. 2.2.

Let tmax be the maximum number of decoding iterations.

3. Decision on the code bit vj , 1 ≤ j ≤ n as,

v̂j =

 1, pj ≤ 0

0, otherwise
(2.5)

4. If v̂HT = 0, where v̂ = (v̂1, v̂2, . . . , v̂n), or t = tmax, declare v̂ as the decoded

codeword.

It is well known that since the MSA is an approximation of the SPA, the performance

of the MSA is relatively worse than the SPA [3]. However, in [24] it has been shown

that scaling the CTV messages rij can improve the performance of the MSA. Hence,

we scale the CTV messages by a factor a (=0.75).

Remark 1. The standard MP algorithm is based on the so-called flooding or two-phase

schedule where, each decoding iteration comprises of two phases. In the first phase,

VTC messages for all the VNs are computed and in the second phase the CTV messages

for all the CNs are computed, strictly in that order. Thus, message updates from one



8

side of the graph propagate to the other side only in the next decoding iteration. In

the algorithm that we have used [22] however, message updates can propagate across

the graph in the same decoding iteration resulting in the following advantages:

1. Single processing unit : Since the VTC messages qij given by equation (2.2) can be

computed on the fly (i.e. qij updates are immediately consumed by the CTV rij

computation) in the same decoding iteration, there is no need to have a separate

VN processing unit, unlike that in the standard MP algorithm. The single node

processing unit (NPU) computes both the CN and the VN messages.

2. Reduced memory storage: The on the fly computation of the VTC messages qij

also implies that there is no need to store the VN messages separately.

3. Fast convergence: It has been shown in [22] that the algorithm we have employed

in our work converges faster than the standard MP flooding schedule. This means

that comparable performance can be achieved by the algorithm described in this

Section with fewer decoding iterations, thus helping the high-throughput imple-

mentation of the decoder.



9

Chapter 3

Strategies to Achieve High-throughput

To understand the high-throughput requirements for LDPC decoding, let us first define

the decoding throughput T of the hardware realization of an LDPC decoder based on

an iterative MP decoding algorithm.

Definition 2. Let Fc be the clock frequency, n be the code length, Ni be the number

of decoding iterations and Nc be the number of clock cycles per decoding iteration, then

the throughput of the decoder is broadly given by, T = Fc·n
Ni·Nc

b/s.

Even though, n and Ni are functions of the code and the decoding algorithm used,

Fc and Nc are determined by the hardware architecture. Architectural optimization

such as the ability to operate the decoder at higher clock rates with minimal latency

between decoding iterations can help achieve higher throughput. We have employed

the following techniques to increase the throughput given by Definition 2.

3.1 Linear Complexity Node Processing

As noted in Section 2.2, separate processing units for CNs and VNs are not required

unlike that for the flooding schedule. The hardware elements that process equations

(2.2)-(2.4) are collectively referred to as the Node Processing Unit (NPU).

Careful observation reveals that, among equations (2.2)-(2.4), processing the CTV

messages rij , 1 ≤ i ≤ m and 1 ≤ j ≤ n is the most computationally intensive due to

the calculation of the sign, and the minimum value operations. Note that, computing

the CTV message rij from CN i to VN j (in equation 2.3) involves processing the met-

rics for VNs in the set N (i)\{j}, not N (i). Thus, the complexity of processing these

values is O(d2ci). A naive implementation of the minimum process in (2.3) could be an



10

Figure 3.1: For-loop view of processing complexity (a) without two pass computation
(b) with two pass computation.

algorithm that traverses over all dci branches of CN i and compares two values at a

time translating into dci comparator-based min-trees with (dci − 1) leaf nodes each. In

software, this translates to two nested for-loops, an outer loop that executes dci times

and an inner loop that executes (dci − 1) times. This is shown in Fig. 3.1 (a).

To achieve linear complexity O(dci) for the minimum value computation, we split

the process into two phases or passes: the global pass where the first and the second

minimum (the smallest value in the set excluding the minimum value of the set) for

all the neighboring VNs of a CN are computed and the local pass where the first and

second minimum from the global pass are used to compute the minimum value for

each neighboring VN. Based on the functionality of the two passes, the NPU is divided

into the Global NPU (GNPU) and the Local NPU (LNPU). The detailed steps of the

algorithm are given below.

1. Global Pass:

i. Initialization: Let ` denote the discrete time-steps such that, ` ∈ {0} ∪

{1, 2, . . . , |N (i)|} and let f (`) and s(`) denote the value of the first and the

second minimum at time ` respectively. The initial value at time ` = 0 is,

f (0) = s(0) =∞. (3.1)

ii. Comparison: Let ki(`) ∈ N (i), ` = {1, 2, . . . , |N (i)|}, denote the index of the

`th neighboring VN of CN i. Note that, ki(`) depends on i and `, specifically,

for a given CN i it is a bijective function of `. An increment from (`− 1) to



11

VNzJ . . . VNzJ+l . . . VNz(J+1)−1

NPU0 0 . . . 0 1 0 . . . 0

NPU1 0 . . . 0 0 1 . . . 0

...
...

...

NPUz−2 0 . . . 0 0 0 . . . 0

NPUz−1 0 . . . 1 0 0 . . . 0

Table 3.1: Arbitrary submatrix Is in H, 0 ≤ J ≤ nb − 1, illustrating the opportunity
to parallelize z NPUs.

` corresponds to moving from the edge CN i↔ VN ki(`− 1) to the edge CN

i ↔ VN ki(`).

f (`) =

 |qiki(`)|, |qiki(`)| ≤ f (`−1)f (`−1), otherwise.
(3.2)

s(`) =


|qiki(`)|, f (`−1) < |qiki(`)| < s(`−1)

f (`−1), |qiki(`)| ≤ f (`−1)

s(`−1), otherwise.

(3.3)

Thus, f (`max) and s(`max) are the first and second minimum values for the set of

VN neighbors of CN i, where, `max = |N (i)|.

