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In this dissertation we work on two problems. In the first problem we propose a

general framework for frequentist model averaging and explore its applications. In

the second problem, we propose an adaptive design using a copula model that helps

us analyze data from drug combination therapy. It is shown later that these new

methods are more efficient than the existing methods.

Model selection methods often ignore the uncertainty introduced in the selec-

tion process and there always remains the possibility that the selected model can

possibly be a wrong one. A model averaging approach addresses this issue by com-

bining estimators for a set of candidate models so that it incorporates the underlying

model uncertainty. In Chapter 2 we establish a general frequentist model averaging

framework that greatly broadens the scope of the existing methodologies under the

frequentist model averaging development. We propose a set of weights to combine
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the individual estimators so that the asymptotic mean squared error of the model av-

erage estimator is minimized. Results from simulations and real data analysis show

the benefits of the proposed approach over traditional model selection approaches as

well as existing model averaging methods.

The early phase clinical studies in drug development are focused on the toxicity

and sometimes efficacy of a new treatment or a new combination of treatments. Often

the aim is to identify a maximum tolerated dose (MTD), which is the maximum

dose combination level that does not cause an unacceptable toxicity. In Chapter 3,

we explore the combination of two treatments using a copula model. We combine

the individual toxicity profiles of the treatments to develop the combination model

framework. The theoretic framework is further extended to a combination of more

than two treatments and combination of ordinal toxicity measures. A case study

based on a combination oncology trial is presented to demonstrate the proposed dose

finding strategy for combination therapy.
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Chapter 1

Introduction

With the advancement of modern science and technology, scientists are faced with

the proliferation of large amounts of data on almost every facets of human life; from

trivial to essential. The race to mine insights from this treasure trove of data is also

under way. Statistical science plays a crucial role in this great venture by providing

inferential tools that help make the procured knowledge more definitive. More specif-

ically, the goal of statistics is, given a problem, to propose effective and interpretable

models and provide statistical guarantees on the veracity of the same. In this disser-

tation we have tackled two problems and proposed methodologies to address those

problems. The usefulness of our proposed methodology is justified through theoretical

results and applications to real life datasets.

• The first problem relates to the idea of model selection. When there are several

plausible models to choose from but no definite scientific rationale to dictate

which one should be used, model selection methods have been used traditionally

to determine a ‘correct’ model for data analysis. Once a model is chosen, further

analysis proceeds as if the model selected is the true one. This practice ignores

the uncertainty introduced in the process due to model selection, and can often

lead to faulty inference. The key idea behind model averaging is that we do

not fully accept a single model, then reject all other models, as is usually done

with model selection. Instead, we will acknowledge our uncertainty regarding

which model is truth, and combine all candidate models to some degree. We

quantify our degree of belief, or the relative strength of the evidence in support
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of each model, through use of numerical model weights. Thus model averaging

incorporates model uncertainty during analysis and provides a solution to the

problem faced in model selection. Our research on model averaging is motivated

in part by a real life example on a prostate cancer study where the relationship

between the level of prostate-specific antigen and a number of clinical measures

in men who were about to receive a radical prostatectomy was investigated.

We focus on combining different candidate models that uses a different set of

clinical measures to predict the level of antigen. Our purpose is to improve

upon existing methods and get more efficient results.

• The second problem relates to combination therapy in clinical trials. With the

development of new drugs in pharmaceutical industry, clinical trials involving

treatments that combine multiple drugs are being introduced. Multiple drugs

used together can interact and may enhance the effectiveness of the treatment.

The goal of combination therapy is to achieve better patient response, partic-

ularly for cancer patients who are non respondent to conventional single agent

therapies. However a very important question remains regarding how to do the

analysis so that we can extract the benefits from using individual drug informa-

tion. Our main purpose is to develop an efficient way of combining the effects

of multiple drugs.

To solve the first problem we propose a general framework that subsumes all ex-

isting frameworks and study asymptotic properties of model average estimators in

that framework. In Hjort and Claeskens [2003] frequentist model averaging was de-

veloped under the assumption that all candidate models had to be within O(1/
√
n)

distance of the true model. We remove this restrictive assumption and develop fre-

quentist model averaging approaches under a much more general framework. Our

model averaging scheme allows us to use all the potential candidate models available

for analysis. We also discuss developing a set of weights that will help us to build
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a combined model average estimator. The weights are based on mean square error

of the model average estimator, which takes into account both bias and variance of

the estimator. Specifically, a consistent estimate of the mean square error of the

model average estimator is proposed, and the weights are chosen such that the MSE

estimate is minimized. It is later shown that in most of the cases, weights that are

chosen to combine the candidate models highlight the contribution of the true model.

To examine the performance of the proposed estimator we compare it with existing

model selection and model averaging methos, and show that the proposed method is

most effective.

To solve the second problem we model the rates of toxicity of the combined drugs

via a copula-type regression. The main advantage of using a copula model for analyz-

ing combination data is the way such a model incorporates individual drug toxicity

information. Often, before certain drugs are combined, the toxicity profile of each

individual drug is investigated in detail. Hence, one usually has rich prior information

about the individual drugs from some early clinical or pre clinical data. This data

could help with determining the marginal toxicity profile of the drugs, which would,

in turn make the combined model more efficient. In this paper, we explore the possi-

bilities of utilizing the prior information to obtain the individual toxicity probabilities

using an adaptive design with a hierarchical Bayesian model. We show that this ap-

proach can achieve fast and accurate estimation of the drug- drug interaction pattern.

We also develop a strategy for dose escalation and also explore the dose-toxicity space

for proposing future dose levels. The proposed method is examined in a simulation

study as well as in a case study that is developed by using the data from oncology

clinical trials.
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Chapter 2

Frequentist Model Averaging

2.1 Introduction

When there are several plausible models to choose from but no definite scientific

rationale to dictate which one should be used, a model selection method has been

used traditionally to determine a ‘correct’ model for data analysis. Commonly used

model selection methods (such as step wise regression, AIC, BIC, etc.; c.f., Hastie and

Tibshirani [2005]) are data driven and different methods may use different criteria.

Once a model is chosen, further analysis proceeds as if the model selected is the

true one. This practice ignores the uncertainty introduced in the process due to

model selection, and can often lead to faulty inference as discussed in Madigan et al.

[1994], Draper [1995] and Buckland et al. [1997]. Model averaging methods have been

introduced to incorporate model uncertainty during analysis and to provide a solution

to the problem [cf., Claeskens and Hjort, 2008]. Instead of deciding which one model is

the ‘correct’ one, a model averaging method uses a set of plausible candidate models

and final measures of inference are derived from a combination of all the models.

The candidate models are combined using some data-dependent weights to reflect

the degree to which each candidate model is trusted.

Our research on model averaging is motivated in part by a real life example on

a prostate cancer study where the relationship between the level of prostate-specific

antigen and a number of clinical measures in men who were about to receive a radical

prostatectomy was investigated. The variables included in the study are log cancer
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volume, log prostate weight, age , log of the amount of benign prostatic hyperplasia,

seminal vesicle invasion, log of capsular penetration, Gleason score, and percent of

Gleason scores 4 or 5. When analyzing some dataset, different model selection meth-

ods may choose different models as the ‘true’ one. For example, AIC and BIC, two

commonly used model selection criteria, may pick two different models, as the criteria

for selection is different. Such situation would certainly lead many questions in prac-

tice. For instance, if the estimator is selected by using a model selection criteria, how

would we address the possibility that the selection is a wrong model? Also, if different

model selection methods give us different results, one might wonder how trustworthy

the model selection procedures are. Instead of choosing one model using a model

selection scheme, one can use an average of estimators from different models. The

model average estimator then can provide us an estimate of any parameter involved

in the study and can be used for providing confidence bounds. The model average

estimator can also be used for prediction purposes as well.

Hjort and Claeskens [2003] provided the first formal theoretical treatment of fre-

quentist model averaging approaches, and it was well cited. However, the assumption

that any extra parameters not included in the narrowest model will shrink to zero

at a O(1/
√
n) rate is too constraining in practice. It essentially requires that the all

candidate models are within a O(1/
√
n) neighborhood of the true model. Although

this assumption avoids a technical difficulty of handling biased estimators, in reality

we do not know the true model and excluding from consideration those models that

are beyond O(1/
√
n) neighborhood of the true model appears to be very restrictive.

In this paper, we remove this restrictive assumption in Hjort and Claeskens [2003]

and develop frequentist model averaging approaches under a much more general

framework. Our model averaging scheme allows us to use all the potential candi-

date models available, even the ones with large biases.

The idea of including all models, even that are biased, is motivated by the idea
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of bias-variance trade-off. If we are using an overly simple model, the parameter

estimates will probably be biased, but it will also have less variance, because there

are fewer parameters to estimate. Similarly a bigger model is used, the parameter

estimates will have low or no bias but increased variance. In our analysis we do not

assume any particular structure for the true model, the candidate models are not

restricted within a O(1/
√
n) neighborhood of the true model. Thus we can use all

candidate models which may result in parameter estimates with both high and low

bias and variance.

Next, we discuss developing a set of weights that will help us to build a combined

model average estimator. The weights are based on the idea of bias variance tradeoff.

We develop the weights based on mean square error of the model average estimator,

which takes into account both bias and variance of the estimator. When sample

size is small the model average estimator may be based on biased candidate models.

Since the weights are based on mean square error of the model average estimator,

biased estimators may end up having lower mean square error than the true model.

However, the weights chosen often display good optimality properties, for example,

the parameter estimates converging to the true value as n becomes large. Thus it can

be shown that in most of the cases weights that are chosen to combine the candidate

models highlight the contribution of the true model.

Our approach to weight selection is based on the mean squared error (MSE)

properties of the model average estimator similar to that discussed in Liang et al.

[2011]. Specifically, a consistent estimate of the mean square error of the model

average estimator is proposed, and the weights are chosen such that the MSE estimate

is minimized. Using this weights, we show that model averaging performs better or no

worse than several existing and commonly used model selection or model averaging

methods.

Model averaging method was also discussed in a Bayesian framework; see, e.g.
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Raftery and Hoeting [1998] and Hoeting et al. [1999]. A weighted average of the

posterior distributions under every available candidate model was used for estimation

and prediction purposes. The weights were determined by posterior model probabil-

ities. Model averaging in a frequentist setup, as in Hjort and Claeskens [2003] and

also ours, precludes the need to specify any prior distributions, thus removing any

possible oversight due to faulty choice of priors. The question in a frequentist setting

is how to obtain the weights by a data-driven approach.

In section 2.2, we propose a general framework that subsumes the framework

of Hjort and Claeskens [2003] and study asymptotic properties of model average

estimators. We also derive a consistent estimator for the mean square error of the

model average estimator and use it to facility our choice of data-driven weights. In

section 2.3.1, the model averaging methodology developed is illustrated in generalized

linear models and particularly linear and logistic model setups. We also develop the

choice of weights for the model average estimator in the linear and logistic setup.

In section 2.4, a simulation study is carried out to examine the performance of the

proposed estimator and to compare its performance with existing methods.

2.2 General Framework

2.2.1 Basic Notation and Set up.

Consider n independent data points y = (y1, · · · , yn) sampled from a distribution

having density of the form f(yi) ≡ f(yi,β), where β is the unknown parameter of

interest.

Here β can be written as β = (θ,γ), where θ ∈ Θ ⊂ Rp, p ≥ 0, are the parameters

that are always included in every candidate model and γ ∈ Rq, is the remaining

set of parameters that may or may not be included in the candidate models. We

assume that p and q are given. Following the paradigm of model averaging, instead
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of choosing one particular candidate model as the “correct” model, we consider all

possible combinations of the q parameters as different candidate models. In another

word, each candidate model contains the common parameters θ and a unique γ that

includes m of q components of the parameter, 0 ≤ m ≤ q.

We define M as the set of candidate models in our analysis. The choice of M

can vary depending on the problem one is trying to solve. For example, M can

contain all possible 2q candidate models. Or, one can always choose a subset of the

2q possible models as M. In Hansen [2007], a set of nested models has been used

as candidate models, with |M| = q + 1. In Hjort and Claeskens [2003] M includes

candidate models that are within a O(1/
√
n) neighborhood of the true model. Our

development encompasses both setups as there are no restrictions on M, M can

include any number of candidate models between 1 and 2q. Similar setup was used

in Liang et al. [2011], where the framework was based on a unrestricted M as well,

but the development was done in a linear regression framework.

Let the parameter in the true model be given by βtrue = (θTrue,γTrue). Let

mtrue be the components of γ that are present in the true model. Define M∈ as

the collection of the candidate models that contain the true model, thus every model

in M∈ contain each and every one of the mtrue components of γ. Define, M∈ =

M−M∈ ⊂ M. So, M∈ will contain candidate models for which at least one of

those mtrue components are not present. Clearly M =M∈ ∪M∈.

In Hjort and Claeskens [2003] the authors provided the first formal theoretical

treatment of frequentist model averaging. The work was done in a general parametric

setup. In their framework the presence of a common parameter in all the candidate

models is similar to our framework, but the treatment of γ is different. In the earlier

work the model containing just θ is called a narrow model and the true model is

chosen of the form f(y) = f(y,θ,γ0 + δ/
√
n). Here, parameter δ determines how

far a candidate model can vary from the narrow model and γ0 is the value of γ for
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which any extended model reduces down to the narrow model. Thus, this choice of

true model essentially requires that the all candidate models are within a O(1/
√
n)

neighborhood of the true model. Any model that is beyond O(1/
√
n) neighborhood

of the true model is excluded from the analysis. In this paper, we remove this rather

restrictive constraint and develop the model average estimator under a true model

that has not restrictions imposed on it. As mentioned above, the parameter for the

true model be given by βtrue = (θTrue,γTrue), where γTrue may or may not have any

of the q components. Thus in our model setup there are no restrictions on the choice

of true model or on the set of candidate models as in Hjort and Claeskens [2003].

Indeed, we can treat the setup considered in Hjort and Claeskens [2003] as a special

case of ours by restricting the value of γTrue, such that all the candidate models will

have bias of order O(1/
√
n) or less.

In model averaging, every candidate model includes a unique γ that may or may

not include all q components. Thus parameters from different candidate models will

have different lengths for the parameter β. To bring all of them at the same length

and for ease of presentation we introduce the idea of augmentation. We use a simple

example to illustrate the idea. Let us consider the a linear regression setup, where y

is the vector of responses and X is the design matrix with full column rank p+q. We

consider only nested models as candidate models as done in Hansen [2007]. We also

assume the first p columns of X are always included in the candidate models. Then

the kth candidate model includes the first p + k columns of X, k = 0, · · · , q. Then

the augmented estimator for the kth candidate model will be given by

β̃k = (β̂k, 0) =

(XT
kXk)

−1XT
k y

0


Similar augmentation technique has been used before. Most notably, in Hansen

[2007] the author used this augmentation on a set of nested candidate models.
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Next we move on to the general setup. Let βk be the parameter for the kth

model in M. Define the log-likelihood for the ith observation in the kth model as

`k,i = log f(yi,βk). The maximum likelihood estimate (MLE) of βk for the kth model

is thus defined as the maximizer of
∑n

i=1 `k,i. We also define the score function of

the kth model as Sk(β). Then βtrue is a solution of the equation E(Strue(β)) = 0.

Following these notations, as in the example above, for the kth model ∈ M the

augmented maximum likelihood estimator is given by

β̃k = (β̂k, c), where β̂k is the MLE for kth model,

here c is the fixed value that is used for augmentation. This fixed value augmentation

does not affect the parameter, only appends the length of the parameter. Note that

in general linear model this value is c = 0. Further details on this can be found in

the Appendix. The model average estimator is defined as

∑
k∈M

wkµ(β̃k), (2.2.1)

where 0 ≤ wk ≤ 1∀ k and
∑

k∈Mwk = 1. For the model k ∈ M, let us also define

β∗k ∈ Rp+m as the solution of the equation ESk(β) = 0, where Sk(β) is the score

function of the kth model having p + m parameters. Define, as before, β̃
∗
k ∈ Rp+q

as the c−augmented version of β∗k. Note that while β̃
∗
k may not be close to βtrue,

β̃k → β̃
∗
k, a.s., due to consistency of MLE under usual regularity conditions. In

this section we will focus on deriving the asymptotic properties of the model average

estimators. We now present our main result.
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2.2.2 Main Results.

We now develop the framework under traditional conditions of regularity, which are

sufficient to apply familiar maximum likelihood asymptotics arguments. These con-

ditions are described in the Appendix. For details of such conditions, see Lehmann

and Casella [1998], Lehmann [1999] and Van der Vaart [2000].

We also assume that the variance matrix of the score statistic is finite and posi-

tive definite. We establish a few more notations necessary for analysis in the var-

ious candidate models. Define Hk= limn→∞
1

n
E [`′′k(β

∗
k)]. Here we assume that

the regularity conditions as described in Section 4 in Hoadley [1971] are satisfied.

Here µ ∈ Rp+q → R` is a general function and ∇µ ∈ R`×(p+q). We assume that

µ : Rp+q → R` be a function that is 1st order partially differentiable at βtrue. We also

assume Hk is invertible.

(A1) lim
n

1

n

n∑
i=1

E
[
max
k∈M
‖∇µ(β̃

∗
k)H

−1
k `′k;i‖ I

{
max
k∈M
‖∇µ(β̃

∗
k)H

−1
k `′k;i‖ >

√
nε

}]
= 0.

(2.2.2)

for any ε > 0. This condition is straightforward and is satisfied in a wide array of

cases. We provide such examples in the cases of linear and generalized linear models in

Section 2.3.1. Condition (A1) implies that the contribution of ∇µ(dropped)(β∗k)H
−1
k `′k;i

to the total variance, for each model k in the setM and for each 1 ≤ i ≤ n is asymp-

totically negligible. We discuss this condition further in Section 2.3.1, in particular,

we describe sufficent conditions under which it is satisfied. We state the following

theorem about the asymptotic distribution of the model average estimator.

Theorem 2.1. Let β̃k be the c-augmented MLE as define in (2.2) for the kth model

in M. Let 0 ≤ wk ≤ 1 for k ∈ M be model weights so that
∑

k wk = 1. Under the

assumption (A1) in (2.2.2) above, the asymptotic distribution of the model average
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estimator for µ(βtrue) is given as,

√
n
∑
k∈M

wk(µ(β̃k)− µ(βtrue))−
√
nwk(β

∗
k − βtrue,k)T∂µ(βtrue)/∂β

D−→ N (0, Σw) ,

(2.2.3)

where the variance Σw is given by

Σw = lim
n→∞

1

n

n∑
i=1

E

[
‖
∑
k

wk∇µ(β̃
∗
k)
TH−1k `′k;i‖22

]
. (2.2.4)

The proof of the theorem is given in the Appendix. The weights considered in this

theorem so far are fixed. However in practice, we need to estimate the weights using

data. In case the weights considered are being computed from the data, we assume

w
(n)
k (y), the weight assigned to the kth model converges to wk as n goes to infinity.

Using a simple application of Slutsky’s lemma it can be shown that the earlier result

in Theorem 2.1 holds when the weights are replaced by data dependent weights.

In our development of model average estimator we considered the estimation of

β = (θ,γ) and considered the candidate models to be constructed via different subsets

of only the γ parameter. Thus all the candidate models had θ in common. We can use

Theorem 2.1 to construct asymptotic convergence results for the common parameter

θ. If we consider the function given by (θ,γ) 7→ θ; a function that extracts the θ

parameter, then by direct application of Theorem 2.1 we can derive the asymptotic

distribution of θ as given below in Corollary 2.1.

Corollary 2.1. Let θ be the common parameter for all candidate models in M. Let

βtrue = (θtrue,γtrue), β∗k = (θ∗k,γ
∗
k), β̂k = (θ̂k, γ̂k). Then under the same setup as in

Theorem 2.1

√
n
∑
k∈M

wk(θ̂k − θtrue)−
√
n
∑
k∈M

wk(θ
∗
k − θtrue)

D−→ N
(
0, Σθ

w

)
, (2.2.5)
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where the variance is given by Σθ
w = limn→∞

1

n

∑n
i=1 E

[
‖
∑

k wk[Ip,0]H−1k `′k;i‖22
]
.

In Hjort and Claeskens [2003] the development was done with a choice of true

model that essentially required that the all candidate models are within a O(1/
√
n)

neighborhood of the true model. We broaden this framework by using βtrue in our

analysis. Next we show that the results described in Hjort and Claeskens [2003] can

be proved to be a special case of our result. For that purpose, we now discuss our

results in the setup studied in Hjort and Claeskens [2003].

First we describe the misspecified model setup that is used in the aforementioned

paper. This setup is based on iid data Y1, ..., Yn from density f . The parameter of

interest is µ = µ(f), where µ : Rp+q → R . The model that includes just θ is defined

as the narrow model, while any extended model f(y,θ,γ) reduces to the narrow

model for γ = γ0; here γ0 is fixed and known. For the kth model the maximum

likelihood estimator is µ̂k = µ(θ̂k, γ̂k,γ0,kc). Thus in this setup, if a parameter γj is

not included in the candidate model, we set γj = γj,0. The data is assumed to be

generated from a density

ftrue(y) = f(y,θ0,γ0 + δ/
√
n), (2.2.6)

where δ signify the deviation of the model in directions 1, ..., q. Thus in this case

βtrue = (θ0,γ0 + δ/
√
n). Let us write β0 = (θ0,γ0). We will also write µtrue =

µ(βtrue), which is the estimand under study. Under this misspecification model,

Hjort and Claeskens [2003] derived asymptotic normality result for the model average

estimator
∑

k wkµ̂k. To describe their result, let us first define

S(y) =

U(y)

V (y)

 =

∂logf(y,θ0,γ0)/∂θ

∂logf(y,θ0,γ0)/∂γ

 so that var(S(Y )) =

J00 J01

J01 J11

 = Jfull.

Let Un = n−1
∑

i U(Yi) (and similarly for V n). Let us denote by Vk(Y ), V n;k resp.,
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the appropriately subsetted vectors obtained from V (Y ), V n, with the subset indices

corresponding to that of γ̂ in model k ∈M. Also define Jk = var(U(Y ), Vk(Y ))T for

all k ∈M. Then Hjort and Claeskens [2003] shows that,

√
n(
∑
k

wkµ̂k − µtrue)
D−→
∑
k

wkΛk, where,

Λk =

 ∂µ(β0)/∂θ

∂µ(β0)/∂γk


T J−1k

 J01δ

πkJ11δ

+ J−1k

 √n(Un − EUk(Y1))
√
n(V n,k − EVk(Y1))




−
(
∂µ(β0)

∂γ

)T
δ. (2.2.7)

In the above, πk ∈ R|Mk|×q is the projection matrix that projects any vector u ∈ Rq

to uk ∈ R|Mk| with indices as given by Mk ∈ M. From our asymptotic convergence

result in Theorem 2.1 it follows that,

Corollary 2.2. under the misspecification model (2.2.6), the asymptotic bias and

variance in (2.2.7) matches that in Theorem 2.1.

Let us consider the a linear regression setup, where y is the vector of responses

and X is the design matrix with full column rank p + q. We also assume the first

p columns of X are always included in the candidate models. As discussed earlier

in the development in Section 2.2, calculating model average estimator involves av-

eraging over candidate models. To construct model average estimator µ̂ave for some

function µ in the linear regression set up, we need to estimate β̂k for all 1 ≤ k ≤M.

This estimation procedure is computationally intensive especially when |M| is large.

Sometimes one particular parameter, say, βt can be of interest. Among the set of can-

didate models, some models may include that particular covariate xt, while others do

not. So if we consider the problem of estimating the regression coefficient βt for an

explanatory variable xt, an alternate approach could be only including the candidate

models in the analysis that contains xt. Then the idea is to find a model average
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estimate of βt over those models only. We find the estimate of βt by only using the

models that regress on xt and thus estimates the parameter. Then we assign new

weights to those estimates that are proportional to the original weights. A scaled

version of the original weights can be used as the new weights, and the new weights

sum up to 1. The model average estimator averages the estimates of βt across all

models which include it, using these new weights.

2.3 Selection of Weights in Frequentist Model Averaging.

The key idea behind model averaging is to acknowledge the uncertainty regarding

which model is the truth. We weight all candidate models to incorporate this uncer-

tainty. This is done by developing a set of weights that to some degree is a measure

of evidence of each candidate model. In the following development we assume that

the true model is included in the set of candidate models. For each of the candidate

models, we assign a weight wi to model Mi, for all i. We restrict 0 ≤ wi ≤ 1 for all

i, and also impose the constraint that
∑

iwi = 1. Under these restrictions, model

weights may be thought of as probabilities associated with each model. If wi < wj

, then in some sense model Mj is more likely, or more plausible than the competing

model Mi.

In this section we propose a set of weights for model average estimator. We

minimize an estimate of the mean squared error to obtain weights that would be

used to combine the candidate models. Similar weights were discussed in Liang et al.

[2011], where the authors minimized an unbiased estimator of mean squared error to

obtain the weights. However, their work was done in linear model. In this section we

propose a set of weights for model average estimator in general parametric models.

From Theorem 2.1 we calculate the asymptotic mean squared error (AMSE) of µ
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as,

Q(w) =
∑
k∈M

wk{µ(β̃
∗
k)− µ(βtrue)}2 + Σw.

Let the estimate of Q(w) be Q̂n(w), where Q̂n(w) is consistent for Q(w). We want

to obtain w1, · · · , wN such that the trace of the estimate of the MSE proposed is

minimized, denoted by Q̂n(w). Since these weights are based on the mean square

error of the model average estimator, which takes into account both bias and variance

of the estimator. When sample size is small the model average estimator may be based

on biased candidate models. Since the weights are based on mean square error of the

model average estimator, biased estimators may end up having lower mean square

error than the true model. Next, we focus on the behavior of weights when the

sample size is large. We want the chosen weights to have good optimality properties,

for example, the parameter estimates converging to the true value as n becomes

large. It can be shown that when properly chosen weights are used to combine the

candidate models, resulting model average estimator is asymptotically equivalent to

an estimator based on the true model. In this section we demonstrate such a choice

of weights, while similar examples can be found in literature. As describes before we

obtain weights w∗n by minimizing Q̂n(w). We want to show, Q̂n(w∗n)
P−→ Q(w∗),

where w∗ = argminwQ(w). Then,

Theorem 2.2. (a) Under some mild regularity conditions, Q̂n(w∗n)
P−→ Q(w∗).

(b) Suppose further that Supw

∣∣∣Q̂n(w)−Q(w)
∣∣∣ P−→ 0, for any w, and w∗ is a well

separated point of minimum of Q(w), Q̂n(w∗n) ≤ Q̂n(w∗) + oP(1). Then, w∗n
P−→ w∗.

This can be proven by noting Q̂n(w∗n) = Q(w∗n) + oP(1) ≥ Q(w∗) + oP(1). Also,

Q̂n(w∗n)−Q(w∗) ≤ Q̂n(w∗)−Q(w∗) = oP(1).

Using these weights we can state the following theorem about the asymptotic

distribution of the model average estimator.
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Theorem 2.3. Let 0 ≤ w∗nk ≤ 1 for k ∈ M are model weights so that
∑

k w
∗
nk = 1

and w∗n
P−→ w∗. And β̃k be the c-augmented MLE as define in (2.2) for the kth model

inM. Then, under the assumption (A1) in (2.2.2) above, the asymptotic distribution

of the model average estimator for µ(βtrue) is given as,

√
n
∑
k∈M

w∗nk(µ(β̃k)− µ(βtrue))
D−→ N (0, Σw∗) , (2.3.1)

where the variance Σw∗ is given by

Σw∗ = lim
n→∞

1

n

n∑
i=1

E

[
‖
∑
k

w∗nk∇µ(β̃
∗
k)
TH−1k `′k;i‖22

]
. (2.3.2)

When sample size increases, it is observed that the behavior of the model average

estimator and the true model estimator is similar, which will be illustrated in a

simulation study later. In next section we will develop the asymptotic distribution

of the model average estimator in a linear regression setup. The weights selection

process will also be described. The estimator proposed in the section above is not

unbiased in general. But under certain specific framework such as linear regression,

general liner model or exponential family it can be simplified and the estimators can

be developed so that they are optimal or near optimal. We can develop consistent or

unbiased estimators in linear regression framework as detailed in Liang et al. [2011].