2. Local Pass: Let the minimum value as per equation (2.3) for VN ki(`) be denoted

as qminiki(`)
, ` ∈ {1, 2, . . . , |N (i)|} then,

qminiki(`)
=

 f (`max), |qiki(`)| 6= f (`max)

s(`max), otherwise.
(3.4)

In software, this translates to two consecutive for-loops, each executing (dci − 1) times.

This is shown in Fig. 3.1 (b). Consequently, this reduces the complexity from O(d2ci) to

O(dci). A similar approach is also found in [25], [8]. The sign computation is processed

in a similar manner.



12

3.2 z-fold Parallelization of NPUs

The CN message computation given by equation (2.3) is repeated m times in a de-

coding iteration i.e. once for each CN. A straightforward serial implementation of this

kind is slow and undesirable. Instead, we apply a strategy based on the following

understanding.

Fact 1. An arbitrary submatrix Is in the PCM H corresponds to z CNs connected to

z VNs on the bipartite graph, with strictly 1 edge between each CN and VN.

This implies that no CN in this set of z CNs given by Is shares a VN with another

CN in the same set. Table 3.1 illustrates such an arbitrary submatrix in H. This

presents us with an opportunity to operate z NPUs in parallel (hereafter referred to as

an NPU array), resulting in a z-fold increase in throughput.

3.3 Layered Decoding

In Section 3.2 we saw that z CNs (and hence VNs) computations can be done in parallel

by virtue of the circulant-1 identity matrix based structure of the CN-VN connections.

A straightforward way of improving throughput by multiple folds is to process more

than z CTV (and hence VTC) message updates i.e. to extend the parallelism beyond

the boundary of a submatrix of size z. A greedy approach to maximize throughput in

this manner is to process all the m CTV updates at once. This is the classical fully

parallel implementation which in principle is a manifestation of the flooding schedule

(see Remark 1) where all nodes on one side of the bipartite graph can be processed

in parallel. Although, such a fully parallel implementation may seem as an attractive

option for achieving high-throughput performance, it has the following drawbacks.

1. Firstly, it becomes quickly intractable in hardware due to the complex intercon-

nect pattern.

2. Secondly, such an implementation caters to the graph of a particular code in a

code ensemble. In other words, the routing interconnect determined by the code

is frozen in hardware.



13

Nevertheless, there is still scope to achieve a degree of parallelism greater than z with-

out sacrificing the flexibility of the implementation. This can be accomplished if the

following condition is satisfied by the processing schedule.

Fact 2. From the perspective of CN processing, two or more CNs can be processed at

the same time (i.e. they are independent of each other) if they do not have one or more

VNs (code bits) in common.

This is central to the row-layering [23] technique used in this work. To understand this

in detail let us define the following.

In terms of H, an arbitrary subset of rows can be processed at the same time

provided that, no two or more rows have a 1 in the same column of H. This subset of

rows is termed as a row-layer (hereafter referred to as a layer). In other words, given

a set L = {L1, L2, . . . , LI} of I layers in H, ∀u ∈ {1, 2, . . . , I} and ∀i, i′ ∈ Lu, then,

N (i) ∩N (i′) = φ.

Observing that,
∑I

u=1 |Lu| = m, in general, Lu can be any subset of rows as long as

the rows within each subset satisfy the condition in Fact 2; implying that, |Lu| 6= |Lu′ |,

∀u, u′ ∈ {1, 2, . . . , I} is possible. It is not hard to see that, this is more so true in the

case of unstructured or random codes. In fact, if |Lu| 6= |Lu′ | the hardware complexity

increases since the processing effort changes from one layer to another. For instance,

the memory allocation for each layer could be different, resulting in dynamic memory-

address generation patterns.

Owing to the structure of QC-LDPC codes, the choice of |Lu| (and hence I) becomes

much obvious. Submatrices Is in Hb (with row and column weight of 1) guarantee that,

for the z CNs corresponding to the rows of Is), always satisfy the condition in Fact 2.

Thus, keeping in mind the ease of implementation, |Lu| = |Lu′ | = z is the most obvious

choice.

From the VN or column perspective, |Lu| = z, ∀u = {1, 2, . . . , I} implies that,

the columns of H are also divided into subsets of size z (hereafter referred to as block

columns) given by the set B = {B1, B2, . . . , BJ}, J = n
z = nb. Observing that VNs

belonging to a block column may participate in CN equations across several layers,



14

Layers ↓ Blocks −→

. . . B2 B3 B4 . . .

L1 . . . ↓ ↓ ↓ . . .

L2 . . . ↓ 28 ↓ . . .

L3 . . . ↓ ↓ ↓ . . .

L4 . . . 53 ↓ ↓ . . .

L5 . . . ↓ ↓ 20 . . .

L6 . . . ↓ ↓ ↓ . . .

L7 . . . 79 79 ↓ . . .

L8 . . . ↓ ↓ ↓ . . .

L9 . . . ↓ ↓ ↓ . . .

L10 . . . 45 ↓ 70 . . .

L11 . . . 56 ↓ 57 . . .

L12 . . . ↓ 61 ↓ . . .

to L4 to L2 to L5

Table 3.2: Illustration of Message Passing in row-layered decoding in a Section of the
PCM Hb.

we further divide the block columns into blocks, where a block is the intersection of a

layer and a block column. One may visualize a block in the decoder architecture as a

submatrix in Hb, owing to the equivalence between the two. Two or more layers Lu, Lu′

are said to be dependent with respect to the block column Bw if, Hb(u,w) 6= −1 and,

Hb(u
′, w) 6= −1 and are said to be independent otherwise.