This estimator of the MSE of the model average estimator could also be used to derive

the model weights.

2.3.1 Selection of Weights in General Linear Models

We now discuss the model average estimator described in Section 2.2 for generalized

linear models (GLM). As discussed before, we consider Eyi = g(xTi β), where y =

(y1, y2, · · · , yn) are independent observations from a response variable y, xi is a vector
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of explanatory variables and β ∈ Rp+q is the vector of unknown parameters. Consider

a link function g that connects the mean and the linear predictor ηi = xTi β. We let

the first p models appear in all possible candidate models and consider a set M of

2q models. We want to estimate some function µ(β) and the final model average

estimator is given by,

µ(β) =
∑
k∈M

wkµ(β̃k).

Since the set up for Theorem 2.1 is for a general parametric model, the same asymp-

totic convergence results hold for GLM models. In particular we discuss two special

cases of linear and logistic regressions. Note that linear regression is the case when g

is the identity map and yi ∼ N (xTi β, σ
2In). For logistic regression, the link function

is the logit function t 7→ log(t/(1 − t)) and yi ∼ Bin(1, pi). Our framework encom-

passes all general linear class of models and similar results can be derived for them

as well.

Prediction in Linear Regression Framework.

We can use the results developed in the general framework to compute the model

average estimator in a linear regression framework. Consider the linear regression

model,

y = Xβ + ε,

where y ∈ Rn is a vector of observations, X ∈ Rn×p+1 is a non-random design

matrix, and β = (β0, β1, · · · , βp) ∈ Rp+1 is the vector of unknown parameters, with

ε ∈ Rn and ε ∼ N (0, σ2In). Additionally, we assume that X has full column rank

i.e. rank(X) = p+ 1.

Let M = {Mk}|M|k=1 be the set of candidate models Here Mk denotes a particular

set of features having cardinality |Mk|. Define Xk ∈ Rn×|Mk|, 1 ≤ k ≤ |M| as the
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design matrix of the kth candidate model with the features in Mk. We consider zero

-augmentation of the parameter set βk for all k. Let X̃k ∈ Rn×p be the augmented

version of Xk with the missing columns replaced by the 0 vector. In our analysis, all

the candidate models contain the intercept term corresponding to β0. With the rest

of the p components, we can construct 2p candidate models all of which are included

in our analysis.

Let us fix a x∗ ∈ Rp+1. Define x∗k ∈ R|Mk| so that x∗k consists of those components

of x∗ indexed by Mk ∈M. Consider the particular choice of the function µ : Rp+1 →

R so that for b ∈ Rp+1, µ(b) = x∗Tb. Clearly the ∇µ(β) = x∗. For the following

discussion, we are interested in the model average estimator of µ(βtrue) = x∗βtrue,

which is given by µ̂ave =
∑

k wkx
∗
k
T β̂k where wk ≥ 0 and

∑
k wk = 1.

For the kth candidate model with βk ∈ R|Mk|, the score function is given by

`′k(βk) = XT
k (y−Xkβk) and the hessian matrix is given by Hk = −XT

kXk. Thus our

hessian matrix satisfies the condition as it does not depend on y. Similarly we note

that referring condition (A1), in this example,

|∇µ(β̃
∗
k)H

−1
k `′k;i| =

∣∣∣(yi − [Xk]
T
i,·β∗k) x∗kT (XT

kXk)
−1[Xk]i,·

∣∣∣ = |cik(εi + Aik)|,

where cik = x∗k
T (XT

kXk)
−1[Xk]i,· and Aik = xTi (βtrue−β̃

∗
k)) are fixed constants. Note

that εi ∼ N (0, σ2). The condition (A2) is satisfied when for any arbitrary ε > 0,

lim
n→∞

1

n
max
1≤i≤n

E
{

max
k∈M
|cik(εi + Aik)|

}2

I
{

max
k∈M
|cik(εi + Aik)| >

√
nε

}
= 0.

Moreover, if |cik| ≤ C for some fixed constant C > 0 then we can reduce the condition

further to,

lim
n→∞

1

n
max
1≤i≤n

E
{

max
k∈M
|εi + Aik|

}2

I
{

max
k∈M
|εi + Aik| >

√
nε

}
= 0.
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It is appropriate to to note that we can have a bound of cik as

max
k
|cik| = max

k
|x∗k

T (XT
kXk)

−1[Xk]i,·|
≤ ‖x∗‖‖xi‖max

k

1

λ2min(Xk)
.

Here λmin(Xk) denotes the smallest singular value of X. Now by application of

Cauchy-Schwarz inequality,

1

n
E
{

max
k∈M
|εi + Aik|

}2

I
{

max
k∈M
|εi + Aik| >

√
nε

}
≤ 1

n

{
Emax
k∈M
|εi + Aik|4

}1/2{
P(max

k∈M
|εi + Aik| >

√
nε)

}1/2

≤ 1

n

∑
k∈M

E(εi + Aik)
4

{∑
k∈M

P(|εi + Aik| >
√
nε)

}1/2

≤
{
A4
ik

n2
+ 6

A2
ikσ

2

n2
+

3σ4

n2

}1/2
{∑
k∈M

P(|εi| >
√
nε− |Aik|)

}1/2

.

(2.3.3)

Thus it follows that for |M| finite, as n goes to infinity, the right hand side of the

above equation (2.3.3) goes to zero and thus condition (A2) is satisfied.

The MLE for the kth model is given by β̂k = (XT
kXk)

−1XT
k y. Let β∗k be such that

E`k(β∗k) = 0; E`k(βk) being the score function of the kth model. Solving which we

find that,

β∗k = (XT
kXk)

−1XT
kXβtrue. (2.3.4)

As discussed in Section 2.2.1, the entire set of candidate models can be divided in to

two categories. The 1st category contains the ones that are biased and is denoted by

M/∈ and the second category contains ones that are not and is denoted by M∈. So,

for k ∈M∈ we have β∗k = βtrue, whereas for k ∈M/∈ we have β∗k 6= βtrue. Therefore
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the bias term of model average estimator µ̂ave can be written as,

∑
k∈M/∈

wk(x
∗
k
Tβ∗k − x∗

Tβtrue) = x∗k
T (XT

kXk)
−1XT

kXβtrue − x∗
Tβtrue.

Since the weights assigned to the models are unknown, we propose an estimate of the

mean squared error (MSE) and minimize the MSE to obtain weights that would be

assigned to the candidate models. From Theorem 2.1, the mean squared error (MSE)

of µ̂ave is given by

Q(w) = E(x∗k
T β̂k − x∗

Tβtrue)
2

=


 ∑
k∈M/∈

wk(x
∗
k
Tβ∗k − x∗

Tβtrue)

2

+
1

n2

∑
k∈M

∑
k′∈M

wkwk′x
∗
k
TH−1k E`′k(βtrue)`

′
k′(βtrue)

T H−1k′
T
x∗k

}
.

We want to propose an estimate for the MSE stated. Since Hk does not depend on

y, we focus on estimating E`′k(βtrue)`
′
k′(βtrue)

T . Now,

E`′k(βtrue)`
′
k′(βtrue)

T = XT
kE(y −Xβtrue)(y −Xβtrue)

TXk′ = σ2XT
kXk′ ,

so that the MSE is given by,

Q(linear)(w) =

 ∑
k∈M/∈

∑
k′∈M/∈

wkwk′(x
∗
k
Tβ∗k − x∗

Tβtrue)(x
∗T
k′β
∗
k′ − x∗

Tβtrue)

+
σ2

n2

∑
k∈M

∑
k′∈M

wkwk′x
∗
k
T (XT

kXk)
−1 XT

kXk′ (XT
k′Xk′)

−1x∗k

}
.

Let us define the estimates,

β̂full = (XTX)−1XTy, σ̂2
full = ‖y −Xβ̂full‖2/n. (2.3.5)
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Thus (β̂full, σ̂full) are consistent estimates of (βtrue, σ). We propose Q(linear)(w) as

Q̂(linear)(w) = trace

 ∑
k∈M/∈

∑
k′∈M/∈

wkwk′(x
∗
k
T β̂k − x∗

T β̂full)(x
∗T
k′β̂k′ − x∗

T β̂full)

+
σ̂2
full

n2

∑
k∈M

∑
k′∈M

wkwk′x
∗
k
T (XT

kXk)
−1 XT

kXk′ (XT
k′Xk′)

−1x∗k

}
.

(2.3.6)

We obtain the weights for model average estimator w = (w1, · · · , w|M|) such that

Q̂(linear)(w) in (2.3.6) is minimized.

Estimation in Logistic Regression Framework.

In this section we develop model average estimators for generalized linear models

(GLM). We specifically focus on Logistic regression models which is widely employed

type of GLM; it is used for modeling dichotomous responses based on a set of con-

tinuous or categorical features. See Hosmer and Lemeshow [2000] for details.

Let y ∈ Rn ne n independent copies of a dichotomous response variable Y taking

values 0/1. Let X = (x1, · · · ,xn)T ∈ Rn×(p+1) be a set of features. The logit model

is given by,

pi = P (yi = 1|X) =
exp(xTi β)

1 + exp(xTi β)
, ∀i = 1, · · · , n,

where β ∈ Rp+1 are the set of unknown parameters of interest. Alternatively, the

linear predictor in logistic regression has the interpretation as the conditional log

odds, i.e.

log

[
P (yi = 1|X)

P (yi = 0|X)

]
= xTi β.

Assuming yi’s are independent observations the log-likelihood for logistic regression



23

can be written as,

`k(β|y,X) = log
n∏
i=1

exp(yix
T
i β)

1 + exp(xTi β)
=

n∑
i=1

yix
T
i β −

n∑
i=1

log(1 + exp(xTi β)).

As before, let M = {Mk}|M|k=1 be the set of candidate models Here Mk denotes a

particular set of features having cardinality |Mk|. Define Xk = (x(k)1, · · · ,x(k)n)T ∈

Rn×|Mk|, 1 ≤ k ≤ |M| as the design matrix of the kth candidate model with the

features in Mk. Thus x(k)i ∈ Re|Mk|. Let βk ∈ R|Mk| be the parameter vector with

components corresponding to the index set Mk. We consider zero -augmentation of

the parameter set βk for all k as was done for linear regression models.

For this discussion, we consider estimation of a function of the form p : Rp+1 → Rn

given by

p(β) =
exp(Xβ)

1 + exp(Xβ)
, (2.3.7)

which are calculated component wise. Let the unknown true parameter in our model

be βtrue ∈ Rp+1. Then ptrue = p(βtrue) = exp(Xβtrue)/(1 + exp(Xβtrue)) ∈ Rn

calculated component wise. To estimate the parameter ptrue, we consider the model

average estimator given by

pave =
∑
k∈M

wkp(β̃k),

where β̃k is the 0-augmented version of the MLE for β̂k of βk for the kth model. The

score function for the kth model is given by

`
′

k(βk) =
∑
i

yix(k)i −
∑
i

exp(xT(k)iβk)

1 + exp(xT(k)iβk)
x(k)i = XT

k (y − pk) ∀ 1 ≤ k ≤ |M|.

Here we have used the notation pk = (p(k)1, · · · , p(k)n) as the vector of probabilities as
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computed for the kth model defined by p(k)i = exp(xT(k)iβk)/(1 + exp(xT(k)iβk)). The

hessian of the log-likelihood is given by

`
′′

k(βk) =
n∑
i=1

exp(xT(k)iβk)

(1 + exp(xT(k)iβk))
2
x(k)ix

T
(k)i = XT

kWk(In −Wk)Xk ∀ 1 ≤ k ≤ |M|.

To estimate the bias of the model average estimator we need to find a β∗k which

is the solution of the equation

E[`′k(βk)] = E(XT
k (y − pk)) = 0. (2.3.8)

Thus β∗k is also a solution of XT
k (ptrue−pk) = 0. Let us denote by p∗k = exp(Xkβ

∗
k)/(1+

exp(Xkβ
∗
k)) ∈ Rn calculated component wise. Define as before W∗

k = diag(p∗k) ∈

Rn×n and Wtrue = diag(ptrue) ∈ Rn. We can use iterative re-weighted least squares

(IRLS) method to solve the equation. See Holland and Welsch [2007] for more de-

tails. Let β∗k
(i) be the solution of (2.3.8) at the ith stage of the IRLS algorithm. The

coefficients for the (i+ 1)th stage is then given by

β∗k
(i+1)

= β∗k
(i) + [XT

kWk(In −Wk)Xk]
−1XT

k

[
exp(Xβtrue)

1 + exp(Xβtrue)
− exp(Xkβk)

1 + exp(Xkβk)

]∣∣∣∣
βk=β

∗
k
(i)

= β∗k
(i) + [XT

kWk(In −Wk)Xk]
−1XT

k (ptrue − pk)
∣∣∣
βk=β

∗
k
(i)
.

Since the weights assigned to the models are unknown, we follow the setup in Section

2.2 and propose an estimate of the mean squared error and use that to obtain weights

that would be assigned to the candidate models. In order to calculate the MSE we

need to calculate the gradient of µ i.e. ∇p(dropped) ∈ Rn×Mk for 1 ≤ k ≤ |M|, which

is given by

∇p(dropped)(β∗k) = (In −W∗
k)W

∗
kXk, 1 ≤ k ≤ |M|.
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Now note that,

E`′k(β
∗
k)`
′
k′(β

∗
k)
T = XT

kE(y − p∗k)(y − p∗k′)TXk′

= XT
kE(y − ptrue − (p∗k − ptrue))(y − ptrue − (p∗k′ − ptrue))TXk′

= XT
kE(U − (p∗k − ptrue))(U − (p∗k′ − ptrue))TXk′

= XT
k

[
EUUT + (p∗k − ptrue)(p∗k − ptrue)T

]
Xk′

= XT
k

[
Wtrue + (p∗k − ptrue)(p∗k′ − ptrue)T

]
Xk′ ,

where we have used the notation that U = y − ptrue so that EU = 0 and var(U) =

EUUT = Wtrue. Using these results, the MSE estimate for p̂ave is be given by,

Q(logistic)(w) = trace

{∑
k∈M

∑
k′∈M

wkwk′(p
∗
k − ptrue)(p∗k − ptrue)T

+
σ2

n2

∑
k∈M

∑
k′∈M

wkwk′(In −W∗
k)W

∗
kXk[X

T
kW∗

k(In −W∗
k)Xk]

−1

× XT
k

[
Wtrue + (p∗k − ptrue)(p∗k′ − ptrue)T

]
× Xk′ [X

T
k′W

∗
k′(In −W∗

k′)Xk′ ]
−1XT

kW∗
k(In −W∗

k)
}
.