For example, in Table 3.2 we can see that layers L4, L7, L10 and L11 are dependent

with respect to block column B2. Assuming that the message update begins with

layer L1 and proceeds downward, the arrows represent the directional flow of message

updates from one layer to another. Thus, layer L7 cannot begin updating the VNs

associated with block column B2 before layer L4 has finished updating messages for the

same set of VNs and so on. It is worthwhile to reiterate that the idea of parallelizing z

NPUs seen in Section 3.2 can be extended to layers, NPU arrays can process message

updates for multiple independent layers. It is clear that, dependent layers limit the

degree of parallelization available to achieve high-throughput. In Chapter 4, we discuss



15

Layers ↓ Blocks −→

b1 b2 b3 b4 b5 b6 b7 b8

L1 0 4 6 8 10 12 13 -1

L2 0 2 4 8 9 13 14 -1

L3 0 4 5 8 9 14 15 -1

L4 0 1 4 7 8 15 16 -1

L5 0 3 4 7 8 16 17 -1

L6 0 4 6 8 11 17 18 -1

L7 0 1 2 6 8 12 18 19

L8 0 4 5 8 10 19 20 -1

L9 0 4 5 8 11 20 21 -1

L10 1 3 4 8 9 21 22 -1

L11 0 1 3 4 10 22 23 -1

L12 0 2 4 7 8 11 12 23

Table 3.3: Block index matrix βI showing the valid blocks (highlighted) to be processed.

pipelining methods that allow us to overcome layer-to-layer dependency and improve

throughput.

3.4 Compact Representation of Hb

Before we discuss the pipelined processing of layers, we present a novel compact (thus

efficient) matrix representation leading to a significant improvement in throughput. To

understand this, let us call 0 submatrices in H as invalid blocks, where there are no

edges between the corresponding CNs and VNs, and the submatrices Is as valid blocks.

In a conventional approach to scheduling (for example in [9]), message computation is

done for all the valid and invalid blocks. To avoid processing invalid blocks, we propose

an alternate representation of Hb in the form of two matrices: βI (Table 3.3), the block

index matrix and βS (Table 3.4), the block shift matrix. Matrices βI and βS hold the

index locations and the shift values (and hence the connections between the CNs and

VNs) corresponding to only the valid blocks in Hb, respectively. Construction of βI is

based on the following definition,



16

Definition 3. Construction of βI is as follows.

for u = {1, 2, . . . , I}

set w = 0, jb = 0

for jb = {1, 2, . . . , nb}

jb = jb + 1

if Hb(u, jb) 6= −1

w = w + 1;βI(u,w) = jb;βS(u,w) = Hb(u, jb).

To observe the benefit of this alternate representation, let us define the following ratio.

Definition 4. Let λ denote the compaction ratio, which is the ratio of the number of

columns of βI (which is the same for βS) to the number of columns of Hb. Hence,

λ = J
nb

.

The compaction ratio λ is a measure of the compaction achieved by the alternate

representation of Hb. Compared to the conventional approach, scheduling as per the

βI and βS matrices improves throughput by 1
λ times. In our case study, λ = 8

24 = 1
3 ,

thus providing a throughput gain of 1
λ = 3.

Remark 2. In the irregular QC-LDPC code in our case study, all layers comprise of

7 blocks each, except layer L7 and L12 which have 8. With the aim of minimizing

hardware complexity by maintaining a static memory-address generation pattern (does

not change from layer-to-layer), our implementation assumes regularity in the code. The

decoder processes 8 blocks for each layer of the βI matrix resulting in some throughput

penalty. The results from processing the invalid blocks in L7 and L12 are not stored in

the memory.



17

Layers ↓ Blocks −→

b1 b2 b3 b4 b5 b6 b7 b8

L1 57 50 11 50 79 1 0 -1

L2 3 28 0 55 7 0 0 -1

L3 30 24 37 56 14 0 0 -1

L4 62 53 53 3 35 0 0 -1

L5 40 20 66 22 28 0 0 -1

L6 0 8 42 50 8 0 0 -1

L7 69 79 79 56 52 0 0 0

L8 65 38 57 72 27 0 0 -1

L9 64 14 52 30 32 0 0 -1

L10 45 70 0 77 9 0 0 -1

L11 2 56 57 35 12 0 0 -1

L12 24 61 60 27 51 16 1 0

Table 3.4: Block shift matrix βS showing the right-shift values for the valid blocks to
be processed.



18

Chapter 4

Layer-Pipelined Decoder Architecture

The value of partitioning the PCM H into layers lies in the fact that, independent layers

can be determined and processed in a pipelined manner resulting in an almost-parallel

performance. We call this almost-parallel due to the inherent pipelining overhead in-

volved. In Section 3.3 we saw how dependent layers for a block column cannot be

processed in parallel. For instance, in Hb in Table 2.1, VNs associated with the block

column B1 participate in CN equations associated with all the layers except layer L10,

suggesting that there is no scope of parallelization of layer processing at all. This situ-

ation is better observed in βI shown in Table 3.3. Layer independence can be defined

in terms of βI as follows.

Fact 3. If a block column of βI has a particular index value appearing in more than

one layer, then the layers corresponding to that value are dependent with respect to

that block column.

Proof. Follows directly by applying Fact 2 to Definition 3.

In other words, ∀u, u′ ∈ {1, 2, . . . , I}, ∀w ∈ {1, 2, . . . , J}, if, βI(u,w) = βI(u′, w)

then, the layers Lu and Lu′ are dependent. It is obvious that, to process all layers in

parallel (L1 to L12 in 2.1), the condition,

βI(u,w) 6= βI(u′, w) (4.1)

must hold for ∀u, u′ ∈ {1, 2, . . . , I}. We call the set of layers Ls satisfying Fact 3 as a

superlayer. As will be seen later, the formation of superlayers of suitable size is crucial

to achieve parallelism in the architecture.