We can obtain w1, · · · , wN such that a consistent estimate of the MSE Q(logistic)(w) is

minimized, similar to the development done in linear regression setup. These weights

can be assigned to individual models for developing the model average estimator.

2.4 Simulation Study & Real Data Analysis

2.4.1 Simulation Study

Large sample behavior & bias variance tradeoff.

In this section we study the large sample behavior of the model average estimator

and the weights chosen. This is done under a linear regression framework. We use the
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following simple linear regression setup with three regressor variables (not including

the intercept) with unknown parameters β1, β2, β3. The possible candidate models

can be any of the 23 = 8 parameter combinations possible. Namely, [M1] : y =

β01 + ε1, [M2] : y = β01 + β1x1 + ε2, [M3] : y = β01 + β2x2 + ε3, [M4] : y =

β01 + β3x3 + ε4, [M5] : y = β01 + β1x1 + β2x2 + ε5, [M6] : y = β01 + β1x1 + β3x3 +

ε6, [M7] : y = β01 + β2x2 + β3x3 + ε7, [M8] : y = β01 + β1x1 + β2x2 + β3x3 + ε8.

Here εi ∼ N(0, σ2) ∀i = 1, · · · , 8 and x1,x2,x3 are the regressors. We compare the

mean square error of the parameter β = (β0, β1, β2) using model average estimator

and the oracle mean square error, which is the mean square error assuming the true

model from which the data is generated is known. Two different scenarios have been

considered when studying the behavior of model average estimator under different

sample size.

In the first scenario we use the true model [Mtrue] : y = β01 + β1x1 + β2x2 + ε3,

with β0 = 2, β1 = 4 and β2 = 0.5. Depending on the choice of true model, different

candidate models will have different biases. For example, when Mtrue is the true

model, estimators from M5 and M8 will have no bias, whereas estimators from the

rest of the candidate models will be biased. In this case we have two candidate models

M2 and M5 that are really close to the true model, with M2 being a biased candidate

model. We vary the sample size from 100 to 1000 and compare the performance of

model average estimator with the true one.
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Figure 2.1: (a) Bias variance tradeoff of model average estimator and (b) large sample

behavior of model average estimator

From Figure 2.1(a) we can see that, model average estimator performs better for

small sample sizes. When the sample size is small, model average estimator selects

smaller candidate models (models with fewer parameters than the true model) that

have increased bias but low variance, and thus less mean square error than the true

model. However, when sample size is increased, we see that the weights converge to

the true weights and both model average mean square error and oracle mean square

error are similar to each other.

Next we consider the true model [Mtrue] : y = β01 + β1x1 + β2x2 + ε3, with

β0 = 2, β1 = 4 and β2 = 5. In this case there are no candidate models close to

the true model. We vary the sample size again from 100 to 1000, and observe the

performance of the model average estimator. This is done to examine the effectiveness

of the weights chosen. We can see from Figure 2.1 (b) as sample size increases the

mean square error of model average estimator approaches that of the true model.

Therefore as sample size increases model average estimator performs as well as the

true model when mean square error is considered.
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Comparison with model selection.

In this section, we use the same linear regression setup to perform a simulation study

that compares the performance of the frequentist model average estimator with pro-

posed weights with model selection by comparing the coverage probability. The true

model from which the data is generated is

Mtrue : y = β01 + β1x1 + β2x2 + ε

, with β0 = 2 and β1 = 1.5. Also, we assume cov(X1,X2) = 1/
√

3. This simulation

is motivated from a similar example in Berk et al. [2000]. We use best subset selection

methods for model selection. Best subset model selection method is used to select

between: M0 : y = β01 + β1x1 + ε and M1 : y = β01 + β1x1 + β2x2 + ε. Similar

results were observed while using AIC/BIC. Our parameter of interest is β1. In this

framework we next compare model averaging with model selection. The comparison is

done by varying the values of β2 over a range and computing the coverage probability

of the estimator of β2. The results are presented in the following table. The results

in the following table are based on m = 100 and m = 10000 simulations. The sample

size considered is n = 10000.
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Table 2.1: Coverage probability for the (a) model average estimator with proposed,

weights (b) estimator selected using best subset selection, (c) oracle estimator

m p β2 (a)Proposed (b) Model Selection (c) Oracle

1000 3 0.07 0.93 0.89 0.95

0.12 0.92 0.89 0.95

0.55 0.90 0.85 0.95

1.1 0.90 0.83 0.95

10000 3 0.045 0.95 0.93 0.95

0.18 0.94 0.91 0.95

0.53 0.92 0.89 0.95

1.21 0.91 0.87 0.95

Comparison with existing frequentist model averaging methods using a

linear regression framework.

In this section we use a linear regression model and perform a simulation study that

compares the performance of the frequentist model average estimator with proposed

weights with existing methods in model averaging. In Hjort and Claeskens [2003] the

authors proposed an averaging scheme, Frequentist Model Averaging (FMA) that

combines estimators from different models assuming the data is coming from a local

misspecification framework. This assumption in turn specifies a set of models that

can contribute to the averaging process. In this method any candidate model used

has to have a bias of O(1/
√
n) or less, whereas in our proposed method the choice of

candidate models is unrestricted. In Liang et al. [2011] authors proposed a selection

of optimal weights to be used in a linear model framework. The idea was to propose

an unbiased estimate of MSE of the model average estimator and then minimizing

the trace of the MSE estimate the weights were obtained. Their proposed estimator
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(OPT) uses this choice of weights and combines all plausible candidate models. This

selection of weights has shown to exhibit optimality properties with respect to the

mean square error of the estimator.

We use the same linear regression setup as in Section 2.4.1 with three regres-

sor variables (not including the intercept) with unknown parameters β1, β2, β3. The

possible candidate models can be any of the 23 = 8 parameter combinations pos-

sible. Namely, [M1] : y = β01 + ε1, [M2] : y = β01 + β1x1 + ε2, [M3] : y =

β01+β2x2+ε3, [M4] : y = β01+β3x3+ε4, [M5] : y = β01+β1x1+β2x2+ε5, [M6] :

y = β01 + β1x1 + β3x3 + ε6, [M7] : y = β01 + β2x2 + β3x3 + ε7, [M8] : y =

β01 + β1x1 + β2x2 + β3x3 + ε8. Here εi ∼ N(0, σ2) ∀i = 1, · · · , 8 and x1,x2,x3 are

the regressors.

In order to compare three different methods we use three different simulation

setups. In the first setup, the purpose is to evaluate the proposed estimator relative

to the FMA estimator when both are considered in a setup where candidate models

include the true model from which the data was generated. The second setup, which

is based on the same setting, but the choice of true model is different, examines the

performance of the FMA estimator when it combines a different, more restricted set

of models than the proposed estimator. Finally, in the third setup we choose a much

bigger misspcification framework and evaluate the performance of all three estimators.

The true model from which the data is generated is Mtrue : y = β01 + β1x1 +

β2x2+β3x3+ε, with β0 = 2, β1 = 3 and β2 = 1 In Table 2 we vary the value of β3 and

observe the performance of FMA, OPT and the proposed estimator. The comparison

is done by computing the mean square error of the estimator µ̂ as described in Section

3.1. The results in the following table are based on m = 100 simulations. The sample

size considered is n = 500.
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Table 2.2: Mean square error for the (a)model average estimator with proposed,

weights (b) model average estimator with Liang’s [2011] weights, (c)Hjort’s [2003]

model average estimator with AIC based weights, (d) oracle estimator

β3 (a)Proposed (b) Liang/MSE (c) Hjort/AIC (d) Oracle

0.001 0.00051 0.00051 0.00062 0.00044

0.005 0.00267 0.00267 0.00268 0.00213

0.01 0.00235 0.00234 0.00281 0.00207

0.05 0.00111 0.00111 0.00128 0.00109

0.1 0.00089 0.00089 0.00102 0.00086

0.5 0.00249 0.00249 0.00249 0.00248

We compare the performance of FMA, OPT and the proposed estimator. FMA

estimator is based on AIC based weights. From Table 2.2 we can see that the proposed

estimator outperforms the FMA estimator, while the OPT estimator shows similar

performance as the proposed estimator. We note that the set of candidate models

were the same for all three methods, thus this table focuses on comparing the weights

that were used to combine the model average estimator in each case. We can see

that the proposed weights perform better than the AIC based weights, and are also

on par with the MSE based weights from Liang et al. [2011], which were shown to be

optimal in the same publication. Also we note that, as the value of β2 increases all

three methods perform similarly. The reason being, when β2 is large the evidence for

Mtrue : y = β01 +β1x1 +β2x2 +β3x3 + ε gets stronger and all other methods choose

weights that favor Mtrue.

Next we focus on comparing the three methods when the set of candidate model

varies across them. The setting is similar to that of Table 2.2, but the choice of

assumed true model is different. This assumed true model was used during the

development of Hjort and Claeskens [2003], where candidate models are assumed to
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be in a close neighborhood of the true model. But as in real life we have no idea what

this true model should be, in our proposed method we use all possible candidate

models that were available. Therefore, we use this setup to examine the performance

of the FMA estimator when it combines candidate models under a particular true

model assumption. The true model from which the data is generated is Mtrue : y =

β01+β1x1+β2x2+β3x3+ε, with β0 = 2, β1 = 3 and β3 = 0.01. We vary the value of

β2 and compare the performance of the different estimators. But, the FMA estimator

operates under the assumed true model, M ′
true : y = β01 + β1x1 + γ + ε, with γ = 1

The results in the following table are based on m = 100 simulations as before. From

Table 2.3 we can see that the proposed and OPT estimator performs better than the

FMA estimator which was based on a restricted set of candidate models.

Table 2.3: Mean square error for the (a)model average estimator with proposed,

weights (b) model average estimator with Liang’s [2011] weights, (c)Hjort’s [2003]

model average estimator with AIC based weights, (d) oracle estimator

β2 (a) Proposed (b) Liang/MSE (c) Hjort/AIC (d) Oracle

0.001 0.00317 0.00317 1.04127 0.00296

0.005 0.00356 0.00356 1.00310 0.00331

0.01 0.00277 0.00277 0.98291 0.00266

0.05 0.00398 0.00398 0.93442 0.00391

0.1 0.00479 0.00479 0.81071 0.00462

0.5 0.00512 0.00512 0.25021 0.00512

Table 2.3 compares the performance of all three methods where the set of candi-

date models is not same. The AIC based Hjort’s estimator is based on a restricted

set of candidate models whereas the remaining two methods are based all candidate

models available. We can see from the results that the proposed and Liang et al.
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[2011]’s model average estimator works well. However, since the true model assump-

tion was wrong, the AIC based model average estimator performs poorly. This is

again due to the fact that the estimator was developed using a restriction over the

set of candidate models and the true model. Thus, in this section we compare the

proposed model average estimator with the existing estimators. Table 2.2 compares

the weight choices when set of candidate model is the same and Table 2.3 compares

the estimators when the set of candidate models are restricted. From both the tables

it is apparent that the proposed estimator works well.

Finally, in Table 2.4 the data are simulated from a model that is not included in

the set of candidate models. We use six regressor variables in the true model. The

rationale behind this was to evaluate the performance of all three estimators under a

setup when the truth is different than the choices considered. The true model contains

three additional regressors that are not included in the set of candidate models used

in the analysis. We compare the prediction error of all three method with that of the

true model. The results in the following table are based on m = 100 simulations.

Table 2.4: Prediction error for the (a)model average estimator with proposed, weights

(b) model average estimator with Liang’s [2011] weights, (c)Hjort’s [2003] model

average estimator with AIC based weights and (d) oracle estimator from the true

model.

β2 (a) Proposed (b) Liang/MSE (c) Hjort/AIC (d) Oracle

0.001 18.73 18.89 20.17 0.00345

0.005 17.28 17.11 19.34 0.00564

0.01 18.71 18.17 20.13 0.00567

0.05 19.49 19.51 21.16 0.00752

0.1 19.44 18.54 19.33 0.00642

0.5 18.91 19.88 21.86 0.00768
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From Table 2.4 we see that none of the estimators are performing well, which was

expected as the choices of candidate models were all wrong. However, the proposed

method choose the candidate model that is closest to the true model. Also, using

the proposed method we can properly estimate the true model parameters that are

present in the candidate models considered.

To conclude, from Table 2.2 and 2.3 above we observe that the proposed estima-

tor and OPT performs better than the FMA estimator. In the setup considered in

Table 2.3 FMA estimator is combined based on a restricted set of candidate models,

whereas the remaining two estimators uses all 8 candidate models. This affects the

performance of the FMA estimator as seen in Table 2.3. Also proposed and OPT

weights seem to perform better than AIC weights.

Comparison with existing frequentist model averaging methods using a

logistic regression framework.

In this section we study the large sample behavior of the model average estimator and

the weights chosen using a logistic regression framework. The logit model is given by,

pi = P (yi = 1|X) =
exp(xTi β)

1 + exp(xTi β)
, ∀i = 1, · · · , n,

We use the above logistic regression setup with three regressor variables (not includ-

ing the intercept) with unknown parameters β1, β2, β3 and n = 500. The possible

candidate models can be any of the 23 = 8 parameter combinations possible, similar

to the linear regression setup described in Section 2.4.1. The true model from which

the data is generated contains intercept and the regressor x1. Here, β0 = 2, β1 = 3

and we use different values of β2 to compare the estimators. In this setup we compare

the performance of the proposed estimator along with Hjort’s estimator with AIC

based weights. As similar to the linear regression case proposed weights outperform
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the AIC based weights. The results are based on m = 100 simulations.

Table 2.5: Mean square error for the (a)model average estimator with proposed,

weights (b)Hjort’s [2003] model average estimator with AIC based weights and (c)

oracle estimator from the true model.