19

Layers ↓ Blocks −→

b1 b2 b3 b4 b5 b6 b7 b8

L1 0 4 8 13 6 10 12 -1

L2 9 0 4 8 13 14 2 -1

L3 15 9 0 4 8 5 14 -1

L4 7 15 16 0 4 8 1 -1

L5 17 7 3 16 0 4 8 -1

L6 6 17 18 11 -1 0 4 8

L7 19 6 0 8 1 2 18 12

L8 4 19 5 0 8 20 10 -1

L9 21 4 11 5 0 8 20 -1

L10 1 21 4 3 22 9 8 -1

L11 0 1 23 4 3 22 10 -1

L12 8 0 2 23 4 12 7 11

Table 4.1: Rearranged Block Index Matrix β′I used for our work, showing the valid
blocks (highlighted) to be processed.

4.1 Pipelining GNPU and LNPU Arrays

In Section 3.1 we saw that the GNPU feeds the LNPU necessarily in that order. While

processing the updates for a particular block within a layer, the LNPU must wait for

the GNPU to finish generating the global update values. This is shown in Fig. 4.1

(a), where the GNPU and the LNPU idle alternately. We call this version of our

implementation as the 1x version pointing to the fact that there isn’t any multi-fold

improvement in throughput. A natural improvement is to pipeline the processing of

the GNPU and the LNPU arrays. However, this cannot be scheduled in the original

order of blocks specified by βI . The remedy is to rearrange the βI matrix elements

from their original order. If βI(u,w) = βI(u′, w), u < u′ then stagger the execution of

βI(u′, w) with respect to βI(u,w) by placing βI(u′, w) in β′
I(u′, w′) such that, w < w′.

The pipelining schedule is based on the following Lemma.

Lemma 1. Within a superlayer, while the LNPU processes messages for the blocks

β′(u,w), the GNPU can process messages for the blocks β′(u+1, w), u = {1, 2, . . . , |L|−



20

1} and w = {1, 2, . . . , J}.

Proof. Follows directly from the layer independence condition in Fact 2.

Fig. 4.1(c) illustrates the block-level view of this 2-layer pipelining scheme. We call this

the 2x version of our implementation due to the almost doubling of throughput with

respect to the non-pipelined 1x version. At the boundary of the superlayer Lemma

1 does not hold and pipelining has to be restarted for the next layer as seen in the

layer-level view shown in Fig. 4.2(c). This is simply due to the fact that the condition

in Fact 3 only holds within a superlayer. In the following, we impose certain constraints

on the size of the superlayers in H.

Definition 5. Without loss of generality, the pipelining efficiency ηp is the number of

layers processed per unit time per NPU array.

For the case of pipelining two layers shown in Fig. 4.2(c),

η(2)p =
|Ls|
|Ls|+ 1

(4.2)

Thus, we impose the following conditions on |Ls|:

1. Since, two layers are processed in the pipeline at any given time, provided that I

is even,

|Ls| ∈ F = {x : x is an even factor of I}.

It is important to note that, for any value of |Ls| ∈ F , Ls must be a superlayer.

2. Given a QC-LDPC code, |Ls| is a constant. This is to facilitate a symmetric

pipelining architecture which is a scalable solution.

3. Choice of |Ls| should maximize pipelining efficiency η
(2)
p ,

l∗ = arg max
|Ls|∈F

η(2)p (4.3)



21

Case Study : Table 4.1 shows one such rearrangement of βI for the QC-LDPC code

for our case study in Table 3.3. Note that, some dependencies still remain, these un-

resolved dependencies are shown in a boldfaced font in Table 4.1. For example, in the

case study, the chosen IEEE 802.11n (2012) code has I = mb = 12, F = {2, 4, 6} and,

l∗ = arg max|Ls|∈F η
(2)
p = 6. The rearranged block index matrix β′

I is shown in Table

4.1 and the layer-level view of the pipeline timing diagram for the same is shown in

Fig. 4.2(d).



22

F
ig

u
re

4.
1:

B
lo

ck
-l

ev
el

v
ie

w
of

th
e

p
ip

el
in

e
ti

m
in

g
d

ia
gr

am
.

(a
)

G
en

er
al

ca
se

fo
r

a
ci

rc
u

la
n
t-

1
id

en
ti

ty
su

b
m

a
tr

ix
co

n
st

ru
ct

io
n

b
a
se

d
Q

C
-L

D
P

C
co

d
e

(s
ee

S
ec

ti
on

2.
1)

w
it

h
ou

t
p

ip
el

in
in

g.
(b

)
S

p
ec

ia
l

ca
se

of
th

e
IE

E
E

80
2.

11
n

Q
C

-L
D

P
C

co
d

e
u

se
d

in
th

is
w

o
rk

w
it

h
o
u

t
p

ip
el

in
in

g
(c

)
P

ip
el

in
ed

p
ro

ce
ss

in
g

of
tw

o
la

y
er

s
fo

r
th

e
ge

n
er

al
Q

C
-L

D
P

C
co

d
e

ca
se

in
(a

).
(d

)
P

ip
el

in
ed

p
ro

ce
ss

in
g

o
f

tw
o

la
ye

rs
fo

r
th

e
IE

E
E

80
2.

11
n

Q
C

-L
D

P
C

co
d

e
ca

se
in

(b
).



23

F
ig

u
re

4.
2:

L
ay

er
-l

ev
el

v
ie

w
of

th
e

p
ip

el
in

e
ti

m
in

g
d

ia
gr

am
.

(a
)

G
en

er
al

ca
se

fo
r

a
ci

rc
u

la
n
t-

1
id

en
ti

ty
su

b
m

a
tr

ix
co

n
st

ru
ct

io
n

b
a
se

d
Q

C
-L

D
P

C
co

d
e

(s
ee

S
ec

ti
on

2.
1)

w
it

h
ou

t
p

ip
el

in
in

g.
(b

)
S

p
ec

ia
l

ca
se

of
th

e
IE

E
E

80
2.