β2 (a) Proposed (b) Hjort/AIC (c) Oracle

0.001 0.00420 0.00434 0.00389

0.005 0.00214 0.00231 0.00109

0.01 0.00715 0.00819 0.00560

0.05 0.00811 0.00832 0.00655

0.1 0.00912 0.00955 0.00411

0.5 0.00412 0.00447 0.00412

2.4.2 Analysis of Prostate Cancer Data.

The data for this example come from a study by Stamey et al. [1989]. They examined

the relationship between the level of prostate-specific antigen and a number of clinical

measures in men who were about to receive a radical prostatectomy. The variables

are log cancer volume (lcavol), log prostateweight (lweight), age, log of the amount

of benign prostatic hyperplasia (lbph), seminal vesicle invasion (svi), log of capsular

penetration (lcp),Gleason score (gleason), and percent of Gleason scores 4 or 5. Here

svi is a binary variable, and gleason is an ordered categorical variable. The model

selection results are based on a best-subset selection using an all-subsets search. From

this we obtain an estimated prediction error that we use for comparing model selection

estimate with model averaging estimate. The data is divided randomly into a training

set of size 67 and a test set of size 30. We repeat the test and training breakup 5

times and average over the results. Best-subset selection selected a model containing

two predictors lcvol and lweight.
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Using model averaging on the dataset the weights were computed as follows. The

models assigned the most weights were with features lcavol, lweight, svi, pgg45, lcp,

gleason and lbph and the model with lcavol, lweight, svi, pgg45, lcp, gleason, lbph

and age. Whereas AIC dependent weights gives more weight to a smaller model

containing lcavol and lweight. The 90% prediction inteval for antigen levels in given

below. The prediction interval was computed for one set of test data.

Figure 2.2: Observed value and predicted interval for antigen level

2.5 Discussion

A model averaging estimator incorporates model uncertainty into the analysis by

combining a set of competing candidate models rather than choosing just one. It

also provides an insurance against selecting a poor model thus improving the risk in

estimation. In Hjort and Claeskens [2003] the authors proposed a formal framework

for frequentist model averaging as detailed before. In Hjort and Claeskens [2006]

and Claeskens and Hjort [2008] variable selection methods for the Cox proportional

hazards regression model were discussed along with the choice of weights. In Hansen

[2007] a new set of weights were derived using Mallow’s criterion. In Liang et al.

[2011], the authors proposed an unbiased estimator of the risk and a set of optimal

weights were chosen by minimizing the trace of the unbiased estimator. Further
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details about model selection and averaging can also be found in Lien and Shrestha

[2005], Karagrigoriou et al. [2009] and Wei and McNicholas [2012]. Recently, with

the development of theory of model averaging, it has been used in many areas of

application. The application of Frequentist model selection and weighting schemes

have been a focus of discussion in Bates and Granger [1969], where the authors used

it for forecasting airline passenger data. Similar approach was used in Danilov and

Magnus [2004b,a] for forecasting stock market data. Pesaran et al. [2009] discusses

dealing with the risk of using false models in portfolio management.

In this paper, we propose a more general framework where the choice of true

model is not fixed. The truth can be any one or a mixture of the candidate models.

Models that have large biases are not excluded from our analysis. We also study the

behavior of frequentist model average estimator with an optimal weighting scheme to

combine all the individual candidate models. As an illustration, we derive the model

average estimator in the linear regression framework. The asymptotic distribution

for model average estimator is also given. A linear regression model setup is used

to simulate different scenarios to compare the performance of the proposed model

average estimator with existing methods. Mean square error of the estimator is used

for the purpose of comparison. We also implement the weighting scheme proposed

by Liang et al. [2011] and compare their performance to AIC based weights. The

simulation results indicate that under certain model specifications, the proposed esti-

mator works better than Hjort and Claeskens [2003]’s estimator. And in some cases,

the proposed estimator works better even than the estimator which is based on the

model from which the data is actually generated. If the model average estimator

follows an asymptotic normal distribution, as discussed in the main results, then one

can construct confidence intervals based on Theorem 2.1 for model average estima-

tors. If we could specify an asymptotically correct estimator for the variance of the

model average estimator, one could propose a theoretically correct construction for
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such confidence intervals.

There are many ways a regression model can be misspecified. The functional form

of the model may not be correctly specified or there may be dependencies among the

predictor variables. Misspecification in most cases is often interpreted as a case of

left out variables. In these instances, the normality assumption among random errors

are violated. This results in the estimates being biased as discussed in Giles et al.

[1992]. These estimates can harm the decision making process, so one should be

very attentive while fitting and choosing models in the presence of misspecification.

Many methods have been used to measure and limit misspecification in model fitting.

Ramsey Regression Equation Specification Error Test (RESET), discussed in Thursby

and Schmidt [1977] being a test that is useful in a linear regression setup.

In model averaging, if the true model is not included in the set of candidate models,

we end up using an estimate that is biased. If all the models are misspecified, the

weights derived by AIC or by using a consistent or unbiased estimator of mean square

error are not optimal and should be used after careful consideration. When the true

model is not included in the analysis thus all the candidate models are wrong, there

have been developments in model selection that takes care of the bias resulting from

selection. See Hurvich and Tsai [1989, 1991]. A penalized version of AIC and BIC

have been derived that performs better than other selection criteria. One can follow

a similar path and derive the model averaging weights based on a sightly modified

criteria.

Another problem with model averaging is that the number of optional parameters

in analysis could be very high. For example, if there are 30 parameters we could

end up using as many as 230candidate models. This may be time consuming and not

ideal in certain fields of study. However, as suggested in this paper, a statistician can

choose to use all or very few candidate models as per the scope of the study. This

could be explored in further development.
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2.6 Appendix

2.6.1 Regularity Conditions and Assumptions.

In this section we state the regularity conditions that were used throughout the paper.

We assume that the density function satisfies the following conditions.

(a) Θ is an open subset of Rp, and the support of the density function is independent

of β.

(b) The true parameter value is an interior point of the parameter space.

(c) `′k;i and `′′k;i(β
∗
k) exists and `′k;i is a continuous function of β.

(d) E[`′k;i] = 0 and E[`′k;i`
′T
k;i] = −E[`′′k;i(β

∗
k)]. These conditions are standard conditions

for asymptotic normality of maximum likelihood estimators.

(e) limn→∞
1

n
[`′′k(β

∗
k)]→ Hk and Hk is positive definite.

(f) For some ε > 0,
∑

i E|λ′`′k;i(βtrue)|2+ε/n(2+ε)/2 → 0 for all ε ∈ Rp.

(g) There exists ε > 0 and random variablesBi(yi) sup
{
|`′′k;i(β

∗
k)| : ||t− βtrue|| ≤ ε

}
≤

Bi(yi) and E|Bi(yi)|1+δ ≤ K, where δ and K are positive constants.

Consider a functional µ : Rp+q → R. Define µ(dropped) : Rp+m → R as the same

function as µ with only the (q − m) corresponding arguments dropped. For any

b = (b1, · · · , bp, bp+1, · · · , bp+m) with 1 ≤ m ≤ q define the c-augmented version of

b as b̃ = {b, c} ∈ Rp+q with some fixed c ∈ R̄q−m inserted at the place of missing

components. Let the indices of the missing components be {p + i1, · · · , p + iq−m}.

We define µ̃ : Rp+m → R as the restriction of µ : Rp+q → R subject to bp+i1 =

c1, · · · , bp+iq−m = cq−m. Clearly then µ(b̃) = µ̃(b). Given a function µ, the fixed value

c is chosen in such a way that µ(b̃) = µ(dropped)(b). We assume that µ : Rp+q → R` be

a function that is 1st order partially differentiable at βtrue. Note that by definition of
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c-augmentation, µ(β̃k) = µ(dropped)(β̂k). For ease of reading, in the subsequent proof,

we omit the superscript ‘(dropped)’.

2.6.2 Proofs of Theorems.

Proof of Theorem 2.1. From usual regularity conditions on the log-likelihood, as re-

lated to M-estimation it can be shown that

√
n
(
β̂k − β∗k

)
= −H−1k

[
1√
n

∑n
i=1 `

′
k;i(β

∗
k)

]
+ oP(1). For more detail and exact con-

ditions see [Van der Vaart, 2000, Chapter 5]. Now by application of Taylor expansion,

µ(β̂k)− µ(β∗k) = ∇µ(β∗k)
T (β̂k − β∗k) + oP(‖β̂k − β∗k‖),

√
n(µ(β̂k)−µ(β∗k)) = −∇µ(β∗k)

T

{
H−1k

[
1√
n

n∑
i=1

`′k;i(β
∗
k)

]
+ oP(1)

}
+oP(

√
n‖β̂k−β∗k‖).

Thus it follows that for 0 ≤ wk ≤ 1 with
∑

k∈Mwk = 1,

√
n
∑
k∈M

wk(µ(β̂k)− µ(βtrue))

=
√
n
∑
k∈M

wk(µ(β∗k)− µ(βtrue)) +
√
n
∑
k∈M

wk(µ(β̂k)− µ(β∗k))

=
√
n
∑
k∈M

wk(µ(β∗k)− µ(βtrue))−
∑
k∈M

wk∇µ(β∗k)
TH−1k

[
1√
n

n∑
i=1

`′k;i(β
∗
k)

]

+ oP

(∑
k∈M

√
n‖β̂k − β∗k‖

)

=
√
n
∑
k∈M

wk(µ(β∗k)− µ(βtrue)) +
1√
n

n∑
i=1

{
−
∑
k∈M

wk∇µ(β∗k)
TH−1k `′k;i(β

∗
k)

}

+ oP

(∑
k∈M

√
n‖β̂k − β∗k‖

)

=
√
n
∑
k∈M

wk(µ(β∗k)− µ(βtrue)) +
1√
n

n∑
i=1

Zi + oP

(∑
k∈M

√
n‖β̂k − β∗k‖

)
,
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where we have used the definition that Zi = −
∑

k∈Mwk∇µ(β∗k)
TH−1k `′k;i(β

∗
k). First

note that
√
n‖β̂k −β∗k‖ = oP(1) via consistency of MLE. Note that Zi’s are indepen-

dent and EZi = 0. Now fix ε > 0. In order to prove the asymptotic normality of

the quantity (1/
√
n)
∑

i Zi we invoke the Lindeberg-Feller central limit theorem (see

Billingsley [2008]). This requires verification of the so called Lindeberg condition,

given by (1/n)
∑n

i=1 EZ2
i I {|Zi| >

√
nε}. Let us denote Yki = ∇µ(β∗k)H

−1
k `′k;i. Now,

1

n

n∑
i=1

EZ2
i I
{
|Zi| >

√
nε
}

=
1

n

n∑
i=1

E

(∑
k∈M

wkYki

)2

︸ ︷︷ ︸
=A, say

I

{
|
∑
k∈M

wkYki| >
√
nε

}
︸ ︷︷ ︸

=B, say

≤ 1

n

n∑
i=1

E

[∑
k∈M

wkY
2
ki I
{

max
k∈M
|Yki| >

√
nε

}]

≤ 1

n

n∑
i=1

E
[
max
k∈M
|Yki|2I

{
max
k∈M
|Yki| >

√
nε

}]
.

Here the inequality in the second line is derived by first noting that if A,B > 0

and A < C,B < D, then AB < CD. Secondly, note that A = (
∑

k∈MwkYki) ≤∑
k∈MwkY

2
ki by Jensen’s inequality. Also since

√
nε < |

∑
k∈M

wkYki| ≤ max
k∈M

∑
k

|wk| = 1,

it follows that

I

{
|
∑
k∈M

wkYki| >
√
nε

}
≤ I

{
max
k∈M
|Yki| >

√
nε

}
.

Now take C =
∑

k∈MwkY
2
ki and D = I {maxk∈M |Yki| >

√
nε}. Now by condition

(2.2.2), the Lindeberg-Feller condition is satified for (1/
√
n)Zi’s whence it follows
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that (1/
√
n)
∑n

i=1 Zi ∼ N (0, σ2
w), where σ2

w is given by

σ2
w = lim

n→∞

1

n

n∑
i=1

E

[∑
k

wk∇µ(β∗k)
TH−1k `′k;i

]2
.

The theorem follows.

Proof of Corollary 2.2. As defined before, for the kth candidate model, let β∗k ∈

Rp+|Mk| be the solution of the equation ESk(β) = 0, where Sk(β) is the score function

for the kth model. Let β0,k = (θ0, πkγ0)
T ∈ Rp+|Mk|. Therefore, E(`′k(β

∗
k)) = 0. Then,

by Taylor’s theorem and appropriate regularity conditions on the density function,

it follows that asymptotically, β∗k − β0,k ≈ J−1k E(`′k(β0)). Now note that following

[Hjort and Claeskens, 2003, Page 37],

E(`′k(β0)) =

 J01δ/
√
n+ o(1/

√
n)

πkJ11δ/
√
n+ o(1/

√
n)

 ,

so that,

β∗k − β0,k ≈ J−1k

 J01δ/
√
n

πkJ11δ/
√
n

 . (2.6.1)

In order to prove the corollary, we first match the bias terms. Note that in Theorem

2.1, the bias term is given by

√
n
∑
k∈M

wk(µ(β∗k, γ0,kc)− µ(βtrue)).
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Thus consider term buy term, the bias of the kth component is given by

√
n(µ(β∗k,γ0,kc)− µ(βtrue)) =

√
n(µ(β∗k,γ0,kc)− µ(β0))−

√
n(µ(βtrue)− µ(β0))

≈
√
n(β∗k − β0,k)

T

 ∂µ(β0)/∂θ

∂µ(β0)/∂γk

− (∂µ(β0)

∂γ

)T
δ

=

 ∂µ(β0)/∂θ

∂µ(β0)/∂γk


T

J−1k

 J01δ

πkJ11δ

− (∂µ(β0)

∂γ

)T
δ,

where the last term follows from (2.6.1). This matches the bias term in (2.2.7).

Looking at the variance term, note that from (2.3.2), the variance of the kth term is

given by,

var(∇µ(β∗k,γ0,kc)
TH−1k (

n∑
i=1

`′k;i(β
∗
k)/
√
n).

From (2.6.1), via Taylors theorem it follows that ∇µ(β∗k,γ0,kc) ≈ ∇µ(β0). Also note

that from standard theory of maximum likelihood estimation,

H−1k (β∗k)(
n∑
i=1

`′k;i(β
∗
k)/
√
n) ≈

√
n(β̂k − β∗k)

=
√
n(β̂k − β0,k)−

√
n(β∗k − β0,k)

= J−1k

 √nUn

√
nV n,k

− J−1k

 J01δ

πkJ11δ


= J−1k

 √n(Un − EUk(Y1))
√
n(V n,k − EVk(Y1))

 .