11
n

Q
C

-L
D

P
C

co
d

e
u

se
d

in
th

is
w

o
rk

w
it

h
o
u

t
p

ip
el

in
in

g
(c

)
P

ip
el

in
ed

p
ro

ce
ss

in
g

of
tw

o
la

y
er

s
fo

r
th

e
ge

n
er

al
Q

C
-L

D
P

C
co

d
e

ca
se

in
(a

).
(d

)
P

ip
el

in
ed

p
ro

ce
ss

in
g

o
f

tw
o

la
ye

rs
fo

r
th

e
IE

E
E

80
2.

11
n

Q
C

-L
D

P
C

co
d

e
ca

se
in

(b
).



24

High-level FPGA-based Decoder Architecture: The high-level decoder architecture is

shown in Fig. 4.3. The ROM holds the LDPC code parameters specified by the β′I and

the β′s along with other code parameters such as the block length and the maximum

number of decoding iterations. The APP memory is initialized with the channel LLR

values corresponding to all the VNs as per equation (2.1). The barrel shifter operates

on blocks of VNs (APP values in equation (2.4)) of size z × f , where f is the fixed-

point word length used in the implementation for APP values. It circularly rotates the

values to the right by using the shift values from the β′s matrix in the ROM, effectively

implementing the connections between the CNs and VNs. The cyclically shifted APP

memory values and the corresponding CN message values for the block in question are

fed to the NPU arrays. Here, the GNPUs compute VN messages as per equation (2.2)

and the LNPUs compute CN messages as per equation (2.3). These messages are then

stored back at their respective locations in the RAMs for processing the next block.

Once the processing of all blocks within a layer is done, blocks in the next layer are

processed as depicted by the Block Processing loop within the Layer Processing loop

in Fig. 4.3.



25

F
ig

u
re

4.
3:

H
ig

h
-l

ev
el

d
ec

o
d

er
ar

ch
it

ec
tu

re
.

sh
ow

in
g

th
e

z-
fo

ld
p

ar
al

le
li

za
ti

on
of

th
e

N
P

U
s

w
it

h
an

em
p

h
a
si

s
o
n

th
e

sp
li

tt
in

g
o
f

th
e

si
gn

an
d

th
e

m
in

im
u

m
co

m
p

u
ta

ti
on

gi
ve

n
in

eq
u

at
io

n
(2

.3
).

N
ot

e
th

at
,

ot
h

er
co

m
p

u
ta

ti
on

s
in

eq
u

at
io

n
s

(2
.1

)-
(2

.4
)

a
re

n
o
t

sh
ow

n
fo

r
si

m
p

li
ci

ty
h

er
e.

F
or

b
ot

h
th

e
p

ip
el

in
ed

an
d

th
e

n
on

-p
ip

el
in

ed
ve

rs
io

n
s,

p
ro

ce
ss

in
g

sc
h

ed
u

le
fo

r
th

e
in

n
er

B
lo

ck
P

ro
ce

ss
in

g
lo

o
p

is
a
s

p
er

F
ig

.
4.

1
an

d
th

at
fo

r
th

e
ou

te
r

L
ay

er
P

ro
ce

ss
in

g
lo

op
is

as
p

er
F

ig
.

4.
2.



26

Chapter 5

Case Study

We believe that the family of structured LDPC codes are highly likely candidates for

5G systems. Thus, to demonstrate the initial phase of our FPGA decoder architecture

[1], we provide a case study based on the QC-LDPC code specified in the IEEE 802.11n

(2012) standard [5]. For this code, mb × nb = 12 × 24, z = 27, 54 and 81 resulting in

code lengths of n = 24× z = 648, 1296 and 1944 bits respectively. Our implementation

supports the submatrix size of z = 81 and hence is capable of supporting all the block

lengths for the rate R = 1/2 code.

At the time of writing this paper, we have implemented two versions, the 1x (block

level view in Fig. 4.1 (a) and (b) and layer level view in Fig. 4.2 (a) and (b)) and the

2x (block level view in Fig. 4.1 (c) and (d) and layer level view in Fig. 4.2 (c) and

(d)). For both versions, input LLRs from the channel and the CTV and VTC messages

are represented with 6 signed bits and 4 fractional bits. Fig. 6.2 shows the bit-error

rate (BER) performance for the floating-point and the fixed-point data representation

(0.5dB worse as expected, Fig. 6.2) with 8 decoding iterations.

The decoder algorithm for both versions was described using the FPGA IP compiler

[17] in LabVIEWTM CSDSTM. We would like to emphasize here that, both the versions

were described in software at the algorithmic description level and not the HDL level.

The algorithmic compiler translated the high-level description to an HDL description

for the case study decoder implementation in approximately 3 minutes. The VHDL

code was synthesized, placed and routed using the Xilinx Vivado compiler on the Xil-

inx Kintex-7 FPGA available on the NI PXIe-7975R FPGA board.

The 2x version achieves an overall throughput of 608Mb/s at an operating frequency

of 260MHz and a latency of 5.7µs with 4 decoding iterations. As seen in Table 5.1,



27

1x 2x

Device Kintex-7k410t Kintex-7k410t

Throughput(Mb/s) 337 608

FF(%) 9.1 5.3

BRAM(%) 4.7 6.4

DSP48(%) 5.2 5.2

LUT(%) 8.7 8.2

Table 5.1: LDPC Decoder IP FPGA Resource Utilization & Throughput on the Xilinx
Kintex-7 FPGA.

resource usage for the 2x version is close to that of the 1x version in spite of the 1.8x

gain in throughput. The FPGA IP compiler chooses to use more FF for data storage

in the 1x version, while it uses more BRAM in 2x version. A contemporary implemen-

tation of the IEEE 802.11n LDPC decoder on an FPGA (using high-level algorithmic

description compiled to an HDL) shown in [16]. The decoder in [16] utilizes 2% of slice

registers, 3% of slice LUTs and 20.9% of Block RAMs on the Spartan-6 LX150T FPGA

with a comparable BER performance.



28

Figure 5.1: Bit Error Rate (BER) performance comparison between uncoded BPSK
(rightmost), rate=1/2 LDPC with 4 iterations using fixed-point data representation
(second from right), rate=1/2 LDPC with 8 iterations using fixed-point data represen-
tation (third from right), rate=1/2 LDPC with 8 iterations using floating-point data
representation (leftmost).



29

Chapter 6

Application

2.48Gb/s QC-LDPC Decoder on the NI USRP-2953R

In this chapter we present an application of the decoder architecture, a 2.48Gb/s

FPGA-based QC-LDPC decoder implemented on the NI USRP-2953R (which has the

Xilinx Kintex7 (410t) FPGA) using the FPGA IP compiler in LabVIEWTM CSDSTM.

Massive-parallelization was accomplished by employing 6 decoder cores in parallel with-

out any modification at the HDL level. This compiler translated the entire high-level

description of the parallelization (done in a graphical algorithmic dataflow language)

to VHDL and further generated an optimized hardware implementation from the algo-

rithmic description. This application demonstrates:

1. The scalability of our decoder architecture [1] described in this report.

2. The ability of the LabVIEWTM CSDSTM tools to rapidly prototype high-level

algorithmic description onto FPGA hardware.

This application has been demonstrated in IEEE GLOBECOM’14 where the QC-LDPC

code for our case study was decoded with a throughput of 2.06 Gb/s. This throughput

was achieved by using five decoder cores in parallel on the Xilinx K7 (410t) FPGA in

the NI USRP-2953R.

6.1 Multi-core Decoder

The implementation of the massively-parallel decoder described in this Chapter is based

on the 2x decoder version.

Remark 3. Note that, at the time of developing this application the algorithmic de-

scription for the 1x and 2x was recompiled and it achieved a throughput of 290Mb/s



30

and 420Mb/s (at 200MHz) respectively as given in Table 6.1; the compilation results

in Table 6.1 and Table 5.1 are different. For the sake of clarity, in the context of this

application, the recompiled versions of the 1x and the 2x version are hereafter referred

to as the Baseline and the Pipelined version respectively. Also, a core in the context

of this application refers to the Pipelined version.

As discussed in Chapter 5, the core operates for mb × nb = 12× 24, z = 27, 54 and

81 resulting in code lengths of n = 24× z = 648, 1296 and 1944 bits respectively and a

code rate R = 1
2 . It is worthwhile to note that, for the Pipelined version of the decoder,

pipelining was fully described in software. Moreover, the algorithm was described in a

high-level language - graphical code in LabVIEWTM (i.e. not in a hardware description

language). The algorithmic compiler in LabVIEWTM CSDSTM translated the high-level

description into a VHDL description.

On account of the scalability and reconfigurability of the decoder architecture in

[1], it is possible to achieve high throughput by employing multiple decoder cores in

parallel. Fig. 6.1 shows the top-level multi-core decoder virtual instrument (VI), where

6 cores are deployed on a single Xilinx Kintex7 FPGA (410t). The high-level operation

of the decoder is described in the steps below (corresponding to the highlighted sections

in Fig. 6.1):

1. Serial stream of the encoded data is read as frames from the host-to-target Direct

Memory Access (DMA) mechanism. Here, host may be an arbitrary processing

platform such as a PC or a real-time controller and target is the Xilinx Kintex7

FPGA (410t) on the NI USRP-2953R. This data is subsequently stored in the

Dynamic Random Access Memory (DRAM).

2. Request frames from the DRAM.

3. Read and buffer frames from the DRAM.

4. Distribute incoming frames to the cores in a round-robin manner.

5. Perform decoding with fixed-latency, parallel processing of frames staggered with

respect to time. Buffer the decoded frames.



31

6. Collect the decoded frames and serialize them with respect to the round-robin

manner used in step (3).

7. Write frames to the target-to-host DMA mechanism.



32

F
ig

u
re

6.
1:

T
op

-l
ev

el
V

I
d

es
cr

ib
in

g
th

e
p

ar
al

le
li
za

ti
on

of
th

e
Q

C
-L

D
P

C
d

ec
o
d
er

[1
]
on

th
e

N
I

U
S

R
P

-2
9
5
3
R

co
n
ta

in
in

g
th

e
X

il
in

x
K

in
te

x7
(4

1
0
t)

F
P

G
A

.



33

Baseline Pipelined

Throughput (Mb/s) 290 420

Clock Rate (MHz) 200 200

Time to generate VHDL (min) 2.02 2.08

Total Compile Time (min) ≈ 36 ≈ 36

Total Slice (%) 26 28

LUT (%) 16 18

FF (%) 9 10

DSP (%) 5 5

BRAM (%) 11 11

Table 6.1: Performance and resource utilization comparison for the Baseline architec-
ture with the Pipelined architecture of the QC-LDPC decoder on the NI USRP-2953R
containing the Xilinx Kintex7 (410t) FPGA.

6.2 Results

The performance and resource utilization of the Baseline and the Pipelined version is

compared in Table 6.1. The resources consumed by the Pipelined decoder are almost

the same as that of the Baseline decoder, in spite of the 1.5 times increase in through-

put performance. The 2.48Gb/s decoder was developed in stages, where at each stage

a core was added (except for stage 3) and the performance and resource figures were

recorded. The results of each stage are compared in Table 6.2. The Bit Error Rate

(BER) performance of the 2.48Gb/s version (with 6 cores) is shown in Fig. 6.2.



34

Figure 6.2: Bit Error Rate (BER) performance comparison between uncoded BPSK
(green) and the 2.48Gb/s, rate=1/2, QC-LDPC decoder (red) on the NI USRP-2953R
containing the Xilinx Kintex7 (410t) FPGA.