Here the last inequality follows from Lemma 3.1 in Hjort and Claeskens [2003]. Hence

it follows that asymptotically both the bias and variance terms are equal.
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Chapter 3

Dose Finding In Combination Therapy

3.1 Introduction

With the development of new drugs in pharmaceutical industry, clinical trials involv-

ing treatments that combine multiple drugs are also increasing in number. Sometimes

even if a drug fails to exhibit efficacy when used in isolation, it may demonstrate in-

creased efficacy when used in combination with some other drug. Multiple drugs

used together can interact and may enhance the effectiveness of the treatment. Drug

synergy can occur because of biological activity or pharmacokinetics. One may also

see negative effects of synergy that might amplify the side effects and result in a

safety issue. The goal of combination therapy is to achieve better patient response,

particularly for cancer patients who are non respondent to conventional single agent

therapies. In oncology, for example, multiple drugs used together can induce a syn-

ergistic treatment effect by targeting different pathways.

In phase I clinical trials, we often focus on understanding the toxicity profile

of the drugs studied. Multiple dose levels are used in the trial and the toxicity

observed is studied. Often the purpose of a phase I trial is to find the maximum

tolerated dose (MTD) of the drug under study. The MTD is the highest possible

dose that does not exhibit an unacceptable amount of toxicity in the subjects. Thus

often this dose (MTD) is the one with a probability of toxicity that is closest to

the trial’s pre specified target. In a single drug trial finding MTD could be rule

based or model based. In a model based approach finding MTD involves modeling a
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dose toxicity relationship. Here, one can either use a model based on dose levels or

use pre specified dose toxicity probabilities. In continual reassessment method (CRM)

O’Quigley et al. [1990] a parametric function is used to model the relationship between

the true dose toxicity probabilities and the pre specified toxicity probabilities. This

dose toxicity relationship is then modelled using a Bayesian adaptive design that

updates the relationship based on the information received from the clinical trial.

Finding the MTD in a drug combination trial with two or more drugs is different

and more complicated than a single drug trial. In a single drug trial often toxicity

is assumed to be monotonically increasing with dose level, which helps to identify

the unique MTD. But in a combination trial multiple dose combinations can have

the same levels of toxicity. Also information about drug - drug interaction is not

known, which may lead to unknown patterns of toxicity. Thus ordering the dose

level combinations is more complicated when dealing with multiple drugs. Finding

the combination dose levels with similar level of toxicity may involve investigating

numerous dose combinations, which, in real life may be complicated because of the

small number of subjects present in the trial. In theory, in a multiple drug setting, an

infinite number of possible dose combinations may achieve the same target toxicity

level, as we assume dose-toxicity surface is continuous. In practice, however, such

choices are often restricted by pre defining a set of dose level combinations used in

the trial. Different approaches for finding dose combinations have been discussed in

many recent literature. Yin and Yuan [2009] proposed copula regression models for

analyzing dose combination. Thall and Cook [2004] proposed a six-parameter model

to define the probability of toxicity that had properties similar to that of logistic

regression. Further details about dose finding designs can be found in Staw and Ross

[1987], Thall et al. [1999], Thall and Cook [2004], Zhou [2010], Huo et al. [2012],

Sweeting and Mander [2012] etc. Using Bayesian parametric models to describe the

dose-toxicity surface in clinical trials has become increasingly popular. Often adaptive
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designs are used for the purpose as one can update the model as soon as new data are

collected. In this paper, we apply the same idea in a two dimensional dose toxicity

analysis. A combination model that is able to capture different natures of synergy

and antagonism has been used for analysis. We model the rates of toxicity of the

combined drugs via a copula-type regression. We also use an adaptive design with

a hierarchical model where the model parameters can be separated into those that

relate to the marginal dose-toxicity response and those that relate to the interaction

between the two drugs. We use a three-parameter copula-type regression model stated

in Yin and Yuan [2009], that can be treated as an extension of the popular continuous

reassessment method (CRM) used in single-drug dose-finding trials.

Different trial designs involving drug combinations can be used to find the optimal

dose level based on both safety and efficacy of the drugs. Also different escalation

strategies may result in different MTDs being identified and recommended for later

phases, where by utilizing efficacy data an optimal dose level is selected. In this

paper, we use a strategy for dose escalation and also explore the dose-toxicity space

for proposing future dose levels. Rest of this paper is detailed as follows. The model

framework used in the analysis is described in Section 2. We also look into an exten-

sion where three drugs are combined together. Section 3 details a simulation study.

In Section 4 we present a case study that is developed by using the data from oncol-

ogy clinical trials. This case study includes two individual drug trials as well as the

combination trial with both the drugs used together.

3.2 Parametric Model for Dose Combination

3.2.1 Joint Toxicity Model

We follow a model setup similar to Yin and Yuan [2009] for combined toxicity mod-

elling. Let A and B be two drugs used in a drug combination trial. In a drug
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combination study, the probability of toxicity corresponding to doses can be specified

in advance based on prior information available (See section 2.2 for details). Let pi

be the pre specified probability of toxicity corresponding to Ai, the ith dose for drug

A, and qj be that of BJ , the jth dose for drug B. To accommodate uncertainty in the

marginals we introduce probabilities of toxicity for drug A and drug B respectively as

pαi and qβj , where α ≥ 0 and β ≥ 0 are unknown parameters characterizing the effect

of the individual drugs. However, when two or more drugs are combined, each drug

would not act independently and there would be a drug drug interactive effect. This

interaction would affect the joint toxicity profile.

Figure 3.1: Different toxicity contours for combination of drug A and B

Figure 1 above shows different type of combined effects for drug A and B. For

a combination model it is desired that the joint toxicity function would be able to

capture both synergy and antagonism if present in the data. As seen in Figure 1 in the
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third and fourth contour plots the combined toxicity is much worse than individual

ones, which might be the scenario in real life.

Figure 3.2: Different toxicity surface for the two-drug combination

In Figure 2, we illustrate the joint toxicity probability surface based on model in

the two-dimensional probability space. Depending on the three parameters α, β, γ

the toxicity probability surface may have various shapes. Therefore, it is critical

to choose an appropriate model to link the joint toxicity probability πij with the

pi and qj. In a combination trial, we often observe a binary toxicity outcome for

the drug combination. Thus, for a subject treated at (Ai, Bj), we have information

about toxicity indicator being present or not. Our model links the joint toxicity

probability πij to the individual probabilities of toxicity pαi and qβj through a copula-

type regression model. Copula models are a widely used class of models that define the

joint probability distribution based on the marginal distributions and a dependence

parameter. We use the following model as given in Yin and Yuan [2009] for drug
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combinations given by the Gumbel Hougaard copula

πij = 1− exp(−[{−log(1− piα)}1/γ + {−log(1− qjβ)}1/γ]γ)

where as mentioned before pj is the pre-specified best guess toxicity probability for

drug A, qj is the pre-specified best guess toxicity probability for drug B and α and

β characterizes the individual drug effects and γ characterizes drug-drug interactive

effect respectively.

This copula model usually satisfies some basic model conditions. For example,

if we have no drug present, the joint toxicity probability should be 0. Also if the

probability of toxicity of one drug is 0 (which would be a individual drug trial)

the joint toxicity probability would be the toxicity of the other drug. Or, if the

toxicity probability of either drug is 1, the joint toxicity probability should be 1. This

model can also capture different dose toxicity contours as shown in Figure 1. By

only changing the drug drug interaction parameter γ one can model different synergy

effects (with the other two parameters fixed). This makes the model easy to interpret,

and computationally easier with only three parameters present. Moreover, if only one

drug is tested, say pi > 0 and qj = 0 the above model reduces to the CRM, with

πij = pαi . We can use other copula models as well, depending on the focus of the

study and computational convenience.

Next, one can construct the likelihood function on the basis of the binomial dis-

tribution with the probabilities πij. Suppose that, at the current stage of the trial,

among nij subjects treated at the combined dose level (Ai, Bj), xij subjects have

reported toxicity. The likelihood is then given by

l(α, β, γ|data) ∝
∏
i

∏
j

π
xij
ij (1− πij)nij−xij .

Assuming prior distributions of the model parameters are independent, The joint
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posterior distribution is given by

π(α, β, γ|data) ∝ l(α, β, γ|data)π(α)π(β)π(γ).

From the joint posterior distribution we can obtain the full conditional distributions

of the model parameters. After the outcomes of each cohort of subjects have been

observed, one can use the Gibbs sampling algorithm to sample from the posterior

distributions of the unknown parameters. Thus, the posterior estimates can be easily

obtained, which could lead to the next stage of the trial design.

3.2.2 Marginal Probabilities for Dose Combination

We perform a dose response/toxicity study for each individual drug and obtain the

marginal toxicity from this analysis. This will allow us to establish a relationship

between dose and toxicity for each drug considered. Developing a model based on

the data from individual study also makes the marginals more robust, as oppose to

using the actual data itself. Here we assume that toxicity increases as dose increases

for each drug.

There are many models that are used as popular choices for modeling the dose

response relationship in clinical trials. Here the expected response is assumed mono-

tonically related to dose, and there exists a lower and upper asymptote for the ex-

pected response. These properties are basic desirable features for modeling many

clinical trial dose response curves. In practice, these models have been found to fit

well to many data sets. One example of a model with similar properties is the Emax

model.

We illustrate our modeling technique using the Emax model for dose response.
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The model is given by,

µij = E0 +
Emax(i) × dosej
Ed50 + dosej

+ ε

where ε is N(0, σ2) and Y denotes a response of interest, E0, Emax, ED50 are unknown

parameters and ε is a random error assumed to be normally and independently dis-

tributed with constant variance.

Emax could be set different for study characteristics that are of interest (ie, pop-

ulation, etc). In a cancer trial, for example Emax could set to be different for each

cancer type. Then for the ith cancer type and jth dose level, out of nij subjects, if yij

have been identified with toxicity. We have, yij ∼ Bin(pij, nij). We use Emax model

to estimate the probabilities of the distribution given above. To achieve this goal we

utilize the logit function as follows

logit(pij) = log(
pij

1− pij
) = µij.

Here E0 represents the placebo response, Emax represents the maximum possible

response as dose approaches infinity, ED50 is the dose that produces half of the Emax

effect.

Other than obtaining marginal toxicity probability for each individual drug this

method also allows us to combine data across different type of cancer or different

trials. Since in clinical trials data is scarce pulling information from multiple studies

can help building the combined model. Combining data across trials with a different

emax parameter takes account the variation among different type of cancer combined.

At the same time it borrows information across different types and makes the model

more robust.
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3.2.3 Joint Toxicity Model for more than two drugs

In practice, drug combination trials could involve more than a pair of drugs, each

with several pre specified doses. When the dimension of the drug combination space

is higher than 2, dose finding becomes a much more complicated process, for which

most of the currently available methods might not work well. This method, however,

can be easily generalized to such a high dimensional dose combination problem. For

example, if three drugs are combined in a trial, we denote pi to be the physician-

specified probability of toxicity for the ith dose of drug A, i = 1, ..., I qj to be that

for the jth dose of drug B, j = 1, ..., J and rk to be that for the kth dose of drug C,

k = 1, ..., K i.e. the triplet pi, qj, rk represents the pre specified probabilities of toxicity

that are associated with the combined drug dosesAi, Bj, Ck. By incorporating a power

parameter for each prior probability of toxicity, the true probabilities of toxicity are pαi

, qβj ,rψk , where α, β, ψ characterize individual drug effects. In this three-dimensional

toxicity probability space, we can still quantify the joint toxicity probabilities through

a copula-type model. Then, we have

πijk = 1− exp(−[{−log(1− piα)}1/γ + {−log(1− qjβ)}1/γ + {−log(1− rkψ)}1/γ]γ)

where γ is the parameter characterizing interaction effect.

However, sometimes in a clinical trial a third drug (drug C) is combined to an

existing study of two drugs (drug A and B). In a case like that, we can utilize the orig-

inal copula model and treat the first combination toxicity probabilities as marginal.

Therefore, from the existing data, one can develop the pre specified marginal toxic-

ity profile of A and B. Then this marginal could be used to delevop the three drug

combination model, by using the copula function. Then, we have

πijk = 1− exp(−[{−log(1− pijδ)}1/γ + {−log(1− rkψ)}1/γ]γ).
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Where pij is the pre-specified toxicity probabilities when drugs A and B are used

in combination. rk is the pre-specified probabilities for drug C. The corresponding

likelihood based on the binomial distribution is given by

∏
i

∏
j

∏
k

π
xijk
ijk (1− πijk)nijk−xijk

where, among nijk subjects treated at Ai, Bj, Ck, xijk subjects have experienced toxi-

city. Prior specifications and posterior derivations are similar to that of the two drug

combination.

3.2.4 Combination for Ordinal Toxicity Measures

We can modify the parametric model chosen for combination of drugs when the toxi-

city variable is ordinal in nature. In Houede et al. [2010] authors discussed modelling

toxicity in combination with ordinal variable. Here we use a similar idea and model

the conditional distribution instead of the joint distribution by using the copula re-

gression function. We first model the marginal distribution of each ordinal outcome

as a function of dose d. For the marginal distributions, we will use a copula model as

used in the section 2.1. For the effects of the dose i of drug A and dose j of drug B,

we define the copula model as stated earlier by using the probability function

ωyij = 1− exp(−[{−log(1− pi(y)α)}1/γ + {−log(1− qj(y)β)}1/γ]γ)

denoted as ωy(θ, d), where θ is the set of parameters (α, β, γ) and d is the dose level

combination for drug A and B (i, j). Y is the ordinal variable with the ordinal

outcomes denoted by y. For example, let us consider a toxicity variable with four
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levels,

Y = 0 No SAE

= 1 Grade1− 2

= 2 Grade3− 4

= 3 Grade5

where SAE is serious adverse events occurring during the dose response study. Before

we specify marginal probabilities for the ordinal outcomes Y = y, we first define the

conditional probabilities,

Pr(Yk ≥ y|Yk ≥ y − 1, θ, d) = ωy(θ, d).