Cores 1 2 4 5 6

Throughput (Mb/s) 420 830 1650 2060 2476

Clock Rate (MHz) 200 200 200 200 200

Time to VHDL (min) 2.08 2.08 2.08 2.02 2.04

Total Compile (min) ≈ 36 ≈ 60 ≈ 104 ≈ 132 ≈ 145

Total Slice (%) 28 44 77 85 97

LUT (%) 18 28 51 62 73

FF (%) 10 16 28 33 39

DSP (%) 5 11 21 26 32

BRAM (%) 11 18 31 38 44

Table 6.2: Performance and resource utilization comparison for versions with vary-
ing number of cores of the QC-LDPC decoder implemented on the NI USRP-2953R
containing the Xilinx Kintex7 (410t) FPGA.



35

Chapter 7

Related Work

3GPP UMTS Turbo Decoder

Turbo codes are a class of concatenated error-correcting codes known for their near-

capacity performance. We have implemented the Turbo code specified in the 3GPP

UMTS standard [26]. The UMTS turbo code is a rate 1/3 Parallel Concatenated Con-

volutional Code (PCCC) with two 8-state recursive systematic convolutional (RSC)

constituent codes: a feedforward polynomial of 15o and a feedback polynomial of 13o.

The two constituent codes are separated by an interleaver fundamental to the perfor-

mance of a turbo code [27, 3].

Turbo codes perform at near-capacity owing to their near-random code design. How-

ever, they also exhibit enough structure allowing iterative decoding (although subopti-

mal). Fig. 7.1 shows LabVIEW source code for the iterative decoder. The Log-MAP

BCJR [28] based soft-in soft-out (SISO) decoders for each constituent code work in

an iterative manner until the final estimate for each bit has been achieved. One full

iteration with the indicated feedback path Lapp2 xk consists of two half iterations, one

for each of the RSC decoders. Although MAP decoding for each SISO decoder achieves

the best performance [3], it does so using a forward (α and γ)-backward (β) recursion

(unlike the popular Viterbi decoder [29] which primarily only uses a forward recursion)

and an information bit decoding stage. Unlike the relatively simpler add-compare-select

(ACS) recursive computation in the Viterbi, the Log-MAP BCJR uses the Jacobi loga-

rithmic approximation (max∗(x, y)). These two factors play a major role in increasing

the complexity of the Log BCJR relative to the Viterbi algorithm.

In this implementation, we have employed the sliding window version of the BCJR

(SW-BCJR), first introduced in [30]. Here the input data block is divided into smaller



36

Figure 7.1: Turbo Decoder Iterative Log-MAP Decoder

segments or windows. Since the decoder operates on smaller segments, decisions are

forced with a smaller delay consequently reducing the decoding delay and the memory

requirement.

Given the bi-directional nature of processing and the presence of an interleaver and

deinterleaver pair, the challenge lies in implementing high-throughput iterative decoders

with a small delay. Since the bit decoding has an intra-iteration dependency to the α

and γ recursion, the naive implementation is to run all the computation blocks serially.

However, there is no inter-iteration dependency between these two computations, and

the next α and γ recursion and the current bit decoding block can run in parallel. By

analyzing the memory access pattern this inter-iteration dependency can be detected

and hence eliminated. The LabVIEW FPGA compiler captures both the dataflow

dependency and memory access pattern dependency between computational blocks and

exploits data parallelism across iterations.

Fig. 7.2 shows the bit-error-rate(BER) performance of the implemented turbo de-

coder and the uncoded binary phase shift key (BPSK) modulated data stream. The

simulation is performed with a coded block length of 1024 bits, two decoding iterations

and fixed-point word length of (16,4). The BER (Y-axis) is plotted using ten frames



37

Figure 7.2: BER performance of the aforementioned turbo decoder (curve on the left
in black) versus uncoded BPSK (curve on the right in red)

.

Data Width Throughput LUT/FF Pairs RAM

LabVIEW 16 bits 3.388 Mb/s 13,774 44

Xilinx IP [31] 5 bits 35.58 Mb/s 4,717 10

Table 7.1: Turbo Decoder IP FPGA Resource Utilization & Throughput on the Xilinx
Kintex-7 XC7K325T-2L-FFG900.

(1024 bits each) per signal-to-noise ratio (SNR) point (X-axis).

Table 7.1 shows the quality-of-result (QoR) of the turbo decoder design automat-

ically generated by LabVIEW compiler. Xilinx hand-designed IP [31] shows better

hardware QoR mainly because of two reasons. Firstly, because our core processing has

wider input data. From the perspective of FPGA resource utilization, it is well known

that wider data processing results in a relatively expensive computational circuit. Sec-

ondly, the Xilinx turbo decoder IP employs the Max-Log MAP decoding algorithm for

the constituent decoders. In our implementation, we use the Log MAP algorithm, which



38

has a higher processing complexity [3]. However, since Max-Log MAP is an approxima-

tion to the the Log MAP decoding algorithm, our IP shows a better BER performance.

The improvement in the BER performance in our implementation is an indicator of

the trade off between the computational complexity of the decoding algorithm and the

hardware resource utilization.



39

Chapter 8

Conclusion

In this work we have proposed techniques to achieve high-throughput performance for

a MSA-based decoder for QC-LDPC codes. The proposed compact representation of

the PCM provides significant improvement in throughput. An IEEE 802.11n (2012)

decoder is implemented which attains a throughput of 608Mb/s (at 260MHz) and a

latency of 5.7µs on the Xilinx Kintex-7 FPGA. The FPGA IP compiler greatly reduces

prototyping time and is capable of implementing complex signal processing algorithms.

With little or no modification this decoder can be applied to a large family of standard

compliant QC-LDPC codes such as those specified in IEEE 802.16e [6] and Digital

Video Broadcast (DVB) [7]. The NI USRP-2953R application validates the scalability

of our decoder architecture by deploying multiple decoder cores in parallel.



40

References

[1] S. Mhaske, H. Kee, T. Ly, A. Aziz, and P. Spasojevic, “High-Throughput FPGA-
based QC-LDPC Decoder Architecture,” in Vehicular Technology Conference
(VTC Fall), 2015 IEEE 82nd, Sep 2015, pp. 1–5.