Therefore,

ω1 = P (Y ≥ 1|Y ≥ 0) = P (Any SAE|Total)

ω2 = P (Y ≥ 2|Y ≥ 1) = P (Grade 3-5|Any SAE)

ω3 = P (Y ≥ 3|Y ≥ 2) = P (Grade 5|Grade 3-5)

Then, for all y ≥ 1, the joint density of the ordinal variable Y is given by,

πy(θ, d) = (1− ωy+1(θ, d))

y∏
m=0

ωm(θ, d).
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Thus, we can define the cdf of a ordinal variable with values 0, 1, 2, 3 is

F (y|θ, d) = 0 if y ≤ 0

= 1− π1(θ, d)− π2(θ, d)− π3(θ, d) if y ≥ 0 and < 1

= 1− π1(θ, d)− π2(θ, d) if y ≥ 1 and < 2

= 1− π2(θ, d) if y ≥ 2and < 2

= 1 if y ≥ 3.

Next, we can construct the likelihood function on the basis of the multinomial dis-

tribution with the probabilities πy(θ, d). Suppose that, at the current stage of the

trial, among nij subjects treated at the combined dose level (Ai, Bj), x
y
ij subjects have

reported Y = y level toxicity. The likelihood is then given by

l(α, β, γ|data) ∝
∏
y

(
nij
xyij

)
πy(θ, d)x

y
ij .

Assuming prior distributions of the model parameters are independent, The joint

posterior distribution is given by π(α, β, γ|data) ∝ l(α, β, γ|data)π(α)π(β)π(γ). From

the joint posterior distribution we can obtain the full conditional distributions of the

model parameters. After the outcomes of each cohort of subjects have been observed,

one can use the Gibbs sampling algorithm to sample from the posterior distributions

of the unknown parameters. Thus, the posterior estimates can be easily obtained,

which could lead to the next stage of the trial design. Here we note that defining

each outcome as an ordinal variable having three or more levels and recording two

outcome variables provides a much more informative patient outcome than a binary

variable. A simulation study is presented later in 3.3.2 that utilizes the ordinal toxicity

framework.
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3.3 Simulation

3.3.1 Binary Toxicity

We investigated the operating characteristics of our two-dimensional Bayesian copula

dose finding method through simulation studies under different toxicity scenarios. For

example, let us assume we have drug A with dose levels (0.01, 0.03, 0.1, 0.3, 1) and

drug B with dose levels (0.01, 0.03, 0.1, 0.3, 1). Prior to the dose combination study,

individual studies with drug A and drug B were performed. We use the individual

toxicity probabilities from these studies in our joint toxicity copula model. We only

use the dose levels that are less than or equal to the MTD that was selected from the

individual trials on A and B.

Subjects are treated in cohorts, for example, a cohort size of 3. When a certain

dose combination cohort reaches or exceeds the targeting toxicity limit, subjects are

treated with a lower dose level. As phase I trial is frequently used to identify toxic dose

levels of the drugs used, a conservative dose escalation approach is often preferred.

To avoid overdosing, which is a concern in any clinical trial, often dose escalation

is restricted to a one- step procedure. This can be done by restricting admissible

dose combinations to the neighboring dose levels. A non diagonal escalation strategy

escalates the dose level of drug A while keeping drug B dose fixed. A diagonal

dose escalation increases both drug dose levels at the same time. A diagonal dose

escalation approach could help one to obtain the MTD much faster than the non-

diagonal approach, though the risk of overdosing is higher. However, in the copula

combination method both the individual drug profiles are well known. This knowledge

lowers the risk of overdosing even if a diagonal escalation is used. In this paper, we

restrict dose escalation or de-escalation to one dose level at a time, while also allowing

a move along the diagonal direction. So, at a cohort with dose level (0.1, 0.1) we have

three possibilities for dose escalation, namely (0.1, 0.3), (0.3, 0.1) and (0.3, 0.3).
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For the combination trial with drug A and B, the dose finding algorithm works

as follows.

1. At first, subjects are treated at a pre specified starting dose combination (eg.

the lowest).

2. If the target toxicity limit (TTL) is not reached, at the current dose combina-

tion the dose is escalated to the neighboring dose combination which has the

probability of toxicity closest to TTL. For example, if subjects are treated at

(0.1, 0.1) dose level, possible dose combinations for next stage would include

(0.1, 0.3), (0.3, 0.1) and (0.3, 0.3). Next we compare the posterior mean proba-

bility of these three dose levels and choose the one closest to TTL.

3. At the current dose combination, if the TTL is exceeded, dose level is de-

escalated to the neighboring dose combination which has the probability of

toxicity lower than and closest to TTL.

4. We pre specify a maximum sample size. Once the sample size has been reached,

the dose combination that has the probability of toxicity that is closest to the

target toxicity limit is selected as the MTD combination. In our simulation, we

define a specific targeting toxicity limit of 33%.
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Drug A

Drug B 0.01 0.03 0.1 0.3 1

0.01 0.030 0.085 0.137 0.213 0.268

0.03 0.049 0.104 0.154 0.229 0.283

0.1 0.089 0.141 0.189 0.261 0.313

0.3 0.167 0.215 0.259 0.324 0.372

1 0.239 0.283 0.323 0.383 0.426

Table 3.1: True toxicity probabilities used for the simulation. Toxicity probabilities

are in agreement with prior.

Drug A

Drug B 0.01 0.03 0.1 0.3 1

0.01 0.123 0.240 0.317 0.410 0.468

0.03 0.157 0.274 0.349 0.439 0.495

0.1 0.212 0.325 0.397 0.482 0.535

0.3 0.303 0.408 0.474 0.551 0.598

1 0.378 0.475 0.535 0.605 0.648

Table 3.2: True toxicity probabilities used for the simulation. Toxicity probabilities

are toxic.

Table 1 above shows the true toxicity probabilities used for the simulation. We

use gamma priors with mean 1 for all three parameters in the model. When using

toxicity probabilities that are in agreement with the prior, we have 3 MTD dose

combinations (doses within 2.5% of TTL 33%), (0.1, 1), (0.3, 0.3), (1, 0.1). During

the simulation, 87% of the trials selected one of the three true MTD’s. For the

second scenario true MTD’s were (0.1, 0.01), (0.1, 0.03), (0.03, 0.1) and the percentage



59

of MTD recommendations that coincides with the true MTD’s were 62%. Similarly

the six parameter logistic model managed to identify 57% and 84% MTD’s intriduced.

The simulation were done based on 1000 trials.

3.3.2 Ordinal Toxicity

Next we perform a simulation study that utilizes an ordering of the toxicity variable.

Depending on a study one can categorise the toxicity variable in multiple categories

according to severity of issues occuring. For example,

Y = 0 No SAE

= 1 Grade1− 2

= 2 Grade3− 4

= 3 Grade5

Here each category Y = y is composed of a discrete set of preferred terms, including

those of greatest clinical relevance. Ideally, an ordinal toxicity variable with multi-

ple categories will be more informative than a binary toxicity variable, which should

improve the predicitive ability of a dose toxicity model. Aside from the overall pre-

diction and dose selection as it was done in 3.3.1, we are also interested in finding the

conditional toxicity prediction. At a given dose combination level, by using an ordinal

toxicity variable we can predict higher or worse levels of toxicity. For example, we

will gather all available information about Grade 2 toxicity incidents and we will use

that to predict any Grdae 3 or 4 toxicity incidents. For example, let us assume we

have drug A with dose levels (0.1, 0.2, 0.3, 0.4, 0.5, 0.6) and drug B with dose levels

(0.1, 0.2, 0.3, 0.4, 0.5). Prior to the dose combination study, individual studies with

drug A and drug B were performed. We use the individual toxicity probabilities as

predicted using the Emax model from these studies in our joint toxicity copula model.
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We only use the dose levels that are less than or equal to the MTD that was selected

from the individual trials on A and B.

Figure 3.3: Estimated toxicity contour for combination of drug A and B

In our combination model subjects are treated in cohorts. Similar to the bi-

nary toxicity scenario, we restrict dose escalation or de-escalation to one dose level

at a time, while also allowing a move along the diagonal direction. When a cer-

tain dose combination cohort reaches or exceeds the targeting toxicity limit, sub-

jects are treated at a lower dose level. The target toxicity limit is fixed at 33%.

The toxicity indicator is determined based on Grade 3 or higher toxicity events.

Using this setup, we have the following 9 dose combination cohorts in our study,

(0.1, 0.1), (0.2, 0.2), (0.2, 0.3), (0.3, 0.3), (0.3, 0.4), (0.3, 0.5), (0.4, 0.5), (0.4, 0.6), (0.5, 0.6).

The toxicty contour in 3.3 was obtained using the parameter estimates after all 9 co-

horts.
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Figure 3.4: Observed and estimated ordinal toxicity probability for drug A and B

Next, we focus on the probability of observing a toxicity of Grade 5 given Grade

3 or 4 has been observed. The following graph details for each cohort the predicted

and observed percentage of Grade 5 toxicity events. The predicted percentage was

calculated at each dose combination level, using the hierarchical model and based on

the information about Grade 3-4 and Grade 2 toxicity information available at that

point in the study. From the graph above we can see that the proposed model works

really well and the predicted percentage of Grade 5 incidents are becoming more and

more accurate as the number of cohorts increse. The average cohort size for this

study was between 21− 24 for all cohorts.
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3.4 Case Study

The drug combination copula model was used to analyze the data obtained from

clinical trials. A combination trial with two drugs, referred as drug A and B from

now on was used, along with the individual trial information for drug A and B. Drug

A had 5 dose levels (0.01, 0.03, 0.1, 0.3, 1) and drug B had 3 dose levels (0.03, 0.3, 1)

in the individual study.

Figure 3.5: Observed and estimated individual toxicity probability for drug A and B

In the individual trial, drug A was used on multiple type of cancer subjects. These

data was pooled together and analyzed using an Emax model for dose response. We

obtained the marginal toxicity probabilities using this model. The graph above shows

the dose toxicity relationship for drug A and B. For drug A we had 3 type of can-

cer subjects, and we used different Emax parameter for all 3 types, the remaining

parameters were the same across all types. This allowed us to pool the data and com-

bine the information together as mentioned in section 2.2. If sufficient information is

available for each type one can always fit different dose response model to different

type of cancer as well. For drug B only one type of cancer data was available and

an emax model was used to obtain the dose toxicity relationship. A dose combina-

tion study with drug A and drug B was performed with a dose escalation scheme
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similar to as mentioned in Section 3. The dose combination study had six cohorts

(0.03, 0.3), (0.1, 0.3), (0.3, 0.3), (0.3, 0.1), (0.1, 0.01), (0.3, 0.01).

Figure 3.6: Observed and estimated joint toxicity probability drug A and B combination

study

In figure 3.6 details the estimated and toxicity of the combination study are given.

The snapshots of the model updated after the inclusion of every new cohort are also

shown. Respective parameter estimates are given as well.
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Figure 3.7: Dose Escalation in drug A and B combination study

Figure 3.8: Estimated joint toxicity contour in drug A and B combination study

Next we study the contours estimated from the combination model. These con-

tours can be extremely useful for future dose selection. In figure 3.8, different toxicity

contours are shown. These contour lines, spread across different dose levels gives us
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information about estimated toxicity. For example, the dose level (0.1, 0.1) would

have a toxicity between 40% to 45%. Also, if our target toxicity limit is 50% , then

following the 0.5 contour we can identify which dose levels would likely result in lower

toxicity. This knowledge could be really helpful for selecting the next cohort dose

levels. Figure 3.8 also shows the dose escalation steps during the combination study.

The copula model retains the advantage of CRM, where the power parameter

associated with the marginal probabilities can be updated during the analysis. This

feature of the copula model allows us to update the toxicity profile of the individ-

ual drugs. In the Figure below we compare the marginal toxicity profile of drug A

obtained from the individual study with the the marginal toxicity profile of drug A

obtained from the combination study. We observe that, when used together with

drug B, drug A exhibits an increased toxicity level. Also, as expected, as drug B dose

level increases the marginal toxicity of drug A also increases.

Figure 3.9: Drug A toxicity probability keeping drug B fixed
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3.5 Discussion

There has been many methods that are developed for single-agent dose finding trials.

Given the enormous advances in medicine and large numbers of new drugs to be

tested, interest in finding combinations of drugs for patient treatment has grown.

The goal of combination therapy is to achieve better patient response, particularly

for cancer patients who are refractory to conventional therapies. In oncology, for

example, combining agents can induce a synergistic treatment effect, allowing the

clinician to target tumour cells with differing drug susceptibilities, and to achieve a

higher intensity of dose with non-overlapping toxicities. Our research is motivated by

many recent and more emerging dose finding drug combination clinical trials at the

M. D. Anderson Cancer Center. One example is to find the MTD combination of a

small molecule receptor (orally administered with four dose levels) and a mammalian

target of rapamycin inhibitor (an intravenous drug with four dose levels) resulting in

16 combinations. The combined drugs are expected to induce a synergistic treatment

effect by targeting different pathways. The trend of drug combination trials poses a

great challenge to finding theMTDcombination with two or more drugs, particularly

with small sample sizes in phase I studies. In a single-agent trial, we typically assume

a monotonically increasing order of toxicity with respect to the dose. For any given

dose, there are at most two adjacent doses and the order of toxicity is known. In

contrast, for a two-drug combination dose space, there are up to eight adjacent doses,

including diagonal and off-diagonal doses, as shown in Fig. 1. More importantly,

complex drug–drug interactive effects often lead to unknown patterns of toxicity.

Thus, the monotonic order of toxicity with respect to the dose level is lost, and it

becomes unclear which dose combination should be assigned under a decision of dose

escalation or de-escalation. Moreover, when two or more drugs are combined, the

dimension of the dose space expands in a multiplicative fashion. This rapid increase

in the dose dimension naturally requires a larger sample size, which can easily double
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or triple that of a single-agent trial.

In this chapter, we discussed a phase I clinical trial adaptive design for combination

therapy. We use a Bayesian hierarchical copula to model the joint toxicity probability

of multiple drugs. This dose finding clinical trial is designed by borrowing strength

from all the available data, individual and combination. The three parameter copula

model links the joint toxicity probability of the drug combination to the individual

drug toxicity probabilities. It captures different natures of interactive drug - drug

effect in the combined dose toxicity surface. This model also allows us to incorporate

the pre specified probabilities of toxicity of the dose combinations on the basis of the

data obtained prior to the trial. This makes the estimation of the combination dose

toxicity contour more efficient. We use a dose escalation strategy that allows both

diagonal and non- diagonal increase in dose levels. Using this escalation strategy

we estimate the MTD and obtain dose toxicity contours for dose combination. A

simulation study demonstrates the performance of the dose escalation scheme which

is further validated in the case study.

In this development the joint toxicity model was built based on a toxicity indicator.

Depending on the purpose and the requirement of the study any binary toxicity

variable can be used. Dose limiting toxicity is a widely used toxicity indicator in

clinical trials. Similarly any adverse events (drug related or overall) can also be used

to model the combined toxicity. Often adverse events are classified into multiple

categories depending on the severity of their nature. Thus it is possible to use an

ordinal toxicity variable to obtain a better idea about the dose toxicity surface. Grade

2, 3-4, 5 adverse events could be used for such a purpose. The method of combining

such ordinal outcomes have been discussed in Section 2.4. Further simulation and

case studies will be performed in future to assess the performance of this method.

While the discussion in this paper is focused on dose-toxicity relationship, one can

use similar methodologies to study efficacy data. Based on both dose-toxicity and
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dose-efficacy contours, safe and effective dose combination levels could be reported

for further analysis in Phase III trials.
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Chapter 4

Conclusion

A model averaging estimator incorporates model uncertainty into the analysis by

combining a set of competing candidate models rather than choosing just one. It

also provides an insurance against selecting a poor model thus improving the risk

in estimation. In this dissertation, we propose a more general framework where

the choice of true model is not fixed. The truth can be any one or a mixture of

the candidate models. Models that have large biases are not excluded from our

analysis. We also study the behavior of frequentist model average estimator with

an optimal weighting scheme to combine all the individual candidate models. As an

illustration, we derive the model average estimator in the linear and logistic regression

framework. The asymptotic distribution for model average estimator is also given.

A linear regression model setup is used to simulate different scenarios to compare

the performance of the proposed model average estimator with existing methods.

Mean square error of the estimator is used for the purpose of comparison. We also

implement the weighting scheme proposed by Liang et al. [2011] and compare their

performance to the proposed and AIC based weights. The simulation results indicate

that the proposed estimator works better than existing model averaging estimators.

In model averaging, if the true model is not included in the set of candidate models,

we end up using an estimate that is biased. If all the models are misspecified, the

weights derived by AIC or by using a consistent or unbiased estimator of mean square

error are not optimal and should be used after careful consideration. When the true

model is not included in the analysis thus all the candidate models are wrong, there
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have been developments in model selection that takes care of the bias resulting from

selection.A penalized version of AIC and BIC have been derived that performs better

than other selection criteria. One can follow a similar path and derive the model

averaging weights based on a sightly modified criteria.

Next, we discussed a phase I clinical trial adaptive design for combination therapy.

We used a Bayesian hierarchical copula to model the joint toxicity probability of

multiple drugs. This dose finding clinical trial is designed by borrowing strength

from all the available data, individual and combination. The three parameter copula

model links the joint toxicity probability of the drug combination to the individual

drug toxicity probabilities. It captures different natures of interactive drug - drug

effect in the combined dose toxicity surface. This model also allows us to incorporate

the pre specified probabilities of toxicity of the dose combinations on the basis of the

data obtained prior to the trial. This makes the estimation of the combination dose

toxicity contour more efficient. We use a dose escalation strategy that allows both

diagonal and non- diagonal increase in dose levels. Using this escalation strategy

we estimate the MTD and obtain dose toxicity contours for dose combination. A

simulation study demonstrates the performance of the dose escalation scheme which

is further validated in the case study.

In this development the joint toxicity model was built based on a toxicity indicator.

Depending on the purpose and the requirement of the study any binary toxicity

variable can be used. Dose limiting toxicity is a widely used toxicity indicator in

clinical trials. Similarly any adverse events (drug related or overall) can also be used

to model the combined toxicity. Often adverse events are classified into multiple

categories depending on the severity of their nature. Thus it is possible to use an

ordinal toxicity variable to obtain a better idea about the dose toxicity surface. Grade

2, 3-4, 5 adverse events could be used for such a purpose. The method of combining

such ordinal outcomes have been discussed as well. Further simulation was performed
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to assess the performance of this method. While the discussion here is focused on dose-

toxicity relationship, one can use similar methodologies to study efficacy data. Based

on both dose-toxicity and dose-efficacy contours, safe and effective dose combination

levels could be reported for further analysis in Phase III trials.



72

Bibliography

J. M. Bates and C. W. J. Granger. The Combination of Forecasts. OR, 20:451–468,

1969. ISSN 01605682. doi: 10.1057/jors.1969.103. 37

B. R. Berk, L. Brown, A. Buja, K. Zhang, and L. Zhao. VALID POST-SELECTION

INFERENCE By Richard Berk, Lawrence Brown , Andreas Buja , Kai Zhang and

Linda Zhao . 2000. 28

P. Billingsley. Probability and measure. John Wiley & Sons, 2008. 41

S. T. Buckland, K. P. Burnham, and N. H. Augustin. Model Selection: An Integral

Part of Inference. Biometrics, 53:603–618, 1997. ISSN 0006341X. doi: 10.2307/

2533961. 4

G. Claeskens and N. L. Hjort. Model Selection and Model Averaging, volume 44. 2008.

ISBN 9780521852258. doi: 10.1006/jmps.1999.1278. 4, 36

D. Danilov and J. R. Magnus. On the harm that ignoring pretesting can cause. Journal

of Econometrics, 122:27–46, 2004a. ISSN 03044076. doi: 10.1016/j.jeconom.2003.

10.018. 37

D. Danilov and J. R. Magnus. Forecast Accuracy After Pretesting with an Application

to the Stock Market. Journal of Forecasting, 23:251–274, 2004b. ISSN 02776693.

doi: 10.1002/for.916. 37

D. Draper. Assessment and propagation of model uncertainty. Journal of the Royal

Statistical Society. Series B (Methodological), 57:45–97, 1995. ISSN 00359246. 4



73

D. E. A. Giles, O. Lieberman, and J. A. Giles. The Optimal Size of a Preliminary Test

of Linear Restrictions in a Misspecified Regression Model. Journal of the American

Statistical Association, 87:1153–1157, 1992. 38

B. E. Hansen. Least Squares Model Averaging. Econometrica, 75:1175–1189, 2007.

ISSN 00129682. doi: 10.1111/j.1468-0262.2007.00785.x. 8, 9, 36

T. Hastie and R. Tibshirani. The elements of statistical learning: data mining,

inference and prediction. 173:693–694, 2005. doi: 10.1111/j.1467-985X.2010.00646\

6.x. 4

N. L. Hjort and G. Claeskens. Frequentist Model Average Estimators. Journal of the

American Statistical Association, 98(464):879–899, Dec. 2003. ISSN 0162-1459. doi:

10.1198/016214503000000828. URL http://www.tandfonline.com/doi/abs/10.

1198/016214503000000828. 2, 5, 7, 8, 9, 13, 14, 29, 31, 36, 37, 42, 43

N. L. Hjort and G. Claeskens. Focussed information criteria and model averaging for

Cox’s hazard regression model. Journal of American Statistical Association, 101:

1449–1464, 2006. ISSN 01621459. doi: 10.1198/016214506000000069. 36

B. Hoadley. Asymptotic Properties of Maximum Likelihood Estimators for the Inde-

pendent Not Identically Distributed Case, 1971. ISSN 0003-4851. 11

J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian Model

Averaging. Statistical Science, 14:121–149, 1999. ISSN 08834237. doi: 10.2307/

2676803. 7

P. W. Holland and R. E. Welsch. Robust regression using iteratively reweighted least-

squares. Communications in Statistics - Theory and Methods, 6:813–827, 2007.

ISSN 0361-0926. doi: 10.1080/03610927708827533. 24

http://www.tandfonline.com/doi/abs/10.1198/016214503000000828
http://www.tandfonline.com/doi/abs/10.1198/016214503000000828


74

D. W. Hosmer and S. Lemeshow. Applied logistic regression. 2000. ISBN 0471356328.

doi: 10.1198/tech.2002.s650. 22

N. Houede, P. F. Thall, H. Nguyen, X. Paoletti, and A. Kramar. Utility-based op-

timization of combination therapy using ordinal toxicity and efficacy in phase I/II

trials. Biometrics, 66:532–540, 2010. ISSN 0006341X. doi: 10.1111/j.1541-0420.

2009.01302.x. 53

L. Huo, Y. Yuan, and G. Yin. Bayesian dose finding for combined drugs with discrete

and continuous doses. Bayesian Analysis, 7:1035–1052, 2012. ISSN 19360975. doi:

10.1214/12-BA735. 45

C. M. Hurvich and C. L. Tsai. Regression and time series model selection in small

samples. Biometrika, 76:297–307, 1989. 38

C. M. Hurvich and C.-L. Tsai. Bias of the corrected AIC criterion for underfitted

regression and time series models. Biometrika, 78:499–509, 1991. ISSN 00063444.

doi: 10.1093/biomet/78.3.499. 38

A. Karagrigoriou, S. Lee, and K. Mattheou. A model selection criterion based on the

BHHJ measure of divergence, 2009. ISSN 03783758. 37

E. L. Lehmann. Elements of large-sample theory. 1999. ISBN 0387985956. doi:

10.2307/1271493. 11

E. L. Lehmann and G. Casella. Theory of Point Estimation, volume 41. 1998. ISBN

0387985026. doi: 10.2307/1270597. 11

H. Liang, G. Zou, A. T. K. Wan, and X. Zhang. Optimal Weight Choice for Frequen-

tist Model Average Estimators. Journal of the American Statistical Association,

106(495):1053–1066, Sept. 2011. ISSN 0162-1459. doi: 10.1198/jasa.2011.tm09478.



75

URL http://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm09478. 6,

8, 15, 17, 29, 31, 32, 36, 37, 69

D. Lien and K. Shrestha. Estimating the optimal hedge ratio with focus information

criterion. Journal of Futures Markets, 25:1011–1024, 2005. ISSN 02707314. doi:

10.1002/fut.20166. 37

D. Madigan, A. E. Raftery, J. C. York, J. M. Bradshaw, and R. G. Almond. Strategies

for Graphical Model Selection. In Selecting Models from Data, volume 98195, pages

91–100. 1994. doi: 10.1007/978-1-4612-2660-4\ 10. 4

J. O’Quigley, M. Pepe, and L. Fisher. Continual reassessment method: a practical

design for phase 1 clinical trials in cancer. Biometrics, 46:33–48, 1990. ISSN 0006-

341X. doi: 10.2307/2531628. 45

M. H. Pesaran, C. Schleicher, and P. Zaffaroni. Model averaging in risk management

with an application to futures markets. Journal of Empirical Finance, 16:280–305,

2009. ISSN 09275398. doi: 10.1016/j.jempfin.2008.08.001. 37

A. E. Raftery and J. A. Hoeting. Bayesian Model Averaging for Linear Regression.

1998. 7

T. A. Stamey, J. N. Kabalin, M. Ferrari, and N. Yang. Prostate specific antigen in

the diagnosis and treatment of adenocarcinoma of the prostate. IV. Anti-androgen

treated patients. The Journal of urology, 141:1088–1090, 1989. 35

B. M. Staw and J. Ross. Behavior in Escalation Situations: Antecedents, Prototypes,

and Solutions. Research in Organizational Behavior, 9:39, 1987. ISSN 01913085.

45

M. J. Sweeting and A. P. Mander. Escalation strategies for combination therapy

http://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm09478


76

Phase i trials. Pharmaceutical Statistics, 11:258–266, 2012. ISSN 15391604. doi:

10.1002/pst.1497. 45

P. F. Thall and J. D. Cook. Dose-finding based on efficacy-toxicity trade-offs. Biomet-

rics, 60:684–693, 2004. ISSN 0006341X. doi: 10.1111/j.0006-341X.2004.00218.x.

45

P. F. Thall, E. H. Estey, and H. G. Sung. A new statistical method for dose-finding

based on efficacy and toxicity in early phase clinical trials. Invest New Drugs, 17:

155–167, 1999. 45

J. G. Thursby and P. Schmidt. Some properties of tests for specification error in a lin-

ear regression model. Journal of the American Statistical Association, 72(359):pp.

635–641, 1977. ISSN 01621459. URL http://www.jstor.org/stable/2286231.

38

A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press,

2000. 11, 40

Y. Wei and P. D. McNicholas. Mixture Model Averaging for Clustering and Classifi-

cation. arXiv preprint arXiv12125760, 2012. 37

G. Yin and Y. Yuan. Bayesian dose finding in oncology for drug combinations by

copula regression. Journal of the Royal Statistical Society: Series C (Applied Statis-

tics), 58(2):211–224, 2009. ISSN 1467-9876. doi: 10.1111/j.1467-9876.2009.00649.x.

45, 46, 48

Y. Zhou. Adaptive designs for phase i dose-finding studies, 2010. ISSN 07673981. 45

http://www.jstor.org/stable/2286231

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Frequentist Model Averaging
	Introduction
	General Framework
	Basic Notation and Set up.
	Main Results.

	Selection of Weights in Frequentist Model Averaging.
	Selection of Weights in General Linear Models
	Prediction in Linear Regression Framework.
	Estimation in Logistic Regression Framework.


	Simulation Study & Real Data Analysis
	Simulation Study
	Large sample behavior & bias variance tradeoff.
	 Comparison with model selection.
	 Comparison with existing frequentist model averaging methods using a linear regression framework.
	Comparison with existing frequentist model averaging methods using a logistic regression framework.

	Analysis of Prostate Cancer Data.

	Discussion
	Appendix
	Regularity Conditions and Assumptions. 
	Proofs of Theorems.


	Dose Finding In Combination Therapy
	Introduction
	Parametric Model for Dose Combination
	Joint Toxicity Model
	Marginal Probabilities for Dose Combination
	Joint Toxicity Model for more than two drugs
	Combination for Ordinal Toxicity Measures

	Simulation
	Binary Toxicity
	Ordinal Toxicity

	Case Study
	Discussion

	Conclusion
	Bibliography