[2] M. Cudak, A. Ghosh, T. Kovarik, R. Ratasuk, T. Thomas, F. Vook, and P. Moorut,
“Moving Towards Mmwave-Based Beyond-4G (B-4G) Technology,” in IEEE 77th
VTC Spring ’13, June 2013, pp. 1–5.

[3] D. Costello and S. Lin, Error control coding. Pearson, 2004.

[4] W. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge University
Press, 2009.

[5] “IEEE Std. for Information Technology–Telecommunications and information ex-
change between LAN and MAN–Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications,” IEEE P802.11-REVmb/D12,
Nov 2011, pp. 1–2910.

[6] “IEEE Std. for Air Interface for Broadband Wireless Access Systems,” IEEE
P802.16, Aug 2012, pp. 1–2544.

[7] “EN 302 307-1 V1.4.1, Digital Video Broadcasting (DVB); Second generation fram-
ing structure, channel coding and modulation systems for Broadcasting, Interac-
tive Services, News Gathering and other broadband satellite applications; Part 1:
DVB-S2 ,” ETSI 2014, pp. 1–80.

[8] Y. Sun and J. Cavallaro, “VLSI Architecture for Layered Decoding of QC-LDPC
Codes With High Circulant Weight,” IEEE Transactions on VLSI Systems, vol. 21,
no. 10, pp. 1960–1964, Oct 2013.

[9] K. Zhang, X. Huang, and Z. Wang, “High-throughput layered decoder implemen-
tation for QC-LDPC codes,” IEEE Journal on Selected Areas in Communications,
vol. 27, no. 6, pp. 985–994, Aug 2009.

[10] N. Onizawa, T. Hanyu, and V. Gaudet, “Design of high-throughput fully parallel
ldpc decoders based on wire partitioning,” IEEE Transactions on VLSI Systems,
vol. 18, no. 3, pp. 482–489, Mar 2010.

[11] T. Mohsenin, D. Truong, and B. Baas, “A low-complexity message-passing algo-
rithm for reduced routing congestion in ldpc decoders,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 57, no. 5, pp. 1048–1061, May 2010.

[12] A. Balatsoukas-Stimming and A. Dollas, “FPGA-based design and implementa-
tion of a multi-Gbps LDPC decoder,” in International Conference on Field Pro-
grammable Logic and Applications (FPL), Aug 2012, pp. 262–269.



41

[13] V. Chandrasetty and S. Aziz, “FPGA Implementation of High Performance LDPC
Decoder Using Modified 2-Bit Min-Sum Algorithm,” in International Conference
on Computer Research and Development, May 2010, pp. 881–885.

[14] R. Zarubica, S. Wilson, and E. Hall, “Multi-gbps fpga-based low density parity
check (ldpc) decoder design,” in IEEE GLOBECOM ’07, Nov 2007, pp. 548–552.

[15] P. Schläfer, C. Weis, N. Wehn, and M. Alles, “Design space of flexible multigigabit
ldpc decoders,” VLSI Design, vol. 2012, p. 4, 2012.

[16] E. Scheiber, G. H. Bruck, and P. Jung, “Implementation of an LDPC decoder for
IEEE 802.11n using Vivado TM High-Level Synthesis,” in International Conference
on Electronics, Signal Processing and Communication Systems, 2013.

[17] H. Kee, S. Mhaske, D. Uliana, A. Arnesen, N. Petersen, T. L. Riche, D. Blasig,
and T. Ly, “Rapid and high-level constraint-driven prototyping using LabVIEW
FPGA,” in 2014 IEEE , GlobalSIP 2014, 2014.

[18] S. Mhaske, D. Uliana, H. Kee, T. Ly, A. Aziz, and P. Spasojevic, “A 2.48Gb/s
QC-LDPC Decoder Implementation on the NI USRP-2953R,” in arxiv.org, pp.
1–5, arxiv.org.

[19] R. G. Gallager, “Low-density parity-check codes,” Information Theory, IRE Trans-
actions on, vol. 8, no. 1, pp. 21–28, 1962.

[20] R. Tanner, “A recursive approach to low complexity codes,” Information Theory,
IEEE Transactions on, vol. 27, no. 5, pp. 533–547, Sep 1981.

[21] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product
algorithm,” Information Theory, IEEE Transactions on, vol. 47, no. 2, pp. 498–
519, Feb 2001.

[22] E. Sharon, S. Litsyn, and J. Goldberger, “Efficient Serial Message-Passing Sched-
ules for LDPC Decoding,” IEEE Transactions on Information Theory, vol. 53,
no. 11, pp. 4076–4091, Nov 2007.

[23] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE Trans-
actions on VLSI Systems, vol. 11, no. 6, pp. 976–996, Dec 2003.

[24] J. Chen and M. Fossorier, “Near optimum universal belief propagation based de-
coding of ldpc codes and extension to turbo decoding,” in IEEE ISIT ’01, 2001,
p. 189.

[25] K. Gunnam, G. Choi, M. Yeary, and M. Atiquzzaman, “VLSI Architectures for
Layered Decoding for Irregular LDPC Codes of WiMax,” in IEEE ICC ’07, June
2007, pp. 4542–4547.

[26] “LTE, Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and
Channel Coding,” 3GPP TS 36.212 version 10.5.0, Oct 2012, Oct 2012.

[27] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding,” in IEEE ICC ’93, 1993, pp. 1064–1070.



42

[28] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes
for minimizing symbol error rate,” in IEEE Transactions on Information Theory,
Vol. 20, Mar 1974, Mar 1974, p. 284287.

[29] J. G. D. Forney, “The viterbi algorithm,” in Proceedings of the IEEE, Mar 1973,
1973.

[30] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-output decoding
algorithms in iterative decoding of turbo codes,” in TDA Progress Report, NASA
JPL, Feb 1996, 1996.

[31] “Xilinx DS318 3GPP Turbo Decoder v4.0,” xilinx.com.


